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Preface

In the current era of medical innovation, the confluence of artificial intelligence (AI) and machine

learning (ML) with medical diagnostics is revolutionizing healthcare. These technologies are enabling

unprecedented accuracy, speed, and predictive capabilities in disease detection, classification, and

treatment planning. This Special Issue is a testament to the transformative potential of AI and ML in

the diagnostic field.

This Special Issue presents a curated collection of cutting-edge research exploring the integration

of AI and ML technologies across various diagnostic modalities. The contributions in this issue

highlight innovative algorithms, models, and applications that enhance diagnostic capabilities in

fields such as radiology, pathology, genomics, and personalized medicine. By showcasing both

theoretical advancements and practical implementations, this Special Issue provides a comprehensive

overview of the current trends and future directions in AI-driven diagnostics, fostering further

research and collaboration in this dynamic area of healthcare.

This compilation of twelve research articles, gathered between March 2023 and December

2023, includes one editorial cover letter, nine regular research articles, one review article, and

one categorized as “other”. Each contribution offers unique insights into leveraging AI and ML

to overcome current challenges in diagnostic medicine, enhance clinical decision-making, and

ultimately improve patient outcomes.

The rapid advancements in AI and ML have demonstrated immense potential in various areas

such as image analysis, pattern recognition, and the integration of vast datasets for individualized

patient care. This Special Issue features contributions from leading researchers exploring diverse

facets of AI and ML applications in diagnostics. The collected works encompass theoretical

advancements, algorithm development, and practical implementations, demonstrating the broad

impact and future potential of these technologies.

As we move forward, the intersection of AI and ML with medical diagnostics continues to

evolve, heralding a new era of precision and efficiency in healthcare. This Special Issue aims to

capture the latest advancements and applications of these technologies in the diagnostic process,

providing a valuable resource for researchers, clinicians, and technologists. By advancing diagnostic

accuracy and efficiency, AI and ML have the potential to significantly enhance patient care and health

outcomes.

We hope that this collection of high-quality research will serve as a valuable resource for those in

the diagnostics field, fostering further innovation and collaboration in the quest to advance medical

diagnostics. For more detailed insights, we encourage readers to explore each article and join the

ongoing dialogue on the transformative potential of AI and ML in healthcare.

Mugahed A. Al-antari

Editor
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diagnostics

Editorial

Advancements in Artificial Intelligence for Medical
Computer-Aided Diagnosis
Mugahed A. Al-antari

AISSLab, Department of Artificial Intelligence and Data Science, Daeyang AI Center, College of Software &
Convergence Technology, Sejong University, Seoul 05006, Republic of Korea; en.mualshz@sejong.ac.kr

Abstract: Rapid advancements in artificial intelligence (AI) and machine learning (ML) are currently
transforming the field of diagnostics, enabling unprecedented accuracy and efficiency in disease
detection, classification, and treatment planning. This Special Issue, entitled “Artificial Intelligence
Advances for Medical Computer-Aided Diagnosis”, presents a curated collection of cutting-edge
research that explores the integration of AI and ML technologies into various diagnostic modalities.
The contributions presented here highlight innovative algorithms, models, and applications that pave
the way for improved diagnostic capabilities across a range of medical fields, including radiology,
pathology, genomics, and personalized medicine. By showcasing both theoretical advancements and
practical implementations, this Special Issue aims to provide a comprehensive overview of current
trends and future directions in AI-driven diagnostics, fostering further research and collaboration in
this dynamic and impactful area of healthcare. We have published a total of 12 research articles in
this Special Issue, all collected between March 2023 and December 2023, comprising 1 Editorial cover
letter, 9 regular research articles, 1 review article, and 1 article categorized as “other”.

