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Mohammed K. A. Kaabar

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editors

Hatıra Günerhan
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Preface

In science and engineering, differential equations play an important role in all models and

systems. This topic is very special due to the variety of classes for differential equations, and

the fact that each class is essential while studying applied sciences and engineering. Some

examples of the most interesting Special Issues in differential equations include fractional differential

equations, nonlinear partial differential equations, fractal fractional differential equations, sequential

fractional pantograph q-differential equations, and stochastic differential equations. Each of these

topics arise in various subjects such as control theory, signal processing, fluid dynamics, plasma

physics, quantum field theory, electric circuits, and nonlinear fiber optics. All these topics can be

investigated theoretically and numerically with the help of many new or generalized mathematical

tools and numerical techniques. The main aim of this Special Issue is to create a collection of

state-of-the-art research studies on Special Issues in differential equations with applications in science

and engineering to provide researchers with the most recent advances in these topics, which are very

important in modeling various scientific phenomena. This Special Issue, entitled “Special Topics in

Differential Equations with Applications,” has published important research articles in the field of

differential equations, authored by several well-known mathematicians and scientists from diverse

countries worldwide, such as the USA, Ireland, Italy, France, Slovakia, Greece, Austria, Romania,

Bulgaria, Malaysia, Türkiye, Tunisia, Pakistan, India, China, Jordan, Sudan, Morocco, Egypt, Algeria,

China, Russia, and Saudi Arabia.
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Article

Mittag-Leffler-Type Stability of BAM Neural Networks
Modeled by the Generalized Proportional Riemann–Liouville
Fractional Derivative

Ravi P. Agarwal 1, Snezhana Hristova 2,* and Donal O’Regan 3

1 Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA;
ravi.agarwal@tamuk.edu

2 Faculty of Mathematics and Informatics, Plovdiv University, Tzar Asen 24, 4000 Plovdiv, Bulgaria
3 School of Mathematical and Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland;

donal.oregan@nuigalway.ie
* Correspondence: snehri@uni-plovdiv.bg

Abstract: The main goal of the paper is to use a generalized proportional Riemann–Liouville fractional
derivative (GPRLFD) to model BAM neural networks and to study some stability properties of the
equilibrium. Initially, several properties of the GPRLFD are proved, such as the fractional derivative
of a squared function. Additionally, some comparison results for GPRLFD are provided. Two types of
equilibrium of the BAM model with GPRLFD are defined. In connection with the applied fractional
derivative and its singularity at the initial time, the Mittag-Leffler exponential stability in time of
the equilibrium is introduced and studied. An example is given, illustrating the meaning of the
equilibrium as well as its stability properties.

Keywords: BAM neural networks; Mittag-Leffler-type stability; fractional differential equations;
generalized proportional Riemann–Liouville fractional derivative

MSC: 34A34; 34A08; 34D20

1. Introduction

One of the main qualitative properties of the solutions of differential equations is
stability. There are various types of stability defined, studied and applied to different types
of differential equations, especially to fractional differential equations. The stability of
Hadamard fractional differential equations is studied in [1]. The stability of Caputo-type
fractional derivatives are studied by many authors, and many sufficient conditions are
obtained (for example, see Mittag-Leffler stability in [2], and the application of Lyapunov
functions in [3]). Concerning fractional differential equations with Riemann–Liouville frac-
tional derivatives, the stability of linear systems is studied in [4], nonlinear systems in [5,6],
Lyapunov functions are applied and comparison results are established in [7], practical sta-
bility is studied in [8], and existence and Ulam stability in [9]. Note that the initial condition
for fractional differential equations with the Riemann–Liouville-type fractional derivative is
totally different from the initial condition for ordinary differential equations or for fractional
differential equations with Caputo-type derivatives. Some authors did not take this into ac-
count, and consequently, a gap exists in the study of stability. Concerning the basic concepts
of the stability for Riemann–Liouville fractional differential equations, we note [10], in
which several up-to-date types of fractional derivatives are defined, studied and applied to
differential equations. Recently, the so-called generalized proportional fractional integrals
and derivatives were defined (see [11,12]). Similar to classical fractional derivatives, there
are two main types of generalized proportional fractional derivatives: Caputo-type and
Riemann–Liouville-type. Several results concerning the existence (see, for example, [13,14]),
integral presentation of the solutions (see, for example, [15]), stability properties (see, for

Axioms 2023, 12, 588. https://doi.org/10.3390/axioms12060588 https://www.mdpi.com/journal/axioms1
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example, [16,17]) and applications to some models (see, for example, [16]) are considered
with the Caputo type of generalized proportional fractional derivatives. Additionally,
there are some results concerning the Riemann–Liouville type. Some existence results are
obtained in [18]. In [19,20], the oscillation properties of fractional differential equations
with a generalized proportional Riemann–Liouville fractional derivative are studied. The
existence and uniqueness of a coupled system is studied in [21] in the case of three-point
generalized fractional integral boundary conditions. In this paper, initially, we prove some
comparison results for generalized proportional Riemann–Liouville fractional derivatives.
Additionally, we discuss the behavior of the solutions on small enough intervals about
the initial time. Some examples are given, illustrating the necessity of excluding the initial
time when the stability is studied. The obtained results are a basis for studying a stability
property of the equilibrium of a model of neural networks. The models of neural networks
are important issues due to their successful application in pattern recognition, artificial
intelligence, automatic control, signal processing, optimization, etc. In the past decades,
several types of fractional derivatives were applied to the models of neural networks to
describe the dynamics of the neurons more adequately. Many qualitative properties of
their equilibrium have been studied. In this paper, we apply the generalized proportional
Riemann–Liouville fractional derivative to the BAM model of neutral networks. Recently,
bi-directional associative memory (BAM) neural networks were extensively investigated
and successfully applied to signal processing, pattern recognition, associative memory
and optimization problems. For more adequate modeling of the dynamics of the state of
neurons, several types of derivatives are applied, including various types of fractional
derivatives. We refer the reader, for example, to the study of existence and stability for
models with ordinary derivatives and discontinuous neuron activations [22], the delay
model [23], and the study of stability for a model with the Caputo fractional derivative [24].
Reviews of the application of fractional derivatives to the neural networks are given
in [25,26].

One of the main properties of the applied fractional derivative is its singularity at
the initial time. In connection with this, we define in an appropriate way an exponential
Mittag-Leffler stability in time, excluding the initial time. Additionally, two types of equi-
librium, deeply connected with the applied fractional derivative, are defined. Sufficient
conditions based on the new comparison results are obtained and illustrated with examples.
The rest of this paper is organized as follows. In Section 2, some notes on fractional calculus
are provided; the basic definitions of the generalized proportional fractional integrals and
derivatives are given in the case when the order of fractional derivative is in the interval
(0, 1) and the parameter is in (0, 1]. The connection with the tempered fractional integrals
and the derivatives is discussed. In Section 3, we prove some comparison results for gener-
alized Riemann–Liouville fractional derivatives. In Section 4, the model of BAM neural
networks with GPRLFD is set up and studied. Two types of equilibriums are defined. These
definitions are deeply connected with the applied GPRLFD and its properties, which are
totally different from those of ordinary derivatives and Caputo-type fractional derivatives.
The Mittag-Leffler exponential stability in time of both types of equilibriums is defined and
studied. Finally, an example is given to illustrate the theoretical results and statements.

2. Some Notes on Fractional Calculus

The main goal in this paper is to apply a partial case of fractional derivatives to a
model and to investigate the stability behavior of the model. In connection with this,
we will give a brief discussion about fractional derivatives known in the literature. The
main idea of fractional calculus is the generalization of the differential operator to an
operator with any real or complex number order. The most standard of these operators
are the Riemann–Liouville fractional integral and derivatives (for basic definitions and
properties, see, for example, the classical books [27–30]). In the last few decades, many
different definitions have been proposed. As a comprehensive definition appealing to
general principles of mathematics, the fractional derivative is a fractional power of the

2
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infinitesimal generator of a strictly continuous semigroup of contractions. We mention
the Marchaud operator, generated by a semigroup, which is well described and compared
with the existing ones in the paper [31], and its detailed presentation, together with the
constructions with the exponential multiplier, is given in the classical book [29]. Addition-
ally, a differential operator with a fractional integro-differential operator composition in
final terms is presented and studied in [32]. Another way to generalize the classical defini-
tions is the approach whereby some multipliers can be added to make a new construction
with some similar properties. For more information about the definitions of fractional
integrals and derivatives with exponential kernel, called tempered fractional integrals and
derivatives, and some applications to stochastic process, Brownian motion, etc., we refer
the reader to [33]. Recently, refs. [11,12] generalized fractional integrals and derivatives
by considering exponential functions with a fraction in the power, and these were called
generalized proportional fractional ones. The used parameter in the exponential kernel
gives us more detailed information.

We recall some basic definitions and properties relevant to the generalized proportional
fractional derivative and integral. The terms and notations are adopted from [11,12].

Definition 1. Ref. [11] (The generalized proportional fractional integral) (GPFI) Let υ : [a, b] →
R, b ≤ ∞, and ρ ∈ (0, 1], q ≥ 0. We define the GPFI of the function υ by (aI0,ρυ)(t) = υ(t) and

(aIq,ρυ)(t) =
1

ρqΓ(q)

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)q−1υ(s) ds, t ∈ (a, b]. (1)

Definition 2. Ref. [11] (The generalized proportional Riemann–Liouville fractional derivative)
(GPRLFD) Let υ : [a, b] → R, b ≤ ∞, and ρ ∈ (0, 1], q ∈ (0, 1). Define the GPRLFD of the
function υ by

(R
a Dq,ρυ)(t) =

1
ρ1−qΓ(1 − q)

(
(1 − ρ)

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)−qυ(s) ds

+ ρ
d
dt

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)−qυ(s) ds
)

, t ∈ (a, b].
(2)

Remark 1. The constructions with the exponential multiplier were considered also in the mono-
graph [29].

Remark 2. The parameter q in Definitions 1 and 2 is interpreted as an order of integration and
differentiation, respectively. The parameter ρ is connected with the power of the exponential
function. In the case ρ = 1, the given fractional integral and derivative reduce to the classical
Riemann–Liouville fractional integral

a Iq
t υ(t) =

1
Γ(q)

∫ t

a
(t − s)q−1υ(s) ds, (3)

and the Riemann–Liouville fractional derivative

RL
a Dq

t υ(t) =
1

Γ(1 − q)
d
dt

∫ t

a
(t − s)−qυ(s) ds, (4)

The relation between the GPRLFD and the Riemann–Liouville fractional derivative is
given in the following Lemma.

Lemma 1. Let ρ ∈ (0, 1], q ∈ (0, 1), and υ ∈ C([a, b]), b ≤ ∞. Then,

(aDq,ρυ)(t) = ρqe
ρ−1

ρ t
(

RL
a Dq

t

(
e

1−ρ
ρ t

υ(t)
))

, t ∈ (a, b]. (5)

3
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Proof. From Equations (2) and (4), we have

(R
a Dq,ρυ)(t) =

1
ρ1−qΓ(1 − q)

(
(1 − ρ)

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)−qυ(s) ds

+ ρ
d
dt

e
ρ−1

ρ t
∫ t

a
e

1−ρ
ρ s

(t − s)−qυ(s) ds
)

=
1

ρ−qΓ(1 − q)
e

ρ−1
ρ t d

dt

∫ t

a
e

1−ρ
ρ s

(t − s)−qυ(s) ds

= ρqe
ρ−1

ρ t
(RL

a Dq
t e

1−ρ
ρ t

υ(t)).

Remark 3. The equality (5) gives us an opportunity to apply some of the properties known in the
literature for Riemann–Liouville fractional derivatives to GPRLFD. However, it does not allow
us to directly apply properties of the solutions of fractional differential equations with Riemann–
Liouville fractional derivatives to those with GPRLFD. That is why it is absolutely necessary to
study independently differential equations with GPRLFD and to obtain sufficient conditions for
some qualitative properties of their solutions, such as various types of stability.

Define the set

Cq,ρ([a, b],Rn) = {υ : [a, b] → R
n : for any t ∈ (a, b] there exists (RL

a Dq,ρυ)(t) < ∞}.

We will provide some results which are partial cases of the obtained ones in [12] and
which will be used in our further considerations.

Lemma 2. (semigroup property) (Theorem 3.8, Corollary 3.10, Theorem 3.11, Lemma 3.12 [12])
If ρ ∈ (0, 1], Re(q) > 0, Re(β) > 0, and υ ∈ C([a, b]), b ≤ ∞, we have the following:

aIq,ρ
(

aIβ,ρυ
)
(t) = aIβ,ρ(aIq,ρυ)(t) =

(
aIq+β,ρυ

)
(t)

(R
a Dβ,ρ

aIq,ρυ)(t) = aIq−β,ρυ)(t), 0 < β < q,

(R
a Dq,ρ

aIq,ρυ)(t) = υ(t)

aIq,ρ(R
a Dq,ρυ)(t) = υ(t)− (aI1−q,ρυ)(a)

ρq−1Γ(q)
e

ρ−1
ρ (t−a)

(t − a)q−1.

(6)

Lemma 3. (Lemma 2 [15]) Let ρ ∈ (0, 1], q ∈ (0, 1), and y ∈ C([a, b],R).

(i) Let there exist a limit limt→a+

(
e

1−ρ
ρ t

(t − a)1−qy(t)
)
= c < ∞. Then, (aI1−q,ρy)(a) =

c Γ(q)
ρ1−q e

ρ−1
ρ a.

(ii) Let (aI1−q,ρy)(a+) = b < ∞. If there exists the limit limt→a+

(
e

1−ρ
ρ t

(t − a)1−qy(t)
)

, then

limt→a+

(
e

1−ρ
ρ t

(t − a)1−qy(t)
)
= bρ1−qe

1−ρ
ρ a

Γ(q) .

Lemma 4. Example 4.4 in [11] The solution of the initial value problem (IVP) for the scalar
linear GPRLFDE

(RL
a Dq,ρu)(t) = ρqλu(t) + f (t), (aI1−q,ρu)(a+) = u0, q ∈ (0, 1), ρ ∈ (0, 1]

4
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has a solution υ ∈ Cq,ρ([a, ∞)) given by

u(t) = u0ρ1−qe
ρ−1

ρ (t−a)
(t − a)q−1Eq,q(λ(t − a)q)

+ ρ−q
∫ t

a
Eq,q(λ(t − s)q)e

ρ−1
ρ (t−s)

(t − s)q−1 f (s)ds,

where Eq,q(t) is the Mittag-Leffler function of two parameters, λ ∈ R.

Corollary 1. RL
a Dq,ρ(e

ρ−1
ρ (t−a)

(t − a)q−1) = 0, t > a.

The proof of Corollary 1 follows from Lemma 4 with λ = 0, f (t) ≡ 0 and the equality
Eq,q(0) = 1

Γ(q) .

Proposition 1. (Proposition 3.7 in [11]). RL
a Dq,ρ(e

ρ−1
ρ (t−a)

) = 1
ρqΓ(1−q) e

ρ−1
ρ (t−a)

(t − a)−q,
t > a.

Remark 4. In Theorem 2.1 [34], it is proved that tempered fractional integrals and derivatives could
be theoretically expressed as an infinite series of classical Riemann–Liouville fractional integrals and
derivatives. The same is true for GPFI and GPRLFD. However, the practical application of infinite
series is very difficult. It requires independent study of differential equations with GPRLFD and
finding applicable sufficient conditions for the properties of their solutions.

3. Comparison Results for GPRLFD

Lemma 5. Let υ ∈ C([a, b],R), a < b < ∞ be Lipschitz, and let there exist a point T ∈ (a, b]
such that υ(T) = 0, and υ(t) < 0, for a ≤ t < T. Then, if the GPRLFD of υ exists for t = T with
q ∈ (0, 1), ρ ∈ (0, 1], then the inequality ( RL

a Dq,ρυ)(t)|t=T ≥ 0 holds.

Proof. Let H(t) =
∫ t

a e
ρ−1

ρ (t−s)
(t − s)−qυ(s) ds for t ∈ [a, b]. According to (2), we have

(R
a Dq,ρυ)(T) =

1
ρ1−qΓ(1 − q)

(
(1 − ρ)H(T) + ρ lim

h→0+

H(T − h)− H(T)
h

)
=

1
ρ1−qΓ(1 − q)

lim
h→0+

(
(1 − ρ)H(T) + ρ

H(T − h)− H(T)
h

)
.

(7)

There exists a constant K > 0 such that 0 > v(s) = v(s) − v(T) ≥ K(s − T) for
s ∈ [T − h, T), h > 0, and∫ T

T−h
e

1−ρ
ρ s

(T − s)−qυ(s) ds ≥ −K
∫ T

T−h
e

1−ρ
ρ s

(T − s)1−q ds

=
Ke

1−ρ
ρ T

( 1−ρ
ρ )2−q

(
Γ(2 − q, h

1 − ρ

ρ
)− Γ(2 − q)

)
≡ M(h),

(8)

where Γ(., .) is the incomplete Gamma function and

lim
h→0+

Γ(2 − q, h 1−ρ
ρ )− Γ(2 − q)

h
= 0. (9)

5
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Thus, using e
ρ−1

ρ h
(T − h − s)q < (T − s)q for s ∈ [T − h, T), h > 0, ρ ∈ (0, 1], and

υ(s) < 0 on [a, T) we get

H(T − h)− H(T) =
∫ T

a

(
e

ρ−1
ρ (T−h−s)

(T − h − s)−q − e
ρ−1

ρ (T−s)
(T − s)−q

)
υ(s) ds

−
∫ T

T−h
e

ρ−1
ρ (T−s)

(
e

1−ρ
ρ h

(T − h − s)−q − (T − s)−q
)

υ(s) ds

+
∫ T

T−h
e

ρ−1
ρ (T−s)

(T − s)−qυ(s) ds

≥
∫ T

a

(
e

ρ−1
ρ (T−h−s)

(T − h − s)−q − e
ρ−1

ρ (T−s)
(t − s)−q

)
υ(s) ds + M(h)e

ρ−1
ρ T .

(10)

Using (8)–(10), we obtain

lim
h→0+

(
(1 − ρ)H(T) +

ρ

h
(H(t)− H(T − h))

)
≥ (1 − ρ)

∫ T

a
e

ρ−1
ρ (T−s)

(t − s)−qυ(s) ds

+ ρ
∫ T

a
lim

h→0+

e
ρ−1

ρ (T−h−s)
(T − h − s)−q − e

ρ−1
ρ (T−s)

(T − s)−q

h
υ(s) ds

+ lim
h→0+

M(h)
h

ρe
ρ−1

ρ T

= (1 − ρ)
∫ T

a
e

ρ−1
ρ (T−s)

(T − s)−qυ(s) ds + ρ
∫ T

a

d
dT

(
e

ρ−1
ρ (T−s)

(T − s)−q
)

υ(s) ds

= (1 − ρ)
∫ T

a
e

ρ−1
ρ (T−s)

(T − s)−qυ(s) ds

+
∫ T

a

(
(ρ − 1)e

ρ−1
ρ (T−s)

(T − s)−q − qρe
ρ−1

ρ (T−s)
(t − s)−1−q

)
υ(s) ds

= −qρ
∫ T

a
e

ρ−1
ρ (T−s)

(T − s)−1−qυ(s) ds > 0.

(11)

Example 1. Consider υ(t) = e
ρ−1

ρ t
(t− 2) for t ∈ [0, 2], ρ = 0.5. Note that υ(t) < 0 for t ∈ [0, 2),

υ(2) = 0 and for any q ∈ (0, 1) we have

(R
0 Dq,ρυ)(t)|t=2 =

1
0.51−qΓ(1 − q)

(
0.5

∫ 2

0
e−(2−s)(s − 2)−qe−s(2 − s) ds

+ 0.5
d
dt

∫ t

0
e−(t−s)(t − s)−qe−s(s − 2) ds|t=2

)
=

1
0.5−qΓ(1 − q)

(
− e−2

∫ 2

0
(2 − s)1−q ds +

d
dt

e−t
∫ t

0
(t − s)−q(s − 2) ds|t=2

)
=

1
0.5−qΓ(1 − q)

(
− 22−q

(2 − q)e2 +
d
dt
(

e−tt1−q(t + 2q − 4)
2 − 3q + q2 )|t=2

)
=

1
0.5−qΓ(1 − q)

(
− 22−q

(2 − q)e2 + 2−q 4 − 2q2

(2 − 3q + q2)e2

)
> 0.

(12)

Remark 5. A similar claim to Lemma 5, but for the Riemann–Liouville fractional derivatives, is
proved in [7].
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Lemma 6. Let g ∈ C([t0, b]×R,R), the functions μ, ν ∈ Cq,ρ([t0, b],R) be Lipschitz and satisfy
the inequalities

(RL
t0

Dq,ρμ)(t) < g(t, μ(t)), t ∈ (t0, b], lim
t→t0+

(
e

1−ρ
ρ (t−t0)(t − t0)

1−qμ(t)
)
= μ0

ρq−1

Γ(q)
, (13)

and

(RL
t0

Dq,ρν)(t) ≥ g(t, ν(t)), t ∈ (t0, b], lim
t→t0+

(
e

1−ρ
ρ (t−t0)(t − t0)

1−qν(t)
)
= ν0

ρq−1

Γ(q)
. (14)

Then, if μ0 < ν0, the inequality μ(t) < ν(t), t ∈ (t0, b] holds.

Proof. Suppose the contrary. Because μ0 < ν0, and the functions e
1−ρ

ρ (t−t0)(t − t0)
1−qμ(t)

and e
1−ρ

ρ (t−t0)(t − t0)
1−qν(t) are continuous, there exists a point τ ∈ (t0, b] such that μ(t) <

ν(t), t ∈ [t0, τ) and μ(τ) = ν(τ). According to Lemma 5, for υ = μ − ν, a = t0 we
obtain 0 = g(τ, μ(τ))− g(τ, ν(τ)) > ( RL

t0
Dq,ρμ)(t)|t=τ − ( RL

t0
Dq,ρν)(t)|t=τ = ( RL

t0
Dq,ρμ −

ν)(t)|t=τ ≥ 0.
The obtained contradiction proves the claim.

In the case when the initial condition contains the generalized proportional fractional
integral, we obtain the following result.

Corollary 2. Let g ∈ C([t0, b] × R,R), the functions μ, ν ∈ Cq,ρ([t0, b],R) be Lipschitz and
satisfy the inequalities

(RL
t0

Dq,ρμ)(t) < g(t, μ(t)), t ∈ (t0, b], (t0I1−q,ρμ)(t)|t=t0 = μ0, (15)

and
(RL

t0
Dq,ρν)(t) ≥ g(t, ν(t)), t ∈ (t0, b], (t0I1−q,ρν)(t)|t=t0 = ν0. (16)

Then, if μ0 < ν0, the inequality μ(t) < ν(t), t ∈ (t0, b] holds.

Corollary 3. Let the functions μ, ν ∈ Cq,ρ([t0, b],R) be Lipschitz and satisfy the inequalities

(RL
t0

Dq,ρμ)(t) < (RL
t0

Dq,ρν)(t), t ∈ (t0, b],

lim
t→t0+

(
e

1−ρ
ρ (t−t0)(t − t0)

1−qμ(t)
)
< lim

t→t0+

(
e

1−ρ
ρ (t−t0)(t − t0)

1−qν(t)
)

.
(17)

Then, the inequality μ(t) < ν(t), t ∈ (t0, b] holds.

Lemma 7. Let the function ν ∈ Cq,ρ([t0, b],R) and ν2 ∈ Cq,ρ([t0, b],R). Then, the inequality

(RL
t0

Dq,ρν2)(t) ≤ 2ν(t)(RL
t0

Dq,ρν)(t), t ∈ (t0, b] (18)

holds.

Proof. Fix a point T ∈ (t0, b] and define the function μ(s) = (ν(T)− ν(s))2 for all s ∈ [t0, T].
The function (−μ(s)) satisfies all the conditions of Lemma 5 for υ = −ν, a = t0, and we
obtain ( RL

t0
Dq,ρ(−μ)(t)|t=T ≥ 0, i.e., applying Definition 2, we get

( RL
t0

Dq,ρ(μ)(t)|t=T =
1

ρ1−qΓ(1 − q)
lim

h→0+

(
(1 − ρ)H(T) + ρ

H(T − h)− H(T)
h

)
≤ 0, (19)

where H(t) =
∫ t

t0
e

ρ−1
ρ (t−s)

(t − s)−qμ(σ) dσ, t ∈ [t0, b].

7
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Define the functions

P(t) =
∫ t

t0

e
ρ−1

ρ (t−s)
(t − s)−qν(s) ds, t ∈ [t0, b]

and

W(t) =
∫ t

t0

e
ρ−1

ρ (t−s)
(t − s)−qν2(s) ds, t ∈ [t0, b].

According to Definition 2, we have

(RL
t0

Dq,ρν)(t) =
1

ρ1−qΓ(1 − q)

(
(1 − ρ)P(t) + ρ lim

h→0+

P(t − h)− P(t)
h

)
=

1
ρ1−qΓ(1 − q)

lim
h→0+

(
(1 − ρ)P(t) + ρ

P(t − h)− P(t)
h

) (20)

and

(RL
t0

Dq,ρν2)(t) =
1

ρ1−qΓ(1 − q)
lim

h→0+

(
(1 − ρ)W(t) + ρ

W(t − h)− W(t)
h

)
. (21)

Note

ν2(s)− 2ν(T)ν(s) = (ν(T)− ν(s))2 − ν2(s) = μ(s)− ν2(s) ≤ μ(s), s ∈ [t0, T], (22)

and

W(T)− 2ν(T)P(T) =
∫ T

t0

e
ρ−1

ρ (T−s)
(T − s)−q

(
ν2(σ)− 2ν(T)ν(σ)) dσ

≤
∫ T

t0

e
ρ−1

ρ (T−s)
(T − s)−qμ(σ) dσ = H(T),

W(T − h)− 2ν(T)P(T − h) =
∫ T−h

t0

e
ρ−1

ρ (T−h−s)
(T − h − s)−q

(
ν2(σ)− 2ν(T)ν(σ)) dσ

≤
∫ T−h

t0

e
ρ−1

ρ (T−h−s)
(T − h − s)−qμ(σ) dσ = H(T − h).

(23)

Then,

(RL
t0

Dq,ρν2)(T)− 2ν(T)(RL
t0

Dq,ρν)(T)

=
1

ρ1−qΓ(1 − q)
lim

h→0+

(
(1 − ρ)(W(T)− 2ν(T)P(T))

+ ρ
(W(T − h)− ν(T)P(T − h)− (W(T)− ν(T)P(T))

h

)
=

1
ρ1−qΓ(1 − q)

lim
h→0+

(
(1 − ρ)(W(T)− 2ν(T)P(T))

+ ρ
(W(T − h)− ν(T)P(T − h))− (W(T)− ν(T)P(T))

h

)
≤ 1

ρ1−qΓ(1 − q)
lim

h→0+

(
(1 − ρ)H(T) + ρ

H(T − h)− H(T)
h

)
= (RL

t0
Dq,ρμ)(T) ≤ 0.

(24)

Because T ∈ (t0, b] is an arbitrary point, the claim is proved.

8
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Corollary 4. Let the functions νi ∈ Cq,ρ([t0, b],R) and ν2
i ∈ Cq,ρ([t0, b],R), i = 1, 2, . . . , n.

Then, the inequality

(RL
t0

Dq,ρ
n

∑
i=1

ν2
i (·))(t) ≤ 2

n

∑
i=1

νi(t)(RL
t0

Dq,ρνi(·))(t), t ∈ (t0, b] (25)

holds.

Remark 6. Note that several authors ([35]) used the inequality (25) for the Riemann–Liouville
fractional derivative to prove the main results, citing the results from [3,36], which concern the
Caputo fractional derivative.

Remark 7. Fractional differential operators in a variety of settings under general assumptions
regarding the weighted factor were considered by Kukushkin [37], and we refer the reader to that
paper for a nice overview.

4. BAM Neural Networks Modeled by GPRLFD

The general model of the fractional-order BAM neural networks with the GPRLFD is
described by the following state equations:

(RL
0 Dq,ρxi)(t) = −ai(t)xi(t)) +

m

∑
k=1

bi,k(t) fk(yk(t)) + Ii(t), t > 0, i = 1, 2, . . . , n,

(RL
0 Dq,ρyj)(t) = −cj(t)yj(t)) +

n

∑
k=1

dj,k(t)gk(yk(t)) + Jj(t), t > 0, j = 1, 2, . . . , m,
(26)

where xi(t) and yj(t) are the state variables of the i-th neuron in the first layer at time t
and the state variables of the j-th neuron in the second layer at time t, respectively, n and
m are the numbers of units in the first and second layers in the neural network, RL

0 Dq,ρ

denotes the GPRLFD of order q ∈ (0, 1), ρ ∈ (0, 1], fi(u) and gj(u) denote the activation
functions, bi,k(t), di,k(t) : [0, ∞) → R denote the connection weight coefficients of the
neurons, ai(t), cj(t) : [0, ∞) → (0, ∞) represent the decay coefficients of signals at time t,
and Ii(t), Jj(t) denotes the external inputs of the first and second layers, respectively, at
time t.

The initial conditions associated with the model (26) can be written in the form

(0I1−q,ρxi)(t)|t=0 = x0
i , (0I1−q,ρyj)(t)|t=0 = y0

j , i = 1, 2 . . . , n, j = 1, 2, . . . , m. (27)

Remark 8. According to Lemma 3, the initial conditions (27) could be replaced by initial conditions
of the type

lim
t→0+

(
e

1−ρ
ρ tt1−qxi(t)

)
= x0

i
ρq−1

Γ(q)
, lim

t→0+

(
e

1−ρ
ρ tt1−qyi(t)

)
= y0

i
ρq−1

Γ(p)
. (28)

The goal of this paper is to study a special type of stability of the model (26) with
initial conditions (27) or their equivalent (28).

Initially, we will consider an example to discuss some properties of the solutions of
equations with the generalized proportional Riemann–Liouville fractional derivative.

Example 2. Consider the initial value problem for the scalar differential equation with GPRLFD

(RL
0 Dq,ρu)(t) = −u(t), (0I1−q,ρu)(0+) = u0,

9
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where q ∈ (0, 1), ρ ∈ (0, 1]. According to Lemma 4 with λ = − 1
ρq , f (t, u) ≡ 0, the solution is

given by

u(t; u0) = u0ρ1−qe
ρ−1

ρ ttq−1Eq,q(−(
t
ρ
)q).

For any nonzero initial value, we have limt→0+ u(t; u0) = ∞ and limt→∞ u(t; u0) = 0.
Then, for any ε > 0 there exists T = T(ε, u0) such that |u(t; u0)| < ε for t > T, but we could not
find a nonzero initial value u0 such that |u(t; u0)| < ε for t ≥ 0.

The above example illustrates that any type of stability for differential equations with
GPRLFD has to be defined in a different way than those for ordinary differential equations
or differential equations with the Caputo-type fractional derivative. The initial time has
to be excluded. Some authors do not exclude the initial time (it is usually 0), and they do
not note that order q ∈ (0, 1) of the Riemann–Liouville fractional derivative of a constant
depends on the expressions t−q and tq−1,which are not bounded for points close enough to
the initial time 0 (see, for example, [38–40]). Note that the main concepts of stability of the
Riemann–Liouville fractional derivative are discussed and studied in [10].

We now introduce the class Λ of Lyapunov-like functions, which will be used to
investigate the stability of the model (26).

Definition 3. Let Δ ⊂ R
n, 0 ∈ Δ. We will say that the function V(x) : Δ → R+ belongs to the

class Λ(Δ) if V(x) ∈ C(Δ) and it is locally Lipschitzian.

Remark 9. Lyapunov functions could be applied with the quadratic function V(x) = ∑n
i=1 x2

i , x =
(x1, x2, . . . , xn) for which Corollary 4 could be applied.

Note that some authors, when applying Lyapunov functions to fractional differential
equations, use the equality (RL

t0
Dq|ν|)(t) = sign(ν(t))(RL

t0
Dqν)(t) (see, for example, (31)).

However, this equality is not true for all continuous functions ν.

Example 3. Let ν(t) = t − 1, t ∈ [0, 2], q = 0.3, t0 = 0. Then, for t ∈ (1, 2), we get

RL
0 D0.3

t |t − 1| = 1
Γ(0.7)

d
dt

∫ t

0
(t − s)−0.3|s − 1|ds

=
1

Γ(0.7)
d
dt

∫ t

0
(t − s)−0.3sign(s − 1) (s − 1)ds

=
1

Γ(0.7)
d
dt

(
−

∫ 1

0
(t − s)−0.3 (s − 1)ds +

∫ t

1
(t − s)−0.3 (s − 1)ds

)
�= 1

Γ(0.7)
d
dt

∫ t

0
(t − s)−0.3(s − 1)ds = sign(t − 1)

(
RL
0 D0.3

t (t − 1)
)

.

(29)

In connection with the above remark and example, we will use the quadratic function
as a Lyapunov function.

We will define the equilibrium of the neural networks (26) and (27). Usually, the equi-
librium is a point whose derivative is zero, and satisfies an appropriate algebraic equation.
In the case where the generalized proportional derivative (Caputo or Riemann–Liouville
type) is taken for a nonzero constant, then the result is not equal to zero (which is true
for the ordinary derivative and the Caputo derivative). For the generalized proportional

Caputo fractional derivative, the equilibrium is defined by Ce
ρ−1

ρ t and studied for some
types of stability in [16]. In the case of the Riemann–Liouville fractional derivative, the
equilibrium is defined as a constant in [39], but because RL

0 Dq
t 1 = t−q

Γ(1−q) , the algebraic
system (12) [39] could not be satisfied for all t ≥ 0 because the right-hand side part does not
depend on t but the left-hand side part depends on the variable t−q, which has no bound
as t → 0+.

10
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A similar situation occurs with the GPRLFD. We will study the stability behavior of
the model (26) in several cases.

4.1. General Case of the Model

Consider the model (26) in the general case, when at least one of the coefficients and
the external inputs in both layers are variable in time.

4.1.1. Variable in Time Equilibrium

Applying Corollary 1 with a = 0, we will define the equilibrium of (26):

Definition 4. The function U∗(t) = (x∗(t), y∗(t)) : (0, ∞) → R
n+m, where x∗(t) = Ce

ρ−1
ρ ttq−1

and y∗(t) = Ke
ρ−1

ρ ttq−1 with C = (C1, C2, . . . , Cn), K = (K1, K2, . . . , Km), Ci = const, i =
1, 2, . . . , n, Kj = const, j = 1, 2, . . . , m, is called an equilibrium of the model of fractional order
BAM neural networks (26) if the equalities

ai(t)Cie
ρ−1

ρ ttq−1 =
m

∑
k=1

bi,k(t) fk(Kke
ρ−1

ρ ttq−1) + Ii(t), t ≥ 0, i = 1, 2 . . . , n

bj(t)Kje
ρ−1

ρ ttq−1 =
n

∑
k=1

dj,k(t)gk(Cke
ρ−1

ρ ttq−1) + Jj(t), t ≥ 0, j = 1, 2 . . . , m
(30)

hold.

Note that limt→0+

(
e

1−ρ
ρ tt1−qU∗(t)

)
= U0 where U0 = (C, K), and therefore, the

equilibrium U∗(t) is a solution of the model (26) and (27) with x0 = C Γ(q)
ρ1−q and y0 = K Γ(q)

ρ1−q .

Let U∗(t) be an equilibrium of (26) defined by Definition 4. Consider the change of
variables u(t) = x(t)− x∗(t), v(t) = y(t)− y∗(t), t ≥ 0, in system (26). Then, we obtain

(RL
0 Dq,ρui)(t) = −ai(t)ui(t) +

m

∑
k=1

bi,k(t)Fk(t, vk(t)), t > 0, i = 1, 2, . . . , n,

(RL
0 Dq,ρvj)(t) = −bj(t)vj(t) +

n

∑
k=1

dj,k(t)Gk(t, uk(t)), t > 0, j = 1, 2, . . . , m,
(31)

where Fj(t, u) = f j(u + y∗j (t)) − f j(y∗j (t)), Gi(t, u) = gi(u + x∗i (t)) − gi(x∗i (t)),
i = 1, 2, . . . , n, j = 1, 2, . . . , m for t > 0, u ∈ R.

The initial conditions associated with the revised model (31) can be written in the form

(0I1−q,ρui)(t)|t=0 = x0
i − Ci

Γ(q)
ρ1−q , i = 1, 2 . . . , n,

(0I1−q,ρvj)(t)|t=0 = y0
j − Kj

Γ(q)
ρ1−q , j = 1, 2, . . . , m.

(32)

Note that the system (31) has a zero solution (with zero initial values).

Definition 5. Let α ∈ (0, 1) and ρ ∈ (0, 1]. The equilibrium U∗(t) of (26) is called Mittag-
Leffler exponentially stable in time if there exists T > 0 such that, for any solution U(t) =
(x(t), y(t)) of (26) and (27), the inequality

‖U(t)− U∗(t)‖ ≤ Ξ
(∥∥∥∥v0 − U0 Γ(q)

ρ1−q

∥∥∥∥)eλ
ρ−1

ρ tEq,q(−λtq), t ≥ T,

holds, where v0 = (x0, y0), λ > 0 is a constant, and Ξ ∈ C([0, ∞), [0, ∞)), Ξ(0) = 0, is a given
locally Lipschitz function.

11
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Remark 10. The Mittag-Leffler exponential stability in time of the equilibrium (x∗(t), y∗(t)) of
(26) implies that every solution (x(t), y(t)) of the model (26) satisfies limt→∞ ‖x(t)− x∗(t)‖ = 0,
limt→∞ ‖y(t)− y∗(t)‖ = 0 for any initial values.

Theorem 1. Let the following assumptions hold:

1. q ∈ (0, 1) and ρ ∈ (0, 1].
2. The functions ai, cj ∈ C(R+, (0, ∞)), bi,j, dj,i, Ii, Jj ∈ C(R+,R), i = 1, 2, . . . , n,

j = 1, 2, . . . , m.
3. The activation functions fi, gj ∈ C(R,R), and there exist positive constants μi, ηj

i = 1, 2, . . . , n, such that | fi(v)− fi(w)| ≤ μi|v − w| and |gj(v)− gj(w)| ≤ ηj|v − w| for
v, w ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

4. There exist constants Ci, Kj, i = 1, 2, . . . , n, j = 1, 2, . . . , m, such that the algebraic system
(30) is satisfied for all t ≥ 0.

5. There exist constants λi, μj > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, such that the inequalities

2ai(t)−
m

∑
k=1

|bi,k(t)| − η2
i

m

∑
j=1

|dj,i(t)| ≥ λi, t ≥ 0, i = 1, 2, . . . , n

2cj(t)−
n

∑
k=1

|dj,k(t)| − μ2
j

n

∑
i=1

|bi,j(t)| ≥ μj, t ≥ 0, j = 1, 2, . . . , m.

hold.

Then, the equilibrium U∗(t) = (C1, C2, . . . , Cn, K1, K2, . . . , Km)e
ρ−1

ρ ttq−1 of model (26) is
Mittag-Leffler exponentially stable.

Remark 11. Condition 4 of Theorem 1 guarantees the existence of the equilibrium U∗(t) of (26).

Proof. Consider the Lyapunov function V(x, y) = 0.5 ∑n
i=1 x2

i + 0.5 ∑m
j=1 y2

j , x ∈ R
n,

y ∈ R
m.

Let U(·) = (x(·), y(·)) ∈ R
n+m be a solution of (26) and (27), and let X(t) = x(t)−

x∗(t), Y(t) = y(t)− y∗(t), t ≥ 0 where U∗(·) = (x∗(·), y∗(·)).
Then, according to Corollary 4, we get

(RL
0 Dq,ρV(X(·), Y(·)))(t) = 0.5

n

∑
i=1

(RL
0 Dq,ρX2

i (·))(t) + 0.5
m

∑
j=1

(RL
0 Dq,ρY2

j (·))(t)

≤
n

∑
i=1

Xi(t)(RL
0 Dq,ρXi(·))(t) +

m

∑
j=1

Yj(t)(RL
0 Dq,ρYj(·))(t)

=
n

∑
i=1

(
−ai(t)X2

i (t) +
m

∑
k=1

bi,k(t)Xi(t)Fk(t, Yk(t))

)

+
n

∑
j=1

(
−cj(t)Y2

j (t) +
n

∑
k=1

dj, k(t)Yj(t)Gk(t, Xk(t))

)

≤
n

∑
i=1

(
−ai(t)X2

i (t) +
m

∑
k=1

|bi,k(t)|0.5(X2
i (t) + F2

k (t, Yk(t))

)

+
m

∑
j=1

(
−ci(t)Y2

j (t) +
n

∑
k=1

|dj,k(t)|0.5(Y2
j (t) + G2

k (t, Xk(t))

)

≤
n

∑
i=1

⎛⎝−ai(t) + 0.5
m

∑
k=1

|bi,k(t)|+ 0.5η2
i

m

∑
j=1

|dj,i(t)|
⎞⎠X2

i (t)

+
m

∑
j=1

(
−cj(t) + 0.5

n

∑
k=1

|dj,k(t)|+ 0.5μ2
j

n

∑
i=1

|bi,j(t)|
)

Y2
j (t)

≤ −γV(X(t), Y(t)),

(33)

12
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where γ = mini=1,2,...,n, j=1,2,...,m{λi, μj}.
Additionally, we have

lim
t→0+

(
e

1−ρ
ρ tt1−qV(X(t), Y(t))

)
= 0.5 lim

t→0+

(
e

1−ρ
ρ tt1−q

(
n

∑
i=1

X2
i +

m

∑
j=1

Y2
j

))

= 0.5
n

∑
i=1

(
x0

i
ρ1−q

Γ(q)
− Ci

)2

+ 0.5
m

∑
j=1

(
y0

j
ρ1−q

Γ(q)
− Kj

)2

= 0.5
(

ρ1−q

Γ(q)

)2(∥∥∥∥v0 − U0 Γ(q)
ρ1−q

∥∥∥∥)2

< u0
ρ1−q

Γ(q)
,

(34)

where u0 = ρ1−q

Γ(q)

(∥∥∥v0 − U0 Γ(q)
ρ1−q

∥∥∥)2
, v0 = (x0, y0), U0 = (C, K).

Consider the scalar equation (RL
0 Dq,ρu(·))(t) = −γu(t) with the initial condition

(0I1−q,ρu)(t)|t=0 = u0. According to Lemma 4, it has a solution

u(t) = u0ρ1−qe
1−ρ

ρ ttq−1Eq,q(−γ(
t
ρ
)q).

Because limt→∞ tq−1 = 0, there exists T = T(q) > 0 such that tq−1 ≤ 1 for t ≥ T.
According to Corollary 3, we obtain for t ≥ T

V(X(t), Y(t)) < u(t) ≤ ρ2−2q

Γ(q)

(∥∥∥∥v0 − U0 Γ(q)
ρ1−q

∥∥∥∥)2

e
1−ρ

ρ tEq,q(−γ(
t
ρ
)q).

Thus, the equilibrium U∗(·) is Mittag-Leffler exponentially stable with Ξ(u) = ρ2−2q

Γ(q) u2.

4.1.2. Constant Equilibrium

We define the equilibrium of the model (26) as a constant vector in the form
V∗ = (C1, C2, . . . , Cn+m).

From Equation (5), using CAS Wolfram Mathematica, we obtain

(aDq,ρ1)(t) = ρqe
ρ−1

ρ t
(

RL
a Dq

t

(
e

1−ρ
ρ t

))
= (1 − ρ)q

⎛⎝1 −
Γ(−q, 1−ρ

ρ t)

Γ(−q)

⎞⎠ (35)

where Γ(a, x) =
∫ ∞

x ta−1e−tdt is the upper incomplete gamma function. It is clear that

limt→0
Γ(−q, 1−ρ

ρ t)
Γ(−q) = ∞ and limt→∞

Γ(−q, 1−ρ
ρ t)

Γ(−q) = 0 for q ∈ (0, 1) and ρ ∈ (0, 1].
Based on (35), we will define the constant equilibrium of (26):

Definition 6. The constant vector V∗ = (C1, C2, . . . , Cn+m) is called a constant equilibrium of
the model of fractional order BAM neural networks (26) if the equalities

Ci

⎛⎝(1 − ρ)q

⎛⎝1 −
Γ(−q, 1−ρ

ρ t)

Γ(−q)

⎞⎠+ ai(t)

⎞⎠ =
m

∑
k=1

bi,k(t) fk(Cn+k) + Ii(t), t ≥ 0, i = 1, 2 . . . , n

Cn+j

⎛⎝(1 − ρ)q

⎛⎝1 −
Γ(−q, 1−ρ

ρ t)

Γ(−q)

⎞⎠+ bj(t)

⎞⎠ =
n

∑
k=1

dj,k(t)gk(Ck) + Jj(t), t ≥ 0, j = 1, 2 . . . , m

(36)

hold.

13
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Note that limt→0+

(
e

1−ρ
ρ tt1−qV∗

)
= 0, and therefore, the equilibrium V∗ is a solution

of the model (26) and (27) with x0 = y0 = 0.
Let V∗ be a constant equilibrium of (26) defined by Definition 6. Consider the change

of variables ui(t) = xi(t)− Ci, vj(t) = yj(t)− Cn+j, t ≥ 0, in system (26). Then, applying
(35) and (36), we obtain

(RL
0 Dq,ρui)(t) = −ai(t)ui(t) +

m

∑
k=1

bi,k(t)Fk(vk(t)), t > 0, i = 1, 2, . . . , n,

(RL
0 Dq,ρvj)(t) = −bj(t)vj(t) +

n

∑
k=1

dj,k(t)Gk(uk(t)), t > 0, j = 1, 2, . . . , m,
(37)

where Fj(u) = f j(u + Cn+j)− f j(Cn+j), Gi(u) = gi(u + Ci)− gi(Ci), u ∈ R, i = 1, 2, . . . , n,
j = 1, 2, . . . , m, u ∈ R.

Note that the system (31) has a zero solution (with zero initial values).

Definition 7. Let α ∈ (0, 1) and ρ ∈ (0, 1]. The constant equilibrium V∗ of (26) is called
Mittag-Leffler exponentially stable in time if there exists T > 0 such that, for any solution
U(t) = (x(t), y(t)) of (26) and (27), the inequality

‖U(t)− V∗‖ ≤ Ξ
(∥∥∥v0

∥∥∥)eλ
ρ−1

ρ tEq,q(−λtq), t ≥ T,

holds, where v0 = (x0, y0), λ > 0 is a constant, and Ξ ∈ C([0, ∞), [0, ∞)), Ξ(0) = 0, is a given
locally Lipschitz function.

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then, the constant equilibrium
V∗ = (C1, C2, . . . , Cn+m) of model (26) is Mittag-Leffler exponentially stable.

The proof is similar to the one in Theorem 1, so we omit it.

4.2. Partial Case—Constant Coefficient and Constant Inputs in the Model

Let all coefficients in both layers, as well as the external inputs, be constants, i.e.,
ai(t) ≡ ai, cj(t) ≡ cj, bi,k(t) ≡ bi,k, dj,k(t) ≡ dj,k, Ii(t) ≡ Ii, Jj(t) ≡ Jj, i = 1, 2, . . . , n,
j = 1, 2, . . . , m.

Then, for a variable in time equilibrium, the algebraic system (30) reduces to

aiCie
ρ−1

ρ ttq−1 =
m

∑
k=1

bi,k fk(Kke
ρ−1

ρ ttq−1) + Ii, t ≥ 0, i = 1, 2 . . . , n,

bjKje
ρ−1

ρ ttq−1 =
n

∑
k=1

dj,kgk(Cke
ρ−1

ρ ttq−1) + Jj, t ≥ 0, j = 1, 2 . . . , m.
(38)

The system (38) could have a solution (C1, C2, . . . , Cn, K1, . . . , Km), i.e., the model (26)
could have a variable in time equilibrium.

For a constant equilibrium, the algebraic system (36) reduces to

Ci(1 − ρ)q

⎛⎝1 −
Γ(−q, 1−ρ

ρ t)

Γ((−q)

⎞⎠ = −aiCi +
m

∑
k=1

bi,k fk(Cn+k) + Ii, t ≥ 0, i = 1, 2 . . . , n

Cn+j(1 − ρ)q

⎛⎝1 −
Γ(−q, 1−ρ

ρ t)

Γ(−q)

⎞⎠ = −bjCn+j +
n

∑
k=1

dj,kgk(Ck) + Jj, t ≥ 0, j = 1, 2 . . . , m

(39)
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If there is no external input, i.e., Ii = 0, Jj = 0 and fi(0) = 0, gj(0) = 0, i −
1, 2, . . . , n, j = 1, 2, . . . , m, then the system (39) has a zero solution Ck = 0, k = 1, 2, . . . , n +
m, i.e., the model (26) has a zero equilibrium.

If there is external input, i.e., at least one of Ii, Jj are nonzero, then the system (39) has
no solution; thus, the model has no constant equilibrium.

5. Examples

Example 4. Consider the following BAM neural networks of two layers with two neurons with
the GPRLFD:

(RL
0 Dα,ρx1)(t) = −x1(t) +

0.1
1 + e−y1(t)

− 0.05,

(RL
0 Dα,ρx2)(t) = −

(
1 + e

ρ−1
ρ t

)
x2(t)− e

ρ−1
ρ t 1

1 + e−y2(t)
+ e

ρ−1
ρ t,

(RL
0 Dα,ρy1)(t) = −

(
1 + 0.5e

ρ−1
ρ t

)
y1(t)− e

ρ−1
ρ t 1

1 + e−x1(t)
+

1
1 + e−x2(t)

+ 0.5(e
ρ−1

ρ t − 1)

(RL
0 Dα,ρy2)(t) = −

(
1.5 + e

ρ−1
ρ t

)
y2(t)− 1

1 + e−y2(t)
+ 0.5,

(40)

with coefficients a1(t) = 1, a2(t) = 1 + e
ρ−1

ρ t, c1(t) = 1 + 0.5e
ρ−1

ρ t, c2(t) = 1.5 + e
ρ−1

ρ t, the
activation functions fk(u), gk(u) = 1

1+e−u > 0, k = 1, 2, u ∈ R, are equal to the sigmoid function
with μk = ηk = 0.25, the external inputs are given by

I1(t) = −0.05, I2(t) = e
ρ−1

ρ t, J1(t) = 0.5(e
ρ−1

ρ t − 1), J2(t) = 0.5,

and

B = {bi,k(t)} =

[
0.1 0

0 −e
ρ−1

ρ t

]
, D = {di,k(t)} =

[
−e

ρ−1
ρ t 1

0 −1

]
.

Then, the algebraic system (30) reduces to

a1(t)C1e
ρ−1

ρ ttq−1 =
b1,1

1 + e−K1e
ρ−1

ρ ttq−1
+ I1(t), t ≥ 0,

a2(t)C2e
ρ−1

ρ ttq−1 =
b2,2

1 + e−K2e
ρ−1

ρ ttq−1
+ I2(t), t ≥ 0,

c1(t)K1e
ρ−1

ρ ttq−1 = d1,1(t)
1

1 + e−C1e
ρ−1

ρ ttq−1
+ d1,2(t)

1

1 + e−C2e
ρ−1

ρ ttq−1
+ J1(t),

c2(t)K2e
ρ−1

ρ ttq−1 = d2,1(t)
1

1 + e−C1e
ρ−1

ρ ttq−1
+ d2,2(t)

1

1 + e−C2e
ρ−1

ρ ttq−1
+ J2(t), t ≥ 0.

(41)

The system (41) has a zero solution C1 = C2 = K1 = K2 = 0.
Then, for ρ ∈ (0, 1], q ∈ (0, 1), system (40) has the equilibrium U∗(t) = (0, 0, 0, 0).
Additionally, Condition 5 of Theorem 1 is satisfied because of the inequalities

2a1(t)− |b1,1(t)| − |b1,2(t)| − η2
1 |d1,1(t)| − η2

2 |d2,1(t)| ≥ λ1 = 1.8375, t ≥ 0,

2a2(t)− |b2,1(t)| − |b2,2(t)| − η2
1 |d1,2(t)| − η2

2 |d2,2(t)| ≥ λ2 = 1.875, t ≥ 0,

2c1(t)− |d1,1(t)| − |d1,2(t)| − μ2
1|b1,1(t)|+ μ2

2|b2,1(t)| ≥ μ1 = 0.99375, t ≥ 0,

2c2(t)− |d2,1(t)| − |d2,2(t)| − μ2
2|b1,2(t)|+ μ2

2|b2,2(t)| ≥ μ2 = 1, t ≥ 0,
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According to Theorem 2, the zero equilibrium of (40) is Mittag-Leffler exponentially stable,
i.e., every solution (x1(·), y2(·), y1(·), y2(·)) of (40) with the initial condition

(0I1−q,ρxi)(t)|t=0 = x0
i , (0I1−q,ρyj)(t)|t=0 = y0

j , i, j = 1, 2,

satisfies the inequality√
x2

1(t) + x2
2(t) + y2

1(t) + y2
2(t) ≤

ρ2−2q

Γ(q)

(
(x0

1)
2 + (x0

2)
2 + (y0

1)
2 + (y0

2)
2
)

Eq,q(−0.99375
ρq tq)

with γ = min(1.8375, 1.875, 0.99375, 1).
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Abstract: In this paper, we present new dynamical properties of the two-mode Caudrey–Dodd–
Gibbon (TMCDG) equation. This equation describes the propagation of dual waves in the same
direction with different phase velocities, dispersion parameters, and nonlinearity. This study takes a
full advantage of the Kudryashov method and of the exponential expansion method. For the first
time, dual-wave solutions are obtained for arbitrary values of the nonlinearity and dispersive factors.
Graphs of the novel solutions are included in order to show the waves’ propagation, as well as the
influence of the involved parameters.

Keywords: two-mode Caudrey–Dodd–Gibbon equation; Kudryashov method; exponential expansion
method; dual-wave solutions

MSC: 35E05; 35G20; 74J35; 35C05

1. Introduction

Two-mode nonlinear partial differential equations (NPDEs) represent extensions of
the usual NPDEs. Both types of NPDEs, standard and two-mode, play a considerable
role in explaining nonlinear phenomena appearing in nature [1]. Two-mode equations
describe the interaction of solitons in gravitation, or the slow–fast propagation of waves in
hydrodynamics. They can also model dynamical phenomena in variable magnetic fields
appearing in plasma physics.

Standard evolutionary NPDEs involve a first-order partial derivative with respect to
time, and describe the unidirectional motion of a single wave. Dual/two-mode equations
are NPDEs of a second order in time, and govern the evolution of two-wave modes,
propagating in the same direction and with the same dispersion relation, while the phase
velocity and the linear and nonlinear parameters are different. The current investigations
of the two-mode waves mainly use the method proposed by Korsunsky [2]. It shows
that to derive the two-mode PDEs, it is necessary to collect, as two distinct components,
the nonlinear terms N(u, uxu, . . .) and the linear terms L(uqx, q ≥ 2), other than ut. in
the last period of time, many authors considered topics related to two-mode PDEs [3–6].
The dynamics of the two-mode KdV equation associated with the standard-mode third
-order KdV equation was studied by various analytical methods, including reductive
perturbation [7], the Hamiltonian system [8], or Bell polynomials [9]. In [10], it was
shown that the two modes are solitons that continue to propagate separately, without
shape and velocity changes, and with the only effect of their collision consisting of some
phase shifts. Rather similar methods to what we will apply in our paper, namely the
Kudryashov and exponential expansion methods, were used in [11] for the two-mode
Sawada–Kotera equation. Bright, dark, periodic, and singular-periodic dual-wave solutions
were constructed using a slight different auxiliary equation, as we will consider here.
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In [12] a dual-mode version of the nonlinear Schrödinger equation was studied, and its
solution was expressed as a finite series of tanh-sech functions. More exactly, dual-mode
dark and singular soliton solutions were obtained. The tanh expansion method and
Kudryashov technique were used in [13] with the dual-mode Kadomtsev–Petviashvili
equation to find the necessary constraint conditions that guarantee the existence of soliton
solutions. Multiple kink solutions were pointed out in [14] for the two-mode Sharma–Tasso–
Olver equation, as well as for the two-mode fourth-order Burgers equation by using the
Cole–Hopf transformation combined with the simplified Hirota method. Three different
techniques, including the Kudryashov expansion method that will be used here, were
applied in [15] in order to study the dynamic behaviors for a dual-mode generalized
Hirota–Satsuma coupled KdV system.

The contributions of this work are twofold. First, we find explicit dual-wave solu-
tions for the dual/two-mode Caudrey–Dodd–Gibbon (TMCDG) equation for arbitrary
nonlinearity and dispersion parameters, α and β. Previously, only the case α = β = ±1
was considered in [16], using the Hirota method. The same method was applied in [17]
on a more general form of TMCDG. Second, we study the influence of the mentioned
parameters, as well as of s, which stands for phase velocity, on the wave propagations,
showing how the dual-wave propagation depends on them.

The paper is organized as follows: After the Introduction, in Section 2, an overview
on the general form of the TMCDG equation is provided. In Section 3 we present basic
facts on the Kudryashov method [18,19] and the exponential expansion method [20]. The
findings of our investigation, where the previous methods were applied to the TMCDG
equation, are pointed out in Section 4. The analytical results were obtained using the Maple
program. Some graphical representations of the solutions are included and discussed in
Section 5. Section 6 is dedicated to some conclusions and final remarks.

2. Two-Mode Equations

2.1. Generic Two-Mode Equations

Korsunsky proposed in [2] a two-mode equation of the following form:

u2t − s2u2x +

(
∂

∂t
− αs

∂

∂x

)
N(u, uxu, . . .) +

(
∂

∂t
− βs

∂

∂x

)
L(uqx, q ≥ 2) = 0. (1)

The starting point for obtaining Equation (1) is an evolutionary equation of the form
ut + N(u, uxu, . . .) + L(uqx, q ≥ 2) = 0. In Equation (1), u(x, t) is the field function, s > 0
is the interaction phase velocity, and |α| ≤ 1, |β| ≤ 1 represent parameters describing
the nonlinearity and the dispersion, while N(u, uxu, . . .) and L(uqx, q ≥ 2) represent the
nonlinear and linear parts, respectively. It is important to note that the existence of the
dispersion is essential for finding soliton solutions [21,22]. The way of generating a two-
mode equation used here for CDG could be also applied to other NPDs, for example, the
Eckhaus–Kundu equation [23] or the Kundu–Mukherjee–Naskar equation [24].

2.2. Two-Mode Caudrey–Dodd–Gibbon (TMCDG) Equation

In this paper, we use a standard-mode equation such as [25–27]:

Gt + aG2Gx + bGxG2x + mGG3x + G5x = 0, (2)

where a, b, m are positive parameters and G5x is the linear term, while the nonlinear one is
represented by aG2Gx + bGxG2x + mGG3x. It is used to describe various phenomena ap-
pearing in various fields, such as plasma physics, optics, hydrodynamics, and mathematical
biology, as well as gauge field theory.

For a = 180, b = m = 30, Equation (2) becomes the Caudrey–Dodd–Gibbon (CDG)
equation [28]:

Gt + 180G2Gx + 30GxG2x + 30GG3x + G5x = 0. (3)
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Based on the Korsunsky proposal scheme, the two-mode equation associated to
Equation (3) is under the following form:

G2t − s2G2x +

(
∂

∂t
− αs

∂

∂x

)
(180G2Gx + 30GxG2x + 30GG3x) +

(
∂

∂t
− βs

∂

∂x

)
G5x = 0.

(4)
A more general equation, starting from (2), was considered in [17]. In this paper,

multisoliton solutions were generated using the Hirota method, the same method used
in [16]. In our case, we chose a specific equation from the same class, but we pointed out
other types of solutions, for example, the rational ones that were not reported in either of
the mentioned papers.

For s = 0, the previous equation takes the form of an usual evolutionary equation of
the type (2). By expanding the previous equation, we arrive at the equivalent expression:

G2t − s2G2x + 30[12GGxGt + 6G2Gxt + GxtG2x + GxG(2x)t + GtG3x + GG(3x)t]−
30αs

[
12G(Gx)

2 + 6G2G2x + 30(G2x)
2 + 2GxG3x + GG4x

]
+ G(5x)t − βsG6x = 0.

(5)

In order to solve (5), we use the wave variable ξ = kx − ct, and therefore, we transform
it into the traveling wave equation of the following form:(

c2 − k2s2
)

G′′ − 30c[12kG(G′)2 + kG2G′′ + k3(G′′)2 + 2k3G′G(3) + k3GG(4)]−
30αk2s[12G(G′)2 + G2G′′ + k2(G′′)2 + 2k2G′G(3) + k2GG(4)]− k5(c + kβs)G(6) = 0.

(6)

In [16], a one-soliton solution was derived for (4) through the simplified Hirota method.
It is obtained if—and only if—α = β. In the next section, we will extend this result, showing
how the equation can be solved for arbitrary nonlinearity and dispersion parameters, α and
β. New dual-wave solutions of (4) will be reported for the first time, using two well-known
solving methods: the Kudryashov and the exponential expansion methods. These are two
of the methods for solving NPDEs based on the auxiliary equation techniques, but other
alternative approaches, for example, attached flow [29], the symmetry method [30–33], or
the BRST technique [34,35], could also be considered.

3. Brief Overview of The Applied Methods

In this section, we will take a brief review of the two methods applied later to the
TMCDG equation. They are effective analytical methods for finding the traveling wave
solutions of NPDEs with the generic form:

E(u, ut, ux, utt, uxx, . . .) = 0. (7)

When the wave transformation is applied:

u(t, x) = u(ξ), ξ = kx − ct, (8)

where k, c are constants, and Equation (7) becomes an ODE in u = u(ξ) and its derivatives
in respect to β:

F(u, u′, u′′, . . .) = 0. (9)

3.1. The Kudryashov Method (KM)

In this section, a brief overview of the KM method [36,37] is presented. Let us assume
that the solution of Equation (9) can be expressed as follows:

u(ξ) =
N

∑
j=0

ajQj(ξ), (10)
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where the arbitrary constants aj, j = 1, N, aN �= 0, are determined later, and Q(ξ) is the
solution of the equation [38]:

Q′(ξ) = Q2(ξ)− Q(ξ). (11)

The positive integer N can be determined by applying the homogeneous balance technique to
Equation (9). The general solution of the auxiliary Equation (11) is:

Q(ξ) =
1

1 ± deξ
, ∀d = const. �= 0. (12)

By substituting Equations (10) and (11) into Equation (9), we obtain a polynomial R(Q(ξ)),
which can generate a set of algebraic equations allowing us to explicitly determine the parameters aj,
k, c. Then, using the solutions in Equation (10), we obtain wave solutions for the master Equation (7).

3.2. The Exponential Expansion Method (EEM)
Let us consider now the EEM [39]. In this case, the solution of (9) has to be assumed of the

following form:

u(ξ) =
N

∑
j=0

ρjej f (ξ), (13)

where ρj, j = 1, N are arbitrary constants to be calculated, such that ρN �= 0 and f (ξ) are the solution
of the following auxiliary equation:

f ′(ξ) = pe−2 f (ξ) + re2 f (ξ), (14)

where the parameters p, r appear.
The value of N can be established by making the balance between the highest dispersion and

nonlinearity in Equation (9). Inserting expansion (13) with the value of N along with the auxiliary
Equation (14) into Equation (9) yields a polynomial P(e f (ξ)).

Vanishing all the coefficients of P(e f (ξ)), we obtain a system of equations that allows us to
determine the parameters ρj, p, r, k, c, for which nontrivial wave solutions of Equation (7) exist.

4. Dual Wave Solutions of the TMCDG Equation

Let us apply now the two methods described above for finding wave solutions of the TMCDG
Equation (4).

4.1. Application of the Kudryashov Method
By applying (10) and (11) and imposing the balance between the most nonlinear term G2G′′

and the higher-order derivative G(6), the generic solution of Equation (6) is expressed as:

G(ξ) = a0 + a1Q(ξ) + a2[Q(ξ)]2. (15)

With (15) and (11), Equation (6) becomes an eight-degree polynomial in Q. If we solve the
system generated when the various coefficients of the powers Qj, j = 0, 8 are set to zero, we obtain
the following solutions:

Solution 1: ∀k, ∀s > 0, ∀|α| ≤ 1, and

a0 = − k2

9
, a1 = −a2 =

4k2

3
,

c1,2 = ±ks, β =
1 + 10α

9
, |β| ≤ 1;

(16)

Solution 2: ∀k, ∀s > 0, ∀|α| ≤ 1, ∀a2 and

a0 =
a2
12

, a1 = −a2,

c3,4 =

k
[

4k2a2 + 3a2
2 ±

√
16k4a2

2 + 24k2a3
2 + 9a4

2 + 64k2a2sα + 64s2 + 48a2
2sα

]
8

,

β =

{
±√

E[a2
2 + 3k2a2 + 2k4]− 3a4

2 − 13k2a3
2 − 2a2

2[9k4 + 4sα]− 8k2a2[k4 + 3sα]
}

16sk4 ,

(17)
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with
E = 9a4

2 + 24k2a3
2 + 16a2

2(k
4 + 3sα) + 64k2a2sα + 64s2, |β| ≤ 1. (18)

Plugging (16) and (17) into Equation (15) and considering the solution of (11), we obtain the
following new dual-wave solutions:

G1,2(x, t) =
k2

3

[
1
3
+ 4

(
1

1 + de(kx−c1,2t)
−

(
1

1 + de(kx−c1,2t)

)2
)]

, ∀d (19)

G3,4(x, t) = a2

[
1

12
− 1

1 + de(kx−c3,4t)
+

(
1

1 + de(kx−c3,4t)

)2
]

, ∀d, (20)

where the waves’ velocities c1,2 and c3,4 are given by expressions (16) and (17).

4.2. Application of the Exponential Expansion Method (EEM)
To obtain the dual-wave solutions of the TMCDG equation through the EEM, the solution of

Equation (6) is derived as follows:

G(ξ) = ρ0 + ρ1e f (ξ) + ρ2e2 f (ξ). (21)

By plugging Equation (21) along with the auxiliary Equation (14) into the traveling wave
Equation (6), and equating the coefficients of various powers of exponential terms to zero, a set
of algebraic equations involving ρj, j = 0, 2, p, r, c, k is derived. Its solution is obtained with the help
of the Maple program, under the following form:

∀ρ0, ∀ρ2, ∀s > 0, ∀k, ∀p, ∀r, |α| = |β| = 1, ρ1 = 0, c = ±sk. (22)

Substituting relations (22) into Equation (21), we should look for other TMCDG solutions in the
following form:

G(ξ) = ρ0 + ρ2e2 f (ξ). (23)

For example, taking into account the solution of the auxiliary Equation (14) and considering
pr > 0, the dual-wave solution is derived as a periodic one:

G5,6(x, t) = ρ0 +
ρ2 p

r
tan[2

√
prk(x ± st) + q], (24)

with ρ0, ρ2, k, p, r, q, s > 0 arbitrary constants.

5. Discussions on the Dual-Wave Solutions

Let us now analyze the dual-wave solutions obtained in the previous section. We will give here
their graphical representations that will describe the dynamical behavior of the model.

Let us start with solutions (19). Their 3D and 2D graphics are presented in Figure 1 for the
following values of the parameters d = 3, k = 2, and α = 0.8, β = 1 for different s. Subgraphs (a1–a3)
present the spatiotemporal variation of these solutions for s = 1, 3, 10, respectively. Subgraphs (b1–b3)
depict the 2D plots of (a1–a3) when x = 0.

We observe that during their interaction, the two waves G1(x, t) and G2(x, t) keep their ampli-
tudes unchanged, while their widths decrease when the phase velocity increases. These behaviors
are shown in the 2D plots given by subgraphs (b1–b3). The influences of the wave number k and
of the the interaction phase velocity s, on the motion of the waves (19) are shown, respectively, in
subgraphs (a), (b) in Figure 2 . It can be seen from subgraph (a) that the profiles of G1 and G2 are
stable for k ∈ [0, 1], while for k increasing from 1 to 5, they become different. This happens under
particular values x = 1, t = 1, s = 3, d = 3, α = 0.8, β = 1. On the other hand, the profile of G2 is
lower than that of G1, and their profiles become stable for phase velocity s > 6, when x = 1, t = 1,
k = 1, d = 3, α = 0.8, β = 1 are considered.

Moreover, in order to analyze the dynamical behavior of the novel dual-mode solution (20), the
3D and 2D graphics are presented in Figure 3, considering the particular values of the free parameters
as a2 = 0.1, d = 3, k = 2, α = 0.2, for various values of phase velocity s. Subgraphs (a1–a3) present the
physical structure of the dual waves G3(x, t) and G4(x, t) upon increasing s (s = 1, 3, 5), which are,
respectively, associated with the values of β = 0.881, 0.971, 0.997. The motion described by (20) looks
like singular dual kink waves, as is clearly shown in subgraphs (b1–b3), representing the 2D plots
of (a1–a3) for x = 0. The collision of the waves occurs for the phase velocity s = 5. The influence of
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parameters k, s, and α on the motion of dual waves (20) is illustrated in subgraphs (a–c) in Figure 4.
When increasing both the wave number k within [1, 3] and the phase velocity s inside the interval
of values smin = 6.8 and smax = 12, we observe that the profiles of G3(x, t) and G4(x, t) increase and
remain fixed for any values k > 3, s > 12.

Figure 1. The 3D plots of the dual-wave solutions G1(x, t) (red color) and G2 (blue color) given
by (19), for α = 0.8, β = 1, d = 3, k = 2, and (a1) s = 1, (a2) s = 3, (a3) s = 10. The 2D cross-sections
of (a1–a3) at x = 0 are plotted in (b1–b3).

Figure 2. (a) The dependence on k when s = 1, d = 3, α = 0.8, β = 1, (b) the dependence on s when
k = 1, d = 3, α = 0.8, β = 1 of the motion of the two-mode waves G1(x, t) (red color) and G2(x, t)
(blue color) given by (19) for x = 1, t = 1.

Next, we will analyze the remainder of the obtained solutions. The 3D and 2D graphical
configurations of the dual-mode solutions (24) are presented in Figure 5. Subgraphs (a1), (a2) show
the physical structure of the two-mode waves G5(x, t) and G6(x, t) upon increasing s (s = 0.3 and
s = 1, respectively ), for ρ0 = 1, ρ2 = 4, k = 0.1, p = 0.5, r = 2, q = 0, |α| = |β| = 1. Both waves have
a periodic evolution, following tan-shapes that collide with each other. For a fixed-phase velocity
parameter s, the periods of the dual waves are the same. As s increases, one can see from subgraphs
(b1) and (b2) that the periodicity increases for G5(x, t) and G6(x, t). The impacts of the parameters k,
s, on the motion of the two-mode waves (24), when x = 3, t = 3, ρ0 = 1, ρ2 = 4, p = 0.5, r = 2, q = 0,
|α| = |β| = 1, are presented in subgraphs (a)–(b) in Figure 6.
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Figure 3. (a) The 3D plots of the dual-wave solutions G3(x, t) (red color) and G4(x, t) (blue color)
given by (20) for a2 = 0.1, d = 3, k = 2, α = 0.2 and variable s. Three phase velocities were considered:
(a1) s = 1, (a2) s = 3, and (a3) s = 5. The 2D cross-sections of (a1–a3) at x = 0 are plotted in (b1–b3).

Figure 4. The effect on the motion of the two-mode waves G3(x, t) (red color) and G4(x, t) (blue color)
given by (20), at x = 3, t = 1, of (a) wave number k when s = 5, α = 0.2, a2 = 0.1, d = 3; (b) phase
velocity s when k = 2, α = 0.2, a2 = 0.1, d = 3; and (c) the nonlinearity parameter α when k = 2, s = 5,
a2 = 0.1, d = 3.

Figure 5. The 3D graphs of G5(x, t) (red color) and G6 (blue color) given by (24), with |α| = |β| = 1,
ρ0 = 1, ρ2 = 4, k = 0.1, p = 0.5, r = 2, q = 0, and the phase velocities: (a1) s = 0.3, (a2) s = 1. The 2D
graphs of (a1,a2) at x = 0 are plotted in (b1,b2).
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Figure 6. The effect on the motion of the two-mode waves G5(x, t) (red color) and G6(x, t) (blue
color) given by (24) at x = 3, t = 3, of (a) the wave number k when |α| = |β| = 1, s = 0.3, ρ0 = 1,
ρ2 = 4, p = 0.5, r = 2, q = 0; (b) the phase velocity parameter s when ρ0 = 1, ρ2 = 4, k = 0.1, p = 0.5,
r = 2, q = 0.

We discussed the TMCDG equation from the perspective of two solving methods: Kudryashov and
exponential expansion. We illustrated the reach of the model in dual-mode wave solutions, and chose
only a few of them. In the case of the Kudryashov method, we used the auxiliary equation in the form (11),
accepting the rational solution (12). In these circumstances, the obtained dual waves (19) and (20) also
had a rational form. When we applied the exponential expansion, we chose a periodic solution of the
auxiliary Equation (14), and by consequence, we obtained the periodic dual wave (24).

6. Conclusions

In this work, we investigated the two-mode Caudrey–Dodd–Gibbon (TMCDG) equation,
which reads:

G2t − s2G2x + 30
(

∂

∂t
− αs

∂

∂x

)
(6G2Gx + GxG2x + GG3x) +

(
∂

∂t
− βs

∂

∂x

)
G5x = 0.

The Kudryashov expansion and the exponential expansion methods were implemented in order
to construct new dual-wave solutions. Previously, in [16], soliton solutions for TMCDG were obtained
only in the case of unitary parameters, α = β = ±1.

In our article, novel dual-mode wave solutions given by (19), (20), and (24) are generated for
arbitrary values of the nonlinearity and dispersion parameters, α and β. To the best of our knowledge,
they are reported here for the first time. Some interesting properties of the dynamical behavior of
the TMCDG model were pointed out using graphical representations of the new acquired solutions.
They can be summarized as follows:

- The TMCDG equation admits all of the same classes of solutions—hyperbolic, harmonic, and
rational—as the unimodal Equation (3). As examples, we show that, using the Kudryashov
expansion method, the TMCDG waves move in dual-mode, bright, and kink-wave shapes,
while using the exponential expansion method, the motion could appear as having a dual
tan-periodic pattern. Of course, these are not the only solutions that can be generated; other
solutions appear for different values of p and r.

- All solutions depend on the involved parameters, but the dependence is different. We note,
for example, that the nonlinearity parameter β cannot take any value, but one depending on
α. For G1,2(x, t), the dependence is linear, while for G3,4(x, t), a more complicated relation (17)
appears. The periodic solution G5,6(x, t) asks for unitary values of the two parameters α and β,
as the relation (22) shows.

- The influence of the main parameters (phase velocity s, wave number k and nonlinearity α) is
explained using the graphic representation of the solutions. Depending on their values, the
parameters can increase or decrease the velocity of the dual waves.

The approach used here can be applied to any evolutionary NPDE of interest in mathematical
physics and engineering, in order to achieve new dual-wave equations and their associated solutions.
We will investigate in future work the possibility of extending the two-mode procedure to other
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higher-dimensional NPDEs or to integrodifferential systems [40], as well as trying to implement
alternative techniques [41,42].
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Article

Periodic Solutions of Quasi-Monotone Semilinear
Multidimensional Hyperbolic Systems

Corrado Mascia

Dipartimento di Matematica “G. Castelnuovo”, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5,
I-00185 Rome, Italy; corrado.mascia@uniroma1.it

Abstract: This paper deals with the Cauchy problem for a class of first-order semilinear hyper-
bolic equations of the form ∂t fi + ∑d

j=1 λij∂xj fi = Qi( f ). where fi = fi(x, t) (i = 1, . . . , n) and

x = (x1, · · · , xd) ∈ IRd (n ≥ 2, d ≥ 1). Under assumption of the existence of a conserved quantity
∑i αi fi for some α1, . . . , αn > 0, of (strong) quasimonotonicity and an additional assumption on the
speed vectors Λi = (λi1, · · · , λid) ∈ IRd—namely, span {Λj − Λk : j = 1, . . . , n} = IRd for any k—it
is proved that the set of constant steady state { f̄ ∈ IRn : Q( f̄ ) = 0} is asymptotically stable with
respect to periodic perturbations, i.e., any initial data given by an periodic L1−perturbations of a
constant steady state f̄ leads to a solution converging to another constant steady state ḡ (uniquely
determined by the initial condition) as t → +∞.

Keywords: semilinear hyperbolic systems; stability analysis; quasi-monotonicity

MSC: 35L60; 35B35; 35B40

1. Introduction

In this paper, we deal with the following system of equations:

∂t fi +
d

∑
j=1

λij∂xj fi = Qi( f ). (1)

Here, f = f (x, t), where f = ( f1, . . . , fn) and x = (x1, · · · , xd) ∈ IRd (n ≥ 2, d ≥ 1). The
vectors Λi = (λi1, · · · , λid) ∈ IRd are called speeds, and the function Q = (Q1, . . . , Qn)� ∈
C1(IRn, IRn) is the collision term. In the following, we set DQ = (qij) =

(
∂Qi/∂ f j

)
. We

assume throughout the paper that the speeds Λi satisfy

span {Λj − Λk : j = 1, . . . , n} = IRd ∀k ∈ {1, . . . , n} (2)

This obviously implies that n ≥ d + 1 and that span {Λ1, · · · , Λn} = IRd.
We consider the Cauchy problem for (1), given by the initial condition

f (x, 0) = f 0(x) = ( f 0
1 (x), · · · , f 0

n(x)), (3)

where f0 : IRd → IRn. Precise assumptions on the initial datum f0 will be given later.
On the collision term, we make the hypothesis:

n

∑
i=1

αiQi = 0 for some αi > 0 (conservation of mass), (4)

qij =
∂Qi
∂ f j

> 0 ∀i �= j (strong quasi-monotonicity). (5)

Axioms 2023, 12, 208. https://doi.org/10.3390/axioms12020208 https://www.mdpi.com/journal/axioms28
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Condition (4) corresponds to asking for conservation of the quantity
∫
Ω

∑ αi fi for any

Ω ⊂ IRd and that any growth or decrease of it is caused by flux through the boundary ∂Ω.
Indeed,

d
dt

∫
Ω

n

∑
i=1

αi fi dx = −
∫
Ω

div

(
n

∑
i=1

αiΛi fi

)
+

∫
Ω

n

∑
i=1

αiQi = −
∫

∂Ω

(
n

∑
i=1

αiΛi fi, n

)
ds,

where n represents the outward normal vector of ∂Ω.
Concerning condition (5), let us recall that for weakly coupled quasimonotone systems,

it was proved in [1] that comparison results hold. In case of system (1) the weak quasi-
monotonicity condition corresponds to asking a weaker version of (5)

∂Qi
∂ f j

(s) ≥ 0 ∀i �= j (weak quasi-monotonicity), (6)

Hence, under this assumption, given f 0, g0 initial data for the Cauchy problem (1)–(3) and
denoted by f and g the corresponding solutions, there holds

f 0
i (x) ≤ g0

i (x) ∀i ⇒ fi(x, t) ≤ gi(x, t) ∀i

for almost all (x, t) ∈ IRd × (0, ∞). In order to prove asymptotic stability of the manifold
of constant states, the stronger assumption (5) is needed. In the class of quasimonotone
weakly coupled systems of the form (1), this assumption is sharp, as showed by the example
contained in Section 3.

Let us introduce the following notation. Given P = (P1, · · · , Pd) ∈ IRd, let

ΩP := [0, P1]× · · · × [0, Pd] ⊂ IRd,

and, for φ = (φ1, · · · , φn) : ΩP → IRn,

‖φ‖1,α :=
n

∑
i=1

αi

∫
ΩP

|φi(x)| dx.

Similar definitions can be given for the derivatives of φ. In what follows, the solutions
of the problem are in spaces L1

α(ΩP) or in W1,1
α (ΩP) considered with the norms above

defined. Finally, we will say that φ = (φ1, · · · , φn) : IRd → IRn is a P−periodic function if
f (x + P) = f (x) for any x ∈ IRd.

Theorem 1. Assume (2), (4) and (5). Let f̄ ∈ IRn be such that Q( f̄ ) = 0, f0(x) − f̄ ∈
L1(ΩP, IRn) and P−periodic for some P ∈ IRd.

Then, there is a unique global solution f = f (x, t) of (1), (3) and f ∈ C([0, ∞); f̄ +
L1

α(Ωp, IRn)). Moreover, there exists (unique) ḡ = (ḡ1, · · · , ḡn) ∈ IRn with Q(ḡ) = 0 such that

n

∑
i=1

αi

∫
ΩP

( f0,i(x)− ḡi) dx = 0 and lim
t→+∞

‖ f (·, t)− ḡ‖1,α = 0. (7)

The above Theorem 1 gives sufficient condition for global orbital attractivity of the
equilibrium manifold { f̄ : Q( f̄ ) = 0}: any initial datum that is an L1 perturbation of
an equilibrium state gives raise to a solution asymptotically converging to a constant
equilibrium state.

Since the comparison property holds, it is possible to prove a result of asymptotic
stability of equilibrium states, i.e., a local result. Since the localization is guaranteed by
comparison, the theorem is for L∞ perturbations.
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Theorem 2. Assume (2), (4). Let f̄ ∈ IRn be such that

Q( f̄ ) = 0 and
∂Qi
∂ f j

( f̄ ) > 0 (∀i �= j).

Consequently, there exists ε > 0 such that, for any f0 ∈ L∞(ΩP, IRn) with ‖ f0 − f̄ ‖∞ < ε, there
exists a unique ḡ ∈ IRn with Q(ḡ) = 0 such that

lim
t→+∞

‖ f (·, t)− ḡ‖1,α = 0. (8)

Before proving the result (see Section 2), we give some examples of semilinear hyper-
bolic systems fitting in our assumptions.

A first example fitting in the class (1) is the well-known discrete velocity Boltzmann
model, introduced by Carleman,{

∂t f1 − ∂x f1 = f 2
2 − f 2

1 ,
∂t f2 + ∂x f2 = f 2

1 − f 2
2 .

This system is clearly of the form (1) and hypothesis (4) holds for α1 = α2 = 1. Moreover,
if we consider positive solutions, assumption (5) is satisfied and the conclusion of the
theorem holds.

More results on large-time behavior of discrete velocity Boltzmann models are con-
tained in [2]. There is considered a one-dimensional semilinear hyperbolic system with
quadratic collision term. Moreover, conservation of mass, of momentum and entropy are
assumed to be decreasing. On the contrary, under our assumptions, momentum cannot be
conserved, and no hypothesis on entropy is made. The dissipation mechanism is encoded
in the quasi-monotonicity condition (6).

Another significant class of systems of the form (1) enjoying the above assumptions is
considered in [3]. The limit is studied as ε → 0 of the solutions to

∂t fi +
d

∑
j=1

λij∂xj fi =
1
ε
(Mi(u)− fi), (9)

where u = ∑i fi. The function M = (M1, . . . , Mn) is assumed to be such that ∑i Mi(s) = s
and 0 < M′

i(s) < 1 for any s under consideration, so that assumptions (4) and (5) are
satisfied. Moreover, additional conditions of consistency are assumed with the quasilinear
equation

∂tu +
d

∑
j=1

∂xj Aj(u) = 0, (10)

with A1, . . . , Ad given flux functions. Such condition takes the form

n

∑
i=1

λij Mi(s) = Aj(s) ∀j = 1, . . . , d. (11)

It is proved in [3] that the function ( f ε
1, . . . , f ε

n) solution to the Cauchy problem for (9)
converges in L1 to some ( f 0

1 , . . . , f 0
n) such that u0 = ∑ f 0

i is the entropy solution of the
corresponding Cauchy problem for (10). See also [4] for the reduced version in the case
n = 2.

In this context, there is an interesting connection between our result on asymptotic
behavior and this singular limit result. Indeed, it is well known that the entropy solution
for conservation law with initial periodic data converges to a constant as t → +∞. Since
the entropy solution is approximated by solution of (9), it seems natural to ask if such
asymptotic behavior is inherited by the same property of the semilinear system. This
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is exactly what this paper aims to achieve: to give a sufficient condition for asymptotic
dissipation of periodic perturbations of constant steady states.

Let us stress that some general results on asymptotic behavior for conservation law
with initial periodic data are considered in [5], proving dissipation of such perturbations
of constant states. However, while in that case the dissipation is caused by the nonlinear
transport effect, here, the main part of the dissipation is encoded in the structure of the
zero-order term Q. Therefore, the dissipative mechanism seems rather different, at least
from the point of view of differential equations. Let us stress that a discrepancy still remains:
here, we also assume (2), while in [3], condition (11) is assumed.

2. Proof of Theorems 1 and 2

This section is devoted to the proof of Theorems 1 and 2. In the first part, we show the
existence of the constant state ḡ = (ḡ1, · · · , ḡn) ∈ IRn such that

n

∑
i=1

αi

∫
ΩP

( f0,i(x)− ḡi) dx = 0.

In the second part, we consider the asymptotic behavior of the periodic perturbations of ḡ.

Lemma 1. Let Q = (Q1, . . . , Qn)� = (qij)i,j=1,··· ,n be a n × n matrix such that, for some αi > 0,

n

∑
i=1

αiqij = 0 j = 1, · · · , n, and qij > 0 ∀i �= j.

Then, any square submatrix of order n − 1 is nondegenerate. In particular,

rank Q = n − 1.

Proof. Let ei := (qi1, · · · , qin) ∈ IRn for i = 1, · · · , n. Since ∑i αiei = 0, then let Q = 0.
The conclusion holds if there exist n − 1 vectors in {e1, · · · , en}—linearly independent.

Suppose by contradiction that this is not the case and assume (without restriction) that

there is (β1, · · · , βn−1) �= (0, · · · , 0) such that
n−1
∑

i=1
βiei = 0. Therefore,

n−1

∑
i=1

(kβi − αi)qij = αnqnj ∀j = 1, · · · , n, ∀k ∈ IR. (12)

If βi > 0 for any i, then we can choose k such that kβi − αi > 0 for any i. For j = n in (2.01),
we arrive at a contradiction:

0 > −
n−1

∑
i=1

αjqnj = αnqnn =
n−1

∑
i=1

(kβi − αi)qin > 0.

Hence, βh = min{β1, · · · , βn−1} < 0. Let k = min{α1, · · · , αn−1}/βh < 0 and j = h in
(2.01). Then

∑
i �=h

(kβi − αi)qih = qnh > 0. (13)

Since βh ≤ βi for any i and k < 0, it follows that

kβi − αi ≤ kβh − αi = min{α1, · · · , αn} − αi ≤ 0,

contradicting (13).
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Proposition 1. Let Q = (Qi)i=1,··· ,n and f̄ = ( f̄i)i=1,··· ,n be such that

n

∑
i=1

αiQi = 0 (αi > 0), rank

(
∂Qi
∂ f j

)
= n − 1 and Q( f̄ ) = 0.

Then, for any C ∈ IR, there exists a unique ḡ = (ḡ1, · · · , ḡn) ∈ IRn such that

Q(ḡ) = 0 and
n

∑
i=1

αi ḡi dx = C.

Proof. First of all, we prove uniqueness. Assume that there exists f = ( fi) and g = (gi)

such that Q( f ) = Q(g) = 0 and
n
∑

i=1
αi fi =

n
∑

i=1
αigi. Then, it holds that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 = Qi( f )− Qi(g) =

n

∑
j=1

∂Qi
∂ f j

(ξ)( f j − gj), i = 1, · · · , n,

0 =
n
∑

j=1
αj( f j − gj).

(14)

Let e0 := (α1, · · · , αn) and en := (qij)i,j=1,··· ,n where qij := ∂Qi/∂ f j. We claim that there
are n − 1 vectors in {e1, · · · , en}, say, for simplicity, e1, · · · , en−1, such that e0, · · · , en−1 are
linearly independent.

By Lemma 1, there are n − 1 linearly independent vectors in {e1, · · · , en}, say, e1, · · · ,

en−1. Assume by contradiction that there is (γ0, · · · , γn−1) �= (0, · · · , 0) such that
n−1
∑

i=0
γiei =

0. Moreover, γ0 �= 0. Thus, there are (β1, · · · , βn−1) �= (0, · · · , 0) such that e0 =
n−1
∑

i=1
βiei.

Hence, it holds that ⎧⎪⎪⎨⎪⎪⎩
n−1
∑

i=1
βiqij = αi j = 1, · · · , n,

n−1
∑

i=1
αiqij = −αnqnj j = 1, · · · , n

Multiplying by k the first of the two equation and subtracting the other, we obtain

n−1

∑
i=1

(kβi − αj)qij = kαi − αnqnj, j = 1, · · · , n ∀k ∈ IR. (15)

If βi ≤ 0 for any i, then kβi − αj < 0 for any k > 0 and for any i. Choosing j = n in (15), we
obtain a contradiction.

Therefore, βh := max{β1, · · · , βn−1} > 0. Choose k = max{α1, · · · , αn−1}/βh > 0.
Then,

kβi − αj ≤ kβh − αj = max{α1, · · · , αn−1} − αj ≤ 0

Putting j = n in (15), we arrive at a contradiction. Thus, e0, · · · , en−1 are linearly indepen-
dent and the conclusion follows from (14).

In order to prove existence, let us introduce the set

C := {C ∈ IR : ∃ḡ = (ḡ1, · · · , ḡn) ∈ IRn s.t. Q(ḡ) = 0 and
n

∑
i=1

αi ḡi dx = C}.

By definition, C is closed and since Q( f̄ ) = 0, C �= ∅. Moreover, since rank

(
∂Qi
∂ f j

)
= n− 1,

we can apply Implicit Function Theorem and deduce that C is an open set. Therefore, C = IR.

32



Axioms 2023, 12, 208

Proof of Theorem 1. Let f , g be solutions of (1). Then, it holds that

∂t( fi − gi) +
d

∑
i=1

λij∂xj( fi − gi) =
(
Qi( f )− Qi(g)

)
. (16)

Multiplying (16) by αisgn ( fi − gi), integrating on ΩP and summing on i, we obtain

d
dt
‖ f − g‖1,α =

∫
ΩP

I(x, t)dx, (17)

where

I(x, t) :=
n

∑
i=1

αisgn ( fi − gi)(Qi( f )− Qi(g)).

Using Lagrange theorem on Qi( f )− Qi(g), we obtain

I(x, t) =
n

∑
i,j=1

αisgn ( fi − gi)
∂Qi
∂ f j

( f j − gj) =

=
n

∑
i=1

∑
j �=i

αisgn ( fi − gi)
∂Qi
∂ f j

( f j − gj)+
n

∑
i=1

αi
∂Qi
∂ fi

| fi − gi|.
(18)

By hypothesis (4), we deduce

αi
∂Qi
∂ fi

= −∑
j �=i

αj
∂Qj

∂ fi
,

therefore (changing the order of summation in the first sum),

I =
n

∑
i,j=1

αisgn ( fi − gi)
∂Qi
∂ f j

( f j − gj)−
n

∑
i,j=1

αj
∂Qj

∂ fi
| fi − gi| =

=
n

∑
j=1

( n

∑
i=1

αi

[
sgn ( fi − gi)sgn ( f j − gj)− 1

]∂Qi
∂ f j

)
| f j − gj| ≤ 0.