1. Introduction

The intersection of artificial intelligence (AI) and machine learning (ML) with medical
diagnostics is rapidly evolving, heralding a new era of precision and efficiency in healthcare.
This Special Issue of Diagnostics aims to capture the latest advancements and applications of
AI and ML in the diagnostic process, spanning a diverse array of medical fields. AI and ML
technologies are reshaping the landscape of diagnostics by providing tools that enhance
the accuracy, speed, and predictive power of medical evaluations. These technologies
have shown immense potential in areas such as radiology, pathology, genomics, and
personalized medicine, where they are utilized for tasks ranging from image analysis and
pattern recognition to the integration of vast datasets for individualized patient care. This
Special Issue features contributions from leading researchers who explore various facets
of AI and ML applications in diagnostics. The collected works encompass theoretical
advancements, algorithm development, and practical implementations, demonstrating
the broad impact and future potential of these technologies. The papers included in this
Special Issue were gathered over a period spanning from March 2023 to December 2023,
resulting in a diverse collection of high-quality research. We present a total of twelve
articles: one Editorial cover letter, nine regular research articles, one review article, and one
article categorized as “other”. Each contribution offers unique insights into how AI and ML
can be leveraged to overcome current challenges in diagnostic medicine, enhance clinical
decision-making, and ultimately improve patient outcomes. Through this Special Issue, we
aim to provide a comprehensive overview of the state of the art in AI-driven diagnostics,
highlighting both achievements and ongoing challenges in the field. We hope that this
collection will serve as a valuable resource for researchers, clinicians, and technologists,
fostering further innovation and collaboration in the quest to advance medical diagnostics.
For more detailed insights, we encourage readers to explore each article and join the
ongoing dialogue on the transformative potential of AI and ML in healthcare.
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2. Overview of the Published Articles

This Special Issue on “Artificial Intelligence Advances for Medical Computer-Aided
Diagnosis” presents a diverse collection of research that illustrates the significant impact of
AI and ML on medical diagnostics. Below is a summary of each of the 12 articles published
in this Special Issue. The Editorial cover letter, prepared by Mugahed A. Al-antar, who
served as the Guest Editor (GE) of this Special Issue, provides an introduction to the Special
Issue, outlining the scope of, the significance of, and the emerging trends in the integration
of AI and ML in diagnostics. It sets the stage for the subsequent articles by emphasizing
the transformative potential of these technologies in healthcare [1].

Following this, Gil-Rios et al. [2] introduce a new method for automatically classifying
coronary stenosis using a feature selection technique. Their proposed method achieved
a 99% discrimination rate using only four features, suggesting that this method could be
useful in a clinical decision support system.

Ogunpola et al. [3] tackle the global health issue of cardiovascular diseases by focusing
on improving early detection, particularly of myocardial infarction, using machine learning.
Their study addresses the problem of imbalanced datasets, which can bias predictions,
and employs seven classifiers: K-Nearest Neighbors, Support Vector Machine, Logistic
Regression, Convolutional Neural Network, Gradient Boost, XGBoost, and Random Forest.
The optimized XGBoost model achieved an outstanding performance with an accuracy
of 98.50%, a precision of 99.14%, 98.29% recall, and an F1 score of 98.71%, significantly
enhancing diagnostic accuracy for heart disease.

Lee et al. [4] evaluate the diagnostic accuracy of two AI techniques, namely KARA-CXR
and ChatGPT, in chest X-ray reading. Using 2000 chest X-ray images, their study assessed
accuracy, false findings, location inaccuracies, count inaccuracies, and hallucinations. They
found that KARA-CXR significantly outperformed ChatGPT regarding diagnostic accuracy
(70.50% vs. 40.50%, according to one observer), false findings, and non-hallucination
rate (75% vs. 38%). Both systems showed moderate inter-observer agreement. Their
study highlights the superior performance of KARA-CXR in medical imaging diagnostics
compared to ChatGPT.

Marquez et al. [5] focused on using machine learning to differentiate between positive
and negative influenza patients in Mexico, where influenza has been a persistent issue
since 2009. They used a dataset of 15,480 records from 2010 to 2020, containing clinical
and demographic data of patients tested with RT-qPCR. This study evaluated various
classification methods and found that Random Forest and Bagging classifiers perform
best in terms of accuracy, specificity, sensitivity, precision, F1 score, and the AUC. These
methods show promise for aiding clinical diagnosis in settings where molecular tests
are impractical.

Ali et al. [6] investigated detecting Parkinson’s disease (PD) using voice attributes
from both PD patients and healthy individuals. They employed filter feature selection to
remove quasi-constant features and tested several classification models, including Decision
Tree, Random Forest, and XGBoost models, on two datasets. Remarkable results were
achieved on Dataset 1, with the Decision Tree and Random Forest methods achieving
impressive accuracy. Ensemble learning methods (voting, stacking, and bagging) were
applied to further enhance the results, and genetic selection was also tested for accuracy
and precision. Their study found higher precision in predicting PD patients and better
overall performance when using Dataset 1 compared to Dataset 2.

Zakareya et al. [7] propose a new deep learning model for breast cancer classification,
incorporating features like granular computing and attention mechanisms to achieve
enhanced accuracy and reduce the workload of doctors. Their model’s effectiveness is
demonstrated by its superior performance compared to other models on two case studies,
achieving 93% and 95% accuracy on ultrasound and histopathology images, respectively.

Al-rimy et al. [8] examined the use of DenseNet169 for knee osteoarthritis detection
using X-ray images. An adaptive early-stopping technique with gradual cross-entropy
loss estimation is proposed to improve the model’s performance. This approach prevents
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overfitting and optimizes the number of training epochs. The proposed model demonstrates
superior accuracy, precision, recall, and loss compared to existing solutions, indicating the
effectiveness of adaptive early stopping and GCE for accurately detecting knee OA.

Fatih Uysal [9] developed a hybrid artificial intelligence system to detect monkeypox
in skin images. An open-source, multi-class image dataset was used, addressing data
imbalance through augmentation and preprocessing. State-of-the-art deep learning models
were employed for detection, and a unique hybrid model combining high-performing
models with LSTM was created. The resulting system achieved 87% test accuracy and a
0.8222 Cohen’s kappa score.

Al-Haidari et al. [10] propose a new deep learning framework for MR image recon-
struction based on conditional Generative Adversarial Networks (CGANs) and U-Net. A
hybrid spatial and k-space loss function is introduced to improve image quality by mini-
mizing the L1 distance in both spatial and frequency domains. The proposed framework
outperformed the traditional SENSE technique and individual U-Net/CGAN models in
terms of the PSNR, while maintaining a comparable SSIM. Their CGAN-based framework
also showed the best reconstruction performance, proving useful for practical cardiac image
reconstruction by providing an enhanced image quality.

Bhakar et al. [11] reviewed recent computational intelligence-based approaches for
identifying disease severity levels. Their study focuses on Parkinson’s disease and diabetic
retinopathy, but also briefly covers other diseases. This review examines the methodology,
dataset used, and disease type of each approach, evaluating performance metrics such as
accuracy and specificity. It also presents public repositories for further research in this field.

Alnashwan et al. [12] conducted a systematic review to examine the latest advance-
ments in artificial intelligence (AI) and computational intelligence for the detection and
treatment of stuttering. They analyzed 14 journal articles from 2019 onward to investigate
how AI can accurately determine and classify manifestations of stuttering, as well as how
computational intelligence can contribute to developing innovative assessment tools and
intervention strategies. Their review highlights the potential of AI and computational intel-
ligence to revolutionize the assessment and treatment of stuttering, enabling personalized
and effective approaches for improving the lives of people who have a stutter.

3. Limitations

Although the articles published in this Special Issue present valuable contributions to
the field of medical diagnostics leveraging AI and machine learning (ML) techniques, some
limitations can be identified across these articles:

(1) Many of these studies have specific focuses or use case scenarios, potentially limiting
the generalizability of their findings to broader contexts or populations;

(2) Some articles may have methodological limitations, such as biases in data collection,
imbalanced datasets, or reliance on specific classifiers, which could affect the reliability
and applicability of their results;

(3) While many studies report impressive results in performance metrics such as accuracy,
precision, recall, and F1 scores, the evaluation criteria and datasets used may not
fully reflect real-world clinical scenarios, leading to potential overestimations of
performance;

(4) The interpretation of results may vary across the studies, being potentially influenced
by the researchers’ perspectives or biases, which could impact the conclusions drawn
from the data.