(19)

From this estimate, we immediately deduce global existence and L1−continuous depen-
dence on the initial data of solution of (1), (3) under the assumptions of the Theorem.
By (19), we deduce the result for general initial data by density argument.

In order to obtain compactness property, we restrict our attention to initial data f0
such that

‖∂xh f0‖1,α < +∞, ∀h.

From (1), deriving with respect to xh, and setting wih := ∂xh fi, we obtain

∂twih +
d

∑
i=1

λij∂xj wih =
n

∑
i=1

∂Qi
∂ f j

( f )wjh. (20)

Multiplying by αisgn wih, integrating on ΩP and summing on i, we obtain

d
dt
‖wh‖1,α =

∫
ΩP

∑
i,j

αisgn wih
∂Qi
∂ f j

( f )wjh dx,

where wh = (w1h, · · · , wnh). Proceeding as above, we obtain

d
dt
‖wh‖1,α =

∫
Ωp

J(x, t)dx (21)
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where

J(x, t) :=
n

∑
j=1

( n

∑
i=1

αi

[
sgn wihsgn wjh − 1

]∂Qi
∂ f j

)
|wjh| ≤ 0.

Let f̄ ∈ IRn be such that Q( f̄ ) = 0 and assume f0 be a P−periodic function, such that
f0(x)− f̄ ∈ L1(ΩP, IRn) and ‖∂xh f0‖1,α < +∞ for any h = 1, · · · , n. Then, by the previous
calculations, for any t > 0,

‖ f − f̄ ‖1,α + ‖∂xh f ‖1,α ≤ ‖ f0 − f̄ ‖1,α + ‖∂xh f0‖1,α.

These estimates provide the required compactness.

Next, let us introduce the following definition:

Fs := { f (·, t) : ΩP → IRn : t > s}.

From (19) and (21), we deduce that Fs − f̄ is a compact set of L1
α, for any s. Thus,

∅ �= A :=
⋂
s>0

Fs ⊂ f̄ + L1
α.

Let a0 ∈ A and let a = a(x, t) be the solution of (1) with initial condition f (x, 0) = a0(x).
Then,

‖a(·, t)− f̄ ‖1,α = constant ∀ f̄ ∈ IRn s.t. Q( f̄ ) = 0.

Therefore, we deduce from (19) with f = a and g = f̃ ∈ IRn with Q( f̃ ) = 0

n

∑
i,j=1

αi

[
sgn (ai − f̃i)sgn (aj − f̃ j)− 1

]∂Qi
∂ f j

|aj − f̃ j| = 0,

for any t > 0 and almost all x ∈ ΩP. Therefore, for any i, j = 1, . . . , n,[
sgn (ai − f̃i)sgn (aj − f̃ j)− 1

]∂Qi
∂ f j

|aj − f̃ j| = 0, ∀t > 0, a.e. in ΩP. (22)

From assumption (5), it follows that if i �= j,[
sgn (ai − f̃i)sgn (aj − f̃ j)− 1

]
|aj − f̃ j| = 0, ∀t > 0, a.e. in ΩP.

Hence, for any i and for any t > 0, a.e. in ΩP

ai(x, t) ≤ f̃i ∀i or f̃i ≤ ai(x, t) ∀i. (23)

Note that if ∑ kiai = ∑ kibi for some ai, bi with ai ≤ bi for any i, then either kj ≤ 0 for
some j ∈ {1, . . . , n} or ai = bi for any i. Indeed, assuming by contradiction that ki > 0
for any i, then ∑n

i=1 ki(ai − bi) = 0 implies ai = bi for any i. For any t > 0 and for almost
any x ∈ Ωp, by Proposition 1, there exists a unique ḡ = (ḡ1, . . . , ḡn) such that Q(ḡ) = 0
and ∑ αi ḡi = ∑ αiai(x, t). Hence, by (23) and by the previous statement, we find that
ai(x, t) = ḡi for any i. Therefore, we have proved that

Q(a(x, t)) = 0 ∀t > 0, a.e. in ΩP.

Here, we stress that, since Q is Lipschitz-continuous and a(·, t) → a0(·) as t → 0+ in Lp,
we can deduce that any function a0 ∈ A takes values in the equilibrium manifold of Q,
i.e., Q(a0) = 0 a.e. for any a0 ∈ A. Let us note that this conclusion is a consequence of
assumptions (6) and rank

(
∂Qi/∂ f j

)
= n − 1.
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At this point, we have proved that a = (a1, . . . , an) is a solution of

∂tai +
d

∑
i=1

λij∂xj ai = 0, a(x, 0) = a0(x).

Hence, we know that a is

a(x, t) = (a1(x − Λ1t), . . . , an(x − Λnt)),

where Λi = (λi1, . . . , λid) are the speeds defined at the very beginning.
In order to conclude the proof, we have to show that a is indeed a constant function.

This is achieved by the following

Proposition 2. Assume the same hypothesis of Theorem 1. Let φ = (φ1, . . . , φn) ∈ L1(Ωp, IRn)
be such that

Q(φ1(x − Λ1t), . . . , φn(x − Λnt)) = 0 for almost any (x, t) ∈ ΩP, (24)

then there exists ci ∈ IR such that

φi(x) = ci ∀i = 1, . . . , n, for almost any x ∈ ΩP.

Proof of Proposition 2. First of all, let us assume that φ ∈ C1(ΩP, IRn). Calculating
Q(φ1(x− Λ1t), . . . , φn(x − Λnt)) at x = Λjt and deriving with respect to t, we obtain

n

∑
h=1

d

∑
k=1

∂Ql
∂ fh

∂φh
∂xk

(λjk − λhk) = 0 ∀l = 1, . . . , n.

Setting wh = ∑k
∂φh
∂xk

(λjk − λhk) = ∇φh · (Λj − Λh), we arrive at the linear system

n

∑
h=1

qlhwh = 0.

Since wj = 0 and any square submatrix of (qij) of order n − 1 is on degenerate (Lemma 1),
we deduce that wh = 0 for any h. Rewriting

∇φh · (Λj − Λh) = 0 ∀h, j.

Since the set Λ1 − Λh, . . . , Λn − Λh spans all IRd, ∇φh = 0 and the conclusion follows.
The general case for φ can be proved by the density argument. Indeed, given φ ∈

L1(ΩP, IRn) with values in a regular subset of IRn, say, Γ, then there exists a sequence
φj ∈ C1(ΩP, IRn) such that

φj(ΩP) ⊂ Γ ∀j, lim
j→∞

‖φj − φ‖1 = 0.

Therefore, Q(φ(x)) = 0 implies Q(φj(x)) = 0. By the previous analysis, φj is constant for
any j, and so, passing to the limit, φ is constant too.

This concludes the proof of the Proposition and, consequently, of Theorem 1. Theorem 2
can be proved following the same approach by applying at the very beginning comparison
results and regularity of Q in order to guarantees that condition (5) is satisfied for any value
of f under consideration.
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3. Some Examples and Counterexamples

3.1. A Counterexample about the Condition on Λi

Here, we want to show that if for some k it holds span{Λi − Λk}i=1,...,n �= IRd, then
system (1) has nonconstant periodic traveling waves, which precludes the asymptotic
stability of the set { f̄ : Q( f̄ ) = 0}.

Therefore, assume that span{Λi − Λn}i=1,...,n �= IRd, then, by changing the x variable
x → x − Λnt, we obtain a system of the same form with speeds Λ̃1, . . . , Λ̃n such that
span{Λ̃i}i=1,...,n−1 �= IRd and Λ̃n = 0.

Without restriction, assume e1 ≡ (1, 0, · · · , 0) ∈ span{Λ̃1, . . . , Λ̃n−1}⊥. Then, we look
for a solution to (1) in the form

f (x) ≡ ( f1, . . . , fn)(x) = (c1, . . . , cn)g(x1) ≡ cg(x1), (25)

with the vector c ∈ IRn and the function g ∈ C1(IR) to be determined. By hypothesis on e1,
it follows λ̃i1 = 0 for any i, so that

d

∑
j=1

λ̃ij∂xj fi =
d

∑
j=1

λ̃ijci∂xj g(x1) = λ̃i1cig′(x1) = 0.

Next, we impose that Q( f ) = 0. In the case of linear collision term Q, that is, Qi( f ) =
n
∑

j=1
qij f j, we obtain

Qi( fi(x)) =

(
n

∑
j=1

qijcj

)
g(x1) = 0 ∀x ∈ IRd.

Hence, by choosing c ∈ IRn so that
n
∑

j=1
qijcj = 0 (recall that rank

(
qij

)
= n − 1), we find

that any function of the form (25) is solution of (1) for any function g ∈ C1(IR). In the
nonlinear case, we can conclude the same kind of result by applying the Implicit Function
Theorem close to a constant steady state. Coming back to the original variable x, we obtain
a nonconstant traveling wave solution with speed of propagation Λk.

3.2. The One-Dimensional 2 × 2 Linear Example

It is interesting to stress with a one-dimensional 2 × 2 linear example fitting in the
form (1) that in the class of weakly coupled quasimonotone systems, the assumptions of
Theorem 1 may not be weakened. Consider the system{

∂t f1 − λ∂x f1 = −a f1 + b f2,
∂t f2 + λ∂x f2 = +a f1 − b f2,

(26)

where a, b ∈ IR and λ ≥ 0 (the general one-dimensional 2 × 2 case can be reduced to this
one by a simple change of variables). The assumption (5) corresponds to a, b > 0, while (6)
reads in this case as a, b ≥ 0. It is also interesting to stress that

rank

(
∂Qi
∂ f j

)
= rank

( −a +b
+a −b

)
= 1 ⇐⇒ (a, b) �= (0, 0),

(for the rôle of condition rank
(
∂Qi/∂ f j

)
= n − 1, see Proposition 1).

Hence, if we choose a > b = 0, we have a weak quasimonotone system that is not a
strong quasimonotone and that has Jacobian of the collision term Q of rank one.

Given the initial condition

( f1, f2)(x, 0) = ( f 0
1 , f 0

2 )(x),
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the solution is given by the explicit formula⎧⎪⎪⎨⎪⎪⎩
f1(x, t) = f 0

1 (x + λt)e−at,

f2(x, t) = f 0
2 (x − λt) + a

∫ t

0
f 0
1 (x − λ(t − τ) + λτ)e−aλτ dτ.

Then, it is immediate to see that if f 0
1 ≡ 0, the solution is

( f1, f2)(x, t) = (0, f 0
2 (x − λt)),

that does not converge to any constant state.

The same class of system can be used to show the necessity of conditions on the speeds
λij, in this case −λ, λ. Indeed, assume λ = 0 (so that hypothesis of Theorems 1 and 2 do
not hold). Then, the system (26) reduces to a system of ordinary differential equations of
the form

f ′1 = −a f1 + b f2, f ′2 = +a f1 − b f2. (27)

The asymptotic behavior is determined by the eigenvalues and corresponding eigen-

vector of the matrix A =

( −a +b
+a −b

)
. A straightforward computation reveals that the

eigenvalues are 0 and −(a + b), so that if the system satisfies (5), i.e., a, b > 0, then the
solution asymptotically belongs to the set {( f1, f2) : a f1 = b f2}, with no convergence to
constant states for general initial data.

Finally, we conclude with some heuristics again for system (26), showing from a
different point of view where the asymptotic stability comes from. Applying the Fourier
analysis, we obtain the following system of ordinary differential equations{

f̂ ′1 = (−a + iλk) f̂1 + b f̂2,
f̂ ′2 = +a f̂1 + (−b − iλk) f̂2.

(28)

Stability analysis corresponds to looking for the sign of the real part of any eigenvalue μ of
the matrix of coefficients in the right-hand side of (28). Setting μ = X + iY, we obtain the
algebraic system {

X2 − Y2 + (a + b)X + λ2k2 = 0,
2XY + (a + b)Y − λk(b − a) = 0,

from which we deduce (for λ > 0)

k2 = F(X) := −
X(X + a + b)

(
X + a+b

2

)2

λ2(X + a)(X + b)
.

Imposing the necessary condition of stability F(X) < 0 for any X > 0, we deduce that
a, b ≥ 0, which corresponds to the weak quasimonotonicity assumption. For small X, we
have for a, b > 0

k2 = −F(X) = − (a + b)3

4λ2ab
X + o(X) as X → 0,

so that the strong quasimonotonicity assumption corresponds to asking that the function F
has finite negative slope at X = 0.
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Abstract: We consider the possibility of constructing a hierarchy of the complex extension of the
Korteweg–de Vries equation (cKdV), which under the assumption that the function is real passes
into the KdV hierarchy. A hierarchy is understood here as a family of nonlinear partial differential
equations with a Lax pair with a common scattering operator. The cKdV hierarchy is obtained by
examining the equation on the eigenvalues of the fourth-order Hermitian self-conjugate operator
on the invariant transformations of the eigenvector-functions. It is proved that for an operator Ĥn

to transform a solution of the equation on eigenvalues
(

M̂ − λE
)
V = 0 into a solution of the same

equation, it is necessary and sufficient that the complex function u(x, t) of the operator M̂ satisfies
special conditions that are the complexifications of the KdV hierarchy equations. The operators Ĥn

are constructed as differential operators of order 2n + 1. We also construct a hierarchy of perturbed
KdV equations (pKdV) with a special perturbation function, the dynamics of which is described by a
linear equation. It is based on the system of operator equations obtained by Bogoyavlensky. Since
the elements of the hierarchies are united by a common scattering operator, it remains unchanged in
the derivation of the equations. The second differential operator of the Lax pair has increasing odd
derivatives while retaining a skew-symmetric form. It is shown that when perturbation tends to zero,
all hierarchy equations are converted to higher KdV equations. It is proved that the pKdV hierarchy
equations are a necessary and sufficient condition for the solutions of the equation on eigenvalues to
have invariant transformations.

Keywords: Lax pairs; complexification of the Korteweg–de Vries equation; Korteweg–de Vries
hierarchies; integrable partial differential equations; perturbations of the Korteweg–de Vries equation

MSC: 35Q53

1. Introduction

After the discovery by Gardner, Greene, Kruskal and Miura of the inverse scattering
problem method in 1967 [1] and a number of fully integrable equations, the interest in
solitons has been growing continuously. In wave dynamics problems, one often has to
deal with nonlinear equations containing terms with high-order spatial derivatives char-
acterizing nonlinearity, dispersion and dissipation [2,3]. Thus, in deformable media with
microstructures, soliton solutions of the Korteweg–de Vries hierarchy equations arise [4].
Special polynomials related to rational solutions of the KdV hierarchy are presented in [5].
In [6], an algorithmic method for obtaining a Lax pair for the hierarchy of the modified
KdV equation (mKdV) is given. The integration of the modified KdV hierarchy with an
integral source type is proposed in [7]. In [8], the connection of the stationary KdV hierarchy
with the second Painlevé hierarchy is traced, and periodic solutions of the hierarchy are
constructed.
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The Kadomtsev–Petviashvili (KP) equation is related to the KdV equation:

(ut + 6uux + uxxx)x + 3λuyy = 0

which is also called the two-dimensional KdV equation. The relationship of these equations
is informal. The KP equation is used to describe acoustic waves of small amplitude and
long wavelength in plasma that have been subjected to transverse perturbations in the
y-axis direction. Without transverse perturbations, the dynamics are described by the KdV
equation. The KP hierarchies investigated in [9] extended the KdV family. Furthermore,
(2+1)-dimensional hierarchies of evolutionary equations with Hamiltonian structure are
developed in [10].

In recent decades, nonlinear science has attracted a large number of researchers to
create models with a higher number of dimensions (n ≥ 2), as well as use fractional
differentiation. Thus, in [11], a (3+1)-dimensional equation of the type of the second
equation of the KdV hierarchy, which is a fifth-order equation, was obtained:

Dα
t u + 6uyux + uxxy + uxxxxz + 60u2

xuz + 10uzuxxx + 20uxuxxz + 6uzux + uxxz = 0,

where Dα
t denotes a fractional differential operator of order α > 0 on time t in the sense of the

Riemann–Liouville fractional derivative. Using fractional Lie group methods, symmetries
of the equation are obtained in [11]. Using a suitable conservation theorem, conservation
laws are obtained, which lead to a deeper understanding of this dynamical model.

In [12], the dynamics of optical solitons are described using integrable hierarchies
for two types of perturbations—in particular, hierarchies for the KdV equation, mKdV,
KdV-sine-Gordon equation, and the nonlinear Schrödinger equation. The Clairin’s method
for the system of two third-order equations related to the integrable perturbation and
complexification of the Korteweg–de Vries equation was developed in [13].

The purpose of this paper is to extend the ideas about the possibilities of construct-
ing various hierarchies of the KdV equation, including their complex extension and per-
turbed systems.

In [14–16], the hierarchies of the complex extension of the Korteweg–de Vries equa-
tion (cKdV) and the system describing a hierarchy of perturbed KdV equations (pKdV),
i.e., transformations for the first equation of the KdV hierarchy, were constructed. The
cKdV and pKdV hierarchies constructed in this paper have a fourth-order scattering opera-
tor written in matrix form. The equations belonging to the same hierarchy are connected by
a common scattering operator, so for the construction of the cKdV and pKdV hierarchies
we used the available scattering operators taken from [14–16]. However, to derive the
equations of the hierarchies themselves it was necessary to analyze the equation for eigen-
values and to determine whether there exist non-trivial differential operators transforming
its solutions into themselves. It turned out that such operators exist if and only if the
potential function of the scattering operator satisfies special partial differential equations,
these equations being the families of cKdV and pKdV. The pKdVs we obtained are close in
structure to the super-integrable physical models of [11]. These equations are discussed in
more detail in Part 2 of the paper.

2. Construction of the Complexification Hierarchy of the Korteweg–de Vries Equation

The Lax method [17] uses the operator equation to obtain a family of integrable partial
derivative equations of the general form ut = F(u, ux, uxx, . . .):

M̂t =
[
M̂, B̂n

]
, (1)

where M̂ and B̂n are differential operators of the matrix form parametrically dependent on
t. The form of the operator B̂n is chosen so that the commutator

[
M̂, B̂n

]
= M̂B̂n − B̂n M̂

and the derivative ∂M̂
∂t are multiplication operators on some functions.
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It is well known that relation (1) underlies the applicability of the inverse scattering
problem to the nonlinear evolution equations, so using the terminology adopted in soliton
theory we will call M̂ the scattering operator. The most important feature of the pair of Lax
matrix operators M̂, B̂n is that the time derivative is not included in the operator M̂. Thus,
we can consider t as a parameter and investigate the spectral properties of this operator,
i.e., investigate solutions of the equation on eigenvalues:(

M̂ − λE
)
V = 0, (2)

where E is a unit matrix, λ is a spectral parameter, V(λ, x, t) is the vector eigenfunction.
This equation on the vector function V(λ, x, t) is a spectral problem for the matrix operator
M̂; sometimes it is also called an auxiliary linear problem for the nonlinear equation in
question. Note that the Lax Equation (1) is equivalent to the pair of linear Equations (2)
and (3):

Vt = −B̂nV. (3)

Here, it is appropriate to emphasize that the consistency of Equations (2) and (3) means
only the existence of their common solution, but not that each solution of one of them will
also be a solution of the other. Therefore, the combination Vt + B̂nV need not be zero, and
under certain conditions it can also satisfy Equation (2).

In [11–13], the Hermitian-self-conjugate operator of the fourth order, written in matrix
form, was used as the scattering matrix operator M̂:

M̂ =

(
0 L̂
_
L̂ 0

)
, (4)

where “–” above the letter denotes the complex conjugation, and L̂ is an operator that
depends on the complex function u(x, t) and has the form of the Sturm–Liouville operator:

L̂ = − ∂2

∂x2 + u(x, t). (5)

Function u(x, t) in the terminology of the inverse scattering problem method is called
the potential energy (potential).

An odd-order matrix operator B̂n with matrix coefficients of diagonal form 2 × 2:

B̂n =

(
A1(2n+1) 0

0 A2(2n+1)

)
∂2n+1

∂x2n+1 +
2n−1

∑
k=0

(
A1k 0
0 A2k

)
∂k

∂xk , (6)

where n ≥ 1 is a fixed natural number (n ∈ N), Aik(λ, x, t), i = 1, 2 are arbitrary functions
differentiable as many times as necessary by all variables, and λ is an arbitrary complex
parameter. The matrix operator B̂n form is refined by closing (1) to a single equation.

In the present paper we investigate the equation for eigenvalues (2) and search for
invariant transformations of operator Ĥn, which map the eigenfunctions of the operator
M̂ into themselves. The conditions that lead to the possibility of the existence of such
transformations turn out to be nonlinear partial differential equations that are a hierarchy
of the complex extension of the KdV equation (cKdV—KdV complexification). Obtaining
proof of the existence of such a hierarchy is carried out by the method of mathematical
induction, so we divide it into stages.

2.1. Transformation Operators of a Special Kind for n = 1

Let us write (6) at n = 1 as

B̂1 = A
∂3

∂x3 + N
∂

∂x
+ P, (7)
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where

A =

(
A1(λ, x, t) 0

0 A2(λ, x, t)

)
, N =

(
N1(λ, x, t) 0

0 N2(λ, x, t)

)
, P =

(
P1(λ, x, t) 0

0 P2(λ, x, t)

)
are the matrices of diagonal form 2 × 2 with functions Ai(λ, x, t), Ni(λ, x, t), Pi(λ, x, t),
i = 1, 2 differentiable the required number of times by all variables, λ is the arbitrary
complex parameter.

Lemma 1. For an operator M̂ of the form (4) there exists a B̂1 operator of the form (7) such that(
M̂ − λE

)
B̂1 is a product operator, E is a unit matrix, and λ is an arbitrary complex parameter.

Proof of Lemma 1. Let us establish that there exists an operator B̂1 of the form (7) that

translates the vector-function V =

(
v1(λ, x, t)
v2(λ, x, t)

)
, satisfying the equation on eigenvalues (2)

M̂V = λV, or the system
{−v1xx +

_
uv1 = λv2,

−v2xx + uv2 = λv1,
(8)

into functions B̂1[V], satisfying the equation:(
M̂ − λE

)
B̂1V = F(x, t)V, (9)

where F(x, t) is a functional matrix 2 × 2 containing no differentiation operators and a λ
parameter.

Let us write the left part of (9) in matrix form and substitute the value of the operator
L̂ from (5); then, we obtain(−A2xxv2xxx − 2A2xv2xxxx − A2v2xxxxx + uA2v2xxx

−A1xxv1xxx − 2A1xv1xxxx − A1v1xxxxx +
_
uA1v1xxx

)
− λ

(
A1v1xxx + N1v1x + P1v1
A2v2xxx + N2v2x + P2v2

)
+

(−N2xxv2x − 2N2xv2xx − N2v2xxx + uN2v2x − P2xxv2 − 2P2xv2x − P2v2xx + uP2v2
−N1xxv1x − 2N1xv1xx − N1v1xxx +

_
uN1v1x − P1xxv1 − 2P1xv1x − P1v1xx +

_
uP1v1

)
.

(10)

Express the second, third, fourth, and fifth derivatives of functions vi from system (8)
and substitute the found values in (10). Let us group separately the terms with parameter
λ and separately with functions vi and derivatives vix:

(
M̂ − λE

)
B̂1V =

(
0 Q1

Q2 0

)(
v1
v2

)
+ λ

(
Q3 0
0 Q4

)(
v1
v2

)
+

(
0 W1

W2 0

)(
v1x
v2x

)
+ λ

(
W3 0
0 W4

)(
v1x
v2x

)
, (11)

where

Q1 = −A2xxux − 2A2x(uxx + u2 + λ2)− A2(uxxx + 3uxu)− 2N2xu − N2ux − P2xx, (12)

Q2 = −A1xx
_
ux − 2A1x(

_
uxx +

_
u2 + λ2)− A1(

_
uxxx + 3

_
ux

_
u)− P1xx − 2N1x

_
u − N1

_
ux, (13)

W3 = A2xx + A2
_
u − A1

_
u − N1 + N2,

W1 = −A2xxu − 4A2xux − A2
(
3uxx + λ2)+ λ2 A1 − N2xx − 2P2x,

Q3 = 2A2x(u +
_
u) + A2(3ux +

_
ux)− A1

_
ux − P1 + 2N2x + P2,

(14)

W2 = −A1xx
_
u − 4A1x

_
ux − A1

(
λ2 + 3

_
uxx

)
+ λ2 A2 − N1xx − 2P1x,

W4 = A1xx + A1u − A2u − N2 + N1,

Q4 = 2A1x(
_
u + u) + A1(3

_
ux + ux)− A2ux − P2 + P1 + 2N1x.

(15)
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Let us choose the functions Ak(λ, x, t), Nk(λ, x, t), Pk(λ, x, t), k = 1, 2 such that the

coefficient at
(

v1x
v2x

)
is zero and the coefficients at

(
v1
v2

)
do not depend on λ. These

requirements are equivalent to a system of equations:

0 = A2xx + (A2 − A1)
_
u − N1 + N2, (16)

0 = −A2xxu − 4A2xux − A2(3uxx + λ2) + λ2 A1 − N2xx − 2P2x (17)

0 = 2A2x(u +
_
u) + A2(3ux +

_
ux)− A1

_
ux − P1 + 2N2x + P2, (18)

0 = −A1xx
_
u − 4A1x

_
ux − A1(λ

2 + 3
_
uxx) + λ2 A2 − N1xx − 2P1x, (19)

0 = A1xx + (A1 − A2)u − N2 + N1, (20)

0 = 2A1x(
_
u + u) + A1(3

_
ux + ux)− A2ux − P2 + P1 + 2N1x. (21)

In order that Equations (17) and (19) do not depend on the parameter λ it is necessary
to set

A2 = A1. (22)

The sum of expressions (16), (20) leads to A1xx = 0, which is easily solved by assuming
A1 = a a constant value, and then the system (16)–(21) is simplified to four relations:

−3auxx − N1xx − 2P2x = 0, 3aux − P1 + 2N1x + P2 = 0,
−3a

_
uxx − N1xx − 2P1x = 0, 3a

_
ux − P2 + P1 + 2N1x = 0.

(23)

This system of equations is simultaneous if

a ∈ R, N1 = −3
4

a(u +
_
u) + ϕ(t),

_
P1(λ, x, t) = P2(λ, x, t) =

3
8

a(
_
u − 3u)x + ψ(t). (24)

For simplicity of further reasoning, let us assume that ϕ(t) = ψ(t) = 0.

The remaining part of Formula (11)
(

M̂ − λE
)

B̂1v =

(
0 Q1

Q2 0

)(
v1
v2

)
gives the de-

sired representation, where Q1, Q2 after substitution in (12)–(15) the found values take the
following form:

Q1 = −3
2

auxu − 1
8

a(3
_
u − u)xxx +

3
2

a
_
uxu +

3
4

a
_
uux, (25)

Q2 = −3
2

a
_
ux

_
u − 1

8
a(3u − _

u)xxx +
3
2

aux
_
u +

3
4

au
_
ux. (26)

Seen in Q1 =
_
Q2 and F(x, t) =

(
0 Q1_

Q1 0

)
is the 2 × 2 matrix, independent of λ. So,

the desired form of operator B̂1 is found:

B̂1 =

(
a 0
0 a

)
∂3

∂x3 − 3
4

a
(

u +
_
u 0

0 u +
_
u

)
∂

∂x
+

3
8

a
(
(u − 3

_
u)x 0

0 (
_
u − 3u)x

)
(27)

which confirms the Lemma. �
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Lemma 2. The operator Ĥ1 = ∂
∂t + B̂1 converts the solution of the equation

(
M̂ − λE

)
V = 0 into

functions satisfying the inhomogeneous equation[(
0 L̂
_
L̂ 0

)
− λ

(
1 0
0 1

)]
Ĥ1V = R1(u)V

where the operators have the following forms: B̂1 in the form (27), L̂ in the form (5), and

R1(u) =
(

0 R11(u)_
R11(u) 0

)
, R11(u) =

3
2

a(
_
u − u)xu +

3
4

a
_
uux − 1

8
a(3

_
u − u)xxx − ut.

Proof of Lemma 2. Differentiating the system (8) by t:{−v1xxt +
_
uv1t − λv2t = −_

utv1,
−v2xxt + uv2t − λv1t = −utv2,

we see that the operator E ∂
∂t converts the solutions of this system into functions ∂v1

∂t , ∂v2
∂t ,

satisfying the equation[(
0 L̂
_
L̂ 0

)
− λ

(
1 0
0 1

)](
v1t
v2t

)
= −

(
0 ut_
ut 0

)(
v1
v2

)
.

The operator Ĥ1 has the form

Ĥ1 = E
∂

∂t
+ A

∂3

∂x3 + N
∂

∂x
+ P, (28)

and, by virtue of its linearity, given Lemma 1, Ĥ1 converts the solution of the equation(
M̂ − λE

)
V = 0 into[(

0 L̂
_
L̂ 0

)
− λ

(
1 0
0 1

)]
Ĥ1V =

{
F(x, t)−

(
0 ut_
ut 0

)}
V = R1(u)V

where R1(u) has a matrix form:

R1(u) =
(

0 R11(u)_
R11(u) 0

)
, R11 =

3
2

a(
_
u − u)xu +

3
4

a
_
uux − 1

8
a(3

_
u − u)xxx − ut.

which was to be proved. �

Corollary 1. For an operator Ĥ1 to transform a solution of an equation
(

M̂ − λE
)
V = 0 into a

solution of the same equation, it is necessary and sufficient that the complex function u(x, t) of the
operator L̂ in the form (5) satisfy the equation:

3
2

a(
_
u − u)xu +

3
4

a
_
uux − 1

8
a(3

_
u − u)xxx = ut. (29)

At a = 4, (29) gives a complex-valued equation:

ut = 3(
_
u − u)ux + 6

_
uxu − 1

2
(3

_
u − u)xxx, (30)

which was obtained earlier in [14–16] and for the real function turns into the Korteweg–de
Vries equation

ut = 6uxu − uxxx,
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and therefore is its complexification.
The proposed derivation differs from the one carried out earlier in [14–16] in that

we find invariant transformations that translate solutions of the equation on the eigen-
values of the operator M̂ into its own solutions. As a result, we can formulate the
following conclusion.

Corollary 2. The complexification of the Korteweg–de Vries Equation (30) has a Lax representation
(1) with operators M̂ and B̂1 of the form (4) and (27), respectively, at a = 4.

Corollary 3. The complex-valued nonlinear Equation (30) has an operator representation

L̂t = L̂
_
A − AL̂, (31)

with the operatorsL̂of the form (5) and

Â = 4
∂3

∂x3 +
3
2
(

_
u − 3u)

∂

∂x
+

3
2

∂

∂x
(u − 3

_
u), (32)

where u(x, t) is some complex function of two independent variables.

Thus, for a function u(x, t) to satisfy cKdV Equation (29), it is necessary and sufficient
that the operator Ĥ1 transforms the solutions of the equation

(
M̂ − λE

)
V = 0 into a

solution of the same equation.

2.2. Higher-Order Transformation Operators

Let us now consider the possibility of constructing higher-order operators Ĥn that
are invariant transformations for

(
M̂ − λE

)
V = 0 and, in passing, obtain higher hierarchy

equations (cKdV).

Theorem 1. Operators

Ĥn =

(
1 0
0 1

)
∂

∂t
+

(
A1(2n+1) 0

0 A2(2n+1)

)
∂2n+1

∂x2n+1 +
2n−1

∑
k=0

(
A1k 0
0 A2k

)
∂k

∂xk (33)

transform the solutions of the equation
(

M̂ − λ
)
V = 0 into functions satisfying the equations[(

0 L̂
_
L̂ 0

)
− λ

(
1 0
0 1

)]
ĤnV = Rn(u)V

where n ≥ 1 is a fixed natural number (n ∈ N), Rn(u) = Fn(x, t) −
(

0 ut_
ut 0

)
,

Fn(x, t) =
(

0 Q1n
Q2n 0

)
is the 2 × 2 matrix, independent of λ, λ is an arbitrary complex parameter.

Proof of Theorem 1. We will prove the theorem by the method of mathematical induction.
For n = 1 the theorem is proved in Lemmas 1, 2.

Now it is necessary to show that if the theorem is true for n = m, then it is also true
for n = m + 1. To do this, it is necessary to determine how the structure of the system of
Equations (16)–(21) changes as the order of the operator Ĥn increases. Obviously

Ĥm+1 =

(
1 0
0 1

)
∂

∂t
+

(
A1(2m+3) 0

0 A2(2m+3)

)
∂2m+3

∂x2m+3 +

2m+1

∑
k=0

(
A1k 0
0 A2k

)
∂k

∂xk ,
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or

Ĥm+1 =

(
A1(2m+3) 0

0 A2(2m+3)

)
∂2m+3

∂x2m+3 +

(
A1(2m) 0

0 A2(2m)

)
∂2m

∂x2m + Ĥn. (34)

As a result of acting on the operator Ĥm+1 by the operator M̂ − λE, we have:

(
M̂ − λE

)
Ĥm+1V =

(
M̂ − λE

)
ĤnV +

[(
0 L̂
_
L̂ 0

)
− λ

(
1 0
0 1

)](
A1(2m+3) 0

0 A2(2m+3)

)
∂2m+3

∂x2m+3

(
v1
v2

)

+

[(
0 L̂
_
L̂ 0

)
− λ

(
1 0
0 1

)](
A1(2m) 0

0 A2(2m)

)
∂2m

∂x2m

(
v1
v2

) (35)

What new summands will arise in this case? By opening the brackets of the last terms
of (35), we obtain:( −A2(2m+3)xxv2x2m+3 − 2A2(2m+3)xv2x2m+4 − A2(2m+3)v2x2m+5 + uA2(2m+3)v2x2m+3 − λA1(2m+3)v1x2m+3

−A1(2m+3)xxv1x2m+3 − 2A1(2m+3)xv1x2m+4 − A1(2m+3)v1x2m+5 +
_
uA1(2m+3)v1x2m+3 − λA2(2m+3)v2x2m+3

)

+

( −A2(2m)xxv2x2m − 2A2(2m)xv2x2m+1 − A2(2m)v2x2m+2 + uA2(2m)v2x2m − λA1(2m)v1x2m

−A1(2m)xxv1x2m − 2A1(2m)xv1x2m+1 − A1(2m)v1x2m+2 +
_
uA1(2m)v1x2m − λA2(2m)v2x2m

)
.

The notations vjx2m+1 , j = 1, 2 denote the (2m + 1)-th order derivative of the function
vj by x. Here, we need to lower the degrees of the derivatives of functions vj using
Equation (8): v2xx = uv2 − λv1, v1xx =

_
uv1 − λv2. It is easy to see that decreasing by two

orders results in the first degree of λ; hence, the terms with vjx2m+3 and vjx2m+2 will give
λm+1, and the terms with functions vjx2m+4 and vjx2m+5 will give terms with a factor of λm+2.
The first summand of expressions (35)

(
M̂ − λE

)
ĤnV contains terms of the highest degree

λm+1, since the maximum derivative here is 2m + 3. So, the terms with vjx2m+4 and vjx2m+5

form, after replacement (8), the following terms:

λm+2
[(

−A1(2m+3) + A2(2m+3)

)
vjx + 2Aj(2m+3)xvj

]
+ . . . , j = 1, 2.

They contain only newly added variables Aj(2m+3) and are not related to the rest, so
by imposing the condition A1(2m+3) = A2(2m+3) = a2m+3(t), these terms automatically
disappear. The remaining elements, with powers λm+1 and below, will fall into the system
of equations previously created by the operator

(
M̂ − λE

)
Ĥn. Therefore, there will be no

new equations, and by the assumption for Ĥn the theorem is correct. �

Corollary 4. The Lax operator Equation (1), where M̂ has the form (4), with an operator L̂ of the
form (5), and B̂n is a family of differential operators written in symmetric form

B̂n =

(
Ân 0

0
_
Ân,

)

Ân = rn
∂2n+1

∂x2n+1 +
n

∑
m=1

(
pm

∂2m−1

∂x2m−1 +
∂2m−1

∂x2m−1
_
pm

)
, j = 2, 3, . . .

(36)

where rn is a real constant number, pm(u,
_
u, ux,

_
ux, . . .) are the functions of a complex variable

u(x, t) and its derivatives by the variable x are equivalent to the operator equation

L̂t = L̂Ân − Ân L̂ (37)
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Corollary 5. In order for operators Ĥn

Ĥn = E
∂

∂t
+ B̂n,

to be invariant transformations of the solution of the equation on eigenvalues
(

M̂ − λE
)
V = 0 , it

is necessary and sufficient that the potential function of the operator M̂(4) (the complex function
u(x, t)), satisfies the equation Rn(u) = 0, i.e.,

Rn(u) =
(

0 Q1n
Q2n 0

)
−

(
0 ut_
ut 0

)
= 0,

where Qjn, j = 1, 2 does not depend on λ,V =

(
v1(λ, x, t)
v2(λ, x, t)

)
is the vector-function, λ is an

arbitrary parameter, B̂n has the form (36).

Let us show that each new operator Ĥm+1 gives an equation of higher order that
cannot be reduced to the previous one. To do this, it is sufficient to consider the third-order
operator and the fifth-order operator and compare the results obtained. The third-order
operator is considered in Lemma 1 and 2. Let us write down the fifth-order operator:

Ĥ2 =

(
1 0
0 1

)
∂

∂t
+

(
A15 0
0 A25

)
∂5

∂x5 +

(
A13 0
0 A23

)
∂3

∂x3 +

(
A12 0
0 A22

)
∂2

∂x2 +

(
A11 0
0 A21

)
∂

∂x
+

(
A10 0
0 A20

)
.

Then, the expression
(

M̂ − λE
)

Ĥ2V will take the following form. We write it down
line by line.

First line:

−v2xxt + uv2t − A25xxv2x5 − 2A25xv2x6 − A25v2x7 + uA25v2x5 − A23xxv2xxx

−2A23xv2xxxx − A23v2x5 + uA23v2xxx − A22xxv2xx − 2A22xv2xxx − A22v2x4 + uA22v2xx − A21xxv2x

−2A21xv2xx − A21v2xxx + uA21v2x − A20xxv2 − 2A20xv2x − A20v2xx + uA20v2 − λ(A15v1x5 + A13v1xxx

+A12v1xx + A11v1x + A10v1 + v1t).

Second line:

−v1xxt +
_
uv1t − A15xxv1x5 − 2A15xv1x6 − A15v1x7 +

_
uA15v1x5 − A13xxv1xxx

−2A13xv1xxxx − A13v1x5 +
_
uA13v1xxx − A12xxv1xx − 2A12xv1xxx − A12v1x4 +

_
uA12v1xxx − A11xxv1x

−2A11xv1xx − A11v1xxx +
_
uA11v1x − A10xxv1 − 2A10xv1x − A10v1xx +

_
uA10v1 − λ(A25v2x5 + A23v2xxx

+A22v2xx + A21v2x + A20v2 + v2t).

Let us decrease the order of the functions’ vj derivatives using Equations (8) and group
separately the expressions with v1, v2, v2x, v1x (we describe only the first one; for the second
one we obtain a similar expression):

v1x : λ[A25xx(u +
_
u) + 4A25x(2ux +

_
ux) + A25(10uxx + 3

_
uxx +

_
u2 + λ2) +

_
uA23 + A23xx + A21

−A15(3
_
uxx +

_
u2 + λ2)− A13

_
u − A11 + 2A22x] = 0,

v2x : A25xx
(
3uxx + u2)+ 4A25x(2uxxx + 3uxu) + A25

(
5uxxxx + 10uxxu + 10u2

x
)
+ A21xx + 2(2A23x + A22)ux

+(A23xx + 2A22x)u + 3A23uxx + 2A20x − λ2[A15(
_
u + u) + A13 − A25xx − A23 − A25(

_
u + u)]

= 0,

47



Axioms 2023, 12, 371

v1 : λ[(A25xx + A23)(3ux +
_
ux) + 2A25x(6uxx + u(u +

_
u) +

_
uxx +

_
u2 + λ2) + A25(10uxxx

+5ux(u +
_
u) +

_
uxxx + 4

_
ux

_
u) + 2A23x(u +

_
u) + 2A21x + A22xx +

_
uA22 + A20 − A15(

_
uxxx

+4
_
ux

_
u)− A13

_
ux − A10 − A12

_
u] = 0,

v2 : −ut + (uA25 − A25xx − A23)(uxxx + 4uxu)− 2A25x
[
uxxxx + 6uxxu + 4u2

x + u
(
uxx + u2)]− A25(ux5

+11uxxxu + 15uxxux + 9uxu2)− (2A23x + A22)
(
uxx + u2)+ (uA23 − A23xx − A21 − 2A22x)ux

+(uA22 − A22xx − 2A21x)u − A20xx + λ2[A15(3
_
ux + ux) + A12 − 2A25x(2u +

_
u)− 3A25(2ux +

_
ux)

−2A23x − A22] = 0.

As it was assumed above in the proof, we shall set A15 = A25 = a5(t). Since the
equations must be valid for any values of λ, we first get rid of the parameter λ in the
obtained equations. For this purpose, we set

A13 = A23 = a3(x, t), A13 = A23 = a3(x, t), A22 − 5a5
_
ux − 2a3x − A12 = 0, (38)

which completely defines the function a3(x, t) and the difference A22 − A12 through u(x, t):

a3(x, t) = −5
4

a5(
_
u + u) + ϕ(t), A12 − A22 =

5
2

a5(u − _
u)x. (39)

Here, ϕ(t) is the integration constant (hereafter we assume ϕ(t) = 0).
In order for the operator Ĥ2 to convert solutions of

(
M̂ − λE

)
Ĥ2V into functions

R2(u)V it is necessary that the coefficients at vjx turn to zero. As a result, the previously
unknown functions are defined:

A11 =
_
A21 =

5
16

a5

[
5

_
uu +

1
2

(
u2 +

_
u2

)]
− a5

5
16

(uxx + 9
_
uxx), (40)

A10 =
_
A20 = a5

5
32

(uxxx − 7
_
uxxx) +

5
64

a5

(
3

_
u2 − u2 + 10

_
uu

)
x
− 5

16
a5(ux

_
u − u

_
ux) (41)

(here the integration constant is zero).
As a result, all elements of the operator Ĥ2, which are expressed through the function

u(x,t) and a5(t), are found, leaving only two unused relations for the coefficients at vj,
which, after substituting the found values, form two complex conjugate expressions on the
function u(x,t):

R12(u) = 5
16 a5

(
3
10 ux5 − 1

2
_
ux5 − 2(u2 + |u|2)_

ux − 1
2 (

_
u2 + 6|u|2 − 3u2)ux + ux(

_
u + 3u)xx

+2u
_
uxxx +

1
4 (−3u2 +

_
u2 + 2|u|2)xxx

)
− ut.

(42)

As a result of these operations the following equation is obtained:(
M̂ − λE

)
Ĥ2V = R2(u)V,

where R2(u) has a matrix form:

R2(u) =
(

0 R12(u)_
R12(u) 0

)
Comparing the results in Formulas (29) and (42), it should be noted that both expres-

sions contain the first derivative by the variable t, but by the variable x in (29) the senior
derivative is of order three, while in (42) it is of order five.
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Corollary 6. For the operator Ĥ2 to transform a solution of an equation
(

M̂ − λE
)
V = 0 into a

solution of the same equation, it is necessary and sufficient that the complex function u(x, t) satisfies
R2(u) = 0 or satisfies the equation

5
16 a5

(
3
10 ux5 − 1

2
_
ux5 − 2(u2 + |u|2)_

ux − 1
2 (

_
u2 + 6|u|2 − 3u2)ux + ux(

_
u + 3u)xx

+2u
_
uxxx +

1
4 (−3u2 +

_
u2 + 2|u|2)xxx

)
= ut.

(43)

Assume in Equation (41) an arbitrary function a5(t) in the form of a constant a5 = −32,
then the equation will take the form

ut = 10(u2 + |u|2)_
ux +

5
2 (

_
u2 + 6|u|2 − 3u2)ux − 5ux(

_
u + 3u)xx − 10u

_
uxxx

− 5
4 (2|u|2 − 3u2 +

_
u2)xxx +

1
2 (5

_
u − 3u)xxxxx,

(44)

which, under the assumption that u(x, t) is a real function, passes into the second equation
of the KdV hierarchy:

ut = 30u2ux − 20uxuxx − 10uuxxx + uxxxxx.

Consequently, a complex extension of the second equation of the KdV is obtained.

Corollary 7. The nonlinear equation (44) on the complex function u(x, t) has the operator repre-
sentation (37) with the operators L̂ (Sturm–Liouville operator) and

A2 = −16 ∂5

∂x5 − 20(
_
u + u) ∂3

∂x3 − 10(u + 5
_
u)x

∂2

∂x2 +
(

5
2 (u

2 +
_
u2 + 10|u|2)− 5(9

_
u + u)xx

)
∂

∂x

+ 5
2 (u − 7

_
u)xxx +

5
4 (3

_
u2 − u2 + 10|u|2)x + 5(u

_
ux − _

uux)

and is a complexification of the second Korteweg–de Vries hierarchy equation.

Earlier, in [16], the construction of Equation (44) using the Lax operator equation with
given operators was presented.

Thus, it is established that there exists a countable family of operators Ĥn = E ∂
∂t + B̂n

(B̂n have the form (36) and depend on a complex function u(x, t)), which become invariant
transformations of solutions of the homogeneous equation

(
M̂ − λE

)
ĤnV = 0 only if the

function u(x, t) is a solution of one of the equations of the cKdV hierarchy.
All Ĥn are of odd order and determine the corresponding order of the equation of the

cKdV hierarchy. The resulting complex equations are integrable since they possess a Lax
pair with operators (4) and (6).

In particular, for Equation (30) the following takes place:

Proposition 1. Equation (30) has a complex-valued solution

u(ς) =
(ik)2

2
[1 + tan2(ikς)∓ tan(ikς)],

where 1
2 ik(x − 2(ik)2t + μ) = ikς is a complex variable, k, μ are the arbitrary constants.

The proof is obtained by simple substitution into Equation (30).
Functions of a complex argument can be represented using the Riemann sphere, by

expressing the complex argument

1
2

ik(x − 2(ik)2t + μ) = z = a + ib
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in the polar coordinate system a = ρ cos ϕ, b = ρ sin ϕ (ρ, ϕ polar coordinates of the
complex plane Z), and then the third coordinate of the sphere should determine the value
of the function with polar arguments u(ρ cos ϕ, ρ sin ϕ).

Let us distinguish in the solution

u(a + ib) = − k2

2

[
1 + tan2(a + ib)∓ tan(a + ib)

]
the real and imaginary parts:

1 + tan2z ∓ tan z =
4e2z ± i

(
e4z − 1

)
e4z + 2e2z + 1

=
4e2a(cos 2b + i sin 2b)± i

[
e4a(cos 4b + i sin 4b)− 1

]
e4a(cos 4b + i sin 4b) + 2e2a(cos 2b + i sin 2b) + 1

.

We get rid of the imaginary unit in the denominator and go to hyperbolic functions:

Reu = −k2
(

cos h2a cos 2b+1
(cos h2a+cos 2b)2 ∓ 1

2
sin 2b

cos h2a+cos 2b

)
,

Imu = k2
(

sin h2a sin 2b
(cos h2a+cos 2b)2 ∓ 1

2
sin h2a

cos h2a+cos 2b

)
,

where a = ρ cos ϕ, b = ρ sin ϕ. The images of the real and imaginary parts, respectively, are
shown in Figure 1a,b.

 
(a) (b) 

Figure 1. (a) Real part of u; (b) Imaginary part of u. Obtained at k = 1 and using “+” in correspond-
ing equations.

3. Construction of the Hierarchy of Perturbed Korteweg–de Vries Equation

3.1. The perturbed Korteweg–de Vries Equation

In [14,15], the Lax Equation (1) is considered, where the operators M̂ and B̂ are matrices
of the following form:

M̂ =

(
L̂ μN̂
N̂ −δL̂

)
, B̂ =

(
Â μδR̂
−R̂ Â

)
, (45)
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where δ2 = 1, μ is an arbitrary parameter; L̂, Â are the linear differential operators; N̂, R̂
are the scalar operators. With this approach, the Lax Equation (1) is equivalent to a system
of two operator equations:

L̂t =
[
L̂, Â

]− μ
(

N̂R̂ + δR̂N̂
)
, (46)

N̂t =
[
N̂, Â

]
+ R̂L̂ + δL̂R̂. (47)

The operators L̂, Â have the same form as for the Korteweg–de Vries equation, i.e.,

L̂ = − ∂2

∂x2 + u(x, t), Â = 4
∂3

∂x3 − 3
(

u
∂

∂x
+

∂

∂x
u
)

. (48)

N̂ and R̂, respectively, have the values

N̂ = w(x, t), R̂ = b(x, t), (49)

where u(x, t), w(x, t), b(x, t) are the unknown functions.
From Equations (46) and (47) at δ = 1, b(x, t) = −6wx one can obtain a system

of equations: {
ut = 6uux − uxxx + 12μwwx,

wt = 2wxxx − 6uwx.
(50)

The resulting system can represent an example of the construction of the perturbed
Korteweg–de Vries (KdV) equation

ut + 6uux + uxxx = ε f (u, ux, . . .), 0 < ε < 1

(at w(x, t) = 0 simply passing to KdV) with a special perturbation function w(x, t), the
dynamics of which are described by the second equation. Such a structure is satisfied by
the first equation of system (50) at 0 < μ << 1, and the perturbation w(x,t) itself satisfies
some law—the second equation of this system.

Several similar systems are considered in [10]. The first super-integrable KdV equation
was proposed in [18,19] and has the following form:{

ut = 6uux − uxxx − 3ξξxx,

ξt = −4ξxxx + 3uxξ + 6uξx,

where u(x, t) is a bosonic function and ξ(x, t) is a fermionic function. It is bi-Hamiltonian and
has an infinite number of conservation laws. Such systems are not unique; the following
supersymmetric KdV system was proposed in [20]:{

ut = 6uux − uxxx − 3ξξxx,

ξt = −4ξxxx + 3(uξ)x,

which is a reduction of the supersymmetric Kadomtsev–Petviashvili hierarchy [21]. In [22],
another new system, the superextension of the KdV hierarchy was constructed:{

ut = 6uux − uxxx − 12ξξxx + 6uxξξx − 3ξξxxxx − 6ξxξxxx,

ξt = −4ξxxx + 3uxξ + 6uξx,

which is a super-integrable system describing a higher-order evolutionary perturbation.
Let us show that, as for the complex KdV expansion, there exists a hierarchy of

perturbed systems associated with the higher KdV equations. For this purpose, we will use
the existing operator system (46), (47), but replace the components of the operator B̂ with
higher derivatives, preserving its skew-symmetry. Since the elements of the hierarchies are
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united by a common scattering operator, at the derivation the operator M̂ will retain the
form specified in (45).

3.2. Hierarchy of the Perturbed Korteweg–de Vries Equation

Let us represent the operators (45) under the condition that δ = 1, in the form:

M̂ =

(
L̂ μN̂
N̂ −L̂

)
, B̂j =

(
Âj μR̂j
−R̂j Âj

)
, j = 1, 2, 3, . . . (51)

Let us fix the operators L̂, N̂ in the form:

L̂ = − ∂2

∂x2 + u(x, t), N̂ = w(x, t). (52)

Differential operators Âj and R̂j have the following form:

Âj = αj
∂2j+1

∂x2j+1 +

j

∑
m=1

(
pm(x, t)

∂2m−1

∂x2m−1 +
∂2m−1

∂x2m−1 qm(x, t)
)

, j = 1, 2, 3, . . . (53)

R̂j =

2(j−1)

∑
m=0

b2j−2−m(x, t)
∂2j−2−m

∂x2j−2−m , (54)

where μ, αj are arbitrary parameters, pm(x, t), qm(x, t), bm(x, t) are unknown functions, the
form of which will be clarified in the course of research.

The proof of the existence of a countable hierarchy of perturbed KdV equations will
be carried out by the method of mathematical induction. Let us find out in which case the
result of the new operators (53), (54) in the operator equations

L̂t =
[
L̂, Âj

]− μ
(

N̂R̂j + δR̂j N̂
)
, (55)

N̂t =
[
N̂, Âj

]
+ R̂j L̂ + δL̂R̂j (56)

leads to a system of two partial differential equations for two unknown functions u(x, t),
w(x, t).

The proof of the first step of the method of mathematical induction for j = 1 was
carried out in [14,15]. Now we need to show that the solvability of the system (55) and (56)
for j = n + 1 with the operators Ân+1 and R̂n+1 follows from the solvability of this system
for j = n with the operators Ân and R̂n (the solvability of the system implies the reduction
of the operator Equations (55) and (56) to two partial differential equations describing the
dynamics of the functions u(x, t) and w(x, t), respectively).

Let us study in detail the structure of differential operators (53), (54). The operator Ân
contains two consecutive odd higher derivatives; compare Ân and Ân+1:

Ân = αn
∂2n+1

∂x2n+1 +

n

∑
m=1

(
pm(x, t)

∂2m−1

∂x2m−1 +
∂2m−1

∂x2m−1 qm(x, t)
)
= αn

∂2n+1

∂x2n+1 + D2n−1, (57)

Ân+1 = αn+1
∂2n+3

∂x2n+3 + pn+1
∂2n+1

∂x2n+1 +
∂2n+1

∂x2n+1 qn+1 + D2n−1, (58)

where D2n−1 is the differential terms from 2n − 1 order and below.
As can be seen for Ân+1, increasing the index n by one increases the degree of the

derivative by two orders of magnitude, adding two new unknown functions pn+1(x, t),
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qn+1(x, t), which will be predetermined by transformations of the operator Equations (55)
and (56).

Similarly, let us analyze for R̂n. R̂n has a senior even derivative; when the index
n increases by one R̂n+1, the degree of the differential terms increases by two orders of
magnitude, so let us represent the two consecutive operators in the form:

R̂n =

2n−2

∑
m=0

b2n−2−m(x, t)
∂2n−2−m

∂x2n−2−m , R̂n+1 = b2n(x, t)
∂2n

∂x2n + b2n−1(x, t)
∂2n−1

∂x2n−1 + R̂n. (59)

As the order of the linear differential operator increases, the number of unknown
functions also increases, and two new functions b2n(x, t), b2n−1(x, t) arise that can also be
further predetermined.

Let us show that as the order of the differential operators of the given form (58),
(59) increases, the resulting systems for the unknown coefficients pm(x, t), qm(x, t), bm(x, t),
m = 0, 1, . . . , 2n − 2 do not become overdetermined.

For this, we write the system (55), (56) for for j = n:

ut =
[
L̂, D2n−1

]
+ αnu

∂2n+1

∂x2n+1 − αn

2n+1

∑
j=0

Cj
2n+1uxj

∂2n+1−j

∂x2n+1−j − μ
(
wR̂n + R̂nw

)
, (60)

wt = αnw
∂2n+1

∂x2n+1 − αn

2n+1

∑
j=0

Cj
2n+1wxj

∂2n+1−j

∂x2n+1−j + [w, D2n−1] + R̂n L̂ + L̂R̂n. (61)

Let us group the elements with differential operators of the same order and equate
these coefficients to zero:

∂2n

∂x2n :

{
−αn(2n + 1)ux − 2pnx − 2qnx = 0,

−αn(2n + 1)wx − 2b2n−2 = 0,
(62)

∂2n−1

∂x2n−1 :

{
(4n − 1)qnxx + pnxx + (2n + 1)nαnuxx = 0,

αn(2n + 1)nwxx + 2b2n−3 + 2b(2n−2)x = 0,
(63)

. . .

1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =

n

∑
j=1

[uqjx2j−1 − qjx2j+1 − pjux2j−1 − (
qju)x2j−1

]− αnux2n+1 − μ

⎡⎢⎣wb0 +

2n−2

∑
j=0

bjwxj

⎤⎥⎦,

wt = −αnwx2n+1 +

n

∑
j=1

[wqjx2j−1 − pjwx2j−1 − (
qjw)x2j−1

]
+

2n−2

∑
j=0

bjuxj − b0xx + ub0.

(64)

Non-trivial equations are obtained, from which the previously unknown functions are
redefined pm(x, t), qm(x, t), bm(x, t):

b2n−2 = −αn

2
(2n + 1)wx, b2n−3 =

αn

2
(2n + 1)(1 − n)wxx, pn = qn = −αn

4
(2n + 1)u.

The last pair of (64) gives the desired system on functions u(x, t) and w(x, t).
Now let us perform a similar action for j = n + 1 and make a grouping of coefficients

at differential operators:

∂2n+2

∂x2n+2 :

{−αn+1(2n + 3)ux − 2p(n+1)x − 2q(n+1)x = 0,

−αn+1(2n + 3)wx − 2b2n = 0,
(65)
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∂2n+1

∂x2n+1 :

{
(4n + 3)q(n+1)xx + p(n+1)xx + (2n + 3)(n + 1)αn+1uxx = 0,

αn+1(2n + 3)(n + 1)wxx + 2b2n−1 + 2b2nx = 0,
(66)

. . .

1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =

n+1

∑
j=1

[uqjx2j−1 − qjx2j+1 − pjux2j−1 − (
qju)x2j−1

]− αn+1ux2n+3 − μ

⎡⎢⎣wb0 +

2n

∑
j=0

bjwxj

⎤⎥⎦,

wt = −αn+1wx2n+3 +

n+1

∑
j=1

[wqjx2j−1 − pjwx2j−1 − (
qjw)x2j−1

]
+

2n

∑
j=0

bjuxj − b0xx + ub0.

(67)

Comparing the differential operators obtained at j = n and j = n + 1, we see that only
two non-trivial systems are added, corresponding to ∂2n+2

∂x2n+2 , ∂2n+1

∂x2n+1 . We have a total of four
equations from which the functions are uniquely defined:

pn+1(x, t) = qn+1(x, t) = − αn+1
2 (2n + 3)u,

b2n(x, t) = − αn+1
2 (2n + 3)wx, b2n−1(x, t) = − αn+1

2 n(2n + 3)wxx.
(68)

The number of remaining differential operators from ∂2n

∂x2n and below coincides with
their number for j = n and corresponds to the number of unknown functions pm(x, t),
qm(x, t), bm(x, t) (by conjecture); hence, the overdetermination of the system does not arise.
As a result, the following theorem is proved.

Theorem 2. The system (55), (56) with operators of the form (52)–(54) generates a hierarchy of
the perturbed Korteweg–de Vries equation on functions u(x, t) and w(x, t) of the form (64), where
all functions pj(x, t), qj(x, t), bj(x, t), j = 1, 2, . . . , n, being coefficients of operators Ân, R̂n, are
defined uniquely from system (62), (63); and μ is an arbitrary parameter.

Analyzing the structure of obtained systems at higher derivatives (60)–(63), one can
notice that the first equations in pairs define the dependence of operator Ân coefficients
pm(x, t), qm(x, t) on function u(x, t) and its derivatives, and the second equations in pairs de-
fine operator R̂n coefficients bm(x, t) via function w(x, t) and its derivatives (68). Assuming
that there is no perturbation w(x, t) = 0, the operators (51) M̂ and B̂n are transformed into
operators L̂, and Ân (N̂ = 0, R̂n = 0), which are Lax pairs for the KdV hierarchy equations.
Consequently, all systems (64) will be transformed to higher KdV hierarchy equations.

In addition, from system (64) we can now obtain at once all the equations of the KdV
hierarchy expressed through the operator Ân coefficients:

ut =

n

∑
j=1

[uqjx2j−1 − qjx2j+1 − pjux2j−1 − (
qju)x2j−1

]− αnux2n+1 . (69)

Theorem 3. If the functions u(x, t) and w(x, t) satisfy the system (64), then the invariant trans-
formations exist for solutions of the eigenvalue equation

(
M̂ − λE

)
V = 0 with operator M̂ (45) of

the form

Ĥn =

(
Ân μR̂n
−R̂n Ân

)
−

(
1 0
0 1

)
∂

∂t
, n = 1, 2, 3, . . . (70)

where V =

(
v1(λ, x, t)
v2(λ, x, t)

)
is the vector-function, Âj, R̂j have the form (53), (54), λ, μ are the

arbitrary parameters.
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Proof of Theorem 3. Consider the action of operators M̂ and Ĥn on the vector-function

V =

(
v1(λ, x, t)
v2(λ, x, t)

)
:

(
L̂ − λ μN̂

N̂ −L̂ − λ

)[(
Â1 μR̂1
−R̂1 Â1

)
+ ∂

∂t

](
v1
v2

)

=

((
L̂Â1 − λÂ1 − μN̂R̂1

)
v1 + μ

(
L̂R̂1 − λR̂1 + N̂Â1

)
v2 +

(
L̂ − λ

)
v1t + μN̂v2t(

N̂Â1 + L̂R̂1 + λR̂1
)
v1 +

(
μN̂R̂1 − L̂Â1 − λÂ1

)
v2 −

(
L̂ + λ

)
v2t + N̂v1t

)
.

(71)

Since the functions v1, v2 are solutions of a homogeneous equation(
L̂ μN̂
N̂ −L̂

)(
v1
v2

)
− λ

(
1 0
0 1

)(
v1
v2

)
= 0,

the following equations take place

L̂v1 + μN̂v2 = λv1, N̂v1 − L̂v2 = λv2. (72)

Let us differentiate (72) by t, and determine the result of the operator M̂ − λE action
on the functions v1t(λ, x, t), v2t(λ, x, t):

v1xxt = utv1 + μwtv2 + uv1t + μwv2t − λv1t,

v2xxt = utv2 + uv2t + λv2t − wtv1 − wv1t,

or in operator form(
L̂ − λ μN̂

N̂ −L̂ − λ

)(
v1t
v2t

)
= −

(
ut μwt
wt −ut

)(
v1
v2

)
= −

(
L̂t μN̂t
N̂t −L̂t

)(
v1
v2

)
. (73)

Then, using (72), (73) in (71) we can get rid of the parameter λ and the derivatives
v1t(λ, x, t), v2t(λ, x, t).

The equation
(

M̂ − λE
)

ĤnV = 0 will take the form of a system

(̂LÂn − μN̂R̂n − L̂t)v1 − Ân
(

L̂v1 + μN̂v2
)
+ μ

(
L̂R̂n + N̂Ân − N̂t

)
v2 − μR̂n

(
N̂v1 − L̂v2

)
= 0,(

N̂Ân + L̂R̂n − N̂t
)
v1 + R̂n

(
L̂v1 + μN̂v2

)
+

(
μN̂R̂n − L̂Ân + L̂t

)
v2 − Ân

(
N̂v1 − L̂v2

)
= 0.

Let us group the terms with v1, v2:([
L̂, Ân

]− μN̂R̂n − L̂t − μR̂nN̂
)
v1 + μ

(
L̂R̂n + R̂n L̂ +

[
N̂, Ân

]− N̂t
)
v2 = 0,([

N̂, Ân
]
+ L̂R̂n − N̂t + R̂n L̂

)
v1 +

(
μN̂R̂n −

[
L̂, Ân

]
+ L̂t + μR̂nN̂

)
v2 = 0.

(74)

It is easy to see that in (74) the coefficients at v1, v2 are operators of structures (55), (56)
at δ = 1, which reduce to the system (64), which proves the theorem. �

3.3. Perturbation of the Second Korteweg–de Vries Hierarchy

Let us construct an explicit form of the system describing the perturbation of the
second KdV equation. Let us write the elements of operators B̂2, R̂2, and Â2 in the form
(53), (54), and the remaining elements (51), (52) retain the same form

R̂2 = b2(x, t)
∂2

∂x2 + b1(x, t)
∂

∂x
+ b0(x, t), (75)

Â2 = α2
∂5

∂x5 + p2
∂3

∂x3 +
∂3

∂x3 q2 + p1
∂

∂x
+

∂

∂x
q1, (76)
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where bi(x, t), i = 0, 1, 2, pj(x, t), qj(x, t), j = 1, 2 are unknown functions, the form of which
we will specify later, α2 is an arbitrary constant.

Let us define the form of the system (55), (56). Let us expand the differentiation
operators (55) and equate the coefficients at ∂4

∂x4 , ∂3

∂x3 , ∂2

∂x2 , ∂
∂x to zero; then, we obtain

the system:

∂4

∂x4 : 2q2x + 2p2x + 5α2ux = 0,
∂3

∂x3 : 10α2uxx + p2xx + 7q2xx = 0,
∂2

∂x2 : 9q2xxx + 10α2uxxx + 2p1x + 2q1x + 3p2ux + 3q2ux + μb2w(1 + δ) = 0,
∂

∂x : 5q2x4 + 3q1xx − 3uq2xx + 3(q2u)xx + p1xx + 3p2uxx + μ(δ + 1)b1w

+2μδb2wx + 5α2ux4 = 0,

1 : ut(x, t) = uq1x − q2x5 − q1xxx + uq2xxx − α2ux5 − p2uxxx − (q2u)xxx

−p1ux − (q1u)x − μb0w(1 + δ)− μδb2wxx − μδb1wx.

(77)

From the first four equations of the system (77) the following functions are defined
(the integration constants are assumed to be equal to zero):

q2 = p2 = −5
4

α2u, p1x =
5
8

α2uxxx +
15
4

α2uux − μ(1 + δ)

2
b2w − q1x, (78)

q1xx =
5

16
α2uxxxx +

15
16

α2u2
xx +

μ(1 + δ)

4
(b2w)x −

μ(1 + δ)

2
b1w − μδb2wx. (79)

Let us perform a similar procedure with the operator equation (56), resulting in the
following system:

∂4

∂x4 : 5α2wx + (1 + δ)b2 = 0,
∂3

∂x3 : 10α2wxx + (1 + δ)b1 + 2δb2x = 0,
∂2

∂x2 : 3wq2x + (1 + δ)(ub2 − b0)− 10α2wxxx − 3p2wx − 3(q2w)x − δb2xx − 2δb1x = 0,
∂

∂x : 3wq2xx − 5α2wx4 + 2b2ux + (1 + δ)b1u − 3p2wxx − 3(q2w)xx − δb1xx − 2δb0x = 0,

1 : wt = wq2xxx − α2wx5 − δb0xx + b2uxx + b1ux + b0u − p2wxxx + δub0 − (q2w)xxx

−p1wx − q1wx.

(80)

The values of the functions are uniquely defined:

b2(x, t) = −5
α2

δ + 1
wx, b1(x, t) = − 10α2

(δ + 1)2 wxx, (81)

b0(x, t) =
5α2

2(1 + δ)
uwx + 5α2

4δ − (δ + 1)(δ + 2)

(δ + 1)3 wxxx, (82)

5α2

(
2δ

δ2 + 3

(δ + 1)3 − 1

)
wx4 +

5α2

δ + 1
1
2
(δ − 1)(uxwx + uwxx) = 0. (83)

For (83) to be true identically, it is necessary to put the coefficients equal to zero:

2δ
δ2 + 3

(δ + 1)3 − 1 = 0, δ − 1 = 0.

It is possible at δ = 1.
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As a result, from the two systems (77), (80) only the last equations that form the
dynamical system remain. Let us substitute the found values of the functions by putting
α2 = −16, and we obtain the system:

ut = [uxxxx − 10uuxx − 5u2
x + 10u3 − 20μ

(
wxxw − w2u

)
]x,

wt = −4wx5 + 20uwxxx + 20wxxux + 10wxuxx + 10
(
2μw2 − u2)wx.

(84)

As a result of this reasoning, the following corollary is proven.

Corollary 8. The nonlinear system of Equation (84) has the operator representation (55), (56) with
operators of the form (52), where L̂ is the Sturm–Liouville operator, and the other operators have
the form

R̂2 = 40
(

wx
∂2

∂x2 + wxx
∂

∂x
+

1
2
[uwx − wxxx]

)
, N̂ = w(x, t), (85)

Â2 = −16
∂5

∂x5 + 20u
∂3

∂x3 + 20
∂3

∂x3 u − 5(uxx + 3u2 + 2μw2)
∂

∂x
− 5

∂

∂x
(uxx + 3u2 + 2μw2), (86)

where δ = 1, u(x, t), w(x, t) are arbitrary real functions, μ is an arbitrary parameter.

The system (84) is a perturbation of the second equation of the KdV hierarchy, since
when w = 0 and at replacement u(x, t) → −u(x, t) the system is reduced to one equation,
and this is the second equation of the KdV hierarchy:

ut = (uxxxx + 5u2
x + 10uuxx + 10u3)x.

In the particular case when μ = 1, and the functions u(x, t), w(x, t) represent, respec-
tively, the real and imaginary parts of some complex function q(x, t) = u(x, t)+ iw(x, t), the
system (84) describes the behavior of the real and imaginary parts of the second equation
of the KdV complexification hierarchy:

qt = 10
(

q2 + |q|2
)_

qx +
5
2

(_
q2 + 6|q|2 − 3q2

)
qx − 5qx(

_
q + 3q)xx − 10q

_
qxxx

− 5
4

(
2|q|2 − 3q2 + 3

_
q2

)
xxx

+ 1
2 (5

_
q − 3q)xxxxx

4. Conclusions

In this paper we use the Lax operator equation, where the scattering operator is
a Hermitian differential operator of the fourth order and the operator determining the
dynamics of the eigenfunctions is a skew-symmetric differential operator with an odd
higher order. We consider the possibility of constructing a hierarchy of the complex
extension of the Korteweg–de Vries equation and a hierarchy of its perturbation with a
special perturbation function. The first and second parts are based on the Lax method with
operators having a matrix structure.

It is proved that for the equation on the eigenvalues of the fourth-order scattering
operator, there exists a countable number of Ĥn operators that translate its solution into its
other solution. Moreover, Ĥn operators are considered as differential operators of order
2n + 1, which generate a hierarchy of cKdV and a hierarchy of pKdV.

All obtained equations describe nonlinear waves arising in various media with disper-
sion, and mainly these are problems of gas and hydrodynamics.

The obtained new nonlinear equations and systems possess a Lax pair, and hence one
can expect the following properties: an infinite number of conservation laws, Painlevé cou-
pling of the partial differential equation with the system of ordinary differential equations,
Hamiltonian structure, Hirota formalism for constructing n-soliton solutions, Bäcklund
transformations, etc.
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Abstract: The aim of the present paper is to study the asymptotic properties of the solutions of linear
fractional system with Riemann–Liouville-type derivatives and distributed delays. We prove under
natural assumptions (similar to those used in the case when the derivatives are first (integer) order) the
existence and uniqueness of the solutions in the initial problem for these systems with discontinuous
initial functions. As a consequence, we also prove the existence of a unique fundamental matrix for
the homogeneous system, which allows us to establish an integral representation of the solutions to
the initial problem for the corresponding inhomogeneous system. Then, we introduce for the studied
systems a concept for Hyers–Ulam in time stability and Hyers–Ulam–Rassias in time stability. As an
application of the obtained results, we propose a new approach (instead of the standard fixed point
approach) based on the obtained integral representation and establish sufficient conditions, which
guarantee Hyers–Ulam-type stability in time. Finally, it is proved that the Hyers–Ulam-type stability
in time leads to Lyapunov stability in time for the investigated homogeneous systems.

Keywords: Riemann–Liouville fractional derivative; distributed delay; fundamental matrix; stability

MSC: 34A08; 34A12; 34D05; 34D20

1. Introduction

Practically, it is established that many real-world phenomena in various fields of sci-
ence can be represented more accurately through mathematical models, including fractional
differential equations. For more detailed information on fractional calculus theory and
fractional differential equations, see the monographs of Kilbas et al. [1] and Podlubny [2].
It is well known that the existence of an integral representation (variation of constants
formula) of the solutions of linear fractional differential equations and/or systems (ordinary
or delayed) is a main tool in executing their qualitative analysis. In this aspect, the problem
of establishing such integral representations (for which the existence of a fundamental
matrix is needed) is an important task for stability analysis. It is no surprise that there exist
many papers devoted to this problem.

A good historical overview concerning the stability results for fractional differential
equations obtained till 2011 can be found in the excellent survey [3] and the references
therein. For more recent works, for fractional differential equations and systems without
delay, see [4,5]. Integral representation and the stability results in the autonomous case of
delayed fractional differential equations mainly with Caputo-type derivatives are given
in [6,7] and for the neutral case in [8–10]. For the nonautonomous case with variable
delay, we refer to [11–13] and for the neutral case, to [14,15]. The case with Riemann–
Liouville (RL)-type derivatives is studied significantly less often, but the works [16–20],

Axioms 2023, 12, 637. https://doi.org/10.3390/axioms12070637 https://www.mdpi.com/journal/axioms59
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and the references therein, give a good overview of the research in this area. To expand the
information concerning the scope of the studied objects, we refer to the new works [21–24]
devoted to the stability analysis of other important kinds of equations such as integro-
differential, fuzzy, neural networks, etc.

It must be noted that the difference between the fractional Caputo derivatives and the
fractional Riemann–Liouville (RL) derivatives are not only technical but also fundamental,
since the Caputo fractional derivative of a constant is equal to zero, while the Riemann–
Liouville fractional derivative of a constant is different from zero when the constant is
not equal to zero. Thus, the main theorem of integral calculus is not true for the case of
fractional Riemann–Liouville derivatives. This fact leads to large complications in many
technical and fundamental aspects.

Our work is primarily motivated by the works [17,20]. In the present work, we
consider a linear fractional system with distributed delay and derivatives in the RL sense.
For these systems, we study two important problems. The first of them is to clear the
problem with existence and the uniqueness of the solutions of the initial problem (IP) in
the case of discontinuous initial functions. As far as we know (except in the autonomous
case), there are no results concerning the initial problem for fractional differential equations
with derivatives in the RL sense and distributed delay with discontinuous initial function.
This result allows as a consequence to establish a variation of the constants formula for
this initial problem. The second one is to introduce a concept for Hyers–Ulam (HU) in
time stability and Hyers–Ulam–Rassias (HUR) in time stability (based on the concept of
time stability in the Lyapunov sense introduced in the remarkable work [20]) for these
systems and to establish some sufficient conditions which guaranty their Hyers–Ulam in
time stability.

As far we know this paper is the first to study Hyers–Ulam-type stability and Hyers–
Ulam–Rassias-type stability for linear fractional systems with distributed delay and deriva-
tives in the Riemann–Liouville sense.

The paper is organized as follows: In Section 2, we recall some needed definitions and
properties concerning the RL and Caputo fractional derivatives and present the problem
statement. Section 3 is devoted to the existence and the uniqueness of the solutions of the
initial (Cauchy) problem for the linear fractional differential system with distributed delays
and RL-type derivatives in the case when the initial function is discontinuous. In Section 4,
as a consequence, we prove the existence and uniqueness of a fundamental matrix, which
allows us to establish an integral representation of the solution to the initial problem for
the corresponding inhomogeneous system. In Section 5, we introduce a concept for HU
in time stability and HUR in time stability for the investigated systems. In addition, as an
application of the obtained in the previous section’s results, we introduce a new approach
via the obtained integral representation (replacing the standard fixed point approach) to
establish sufficient conditions for HU in the time stability of these systems. Finally, for the
homogeneous systems it is proved that the HU in time stability implies time stability in the
Lyapunov sense. As usual, in the last Section 6, we provide some conclusions concerning
the obtained results, and some open problems are proposed.

2. Preliminaries and Problem Statement

As is usual to avoid misunderstandings, below we provide the definitions of RL (RL)
and Caputo fractional derivatives. For more details and other properties, we refer to [1].

Let a ∈ R, α ∈ (0, 1) be arbitrary and g ∈ Lloc
1 (R,R), where Lloc

1 (R,R) is the lin-
ear space of all locally Lebesgue integrable functions g : R → R and let BLloc

1 (R,R) ⊂
Lloc

1 (R,R) be the subspace of all locally bounded functions.
The left-sided fractional integral operators of order α ∈ (0, 1) for arbitrary g ∈

Lloc
1 (R,R) is defined by (Iα

a+g)(t) = 1
Γ(α)

t∫
a
(t − s)α−1g(s)ds, and the corresponding left-

side RL fractional derivative by (RLDα
a+g)(t) = d

dt (I1−α
a+ g)(t), (D0

a+g)(t) = g(t) for every
t > a.

60



Axioms 2023, 12, 637

By CDα
a+g(t) = (RLDα

a+[g(s)− g(a)])(t), we define the Caputo fractional derivative
of the same order (see [1]).

Consider the fractional linear system with RL-type derivatives and distributed delays
in the following general form:

RLDα
a+X(t) =

0∫
−h

[dθU(t, θ) ]X(t + θ) + F(t), (1)

where J = [a, ∞), J0 = (a, ∞), a ∈ R, k ∈ 〈n〉 = {1, 2, ..., n}, 〈m〉0 = 〈m〉 ∪ {0}, h > 0,
α ∈ (0, 1), X(t) = col(x1(t), ..., xn(t)) : J0 → Rn, F(t) = col( f1(t), ..., fn(t)) : J → Rn

(the notation col mean column), U(t, θ) = ∑
i∈〈m〉0

Ui(t, θ), Ui : J × R → Rn×n, Ui(t, θ) =

{ui
kj(t, θ)}n

k,j=1, RLDα
a+X(t) = col(RLDα

a+x1(t), . . . ..., RLDα
a+xn(t)), RLDα

a+ denotes the left-
side RL fractional derivative and α ∈ (0, 1). A more detailed description of the homogenous
case of system (1) (i.e., fk(t) ≡ 0, k ∈ 〈n〉) has the form

RLDα
a+xk(t) =

m

∑
i∈〈m〉0

(
n

∑
j=1

0∫
−σ

xj(t + θ)dθui
kj(t, θ) ), k ∈ 〈n〉, n ∈ N. (2)

The following standard notations will be used too:R0
+ = (0, ∞), J−h = [a− h, ∞), J−h

b =
[a − h, a + b], b, h ∈ R0

+, Jb = [a, a + b], J0
b = (a, a + b], 0 ∈ Rn is the zero vector,

and by I, Θ ∈ Rn×n are denoted the identity and the zero matrices. For Y : Ja × R →
Rn×n, Y(t, θ) = {yi

j(t, θ)}n
i,j=1, |Y(t, θ)| = n

∑
k,j=1

|yj
k(t, θ)|, BVloc(J × R,Rn×n), we denote

the linear space of matrix valued functions Y(t, θ) with bounded variation in θ on every
compact subinterval K ⊂ R, and VarKY(t, ·) = {VarKyj

k(t, ·)}n
k,j=1.

With PC = PC([−h, 0],Rn)(PC∗ = PC ∩ BV([−h, 0],Rn)), we denote the Banach
spaces of all vector-valued piecewise continuous (piecewise continuous with bounded vari-
ation) functions, Φ = (φ1, ..., φn)

T : [−h, 0] → Rn with norm ||Φ|| = ∑
k∈〈n〉

sup
s∈[−h,0]

|φk(s)| <

∞ and for each Φ ∈ PC by SΦ, we denote the set of all jump points. In addition, for Φ ∈ PC,
we assume that they are right continuous at t ∈ SΦ.

For arbitrary Φ ∈ PC, we introduce the following initial condition for the system (1):

X(t) = Φ(t − a)(xk(t) = φk(t − a), k ∈ 〈n〉), t ∈ [a − h, a],RL Dα−1
a X(a + 0) = Φ(0), h ∈ R+. (3)

For other types of initial conditions, see [25].

Definition 1 ([26] p. 12, [27] p. 167, and [28] p. 100). We say that for the kernels Ui :
R+ ×R → Rn×n, the conditions (S) are fulfilled if for i ∈ 〈m〉0, the following conditions hold:

(S1) The function (t, θ) → Ui(t, θ) is measurable in (t, θ) ∈ J × R and normalized so that
Ui(t, θ) = 0 for θ ≥ 0 and Ui(t, θ) = Ui(t,−h) for θ ≤ −h, t ∈ J.

(S2) For any t ∈ J, the kernel Ui(t, θ) is continuous from the left in θ on (−σ, 0), Ui(t, ·) ∈
BVloc(J ×R,Rn×n) in θ and

∣∣∣Var[−h,0]Ui(t, ·)
∣∣∣ ∈ BLloc

1 (Ja,R+).

(S3) The Lebesgue decomposition of the kernel Ui(t, θ) for t ∈ J and θ ∈ [−h, 0] for each i ∈ 〈m〉0

have the form: Ui(t, θ) = Ui
j(t, θ) + Ui

ac(t, θ) + Ui
s(t, θ), where the jump part Ui

j(t, θ) =

{ai
kj(t)H(θ + σi

kj(t))}n
k,j=1, Ai(t) = {ai

kj(t)}n
k,j=1 ∈ BLloc

1 (J,Rn), H(t) is the Heaviside

function and the delays σi
kj(t) ∈ C(Ja, [0, h]), σ0

kj(t) ≡ 0, k, j ∈ 〈n〉, t ∈ Ja. For every

fixed t ∈ J, the functions Ui
ac(t, ·) ∈ AC([−h, 0],Rn×n) and Ui

s(t, ·) ∈ C([−h, 0],Rn×n)
in θ ∈ R.
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(S4) The sets Si
Φ
= {t ∈ J| t − σi(t) ∈ S

Φ
} do not have limit points and for any t, t∗ ∈ J, the

relation
0∫

−σ
|Ui(t, θ)− Ui(t∗, θ)|dθ → 0 hold.

Definition 2. The vector function col X(t) = (x1(t), . . . , xn(t)) is a solution of the IP (1), (3) in
J0
b (J0), if X|J0

b
∈ C(J0

b ,Rn)(X|J0 ∈ C(J0,Rn)) satisfies the system (1) for all t ∈ J0
b (J0) and the

initial condition (3).

Consider the following auxiliary system for k ∈ 〈n〉

xk(t) =
φk(0)(t − a)α−1

Γ(α)
+

1
Γ(α)

[

t∫
a

(t − η)α−1[ ∑
i∈〈m〉0

( ∑
j∈〈n〉

0∫
−h

xj(η + θ)dθui
kj(η, θ))] dη

+

t∫
a

(t − η)α−1 fk(η)dη].

(4)

Definition 3. The vector function col X(t) = (x1(t), ..., xn(t)) is a solution of the IP (4), (3) in
J0
b (J0) if X|J0

b
∈ C(J0

b ,Rn)(X|J0 ∈ C(J0,Rn)) satisfies the system (4) for all t ∈ J0
b (J0) and the

initial condition (3).

Let G(t) = (g1(t), . . . , gn(t)) : J0
b → Rn, b ∈ R+ and γ ∈ [0, 1] be arbitrary.

Definition 4. The function G(t) = (g1(t), . . . , gn(t)) ∈ C(J0
b ,Rn), b ∈ R+, γ ∈ [0, 1] will be

called γ−continuous at a if the function Iγ(t− a)G(t) = col((t − a)γg1(t), . . . , (t − a)γgn(t)) ∈
C(Jb,Rn).

With C
γ
b , we will denote the real linear space of all γ-continuous at a functions G(t) ∈

C(J0
b ,Rn) and with Cγ the linear space of all functions G(t) ∈ C(J0,Rn), which are γ-

continuous at a.
In our exposition below we will need the following auxiliary results:

Theorem 1 ([29] Fixpunktsatz). Let Ω be a complete metric space endowed with metric dΩ, the
operator T : Ω → Ω and let the following conditions hold:

1. There exists a sequence {εq ≥ 0}q∈N, with
∞
∑

q=1
εq < ∞.

2. For each q ∈ N and for arbitrary x, y ∈ Ω, the inequality dΩ(Tqx, Tqy) ≤ εqdΩ(x, y) hold.

Then, the operator T has a uniquely fixed point x∗ ∈ Ω, and for every x0 ∈ Ω, we have that
lim
q→∞

Tqx0 = x∗.

Lemma 1 (Lemma 1 [7]). Let the following conditions be fulfilled.

1. The conditions (S) hold.
2. The functions F ∈ BLloc

1 (J,Rn).
Then, every solution X(t) of IP (1), (3) is a solution of the IP (4), (3) and vice versa.

Lemma 2 (Lemma 3.2 [1]). Let α ∈ (0, 1), and let y(t) be a Lebesgue measurable function on Jb.

(a) If there exists a.e. (almost everywhere) the limit lim
t→a+0

[(t − a)1−αy(t)] = c ∈ R, then there

also exists a.e. the limit (Dα−1
a y)(a + 0) = (I1−α

a y)(a + 0) = lim
t→a+0

(I1−α
a y)(t) = cΓ(α).

(b) If there exist a.e. the limit lim
t→a+0

[(t − a)1−αy(t)] and lim
t→a+0

(I1−α
a y)(t) = c∗, then we have

that lim
t→a+0

[(t − a)1−αy(t)] = c∗
Γ(α) .
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Let Φ(t) ∈ PC∗ be an arbitrary function. Define the set

M = {Φ(t) ∈ PC∗| Φ(0) = Φ(0)}

and introduce for arbitrary Φ1(t), Φ2(t) ∈ M the following metric functions:

dVar(Φ1, Φ2) =
∣∣∣Vart∈[−h,0](Φ

1(t)− Φ2(t))
∣∣∣ and dsup(Φ1, Φ2) = sup

t∈[−h,0]

∣∣∣Φ1(t)− Φ2(t)
∣∣∣.

Lemma 3 (Lemma 1 [30]). The set M is a complete metric space concerning both metrics and
they are equivalent, i.e., there exist constant C ∈ R0

+ such that dVar(Φ1, Φ2) ≤ Cdsup(Φ1, Φ2)
for arbitrary Φ1(t), Φ2(t) ∈ M (the inequality dsup(Φ1, Φ2) ≤ dVar(Φ1, Φ2) obviously holds).

3. The Initial Problem with Discontinuous Initial Function

Let Φ ∈ PC be a fixed arbitrary initial function and introduce the set

M1−α ={G : [a − h, ∞) → R
n| G|J ∈ C1−α,

G(t) = Φ(t), t ∈ [a − h, a], RLDα−1
a G(a + 0) = Φ(0)}.

For every b ∈ R+, define the sets

M1−α
b = {Gb = (gb

1(t), ..., gb
n(t))|Gb = G|[a−h,a+b], G ∈ M1−α}

and the metric function dΦ
b : M1−α

b × M1−α
b → R+ with

dΦ
b (G

b, Gb
) =

n

∑
k=1

sup
t∈Jb

(t − a)1−α|gb
k(t)− gb

k(t)|

for each Gb, Gb ∈ MΦ
b . It is not so hard to check that the set MΦ

b endowed with the metric

dΦ
b is a complete metric space. Note that for arbitrary Gb, Gb ∈ MΦ

b , according Lemma 2,
we have that

lim
t→a+0

(t − a)1−αGb(t) = Φ(0) = lim
t→a+0

(t − a)1−αGb
(t) and Gb(a) = Gb

(a) = Φ(0).

For every Gb ∈ M1−α
b , we define for t ∈ J0 the operator � = (�1, ...,�n) as follows:

�kgb
k(t) =

φk(0)(t − a)α−1

Γ(α)
+

1
Γ(α)

t∫
a

(t − η)α−1 fk(η)dη]

+
1

Γ(α)

t∫
a

(t − η)α−1

⎛⎝ ∑
i∈〈m〉0

⎛⎝ ∑
j∈〈n〉

0∫
−h

gb
j (η + θ)dθui

kj(η, θ))] dη

⎞⎠⎞⎠ (5)

�kgb
k(t) = φk(t), t ∈ [a − h, a], k ∈ 〈n〉. (6)

Theorem 2. Let the following conditions be fulfilled.

1. The conditions (S) hold.
2. The kernels Ui

s(t, θ) ≡ Θ in J ×R, i ∈ 〈m〉0, (i.e., in the Lebesgue decomposition of Ui(t, θ)

did not exist a singular part) and ∑
i∈〈m〉0

sup
θ∈[−h,0]

∣∣∣ ∂Ui

∂θ (·, θ)
∣∣∣ ∈ BLloc

1 (J,Rn×n).

3. The functions F ∈ BLloc
1 (J,Rn).

Then, the IP (1), (3) has a unique solution X(t) ∈ M1−α
b for arbitrary b ∈ R.
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Proof. According to Lemma 1, we can instead (1), (3) study the IP (4), (3).
Let Φ ∈ PC be an arbitrary fixed initial function and b ∈ R+ be an arbitrary fixed

number. First, we will prove that �(M1−α
b ) ⊆ M1−α

b . From condition 2 of Theorem 2, it

follows that the function t →
t∫

a
(t − η)α−1 fk(η)dη is a continuous function in Jb for each

k ∈ 〈n〉.
Let Gb ∈ M1−α

b , k, j ∈ 〈n〉, i ∈ 〈m〉0 be arbitrary and consider the function

g̃b(t) :=
0∫

−h
gb

j (t + θ)dθui
kj(t, θ). Since Gb ∈ M1−α

b , then from the conditions (S), it follows

that g̃b(t) ∈ Lloc
1 (Jb,R). From (5), it follows that �kgk(t) is a continuous function in

t ∈ J0
b , k ∈ 〈n〉. Moreover, the second and third addend in the right side of (5) tends to zero

when t → a + 0 and then taking into account this fact, from (5), it follows that

lim
t→a+0

((t − a)1−α�gk)(t) = lim
t→a+0

(
(t − a)1−α φk(0)(t − a)α−1

Γ(α)

)

+ lim
t→a+0

⎛⎝ 1
Γ(α)

(t − a)1−α[

t∫
a

(t − η)α−1

⎛⎝ ∑
i∈〈m〉0

( ∑
j∈〈n〉

0∫
−h

gb
j (η + θ)dθui

kj(η, θ))dη)

⎞⎠⎞⎠
+ lim

t→a+0

⎛⎝ 1
Γ(α)

(t − a)1−α

t∫
a

(t − η)α−1 fk(η)dη]

⎞⎠ =
φk(0)
Γ(α)

(7)

and hence �Gb(t) ∈ C1−α
b . Since from (7) it follows that lim

t→a+0
((t − a)1−α�gk)(t) =

φk(0)
Γ(α) ,

then applying Lemma 2, we obtain that (Dα−1
a �gk)(a + 0) = lim

t→a+0
(I1−α

a �gk)(t) = φk(0)

and thus �Gb(t) ∈ M1−α
b and satisfies (6). Therefore, the operator � maps M1−α

b into
M1−α

b .
The rest of the proof is based on some ideas introduced in [15]. In our exposition

below, we need the values of the integral

�q(t) =
t∫

a

(t − η)α−1(η − a)qαdη

for each q ∈ N and t ∈ J. Via the substitution η − a = z(t − a) and using the relation
between the beta and gamma functions we obtain

�q(t) =
t∫

a

(t − η)α−1(η − a)qαdη = (t − a)qα

1∫
0

(t − η)α−1
(

η − a
t − a

)qα

dη

= (t − a)qα+1+α−1
1∫

0

(1 − z)α−1z2α+1−1dz = (t − a)(1+q)α Γ(α)Γ(1 + qα)

Γ(1 + (1 + q)α)

(8)
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Let us denote Ub = max

⎛⎜⎜⎝ ∑
i∈〈m〉0

sup
t∈[a,a+b]

∣∣∣Varθ∈[−h,0]Ui(t, ·)
∣∣∣, ∑

i∈〈m〉0

sup
t∈[a,a+b],
θ∈[−h,0]

∣∣∣ ∂Ui

∂θ (t, θ)
∣∣∣
⎞⎟⎟⎠,

and then for arbitrary Gb(t), Gb
(t) ∈ M1−α

b , k ∈ 〈n〉 and t ∈ J0
b from (5) and (8) we obtain

|�kgb
k(t)−�kgb

k(t)|

≤ 1
Γ(α)

t∫
a

(t − η)α−1 ∑
i∈〈m〉0

⎛⎝ ∑
j∈〈n〉

∣∣∣∣∣∣
0∫

−h

(gb
j (η + θ)− gb

j (η + θ))dθui
kj(η, θ))

∣∣∣∣∣∣
⎞⎠dη

≤ 1
Γ(α)

t∫
a

(t − η)α−1 ∑
i∈〈m〉0

( ∑
j∈〈n〉

|
0∫

a−η

|(η + θ − a)1−α(gb
j (η + θ)

− gb
j (η + θ))||

∂ui
kj

∂θ
(t, θ)

∣∣∣(η + θ − a)α−1dθ)
∣∣∣dη

≤ Ub
αΓ(α) ∑

j∈〈n〉

(
sup
t∈Jb

(t − a)1−α |gb
j (t)− gb

j (t)|
)∣∣∣∣∣∣

t∫
a

(t − η)α−1(

0∫
a−η

dθ(η + θ − a)α)dη

∣∣∣∣∣∣
≤ Ub

Γ(1 + α)
dΦ

b (G
b, Gb

)

∣∣∣∣∣∣
t∫

a

(t − η)α−1(η − a)αdη

∣∣∣∣∣∣
≤ Ub

Γ(1 + α)
dΦ

b (G
b, Gb

)(t − a)2α Γ(α)Γ(1 + α)

Γ(1 + 2α)
= (t − a)2α Γ(α)Ub

Γ(1 + 2α)
dΦ

b (G
b, Gb

)

(9)

Note that for η + θ ≤ a we have that gb
j (η + θ)− gb

j (η + θ) = 0 for j ∈ 〈n〉.
We will prove that for each t ∈ J0

b and k ∈ 〈n〉 the inequalities

∣∣∣�q
kgb

k(t)−�q
kgb

k(t)(t)
∣∣∣ ≤ (t − a)(1+q)αΓ(α)Uq

b
Γ(1 + (1 + q)α)

dΦ
b (G

b, Gb
) (10)

hold for any q ∈ N. From (9), it follows that the hypothesis (10) holds for q = 1, t ∈ J0
b , and

suppose that for each t ∈ J0
b and k ∈ 〈n〉, the inequality (10) holds for some q ≥ 1. Then

for arbitrary Gb(t), Gb
(t) ∈ M1−α

b , k ∈ 〈n〉 and t ∈ J0
b from (5), (8) and (10) for q + 1, we

obtain that

|�q+1
k gb

k(t)−�q+1
k gb

k(t)| = |�(�q
kgb

k)(t)−�(�q
kgb

k)(t)|

≤ 1
Γ(α)

t∫
a

(t − η)α−1 ∑
i∈〈m〉0

⎛⎝ ∑
j∈〈n〉

∣∣∣∣∣∣
0∫

−h

(�j

(
�q

j gb
j

)
(η + θ)−�j

(
�q

j gb
j

)
(η + θ))dθui

kj(η, θ)

∣∣∣∣∣∣
⎞⎠dη

≤ 1
Γ(α)

t∫
a

(t − η)α−1 ∑
i∈〈m〉0

⎛⎝ ∑
j∈〈n〉

∣∣∣∣∣∣
0∫

a−η

∣∣∣�q
j gb

j (η + θ)−�q
j gb

j (η + θ))
∣∣∣∣∣∣∣∣∂ui

kj(η, θ)

∂θ

∣∣∣∣∣dθ

∣∣∣∣∣∣
⎞⎠dη

≤ UbUq
b Γ(α)

Γ(α)Γ(1 + qα)
dΦ

b (G
b, Gb

)

t∫
a

(t − η)α−1

⎛⎝ 0∫
a−η

(η + θ − a)qαdθ

⎞⎠dη

≤ U1+q
b

(1 + (1 + q)α)Γ(α)Γ(1 + (1 + q)α)
dΦ

b (G
b, Gb

)

t∫
a

(t − η)α−1(η − a)(1+q)αdη

≤ U1+q
b (t − a)(2+q)α

Γ(2 + (1 + q)α)
dΦ

b (G
b, Gb

)
Γ(α)Γ(2 + (1 + q)α)

Γ(1 + (2 + q)α)
=

Ub
1+qΓ(α)(t − a)(2+q)α

Γ(1 + (2 + q)α)
.

(11)
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Thus, (11) implies that hypothesis (10) holds for each q ∈ N, t ∈ Jb, and hence, from
(10), it follows that for any q ∈ N the estimation

dΦ
b (�qGb,�qGb

) ≤ nΓ(α)(b − a)(1+q)αUq
b

Γ(1 + α(q + 1))
dΦ

b (G, G), (12)

holds.
Then, consider the Mittag–Leffler function Eα,1(z) =

∞
∑

q=1

zq

Γ(1+αq) ; using (12), we define

the sequence {εq}q∈N appearing in Theorem 1 for each q ∈ N as follows:

εq+1 =

(
nΓ(α)

Ub

)
((b − a)αUb)

q+1

Γ(1 + α(q + 1))
(13)

It is simple to see that the series
∞
∑

q=1

((b−a)αUb)
q+1

Γ(1+α(q+1)) is the value of the considered Mittag–

Leffler function calculated at the point z = (b − a)αUb, and hence, it is convergent. Thus,

for the series
∞
∑

q=1
εq defined with (13), we have that

∞
∑

q=1
εq =

(
nΓ(α)

Ub

)( ∞
∑

q=1

((b−a)αUb)
q+1

Γ(1+α(q+1))

)
<

∞.
Therefore, from Theorem 1, it follows that the IP (4), (3), and according to Lemma 1,

the IP (1), (3), has a unique solution X(t) ∈ M1−α
b for arbitrary b ∈ R+.

Corollary 1. Let the conditions of Theorem 2 hold.
Then, the IP (1), (3) has a unique solution X(t) ∈ M1−α.

Proof. Denote for each q ∈ N the unique solution of the IP (1), (3) by Xq(t) ∈ M1−α
q with

the interval of existence J0
q existing according to Theorem 2. From the uniqueness, it follows

that the solution X(q+1(t) is a continuous prolongation of the solution Xq(t). Then, we
define for arbitrary t ∈ J0 global solution X(t) as X(t)|t∈J0

q+1
= Xq+1(t), where q = [t] and

hence X(t) ∈ M1−α is the unique solution of IP (1), (3), with the interval of existence J0.

4. Fundamental Matrix and Integral Representation

Consider for every arbitrary fixed number s ∈ J the following matrix system

RLDα
a+W(t, s) =

0∫
−h

[dθU(t, θ) ]W(t + θ, s), t > s (14)

and the initial condition:

W(t, s) = Θ, t ∈ [s − h, s) ; W(t, s) = I, t = s (15)

For every arbitrary fixed number s ∈ (−∞, a], define

Φ(t, s) =

⎧⎨⎩
I, a − h ≤ s ≤ t ≤ a
Θ, t < s
Θ, s < a − h

and with Φj(t, s), denote the j-th column of the Φ(t, s).
Introduce the following initial condition:

W(t, s) = Φ(t, s), where s ∈ (−∞, a] is an arbitrary fixed number. (16)
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Definition 5. For some fixed s ∈ J, the matrix valued function t → C(t, s) = {ckj(t, s)}n
k,j=1 is

called a solution of the IP (14), (15) if C(·, s) : J0
s = (s, ∞) → Rn×n is continuous for t ∈ J0

s and
satisfies the matrix equation (14) in J0

s , as well as the initial condition (15). The matrix C(t, s) will
be called the fundamental (or Cauchy) matrix for the system (2).

Remark 1. Since C(a, s) = Θ, according the condition (15) for all s ∈ J0, then we have that
RLDα

a+C(t, s) = CDα
a+C(t, s) (i.e., both derivatives coincide when s ∈ J0). Then, Theorem 6

in [31] implies that for any j ∈ 〈n〉, Cj(t, s) = col(c1j(t, s), ..., cnj(t, s)) is the unique solution of
IP (2), (3) with initial function Φ(0) = I j, Φ(t − a) = 0, t ∈ [a − h, a), where I j denotes the
j-th column of the identity matrix I ∈ Rn×n and hence the IP (14), (15) has a unique solution
C(t, s) = (C1(t, s), ..., Cn(t, s)). In the case when s = a for arbitrary j ∈ 〈n〉, according to
Corollary 1, the IP (2), (3) has a unique solution Cj(t, s) = col(c1j(t, s), ..., cnj(t, s)) ∈ M1−α with
initial function Φj(t, a) ∈ PC∗; then C(t, s) = (C1(t, s), ..., Cn(t, s)), is obviously the unique
solution of IP (14), (15) in this case.

Let s ∈ [a − h, a] be an arbitrary fixed number and consider the matrix IP (14), (16).

Definition 6. The matrix-valued function t → Q(t, s) = {qkj(t, s)}n
k,j=1 : R× (−∞, a] →

Rn×n is called a solution of the IP (14), (16) for any fixed s ∈ [a − h, a], if Q(·, s) ∈ M1−α and
satisfies the matrix equation (14) for t ∈ J0, as well as the initial condition (16).

Since Φj(t, s) ∈ PC∗ for any fixed s ∈ (−∞, a] and j ∈ 〈n〉 then in virtue of the IP (4),
(3), it has a unique solution Qj(t, s) = col(q1j(t, s), ..., qnj(t, s)) ∈ M1−α with Φj

a(t, s) as the
initial function. Since j ∈ 〈n〉 is arbitrary, then the matrix Q(t, s) = (Q1(t, s), ..., Qn(t, s)) is
the unique solution of the IP (14), (16) with (Φ1(t, s), ..., Φn(t, s)) as the initial matrix func-
tion.

Note that C(t, a) = Q(t, a) since the Equations (14) and (16) are the same and the
initial functions of both IP coincide with s = a.

Define the vector function

X0
F(t)(t) =

t∫
a

C(t, s)RLD1−αF(s)ds (17)

and for shortness denote Z(t, s) = C(t, s)R(s), R(s)=RLD1−αF(s).
As in the Caputo case (see [13]), we will prove that X0

F(t) is the unique solution of the
IP (1), (3) with initial function Φ(t − a) ≡ 0, t ∈ [−h, 0].

Theorem 3. Let the conditions of Theorem 2 be fulfilled and F(a) = 0.
Then, the function X0

F(t) defined with the equality (17) is the unique solution of the IP (1), (3)
with initial condition Φ(t − a) ≡ 0, t − a ∈ [−h, 0].

Proof. Let us denote with Z∗(t, s) = 1
Γ(1−α)

t∫
a
(t − η)−αZ(η, s)dη. Then, since C(t, s) = 0

for t < s, via the Fubini–Tonelli theorem and (Formula (2.211) [2]), we obtain that
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RLDα
a+X0

F(t) =

⎛⎝RLDα
a+

t∫
a

Z(t, s)ds

⎞⎠(t) =
1

Γ(1 − α)

d
dt

t∫
a

(t − η)−α(

η∫
a

Z(η, s))ds)dη

=
1

Γ(1 − α)

d
dt

t∫
a

(

t∫
s

(t − η)−αZ(η, s)dη)ds =
d
dt

t∫
a

(
1

Γ(1 − α)

t∫
a

(t − η)−αZ(η, s)dη)ds

=
d
dt

t∫
a

Z∗(t, s)ds =
t∫

a

∂

∂t
Z∗(t, s)ds + lim

s→t−0
Z∗(t, s) =

t∫
a

RLDα
a+Z(t, s)ds

+ lim
s→t−0

Dα−1
a+ Z(t, s) =

t∫
a

R(s)RLDα
a+C(t, s)ds + lim

s→t−0
Dα−1

a+ Z(t, s).

(18)

Taking into account that C(t, s) is the unique solution of IP (14), (15) and C(a, s) = 0
when a < s for the first addend on the right side of (18), we obtain

t∫
a

R(s)RLDα
a+C(t, s)ds =

t∫
a

R(s)
0∫

−h

[dθU(t, θ) ]C(t + θ, s)ds

=

0∫
−h

[dθU(t, θ) ](

t∫
a

C(t + θ, s)R(s)ds =
0∫

−h

[dθU(t, θ) ]X0
F(t+θ).

(19)

For the second addend in the right side of (19), taking into account that F(a) = 0 and
using (Lemma 3.2 [1]), we obtain that

lim
s→t−0

Dα−1
a+ Z(t, s) = lim

s→t−0
I1−α
a+ Z(t, s) =

1
Γ(1 − α)

t∫
a+

(t − η)−α lim
s→η−0

Z(η, s)dη

=
1

Γ(1 − α)

t∫
a+

(t − η)−αC(η, η)R(η)dη =
1

Γ(1 − α)

t∫
a+

(t − η)−αD1−α
a+ F(η)dη

= Dα−1
a+ RLD1−α

a+ F(t) = F(t).

(20)

Then, from (18)–(20), it follows that X0
F(t) defined with the equality (17) is the unique

solution of the IP (1), (3) with initial condition Φ(t − a) ≡ 0, t − a ∈ [−h, 0].

Let s ∈ [a − h, a] be an arbitrary number, Q(t, s) be the corresponding unique solution
of IP (14), (16) similar to the case of Caputo derivatives (see [15]), we introduce the vector
function

XΦ
0 (t) =

a∫
a−h

Q(t, s)dsΦ(s − a) (21)

for all Φ ∈ PC∗, where Φ(s − a) ≡ Φ(s − a) for s ∈ (a − h, a] and Φ(−h) = 0.

Theorem 4. Let the following conditions be fulfilled.

1. The conditions of Theorem 2 hold.
2. The function F(t) ≡ 0 for t ∈ J.

Then, for each initial function Φ ∈ PC∗ and t ∈ J0, the vector function XΦ
0 (t) defined by

equality (21) is a unique solution of the IP (2), (3).
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Proof. Since Q(t, s) is a continuous function for t ∈ J0, Φ ∈ PC∗ and hence according to
(Lemma 1 [26]) XΦ

0 (t) defined via (21) is continuous in the same interval too. Then, similar
as in (18), via the Fubini–Tonelli theorem, we obtain that

RLDα
a+XΦ

0 (t) =

⎛⎝RLDα
a+

a∫
a−h

Q(t, s)dsΦ(s − a)

⎞⎠(t)

=
1

Γ(1 − α)

d
dt

t∫
a

(t − η)−α(

a∫
a−h

Q(η, s)dsΦ(s − a))dη

=

a∫
a−h

⎛⎝ 1
Γ(1 − α)

d
dt

t∫
s

(t − η)−αQ(η, s)dη)

⎞⎠dsΦ(s − a)

=

a∫
a−h

RLDα
a+Q(t, s)dsΦ(s − a)

(22)

For arbitrary fixed t ∈ J0, denote by mθ and ms the Lebesgue–Stieltjes measures
corresponding to U(t, θ) and Φ(s). Then, for the rectangle ρ = [−h, 0]× [a − h, a] and the
product measure mθ × ms, the equality mθ × ms(ρ) = mθ(ρ)ms(ρ) holds. Thus,∣∣∣∣∣∣

∫∫
ρ

Q(t + θ, s)mθ × ms(ρ)

∣∣∣∣∣∣ < ∞

and for each fixed t ∈ J0, (θ, s) ∈ ρ the matrix function Q(t + θ, s) ∈ Lloc
1 (ρ,R) is locally

bounded. Then, in virtue of (Proposition 5.4 [32]), we can correctly apply the Fubini–Tonelli
theorem and for the right side of (2) we obtain

0∫
−h

[dθUi(t, θ) ]XΦ(t + θ) =

0∫
−h

[dθUi(t, θ) ]

⎛⎝ a∫
a−h

Q(t + θ, s)dsΦ(s − a)

⎞⎠
=

a∫
a−h

⎛⎝ 0∫
−h

[dθUi(t, θ)]Q(t + θ, s))

⎞⎠ dsΦ(s − a),

(23)

and hence from (22), (23) it follows that XΦ
0 (t) satisfies (2) for t ∈ J0.

Let s∗ ∈ [a− h, a] be an arbitrary fixed number. Then, for t = s∗ from (22), we have that

XΦ
0 (s∗) =

a∫
a−h

Q(t, s)dsΦ(s − a) =
a∫

s∗
Q(t, s)dsΦ(s − a) +

s∗∫
a−h

Q(t, s)dsΦ(s − a)

= −
a−h∫
s∗

IdsΦ(s − a) = −Φ(−h) + Φ(s∗ − a) = Φ(s∗ − a),

i.e., XΦ
0 (t) satisfies the initial condition (3), which completes the proof.

Corollary 2. Let the following conditions hold.

1. The conditions of Theorem 4 hold.
2. The Lebesgue decomposition of the function Φ ∈ PC∗ does not possess a singular term.
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Then, the vector function XΦ
0 (t) defined by equality (21) has the representation in the form

XΦ
0 (t) = (Q(t, a)(Φ(0+)− Φ(0)) + ∑

i
Q(t, si)(Φ(si − a + 0)− Φ(si − a − 0))

+

a∫
a−h

Q(t, s)Φ′
ac(s − a)ds),

(24)

where the summation is over all jump points si ∈ [a − h, a) and the sum is finite.

Proof. Since Φ ∈ PC∗ has finite many jump points then (24) immediately follows from
(21).

Corollary 3. Let the conditions of Theorem 4 hold.
Then, for each initial function Φ ∈ PC∗, the unique solution XF

Φ(t) of the IVP (1), (3) for
every t ∈ J0 has the following representation

XΦ
F (t) =

t∫
a

C(t, s)RLD1−αF(s)ds +
a∫

a−h

Q(t, s)dsΦ(s − a),

where Φ(s − a) ≡ Φ(s − a) for s ∈ (a − h, a] and Φ(−h) = 0.

Proof. The statement of Corollary 3 immediately follows from the superposition principle
and Theorems 3 and 4.

5. Hyers–Ulam and Hyers–Ulam–Rassias in Time Stability

It is well known that the standard definitions of stability used in the systems with
integer order or fractional Caputo-type derivatives are not directly applicable to the systems
with fractional Riemann–Liouville-type derivatives, since the modulus of the solutions of
the systems with Riemann–Liouville-type derivatives tends to infinity, when the indepen-
dent variable tends to the initial point from the right, i.e., lim

t→a+0
|X(t)| = ∞. That is why

new types of definitions for the different kinds of stabilities applicable to systems with
Riemann–Liouville-type derivatives are needed.

The aim of this section is to introduce definitions of time stability, Hyers–Ulam (HU)
in time stability, and Hyers–Ulam–Rassias (HUR) in time stability for fractional systems
(equations) with RL-type derivatives and to establish some sufficient conditions which
guarantee the HU in time stability of the studied systems.

As was mentioned, our concept uses the idea of the concept “stability in time” in
the Lyapunov sense introduced in the remarkable work [20] for fractional equations with
Riemann–Liouville-type derivatives.

Definition 7 ([20]). The zero solution of the IP (2), (3) (i.e., with Φ(t − a) ≡ 0, t − a ∈ [−h, 0]
as initial function) is said to be:

(i) Stable in time in (Lyapunov in time stable) if for arbitrary ε > 0, there exist a point tε ∈ J0

and number δ(ε, tε) > 0 such that for any initial functions Φ(t) ∈ PC with ‖Φ‖ < δ, the
corresponding solution X0

Φ(t) of the IP (2), (3) satisfies
∣∣X0

Φ(t)
∣∣ ≤ ε for t ≥ tε.

(ii) Asymptotically stable in time if it is stable in time and additionally lim
t→∞

∣∣X0
Φ(t)

∣∣ = 0.

With the next definitions, we introduce a concept for HU and HUR in time stability
for fractional systems (equations) with RL-type derivatives.

Definition 8. The system (1) is said to be Hyers–Ulam (HU) in time stable on J0
b (J0), b ∈ R0

+ if
there exists a constant C > 0 such that for any ε > 0 and function Y(t) : J−h

b → Rn(J−h → Rn),
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with Y(t)|[a−h,a] = Ψ(t − a) ∈ PC∗, t ∈ [a − h, a], Y(t)|J0 = ZY(t) ∈ M1−α
b (M1−α) for which

there exists a function Φε(t) ∈ PC∗ with |Ψ(t − a) − Φε(t − a)| ≤ ε for t ∈ [a − h, a] and
tε ∈ (a, a + b), (tε ∈ J0) such that for t ∈ [tε, a + b] (t ∈ [tε, ∞)), the following inequalities hold∣∣∣∣∣∣RLDα

a+Y(t)−
0∫

−h

[dθU(t, θ) ]Y(t + θ)− F(t)

∣∣∣∣∣∣ ≤ ε (25)

then, there exists a unique solution XF
Φε(t) of the IP (1), (3) (with initial function Φε(t)) for which

the inequality ∣∣∣Y(t)− XF
Φε(t)

∣∣∣ ≤ Cε, (26)

holds for any t ∈ [tε, a + b](t ∈ [tε, ∞)).

Let b ∈ R0
+ and ϕ(t) ∈ C(J−h

b ,R0
+)(C(J−h,R0

+)) be arbitrary.

Definition 9. The system (1) is said to be Hyers–Ulam–Rassias (HUR) in time stable on J0
b (J0),

b ∈ R0
+ with respect to ϕ(t) if there exists a constant cϕ > 0 such that for arbitrary function Y(t) :

J−h
b → Rn(J−h → Rn), with Y(t)|J0 ∈ M1−α

b (M1−α), Y(t)|[a−h,a] = Ψ(t − a) ∈ PC∗ for
which there exist a function Φϕ(t) ∈ PC∗ with |Ψ(t − a)− Φϕ(t − a)| ≤ cφφ(t), t ∈ [a − h, a]
and tϕ ∈ J0

b (tϕ ∈ J0) such that for t ∈ [tϕ, a + b] (t ∈ [tϕ, ∞)) the following inequality holds∣∣∣∣∣∣RLDα
a+Y(t)−

0∫
−h

[dθU(t, θ) ]Y(t + θ)− F(t)

∣∣∣∣∣∣ ≤ ϕ(t), (27)

then, there exists a unique solution XF
Φϕ(t) of the IP (1), (3) (with initial function Φϕ(t)) such that

the inequality ∣∣∣Y(t)|J0 − XF
Φϕ(t)

∣∣∣ ≤ cφ ϕ(t),

holds for any t ∈ [tϕ, a + b] (t ∈ [tϕ, ∞)).

Remark 2. We note that in (25) and (27), we assume that as initial function is used
Y(t)|[a−h,a] = Ψ(t − a), which is mentioned explicitly. It seems that our Definitions 8 and 9
are stated in the sense of the classical definitions for delayed equations with integer-order derivatives
(see [33,34]).

Theorem 5. Let the following conditions be fulfilled.

1. The conditions of Theorem 4 hold.
2. b ∈ R0

+ is an arbitrary number.

Then, the system (1) is HU and time stable on J0
b .

Proof. Let t, s ∈ Jb, and consider the fundamental matrix C(t, s). Accordingly (Theo-
rem 6 [14]), C(t, s) is a continuous function in s and t for s > a and s �= t. When s > a
and s = t, then C(t, s) has a first-kind jump. If s = a, and s �= t, then C(t, s) has a first
kind jump at s = a, and if t = s = a and C(t, s) has a second kind jump at t = a but is
Lebesgue integrable (more precisely, for t → a + 0) we have that C(t, s) = O((t − a)α−1).
Since Q(t, a) = C(t, a), then Q(t, a) has the same properties as C(t, a). When s ∈ [a − h, a),
then Q(t, s) has an integrable second kind jump at t = a, i.e., for t → a + 0 we have that
Q(t, s) = O((t − a)α−1). Taking into account (16) for t ∈ J0 ∪ [a − h, a) and s �= t, Q(t, s) is
a continuous function in s and t. When s = t, then Q(t, s) has a first kind jump. Thus, we
can conclude that for every t ∈ J0, C(t, s) is bounded for t ∈ [t, b], s ∈ Jb and Lebesgue
integrable in s on Jb. For every t ∈ J0 Q(t, s) is bounded for t ∈ [t, b], s ∈ [a − h, a] and
Lebesgue integrable in s on s ∈ [a − h, a]. Note that C(t, s) and Q(t, s) are constructed via
the system (2) and do not depend on the choice of the vector function F(t) in system (1).
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Let b ∈ R0
+, ε > 0 and the arbitrary function Y(t) : J−h

b → Rn, with Y(t)|[a−h,a] =

Ψ(t − a) ∈ PC∗, and Y(t)|J0
b
= ZY(t) ∈ M1−α

b and satisfy the inequality (25) for t ∈
[tε, a + b], tε ∈ (a, a + b). Since Ψ(t − a) ∈ PC∗, then defining Φε(t − a) = Ψ(t − a) +
col (

ε

2n
, . . . ,

ε

2n
)︸ ︷︷ ︸

n

, we obtain that Φε(t − a) ∈ PC∗ and for t ∈ [a − h, a], the functions satisfy

the inequality |Ψ(t − a)− Φε(t − a)| ≤ ε.
Denote for t ∈ [tε, a + b]

H(t) = RLDα
a+Y(t)−

0∫
−h

[dθU(t, θ) ]Y(t + θ)− F(t) (28)

and assume that H(t) is prolonged on [a, tε] as a continuous function with H(a) = 0 and
|H(t)| ≤ ε for t ∈ [a, tε].

Consider the IP (1), (3) with right side (1) F̃(t) = H(t) + F(t) for t ∈ J0
b , and initial

function Ψ(t − a). Note that from (25) and the prolongation, it follows that |H(t)| ≤ ε
for t ∈ [a, a + b]. Since F̃(t) ∈ BLloc

1 (Jb,Rn) in virtue of Theorem 2, we obtain that the
considered IP (1), (3) has a unique solution X̃(t) ∈ M1−α

b . Thus, X̃(t) coincides with ZY(t)
for t ∈ J0

b and hence in virtue of Corollary 3, it has the following integral representation

X̃(t) = ZY(t) =
t∫

a

C(t, s)RLD1−α F̃(s)ds +
a∫

a−h

Q(t, s)dsΨ(s − a)

=

t∫
a

C(t, s)RLD1−αF(s)ds +
t∫

a

C(t, s)RLD1−αH(s)ds +
a∫

a−h

Q(t, s)dsΨ(s − a)

(29)

Analogically in virtue of Theorem 2, we obtain that the IP (1), (3) with right side (1)
F(t) for t ∈ J0

b , and initial function Φε(t − a), has a unique solution XF
Φε(t) ∈ M1−α

b for
t ∈ J0

b which it has the representation

XΦε

F (t) =
t∫

a

C(t, s)RLD1−αF(s)ds +
a∫

a−h

Q(t, s)dsΦε
(s − a), (30)

where Φε
(s− a) ≡ Φε(s− a), Ψ(t− a) ≡ Ψ(t− a) for s ∈ (a− h, a] and Φ(−h) = Ψ(−h) = 0.

Denote

Cb = sup
t∈[tε ,a+b],s∈Jb

|C(t, s)|, Qb = sup
t∈[tε ,a+b],s∈[a−h,a]

|Q(t, s)|

and from (29) and (30), we obtain for t ∈ [tε, a + b] that∣∣∣Y(t)|J0 − XF
Φϕ(t)

∣∣∣ ≤
∣∣∣∣∣∣

t∫
a

C(t, s)RLD1−αH(s)ds

∣∣∣∣∣∣+
∣∣∣∣∣∣

a∫
a−h

Q(t, s)ds(Ψ(s − a)− Φε
(s − a))

∣∣∣∣∣∣. (31)

For the second addend in the right side of (31) in virtue of Lemma 3, we have∣∣∣∣∣∣
a∫

a−h

Q(t, s)ds
(
Φ(s − a)− Ψ(s − a)

)∣∣∣∣∣∣ ≤ Qb

∣∣∣Vars∈[a−h,a]
(
Φ(s − a)− Ψ(s − a)

)∣∣∣
≤ CQtε sup

s∈[a−h,a]

∣∣Φ(s − a)− Ψ(s − a)
∣∣ ≤ CQbε.

(32)
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Estimating the first addend on the right side of (31), we obtain that∣∣∣∣∣∣
t∫

a

C(t, s)RLD1−αH(s)ds

∣∣∣∣∣∣ = 1
Γ(1 − α)

∣∣∣∣∣∣
t∫

a

C(t, s)

⎛⎝ d
ds

s∫
a

(s − z)−α H(z)dz

⎞⎠ds

∣∣∣∣∣∣
=

1
Γ(2 − α)

∣∣∣∣∣∣
t∫

a

C(t, s)

⎛⎝ d
ds

s∫
a

H(z)dz(s − z)1−α

⎞⎠ds

∣∣∣∣∣∣
=

1
Γ(2 − α)

∣∣∣∣∣∣
t∫

a

C(t, s)ds

⎛⎝ s∫
a

H(z)dz(s − z)1−α

⎞⎠∣∣∣∣∣∣
≤ εCb

Γ(2 − α)

t∫
a

dsVarη∈[a,s]

⎛⎝ η∫
a

dz(η − z)1−α

⎞⎠ ≤ εCb
Γ(3 − α)

t∫
a

dsVarη∈[a,s](η − a)2−α

≤ εCb
Γ(3 − α)

Varη∈[a,t]

t∫
a

ds(s − a)2−α

≤ εCb
Γ(3 − α)

(t − a)2−α ≤ εCbb2−α

Γ(3 − α)

(33)

Then, from (31)–(33), we obtain that

∣∣∣Y(t)|J0 − XF
Φε(t)

∣∣∣ ≤ (
CQb +

Cbb2−α

Γ(3 − α)

)
ε

and then (26) holds for t ∈ [tε, a + b], with C̃ = CQb +
Cbb2−α

Γ(3−α)
.

Theorem 6. Let the following conditions be fulfilled.

1. The conditions of Theorem 4 hold.

2. For some r ∈ R0
+, we have that Qr = sup

t∈[a+r,∞)

(
sup

s∈[a−h,a]
|Q(t, s)|

)
< ∞.

3. For some r ∈ R0
+, the relation C∞ = sup

t∈[a+r,∞)

(t − a)2−αC(t) < ∞ hold where

C(t) = sup
s∈[a+r,t]

|C(t, s)|.

Then, the system (1) is HU in time stable on J0.

Proof. This proof uses the same approach as the proof of Theorem 5, and hence, the
matching details will only be sketched. First, we see that condition 3 implies that Cr =

sup
t∈[a+r,∞)

C(t) < ∞.

Let ε > 0 and the function Y(t) : J−h
b → Rn, with Y(t)|J0 = ZY(t) ∈ M1−α

b and
Y(t)|[a−h,a] = Ψ(t − a) ∈ PC∗, be arbitrary, which satisfies the inequality (25) for t ∈ [tε, ∞)
and define the function Φε(t − a) in the same way as in Theorem 5. Since ZY(t) satisfies
(25), for t ∈ [tε, ∞), we can define the function H(t) via (28) and as in the above, we assume
that H(t) is prolonged on [a, tε] as a continuous function with H(a) = 0 and |H(t)| ≤ ε for
t ∈ [a, tε]. Then, from (25) and the prolongation, it follows that |H(t)| ≤ ε for t ∈ J.

As above, consider the IP (1), (3) with right side (1), the function F̃(t) = H(t) + F(t)
for t ∈ J, and initial function Ψ(t − a).

Since F̃(t) ∈ BLloc
1 (J,Rn) in virtue of Corollary 1, we obtain that the considered IP (1),

(3) has a unique solution X̃(t) ∈ M1−α. From the uniqueness, it follows that X̃(t) coincides
with ZY(t) for t ∈ J0, and hence, in virtue of Corollary 3, it has the integral representation
(29). Analogically, in virtue of Corollary 3, we obtain that the IP (1), (3) with right side (1)
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F(t) for t ∈ J0, and initial function Φε(t − a), has a unique solution XF
Φε(t) ∈ M1−α for

t ∈ J0, which has the representation (30).
Note that for arbitrary r ∈ [a, r], according the consideration at the beginning of the

proof of Theorem 5, we conclude that Cr = sup
t∈[a+r,∞)

(
sup

s∈[a+r,t]
|C(t, s)|

)
< ∞,

Qr = sup
t∈[a+r,∞)

(
sup

s∈[a−h,a]
|Q(t, s)|

)
< ∞ and hence from conditions 2 and 3 of Theorem 5, it

follows that Ctε = sup
t∈[tε ,∞)

(
sup

s∈[tε ,t]
|C(t, s)|

)
< ∞ and Qtε = sup

t∈[tε ,∞)

(
sup

s∈[a−h,a]
|Q(t, s)|

)
< ∞.

Then, as above, we obtain the estimation (31), and hence, for the second addend in the
right side of (31) in virtue of Lemma 3, we have that∣∣∣∣∣∣

a∫
a−h

Q(t, s)ds
(
Φ(s − a)− Ψ(s − a)

)∣∣∣∣∣∣ ≤ Qtε

∣∣∣Vars∈[a−h,a]
(
Φ(s − a)− Ψ(s − a)

)∣∣∣ ≤ CQtε ε (34)

For the second addend in the right side of (31) taking into account condition 3 of
Theorem 5, we obtain∣∣∣∣∣∣

t∫
a

C(t, s)RLD1−α H(s)ds

∣∣∣∣∣∣ = 1
Γ(1 − α)

∣∣∣∣∣∣
t∫

a

C(t, s)

⎛⎝ d
ds

s∫
a

(s − z)−α H(z)dz

⎞⎠ds

∣∣∣∣∣∣
=

1
Γ(2 − α)

∣∣∣∣∣∣
t∫

a

C(t, s)

⎛⎝ d
ds

s∫
a

H(z)d(s − z)1−α

⎞⎠ds

∣∣∣∣∣∣
=

1
Γ(2 − α)

∣∣∣∣∣∣
t∫

a

C(t, s)ds

⎛⎝ s∫
a

H(z)d(s − z)1−α

⎞⎠∣∣∣∣∣∣
≤ εC(t)

Γ(2 − α)
Vars∈[a,t]

⎛⎝ s∫
a

(s − z)1−αdz

⎞⎠ ≤ εC(t)
Γ(3 − α)

Vars∈[a,t](s − a)2−α

≤ εC(t)
Γ(3 − α)

(t − a)2−α ≤ εC∞

Γ(3 − α)

(35)

Then, from (31), (34), and (35), it follows that for t ∈ [tε, ∞), we obtain the estimation∣∣∣Y(t)|J0 − XF
Φε(t)

∣∣∣ ≤ (
CQtε +

C∞

Γ(3 − α)

)
ε

and then (26) holds for t ∈ [tε, ∞) with C̃ =
(

CQtε +
C∞

Γ(3−α)

)
.

Theorem 7. Let the system (2) be HU in time stable on J0.
Then, the system (2) is time stable in the Lyapunov sense (in the sense of Definition 7).

Proof. Let us consider the function Z(t) : J−h → Rn, Z(t) ≡ 0, t ∈ J−h and let ε > 0,
δ ∈ (0, ε] be arbitrary numbers.

Introduce the initial function Φδ(t − a) ∈ PC∗ with
∥∥Φδ

∥∥ < δ and then in virtue of
Corollary 3, the IP (2), (3) has a unique solution X0

Φδ(t) ∈ M1−α, which has the representation

X0
Φδ(t) =

a∫
a−h

Q(t, s)dsΦδ
(s − a) (36)

Since the function Z(t) satisfies the inequality (25) for t ∈ [tε, ∞) where tε ∈ J0,
|Φδ(t − a)| < δ for t ∈ [a − h, a] and the system (2) is HU in time stable, then we obtain that
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X0
Φδ(t) satisfies (26) for t ∈ [tε, ∞). Thus, from (26) and (36), it follows that for the t ∈ Jtε , if

follows the estimation

∣∣∣X0
Φδ(t)

∣∣∣ =
∣∣∣∣∣∣

a∫
a−h

Q(t, s)dsΦδ
(s − a)

∣∣∣∣∣∣ ≤ ε (37)

and hence, Qε = sup
t∈[tε ,∞)

(
sup

s∈[a−h,a]
|Q(t, s)|

)
< ∞. Then, choosing δ = min(ε(QεC)−1, ε)

and estimating the integral in (37) for t ∈ [tε, ∞), we obtain that∣∣∣∣∣∣
a∫

a−h

Q(t, s)dsΦδ
(s − a)

∣∣∣∣∣∣ ≤ QεVars∈[a−h,a]Φ
δ
(s − a) ≤ QεC

∥∥∥Φδ
∥∥∥ ≤ QεCδ < ε,

holds for any function Φδ(t − a) ∈ PC∗ with
∥∥Φδ

∥∥ < δ = min(ε(QεC)−1, ε) which implies
that the zero solution of (2) is stable in time.

6. Conclusions and Comments

In the present paper for linear fractional systems with Riemann–Liouville (RL)-type
derivatives and distributed delays, we obtained three main results.

The first is that under natural assumptions we proved the existence and uniqueness of
the solutions of the initial problem (IP) for these systems with discontinuous initial func-
tions. Note that the used assumptions are similar to these used for the same result in the case
when the derivatives in the system are first (integer) order. As a consequence of this result,
we also prove the existence of a unique fundamental matrix for the homogeneous system.

The second main result is the existence of a unique fundamental matrix to obtain
integral representations of the solutions of the IP for the inhomogeneous systems as well as
the solutions of the IP for the corresponding inhomogeneous system.

To obtain our third main result, first we introduce concepts for HU in time stabil-
ity and HUR in time stability for the studied systems with Riemann–Liouville fractional
derivatives, in which concepts the are based on the concept for Lyapunov in time stability
proposed in [20]. Furthermore, to obtain our stability results, instead of the standard
approach based on some concrete fixed-point theorem chosen by the researcher, we intro-
duce a new approach based on the integral representation of the solutions for the studied
systems in the corresponding linear case, which is a consequence of our results obtained in
Sections 3 and 4 above. Our approach can be used in all cases (without the case of fuzzy
equations, where additional work must be done) in which the standard approach based on
some fixed-point theorem is applicable and without the difference of fractional derivative
types included in the studied class equations (systems). The only restriction is that the
equation must possess at least one continuous solution of the Cauchy problem for a class
initial function, which can also be discontinuous with finitely many jumps of the first kind.
Moreover, the applicability of our approach is regardless of the chosen technique for the
proof of the solution’s existence (fixed point theorems, topological methods, successive
approximations, etc.). Generally speaking, the nonlinear case can be considered with the
proposed approach in a similar way, after transforming it in the form of the nonlinear
perturbed linear system under some natural assumptions on the nonlinearity term as in the
integer case. As a third main result, using the proposed approach, we establish sufficient
conditions which guarantee HU in time stability of the investigated systems. Finally, we
prove that the HU in time stability leads to Lyapunov in time stability for the studied
homogeneous systems.

As a comment, we note that the fact of existence and uniqueness of the fundamental
matrix established in the present work, as well as the introduced new approach based on
the integral presentations of the solutions of IP for the studied systems with initial function
Φ ∈ PC∗, lead to some interesting open problems:
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1. To establish sufficient conditions, which guarantee system (1) to be HUR in time stable
on J0

b for arbitrary b ∈ R0
+, with respect to some ϕ(t) ∈ C(J−h

b ,R0
+)(C(J−h,R0

+)).
2. To establish sufficient conditions which guarantee system (1) to be HUR in time stable

on J0 with respect to some ϕ(t) ∈ C(J−h
b ,R0

+)(C(J−h,R0
+)).

3. To prove or disprove the conjecture that if the system (2) is HUR in time stable on
J0 with respect to some appropriate ϕ(t) ∈ C(J−h

b ,R0
+)(C(J−h,R0

+)), then the zero
solution of (2) is asymptotically stable in time in sense of Definition 7.

Author Contributions: Conceptualization, H.K., E.M. and A.Z. Writing—review and editing, H.K.,
E.M. and A.Z. The authors contributions in the article are equal. All authors have read and agreed to
the published version of the manuscript.

Funding: The authors of this research have been partially supported as follows: Hristo Kiskinov
by Bulgarian National Science Fund, Grant KP-06-N52/9, Ekaterina Madamlieva by the Bulgarian
Ministry of Education and Science under the National Program “Young Scientists and Postdoctoral
Students–2” (approved with RMS No. 206/ 7.04.2022), Stage I, 2022/2023, at the Faculty of Applied
Mathematics and Informatics, Technical University of Sofia, and Andrey Zahariev by Bulgarian
National Science Fund under Grant KP-06-N52/4, 2021.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the anonymous reviewers for their very helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BV Bounded Variation
HU Hyers–Ulam
HUR Hyers–Ulam–Rassias
IP Initial Problem
PC Piecewise Continuous
RL Riemann–Liouville

References

1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science BV:
Amsterdam, The Netherlands, 2006.

2. Podlubny, I. Fractional Differential Equation; Academic Press: San Diego, CA, USA, 1999.
3. Li, C.; Zhang, F. A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 2011, 193, 27–47. [CrossRef]
4. Li, K.; Peng, J. Laplace transform and fractional differential equations. Appl. Math. Lett. 2011, 24, 2019–2023. [CrossRef]
5. Gomoyunov, M.I. On representation formulas for solutions of linear differential equations with Caputo fractional derivatives.

Fract. Calc. Appl. Anal. 2020, 23, 1141–1160. [CrossRef]
6. Krol, K. Asymptotic properties of fractional delay differential equations. Appl. Math. Comput. 2011, 218, 1515–1532. [CrossRef]
7. Veselinova, M.; Kiskinov, H.; Zahariev, A. Stability analysis of linear fractional differential system with distributed delays. AIP

Conf. Proc. 2015, 1690, 040013. [CrossRef]
8. Zhang, H.; Cao, J.; Jiang, W. General solution of linear fractional neutral differential difference equations. Discret. Dyn. Nat. Soc.

2013, 2013, 489521. [CrossRef]
9. Golev, A.; Milev, M. Integral representation of the solution of the Cauchy problem for autonomous linear neutral fractional

system. Int. J. Pure Appl. Math. 2018, 119, 235–247. [CrossRef]
10. Madamlieva, E.; Konstantinov, M.; Milev, M.; Petkova, M. Integral representation for the solutions of autonomous linear neutral

fractional systems with distributed delay. Mathematics 2020, 8, 364. [CrossRef]
11. Zhang, H.; Wu, D. Variation of constant formulae for time invariant and time varying Caputo fractional delay differential systems.

J. Math. Res. Appl. 2014, 34, 549–560. [CrossRef]
12. Veselinova, M.; Kiskinov, H.; Zahariev, A. About stability conditions for retarded fractional differential systems with distributed

delays. Commun. Appl. Anal. 2016, 20, 325–334.
13. Boyadzhiev, D.; Kiskinov, H.; Zahariev, A. Integral representation of solutions of fractional system with distributed delays.

Integral Transform. Spec. Funct. 2018, 29, 725–744. [CrossRef]

76



Axioms 2023, 12, 637

14. Kiskinov, H.; Madamlieva, E.; Veselinova, M.; Zahariev, A. Existence of absolutely continuous fundamental matrix of linear
fractional system with distributed delays. Mathematics 2021, 9, 150. [CrossRef]

15. Kiskinov, H.; Madamlieva, E.; Veselinova, M.; Zahariev, A. Integral representation of the solutions for neutral linear fractional
system with distributed delays. Fractal Fract. 2021, 5, 222. [CrossRef]

16. Liu, S.; Wu, X.; Zhou, X.F.; Jiang, W. Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dyn.
2016, 86, 65–71. [CrossRef]

17. Li, M.; Wang, J. Representation of solution of a Riemann–Liouville fractional differential equation with pure delay. Appl. Math.
Lett. 2018, 85, 118–124. [CrossRef]

18. Liang, C., Wang, J., O’Regan, D. Representation of a solution for a fractional linear system with pure delay. Appl. Math. Lett. 2018,
77, 72–78. [CrossRef]

19. Matychyn, I. Analytical solution of linear fractional systems with variable coefficients involving Riemann–Liouville and Caputo
derivatives. Symmetry 2019, 11, 1366. [CrossRef]

20. Agarwal, R.; Hristova, S.; O’Regan, D. Stability concepts of Riemann-Liouville fractional-order delay nonlinear systems. Mathe-
matics 2021, 9, 435. [CrossRef]

21. Yan, S.; Gu, Z.; Park, J.H.; Xie, X. Synchronization of delayed fuzzy neural networks with probabilistic communication delay and
its application to image encryption. IEEE Trans. Fuzzy Syst. 2023, 31. [CrossRef]

22. Tunç, O.; Tunç, C. Ulam stabilities of nonlinear iterative integro-differential equations. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser.
A-Mat. 2023, 117, 118. [CrossRef]

23. Yan, S.; Gu, Z.; Park, J.H.; Xie, X. A delay-kernel-dependent approach to saturated control of linear systems with mixed delays.
Automatica 2023, 152, 110984. [CrossRef]

24. Bohner, M.; Tunç, O.; Tunç, C. Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comp.
Appl. Math. 2021, 40, 214. [CrossRef]

25. Kiskinov, H.; Zahariev, A. On fractional systems with Riemann-Liouville derivatives and distributed delays-Choice of initial
conditions, existence and uniqueness of the solutions - Choice of initial conditions, existence and uniqueness of the solutions. Eur.
Phys. J. Spec. Top. 2017, 9, 3473–3487. [CrossRef]

26. Myshkis, A. Linear Differential Equations with Retarded Argument; Nauka: Moscow, Russia, 1972. (In Russian)
27. Hale, J.; Lunel, S. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1993.
28. Kolmanovskii, V.; Myshkis, A. Introduction to the Theory and Applications of Functional Differential Equations; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 1999.
29. Weissinger, J. Zur Theorie und Anwendung des Iterationsverfahrens. Math. Nachr. 1952, 8, 193–212. [CrossRef]
30. Zahariev, A.; Kiskinov, H.; Angelova, E. Smoothness of the fundamental matrix of linear fractional system with variable delays.

Neural Parall. Sci. Comput. 2019, 27, 71–83. [CrossRef]
31. Zahariev, A.; Kiskinov, H. Existence of fundamental matrix for neutral linear fractional system with distributed delays. Int. J. Pure

Appl. Math. 2018, 1, 31–51. [CrossRef]
32. Reitano, R.R. Foundations of Quantitative Finance: 5. General Measure and Integration Theory; International Business School: Waltham,

MA, USA, 2018.
33. Otrocol, D.; Ilea, V. Ulam stability for a delay differential equation. Cent. Eur. J. Math. 2013, 7, 1296–1303. [CrossRef]
34. Tunç, C.; Biçer, E. Hyers-Ulam-Rassias stability for a first order functional differential equation. J. Math. Fund. Sci. 2015, 47,

143–153. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

77



Citation: Wang, X.; Alzabut, J.;
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Abstract: This work explores the possibility that iterative classes of elliptic equations have both
single and coupled positive radial solutions. Our approach is based on using the well-known Guo–
Krasnoselskii and Avery–Henderson fixed-point theorems in a Banach space. Furthermore, we utilize
Rus’ theorem in a metric space, to prove the uniqueness of solutions for the problem. Examples are
constructed for the sake of verification.
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1. Introduction

The study of nonlinear elliptic systems has a strong motivation, and important research
efforts have been made undertaken recently for these systems, aiming to apply the results
of the existence and asymptotic behavior of positive solutions in applied fields (see [1–5]).
The investigation of the following system of nonlinear elliptic equations in a bounded
domain � ⊂ RN,

�z
β
+ λFβ(zβ+1) = 0, (1)

where z
β
= 0 on ∂� and z1 = z

d+1 , β ∈ {1, 2, 3, · · · , d}, has an important application in
science and technology [6,7]. In [8], Dalmasso discussed the existence of positive solutions
to such systems for d = 2 when the F(0)′s are non-negative with at least one F(0) > 0
(positone problems). In [7], when d = 2, Ali–Ramaswamy–Shivaji discussed the existence
of multiple positive solutions to such positone problems. In particular, in cases where one
of z

F1(z)
or z

F2(z)
decreases for some range of z, they established conditions for the existence

of at least three positive solutions for a certain range of λ. In [9], Hai–Shivaji discussed
the existence of positive solutions for λ >> 1 for cases where no sign conditions are
assumed on F(0), β ∈ {1, 2} (semipositone problems). In [10], again for d = 2, Ali–Shivaji
discussed the existence of multiple positive solutions for λ >> 1 when F(0) = 0 = F′(0)
for β ∈ {1, 2}. In addition, in [11–20], relevant references to the most recent works on (1)
can be found. Next, we quote some recent works on elliptic equations.

Axioms 2023, 12, 474. https://doi.org/10.3390/axioms12050474 https://www.mdpi.com/journal/axioms78
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In [21], Padhi et al. derived sufficient conditions to the following problem in an
annular domain:

�z = λF(|ν|, z), z ∈ � = {ν ∈ R
N : a1 < |ν| < a2},

z = 0, z ∈ ∂�,

for the existence of positive radial solutions, by utilizing Gustafson and Schmitt fixed-point
theorems. In [22], Chrouda and Hassine established the uniqueness of positive radial
solutions to the following Dirichlet boundary value problem for the semilinear elliptic
equation in an annulus:

�z = F(z), z ∈ � = {ν ∈ R
N : a1 < |ν| < a2},

z = 0, z ∈ z ∈ ∂�,

for any dimension N ≥ 1. In [23], Dong and Wei established the existence of radial solutions
for the following nonlinear elliptic equations with gradient terms in annular domains:

�z+ g
(|ν|, z, ν

|ν| · ∇z
)
= 0 in Ωb

a,

z = 0 on ∂Ωb
a,

by using Schauder’s fixed-point theorem and contraction mapping theorem. In [24], R.
Kajikiya and E. Ko established the existence of positive radial solutions for a semipositone
elliptic equation of the form

�z+ λg(z) = 0 in Ω,

z = 0 on ∂Ω,

where Ω is a ball or an annulus in RN. Recently, Son and Wang [25] considered the following
system in an exterior ball �X:

�z
β
+ λKβ(|ν|)Fβ(zβ+1) = 0,

z
β
→ 0 as |ν| → +∞

z
β
= 0 on |ν| = r0,

where β ∈ {1, 2, 3, · · · , d}, z1 = z
d+1 , and derived sufficient conditions for the existence of

positive radial solutions. The above-mentioned works motivated us to study the following
iterative classes of nonlinear elliptic equations on an exterior domain:

�z
β
− (N − 2)2r2N−2

0
|ν|2N−2 z

β
+ �(|ν|)Fβ(zβ+1) = 0, ν ∈ �,

lim
|ν|→∞

z
β
(ν) = 0, z

β
|∂� = 0,

⎫⎪⎪⎬⎪⎪⎭ (2)

where β ∈ {1, 2, 3, · · · , n}, z1 = zn+1, Δz = div(∇z), N > 2, � = {z ∈ RN| |z| > r0},
� = ∏κ

i=1 �i, each �i ∈ C((r0,+∞), (0,+∞)), rN−1� is integrable. The Guo–Krasnoselskii
cone fixed-point theorem is a key tool for obtaining single positive radial solutions, whereas
the Avery–Henderson cone fixed-point theorem is utilized to obtain the coupled solutions.
We further study the uniqueness of solutions of the problem (2) via Rus’ theorem in a
metric space.

The study of the positive solutions to the iterative classes of ordinary differential
equations with two-point boundary conditions,

z′′
β
(r̂)− r2

0zβ(r̂) + �(r̂)Fβ(zβ+1(r̂)) = 0, 0 < r̂ < 1,

z
β
(0) = 0, z

β
(1) = 0,

}
(3)
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where β ∈ {1, 2, 3, · · · , d}, z1 = z
d+1 , r0 > 0 and �(r̂) =

r2
0

(N−2)2 r̂
2(N−1)

2−N ∏κ
i=1 �i(r̂),

�i(r̂) = �i(r0 r̂
1

2−N ) by a Kelvin-type transformation [26,27] through the change of vari-

ables m = |ν| and r̂ =
(
m
r0

)2−N
, facilitates the investigation of the positive radial solutions

of (2).
We impose the below-mentioned presumptions whenever necessary:

(J1) Fβ : [0,+∞) → [0,+∞) is continuous.
(J2) For 1 ≤ ι̇ ≤ d, �ι̇ ∈ Lpι̇ [0, 1](1 ≤ pι̇ ≤ +∞) and ∃ ��ι̇ > 0 � ��ι̇ < �ι̇(r̂) < ∞ almost

everywhere on the interval [0, 1].

The remainder of the paper is structured as follows: The problem (3) is transformed
into an analogous integral equation involving the kernel in Section 2. Additionally, we
calculate the kernel boundaries that are crucial to our major findings. In Section 3, we
employ Guo–Krasnoselskii’s cone fixed-point theorem, to provide a criterion for the single
positive radial solution. In Section 4, the coupled solutions are established by the Avery–
Henderson cone fixed-point theorem. The final portion deals with a unique solution.
Meanwhile, some numerical examples are provided.

2. Preliminaries

The essential results are stated here, prior to proceeding to the main results in the
subsequent sections.

Lemma 1. For every ℘ ∈ C[0, 1], the BVP

−z′′
1
(r̂) + r2

0z1(r̂) = ℘(r̂), 0 < r̂ < 1,

z1(0) = z1(1) = 0,

has a unique solution

z1(r̂) =
∫ 1

0
Q(r̂, ζ)℘(ζ)dζ,

where

Q(r̂, ζ) =
1

r0 sinh(r0)

{
sinh(r0 r̂) sinh(r0(1 − ζ)), 0 ≤ r̂ ≤ ζ ≤ 1,

sinh(r0ζ) sinh(r0(1 − r̂)), 0 ≤ ζ ≤ r̂ ≤ 1.

Lemma 2. The kernel Q(r̂, ζ) has the subsequent characteristics:

(i) Q(r̂, ζ) ≥ 0 and continuous on [0, 1]× [0, 1];
(ii) Q(r̂, ζ) ≤ Q(ζ, ζ), r̂, ζ ∈ [0, 1];
(iii) there exists ξ ∈ (0, 1

2 ) such that σ(ξ)Q(ζ, ζ) ≤ Q(r̂, ζ), (r̂, ζ) ∈ [ξ, 1 − ξ]× [0, 1], where

σ(ξ) = sinh(r0ξ)
sinh(r0)

.

Proof. (i) is evident. The following proves (ii):

Q(r̂, ζ)
Q(ζ, ζ)

=

⎧⎪⎪⎨⎪⎪⎩
sinh(r0 r̂)

sinh(r0ζ)
, 0 ≤ r̂ ≤ ζ ≤ 1,

sinh(r0(1 − r̂))

sinh(r0(1 − ζ))
, 0 ≤ ζ ≤ r̂ ≤ 1,

≤
{

1, 0 ≤ r̂ ≤ ζ ≤ 1,

1, 0 ≤ ζ ≤ r̂ ≤ 1,
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For (iii), we consider

Q(r̂, ζ)
Q(ζ, ζ)

=

⎧⎪⎪⎨⎪⎪⎩
sinh(r0 r̂)

sinh(r0ζ)
, 0 ≤ r̂ ≤ ζ ≤ 1,

sinh(r0(1 − r̂))

sinh(r0(1 − ζ))
, 0 ≤ ζ ≤ r̂ ≤ 1,

≥

⎧⎪⎪⎨⎪⎪⎩
sinh(r0ξ)

sinh(r0)
, 0 ≤ r̂ ≤ ζ ≤ 1, ξ ≤ r̂ ≤ 1 − ξ,

sinh(r0ξ)

sinh(r0)
, 0 ≤ ζ ≤ r̂ ≤ 1, ξ ≤ r̂ ≤ 1 − ξ,

=σ.

The proof is now completed.

We observe that a d-tuple (z1 , z2, · · · , zd) is a solution of BVP (3) from Lemma 1 if and
only if

z1(r̂) =
∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1.

In general,

z
β
(r̂) =

∫ 1

0
Q(r̂, ζ)�(ζ)Fβ

(
z
β+1(ζ)

)
dζ, β = 1, 2, 3, · · · , d,

z1(r̂) = z
d+1(r̂).

Let ℵ := C((0, 1),R) be a Banach space equipped with a norm ‖z‖ = max
r̂∈[0,1]

|z(r̂)|, and

Xξ =
{
z ∈ ℵ : z(r̂) ≥ 0 on [0, 1], min

r̂∈[ξ, 1−ξ]
z(r̂) ≥ σ(ξ)‖z‖

}
be a cone, for ξ ∈ (0, 1

2 ). For any z1 ∈ X, define an operator £ : X → ℵ by

(£z1)(r̂) =
∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3) · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1. (4)

Lemma 3. £ is self–mapping on Xξ and £ : Xξ → Xξ is completely continuous.

Proof. As Fβ(zβ+1(r̂)) ≥ 0 and Q(r̂, ζ) ≥ 0 for r̂, ζ ∈ [0, 1], we have £(z1(r̂)) ≥ 0 for
r̂ ∈ [0, 1], z1 ∈ Xξ. Applying Lemmas 1 and 2, we obtain
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min
r̂∈[ξ,1−ξ]

(£z1)(r̂) = min
r̂∈[ξ,1−ξ]

{∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

}

≥ σ(ξ)

{∫ 1

0
Q(ζ1, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

}

≥ σ(ξ)

{∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

}
≥ σ(ξ) max

r̂∈[0,1]
|£z1(r̂)|.

Thus, £(Xξ) ⊂ Xξ. In light of this, the operator £ is fully continuous according to the
Arzela–Ascoli theorem.

The following theorems are key tools for the existence of positive solutions:

Theorem 1 (Hölder’s [28]). For � = 1, 2, · · · , κ, and p� > 1, let h̄ ∈ Lp� [0, 1] with ∑κ
�=1

1
p�

= 1;
then, ∏κ

�=1 h̄� ∈ L1[0, 1] and ‖∏κ
�=1 h̄�‖1 ≤ ∏κ

�=1 ‖h̄�‖p� . Furthermore, if h̄ ∈ L1[0, 1] and
ḡ ∈ L∞[0, 1] then h̄ḡ ∈ L1[0, 1] and ‖h̄ḡ‖1 ≤ ‖h̄‖1‖ḡ‖∞.

Theorem 2 (Guo–Krasnoselskii [29]). Let G be a Banach space, and let N1,N2 be bounded open
subsets of G with 0 ∈ N1 ⊂ N1 ⊂ N2 and ℵ : X ∩ (N2\N1) → X (X ⊂ G is a cone) as a
completely continuous operator, such that

(i) ‖ℵz‖ ≤ ‖z‖, z ∈ X∩ ∂N1, and ‖ℵz‖ ≥ ‖z‖, z ∈ X∩ ∂N2, or
(ii) ‖ℵz‖ ≥ ‖z‖, z ∈ X∩ ∂N1, and ‖ℵz‖ ≤ ‖z‖, z ∈ X∩ ∂N2;

then, ℵ has a fixed point in X∩ (N2\N1).

Let ψ ≥ 0 be a continuous functional on a cone X, and let f > 0 and h > 0. Define
X(ψ, h) = {z ∈ X : ψ(z) < h} and Xf = {z ∈ X : ‖z‖ < f}.

Theorem 3 (Avery–Henderson [30]). If γ1 ≥ 0, γ2 ≥ 0, γ3 ≥ 0 continuous and increasing
functionals on X, γ3(0) = 0, such that, for some positive numbers h and k, γ2(z) ≤ γ3(z) ≤ γ1(z)
and ‖z‖ ≤ kγ2(z), for all z ∈ X(γ2, h), and there exist f > 0 and g > 0 with f < g < h, such
that γ3(λz) ≤ λγ3(z), for 0 ≤ λ ≤ 1 and z ∈ ∂X(γ3, g). Furthermore, if £ : X(γ2, h) → X is a
completely continuous operator, such that

(a) γ2(£z) > h, for all z ∈ ∂X(γ2, h),
(b) γ3(£z) < g, for all z ∈ ∂X(γ3, g),
(c) X(γ1, f) �= ∅ and γ1(£z) > f, for all ∂X(γ1, f),

then £ has at least two fixed points 1z, 2z ∈ P(γ2, h), such that f < γ1(
1z) with γ3(

1z) < g

and g < γ3(
2z) with γ2(

2z) < h.

Define the non-negative, increasing, continuous functional γ2,γ3, and γ1 by

γ2(z) = min
r̂∈[ξ,1−ξ]

z(r̂), γ3(z) = max
r̂∈[0,1]

z(r̂), γ1(z) = max
r̂∈[0,1]

z(r̂).
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It is obvious that for each z ∈ X, γ2(z) ≤ γ3(z) = γ1(z), and γ2(z) ≥ σ(ξ)‖z‖. Thus,
‖z‖ ≤ 1

σ(ξ)
γ2(z) for all z ∈ X. Furthermore, we observe that γ3(λz) = λγ3(z), for 0 ≤ λ ≤ 1,

z ∈ X.

3. Single Positive Radial Solution

In accordance with Guo–Krasnoselskii’s theorem, we demonstrate in this section that
problem (3) has a single positive radial solution.

For �i ∈ Lpi [0, 1], we have the following cases:

κ

∑
i=1

1
pi

< 1,
κ

∑
i=1

1
pi

= 1,
κ

∑
i=1

1
pi

> 1.

We discuss the positive radial solutions for
κ

∑
i=1

1
pi

< 1, in the following theorem:

Theorem 4. Suppose that (J1)–(J2) hold, and there exist positive constants a2 > a1 > 0,
such that

(J3) Fβ(z(r̂)) ≤ R2a2 for 0 ≤ r̂ ≤ 1, 0 ≤ z ≤ a2, where R2 =

[
r2

0
(N − 2)2 ‖Q̂‖q

κ

∏
i=1

‖�i‖pi

]−1

and Q̂(ζ) = Q(ζ, ζ)ζ
2(N−1)

2−N ,
(J4) Fβ(z(r̂)) ≥ R1a1 for ξ ≤ r̂ ≤ 1 − ξ, σ(ξ)a1 ≤ z ≤ a1, where

R1 =

[
σ(ξ)r2

0
(N − 2)2

κ

∏
i=1

��i

∫ 1−ξ

ξ
Q(ζ, ζ)ζ

2(N−1)
2−N dζ

]−1

,

then the BVP (3) has a solution (z1 , z2, · · · , zd), such that z
β

> 0, a1 ≤ ‖z
β
‖ ≤ a2, β =

1, 2, · · · , d.

Proof. Let N1 = {z ∈ ℵ : ‖z‖ < a1} and N2 = {z ∈ ℵ : ‖z‖ < a2}. For z1 ∈ ∂N2,
0 ≤ z1 ≤ a2 for r̂ ∈ [0, 1]. For ζd−1 ∈ [0, 1], and from (J3), we obtain∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd ≤

∫ 1

0
Q(ζd, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

≤ R2a2

∫ 1

0
Q(ζd, ζd)�(ζd)dζd

≤ R2a2
r2

0
(N − 2)2

∫ 1

0
Q(ζd, ζd)ζ

2(N−1)
2−N

d

κ

∏
i=1

�i(ζd)dζd.

Now, there exists q > 1, such that
κ

∑
i=1

1
pi

+
1
q
= 1. From Theorem 1, we have

∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd ≤ R2a2

r2
0

(N − 2)2 ‖Q̂‖q
κ

∏
i=1

‖�i‖pi

≤ a2.
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Similarly, for 0 < ζd−2 < 1,

∫ 1

0
Q(ζd−2, ζd−1)�(ζd−1)Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
dζd−1

≤
∫ 1

0
Q(ζd−1, ζd−1)�(ζd−1)Fd−1(a2)dζd−1

≤ R2a2

∫ 1

0
Q(ζd−1, ζd−1)�(ζd−1)dζd−1

≤ R2a2
r2

0
(N − 2)2 ‖Q̂‖q

κ

∏
i=1

‖�i‖pi

≤ a2.

Following this bootstrapping reasoning, we arrive at

(£z1)(t) =
∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

≤ a2.

As N2 = ‖z1‖ for z1 ∈ X∩ ∂N2, we obtain

‖£z1‖ ≤ ‖z1‖. (5)

Let r̂ ∈ [ξ, 1 − ξ]; then, a1 = ‖z1‖ ≥ z1(r̂) ≥ min
r̂∈[ξ,1−ξ]

z1(t) ≥ σ(ξ) ‖z1‖ ≥ σ(ξ)a1. By

(J4) and for ζd−1 ∈ [ξ, 1 − ξ], we have∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd ≥

∫ 1−ξ

ξ
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

≥ σ(ξ)
∫ 1−ξ

ξ
Q(ζd, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

≥ σ(ξ)R1a1

∫ 1−ξ

ξ
Q(ζd, ζd)�(ζd)dζd

≥ R1a1
σ(ξ)r2

0
(N − 2)2

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−d

d

κ

∏
i=1

�i(ζd)dζd

≥ R1a1
σ(ξ)r2

0
(N − 2)2

κ

∏
i=1

��i

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d dζd

≥ a1.

Similarly, for 0 < ζd−2 < 1,
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∫ 1

0
Q(ζd−2, ζd−1)�(ζd−1)Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
dζd−1

≥
∫ 1−ξ

ξ
Q(ζd−2, ζd−1)�(ζd−1)Fd−1(a1)dζd−1

≥ σ(ξ)
∫ 1−ξ

ξ
Q(ζd−1, ζd−1)�(ζd−1)Fd−1(a1)dζd−1

≥ σ(ξ)R1a1

∫ 1−ξ

ξ
Q(ζd−1, ζd−1)�(ζd−1)dζd−1

≥ R1a1
σ(ξ)r2

0
(N − 2)2

∫ 1−ξ

ξ
Q(ζd−1, ζd−1)ζ

2(N−1)
2−d

d−1

κ

∏
i=1

�i(ζd−1)dζd−1

≥ R1a1
σ(ξ)r2

0
(N − 2)2

κ

∏
i=1

��i

∫ 1

0
Q(ζd−1, ζd−1)ζ

2(N−1)
2−N

d−1 dζd−1

≥ a1.

It follows that

(£z1)(r̂) =
∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

≥ a1.

Thus, for z1 ∈ X∩ ∂N1, we have
‖£z1‖ ≥ ‖z1‖. (6)

It can be seen that 0 ∈ N1 ⊂ N1 ⊂ N2, and from (5), (6), and Theorem 2, the operator £ has
a fixed point z1 ∈ X ∩ (

N2\N1
)

and z1(r̂) ≥ 0 on (0, 1). Now, put z1 = z
d+1 , to obtain an

infinite number of solutions:

z
β
(r̂) =

∫ 1

0
Q(r̂, s)�(s)Fβ(zβ+1(s))ds, β = 1, 2, · · · , d− 1, d,

z
d+1(r̂) = z1(r̂), r̂ ∈ (0, 1).

For the cases
κ

∑
i=1

1
pi

= 1 and
κ

∑
i=1

1
pi

> 1, we have the following theorems:

Theorem 5. Suppose (J1)–(J2) hold, and there exist constants b2 > b1 > 0 with Fβ (β =
1, 2, · · · , d) satisfies (J4) and

(J5) Fβ(z(r̂)) ≤ N2b2 for 0 ≤ r̂ ≤ 1, 0 ≤ z ≤ b2, where N2 =

[
r2

0
(N − 2)2 ‖Q̂‖∞

κ

∏
i=1

‖�i‖pi

]−1

and Q̂(ζ) = Q(ζ, ζ)ζ
2(N−1)

2−N ;

then the BVP (3) has a solution (z1 , z2, · · · , zd), such that z
β
> 0, b1 ≤ ‖z

β
‖ ≤ b2, β =

1, 2, · · · , d.

Proof. The proof is similar to the proof of Theorem 4; therefore, we omit the details
here.

Theorem 6. Suppose (J1)–(J2) hold, and there exist constants c2 > c1 > 0 with Fβ (β =
1, 2, · · · , d) satisfying (J4) and
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(J6) Fβ(z(r̂)) ≤ M2c2 for all 0 ≤ r̂ ≤ 1, 0 ≤ z ≤ c2, whereM2 =

[
r2

0
(N − 2)2 ‖Q̂‖∞

κ

∏
i=1

‖�i‖1

]−1

and Q̂(ζ) = Q(ζ, ζ)ζ
2(N−1)

2−N ,

then the BVP (3) has a solution (z1 , z2, · · · , zd), such that z
β
> 0, c1 ≤ ‖z

β
‖ ≤ c2, β =

1, 2, · · · , d.

Proof. The proof is similar to the proof of Theorem 4; therefore, we omit the details
here.

Example 1. Consider the problem

�z
β
− (N − 2)2r2N−2

0
|ν|2N−2 z

β
+ �(|ν|)Fβ(zβ+1) = 0, 1 < |ν| < 3, (7)

z
β
(0) = 0, z

β
(1) = 0, (8)

where r0 = 1, N = 3, β ∈ {1, 2}, z3 = z1 , �(r̂) = 1
r̂4 ∏2

i=1 �i(r̂), �i(r̂) = �i

(
1
r̂

)
, in which

�1(t) = 2
t2+1 and �2(t) = 1√

t+2
, then �1, �2 ∈ Lp[0, 1] and ∏2

i=1 �∗i = 1√
3
. Let ξ = 1

3 , F1(z) =

F2(z) = 1 + 1
3 | sin(1 + z)|+ 1

1+z .

Q(r̂, ζ) =
1

sinh(1)

{
sinh(r̂) sinh(1 − ζ), 0 ≤ r̂ ≤ ζ ≤ 1,

sinh(ζ) sinh(1 − r̂), 0 ≤ ζ ≤ r̂ ≤ 1,

and σ(ξ) = sinh(ξ)
sinh(1) =

sinh( 1
3 )

sinh(1) = 0.2889212153. In addition,

R1 =

[
σ(ξ)r2

0
(N − 2)2

κ

∏
i=1

��i

∫ 1−ξ

ξ
Q(ζ, ζ)ζ

2(N−1)
2−N dζ

]−1

≈ 2.932844681.

Let p1 = 2, p2 = 3 and q = 6, then 1
p1

+ 1
p2

+ 1
q = 1 and

R2 =

[
r2

0
(N − 2)2 ‖Q̂‖q

κ

∏
i=1

‖�i‖pi

]−1

≈ 4.284821634.

Choose a1 = 1
2 and a2 = 1. Then,

F1(z) = F2(z) = 1 +
1
3
| sin(1 + z)|+ 1

1 + z
≤ 4.284821634 = R2a2, 0 ≤ z ≤ 1,

F1(z) = F2(z) = 1 +
1
3
| sin(1 + z)|+ 1

1 + z
≥ 1.466422340 = R1a1, 0.1444606076 ≤ z ≤ 1

2
.

Thus, by Theorem 4, BVP (7) and (8) has at least one positive solution (z1 , z2), such that 1
2 ≤

‖z
β
‖ ≤ 1 for β = 1, 2.

4. Existence of Coupled Positive Radial Solutions

By utilizing the Avery–Henderson cone fixed-point theorem, we demonstrate in this
section that there are coupled positive solutions for (3). Denote

β1 =
σ(ξ)r2

0
(N − 2)2

κ

∏
i=1

��i

∫ 1

0
Q(ζ, ζ)ζ

2(N−1)
2−N dζ,
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β2 =
r2

0
(N − 2)2 ‖Q̂‖q

κ

∏
i=1

‖�i‖pi ,

β3 =
r2

0
(N − 2)2 ‖Q̂‖∞

κ

∏
i=1

‖�i‖pi ,

β4 =
r2

0
(N − 2)2 ‖Q̂‖∞

κ

∏
i=1

‖�i‖1.

Theorem 7. Suppose that (J1)–(J2) hold, and that there exist three positive real numbers f <
g < h with Fβ(β = 1, 2, · · · , d) satisfying

(J7) Fβ(z) >
h
β1

, h ≤ z ≤ h
σ(ξ)

,

(J8) Fβ(z) <
g
β2

, 0 ≤ z ≤ g
σ(ξ)

,

(J9) Fβ(z) >
f
β1

, f ≤ z ≤ f
σ(ξ)

,

then the BVP (3) has coupled positive solutions {(1z1 , 1z2, · · · , 1zd)} and {(2z1 , 2z2, · · · ,
2zd)} satisfying

f < γ1
(1z

β

)
with γ3

(1z
β

)
< g, β = 1, 2, · · · , d

and
g < γ3

(2z
β

)
with γ2

(2z
β

)
< h, β = 1, 2, · · · , d.

Proof. It is easy to demonstrate that £ : X(γ2, h) → X and £ are completely continuous
from (4): first, we check that the condition (a) of Theorem 3 holds; for this, we choose
z1 ∈ ∂X(γ2, h); then, γ2(z1) = minr̂∈[ξ,1−ξ] z1(r̂) = h, so h ≤ z1(r̂) for r̂ ∈ [ξ, 1 − ξ]. As
‖z1‖ ≤ 1

σ(ξ)
γ2(z1) =

1
σ(ξ)

h, we have h ≤ z1(r̂) ≤ h
σ(ξ)

, r̂ ∈ [ξ, 1 − ξ]. Let ζd−1 ∈ [ξ, 1 − ξ].
Then, by (J7), we have∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd ≥ σ(ξ)

∫ 1−ξ

ξ
Q(ζd, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

≥ σ(ξ)h

β1

∫ 1−ξ

ξ
Q(ζd, ζd)�(ζd)dζd

≥ σ(ξ)hr2
0

(N − 2)2β1

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d

κ

∏
i=1

�i(ζd)dζd

≥ σ(ξ)hr2
0

(N − 2)2β1

κ

∏
i=1

��i

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d dζd

≥ h.

Following this, we arrive at

γ2(£z1) = min
r̂∈[0,1]

∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

≥ h.

Condition (a) of Theorem 3 is proved. To prove (b), choose z1 ∈ ∂X(γ3, g). Then, γ3(z1) =
maxr̂∈[0,1] z1(r̂) = g, so that 0 ≤ z1(r̂) ≤ g for r̂ ∈ [0, 1]. As ‖z1‖ ≤ 1

σ(ξ)
γ2(z1) ≤
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1
σ(ξ)

γ3(z1) = g
σ(ξ)

, we have 0 ≤ z1(r̂) ≤ σ(ξ)2g, r̂ ∈ [0, 1]. Let 0 < ζd−1 < 1. Then,
by (J8), we have∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd ≤ σ(ξ)

∫ 1

0
Q(ζd, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

≤ σ(ξ)g

β2

∫ 1

0
Q(ζd, ζd)�(ζd)dζd

≤ σ(ξ)gr2
0

(N − 2)2β2

∫ 1

0
Q(ζd, ζd)ζ

2(N−1)
2−N

d

κ

∏
i=1

�i(ζd)dζd.

For some q > 1, we have
1
q
+

κ

∑
i=1

1
pi

= 1. From Theorem 1, we have

∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd ≤ σ(ξ)gr2

0
(N − 2)2β2

‖Q̂‖q
κ

∏
i=1

‖�i‖pi ≤ g.

It follows that

γ3(£z1) = max
r̂∈[0,1]

∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

≤ g.

Thus, (b) holds. Finally, we also check that (c) of Theorem 3 holds. Observe that z1(r̂) =
f/4 ⊂ X(γ1, f) and f/4 < f, so that X(γ1, f) �= ∅. Next, if z1 ∈ X(γ1, f), then f = γ1(z1) =

maxr̂∈[0,1] z1(r̂) = ‖z1‖ = 1
σ(ξ)

γ2(z1) ≤ 1
σ(ξ)

γ3(z1) =
1

σ(ξ)
γ1(z1) =

f
σ(ξ)

, i.e., f ≤ z1(r̂) ≤
f

σ(ξ)
for r̂ ∈ [0, 1]. Let 0 < ζd−1 < 1. Then, by (J9), we have

∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd ≥ σ(ξ)

∫ 1−ξ

ξ
Q(ζd, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

≥ σ(ξ)f

β1

∫ 1−ξ

ξ
Q(ζd, ζd)�(ζd)dζd

≥ σ(ξ)fr2
0

(N − 2)2β1

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d

κ

∏
i=1

�i(ζd)dζd

≥ σ(ξ)fr2
0

(N − 2)2β1

κ

∏
i=1

��i

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d dζd

≥ f.

Following this bootstrapping reasoning, we arrive at
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γ1(£z1) = max
r̂∈[0,1]

∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

≥ min
r̂∈[0,1]

∫ 1

0
Q(r̂, ζ1)�(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)�(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)�(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·

]
dζ3

]
dζ2

]
dζ1

≥ f.

Thus, assumption (c) of Theorem 3 holds. Hence, by Theorem 3, there exist coupled
positive solutions as mentioned in the hypothesis.

The following theorems are for the cases,
κ

∑
i=1

1
pi

= 1 and
κ

∑
i=1

1
pi

> 1, respectively:

Theorem 8. Suppose that (J1)–(J2) hold, and there exist three positive real numbers f < g < h

with Fβ(β = 1, 2, · · · , d) satisfying (J7), (J9), and

(J10)Fβ(z) <
g
β3

, 0 ≤ z ≤ g
σ(ξ)

,

then the BVP (3) has coupled positive solutions {(1z1 , 1z2, · · · , 1zd)} and {(2z1 , 2z2, · · · ,
2zd)} satisfying

f < γ1
(1z

β

)
with γ3

(1z
β

)
< g, β = 1, 2, · · · , d

and
g < γ3

(2z
β

)
with γ2

(2z
β

)
< h, β = 1, 2, · · · , d.

Proof. The proof is similar to the proof of Theorem 7; therefore, we omit the details
here.

Theorem 9. Suppose that (J1)–(J3) hold, and there exist three positive real numbers 0 < f <
g < h with Fβ(β = 1, 2, · · · , d) satisfying (J7), (J9) and

(J11)Fβ(z) <
g
β4

, 0 ≤ z ≤ g
σ(ξ)

,

then the BVP (3) has coupled positive solutions {(1z1 , 1z2, · · · , 1zd)} and {(2z1 , 2z2, · · · ,
2zd)} satisfying

f < γ1
(1z

β

)
with γ3

(1z
β

)
< g, β = 1, 2, · · · , d

and
g < γ3

(2z
β

)
with γ2

(2z
β

)
< h, β = 1, 2, · · · , d.

Proof. The proof is similar to the proof of Theorem 7; therefore, we omit the details
here.

Example 2. Consider the problem

�z
β
− (N − 2)2r2N−2

0
|ν|2N−2 z

β
+ �(|ν|)Fβ(zβ+1) = 0, 1 < |ν| < 3, (9)

z
β
(0) = z

β
(1) = 0, (10)
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where r0 = 1, N = 3, β ∈ {1, 2}, z3 = z1 , �(r̂) = 1
r̂4 ∏2

i=1 �i(r̂), �i(r̂) = �i

(
1
r̂

)
, in which

�1(r̂) = 1
r̂+2 and �2(r̂) = 3

r̂2+1 , then �1, �2 ∈ Lp[0, 1], ∏2
i=1 �∗i = 1

2 , and σ(ξ) = sinh(ξ)
sinh(1) =

sinh( 1
3 )

sinh(1) = 0.2889212153. In addition,

β1 =
σ(ξ)r2

0
(N − 2)2

κ

∏
i=1

��i

∫ 1−ξ

ξ
Q(ζ, ζ)ζ

2(N−1)
2−N dζ ≈ 0.1704829453.

Let p1 = 6, p2 = 3 and q = 2, then 1
p1

+ 1
p2

+ 1
q = 1 and

β2 =
r2

0
(N − 2)2 ‖Q̂‖q

κ

∏
i=1

‖�i‖pi ≈ 0.1255931381.

Let

F1(z) = F2(z) =

{
3.9, z ≤ 1.8,

3.9(z− 0.8)2 + z− 1.8, z > 1.8.

Choose f = 1
3 , g = 1

2 and h = 3
5 . Then,

F1(z) = F2(z) ≥ 3.519413622 =
h

β1
, z ∈

[
3
5

, 3.461 × 3
5

]
,

F1(z) = F2(z) ≤ 3.981109220 =
g

β2
, z ∈

[
0, 3.461 × 1

2

]
,

F1(z) = F2(z) ≥ 1.955229790 =
f

β1
, z ∈

[
1
3

, 3.461 × 1
3

]
.

Hence, by an application of Theorem 4, the BVP (9) and (10) has coupled positive solutions
(βz1 , βz2), β = 1, 2, such that

1
3
< max

r̂∈[0,1]

βz1(r̂) with max
r̂∈[0,1]

βz1(r̂) <
1
2

, for β = 1, 2,

1
2
< max

r̂∈[0,1]

βz2(r̂) with min
r̂∈[0,1]

βz2(r̂) <
3
5

, for β = 1, 2.

5. Uniqueness of Positive Radial Solution

We use two metrics, in accordance with Rus’ theorem [31,32], in this part, to test if
there is a unique positive solution to the BVP (3). Consider the collection of continuous,
real-valued functions defined on [0, 1]: this space is symbolised by the letter X. Take into
account the below metrics on X, for functions y, z ∈ X :

d(y, z) = max
r̂∈[0,1]

|y(r̂)− z(r̂)|; (11)

ρ(y, z) =
[∫ 1

0
|y(r̂)− z(r̂)|pdr̂

] 1
p

, p > 1. (12)

The combination (X, d) creates a complete metric space for d in (11). Then, (X, ρ) constitutes
a metric space for the value of ρ in (12). The equation expressing the connection between
the two measures on X is

ρ(y, z) ≤ d(y, z) for all y, z ∈ X. (13)
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Theorem 10 (Rus [32]). Let F : X → X be a continuous with respect to d on X and

d(Fy, Fz) ≤ α1ρ(y, z), (14)

for some α1 > 0 and for all y, z ∈ X,

ρ(Fy, Fz) ≤ α2ρ(y, z), (15)

for some 0 < α2 < 1 for all y, z ∈ X, then there is a unique y∗ ∈ X such that Fy∗ = y∗.

Denote Υ(ζ) = Q(ζ, ζ)ζ
2(N−1)

2−N ∏κ
i=1 �i(ζ).

Theorem 11. Suppose that (J1) and (J2) and the following

(J12) |Fβ(z)− Fβ(y)| ≤ K|z− y| for z, y ∈ X, for some K > 0

are satisfied. Furthermore, there are two real numbers p > 1, q > 1 satisfying 1
p +

1
q = 1, and the

following holds: [
σ(ξ)Kr2

0
(N − 2)2

]d+1[∫ 1

0
|Υ(ζ)|dζ

]d[∫ 1

0
|Υ(ζ)|qdζ

] 1
q
< 1; (16)

then the BVP (3) has a unique positive solution in X.

Proof. Let z1 , y1 ∈ X and ζn−1 ∈ [0, 1]. The Hölder’s inequality gives∣∣∣∣ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd −

∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
y1(ζd)

)
dζd

∣∣∣∣
≤

∫ 1

0
|Q(ζd−1, ζd) �(ζd)||Fd

(
z1(ζd)

)− Fd
(
y1(ζd)

)|dζd
≤

∫ 1

0
|Q(ζd, ζd) �(ζd)| K|z1(ζd)− y1(ζd)|dζd ≤ Kr2

0
(d− 2)2

∫ 1

0
|Υ(ζd)||z1(ζd)− y1(ζd)|dζd

≤ Kr2
0

(N − 2)2

[∫ 1

0
|Υ(ζd)|qdζd

] 1
q
[∫ 1

0
|z1(ζd)− y1(ζd)|pdζd

] 1
p

≤ Kr2
0

(N − 2)2

[∫ 1

0
|Υ(ζd)|qdζd

] 1
q

ρ(z1 , y1) ≤ α�1ρ(z1 , y1),

where

α�1 =
Kr2

0
(N − 2)2

[∫ 1

0
|Υ(ζd)|qdζ

] 1
q

.

Similarly, for 0 < ζd−2 < 1, we obtain∣∣∣∣ ∫ 1

0
Q(ζd−2, ζd−1)�(ζd−1)Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
z1(ζd)

)
dζd

]
dζd−1

−
∫ 1

0
Q(ζd−2, ζd−1)�(ζd−1)Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)�(ζd)Fd

(
y1(ζd)

)
dζd

]
dζd−1

∣∣∣∣
≤ Kr2

0
(N − 2)2

∫ 1

0
|Υ(ζd−1)|α1ρ(z1 , y1)dζd−1 ≤ α̂1α�1ρ(z1 , y1),

where

α̂1 =
Kr2

0
(N − 2)2

∫ 1

0
|Υ(ζ)|dζ.

Thus, we have
|Fz1(ζ)− Fy1(ζ)| ≤ α̂d

1 α�1ρ(z1 , y1);
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that is,
d(Fz1 , Fy1) ≤ α1ρ(z1 , y1), (17)

for some α1 = α̂d
1 α�1 > 0 for all z1 , y1 ∈ X, this proves (14). Next, let z1 , y1 ∈ X, and from (13)

and (17), we obtain
d(Fz1 , Fy1) ≤ α1ρ(z1 , y1) ≤ α1d(z1 , y1).

Thus, for ε > 0, select η = ε/α1, we obtain d(Fz1 , Fy1) < ε, whenever d(z1 , y1) < η, which
shows that F is continuous on X with metric d. It remains to be shown that F is contractive
on X with metric ρ. For each z1 , y1 ∈ X, and from (17), we have

[ ∫ 1

0
|(Fz1)(ζ)− (Fy1)(ζ)|pdζ

] 1
p

≤
[∫ 1

0

∣∣α̂d
1 α�1ρ(z1 , y1)

∣∣pdζ] 1
p

≤
[

Kr2
0

(N − 2)2

]d+1[∫ 1

0
|Υ(ζ)|dζ

]d[∫ 1

0
|Υ(ζ)|qdζ

] 1
q
ρ(z1 , y1);

that is

ρ(Fz1 , Fy1) ≤
[

Kr2
0

(N − 2)2

]d+1[∫ 1

0
|Υ(ζ)|dζ

]d[∫ 1

0
|Υ(ζ)|qdζ

] 1
q
ρ(z1 , y1).

From assumption (16), we have

ρ(Fz1 , Fy1) ≤ α2ρ(z1 , y1)

for some α2 < 1 and all z1 , y1 ∈ X. It follows from Theorem 10 that F has a unique fixed
point in X. Moreover, from Lemma 3, F is positive. Hence, the BVP (1) has a unique
positive solution.

Example 3. Consider the problem,

�z
β
− (N − 2)2r2N−2

0
|ν|2N−2 z

β
+ �(|ν|)Fβ(zβ+1) = 0, 1 < |ν| < 2, (18)

z
β
(0) = z

β
(1) = 0, (19)

where r0 = 1, N = 3, β ∈ {1, 2}, z3 = z1 , �(r̂) = 1
r̂4 ∏2

i=1 �i(r̂), �i(r̂) = �i

(
1
r̂

)
, in which

�1(r̂) = �2(r̂) =
r̂3√
r̂+1

. Let F1(z) =
3
2 sin(z) and F2(z) =

3
2(z+1) ; then,

|F1(z)− F1(y)| = | sin(z)− sin(y)|
103 ≤ 3

2
|z− y|

and

|F2(z)− F2(y)| = 3
2

∣∣∣∣ 1
z+ 1

− 1
y+ 1

∣∣∣∣ ≤ 3
2
|z− y|.

Thus, K = 3
2 . Let d = 2 and p = q = 2; then,[

Kr2
0

(N − 2)2

]d+1[∫ 1

0
|Υ(ζ)|dζ

]d[∫ 1

0
|Υ(ζ)|qdζ

] 1
q
≈ 0.1508078067 < 1.

Hence, as an application of Theorem 11, the BVP (18) and (19) has a unique positive radial solution.
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6. Conclusions

In this paper, we developed a theory to study the existence of single and coupled
positive radial solutions for a certain type of iterative system of nonlinear elliptic equations,
by applying Krasnoselskii’s and Avery–Henderson’s fixed-point theorems in a Banach
space. In the future, we will study the existence of positive radial solutions for an iterative
system of elliptic equations with a logarithmic nonlinear term. In addition, we will study
global existence and ground-state solutions to the addressed problem.
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Abstract: We consider a data-driven method, which combines Koopman operator theory with
Extended Dynamic Mode Decomposition. We apply this method to the hypergeometric equation
which is the Fuchsian equation with three regular singular points. The space of solutions at any of its
singular points is a two-dimensional linear vector space on the field of reals when the independent
variable is restricted to take values in the real axis and the unknown function is restricted to be a
real-valued function of a real variable. A basis of the linear vector space of solutions is spanned by the
hypergeometric function and its products with appropriate powers of the independent variable or the
logarithmic function depending on the roots of the indicial equation of the hypergeometric equation.
With our work, we obtain a new representation of the fundamental solutions of the hypergeometric
equation and relate them to the spectral analysis of the finite approximation of the Koopman operator
associated with the hypergeometric equation. We expect that the usefulness of our results will come
more to the fore when we extend our study into the complex domain.

Keywords: hypergeometric equation; Koopman operators; EDMD

MSC: 37P99; 34A45; 34M99

1. Introduction

The study of complex nonlinear dynamical systems appears in many disciplines,
such as physics, engineering, biology, social sciences, etc. The high degree of complexity
of such systems makes their analysis quite a challenge. From this point of view, data-
driven mathematical methods might be of high importance. These methods aspire to
exploit measurement data, which form a relatively small subset of the original state space.
However, they might describe the evolution of the original system, even if its dynamics are
complicated or unknown. In recent years, it seems that advances in numerical techniques
and the broader availability of data have brought data-driven methods to the forefront of
scientific research. For example, one such technique might as well be Koopman operator
theory in connection with Dynamic Mode Decomposition (DMD), and especially with
Extended Dynamic Mode Decomposition (EDMD).

Firstly, in the Koopman operator framework (initiated in [1], see also [2,3]), the cen-
tral objects are complex-valued functions defined on the state space (these functions are
called observables of the systems). The Koopman operator describes the evolution of the
observables according to the evolution of the system. This approach enables us to “lift” the
dynamical system from its original state space to new spaces spanned by observables.