4. Future Directions

Medical image diagnosis powered by artificial intelligence (AI) represents the cutting
edge of improvements in healthcare. We should continually strive to enhance the health and
wellbeing of our community by providing smart solutions that benefit both patients and
physicians. AI technology has significantly advanced medical image diagnosis, improving
accuracy, efficiency, and accessibility in healthcare scenarios. AI algorithms can analyze

3
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X-rays, CT scans, MRI scans, and patient records, such as those of patients with coronary
stenosis or Parkinson’s disease, to detect abnormalities such as tumors, fractures, and
infections. For example, AI can identify early-stage cancers that might be missed by the
human eye. AI can interpret echocardiograms (ECGs) and cardiac MRI scans to detect heart
conditions like arrhythmias, heart failure, and coronary artery disease. In light of this, this
Special Issue highlights and disseminates the latest breakthroughs in AI-driven diagnostic
technologies, with the aim of showcasing innovative research, fostering interdisciplinary
collaboration, and exploring the transformative impact of AI on medical imaging and
diagnosis. By bringing together contributions from leading experts, we hope to advance
this field of research, improve diagnostic accuracy and efficiency, and ultimately enhance
patient care and health outcomes.

The recent rise of large language models (LLMs) like Gemini and medGemini [13,14]
or ChatGPT and BiomedGPT [15] presents a transformative opportunity for the healthcare
industry, particularly in the realm of diagnosis. These powerful tools can significantly
enhance existing diagnostic systems by providing more insightful explanations, ultimately
leading to more accurate and efficient patient care. One key contribution of LLMs lies in
their ability to generate detailed textual reports. By analyzing vast amounts of medical
data, including patient history, test results, and relevant research, LLMs can produce com-
prehensive reports that not only outline a diagnosis but also explain the reasoning behind
it. This detailed explanation assists healthcare professionals by offering a transparent and
step-by-step breakdown of how the LLM arrived at its conclusions, fostering trust in the
system and allowing doctors to leverage the LLM’s insights while incorporating their own
medical expertise. While LLMs cannot directly generate heat maps (i.e., saliency maps)
for medical images, they can play a significant role in the process. When integrated with
computer vision models, LLMs are able to analyze medical images (X-rays, CT scans, MRIs,
etc.), and they can be trained to detect and extract relevant features, anomalies, and patterns
from these images. Through this, LLMs have the ability to generate textual descriptions of
these highlighted areas that explain why they are important for a certain diagnosis. This
provides a form of visual explanation alongside the LLM’s textual report. The combined
power of detailed textual explanations and visual heat maps can empower healthcare
professionals in several ways:

(1) It improves diagnostic accuracy by offering a comprehensive understanding of the
LLM’s reasoning;

(2) It facilitates communication with patients by providing clear and accessible explana-
tions of the diagnostic process [16,17];

(3) It fosters collaboration between humans and machines, allowing medical professionals
to leverage the strengths of LLMs while retaining their own irreplaceable role in
healthcare decision making [15].

However, it is crucial to acknowledge that LLMs are still under development, and
their integration into healthcare systems requires careful consideration. Ensuring data
privacy and security is paramount, and ongoing human oversight remains essential. In
conclusion, LLM-based tools like Gemini and GPTs (Generative Pre-Trained Transformers)
hold immense potential to revolutionize healthcare diagnostics. As mentioned above, the
detailed textual explanations and visual heat maps provided by these tools can empower
healthcare professionals by allowing them gain a deeper understanding of the diagnostic
process, leading to improved accuracy and efficiency in patient care. As LLM technology
continues to evolve, the future of healthcare diagnosis promises to be one of increased
transparency, collaboration, and, ultimately, improved patient outcomes. The development
of robust medical XAI models is often hindered by the limited availability of labeled
datasets, particularly for rare diseases or specific imaging modalities. Generative AI
techniques [18] offer promising solutions to address this challenge, enabling the creation
of synthetic medical data across various modalities—text, images, signals, etc. LLMs
like GPT-3 excel at generating synthetic patient records that closely mimic the structure,
terminology, and statistical distributions of real clinical notes. Generative Adversarial
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Networks (GANs) have revolutionized medical image synthesis, producing realistic X-rays,
CT scans, and MRI scans that can incorporate specific anatomical variations or pathologies.
This not only increases the size of datasets but allows researchers to simulate diverse disease
presentations. Additionally, GANs can augment datasets by introducing realistic variations
to existing images or even by translating images between modalities (e.g., generating a
potential CT scan from an MRI scan), reducing the reliance on acquiring data in multiple
ways. Generative models are able to synthesize physiological signals like ECGs, EEGs, and
others, replicating real-world patterns and anomalies. This can be leveraged to expand
training data for diagnostic models and facilitate the development of monitoring devices.
Furthermore, generative AI can create hybrid signals with controlled variations, simulating
complex or unusual health conditions to diversify training data.