The main advantage is that the Koopman operator is linear. Hence, powerful methods
from operator theory, such as spectral analysis, can be applied. The Koopman operator
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might be quite useful especially when we study in high-dimensional and strongly non-
linear systems. In these cases, the phase space is quite large and its dynamics are so
complicated that very little can be concluded about its corresponding geometrical properties.
Applications of this approach range from, among others, fluid dynamics (see [4,5]), energy
modeling in buildings (see [6]), oceanography (see [7]) and molecular kinetics (see [8]).

Despite its advantages, the Koopman operator converts a finite-dimensional system
to an infinite-dimensional linear system. In other words, we “pay” in dimensions, in
order to gain “linearity”. Being infinite-dimensional, the Koopman operator cannot be
calculated while its spectral properties are difficult to explore. In practice, this amounts to a
simplification only when one can handle the operator numerically. Consequently, the need
for numerical methods that generate finite dimensional approximations of the Koopman
operator is emerging.

In this direction, dynamic mode decomposition (DMD) (see [9,10]) and its generaliza-
tion, the extended-DMD (EDMD) have been proven very efficient. Since these methods
depend on data and rely only on least square regression, they are very easy to implement.

The EDMD method algorithm starts by choosing a finite set of observables, which is
called a dictionary. Then, we approximate the Koopman operator as a linear map on the
span of this finite set. Note that the finite-dimensional linear map which emerges in such a
case is numerically tractable. Furthermore, its spectral properties can approximate those of
the Koopman operator (see [11]).

Critical to the success of the EDMD algorithm is the appropriate choice of the dictio-
nary. The choice of a suitable dictionary significantly impacts the approximation quality of
the spectral properties of the system (see [11–13]). However, in many practical applications,
it is often not so easy to make such a selection without some prior information on the
dynamics of the system.

The Koopman operator-EDMD algorithm has been applied to several ODEs and
PDEs. For example, see [14] for an application to Burgers’ equation and the nonlinear
Scrödinger equation. Moreover, see [15] for an application to Kuramoto–Sivashinsky PDE.
In this paper, we demonstrate the use of the Koopman-EDMD method when applied to the
hypergeometric equation. The effectiveness of our approach is based on the choice of the
appropriate dictionary.

The hypergeometric equation is a linear second-order homogeneous differential equa-
tion that falls into the Fuchsian class and has three regular singular points at 0, 1, and ∞. In
this paper, we restrict the independent variable to be real and the dependent variable to be
a real−valued function of a real variable. At each singular point, there is a fundamental set
of two solutions that span the two-dimensional linear vector solution space.

Summarizing our discussion, the innovation and contribution of this paper are sum-
marized as follows: We address the trajectory approximation of a hypergeometric equation
via EDMD methods. The EDMD method gives rise to a linear system on an enhanced state
space that can approximate a given trajectory. Having data of a given trajectory in a finite
horizon allows us to construct a discrete linear system of dimension n > m, where m is
the dimension of the state space of the original nonlinear system. We demonstrate the
approximation of a single trajectory of a hypergeometric equation via EDMD methods. In
particular, we solve a hypergeometric equation in the vicinity of 0, which is one of its singu-
lar points, by using the Koopman-EDMD theory. Finally, we show that we can improve the
approximation of the solution of a hypergeometric equation in the vicinity of 0, by using
successive trajectory reconstruction via Koopman-EDMD theory with moving horizon.

The EDMD method is data-driven. Consequently, depending on a suitable choice, the
method can be applied to any dynamical system for which probably the dynamical law is
unknown and data, in the form of time series, can be collected for some of its trajectories in
the state space. Moreover, our approach can be used for any nonlinear dynamical system
with known dynamics. However, in such a case a linearization of the dynamics via the
EDMD method may be required in order, for example, to study the control theory of this
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linearized system; the control theory of linear systems is much better understood than the
control theory of nonlinear systems.

The rest of the paper is organized as follows. In Section 2, we briefly present some
basic facts about the Koopman operator theory and EDMD method. In Section 3, we
give an example of a hypergeometric equation and its exact solution via hypergeometric
series. In Section 4, we solve the hypergeometric equation in the interval (−0.9,−0.001)
via Koopman-EDMD theory. In Section 5, we solve the hypergeometric equation in the
interval (0.2, 1) via Koopman-EDMD theory. In Section 6, we present a successive trajectory
reconstruction via Koopman-EDMD theory with a moving horizon. Finally, Section 7
contains our conclusions about this paper.

2. Koopman Operator and EDMD

Koopman operator theory has been extensively used in the analysis, prediction, and
control of nonlinear dynamical systems. To define this class of operators, we start with a
continuous dynamical system M, f , where M is the state space (usually a manifold in Rn)
and f is the evolution map. The system is described by the differential equation ẋ = f (x).
We also denote by Φt(x0) the flow map, which is defined as the state of the system in time t
when the initial condition is x0.

In the literature of Koopman operators, complex-valued functions g : M → C defined
on M are called observables of the system (M, f ). We now consider a function space F of
observables which is closed under composition with the flow map. This means that g ◦ Φt
belongs to F whenever g ∈ F . (In many applications, F is the space L2(M) of complex
valued square integrable functions on M. However, other function spaces can also be
considered.) Then, for any t ≥ 0, the operator Kt : F → F is defined by Kt(g) = g ◦ Φt.
The term Koopman operator usually refers to the whole class of operators, i.e., K = (Kt)t≥0.
The linearity of composition implies that Kt is a linear operator for any t ≥ 0.

In a similar way, the Koopman operator can be defined for discrete dynamical sys-
tems, which, in some sense, are more natural. Indeed, in many practical applications, the
differential equations that describe the evolution of the system are completely unknown
and we have only measurement data that are provided in discrete time. So, let us assume
that we are given a discrete system, xk+1 = f (xk), where xk belongs to the state space M.
The Koopman operator is defined as the composition of any observable with the evolution
map f . Thus, K : F → F is given by K(g) = g ◦ f , for any g ∈ F . (Again, F is a function
space of observables closed under composition with f ).

By its definition, the Koopman operator updates every observable according to the
evolution of the dynamical system. A new system (F ,K) is defined which is a global
linearization of the original system (M, f ) (i.e., it does not hold only to the area of some
attractor or fixed point). Furthermore, many properties of (M, f ) can be related to the
eigenstructure of K (see [16]). Consequently, one can utilize tools from functional analysis
and operator theory in order to study the system (M, f ) even if this is a nonlinear one.

The main advantage of the Koopman operator is its linearity. However, it is infinite-
dimensional and, except in some cases, we can calculate neither the operator nor its
eigenstructure. In order to address the problems that infinite dimensionality poses, we have
to look for finite-dimensional linear approximations of the Koopman operator. Towards
this direction, the Dynamic Mode Decomposition (DMD) and, mainly, its generalization
the Extended Dynamic Mode Decomposition (EDMD) have been proven very successful.

Extended Dynamic Mode Decomposition (EDMD)

We next give a brief description of the EDMD algorithm. The first step is to fix a set
of observables {g1, g2, . . . , gp}, which is usually called a dictionary. In the case of DMD
(Dynamic Mode Decomposition), we use only the observables gi(x) = xi, for i = 1, 2, . . . , n.
On the contrary, in EDMD any observable can be chosen. In this way, we construct an
augmented state space and; hence, EDMD gives better approximation properties than
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DMD. The augmented state space is denoted by M and its elements are denoted by
y = [g1(x), . . . , gp(x)]T .

The second step involves data collection. To this end, we consider a trajectory of the
original system with some initial condition x0 and some finite time horizon T. Then, we
collect sampling points at a fixed time interval ΔT (although, uniform sampling is not
mandatory and one can apply other sampling methods). Therefore, we consider n0 = T

ΔT
points in this trajectory, which are denoted by (xs)

n0
s=0. These points generate data (ys)

n0
s=0

in the augmented space M. Finally, the data are organized in data matrices as follows

Y[0,n0−1] =
[
y0, y1, . . . , yn0−1

]
and Y[1,n0]

= [y1, y2, . . . , yn0 ].

The last step is to obtain a p × p matrix A (using, for instance, least square regression
methods) such that Y[1,n0]

∼ AY[0,n0−1]. Therefore,

A = argmin
Ã∈Rp×p

∥∥∥Y[1,n0]
− ÃY[0,n0−1]

∥∥∥,

where ‖ · ‖ is some matrix norm.
The procedure described above can be applied to several trajectories. Hence, we may

fix k trajectories and, following the previous steps, we obtain data matrices Yj[0,n0−1] and
Yj[01,n0]

for every j = 1, 2, . . . , k. In this case, the matrix A is chosen such that

A = argmin
Ã∈Rp×p

k

∑
j=1

∥∥∥Yj[1,n0]
− ÃYj[0,n0−1]

∥∥∥.

Consequently, A is a best-fit matrix that relates the two data matrices in every tra-
jectory. The matrix A generates a finite-dimensional linear system that advances spatial
measurements from one time to the next and it provides approximations to the Koopman
operator and to the original nonlinear system.

One of the main advantages of EDMD is that it is a purely data-driven method.
Therefore, there is actually no restriction to its applicability and it can be utilized even if
the dynamics of the system are completely unknown. However, the success of this method
depends on the a priori chosen dictionary. In many problems, the most difficult part is to
choose a dictionary that will give good approximations. There is no generic algorithm for
this problem, however, some recent studies use artificial intelligence methods in order to
“train” the dictionary (see [15,17]).

3. An Example of Hypergeometric Equation and Its Exact Solution via
Hypergeometric Series

We consider the hypergeometric equation

t(t − 1)
d2x
dt2 + (2t − 1)

dx
dt

+ x = 0, (1)

with initial conditions t = −0.9, x(−0.9) = 0.1, dx
dt

∣∣∣
t=−0.9

= 1. The solution of the

complexification of (1) with the aforementioned initial conditions is given by

(−16.9355 + 11.3861i)
(

LegendreP
(

1
2

i
(

i +
√

3
)

,−1 + 2t
)

+

(0.00524496 − 0.649963i)LegendreQ
(

1
2

i
(

i +
√

3
)

,−1 + 2t
))

(2)

where LegendreP denotes the Legendre function of the first kind and LegendreQ denotes
the Legendre function of the second kind. Figure 1 depicts the plot of the real part of the
solution (2). We observe that the solution has vertical asymptotes at the singular points
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t = 0, t = 1 of (1). In the next section, we numerically integrate (1) and reproduce the
solution of (1) in the connected interval t ∈ (−0.9,−0.001).

Figure 1. Graph of the real part of the solution (2).

4. Solving the Hypergeometric Equation in the Interval (−0.9,−0.001) via
Koopman-EDMD Theory

We numerically integrate

t(t − 1)
d2x
dt2 + (2t − 1)

dx
dt

+ x = 0,

with initial conditions t = −0.9, x(−0.9) = 0.1, dx
dt

∣∣∣
t=−0.9

= 1 in the interval t ∈
(−0.9,−0.001). Subsequently, we sample the trajectory with a time step Δt = 0.01. Figure 2
depicts the graph of the sampled points showing the asymptotic trend at t = 0.

Figure 2. The graph of the sampled points of the hypergeometric Equation (1).
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We then apply EDMD interpolation, as described in Section 2, using a dictionary
of 4 observables, namely x, 1

x , tx, t
x . The EDMD algorithm provides the following

4 × 4 transition matrix⎡⎢⎢⎣
1.08228 0.401294 0.145089 0.131762

0.00886136 1.01576 −0.00552547 −0.00574604
0.0075471 −0.35145 0.628826 −0.252387
−0.0127506 0.332983 0.354283 1.23706

⎤⎥⎥⎦
The above matrix has 4 eigenvalues, two of which are real and the other two are

complex numbers. In particular, the eigenvalues are

1.11249, 0.987529 + 0.00693293i, 0.987529 − 0.00693293i, 0.876376.

Figure 3 shows the position of these eigenvalues in the complex plane.

Figure 3. The eigenvalues of the EDMD transition matrix depicted in the complex plane.

The above matrix gives rise to a (finite-dimensional) linear dynamical system, whose
trajectory (for the specific initial conditions) approximates the real trajectory. The compar-
ison between the two trajectories approximated (orange line) and real data (blue line) is
shown in Figure 4. Despite the low dimensions of this approximation, the Koopman-EDMD
curve approximates well the given data away from the singularity at t = 0 and fails to do
so near t = 0. It is possible to considerably improve the approximation by augmenting the
dictionary both quantitatively and qualitatively.

Improving the Trajectory Approximation via Koopman-EDMD Theory

We follow on by augmenting the dictionary and repeating the trajectory approxima-
tion via EDMD. The dictionary that produces the best results and at the same time the
dimension of the augmented space is kept comparatively low (equal to 5) is given by
x, 1

x , tx, t
x , xt15. The comparison between the real trajectory and the approximation pro-

vided by the EDMD algorithm is presented in Figure 5. We notice that the approximation
is significantly improved.
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Figure 4. The real data (blue line) and the approximate trajectory (orange line).

Figure 5. Comparison between the real trajectory (blue line) and the trajectory (orange line) given by
the EDMD algorithm with a dictionary of five observables.

The matrix provided by the EDMD algorithm is now given by⎡⎢⎢⎢⎢⎣
1.08292 0.387515 0.126814 0.119021 1.67268

0.00887233 1.01553 −0.00583752 −0.0059636 0.0285622
0.0162179 −0.537512 0.382055 −0.424438 22.5875
−0.0213778 0.518112 0.599816 1.40825 −22.4742

−0.0000448427 0.00187752 0.00186914 0.00143044 0.799134

⎤⎥⎥⎥⎥⎦
This matrix has two complex eigenvalues and three real eigenvalues, namely

1.11308, 0.986969 + 0.00680815i, 0.986969 − 0.00680815i, 0.901002, 0.699867.

Their positions in the complex plane are depicted in Figure 6.
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Figure 6. Eigenvalues of the 5 × 5 matrix produced by the EDMD methodology.

5. Solving the Hypergeometric Equation in the Interval (0.2, 1) via
Koopman-EDMD Theory

Figure 7 shows the plot of the real part of the solution (2) in the interval [0, 1] (this is
also depicted in Figure 1).

Figure 7. Graph of the real part of the solution (2) in the interval [0, 1].

This solution has vertical asymptotes at the singular points of (1), that is, at t = 0, t = 1.
We are going to numerically integrate (1) and reproduce the solution of (1) by Koopmman-
EDMD theory in the connected interval (0.2, 1).

We approximate this solution in the interval (0.2, 1) by using the EDMD basis x, 1
x , tx, t

x ,
xt0.1. The five-dimensional discrete linear system obtained this way approximates satisfac-
torily the trajectory in the interval (0.2, 1) as shown in Figure 8.
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Figure 8. Comparison between approximated (orange line) and real data (blue line) in the inter-
val (0.2, 1).

The EDMD matrix is given by⎡⎢⎢⎢⎢⎣
8.03736 3.0825 5.23571 6.45347 −10.0906
7.37378 4.18128 5.39554 6.58341 −10.5197

−0.0144556 −0.00620308 0.978249 0.00396585 0.0199957
−0.00137726 −0.00686054 −0.020928 0.975436 0.00765612

7.15414 3.10723 5.294 6.46348 −9.23167

⎤⎥⎥⎥⎥⎦
which has the following eigenvalues

1.10972, 0.984838 + 0.0194333i, 0.984838 − 0.0194333i, 0.959174, 0.902077.

6. Successive Trajectory Reconstruction via Koopman-EDMD Theory with
Moving Horizon

We apply EDMD trajectory reconstruction for t ∈ (0, 1) of the real part of the solution
(2) of the differential Equation (1) whose graph is depicted in Figure 1.

We consider a four-dimensional EDMD basis consisting of x, 1
x , tx, t

x , and we cover
the interval [0.05, 0.95] with 14 overlapping windows each of which contains 41 sample
points of the hypergeometric solution. We then apply 14 EDMD computations for the
14 moving windows and produce 14 approximating trajectories as well as an equal number
of EDMD matrices. The errors between these approximations compared to the real data
and measured by the l2 (Euclidean) norm for all 14 horizons are depicted in Figure 9 and,
thus, the approximation is considered very satisfactory.

The 14 successive approximating trajectories to the hypergeometric solution (2) of
Equation (1) which cover the interval [0.05, 0.95] are given by

Px An
k xok = a1kλn

1k + a2kλn
2k + a3kλ

n
2k + a4kλn

4k, (3)

where k = 0, . . . , 14 enumerates the 14 EDMD computations for the 14 moving windows
and the resulting approximating trajectories, n = 0, . . . , 40 enumerates the 41 sample points
at each window, xok is a 4 × 1 vector of initial conditions for the basis functions x, 1

x , tx, t
x ,

for each one of the EDMD computations, Ak is the 4 × 4 EDMD matrix for each of the
moving windows, Px is the 1 × 4 projection matrix to the one-dimensional space spanned
by x, λ2k is the complex conjugate of λ2k, λ1k, λ2k, λ2k, λ4k are the eigenvalues of the
matrices Ak, and a1k, a2k, a3k, a4k are real coefficients. In the three diagrams of Figure 10, we
depict from left to right the real eigenvalue λ1k, which is the largest, versus k, the modulus
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|λ2k| = |λ2k| of the complex conjugate eigenvalues λ2k, λ2k, which are the intermediate,
versus k, and the real eigenvalue λ4k, which is the smallest, versus k. It becomes evident
from the diagrams that the largest real eigenvalue λ1k dominates in the approximating
trajectory at the vicinity of the t = 1 asymptote.

Figure 9. Errors between the 14 EDMD approximating trajectories and real data measured by the l2
(Euclidean) norm.

Figure 10. The graph of (a) the largest real eigenvalue; (b) the modulus of the complex conjugate
eigenvalues; (c) the smallest real eigenvalue versus k.

7. Conclusions

The hypergeometric equation is a linear second-order homogeneous differential equa-
tion that falls into the Fuchsian class and has three regular singular points at 0, 1, and ∞.
The solution space of the hypergeometric equation is two-dimensional with basis vectors
hypergeometric series. We present an alternative data-driven method in order to solve the
hypergeometric equation. This method, the Koopman-EDMD method, whose popularity
has increased over the last years, does not use power series but it uses instead a basis
of functions, remarkably 4 or 5. The Koopman-EDMD method is data-driven and we
use it in order to approximate a trajectory of the hypergeometric equation at hand in the
vicinity of 0 which is one of its singular points. Having data of a given trajectory in a finite
horizon allows us to construct with the Koopman-EDMD theory a discrete linear system of
dimension n > m, where m = 2 is the dimension of the state space of the hypergeometric
equation. In our approach, we have n = 4 or n = 5 depending on how accurate we want to
be the approximation to the real trajectory of the hypergeometric equation. It is noteworthy
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that we approximate with great accuracy the real trajectory of the hypergeometric equation
by a small increase in the number of dimensions of the state space (2 is increased only
to 4 or 5 in the Koopman-EDMD theory. The Koopman-EDMD theory can be used as
an alternative theory in order to study the solution space of both ordinary differential
equations and of partial differential equations. Our results are amenable for application
and generalization to these other cases of differential equations as well.
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Abstract: The mechanical behaviour of materials can be described by a phenomenological relationship
that binds strain to stress, by the complex modulus function: M(ω), which represents the frequency
response of the medium in which a transverse mechanical wave is propagated. From the experimental
measurements of the internal friction obtained when varying the frequency of a transverse mechanical
wave, the parameters that characterize the complex module are determined. The internal friction
or loss tangent is bound to the dissipation of the specific mechanical energy. The non-equilibrium
thermodynamics theory leads to a general description of irreversible phenomena such as relaxation
and viscosity that can coexist in a material. Through the state variables introduced by Ciancio and
Kluitenberg, and applying the fractional calculation due to a particular memory mechanism, a model
of a viscoanelastic medium is obtained in good agreement with the experimental results.

Keywords: viscoanelastic media; derivative fractional; state variables; reologic coefficients; internal
friction; differential evolution

1. Introduction

In the second half of the 20th century, a theory was proposed for the study of me-
chanical [1–16] and electromagnetic [17–21] phenomena in continuous media which is
based on the general methods of non-equilibrium thermodynamics. In the hypothesis that
different microscopic phenomena produce inelastic strains (instance slip, dislocation) and
effects similar to the flow of ordinary viscous fluids, the entropy is characterized by internal
energy and inelastic strain tensors; then the expression of entropy production obtained
characterizes the state of non-equilibrium. Zener conducted experimental investigations
on the mechanical behaviour of solids subject to the action of given stress [22]. In par-
ticular, by carrying out measurements of internal friction they were able to describe the
process of relaxation due to the anelasticity media. The proposed anelastic media were
only valid for some frequency values. Many years later, Caputo and Mainardi proposed
a model of viscoanelastic media using Caputo’s fractional derivative [23,24]. This is an
integral operator whose kernel represents the memory effect. Viscoelastic media have
been studied in the field of finite strains by Coleman and Noll [25,26]. An extension of the
many viscoelastic models to the fractional calculation have been resumed as in [27]. In the
case of elastic and viscoelastic means this effect is evanescent [28]. The Caputo–Mainardi
model is very different at low frequencies from the experimental values. Concurrently
with the study of systems with memory, fractional calculus theory has been developed and
has been used in several applications, allowing a greater physical understanding of the
problems. In particular, the use of local fractional derivatives [29–34] has made it possible
to obtain models in good agreement with the experimental data highlighting, in relation
to the physical problem studied, the dependence of the order of local fractional deriva-
tion from the processes of relaxation in the media with memory. To obtain a mechanical
representation consistent with the description of the relaxation processes valid for many
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solid viscoanelastic materials and over a wide range of frequencies, in Section 2, from
thermodynamic considerations of non-reversible processes synthesized in the definition
of specific entropy and total strain tensor for small field displacements, the rheological
equation is derived. The rheological equation allows the stress tensor to be determined
by means of internal variables and phenomenological coefficients, when the strain tensor
resulting from the displacement field and the rheological coefficients are known, the latter
obtained by experimental measurements. In Section 3, from the rheological equation re-
lating to viscoanelastic media, passing into the Laplace transform domain, a mechanical
representation with four parameters is obtained, where the components of the model,
responsible for the relaxation process, are characterized through two relaxation times, one
due to the viscosity understood in solids as slipping of crystalline planes and the other due
to the inelasticity. To evaluate the memory effect, we consider relaxation times expressible
by means of real exponentials. For this purpose, in Section 4, in the rheological equation
we use the Caputo fractional derivative to obtain a four-parameter fractional model. As
pointed out by Berry, impurities and defects in the crystal lattice cause more relaxation
processes independent of each other. In Section 5, the fractional model is extended to two
relaxation processes, resulting in an eight-parameter model. Using the Zener experimental
curves in tabular form, in Section 6, we show the results obtained for aluminium, brass and
steel in relation to the eight-parameter model by applying the differential evolution (DE)
algorithm. Unlike other works on viscoelastic media [35], we have taken into consideration
the DE algorithm to determine the parameters of the fractional model of viscoanelastic
media, the latter consistent with the principles of thermodynamics.

2. The Rheological Equation

If both elastic and inelastic deformations occur, for index α, β ∈ {1, 2, 3}, we have:

εαβ = ε
(0)
αβ + ε

(1)
αβ (1)

where εαβ is the tensor of total strain and ε
(0)
αβ and ε

(1)
αβ are tensors describing the elastic and

inelastic strain, respectively. Therefore the entropy will depend on the internal energy u,
on the εαβ. Hence [5–7]:

s = s
(

u, εαβ, ε
(1)
αβ

)
(2)

where s is specific entropy and u is internal energy. The temperature is:

T−1 =
∂

∂u
s
(

u, εαβ, ε
(1)
αβ

)
(3)

and we define the equilibrium-stress tensor:

τ
(eq)
αβ = −ρT

∂

∂εαβ
s
(

u, εαβ, ε
(1)
αβ

)
(4)

and
τ
(1)
αβ = ρT

∂

∂ε
(1)
αβ

s
(

u, εαβ, ε
(1)
αβ

)
(5)

where ρ is the mass density and we will call τ
(1)
αβ the affinity stress tensor conjugate to ε

(1)
αβ .

By using Equations (3)–(5) from (1) we obtain the differential ds of s:

Tds = du − ντ
(eq)
αβ dεαβ + ντ

(1)
αβ dε

(1)
αβ (6)
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where ν = ρ−1 is the specific volume (volume for unit of mass). Relation (6) is called the
Gibbs relation in which the usual summation convention for the dummy index is used. In
the following we will use the deviator Ãαβ of an arbitrary tensor field Aαβ, ie:

Ãαβ = Aαβ − A (7)

where
A =

1
3

Aαα =
1
3
(A11 + A22 + A33) (8)

and the specific free energy f :
f = u − Ts (9)

From (3) and (6) we have:

d f = −sdT + ντ
(eq)
αβ dεαβ − ντ

(1)
αβ dε

(1)
αβ (10)

and, hence:

τ
(eq)
αβ = ρ

∂

∂εαβ
f
(

u, εαβ, ε
(1)
αβ

)
(11)

τ
(1)
αβ = −ρ

∂

∂ε
(1)
αβ

f
(

u, εαβ, ε
(1)
αβ

)
(12)

Assuming that the strains are small from a geometrical point of view:

εαβ =
1
2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
(13)

where uα are the components of the displacement field and the stress tensors τ
(eq)
αβ and τ

(1)
αβ

are linear functions of the strain tensors and of temperature; we suppose that f has the
form [6,7]:

f = ν0 ·
{

f (a)
(

ε̃αβ, εαβ, ε
(1)
αβ

)
+ f (b)

(
ε̃αβ, εαβ, ε

(1)
αβ

)
+ 3(T − T0)

(
c(0)εαβ − c(1)ε(1)αβ

)}
− ψ(T) (14)

where
f (a)

(
ε̃αβ, εαβ, ε

(1)
αβ

)
=

1
2

a(0,0) ε̃αβ

(
ε̃αβ − 2ε

(1)
αβ

)
+

1
2

a(1,1)
(

ε̃
(1)
αβ

)2
(15)

f (b)
(

ε̃αβ, εαβ, ε
(1)
αβ

)
=

1
2

b(0,0)εαβ

(
εαβ − 2ε

(1)
αβ

)
+

3
2

b(1,1)
(

ε
(1)
αβ

)2
(16)

In (14) the strain is measured with respect to a reference state, ν0 is specific volume,
T0 is the temperature of the media in the reference state and a(0,0), a(1,1), b(0,0), b(1,1),
c(0), c(1) are scalar constants [6–9]. Finally, ψ(T) is same function of the temperature.
Using (11) and (12) from (14) one obtains the following expression for the deviators of
tensors τ̃

(eq)
αβ and τ̃

(1)
αβ :

τ̃
(eq)
αβ = a(0,0) ε̃

(0)
αβ (17)

τ̃
(eq)
αβ = a(0,0) ε̃αβ − a(1,1) ε̃

(1)
αβ (18)

Making τ̃αβ the mechanical stress tensor which occurs in the equation of motion and

in the first law of thermodynamics, the viscous stress tensor τ̃
(vi)
αβ is defined by:

τ
(vi)
αβ = ταβ − τ

(eq)
αβ (19)
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Furthermore, we introduce [9] the following flow laws for slicer phenomena in
isotropic media:

d
dt

ε̃
(1)
αβ = η

(1,1)
s τ̃

(1)
αβ + η

(1,0)
s

d
dt

ε̃αβ (20)

τ
(vi)
αβ = η

(0,1)
s τ̃

(1)
αβ + η

(0,0)
s

d
dt

ε̃αβ (21)

The scalar η
(i,j)
s (i, j = 0, 1) are called phenomenological coefficients.

Using (2) and (19) one may eliminate ε̃
(0)
αβ , ε̃

(1)
αβ , τ̃

(eq)
αβ , τ̃

(1)
αβ , and τ̃

(vi)
αβ , from the Equations

of state (17) and (18) and the phenomenological Equations (20) and (21) one has:

R(τ)
(d)0τ̃αβ +

d
dt

τ̃αβ = R(ε)
(d)0ε̃αβ + R(ε)

(d)1
d
dt

ε̃αβ + R(ε)
(d)2

d2

dt2 ε̃αβ (22)

where
R(ε)
(d)0 = a(1,1)η

(1,1)
s (23)

R(ε)
(d)0 = a(0,0)

(
a(1,1) − a(0,0)

)
η
(1,1)
s (24)

R(ε)
(d)1 = a(0,0)

(
1 + 2η

(0,1)
s

)
+ a(1,1)

{
η
(0,0)
s η

(1,1)
s +

(
η
(0,1)
s

)2
}

(25)

R(ε)
(d)2 = η

(0,0)
s (26)

3. Mechanical Representation of the Viscoanelastic Media According to the
Ciancio–Kluitenberg Model

Several mechanical representations of the media have been given regarding the binding
between stress and deformation [29]. In this section, we apply the Ciancio–Kluitenberg
theory to the problem of determining the deformation to which a viscoanelastic medium is
subject under the action of a stress. Subsequently we provide a mechanical representation
of the viscoanelastic medium in a Laplace domain. For elastic materials, the binding
between the strain deviator tensor ε̃αβ and the stress one τ̃αβ is of the type:

ε̃αβ(k, ω) = −M0τ̃αβ(k, ω) (27)

where Equation (27) represents the equivalent Hooke’s law and M−1
0 = cost.te is the elastic

constant that depends on the material and is a real number. In the case of anelastic, vis-
coelastic, and viscoanelastic material, the constitutive binding between the strain deviator
tensor ε̃αβ and the stress tensor τ̃αβ is of the type:

ε̃αβ(k, ω) = (M(ω)−M0)τ̃αβ(k, ω) (28)

where M(ω) is the complex modulus, while M̃(ω) = M(ω)−M0 is the non-elastic com-
ponent of the complex modulus at the ω angular frequency produced by the displacement
field uα with α = 1, 2, 3:

εαβ = ε̃αβ =
1
2

(
∂xβ

uα + ∂xα uβ

)
(29)

Considering small displacements, the substantial derivative coincides with the
local one:

d
dt

= ∂t

The rheological equation of a viscoanelastic medium for Equation (22) becomes:

R(τ)
(d)0τ̃αβ + ∂tτ̃αβ = R(ε)

(d)0ε̃αβ + R(ε)
(d)1∂t ε̃αβ + R(ε)

(d)2∂2
tt ε̃αβ (30)
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where the parameters R(τ)
(d)0, R(ε)

(d)0, R(ε)
(d)1, and R(ε)

(d)2 are the reological coefficients. There-
fore the Ciancio–Kluitenberg model characterizes a single relaxation process with four
parameters, i.e., the four rheological coefficients.

Transforming both members of Equation (30) according to Laplace we obtain:

R(τ)
(d)0τ̃∗

αβ + sτ̃∗
αβ = R(ε)

(d)0ε̃∗αβ + sR(ε)
(d)1ε̃∗αβ + s2R(ε)

(d)2ε̃∗αβ (31)

where
τ̃∗

αβ =
∫ ∞

0
τ̃αβe−st dt (32)

ε̃∗αβ =
∫ ∞

0
ε̃αβe−st dt (33)

rearranging the terms present in the Equation (31), we obtain

ε̃∗αβ(s) =

⎛⎝ R(τ)
(d)0 + s

R(ε)
(d)0 + sR(ε)

(d)1 + s2R(ε)
(d)2

⎞⎠τ̃∗
αβ(s) (34)

that we rewrite as:

ε̃∗αβ(s) =

⎛⎝R(τ)
(d)0

R(ε)
(d)0

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 + s

⎛⎝ 1

R(τ)
(d)0

⎞⎠
1 + s

⎛⎝R(ε)
(d)1

R(ε)
(d)0

⎞⎠+ s2

⎛⎝R(ε)
(d)2

R(ε)
(d)0

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
τ̃∗

αβ(s) (35)

It is observed that by placing:

t1 =

⎛⎝ 1

R(τ)
(d)0

⎞⎠ (36)

t2 =

⎛⎝ M0

R(ε)
(d)0

⎞⎠ (37)

M0 =
[

R(ε)
(d)1

]−1
(38)

ω2
0 =

M0

t2R(ε)
(d)2

(39)

Equation (35) becomes:

ε̃∗αβ(s) = M0

(
t2

t1

)⎛⎜⎜⎜⎝ 1 + t1s

1 + t2s +
(

s
ω0

)2

⎞⎟⎟⎟⎠τ̃∗
αβ(s) (40)

From the comparison with Equation (28), we obtain:

M(ω) = M0

⎛⎜⎜⎜⎝1 +
(

t2

t1

)⎛⎜⎜⎜⎝ 1 + t1s

1 + t2s +
(

s
ω0

)2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ (41)
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Figure 1 shows the mechanical representation of viscoanelastic media in the Laplace
domain. Here, we observe how the spring, compliance, and resistance have the electrical
equivalent of resistance, capacitance, and inductance, respectively. R

′
and R

′′
represent

the parameters that characterize the elastic component of the medium, indicated with the
spring symbol, C represents the compliance denoted by means of the vibration damper,
and L represents the resistance that opposes the medium to deformation. All parameters

are constant: t1 =
L
R′ , t2 = R′C , ω0 =

1√
LC

, M0 = R
′′

and M0

(
t2

t1

)
= R

′

where ε̃∗αβ(s) = ε = ε
′
+ ε

′′
and τ̃∗

αβ(s) = τ̃∗ = τ̃∗′ + τ̃∗′′ . If L = 0 and R
′′
= 0 then the

mechanical representation coincides with that of a viscoelastic medium, where the viscosity
part is given by compliance C and the elastic part is given by R

′
. Hence the anelastic part is

characterized by branch R
′
+ Ls, whereas the viscosity part is characterized by branch 1/Cs.

Figure 1. Mechanical representation of the viscoanelastic medium. Ciancio–Kluitenberg model.

4. Fractional Rheological Model with Four Parameters of a Viscoanelastic Medium for
a Single Relaxation Process

It is experimentally verifiable that, with the passage of time, the elastic or viscoelastic
material tends to forget its more remote history; that is the deformations to which it has been
subjected in the past tend to have less and less influence on the current deformation [28].
In viscoanelastic media the memory effect is permanent. From a mathematical point of
view, this implies that relaxation time is a power of fractional order. It is preferred not to
proceed with the dimensionless method, as in [36], to highlight that relaxation time is a real
power of fractional order. From Ciancio–Kluitenberg’s theory and fractional calculation,
we obtain the following rheological equation:

R(τ)
(d)0τ̃αβ + ∂

γ
t τ̃αβ = R(ε)

(d)0ε̃αβ + R(ε)
(d)1∂

γ
t ε̃αβ + R(ε)

(d)2∂
2γ
tt ε̃αβ (42)

where ∂
γ
t (·) is fractional derivative of order γ with respect to time and 0 < γ ≤ 1. From a

physical point of view it is natural to apply the fractional derivative of Caputo [23] that
characterizes the means with memory in which the relaxation process is observed:

C∂
γ
t f (x, t) =

1
Γ(1 − γ)

∫ t

0

∂w f (x, w)

(t − w)γ
dw (43)

Applying the Fourier transform to the rheological Equation (42), we obtain:

ε̃αβ(k, ω) = M0

(
t2

t1

)(
1 + t1(−iω)γ

1 + t2(−iω)γ + (−iω/ω0)2γ

)
τ̃αβ(k, ω) (44)
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From comparison with the constitutive Equation (28), the complex module is obtained:

M(ω) = M0

(
1 +

(
t2

t1

)(
1 + t1(−iω)γ

1 + t2(−iω)γ + (−iω/ω0)2γ

))
(45)

Identification of rheological parameters:

• R(τ)
(d)0 =

1
t1

, depends on the stress time constant t
′
1 , with:

t
′
1 = (t1/2π)γ

• R(ε)
(d)0 =

M0

t2
, depends on the stress relaxation time t

′
2 , with:

t
′
2 = (t2/2π)γ

•
[

R(ε)
(d)1

]−1
= M0, coincides with the complex module due to the impulsive stress

applied at the initial instant.

• R(ε)
(d)2 =

M0

t2ω
2γ
0

, depends on natural angular frequency ω0

We observe how the rheological coefficients depend on the characteristic parameters,
i.e., by relaxation time due to the stress and deformation, respectively, and natural angular
frequency. Determining the parameters experimentally it will therefore be possible to
obtain the values of state variables.

5. Fractional Rheological Model with Eight Parameters of a Viscoanelastic Medium for
Two Single Relaxation Processes

Although the behaviour of viscoanelastic media can be described using models de-
veloped by Zener [37] and other authors such as Caputo and Mainardi [24], they present
a significant discrepancy with experimental values of internal friction (IF) [38–40]. This
discrepancy can be reduced by considering the presence of several independent relaxation
processes that also take into account the impurity of materials at the microscopic level due
to the presence of defects in the crystalline lattice or different atomic configuration charac-
teristics of other materials. It is natural to think of an extension of the theory by applying
the principle of superposition to n relaxation processes [40]. Applying the principle of
superposition in the case of n relaxation processes, we obtain:

M(ω)

M0
= 1 +

m

∑
q=1

(
t2,q

t1,q

)(
1 + t1,q(−iω)γq

1 + t2,q(−iω)γq + (−iω/ω0,q)
2γq

)
(46)

a model with 4m parameters. For m = 2, i.e., with two relaxation processes, we obtain a
rheological model with eight parameters (Figure 2):

p = [t1,1, t2,1, γ1, ω0,1, t1,2, t2,2, γ2, ω0,2]

where t11 =
L1

R′
1

, t21 = R
′
1C1 , ω01 =

1√
L1C1

, M0

(
t21

t11

)
= R

′
1 , t12 =

L2

R′
2

, t22 =

R
′
2C2 , ω02 =

1√
L2C2

, M0

(
t22

t12

)
= R

′
2 , M0 = R

′′

with ε̃∗αβ(s) = ε = ε
′
1 + ε

′
2 + ε

′′
and τ̃∗

αβ(s) = τ̃∗ = τ̃∗′
1 + τ̃∗′′

1 = τ̃∗′
2 + τ̃∗′′

2 . The eight
parameters, four for each of the two relaxation processes, bound to the corresponding
rheological coefficients, are obtained by applying the differential evolution (DE) algorithm
from experimental measurements of the so-called internal friction, IF(ω), or loss tangent:

IF(ω) =
Imag(M(ω))

Real(M(ω))
, relating to the dissipation of mechanical energy due to internal
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friction as the frequency changes. This function is given by the relationship between the
imaginary and the real part of the complex module, which for small losses of the medium
coincides with the specific dissipation function.

Figure 2. Mechanical representation of the viscoanelastic medium. Fractional model at two
relaxation processes.

6. Numerical Results

In this section, we simulate the eight-parameter fractional model considering the
experimental data [38]. The IF experimental data are given in the figure on page 55 of [37]
and from this are appropriately extracted and shown in Table 1, corresponding to certain
frequency values and relative to the metals: steel, brass, and aluminium.

Table 1. Internal friction for steel, brass, and aluminium with respect to frequency.

i fi IFSteel IFBrass IFAluminium

1 1 0.440 0.205 0.910
2 2 0.570 0.325 0.780
3 3 0.650 0.435 0.735
4 4 0.725 0.520 0.725
5 5 0.770 0.620 0.720
6 10 0.975 0.975 0.770
7 20 1.200 1.530 1.070
8 25 1.213 1.650 1.150
9 30 1.180 1.880 1.380
10 40 1.065 2.090 1.691
11 46 1.025 2.100 1.775
12 50 0.975 2.080 1.965
13 60 0.900 1.965 2.180
14 70 0.840 1.840 2.360
15 80 0.790 1.740 2.450
16 93 0.750 1.605 2.510
17 100 0.730 1.575 2.505
18 200 0.590 1.090 2.040
19 300 0.540 0.860 1.675
20 400 0.495 0.690 1.375
21 500 0.480 0.565 1.140
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To this end we use the differential evolution (DE) algorithm [41] that minimizes the ob-
jective function J(p) for determining the parameters p = [t1,1, t2,1, γ1, ω0,1, t1,2, t2,2, γ2, ω0,2]
of the model. The DE algorithm [42] is an iterative method of a stochastic nature for the
search for the possible optimal solutions on a large space of the parameters. In this work,
it has been used in the Python language with the use of the scipy library [43,44]. The
DE was chosen for its ability to provide optimal possible solutions without resorting to
classical methods of finding solutions such as the gradient method or Newton’s method
with which it is easy to fall into local minimums, where use requires differentiation of
functions. The objective function J(p) taken into account is the mean square relative error
between the experimental values of the internal friction ÎF( fi) and the values related to the
eight-parameter fractional model IF( fi) at frequencies fi, i = 1, 2, . . . , m:

J(p) =
1

m + 1

m

∑
i=1

(
ÎF( fi)− IF( fi; p)

ÎF( fi)

)2

(47)

In Tables 2 and 3, we obtain the model parameters and the rheological coefficients of the
aluminium, respectively. In Figure 3, to the variation of the frequency, it is brought back
in the panel of left the shape of the internal friction while in the one of right the relative
percentage error for aluminium. In Figure 4, it is brought back in the panel of left the real
part while in the one right the imaginary part of the modulus complex for aluminium. In
Tables 4 and 5, we obtain the model parameters and the rheological coefficients of the brass,
respectively. In Figure 5, to the variation of the frequency, it is brought back in the panel
of left the shape of the internal friction while in the one of right the relative percentage
error for brass. In Figure 6, it is brought back in the panel of left the real part while in the
one right the imaginary part of the modulus complex for brass. Finally, in Tables 6 and 7
we obtain the model parameters and the rheological coefficients of the steel, respectively.
In Figure 7, to the variation of the frequency, it is brought back in the panel of left the
shape of the internal friction while in the one of right the relative percentage error for steel.
In Figure 8, it is brought back in the panel of left the real part while in the one right the
imaginary part of the modulus complex for steel.

Table 2. Parameters of the model—aluminium.

i γq t1,i t2,i ω0,i

1 0.575515 0.001006 0.022103 172.96
2 0.360071 0.000229 0.077811 0.57

Table 3. Rheological coefficients—aluminium.

i R(τ)
(d)0,i R(ε)

(d)0,i R(ε)
(d)1,i R(ε)

(d)2,i

1 994.035785 45.242727 1.000000 0.120119
2 4366.812227 12.851653 1.000000 19.272905

Table 4. Parameters of the model—brass.

i γi t1,i t2,i ω0,i

1 0.561151 0.001453 0.072381 64.97
2 0.158946 0.005930 0.077555 0.99

Table 5. Rheological coefficients—brass.

i R(τ)
(d)0,i R(ε)

(d)0,i R(ε)
(d)1,i R(ε)

(d)2,i

1 688.231246 13.815780 1.000000 0.127644
2 168.634064 12.894075 1.000000 12.952460
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Table 6. Parameters of the model—steel.

i γi t1,i t2,i ω0,i

1 0.806110 0.003680 0.069378 73.54
2 0.206638 0.000088 0.017235 0.03

Table 7. Rheological coefficients—steel.

i R(τ)
(d)0,i R(ε)

(d)0,i R(ε)
(d)1,i R(ε)

(d)2,i

1 271.739130 14.413791 1.000000 0.014111
2 11,363.636364 58.021468 1.000000 257.802147

Figure 3. Left panel: internal friction of aluminium—the experimental values for aluminium are
represented with the diamond marker in red. The continuous blue line represents the model. Right

panel: percentage error between the experimental values of the internal friction of the aluminium
and the rheological model.

Figure 4. Left panel: mod complex modulus of aluminium. Right panel: phase complex modulus of
Aluminium.

Figure 5. Left panel: internal friction of brass—the experimental values for brass are represented with
the diamond marker in red. The continuous blue line represents the model. Right panel: percentage
error between the experimental values of the internal friction of the brass and the rheological model.
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Figure 6. Left panel: mod complex modulus of brass. Right panel: phase complex modulus of brass.

Figure 7. Left panel: internal friction of steel—the experimental values for steel are represented with
the diamond marker in red. The continuous blue line represents the model. Right panel: percentage
error between the experimental values of the internal friction of the steel and the rheological model.

Figure 8. Left panel: mod complex modulus of steel. Right panel: phase complex modulus of steel.

7. Conclusions

Applying the Ciancio–Kluitenberg theory, in this work a mechanical representation of
a viscoanelastic medium has been found that allows the problem to be solved of determin-
ing the state of the system solicited by a stress. Unlike previous models, the mechanical
representation found is consistent with the relaxation processes observed in relation to the
type of material considered. Moreover, it is very general in that the case of viscoelastic me-
dia is obtained as a limit case of inelastic media. Using the DE algorithm, which minimizes
the relative quadratic error in the calculation of internal friction (IF), the values of the eight
parameters or eight rheological coefficients have been determined. The results obtained
confirm the validity of the eight-parameter model whose relative percentage error does not
exceed 5% over almost the entire frequency range. In addition, it was possible to obtain the
trend of the complex module M (module and phase). In all metals it is observed that the
fractional order is less than 1; this characteristic is typical in the propagation of mechanical
waves at low frequency from 0 to 500 Hz. Finally, the values obtained of the rheological
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coefficients, for all the metals considered here, are positive in accordance with the second
principle of thermodynamics.
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Abstract: In this paper, a numerical solution of the modified regularized long wave (MRLW) equation
is obtained using the Sinc-collocation method. This approach approximates the space dimension of
the solution with a cardinal expansion of Sinc functions. First, discretizing the time derivative of the
MRLW equation by a classic finite difference formula, while the space derivatives are approximated by
a θ−weighted scheme. For comparison purposes, we also find a soliton solution using the Adomian
decomposition method (ADM). The Sinc-collocation method was were found to be more accurate and
efficient than the ADM schemes. Furthermore, we show that the number of solitons generated can
be approximated using the Maxwellian initial condition. The proposed methods’ results, analytical
solutions, and numerical methods are compared. Finally, a variety of graphical representations for the
obtained solutions makes the dynamics of the MRLW equation visible and provides the mathematical
foundation for physical and engineering applications.

Keywords: MRLW equation; soliton solutions; sinc-collocation method; Adomian decomposition
method

MSC: 65R20; 26A33; 46F12; 74G10

1. Introduction

Partial differential equations, especially non-linear ones, are used in the study of many
natural phenomena that often arise in the physical sciences and engineering applications.
For nonlinear equations, there is a difficulty, if not an impossibility, in finding exact solutions
to the equation, and researchers often resort to finding a solution with approximate methods.
Here, we will use two different schemes to solve the modified equation for the long wave
known as MRLW equation (see, [1–3]).

∂u
∂t

+
∂u
∂x

+ εup ∂u
∂x

− μ
∂

∂t

(∂2u
∂x2

)
= 0 (1)

With the following boundary and initial conditions

u(a, t) = α1(t), u(b, t) = α2(t) (2)

u(x, 0) = f (x), x ∈ [a, b] ⊂ IR. (3)

where ε and μ in Equation (1) are positive constants that describe the undular bore’s
behavior, and p is a positive integer greater than or equal to 1, while the function f (x) is
a localized disturbance inside the interval [a, b] subject to physical boundary conditions
u → ∞ as x → ∓∞. The functions that appeared on both sides in Equation (2) are
also continuous. Equation (1), which we will abbreviate with MRLW, was originally a
mathematical model to describe a physical phenomenon with weak scattering waves, and
in another application it describes the movement of transverse waves in shallow water.
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There are many previous studies that dealt with the use of numerical methods to find
approximate solutions to the equation under consideration, the MRLW equation. In the
paper [4], the collocation method was used to find an approximate solution to the MRLW
equation. The method relied mainly on the use of the Sinc function as a basis. The B-splines
finite element method of order 3 was used in [5] to solve the MRLW equation numerically,
the numerical results proved the accuracy of the used method. In [6], two different bases
are used to solve numerically the MRLW equation, in which the finite difference method is
used along the time derivatives, while the delta-shaped basis was used to discretize the
space direction. It should be noted here that there are many previous studies in which the
Sinc method was used or those that dealt with approximate solutions to the equation under
study, among which we mention [7–9]. Recently published papers in [10–14] dealt with the
use of different methods to find numerical solutions to various forms of the generalized
RLW equation. For more knowledge, there are other previous studies that discussed the
same ideas presented in this paper, but in different ways, such as [1,15,16].

The Sinc methodology is one of the most powerful tools for solving various types of
equations that model various physical phenomena. This method is used to solve integral
equations, partial differential equations, and integro-differential equations. The most im-
portant motive of this research work is the use of the Sinc method because the convergence
of the approximate solution is of exponential type. For some positive constants c, h the Sinc
method yields an iterative scheme with an error of order O(exp(−c/h), which is much
faster than other traditional methods.

The main objective of this paper is to find an approximate solution to the MRLW
equation in (1)–(3), where the basis of the Sinc function on the variable x will be used, while
we will use the regular finite difference method when talking about the time variable t.
Moreover, the Adomian decomposition method will be used for comparison purposes.

The main idea of using the Sinc function is that in the process of replacing the partial
derivatives that appeared in (1), in terms of the variable x, with the corresponding formulas
that have been proven in both references Stenger [17] and by Lund [18], followed by the use
of the Sinc quadrature formula for integration with some simple manipulations, we end
up with a discrete system of the general form Ax = b that can be solved iteratively via the
use of iterative techniques, such as Newton’s method. What encourages us to use the Sinc
function is its ease of use, and most importantly, the fast exponential convergence property
when using the Sinc function as a basis. For the purpose of comparing the solution that
will be obtained by the Sinc methodology, we will use the Adomian analysis method, the
so-called Adomian decomposition method (ADM) [19,20], to find another solution in an
approximate (not numerical) way. The ADM method was created and developed at the
beginning of the 1980s of the last century, and it has proven its worth when used in various
nonlinear, ordinary and partial differential equations. There are many previous studies
that dealt with finding a solution to linear or nonlinear, ordinary or partial differential
equations, via the use of ADM, see for example [21–23]. Those equations represented a
mathematical model in several fields, including physics, chemistry, biology, engineering
in its various forms and medical sciences. The ADM is summarized as finding a solution
in the form of a convergent series, and often we need a number that does not exceed the
number of fingers on one hand to obtain an appropriate solution, knowing that in previous
studies there is sufficient and convincing evidence for the convergence of the method to an
accurate solution.

The general structure of this paper can be reviewed as follows: In Section 2, we present
the main concepts of the Sinc function and all the theories we need in writing the solution
to Equation (1). As for Section 3, we will discuss the formulation of the solution using
the Sinc-collocation method, while Section 4 is limited to talking about the stability of
the calculated solution. Section 5 is where we will present the alternative method, which
is ADM. The effectiveness of the solution presented by the two methods in this paper is
discussed in Section 6 by taking two different values of the constant p. The credibility of
the methods used will be shown by presenting the numerical results in the form of tables
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and graphs, and finally, a summary of what happened with some recommendations in
Section 7.

2. Sinc-Collocation

The Sinc function method has proven its effectiveness in finding approximate solu-
tions to many problems with physical and engineering applications. The Sinc function is
considered to be some kind of wavelet that has been used effectively in recent years to find
solutions to many problems. Here, we will review some important characteristics that we
will use to formulate the solution using the basis of the Sinc function. These are discussed
in [17,18]. It is known that the Sinc function is defined in the domain of all real numbers as
follows

sinc (x) =
sin(πx)

πx
, x ∈ IR. (4)

We will use the Sinc function for the purposes of interpolation, over the defined
interval of the question under consideration. To do so, we first divide the interval into
sub-intervals, each of which is h, and then redefine the Sinc function as follows:

Sj(x) = sinc
( x − jh

h

)
, j = 0,∓1,∓2, · · · (5)

In order to use the formula in Equation (5) as a basis, then for every continuous
function f (x), we define an infinite series, known as Whittaker cardinal function, denoted
by C( f , h), and defined to be

C( f , h)(x) =
∞

∑
j=−∞

f (ih)Sj(x).

We know very well that we cannot deal with an infinite series, so we will deal with
a finite series, ensuring its convergence within certain conditions, which we will impose
on the function to be approximated, so N can be a positive integer, we define the series of
2N + 1 terms as

CN( f , h)(x) =
N

∑
j=−N

fjSj(x). (6)

We use the above series to approximate the nth derivative of the function f , and is
given by the relationship

f (n) ≈
N

∑
j=−N

f (jh)
dn

dxn [Sj(x)]. (7)

In fact, we need the derivatives of the Sinc function computed at the nodes on which
the period was divided, and in this paper we need the first and second derivatives only,
so that we can write the solution in the form of a system of linear equations, as we will
see in detail later. We also require derivatives of composite Sinc functions evaluated at the
nodes. The expressions are required for the present discussion, so the following convenient
notation will be needed [17].

δ
(0)
j−k = [Sj(x)]

∣∣∣
x=xk

=

⎧⎨⎩
1, j = k

0, j �= k
(8)

δ
(1)
j−k =

d
dx

[Sj(x)]
∣∣∣
x=xk

=

⎧⎪⎨⎪⎩
0, j = k

(−1)jk

h(k−j) , j �= k
(9)
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δ
(2)
j−k =

d2

dx2 [Sj(x)]
∣∣∣
x=xk

=

⎧⎪⎨⎪⎩
−π2

3 , j = k

−2(−1)k−j

(k−j)2 , j �= k.
(10)

where the points xk appeared above, they are all those points that have been divided into the
period and are called collocation points, and they will be used in the approximation process.
So, we need to use a finite series that starts from the integer −N and ends with the number
N, but there must be a constraint or conditions that the function f , to be approximated,
must fulfill or its derivatives. The next definition provides us with a property called
exponentially decaying that the function must achieve for this purpose.

Definition 1. We define a domain Dd, in the form of an infinite strip of width 2d, d > 0, as

Dd = {z ∈ IC : z = x + iy, |y| < d ≤ π/2}.

When 0 < ε < 1, we define the rectangular domain Dd(ε) by

Dd(ε) = {z ∈ IC : z = x + iy, |x| < 1/ε, |y| < d(1 − ε)}. (11)

In the region Dd, we define the Hardy space, denoted by B(Dd), to be the set of all
functions f that satisfy the following boundedness condition.

lim
ε→0

∫
∂Dd(ε)

| f (z)| |dz| < ∞. (12)

There are a lot of characteristics related to the family B(Dd) mentioned in [17]. Below
we write a theorem that we will need when talking about the convergence of the Sinc
method.

Theorem 1 ([17]). For the positive constants α, β and d, suppose the following conditions hold true

1. f belongs to the class B(Dd).
2. the function f satisfy the decaying condition | f (x)| ≤ α exp(−β|x|), valid for all real-valued

of x. We conclude that

sup
∣∣∣ f (n)(x)−

N

∑
j=N

fjS
(n)
j (x)

∣∣∣ ≤ C1N(n+1)/2 exp(−√
πdβN)

for some constant c1, where h =
√

πd/(βN).

It can be summarized what the previous theorem stipulated as follows, if the analytic
function f fulfills the vanishing condition, then we can use the Sinc function to approximate
f and its nth-derivatives f (n), so that the error in the approximation is of the exponential
type, which is considered to be one of the fastest types of convergence. Thus, in order for
us to find an approximate solution to Equation (1), there must be a hypothesis that the
initial condition belongs to the family B(Dd). Now, we will define some matrices that we
will need to describe the solution as a discrete system.

Define three Toeplitz matrices, each of size m × m, (m = 2N + 1), as I(q)m = [δ
(q)
j−k], for

values of q = 0, 1, 2, which means the matrix whose jkth entry is given by δ
(q)
j−k, q = 0, 1, 2.

The diagonal matrix D(g) is defined to be D(g) = diag [g(x−N), · · · , g(xN)]. It is known
that the matrix I(2) is symmetric, and I(1) is skew-symmetric, i.e., I(1)jk = −I(1)kj and they
take the form
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I(2)m =

⎛⎜⎜⎜⎜⎜⎝
−π2

3 2
... (−1)m−1

m−1
2 . . .
... . .

...
(−1)m−1

m−1
... 2 −π2

3

⎞⎟⎟⎟⎟⎟⎠, and I(1)m =

⎛⎜⎜⎜⎜⎜⎝
0 −1 . . . (−1)m−1

m−1

1 0
...

...
...

(−1)m−1

m−1 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠ (13)

It is noted that I(0) is the identity matrix. Because these matrices will appear in the
final discrete solution, and for the purpose of demonstrating the stability property of
the solution, it is necessary to find some bounds for the eigenvalues, as stated in [17]. If
{iλ(1)

j }N
j=−N indicate to be the eigenvalues of the matrix I(1), then −π ≤ λ

(1)
−N ≤ · · · ≤

λ
(1)
N ≤ π. Similarly, {iλ(2)

j }N
j=−N indicate to be the eigenvalues of the matrix I(2), then

−π2 ≤ λ
(2)
−N ≤ · · · ≤ λ

(2)
N ≤ π2.

3. Setting Up the Scheme

To accomplish the goal of finding an approximate solution for the Equation (1), us-
ing Sinc-collocation, without losing anything of importance, but for reasons related to
facilitating the calculations, we will discuss the solution by the Sinc methodology when
p = 2 only. We discretize the time derivatives that appeared on the left side and the last
term in Equation (1) via the use of the regular finite-difference scheme, secondly, we apply
θ−metric (0 ≤ θ ≤ 1) scheme to the x derivatives evaluated at two time levels n and n + 1,
so we obtain

(
u(n+1)−u(n)

δt

)
+ θ

[(
∂u
∂x

)(n+1)
+ ε(u)(n+1)

(
∂u
∂x

)(n+1)]
+ (1 − θ)

[(
∂u
∂x

)(n)
+ ε(u)(n)

(
∂u
∂x

)(n)]
− μ

δt

[(
∂2u
∂x2

)(n+1) −
(

∂2u
∂x2

)(n)]
= 0,

(14)

where the notation u(n) is to represent the value of the solution at time level n, i.e.,
u(n) = u(x, t(n)), and for the time step size δt, we denote t(n) = t(n−1) + δt. Before go-
ing into the process of writing the solution, it is necessary to convert the non-linear term in
Equation (14) into a linear quantity and the conversion process is achieved through the use
of Taylor expansion, as follows:

(u2)(n+1)
(∂u

∂x

)(n+1) ≈ (u(n))2
(∂u

∂x

)(n+1)
+ 2u(n)

(∂u
∂x

)(n)
u(n+1) − 2

(
u(n)

)2(∂u
∂x

)(n)
(15)

From Equations (14) and (15), we arrive at

u(n+1) + δtθ
[(

∂u
∂x

)(n+1)
+ ε

{
(u(n))2

(
∂u
∂x

)(n+1)
+ 2u(n)

(
∂u
∂x

)(n)
u(n+1)

}]
− μ

(
∂2u
∂x2

)(n+1)

= u(n) + δt
[
ε(3θ − 1)(u(n))2

(
∂u
∂x

)(n) − (1 − θ)
(

∂u
∂x

)(n)]− μ
(

∂2u
∂x2

)(n)
(16)

where u(n) represent the nth iteration in the obtained approximate solution. Next, we use
the Sinc-collocation method along the space variable, for that we discretize the interval
[a, b] as follows: For the positive integer N > 2, take the step-size h = (b−a)

N−1 , then points of
interpolation are

x0 = a, xN = b, xi =
ih
N

, i = 1, 2, · · · , N − 1. (17)

To find a solution for Equation (14), using Sinc basis, we plug in,

u(x, tn) ≡ un(x) =
N

∑
j=1

un
j Sj(x), (18)
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where the basis Sinc functions are given by

Sj(x) = sinc
( x − (j − 1)h − a

h

)
. (19)

The constants uj in Equation (18) are to be determined. Hence, for each collocation
point xi in (17), Equation (18) can be written as

un(xi) =
N

∑
j=1

un
j Sj(xi), i = 1, · · · , N. (20)

Replacing Equation (20) into Equation (16), the approximation evaluated at those
nodes inside the interval is given by

∑N
j=1 un+1

j S(0)
j (xi) + δtθ

[(
∑N

j=1 un+1
j S(1)

j (xi)
)
+ ε

{
(∑N

j=1 un
j Sj(xi))

2
(

∑N
j=1 un+1

j S(1)
j (xi)

)
+2 ∑N

j=1 un
j Sj(xi)

(
∑N

j=1 un
j S(1)

j (xi)
)

∑N
j=1 un+1

j Sj(xi)
}]

− μ
(

∑N
j=1 un+1

j S(2)
j (xi)

)
= ∑N

j=1 un
j Sj(xi) + δt

[
ε(3θ − 1)(∑N

j=1 un
j Sj(xi))

2
(

∑N
j=1 un

j S(1)
j (xi)

)
−(1 − θ)

(
∑N

j=1 un
j S(1)

j (xi)
)]

− μ
(

∑N
j=1 un

j S(2)
j (xi)

)
.

(21)

The above Equation (21) is used for all interior points x = xi, i = 2, · · · , N − 1. The
boundary conditions are given by Equation (2) for the boundary points x1 and xN can be
formulated as

N

∑
j=1

un+1
j Sj(xi) = α1(tn+1),

N

∑
j=1

un+1
j Sj(xi) = α2(tn+1). (22)

In order to write the solution as stated in the previous two equations, and in the form
of a system of matrices, we redefine the following matrices and vectors:

Un = [un
1 , un

2 , · · · , nn
N ]

T , I(0) = (Sj(xi), I(1) = (S′
j(xi), I(2) = (S′′

j (xi), i, j = 1, · · · , N. (23)

Therefore, in matrix form, Equation (21) becomes as[
I(0) − μI(2) + θδt

{
I(1) + ε

((
u(n)

)2
� I(1) + 2

(
u(n) ◦ u(n)

x

)
� I(0)

)}]
un+1

=
[

I(0) − μI(2) + δt
{

ε(3θ − 1)
(

u(n)
)2

� I(2) − (1 − θ)I(2)
}]

un + Fn+1.

(24)

where the multiplication of the ith component of the vector u(n) by every element of the ith
row of the matrix I(q), q = 0, 1, 2 is denoted by the symbolic notations �, that has been used
above. While the symbol ◦ is to denote the Hadamard matrix multiplication. The discrete
system in Equation (24) represents a system of N + 1 equations in N + 1 unknowns, which
can be written in a more compact form as

Mun+1 = R (25)

where
M = [Ad + Ab − μC + θδt{B + ε(E + D)}]

R = [Ad − μC + δt{ε(3θ − 1)E − (1 − θ)B}]un + Fn+1,

in which the matrices Ad, Ad, B and C each of size N × N and can be written as

Ad = [I(0)ij , i = 2, · · · , N − 1; j = 1, · · · , N, otherwise 0], Ab = [I(0)ij , i = 1, N; j = 1, · · · , N, otherwise 0]

124



Axioms 2023, 12, 174

B = [I(1)ij , i = 2, · · · , N − 1; j = 1, · · · , N, otherwise 0], C = [I(2)ij , i = 2, · · · , N − 1; j = 1, · · · , N, otherwise 0].

Moreover, un
x = Bun, D = 2un �un

x �Dd, E = (un)2 � B,and Fn+1 = [α1(tn+1), 0, ..., α2(tn+1)]T .
The approximate solution can be found from Equation (25) at any point in the interval [a, b]
at each time level, which can be solved by any iterative techniques. It should be noted
that a previous study for a system of partial differential equations using the same method,
(Sinc-collocation ) was published by the first author in [24]. For the purposes of facilitating
the computing process, we offer the following algorithm, which summarizes what was
stated in this section.

Algorithm Stages

We follow the following steps to write the program:

1. Select collocation points inside the interval [a, b].
2. Select the parameters δt and θ.
3. Setup the initial solution u(0), then use Equation (24).
4. Evaluate the matrix M and the vector R in Equation (25).
5. The approximate solution u(n+1) at the successive time level is obtained.
6. If nδt < T stop, otherwise go to step 4.

4. Stability Analysis

Here, we study briefly and in an analytical way the stability of the solution by the Sinc
method for the MRLW equation. Imitation of what was performed in [4,25], if U represent
the exact solution, while Ũ, is taken to be the numerical solution of the MRLW equation
in (1). If we define the error εn

u = U − Ũ.
Then, the error εn+1

u can be written as

εn+1
u = Un+1 − Ũn+1 = I(0)Ad

−1 Abεn
u (26)

For the stability of the method, we need εn
u → 0, provided n is large enough. We may

conclude that the scheme is stable in a numerical sense, if ρ(I(0)Ad
−1 Ab) < 1, where the

notation ρ(.) represents the spectral radius. Upon passing simple calculations, it is easy to
verify stability if the following two conditions are fulfilled∣∣∣ 1 + αδtθλ3 + 6αδtθ[λ1N + λ2N ]

1 − α(1 − θ)δtλ3 − 6α(1 − θ)δtλ1N + 6αδtθλ1N + 2μδtλ1N

∣∣∣ < 1 (27)

and ∣∣∣ 1 + βδtθλ3

1 − β(1 − θ)δtλ3 − 3βδtλ1N

∣∣∣ < 1 (28)

where we have used the numbers 1, λ1, λ3, λ1N , λ2N being eigenvalues of the matrices
I(0), I(1), I(3), Un ∗ I(1), Un ∗ I(0), respectively. We use some known facts about the upper
bounds for the matrices I(1), I(2), together with the fact that λ1 = i|λ1|, λ3 = i|λ3|, and
λ1N , λ2N are complex, after algebraic manipulation (see, [4,25]), the condition (27) must
hold for all eigenvalues of the respective matrices, for the method to be stable, and for
1/2 ≤ θ < 1 is a necessary condition for stability, but not sufficient.

5. Adomian Decomposition Method

Our goal in this section is to introduce the performance of the second scheme, namely,
the Adomian decomposition method (ADM) [19,20], and give a detailed description to
setup a solution for the MRLW equation [26]. The ADM is a technique to find solutions for
differential equations (partial, ordinary), linear and nonlinear, homogeneous and nonho-
mogeneous. First, we look at the problem under consideration in general, so any nonlinear
partial differential equation can be written as

Ltu(x, t) = Lxu(x, t) + R(u(x, t)) + F(u(x, t)) + g(x, t) (29)
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where the operator Lx is to represent the highest order derivative with respect to the
variable x, Lt represent the time operator, R(u(x, t)) contains the remaining linear terms
of lower derivatives in x, F(u(x, t)) is an analytic nonlinear term, and g(x, t) is the forcing
inhomogeneous term. Applying the inverse operator L−1

t to Equation (29), we arrive at

u(x, t) = u(x, 0) + L−1
t {Lxu(x, t) + R(u(x, t)) + F(u(x, t)) + g(x, t)} (30)

For the use of ADM, we express the solution u(x, t) of (30) by the decomposition series

u(x, t) =
∞

∑
n=0

un(x, t) (31)

while we express the nonlinear term F(u(x, t)) with an infinite sum of polynomials given by

F(u(x, t)) =
∞

∑
n=0

An(u0, u1, · · · , un), (32)

where the terms un(x, t) are calculated recurrently so that the zeroth term u0(x, t) is chosen
from those terms arises from the initial condition, or from the source term. Then, followed
by finding the first term u1(x, t), which depends on the zeroth term, followed by finding
the second term, which also depends on the first term, and so on until we reach the nth
component. As for calculating Adomian polynomials An, there is a general formula written
by Adomian [19,20,27], and another in a famous paper for Wazwaz [27], here we present
the Adomian’s formula

An =
1
n!

dn

dλn

[
F(

n

∑
i=0

λiui)

]
λ=0

, n ≥ 0.

The substitution of (31) and (32) into (30) yields

∞

∑
n=0

un(x, t) = u(x, 0) + L−1
t

{
Lx

∞

∑
n=0

un(x, t) + R(
∞

∑
n=0

un(x, t)) + (
∞

∑
n=0

An(x, t)) + g(x, t)

}
. (33)

As mentioned above, the components are computed in a recursive manner as

u0(x, t) = u(x, 0) + L−1
t [g(x, t)],

uk+1(x, t) = L−1
t

[
Lx(uk(x, t)) + R(uk(x, t)) + (Ak(x, t))

]
, k ≥ 0.

(34)

Looking at the above relationships, we can say that all terms depend largely on the
zeroth term, so it is desirable that the zeroth term contain the least possible number of
terms. If the series converges in a suitable way, then we see that

uA(x, t) = lim
M→∞

M

∑
n=0

un(x, t) (35)

where M is the number of terms that we found. Previous studies showed the convergence
of the solution series presented in the Equation (35), see for example [28,29]. In order to
understand more about the above explanation and presentation of the ADM method, we
present in the next subsection the method applied to the equation under consideration.

Analysis of ADM

We rewrite Equation (1) in an operator form as (see, [30])

Ltu = −ux − εN(u) + μLxx(ut) (36)
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with the initial condition u(x, 0) = f (x), where the linear operators are defined by
Lt(.) = ∂

∂t (.) and Lxx(.) = ∂2

∂x2 (.). While the term N(u) represents the non-linear term
upux. To start, we operate on both sides of Equation (36) with the inverse of Lt, denoted by
L−1

t (.) =
∫ t

0 . dt yields

u(x, t) = u(x, 0)− L−1
t (ux)− εL−1

t (N(u)) + μL−1
t (Lxx(ut)). (37)

Assume the solution u(x, t) can be represented as an infinite sum of components of
the form:

u(x, t) =
∞

∑
n=0

un(x, t).

While the nonlinear operator N(u) can be expressed as

N(u) = upux =
( up+1

p + 1

)
x
=

∞

∑
n=0

An(u0, u1, · · · , un).

In our case, as the nonlinear part in the PDE is N(u), then Adomian polynomials An
can be evaluated by a formula set by Adomian

An =
1
n!

dn

dλn

[
N

( ∞

∑
i=0

λiui

)]∣∣∣
λ=0

.

In the next, we just state the first three Adomian polynomials as:

A0 =
( up+1

0
p + 1

)
x
, A1 =

(
up

0 u1

)
x
, A2 =

(
pup−1

0
u2

1
2!

+ up
0 u2

)
x
,

A3 =
(
(p − 1)pup−2

0
u3

1
3!

+ pup−1
0 u1u2 + up

0 u3

)
x

and so on. In the same way, additional polynomials can be calculated. Now, Equation (37)
reduces to

∑∞
n=0 un(x, t) = u(x, 0)− L−1

t (∑∞
n=0 unx(x, t))− εL−1

t (∑∞
n=0 An(u0, u1, · · · , un))

+μL−1
t (Lxx(∑∞

n=0 unt(x, t))),
(38)

Now, set n = 0 into the left-hand-side to identify the zero component to be u0(x, t) =
u(x, 0), and for n ≥ 1 we obtain the subsequent components as

un+1(x, t) = −L−1
t (un)x − εL−1

t (An) + μL−1
t (Lxx(un)t), n ≥ 1.

Then, we see that the approximate solution is given by

uA(x, t) = lim
M→∞

M

∑
n=0

un(x, t) (39)

where M is the number of terms that we found.

6. Numerical Experiments and Results

This section provides numerical solutions to the MRLW equation for three standard
problems: solitary wave motion and the development of the Maxwellian initial condition
into solitary waves. In order to be able to determine the accuracy and effectiveness of the
method, we will deal with specific values of the constants that appeared in Equation (1),
and here if the value of ε = 6, μ = 1 and p = 2, then for these values, the exact solution to
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Equation (1) is known and this allows us to know the exact error, and so we discuss the
effectiveness of the proposed schemes in this paper.

Example 1. Let us examine the problem

∂u
∂t

+
∂u
∂x

+ 6u2 ∂u
∂x

− ∂

∂t

(∂2u
∂x2

)
= 0 (40)

with boundary conditions u → 0, as x → ∓∞, and the initial condition

u(x, 0) =
√

c sech[
√

c
μ(c + 1)

(x + x0)], (41)

here, the constants c, x0 are free. The exact solution is given by [31]

u(x, t) =
√

c sech[
√

c
μ(c + 1)

(x − (c + 1)t + x0)]. (42)

Equation (40) has three polynomial invariants that are related to mass, momentum
and energy and is given by [32],

I1 =
∫ b

a
u(x, t)dx, I2 =

∫ b

a
(u2(x, t) + μu2

x(x, t))dx, I3 =
∫ b

a
(u4(x, t)− 6μu2

x(x, t))dx. (43)

The invariants I1, I2, I3 are considered to be an excellent tool to measure the success of
the numerical solution, especially for cases where we do not know the exact solution to the
problem. The quantities I1, I2 and I3 are applied to measure the conservation properties of
the collocation scheme. The integrals in (43) are approximated by sums to obtain numerical
values of invariants in Equation (43) at the finite domain [a, b] as follows:

I1 " h
N

∑
j=0

u(n)
j , I2 " h

N

∑
j=0

(
(u(n)

j )2 + μ((u′)(n)j )2
)

, I3 " h
N

∑
j=0

(
(u(n)

j )4 − μ((u′)(n)j )2
)

(44)

The computations associated with the example were performed using Mathematica.
The accuracy of ADM is demonstrated for the absolute errors |u(x, t) − uA(x, t)|. We
compute the quantities I1, I2 and I3 to ensure the conservation laws in using ADM as an
approximate tool for MRLW. In the computational work, we take c = 1, μ = 1, ε = 6, and
the simulation is performed up to t = 1, n = 8. Table 1 shows the difference between the
exact and the ADM solution uA(x, t). From Table 1, we can read that results show a high
degree of accuracy and efficiency of the ADM. Since the changes of invariants I1, I2 and I3
are less than 10−4, 10−5 and 10−6, respectively, our scheme is sensibly conservative, and
our results are recorded in Table 1.

In our computational work for the Sinc-collocation method, we take α = 1.5, μ = 0.1,
ε = 6, and two different values of the time step sizes δt = 0.1 and δt = 0.05, where our
interval is taken to be [−30, 30] and, the N = 160 for the points in Equation (17). We use
the L2, L∞ [4,33], defined below to measure the accuracy of our schemes

L2 =‖ u − ũ ‖2=

√√√√h
N

∑
j=1

|uj − ũj|2, L∞ =‖ u − ũ ‖∞= max
1≤j≤N

|uj − ũj|

where u and ũ represent the exact and approximate solutions, respectively, and h is the
minimum distance between any two points in Equation (18). We calculate the convergence
with respect to time t, according to the following relationship [4,33]

Order =
log10

(
‖ uexact − uδtj ‖ / ‖ uexact − uδtj+1 ‖

)
log10(δtj/δtj+1)

,
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where the numerical solution with step size δtj is denoted by uδtj . The numerical solutions
are shown in Tables 2 and 3, where invariant and error norms for solitary waves are
presented. Looking at the last column in Table 2, we see that the order of convergence
is almost 2. The numerical solutions that are shown in Figures 1–3. Figure 1 shows the
plot of a single soliton solution for different values of time T using the Sinc-collocation
method. These solutions are the bell-shaped waves, which agree with the results of [4–6].
Figures 2 and 3 illustrate that the series solution is very close to the exact solution.

Table 1. Invariants for MRLW equation using ADM when c = 0.01 and 0 ≤ x ≤ 60. We used xEy to
denote x × 10y.

t I1 I2 I3 |u(x, t)− uA(x, t)|
0 3.082210 0.201518 0.000678011 6.28820E−08

0.1 3.082210 0.201518 0.000678015 1.22231E−08
0.2 3.082208 0.201518 0.000678019 6.32709E−07
0.3 3.082205 0.201517 0.000678021 2.72210E−07
0.4 3.082202 0.201515 0.000678025 3.77219E−06
0.5 3.082201 0.201515 0.000678027 1.70010E−06
0.6 3.082201 0.201512 0.000678029 6.00899E−05
0.7 3.082200 0.201512 0.000678029 3.91129E−05
0.8 3.082196 0.201510 0.000678032 5.59981E−04
0.9 3.082190 0.201510 0.000678036 3.72210E−04
1.0 3.082184 0.201506 0.000678039 1.00287E−04

Table 2. Estimated error for the Sinc solution of Equation (1) : t = 16, θ = 1
2 , N = 60,−30 ≤ x ≤ 30.

We used xEy to denote x × 10y.

δt L∞ Order L2 Order

0.8 3.10524E−03 − 1.10518E−02 −
0.4 1.22201E−03 1.96166 3.22148E−03 1.96453
0.2 5.35209E−04 1.99086 8.35020E−04 1.99486
0.1 1.49743E−04 1.99748 4.49278E−04 1.99782
0.05 8.66014E−05 1.99835 1.65082E−04 1.99892

0.025 6.84252E−05 1.99809 5.82611E−05 1.99212
0.010 2.04701E−05 1.98971 1.02058E−05 1.98775

Table 3. Invariants and errors using Sinc-collocation when δt = 0.1, c = 0.01, N = 80 and
−40 ≤ x ≤ 60. We used xEy to denote x × 10y.

Time L∞ L2 I1 I2 I3 CPU Time

4 1.65338E−05 3.54902E−05 3.985214 0.810673 2.597800 0.437 s
8 2.85221E-05 7.50021E-05 3.985216 0.810673 2.597800 0.901 s
12 3.85008E-05 1.25882E-04 3.985217 0.810673 2.597800 1.642 s
16 5.54338E-05 1.57520E-04 3.985202 0.810673 2.597800 1.860 s
20 1.65338E-05 3.54902E-04 3.985192 0.810673 2.597800 2.145 s

Example 2. In this example, we will take the value of p that appeared in Equation (1) to be 3, while
keeping the values μ, ε as they are in the previous example.

We noticed from the graphics in the first example that the type of solution is of soliton
types, but in this second example, a new feature called bifurcation will appear, where
the wave starts to bifurcate into two waves after some time close to t = 0.4, as shown in
Figure 4.
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Figure 1. The soliton solution by Sinc-collocation method for different values of time t, and
−10 ≤ x ≤ 20.

Figure 2. The ADM soliton solution (left) with exact (right) for MRLW for c = 0.01 and 0 ≤ t ≤ 2.

Figure 3. The ADM soliton solution (left) with exact (right) for MRLW for c = 0.01 and 2 ≤ t ≤ 4.
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-5 5
x

0.2

0.4

0.6

0.8

u

t=1.5, 1.0, 0.4, 0.01

-5 5
x

0.2

0.4

0.6

0.8

1.0

u

Figure 4. The solution of Equation (1) using ADM when p = 3 for different values of t.

Example 3. In this last example, we examined the evolution of an initial Maxwellian pulse into
solitary waves, arising as the initial condition of the form

u(x, 0) = exp[−(x − 40)2]
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When solving Equation (1) for p = 2, and ε = 6. It is known that the behavior of the
solution with the Maxwellian condition depends on the values of μ. So, we study each of
the three cases: μ = 0.5, where only a single soliton is generated as shown in Figure 5, and
μ = 0.05. When μ is reduced more and more, such as in the case of μ = 0.05, two single
solitons are generated as in Figure 5, and for the case μ = 0.005, the Maxwellian initial
condition has decayed into three stable solitary waves as generated and shown in Figure 5.
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u

Figure 5. The solution of Equation (1) using ADM when p = 2, ε = 6 when t = 2 and μ = 0.5 (Single
soliton), μ = 0.05 (two solitons), μ = 0.005 (three solitons).

7. Discussion and Conclusions

Two algorithms have been proposed to find a numerical solution to the MRLW equa-
tion, which often appears in physical applications. Whereas the first method, which is
known as Sinc-collocation, is described in detail, with a simple proof of the stability of
the obtained numerical solution, with an indication of an insufficient necessary condition.
The other method, known as ADM, was presented in general first, and then the method
was allocated to Equation (1). For the effectiveness of the two algorithms, we use one
example with a known solution of soliton type, and the accuracy is investigated via the use
of the L∞, L2 error norms. The numerical results we obtained in the last section prove the
effectiveness and accuracy of the two methods to a large extent. However, we would like to
point out that the Sinc method is numerical, and the solution was obtained and evaluated
at some nodes. The scheme was found to be stable, and it converges exponentially in space
direction. On the other hand, the other scheme used to solve the MRLW equation is ADM,
which was found to be highly efficient, and it provides accurate approximate solutions
without spatial discretization as in the Sinc method. We used a few terms from the series
solution obtained by the ADM and obtained a suitable accuracy. However, we may easily
increase the accuracy using ADM by adding more terms to the series. The biggest benefit
of using this method is the speed of its convergence to the exact solution, as well as the
ease of use. Finally, a Maxwellian initial condition was used, and the relationship between
μ and the number of solitons was discussed.
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Abstract: The current study employs the natural transform decomposition method (NTDM) to test
fractional-order partial differential equations (FPDEs). The present technique is a mixture of the
natural transform method and the Adomian decomposition method. For the purpose of checking
the precis of our technique, some examples are offered, and the series solutions of these equations
are introduced by using NTDM. The outcome shows that the suggested approach is very active and
straightforward for obtaining a series solutions of FPDEs and is more accurate if we compare it with
existing methods.

Keywords: natural transform; fractional-order linear and nonlinear; approximate solution; inverse
natural transform

MSC: 35A22; 44A30

1. Introduction

During the last decades, various numerical methods have been improved in the field of
fractional calculus. The fractional differentiation equations play a crucial role in several the-
oretical physical, biological, and applied engineering problems, such as electromagnetics,
viscoelasticity, fluid mechanics, electrochemistry, and biological population models [1–5].
The ADSTM method can be applied to solve the energy balance equations of the porous
fin with several temperature dependent properties—see [6]. The authors in [7] discussed
the approximate solution of the atmospheric internal waves model by applying FRDTM
method. Various approximation and numerical techniques have been utilized to solve
fractional differential equations [8,9]. Recently, different new methods for fractional dif-
ferential equations have been suggested, for example, the fractional differential transform
method (FDTM) [10,11], fractional variational iteration method (FVIM) [4], fractional Ado-
mian decomposition method (FROM) [12,13], natural transform decomposition method
(NTDM) [14–18], homotopy perturbation method (HPM) [19], and Sumudu transform
method (STM) [20,21]. The definition of the natural transform, including its properties,
was introduced by Khan in [22], which was later used by Belgacem and his colleagues to
obtain the relation between this transform and the Laplace and Sumudu transforms [23].
Some physical problems have been modeled by fractional PDEs and solved by utilizing
NTDM, for example, the analytical solution of the system of nonlinear PDEs is proposed
in [24]. The main goal of this work is to apply the natural transform decomposition method
(NTDM) to solve some types of fractional linear and nonlinear partial differential equations
(PDEs). The organization of this work is divided into five sections. In Section 2, definitions
and properties of the natural transform method (NTM) are addressed. In Section 3, we
discuss the methodology of FNTDM. In Section 4, we offered three examples of fractional
PDEs and solved them by NTDM. Finally, Section 5 contains the concluding notions.

Axioms 2023, 12, 958. https://doi.org/10.3390/axioms12100958 https://www.mdpi.com/journal/axioms134
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2. Basic Definitions and Properties of the Natural Transform Method (NTM)

In this part, some definitions and properties of fractional calculus with natural trans-
form are addressed.

Definition 1. The natural transform (NT) of a function g(ν) is defined by the integral [22]

N
+[g(ν)] = ϕ(s, μ) =

∞∫
0

g(μν)e−sνdν, μ > 0, s > 0 (1)

where s and μ are transform variables.

Definition 2. If n ∈ N, where n − 1 ≤ γ < n and ϕ(s, μ) is natural transform of a function

g(ν), then the (NT) of Caputo fractional derivative of ∂γg(ζ,ν)
∂νγ is denoted by [18]

N
+

[
∂γg(ζ, ν)

∂νγ

]
=

sγ

μγ
ϕ(s, μ)−

n−1

∑
k=0

sγ−(k+1)

μγ−k

[
∂γg(ζ, ν)

∂νγ

]
ν=0

(2)

Definition 3. The inverse natural transform (INTM) of ϕ(s, μ) is defined by

N
−1[ϕ(s, μ)] = g(ν) =

1
2πi

ε+i∞∫
ε−i∞

ϕ(s, μ)e
sν
μ ds, μ > 0, s > 0 (3)

Definition 4. The Caputo operator of order γ for a fractional derivative [25] is presented by the
following mathematical expression for n ∈ N, ζ > 0, g ∈ Cν:

Dγg(ζ) =
∂γg(ζ)

∂ζγ
= In−γ

[
∂γg(ζ)

∂ζγ

]
, if n − 1 < γ ≤ n ∈ N (4)

Definition 5. Riemann–Liouville fractional order integral [26]:

Iγ
ζ g(ζ) =

{ g(ζ) if γ = 0
1

Γ(γ)

∫ ζ
0 (ζ − μ)γ−1g(μ)dμ if γ > 0

}
(5)

where Γ describes the concept of the gamma variable by

Γ(Φ)
∫ ∞

0
e−ζζΦ−1dζ, Φ ∈ C (6)

Important properties: some basic properties of the natural transform method (NTM) are
given as follows:

N
+[v́́(ν)] =

s2

μ2 ϕ(s, μ)− s
μ2 v(0)− 1

μ
v́(0).

N
+[v́́́(ν)] =

s3

μ3 ϕ(s, μ)− s2

μ3 v(0)− s
μ3 v́(0)− 1

μ
v́́(0).

3. Natural Transform and Decomposition Method (NTDM)

Here, we demonstrate the pertinence of the (NTDM) to obtain the general solution of
FPDEs.

Dα
ν Ψ(ζ, ν) + LΨ(ζ, ν) + NΨ(ζ, ν) = g(ζ, ν), 0 < α ≤ 2, ζ, ν ≥ 0 (7)
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subject to the initial conditions

Ψ(ζ, 0) = g1(ζ), Ψν(ζ, 0) = g2(ζ), (8)

where symbols L and N indicate the linear and nonlinear operators, respectively, g is the
source function, and Dα

ν = ∂α

∂να is the Caputo operator. By applying the natural transform
method (NTM) to both sides of Equation (7), we obtain

N
+[Dα

ν Ψ(ζ, ν)] +N
+[LΨ(ζ, ν)] +N

+[NΨ(ζ, ν)] = N
+[g(ζ, ν)], (9)

By employing the differentiation property of the natural transform method, one can obtain

sα

μα
N
+[Ψ(ζ, ν)]− sα−1

μα
Ψ(ζ, 0)− sα−2

μα−1 Ψν(ζ, 0) = N
+[g(ζ, ν)]−N

+[LΨ(ζ, ν) + NΨ(ζ, ν)], (10)

and

N
+[Ψ(ζ, ν)] =

1
s

g1(ζ) +
μ

s2 g2(ζ) +
μα

sα
N
+[g(ζ, ν)]− μα

sα
N
+[LΨ(ζ, ν) + NΨ(ζ, ν)], (11)

taking the inverse NT for both sides of Equation (11), we obtain

Ψ(ζ, ν) = g1(ζ) + νg2(ζ) +N
−1

[
μα

sα
N
+[g(ζ, ν)]

]
−N

−1
[

μα

sα
N
+[LΨ(ζ, ν) + NΨ(ζ, ν)]

]
(12)

The NTDM solution Ψ(ζ, ν) is described by the following infinite series:

Ψ(ζ, ν) =
∞

∑
n=0

Ψn(ζ, ν), (13)

The nonlinear term NΨ(ζ, ν) satisfies the property

NΨ(ζ, ν) =
∞

∑
n=0

Bn, (14)

Bn =
1
n!

[
dn

dμn

[
N

∞

∑
n=0

(μnΨn)

]]
μ=0

, n = 0, 1, 2, . . . (15)

Substituting Equations (13) and (14) into Equation (12), we obtain

N
+

[
∞

∑
n=0

Ψ(ζ, ν)

]
= g1(ζ) + νg2(ζ) +N

−1
[

μα

sα
N
+[g(ζ, ν)]

]

−N
−1

[
μα

sα
N
+

[
L

∞

∑
n=0

Ψn(ζ, ν) +
∞

∑
n=0

Bn

]]
(16)
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We define the repetition relation

Ψ0(ζ, ν) = g1(ζ) + νg2(ζ) +N
−1

[
μα

sα
N
+[g(ζ, ν)]

]
Ψ1(ζ, ν) = −N

−1
[

μα

sα
N
+[Ψ0(ζ, ν) + B0]

]
Ψ2(ζ, ν) = −N

−1
[

μα

sα
N
+[Ψ1(ζ, ν) + B1]

]
Ψ3(ζ, ν) = −N

−1
[

μα

sα
N
+[Ψ2(ζ, ν) + B2]

]
...

Ψn+1(ζ, ν) = −N
−1

[
μα

sα
N
+[Ψn(ζ, ν) + Bn]

]
(17)

Therefore, the precise solution is denoted by

Ψ(ζ, ν) = Ψ0(ζ, ν) + Ψ1(ζ, ν) + Ψ2(ζ, ν) + Ψ3(ζ, ν) + Ψ4(ζ, ν) + Ψ5(ζ, ν) + · · · (18)

4. Illustrative Examples

In this part, we examine the above method using three examples and then compare
the approximate solutions with the exact solutions.

Example 1. Consider the following one-dimensional nonlinear wave-like equation with variable
coefficients:

∂αΨ(ζ, ν)

∂να
= ζ2 ∂

∂ζ

[
∂Ψ(ζ, ν)

∂ζ

∂2Ψ(ζ, ν)

∂ζ2

]
− ζ2

[(
∂2Ψ(ζ, ν)

∂ζ2

)2

− Ψ(ζ, ν)

]
(19)

0 < α ≤ 2, ν > 0,

subject to the initial condition

Ψ(ζ, 0) = 0, Ψν(ζ, 0) = ζ2, (20)

By employing the NTM for both sides of Equation (19), we have

sα

μα
N
+[Ψ(ζ, ν)]− sα−1

μα
Ψ(ζ, 0)− sα−2

μα−1 Ψν(ζ, 0)

= N
+

[
ζ2 ∂

∂ζ

[
∂Ψ(ζ, ν)

∂ζ

∂2Ψ(ζ, ν)

∂ζ2

]
− ζ2

[(
∂2Ψ(ζ, ν)

∂ζ2

)2

− Ψ(ζ, ν)

]]
(21)

Using the initial conditions in Equation (20) and rearranging the terms, we have

Ψ(ζ, ν) =
μ

s2 ζ2 +N
+

[
ζ2 ∂

∂ζ

[
∂Ψ(ζ, ν)

∂ζ

∂2Ψ(ζ, ν)

∂ζ2

]
− ζ2

[(
∂2Ψ(ζ, ν)

∂ζ2

)2

− Ψ(ζ, ν)

]]
(22)
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On using the inverse NTM of Equation (22), we have

Ψ(ζ, ν) = ζ2ν +N
−1

[
μα

sα
N
+

[
ζ2 ∂

∂ζ

[
∂Ψ(ζ, ν)

∂ζ

∂2Ψ(ζ, ν)

∂ζ2

]
− ζ2

[(
∂2Ψ(ζ, ν)

∂ζ2

)2

− Ψ(ζ, ν)

]]]
(23)

Now, we assume an infinite series solution for the Equation (23) which is defined by
Equation (13); then, Equation (23) becomes

∞

∑
n=0

Ψn(ζ, ν) = ζ2ν +N
−1

[
μα

sα
N
+

[
ζ2

∞

∑
n=0

∂

∂ζ

[
H(Ψζ Ψζζ)

]]]

−N
−1

[
μα

sα
N
+

[
ζ2

∞

∑
n=0

F(Ψ2
ζζ)

]]

−N
−1

[
μα

sα
N
+

[
∞

∑
n=0

Ψn(ζ, ν)

]]
(24)

where H(Ψζ Ψζζ) and F(Ψ2
ζζ) are the Adomian polynomials, which represent the nonlinear

terms. The few nonlinear terms are as follows:

H0(Ψζ Ψζζ) = Ψ0ζΨ0ζζ ,

H1(Ψζ Ψζζ) = Ψ0ζΨ1ζζ + Ψ1ζ Ψ0ζζ ,

H2(Ψζ Ψζζ) = Ψ0ζΨ2ζζ + Ψ1ζ Ψ1ζζ + Ψ2ζ Ψ0ζζ ,

H3(Ψζ Ψζζ) = Ψ0ζ Ψ3ζζ + Ψ1ζΨ2ζζ + Ψ2ζ Ψ1ζζ + Ψ3ζΨ0ζζ , (25)
...

and

F0(Ψ2
ζζ) = Ψ2

0ζζ ,

F1(Ψ2
ζζ) = 2Ψ0ζζΨ1ζζ ,

F2(Ψ2
ζζ) = 2Ψ0ζζΨ2ζζ + Ψ2

1ζζ ,

F3(Ψ2
ζζ) = 2Ψ0ζζ Ψ3ζζ + 2Ψ1ζζΨ2ζζ , (26)

...

Comparing both sides of Equation (24), we can obtain
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Ψ0(ζ, ν) = ζ2ν,

Ψ1(ζ, ν) = N
−1

[
μα

sα
N
+

[
ζ2

∞

∑
n=0

∂

∂ζ

(
Ψ0ζΨ0ζζ

)− ζ2
∞

∑
n=0

Ψ2
0ζζ −

∞

∑
n=0

Ψ0

]]

= −ζ2 να+1

Γ(α + 2)
,

Ψ2(ζ, ν) = N
−1

[
μα

sα
N
+

[
ζ2 ∂

∂ζ

(
Ψ0ζΨ1ζζ + Ψ1ζ Ψ0ζζ

)− ζ2(2Ψ0ζζΨ1ζζ

)− Ψ1

]]
= ζ2 ν2α+1

Γ(2α + 2)
,

Ψ3(ζ, ν) = N
−1

[
μα

sα
N
+

[
ζ2 ∂

∂ζ

(
Ψ0ζΨ2ζζ + Ψ2ζ Ψ0ζζ + Ψ1ζ Ψ1ζζ

)]]
N
−1

[
μα

sα
N
+
[
−ζ2

(
2Ψ0ζζ Ψ2ζζ + Ψ2

1ζζ

)
− Ψ2

]]
= −ζ2 ν3α+1

Γ(3α + 2)
,

Ψ4(ζ, ν) = N
−1

[
μα

sα
N
+

[
ζ2 ∂

∂ζ

(
Ψ0ζΨ3ζζ + Ψ1ζ Ψ2ζζ + Ψ2ζ Ψ1ζζ + Ψ3ζΨ0ζζ

)]]
−N

−1
[

μα

sα
N
+
[
ζ2(2Ψ0ζζΨ3ζζ + 2Ψ1ζζΨ2ζζ

)]]−N
−1

[
μα

sα
N
+[Ψ3]

]
= ζ2 ν4α+1

Γ(4α + 2)
,

...

The NTDM solution for the above equation is

Ψ(ζ, ν) = ζ2
[

ν − να+1

Γ(α + 2)
+

ν2α+1

Γ(2α + 2)
− ν3α+1

Γ(3α + 2)
+

ν4α+1

Γ(4α + 2)
− ν5α+1

Γ(5α + 2)
+ · · ·

]
. (27)

If we substitute α = 2 in Equation (27), the approximate solution of Equation (19) becomes

Ψ(ζ, ν) = ζ2
[

ν − ν3

3!
+

ν5

5!
− ν7

7!
+

ν9

9!
− · · ·

]
. (28)

Therefore, the solution of Equation (19) in a closed form is

Ψ(ζ, ν) = ζ2 sin(ν).

Figure 1: The solution Ψ(ζ, ν) for Example 1 when α = 2.

Figure 1. ψ(ζ, ν) = ζ2 sin ν.

139



Axioms 2023, 12, 958

Figure 2: The solution Ψ(ζ, ν) for Example 1 when α = 2, 1.80, 1.50.

Figure 2. ψ(ζ, ν) = ζ2 sin ν.

In the next example, we apply the natural transform decomposition method to solve a
non-constant coefficient two-dimensional partial differential equation.

Example 2. Consider the following two-dimensional fractional wave-like equation [19]:

∂αΨ(ζ, η, ν)

∂να
=

1
12

[
ζ2 ∂2Ψ(ζ, η, ν)

∂ζ2 + η2 ∂2Ψ(ζ, η, ν)

∂η2

]
, 0 < α ≤ 2, ν > 0 (29)

subject to conditions
Ψ(ζ, η, 0) = ζ4, Ψν(ζ, η, 0) = η4 (30)

Utilizing the NTM for both sides of Equation (29), we can obtain

sα

μα
N
+[Ψ(ζ, η, ν)]− sα−1

μα
Ψ(ζ, η, 0)− sα−2

μα−1 Ψν(ζ, η, 0) =
1
12

N
+

[
ζ2 ∂2Ψ(ζ, η, ν)

∂ζ2 + η2 ∂2Ψ(ζ, η, ν)

∂η2

]
, (31)

By placing conditions Equation (30) into Equation (31), we obtain

Ψ(ζ, η, ν) =
1
s

ζ4 +
μ

s2 η4 +
1
12

N
+

[
ζ2 ∂2Ψ(ζ, η, ν)

∂ζ2 + η2 ∂2Ψ(ζ, η, ν)

∂η2

]
, (32)

Employing the inverse natural transform method of Equation (32), we have

Ψ(ζ, η, ν) = ζ4 + η4ν +N
−1

[
1
12

N
+

[
ζ2 ∂2Ψ(ζ, η, ν)

∂ζ2 + η2 ∂2Ψ(ζ, η, ν)

∂η2

]]
. (33)

Now, we suppose an infinite series solution for the Equation (13); then, Equation (33)
becomes

∞

∑
n=0

Ψn(ζ, η, ν) = ζ4 + η4ν+N
−1

[
1

12
N
+

[
ζ2

∞

∑
n=0

∂2Ψn(ζ, η, ν)

∂ζ2 + η2
∞

∑
n=0

∂2Ψn(ζ, η, ν)

∂η2

]]
(34)
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Making both sides of Equation (34) equivalent, we have

Ψ0(ζ, η, ν) = ζ4 + η4ν,

Ψ1(ζ, η, ν) = N
−1

[
1

12
N
+

[
ζ2

∞

∑
n=0

∂2Ψ0(ζ, η, ν)

∂ζ2 + η2
∞

∑
n=0

∂2Ψ0(ζ, η, ν)

∂η2

]]

= ζ4 να

Γ(α + 1)
+ η4 να+1

Γ(α + 2)
,

Ψ2(ζ, η, ν) = N
−1

[
1

12
N
+

[
ζ2

∞

∑
n=0

∂2Ψ1(ζ, η, ν)

∂ζ2 + η2
∞

∑
n=0

∂2Ψ1(ζ, η, ν)

∂η2

]]

= ζ4 ν2α

Γ(2α + 1)
+ η4 ν2α+1

Γ(2α + 2)
,

Ψ3(ζ, η, ν) = N
−1

[
1

12
N
+

[
ζ2

∞

∑
n=0

∂2Ψ2(ζ, η, ν)

∂ζ2 + η2
∞

∑
n=0

∂2Ψ2(ζ, η, ν)

∂η2

]]

= ζ4 ν3α

Γ(3α + 1)
+ η4 ν3α+1

Γ(3α + 2)
,

Ψ4(ζ, η, ν) = N
−1

[
1

12
N
+

[
ζ2

∞

∑
n=0

∂2Ψ3(ζ, η, ν)

∂ζ2 + η2
∞

∑
n=0

∂2Ψ3(ζ, η, ν)

∂η2

]]

= ζ4 ν4α

Γ(4α + 1)
+ η4 ν4α+1

Γ(4α + 2)
,

Ψ5(ζ, η, ν) = N
−1

[
1

12
N
+

[
ζ2

∞

∑
n=0

∂2Ψ4(ζ, η, ν)

∂ζ2 + η2
∞

∑
n=0

∂2Ψ4(ζ, η, ν)

∂η2

]]

= ζ4 ν5α

Γ(5α + 1)
+ η4 ν5α+1

Γ(5α + 2)
,

...

The NTDM solution is

Ψ(ζ, η, ν) = Ψ0(ζ, η, ν) + Ψ1(ζ, η, ν) + Ψ2(ζ, η, ν) + Ψ3(ζ, η, ν) + Ψ4(ζ, η, ν) + · · ·
Ψ(ζ, η, ν) = ζ4 + η4ν + ζ4 να

Γ(α + 1)
+ η4 να+1

Γ(α + 2)

+ζ4 ν2α

Γ(2α + 1)
+ η4 ν2α+1

Γ(2α + 2)
+ ζ4 ν3α

Γ(3α + 1)

+η4 ν3α+1

Γ(3α + 2)
+ ζ4 ν4α

Γ(4α + 1)
+ η4 ν4α+1

Γ(4α + 2)

+ζ4 ν5α

Γ(5α + 1)
+ η4 ν5α+1

Γ(5α + 2)
+ · · · (35)

If we substitute α = 2, in Equation (35), the approximate solution of Equation (29) becomes

Ψ(ζ, η, ν) = ζ4
[

1 +
ν2

2!
+

ν4

4!
+

ν6

6!
+

ν8

8!
+ · · ·

]
+η4

[
ν +

ν3

3!
+

ν5

5!
+

ν7

7!
+

ν9

9!
+ · · ·

]
,

Hence, the exact solution of Equation (29) in a closed form is

Ψ(ζ, η, ν) = ζ4 cosh(ν) + η4 sinh(ν)
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Figure 3: The exact and approximate solutions Ψ(ζ, η, z, ν) for Example 2 when α = 2.

Figure 3. Ψ(ζ, η, ν) = ζ4 cosh(ν) + η4 sinh(ν)

Figure 4: The exact and approximate solutions Ψ(ζ, η, z, ν) for Example 2 when α = 2,
1.5, 1.

Figure 4. Ψ(ζ, η, ν) = ζ4 cosh(ν) + η4 sinh(ν).

Example 3. Consider the 3D fractional heat equation [19]:

∂αΨ(ζ, η, z, ν)

∂να
=

1
36

[
ζ2 ∂2Ψ(ζ, η, z, ν)

∂ζ2 + η2 ∂2Ψ(ζ, η, z, ν)

∂η2 + z2 ∂2Ψ(ζ, η, z, ν)

∂z2

]
+ ζ4η4z4

0 < α ≤ 1, (36)

with conditions
Ψ(ζ, η, z, 0) = 0. (37)

Applying the NTM to both sides of Equation (36), we obtain

sα

μα
N
+[Ψ(ζ, η, z, ν)]− sα−1

μα
Ψ(ζ, η, z, 0) =

N
+

[
1
36

[
ζ2 ∂2Ψ(ζ, η, z, ν)

∂ζ2 + η2 ∂2Ψ(ζ, η, z, ν)

∂η2 + z2 ∂2Ψ(ζ, η, z, ν)

∂z2

]]
+N

+
[
ζ4η4z4

]
(38)
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Taking the inverse NTM of Equation (38), we have

Ψ(ζ, η, z, ν) = N
−1

[
Ψ(ζ, η, z, 0)

s
+

μα

sα
N
+
[
ζ4η4z4

]]
+N

−1
[

μα

sα
N
+ 1

36

[
ζ2 ∂2Ψ(ζ, η, z, ν)

∂ζ2 + η2 ∂2Ψ(ζ, η, z, ν)

∂η2

]]
+N

−1
[

μα

sα
N
+ 1

36

[
z2 ∂2Ψ(ζ, η, z, ν)

∂z2

]]
(39)

Then, Equation (39) becomes

Ψ0(ζ, η, z, ν) = ζ4η4z4 να

Γ(α + 1)
,

∞

∑
n=0

Ψn+1(ζ, η, z, ν) = N
−1

[
μα

sα
N
+ 1

36

[
ζ2

∞

∑
n=0

∂2Ψn

∂ζ2 + η2
∞

∑
n=0

∂2Ψn

∂η2

]]

+N
−1

[
μα

sα
N
+ 1

36

[
z2

∞

∑
n=0

∂2Ψn

∂z2

]]
(40)

For n = 0,

Ψ1(ζ, η, z, ν) = N
−1

[
μα

sα
N
+ 1

36

[
ζ2 ∂2Ψ0

∂ζ2 + η2 ∂2Ψ0

∂η2 + z2 ∂2Ψ0

∂z2

]]
= N

−1
[

ζ4η4z4 μ2α

s2α+1

]
= ζ4η4z4 ν2α

Γ(2α + 1)
, (41)

The subsequent terms are given as follows:

Ψ2(ζ, η, z, ν) = N
−1

[
μα

sα
N
+ 1

36

[
ζ2 ∂2Ψ1

∂ζ2 + η2 ∂2Ψ1

∂η2 + z2 ∂2Ψ1

∂z2

]]
= ζ4η4z4 ν3α

Γ(3α + 1)
,

Ψ3(ζ, η, z, ν) = N
−1

[
μα

sα
N
+ 1

36

[
ζ2 ∂2Ψ2

∂ζ2 + η2 ∂2Ψ2

∂η2 + z2 ∂2Ψ2

∂z2

]]
= ζ4η4z4 ν4α

Γ(4α + 1)
,

Ψ4(ζ, η, z, ν) = N
−1

[
μα

sα
N
+ 1

36

[
ζ2 ∂2Ψ3

∂ζ2 + η2 ∂2Ψ3

∂η2 + z2 ∂2Ψ3

∂z2

]]
= ζ4η4z4 ν5α

Γ(5α + 1)
,

Ψ5(ζ, η, z, ν) = N
−1

[
μα

sα
N
+ 1

36

[
ζ2 ∂2Ψ4

∂ζ2 + η2 ∂2Ψ4

∂η2 + z2 ∂2Ψ4

∂z2

]]
= ζ4η4z4 ν6α

Γ(6α + 1)
, (42)

...
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The approximate solution of Equation (42) is denoted by

Ψ(ζ, η, z, ν) = Ψ0 + Ψ1 + Ψ2 + Ψ3 + Ψ4 + Ψ5 + Ψ6 + · · ·
Ψ(ζ, η, z, ν) = ζ4η4z4

[
να

Γ(α + 1)
+

ν2α

Γ(2α + 1)
+

ν3α

Γ(3α + 1)

]
+ζ4η4z4

[
ν4α

Γ(4α + 1)
+

ν5α

Γ(5α + 1)
+ · · ·

]
(43)

By letting α = 1 in Equation (43), we have

Ψ(ζ, η, z, ν) = ζ4η4z4
[

ν +
ν2

2
+

ν3

6
+

ν4

24
+

ν5

120
+ · · ·

]
(44)

Therefore, the solution of Equation (36) is provided by

Ψ(ζ, η, z, ν) = ζ4η4z4[eν − 1]

Figure 5: The exact and approximate solutions Ψ(ζ, η, z, ν) for Example 3 when α = 2.

Figure 5. Ψ(ζ, η, z, ν) = ζ4η4z4[eν − 1].

Figure 6: The exact and approximate solutions Ψ(ζ, η, z, ν) for Example 3 when α =
1, 0.80, 0.50.

Figure 6. Ψ(ζ, η, z, ν) = ζ4η4z4[eν − 1].

In the next example, we apply the natural transform decomposition method to solve
the homogeneous time-fractional gas dynamics equation.
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Example 4. Consider the following homogeneous time-fractional gas dynamics equation [27]:

∂αΨ(ζ, ν)

∂να
+ Ψ(ζ, ν)

∂Ψ(ζ, ν)

∂ζ
− Ψ(ζ, ν)[1 − Ψ(ζ, ν)] = 0, ν > 0, 0 < α ≤ 1, (45)

with the initial condition
Ψ(ζ, ν) = e−ζ , ζ ∈ R. (46)

Taking the NTM of Equation (45) and the initial condition in Equation (46), we have

N
+

[
∂αΨ(ζ, ν)

∂να

]
= N

+

[
−Ψ(ζ, ν)

∂Ψ(ζ, ν)

∂ζ
+ Ψ(ζ, ν)− Ψ2(ζ, ν)

]
N
+[Ψ(ζ, ν)] =

1
s

e−ζ +
μα

sα
N
+

[
−Ψ(ζ, ν)

∂Ψ(ζ, ν)

∂ζ

]
+

μα

sα
N
+
[
Ψ(ζ, ν)− Ψ2(ζ, ν)

]
(47)

Taking the inverse NTM of Equation (47), we obtain

Ψ(ζ, ν) = e−ζ −N
−1

[
μα

sα
N
+

[
Ψ(ζ, ν)

∂Ψ(ζ, ν)

∂ζ

]]
+N

−1
[

μα

sα
N
+[Ψ(ζ, ν)]

]
−N

−1
[

μα

sα
N
+
[
Ψ2(ζ, ν)

]]
(48)

Now, we assume an infinite series solution for the Equation (48) given by the form

Ψ(ζ, ν) =
∞

∑
n=0

Ψn(ζ, ν)

Ψ(ζ, ν) = e−ζ −N
−1

[
μα

sα
N
+

[
Ψ(ζ, ν)

∂Ψ(ζ, ν)

∂ζ

]]
+N

−1
[

μα

sα
N
+[Ψ(ζ, ν)]

]
−N

−1
[

μα

sα
N
+
[
Ψ2(ζ, ν)

]]
(49)

The nonlinear terms Ψ(ζ, ν) ∂Ψ(ζ,ν)
∂ζ , and Ψ2(ζ, ν) are denoted by

ΨΨζ =
∞

∑
n=0

Kn, Ψ2 =
∞

∑
n=0

Mn (50)

where Kn and Mn are Adomian polynomials. Then, Equation (49) becomes

∞

∑
n=0

Ψn(ζ, ν) = e−ζ −N
−1

[
μα

sα
N
+

[
∞

∑
n=0

Kn

]]

+N
−1

[
μα

sα
N
+[Ψn]

]
−N

−1

[
μα

sα
N
+

[
∞

∑
n=0

Mn

]]
, (51)

The nonlinear term Kn and Mn are expressed as

K0 = Ψ0Ψ0ζ ,

K1 = Ψ0Ψ1ζ + Ψ1Ψ0ζ ,

K2 = Ψ0Ψ2ζ + Ψ1Ψ1ζ + Ψ2Ψ0ζ ,

K3 = Ψ0Ψ3ζ + Ψ1Ψ2ζ + Ψ2Ψ1ζ + Ψ3Ψ0ζ , (52)
...
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and

M0 = Ψ2
0,

M1 = 2Ψ0Ψ1,

M2 = 2Ψ0Ψ2 + Ψ2
1, (53)

...

Making both sides of Equation (51) equivalent, we can obtain

Ψ0(ζ, ν) = e−ζ ,

Ψ1(ζ, ν) = −N
−1

[
μα

sα
N
+
[
Ψ0Ψ0ζ

]]
+N

−1
[

μα

sα
N
+[Ψ0]

]
−N

−1
[

μα

sα
N
+
[
Ψ2

0

]]
= e−ζ να

Γ(α + 1)
,

Ψ2(ζ, ν) = −N
−1

[
μα

sα
N
+
[
Ψ0Ψ1ζ + Ψ1Ψ0ζ

]]
+N

−1
[

μα

sα
N
+[Ψ1]

]
−N

−1
[

μα

sα
N
+[2Ψ0Ψ1]

]
= e−ζ ν2α

Γ(2α + 1)
,

Ψ3(ζ, ν) = −N
−1

[
μα

sα
N
+
[
Ψ0Ψ2ζ + Ψ1Ψ1ζ + Ψ2Ψ0ζ

]]
+N

−1
[

μα

sα
N
+[Ψ3]

]
−N

−1
[

μα

sα
N
+[Ψ0Ψ3 + Ψ1Ψ2]

]
= e−ζ ν3α

Γ(3α + 1)
,

Ψ4(ζ, ν) = −N
−1

[
μα

sα
N
+
[
Ψ0Ψ3ζ + Ψ1Ψ2ζ + Ψ2Ψ1ζ + Ψ3Ψ0ζ

]]
+N

−1
[

μα

sα
N
+[Ψ3]

]
−N

−1
[

μα

sα
N
+
[
2Ψ0Ψ2 + Ψ2

1

]]
= e−ζ ν4α

Γ(4α + 1)
, (54)

...

The above equation becomes

Ψ(ζ, ν) =
∞

∑
n=0

Ψn(ζ, ν)

= Ψ0(ζ, ν) + Ψ1(ζ, ν) + Ψ2(ζ, ν) + Ψ3(ζ, ν) + Ψ4(ζ, ν) + · · ·
= e−ζ

[
1 +

να

Γ(α + 1)
+

ν2α

Γ(2α + 1)
+

ν3α

Γ(3α + 1)
+

ν4α

Γ(4α + 1)
+ · · ·

]
= e−ζ

∞

∑
n=0

νnα

Γ(nα + 1)
, (55)

take α = 1, the approximate solution of Equation (55) given by

Ψ(ζ, ν) = e−ζ

[
1 +

ν

1!
+

ν2

2!
+

ν3

3!
+

ν4

4!
+ · · ·

]
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the solution of Equation (45) is denoted by

Ψ(ζ, ν) = e−ζ+ν

Figure 7: The exact and approximate solutions Ψ(ζ, ν) for Example 4 when α = 2.

Figure 7. Ψ(ζ, ν) = e−ζ+ν.

Figure 8: The exact and approximate solutions Ψ(ζ, ν) for Example 4 when α =
1, 0.80, 0.50.

Figure 8. Ψ(ζ, ν) = e−ζ+ν.

The introduced paper’s purpose is to obtain analytical and numerical solutions for
(NTDM) more precisely. In Tables 1–4, we show a comparison between the absolute errors
for the obtained numerical results and the exact solution.

Table 1. Comparison of the absolute errors for the obtained numerical results and the exact solution
for Example 1, for α = 2, 1.80, and 1.5.

ζ ν α = 2 α = 1.8 α = 1.5 Exact Absolute Error

0.5 0.0299640962 0.0293796164 0.0280835396 0.0299640962 0

0.25 0.75 0.0513947958 0.0452272241 0.0384946707 0.0426024225 0.0087923732

1 0.0734500746 0.0501614436 0.0460926237 0.0010907754 0.0723592991

0.5 0.1302738263 0.1175184656 0.1123341583 01198563846 0.0104174417

0.50 0.75 0.2055791830 0.1809088961 0.153976827 0.1704096900 0.035169493

1 0.2938002984 0.2006457422 0.184370449 0.0043631016 0.2894371968

0.5 0.5210953055 0.4700738629 0.4493366329 0.4794255386 0.0416697669

1 0.75 0.8223167320 0.7236355851 0.6159147310 0.6816387600 0.140677972

1 1.175201193 0.8025829685 0.7374819794 0.0174524064 1.157748787
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Table 2. Comparison of the absolute errors for the obtained numerical results and the exact solution
for Example 2, when ζ = η = 0.25, 0.50, and 1.

ζ ν α = 2 α = 1.8 α = 1.5 Exact Absolute Error

0.5 0.0064403174 0.0066750912 0.0072013111 0.0064403174 1×10−12

0.25 0.75 0.0082695312 0.0084681072 00096675856 0.0082695313 6.7×10−11

1 0.0106182872 0.0074431273 0.0128345819 0.0106182883 1.19×10−9

0.5 0.1030451762 0.1070299290 0.1152209783 0.0130450794 9.68×10−8

0.50 0.75 0.1323130518 0.0885159904 0.1546813706 0.1323125010 5.508 × 10−7

1 0.1698925954 0.1190900375 0.2053533103 0.1698926143 1.89×10−8

0.5 1.648721270 1.708823359 1.843435654 1.648721270 0

1 0.75 2.117000000 2.232441653 2.474901931 2.117000017 1.7×10−8

1 2.718281526 1.905440600 3.285652963 2.718281828 3.02 × 10−7

Table 3. Comparison of the absolute errors for the obtained numerical results and the exact solution
for Example 3, when ζ = ν = z = 0.25, 0.50, 1.

ζ ν α = 1 α = 0.80 α = 0.50 Exact Absolute Error

0.5 0.386654 × 10−7 0.481388 × 10−7 0.103833×10−6 0.386668 × 10−7 1.39203 × 10−12

0.25 0.75 0.665619 × 10−7 0.841673 × 10−7 0.157573 × 10−6 0.665783 × 10−7 1.647378 × 10−11

1 0.102321 × 10−6 0.129654 × 10−6 0.219436×10−6 1.024175 × 10−7 9.62711 × 10−11

0.5 0.0001583735 0.0001971769 0.0004253023 1.583792 × 10−7 5.7017 × 10−9

0.50 0.75 0.0002726376 0.0003447496 0.0006454195 2.727050 × 10−7 6.74765 × 10−8

1 0.0004191080 0.0005869575 0.0008988117 4.195023 × 10−7 3.9432705 × 10−7

0.5 0.6486979167 0.8076367013 1.742038385 0.6487212707 2.3354×10−5

1 0.75 1.116723633 1.412094400 2.643638290 1.117000017 2.76384×10−4

1 1.716666667 2.175242941 3.681533056 1.718281828 1.615161×10−3

Table 4. Comparison of the absolute errors for the obtained numerical results and the exact solution
for Example 4, with α = 1, 0.80, and 0.5.

ζ ν α = 1 α = 0.80 α = 0.50 Exact Absolute Error

0.5 1.284007229 1.501210297 2.135501642 1.284025417 1.8188×10−5

0.25 0.75 1.648506023 1.968100996 2.837668354 1.648721271 2.15248× 10−4

1 2.115742127 2.553826345 3.645981610 2.117000017 1.25789×10−3

0.5 0.999985352 1.169143755 1.663130351 1 1.415448 × 10−5

0.50 0.75 1.283857782 1.532758597 2.209978336 1.284025417 1.67635× 10−4

1 1.647741626 1.988921957 2.839493333 1.648721271 9.79645×10−4

0.5 0.6065220684 0.7091215329 1.008739549 0.6065306597 8.5913×10−6

1 0.75 0.7786991072 0.9296650831 1.340419618 0.7788007831 1.01659× 10−4

1 0.9994058152 1.206342147 1.722239764 1 5.941848 × 10−4

5. Conclusions

The authors in this work successfully executed the natural transform decomposition
method (NTDM) to acquire the approximate solutions of (1+3)-dimensional fractional non-
linear partial differential equations. We have also offered three test problems. The simplicity
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and high precision of the method show that this technique can be involved in many nonlin-
ear partial differential equations. The NTDM presents a significant improvement in the
field over the existing methods such as the optimal homotopy asymptotic method (OHAM)
and fractional homotopy analysis transform method (FHATM). In addition to the currently
presented methods, it is noteworthy to highlight the discontinuous Galerkin method [28]
as a novel and efficient alternative for solving fractional-order linear and nonlinear partial
differential equations. Its application to these equations holds substantial potential and can
produce promising outcomes. Mathematica software package was applied to obtain the
numerical results and graphs.
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Abstract: This paper delves into the investigation of quasi-linear neutral differential equations in
the third-order canonical case. In this study, we refine the relationship between the solution and
its corresponding function, leading to improved preliminary results. These enhanced results play a
crucial role in excluding the existence of positive solutions to the investigated equation. By building
upon the improved preliminary results, we introduce novel criteria that shed light on the nature of
these solutions. These criteria help to distinguish whether the solutions exhibit oscillatory behavior
or tend toward zero. Moreover, we present oscillation criteria for all solutions. To demonstrate the
relevance of our results, we present an illustrative example. This example validates the theoretical
framework we have developed and offers practical insights into the behavior of solutions for quasi-
linear third-order neutral differential equations.

Keywords: oscillatory; nonoscillatory; delay differential equation; third-order; canonical

MSC: 34C10; 34K11

1. Introduction

Third-order quasi-linear NDEs, while sounding complex, play a pivotal role in various
practical applications, addressing a wide array of real-world problems. These equations
emerge in fields such as engineering, physics, and biology, where they are instrumental in
modeling dynamic systems exhibiting intricate interactions and time delays. By delving
into their solutions and properties, we gain insights into phenomena ranging from electrical
circuits with distributed parameters to the behavior of biochemical systems with feedback
loops. In this paper, understanding and solving third-order quasi-linear NDEs become in-
valuable tools for engineers, scientists, and researchers seeking to unravel the mysteries of
dynamic systems and optimize their performance in the face of delays and nonlinearities [1–3].

Delay-neutral differential equations are considered one of the most important tools
used to describe and represent life models and systems with extreme accuracy. This is
due to the nature of the delay-neutral differential equation, which contains both delayed
and non-delayed functions. Therefore, many mechanical, physical, chemical, and other
science models use delay-neutral differential equations. For example, these equations are
used in describing population growth dynamics and in modeling physiological processes
with neurotransmission delays, see [4]. For more applications in various sciences, please
see [5–7].
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In this paper, we study the oscillatory behavior of quasi-linear third-order NDEs.
These equations are expressed in the following form:(

a2(�)
((

a1(�)z′(�)
)′)α)′

+ q(�)xα(σ(�)) = 0, � ≥ �0, (1)

where z(�) = x(�)+p(�)x(τ(�)). Throughout this study, we make the following assumptions:

(H1) α is a ratio of two positive odd integers and α > 1;
(H2) q, p ∈ C([�0, ∞)), q(�) ≥ 0, and 0 ≤ p(�) < p0 < ∞;
(H3) τ, σ ∈ C1([�0, ∞)), τ(�) ≤ �, σ(�) ≤ �, τ′(�) ≥ τ0 > 0, σ′(�) > 0,

(
σ−1(�)

)′ ≥ σ0 > 0,
τ ◦ σ = σ ◦ τ, lim�→∞ τ(�) = ∞, and lim�→∞ σ(�) = ∞;

(H4) a2 ∈ C1([�0, ∞)), a1 ∈ C2([�0, ∞)), a1 > 0, a2 > 0,

∫ ∞

�0

1
a1(s)

ds = ∞, and
∫ ∞

�0

1

a1/α
2 (s)

ds = ∞. (2)

By a solution to (1), we mean a nontrivial function, x ∈ C([Lx, ∞),R), Lx � �0,

which has the property z, a1z′, a2

(
(a1z′)′

)α ∈ C1([Lx, ∞),R), and satisfies (1) on [Lx, ∞).
We consider only those solutions x of (1) that exist on some half-line [Lx, ∞) and satisfy
the condition

sup{|x(�)| : � � L} > 0, for all L ≥ Lx.

Differential equations (DEs) form a fundamental framework in mathematics, encom-
passing a variety of applications across science and engineering. Within this field, NDEs
hold a special place due to their ability to model systems where the rate of change of a
function is affected not only by its past behavior but also by the behavior of the delayed
intermediate. This property allows NDEs to capture real-world phenomena that exhibit in-
herent time lags, making them invaluable tools in various fields, including biology, control
theory, economics, and physics, see [8–10].

Oscillation theory, a pivotal facet of differential equation analysis, offers crucial in-
sights into solution behaviors. Oscillatory solutions, reflecting dynamic and periodic
phenomena, pervade many natural systems. Hence, investigating oscillation criteria, partic-
ularly for third-order NDEs, holds paramount importance in both theoretical and practical
contexts. This paper delves into obtaining oscillation criteria for third-order NDEs, aiming
to establish more precise conditions governing the occurrence of oscillations in the solutions,
see [11–14].

The study of oscillation criteria for higher-order DEs has long captured significant
interest within the field, see [15–18]. Notably, the analysis of third-order NDEs has received
attention due to its importance in diverse scientific and engineering fields, from control
theory to population dynamics. Several preceding studies have contributed valuable
insights into the oscillation behavior of such equations. Researchers have proposed varied
techniques and methodologies to establish conditions under which solutions of third-
order NDEs either oscillate or remain nonoscillatory. These criteria often involve intricate
mathematical analyses, including inequalities, integral inequalities, and comparisons with
auxiliary functions, see [19–21].

Hanan [22], in 1961, studied third-order differential equations in the linear case, that
is, by setting a1(�) = a2(�) = 1, α = 1 in (1). She provides one of the most important
conditions that cannot be weakened for (1) in the linear case by introducing the condition

lim inf
t→∞

t3q(t) >
2

3
√

3
.
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Thereafter, many works focused on this type of equation. In 2010, Saker and Džu-
rina [23], extended the study to include the presence of α, i.e., they were interested in
studying the oscillatory behavior of the delay differential equation(

a2(�)
(

x′′(�)
)α

)′
+ q(�)xα(σ(�)) = 0.

They presented sufficient conditions ensuring that every solution of previous equations
either oscillates or converges to zero. On the other hand, by using Riccati transformation,
Thandapani and Li [24] investigated some asymptotic properties for the neutral differential
equation (

a2(�)
(
z′′(�)

)α
)′

+ q(�)xα(σ(�)) = 0, (3)

with 0 ≤ p(�) ≤ p0 < 0. They established certain sufficient conditions guaranteeing that
every solution of (3) either oscillates or converges to zero.

In 2019, Džurina et al. [25] established necessary conditions for the nonexistence of
Kneser solutions in oscillation results for third-order NDEs of the following form(

a2(�)
(
a1(�)z′(�)

)′)′
+ q(�)x(σ(�)) = 0. (4)

By combining their recently acquired results with pre-existing research, they ensured
oscillation for all solutions of (4). In the same year, Jadlovská et al. [26] investigated
the effective oscillatory criteria associated with third-order delay differential equations,
represented by the form (

a2(�)
(
a1(�)x′(�)

)′)′
+ q(�)x(σ(�)) = 0,

with a specific focus on the canonical case, aiming to establish that any nonoscillatory
solution converges to zero.

Following a different approach, Chatzarakis et al. [27] introduced improved criteria for
oscillatory behavior in third-order NDEs with unbounded neutral coefficients, presented
by the form

z′′′(�) + q(�)xα(σ(�)) = 0,

where they introduced sharp criteria that demonstrate the nonexistence of Kneser solutions.
On the other hand, higher order equations have been studied using many methods

and techniques, see for example [28,29].
This paper aims to establish more stringent and improved criteria that guarantee the

oscillation of all solutions of (1) through the use of advanced mathematical tools and tech-
niques. The proposed criteria extend current results and facilitate a deeper understanding
of the oscillatory nature of tertiary NDEs, providing more space when modeling.

The rest of this paper is structured as follows. In Section 2, we introduce a set of
definitions and lemmas essential for simplifying mathematical operations in our work.
Section 3 is dedicated to a series of lemmas that pertain to the asymptotic properties of
solutions within the class N2. These lemmas play a pivotal role in illustrating oscillation
results. Section 4 provides results that ensure the asymptotic convergence to zero of any
Kneser solution. Moving on to Section 5, we combine the results from the preceding sections
to articulate the main results of this paper. Finally, in Section 6, we offer an example that
supports and illustrates the validity of our results.

2. Preliminary Results

In this section, we present a set of definitions and assumptions that are needed in this
paper to simplify the mathematical calculations. For the sake of brevity, we define

p0(�) := (1 − p(σ(�)))α,
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φ(�) := min{q(�), q(τ(�))},

L0z = z, L1z = a1z′, L2z = a2

((
a1z′

)′)α
, L3z =

(
a2

((
a1z′

)′)α)′
,

π1(�) :=
∫ �

�0

1
a1(s)

ds, π2(�) :=
∫ �

�0

1

a1/α
2 (s)

ds, π12(�) :=
∫ �

�0

π2(s)
a1(s)

ds,

π1(ς, �) :=
∫ ς

�

1
a1(s)

ds, π2(ς, �) :=
∫ ς

�

1

a1/α
2 (s)

ds, π12(ς, �) :=
∫ ς

�

π2(s)
a1(s)

ds,

F[0](�) := F(�) and F[j](�) := F
(

F[j−1](�)
)

, for j = 1, 2, . . . , n,

p1(�; n) :=
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))[

1
p(τ[2k] (�))

− 1
]

π12(τ[2k] (�))

π12(�)
,

p̂1(�, n) :=
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](�)

))
⎡⎣π12

(
τ[−2k+1](�)

)
π12

(
τ[−2k](�)

) − 1
p
(
τ[−2k](�)

)
⎤⎦,

B(�, n) :=
{

max{p0(�), p1(�; n)} for p0 < 1,
p̂1(�; n) for p0 >R12(�, �1)/R12(τ(�), �1),

λ∗ := lim inf
�→∞

π12(�)

π12(σ(�))
,

β∗ := lim inf
�→∞

1
α

a1/α
2 (�)πα

12(σ(�))π2(�)q(�)Bα(σ(�), n),

and

k∗ := lim inf
�→∞

π
β∗
2 (�)

π12(�)

∫ �

�0

π
1−β∗
2 (s)
a1(s)

ds, for β∗ ∈ (0, 1).

Remark 1. For our purposes, we must define the following conditions

π12(�)

π12(σ(�))
≥ λ, where λ ∈ (1, λ∗), (5)

1
α

a1/α
2 (�)πα

12(σ(�))π2(�)q(�)Bα(σ(�), n) ≥ β, where β ∈ (0, β∗), (6)

and
π

β
2 (�)

π12(�)

∫ �

�0

π
1−β
2 (s)
a1(s)

ds ≥ k, where k ∈ [1, ∞). (7)

Lemma 1 ([30]). Assume that A and B are real numbers, A > 0, then,

BU − AU(α+1)/α ≤ αα

(α + 1)α+1
Bα+1

Aα
. (8)

Lemma 2 ([31]). Assume that x1, x2 ∈ [0, ∞). Then,

(x1 + x2)
α ≤ μ(xα

1 + xα
2)

and

μ =

{
1 for 0 < α ≤ 1;
2α−1 for α > 1.
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Lemma 3 ([32]). Let y ∈ Cn([�0, ∞), (0, ∞)), y(i)(�) > 0 for i = 1, 2, . . . , n, and y(n+1)(�) ≤
0, eventually. Then, eventually,

y(�)
y′(�)

≥ ε

n
�,

for every ε ∈ (0, 1).

Lemma 4 ([33]). Suppose that x is a solution to (1) that is positive eventually. In such a case, z
satisfies one of the following cases

N1 : z > 0, L1z < 0, L2z > 0, and L3z ≤ 0,

N2 : z > 0, L1z > 0, and L2z > 0,

for � large enough. The symbol Ωi (Category Ωi) represents the set of all solutions that are positive
eventually and where the corresponding function fulfills condition (Ni) for i = 1, 2. The solutions
within the category Ω1 are referred to as Kneser solutions.

Lemma 5 ([34]). Assume that x is an eventually positive solution of (1). If p0 < 1, then, eventually

x(�) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))⎡⎣ z

(
τ[2k](�)

)
p
(
τ[2k](�)

) − z
(

τ[2k+1](�)
)⎤⎦,

for any integer n ≥ 0.

Lemma 6. Assume that x is an eventually positive solution of (1). If p0 > 1, then,

x(�) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−k](�)

))[
z
(

τ[−2k+1](�)
)
− 1

p
(
τ[−2k](�)

) z
(

τ[−2k](�)
)]

.

Proof. From
z(�) = x(�) + p(�)x(τ(�)),

we deduce that

x(�) =
1

p(τ−1(�))

[
z
(

τ−1(�)
)
− x

(
τ−1(�)

)]
=

1
p
(
τ[−1](�)

) z
(

τ[−1](�)
)

− 1
p
(
τ[−1](�)

) 1
p
(
τ[−2](�)

) [z
(

τ[−2](�)
)
− x

(
τ[−2](�)

)]
=

1
p
(
τ[−1](�)

) z
(

τ[−1](�)
)
−

2

∏
i=1

1
p
(
τ[−i](�)

) z
(

τ[−2](�)
)

+
3

∏
i=1

1
p
(
τ[−i](�)

) [z
(

τ[−3](�)
)
− x

(
τ[−3](�)

)]
.

By repeating the same technique a number of times, we obtain

x(�) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[i](�)

))[
z
(

τ[−2k+1](�)
)
− 1

p
(
τ[−2k](�)

) z
(

τ[−2k](�)
)]

.

Therefore, we have successfully demonstrated the proof.
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3. Nonexistence of N2-Type Solutions

In this section, we introduce several lemmas that pertain to the asymptotic properties
of solutions within the class N2. These lemmas will play a pivotal role in demonstrating
our primary results regarding oscillations.

Lemma 7. Suppose that β∗ > 0 and x ∈ Ω2. Then for � sufficiently large
(A1,1) lim�→∞ L2z(�) = lim�→∞ L1z(�)/π2(�) = lim�→∞ z(�)/π12(�) = 0;
(A1,2) L1z/π2 is decreasing and L1z ≥ π2(L2z)1/α;
(A1,3) z/π12 is decreasing and x > (π12/π2)L1z.

Proof. Let x ∈ Ω2 and choose �1 ≥ �0, such that x(τ(�)) > 0 and β satisfies (6) for � ≥ �1.
(A1,1): Since L2z is a positive decreasing function, obviously

lim
�→∞

L2z = l ≥ 0.

If l > 0, then L2z ≥ l > 0, and so for any ε ∈ (0, 1), we have

z(�) ≥ l1/α
∫ �

�1

1
a1(u)

∫ u

�1

1

a1/α
2 (s)

dsdu ≥ l̃π12(�), l̃ = εl1/α. (9)

Since
z(�) = x(�) + p(�)x(τ(�)),

then z(�) ≥ x(�) and

x(�) = z(�)− p(�)x(τ(�))
≥ z(�)− p(�)z(τ(�)).

Since z′ > 0, then
x(�) ≥ (1 − p(�))z(�).

Using this in (1), we obtain

−L3z(�) = q(�)xα(σ(�))

≥ q(�)(1 − p(σ(�)))αz(σ(�))α.

From (9), we find
−L3z(�) ≥ −l̃αq(�)B(�)πα

12(σ(�)).

Integrating from �1 to �, we have

L2z(�1) ≥ l̃α
∫ �

�1

q(s)B(s)πα
12(σ(s))ds

≥ αβl̃α
∫ �

�1

1

a1/α
2 (s)π2(s)

ds

= αβl̃α ln
π2(�)

π2(�1)
→ ∞ as � → ∞,

which is a contradiction. Hence, l = 0. Applying l’Hôpital’s rule, we see that (A1,1) holds.
(A1,2): Using the fact that L2z is positive and decreasing, we see that
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L1z(�) = L1z(�1) +
∫ �

�1

(L1z(s))′ds

≥ L1z(�1) +
∫ �

�1

L1/α
2 z(s)

a1/α
2 (s)

ds

≥ L1z(�1) + L1/α
2 z(�)

∫ �

�1

1

a1/α
2 (s)

ds

= L1z(�1) + L1/α
2 z(�)

∫ �

�1

1

a1/α
2 (s)

ds − L1/α
2 z(�)

∫ �1

�0

1

a1/α
2 (s)

ds.

In view of (A1,1), there is a �2 > �1, such that

L1z(�1)− L1/α
2 z(�)

∫ �1

�0

1

a1/α
2 (s)

ds > 0, � ≥ �2.

Thus
L1z(�) > π2(�)L1/α

2 z(�),

and consequently (
L1z
π2

)′
(�) =

π2(�)L1/α
2 z(�)− L1z(�)

a1/α
2 (�)π2

2(�)
< 0.

(A1,3): Since L1z/π2 is a decreasing function tending to zero, then

z(�) = z(�2) +
∫ �

�2

L1z(s)
π2(s)

π2(s)
a1(s)

ds

≥ z(�2) +
L1z(�)
π2(�)

∫ �

�2

π2(s)
a1(s)

ds

≥ z(�2) +
L1z(�)
π2(�)

π12(�) +
L1z(�)
π2(�)

∫ �2

�0

π2(s)
a1(s)

ds

>
L1z(�)
π2(�)

π12(�).

Therefore (
z

π12

)′
(�) =

L1z(�)π12(�)− z(�)π2(�)

a1(�)π
2
12(�)

< 0.

Lemma 8. Assume that x ∈ Ω2. Then

x(�) > B(�, n)z(�) (10)

and (
a2(�)

((
a1(�)z′(�)

)′)α)′
≤ −q(�)Bα(σ(�), n)zα(σ(�)). (11)

Proof. If p0 < 1, then, due to the fact that z(�) is increasing and τ[2k] (�) ≥ τ[2k+1] (�),
we have

z(τ[2k] (�)) ≥ z(τ[2k+1] (�)),

which, along with Lemma 5, implies that

x(�) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))[

z(τ[2k] (�))

p(τ[2k] (�))
− z(τ[2k+1] (�))

]

≥
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))[

1
p(τ[2k] (�))

− 1
]

z(τ[2k] (�)). (12)
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Moreover, as z/π12 is decreasing and τ[2k] (�) ≤ �, we have

z(τ[2k] (�))

π12(τ[2k]�)
≥ z(�)

π12(�)

and

z(τ[2k] (�)) ≥ π12(τ[2k] (�))

π12(�)
z(�).

Thus, using the above inequality and substituting in (12), we obtain

x(�) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))[

1
p(τ[2k] (�))

− 1
]

π12(τ[2k] (�))

π12(�)
z(�)

= p1(�; n)z(�). (13)

On the other hand, if p0 > 1, then z/π12 is decreasing and τ[−2k](�) ≥ τ[−2k+1](�), implying
that

z
(

τ[−2k+1](�)
)

π12
(
τ[−2k+1](�)

) ≥
z
(

τ[−2k](�)
)

π12
(
τ[−2k](�)

)
and

z
(

τ[−2k+1](�)
)
≥

π12

(
τ[−2k+1](�)

)
π12

(
τ[−2k](�)

) z
(

τ[−2k](�)
)

.

Using Lemma 6, we can conclude that

x(�) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](�)

))
⎡⎣π12

(
τ[−2k+1](�)

)
π12

(
τ[−2k](�)

) − 1
p
(
τ[−2k](�)

)
⎤⎦z

(
τ[−2k](�)

)
.

As z(�) is increasing and τ[−2k](�) ≥ �, we have

x(�) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](�)

))
⎡⎣π12

(
τ[−2k+1](�)

)
π12

(
τ[−2k](�)

) − 1
p
(
τ[−2k](�)

)
⎤⎦z(�)

= p̂1(�, n)z(�). (14)

From (1), we have
L3z(�) = −q(�)xα(σ(�)).

Using (13) and (14), we obtain

L3z(�) ≤ −q(�)Bα(σ(�), n)zα(σ(�)).

Hence, we have successfully demonstrated the proof of the lemma.

The following lemma gives some additional properties of solutions belonging to the
class N2.

Lemma 9. Assume that β∗ > 0 and x ∈ Ω2. Then for β ∈ (0, β∗) and � sufficiently large
(A2,1) L1z/π

1−β∗
2 is decreasing and (1 − β∗)L1z > π2(L2z)1/α;

(A2,2) lim�→∞ L1z(�)/π
1−β∗
2 (�) = 0;

(A2,3) z/π1/k
12 is decreasing and z > k(π12/π2)L1z.

Proof. Let x ∈ Ω2 and choose �1 ≥ �0, such that z(σ(�)) > 0 and parts (A1,1)–(A1,3) in
Lemma 7 hold for � ≥ �1 ≥ �0 and choose fixed but arbitrarily large β ∈ (β∗/(1 + β∗), β∗)
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and k ≤ k∗ satisfying (6) and (7), respectively, for � ≥ �1.
Since

β

1 − β
> β∗,

there exist constants c1 ∈ (0, 1) and c2 > 0, such that

c1β

1 − β
> β∗ + c2. (15)

(A2,1): Define
w(�) = L1z(�)− π2(�)(L2z(�))1/α, (16)

which is clearly positive by (A1,2). Differentiating w and using (11) and (6), we see that

w′(�) =
(

L1z(�)− (L2z(�))1/απ2(�)
)′

= − 1
α

π2(�)(L2z(�))1/α−1L3z(�)

≥ 1
α

q(�)π2(�)Bα(σ(�), n)zα(σ(�))(L2z(�))1/α−1

≥ β
zα(σ(�))

a1/α
2 (�)πα

12(σ(�))
(L2z(�))1/α−1. (17)

By virtue of (A1,3), we have

w′(�) ≥ β
zα(�)

a1/α
2 (�)πα

12(�)
(L2z(�))1/α−1. (18)

Considering (A1,2) and (A1,3), we obtain the following inequality:

z(�)
π12(�)

>
L1z(�)
π2(�)

> (L2z(�))1/α.

Since α > 1, then (
z(�)

π12(�)

)1−α

<

(
L1z(�)
π2(�)

)1−α

< (L2z(�))(1−α)/α. (19)

Substituting the previous inequality in (18), we obtain

w′(�) ≥ β
zα(�)

a1/α
2 (�)πα

12(�)

(
z(�)

π12(�)

)1−α

= β
z(�)

a1/α
2 (�)π12(�)

≥ β
L1z(�)

a1/α
2 (�)π2(�)

.

Integrating from �2 to � and using the fact that L1z/π2 is decreasing and tends to zero
asymptotically, we have

w(�) ≥ w(�2) + β
∫ �

�2

L1z(s)
a1/α

2 (s)π2(s)
ds ≥ w(�2) + β

L1z(�)
π2(�)

∫ �

�2

1

a1/α
2 (s)

ds

= z(�2) + β
L1x(�)
π2(�)

π2(�)− β
L1x(�)
π2(�)

∫ �2

�0

1

a1/α
2 (s)

ds > βL1x(�). (20)

Then
(1 − β)L1z(�) > π2(�)(L2z(�))1/α

and (
L1z(�)

π
1−β
2 (�)

)′
=

(L2z(�))1/απ2(�)− (1 − β)L1z(�)

a1/α
2 (�)π

2−β
2 (�)

< 0. (21)
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It can be deduced straightforwardly from (21) and the observation that L1z is increasing
that β < 1. Using this in (20) and taking (15) into account, we find that

w(�) ≥ w(�3) + β
∫ �

�3

L1z(s)
a1/α

2 (s)π2(s)
ds

≥ w(�3) + β
L1z(�)

π
1−β
2 (�)

∫ �

�3

1

a1/α
2 (s)πβ

2 (s)
ds

≥ β

1 − β

L1z(�)

π
1−β
2 (�)

(
π

1−β
2 (�)− π

1−β
2 (�3)

)
≥ c1β

1 − β
L1z(�)

≥ (β∗ + c2)L1z(�),

which implies

(1 − β∗)L1z(�) > (1 − β∗ − c2)L1z(�) > (L2z(�))1/απ2(�)

and (
L1z(�)

π
1−β∗−c2
2 (�)

)′
< 0, (22)

the conclusion then immediately follows.
(A2,2): Obviously, (22) also implies that L1z/π

1−β∗
2 → 0 as � → ∞, since otherwise

L1z(�)

π
1−β∗−c2
2 (�)

=
L1z(�)

π
1−β∗
2 (�)

πc2
2 (�) → ∞ as � → ∞, (23)

which is a contradiction.
(A2,3): By utilizing (A2,1) and (A2,2), as well as L1z/π

1−β∗
2 as a decreasing function tending

towards zero, we can derive:

z(�) = z(�4) +
∫ �

�4

L1z(s)

π
1−β∗
2 (s)

π
1−β∗
2 (s)
a1(s)

ds

≥ z(�4) +
L1z(�)

π
1−β∗
2 (�)

∫ �

�4

π
1−β∗
2 (s)
a1(s)

ds

= z(�4) +
L1z(�)

π
1−β∗
2 (�)

∫ �

�0

π
1−β∗
2 (s)
a1(s)

ds − L1z(�)

π
1−β∗
2 (�)

∫ �4

�0

π
1−β∗
2 (s)
a1(s)

ds

>
L1z(�)

π
1−β∗
2 (�)

∫ �

�0

π
1−β∗
2 (s)
a1(s)

ds

≥ k
π12(�)

π2(�)
L1z(�).

Therefore (
z(�)

π1/k
12 (�)

)′
=

kπ12(�)L1z(�)− π2(�)z(�)
ka1(�)π

1/k+1
2 (�)

< 0.

As a result, we have successfully concluded the proof of the Lemma.

Corollary 1. If β∗ ≥ 1 then Ω2 = ∅.
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Proof. This can be deduced from the inequality:

(1 − β∗)L1z(�) > (L2z(�))1/απ2(�),

taking into account the positivity of L2z.

Corollary 2. If β∗ > 0 and λ∗ = ∞, then Ω2 = ∅.

Proof. Let x ∈ Ω2, and choose �1 ≥ �0, such that z(σ(�)) > 0 and parts (A2,1)–(A2,3) in
Lemma 7 hold for � ≥ �1 ≥ �0 and choose fixed but arbitrarily large λ ≤ λ∗, β ≤ β∗, and
k ≤ k∗ satisfying (5), (6), and (7), respectively, for � ≥ �1. Using (17), and the decreasing of
z/π1/k

12 , we have

w′(�) ≥ β
zα(σ(�))

a1/α
2 (�)πα/k

12 (σ(�))π
α(1−1/k)
12 (σ(�))

(L2z(�))1/α−1

≥ β
zα(�)

πα/k
12 (�)

1

a1/α
2 (�)π

α(1−1/k)
12 (σ(�))

(L2z(�))1/α−1.

Using (A2,3), (19), and (5), we obtain

w′(�) ≥ β
zα(�)

πα/k
12 (�)

1

a1/α
2 (�)π

α(1−1/k)
12 (σ(�))

(
z(�)

π12(�)

)1−α

= β
π

α(1−1/k)
12 (�)

a1/α
2 (�)π

α(1−1/k)
12 (σ(�))

z(�)
π12(�)

≥ β
λα(1−1/k)

a1/α
2 (�)

z(�)
π12(�)

≥ βkλα(1−1/k) L1z(�)
a1/α

2 (�)π2(�)
.

Integrating the last inequality from �2 to � and using that L1z/π2 is a decreasing function
tending to zero, we obtain

w(�) ≥ kβλα(1−1/k)L1z(�). (24)

Thus (
1 − kβλα(1−1/k)

)
L1z(�) ≥ (L2z(�))1/απ2(�).

As λ can assume arbitrarily large values, we can choose λ such that λ > (1/kβ)k/α(k−1),
thereby leading to a contradiction with the positivity L2z. This concludes the proof of
Corollary 2.

Corollary 3. Assume that β∗ > 0 and k∗ = ∞. Then, Ω2 = ∅.

Proof. The proof follows with the same steps from Corollary 2, and the fact that k can be
arbitrarily large, we omit it.

Definition 1. For our purposes, let us define the following sequence {βn}∞
n=0, assuming it exists:

β0 = β∗, where β∗ ∈ (0, 1),

βn =
β0kn−1λ

α(1−1/kn−1)∗
1 − βn−1

, where λ∗ ∈ [1, ∞), (25)

and kn satisfies the condition:

kn = lim inf
�→∞

π
βn
2 (�)

π12(�)

∫ �

�0

π
1−βn
2 (s)
a1(s)

ds, n ∈ N0. (26)
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Remark 2. Clearly, βn+1 exists if βi < 1 and ki ∈ [1, ∞) for i = 0, 1, . . . , n. In this scenario, we
can derive the following inequality:

β1

β0
=

k0λα(1−1/k0)

1 − β0
> 1

and
k1 ≥ k0.

We can easily establish, through the use of mathematical induction on n, the following inequality

βn+1

βn
≥ ln > 1, (27)

where

l0 :=
k0λ

α(1−1/kn−1)∗
1 − β0

,

ln :=
knλ

α(1/kn−1−1/kn)∗ (1 − βn−1)

kn−1(1 − βn)
, n ∈ N, (28)

with
kn ≥ kn−1.

Next, we will demonstrate how iterative improvements can be made to the results
presented in Lemma 9.

Lemma 10. Suppose that δ∗ > 0 and x ∈ Ω2. Then, for any n ∈ N0 and � sufficiently large
(An,1) L1z/π

1−βn
2 is decreasing and (1 − βn)L1z > (L2z)1/απ2;

(An,2) lim�→∞ L1z(�)/π
1−βn
n (�) = 0;

(An,3) z/π1/εnkn
12 is decreasing and z > εnkn(π12/π2)L1z for any εn ∈ (0, 1).

Proof. Let x ∈ Ω2 with z(σ(�)) > 0 and parts (A1,1)–(A1,3) in Lemma 7 hold for � ≥ �1 ≥ �0
and choose fixed but arbitrarily large β ≤ β∗, and k ≤ k∗ satisfying (6) and (7), respectively,
for � ≥ �1. We will proceed by induction on n. For n = 0, the conclusion follows from
Lemma 9 with ε0 = k/k∗. Next, assume that (An,1)–(An,3) hold for n ≥ 1 for � ≥ �n ≥ �1.
We need to show that they each hold for n + 1.
(An+1,1): Using (An,3) in (17), we obtain

w′(�) ≥ β
zα(σ(�))

a1/α
2 (�)πα/εnkn

12 (σ(�))π
α(1−1/εnkn)
12 (σ(�))

(L2z(�))1/α−1

≥ β
zα(�)

a1/α
2 (�)πα/εnkn

12 (�)π
α(1−1/εnkn)
12 (σ(�))

(
z(�)

π12(�)

)1−α

= β
π

α(1−1/εnkn)
12 (�)

π
α(1−1/εnkn)
12 (σ(�))

z(�)
a1/α

2 (�)π12(�)

≥ εnknβλα(1−1/εnkn) L1z(�)
a1/α

2 (�)π2(�)
.

By integrating the aforementioned inequality from �n to � and employing (An,1) and (An,2),
we obtain
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w(�) ≥ w(�n) + εnknβλα(1−1/εnkn)
∫ �

�n

L1z(s)
a1/α

2 (s)π2(s)
ds (29)

≥ w(�n) + εnknβλα(1−1/εnkn) L1z(�)

π
1−βn
2 (�)

∫ �

�n

1

a1/α
2 (s)πβn

2 (s)
ds

≥ w(�n) +
εnknβλα(1−1/εnkn)

1 − βn

L1z(�)

π
1−βn
2 (�)

[
π

1−βn
2 (�)− π

1−βn
2 (�n)

]
>

εnknβλα(1−1/εnkn)

1 − βn
L1z(�) = ηβn+1L1z(�),

where

η =
β

β∗
εn

λα(1−1/εnkn)

λ
α(1−1/kn)∗

∈ (0, 1),

and η → 1 where (λ, εn, β) → (λ∗, 1, β∗). Choose η, such that

η >
1

1 − βn + βn+1
=

1
1 + βn(ln − 1)

, (30)

where ln satisfies (27). Then

ηβn+1

1 − ηβn+1
>

βn+1

(1 + βn(ln − 1))
(

1 − ln βn
1+βn(ln−1)

) =
βn+1

1 − βn
,

and there exist two constants, c1 ∈ (0, 1) and c2 > 0, such that

c1
η(1 − βn)βn+1

1 − ηβn+1
> βn+1 + c2.

According to the definition (16) of w, we deduce that

(1 − ηβn+1)L1z(�) = (L2z(�))1/απ2(�)

and (
L1z(�)

π
1−ηβn+1
2 (�)

)′
< 0.

Using the above monotonicity in (29), we see that

w(�) ≥ w(�n) + εnknβλα(1−1/εnkn)
∫ �

�n

L1z(s)
a1/α

2 (s)π2(s)
ds

≥ εnknβλα(1−1/εnkn)

1 − ηβn+1

L1z(�)

π
1−ηβn+1
2 (�)

(
π

1−ηβn+1
2 (�)− π

1−ηβn+1
2 (�n)

)
≥ c1εnknβλα(1−1/εnkn)

1 − ηβn+1
L1z(�)

= c1ηβn+1
1 − βn

1 − ηβn+1
L1z(�)

> (βn+1 + c2)L1z(�).

Then
(1 − βn+1 − c2)L1x(�) > (L2x(�))1/απ2(�), (31)

and (
L1x(�)

π
1−βn+1−c2
2 (�)

)′
< 0, (32)
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which leads to the conclusion.
(An+1,2): Obviously, (32) also implies that L1z/π

1−βn+1
2 → 0 as � → ∞, since otherwise

L1z(�)

π
1−βn+1−c2
2 (�)

=
L1(z�)

π
1−βn+1
2 (�)

πc2
2 (�) → ∞ as � → ∞, (33)

which is a contradiction.
(An+1,3): By utilizing that (An+1,1) and (An+1,2), as well as L1z/π

1−βn+1
2 as a decreasing

function tending towards zero, we can derive:

z(�) = z
(
�′′n

)
+

∫ �

�′′n

L1z(s)

π
1−βn+1
2 (s)

π
1−βn+1
2 (s)

a1(s)
ds

≥ z
(
�′′n

)
+

L1z(�)

π
1−βn+1
2 (�)

∫ �

�′′n

π
1−βn+1
2 (s)

a1(s)
ds

= z
(
�′′n

)
+

L1z(�)

π
1−βn+1
2 (�)

∫ �

�0

π
1−βn+1
2 (s)

a1(s)
ds − L1z(�)

π
1−βn+1
2 (�)

∫ �′′n

�0

π
1−βn+1
2 (s)

a1(s)
ds

>
L1z(�)

π
1−βn+1
2 (�)

∫ �

�0

π
1−βn+1
2 (s)

a1(s)
ds

≥ εn+1kn+1
π12(�)

π2(�)
L1z(�),

and(
z(�)

π
1/εn+1kn+1
12 (�)

)′
=

εn+1kn+1π
1/εn+1kn+1
12 (�)L1z(�)− π

1/εn+1kn+1−1
12 (�)π2(�)z(�)

εn+1kn+1a1(�)π
2/εn+1kn+1
12 (�)

=
εn+1kn+1π12(�)L1z(�)− π2(�)z(�)

εn+1kn+1a1(�)π
1/εn+1kn+1+1
12 (�)

< 0,

for any εn ∈ (0, 1). The proof of this Lemma is complete.

Corollary 4. Assume that βi < 1, i = 0, 1, 2, . . . , n − 1, and βn ≥ 1. Then, Ω2 = ∅.

Proof. This follows directly from

(1 − βn)L1z(�) > (L2z(�))1/απ2(�),

and the fact that L2 is positive.

In view of the previous corollary and (27), the sequence {βn} given by (25) is increasing
and bounded from above, i.e, there exists a limit

lim
n→∞

βn = β j ∈ (0, 1),

satisfying the equation

β j =
β∗kjλ

α(1−1/kj)
∗

1 − β j
, (34)

where

kj = lim inf
�→∞

π
β j
2 (�)

π12(�)

∫ �

�0

π
1−β j
2 (s)
a1(s)

ds.

Then, the next important resulting in the nonexistence of N2-type solutions are direct.
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Lemma 11. Assume that λ∗ < ∞ and (34) does not possess a root on (0, 1). Then, Ω2 = ∅.

Corollary 5. Assume that λ∗ < ∞. If

β∗ > max

⎧⎨⎩ β j
(
1 − β j

)
λ

α(1/kj−1)
∗

kj
: 0 < β j < 1

⎫⎬⎭. (35)

Then, Ω2 = ∅.

Lemma 12. Assume that (2) holds. Furthermore, assume that there exists ρ ∈ C1([�0, ∞), (0, ∞)),
such that

lim sup
�→∞

∫ �

�0

(
ρ(s)q(s)Bα(σ(s), n)

(
σ(s)

s

)2α/ε

− aα
1(s)(ρ

′(s))α+1
+

(α + 1)α+1πα
2 (s)ρ

α(s)

)
ds = ∞, (36)

where (ρ′(�))+ = max{0, ρ′(�)}. Then, Ω2 = ∅.

Proof. Assume the contrary, that x ∈ Ω2. Now define

w(�) = ρ(�)
L2z(�)
zα(�)

, � ≥ �1, (37)

then, w(�) > 0 and

w′(�) = ρ′(�)
L2z(�)
zα(�)

+ ρ(�)
L3z(�)
zα(�)

− αρ(�)
L2z(�)
zα(�)

z′(�)
z(�)

= ρ′(�)
L2z(�)
zα(�)

+ ρ(�)
L3z(�)
zα(�)

− αρ(�)
L2z(�)
zα(�)

1
a1(�)

L1z(�)
z(�)

≤ −ρ(�)q(�)Bα(σ(�), n)
zα(σ(�))

zα(�)
+

ρ′(�)
ρ(�)

w(�)− αw(�)
1

a1(�)

L1z(�)
z(�)

.

Then, in view of (11) and (A1,2)-part of Lemma 7, we have

w′(�) ≤ −ρ(�)q(�)Bα(σ(�), n)
zα(σ(�))

zα(�)
+

ρ′(�)
ρ(�)

w(�)− α
π2(�)

a1(�)
w(�)

(L2z)1/α

z(�)

= −ρ(�)q(�)Bα(σ(�), n)
zα(σ(�))

zα(�)
+

ρ′(�)
ρ(�)

w(�)− απ2(�)

a1(�)ρ1/α(�)
w1+1/α(�).

Since z > 0, L1z > 0, and L2z > 0, then from Lemma 3 we obtain

z(�)
z′(�)

≥ ε

2
�.

By integrating the preceding inequality over the interval from τ(�) to �, we obtain

z(σ(�))
z(�)

≥
(

σ(�)

�

)2/ε

,

which implies that

w′(�) ≤ −ρ(�)q(�)Bα(σ(�), n)
(

σ(�)

�

)2α/ε

+
(ρ′(�))+

ρ(�)
w(�)− απ2(�)

a1(�)ρ1/α(�)
w1+1/α(�). (38)

Setting

B =
(ρ′(�))+

ρ(�)
and A =

απ2(�)

a1(�)ρ1/α(�)
,
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and using Lemma 1, we see that

(ρ′(�))+
ρ(�)

w(�)− απ2(�)

a1(�)ρ1/α(�)
w1+1/α(�) ≤ aα

1(�)(ρ
′(�))α+1

+

(α + 1)α+1πα
2 (�)ρ

α(�)
. (39)

Thus, from (38) and (39), we obtain

w′(�) ≤ −
(

ρ(�)q(�)Bα(σ(�), n)
(

σ(�)

�

)2α/ε

− aα
1(�)(ρ

′(�))α+1
+

(α + 1)α+1πα
2 (�)ρ

α(�)

)
. (40)

Integrating (40) from �1 to �, we obtain

∫ �

�1

(
ρ(s)q(s)Bα(σ(s), n)

(
σ(s)

s

)2/ε

− aα
1(s)(ρ

′(s))α+1
+

(α + 1)α+1πα
2 (s)ρ

α(s)

)
ds ≤ w(�1),

for all large �. This is a contradiction to (36).

4. Convergence to Zero of Kneser Solutions

In this section, we establish certain conditions that guarantee the absence of Kneser
solutions satisfying (N1) within Category Ω1.

Theorem 1. If there exists a function ζ ∈ C([�0, ∞), (0, ∞)) satisfying σ(�) < ζ(�) and
τ−1(ζ(�)) < �, such that the differential equation

ω′(�) +
1
μ

τ0

τ0 + pα
0

φ(�)πα
12(ζ(�), σ(�))ω

(
τ−1(ζ(�))

)
≤ 0, (41)

is oscillatory, then Ω1 = ∅.

Proof. Let x ∈ Ω1, say x(�) > 0 and x(σ(�)) > 0 for � ≥ �1 ≥ �0. This implies that

z > 0, L1z < 0, L2z > 0, and L3z ≤ 0. (42)

From (1), we see that

0 ≥ pα
0

τ′(�)

(
a2(τ(�))

((
a1(τ(�))z′(τ(�))

)′)α)′
+ pα

0q(τ(�))xα(σ(τ(�)))

≥ pα
0

τ0
L3z(τ(�)) + pα

0q(τ(�))xα(σ(τ(�)))

=
pα

0
τ0

L3z(τ(�)) + pα
0q(τ(�))xα(τ(σ(�))). (43)

Combining (1) and (43), we obtain

0 ≥ L3z(�) +
pα

0
τ0

L3z(τ(�)) + q(�)xα(σ(�)) + pα
0q(τ(�))xα(τ(σ(�)))

≥ L3z(�) +
pα

0
τ0

L3z(τ(�)) + φ(�)(xα(σ(�)) + pα
0 xα(τ(σ(�)))).

Using Lemma (2), we obtain

0 ≥ L3z(�) +
pα

0
τ0

L3z(τ(�)) +
1
μ

φ(�)(x(σ(�)) + p0x(τ(σ(�))))α. (44)

166



Axioms 2023, 12, 1112

From the definition of z, we have

z(σ(�)) = x(σ(�)) + p(σ(�))x(τ(σ(�))) ≤ x(σ(�)) + p0x(τ(σ(�))).

By using the latter inequality in (44), we find

0 ≥ L3z(�) +
pα

0
τ0

L3z(τ(�)) +
1
μ

φ(�)zα(σ(�)).

That is (
L2z(�) +

pα
0

τ0
L2z(τ(�))

)′
+

1
μ

φ(�)zα(σ(�)) ≤ 0. (45)

However, it can be deduced from the monotonicity of L2z(�) that

−L1z(�) ≥ L1z(ς)− L1z(�) =
∫ ς

�
(L1z(s))′ds =

∫ ς

�

L1/α
2 z(s)

a1/α
2 (s)

ds

≥ L1/α
2 z(ς)

∫ ς

�

1

a1/α
2 (s)

ds = L1/α
2 z(ς)π2(ς, �). (46)

Integrating (46) from � to ς, and using (42), we obtain

z(�) ≥ L1/α
2 z(ς)π12(ς, �). (47)

Thus, we have
z(σ(�)) ≥ L1/α

2 z(ζ(�))π12(ζ(�), σ(�)),

which, by virtue of (45), yields that(
L2z(�) +

pα
0

τ0
L2z(τ(�))

)′
+

1
μ

φ(�)πα
12(ζ(�), σ(�))L2z(ζ(�)) ≤ 0. (48)

Now, set

ω(�) = L2z(�) +
pα

0
τ0

L2z(τ(�)) > 0.

From the fact that L2z(�) is non-increasing, we have

ω(�) ≤ L2z(τ(�))
(

1 +
pα

0
τ0

)
,

or equivalently,

L2z(ζ(�)) ≥ τ0

τ0 + pα
0

ω
(

τ−1(ζ(�))
)

. (49)

Using (49) in (48), we show that ω is a positive solution of the differential inequality

ω′(�) +
1
μ

τ0

τ0 + pα
0

φ(�)πα
12(ζ(�), σ(�))ω

(
τ−1(ζ(�))

)
≤ 0.

Considering ([35], Theorem 1), we can deduce that (41) also possesses a positive solution,
which contradicts our previous assertion. Thus, we can conclude that the proof is now fully
established.

Corollary 6. If there exists a function ζ ∈ C([�0, ∞), (0, ∞)) satisfying σ(�) < ζ(�) and
τ−1(ζ(�)) < �, such that

lim inf
�→∞

∫ �

τ−1(ζ(�))
φ(s)πα

12(ζ(s), σ(s))ds >
μ
(
τ0 + pα

0
)

τ0e
, (50)
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then, Ω1 = ∅.

Theorem 2. If there exists a function δ ∈ C([�0, ∞), (0, ∞)) satisfying δ(�) < �, and σ(�) <
τ(δ(�)), such that

lim sup
�→∞

πα
12(τ(δ(�)), σ(�))

∫ �

δ(�)
φ(s)ds >

μ
(
τ0 + pα

0
)

τ0
, (51)

then, Ω1 = ∅.

Proof. Using the same method as demonstrated in the proof of Theorem 1, we obtain the
following inequality:

0 ≥
(

L2z(�) +
pα

0
τ0

L2z(τ(�))
)′

+
1
μ

φ(�)zα(σ(�)).

By integrating the previous inequality from δ(�) to �, and considering the fact that z is a
decreasing function, we derive:

L2z(δ(�)) +
pα

0
τ0

L2z(τ(δ(�))) ≥ L2z(�) +
pα

0
τ0

L2z(τ(�)) +
1
μ

zα(σ(�))
∫ �

δ(�)
φ(s)ds

≥ 1
μ

zα(σ(�))
∫ �

δ(�)
φ(s)ds.

Since τ(δ(�)) < τ(�), and L2z(�) is non-increasing, we have

L2z(τ(δ(�)))
(

1 +
pα

0
τ0

)
≥ 1

μ
zα(σ(�))

∫ �

δ(�)
φ(s)ds. (52)

By using (47) with ς = τ(δ(�)) and � = σ(�) in (52), we obtain

L2z(τ(δ(�)))
(

1 +
pα

0
τ0

)
≥ 1

μ
L2z(τ(δ(�)))πα

12(τ(δ(�)), σ(�))
∫ �

δ(�)
φ(s)ds.

That is
τ0 + pα

0
τ0

≥ 1
μ

πα
12(τ(δ(�)), σ(�))

∫ �

δ(�)
φ(s)ds.

Next, we calculate the lim sup for both sides of the preceding inequality, which leads to a
contradiction with (51). This concludes the proof.

5. Oscillation Theorems

In this section, we are prepared to present the main results of this paper. By combining
the results from the preceding two sections, we can readily derive the following theorems
without providing proof.

Theorem 3. Assume that β∗ ≥ 1, and either (50) or (51) holds. Then, (1) is oscillatory.

Theorem 4. Assume that β∗ > 0, λ∗ = ∞, and either (50) or (51) holds. Then, (1) is oscillatory.

Theorem 5. Assume that βi < 1, i = 0, 1, 2, . . . , n − 1, and βn ≥ 1 and either (50) or (51) holds.
Then, (1) is oscillatory.

Theorem 6. Assume that λ∗ < ∞, (35), and either (50) or (51) holds. Then, (1) is oscillatory.

Theorem 7. Assume that (36) and either (50) or (51) holds. Then, (1) is oscillatory.
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In the following, we provide an example that supports and illustrates our results.

Example 1. Consider ((
(x(�) + p0x(τ0�))

′′)5
)′

+
q0

�11 x5(σ0�) = 0, (53)

where 0 ≤ p0 < 1, and τ0, σ0 ∈ (0, 1). Clearly,

a1(�) = 1, a2(�) = 1, π1(�) ∼ �, π2(�) ∼ �, π12(�) ∼ �2/2.

We can calculate:

λ∗ = lim inf
�→∞

π12(�)

π12(σ(�))
=

1
σ2

0
,

p1(�; n) = [1 − p0]
n

∑
k=0

p2k
0 τ4k

0 ,

p̂1(�, n) =
[
p0τ2

0 − 1
] n

∑
k=1

1
p2k

0
,

and

B(�, n) = B0 =

{
p1(�; n) for p0 < 1,
p̂1(�; n) for p0 > 1/τ2

0 .

Then

β∗ = lim inf
�→∞

1
α

a1/α
2 (�)πα

12(σ(�))π2(�)q(�)Bα
0(σ(�), n)

= lim inf
�→∞

1
5

σ10
0 �10

25 �
q0

�11 B5
0 =

1
160

σ10
0 q0B5

0.

For β∗ ≥ 1, we have

q0 >
160

σ10
0 B5

0
. (54)

Now, for ρ(�) = �ν, where ν ≥ 10, condition (36) leads to

lim sup
�→∞

∫ �

�0

(
ρ(s)q(s)Bα(σ(s), n)

(
σ(s)

s

)2α/ε

− aα
1(s)(ρ

′(s))α+1
+

(α + 1)α+1πα
2 (s)ρ

α(s)

)
ds

= lim sup
�→∞

∫ �

�0

(
sν q0

s11 B5
0σ10/ε

0 − 1
66

ν6s6ν−6

s5s5ν

)
ds

= lim sup
�→∞

∫ �

�0

(
q0B5

0σ10/ε
0 − ν6

66

)
sν−11ds = ∞,

Which is satisfied when

q0 >
ν6

66B5
0σ10/ε

0

. (55)

Condition (50) leads to:

lim inf
�→∞

∫ �

τ−1(ζ(�))
φ(s)πα

12(ζ(s), σ(s))ds = lim inf
�→∞

∫ �

τ−1
0 ζ0�

q0

s11

(
ζ2

0 − σ2
0
)5

25 s10ds

=
1
32

q0

(
ζ2

0 − σ2
0

)5
ln

τ0

ζ0
.
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which is satisfied when:

q0 >
32μ

(
τ0 + pα

0
)

τ0e
(
ζ2

0 − σ2
0
)5 ln τ0

ζ0

(56)

Condition (51) leads to:

lim sup
�→∞

πα
12(τ(δ(�)), σ(�))

∫ �

δ(�)
φ(s)ds = lim sup

�→∞
π5

12(τ0δ0�, σ0�)
∫ �

δ0�

q0

s11 ds

= lim sup
�→∞

(
τ2

0 δ2
0 − σ2

0
)5(1 − δ10

0
)
�10

320δ10
0

q0

�10

=

(
τ2

0 δ2
0 − σ2

0
)5(1 − δ10

0
)

320δ10
0

q0,

which is satisfied when:

q0 >
320

(
τ0 + p5

0
)
δ10

0(
τ2

0 δ2
0 − σ2

0
)5(1 − δ10

0
) . (57)

Now, by applying conditions (54)–(57), we can show that Theorems (3) and (7) exhibit oscillatory
behavior. This can be confirmed by assigning particular values to (53).

Example 2. Consider
(x(�) + 0.5x(0.9�))′′′ +

q0

�3 x(0.5�) = 0. (58)

Clearly,
λ∗ = 4,

p1(�; 10) = (1 − 0.5)
10

∑
k=0

(0.5)2k(0.9)4k = 0.5981,

and
B(�, 10) = B0 = p1(�; 10) = 0.5981.

Then

β∗ = lim inf
�→∞

(0.5)2�2

2
�

q0

�3 (0.598 1) = 0.07476q0.

For β∗ ≥ 1, we have
q0 > 13.376.

Conditions (36) and (51) are satisfied when

q0 > 26.751, ρ(�) = �2, ε = 0.5

and
q0 > 22.274, δ0 = 0.7, (59)

respectively. Thus, from Theorems 3 and 7, we conclude that (58) is oscillatory.

6. Conclusions

This paper has studied the oscillatory behavior of a quasi-linear NDE of the third
order. Through our research efforts, we have significantly enhanced the understanding
of the relationship between the solution, x, and the corresponding function, z. This im-
provement has led to the derivation of improved preliminary results, which play a crucial
role in excluding positive solutions for the studied equation. Building upon these refined
preliminary results, we have developed novel criteria for determining the nature of the
solutions, whether they exhibit oscillatory behavior or tend towards zero. These criteria
contribute to a deeper comprehension of the dynamic behavior of the systems described by
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these equations. In the future, an intriguing avenue for research involves broadening the
scope of this study to encompass NDEs of higher orders.
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Abstract: The purpose of this research is to investigate the asymptotic and oscillatory characteristics of
odd-order neutral differential equation solutions with multiple delays. The relationship between the
solution and its derivatives of different orders, as well as their related functions, must be understood
in order to determine the oscillation terms of the studied equation. In order to contribute to this
subject, we create new and significant relationships and inequalities. We use these relationships to
create conditions in which positive and N-Kneser solutions of the considered equation are excluded.
To obtain these terms, we employ the comparison method and the Riccati technique. Furthermore, we
use the relationships obtained to create new criteria, so expanding the existing literature on the field.
Finally, we provide an example from the general case to demonstrate the results’ significance. The
findings given in this work provide light on the behavior of odd-order neutral differential equation
solutions with multiple delays.

Keywords: neutral differential equation; asymptotic properties; odd-order; several delays

MSC: 34C10; 34K11

1. Introduction

Differential equations (DEs) are a powerful and useful mathematical tool for under-
standing and analyzing many natural and technological processes. Differential equations
are made up of functions and their derivatives. These equations are important tools in
engineering, physics, computer science, natural sciences, economics, and other domains. It
is used to research the motion and dynamics of things, to analyze biological growth and
disease spread, and to advance technology in sectors like electrical engineering, mechanics,
and others. Differential equations aid in the study of natural occurrences, as well as the
development of scientific and technical models and forecasts. Differential equations are
crucial in scientific research and practical applications, see [1–4].

Neutral differential equations are an important branch of differential equations be-
cause they contain time delays, functions, and their derivatives. These equations are crucial
in understanding and analyzing occurrences and processes in various domains, from engi-
neering and physics to medical and economic sciences. Using neutral differential equations,
we may develop a scientific understanding in the field of dynamic analysis and control,
as well as better technological and economic systems and processes (see [5–7]).

The oscillation theorem is a mathematical branch that studies the behavior of oscillat-
ing solutions in differential equations. This theorem helps to comprehend the pattern and
form that the solution to the equation takes, such as regular vibration and oscillation. Oscil-
lations are a phenomenon that occurs in many domains, including physics, engineering,
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and economics, and they play a significant part in integrated systems in electronic systems.
Understanding oscillation theory allows us to collaborate, stabilize, and control it more
efficiently (see [8–10]).

The stability of a time-delay force feedback teleoperation system based on a scattering
matrix is crucial. It ensures reliable and robust communication between the operator
and the remote robot, preventing delays or disruptions that could compromise control.
By analyzing the system’s scattering matrix, key stability properties can be assessed, such
as stability margins and robustness to external disturbances, enabling the development of
more efficient and dependable teleoperation systems (see [11,12]).

The main objective of this investigation is to investigate the oscillatory characteristics
exhibited by solutions of a non-linear DE of odd order, represented by the
following expression

(
b(s)

(
U (n−1)(s)

)α)′
+

m

∑
i=1

qi(s)xα(υi(s))) = 0, s ≥ s0, (1)

where U (s) = x(s)+p(s)x(y(s)). In this paper, we make the following assumptions:

(H1) n is an odd natural number, while α represents the ratio of two positive odd integers;
(H2) b, y, υi ∈ C1([s0, ∞),R+), b′(s) ≥ 0, and 0 ≤p(s) <p0 < ∞;

(H3) y(s) < s, υi(s) ≤ s, υ′i(s) > 0,
(

υ−1
i (s)

)′ ≥ υ0 > 0, y′(s) ≥ y0 > 0, and lims→∞ y(s) =
lims→∞ υi(s) = ∞;

(H4) y ◦ υi = υi ◦ y, for i = 1, 2, ..., m;
(H5) qi ∈ C([s0, ∞), [0, ∞)), for i = 1, 2, ..., m.

Moreover, we consider the canonical case, i.e.,∫ ∞

s0

1
b1/α(ν)

dν = ∞. (2)

A function x ∈ Cn−1([Sx, ∞)), Sx � s0, is considered a solution of (1) which has the
property b(U (n−1))α ∈ C1[sx, ∞), and it satisfies the Equation (1) for all x ∈ [Sx, ∞). We
examine, exclusively, the solutions x from (1) that are present on a half-line [Sx, ∞) and
fulfill the requirement:

sup{|x(s)| : s � S} > 0, for all S ≥ Sx.

A solution is referred to as oscillatory if it does not eventually positive or negative.
Otherwise, it is considered non-oscillatory. Equation (1) is considered oscillatory when all
of its solutions exhibit oscillatory behavior.

Previous works on the subject of neutral DEs opened the path for advances in our
understanding of delayed systems. Researchers have extensively researched neutral DEs
of various orders, making substantial contributions to the theoretical foundations and
practical applications of these equations.

In the canonical case, multiple studies have explored the oscillation behavior of
even-order quasilinear neutral functional differential equations. Baculikova et al. [13],
Dzurina [14], Graef et al. [15], and Bohner et al. [16] have specifically delved into this topic,
shedding light on the properties of these equations. In the non-canonical case, several
studies have concentrated on analyzing the oscillation criteria for even-order neutral delay
differential equations. These studies include the works of Moaaz et al. [17], Almari et al. [18],
another study by Bohner et al. [19], and Jadlovska [20]. The investigations conducted have
provided valuable insights regarding the oscillatory behavior and dynamics exhibited by
these equations.
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Dzurina and Baculıkova [21] introduced a generalized version of Philos and Staikos
lemmas, which aimed to examine the oscillatory behavior and asymptotic characteristics of
a higher-order DDE (

b(s)
(

x′(s)
)α

)(n−1)
+ q(s)xα(υ(s)) = 0.

They employed a comparison theory to obtain their results.
Karpuz et al. [22] focused on higher-order neutral DEs of the form:

(x(s) + p(s)x(y(s)))(n) + q(s)x(υ(s)) = 0, s ≥ s0,

The authors compared the asymptotic and oscillatory behaviors of all solutions of
higher-order neutral DEs with those of first-order delay DEs.

Sun et al. [23] investigated the oscillatory behavior of neutral DEs of the form(
b(s)(x(s) + p(s)x(y(s)))(n−1)

)′
+ q(s)K(x(υ(s))) = 0,

under two conditions, the canonical condition (2) and non-canonical condition∫ ∞

s0

1
b1/α(ν)

dν < ∞,

where K(x)/x ≥ k > 0.
Baculková et al. [24] examined the oscillation behavior and asymptotic properties of

the equation (
b(s)

(
x(n−1)(s)

)α)′
+ q(s)K(x(υ(s))) = 0,

when K is a non-decreasing function satisfying:

−K(−s1s2) ≥ K(s1s2) ≥ K(s1)K(s2) for s1s2 > 0.

Xing et al. [25] developed several oscillation criteria for a particular higher-order
quasi-linear NDE(

b(s)
(
(x(s) + p(s)x(y(s)))(n−1)

)α)′
+ q(s)xα(υ(s)) = 0. (3)

Moaaz et al. [26] focused on the oscillatory characteristics of the neutral DE (3) in the
non-canonical case.

This work aims to look into the oscillatory behavior of solutions in odd-order neutral
DEs with multiple delays. The study aims to establish new relationships and terms within
this field. Additionally, a novel approach is employed to derive new criteria that guarantee
the oscillatory nature of the solutions for the considered equation.

2. Preliminary Results

This section will introduce several essential lemmas that will be utilized to demonstrate
the main results. To simplify our notation, let us denote the following:

ρ′+(s) := max
{

0, ρ′(s)
}

,

υ̃(s) := min{υi(s), i = 1, 2, ..., m}, υ(s) := max{υi(s), i = 1, 2, ..., m},

π0(ς, �) :=
∫ ς

�
b−1/α(ν)dν, πi(ς, �) :=

∫ ς

�
πi−1(ς, ν)dν,

π0(s) :=
∫ s

s0

b−1/α(ν)dν, πi(s) :=
∫ s

s0

πi−1(ν)dν, i = 1, 2, ..., n − 2,
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Q0(s) :=
m

∑
i=1

qi(s)(1 − p(υi(s)))
α,

Q(s) :=
m

∑
i=1

q̃i(s), Q̂(s) :=
m

∑
i=1

q̂i(s),

and
q̃i(s) := min{qi(s), qi(y(s))}, q̂i(s) := min{qi

(
υ−1

i (s)
)

, qi

(
υ−1

i (y(s))
)
}.

Lemma 1 ([27]). Assume that x1, x2 ∈ [0, ∞). Then,

(x1 + x2)
α ≤ μ(xα

1 + xα
2),

and

μ =

{
2α−1 for α > 1;
1 for 0 < α ≤ 1.

Lemma 2 ([28]). For A > 0 and B is any real number, the following inequality holds:

Bψ − Aψ(α+1)/α ≤ αα

(α + 1)α+1
Bα+1

Aα
. (4)

Lemma 3 ([29]). Assume that ψ ∈ Cn([s0, ∞), (0, ∞)). Additionally, ψ(n)(s) has a fixed sign and
is not equal to zero throughout [s0, ∞). Furthermore, there exists s1 ≥ s0 satisfying the condition
ψ(n−1)(s)ψ(n)(s) ≤ 0 for all s ≥ s1. If lims→∞ ψ(s) �= 0, then for any λ ∈ (0, 1), there exists
sμ ≥ s1 satisfying the inequality:

ψ(s) ≥ λ

(n − 1)!
sn−1

∣∣∣ψ(n−1)(s)
∣∣∣ for s ≥ sμ.

Lemma 4 ([30]). Consider x(s) as a positive solution of (1). Consequently, b(s)
(
U (n−1)(s)

)α
is

a decreasing function. Furthermore, all derivatives U (i)(s), 1 ≤ i ≤ n − 1 have constant signs.
Additionally, U (s) satisfies one of the following cases:

C1 : U (s) > 0, U′(s) > 0, U′′(s) > 0, U (n−1)(s) > 0, (b(s)(U (n−1)(s))α)′ < 0;
C2 : (−1)kU (k)(s) > 0, for k = 0, 1, 2, ..., n.

Notation 1. The symbols K1 and K2 represent sets of solutions that are eventually positive and
satisfy the corresponding function conditions (C1) and (C2), respectively.

Definition 1 ([31]). We define a Kneser solution for Equation (1) as a solution x that satisfies
the following condition, there exists a s∗ ∈ [s0, ∞) such that U (s)U′(s) < 0 for all s ∈ [s∗, ∞)..

3. Criteria for Non-Existence of N-Kneser Solutions

In this section, we introduce specific criteria that ensure the non-existence of N-Kneser
solutions that satisfy condition (C2).

Theorem 1. If ζ ∈ C([s0, ∞), (0, ∞)) fulfilling υ(s) < ζ(s) and y−1(ζ(s)) < s, such that the
DE

G′(s) +
1
μ

y0

y0 + pα
0

πα
n−2(ζ(s), υ(s))Q(s)G

(
y−1(ζ(s))

)
= 0, (5)

is oscillatory, then K2 = ∅.
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Proof. Let x ∈ K2, say x(s) > 0 and x(υi(s)) > 0 for s ≥ s1 ≥ s0. This implies that

(−1)kU (k)(s) > 0, for k = 0, 1, 2, ..., n. (6)

From (1), we see that:

0 ≥ pα
0
y′

(
b(y)

(
U (n−1)(y)

)α)′
+ pα

0

m

∑
i=1

qi(y)xα(υi(y))

≥ pα
0

y0

(
b(y)

(
U (n−1)(y)

)α)′
+ pα

0

m

∑
i=1

qi(y)xα(υi(y))

=
pα

0
y0

(
b(y)

(
U (n−1)(y)

)α)′
+ pα

0

m

∑
i=1

qi(y)xα(y(υi)).

(7)

When we combine (1) with (7), we obtain:

0 ≥ (b(U (n−1))α)′ +
pα

0
y0

(
b(y)

(
U (n−1)(y)

)α)′
+

m

∑
i=1

qixα(υi) + pα
0

n

∑
i=1

qi(y)xα(y(υi))

= (b(U (n−1))α)′ +
pα

0
y0

(
b(y)

(
U (n−1)(y)

)α)′
+

m

∑
i=1

[qixα(υi) + pα
0qi(y)xα(y(υi))]

≥ (b(U (n−1))α)′ +
pα

0
y0

(
b(y)

(
U (n−1)(y)

)α)′
+

m

∑
i=1

q̃i[xα(υi) + pα
0 xα(y(υi))].