Finally, we can potentially leverage contrastive learning [19] to address the challenge
of data-labeling exhaustion in the development of LLM-based tools similar to medGemini
or BiomedGPT. Contrastive learning is a technique within self-supervised learning where a
machine learning model learns by creating its own supervisory signals from unlabeled data.
The primary goal of this is to train a model to recognize similarities and differences between
data samples: the model learns an embedding space (a kind of representational map) where
similar items are clustered together and dissimilar items are far apart. Meanwhile, deep
active learning could prove to be capable of supporting and automating the process of
labeling medical data.

5. Conclusions

In conclusion, this Special Issue underscores the transformative potential of artificial
intelligence (AI) and machine learning (ML) in medical diagnostics, as evidenced by the col-
lection of cutting-edge research it presents. While these advancements offer unprecedented
accuracy and efficiency in disease detection and treatment planning across various medical
fields, including radiology, pathology, genomics, and personalized medicine, several limita-
tions persist. These limitations include the potential lack of generalizability, methodological
constraints, and the need for the careful interpretation of results. Looking ahead, the inte-
gration of large language models (LLMs) like Gemini and medGemini holds promise for
further revolutionizing healthcare diagnosis through empowering healthcare professionals
with detailed textual explanations and visual heat maps to enhance the accuracy and effi-
ciency of diagnosis. Despite these advancements, however, ongoing considerations for data
privacy, security, and human oversight are essential. Ultimately, the future of healthcare
diagnosis promises increased transparency, collaboration, and improved patient outcomes
as AI technology continues to evolve and move forward to address current challenges.
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Artificial Intelligence for Medical Diagnostics—Existing
and Future AI Technology!
Mugahed A. Al-Antari

Daeyang AI Center, Department of Artificial Intelligence, College of Software & Convergence Technology,
Sejong University, Seoul 05006, Republic of Korea; en.mualshz@sejong.ac.kr

We would like to express our gratitude to all authors who contributed to the Special
Issue of “Artificial Intelligence Advances for Medical Computer-Aided Diagnosis” by providing
their excellent and recent research findings for AI-based medical diagnosis. Furthermore,
special thanks are extended to all reviewers who helped us to process an article in this
Special Issue. Finally, we would like to express our deep and warm gratitude and re-
spect to the editorial members working day and night on this Special Issue, providing
the recent AI-based research studies to enrich the AI medical knowledge for the fourth
industrial revolution.

Medical diagnostics is the process of evaluating medical conditions or diseases by
analyzing symptoms, medical history, and test results. The goal of medical diagnostics is
to determine the cause of a medical problem and make an accurate diagnosis to provide
effective treatment. This can involve various diagnostic tests, such as imaging tests (e.g.,
X-rays, MRI, CT scans), blood tests, and biopsy procedures. The results of these tests help
healthcare providers determine the best course of treatment for their patients. In addition
to helping diagnose medical conditions, medical diagnostics can also be used to monitor
the progress of a condition, assess the effectiveness of treatment, and detect potential health
problems before they become serious. With the recent AI revolution, medical diagnostics
could be improved to revolutionize the field of medical diagnostics by improving the
prediction accuracy, speed, and efficiency of the diagnostic process. AI algorithms can
analyze medical images (e.g., X-rays, MRIs, ultrasounds, CT scans, and DXAs) and assist
healthcare providers in identifying and diagnosing diseases more accurately and quickly. AI
can analyze large amounts of patient data, including medical 2D/3D imaging, bio-signals
(e.g., ECG, EEG, EMG, and EHR), vital signs (e.g., body temperature, pulse rate, respiration
rate, and blood pressure), demographic information, medical history, and laboratory test
results. This could support decision making and provide accurate prediction results. This
can help healthcare providers make more informed decisions about patient care. The
diversity of the patient’s data in terms of multimodal data is an optimal smart solution that
could provide better diagnostic decisions based on multiple findings in images, signals, text
representation, etc. By integrating multiple data sources, healthcare providers can gain a
more comprehensive understanding of a patient’s health and the underlying causes of their
symptoms. The combination of multiple data sources can provide a more complete picture
of a patient’s health, reducing the chance of misdiagnosis and improving the accuracy of
diagnosis. Multimodal data can help healthcare providers monitor the progression of a
condition over time, allowing for more effective treatment and management of chronic
diseases. Meanwhile, using multimodal medical data, Explainable XAI-based healthcare
providers can detect potential health problems earlier, before they become serious and
potentially life-threatening [1]. Moreover, AI-powered Clinical Decision Support Systems
(CDSSs) could provide real-time assistance and support to make more informed decisions
about patient care. XAI tools can automate routine tasks, freeing healthcare providers to
focus on more complex patient care.
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The future of AI-based medical diagnostics is likely to be characterized by continued
growth and development as OpenAI [2]. More advanced AI technologies are being intro-
duced into the research domain, such as quantum AI (QAI), to speed up the conventional
training process and provide rapid diagnostics models [3]. Quantum computers have signif-
icantly more processing power than classical computers, and this could allow quantum AI
algorithms to analyze vast amounts of medical data in real-time, leading to more accurate
and efficient diagnoses. Quantum optimization algorithms can optimize decision-making
processes in medical diagnostics, such as choosing the best course of treatment for a patient
based on their medical history and other factors. Another concept is GAI or general AI,
which is being used by different projects and companies, such as OpenAI’s DeepQA, IBM’s
Watson, and Google’s DeepMind. The goal of GAI for medical diagnostics is to improve
the accuracy, speed, and efficiency of medical diagnoses, as well as provide healthcare
providers with valuable insights and support in the diagnosis and treatment of patients.
By using AI algorithms to analyze vast amounts of medical data and identify patterns
and relationships, general AI for medical diagnostics can transform the field of medicine,
leading to improved patient outcomes and a more efficient and effective healthcare system.
However, the development and deployment of AI in medical diagnostics are still in the
early stages, and there are several technical, regulatory, and ethical challenges that must be
overcome for the technology to reach its full potential. The first challenge is due to medical
data quality and availability, where AI algorithms require large amounts of high-quality
labeled data to be effective, and this can be a challenge in the medical field, where data
are often fragmented, incomplete, unlabeled, or unavailable. Meanwhile, AI algorithms
can be biased if they are trained on data that is not representative of the population they
are intended to serve, leading to incorrect or unfair diagnoses. Another issue is about the
use of GAI in medical diagnostics of a private and sensitive dataset, which raises some
ethical questions, including data privacy, algorithmic transparency, and accountability for
decisions made by AI algorithms. Even though some solutions with federated learning
have recently been presented to solve such issues, the tool still needs more investigation
to approve its capability for the medical research area. In addition, AI-based medical
diagnostic tools are often developed by different companies and organizations, and there
is a need for interoperability standards and protocols to ensure that these tools can work
together effectively. AI-based techniques can analyze a patient’s medical history, genetics,
and other factors to create personalized treatment plans, and this trend will likely continue
to be developed in the future. However, AI-based medical diagnostics is an open research
domain, and we highly recommend that researchers continue research to improve the
final prediction accuracy and expedite the learning process. This will support the medical
staff in hospitals and healthcare centers and even assist the industrial sector by providing
novel smart solutions against epidemics or pandemics that suddenly appear and devastate
communities worldwide.
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Abbreviations