Using Lemma 1, we have:

0 ≥ (b(U (n−1))α)′ +
pα

0
y0

(
b(y)

(
U (n−1)(y)

)α)′

+
1
μ

m

∑
i=1

q̃i(x(υi) + p0x(y(υi)))
α. (8)

From definition of U , we have:

U (υi) = x(υi) + p(υi)x(y(υi)) ≤ x(υi) + p0x(y(υi)).

From (8), we obtain:

0 ≥ (b(U (n−1))α)′ +
pα

0
y0

(
b(y)

(
U (n−1)(y)

)α)′
+

1
μ

m

∑
i=1

q̃iU α(υi).

Since U is decreasing, then:

0 ≥ (b(U (n−1))α)′ +
pα

0
y0

(
b(y)

(
U (n−1)(y)

)α)′
+

1
μ
U α(υ)

m

∑
i=1

q̃i

= (b(U (n−1))α)′ +
pα

0
y0

(
b(y)

(
U (n−1)(y)

)α)′
+

1
μ

QU α(υ).

That is (
b(U (n−1))α +

pα
0

y0
b(y)

(
U (n−1)(y)

)α
)′

+
1
μ

QU α(υ) ≤ 0. (9)

It follows from
(

b
(
U (n−1)

)α)′
≤ 0 that

− U (n−2)(�) ≥
∫ ς

�

b1/α(ν)U (n−1)(ν)

b1/α(ν)
dν ≥ b1/α(ς)U (n−1)(ς)π0(ς, �). (10)
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By integrating (10) over (�, ς), we arrive at

− U (n−3)(�) ≤ b1/α(ς)U (n−1)(ς)π1(ς, �). (11)

By applying the integration process n − 3 times to (11) over (�, ς) and then using (6),
we obtain

U (�) ≥ b1/α(ς)U (n−1)(ς)πn−2(ς, �). (12)

Therefore, we obtain:

U (υ) ≥ b1/α(ζ)U (n−1)(ζ)πn−2(ζ, υ).

By virtue of (9), it follows that

0 ≥
(

b(U (n−1))α +
pα

0
y0

b(y)
(
U (n−1)(y)

)α
)′

+
1
μ

Qb(ζ)
(
U (n−1)(ζ)

)α
πα

n−2(ζ, υ). (13)

Now, set

G = b(U (n−1))α +
pα

0
y0

b(y)
(
U (n−1)(y)

)α
> 0.

From
(

b
(
U (n−1)

)α)′
≤ 0, we have

G ≤ b(y)
(
U (n−1)(y)

)α
(

1 +
pα

0
y0

)
,

or, equivalently,

b(ζ)(U (n−1)(ζ))α ≥ y0

y0 + pα
0

G
(
y−1(ζ)

)
. (14)

By applying (14) within (13), it becomes evident that G represents a positive solution
of the differential inequality

G′ + 1
μ

y0

y0 + pα
0

πα
n−2(ζ, υ)QG

(
y−1(ζ)

)
≤ 0.

Considering [32] (Theorem 1), it can be inferred that (5) also possesses a positive
solution, which contradicts the previous inequality. As a result, the proof is concluded.

Corollary 1. If ζ ∈ C([s0, ∞), (0, ∞)) fulfilling υ(s) < ζ(s) and y−1(ζ(s)) < s, such that

lim inf
s→∞

∫ s

y−1(ζ(s))
πα

n−2(ζ(ν), υ(ν))Q(ν)dν >
μ
(
y0 + pα

0
)

y0e
, (15)

then K2 = ∅.

Theorem 2. If δ(s) ∈ C([s0, ∞), (0, ∞)) fulfilling δ(s) < s and υ(s) < y(δ(s)) such that

lim sup
s→∞

πα
n−2(y(δ(s)), υ(s))

b(y(δ(s)))

∫ s

δ(s)
Q(ν)dν >

μ
(
y0 + pα

0
)

y0
, (16)

then K2 = ∅.
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Proof. Using the same procedure as in the proof of Theorem 1, we obtain

0 ≥
(

b(s)(U (n−1)(s))α +
pα

0
y0

b(y(s))
(
U (n−1)(y(s))

)α
)′

+
1
μ

Q(s)U α(υ(s)).

Integrating the previous inequality over (δ(s), s) and utilizing the property that U is
decreasing, we have

b(δ(s))(U (n−1)(δ(s)))α +
pα

0
y0

b(y(δ(s)))
(
U (n−1)(y(δ(s)))

)α

≥ b(s)(U (n−1)(s))α +
pα

0
y0

b(y(s))
(
U (n−1)(y(s))

)α
+

1
μ
U α(υ(s))

∫ s

δ(s)
Q(ν)dν

≥ 1
μ
U α(υ(s))

∫ s

δ(s)
Q(ν)dν.

Since y(δ(s)) < y(s) and
(

b(s)(U (n−1)(s))α
)′ ≤ 0, we obtain

b(y(δ(s)))(U (n−1)(y(δ(s))))α

(
1 +

pα
0

y0

)
≥ 1

μ
U α(υ(s))

∫ s

δ(s)
Q(ν)dν. (17)

By utilizing (12) with ς = y(δ(s)) and � = υ(s) into (17), we derive the
following inequality

b(y(δ(s)))(U (n−1)(y(δ(s))))α

(
1 +

pα
0

y0

)
≥ 1

μ

(
U (n−1)(y(δ(s)))

)α
πα

n−2(y(δ(s)), υ(s))
∫ s

δ(s)
Q(ν)dν.

That is
y0 + pα

0
y0

≥ 1
μ

πα
n−2(y(δ(s)), υ(s))

b(y(δ(s)))

∫ s

δ(s)
Q(ν)dν.

By considering the lim sup of both sides of the aforementioned inequality, it becomes
apparent that it contradicts (16). As a result, we can conclude the proof.

Theorem 3. Assume that υi(y(s)) < s, i = 1, 2, ..., n holds. If the DE

Ψ′(s) + Q̂(s)πα
n−2(y(s), s)

(
υ0y0

y0 + pα
0

)
Ψ(υ(s)) = 0, (18)

is oscillatory, then K2 = ∅.

Proof. Suppose u ∈ K2, with x(s) > 0, x(y(s)) > 0 and x(υi(s)) > 0 for s ≥ s1 ≥ s0.
Consequently, it follows that

(−1)kU (k)(s) > 0, for k = 0, 1, 2, ..., n.

Utilising (1), we can be observed that

0 ≥ 1(
υ−1

i (s)
)′

(
b
(

υ−1
i (s)

)(
U (n−1)

(
υ−1

i (s)
))α)′

+
m

∑
i=1

qi

(
υ−1

i (s)
)

xα(s)

≥ 1
υ0

(
b
(

υ−1
i (s)

)(
U (n−1)

(
υ−1

i (s)
))α)′

+
m

∑
i=1

qi

(
υ−1

i (s)
)

xα(s).
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Similarly,

0 ≥ pα
0(

υ−1
i (y(s))

)′
(

b
(

υ−1
i (y(s))

)(
U (n−1)

(
υ−1

i (y(s))
))α)′

+pα
0

m

∑
i=1

qi

(
υ−1

i (y(s))
)

xα(y(s))

≥ pα
0

υ0y0

(
b
(

υ−1
i (y(s))

)(
U (n−1)

(
υ−1

i (y(s))
))α)′

+pα
0

m

∑
i=1

qi

(
υ−1

i (y(s))
)

xα(y(s)).

Combining the above inequalities yields that

0 ≥ 1
υ0

(
b
(

υ−1
i (s)

)(
U (n−1)

(
υ−1

i (s)
))α)′

+
pα

0
υ0y0

(
b
(

υ−1
i (y(s))

)(
U (n−1)

(
υ−1

i (y(s))
))α)′

+
m

∑
i=1

[
qi

(
υ−1

i (s)
)

xα(s) + pα
0qi

(
υ−1

i (y(s))
)

xα(y(s))
]

≥ 1
υ0

(
b
(

υ−1
i (s)

)(
U (n−1)

(
υ−1

i (s)
))α)′

+
pα

0
υ0y0

(
b
(

υ−1
i (y(s))

)(
U (n−1)

(
υ−1

i (y(s))
))α)′

+
m

∑
i=1

q̂i(s)[xα(s) + pα
0 xα(y(s))].

That is

0 ≥
[(

1
υ0

b
(

υ−1
i (s)

)(
U (n−1)

(
υ−1

i (s)
))α

)
+

pα
0

υ0y0
b
(

υ−1
i (y(s))

)(
U (n−1)

(
υ−1

i (y(s))
))α

]′
+ Q̂(s)U α(s). (19)

Now, we set

Ψ(s) =
1
υ0

b
(

υ−1
i (s)

)(
U (n−1)

(
υ−1

i (s)
))α

+
pα

0
υ0y0

b
(

υ−1
i (y(s))

)(
U (n−1)

(
υ−1

i (y(s))
))α

. (20)

Since
(

b(s)(U (n−1)(s))α
)′ ≤ 0, it is clear that

Ψ(s) ≤
b
((

υ−1
i (y(s))

))(
U (n−1)

(
υ−1

i (y(s))
))α

υ0

(
1 +

pα
0

y0

)

≤
b
((

υ−1(y(s))
))(U (n−1)(υ−1(y(s))

))α

υ0

(
1 +

pα
0

y0

)
. (21)
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By using (12) with ς = y(s) and � = s and (21), we have
U (�) ≥ b1/α(ς)U (n−1)(ς)πn−2(ς, �), and

U α(s) ≥ b(y(s))
(
U (n−1)(y(s))

)α
πα

n−2(y(s), s) ≥ Ψ(υ(s))πα
n−2(y(s), s)

(
υ0y0

y0 + pα
0

)
.

Using the preceding inequality and the definition of Ψ in (19), we obtain

Ψ′(s) + Q̂(s)πα
n−2(y(s), s)

(
υ0y0

y0 + pα
0

)
Ψ(υ(s)) ≤ 0.

Based on [32] (Theorem 1), it can be inferred that Equation (18) also has a positive
solution, which contradicts the previous inequality. As a result, the proof is concluded.

Corollary 2. Suppose that υi(y(s)) < s, i = 1, 2, ..., n holds. If

lim inf
s→∞

∫ s

υ(s)
πα

n−2(y(ν), ν)Q̂(ν)dν >
y0 + pα

0
υ0y0e

, (22)

then K2 = ∅.

4. Non-Existence of Solutions from the Class C1

The main objective of this section is to analyze the asymptotic and monotonic prop-
erties displayed by the positive solutions of the examined equation. Additionally, we
present limitations to guarantee that none of the positive solutions meet the criteria stated
as condition (C1).

Lemma 5. Assume that x ∈ K1. Then, eventually

x(s) > (1 − p(s))U (s),

and (1) becomes (
b(s)

(
U (n−1)(s)

)α)′
+ Q0(s)U α(υ̃(s)) ≤ 0, (23)

eventually.

Proof. Since
U (s) = x(s) + p(s)x(y(s)),

then U (s) ≥ x(s) and

x(s) = U (s)− p(s)x(y(s)) ≥ U (s)− p(s)U (y(s)).

Since U (s) is increasing, then

x(s) ≥ (1 − p(s))U (s). (24)

From (1), we have

0 =
(

b(s)
(
U (n−1)(s)

)α)′
+

m

∑
i=1

qi(s)xα(υi(s))

≥
(

b(s)
(
U (n−1)(s)

)α)′
+

n

∑
i=1

qi(s)(1 − p(υi(s)))
αU α(υi(s))

≥
(

b(s)
(
U (n−1)(s)

)α)′
+ U α(υ̃(s))

n

∑
i=1

qi(s)(1 − p(υi(s)))
α

≥
(

b(s)
(
U (n−1)(s)

)α)′
+ Q0(s)U α(υ̃(s)).
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Therefore, the proof is concluded.

Theorem 4. Assume that there is a ρ ∈ C1([s0, ∞), (0, ∞)) such that

lim sup
s→∞

∫ s

s0

(
ρ(ν)Q0(ν)− ((n − 2)!)α

(α + 1)α+1
b(υ̃(ν))(ρ′(ν))α+1

(λρ(ν)υ̃n−2(ν)υ̃′(ν))α

)
dν = ∞. (25)

Then K1 = ∅.

Proof. Suppose the opposite that x ∈ K1. We introduce w defined as

w(s) = ρ(s)
b(s)

(
U (n−1)(s)

)α

U α(υ̃(s))
. (26)

Then w(s) > 0. Differentiating (26), we have

w′(s) = ρ′(s)
b(s)

(
U (n−1)(s)

)α

U α(υ̃(s))
+ ρ(s)

(
b(s)

(
U (n−1)(s)

)α)′

U α(υ̃(s))

−αυ̃′(s)ρ(s)
b(s)

(
U (n−1)(s)

)αU′(υ̃(s))

U α+1(υ̃(s))

≤ ρ′(s)
ρ(s)

w(s)− ρ(s)Q0(s)
U α(υ̃(s))
U α(υ̃(s))

− αυ̃′(s)w(s)
U′(υ̃(s))
U (υ̃(s)) . (27)

Using Lemma 3 with ψ(s) = U′(s), we see that

U′(s) ≥ λ

(n − 2)!
sn−2U (n−1)(s), for all λ ∈ (0, 1),

and
U′(υ̃(s)) ≥ λ

(n − 2)!
υ̃n−2(s)U (n−1)(υ̃(s)).

Putting the last inequality into (27), we obtain

w′(s) ≤ ρ′(s)
ρ(s)

w(s)− ρ(s)Q0(s)− αλ

(n − 2)!
υ̃′(s)υ̃n−2(s)
b1/α(υ̃(s))

b1/α(υ̃(s))U (n−1)(υ̃(s))w(s)
U (υ̃(s)) . (28)

Since b1/α(s)U (n−1)(s) is decreasing, then

b1/α(υ̃(s))U (n−1)(υ̃(s)) ≥ b1/α(s)U (n−1)(s).

Therefore, (28) can be expressed as

w′(s) ≤ ρ′(s)
ρ(s)

w(s)− ρ(s)Q0(s)− αλ

(n − 2)!
υ̃′(s)υ̃n−2(s)
b1/α(υ̃(s))

b1/α(s)U (n−1)(s)w(s)
U (υ̃(s))

=
ρ′(s)
ρ(s)

w(s)− ρ(s)Q0(s)− αλ

(n − 2)!
υ̃′(s)υ̃n−2(s)

(ρ(s)b(υ̃(s)))1/α
w(α+1)/α(s). (29)

Using Lemma 2 where B = ρ′(s)/ρ(s), B = αλυ̃′(s)υ̃n−2(s)/(ρ(s)b(υ̃(s)))1/α, and
ψ = w, we obtain
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ρ′(s)
ρ(s)

w(s)− αλ

(n − 2)!
υ̃′(s)υ̃n−2(s)

(ρ(s)b(υ̃(s)))1/α
w(α+1)/α(s)

≤ ((n − 2)!)α

(α + 1)α+1
(ρ′(s))α+1b(υ̃(s))

(λρ(s)υ̃′(s)υ̃n−2(s))α .

Substituting the previous inequality into (29), we obtain

w′(s) ≤ −ρ(s)Q0(s) +
((n − 2)!)α

(α + 1)α+1
(ρ′(s))α+1b(υ̃(s))

(λρ(s)υ̃′(s)υ̃n−2(s))α . (30)

Integrating (30) from s1 to s, we have

∫ s

s1

(
ρ(ν)Q0(ν)− ((n − 2)!)α

(α + 1)α+1
b(υ̃(ν))(ρ′(ν))α+1

(λρ(ν)υ̃n−2(ν)υ̃′(ν))α

)
dν ≤ w(s1),

which contradicts (25).

Theorem 5. If

lim inf
s→∞

∫ s

υ̃(s)
Q0(ν)

(
υ̃n−1(ν)

)α
dν >

((n − 1)!)α

e
, (31)

then K1 = ∅.

Proof. Let us assume the opposite, that x ∈ K1. It is clear from the use of the Lemma 3 that

U (s) ≥ λ

(n − 1)!
sn−1U (n−1)(s), for all λ ∈ (0, 1). (32)

Substituting from (32) into (23), we conclude that(
b(s)

(
U (n−1)(s)

)α)′
+

(
λ

(n − 1)!
υ̃n−1(s)

)α

Q0(s)
(
U (n−1)(υ̃(s))

)α ≤ 0.

Let us define ϕ(s) = b(s)
(
U (n−1)(s)

)α
> 0, It follows that ϕ is a positive solution to

the inequality

ϕ′(s) +
λα

((n − 1)!)α

(
υ̃n−1(s)

)α
Q0(s)ϕ(υ̃(s)) ≤ 0.

However, from Theorem 2.1.1 in [33], condition (31) confirms the oscillatory nature of
all solutions to Equation (32). This contradicts the previous inequality.

Theorem 6. If the DE

θ′(s) +
y0λα

y0 + pα
0

(
υ̃n−1(s)

)αQ(s)
((n − 1)!)αb(υ̃(s))

θ
(
y−1(υ̃(s))

)
= 0 (33)

is oscillatory, then K1 = ∅.

Proof. Assume that x ∈ K1. Similar to the proof of Theorem 1, we observe that (9) can be
expressed as

0 ≥
(

b(s)(U (n−1)(s))α +
pα

0
y0

b(y(s))
(
U (n−1)(y(s))

)α
)′

+
1
μ

Q(s)U α(υ̃(s)). (34)
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Applying Lemma 3, we obtain

U (s) ≥ λ

(n − 1)!b1/α(s)
sn−1b1/α(s)U (n−1)(s). (35)

Therefore, by setting w(s) = b(s)(U (n−1)(s))α in (34) and employing (35), it becomes
evident that w is a positive solution of the equation(

w(s) +
pα

0
y0

w(y(s))
)′

+

(
λ

(n − 1)!b1/α(υ̃(s))
υ̃n−1(s)

)α

Q(s)w(υ̃(s)) = 0. (36)

Since w(s) = b(s)(U (n−1)(s))α is decreasing and it satisfies (36). Let us denote

θ(s) = w(s) +
pα

0
y0

w(y(s)).

It follows from y(s) < s,

θ(s) ≤ w(y(s))
(

1 +
pα

0
y0

)
.

By replacing these expressions into (36), we discover that θ is a positive solution of

θ′(s) +
y0λα

y0 + pα
0

(
υ̃n−1(s)

)αQ(s)
((n − 1)!)αb(υ̃(s))

θ
(
y−1(υ̃(s))

)
≤ 0.

According to [32] (Theorem 1), it implies that (33) has a positive solution as well,
resulting in a contradiction with (33).

Corollary 3. If

lim inf
s→∞

∫ s

y−1(υ̃(s))

(
υ̃n−1(ν)

)αQ(ν)

b(υ̃(ν))
dν >

(
y0 + pα

0
)
((n − 1)!)α

λαy0e
, (37)

then K1 = ∅.

5. Oscillation Theorem

This section builds on the preceding section’s findings to establish new criteria for
investigating the oscillatory behavior of all solutions in (1). By merging the established
conditions that eliminate positive solutions for both cases (C1) and (C2), we can formulate
criteria outlined in the next theorem to determine the oscillation characteristics of the
studied equation.

Theorem 7. One of conditions (15), (16), or (22), together with one of conditions (25), (31), or (37),
ensure that all solutions of Equation (1) oscillate.

Proof. Let us assume the opposite scenario, that x is a solution to Equation (1). that
eventually becomes positive. Based on Lemma 4, we can deduce that there are two
potential situations for the behavior of z and its derivatives. Applying Corollary 1 and
Theorem 4, it can be determined that conditions (15) and (25) guarantee that there are
no solutions to (1) satisfy (C1) and (C2), respectively. The same approach is used for the
remaining conditions mentioned in the theorem. As a result, we can conclude that the
proof is finished.
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6. Application

In this section, we will utilize the derived findings to address a specific case of the (1).
Let us examine the non-linear differential equation (NDE) given by:

((
(x(s) + p0x(y0s))′′

)α)′
+

m

∑
i=1

qi

s2α+1 xα(υis) = 0, s ≥ 1. (38)

From (38) we have n = 3, b(s) = 1, p(s) =p0, y(s) = y0s,
υ(s) = υ0s = max{υi(s), i = 1, 2, ..., m}, υ̃(s) = υ̃0s = min{υis, i = 1, 2, ..., m},
qi(s) = qi/s2α+1,

π0(s) = s, π1(s) =
s2

2
,

π0(y(s), υ(s)) = (y0 − υ0)s, π1(y(s), υ(s)) = (y0 − υ0)
3 s2

2
,

and

Q0(s) =
(1 − p0)

α

s3α+1

m

∑
i=1

qi.

The condition described in (15) is fulfilled when:

(ζ0 − υ0)
3α2−α

(
n

∑
i=1

qi

)
ln
y0

ζ0
>

μ
(
y0 + pα

0
)

y0e
. (39)

The condition stated in (16) is satisfied when:

(y0δ0 − υ0)
3α2−α

(
1 − δ2α

0

) n

∑
i=1

qi >
2αμδ2α

0
(
y0 + pα

0
)

y0
. (40)

The condition presented in (22) is met when

(1 − y0)
3α

m

∑
i=1

qi ln
1
υ0

>
2α

(
y0 + pα

0
)

υ0y0e
. (41)

The condition described in (25) is satisfied when

(1 − p0)
α

m

∑
i=1

qi >

(
2α

α + 1

)α+1
(

1
λυ̃2

0

)α

, ρ(s) = s2α. (42)

The condition given in (31) is met when

υ̃2α(1 − p0)
α

(
m

∑
i=1

qi

)
ln

1
υ̃0

>
2α

e
. (43)

The condition presented in (31) is satisfied when

υ̃2α

(
m

∑
i=1

qi

)
ln

y0

υ̃0
>

2α
(
y0 + pα

0
)

λαy0e
. (44)

Now, by applying conditions (39)–(44), we observe that the Theorem 7 demonstrates
oscillatory behavior. This can be verified by assigning specific values to Equation (38).

Remark 1. If we substitute p = 0, α = 1, and m = 1 into (38), we obtain a third-order Euler-type
equation in the given form:

x′′′(s) +
q1

s3 x(υ1s) = 0, s ≥ 1.
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7. Conclusions

This research aims to investigate the oscillatory and asymptotic characteristics of
solutions to odd-order NDEs with multiple delays. By comprehending the relationship
between the solution, its derivatives of various orders, and its corresponding function, we
have significantly advanced the research of oscillation conditions in neutral differential
equations. We derived criteria that eliminate N-Kneser solutions and positive solutions of
the studied equation by deducing novel relationships and inequalities. These inferred rela-
tionships and variances also enable the development of additional criteria that contribute to
the expansion of the literature and provide a better understanding of the behavior of NDE
solutions containing multiple delays. To demonstrate the importance of our findings, We
provided a general example. The obtained results provide useful insights into the behavior
of solutions in odd-order NDEs and emphasize the necessity for future study to investigate
the state when the equation:

(
b(s)

(
U (n−1)(s)

)α)′
+

m

∑
i=1

qi(s)xβ(υi(s))) = 0,

Moreover, one of the interesting open research points is obtaining oscillation criteria
for all solutions of Equation (1) without the need for constraint (H4).
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Abstract: In this paper, we study the following non-local problem in fractional Orlicz–Sobolev spaces:
(−ΔΦ)

su + V(x)a(|u|)u = f (x, u), x ∈ RN , where (−ΔΦ)
s(s ∈ (0, 1)) denotes the non-local and

maybe non-homogeneous operator, the so-called fractional Φ-Laplacian. Without assuming the
Ambrosetti–Rabinowitz type and the Nehari type conditions on the non-linearity f , we obtain the
existence of ground state solutions for the above problem with periodic potential function V(x). The
proof is based on a variant version of the mountain pass theorem and a Lions’ type result in fractional
Orlicz–Sobolev spaces.

Keywords: fractional Orlicz–Sobolev spaces; fractional Φ-Laplacian; critical point; ground state

MSC: 35R11; 46E30; 35A15

1. Introduction and Main Results

In recent decades, much attention has been devoted to the study of the non-linear
Schrödinger equations involving non-local operators. These types of operators can be
used to model many phenomena in the natural sciences, such as fluid dynamics, quantum
mechanics, phase transitions, finance, and so on, see [1–4] and the references therein. Due
to the important work of Fernández Bonder and Salort [5], a new generalized fractional
Φ-Laplacian operator has caused great interest among scholars in recent years, since it
allows to model non-local problems involving a non-power behavior, see [6–13] and the
references therein.

In this paper, we are interested in studying the following non-local problem involving
fractional Φ-Laplacian:

(−ΔΦ)
su + V(x)a(|u|)u = f (x, u), x ∈ R

N , (1)

where s ∈ (0, 1), N ∈ N, the function a : [0,+∞) → R is such that φ : R → R defined by:

φ(t) =

{
a(|t|)t for t �= 0,
0 for t = 0,

(2)

is an increasing homeomorphism from R onto R, and Φ : [0,+∞) → [0,+∞) defined by:

Φ(t) =
∫ t

0
φ(τ)dτ

is an N-function (see Section 2 for details), which together with the potential V and the
non-linearity f satisfy the following basic assumptions:

Axioms 2024, 13, 294. https://doi.org/10.3390/axioms13050294 https://www.mdpi.com/journal/axioms188
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(φ1) 1 < l := inf
t>0

tφ(t)
Φ(t) ≤ sup

t>0

tφ(t)
Φ(t) =: m < min{N

s , l∗} where l∗ := Nl
N−sl ;

(V) V ∈ C(RN ,R+) is 1-periodic in x1, · · · , xN (called 1-periodic in x for short), and
so, there exist two constants α1, α2 > 0 such that α1 ≤ V(x) ≤ α2 for all x ∈ RN ;

( f1) f ∈ C(RN ×R) is 1-periodic in x satisfying:

lim
|t|→0

f (x, t)
φ(|t|) = 0 and lim

|t|→∞

f (x, t)
Φ′∗(|t|)

= 0, uniformly in x ∈ R
N ,

where Φ∗ denotes the Sobolev conjugate function of Φ (see Section 2 for details).
For s ∈ (0, 1), the so-called fractional Φ-Laplacian operator is defined as:

(−ΔΦ)
su(x) := P.V.

∫
RN

a(|Dsu|) Dsu
|x − y|N+s dy, where Dsu :=

u(x)− u(y)
|x − y|s (3)

and P.V. denotes the principal value of the integral. Notice that if Φ(t) = |t|p(p > 1), then
the fractional Φ-Laplacian operator reduces to the following fractional p-Laplacian operator:

(−Δp)
su(x) := P.V.

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+ps dy.

To study this class of non-local problem involving fractional p-Laplacian, the vari-
ational method has become one of the important tools over the past several decades,
see [14–20] and the references therein. In many studies on p-superlinear elliptic prob-
lems, to ensure the boundedness of the Palais–Smale sequence or Cerami sequence of
the energy functional, the following (AR) type condition for the non-linearity f due to
Ambrosetti–Rabinowitz [21] was always assumed:

For (AR), there exists a constant μ > p such that:

0 < μF(x, t) ≤ t f (x, t), for all t �= 0,

where the following is true: F(x, t) =
t∫

0
f (x, τ)dτ.

In fact, (AR) implies that there exist two positive constants c1, c2 such that:

F(x, t) ≥ c1|t|μ − c2, for all (x, t) ∈ R
N ×R,

which is obviously stronger than the following p-superlinear growth condition:
(F1) lim

|t|→∞

F(x,t)
|t|p = +∞, uniformly in x ∈ RN .

(F1) was first introduced by Liu and Wang in [22] for the case p = 2 and has since
been commonly used in recent papers. With the development of the variational theory and
application, certain new restrictive conditions have been established in order to weaken
(AR). However, the majority of these conditions are just complementary to (AR). For
example, one can replace (AR) with (F1) and the following Nehari type condition:

(Ne) f (x,t)
|t|p−1 is (strictly) increasing in t for all x ∈ RN .

For the case p = 2, Li, Wang and Zeng proved the existence of ground state by Nehari
method in [23]. Besides, for the case p = 2, Ding and Szulkin in [24] replaced (AR) with
(F1) and the following condition:

(F2) F (x, t) > 0 for all t �= 0, and | f (x, t)|σ ≤ c3F (x, t)|t|σ for some c3 > 0, σ >
max{1, N

2 } and all (x, t) with |t| larger enough, where F (x, t) = t f (x, t)− 2F(x, t).
They demonstrated that (F1) and (F2) are valid when the non-linearity f satisfies

both (AR) and a subcritical growth condition that | f (x, t)| ≤ c4(|t| + |t|q−1) for some
c4 > 0, q ∈ (2, 2∗) and all (x, t) ∈ RN × R, where 2∗ = 2N

N−2 if N ≥ 3 and 2∗ = ∞ if
N = 1 or N = 2. In [25,26], some conditions similar to (F2) were introduced for the
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case p > 1. Moreover, in [27], Tang introduced the following new and weaker super-
quadratic condition:

(F3) there exists a θ0 ∈ (0, 1) such that:

1 − θ2

2
t f (x, t) ≥

∫ t

θt
f (x, τ)dτ = F(x, t)− F(x, θt), for all θ ∈ [0, θ0], (x, t) ∈ R

N ×R.

Tang proved that (F3) is weaker than both (AR) and (Ne) and also different from (F2).
It is worth noting that (F3) has been extended for the case p > 1 in [28].

To the best of our knowledge, some conditions mentioned above have been success-
fully generalized to the non-local problem involving fractional Φ-Laplacian. In [29], for
Equation (1) with potential V(x) ≡ 1, by applying the mountain pass theorem, Sabri,
Ounaies, and Elfalah proved the existence of a non-trivial solution when the autonomous
non-linearity f (u) satisfies an (AR) type condition. On the whole space RN , to overcome
the difficulty due to the lack of compactness of the Sobolev embedding, the authors re-
constructed the compactness by choosing a radially symmetric function subspace as the
working space. In [13], for Equation (1) with unbounded or bounded potentials V, by apply-
ing the Nehari manifold method, Silva, Carvalho, de Albuquerque, and Bahrouni proved
the existence of ground state solutions when the non-linearity f satisfies the following both
(AR) and (Ne) type conditions:

For (AR)∗, there exists θ > m such that θF(x, t) ≤ t f (x, t), for (x, t) ∈ RN ×R;
For (Ne)∗, the map t → f (x,t)

|t|m−1 is strictly increasing for t > 0 and strictly decreasing
for t < 0.

To be precise, for the case when V is unbounded, the authors reconstructed the
compactness by assuming that V is coercive and then choosing a subspace depending on
V as the working space. For the case when V is bounded, to overcome the difficulty due
to the lack of compactness and obtain a non-trivial solution, the authors assumed that V
and f are 1-periodic in x and introduced an important Lions’ type result for fractional
Orlicz–Sobolev spaces (see Theorem 1.6 in [13]). Since the ground state solution is obtained
as a minimizer of the energy functional on the Nehari manifold N , it is crucial to require
that f is of class C1. Otherwise N may not be a C1-manifold and it is not clear that the
minimizer on the Nehari manifold N is a critical point of the energy functional.

Motivated by [13], in this paper, we still study the existence of ground state for
Equation (1) under the assumption that V and f are 1-periodic in x. We manage to extend
the above p-superlinear growth conditions (F2) and (F3) to the non-local problem involving
fractional Φ-Laplacian. Instead of applying the Nehari manifold method, we firstly prove
that Equation (1) has a non-trivial solution by using a variant mountain pass theorem (see
Theorem 3 in [30]). Subsequently, we prove the existence of ground state by using the
Lions’ type result for fractional Orlicz–Sobolev spaces and some techniques of Jeanjean and
Tanaka (see Theorem 4.5 in [31]).

Next, we present our main results as follows.

Theorem 1. Assume that (φ1), (V), ( f1) and the following conditions hold:

(φ2) lim sup
t→0

|t|l
Φ(|t|) < +∞;

( f2) lim
|t|→∞

F(x,t)
Φ(|t|) = +∞, uniformly in x ∈ RN ;

( f3) F̂(x, t) > 0 for all t �= 0, and |F(x, t)|k ≤ cF̂(x, t)|t|lk for some c > 0, k > N
sl and all

(x, t) with |t| larger enough, where F̂(x, t) = t f (x, t)− mF(x, t).
Then, Equation (1) has at least one ground state solution.

Theorem 2. Assume that (φ1), (V), ( f1) and the following conditions hold:
( f4) F(x, t) ≥ 0 for all (x, t) ∈ RN ×R, and lim

|t|→∞

F(x,t)
|t|m = +∞, uniformly in x ∈ RN ;
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( f5) there exists a θ0 ∈ (0, 1) such that:

1 − θl

m
t f (x, t) ≥

∫ t

θt
f (x, τ)dτ = F(x, t)− F(x, θt), for all θ ∈ [0, θ0], (x, t) ∈ R

N ×R.

Then, Equation (1) has at least one ground state solution.

Remark 1. To some extent, Theorem 2 improves the result of Theorem 1.8 in [13]. In fact, our
results do not require the smoothness condition that functions f and a are of class C1. Moreover, it
is obvious that (ϕ4) in [13] implies (φ1) and ( f0) in [13] implies our subcritical growth condition
given by ( f1). Furthermore, when Φ(t) = |t|2, ( f5) is weaker than both (AR) type condition ( f4)
and (Ne) type condition ( f4) in [13] (see [27]).

Remark 2. Theorem 2 extends and improves the result of Theorem 1.1 in [32]. In fact, when
Φ(t) = |t|2, our subcritical growth condition given by ( f1) reduces to:

lim
|t|→∞

f (x, t)
|t|2∗−1 = 0, uniformly in x ∈ R

N , (4)

which is weaker than (A2) in [32]. For example, it is easy to check that function f (t) = |t|2∗−2t
log(e+|t|)

satisfies (4) but does not satisfy (A2) in [32]. Moreover, it is obvious that Theorem 1 is different from
Theorem 1.2 in [32] even when the fractional Φ-Laplacian Equation (1) reduces to the fractional
Schrödinger equation.

The rest of this paper is organized as follows. In Section 2, we recall some definitions
and basic properties on the Orlicz and fractional Orlicz–Sobolev spaces. In Section 3, we
complete the proofs of the main results. In Section 4, we present some examples about the
function φ defined by (2) and non-linearity f to illustrate our results.

2. Preliminaries

In this section, we make a brief introduction about Orlicz and fractional Orlicz–Sobolev
spaces. For more details, we refer the reader to [5,33,34] and references therein.

To begin with, we recall the notion of N-function. Let φ : [0,+∞) → [0,+∞) be a right
continuous and monotone increasing function that satisfies the following conditions:

(1) φ(0) = 0;
(2) lim

t→+∞
φ(t) = +∞;

(3) φ(t) > 0 whenever t > 0.

Then, the function defined on [0,+∞) by Φ(t) =
∫ t

0 φ(τ)dτ is called an N-function. It
is obvious that Φ(0) = 0 and Φ is strictly increasing and convex in [0,+∞).

An N-function Φ is said to satisfy the Δ2-condition if there exists a constant K > 0
such that Φ(2t) ≤ KΦ(t) for all t ≥ 0. Φ satisfies the Δ2-condition if and only if for any
given c ≥ 1, there exists a constant Kc > 0 such that Φ(ct) ≤ KcΦ(t) for all t ≥ 0.

Given two N-functions A and B, B is said to dominate A globally if there exists a
constant K > 0 such that A(t) ≤ B(Kt) for all t ≥ 0. Furthermore, B is said to be essentially
stronger than A, denoted by A ≺≺ B, if for each c > 0 it holds that:

lim
t→+∞

A(ct)
B(t)

= 0.

For the N-function introduced above, the complement of Φ is defined by:

Φ̃(t) = max
ρ≥0

{tρ − Φ(ρ)}, for t ≥ 0.
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Then, it holds that Young’s inequality:

ρt ≤ Φ(ρ) + Φ̃(t), for all ρ, t ≥ 0, (5)

and the inequality (see Lemma A.2 in [35]):

Φ̃(φ(t)) ≤ Φ(2t), for all t ≥ 0. (6)

Now, we recall the Orlicz space LΦ(RN) associated with Φ. When Φ satisfies the
Δ2-condition, the Orlicz space LΦ(RN) is the vectorial space of the measurable functions
u : RN → R satisfying: ∫

RN
Φ(|u|)dx < +∞.

The space LΦ(RN) is a Banach space endowed with the Luxemburg norm:

‖u‖Φ = ‖u‖LΦ(RN) := inf
{

λ > 0 :
∫
RN

Φ
( |u|

λ

)
dx ≤ 1

}
.

Particularly, when Φ(t) = |t|p(p > 1), the corresponding Orlicz space LΦ(RN) re-
duces to the classical Lebesgue space Lp(RN) endowed with the norm:

‖u‖p = Lp(RN) :=
(∫

RN
|u(x)|pdx

) 1
p
.

The fact that Φ satisfies Δ2-condition implies that:

un → u in LΦ(Ω) ⇐⇒
∫

Ω
Φ(|un − u|)dx → 0, (7)

where Ω is an open set of RN . Moreover, by the Young’s inequality (5), the following
generalized version of Hölder’s inequality holds (see [33,34]):∣∣∣∣∫

RN
uvdx

∣∣∣∣ ≤ 2‖u‖Φ‖v‖Φ̃, for all u ∈ LΦ(RN), v ∈ LΦ̃(RN).

Given an N-function Φ and a fractional parameter 0 < s < 1, we recall the fractional
Orlicz–Sobolev space Ws,Φ(RN) defined as:

Ws,Φ(RN) :=
{

u ∈ LΦ(RN) :
∫∫

R2N
Φ(|Dsu|)dμ < +∞

}
,

where Dsu is defined by (3) and dμ(x, y) := dxdy
|x−y|N . The space Ws,Φ(RN) is a Banach space

endowed with the following norm:

‖u‖s,Φ = ‖u‖Ws,Φ(RN) := ‖u‖Φ + [u]s,Φ,

where the so-called (s, Φ)-Gagliardo semi-norm is defined as:

[u]s,Φ := inf
{

λ > 0 :
∫∫

R2N
Φ
( |Dsu|

λ

)
dμ ≤ 1

}
.

The following lemmas will be useful in the following.

Lemma 1. (see [33,35]) Assume that Φ is an N-function. Then, the following conditions are equivalent:
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(1)

1 < l = inf
t>0

tφ(t)
Φ(t)

≤ sup
t>0

tφ(t)
Φ(t)

= m < +∞; (8)

(2) Let ζ1(t) = min{tl , tm}, ζ2(t) = max{tl , tm}, for t ≥ 0. Then, Φ satisfies:

ζ1(t)Φ(ρ) ≤ Φ(ρt) ≤ ζ2(t)Φ(ρ), for all ρ, t ≥ 0;

(3) Φ satisfies the Δ2-condition.

Lemma 2. (see [11,35]) Assume that Φ is an N-function and (8) holds. Then, Φ satisfies:

(1)

ζ1(‖u‖Φ) ≤
∫
RN

Φ(|u|)dx ≤ ζ2(‖u‖Φ), for all u ∈ LΦ(RN);

(2)

ζ1([u]s,Φ) ≤
∫∫

R2N
Φ(|Dsu|)dμ ≤ ζ2([u]s,Φ), for all u ∈ Ws,Φ(RN).

Lemma 3. (see [35]) Assume that Φ is an N-function and (8) holds with l > 1. Let Φ̃ be the
complement of Φ and ζ3(t) = min{tl̃ , tm̃}, ζ4(t) = max{tl̃ , tm̃}, for t ≥ 0, where l̃ := l

l−1 and
m̃ := m

m−1 . Then, Φ̃ satisfies:

(1)

m̃ = inf
t>0

tΦ̃
′
(t)

Φ̃(t)
≤ sup

t>0

tΦ̃
′
(t)

Φ̃(t)
= l̃;

(2)
ζ3(t)Φ̃(ρ) ≤ Φ̃(ρt) ≤ ζ4(t)Φ̃(ρ), for all ρ, t ≥ 0;

(3)

ζ3(‖u‖Φ̃) ≤
∫
RN

Φ̃(|u|)dx ≤ ζ4(‖u‖Φ̃), for all u ∈ LΦ̃(RN).

Remark 3. By Lemmas 1 and 3, (φ1) implies that Φ and Φ̃ are two N-functions satisfying the Δ2-
condition. The fact that Φ and Φ̃ satisfy the Δ2-condition implies that LΦ(RN) and Ws,Φ(RN) are
separable and reflexive Banach spaces. Moreover, C∞

c (RN) is dense in Ws,Φ(RN) (see [5,33,34]).

Next, we recall the Sobolev conjugate function of Φ, which is denoted by Φ∗. Sup-
pose that:

∫ 1

0

Φ−1(τ)

τ
N+s

N
dτ < +∞ and

∫ +∞

1

Φ−1(τ)

τ
N+s

N
dτ = +∞. (9)

Then, Φ∗ is defined by:

Φ−1∗ (t) =
∫ t

0

Φ−1(τ)

τ
N+s

N
dτ, for t ≥ 0.

Lemma 4. (see [6,36]) Assume that Φ is an N-function and (8) holds with l, m ∈ (1, N
s ). Then, (9)

holds. Let ζ5(t) = min{tl∗ , tm∗}, ζ6(t) = max{tl∗ , tm∗}, for t ≥ 0, where l∗ := Nl
N−sl , m∗ :=

Nm
N−sm . Then, Φ∗ satisfies:

(1)

l∗ = inf
t>0

tΦ′∗(t)
Φ∗(t)

≤ sup
t>0

tΦ′∗(t)
Φ∗(t)

= m∗;
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(2)
ζ5(t)Φ∗(ρ) ≤ Φ∗(ρt) ≤ ζ6(t)Φ∗(ρ), for all ρ, t ≥ 0;

(3)

ζ5(‖u‖Φ∗) ≤
∫
RN

Φ∗(|u|)dx ≤ ζ6(‖u‖Φ∗), for all u ∈ LΦ∗(RN).

The conjugate function Φ∗ plays a crucial role in the following embedding results,
which will be used frequently in our proofs.

Lemma 5. (see [13,33,36]) Assume that Φ is an N-function and (8) holds with l, m ∈ (1, N
s ).

Then, the following embedding results hold:

(1) the embedding Ws,Φ(RN) ↪→ LΦ∗(RN) is continuous;
(2) the embedding Ws,Φ(RN) ↪→ LΦ(RN) is continuous;
(3) the embedding Ws,Φ(RN) ↪→ LΨ(RN) is continuous if Φ dominates Ψ globally;
(4) the embedding Ws,Φ(RN) ↪→ LΨ(RN) is continuous if Ψ satisfies the Δ2-condition, Ψ ≺≺

Φ∗ and

lim
t→0+

Ψ(t)
Φ(t)

= 0;

(5) when RN is replaced by a C0,1 bounded open subset D of RN, then the embedding Ws,Φ(D) ↪→
LΨ(D) is compact if Ψ ≺≺ Φ∗. Explicitly, when m < l∗, the embedding Ws,Φ(Br) ↪→
LΦ(Br) is compact, where the following is true: Br := {x ∈ RN : |x| < r} for r > 0.

Notation: Throughout this paper, Cd is used to denote a positive constant which
depends only on the constant or function d.

3. Proofs

In fractional Orlicz–Sobolev space Ws,Φ(RN), denoted by W for simplicity, the energy
functional I associated with Equation (1) is defined by:

I(u) :=
∫∫

R2N
Φ(|Dsu|)dμ +

∫
RN

V(x)Φ(|u|)dx −
∫
RN

F(x, u)dx. (10)

It follows ( f1) that for any given constant ε > 0, there exists a constant Cε > 0 such
that:

| f (x, t)| ≤ εφ(|t|) + CεΦ′∗(|t|) and |F(x, t)| ≤ εΦ(|t|) + CεΦ∗(|t|), for all (x, t) ∈ R
N ×R. (11)

Thus, by using standard arguments as [8], we have that I ∈ C1(W,R) and its derivative
is given by:

〈I′(u), v〉 =
∫∫

R2N
a(|Dsu|)DsuDsvdμ +

∫
RN

V(x)a(|u|)uvdx −
∫
RN

f (x, u)vdx, for all u, v ∈ W. (12)

Thus, the critical points of I are weak solutions of Equation (1).
Define Ii(i = 1, 2) : W → R by:

I1(u) =
∫∫

R2N
Φ(|Dsu|)dμ +

∫
RN

V(x)Φ(|u|)dx (13)

and:

I2(u) =
∫
RN

F(x, u)dx. (14)

Then:
I(u) = I1(u)− I2(u), for all u, v ∈ W
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and:

〈I′1(u), v〉 =
∫∫

R2N
a(|Dsu|)DsuDsvdμ +

∫
RN

V(x)a(|u|)uvdx, for all u, v ∈ W, (15)

〈I′2(u), v〉 =
∫
RN

f (x, u)vdx, for all u, v ∈ W. (16)

Lemma 6. Assume that (φ1), (V) and ( f1) hold. Then, there exist two constants ρ, η > 0 such
that I(u) ≥ η for all u ∈ W with ‖u‖s,Φ = ρ.

Proof. When ‖u‖s,Φ = ‖u‖Φ + [u]s,Φ ≤ 1, by (10), (V), (11) with taking ε < α1, Lemma 2,
(3) in Lemma 4 and (1) in Lemma 5, we have:

I(u) ≥
∫∫

R2N
Φ(|Dsu|)dμ + α1

∫
RN

Φ(|u|)dx −
∫
RN

|F(x, u)|dx

≥
∫∫

R2N
Φ(|Dsu|)dμ + (α1 − ε)

∫
RN

Φ(|u|)dx − Cε

∫
RN

Φ∗(|u|)dx

≥ [u]ms,Φ + (α1 − ε)‖u‖m
Φ − Cε max{‖u‖l∗

Φ∗ , ‖u‖m∗
Φ∗}

≥ min{1, α1 − ε}Cm‖u‖m
s,Φ − CεCl∗

Φ∗‖u‖l∗
s,Φ − CεCm∗

Φ∗ ‖u‖m∗
s,Φ.

Taking into account that m < l∗ ≤ m∗, it follows from the aforementioned inequality
that there exist sufficiently small positive constants ρ and η such that I(u) ≥ η for all u ∈ W
with ‖u‖s,Φ = ρ.

Lemma 7. Assume that (φ1), (V), ( f1) and ( f2) (or ( f4)) hold. Then, there exists a u0 ∈ W such
that I(tu0) → −∞ as t → +∞.

Proof. For any given constant M > α2, by ( f1) and ( f2) (or combine ( f4) with (2) in
Lemma 1), there exists a constant CM > 0 such that:

F(x, t) ≥ MΦ(|t|)− CM, for all (x, t) ∈ R
N ×R. (17)

Now, choose u0 ∈ C∞
c (Br) \ {0} with 0 ≤ u0(x) ≤ 1. Then u0 ∈ W, and by (10),

(V), (17), (2) in Lemma 1 and the fact F(x, 0) = 0 for all x ∈ RN , when t > 0 we have:

I(tu0) =
∫∫

R2N
Φ(|Ds(tu0)|)dμ +

∫
RN

V(x)Φ(|tu0|)dx −
∫
RN

F(x, tu0)dx

=
∫∫

R2N
Φ(t|Dsu0|)dμ +

∫
RN

V(x)Φ(t|u0|)dx −
∫

Br
F(x, tu0)dx

≤ Φ(t)
∫∫

R2N
max{|Dsu0|l , |Dsu0|m}dμ + α2

∫
RN

Φ(t|u0|)dx − M
∫

Br
Φ(t|u0|) + CM|Br|

≤ Φ(t)
∫∫

R2N
(|Dsu0|l + |Dsu0|m)dμ − (M − α2)Φ(t)

∫
RN

min{|u0|l , |u0|m}dx + CM|Br|

= Φ(t)
[∫∫

R2N
(|Dsu0|l + |Dsu0|m)dμ − (M − α2)‖u0‖m

m

]
+ CM|Br|.

Note that lim
t→+∞

Φ(t) = +∞. We can choose M > 1
‖u0‖m

m
{∫∫
R2N

(|Dsu0|l + |Dsu0|m)dμ}+
α2 such that I(tu0) → −∞ as t → +∞. What needs to be pointed out is that here we
used the fact that u0 ∈ Ws,Ψ(RN), where Ψ(t) = |t|l + |t|m, t ≥ 0. So,

∫∫
R2N (|Dsu0|l +

|Dsu0|m)dμ < +∞.

Lemmas 6 and 7 and the fact that I(0) = 0 show that the energy functional I has a
mountain pass geometry; that is, setting:

Γ = {γ ∈ C([0, 1], W) : γ(0) = 0, ‖γ(1)‖s,Φ > ρ and I(γ(1)) ≤ 0},
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we have Γ �= ∅. Then, by using the variant version of the mountain pass theorem (see
Theorem 3 in [30]), we deduce that I possesses a (C)c-sequence {un} with the level c ≥
η > 0 given by:

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)). (18)

We recall that (C)c-sequence {un} of I in W means

I(un) → c and (1 + ‖un‖s,Φ)‖I′(un)‖W∗ → 0, as n → ∞. (19)

To prove the boundedness of the (C)c-sequence {un} of I in W, we will use the Lions’
type result for fractional Orlicz–Sobolev spaces (see Theorem 1.6 in [13]). We note that
the claim un ⇀ 0 in X of Theorem 1.6 in [13] is not necessary. With the same proof as
Theorem 1.6 in [13], we can get the following result.

Lemma 8. (Lions’ type result for fractional Orlicz–Sobolev spaces). Suppose that the function φ
defined by (2) satisfies (φ1) and:

lim
t→0+

Ψ(t)
Φ(t)

= 0.

Let {un} be a bounded sequence in Ws,Φ(RN) in such a way that:

lim
n→∞

sup
y∈RN

∫
Br(y)

Φ(|un|)dx = 0,

for some r > 0. Then, un → 0 in LΨ(RN), where Ψ is an N-function such that Ψ ≺≺ Φ∗.

Lemma 9. Assume that (φ1), (φ2), (V) and ( f1)-( f3) hold. Then, any (C)c-sequence of I in W
is bounded for all c ≥ 0.

Proof. Let {un} be a (C)c-sequence of I in W for c ≥ 0. By (19), we have:

I(un) → c and
∣∣∣∣〈I′(un),

1
m

un

〉∣∣∣∣ → 0, as n → ∞. (20)

Then, by (10), (12), (φ1), and (V), for n large, we have:

c + 1 ≥ I(un)−
〈

I′(un),
1
m

un

〉
=

∫∫
R2N

(
Φ(|Dsun|)− 1

m
a(|Dsun|)|Dsun|2

)
dμ

+
∫
RN

V(x)
(

Φ(|un|)− 1
m

a(|un|)u2
n

)
dx

+
∫
RN

(
1
m

un f (x, un)− F(x, un)

)
dx

≥ 1
m

∫
RN

F̂(x, un)dx. (21)

To prove the boundedness of {un}, arguing by contradiction, we suppose that there
exists a subsequence of {un}, still denoted by {un}, such that ‖un‖s,Φ → ∞, as n → ∞. Let
ũn = un

‖un‖s,Φ
. Then ‖ũn‖s,Φ = 1.

Firstly, we claim that:

λ1 := lim
n→∞

sup
y∈RN

∫
B2(y)

Φ(|ũn|)dx = 0. (22)
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Indeed, if λ1 �= 0, there exist a constant δ > 0, a subsequence of {ũn}, still denoted by
{ũn}, and a sequence {zn} ∈ ZN such that:∫

B2(zn)
Φ(|ũn|)dx > δ, for all n ∈ N. (23)

Let ūn = ũn(· + zn). Then ‖ūn‖s,Φ = ‖ũn‖s,Φ = 1, that is, {ūn} is bounded in W.
Passing to a subsequence of {ūn}, still denoted by {ūn}, by Remark 3 and (5) in Lemma 5,
we can assume that there exists a ū ∈ W such that:

ūn ⇀ ū in W, ūn → ū in LΦ(B2) and ūn(x) → ū(x) a.e. in B2. (24)

Note that: ∫
B2

Φ(|ūn|)dx =
∫

B2(zn)
Φ(|ũn|)dx.

Then, by (23), (24), and (7), we obtain that ū �= 0 in LΦ(B2), that is, [ū �= 0] := {x ∈ B2 :
ū(x) �= 0} has non-zero Lebesgue measure. Let u∗

n = un(·+ zn). Then ‖u∗
n‖s,Φ = ‖un‖s,Φ,

and it follows from the fact that V and f are 1-periodic in x that:

I(u∗
n) = I(un) and ‖I′(u∗

n)‖W∗ = ‖I′(un)‖W∗ , for all n ∈ N,

which imply that {u∗
n} is also a (C)c-sequence of I. Then, by (21), for n large, we have:∫

RN
F̂(x, u∗

n)dx ≤ m(c + 1). (25)

However, by (2) in Lemma 1, ( f2) and ( f3) imply:

lim
|t|→∞

F̂(x, t) = +∞, uniformly in x ∈ R
N . (26)

Moreover, by (24), ūn = ũn(·+ zn) =
un(·+zn)
‖un‖s,Φ

= u∗
n

‖un‖s,Φ
implies:

|u∗
n(x)| = |ūn(x)|‖un‖s,Φ → ∞, a.e. x ∈ [ū �= 0]. (27)

Then, it follows from ( f3), (26), (27) and Fatou’s Lemma that:∫
RN

F̂(x, u∗
n)dx ≥

∫
[ū �=0]

F̂(x, u∗
n)dx → +∞, as n → ∞,

which contradicts (25). Therefore, λ1 = 0, and thus, (22) holds.
Next, for given p ∈ (l, l∗) and c > 0, by (φ1), (φ2) and 2) in Lemma 4, we have:

lim
t→0+

tp

Φ(t)
= 0 and lim

t→+∞

(ct)p

Φ∗(t)
≤ lim

t→+∞

cptp

Φ∗(1)min{tl∗ , tm∗} = 0. (28)

Then, by Lemma 8, (22) and (28) imply that:

ũn → 0 in Lp(RN), for all p ∈ (l, l∗). (29)

In addition, let Ψ = |t|l , t ≥ 0. Combining (φ1) and (φ2) with Lemma 1, we can easily
check that Φ dominates Ψ globally. Then, it follows from 3) in Lemma 5 that the embedding
W ↪→ Ll(RN) is continuous, which implies that there exists a constant M1 > 0 such that:

‖ũn‖l
l ≤ M1, for all n ∈ N. (30)
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Finally, to get a contradiction, we will divide both sides of formula I(un) = I1(un)−
I2(un) by ‖un‖l

s,Φ1
and let n → ∞. On the ond hand, by (20), it is clear that:

I(un)

‖un‖l
s,Φ

→ 0, as n → ∞. (31)

On the other hand, by (13), (V) and Lemma 2, we have:

I1(un)

‖un‖l
s,Φ

=
1

‖un‖l
s,Φ

{
∫∫
R2N

Φ(|Dsun|)dμ +
∫
RN

V(x)Φ(|un|)dx}

≥ min{[un]ls,Φ, [un]ms,Φ}+ α1 min{‖un‖l
Φ, ‖un‖m

Φ}
‖un‖l

s,Φ

≥ [un]ls,Φ + α1‖un‖l
Φ − 1 − α1

‖un‖l
s,Φ

≥ min{1, α1}Cl([un]s,Φ + ‖un‖Φ)
l − 1 − α1

‖un‖l
s,Φ

→ min{1, α1}Cl , as n → ∞. (32)

Moreover, by (2) in Lemma 1, ( f1) implies that:

lim
|t|→0

F(x, t)
|t|l = 0, uniformly in x ∈ R

N .

Then, for any given constant ε > 0, there exists a constant Rε > 0 such that:

|F(x, t)|
|t|l ≤ ε, for all x ∈ R

N , |t| ≤ Rε. (33)

For the above Rε > 0, by ( f1) and ( f3), there exists a constant CR > 0 such that:( |F(x, t)|
|t|l

)k
≤ CRF̂(x, t), for all x ∈ R

N , |t| > Rε. (34)

Let:

Xn = {x ∈ R
N : |un(x)| ≤ Rε} and Yn = {x ∈ R

N : |un(x)| > Rε}.

Then:

|I2(un)|
‖un‖l

s,Φ
≤

∫
Xn

|F(x, un)|
‖un‖l

s,Φ
dx +

∫
Yn

|F(x, un)|
‖un‖l

s,Φ
dx. (35)

By (33) and (30), we have:∫
Xn

|F(x, un)|
‖un‖l

s,Φ
dx =

∫
Xn

|F(x, un)|
|un|l |ũn|ldx ≤ ε‖ũn‖l

l ≤ εM1. (36)

The claim k > N
sl given by ( f3) implies that lk

k−1 ∈ (l, l∗). Hence, by Hölder’s inequal-
ity, (34), (21), (29), and the fact that F̂(x, t) ≥ 0, we have:
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∫
Yn

|F(x, un)|
‖un‖l

s,Φ
dx =

∫
Yn

|F(x, un)|
|un|l |ũn|ldx

≤
(∫

Yn

( |F(x, un)|
|un|l

)k
dx

) 1
k (∫

Yn
|ũn| lk

k−1 dx
) k−1

k

≤
(∫

Yn
CRF̂(x, un)dx

) 1
k ‖ũn‖l

lk
k−1

≤ [CRm(c + 1)]
1
k ‖ũn‖l

lk
k−1

→ 0, as n → ∞. (37)

Since ε is arbitrary, it follows from (35), (36), and (37) that:

I2(un)

‖un‖l
s,Φ

→ 0, as n → ∞. (38)

By dividing both sides of formula I(un) = I1(un) − I2(un) by ‖un‖l
s,Φ1

and letting
n → ∞, we get a contradiction via (31), (32), and (38). Therefore, the (C)c-sequence {un} is
bounded.

Lemma 10. Assume that (φ1), (V), ( f1), ( f4) and ( f5) are satisfied. Then, for u ∈ W, it holds that:

I(u) ≥ I(tu) +
1 − tl

m
〈I′(u), u〉, for all t ∈ [0, θ0],

where θ0 is given in ( f5).

Proof. When u ∈ W, 0 ≤ t ≤ 1, by (10), (12), and Lemma 1, we have:

I(u)− I(tu)− 1 − tl

m
〈I′(u), u〉

=
∫∫

R2N
Φ(|Dsu|)dμ +

∫
RN

V(x)Φ(|u|)dx −
∫
RN

F(x, u)dx

−
∫∫

R2N
Φ(|Dstu|)dμ −

∫
RN

V(x)Φ(|tu|)dx +
∫
RN

F(x, tu)dx

−1 − tl

m

∫∫
R2N

a(|Dsu|)|Dsu|2dμ − 1 − tl

m

∫
RN

V(x)a(|u|)u2dx +
1 − tl

m

∫
RN

u f (x, u)dx

≥
∫∫

R2N
Φ(|Dsu|)dμ − max{tl , tm}

∫∫
R2N

Φ(|Dsu|)dμ − (1 − tl)
∫∫

R2N
Φ(|Dsu|)dμ

+
∫
RN

V(x)Φ(|u|)dx − max{tl , tm}
∫
RN

V(x)Φ(|u|)dx − (1 − tl)
∫
RN

V(x)Φ(|u|)dx

+
∫
RN

[
1 − tl

m
u f (x, u)− F(x, u) + F(x, tu)

]
dx

=
∫
RN

[
1 − tl

m
u f (x, u)−

∫ u

tu
f (x, τ)dτ

]
dx.

Then, it follows from ( f5) that:

I(u) ≥ I(tu) +
1 − tl

m
〈I′(u), u〉, for all t ∈ [0, θ0],

for some θ0 ∈ (0, 1).

Lemma 11. Assume that (φ1), (V), ( f1), ( f4) and ( f5) hold. Then any (C)c-sequence of I in W
is bounded for all c ≥ 0.
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Proof. Let {un} be a (C)c-sequence of I in W for c ≥ 0. By (19), we have:

I(un) → c and
∣∣〈I′(un), un

〉∣∣ → 0, as n → ∞. (39)

To prove the boundedness of {un}, arguing by contradiction, we suppose that there
exists a subsequence of {un}, still denoted by {un}, such that ‖un‖s,Φ → ∞, as n → ∞. Let
ũn = un

‖un‖s,Φ
. Then ‖ũn‖s,Φ = 1.

Firstly, we claim that:

λ2 := lim
n→∞

sup
y∈RN

∫
B2(y)

Φ(|ũn|)dx = 0. (40)

Indeed, if λ2 �= 0, there exist a constant δ > 0, a subsequence of {ũn}, still denoted by
{ũn}, and a sequence {zn} ∈ ZN such that:∫

B2(zn)

Φ(|ũn|)dx > δ, for all n ∈ N. (41)

Let ūn = ũn(· + zn). Then ‖ūn‖s,Φ = ‖ũn‖s,Φ = 1, that is, {ūn} is bounded in W.
Passing to a subsequence of {ūn}, still denoted by {ūn}, by Remark 3 and (5) in Lemma 5,
we can assume that there exists a ū ∈ W such that:

ūn ⇀ ū in W, ūn → ū in LΦ(B2) and ūn(x) → ū(x) a.e. in B2. (42)

Note that: ∫
B2

Φ(|ūn|)dx =
∫

B2(zn)
Φ(|ũn|)dx.

Then, by (41), (42), and (7), we obtain that ū �= 0 in LΦ(B2), that is, [ū �= 0] := {x ∈
B2 : ū(x) �= 0} has non-zero Lebesgue measure. Let u∗

n = un(· + zn). Then ‖u∗
n‖s,Φ =

‖un‖s,Φ, and:

|u∗
n(x)| = |ūn(x)|‖un‖s,Φ → ∞, a.e. x ∈ [ū �= 0]. (43)

Then, it follows from (14), ( f4), (43) and Fatou’s Lemma that:

I2(un)

‖un‖m
s,Φ

=
∫
RN

F(x, un)

‖un‖m
s,Φ

dx

=
∫
RN

F(x + zn, u∗
n)

|u∗
n|m

|ūn|mdx

≥
∫
[ū �=0]

F(x + zn, u∗
n)

|u∗
n|m

|ūn|mdx → +∞, as n → ∞. (44)

Moreover, it follows from (13), (V), and Lemma 2 that:

lim sup
n→∞

I1(un)

‖un‖m
s,Φ

= lim sup
n→∞

1
‖un‖m

s,Φ
{
∫∫
R2N

Φ(|Dsun|)dμ +
∫
RN

V(x)Φ(|un|)dx}

≤ lim sup
n→∞

max{[un]ls,Φ, [un]ms,Φ}+ α2 max{‖un‖l
Φ, ‖un‖m

Φ}
‖un‖m

s,Φ

≤ 1 + α2. (45)

By dividing both sides of formula I(un) = I1(un) − I2(un) by ‖un‖m
s,Φ1

and letting
n → ∞, we get a contradiction via (39), (44), and (45). Therefore, λ2 = 0 and thus (40) holds.
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Then, by using the Lions’ type result for fractional Orlicz–Sobolev spaces, with the similar
discussion as in Lemma 9, we have:

ũn → 0 in Lp(RN), for all p ∈ (m, l∗). (46)

Besides, it follows from (1) in Lemma 2, (3) in Lemma 4, (1)–(2) in Lemma 5 and the
fact ‖ũn‖s,Φ = 1 that there exists a constant M2 > 0 such that:∫

RN
(Φ(|ũn|) + Φ∗(|ũn|))dx

≤ max
{
‖ũn‖l

Φ, ‖ũn‖m
Φ

}
+ max

{
‖ũn‖l∗

Φ∗ , ‖ũn‖m∗
Φ∗

}
≤ M2, for all n ∈ N. (47)

Next, for any given R > 1, let tn = R
‖un‖s,Φ

. Since ‖un‖s,Φ → ∞ as n → ∞, it follows
that tn ∈ (0, θ0) for n large enough. Thus, by (39) and Lemma 10, we have:

c + on(1) = I(un)

≥ I(tnun) +
1 − tl

n
m

〈I′(un), un〉

= I
(

R
‖un‖s,Φ

un

)
+ on(1)

= I(Rũn) + on(1)

= I1(Rũn)− I2(Rũn) + on(1). (48)

For the above R and any given ε > 0, by ( f1), the continuity of F and the fact that Φ
and Φ∗ satisfy the Δ2-condition, there exist constants Cε > 0 and p ∈ (m, l∗) such that:

|F(x, Rt)| ≤ ε(Φ(|t|) + Φ∗(|t|)) + Cε|t|p, for all (x, t) ∈ R
N ×R. (49)

Then, by (14), (46), (47), and (49), we have:

|I2(Rũn)| ≤
∫
RN

|F(x, Rũn)|dx

≤ ε
∫
RN

(Φ(|ũn|) + Φ∗(|ũn|))dx + Cε

∫
RN

|ũn|pdx

≤ εM2 + on(1). (50)

Since ε > 0 is arbitrary, (50) implies that:

I2(Rũn) = on(1). (51)

Moreover, for the above R > 1, by (13), Lemma 1 and the fact ‖ũn‖s,Φ = ‖ũn‖Φ +
[ũn]s,Φ = 1, we have:

I1(Rũn) =
∫∫

R2N
Φ(|Ds(Rũn)|)dμ +

∫
RN

V(x)Φ(|Rũn|)dx

≥ min{Rl , Rm}
(

min{[ũn]
l
s,Φ, [ũn]

m
s,Φ}+ α1 min{‖ũn‖l

Φ, ‖ũn‖m
Φ}

)
= Rl([ũn]

m
s,Φ + α1‖ũn‖m

Φ
)

≥ min{1, α1}Rl([ũn]
m
s,Φ + ‖ũn‖m

Φ
)

≥ min{1, α1}RlCm, (52)

where Cm := inf|u|+|v|=1{|u|m + |v|m} > 0. Then, by the arbitrariness of R, combin-
ing (51) and (52) with (48), we get a contradiction. Therefore, the (C)c-sequence {un}
is bounded.
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Lemma 12. Assume that (φ1), (V), and ( f1) hold. Then I′ : W → W∗ is weakly sequentially
continuous. Namely, if un ⇀ u in W, then I′(un) ⇀ I′(u) in the dual space W∗ of W.

Proof. Since W is reflexive, it is enough to prove I′(un)
w∗
⇀ I′(u) in W∗. Namely, to prove:

lim
n→∞

〈I′(un), v〉 = 〈I′(u), v〉, for all v ∈ W. (53)

Firstly, we prove that I′ is bounded on each bounded subset of W. Indeed, by (12),
(V), (5), (11), (6), Lemma 2, (3) in Lemma 4, (1) in Lemma 5, and the fact that Φ, Φ̃ and Φ∗
satisfy the Δ2-condition, we have:

‖I′(u)‖W∗ = sup
v∈W,‖v‖s,Φ=1

|〈I′(u), v〉|

≤ sup
v∈W,‖v‖s,Φ=1

(∫∫
R2N

a(|Dsu|)|Dsu||Dsv|dμ +
∫
RN

V(x)a(|u|)|u||v|dx

+
∫
RN

| f (x, u)||v|dx
)

≤ sup
v∈W,‖v‖s,Φ=1

(∫∫
R2N

Φ̃(a(|Dsu|)|Dsu|)dμ +
∫∫

R2N
Φ(|Dsv|)dμ

+(α2 + ε)
∫
RN

Φ̃(a(|u|)|u|)dx + (α2 + ε)
∫
RN

Φ(|v|)dx

+Cε

∫
RN

Φ̃∗(Φ′∗(|u|))dx + Cε

∫
RN

Φ∗(|v|)dx
)

≤
(∫∫

R2N
Φ(2|Dsu|)dμ + (α2 + ε)

∫
RN

Φ(2|u|)dx + Cε

∫
RN

Φ∗(2|u|)dx
)

+ sup
v∈W,‖v‖s,Φ=1

(
max{[v]ls,Φ, [v]ms,Φ}+ (α2 + ε)max{‖v‖l

Φ, ‖v‖m
Φ}

+Cε max{‖v‖l∗
Φ∗ , ‖v‖m∗

Φ∗}
)

≤ K2

(∫∫
R2N

Φ(|Dsu|)dμ + (α2 + ε)
∫
RN

Φ(|u|)dx + Cε

∫
RN

Φ∗(|u|)dx
)

+1 + α2 + ε + CεCΦ∗

≤ K2

(
(1 + α2 + ε)‖u‖m

s,Φ + CεCΦ∗‖u‖m∗
s,Φ

)
+ (K2 + 1)(1 + α2 + ε + CεCΦ∗),

which implies that I′ is bounded on each bounded subset of W. Moreover, C∞
c (RN) is

dense in W. Then, to prove (53) we only need to prove:

lim
n→∞

〈I′(un), w〉 = 〈I′(u), w〉, for all w ∈ C∞
c (RN). (54)

To get (54), arguing by contradiction, we suppose that there exist constant δ > 0,
w0 ∈ C∞

c (RN) with supp{w0} ⊂ Br for some r > 0, and a subsequence of {un}, still
denoted by {un}, such that:

|〈I′(un), w0〉 − 〈I′(u), w0〉| ≥ δ, for all n ∈ R
N . (55)

Since un ⇀ u in W, by (5) in Lemma 5, there exists a subsequence of {un}, still
denoted by {un}, such that

un → u in LΦ
loc(R

N), un(x) → u(x) a.e. in R
N and Dsun → Dsu a.e. in R

2N .
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Next, we claim that

lim
n→∞

∫
RN

f (x, un)w0dx =
∫
RN

f (x, u)w0dx. (56)

Indeed, it follows ( f1) that for any given constant ε > 0, there exists a constant Cε > 0
such that:

| f (x, t)| ≤ Cε + εΦ′∗(|t|), for all (x, t) ∈ R
N ×R.

Then, by using standard arguments, we can obtain that the sequence { f (x, un)} is
bounded in LΦ̃∗(Br). Moreover, f (x, un) → f (x, u) a.e. in Br. Then, by applying Lemma 2.1
in [37], we get f (x, un) ⇀ f (x, u) in LΦ̃∗(Br), and thus (56) holds because w0 ∈ LΦ∗(Br).

Similarly, we can get:

lim
n→∞

∫∫
R2N

a(|Dsun|)DsunDsw0dμ =
∫∫

R2N
a(|Dsu|)DsuDsw0dμ (57)

and:

lim
n→∞

∫
RN

V(x)a(|un|)unw0dx =
∫
RN

V(x)a(|u|)uw0dx, (58)

which is based on the fact that the sequence {a(|Dsun|)Dsun} is bounded in LΦ̃(R2N , dμ),
a(|Dsun|)Dsun → a(|Dsu|)Dsu a.e. in R2N , Dsw0 ∈ LΦ(R2N , dμ), and the sequence
{V(x)a(|un|)un} is bounded in LΦ̃(RN), V(x)a(|un|)un → V(x)a(|u|)u a.e. in RN , w0 ∈
LΦ(RN), respectively.

Therefore, combining (56)–(58) with (12), we can conclude that:

lim
n→∞

|〈I′(un), w0〉 − 〈I′(u), w0〉| = 0,

which contradicts (55). Thus, (54) holds and the proof is completed.

Lemma 13. Equation (1) has at least a non-trivial solution under the assumptions of Theorem 1
and Theorem 2, respectively.

Proof. Let {un} be the (C)c-sequence of I in W for the level c > 0 given in (18). Lemmas 9
and 11 show that the sequence {un} is bounded in W under the assumptions of Theorem 1
and Theorem 2, respectively.

First, we claim that:

λ3 := lim
n→∞

sup
y∈RN

∫
B2(y)

Φ(|un|)dx > 0. (59)

Indeed, if λ3 = 0, by using the Lions’ type result for fractional Orlicz–Sobolev spaces
again, we have:

un → 0 in Lp(RN), for all p ∈ (m, l∗). (60)

Given p ∈ (m, l∗), by ( f1), (φ1) and the definition F(x, t) =
∫ t

0 f (x, τ)dτ, for any given
constant ε > 0, there exists a constant Cε > 0 such that:

|F(x, t)| ≤ ε(Φ(|t|) + Φ∗(|t|)) + Cε|t|p, for all (x, t) ∈ R
N ×R (61)

and:

|t f (x, t)| ≤ ε(Φ(|t|) + Φ∗(|t|)) + Cε|t|p, for all (x, t) ∈ R
N ×R. (62)
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Then, it follows from (60)–(62), (1) in Lemma 2, (3) in Lemma 4 and (1) in Lemma 5,
the boundedness of {un}, and the arbitrariness of ε that:

lim
n→∞

∫
RN

F(x, un)dx = lim
n→∞

∫
RN

un f (x, un)dx = 0. (63)

Hence, by (10), (12), (19), (φ1), (V), and (63), we have:

c = lim
n→∞

{
I(un)−

〈
I′(un),

1
l

un

〉}
= lim

n→∞

{∫∫
R2N

(
Φ(|Dsun|)− 1

l
a(|Dsun|)|Dsun|2

)
dμ

+
∫
RN

V(x)
(

Φ(|un|)− 1
l

a(|un|)u2
n

)
dx

+
∫
RN

(
1
l

un f (x, un)− F(x, un)

)
dx

}
≤ lim

n→∞

{∫
RN

(
1
l

un f (x, un)− F(x, un)

)
dx

}
= 0,

which contradicts c > 0. Therefore, λ3 > 0, and thus, (59) holds.
Then, it follows from (59) that there exist a constant δ > 0, a subsequence of {un}, still

denoted by {un}, and a sequence {zn} ⊂ ZN such that:∫
B2(zn)

Φ(|un|)dx =
∫

B2

(Φ(|u∗
n|)dx > δ, for all n ∈ N, (64)

where u∗
n := un(·+ zn). Since V and F are 1-periodic in x, {u∗

n} is also a (C)c-sequence of I.
Then, passing to a subsequence of {u∗

n}, still denoted by {u∗
n}, we can assume that there

exists a u∗ ∈ W such that:

u∗
n ⇀ u∗ in W and u∗

n → u∗ in LΦ(B2). (65)

Thus, by (64), (65), and (7), we obtain that u∗ �= 0. Moreover, it follows from Lemma 12
and (19) that:

‖I′(u∗)‖W∗ ≤ lim inf
n→∞

‖I′(u∗
n)‖W∗ = 0,

which implies I′(u∗) = 0, that is, u∗ is a non-trivial solution of Equation (1).

Lemma 14. Assume that (φ1), (V) and ( f1) hold. Then:

〈I′(u), u〉 = 〈I′1(u), u〉 − o(〈I′1(u), u〉) as ‖u‖s,Φ → 0.

Proof. By using the continuity of I′i (i = 1, 2) defined by (15) and (16), we can easily
verify that 〈I′i (u), u〉 = o(1)(i = 1, 2) as ‖u‖s,Φ → 0. Then, it is sufficient to prove
〈I′2(u), u〉 = o(〈I′1(u), u〉) as ‖u‖s,Φ → 0 because 〈I′(u), u〉 = 〈I′1(u), u〉 − 〈I′2(u), u〉.

For any given constant ε > 0, it follows ( f1), (φ1) and (5) that there exists a constant
Cε > 0 such that:

|t f (x, t)| ≤ εΦ(|t|) + CεΦ∗(|t|), for all (x, t) ∈ R
N ×R. (66)

Then, by (16) and (66), we have:

|〈I′2(u), u〉| ≤
∫
RN

|u f (x, u)|dx

≤ ε
∫
RN

Φ(|u|)dx + Cε

∫
RN

Φ∗(|u|)dx. (67)
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Moreover, by (15), (φ1), and (V), we have:

〈I′1(u), u〉 =
∫∫

R2N
a(|Dsu|)|Dsu|2dμ +

∫
RN

V(x)a(|u|)u2dx

≥ l
∫∫

R2N
Φ(|Dsu|)dμ + α1l

∫
RN

Φ(|u|)dx. (68)

Then, (67), (68), Lemma 2, (3) in Lemma 4, (1) in Lemma 5, and the fact that 1 < m < l∗
imply that:

lim
‖u‖s,Φ→0

|〈I′2(u), u〉|
〈I′1(u), u〉 ≤ lim

‖u‖s,Φ→0

ε
∫
RN Φ(|u|)dx + Cε

∫
RN Φ∗(|u|)dx

l
∫∫

R2N Φ(|Dsu|)dμ + α1l
∫
RN Φ(|u|)dx

≤ ε

α1l
+ lim

‖u‖s,Φ→0

Cε

∫
RN Φ∗(|u|)dx

min{1, α1}l
(∫∫

R2N Φ(|Dsu|)dμ +
∫
RN Φ(|u|)dx

)
≤ ε

α1l
+ lim

‖u‖s,Φ→0

Cε max{Cl∗
Φ∗ , Cm∗

Φ∗ }‖u‖l∗
s,Φ

min{1, α1}lCm‖u‖m
s,Φ

=
ε

α1l
.

Since ε is arbitrary, we conclude that |〈I′2(u), u〉| = o(〈I′1(u), u〉) as ‖u‖s,Φ → 0, which
implies that 〈I′2(u), u〉 = o(〈I′1(u), u〉) as ‖u‖s,Φ → 0.

Proof of Theorems 1 and 2. Lemma 13 shows that Equation (1) has at least a non-trivial
solution under the assumptions of Theorem 1 and Theorem 2, respectively. Next, we prove
Equation (1) has a ground state solution. Let:

N := {u ∈ W \ {0} : I′(u) = 0} and d := inf
u∈N

{I(u)}.

First, we claim that d ≥ 0. Indeed, for any given non-trivial critical point u ∈ N ,
by (10), (12), (φ1), (V) and ( f3) (or ( f5)), we have:

I(u) = I(u)−
〈

I′(u), 1
m

u
〉

=
∫∫

R2N

(
Φ(|Dsu|)− 1

m
a(|Dsu|)|Dsu|2

)
dμ

+
∫
RN

V(x)
(

Φ(|u|)− 1
m

a(|u|)u2
)

dx

+
∫
RN

(
1
m

u f (x, u)− F(x, u)
)

dx

≥ 1
m

∫
RN

F̂(x, u)dx ≥ 0.

Since the non-trivial critical point u of I is arbitrary, we conclude d ≥ 0. Choose a
sequence {un} ⊂ N such that I(un) → d as n → ∞. Then, it is obvious that {un} is a
(C)d-sequence of I for the level d. Lemmas 9 and 11 show that {un} is bounded in W.
Moreover, combining Lemma 14 with the fact that {un} ⊂ N , we can conclude that there
exists a constant M3 > 0 such that:

‖un‖s,Φ ≥ M3, for all n ∈ N. (69)

Now, we claim that:

λ4 := lim
n→∞

sup
y∈RN

∫
B2(y)

Φ(|un|)dx > 0. (70)
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Indeed, if λ4 = 0, similar to (63), we can get:

lim
n→∞

∫
RN

un f (x, un)dx = 0. (71)

Then, by (12), (φ1), (V), and (71), we have:

0 = lim
n→∞

{
〈I′(un), un〉+

∫
RN

un f (x, un)dx
}

= lim
n→∞

{∫∫
R2N

a(|Dsun|)|Dsun|2dμ +
∫
RN

V(x)a(|un|)u2
ndx

}
≥ lim

n→∞

{
l
∫∫

R2N
Φ(|Dsun|)dμ + α1l

∫
RN

Φ(|un|)dx
}

≥ 0,

which together with Lemma 2 implies that ‖un‖s,Φ = ‖un‖Φ + [un]s,Φ → 0 as n → ∞,
which contradicts (69). Therefore, λ4 > 0, and thus, (70) holds.

Next, with similar arguments as those in Lemma 13, let u∗
n := un(·+ zn). Then, {u∗

n}
is also a (C)d-sequence of I. Moreover, there exist a subsequence of {u∗

n}, still denoted by
{u∗

n}, and a u∗ ∈ W such that u∗
n ⇀ u∗ in W with u∗ �= 0 and I′(u∗) = 0. This shows that

u∗ ∈ N , and thus, I(u∗) ≥ d.
On the other hand, by (10), (12), (φ1), (V), ( f3) (or ( f5)), and Fatou’s Lemma, we have:

I(u∗) = I(u∗)−
〈

I′(u∗), 1
m

u∗
〉

=
∫∫

R2N

(
Φ(|Dsu∗|)− 1

m
a(|Dsu∗|)|Dsu∗|2

)
dμ

+
∫
RN

V(x)
(

Φ(|u∗|)− 1
m

a(|u∗|)|u∗|2
)

dx

+
∫
RN

(
1
m

u∗ f (x, u∗)− F(x, u∗)
)

dx

≤ lim inf
n→∞

{
I(u∗

n)−
〈

I′(u∗
n),

1
m

u∗
n

〉}
= d.

Therefore, I(u∗) = d, that is, u∗ is a ground state solution of Equation (1). This finishes
the proof.

4. Examples

For Equation (1), when given s ∈ (0, 1) and N ∈ N, the function φ defined by (2) can
be selected from the following possibilities, each satisfying conditions (φ1)–(φ2).

Case 1. Let φ(t) = |t|p−2t for t �= 0, φ(0) = 0 with 1 < p < N
s . In this case, simple

computations show that l = m = p.
Case 2. Let φ(t) = |t|p−2t + |t|q−2t for t �= 0, φ(0) = 0 with 1 < p < q < N

s < pq
q−p . In

this case, simple computations show that l = p, m = q.

Case 3. Let φ(t) = |t|q−2t
log(1+|t|p) for t �= 0, φ(0) = 0 with 1 < p + 1 < q < N

s < q(q−p)
p . In

this case, simple computations show that l = q − p, m = q.
Moreover, we provide an additional case that satisfies condition (φ1) but fails to satisfy

condition (φ2).
Case 4. Let φ(t) = |t|q−2t log(1 + |t|p) for t �= 0, φ(0) = 0 with 1 < q < p + q < N

s <
q(p+q)

p . In this case, simple computations show that l = q, m = p + q.
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For example, regarding Case 2, the operator in non-local problem (1) defined by (3)
reduces to the following fractional (p, q)-Laplacian operator:

(−Δp − Δq)
su(x) = P.V.

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+ps dy

+P.V.
∫
RN

|u(x)− u(y)|q−2(u(x)− u(y))
|x − y|N+qs dy.

Let f (x, t) = qh(x)|t|q−2t log(1 + |t|) + h(x)|t|q−1t
1+|t| , where h ∈ C(RN , (0,+∞)) is 1-

periodic in x. Then, F(x, t) = h(x)|t|q log(1 + |t|) and F̂(x, t) = h(x)|t|q+1

1+|t| . It is easy to check
that f satisfies ( f1)-( f2), but does not satisfy the (AR) type condition (AR)∗. However, we
can see that it satisfies ( f3). Indeed, since N

s < pq
q−p , then there exists constant k ∈ ( N

sp , q
q−p )

such that:

lim sup
|t|→∞

( |F(x, t)|
|t|l

)k 1
F̂(x, t)

= lim sup
|t|→∞

hk−1(x)(1 + |t|)(log(1 + |t|))k

|t|(p−q)k+q+1
= 0,

which implies that condition ( f3) holds. Therefore, by using Theorem 1, we obtain that
Equation (1) has at least one ground state solution when potential V satisfies condition (V).

In addition, let f (x, t) = h(x)γ(t), where h ∈ C(RN , (0,+∞)) is 1-periodic in x and:

γ(t) =

⎧⎨⎩ 0, |t| ≤ 1,(
|t| q+p∗−4

2 − 1
|t|

)
t, |t| > 1.

Then, F(x, t) = h(x)Γ(t), where:

Γ(t) =

⎧⎨⎩ 0, |t| ≤ 1,
2

q+p∗ |t|
q+p∗

2 − |t|+ q+p∗−2
q+p∗ , |t| > 1.

It is easy to check that f satisfies ( f1) and ( f4), but does not satisfy ( f3) and the (Ne)
type condition (Ne)∗. However, we can see that it satisfies ( f5). Indeed, since:

1 − θl

m
t f (x, t) =

1 − θp

q
h(x)tγ(t) and F(x, t)− F(x, θt) ≤ F(x, t) = h(x)Γ(t), (72)

for all θ ∈ R, (x, t) ∈ RN ×R. Then, it is obvious that:

1 − θl

m
t f (x, t) ≥ F(x, t)− F(x, θt), for all θ ∈ R, (x, t) ∈ R

N × [−1, 1]. (73)

Moreover:

inf
|t|>1

tγ(t)− qΓ(t)
tγ(t)

= inf
|t|>1

p∗−q
q+p∗ |t|

q+p∗
2 + (q − 1)|t| − q2+qp∗−2q

q+p∗

|t| q+p∗
2 − |t|

> 0,

which implies that there exists a θ0 ∈ (0, 1) such that:

1 − θp

q
h(x)tγ(t) ≥ h(x)Γ(t), for all θ ∈ [0, θ0], x ∈ R

N , |t| > 1. (74)

Then, combining (73) and (74) with (72), we can conclude that ( f5) holds. Therefore,
by using Theorem 2, we obtain that Equation (1) has at least one ground state solution
when potential V satisfies condition (V).
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5. Conclusions

In this paper, we have explored the existence of ground state solutions for a non-
local problem in fractional Orlicz–Sobolev spaces. This problem involves the fractional
Φ-Laplacian, a non-local, and a non-homogeneous operator. Our analysis did not rely on
traditional assumptions such as the Ambrosetti–Rabinowitz type or Nehari type conditions
on the non-linearity. Instead, we utilized a modified version of the mountain pass theorem
and a Lions’ type result tailored for fractional Orlicz–Sobolev spaces. These techniques
allowed us to demonstrate the existence of ground state solutions in the periodic case.
This work extends and improves the existing results in the literature. Looking ahead,
it is intriguing to consider the potential extension of our work to systems in fractional
Orlicz–Sobolev spaces, presenting exciting prospects for future exploration and research.

Author Contributions: Methodology, L.W., X.Z. and C.L.; Validation, L.W. and C.L.; Writing—
original draft, L.W.; Writing—review & editing, L.W. and C.L.; Supervision, X.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This project is partially supported by the Guangdong Basic and Applied Basic Research
Foundation (No: 2020A1515110706), Research Startup Funds of DGUT (No: GC300501-100), Yunnan
Fundamental Research Projects (No: 202301AT070465), and Xingdian Talent Support Program for
Young Talents of Yunnan Province.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [CrossRef]
2. Alberti, G.; Bouchitté, G.; Seppecher, P. Phase transition with the line-tension effect. Arch. Ration. Mech. Anal. 1998, 144, 1–46.

[CrossRef]
3. Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous

transport by fractional dynamics. J. Phys. A 2004, 37, 161–208. [CrossRef]
4. Mosconi, S.; Squassina, M. Recent progresses in the theory of nonlinear nonlocal problems. Bruno Pini Math. Anal. Semin. 2016, 7,

147–164.
5. Bonder, J.F.; Salort, A.M. Fractional order Orlicz-Sobolev spaces. J. Funct. Anal. 2019, 277, 333–367. [CrossRef]
6. Bonder, J.F.; Salort, A.; Vivas, H. Global Hölder regularity for eigenfunctions of the fractional g-Laplacian. J. Math. Anal. Appl.

2023, 526, 127332. [CrossRef]
7. Salort, A.; Vivas, H. Fractional eigenvalues in Orlicz spaces with no Δ2 condition. J. Differ. Equ. 2022, 327, 166–188. [CrossRef]
8. Salort, A. Eigenvalues and minimizers for a non-standard growth non-local operator. J. Differ. Equ. 2020, 268, 5413–5439.

[CrossRef]
9. Alberico, A.; Cianchi, A.; Pick, L.; Slavíková, L. Fractional Orlicz-Sobolev embeddings. J. Math. Pures Appl. 2021, 149, 216–253.

[CrossRef]
10. Azroul, E.; Benkirane, A.; Srati, M. Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces. Adv.

Oper. Theory 2020, 5, 1350–1375. [CrossRef]
11. Bahrouni, S.; Ounaies, H.; Tavares, L.S. Basic results of fractional Orlicz-Sobolev space and applications to non-local problems.

Topol. Methods Nonlinear Anal. 2020, 55, 681–695. [CrossRef]
12. Chaker, J.; Kim, M.; Weidner, M. Regularity for nonlocal problems with non-standard growth. Calc. Var. 2022, 61, 227. [CrossRef]
13. Silva, E.D.; Carvalho, M.L.; de Albuquerque, J.C.; Bahrouni, S. Compact embedding theorems and a Lions’ type lemma for

fractional Orlicz-Sobolev spaces. J. Differ. Equ. 2021, 300, 487–512. [CrossRef]
14. Dipierro, S.; Palatucci, G.; Valdinoci, E. Existence and symmetry results for a Schrödinger type problem involving the fractional

Laplacian. Matematiche 2013, 68, 201–216.
15. Chang, X.J.; Wang, Z.Q. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity.

Nonlinearity 2013, 26, 479–494. [CrossRef]
16. Secchi, S. On fractional Schrödinger equations in RN without the Ambrosetti-Rabinowitz condition. Topol. Methods Nonlinear

Anal. 2016, 47, 19–41.
17. Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573.

[CrossRef]
18. Ambrosio, V.; Isernia, T. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional

p-Laplacian. Discrete Contin. Dyn. Syst. 2018, 38, 5835–5881. [CrossRef]

208



Axioms 2024, 13, 294

19. Perera, K.; Squassina, M.; Yang, Y. Critical fractional p-Laplacian problems with possibly vanishing potentials. J. Math. Anal. Appl.
2016, 433, 818–831. [CrossRef]

20. Xu, J.; Wei, Z.; Dong, W. Weak solutions for a fractional p-Laplacian equation with sign-changing potencial. Complex Var. Elliptic
Equ. 2015, 61, 284–296. [CrossRef]

21. Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14,
349–381. [CrossRef]

22. Liu, Z.L.; Wang, Z.Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 2004, 4, 561–572. [CrossRef]
23. Li, Y.Q.; Wang, Z.Q.; Zeng, J. Ground states of nonlinear Schrödinger equations with potentials. In Annales de l’Institut Henri

Poincaré C, Analyse Non Linéaire; Elsevier: Amsterdam, The Netherlands, 2006; Volume 23, pp. 829–837.
24. Ding, Y.; Szulkin, A. Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. 2007, 29, 397–419.

[CrossRef]
25. Lin, X.Y.; Tang, X.H. Existence of infinitely many solutions for p-Laplacian equations in RN . J. Math. Anal. Appl. 2013, 92, 72–81.
26. Cheng, B.T.; Tang, X.H. New existence of solutions for the fractional p-Laplacian equations with sign-changing potential and

nonlinearity. Mediterr. J. Math. 2016, 13, 3373–3387. [CrossRef]
27. Tang, X.H. New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation. Adv. Nonlinear Stud.

2014, 14, 349–361. [CrossRef]
28. Mi, H.L.; Deng, X.Q.; Zhang, W. Ground state solution for asymptotically periodic fractional p-Laplacian equation. Appl. Math.

Lett. 2021, 120, 107280. [CrossRef]
29. Sabri, B.; Ounaies, H.; Elfalah, O. Problems involving the fractional g-Laplacian with lack of compactness. J. Math. Phys. 2023,

64, 011512.
30. Silva, E.A.; Vieira, G.F. Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. 2010, 39, 109.

[CrossRef]
31. Jeanjean, L.; Tanaka, K. A positive solution for asymptotically linear elliptic problem on RN autonomous at infinity. ESAIM

Control Optim. Calc. Var. 2002, 7, 597–614. [CrossRef]
32. Zhang, W.; Zhang, J.; Mi, H.L. On fractional Schrödinger equation with periodic and asymptotically periodic conditions. Comput.

Math. Appl. 2017, 74, 1321–1332. [CrossRef]
33. Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Pure and Applied Mathematics (Amsterdam); Academic Press: Amsterdam,

The Netherlands, 2003; p. 140.
34. Rao, M.M.; Ren, Z.D. Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker:

New York, NY, USA, 2002; p. 250.
35. Fukagai, N.; Ito, M.; Narukawa, K. Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on

RN . Funkcial. Ekcac. 2006, 49, 235–267. [CrossRef]
36. Bahrouni, A.; Missaoui, H.; Ounaies, H. On the fractional Musielak-Sobolev spaces in Rd: Embedding results & applications. J.

Math. Anal. Appl. 2024, 537, 128284.
37. Alves, C.O.; Figueiredo, G.M.; Santos, J.A. Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications.

Topol. Methods Nonlinear Anal. 2014, 44, 435–456. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

209



Citation: Alrashdi, H.S.; Moaaz, O.;

Askar, S.S.; Alshamrani, A.M.;

Elabbasy, E.M. More Effective

Conditions for Testing the Oscillatory

Behavior of Solutions to a Class of

Fourth-Order Functional Differential

Equations. Axioms 2023, 12, 1005.

https://doi.org/10.3390/

axioms12111005

Academic Editors: Hatıra Günerhan,

Francisco Martínez González and

Mohammed K. A. Kaabar

Received: 28 August 2023

Revised: 13 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

More Effective Conditions for Testing the Oscillatory Behavior
of Solutions to a Class of Fourth-Order Functional
Differential Equations

Hail S. Alrashdi 1, Osama Moaaz 1,2,*, Sameh S. Askar 3, Ahmad M. Alshamrani 3

and Elmetwally M. Elabbasy 1

1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
hailaldyabai@std.mans.edu.eg (H.S.A.); emelabbasy@mans.edu.eg (E.M.E.)

2 Section of Mathematics, International Telematic University Uninettuno,
CorsoVittorio Emanuele II, 39, 00186 Roma, Italy

3 Department of Statistics and Operations Research, College of Science, King Saud University,
P.O. Box 2455, Riyadh 11451, Saudi Arabia; saskar@ksu.edu.sa (S.S.A.); ahmadm@ksu.edu.sa (A.M.A.)

* Correspondence: o_moaaz@mans.edu.eg

Abstract: This paper presents an investigation into the qualitative behavior of solutions for a specific
class of fourth-order half-linear neutral differential equations. The main objective of this study is
to improve the relationship between the solution and its corresponding function. By developing
improved relationships, a novel criterion is proposed to determine the oscillatory behavior of the
studied equation. The exclusion of positive solutions is achieved through a comparative approach in
which the examined equation is compared to second-order equations. Additionally, the significance
of the obtained results is demonstrated by applying them to various illustrative examples.

Keywords: oscillatory; non-oscillatory; neutral differential equation; fourth-order

MSC: 34C10; 34K11

1. Introduction

Differential equations are fundamental mathematical tools that find extensive applica-
tions in numerous scientific disciplines. Among the various types of differential equations,
neutral differential equations hold a special place due to their ability to capture dynamic
systems influenced by past behaviors. This paper focuses on a specific class of neutral
differential equations, namely, fourth-order half-linear equations, which exhibit a combi-
nation of linearity and nonlinearity. Understanding the oscillatory nature of solutions to
these equations is of paramount importance in light of their practical relevance in modeling
complex dynamic systems encountered in engineering, physics, biology, and economics.
The analysis of oscillations in such equations offers invaluable insights into system stability
and dynamics, ultimately guiding the design and control of real-world systems, including
mechanical structures, electrical circuits, biological processes, and economic models. Thus,
a comprehensive grasp of oscillatory behavior in these equations serves as a cornerstone for
optimizing system performance and ensuring reliability in practical applications; see [1–3].

The qualitative behavior of solutions to differential equations plays a crucial role in
understanding the dynamics and stability properties of the underlying systems. Oscillation
is an essential aspect that characterizes the periodic and repetitive nature of solutions.
The investigation of oscillation criteria has received significant attention in the field of
differential equations, aiming to establish the conditions under which solutions exhibit
oscillatory behavior. Such criteria are valuable in predicting the presence or absence of
oscillations in real-world phenomena, see [4–7].
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The practical importance of understanding the oscillatory behavior of solutions to
fourth-order functional differential equations lies in its applicability to various real-world
phenomena. These equations often model complex dynamic systems encountered in
engineering, physics, biology, and economics. Analyzing their oscillatory behavior provides
crucial insights into the stability and dynamics of these systems. This knowledge, in
turn, guides the design and control of practical systems, such as mechanical structures,
electrical circuits, biological processes, and economic models. Therefore, a comprehensive
understanding of oscillations in such equations is fundamental for optimizing system
performance and ensuring their reliability in practical applications.

In recent years, there has been growing interest in the study of neutral differential
equations due to their oscillatory behavior. This literature review aims to highlight notable
research studies that have contributed to understanding the oscillatory properties of these
types of equations.

One area of focus has been the investigation of oscillation in second-order neutral dif-
ferential equations. Several studies have explored this topic, including [8–10]. Additionally,
the oscillatory behavior of fourth-order neutral differential equations has been examined
in studies such as [11–13]. Furthermore, the oscillation properties of even-order neutral
differential equations have been investigated in [14–16].

Baculíková [17] focused on the oscillatory and asymptotic properties of the differential
equation, as follows: (

ζ(�)υ′(�)
)′
+ q(�) f (υ(μ(�))) = 0, (1)

which, in the noncanonical case, is ∫ ∞

�0

1
ζ1/�(ς)

dς < ∞. (2)

The function f in Equation (1) is defined as follows: f ∈ C(R), v f (v) > 0 for v �= 0,
f (v1v2) ≥ f (v1) f (v2) for v1v2 > 0, and f is non-decreasing.

El-Nabulsi et al. [18] conducted a study on the oscillation properties of solutions to a
nonlinear fourth-order differential equation. The equation is represented as follows:(

ζ(�)
(
υ′′′(�)

)�
)′

+ q(�) f (υ(μ(�))) = 0. (3)

In this equation, the function f (θ)/θ� ≥ k > 0 for θ �= 0 and condition (5) is satisfied.
Zhang et al. [19] conducted an investigation into the oscillatory patterns of (3) while taking
into account condition (2).

Karpuz et al. [20] investigated higher-order neutral differential equations of the
following form:

κ(n)(�) + q(�)υ(μ(�)) = 0.

They conducted a comparison between the oscillatory and asymptotic characteristics of
the solutions for higher-order neutral differential equations and first-order delay differential
equations.

Li and Rogovchenko [21] and Zhang et al. [22,23] discussed oscillation results for
higher-order half-linear delay differential equations. These equations were of the follow-
ing form: (

ζ(�)
(

κ(n−1)(�)
)�)′

+ q(�)υβ(μ(�)) = 0.

Their results were obtained under condition (2), and they employed the Riccati tech-
nique in their analysis.
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Alnafisah et al. [24] introduced augmented inequalities in order to enhance the
characteristics of solutions to neutral differential equations of even order. These equations
can be represented as follows:(

ζ(�)
(

κ(n−1)(�)
)�)′

+ q(�)υ�(μ(�)) = 0.

These improved inequalities were established under condition (2).
This study focuses on investigating the oscillatory behavior exhibited by the solutions

of a fourth-order quasi-linear neutral differential equation, provided by(
ζ(�)

(
κ′′′(�)

)�
)′

+ q(�)υ�(μ(�)) = 0, � ≥ �0, (4)

where κ(�) = υ(�) + p(�)υ(τ(�)). Note that throughout this paper we consistently make
the following assumptions:

(H1) � ≥ 1 is expressed as the ratio of two positive odd integers.
(H2) τ, μ, ζ ∈ C1([�0, ∞)) and q(�) ∈ C([�0, ∞)).
(H3) τ(�) ≤ �, μ(�) ≤ �, μ′(�) > 0, and lim�→∞ τ(�) = lim�→∞ μ(�) = ∞.
(H4) ζ(�) > 0, ζ ′(�) ≥ 0, 0 ≤ p(�) < p0, q(�) ≥ 0, and

∫ �

�0

1
ζ1/�(ς)

dς → ∞ as � → ∞. (5)

A function υ ∈ C3([Lυ, ∞),R), Lυ � �0 is said to be a solution of (4) which has the
property ζ(κ′′′)� ∈ C1[Lυ, ∞) and satisfies Equation (4) for all υ ∈ [�υ, ∞). We consider only
those solutions υ of (4) which exist on some half-line [Lυ, ∞) and satisfy the condition

sup{|υ(�)| : � � L} > 0, for all L ≥ Lυ.

A solution of (4) is called oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is said to be non-oscillatory. Equation (4) is said to be oscillatory if
all of its solutions are oscillatory.

In this paper, we present an investigation of fourth-order half-linear neutral differential
equations, with a focus on enhancing the relationship between variables and introducing an
improved oscillation criterion. This study contributes to the existing body of knowledge in
the field of differential equations and offers valuable insights into the qualitative behavior
of solutions for this specific class of equations.

2. Preliminary Considerations

We start by introducing several helpful lemmas that pertain to the monotonic charac-
teristics of the non-oscillatory solutions of the examined equations. In order to make our
notation more concise, we define the following expressions:

ϕ0(�, �0) :=
∫ �

�0

1
ζ1/�(ς)

dς, ϕi(�, �0) :=
∫ �

�0

ϕi−1(ς, �0)dς, i = 1, 2,

G[0](�) := G(�) and G[j](�) := G
(

G[j−1](�)
)

, for j = 1, 2, . . . , n,

p1(�; n) :=
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))[

1
p
(
τ[2k](�)

) − 1

]
ϕ2

(
τ[2k](�), �1

)
ϕ2(�, �1)

,

p̂1(�, n) :=
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](�)

))
⎡⎣ ϕ2

(
τ[−2k+1](�), �1

)
ϕ2

(
τ[−2k](�), �1

) − 1
p
(
τ[−2k](�)

)
⎤⎦,
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B0(�, n) :=
{

p1(�; n) for p0 < 1,
p̂1(�; n) for p0 > ϕ2(�, �1)/ϕ2(τ(�), �1),

and
L := max

{
m(1 − m)�λ−�m : m ∈ (0, 1)

}
.

In studying the asymptotic properties of the positive solutions of Equation (4), it is easy
to verify, as demonstrated in [25] (Lemma 2.2.1), that the function κ exhibits the following
two distinct possible cases.

Lemma 1 ([25]). Assume that υ is an eventually positive solution of (4); then, κ eventually satisfies
the following cases:

C1 : κ > 0, κ′ > 0, κ′′ > 0, κ′′′ > 0,
(

ζ · (κ′′′
)�

)′
< 0,

C2 : κ > 0, κ′ > 0, κ′′ < 0, κ′′′ > 0,

for � � �1 � �0.

Notation 1. The symbol Ψi (Category Ψi) represents the collection of all solutions that eventually
become positive for which the corresponding function fulfills condition (Ci) for i = 1, 2.

In the oscillation theory of neutral differential equations, the relationship between the
solution and its corresponding function holds significant importance. Therefore, our work
focuses on improving these relationships through the utilization of the following lemma.

Lemma 2 (see [26], Lemma 1). Suppose that υ represents an eventually positive solution to
Equation (4). If p < 1, then eventually

υ(�) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))⎡⎣κ

(
τ[2k](�)

)
p
(
τ[2k](�)

) − κ
(

τ[2k+1](�)
)⎤⎦

for any integer n ≥ 0.

Lemma 3. Suppose that υ represents an eventually positive solution to Equation (4). If p0 > 1,
then

υ(�) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−k](�)

))[
κ
(

τ[−2k+1](�)
)
− 1

p
(
τ[−2k](�)

)κ
(

τ[−2k](�)
)]

.

Proof. From
κ(�) = υ(�) + p(�)υ(τ(�)),

we can deduce that

υ(�) =
1

p(τ−1(�))

[
κ
(

τ−1(�)
)
− υ

(
τ−1(�)

)]
=

1
p
(
τ[−1](�)

)κ
(

τ[−1](�)
)

− 1
p
(
τ[−1](�)

) 1
p
(
τ[−2](�)

) [κ
(

τ[−2](�)
)
− υ

(
τ[−2](�)

)]
.
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Therefore,

υ(�) =
1

p
(
τ[−1](�)

)κ
(

τ[−1](�)
)
−

2

∏
i=1

1
p
(
τ[−i](�)

)κ
(

τ[−2](�)
)

+
3

∏
i=1

1
p
(
τ[−i](�)

) [κ
(

τ[−3](�)
)
− υ

(
τ[−3](�)

)]
.

By employing the same method repeatedly, we achieve

υ(�) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[i](�)

))[
κ
(

τ[−2k+1](�)
)
− 1

p
(
τ[−2k](�)

)κ
(

τ[−2k](�)
)]

.

Hence, we have successfully demonstrated the proof of the lemma.

3. Asymptotic and Monotonic Properties

This section discusses the characteristics of positive solutions of the studied equation
in terms of their asymptotic behavior and monotonic properties. It is further categorized
into two distinct subtopics, outlined below.

3.1. Category Ψ1

Lemma 4. Suppose that υ ∈ Ψ1. Then, for sufficiently large � � �1:

(A1,1) κ(�) � ζ1/�(�)κ′′′(�)ϕ2(�, �1).

(A1,2) κ′′(�, �1)/ϕ0(�, �1), κ′(�)/ϕ1(�, �1) and κ(�)/ϕ2(�, �1) are decreasing.

(A1,3) ϕ0(�, �1)κ(�) � ϕ2(�, �1)κ
′′(�).

Proof. (A1,1) The monotonicity of ζ1/�(�)κ′′′(�) implies that

κ′′(�) ≥
∫ �

�1

ζ1/�(ς)κ′′′(ς)
1

ζ1/�(ς)
dς

≥ ζ1/�(�)κ′′′(�)
∫ �

�1

1
ζ1/�(ς)

dς (6)

≥ ζ1/�(�)κ′′′(�)ϕ0(�, �1).

Integrating twice more from �1 to �, we obtain

κ′(�) ≥ ζ1/�(�)κ′′′(�)ϕ1(�, �1) (7)

and
κ(�) ≥ ζ1/�(�)κ′′′(�)ϕ2(�, �1).

(A1,2) From (7), we obtain(
κ′′(�)

ϕ0(�, �1)

)′
=

ζ1/�(�)κ′′′(�)ϕ0(�, �1)− κ′′(�)
ζ1/�(�)ϕ2

0(�, �1)
≤ 0.

Because κ′′(�)/ϕ0(�, �1) is decreasing,

κ′(�) ≥
∫ �

�1

κ′′(ς)
ϕ0(ς, �1)

ϕ0(ς, �1)dς ≥ κ′′(�)
ϕ0(�, �1)

ϕ1(�, �1). (8)

From this, we can deduce that(
κ′(�)

ϕ1(�, �1)

)′
=

κ′′(�)ϕ1(�, �1)− ϕ0(�, �1)κ
′(�)

ϕ2
1(�, �1)

≤ 0.
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Because κ′(�)/ϕ1(�, �1) is decreasing,

κ(�) ≥
∫ �

�1

κ′(ς)
ϕ1(ς, �1)

ϕ1(ς, �1)dς ≥ κ′(�)
ϕ1(�, �1)

ϕ2(�, �1). (9)

Consequently, (
κ(�)

ϕ2(�, �1)

)′
=

κ′(�)ϕ2(�, �1)− ϕ1(�, �1)κ(�)

ϕ2
2(�, �1)

≤ 0.

(A1,3) From (8) and (9), we find that

κ(�) ≥ ϕ2(�, �1)

ϕ0(�, �1)
κ′′(�).

Therefore, we have successfully illustrated the lemma’s validity.

Lemma 5. Assume that υ ∈ Ψ1. Then,

(A2,1) υ(�) > B0(�, n)κ(�).

(A2,2)
(
ζ(�)(κ′′′(�))�)′ ≤ −q(�)B�

0(μ(�), n)κ�(μ(�)).

Proof. (A2,1) If p0 < 1, due to the fact that κ(�) is increasing and τ[2k] (�) ≥ τ[2k+1] (�),
we have

κ(τ[2k] (�)) ≥ κ(τ[2k+1] (�)),

which, along with Lemma 2, implies that

υ(�) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))[

κ(τ[2k] (�))

p(τ[2k] (�))
− κ(τ[2k+1] (�))

]

≥
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))[

1
p(τ[2k] (�))

− 1
]

κ(τ[2k] (�)). (10)

Moreover, as κ(�)/ϕ2(�, �1) is decreasing and τ[2k] (�) ≤ �, we have

κ(τ[2k] (�))

ϕ2(τ[2k] (�), �1)
≥ κ(�)

ϕ2(�, �1)

and

κ(τ[2k] (�)) ≥ ϕ2(τ[2k] (�), �1)

ϕ2(�, �1)
κ(�).

Thus, using the above inequality and substituting in (10), we obtain

υ(�) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](�)
))[

1
p(τ[2k] (�))

− 1
]

ϕ2(τ[2k] (�), �1)

ϕ2(�, �1)
κ(�)

= p1(�; n)κ(�).

On the other hand, if p0 > 1, then κ(�)/ϕ2(�, �1) is decreasing and τ[−2k](�) ≥
τ[−2k+1](�), implying that

κ
(

τ[−2k+1](�)
)

ϕ2
(
τ[−2k+1](�), �1

) ≥
κ
(

τ[−2k](�)
)

ϕ2
(
τ[−2k](�), �1

)
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and

κ
(

τ[−2k+1](�)
)
≥

ϕ2

(
τ[−2k+1](�), �1

)
ϕ2

(
τ[−2k](�), �1

) κ
(

τ[−2k](�)
)

.

Using Lemma 3, we can conclude that

υ(�) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](�)

))
⎡⎣ ϕ2

(
τ[−2k+1](�), �1

)
ϕ2

(
τ[−2k](�), �1

) − 1
p
(
τ[−2k](�)

)
⎤⎦κ

(
τ[−2k](�)

)
.

As κ(�) is increasing and τ[−2k](�) ≥ �, we have

υ(�) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](�)

))
⎡⎣ ϕ2

(
τ[−2k+1](�), �1

)
ϕ2

(
τ[−2k](�), �1

) − 1
p
(
τ[−2k](�)

)
⎤⎦κ(�)

= p̂1(�, n)κ(�).

(A2,2) From (4), we have(
ζ(�)

(
κ′′′(�)

)�
)′

= −q(�)υ�(μ(�)).

Using (A2,1), we obtain(
ζ(�)

(
κ′′′(�)

)�
)′ ≤ −q(�)B�

0(μ(�), n)κ�(μ(�)).

Therefore, we have successfully illustrated the lemma’s validity.

Lemma 6. Assume that υ ∈ Ψ1. Then,(
ζ1/�(�)κ′′′(�)

)′
+

1
�

q(�)B�
0(μ(�), n)ϕ

�−1
2 (μ(�), �1)κ(μ(�)) ≤ 0.

Proof. Assume that υ ∈ Ψ1 for � ≥ �1 ≥ �0. Therefore, we obtain(
ζ1/�(�)κ′′′(�)

)′
=

1
�

(
ζ1/�(�)κ′′′(�)

)1−�(
ζ(�)

(
κ′′′(�)

)�
)′

.

From (A2,2), we obtain(
ζ1/�(�)κ′′′(�)

)′ ≤ −1
�

(
ζ1/�(�)κ′′′(�)

)1−�
q(�)B�

0(μ(�), n)κ�(μ(�)). (11)

From Lemma 4, we can deduce that

ζ1/�(�)κ′′′(�) ≤ κ(�)

ϕ2(�, �1)
≤ κ(μ(�))

ϕ2(μ(�), �1)
.

Because � ≥ 1,

(
ζ1/�(�)κ′′′(�)

)1−� ≥
(

κ(μ(�))

ϕ2(μ(�), �1)

)1−�

,
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which, with (11) provides

(
ζ1/�(�)κ′′′(�)

)′ ≤ −1
�

(
κ(μ(�))

ϕ2(μ(�), �1)

)1−�

q(�)B�
0(μ(�), n)κ�(μ(�))

= −1
�

q(�)B�
0(μ(�), n)ϕ

�−1
2 (μ(�), �1)κ(μ(�)).

Theorem 1. Assume that υ ∈ Ψ1. Then, the DE

(
ζ1/�(�)ω′(�)

)′
+

1
�

q(�)B�
0(μ(�), n)

ϕ
�
2(μ(�), �1)

ϕ0(μ(�), �1)
ω(μ(�)) = 0 (12)

has a positive solution.

Proof. Assume that υ ∈ Ψ1 for � ≥ �1 ≥ �0. From Lemma 4, (A1,3) holds. Hence, it follows
that from Lemma 6 we can obtain

0 ≥
(

ζ1/�(�)κ′′′(�)
)′

+
1
�

q(�)B�
0(μ(�), n)ϕ

�−1
2 (μ(�), �1)κ(μ(�))

≥
(

ζ1/�(�)κ′′′(�)
)′

+
1
�

q(�)B�
0(μ(�), n)ϕ

�−1
2 (μ(�), �1)

ϕ2(μ(�), �1)

ϕ0(μ(�), �1)
κ′′(μ(�)) (13)

=
(

ζ1/�(�)κ′′′(�)
)′

+
1
�

q(�)B�
0(μ(�), n)

ϕ
�
2(μ(�), �1)

ϕ0(μ(�), �1)
κ′′(μ(�)).

Now, let ω(�) = κ′′(�) > 0; then, (14) reduces to

(
ζ1/�(�)ω′(�)

)′
+

1
�

q(�)B�
0(μ(�), n)

ϕ
�
2(μ(�), �1)

ϕ0(μ(�), �1)
ω(μ(�)) ≤ 0.

Using Corollary 1 in [27], the corresponding DE (12) has a positive solution as well.
Therefore, we have completed the proof of the Lemma.

3.2. Category Ψ2

Because
κ(�) = υ(�) + p(�)υ(τ(�)),

κ(�) ≥ υ(�) and

υ(�) = κ(�)− p(�)υ(τ(�)) ≥ κ(�)− p(�)κ(τ(�)).

Because κ(�) is increasing, κ(�) ≥ κ(τ(�)) and

υ(�) ≥ (1 − p(�))κ(�). (14)

Theorem 2. Assume that υ ∈ Ψ2; then, the DE

κ′′(�) + κ(μ(�))
∫ ∞

�

(
1

ζ(u)

∫ ∞

u
q(ς)(1 − p(μ(ς)))�dς

)1/�

du = 0 (15)

has a positive solution.
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Proof. Assume that υ ∈ Ψ2 for � ≥ �1 ≥ �0. Integrating (4) from � to ∞, we have

ζ(�)
(
κ′′′(�)

)� ≥
∫ ∞

�
q(ς)υ�(μ(ς))dς

≥
∫ ∞

�
q(ς)(1 − p(μ(ς)))�κ�(μ(ς))dς

≥ κ�(μ(�))
∫ ∞

�
q(ς)(1 − p(μ(ς)))�dς,

or

κ′′′(�) ≥ κ(μ(�))

(
1

ζ(�)

∫ ∞

�
q(ς)(1 − p(μ(ς)))�dς

)1/�

.

Integrating once again from � to ∞, we obtain

κ′′(�) ≤ −κ(μ(�))
∫ ∞

�

(
1

ζ(u)

∫ ∞

u
q(ς)(1 − p(μ(ς)))�dς

)1/�

du. (16)

Therefore, κ is a positive solution of differential inequality (16). Using Corollary 1
in [27], the corresponding DE (15) has a positive solution as well. This ends the proof.

4. Oscillation Theorem and Examples

In this section, we establish a condition that ensures the occurrence of oscillation in
the differential Equation (4). Furthermore, we investigate specific instances of the studied
equation by employing this novel criterion.

Theorem 3. Assume that

λ := lim inf
�→∞

ϕ0(�, �0)

ϕ0(μ(�), �0)
< ∞. (17)

If
lim inf
�→∞

ζ1/�(�)ϕ0(�, �0)ϕ
�
2(μ(�), �0)q(�)B

�
0(μ(�), n) > �L (18)

and

lim inf
�→∞

�μ(�)
∫ ∞

�

(
1

ζ(u)

∫ ∞

u
q(ς)(1 − p(μ(ς)))�dς

)1/�

du > L, (19)

then (4) is oscillatory.

Proof. Let us consider the opposite scenario, where υ is assumed to be a positive solution
of (4). Then, υ satisfies one of the two cases (C1) and (C2) for ς ≥ ς1 ≥ ς0. From
Theorems 1 and 2, we know that the two DEs(

ζ1/�(�)ω′(�)
)′

+
1
�

q(�)B�
0(μ(�), n)

ϕ
�
2(μ(�), �1)

ϕ0(μ(�), �1)
ω(μ(�)) = 0

and

κ′′(�) +
(∫ ∞

�

(
1

ζ(u)

∫ ∞

u
q(ς)(1 − p(μ(ς)))�dς

)1/�

du

)
κ(μ(�)) = 0

have positive solutions. However, according to Theorem 2 in [28], conditions (18) and (19)
confirm the oscillation of all solutions of these equations.

Corollary 1. Assume that (17) holds. If

lim inf
�→∞

�μ3(�)q(�)B0(μ(�), n) > 6L
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and
lim inf
�→∞

�μ(�)
∫ ∞

�

∫ ∞

u
q(ς)(1 − p(μ(ς)))dςdu > L,

then the linear NDE
(υ(�) + p(�)υ(τ(�)))(4) + q(�)υ(μ(�)) = 0

is oscillatory.

Example 1. Consider the neutral differential equation(
��−1

(
(υ(�) + p0υ(τ0�))

′′′)�)′
+

q0

�2�+2 υ(μ0�) = 0, � > 0. (20)

Here, τ0, μ0 ∈ (0, 1) and q0 > 0. We can verify that ζ(�) = ��−1, τ(�) = τ0�, μ0(�) = μ0�,
q(�) = q0/�2�+2,

ϕ0(�) = ��1/�, ϕ1(�) =
�2

� + 1
�1+1/�, ϕ2(�) =

�3

(� + 1)(2� + 1)
�2+1/�,

λ =
1

μ
1/�
0

,

p1(�; n) = [1 − p0]
n

∑
k=0

p2k
0 τ

2k(2+1/�)
0 ,

p̂1(�, n) =
[
p0τ

2+1/�
0 − 1

] n

∑
k=1

1
p2k+1

0

,

and

B0(�, n) =
{

p1(�; n) for p0 < 1,
p̂1(�; n) for p0 > 1/τ2+1/�.

Using Theorem 3, we can establish the conditions for the oscillation of all solutions of
Equation (20). These conditions are provided by

�3�

(2�2 + 3� + 1)� μ
2�+1
0 q0B�

0 > L

and

μ0
(1 − p0)q

1/�
0

2(1 + 2�)1/�
> L,

where
L = max

{
m(1 − m)�μm

0 : m ∈ (0, 1)
}

.

By satisfying these conditions, the oscillation of all solutions of Equation (20) is confirmed.

Example 2. Consider the neutral differential equation(
�2

(
(υ(�) + 0.5υ(0.8�))′′′

)3
)′

+
q0

�8 υ(0.5�) = 0, � > 0. (21)

We can verify that ζ(�) = �2, τ(�) = 0.8�, μ0(�) = 0.5�, q(�) = q0/�8,

ϕ0(�) = 3�1/3, ϕ1(�) =
9
4
�4/3, ϕ2(�) =

27
28

�7/3,

λ = 21/3,
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p1(�; 10) =
10

∑
k=0

(0.5)2k+1(0.8)14k/3 = 0.54839,

and
B0(�, 10) = p1(�; 10) = 0.54839.

Using Theorem 3, we can establish the conditions for the oscillation of all solutions of
Equation (21). We find that

L = 0.08964 at m = 0.22024.

Therefore, conditions (18) and (19) respectively reduce to

q0 > 34.081L = 3.05469,

and
q0 > 3584L3 = 2.5815.

For q0 > 3.05469, the oscillation of all solutions of Equation (21) is confirmed.

Example 3. Consider the neutral differential equation

(υ(�) + p0υ(τ0�))
(4) +

q0

�4 υ(μ0�) = 0, � > 0, (22)

where τ0, μ0 ∈ (0, 1) and q0 > 0. We can easily verify that ζ(�) = 1, τ(�) = τ0�, μ0(�) = μ0�,
q(�) = q0/�4,

ϕ0(�) = �, ϕ1(�) =
1
2
�2, ϕ2(�) =

1
6
�3,

λ =
1

μ0

p1(�; n) = [1 − p0]
n

∑
k=0

p2k
0 τ6k

0 ,

p̂1(�, n) =
[
p0τ3

0 − 1
] n

∑
k=1

1
p2k+1

0

,

and

B0(�, n) =
{

p1(�; n) for p0 < 1,
p̂1(�; n) for p0 > 1/τ3.

Using Corollary 1, the conditions

q0 >
6L

μ3
0B0

and
q0 >

6L
μ0(1 − p0)

confirm the oscillation of all solutions of (22), where

L = max{m(1 − m)μm
0 : m ∈ (0, 1)}.

Example 4. Consider Equation (22) with τ(�) = 0.8�, μ0(�) = 0.5�, and q(�) = 16/�4. It is
straightforward to observe that

ϕ0(�) = �, ϕ1(�) =
1
2
�2, ϕ2(�) =

1
6
�3,

λ = 2,
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p1(�; 10) =
10

∑
k=0

(0.5)2k+1(0.9)6k = 0.57661,

and
B0(�, 10) = p1(�; 10) = 0.57661.

Using Corollary 1, we can deduce that

L = 0.18209 at m = 0.41581,

and that conditions
q0 = 16 >

6L
μ3

0B0
= 15.158

and
q0 = 16 >

6L
μ0(1 − p0)

= 4.3702

are satisfied. Therefore, every solution of (22) is oscillatory.

5. Conclusions

In this paper, we have made significant contributions to the study of fourth-order
half-linear neutral differential equations by improving the link between the solution and
its corresponding function. The identification of these improved links leads to the devel-
opment of a novel criterion for assessing the oscillatory characteristics of the examined
equation. Positive solutions are efficiently excluded using the comparison approach with
second-order equations, yielding useful insights into the nature of the solutions. We demon-
strate the practical significance and use of the suggested oscillatory standard by applying
our findings to several cases.

Overall, our research represents an advance in this field and improves previous
findings regarding the qualitative behavior of solutions of fourth-order half-linear neutral
differential equations. To further expand the scope of this study, it would be interesting
to extend the research to higher-order nonlinear neutral differential equations with n ≥ 4.
Such an extension could deepen our understanding of these equations and contribute to
the development of more comprehensive analytical tools.
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Abstract: In this paper, we investigate the concept of regional enlarged observability (ReEnOb) for
fractional differential equations (FDEs) with the Hilfer derivative. To proceed this, we develop an
approach based on the Hilbert uniqueness method (HUM). We mainly reconstruct the initial state
ν1

0 on an internal subregion ω from the whole domain Ω with knowledge of the initial information
of the system and some given measurements. This approach shows that it is possible to obtain the
desired state between two profiles in some selective internal subregions. Our findings develop and
generalize some known results. Finally, we give two examples to support our theoretical results.

Keywords: Hilfer fractional derivatives; fractional diffusion systems; regional enlarged observability;
Hilbert uniqueness method

MSC: 35R11; 33B07; 93C20; 44A10

1. Introduction

In recent decades, fractional calculus theory has proven to be a significant tool for the
formulation of several problems in science and engineering, where fractional derivatives
and integrals can be utilized to describe the characteristics of various real materials in vari-
ous scientific disciplines; see, e.g., [1–5]. This theory has recently received a large amount
of consideration by many academics; we mention Euler, Laplace, Riemann, Liouville, Mar-
chaud, Riesz, and Hilfer; see, e.g., [6–8]. Distributed parameter systems can be analysed in
terms of controllability, observability, and stability, which lead to numerous applications.
However, one of the most basic concerns in system analysis and control is observability,
which is concerned with the reconstruction of a system’s initial state that is taken from
measurements on a system by means of so-called sensors; see, [9]. Amouroux et al. [10]
developed two approaches to investigate regional observability (ReOb) for distributed
systems. The first is state-space-based, and the second allows for estimating the state on the
considered subregion. El Jai et al. [11] introduced the concept of regional strategic sensors
for a class of distributed systems and presented the sensor characterization for various
geometrical situations. In [12], Al-Saphory et al. considered and analysed the notion of
regional gradient strategic sensors, and the results applied to a two-dimensional linear
infinite distributed system in Hilbert space.

In a problem governed by a diffusion system, it is commonly known that the position-
ing of sensors is restricted by severe practical restrictions. In fact, observation processes
are generally restricted to subsets, boundaries, or points [13,14]. This indicates that the
operators of the observation can be unbounded in their state spaces.

Recently, the study of ReOb for partial differential equations (PDEs) has received
considerable attention in the literature. Zerrik et al. [15] reviewed regional boundary
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observability for a two-dimensional diffusion system. In [16], Chen investigated infinite
time exact observability for the Volterra system in Hilbert spaces. Chen and Yi [17] studied
the observability and admissibility of Volterra systems in Hilbert spaces. Zouiten et al. [18]
studied the following ReEnOb for a linear parabolic system.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t ν(y, t) = Aν(y, t) in Ω × [0, T],
ν(ξ, t) = 0 on ΣT ,
ν(y, 0) = ν0(y) in Ω,
M(t) = Cν(t), t ∈ [0, T],

(1)

where A is an infinitesimal operator and generates a strongly continuous semigroup
{Q(t)}t≥0 on the state space L2(Ω), Ω is an open bound of L2(Ω), and M is the output
function (OuPuFu), which represents the measurements. The authors used the HUM
approach to reconstruct the initial state between two profiles in an internal subregion.

More recently, many researchers have investigated the ReOb for fractional differential
equations (FDEs). In [19], Zguaid and El Alaoui investigated the notion of the regional
boundary observability of Caputo fractional systems. Zguaid et al. [20] studied ReOb for
a class of linear time-fractional systems using the HUM approach and proved that the
considered approach allows to transform the ReOb problem into a solvability one. Regional
gradient observability for Caputo fractional diffusion systems is considered in [21]. In [22],
Ge et al. presented the notion of the regional gradient observability for Riemann–Liouville
(R-L) diffusion systems for the first time. Cai et al. [23] investigated the concept of exact
and approximate ReOb of Hadamard–Caputo diffusion systems using the HUM approach.
Zguaid and El Alaoui [24] investigated the notion of regional boundary observability of
R-L linear diffusion systems by using an extension of HUM.

On the other hand, some works concerning the concept of ReEnOb-FDEs have recently
been conducted. In [25], Zouiten et al. studied the ReEnOb for R-L fractional evolution
equations with R-L derivatives:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

DRL
0

η
t ν(y, t) = Aν(y, t) in Ω × [0, T],

ν(ξ, t) = 0 on ΣT ,

lim
t→0+

0 I1−η
t ν(y, t) = ν0(y) in Ω,

M(t) = Cν(t), t ∈ [0, T],

(2)

where Ω is an open bound of Rn(n = 1, 2, 3), with the regular boundary ∂Ω and DRL
0

η
t and

0 I1−η
t are R-L fractional derivatives and R-L fractional integrals of orders 0 < η ≤ 1 and

1 − η, respectively. The authors developed an approach based on HUM allowing them to
reconstruct the initial state between two given functions in an internal subregion of the
whole domain. In [26], Zouiten and Boutoulout investigated the ReEnOb for the following
Caputo fractional diffusion system in a Hilbert space⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

DC
0

η
t ν(y, t) = Aν(y, t) in Ω × [0, T],

ν(ξ, t) = 0 on ΣT ,
ν(y, t) = ν0(y) in Ω,
M(t) = Cν(t), t ∈ [0, T].

(3)

The HUM approach for fractional differential systems is used for the process of
reconstructing the initial state between two profiles in a considered subregion of the
whole domain.

Inspired and motivated by the above discussion, in this manuscript we extend the
investigation of the notion of the ReEnOb for sub-diffusion systems with fractional deriva-
tives, augmented and restricted by some measurements given by the so-called OuPuFu.
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We note that FDEs have been widely used for modelling in various science and engineering
fields due to their well-described systems and high accuracy, as well as yielding better
results compared with systems with integer differentiation. Therefore, the results obtained
from Systems (2) and (3) are better than those of System (1). Moreover, use the Hilfer
fractional derivative as we know it has two parameters and contains Caputo and R-L
derivatives in its definition. Thus, our findings can be seen as a generalization of the
mentioned results.

This paper is interested in the concept of ReEnOb for the following sub-diffusion
system via Hilfer FDs of order η, type κ and augmented with the OuPuFu (5). We first
characterize the ReEnOb of a diffusion system augmented with the OuPuFu in an internal
subregion ω of Ω. Moreover, we recognize two types of sensors based on the boundness
issue of the observation operator C. Then, we reconstruct the initial state ν1

0 of the addressed
system using an approach that relies on the HUM approach introduced by Lions [27].
The investigation of the addressed problem shows that it is possible to obtain the desired
state between two profiles in some selective internal subregions. Let Ω be an open bound
of Rn(n = 1, 2, 3) with the regular boundary ∂Ω, and let J = [0, T]. The space ST = Ω × J

and ΣT = ∂Ω × J. We consider the following diffusion sub-system:⎧⎪⎪⎨⎪⎪⎩
DH

0
η,κ
t ν(y, t) = Aν(y, t) in ST ,

ν(ξ, t) = 0 on ΣT ,
lim

t→0+
0 I1−ζ

t ν(y, t) = ν0(y) in Ω,
(4)

where DH
0

η,κ
t stands for the Hilfer fractional derivative (left-sided) of order 0 < η < 1,

type 0 ≤ κ ≤ 1 with respect to time t, the integral 0 I1−ζ
t , ζ = η + κ − ηκ, 0 < ζ ≤ 1 is the

left-sided R-L fractional integral operator (1), and the operator A is linear and has a dense
domain, so the coefficients are independent of time t. Moreover, operator A is infinitesimal
and generates a strongly continuous semigroup {Q(t)}t≥0 on the state space L2(Ω), which
is a Hilbert space. Here, the initial state ν0 ∈ L2(Ω) is assumed to be unknown. The
measurements and information of System (4) are obtained by the OuPuFu below:

M(t) = Cν(t), t ∈ J, (5)

where C is the observation operator, and it is a linear, not necessary a bounded, operator
determined by the number of sensors or their structure, with a dense domain D(C) ⊆ L2(Ω)
with range in the observation space O = L2(J;Rq) (q ∈ N is the number of considered
sensors), and O is a Hilbert space.

This paper is arranged as follows: In Section 2, we review the definitions, basic
concepts, and lemmas utilized throughout this paper. In Section 3, we characterize the
ReEnOb. Moreover, we present some remarks, then introduce and prove the main theorem
of the ReOb of the Hilfer diffusion System (4). In Section 4, the HUM approach is introduced
and applied in the reconstruction process of the initial state of System (4). In addition, two
theoretical illustrative examples are given to support our results. In Section 5, we give
some conclusions.

2. Preliminaries

In this section, we review the essential definitions, notations, and basic facts utilized
throughout this paper.

Definition 1. (See [7]) The R-L fractional integral (left-sided) of order η for a function f : J → R

is defined as

0 Iη
t f (t) =

1
Γ(η)

∫ t

0
(t − s)η−1 f (s)ds, 0 < η < 1.
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Definition 2. (See [7]) The R-L fractional integral (right-sided) of order η for a function f : J → R

is defined as

t Iη
T f (t) =

1
Γ(η)

∫ T

t
(s − t)η−1 f (s)ds, 0 < η < 1.

Definition 3. (See [1,28]) The R-L fractional derivative (left-sided) and R-L fractional derivative
(right-sided) of order 0 < η < 1 with respect to t for a function f are defined as

DRL
0

η
t f (t) =

(
0 I1−η

t f (t)
)′

=
1

Γ(1 − η)

(∫ t

0
(t − s)−η f (s)ds

)′
for a.e. t ∈ J,

and

DRL
t

η
T f (t) =−

(
t I1−η

T f (t)
)′

=− 1
Γ(1 − η)

(∫ T

t
(s − t)−η f (s)ds

)′
for a.e. t ∈ J,

respectively, where the notation ′ stands for differentiation.

Definition 4. (See [1,28]) The Hilfer fractional derivative (left-sided) and the Hilfer fractional
derivative (right-sided) of order 0 < η < 1, type 0 ≤ κ ≤ 1 with respect to t for a function f are
respectively defined by

DH
0

η,κ
t f (t) =

(
0 Iκ(1−η)

t

(
0 I1−ζ

t f
)′)

(t)

=0 Iζ−η
t DRL

0
ζ
t f (t)

=
1

Γ(ζ − η)Γ(1 − ζ)

∫ t

0
(t − s)(ζ−η)−1

(∫ s

0
(s − τ)−ζ f (τ)dτ

)′
ds,

for almost everywhere t ∈ J, where ζ = η + κ − ηκ, 0 < ζ ≤ 1, ζ ≤ η, and ζ > κ.

DH
t

η,κ
T f (t) =−

(
t Iκ(1−η)

T

(
t I1−ζ

T f
)′)

(t)

=− t Iζ−η
T DRL

t
ζ
T f (t)

=− 1
Γ(ζ − η)Γ(1 − ζ)

∫ T

t
(s − t)(ζ−η)−1

(∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds,

for a.e. t ∈ J.

Next, we recall a mild solution for the following Hilfer fractional evolution equation;
see [29].

Lemma 1. Let X = L2(Ω) be a Hilbert space, for any u0 ∈ X , 0 < η < 1, 0 ≤ κ ≤ 1 and
f ∈ J×X −→ X , the function u ∈ L2(J;X ) is said to be a mild solution of the following system⎧⎨⎩ DH

0
η,κ
t u(t) = Au(t) + f (t, u), t ∈ J,

lim
t→0+

0 I1−ζ
t u(t) = u0, (6)
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if u fulfils

u(t) =
1

Γ(ζ − η)

∫ t

0
(t − s)(ζ−η)−1sη−1

∫ ∞

0
ηθMη(θ)Q(sηθ))u0dθds

+
∫ t

0

∫ ∞

0
ηθMη(θ)Q((t − s)ηθ)(t − s)η−1 f (s, u(s))dθds,

(7)

where Pη(t) =
∫ ∞

0 ηθMη(θ)Q(tηθ)dθ, and the function Mη(θ) = ∑∞
n=1

(−θ)n−1

(n−1)Γ(1−ρn) , where
0 < ρ < 1, θ ∈ C is the Wright function, which fulfils the following equality:∫ ∞

0
θι Mη(θ)dθ =

Γ(1 + ι)

Γ(1 + ηι)
for ι ≥ 0, θ ≥ 0.

Remark 1. (See Remark 2.14 in [29]) Let 0 < η < 1, 0 ≤ κ ≤ 1, 0 < ζ ≤ 1 and t ∈ J; thus,
we have

DRL
0

ζ−η
t Sη,κ(t) = Rη(t), t ∈ (0, T], (8)

where
Rη(t) = tη−1Pη(t), (9)

and
Sη,κ(t) = 0 Iζ−η

t Rη(t). (10)

We can rewrite the equality in (7) as follows:

u(t) = Sη,κ(t)u0 +
∫ t

0
Rη(t − s) f (s, u(s))ds. (11)

Note that if the non-linear term of System (6) is zero, then the mild solution (11)
becomes u(·) = Sη,κ(·)u0. Consequently, the mild solution of (4) may alternatively be
expressed as

ν(t) = Sη,κ(t)ν0, t ∈ J. (12)

We give the following lemma, which will be utilized afterwards to prove our results.

Lemma 2. (See [30]) Let a function g be defined on interval [S, T], (S < T) and S, T ∈ R, then
the reflection operator Q acting on g is

Q[g(t)] = g(S + T − t).

Lemma 3. Let f be a function defined on the interval J and let f be differentiable and integrable in
the Hilfer derivative sense. We now introduce the reflection operator Q when acting on f as follows:

Q[ f (t)] = f (T − t), (13)

Moreover, the following assertions hold,

(i) 0 Iη
t Q[ f (t)] = Q

[
t Iη

T f (t)
]
.

(ii) Q
[

0 Iη
t f (t)

]
= t Iη

TQ[ f (t)].

(iii) − DH
0

η,κ
t Q[ f (t)] = Q

[
DH

t
η,κ
T f (t)

]
.

(iv) Q
[

DH
0

η,κ
t f (t)

]
= − DH

t
η,κ
T Q[ f (t)].
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Note that, assertions (i) and (ii) are given in [25,26]. Here, we state their proof due to the
demonstration of assertions (iii) and (iv).

Proof. Our proof is obtained by virtue of Equation (13) and by utilizing changes in the
variables, specifically, changes in the role of time.

(i): We show that 0 Iη
t Q[ f (t)] = Q

[
t Iη

T f (t)
]
. Since

0 Iη
t Q[ f (t)] =

1
Γ(η)

∫ t

0
(t − s)η−1Q f (s)ds

=
1

Γ(η)

∫ t

0
(t − s)η−1 f (T − s)ds.

(14)

Using the change in the variables, let s̃ = T − s, then −ds̃ = ds. Now, for s = 0 and
s = t, we obtain s̃ = T and s̃ = T − t, respectively. Let us fix M = 1

Γ(η) . Substituting these
values into (14), we obtain

0 Iη
t Q[ f (t)] = −M

∫ T−t

T
(t − T + s̃)η−1 f (s̃)ds̃,

Let s̃ := s, we obtain

0 Iη
t Q[ f (t)] = M

∫ T

T−t
(s − T + t)η−1 f (s)ds. (15)

We now consider the right-hand side:

Q
[

t Iη
T f (t)

]
= Q

[
M

∫ T

t
(s − t)η−1 f (s)ds

]

= M
∫ T

T−t
(s − T + t)η−1 f (s)ds.

(16)

Consequently, from (15) and (16), we can see that 0 Iη
t Q[ f (t)] = Q

[
t Iη

T f (t)
]
.

(ii): The proof follows the same way as (i). Considering the left-hand side:

Q
[

0 Iη
t f (t)

]
=Q

[
M

∫ t

0
(t − s)η−1 f (s)ds

]

=M
∫ T−t

0
(T − t − s)η−1 f (s)ds,

and the right-hand side:

t Iη
TQ[ f (t)] = M

∫ T

t
(s − t)η−1Q f (s)ds

= −M
∫ 0

T−t
(T − s − t)η−1 f (s)ds

= M
∫ T−t

0
(T − t − s)η−1 f (s)ds.
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(iii): We demonstrate − DH
0

η,κ
t Q[ f (t)] = Q

[
DH

t
η,κ
T f (t)

]
. Let us fix M̃ = 1

Γ(ζ−η)Γ(1−ζ)
, which

will be used in the remainder of the proof of this lemma. We first consider the left-hand side:

− DH
0

η,κ
t Q[ f (t)] = − 1

Γ(ζ − η)Γ(1 − ζ)

∫ t

0
(t − s)(ζ−η)−1Q

(∫ s

0
(s − τ)−ζ f (τ)dτ

)′
ds

= −M̃
∫ t

0
(t − s)(ζ−η)−1

(∫ s

0
(s − τ)−ζ f (T − τ)dτ

)′
ds,

(17)

Let τ̃ = T − τ, then −dτ̃ = dτ. Now, for τ = 0 and τ = s, we obtain τ̃ = T and
τ̃ = T − s, respectively. Substituting these values into (17), we obtain

− DH
0

η,κ
t Q[ f (t)] = −M̃

∫ t

0
(t − s)(ζ−η)−1

(
−

∫ T−s

T
(s − T + τ̃)−ζ f (τ̃)dτ̃

)′
ds, (18)

Let s = T − s̃, then −ds̃ = ds. Now for s = 0 and τ = s, we obtain s̃ = T and s̃ = T − t,
respectively. Substituting these values into (18), we obtain

− DH
0

η,κ
t Q[ f (t)] = M̃

∫ T−t

T
(t − T + s̃)(ζ−η)−1

(∫ T

s̃
(τ̃ − s̃)−ζ f (τ̃)dτ̃

)′
ds̃,

Let τ := τ̃ and s := s̃, we obtain

− DH
0

η,κ
t Q[ f (t)] = M̃

∫ T−t

T
(t − T + s)(ζ−η)−1

(∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds.

On the other hand, we proceed with the right-hand side as follows:

Q
[

tD
η,κ
T f (t)

]
= Q

[
− M̃

∫ T

t
(s − t)(ζ−η)−1

(∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds

]

= −M̃
∫ T

T−t
(s − T + t)(ζ−η)−1

(∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds

= M̃
∫ T−t

T
(s − T + t)(ζ−η)−1

(∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds,

Hence, − DH
0

η,κ
t Q[ f (t)] = Q

[
tD

η,κ
T f (t)

]
.

(iv): The proof follows the same way as (iii). We first consider the left-hand side:

Q
[

DH
0

η,κ
t f (t)

]
= Q

[
M̃

∫ t

0
(t − s)(ζ−η)−1

(∫ s

0
(s − τ)−ζ f (τ)dτ

)′
ds

]

= M̃
∫ T−t

0
(T − t − s)(ζ−η)−1

(∫ s

0
(s − τ)−ζ f (τ)dτ

)′
ds,
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then the right-hand side:

− DH
t

η,κ
T Q[ f (t)] = −

[
− M̃

∫ T

t
(s − t)(ζ−η)−1Q

(∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds

]

= M̃
∫ T

t
(s − t)(ζ−η)−1

(∫ s

0
(τ − s)−ζ f (T − τ)dτ

)′
ds

= M̃
∫ T

t
(s − t)(ζ−η)−1

(
−

∫ 0

T−s
(T − τ̃ − s)−ζ f (τ̃)dτ̃

)′
ds

= −M̃
∫ 0

T−t
(T − s̃ − t)(ζ−η)−1

(∫ T−s

0
(s̃ − τ̃)−ζ f (τ̃)dτ̃

)′
ds̃

= M̃
∫ T−t

0
(T − s − t)(ζ−η)−1

(∫ s

0
(s − τ)−ζ f (τ)dτ

)′
ds.

Consequently, Q
[

DH
0

η,κ
t f (t)

]
= − DH

t
η,κ
T Q[ f (t)].

Thus, this completes the proof of the lemma.

Since C is an admissible operator, as we will see later, then the OuPuFu of System (4)
is given by

M(t) = CSη,κ(t)ν0 = Kη,κ(t)ν0, t ∈ J, (19)

where Kη,κ : L2(Ω) −→ O is a fractional linear operator. Let us recall the observation space
O = L2(J;Rq)(q ∈ N). Two cases arise for obtaining the adjoint operator of Kη,κ .

• Case 1. C is bounded. In this case, we can define zonal sensors. Let operator C be
from L2(Ω) to O. Then, if C∗ is adjoint on the other hand, the adjoint of operator Kη,κ
can be obtained by

K∗
η,κ : O −→ L2(Ω)

M∗ $−→
∫ T

0
S∗

η,κ(s)C
∗M∗(s)ds.

• Case 2. C is unbounded. We can define pointwise sensors. However, in this case,
the operator C can be introduced from D(C) ⊆ L2(Ω) to the observation space O.
Then, C∗ is adjoint. However, in order to give this case a sense of (5), we make an
assumption on C in the following definition, namely, C is an admissible observation
operator, as we will see in Definition 5 below.

Definition 5. (See [18]) The observation operator C is an admissible of (4) and (5), if for any
ν0 ∈ D(C) there is a constant L > 0, such that∫ T

0
‖CSη,κ(t)ν0‖2ds ≤ L ‖ ν0 ‖ .

Note that operator C being admissible assures that the map

ν0 $−→ CSη,κ(t)ν0 = Kη,κ(t)ν0
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can be extended to a bounded linear operator from L2(Ω) to the space O. Thus, we can
introduce K∗

η,κ as the adjoint of operator Kη,κ as follows:

K∗
η,κ : D(K∗

η,κ) ⊆O −→ L2(Ω)

M∗ $−→
∫ T

0
S∗

η,κ(s)C
∗M∗(s)ds

3. Characterization of Enlarged Observability

In this section, we will characterize the ReEnOb of System (4) with the output func-
tion (5) in the subregion ω of Ω. Let ω be a positive Lebesgue measure, and let us define
the restriction mapping (projection mapping) pω, as follows:

pω : L2(Ω) −→ L2(ω)

ν $−→ pων = ν|ω .

We can now define the adjoint p∗ω of pω as follows: (p∗ων)(y) := ν(y, ·) when y ∈ ω,
and (p∗ων)(y) := 0 when y ∈ Ω\ω. In addition, we note that the regional exact observability
of System (4) with (5) can be achieved at time t in the subregion ω, if Im(pωK∗

η,κ) = L2(ω),
see, e.g., [25,26,31–33]. Now, let γ1(·) and γ2(·), γ1(·) ≤ γ2(·) almost everywhere in the
subregion ω, be two functions defined in L2(Ω). We thus define the following set

Z = {ν ∈ L2(ω)|γ1(·) ≤ ν(·) ≤ γ2(·) almost everywhere in the subregion ω},

where γ1(·) and γ2(·) are given functions in ω. We assume that the initial state is given by

ν0 =

{
ν1

0 in Z,
ν2

0 in L2(Ω)\Z.

The main objective of the investigation proposed in this paper is to demonstrate
ReEnOb for Hilfer time fractional-order diffusion systems, that is, we will answer the
following question: Given the Hilfer fractional diffusion System (4) with (5) in the subregion
ω at time t ∈ J, can we reconstruct ν1

0 between γ1(·) and γ2(·)?
The following definition will be used in the following.

Definition 6. If Ker(Kη,κ p∗ω) ∩ Z = {0}, then System (4) with (5) is exactly E -observable in the
subregion ω.

Definition 7. A sensor is exactly Z-strategic in the subregion ω if the observed system is exactly
Z-observable in subregion ω.

The following three remarks show that the results obtained in [18,25,26] are particular
cases of our results.

Remark 2. If κ = 0 and η = 1, then the Hilfer fractional diffusion (4) corresponds to the normal
diffusion process, which is investigated in [18].

Remark 3. If κ = 0 and 0 < η < 1, then the Hilfer fractional diffusion System (4) corresponds to
the R-L fractional diffusion process, which is investigated in [25].

Remark 4. If κ = 1 and 0 < η < 1, then the Hilfer fractional diffusion (4) corresponds to the
Caputo fractional diffusion process, which is considered in [26].

The following result can be obtained directly from Definition 7.
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Remark 5. If System (4) with the OuPuFu (5) is exactly Z-observable in ω1, then for any subregion
ω2 of ω1 it is also exactly Z-observable in ω2.

The following remark will be used in the proof of the theorem presented below.

Remark 6. Let X be a Hilbert space and F a linear subspace of X, then F ∩ F⊥ = {0}, where F⊥
is the orthogonal complement of F.

Theorem 1. The following assertions are equivalent:

1. System (4) with the OuPuFu (5) is exactly Z-observable in the subregion ω.
2. Im(pωK∗

η,κ) ∩ Z �= ∅.

Proof. We show that Statement 1 implies Statement 2, and Statement 2 implies Statement 1.
The following two facts play a key role in the proof.

Ker(Kη,κ p∗ω) = Im(pωK∗
η,κ)

⊥, (20)

it follows from Remark 6 that

Im(pωK∗
η,κ) ∩ Im(pωK∗

η,κ)
⊥ = {0}. (21)

We demonstrate that the left-hand side implies the right-hand side, and vice versa:

Ker(Kη,κ p∗ω) ∩ Z = {0} ⇐⇒ Im(pωK∗
η,κ) ∩ Z �= ∅.

We first show that

Ker(Kη,κ p∗ω) ∩ Z = {0} =⇒ Im(pωK∗
η,κ) ∩ Z �= ∅.

Let y ∈ Ker(Kη,κ p∗ω)∩Z, then y = 0. From (20), one can see that y ∈ Im(pωK∗
η,κ)

⊥ ∩Z.
Therefore, it follows from (21) that, Im(pωK∗

η,κ) has at least one element, which is zero.
Thus, Im(pωK∗

η,κ) ∩ Z �= ∅.
We now prove that statement 2 implies statement 1, that is,

Im(pωK∗
η,κ) ∩ Z �= ∅ =⇒ Ker(Kη,κ p∗ω) ∩ Z = {0}.

Suppose
Im(pωK∗

η,κ) ∩ Z �= ∅, (22)

and
Ker(Kη,κ p∗ω) ∩ Z �= {0}. (23)

Now, let y ∈ Ker(Kη,κ p∗ω) ∩ Z, then y �= 0, y ∈ Z and y ∈ Ker(Kη,κ p∗ω). From (20)
and (21), we have y ∈ Im(pωK∗

η,κ)
⊥ and y /∈ Im(pωK∗

η,κ), respectively. Consequently, one
can see that

Im(pωK∗
η,κ) ∩

(
Ker(Kη,κ p∗ω) ∩ Z

)
= ∅;

therefore,
Im(pωK∗

η,κ) ∩ Z = ∅,

which contradicts (22). Thus, (23) is not true. Consequently,

Ker(Kη,κ p∗ω) ∩ Z = {0}.

Therefore, System (4) with (5) is exactly Z-observable in the subregion ω. This com-
pletes the proof.
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4. The Hilbert Uniqueness Method

In this section, we provide an approach for reconstructing the initial state of the system
between γ1(·) and γ2(·) in subregion ω. Let P be a space defined as

P =
{

g ∈ L2(Ω)|g = 0 in L2(Ω)\Z}. (24)

4.1. Pointwise Sensors

Let System (4) be observed by a pointwise sensor (l, δ(l − ·)), where l ∈ Ω is the
location of a sensor and δ is the Dirac mass (delta function), which is concentrated in l.
Here, the OuPuFu is introduced as

M(t) = ψ(b, T − t), t ∈ J. (25)

Let ψ0 be in P; thus, we examine the following system:⎧⎪⎪⎨⎪⎪⎩
DH

0
η,κ
t ψ(y, t) = Aψ(y, t) in ST ,

ψ(ξ, t) = 0 on ΣT ,
lim

t→0+
0 I1−ζ

t ψ(y, t) = ψ0(y) in Ω.
(26)

For simplicity of notation, we denote ψ(y, t) := ψ(t). We note that System (26) admits
a unique solution ψ ∈ L2(J;D(A))∩C(Ω × J) given by ψ(t) = Sη,κ(t)ϕ0, if ψ0(x) ∈ D(A).
Let us denote a semi-norm on P by

ψ0 $−→ ‖ψ0‖2
P =

∫ T

0
‖Cψ(T − t)‖2dt. (27)

In the following lemma, we will see that a norm can be defined.

Lemma 4. If System (4) with OuPuFu (25) is exactly Z-observable in the subregion ω; conse-
quently, Equation (27) defines a norm in the space P.

Proof. Firstly, in light of Theorem 1 and Definition 6, we suppose that System (4) with the
OuPuFu (25) is exactly Z-observable in the space P. Now, for ψ0 ∈ P and a semi-norm in
P, we have

‖ψ0‖P = 0 =⇒ Cψ(T − t) = 0 for all t ∈ J.

Let
ψ0 ∈ L2(Ω) =⇒ pωψ0 ∈ L2(ω),

then,
Kη,κ p∗ω pωψ0 = CSη,κ(t)p∗ω pωψ0 = 0.

Hence,
pωψ0 ∈ Ker(Kη,κ p∗ω).

and for pωψ0 ∈ Z, one has pωψ0 ∈ Ker(Kη,κ p∗ω) ∩ Z and pωψ0 = 0, since the system is
exactly Z-observable in the subregion ω. Consequently, ψ0 = 0 and (27) is a norm.

We now consider the following system, which is controlled by the solution to System (26),
that is, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q
[
− DH

t
η,κ
T Υ(y, t)

]
= A∗Q

[
Υ(y, t)

]
+ C∗CQ[ψ(y, t)] in ST ,

Υ(ξ, t) = 0 on ΣT ,

lim
t→T− Q

[
t I1−ζ

T Υ(y, t)
]
= 0 in Ω.

(28)
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Next, for ψ0 ∈ P, we define the operator Λ : P −→ P∗ by

Λψ0 = P
(

0 Iζ−η
T Υ(0)

)
, (29)

where P = p∗ω pω and Υ(0) = Υ(y, 0).
Next, let us consider the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q
[
− DH

t
η,κ
T Φ(y, t)

]
= A∗Q

[
Φ(y, t)

]
+ C∗Q[M(t)] in ST ,

Φ(ξ, t) = 0 on ΣT ,

lim
t→T− Q

[
t I1−ζ

T Φ(y, t)
]
= 0 in Ω.

(30)

If we choose the initial state ψ0 of System (26) such that Φ(0) = Υ(0) in the subregion
ω, then one can see that System (30) stands for the adjoint of System (4). Thus, our problem
of ReEnOb can be simplified solved in Equation (29), since following Equation (31) is
equivalent to Equation (29).

Λψ0 = P
(

0 Iζ−η
T Φ(0)

)
. (31)

Theorem 2. System (4) augmented by (25) is exactly Z-observable in ω, if Equation (29) has a
unique solution ψ0 ∈ P, that coincides with the state ν1

0 observed between functions γ1(·) and
γ2(·) in the subregion ω. In addition, ν1

0 = pω ϕ0.

Proof. We note that, System (4) with (25) is exactly Z-observable in ω, then the norm ‖ · ‖P
can be defined on P by Lemma 4. Next, we prove that, if Λ is an isomorphism (see [18]),
then (29) admits a unique solution in the set P. For this, we have

〈Λψ0, ψ0〉L2(Ω) =
〈
P

(
0 Iζ−η

T Υ(0)
)

, ψ0

〉
L2(Ω)

=
〈

p∗ω pω

(
0 Iζ−η

T Υ(0)
)

, ψ0

〉
L2(Ω)

=
〈

0 Iζ−η
T Υ(0), ψ0

〉
L2(ω)

We note that the following propositions are important in the following proof.

Proposition 1. Let 0 < η < 1, 0 ≤ κ ≤ 1, 0 < ζ ≤ 1 and t ∈ J. Since System (30) is adjoint
of (4), then from (9) and (10), we have

R∗
η(t) = tη−1P∗

η (t),

and

S∗
η,κ(t) =0 Iζ−η

t R∗
η(t).

Therefore, the solution to System (28) is given by

Υ(t) =
∫ T−t

0
R∗

η(T − t − s)C∗Cψ(T − s)ds. (32)

Proposition 2. Let 0 < η < 1, 0 ≤ κ ≤ 1, 0 < ζ ≤ 1 and t ∈ J, we have

0 Iζ−η
T Υ(0) =

∫ T

0
S∗

η,κ(T − s)C∗Cψ(T − s)ds. (33)
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Proof. In view of Fubini’s theorem and Equation (32), and for any τ ∈ J, we have

τ Iζ−η
T Υ(τ) =

1
Γ(ζ − η)

∫ T

τ
(t − τ)ζ−η−1Υ(t)dt

=
1

Γ(ζ − η)

∫ T

τ
(t − τ)ζ−η−1

∫ T−t

0
R∗

η(T − t − s)C∗Cψ(T − s)dsdt

=
1

Γ(ζ − η)

∫ T

0

(∫ T−s

τ
(t − τ)ζ−η−1R∗

η(T − t − s)dt

)
C∗Cψ(T − s)ds

Let u = T − t − s, then du = −dt. Now, for t = τ and t = T − s, we obtain
u = T − τ − s and u = 0, respectively. Thus, we obtain

τ Iζ−η
T Υ(τ) =

1
Γ(ζ − η)

∫ T

0

(∫ T−τ−s

0
(T − s − τ − u)ζ−η−1R∗

η(u)du

)
C∗Cψ(T − s)ds

=
∫ T

0
S∗

η,κ(T − s − τ)C∗Cψ(T − s)ds.

We now let τ = 0, we obtain

0 Iζ−η
T Υ(0) =

∫ T

0
S∗

η,κ(T − s)C∗Cψ(T − s)ds.

Now, we continue the proof of our theorem

〈Λψ0, ψ0〉L2(Ω) =
〈

0 Iζ−η
T Υ(0), ψ0

〉
L2(ω)

=

〈∫ T

0
S∗

η,κ(T − s)C∗Cψ(T − s)ds, ψ0

〉

=
∫ T

0
〈Cψ(T − s), CSη,κ(T − s)ψ0〉ds

=
∫ T

0
〈Cψ(T − s), Cψ(T − s)〉ds

=
∫ T

0
‖Cψ(T − s)‖2ds

= ‖ψ0‖2
G .

Thus, the operator Λ is an isomorphism. Therefore, we establish that Equation (29) has
a unique solution, which corresponds to the desired initial state ν1

0 = pωψ0. This completes
the proof.

4.2. Zone Sensors

Here we suppose the measurements of System (4) are given by an internal zone sensor
defined by (A, h) with A ⊂ Ω and h ∈ L2(A). The system is augmented with the OuPuFu

M(t) =
∫
A

ν(y, T − t)h(y)dy. (34)

In this case, we consider System (26), and we assume P is given by Equation (24).
Then, a semi-norm can be introduced by

‖ϕ0‖2
P =

∫ T

0
〈 ψ(T − t), h〉2

L2(A)dt, (35)
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and if System (26) with (25) is exactly Z-observable in a subregion ω of Ω, then a norm can
be defined.

In this case, we can introduce the adjoint System of (26) as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q

[
− DH

t
η,κ
T Υ(y, t)

]
= A∗Q

[
Υ(y, t)

]
+ 〈 Q[ψ(t)], h〉L2(A)h(y) in ST ,

Υ(ξ, t) = 0 on ΣT ,

lim
t→T− Q

[
t I1−ζ

T Υ(y, t)
]
= 0 in Ω.

(36)

Thus, the operator Λ can be defined by

Λ : P −→ P∗

ψ0 $−→ Λψ0 = P
(

0 Iζ−η
T Υ(0)

)
,

(37)

where P = p∗ω pω is a projection operator. For simplicity, let us write Υ(0) = Υ(y, 0).
We introduce the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q

[
− DH

t
η,κ
T Φ(y, t)

]
= A∗Q

[
Φ(y, t)

]
+ 〈 Q[M(t)], h〉L2(A)pAh(y) in ST ,

Φ(ξ, t) = 0 on ΣT ,

lim
t→T− Q

[
t I1−ζ

T Φ(y, t)
]
= 0 in Ω.

(38)

If the initial state ψ0 of System (26) is chosen such that Φ(0) = Υ(0) in the subregion
ω, then one can see that System (38) is the adjoint of System (4); thus, our ReEnOb problem
can be simplified and solved by the following equation

Λψ0 = P
(

0 Iζ−η
T Φ(0)

)
, (39)

Theorem 3. If System (4) with OuPuFu (34) is exactly Z-observable in the subregion ω, then
Equation (39) has a unique solution ψ0 ∈ P that corresponds with the observed initial state ν1

0
between functions γ1(·) and γ2(·) in the subregion ω.

Proof. The procedures of the proof are remarkably similar to those of Theorem 2.

4.3. Examples

Example 1. In this subsection, we will consider the case where C is unbounded (pointwise sensors).
The following time fractional diffusion system can be use to describe a chemical reaction or a
heat conduction.

Let Ω1 = [0, l] and S̄T = Ω1 × J, we thus consider⎧⎪⎪⎨⎪⎪⎩
DH

0
η,κ
t ν(y, t) = ℵη,κ

∂2

∂y2 ν(y, t) + f (y, t) in S̄T ,

ν(0, t) = h1(y), ν(l, t) = h2(y) in J,
lim

t→0+
0 I1−ζ

t ν(y, t) = ν0(y) in Ω1,
(40)

where f (y, t) is the density of the sources that transmits the substance in/out the system,
A = ℵη,κ

∂2

∂x2 and ℵη,κ represents a constant of physical dimension [ℵη,κ ] = cm2sη , which only
depends on η and is independent of κ.
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For simplicity, we assume ℵη,κ = 1, f (y, t) = 0, h1(y) = h2(y) = 0, and l = 1, obtaining
Ω1 = [0, 1] and ¯̄ST = Ω1 × J. Hence, System (40) can be written as follows⎧⎪⎪⎨⎪⎪⎩

DH
0

η,κ
t ν(y, t) = ∂2

∂y2 ν(y, t) in ¯̄ST ,

ν(ξ, t) = 0 in [0, T],
lim

t→0+
0 I1−ζ

t ν(y, t) = ν0(y) in [0, 1],
(41)

augmented with the OuPuFu

M(t) = Cν(y, t) = ν(b, t), (42)

where 1
4 = b ∈ [0, 1], and System (44) has a mild solution ν(y, t), t ∈ J given by

ν(y, t) =2
∞

∑
n=1

tη+κ(1−η)−1Eη,κ(η−1)−η(−n2π2tη) sin(nπy)

×
∫ 1

0
ν0(y) sin(nπy)dx,

(43)

where Eη,κ(·) stands for the two-parameter Mittag–Leffler function [4], and one can easily see that
the operator ∂2

∂y2 has a complete set of eigenfunctions φn = sin(nπy) in the Hilbert space L2(Ω1)

associated with the eigenvalues λn = −n2π. Let us assume the initial state that needs to be observed
in System (44) is given by ν0(y) = sin(2πy), η = 0.2, and κ = 0.4. Now, for the subregion

ω1 =
[

1
2 , 2

3

]
⊂ [0, 1], the following results hold.

Proposition 3. There exists a state for which System (44) with the OuPuFu (42) is not weakly
observable in Ω1, but is Z1-observable in the subregion ω1.

Proof. To show that System (44) with the OuPuFu (42) is not weakly observable in Ω1, it
sufficient to verify that ν0 ∈ Ker(Kη,κ). From Equation (43) and the assumptions above we
can now calculate

K0.2,0.4ν0 =2
∞

∑
n=1

t−0.48E0.2,−0.52(−n2π2t0.2) sin
(

nπ

4

)
×

∫ 1

0
sin(2πy) sin(nπy)dy

= 0.

Hence, ν0 ∈ Ker(Kη,κ). As a result, System (44) and (42) is not weakly observable
in Ω1,
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K0.2,0.4 p∗ω1
pω1 ν0 =2

∞

∑
n=1

t−0.48E0.2,−0.52(−n2π2t0.2) sin(0.25nπ)

×
∫ 1

0
p∗ω1

pω1 sin(2πy) sin(nπy)dy

=2
∞

∑
n=1

t−0.48E0.2,−0.52(−n2π2t0.2) sin
(

nπ

4

)
×

∫ 2
3

1
2

sin(2πy) sin(nπy)dy

=2t−0.48E0.2,−0.52(−π2t0.2) sin
(

π

4

)
×

∫ 2
3

1
2

sin(2πy) sin(πy)dy

=
(3
√

3 − 8)t−0.48

6
√

2π
E0.2,−0.52(−π2t0.2)

�=0.

While on the other hand, this leads us to observe that the initial state ν0 is weakly
observable in the subregion ω1. In addition, for all y ∈ ω1, we have

γ̃1 =
∣∣ν0

|ω1
(y)

∣∣− 2
3
< ν0

|ω1

and
γ̃2 =

∣∣ν0
|ω1

(y)
∣∣+ 2

3
> ν0

|ω1
.

Thus, pω1 ν0 ∈ Z1 and (44) together with (42) is Z1-observable in ω1. This completes
the proof.

Let the space P1 be given by

P1 =
{

g ∈ L2(Ω1)|g = 0 in L2(Ω1)\Z1
}

.

From Lemma 4, we have

ψ0 $−→ ‖ψ0‖2
P1

=
∫ T

0
‖Cψ(T − t)‖2dt.

which defines a norm on P1, and thus we can introduce the adjoint System of (44) as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q

[
− DH

t
η,κ
T Φ(y, t)

]
= A∗Q

[
Φ(y, t)

]
+M(b, T − t) in S̄T ,

Φ(ξ, t) = 0 on ∂Ω1 × [0, T],

lim
t→T− Q

[
t I1−ζ

T Φ(y, t)
]
= 0 in Ω1,

then, in view of Theorem 2, we can now conclude that Λψ0 = P
(

0 Iζ−η
T Φ(0)

)
has a unique

solution in P1, and the initial state ν0 is observed between functions γ̃1 and γ̃2 in the subregion ω1.
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Example 2. In this example, we consider C as bounded (zone sensors). Considering the following
diffusion system ⎧⎪⎪⎨⎪⎪⎩

DH
0

η,κ
t ν(y, t) = ∂2

∂y2 ν(y, t) in [0, 1]× [0, T],

ν(ξ, t) = 0 in [0, T],
lim

t→0+
0 I1−ζ

t ν(y, t) = ν0(y) is unknown in [0, 1],
(44)

augmented with the OuPuFu

M(t) =
∫ 1

0
ν(y, T − t)h(y)dy = ν(b, t), (45)

where A = ∂2

∂y2 with eigenvalues λn = −n2π2 and the corresponding eigenfunctions

φn(y) = sin(nπy). Let us fix 1
3 = b ∈ [0, 1] = Ω2 and take any internal subregion

ω2 = [ 1
6 , 1

2 ] of the whole domain. We note that System (44) has a unique mild solution ν(y, t) in
L2([0, T];D(A)) ∩ C([0, 1]× [0, T]).

Proposition 4. There exists a state for which System (44) with the OuPuFu (45) is not weakly
observable in Ω2, but is Z2-observable in the subregion ω2.

Proof. To show that System (44) with the OuPuFu (45) is not weakly observable in Ω2, it is
sufficient to verify that ν0 ∈ Ker(Kη,κ). Thus, we can now derive

CSη,κ(t)ν0 = Kη,κ(t)ν0 =2
∞

∑
n=1

tη+κ(1−η)−1Eη,κ(η−1)−η(−n2π2tη)〈ν0, φn〉φn

(
1
3

)
,

where Eη,κ(·) stands for the two-parameter Mittag–Leffler function. Now, for all
y ∈ [0, 1], |φn| ≤ √

2, the Mittag–Leffler function Eη,κ(η−1)−η(−n2π2tη) is continuous
with |Eη,κ(η−1)−η(−n2π2tη)| ≤ K

1+|−n2π2|tη for t ≥ 0 with K > 0. Hence,

|CSη,κ(t)ν0| = 2
∞

∑
n=1

K
√

2‖ν0‖tη+κ(1−η)−1

1 + | − n2π2|tη

and

K∗
η,κM(t) =2

∞

∑
n=1

φn(y)
∫ 1

3

0
ση+κ(1−η)−1Eη,κ(η−1)−η(−n2π2ση)〈C∗M(σ), φn〉dσ

= S∗
η,κ(t)C

∗M(t).

Thus, the observation operator C is admissible. From the above, we can see that
KerKη,κ(t) �= 0, which means System (44) is not observable in the whole domain [0, 1].
Next, we investigate the observability of the addressed system in the internal subregion ω2.

Kη,κ p∗ω pων0 =2
∞

∑
n=1

φn(y)tη+κ(1−η)−1Eη,κ(η−1)−η(−n2π2tη)〈p∗ω pων0, φn〉L2(ω2)
�= 0.

Thus, the initial state ν0 is weakly observable in the subregion ω2. In addition, for all
y ∈ ω2, we have

¯̃γ1 =
∣∣ν0

|ω2
(y)

∣∣− 2
3
< ν0

|ω2

and
¯̃γ2 =

∣∣ν0
|ω2

(y)
∣∣+ 2

3
> ν0

|ω2
.
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Thus, pω2 ν0 ∈ Z2 and (44) together with (42) is Z2-observable in ω2. This completes
the proof.

Let the space P2 be given by

P2 =
{

g ∈ L2(Ω2)|g = 0 in L2(Ω2)\Z2
}

.

From Lemma 4, we have

ψ0 $−→ ‖ψ0‖2
P2

=
∫ T

0
‖Cψ(T − t)‖2dt,

which defines a norm on P2, and we can introduce the adjoint system of (44) as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q

[
− DH

t
η,κ
T Φ(y, t)

]
= A∗Q

[
Φ(y, t)

]
+ 〈C∗M(t), h〉L2(ω2)

h(y) in Ω2 × [0, T],

Φ(ξ, t) = 0 on ∂Ω2 × [0, T],

lim
t→T− Q

[
t I1−ζ

T Φ(y, t)
]
= 0 in Ω2,

Then, in view of Theorem 3, we can now conclude that Λψ0 = P
(

0 Iζ−η
T Φ(0)

)
has a

unique solution in P2, and the initial state ν0 can be observed between functions ¯̃γ1 and ¯̃γ2 in the
subregion ω2.

5. Conclusions

In this manuscript we studied the concept of regional enlarged observability (ReEnOb)
for fractional differential equations (FDEs) with Hilfer derivatives. We developed an
approach based on the Hilbert uniqueness method (HUM). Based on this approach and
with the knowledge of the initial information of the system and some given measurements,
we reconstructed the initial state ν1

0 on an internal subregion ω from the whole domain Ω.
Our findings show that it is possible to obtain the desired state between two profiles in
some selective internal subregions. Finally, we gave two illustrative examples to support
our theoretical results. It is of great interest for future works to investigate the ReOb of
sub-diffusion systems with the Hilfer derivative in cases where the reconstructed initial
state is in a subregion on the boundary of the whole domain. Furthermore, our paper
motivates the study of the ReEnOb of sub-diffusion systems via ψ-Hilfer or (k, ψ)-Hilfer
fractional derivatives.
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Abstract: The dynamic behavior variation of the Benjamin–Bona–Mahony–Burger (BBM-Burger)
equation has been investigated in this paper. The modified auxiliary equation method (MAEM) and
Ricatti–Bernoulli (RB) sub-ODE method, two of the most reliable and useful analytical approaches,
are used to construct soliton solutions for the proposed model. We demonstrate some of the extracted
solutions using definitions of the β-derivative, conformable derivative (CD), and M-truncated deriva-
tives (M-TD) to understand their dynamic behavior. The hyperbolic and trigonometric functions are
used to derive the analytical solutions for the given model. As a consequence, dark, bell-shaped,
anti-bell, M-shaped, W-shaped, kink soliton, and solitary wave soliton solutions are obtained. We
observe the fractional parameter impact of the derivatives on physical phenomena. The BBM-Burger
equation is functional in describing the propagation of long unidirectional waves in many nonlinear
diffusive systems. The 2D and 3D graphs have been presented to confirm the behavior of analytical
wave solutions.

Keywords: BBM-Burger equation; modified auxiliary equation method (MAEM); Ricatti–Bernoulli
(RB) sub-ODE method; β-derivative; M-truncated derivative (M-TD); conformable derivative (CD);
soliton solutions

MSC: 39A12; 39B62; 33B10; 26A48; 26A51

1. Introduction

Nonlinear partial differential equations (NLPDEs) are frequently used in science and
engineering to model a variety of nonlinear problems that can occur in real-life applica-
tions [1]. These equations, for instance, can be applied to the modeling of fluid dynamical
issues, wave propagation in corrugated media, the study of earthquakes and seismic waves,
and the modeling of optical fibers, among other things. The field of fluid dynamics is
still important even if it is an older one that received a lot of attention. As an extension
of differential equations (DEs) [2] of integer order, there are fractional order differential
equations. Models of NLPDEs from physics and mathematics serve as essentials in theo-
retical sciences. Numerous practical fields, including meteorology, oceanography, and the
aerospace industry, depend on a grasp of these NLPDEs.

Fractional differential equations (FDEs) [3] are becoming more and more prevalent today
in a variety of disciplines, including dynamic systems and mathematics. Leibniz and L’Hôpital
introduced the first idea for FDEs in 1695. In mathematical models incorporating FDEs, the
nonlocal behavior of the fractional order derivatives provides the memory feature. Several

Axioms 2023, 12, 599. https://doi.org/10.3390/axioms12060599 https://www.mdpi.com/journal/axioms242
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researchers have been attracted to the flexibility of fractional theory and the numerous inter-
esting features of fractional calculus (FC) [4–9]. New definitions of fractional derivatives were
introduced by Caputo–Hadamard [10], Katugampola [11], Weyl [12], Riemann–Liouville [13],
and Erdélyi–Kober [14], which enabled fractional calculus to deal with challenging natural
phenomena. Throughout the past few decades, Caputo derivative [15] has been one of the most
frequently employed fractional derivatives (FDs) in numerous research.

The mathematical model for small-amplitude long wave propagation in nonlinear
dispersive media is described by the Benjamin–Bona–Mahony–Burger (BBM-Burger) equa-
tion [16]. The BBM equation has been proven to be preferable to the Korteweg–De Vries
(KdV) [17] equation. The wave-breaking models are essential to the BBM-Burger equation
and the KdV equation. The KdV equation was driven by water waves, and it was utilized
in many other physical systems as a model for long waves. Solitary wave solutions of the
BBM-Burger equation [18] reflect the dynamics of waves in the medium and are essential
to many fields such as physics and dispersive systems [19]. In this study, the BBM-Burger
equation is considered for analytical solutions in the sense of β-derivative, CD, and M-TD.
In β-derivative, the proposed model has the following form

Dσ
β,tw − Dσ

β,twzz + wz +

(
w2

2

)
z
= 0, (1)

where Dσ
β,t is β-derivative and σ is fractional parameter.

In M-TD, the proposed model has the following form

Dσ,β
j,t w − Dσ,β

j,t wzz + wz +

(
w2

2

)
z
= 0, (2)

where Dσ,β
j,t is M-TD and σ and β are fractional parameters.

In CD, the proposed model has the following form

Dσ
c,tw − Dσ

c,twzz + wz +

(
w2

2

)
z
= 0, (3)

where Dσ
c,t is CD and σ is fractional parameter.

The following is the BBM-Burger equation when β = 0 and σ = 1 are used.

wt − wzzt + wz +

(
w2

2

)
z
= 0. (4)

Atangana was the one who first introduced the fractional “β-derivative” [20,21]. The
recently introduced derivatives, which are used to depict various medical situations, meet
a number of requirements that were previously thought to be limits for the fractional
derivatives. Basic and satisfying most of the criteria for the classical integral derivative, the
conformable fractional derivative definition includes linearity, Rolle’s theorem, mean value
theorem [22], product rule, quotient rule, power rule, and chain rule. The M-TD [23,24],
which uses a Mittag–Leffler function with one parameter that satisfies several properties of
integer-order calculus, was introduced in 2017 by Sousa and Oliveira. M-TD also satisfies
the fundamental differential calculus mathematical principles, which stimulates additional
research utilizing these newly formed notions. On conformable and M-TD models in the
field of ocean engineering, there are some recent studies in the literature. The goal of these
investigations is to find soliton solutions for the models with local derivatives. A novel
solution for various FDEs is provided by the conformable fractional derivative, which aims
to expand the ordinary derivative while satisfying some natural properties.

Numerous methods, including the extended ( G′
G2 ) expansion method [25], the multiple

exp-function method [26], the M-lump solution [27], Sardar-subequation technique [28], the
Jacobi elliptic function method (JEFM) [29], Painleve analysis, and many others, can be used
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to find the solitary wave solutions of NLPDEs. However, in this work, the MAEM and RB
sub-ODE method [30] have been utilized for finding efficient and effective traveling wave
solutions. The RB sub-ODE technique is originally created to produce precise traveling
wave solutions, solitary wave solutions, and peaked wave solutions for NLPDEs. Backlund
transformation is applied to the RB equation [31]. NLPDE [32,33] may be converted into a set
of algebraic equations using the RB equation and a traveling wave transformation.

An approach for creating precise differential equation solutions is the MAEM [34].
The auxiliary equation approach has been expanded in this way. It offers a simple method
for handling the solutions of nonlinear evolution equations. This effective method has
been used to achieve findings that are pleasing and aid in the investigation of answers
to numerous issues that are appearing in applied mathematics and physics. Although
there are many different types of traveling wave solutions that may be built using exact
solution techniques, approximation solution approaches are also useful when studying
evolution equations. This study was inspired by recent developments in fractional nonlinear
evolution equations’ traveling wave solutions. Recently, it has been discovered that a
variety of exact solution techniques are useful in creating potential wave behaviors that
correspond to the physical system defined by a specific evolution equation. Reading the
published research papers [21,24,35–38] also inspired the authors. In this paper, we use two
effective analytical approaches to derive the precise soliton solutions of the BBM-Burger
equation while taking into account three natural extensions of the classical derivative,
namely the beta-derivative, M-TD, and CD. Additionally, using the Wolfram Mathematica
12 software, we provide several 2D and 3D graphical representations of the analytical
soliton solutions of the BBM-Burger equation and investigate the impact of the fractional
parameters employed in beta-derivative, M-TD, and CD.

This paper is organized as follows: Basic definitions and their properties are explained
in Section 2. Section 3 represents the mathematical interpretation of the BBM-Burger
equation. Sections 4 and 5 conduct the algorithmic steps of the RB-sub ODE method and
MAEM and apply them to the proposed model. In addition to computing, graphs are used
to show how the result can be physically explained in Section 6. In Section 7, there are some
concluding remarks to wrap up the work.

2. Preliminaries

The definitions of derivatives along with their fundamental properties are discussed
in this section.

2.1. β-Derivative and Its Properties

Definition 1. The β-derivative is another kind of conformable derivative that can be defined, as [20]

Dσ
β,tw(t) = lim

ε→0

w(t + ε(t + 1
Γ(σ) )

1−σ
)− w(t)

ε
, 0 < σ ≤ 1.

The β-derivative has the following properties.

• The β-derivative is a linear operator; Dσ
β,t(cd(z) + rq(z)) = c Dσ

β,td(z) + rDσ
β,tq(z),

∀c, r ∈ �.
• It satisfies the product rule; Dσ

β,t(d(z) ∗ q(z)) = q(z)Dσ
β,td(z) + d(z)Dσ

β,tq(z).

• It satisfies the quotient rule; Dσ
β,t

{
d(z)
q(z)

}
=

q(z)Dσ
β,td(z)−d(z)Dσ

β,tq(z)

q2(z) .

• The β-derivative of a constant is zero; Dσ
β,t(c) = 0, for any constant c.

2.2. M-Truncated Derivative and Its Properties

This section defines an M-TD and presents several results that are surprisingly similar
to those of classical calculus. Sousa et al. [39] recently presented the M-TD, which is a natu-
ral extension of the ordinary derivative. This derivative does not have the shortcomings of
the preceding ones. The M-TD is also known as a conformable fractional derivative [23,40].
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The M-TD can readily satisfy some features of classical calculus, including the quotient
rule, product rule, linearity, chain rule, and function composition rule. The M-TD, which
makes use of a one-parameter Mittag–Leffler function, also satisfies the requirements of
integer-order calculus.

Definition 2. The M-TD for the function w : [0, ∞) → R of order σ ∈ (0, 1) is defined, as [35]

Dσ,β
j,t w(t) =

lim
ε→0

w(tEβ
j (εt−σ))− w(t),

ε

for t > 0. Where Eβ
j (.), β > 0 is a truncated Mittag–Leffler function of one parameter defined, as:

Eβ
j (t) =

j

∑
k=0

tk

Γ(βk + 1)
.

The M-TD has the following properties.

• The M-TD is a linear operator; Dσ,β
j,z (cd(z) + rq(z)) = cDσ,β

j,z d(z) + rDσ,β
j,z q(z),

∀ c, r ∈ �.
• It satisfies the product rule; Dσ,β

j,z (d(z) ∗ q(z)) = q(z)Dσ,β
j,z d(z) + d(z)Dσ,β

j,z q(z).

• It satisfies the quotient rule; Dσ,β
j,z

{
d(z)
q(z)

}
=

q(z)Dσ,β
j,z d(z)−d(z)Dσ,β

j,z q(z)

q2(z) .

• The M-TD for a differentiable function q(z) is defined, as:

Dσ,β
j,z q(z) =

z1−σ

Γ(β + 1)
dq
dz

.

2.3. Conformable Derivative

Definition 3. The conformable derivative of order σ for a function w : [0, ∞) → � is written as:

Dσ
c,tw(t) = lim

ε→0

w(t + ε(t)1−σ)− w(t)
ε

, ∀t > 0.

If w has σ-differentiability in any interval (0, a) with a > 0, then

Dσ
c (w(0)) = lim

t→0+
Dσ

c (w(t)),

whenever the limit of the right-hand side exists.

Further, properties and theorems related to CD are discussed in [37].

3. Mathematical Interpretation of the Proposed Model

To obtain soliton solutions for Equation (4), the following transformations have been
employed.

W(z, t) = w(η). (5)

Three definitions are provided for the traveling wave parameter η.
For β-derivative, η has the following form

η = Kz +
R
σ

(
t +

1
Γ(σ)

)σ

. (6)

For M-TD, η has the following form

η = Kz +
RΓ(β + 1)

σ
tσ. (7)
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For CD, η has the following form

η = Kz +
R
σ

tσ, (8)

where K, R are arbitrary constants with K, R �= 0. Utilizing the transformation Equation (5)
together with Equations (6)–(8), the obtained ordinary differential equation is

(K + R)w′ − K2Rw′′′ + ww′K = 0.

This, when integrated with the integration constant set to zero, yields

(K + R)w − K2Rw′′ + w2

2
K = 0, (9)

where w′ = dw
dη .

4. Application of RB Sub-ODE Method

According to RB sub-ODE method [30], the solution for Equation (9) is

w′ = H1w2−L + F1w + G1wL, (10)

where the constants H1, F1, G1, and L will be found later.
Substituting Equation (10) into Equation (9), we have

−3K2RF1H1w(η)2 + K2LRF1H1w(η)2 − 2K2RH2
1 w(η)3−L + K2LRH2

1 w(η)3−L

−K2RF1G1w(η)2L − K2LRF1G1w(η)2L + Kw(η)1+L + Rw(η)1+L − K2RF2
1 w(η)1+L

−2K2RG1H1w(η)1+L +
1
2

Kw(η)2+L − K2LRG2
1w(η)−1+3L = 0.

(11)

Setting L = 0 in the above equation, we obtain

−K2RF1G1 + Kw(η) + Rw(η)− K2RF2
1 w(η)− 2K2RG1H1w(η) +

1
2

Kw(η)2

−3K2RF1H1w(η)2 − 2K2RH2
1 w(η)3.

(12)

Adjusting each coefficient of wi(i = 0, 1, 2, 3) to zero, we have

−K2RF1G1 = 0,

K + R − K2RF2
1 − 2K2RG1H1 = 0,
K
2
− 3K2RF1H1 = 0,

−2K2RH2
1 = 0.

(13)

Equation (13) produces the following results when it is solved.

H1 = ∓ 1
6
√

R
√

K + R
, F1 = ∓

√
K + R

K
√

R
, G1 = 0.

Case 1.

when L �= 1, F1 �= 0 and G1 = 0, the algebraic solution can be obtained.

w(η) =

(
−H1

F1
+ PeF1(L−1)η

) 1
L−1

, (14)
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W1,1(z, t) =
1(

e
3
√

K+Rη

K
√

R P − K
6(K+R)

)1/3 .

Case 2.

when L �= 1, H1 �= 0 and F1
2 − 4H1G1 < 0, the solitary periodic solutions can be obtained.

w(η) =

⎛⎝− F1

2H1
+

√
4H1G1 − (F1)

2

2H1
tan(

(1 − L)
√

4H1G1 − (F1)
2

2
(η + P))

⎞⎠
1

1−L

, (15)

W1,2(z, t) =

(
−3(K + R)

K
− 3

√
R
√

K + R

√
−K + R

K2R
tan

(
3
2

√
−K + R

K2R
(P + η)

))1/3

.

and

w(η) =

⎛⎝− F1

2H1
−

√
4H1G1 − (F1)

2

2H1
cot(

(1 − L)
√

4H1G1 − (F1)
2

2
(η + P))

⎞⎠
1

1−L

, (16)

W1,3(z, t) =

(
−3(K + R)

K
− 3

√
R
√

K + R

√
−K + R

K2R
cot

(
3
2

√
−K + R

K2R
(P + η)

))1/3

.

Case 3.

when L �= 1, H1 �= 0 and F1
2 − 4H1G1 > 0, these dark optical and solitary optical soliton

solutions are found, respectively.

w(η) =

⎛⎝− F1

2H1
−

√
−4H1G1 + (F1)

2

2H1
coth(

(1 − L)
√
−4H1G1 + (F1)

2

2
(η + P))

⎞⎠
1

1−L

, (17)

W1,4(z, t) =

(
−3(K + R)

K
− 3

√
R
√

K + R

√
K + R
K2R

coth

(
3
2

√
K + R
K2R

(P + η)

))1/3

.

and

w(η) =

⎛⎝− F1

2H1
+

√
−4H1G1 + (F1)

2

2H1
tanh(

(1 − L)
√
−4H1G1 + (F1)

2

2
(η + P))

⎞⎠
1

1−L

, (18)

W1,5(z, t) =

(
−3(K + R)

K
− 3

√
R
√

K + R

√
K + R
K2R

tanh

(
3
2

√
K + R
K2R

(P + η)

))1/3

.

Case 4.

when L �= 1, H1 �= 0 and F1
2 − 4H1G1 = 0, the following algebraic solution is found.

w(η) =

(
− F1

2H1
+

1
H1(L − 1)(η + P)

) 1
1−L

, (19)

W1,6(z, t) =

(
−3(K + R)

K
+

2
√

R
√

K + R
P + η

)1/3

.

247



Axioms 2023, 12, 599

Case 5.

when L �= 1, H1 �= 0 and G1 = 0, the following solution is obtained.

w(η) = (H1(L − 1)(η + P))
1

L−1 , (20)

W1,7(z, t) =
( 3

2
)1/4(

P+η√
R
√

K+R

)1/4 .

where P is an arbitrary constant.

5. Utilizing the MAEM

For obtaining the solutions, the MAEM [34] provides the general solution in the form

w(η) = H0 +
m

∑
k=1

[
HK(φ

h)
k
+ Fk(φ

h)
−k]

, (21)

where H0, Hk’s and Fk’s are unknown constants. The auxiliary equation defines the func-
tion h(η).

h′(η) = s + mφ−h + nφh

ln φ
, (22)

for arbitrary constant values of s, m and n (φ > 0, φ �= 1).
Cases for the Equation (22) are discussed below.

1. If s2 − 4mn < 0 and n �= 0, then, φh(η) =
−s+

√
4mn−s2 tan

(√
4mn−s2η

2

)
2n , or φh(η) =

−
s+

√
4mn−s2cot

(√
4mn−s2η

2

)
2n .

2. If s2 − 4mn > 0 and n �= 0, then, φh(η) = −
s+

√
s2−4mn tanh

(√
s2−4mnη

2

)
2n , or φh(η) =

−
s+

√
s2−4mn coth

(√
s2−4mnη

2

)
2n .

3. If s2 − 4mn = 0 and n �= 0, then, φh(η) = − 2+sη
2nη .

The highest order derivative w′′ and the highest order nonlinear term w2 in Equation (9)
are balanced according to the homogeneous balance principle, yields that m = 2, gives

w(η) = H0 + H1φh + F1φ−h + H2φ2h + F2φ−2h. (23)

The following set of algebraic equations is obtained by equating each coefficient of
φh(η) to zero:

φh(η)−4
: 1

2 KF2
(−12Km2R + F2

)
= 0,

φh(η)−3
: K

(−10KmRsF2 + F1
(−2Km2R + F2

))
= 0,

φh(η)−2
: −3K2mRsF1 +

KF2
1

2 + F2
(
K + R − 4K2R

(
2mn + s2)+ KH0

)
= 0,

φh(η)−1
: F1

(
K + R − K2R

(
2mn + s2)+ KH0

)
+ KF2(−6KnRs + H1) = 0,

φh(η)0
: −K2nRsF1 − 2K2n2RF2 + KH0 + RH0 +

KH2
0

2 − K2mRsH1 + KF1H1 − 2K2m2RH2 + KF2H2 = 0,

φh(η)1
:
(
K + R − K2R

(
2mn + s2)+ KH0

)
H1 + K(−6KmRs + F1)H2 = 0,

φh(η)2
: −3K2nRsH1 +

KH2
1

2 +
(
K + R − 4K2R

(
2mn + s2)+ KH0

)
H2 = 0,

φh(η)3
: K

(−10KnRsH2 + H1
(−2Kn2R + H2

))
= 0,

φh(η)4
: K

(−10KnRsH2 + H1
(−2Kn2R + H2

))
= 0.
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Solving the above equations, yields, the following families.

Family 1:

when H0 = −K−R+8K2mnR+K2Rs2

K , H1 = 12KnRs, H2 = 12Kn2R, F1 = 0, F2 = 0.
The following cases have occurred.

• For s2 − 4mn < 0 and n �= 0, the trigonometric solutions are found.

W1,1(z, t) = −1 − R
K
+ 8KmnR − 2KRs2 + 3KR

(
4mn − s2

)
tan

(
1
2

√
4mn − s2η

)2
,

or

W1,2(z, t) = −1 − R
K
+ KR

(
4mn − s2

)(
−1 + 3 csc

(
1
2

√
4mn − s2η

)2
)

.

• For s2 − 4mn > 0 and n �= 0, the hyperbolic solutions are obtained.

W1,3(z, t) = −1 − R
K
+ 8KmnR − 2KRs2 + 3KR

(
−4mn + s2

)
tanh

(
1
2

√
−4mn + s2η

)2
,

or

W1,4(z, t) = −1 − R
K
+ 8KmnR − 2KRs2 + 3KR

(
−4mn + s2

)
coth

(
1
2

√
−4mn + s2η

)2
.

Family 2:

When H0 = −K−R+8K2mnR+K2Rs2

K , H1 = 0, H2 = 0, F1 = 12KmRs, F2 = 12Km2R.
The following cases are obtained.

• For s2 − 4mn < 0 and n �= 0, the following trigonometric solutions resulted.

W2,1(z, t) = −1 − R
K
+ KR

⎛⎜⎝s2 + 8mn

⎛⎜⎝1 +
3
(

2mn − s2 + s
√

4mn − s2 tan
(

1
2

√
4mn − s2η

))
(

s −√
4mn − s2 tan

(
1
2

√
4mn − s2η

))2

⎞⎟⎠
⎞⎟⎠,

or

W2,2(z, t) = −1 − R
K
+ KR

⎛⎝s2 + 8mn

⎛⎝ 1 + 6mn

(s+
√

4mn−s2 cot( 1
2

√
4mn−s2η))

2

− 3s
s+

√
4mn−s2 cot( 1

2

√
4mn−s2η)

⎞⎠⎞⎠.

• For s2 − 4mn > 0 and n �= 0, the following hyperbolic solutions are found.

W2,3(z, t) = −1 − R
K
+ KR

⎛⎝s2 + 8mn

⎛⎝ 1 + 6mn

(s+
√−4mn+s2 tanh( 1

2

√−4mn+s2η))
2

− 3s
s+

√−4mn+s2 tanh( 1
2

√−4mn+s2η)

⎞⎠⎞⎠,

or

W2,4(z, t) = −1 − R
K
+ KR

⎛⎝s2 + 8mn

⎛⎝ 1 + 6mn

(s+
√−4mn+s2 coth( 1

2

√−4mn+s2η))
2

− 3s
s+

√−4mn+s2 coth( 1
2

√−4mn+s2η)

⎞⎠⎞⎠.

Family 3:

When H0 = −K−R+8K2mnR+K2Rs2

K , H1 = 12KnRs, H2 = 12Kn2R, F1 = 12KmRs, F2 =
12Km2R.

The cases listed below have occurred.
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• For s2 − 4mn < 0 and n �= 0, the trigonometric solutions are found.

W3,1(z, t) = −1 − R
K
− 2KRs2 + 3KR

(
4mn − s2

)
tan

(
1
2

√
4mn − s2η

)2

+ 8KmnR

⎛⎜⎝1 +
3
(

2mn − s2 + s
√

4mn − s2 tan
(

1
2

√
4mn − s2η

))
(

s −√
4mn − s2 tan

(
1
2

√
4mn − s2η

))2

⎞⎟⎠,

or

W3,2(z, t) = −1 − R
K
− 2KRs2 + 3KR

(
4mn − s2

)
cot

(
1
2

√
4mn − s2η

)2

+ 8KmnR

⎛⎝ 1 + 6mn

(s+
√

4mn−s2 cot( 1
2

√
4mn−s2η))

2

− 3s
s+

√
4mn−s2 cot( 1

2

√
4mn−s2η)

⎞⎠.

• For s2 − 4mn > 0 and n �= 0, the following hyperbolic solutions are obtained.

W3,3(z, t) = −1 − R
K
− 2KRs2 + 3KR

(
−4mn + s2

)
tanh

(
1
2

√
−4mn + s2η

)2

+ 8KmnR

⎛⎝ 1 + 6mn

(s+
√−4mn+s2 tanh( 1

2

√−4mn+s2η))
2

− 3s
s+

√−4mn+s2 tanh( 1
2

√−4mn+s2η)

⎞⎠,

or

W3,4(z, t) = −1 − R
K
− 2KRs2 + 3KR

(
−4mn + s2

)
coth

(
1
2

√
−4mn + s2η

)2

+ 8KmnR

⎛⎝ 1 + 6mn

(s+
√−4mn+s2 coth( 1

2

√−4mn+s2η))
2

− 3s
s+

√−4mn+s2 coth( 1
2

√−4mn+s2η)

⎞⎠.

6. Graphical Illustration

This section provides a graphical representation of the BBM-Burger equation solutions
that have been found. Concerning the 2D and 3D graphs of W1,1(z, t), W1,3(z, t), W1,4(z, t),
respectively, provided the periodic and single wave solutions for the values σ = 0.5, 1,
P = 1.7, 5.5, K = 14.5, 15.5, R = −0.5, β = 0.35, within the interval −5 ≤ z ≤ 5, 0 ≤ t ≤ 2
for 3D graph and t = 1 for 2D plots, as shown in Figures 1–3 by RB sub-ODE method.
Figures 4 and 5 represent the Kink and Pulse shape soliton 3D solutions of W1,5(z, t) and
W1,6(z, t) for the values σ = 0.5, P = −1.7, 5.5, K = 14.5, 10.5, R = 14.5, 0.5, β = 0.35 and
2D plots at t = 1 for the same values in the interval −5 ≤ z ≤ 5, 0 ≤ t ≤ 2 by RB sub-ODE
method.

The solutions for the trigonometric and hyperbolic functions in W1,1(z, t) and W1,3(z, t)
are that we obtain the anti-bell-shaped solitons and dark soliton solutions, respectively, by
choosing the values σ = 0.5, m = 1, K = 2, R = 1, β = 0.35, s = 0.1, n = 1, within the range
−10 ≤ z ≤ 10,−10 ≤ t ≤ 10, and t = 1 for 2D surfaces in Figures 6 and 7 by MAEM. The
dark soliton solution, in which the intensity profile of the soliton displays a dip in a uniform
backdrop, this hole-soliton, often referred to as a dark soliton, causes a transient reduction
in wave amplitude. Solutions for the Family 2 in W2,1(z, t) and W2,3(z, t), by MAEM
provides the bright and bell-shaped soliton solutions by taking the values σ = 0.5, m = 1,
K = −2.5, R = 1, β = 0.35, s = 0.1, n = 1, within the range −10 ≤ z ≤ 10,−10 ≤ t ≤ 10,
and t = 1 for 2D surfaces in Figures 8 and 9.
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Figure 1. Graphical representation of analytical solution W1,1(z, t) by RB sub-ODE method, when
σ = 0.5, P = 1.7, K = 14.5, R = −9.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (red), σ = 1, β = 0.5 (purple), σ = 0.3, β = 0.75 (green); (e) 2D plot of β-derivative at different
values of σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red),
1 (purple), 0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 2. Graphical representation of analytical solution W1,3(z, t) by RB sub-ODE method, when
σ = 0.5, P = 5.5, K = 15.5, R = − 7.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (red), σ = 1, β =0.5 (purple), σ = 0.3, β =0.75 (green); (e) 2D plot of β-derivative at different
values of σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red),
1 (purple), 0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 3. Graphical representation of analytical solution W1,4(z, t) by RB sub-ODE method, when
σ = 0.5, P = 1.5, K = 18.5, R = 7, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D graph
at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25 (red),
σ = 1, β = 0.5 (purple), σ = 0.3, β = 0.75 (green); (e) 2D plot of β-derivative at different values of
σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red), 1 (purple),
0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.
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Figure 4. Graphical representation of analytical solution W1,5(z, t) by RB sub-ODE method, when
σ = 0.5, P = −1.7, K = 14.5, R = 14.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (red), σ = 1, β = 0.5 (purple), σ = 0.3, β = 0.75 (green); (e) 2D plot of β-derivative at different
values of σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red),
1 (purple), 0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 5. Graphical representation of analytical solution W1,6(z, t) by RB sub-ODE method, when
σ = 0.5, P = 5.5, K = 10.5, R = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D graph
at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25 (red),
σ = 1, β = 0.5 (purple), σ = 0.3, β = 0.75 (green); (e) 2D plot of β-derivative at different values of
σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red), 1 (purple),
0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.
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Figure 6. Graphical representation of analytical solution W1,1(z, t) by MAEM, when K = 2,
m = 0.1, s = 1, n = 0.1, R = 1, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (blue), σ = 1, β = 0.5 (red), σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different
values of σ = 0.5 (blue), 1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue),
1 (red), 0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 7. Graphical representation of analytical solution W1,3(z, t) by MAEM, when K = 2,
m = 0.1, s = 1, n = 0.1, R = 1, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D
graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25
(blue), σ = 1, β = 0.5 (red), σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different values
of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue), 1 (red),
0.3 (purple); (g) A comparison between M-TD(red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.

257



Axioms 2023, 12, 599

(a) (b)

(c)

-10 -5 5 10
z

-1.0

-0.5

0.5
t

(d)

-10 -5 5 10
z

-1.0

-0.5

0.5
t

(e)

-10 -5 5 10
z

-1.0

-0.5

0.5
t

(f)

-10 -5 5 10
z

-1.0

-0.5

0.5
t

(g)

Figure 8. Graphical representation of analytical solution W2,1(z, t) by MAEM, when K = −2.5,
m = 0.1, s = 0.5, n = 0.1, R = 1, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D
graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25
(blue), σ =1, β = 0.5 (red) , σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different values
of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue), 1 (red),
0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.

In Figures 10 and 11, the trigonometric and hyperbolic solutions of W3,1(z, t) and
W3,3(z, t), we receive the M-shape and W-shape soliton solutions, respectively, by choosing
the values σ = 0.5, m = 1, K = −1, R = 0.5, β = 0.35, s = 0.1, n = 1, within the domain
−10 ≤ y ≤ 10, 0 ≤ t ≤ 5, and t = 1 for 2D surfaces by MAEM. In applied sciences,
particularly in dispersive systems, the retrieved solutions are important for describing a
variety of natural phenomena.
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Figure 9. Graphical representation of analytical solution W2,3(z, t) by MAEM, when K = 3.5,
m = 0.1, s = 0.5, n = 0.1, R = −1, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (blue), σ =1, β = 0.5 (red) , σ = 0.3, β = 0.75(purple); (e) 2D plot of β-derivative at different
values of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue),
1 (red), 0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.

The construction of dark and bright solitons can be seen in Figure 1. The RB sub-
ODE technique provides solutions in the algebraic form in Figure 1, the periodic form
in Figure 2, and the hyperbolic form in Figure 3. The MAEM also gives trigonometric in
Figures 6, 8 and 10 and hyperbolic in Figures 7, 9 and 11 solutions. The bell-shaped soliton
in Figure 9, W-shaped soliton in Figure 10 and M-shaped soliton in Figure 11 are also
achieved in this work. These graphs demonstrate the dynamical and dispersive behavior
of the solitary wave solutions with a suitable choice of parameters. It can be noticed
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that the wave profile slightly varies when the fractional parameter’s value is changed
without changing the form of the curve. A very useful comparison among the different
fractional derivatives, including β, conformable, and M-TD’s, is shown in two-dimensional
line graphs.
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Figure 10. Graphical representation of analytical solution W3,1(z, t) by MAEM, when K = −1,
m = 0.1, s = 1, n = 0.1, R = −0.5, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (blue), σ =1, β = 0.5 (red) , σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different
values of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue),
1 (red), 0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 11. Graphical representation of analytical solution W3,3(z, t) by MAEM, when K = −2,
m = 0.1, s = 1, n = 0.1, R = 0.5, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D
graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25
(blue), σ =1, β = 0.5 (red) , σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different values
of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue), 1 (red),
0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.

7. Conclusions

In this study, the RB sub-ODE approach and the MAEM were used to solve the
nonlinear BBM-Burger problem, yielding novel, accurate, and analytical solitary wave
solutions. These methods provided remarkable solutions that can be operated consistently
and simply. Using these conventional and computerized techniques, we could comprehend
difficult nonlinear differential equations in a range of scientific domains. The solitons
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and other traveling wave solutions of the governing model could be found by applying
the definitions of derivatives with fractional parameters, i.e., β-derivative, CD, and M-
TD, to each function. Trigonometric and hyperbolic function solutions could be found
in the extracted solutions. The outcomes indicated that the MAEM and RB sub-ODE
approaches might be used as helpful mathematical tools for extracting the various solitary
wave solutions with different differential operators. The current work can be modified
in the future to include more evolution equation kinds with various nonlinearities. This
paper has studied the comparison of three derivatives. The analysis says that by changing
the values of fractional parameters, an effect on wave solutions is observed but M-TD is
considered more valuable because, by changing its parameter values, a smooth wave has
been observed. This transitive is very effective and useful. The reason for smooth waves is
the Mittag–Leffler function of one parameter, which is why better results are obtained in
comparison with other derivatives. They can be used by the researcher in the next phases
as well. Future research on the BBM-Burger equation may explore the fractional impacts on
the solutions of the governing system using, the fractional local derivative, the Atangana–
Baleanu derivative, and other recently proposed definitions of fractional derivatives. We
can also consider the BBM-Burger equation with stochastic terms. This study confirms that
the RB sub-ODE approach and MAEM are effective and useful mathematical methods and
are applicable to investigating other fractional NLEEs in science and engineering.
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Abstract: In this paper, we investigate the Darboux problem of conformable partial differential
equations (DPCDEs) using fixed point theory. We focus on the existence and Ulam–Hyers–Rassias
stability (UHRS) of the solutions to the problem, which requires finding solutions to nonlinear partial
differential equations that satisfy certain boundary conditions. Using fixed point theory, we establish
the existence and uniqueness of solutions to the DPCDEs. We then explore the UHRS of the solutions,
which measures the sensitivity of the solutions to small perturbations in the equations. We provide
three illustrative examples to demonstrate the effectiveness of our approach.

Keywords: generalized conformable derivative; Darboux problem; Ulam–Hyers–Rassias stability

MSC: 34A08; 26A33; 47H10

1. Introduction

Fractional calculus (FC) is a fascinating and dynamic branch of mathematical analysis
that focuses on studying the properties and applications of fractional derivatives and
integrals. These noninteger order operators offer a powerful way to model complex
physical, chemical, and engineering systems that cannot be easily described using traditional
calculus techniques. In particular, FC has found applications in fields ranging from fluid
mechanics, electromagnetism, and signal processing to finance, biology, and medicine.
One of the key advantages of FC is its ability to describe nonlocal and memory-dependent
phenomena, making it a powerful tool for modeling and analyzing complex systems in
both time and space domains. As research in this field continues to grow, we can expect to
see even more exciting applications and innovations in the years to come (see [1–3]).

In the past decade, a groundbreaking concept known as the fractional conformable
derivative (FCD) has emerged as a transformative tool in the realm of FC, revolutionizing the
investigation of nonregular solutions. The introduction of the FCD by Khalil et al. (see [4])
has brought about a profound shift in the understanding and application of fractional
derivatives. By possessing properties akin to their integer-order counterparts, the FCD
has opened up new avenues for modeling and analyzing intricate systems across diverse
disciplines. The study of conformable derivatives has attracted considerable attention, with
numerous researchers exploring their definitions, properties, and applications. The work
of Khalil et al. has laid the foundation for the understanding of the FCD, highlighting
its efficacy in capturing the behavior of complex systems that elude traditional calculus
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approaches. This novel approach has found application in a wide range of fields, including
physics, engineering, biology, and finance. Further advancements in conformable calculus
have been documented in a series of seminal publications. For instance, ref. [5] delved into
the exploration of controllability in a class of conformable differential systems, shedding
light on the efficient manipulation of these systems. Meanwhile, ref. [6] focused on the
investigation of nonlinear evolution equations within a Wick-type stochastic environment,
incorporating conformable derivatives to account for the inherent uncertainties. In [7],
the researchers successfully established the existence of solutions to the conformable
diffusion equation, enriching our understanding of diffusion processes influenced by
conformable calculus. Furthermore, ref. [8] explored the notion of stability in the Ulam
sense for conformable differential equations, presenting crucial insights into the behavior
and predictability of such equations. These noteworthy contributions underscore the
growing significance of the FCD and conformable calculus, as researchers strive to unravel
its full potential and push the boundaries of its applications. As the scientific community
continues to delve into the intricacies of conformable derivatives, we anticipate further
groundbreaking developments and novel insights in the coming years, propelling us
towards a deeper understanding of complex systems through the lens of fractional calculus.

In 1940, Ulam posed the question of stability for functional equations at Wisconsin
University (see [9]). The Ulam–Hyers stability was first established by Hyers in 1941 in the
context of Banach spaces (see [10]). This type of stability is now referred to as Ulam–Hyers
stability. In 1978, Rassias [11] extended the Ulam–Hyers stability (UHS) to include functions
of multiple variables. The monographs [12,13] present a comprehensive overview of the
UHS and UHRS of various functional equations. Recently, the study of Ulam’s problem
has been extended to include a wide range of functional equations, such as symmetrical
differential equations, integral equations, integro-differential equations, partial differential
equations, and other types of equations (see [8,14–22]). For example, in [15], the authors
studied the UHRS of pseudoparabolic partial differential equations, while in [19], the UHS
of pantograph fractional stochastic differential equations was investigated. However, to
the best of our knowledge, there is no existing work on the HHRS of the DPCDEs. Building
upon the research conducted by [8], our article aims to generalize the UHRS for PCDEs.
The main contributions of our work can be summarized as follows:

1. Existence and uniqueness of the solution: We provide a rigorous proof of the existence
and uniqueness of the solution for the DPCDEs.

2. UHRS of the DPCDEs: Our study delves into the UHRS of the DPCDEs. We explore the
behavior and stability characteristics of solutions to the DPCDEs under perturbations,
taking into account the principles and methodologies established in the UHRS framework.

The organization of our paper is as follows: Section 2 provides the necessary preliminaries,
setting the foundation for the subsequent analyses. In Section 3, we delve into the
investigation of the existence, uniqueness, and UHRS of the DPCDEs. To illustrate the
practical relevance and applicability of the obtained results, Section 4 showcases three
carefully selected examples. Finally, in Section 5, we summarize our contributions and
discuss directions for future research.

2. Basic Definitions and Tools

In this section, we introduce and define some key terms and concepts that are essential for
understanding the subsequent discussions and analyses presented in this paper [4,5,7,23,24].

Definition 1. Let φ : [w, d) −→ R. The generalized conformable derivative of φ is defined by

Tδ,ψw
w φ(y) = lim

σ→0

φ(y + σψw(y, δ))− φ(y)
σ

, (1)

for every y > w, where δ ∈ (0, 1), and ψw(y, δ) is continuous and nonnegative with

ψw(y, 1) = 1,
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ψw(., δ1) �= ψw(., δ2), where δ1 �= δ2, and δ1, δ2 ∈ (0, 1].

If Tδ,ψw
w φ(y) exists, for every y ∈ (w, a), for some a > w, lim

y−→w+
Tδ,ψw

w φ(y) exists; therefore,

Tδ,ψw
w φ(w) := lim

y−→w+
Tδ,ψw

w φ(y).

Remark 1. We assume that ψw(y, δ) > 0, for all y > w, and 1
ψw

(., δ) is locally integrable.

Definition 2. For δ ∈ (0, 1), the conformable fractional integral of φ is defined by

Iδ,ψw
w φ(y) =

∫ y

w

φ(l)
ψw(l, δ)

dl. (2)

Remark 2. Let l ∈ R∗. If

h(z) := E
ψw
δ (l, z, w) = el

∫ z
w

1
ψw(x,δ) dx,

then
Tδ,ψw

w h(z) = lh(z), and Iδ,ψw
w h(z) =

1
l
(h(z)− 1).

The objective of this investigation is to explore and assess the stability properties of
the system described by the following set of equations

T
θ1,ψc1
c1 T

θ2,ψc2
c2 u(λ1, λ2) = f (λ1, λ2, u(λ1, λ2)), (3)

for all (λ1, λ2) ∈ J = [c1, d1]× [c2, d2], with⎧⎪⎨⎪⎩
u(λ1, c2) = ϕ(λ1), if λ1 ∈ [c1, d1]

u(c1, λ2) = ϕ̃(λ2), if λ2 ∈ [c2, d2]

ϕ(c1) = ϕ̃(c2),

where f ∈ C(J ×R,R) and ϕ : [c1, d1] → R, ϕ̃ : [c2, d2] → R are given absolutely
continuous functions. Equation (3) is equivalent to the following equation

u(λ1, λ2) = Φ(λ1, λ2) +
∫ λ1

c1

∫ λ2

c2

f (t, s, u(t, s))
ψc1(t, θ1)ψc2(s, θ2)

dsdt,

with
Φ(λ1, λ2) = ϕ(λ1) + ϕ̃(λ2)− ϕ(c1).

In this study, we proceed by considering a crucial assumption that plays a fundamental
role in our analysis.
H1: There exists K̄ > 0, such that

| f (λ1, λ2, u1)− f (λ1, λ2, u2)| ≤ K̄|u1 − u2|, (4)

for all (λ1, λ2) ∈ J, u1, u2 ∈ R.

3. Stability Results

In this part, we present the definitions of the UHR and proceed to showcase our main results.
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Definition 3. Equation (3) is UHR stable with respect to (ε, π), with ε > 0 and ψ ∈ C(J,R) if
there is r > 0, such that for each solution V of∣∣∣Tθ1,ψc1

c1 T
θ2,ψc2
c2 V(λ1, λ2)− f (λ1, λ2, V(λ1, λ2))

∣∣∣ ≤ επ(λ1, λ2), (5)

∀ (λ1, λ2) ∈ J, there is a solution U∗(λ1, λ2) to (3):

|V(λ1, λ2)− U∗(λ1, λ2)| ≤ rεπ(λ1, λ2), ∀(λ1, λ2) ∈ J.

Theorem 1. Suppose that H1 holds. If V ∈ AC(J,R) satisfies∣∣∣Tθ1,ψc1
c1 T

θ2,ψc2
c2 V(λ1, λ2)− f (λ1, λ2, V(λ1, λ2))

∣∣∣ ≤ επ(λ1, λ2), (6)

∀ (λ1, λ2) ∈ J, where ε > 0, and π ∈ C(J,R) is nondecreasing with respect to λ1 and λ2; then,
there is a unique solution U∗ to (3), such that

|V(λ1, λ2)− U∗(λ1, λ2)| ≤ ε
K̄ + �

�

∫ d1

c1

ds1

ψc1(s1, θ1)

∫ d2

c2

ds2

ψc2(s2, θ2)
β(d1, d2)π(λ1, λ2), ∀(λ1, λ2) ∈ J,

for any positive constant �, where

β(λ1, λ2) = E
ψc1
θ1

(√
K̄ + �, λ1, c1

)
×E

ψc2
θ2

(√
K̄ + �, λ2, c2

)
.

Proof. Let us consider the metric d on C(J,R), given by:

d(ϑ1, ϑ2) = sup
(λ1,λ2)∈J

|ϑ1(λ1, λ2)− ϑ2(λ1, λ2)|
β(λ1, λ2)π(λ1, λ2)

. (7)

We have
(
C(J,R), d

)
, which is a complete metric space. Let A : C(J,R) → C(J,R), such

that

(Au)(λ1, λ2) := V(c1, λ2) + V(λ1, c2)− V(c1, c2) +
∫ λ1

c1

∫ λ2

c2

f (t, s, u(t, s))
ψc1(t, θ1)ψc2(s, θ2)

dsdt, ∀(λ1, λ2) ∈ J.

Let u1, u2 ∈ C(J,R). By using H1, we obtain

|(Au1)(λ1, λ2)− (Au2)(λ1, λ2)|
≤

∣∣∣∣∫ λ1

c1

∫ λ2

c2

f (s1, s2, u1(s1, s2))− f (s1, s2, u2(s1, s2))

ψc1(s1, θ1)ψc2(s2, θ2)
ds2ds1

∣∣∣∣
≤

∫ λ1

c1

∫ λ2

c2

∣∣∣∣ f (s1, s2, u1(s1, s2))− f (s1, s2, u2(s1, s2))

ψc1(s1, θ1)ψc2(s2, θ2)

∣∣∣∣ds2ds1

≤ K̄
∫ λ1

c1

∫ λ2

c2

|u1(s1, s2)− u2(s1, s2)|
ψc1(s1, θ1)ψc2(s2, θ2)

ds2ds1

≤ K̄
∫ λ1

c1

∫ λ2

c2

|u1(s1, s2)− u2(s1, s2)|
β(s1, s2)π(s1, s2)

β(s1, s2)π(s1, s2)

ψc1(s1, θ1)ψc2(s2, θ2)
ds2ds1

≤ K̄d(u1, u2)
∫ λ1

c1

∫ λ2

c2

β(s1, s2)π(s1, s2)

ψc1(s1, θ1)ψc2(s2, θ2)
ds2ds1

≤ K̄d(u1, u2)π(λ1, λ2)
∫ λ1

c1

∫ λ2

c2

β(s1, s2)

ψc1(s1, θ1)ψc2(s2, θ2)
ds2ds1 (8)

≤ K̄d(u1, u2)π(λ1, λ2)
∫ λ1

c1

E
ψc1
θ1

(√
K̄ + �, s1, c1

)
ψc1(s1, θ1)

ds1

∫ λ2

c2

E
ψc2
θ2

(√
K̄ + �, s2, c2

)
ψc2(s2, θ2)

ds2.

By using Remark 2, we obtain
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|(Au1)(λ1, λ2)− (Au2)(λ1, λ2)| ≤ K̄
K̄ + �

d(u1, u2)π(λ1, λ2)E
ψc1
θ1

(√
K̄ + �, λ1, c1

)
E

ψc2
θ2

(√
K̄ + �, λ2, c2

)
. (9)

Then,

|(Au1)(λ1, λ2)− (Au2)(λ1, λ2)| ≤ K̄
K̄ + �

d(u1, u2)π(λ1, λ2)β(λ1, λ2).

Therefore,
|(Au1)(λ1, λ2)− (Au2)(λ1, λ2)|

π(λ1, λ2)β(λ1, λ2)
≤ K̄

K̄ + �
d(u1, u2). (10)

It follows from (7) and (10) that

d(Au1,Au2) ≤ K̄
K̄ + �

d(u1, u2).

Consequently, by establishing the contractiveness of A, we can derive from (6) that

|V(λ1, λ2)−AV(λ1, λ2)| ≤ ε
∫ λ1

c1

∫ λ2

c2

π(s1, s2)

ψc1(s1, θ1)ψc2(s2, θ2)
ds2ds1

≤ επ(λ1, λ2)
∫ d1

c1

ds1

ψc1(s1, θ1)

∫ d2

c2

ds2

ψc2(s2, θ2)
, ∀(λ1, λ2) ∈ J;

then,

|V(λ1, λ2)−AV(λ1, λ2)|
β(λ1, λ2)

≤ επ(λ1, λ2)
∫ d1

c1

ds1

ψc1(s1, θ1)

∫ d2

c2

ds2

ψc2(s2, θ2)
, ∀(λ1, λ2) ∈ J,

so that

d(V,AV) ≤ ε
∫ d1

c1

ds1

ψc1(s1, θ1)

∫ d2

c2

ds2

ψc2(s2, θ2)
.

It follows from Theorem 2 in [18] that there is a solution U∗ to (3) such that

d(V, U∗) ≤ ε
K̄ + �

�

∫ d1

c1

ds1

ψc1(s1, θ1)

∫ d2

c2

ds2

ψc2(s2, θ2)
,

so that

|V(λ1, λ2)− U∗(λ1, λ2)| ≤ ε
K̄ + �

�

∫ d1

c1

ds1

ψc1(s1, θ1)

∫ d2

c2

ds2

ψc2(s2, θ2)
β(d1, d2)π(λ1, λ2),

for all (λ1, λ2) ∈ J.

In order to investigate the Ulam stability of Equation (3), we present the following
notable results.

Theorem 2. Suppose that H1 holds. If V ∈ AC(J,R) satisfies∣∣∣Tθ1,ψc1
c1 T

θ2,ψc2
c2 V(λ1, λ2)− f (λ1, λ2, V(λ1, λ2))

∣∣∣ ≤ ε, (11)

∀ (λ1, λ2) ∈ J, where ε > 0; then, there is a unique solution U∗ to (3), such that

|V(λ1, λ2)− U∗(λ1, λ2)| ≤ ε
K̄ + �

�

∫ d1

c1

ds1

ψc1(s1, θ1)

∫ d2

c2

ds2

ψc2(s2, θ2)
β(d1, d2), ∀(λ1, λ2) ∈ J,
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for any positive constant �, where

β(λ1, λ2) = E
ψc1
θ1

(√
K̄ + �, λ1, c1

)
×E

ψc2
θ2

(√
K̄ + �, λ2, c2

)
.

Proof. The proof is similar to Theorem 1.

Remark 3. An important observation to highlight is that the outcomes presented in [18] align with
our findings when θ1 = θ2 = 1 within the current context.

4. Illustrative Examples

In this section, we provide three illustrative examples to corroborate the major results
outlined in Section 3.

Example 1. We consider Equation (3) for c1 = c2 = 0, d1 = d2 = 1, θ1 = 1, θ2 = 0.5,
ψc2(s, θ2) = s1−θ2 , and f (v1, v2, r) = v1

3v2 sin(r).
We have∣∣∣v1

3v2 sin(r1)− v1
3v2 sin(r2)

∣∣∣ ≤ |r1 − r2|, ∀ (v1, v2) ∈ [0, 1]× [0, 1], r1, r2 ∈ R.

Then, K̄ = 1. Suppose that V satisfies∣∣∣Tθ1,ψc1
c1 T

θ2,ψc2
c2 V(λ1, λ2)− f (λ1, λ2, V(λ1, λ2))

∣∣∣ ≤ 0.1(λ1 + λ2 + 2), (12)

for all (λ1, λ2) ∈ [0, 1]× [0, 1]. Here, ε = 0.1, and π(λ1, λ2) = λ1 + λ2 + 2. It follows from
Theorem 1 that there is a solution U∗ to the equation, and L > 0, such that

|V(λ1, λ2)− U∗(λ1, λ2)| ≤ 0.1L(λ1 + λ2 + 2), ∀ (λ1, λ2) ∈ [0, 1]× [0, 1].

The exact solution U∗ and the approximate solution V are plotted in Figure 1.

Figure 1. Side-by-side comparison of the exact solution (left) and the approximate solution (right)
for Example 1, with θ1 = 1, θ2 = 0.5, ϕ(λ) = −2λ2, and ϕ̃(λ) = sin2(λ), on the domain [0, 1]× [0, 1].

Example 2. We consider Equation (3) for c1 = c2 = 0, d1 = d2 = 2, θ1 = 0.8, θ2 = 0.6,
ψc1(s, θ1) = s1−θ1 , ψc2(s, θ2) = s1−θ2 and f (v1, v2, r) = v1v2

2 cos(r).
We have∣∣∣v1v2

2 cos(r1)− v1v2
2 cos(r2)

∣∣∣ ≤ 8|r1 − r2|, ∀ (v1, v2) ∈ [0, 2]× [0, 2], r1, r2 ∈ R.
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Then, K̄ = 8. Suppose that V satisfies∣∣∣Tθ1,ψc1
c1 T

θ2,ψc2
c2 V(λ1, λ2)− f (λ1, λ2, V(λ1, λ2))

∣∣∣ ≤ 0.01(λ2
1 + λ2

2 + 5), (13)

for all (λ1, λ2) ∈ [0, 2]× [0, 2]. Here, ε = 0.01, and π(λ1, λ2) = (λ2
1 + λ2

2 + 5). It follows from
Theorem 1 that there is a solution U∗ to the equation, and L > 0, such that

|V(λ1, λ2)− U∗(λ1, λ2)| ≤ 0.01L(λ2
1 + λ2

2 + 5), ∀ (λ1, λ2) ∈ [0, 2]× [0, 2].

The exact solution U∗ and the approximate solution V are plotted in Figure 2.

Figure 2. Comparison of the precise solution (on the left) and the approximated solution (on the
right) for Example 2, considering θ1 = 0.8, θ2 = 0.6, ϕ(λ) = 1 + λ2, and ϕ̃(λ) = cos2(λ) on the
interval [0, 2]× [0, 2].

Example 3. We consider Equation (3) for c1 = c2 = 0, d1 = d2 = 3, θ1 = 0.4, θ2 = 0.6,
ψc1(s, θ1) = s1−θ1 , ψc2(s, θ2) = s1−θ2 , and f (v1, v2, r) = cos(v1)v2r.
We have

|cos(v1)v2r1 − cos(v1)v2r2| ≤ 3|r1 − r2|, ∀ (v1, v2) ∈ [0, 3]× [0, 3], r1, r2 ∈ R.

Then, K̄ = 3. Suppose that V satisfies∣∣∣Tθ1,ψc1
c1 T

θ2,ψc2
c2 V(λ1, λ2)− f (λ1, λ2, V(λ1, λ2))

∣∣∣ ≤ 0.01, (14)

for all (λ1, λ2) ∈ [0, 3]× [0, 3]. Here, ε = 0.01. It follows from Theorem 2 that there is a solution
U∗ to the equation, and L > 0, such that

|V(λ1, λ2)− U∗(λ1, λ2)| ≤ 0.01L, ∀ (λ1, λ2) ∈ [0, 3]× [0, 3].

The exact solution U∗ and the approximate solution V are plotted in Figure 3.
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Figure 3. The exact solution (left) and the approximate solution (right) for Example 3, with θ1 = 0.4,
θ2 = 0.6, ϕ(λ) = −1 + 1

200 λ, and ϕ̃(λ) = −1 − 1
100 λ, on the interval [0, 3]× [0, 3], displayed side by

side for easy comparison.

5. Conclusions

In conclusion, this paper delved into a comprehensive investigation of the existence,
uniqueness, and UHRS for the DPCDEs. Using the Banach fixed-point theorem, we
established the existence and uniqueness of solutions to the DPCDEs that satisfy the
prescribed boundary conditions. Furthermore, our exploration of the UHRS for the
DPCDEs shed light on the robustness and resilience of the solutions under perturbations. By
considering the appropriate stability concepts and utilizing analytical tools, we quantified
the stability properties of the solutions. The inclusion of three illustrative examples in this
paper serves to solidify and showcase the main obtained results. We can generalize our
work by using the operators given in [25–34].
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Abstract: In the current study, we investigate the stochastic Benjamin–Bona–Mahony equation with
beta derivative (SBBME-BD). The considered stochastic term is the multiplicative noise in the Itô
sense. By combining the F -expansion approach with two separate equations, such as the Riccati and
elliptic equations, new hyperbolic, trigonometric, rational, and Jacobi elliptic solutions for SBBME-BD
can be generated. The solutions to the Benjamin–Bona–Mahony equation are useful in understanding
various scientific phenomena, including Rossby waves in spinning fluids and drift waves in plasma.
Our results are presented using MATLAB, with numerous 3D and 2D figures illustrating the impacts
of white noise and the beta derivative on the obtained solutions of SBBME-BD.
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1. Introduction

Nonlinear evolution equations (NEEs) are utilized to explain complex phenomena in
many disciplines, including optical fiber communication, chemical kinetics, population
dynamics, chaotic systems, photonic, plasma physics, electromagnetism, ocean wave, wave
propagation, nuclear physics, fluid mechanics, and solid-state physics. Obtaining traveling
wave solutions for NEEs is the most significant physical challenge. There are several
effective methods for solving NEEs, including the generalized Kudryashov approach [1],
modified decomposition approach [2], Riccati equation expansion [3], sine-Gordon expan-
sion [4], sine-cosine method [5], Exp-function [6], improved tan(ϕ/2)-expansion [7], Lie
symmetry [8], Jacobi elliptic function [9], and the tanh–sech method [10].

Recently, numerous mathematicians have introduced several fractional derivatives.
Some of the most well-known are those presented by Caputo, Riemann-Liouville, Grunwald-
Letnikov, Kober, Erdelyi, Marchaud, Hadamard, and Riesz [11–14]. Most kinds of fractional
derivatives do not follow the chain rule, quotient rule, or product rule. In recent years,
Atangana et al. [15] produced a new operator derivative called the beta-derivative (BD),
which extends the classical derivative. If f : (0, ∞) → R then its beta derivative [15] is
defined as:

Dβ
x φ(x) =

dβφ

dxβ
= lim

h→0

φ(x + h(x + 1
Γ(β)

)1−β)− φ(x)

h
, 0 < β ≤ 1.

Moreover, the BD possesses the following properties [15] for all real numbers a and b:
(1) Dβ

x f (y) = (x + 1
Γ(β)

)1−β d f
dx ,
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(2) Dβ
x (a f + bg) = aDβ

x ( f ) + bDβ
x (g),

(3) Dβ
x ( f ◦ g(x)) = (x + 1

Γ(β)
)1−βg′(x) f ′(g(x)),

(4) Dβ
x (a) = 0.

Moreover, stochastic partial differential equations (SDEs) have a wide range of ap-
plications in physics, including molecular dynamics, neurodynamics, climate dynamics,
geophysics, biology, physics, chemistry, and other scientific disciplines [16–18]. More pre-
cisely, SDEs characterize all dynamical equations in which quantum influences are either
insignificant or can be accounted for as perturbations. SDEs are an extension of the theory
of dynamical systems to models with noise. This is a significant generalization because
actual systems cannot be entirely isolated from their surroundings and, as a result, are
always subject to external stochastic influence.

As a consequence, obtaining exact solutions to fractional or stochastic differential
equations is critical. Many analytical and numerical methods, including the (G′/G)-
expansion method [19], the mapping method [20], the Jacobi elliptic function technique [21],
the extended tanh-coth method [22], bifurcation analysis [23,24], and more.

Therefore, it is critical here to look at the stochastic Benjamin–Bona–Mahony equation
with beta derivative (SBBME-BD) as follows:

Qt + 6QDβ
xQ+Dβ

xxxQ− αDβ
xxQt = σ(Q− αDβ

xxQ)Bt, (1)

where the function Q = Q(x, t) is real, σ is the strength of the noise, B = B(t) is a white
noise that satisfies the following properties: (i) B has continuous trajectories, (ii) B(0) = 0,
and (iii) B(ti+1)−B(ti) has standard normal distribution. If we put σ = 0, and β = 1, then
we obtain the Benjamin–Bona–Mahony equation as follows:

Qt + 6QQx +Qxxx − αQxxt = 0. (2)

Benjamin, Bona, and Mahony [25] investigated Equation (2) as a modification of the
KdV equation. The modified equation was proposed to simulate long surface gravity
waves with small amplitudes propagating in a 1 + 1 dimension. Many researchers have
acquired the exact solutions of Equation (2) by applying many various methods, such as
the generalized (G′/G)-expansion method [26], (G′/G)-expansion method [27], Hirota’s
bilinear method [28], the Lie group method [29], the exp-function method [30], the tanh–
coth method, and the sn–ns method [31]. The stochastic Benjamin–Bona–Mahony equation
with beta derivative has not been considered until now.

The motivation behind this study is to obtain exact stochastic solutions of SBBME-BD
(1) using the F -expansion approach combined with two distinct equations, namely the
Riccati and elliptic equations. The presence of a stochastic term in the equation makes
these solutions particularly useful for physicists in understanding important physical
phenomena. Moreover, we present various 2D and 3D graphical representations using
the MATLAB program to explore the impact of the Beta derivative and noise on the exact
solution of SBBME-BD (1).

The sequence of the paper is as follows: In Section 2, we derive the wave equation
for the SBBME-BD (1). In Section 3, the solution of the SBBME-BD (1) may be obtained by
using F white noise and the BD on the obtained solutions of SBBME-BD (1). In the end,
the conclusions of this paper are introduced.

2. Traveling Wave Equation for SBBME-BD

The wave equation for SBBME-BD (1) is achieved by applying:

Q(x, t) = G(ζ)e[σB(t)− 1
2 σ2t], ζ =

ζ1

β
(x +

1
Γ(β)

)β + ζ2t, (3)
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where G is a deterministic function, and ζ1, ζ2 are unknown constants. We note that

Qt = [ζ2G′ + σGBt +
1
2

σ2G−1
2

σ2G]e[σB(t)− 1
2 σ2t]

= [ζ2G′ + σGBt]e[σB(t)−
1
2 σ2t], (4)

and
Dβ

xxQt = [ζ2
1ζ2G′′′ + σζ2

1G′′Bt]e[σB(t)−
1
2 σ2t] (5)

Dβ
xQ = ζ1G′e[σB(t)−

1
2 σ2t], Dβ

xxxQ = ζ3
1G′′′e[σB(t)−

1
2 σ2t]. (6)

Inserting Equation (3) into Equation (1) and utilizing (4)–(6), we obtain

ζ2G′ + (ζ3
1 − αζ2

1ζ2)G′′′ + 6ζ1GG′e[σB(t)−
1
2 σ2t] = 0. (7)

Taking the expectations on both sides, we have

ζ2G′ + (ζ3
1 − αζ2

1ζ2)G′′′ + 6ζ1GG′e−
1
2 σ2t

Ee[σB(t)] = 0. (8)

Since B(t) is a Gaussian process, then E(eσB(t)) = e
1
2 σ2t. Thus, Equation (8) becomes

ζ2G′ + (ζ3
1 − αζ2

1ζ2)G′′′ + 6ζ1GG′ = 0. (9)

Integrating Equation (9) once with a zero integration constant yields

G′′ + γ1G + γ2G2 = 0, (10)

where
γ1 =

ζ2

(ζ3
1 − αζ2

1ζ2)
and γ2 =

3
(ζ2

1 − αζ1ζ2)
.

3. Exact Solutions of SBBME-BD

Utilizing the F -expansion method (F -EM) with two different equations, such as
the Riccati equation and elliptic equation, the solutions to Equation (10) are discovered.
Afterward, the SBBME-BD solutions (1) can be obtained.

3.1. F -EM with Riccati Equation

Assuming that the solution G of Equation (10) has the form:

G(ζ) = �0 +
J

∑
k=1

�kF k, (11)

where F is the solution of the Riccati equation:

F′ = F 2 + φ, (12)

Determining J needs balancing G′′ with G2 in Equation (10) as

J + 2 = 2J ⇒ J = 2.

Equation (11) becomes
G(ζ) = �0 + �1F+�2F 2. (13)
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Equation (12) has the following solution:

F (ζ) =
√

φ tan(
√

φζ) or F (ζ) = −√
φ cot(

√
φζ), (14)

If φ > 0, or

F (ζ) = −√−φ tanh(
√−φζ) or F (ζ) = −√−φ coth(

√−φζ), (15)

If φ < 0, or

ϕ(ζ) =
−1
ζ

, (16)

If φ = 0.
Now, putting Equation (13) into Equation (10), we have

(6�2 + γ2�
2
2)F 4 + (2�1 + 2γ2�1�2)F 3 + (8φ�2 + 2�0�2γ2 + �

2
1γ2 + γ1�2)F 2

(2φ�1 + γ1�1 + 2γ2�0�1)F + (2φ2
�2 + γ1�0 + γ2�

2
0) = 0

Putting the coefficients of F to zero:

6�2 + γ2�
2
2 = 0,

2�1 + 2γ2�1�2 = 0,

8φ�2 + 2�0�2γ2 + �
2
1γ2 + γ1�2 = 0,

2φ�1 + γ1�1 + 2γ2�0�1 = 0,

and
2φ2

�2 + γ1�0 + γ2�
2
0 = 0.

By solving these equations, we obtain the two families of solutions:
First family:

�0 =
−6φ

γ2
, �1 = 0, �2 =

−6
γ2

, ζ2 =
4φζ3

1
1 + 4αφζ2

1
, (17)

Second family:

�0 =
−2φ

γ2
, �1 = 0, �2 =

−6
γ2

, ζ2 =
−4φζ3

1
1 − 4αφζ2

1
, (18)

First family: The solution to Equation (10) is as follows:

G(ζ) = −6φ

γ2
− 6

γ2
F 2(ζ).

There are three distinct cases for F (ζ):
Case 1: If φ > 0, then with (14), we have

G(ζ) = −6φ

γ2
− 6φ

γ2
tan2(

√
φζ) = −6φ

γ2
sec2(

√
φζ),

and
G(ζ) = −6φ

γ2
− 6φ

γ2
cot2(

√
φζ) =

−6φ

γ2
csc2(

√
φζ).
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Consequently, the solution of SBBME-BD (1) is

Q(x, t) = −6φ

γ2
sec2(

√
φζ)e(σB(t)−

1
2 σ2t), (19)

and
Q(x, t) =

−6φ

γ2
csc2(

√
φζ)e(σB(t)−

1
2 σ2t), (20)

where ζ = ζ1
β (x + 1

Γ(β)
)β +

4φζ3
1

1+4αφζ2
1
t.

Case 2: If φ < 0, then by using (15), we have

G(ζ) = −6φ

γ2
+

6φ

γ2
tanh2(

√−φζ) =
−6φ

γ2
sech2(

√−φζ),

and
G(ζ) = −6φ

γ2
+

6φ

γ2
coth2(

√−φζ) =
6φ

γ2
csch2(

√−φζ).

Consequently, the solution of SBBME-BD (1) is

Q(x, t) =
−6φ

γ2
sech2(

√−φζ)e(σB(t)−
1
2 σ2t), (21)

and
Q(x, t) =

6φ

γ2
csch2(

√−φζ)e(σB(t)−
1
2 σ2t). (22)

Case 3: If φ = 0, then by using (16), we have

G(ζ) = 6
γ2

1
ζ2 .

Consequently, the solution of SBBME-BD (1) is

Q(x, t) = [− 6
γ2

1
ζ2 ]e

(σB(t)− 1
2 σ2t), (23)

where ζ = ζ1
β (x + 1

Γ(β)
)β +

4φζ3
1

1+4αφζ2
1
t.

Second family: Equation (10) has the solution

G(ζ) = −2φ

γ2
− 6

γ2
F 2(ζ)

There are three distinct cases for F (ζ):
Case 1: If φ > 0, then by using (14), we have

G(ζ) = −2φ

γ2
− 6φ

γ2
tan2(

√
φζ),

and
G(ζ) = −2φ

γ2
− 6φ

γ2
cot2(

√
φζ).

Consequently, the solution of SBBME-BD (1) is

Q(x, t) = [
−2φ

γ2
− 6φ

γ2
tan2(

√
φζ)]e(σB(t)−

1
2 σ2t), (24)
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and
Q(x, t) = [

−2φ

γ2
− 6φ

γ2
cot2(

√
φζ)]e(σB(t)−

1
2 σ2t), (25)

where ζ = ζ1
β (x + 1

Γ(β)
)β − 4φζ3

1
1−4αφζ2

1
t.

Case 2: If φ < 0, then by using (15), we have

G(ζ) = −2φ

γ2
+

6φ

γ2
tanh2(

√−φζ),

and
G(ζ) = −2φ

γ2
+

6φ

γ2
coth2(

√−φζ).

Consequently, the solution of SBBME-BD (1) is

Q(x, t) = [
−2φ

γ2
+

6φ

γ2
tanh2(

√−φζ)]e(σB(t)−
1
2 σ2t), (26)

and
Q(x, t) = [

−2φ

γ2
+

6φ

γ2
coth2(

√−φζ)]e(σB(t)−
1
2 σ2t), (27)

where ζ = ζ1
β (x + 1

Γ(β)
)β − 4φζ3

1
1−4αφζ2

1
t.

Case 3: If φ = 0, then by using (16), we have

G(ζ) = 6
γ2

1
ζ2 .

Consequently, the solution of SBBME-BD (1) is

Q(x, t) =
6

γ2

1
ζ2 e(σB(t)−

1
2 σ2t), (28)

where ζ = ζ1
β (x + 1

Γ(β)
)β − 4φζ3

1
1−4αφζ2

1
t.

3.2. F -EM with Elliptic Equation

Suppose that the solution of Equation (10) has the form (13). However, at this time, F
solves the following elliptic equation:

F′ =
√

R + KF 2 + PF 4, (29)

where R, K, and P are constants. Differentiating Equation (13) twice and using (29), we have

G′′ = �1(KF + 2PF 3) + 2�2(R + 2KF 2 + 3PF 4). (30)

Setting Equations (13) and (30) into Equation (10), we have

(6�2P + γ2�
2
2)F 4 + (2P�1 + 2�1�2γ2)F 3 + (4�2K + 2γ2�0�2 + �

2
1

+�2γ1)F 2 + (�1K + 2γ2�0�1 + γ1�1)F+(2R�2 + γ1�0 + γ2�
2
0) = 0.

If we assign each coefficient of F k to 0, we will have a system of equations. Here are the
two families we obtain when we solve this system for K2 − 3RP > 0:
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First family:

�0 = −2(
K +

√
(K2 − 3RP)

γ2
), �1 = 0, �2 =

−6P
γ2

, ζ2 =
4
√
(K2 − 3RP)ζ3

1

1 + 4α
√
(K2 − 3RP)ζ2

1

.

Second family:

�0 = −2(
K −√

(K2 − 3RP)
γ2

), �1 = 0, �2 =
−6P
γ2

, ζ2 =
−4

√
(K2 − 3RP)ζ3

1

1 − 4α
√
(K2 − 3RP)ζ2

1

.

In both families, the solution of Equation (10) takes the form:

G(ζ) = �0 + �2F 2(ζ). (31)

There are many cases for F depending on P, K and R such that K2 − 3RP > 0 as follows:

Case P K R F(ζ)
1 ρ2 −(1 + ρ2) 1 sn(ζ)
2 1 2ρ2 − 1 −ρ2(1 − ρ2) ds(ζ)
3 1 2 − ρ2 (1 − ρ2) cs(ζ)
4 −ρ2 2ρ2 − 1 (1 − ρ2) cn(ζ)
5 −1 2 − ρ2 (ρ2 − 1) dn(ζ)

6 ρ2

4
(ρ2−2)

2
1
4 (or ρ2

4 )
sn(ζ)

1±dn(ζ)

7 −1
4

(ρ2+1)
2

−(1−ρ2)2

4 ρcn(ζ)± dn(ζ)

8 ρ2−1
4

(ρ2+1)
2

(ρ2−1)
4

dn(ζ)
1±sn(ζ)

9 1−ρ2

4
(1−ρ2)

2
(1−ρ2)

4
cn(ζ)

1±sn(ζ)

For the first family: the solutions of SBBME-BD (1) are

Q1(x, t) = [
2(1 + ρ2)− 2

√
ρ4 − ρ2 + 1

γ2
− 6ρ2

γ2
sn2(ζ)]e[σB(t)−

1
2 σ2t], (32)

Q2(x, t) = [
(2 − 4ρ2)− 2

√
ρ4 − ρ2 + 1

γ2
− 6

γ2
ds2(ζ)]e[σB(t)−

1
2 σ2t], (33)

Q3(x, t) = [
(2ρ2 − 4)− 2

√
ρ4 + ρ2 + 1

γ2
− 6

γ2
cs2(ζ)]e[σB(t)−

1
2 σ2t], (34)

Q4(x, t) = [
(2 − 4ρ2)− 2

√
ρ4 − ρ2 + 1

γ2
+

6ρ2

γ2
ds2(ζ)]e[σB(t)−

1
2 σ2t]. (35)

Q5(x, t) = [
(2ρ2 − 4)− 2

√
ρ4 − ρ2 + 1

γ2
+

6
γ2

dn2(ζ)]e[σB(t)−
1
2 σ2t]. (36)

Q6(x, t) = [
(4 − 2ρ2)−√

4ρ4 − 19ρ2 + 16
2γ2

− 3ρ2

2γ2

sn2(ζ)

(1 ± dn(ζ))2 ]e
[σB(t)− 1

2 σ2t]. (37)

Q7(x, t) = [
−(2ρ2 + 2)−√

ρ4 + 14ρ2 + 1
2γ2

+
3

2γ2
(ρcn(ζ)± dn(ζ))2]e[σB(t)−

1
2 σ2t]. (38)

Q8(x, t) = [
−(2ρ2 + 2)−√

ρ4 + 14ρ2 + 1
2γ2

− 3(ρ2 − 1)
2γ2

dn2(ζ)

[1 ± sn(ζ)]2
]e[σB(t)−

1
2 σ2t]. (39)
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Q9(x, t) = [
(2ρ2 − 2)−√

ρ4 − 2ρ2 + 1
2γ2

− 3(1 − ρ2)

2γ2

cn2(ζ)

[1 ± sn(ζ)]2
]e[σB(t)−

1
2 σ2t]. (40)

If ρ → 1 in Equations (32)–(40), then we attain the soliton solutions for SBBME-BD
(1) as:

Q(x, t) = [
2

γ2
− 6

γ2
tanh2(ζ)]e[σB(t)−

1
2 σ2t]. (41)

Q(x, t) = [
−4
γ2

− 6
γ2

csch2(ζ)]e[σB(t)−
1
2 σ2t]. (42)

Q(x, t) = [
−4
γ2

+
6

γ2
sech2(ζ)]e[σB(t)−

1
2 σ2t]. (43)

Q(x, t) = [
1

2γ2
− 3

2γ2

tanh2(ζ)

(1 ± sech(ζ))2 ]e
[σB(t)− 1

2 σ2t]. (44)

Q(x, t) = [
1

2γ2
− 3

2γ2
(coth(ζ)∓ csch(ζ))2]e[σB(t)−

1
2 σ2t]. (45)

If ρ → 0 in Equations (32)–(40), then we acquire the triangular periodic solutions for
SBBME-BD (1) as:

Q(x, t) = − 6
γ2

csc2(ζ)]e[σB(t)−
1
2 σ2t]. (46)

Q(x, t) = [
−6
γ2

− 6
γ2

cot2(ζ)]e[σB(t)−
1
2 σ2t] = − 6

γ2
csc2(ζ)e[σB(t)−

1
2 σ2t]. (47)

Q(x, t) =
−3
2γ2

[1 − 1
[1 ± sin(ζ)]2

]e[σB(t)−
1
2 σ2t]. (48)

Q(x, t) =
−3
2γ2

[1 +
cos2(ζ)

[1 ± sin(ζ)]2
]e[σB(t)−

1
2 σ2t]. (49)

Second Family: By following the same steps as the first family, the same solutions may
be found with various coefficients.

4. Impacts of the Beta Derivative and Noise on SBBME-BD Solutions

We discuss the impact of the BD and white noise on the exact solutions of the SBBME-
BD (1). To demonstrate the behavior of these solutions, we provide various graphs. For
a different σ (noise intensity), we run some simulations for acquired solutions, including
Equations (26) and (32). Let us first fix the parameters ζ1 = 1, φ = −1, α = 1

2 and ρ = 0.5.
Moreover, let x ∈ [0, 6] and t ∈ [0, 3].

Effects of the beta derivative:When β decreases, we can observe in Figures 1 and 2
that the form of the graph is compressed:
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(a) σ = 0, and β = 1 (b) σ = 0, and β = 0.7

(c) σ = 0, and β = 0.5 (d) σ = 0, and β = 1, 0.7, 0.5

Figure 1. (a–c) show the 3D shapes of Equation (26) with σ = 0 and different values of β = 1, 0.7, 0.5
(d) Depicts a graph in two dimensions for these values of β.

(a) σ = 0, and β = 1 (b) σ = 0, and β = 0.7

(c) σ = 0, and β = 0.5 (d) σ = 0, and β = 1, 0.7, 0.5

Figure 2. (a–c) show the 3D shapes of Equation (32) with σ = 0 and various values of β = 1, 0.7, 0.5
(d) Depicts a graph in two dimensions for these values of β.

As we can see in Figures 1 and 2, the solution curves do not intersect. Additionally,
the curves shift to the right when the order of the beta derivative increases.
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Impacts of white noise: The impact of noise on the solutions is seen in Figures 3 and 4
as follows:

(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 0, 1, 2

Figure 3. (a–c) show the 3D shapes of the solution Q(x, t) to Equation (26) for various values of
σ = 0, 1, 2 (d) Depicts a graph in two dimensions for these values of σ.

(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 0, 1, 2

Figure 4. (a–c) show the 3D shapes of the solution Q(x, t) to Equation (32) for various values of
σ = 0, 1, 2 (d) Depicts a graph in two dimensions for these values of σ.
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From Figures 3 and 4, we can conclude that there are distinct types of solutions, such as
hyperbolic, trigonometric, rational, and Jacobi elliptic solutions, when the noise is ignored
(i.e., at σ = 0). Adding noise with a strength of σ = 1, 2 causes the surface to become much
flatter following tiny transit patterns, as verified by the 2D graph. This demonstrates that
the solutions of SBBME-BD (1) tend to converge around zero when white noise is present.

5. Conclusions

We looked at the stochastic Benjamin–Bona–Mahony Equation (1) with beta derivative
(SBBME-BD). The solutions to the Benjamin–Bona–Mahony equation are helpful in under-
standing several exciting scientific phenomena, such as Rossby waves in rotating fluids
and drift waves in plasma. New hyperbolic, trigonometric, rational, and Jacobi elliptic
solutions for SBBME-BD were obtained by combining the F -expansion approach with two
separate equations, namely the Riccati and elliptic equations. Numerous fascinating and
difficult physical occurrences may only be understood with these solutions. The MATLAB
program was utilized to investigate the impact of the Gaussian process and beta derivative
on the solutions of SBBME-BD (1). It was observed that the white noise component kept
the solutions centered around zero. It was concluded that reducing the derivative order
resulted in an enlargement of the surface. In future work, we can address Equation (1) with
additive noise.
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Abstract: The Jimbo-Miwa equation (JME) that describes certain interesting (3+1)-dimensional waves
in plasma physics is studied in this work. The Hirota bilinear equation is developed via the Cole-
Hopf transform. Then, the symbolic computation, together with the ansatz function schemes, are
utilized to seek exact solutions. Some new solutions, such as the multi-wave complexiton solution
(MWCS), multi-wave solution (MWS) and periodic lump solution (PLS), are successfully constructed.
Additionally, different types of travelling wave solutions (TWS), including the dark, bright-dark and
singular periodic wave solutions, are disclosed by employing the sub-equation method. Finally, the
physical characteristics and interaction behaviors of the extracted solutions are depicted graphically
by assigning appropriate parameters. The obtained outcomes in this paper are more general and
newer. Additionally, they reveal that the used methods are concise, direct, and can be employed to
study other partial differential equations (PDEs) in physics.

Keywords: Hirota bilinear equation; Cole-Hopf transform; multi-wave complexiton solution; multi-
wave solution; periodic lump solution; sub-equation method

MSC: 35C07; 35A22

1. Introduction

Complex phenomena in engineering and physics can usually be reduced to PDEs [1–6].
The study on the properties of these equations such as the explicit analytical solutions,
especially the soliton solutions, is of great significance since they can help us to better
understand complex phenomena and their inner nature. Up to now, a series of different
effective methods have been developed to construct the exact solutions of PDEs such as the
Hirota bilinear method [7–10], Wang’s Bäcklund transformation-based method [11,12], trial
equation method [13,14], Sardar subequation method [15–17], exp-function method [18,19],
Riccati equation mapping method [20] and so on [21–28]. In this work, we aim to examine
the (3+1)-dimensional JME given by [29]:

Πxxxy + 3ΠxΠxy + 3ΠyΠxx + 2Πyt − 3Πxz = 0, (1)

Equation (1) is derived from the second equation in the well-known KP hierarchy
of integrable systems and used widely to describe some interesting (3+1)-dimensional
waves in plasma and optics. Up to now, some important research achievements have been
developed to deal with Equation (1). In [29], the Kudryashov method is used with the
symbolic computation and different solutions are obtained. In [30], four kinds of different
wave forms are constructed via the Hirota bilinear method. In [31], the authors employ
the direct algebraic method to handle Equation (1) and some different wave forms are
constructed. In [32], several closed-form solutions are developed by using the singular
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manifold method. In [33], the Riccati equation mapping method is adopted. The exp-
function method is utilized in [34] and some generalized solutions with parameters are
constructed. In [35], the authors carry out the linear superposition principle to seek for
multi-resonant solutions of Equation (1). In [36], the authors make use of the generalized
Bernoulli equation method to inquire into Equation (1). In this study, we will present th
results of a detailed investigation of Equation (1). The rest of the content of this work is
given as follows. In Section 2, the Cole-Hopf transform is adopted to establish the Hirota
bilinear form, and symbolic computation, combined with the ansatz function schemes, is
utilized to search for the MWCS, MWS and PLS. In Section 3, the sub-equation method
is used to seek for the TWSs. In Section 4, the physical characteristics and interaction
behaviors are presented. Finally, we reach a conclusion in Section 5.

2. The Hirota Bilinear Equation and the Exact Solutions

To obtain the Hirota bilinear form of Equation (1), we adopt the Cole-Hopf transform as:

Π = 2 ln(Ξ)x, (2)

Taking it into Equation (1), we can obtain the bilinear form as:(
D3

xDy + 2DyDt − 3DxDz

)
Ξ · Ξ = 0. (3)

Here, the definition of the operators Dm
x Dn

τ is [37,38]:

Dm
x Dn

t f · g =

(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n
f (x, t)g

(
x′, t′

)|x=x′ ,t=t′ . (4)

Additionally, there are
Dx( f · g) = fxg − f gx,

D2
x( f · g) = fxxg − 2 fxgx + f gxx,

D2
x( f · f ) = 2

(
fxx f − f 2

x

)
,

DtDx( f · g) = ftxg − ftgx − fxgt + gtx f .

2.1. The MWCS

In order to find the MWCS, it is assumed that the solution of Equation (3) is:

Ξ = u1ep + u2e−p + u3 sin(q) + u4sin h(ρ), (5)

with ⎧⎪⎨⎪⎩
p = x + k1y + k2z + k3t

q = x + k4y + k5z + k6t

ρ = x + k7y + k8z + k9t

,

where ui(i = 1, 2, 3, 4.) and ki(i = 1, 2, 3, 4, 5, 6, 7, 8, 9.) are constants that can be determined
later. Substituting Equation (5) into Equation (3) and setting the coefficients of different
terms to zero, an algebraic equation system is attained. Solving it, we derive:

Case 1:

k1 = 3k2
2(k9+2) , k2 = k2, k3 = k9, k4 = − 3k2

2(k9+2) , k5 = k2−k2k9
2+k9

, k6 = k9 + 1, k7 = 3k2
2(2+k9)

,

k8 = k2, k9 = k9, u1 = u1, u2 = u2, u3 = u3, u4 = u4.
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The MWCS is obtained as:

Π(x, y, z, t) =

2

⎡⎢⎣ u1e
x+ 3k2

2(k9+2) y+k2z+k9t − u2e
−(x+ 3k2

2(k9+2) y+k2z+k9t)
+ u3 cos

(
x − 3k2

2(k9+2)y + k2−k2k9
2+k9

z + (k9 + 1)t
)

+u4cos h
(

x + 3k2
2(2+k9)

y + k2z + k9t
)

⎤⎥⎦
u1e

x+ 3k2
2(k9+2) y+k2z+k9t

+ u2e
−(x+ 3k2

2(k9+2) y+k2z+k9t)
+ u3 sin

(
x − 3k2

2(k9+2)y + k2−k2k9
2+k9

z + (k9 + 1)t
)

+u4sin h
(

x + 3k2
2(2+k9)

y + k2z + k9t
)

. (6)

For the special case u1 = −u2 = 2u4, Equation (6) becomes:
Case 2:

k1 = k1, k2 = k2, k3 = −2 + 3k2
2k1

, k4 = −k1, k5 = 2k1 − k2, k6 = −1 + 3k2
2k1

, k7 = k1, k8 = k2,

k9 = −2 + 3k2
2k1

, u1 = u1, u2 = u2, u3 = u3, u4 = u4.

Thus, we can obtain the MWCS as:

Π(x, y, z, t) =

2

⎡⎢⎣ u1ex+k1y+k2z+(−2+ 3k2
2k1

)t − u2e−(x+k1y+k2z+(−2+ 3k2
2k1

)t)
+ u3 cos

(
x − k1y + (2k1 − k2)z +

(
−1 + 3k2

2k1

)
t
)

+u4cos h
(

x + k1y + k2z +
(
−2 + 3k2

2k1

)
t
)

⎤⎥⎦
u1ex+k1y+k2z+(−2+ 3k2

2k1
)t
+ u2e−(x+k1y+k2z+(−2+ 3k2

2k1
)t)

+ u3 sin
(

x − k1y + (2k1 − k2)z +
(
−1 + 3k2

2k1

)
t
)

+u4sin h
(

x + k1y + k2z +
(
−2 + 3k2

2k1

)
t
)

. (7)

Case 3:

k1 = k1, k2 = 2
3 (2k1 + k1k9), k3 = k9, k4 = −k1, k5 = − 2

3 (−k1 + k1k9), k6 = −1 + k9, k7 = k1,

k8 = 2
3 (2k1 + k1k9), k9 = k9, u1 = u1, u2 = u2, u3 = u3, u4 = u4.

Thus, we obtain the MWCS solution as:

Π(x, y, z, t) =

2

[
u1ex+k1y+ 2

3 (2k1+k1k9)z+k3t − u2e−(x+k1y+ 2
3 (2k1+k1k9)z+k3t) + u3 cos(x + k4y + k5z + (k9 − 1)t)

+u4cos h
(

x + k1y + 2
3 (2k1 + k1k9)z + k9t

) ]
u1ex+k1y+ 2

3 (2k1+k1k9)z+k3t + u2e−(x+k1y+ 2
3 (2k1+k1k9)z+k3t) + u3 sin(x + k4y + k5z + (k9 − 1)t)

+u4sin h
(

x + k1y + 2
3 (2k1 + k1k9)z + k9t

) . (8)

Case 4:

k1 = − 3k5
2(k9−1) , k2 = − 2k5(1+k9)

k9−1 , k3 = k9, k4 = 3k5
2(k9−1) , k5 = k5, k6 = k9 − 1,

k7 = − 3k5
2(k9−1) , k8 = − 2k5(1+k9)

k9−1 , k9 = k9, u1 = u1, u2 = u2, u3 = u3, u4 = u4.

Accordingly, the MWCS is:

Π(x, y, z, t) =

2

⎡⎢⎣ u1ex− 3k5
2(k9−1) y− 2k5(1+k9)

k9−1 z+k9t − u2e−(x− 3k5
2(k9−1) y− 2k5(1+k9)

k9−1 z+k9t)
+ u3 cos

(
x + 3k5

2(k9−1) y + k5z + (k9 − 1)t
)

+u4cos h
(

x − 3k5
2(k9−1) y − 2k5(1+k9)

k9−1 z + k9t
)

⎤⎥⎦
u1ex− 3k5

2(k9−1) y− 2k5(1+k9)
k9−1 z+k9t

+ u2e−(x− 3k5
2(k9−1) y− 2k5(1+k9)

k9−1 z+k9t)
+ u3 sin

(
x + 3k5

2(k9−1) y + k5z + (k9 − 1)t
)

+u4sin h
(

x − 3k5
2(k9−1) y − 2k5(1+k9)

k9−1 z + k9t
)

. (9)
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Case 5:

k1 = −k4, k2 = k8, k3 = −
(

2 + 3k8
2k4

)
, k4 = k4, k5 = −(2k4 + k8), k6 = −

(
1 + 3k8

2k4

)
, k7 = −k4,

k8 = k8, k9 = −
(

2 + 3k8
2k4

)
, u1 = u1, u2 = u2, u3 = u3, u4 = u4.

where k4 �= 0. Thus, we can obtain the MWCS as:

Π(x, y, z, t) =

2

⎡⎢⎣ u1ex−k4y+k8z−(2+ 3k8
2k4

)t − u2e−(x−k4y+k8z−(2+ 3k8
2k4

)t)
+ u3 cos

(
x + k4y − (2k4 + k8)z −

(
1 + 3k8

2k4

)
t
)

+u4cos h
(

x − k4y + k8z −
(

2 + 3k8
2k4

)
t
)

⎤⎥⎦
u1ex−k4y+k8z−(2+ 3k8

2k4
)t
+ u2e−(x−k4y+k8z−(2+ 3k8

2k4
)t)

+ u3 sin
(

x + k4y − (2k4 + k8)z −
(

1 + 3k8
2k4

)
t
)

+u4sin h
(

x − k4y + k8z −
(

2 + 3k8
2k4

)
t
)

. (10)

For the special case u1 = −u2 = 2u4, Equations (6)–(10) become:

Π(x, y, z, t) = 2 cot
(

x − 3k2

2(k9 + 2)
y +

k2 − k2k9

2 + k9
z + (k9 + 1)t

)
.

Π(x, y, z, t) = 2 cot
(

x − k1y + (2k1 − k2)z +
(
−1 +

3k2

2k1

)
t
)

.

Π(x, y, z, t) = 2 cot(x + k4y + k5z + (k9 − 1)t).

Π(x, y, z, t) = 2 cot
(

x +
3k5

2(k9 − 1)
y + k5z + (k9 − 1)t

)
.

Π(x, y, z, t) = 2 cot
(

x + k4y − (2k4 + k8)z −
(

1 +
3k8

2k4

)
t
)

.

2.2. The MWS

Here, we can use the following ansatz function:

Ξ = u1 cos(p) + u2cos h(q) + u3cos h(ρ), (11)

with ⎧⎪⎨⎪⎩
p = x + k1y + k2z + k3t

q = x + k4y + k5z + k6t

ρ = x + k7y + k8z + k9t

,

where ui(i = 1, 2, 3.) and ki(i = 1, 2, 3, 4, 5, 6, 7, 8, 9.) are constants that can be determined
later. In the same manner, substituting Equation (11) into Equation (3) and making the
corresponding adjustments, we derive:

Case 1:

k1 = k1, k2 = k2, k3 = 2 +
3k2
2k1

, k7 = −k1, k8 = −2k1 − k2, k9 = 1 +
3k2
2k1

, u1 = u1, u2 = 0, u3 = u3.

Then, we obtain the MWS as:

Π(x, y, z, t) =
2
[
−u1 sin

(
x + k1y + k2z +

(
2 + 3k2

2k1

)
t
)
+ u3sin h

(
x − k1y − (2k1 + k2)z +

(
1 + 3k2

2k1

)
t
)]

u1 cos
(

x + k1y + k2z +
(

2 + 3k2
2k1

)
t
)
+ u3cos h

(
x − k1y − (2k1 + k2)z +

(
1 + 3k2

2k1

)
t
) . (12)

Case 2:

k1 = k1, k2 = −2k1 − k5, k3 = −1 − 3k5
2k1

, k4 = −k1, k5 = k5, k6 = −2 − 3k5
2k1

, u1 = u1, u2 = u2, u3 = 0.
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Thus, we obtain the MWS as:

Π(x, y, z, t) =
2
[
−u1 sin

(
x + k1y − (2k1 + k5)z −

(
1 + 3k5

2k1

)
t
)
+ u2sin h

(
x − k1y + k5z −

(
2 + 3k5

2k1

)
t
)]

u1 cos
(

x + k1y − (2k1 + k5)z −
(

1 + 3k5
2k1

)
t
)
+ u2cos h

(
x − k1y + k5z −

(
2 + 3k5

2k1

)
t
) . (13)

2.3. The PLS

The solution of Equation (3) is assumed as:

Ξ = u1 sin(p) + u2cos h(q) + k7, (14)

with {
p = x + k1y + k2z + k3t

q = x + k4y + k5z + k6t
,

where ui(i = 1, 2.) and ki(i = 1, 2, 3, 4, 5, 6, 7.) are constants to be determined later. In the
same manner, substituting Equation (14) into Equation (3) and making the corresponding
adjustments, we derive:

Case 1:

k1 = k1, k2 = 2
3 k1(k6 − 1), k3 = k6 + 1, k4 = −k1, k5 = − 2

3 k1(2 + k6), k6 = k6, k7 = 0, u1 = u1,

u2 = u2.

The PLS to Equation (1) is:

Π(x, y, z, t) =
2
[
u1 cos

(
x + k1y + 2

3 k1(k6 − 1)z + (k6 + 1)t
)
+ u2sin h

(
x − k1y − 2

3 k1(2 + k6)z + k6t
)]

u1 sin
(

x + k1y + 2
3 k1(k6 − 1)z + (k6 + 1)t

)
+ u2cos h

(
x − k1y − 2

3 k1(2 + k6)z + k6t
) . (15)

Case 2:

k1 = 3k2
2(k6−1) , k2 = k2, k3 = k6 + 1, k4 = − 3k2

2(k6−1) , k5 = − 2k2(k6+1)
k6−1 , k6 = k6, k7 = 0, u1 = u1,

u2 = u2.

Thus, we obtain the PLS of Equation (1) as:

Π(x, y, z, t) =
2
[
u1 cos

(
x + 3k2

2(k6−1)y + k2z + (k6 + 1)t
)
+ u2sin h

(
x − 3k2

2(k6−1)y − 2k2(k6+1)
k6−1 z + k6t

)]
u1 sin

(
x + 3k2

2(k6−1)y + k2z + (k6 + 1)t
)
+ u2cos h

(
x − 3k2

2(k6−1)y − 2k2(k6+1)
k6−1 z + k6t

) . (16)

Case 3:

k1 = − 3k5
2(k3+1) , k2 = k5(2−k3)

k3+1 , k3 = k3, k4 = 3k5
2(k3+1) , k5 = k5, k6 = k3 − 1, k7 = 0, u1 = u1,

u2 = u2

The PLS of Equation (1) is obtained as:

Π(x, y, z, t) =
2
[
u1 cos

(
x − 3k5

2(k3+1)y + k5(2−k3)
k3+1 z + k3t

)
+ u2sin h

(
x + 3k5

2(k3+1)y + k5z + (k3 − 1)t
)]

u1 sin
(

x − 3k5
2(k3+1)y + k5(2−k3)

k3+1 z + k3t
)
+ u2cos h

(
x + 3k5

2(k3+1)y + k5z + (k3 − 1)t
) . (17)

Case 4:

k1 = −k4, k2 = − 2
3 k4(k3 − 2), k3 = k3, k4 = k4, k5 = 2

3 k4(k3 + 1), k6 = k3 − 1, k7 = 0, u1 = u1,

u2 = u2.
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Thus, the PLS of Equation (1) is attained as:

Π(x, y, z, t) =
2
[
u1 cos

(
x − k4y − 2

3 k4(k3 − 2)z + k3t
)
+ u2sin h

(
x + k4y + 2

3 k4(k3 + 1)z + (k3 − 1)t
)]

u1 sin
(

x − k4y − 2
3 k4(k3 − 2)z + k3t

)
+ u2cos h

(
x + k4y + 2

3 k4(k3 + 1)z + (k3 − 1)t
) . (18)

Case 5:

k1 = k1, k2 = k2, k3 = 2 +
3k2

2k1
, k4 = −k1, k5 = −2k1 − k2, k6 = 1 +

3k2

2k1
, k7 = 0, u1 = u1, u2 = u2.

We obtain the PLS of Equation (1) as:

Π(x, y, z, t) =
2
[
u1 cos

(
x + k1y + k2z +

(
2 + 3k2

2k1

)
t
)
+ u2sin h

(
x − k1y − (2k1 + k2)z +

(
1 + 3k2

2k1

)
t
)]

u1 sin
(

x + k1y + k2z +
(

2 + 3k2
2k1

)
t
)
+ u2cos h

(
x − k1y − (2k1 + k2)z +

(
1 + 3k2

2k1

)
t
) . (19)

3. The TWS

This section aims to study the TWS using the sub-equation method [39,40]. For this
end, we apply the following variable transformation to Equation (1):

Π(x, y, z, t) = �(χ), χ = mx + ny + kz + st, (20)

where m, n, k, and s are non-zero constants. Equation (1) can be converted as:

m3n�(4) + 6m2n�′�′′ + (2ns − 3mk)�′′ = 0, (21)

where �(4) = d4�
dχ4 , �′′ = d2�

dχ2 , �′ = d�
dχ . Integrating Equation (21) with respect to χ once

and setting the integral constant to zero, we derive:

m3n�′′′ + 3m2n(�′)2 + (2ns − 3mk)�′ = 0. (22)

Based on the sub-equation method, the solution of Equation (22) can be assumed as:

�(χ) =
c

∑
i=0

εiℵi(χ). (23)

where εi(i = 0, 1, 2, . . . , c.) are constants that can be determined later. Additionally, there is:

ℵ′(χ) = σ + ℵ2(χ). (24)

Here, σ is a constant. Equation (24) has the following different solutions:

ℵ(χ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−√−σtan h
(√−σχ

)
, σ < 0

−√−σcot h
(√−σχ

)
, σ < 0√

σ tan
(√

σχ
)
, σ > 0

−√
σ cot

(√
σχ

)
, σ > 0

− 1
ζ+Λ , Λ is a constant, σ = 0

. (25)

We can determine the value of c in Equation (23) via balancing �′′′ and (�′)2 in
Equation (22) as:

c = 1. (26)

Then, Equation (23) becomes:

�(χ) = ε0 + ε1�(χ). (27)
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Substituting Equation (27) with Equation (24) into Equation (22) and setting their
coefficients of the different powers of �(χ) to zero, it yields:

Solving them, we derive:

�0(χ): −3kmσε1 + 2nsσε1 + 2m3nσ2ε1 + 3m2nσ2ε2
1 = 0,

�2(χ): −3kmε1 − nsε1 + 8m3nσε1 + 6m2nσε2
1 = 0,

�4(χ): 6m3nε1 + 3m2nε2
1 = 0.

Case 1:

ε0 = ε0, ε1 = ε1, m = − ε1

2
, n = n, k = k, s = − ε1

(
3k + nσε2

1
)

4n
, σ = σ.

Thus, the TWS of Equation (1) can be obtained as:

Π(x, y, z, t) = ε0 − ε1
√−σtan h

[√−σ

(
− ε1

2
x + ny + kz − ε1

(
3k + nσε2

1
)

4n
t

)]
, σ < 0. (28)

Π(x, y, z, t) = ε0 − ε1
√−σcot h

[√−σ

(
− ε1

2
x + ny + kz − ε1

(
3k + nσε2

1
)

4n
t

)]
, σ < 0. (29)

Π(x, y, z, t) = ε0 + ε1
√

σ tan

[√
σ

(
− ε1

2
x + ny + kz − ε1

(
3k + nσε2

1
)

4n
t

)]
, σ > 0. (30)

Π(x, y, z, t) = ε0 − ε1
√

σ cot

[√
σ

(
−α1

2
x + ny + kz − ε1

(
3k + nσε2

1
)

4n
t

)]
, σ > 0. (31)

Case 2:

ε0 = ε0, ε1 = −2m, m = m, n = n, k = −2
(
2m3nσ − ns

)
3m

, s = s, σ = σ.

Thus, the TWS of Equation (1) can be obtained as:

Π(x, y, z, t) = ε0 + 2m
√−σtan h

[√−σ

(
mx + ny − 2

(
2m3nσ − ns

)
3m

z + st

)]
, σ < 0. (32)

Π(x, y, z, t) = α0 + 2m
√−σcot h

[√−σ

(
mx + ny − 2

(
2m3nσ − ns

)
3m

z + st

)]
, σ < 0. (33)

Π(x, y, z, t) = ε0 − 2m
√

σ tan

[√
σ

(
mx + ny − 2

(
2m3nσ − ns

)
3m

z + st

)]
, σ > 0. (34)

Π(x, y, z, t) = ε0 + 2m
√

σ cot

[√
σ

(
mx + ny − 2

(
2m3nσ − ns

)
3m

z + st

)]
, σ > 0. (35)

4. The Physical Interpretations

The obtained solutions will be presented by the 3D plot and 2D contour in this section
by taking the reasonable parameters.

By assigning the parameters as k2 = 1, k9 = 2, u1 = 1, u2 = 1, u3 = 1, the multi-
wave complexiton solution given by Equation (6) for the different time is illustrated in
Figure 1 in the form of the 3D plot and 2D contour. Obviously, we can find there is a
collision phenomenon between the singular periodic wave and the lump in the outline. As
t increases, the waveform propagates in the negative direction of the x axis and y axis.
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(a) (b)  (c) 

   
(d)  (e)  (f) 

Figure 1. The graphical description of Equation (6) with k2 = 1, k9 = 2, u1 = 1, u2 = 1, u3 = 1 at
z = 0, (a,d) for t = 0, (b,e) for t = 2, (c,f) for t = 4.

We illustrate the dynamic behavior of Equation (12) by selecting k1 = 1, k2 = 1,
u1 = 0.6, u2 = 0.4 in Figure 2. From this, collision phenomena between the breather waves
and singular periodic waves are revealed. We can observe that the waveform travels along
the negative direction of the x axis and positive direction of y axis.

   
(a) (b) (c) 

   
(d)  (e) (f) 

Figure 2. The graphical description of Equation (12) with k1 = 1, k2 = 1,u1 = 0.6, u2 = 0.4 at z = 0.
(a,d) for t = 0, (b,e) for t = 1, (c,f) for t = 2.
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Selecting k1 = 1, k2 = 2, u1 = 1, u2 = 1, u3 = 1, u4 = 1, we present the performance
of Equation (15) in Figure 3. Here, it can be found the waveform propagates along the
negative direction of the x axis and positive direction of y axis. Additionally, the outline
of the wave can be explained as the interaction between lump solution and trigonometric
function solution.

  
(a) (b)  (c) 

   
(d)  (e) (f) 

Figure 3. The graphical description of Equation (15) with k1 = 1, k2 = 2, u1 = 1, u2 = 1, u3 = 1 at
z = 0. (a,d) for t = 0, (b,e) for t = 2, (c,f) for t = 4.

By using the parameters as ε0 = 1, ε1 = 1, n = 1, k = 1, σ = −1, the dynamic charac-
teristics of Equation (28) are revealed in Figure 4, where Figure 4a is the 3D plot, Figure 4b is
the 2D contour and Figure 4c represents the 2D curve. In our observation, it is a dark wave.
With the same parameters, Figure 5 illustrates the behaviors of Equations (3) and (10),
which is a bright-dark wave.

 
 

(a) (b) (c) 

Figure 4. The graphical description of Equation (28) with the parameters as ε0 = 1, ε1 = 1, n = 1,
k = 1, σ = −1. (a) for z = 0, t = 0, (b) for z = 0, t = 0, (c) for y = 0, z = 0, t = 0.
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(a) (b) (c) 

Figure 5. The graphical description of Equation (29) with the parameters as ε0 = 1, ε1 = 1, n = 1,
k = 1, σ = −1. (a) for z = 0, t = 0, (b) for z = 0, t = 0, (c) for y = 0, z = 0, t = 0.

The performances of Equations (29) and (30) are presented in Figures 6 and 7, respec-
tively with ε0 = 1, ε1 = 1, n = 1, k = 1, σ = 1. We find that the profiles are both singular
periodic waves.

  
(a) (b) (c) 

Figure 6. The graphical description of Equation (29) with the parameters as ε0 = 1, ε1 = 1, n = 1,
k = 1, σ = 1. (a) for z = 0, t = 0, (b) for z = 0, t = 0, (c) for y = 0, z = 0, t = 0.

   
(a) (b) (c) 

Figure 7. The graphical description of Equation (30) with the parameters as ε0 = 1, ε1 = 1, n = 1,
k = 1, σ = 1. (a) for z = 0, t = 0, (b) for z = 0, t = 0, (c) for y = 0, z = 0, t = 0.

5. Conclusions and Future Recommendation

In this article, we obtained multi-wave complexiton solutions, multi-wave solutions
and periodic lump solutions of the (3+1)-dimensional Jimbo-Miwa equation with the help
of the Hirota bilinear method. Besides, we also construct its diverse travelling wave
solutions like the dark, bright-dark and singular periodic wave solutions by applying
the sub-equation method. The evolution phenomenon of these different solutions are
described graphically. From these descriptions, the physical behavior and the interaction
are presented. The obtained results in this work are all new and have not been reported
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elsewhere. Additionally, they show that the methods adopted are effective and direct, and
can moreover be used to study the other PDEs arising in physics.

In recent years, the interest in fractal and fractional calculus [41–49] has intensified
in different fields due to their strong ability to describe complex phenomena. Applying
the fractal and fractional calculus to Equation (1) and obtaining the exact solutions will
animate our future research.
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