GAI General Artificial Intelligence.
XAI Explainable Artificial Intelligence.
QAI Quantum Artificial Intelligence.
ECG Electrocardiogram.
EEG Electroencephalogram.
EMG Electromyography.
EHR Electronic healthcare records.
MRI Magnetic resonance imaging.
CT Computed tomography.
DXA Dual-energy X-ray absorptiometry.
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Abstract: Magnetic resonance imaging (MRI) is an efficient, non-invasive diagnostic imaging tool
for a variety of disorders. In modern MRI systems, the scanning procedure is time-consuming,
which leads to problems with patient comfort and causes motion artifacts. Accelerated or parallel
MRI has the potential to minimize patient stress as well as reduce scanning time and medical costs.
In this paper, a new deep learning MR image reconstruction framework is proposed to provide
more accurate reconstructed MR images when under-sampled or aliased images are generated. The
proposed reconstruction model is designed based on the conditional generative adversarial networks
(CGANs) where the generator network is designed in a form of an encoder–decoder U-Net network.
A hybrid spatial and k-space loss function is also proposed to improve the reconstructed image quality
by minimizing the L1-distance considering both spatial and frequency domains simultaneously. The
proposed reconstruction framework is directly compared when CGAN and U-Net are adopted and
used individually based on the proposed hybrid loss function against the conventional L1-norm.
Finally, the proposed reconstruction framework with the extended loss function is evaluated and
compared against the traditional SENSE reconstruction technique using the evaluation metrics of
structural similarity (SSIM) and peak signal to noise ratio (PSNR). To fine-tune and evaluate the
proposed methodology, the public Multi-Coil k-Space OCMR dataset for cardiovascular MR imaging
is used. The proposed framework achieves a better image reconstruction quality compared to SENSE
in terms of PSNR by 6.84 and 9.57 when U-Net and CGAN are used, respectively. Similarly, it
demonstrates SSIM of the reconstructed MR images comparable to the one provided by the SENSE
algorithm when U-Net and CGAN are used. Comparing cases where the proposed hybrid loss
function is used against the cases with the simple L1-norm, the reconstruction performance can
be noticed to improve by 6.84 and 9.57 for U-Net and CGAN, respectively. To conclude this, the
proposed framework using CGAN provides the best reconstruction performance compared with
U-Net or the conventional SENSE reconstruction techniques. The proposed framework seems to be
useful for the practical reconstruction of cardiac images since it can provide better image quality in
terms of SSIM and PSNR.

Keywords: magnetic resonance imaging (MRI); medical image reconstruction; deep learning; con-
ditional generative adversarial networks (CGANs); parallel imaging; hybrid spatial and k-space
loss function

1. Introduction

Magnetic resonance imaging (MRI) is a safe and non-invasive diagnostic technique
that does not use ionizing radiation to produce the images [1]. MRI is known to provide
clear and detailed images of soft-tissue structures. These advantages make MRI a very
effective diagnostic tool for a variety of disorders. However, the scanning procedure in
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modern MRI systems is very time-consuming. This leads to problems with patient comfort
and causes motion artifacts [2,3]. The MRI system encodes the spatial information via the
use of the magnetic field gradient in the scanned area, which results in assigning specific
resonant frequency and local intensity to a specific anatomical area of the patient during
the acquisition stage of MR imaging. The inverse Fourier transform is then applied to
the encoded signals, which represent the phase-time space or the k-space, to produce
an image [4]. Accelerated or parallel MRI has the potential to reduce medical costs and
minimize patient stress. It is performed by reducing the number of gradient encoding
steps during image acquisition and uses the information about the spatial locations and
sensitivity profiles of the employed receiving coils to reconstruct the desired image. This
allows for a shorter patient stay in the MRI scanner, which in turn decreases motion artefacts
risk. However, such a reduction in the encoding step number results in the aliasing effect
due to the violation of the Nyquist sampling requirements. In order to restore the desired
image, parallel imaging techniques employ extra post-processing steps [5]. GRAPPA
and SENSE are the dominant approaches to accelerated MRI, allowing for the effects of
incomplete encoding in the phase-time domain and image domain to be mitigated via
using the sensitivity maps of the receiving coils [6,7]. The SENSE technique first uses the
inverse Fourier transform over the under-sampled k-space, followed by the restoration
of the MR image, while GRAPPA estimates the fully sampled phase-time data and then
uses Fourier transform to obtain an image [8]. Nevertheless, some information is lost
in the under-sampling process, causing the signal to noise ratio (SNR) to drop and the
reconstruction of artifacts.

The motivation of this work is to improve the quality of MR under-sampled image
reconstruction by applying deep learning techniques. We hypothesize this would allow
us to overcome the drawbacks of GRAPPA and SENSE, as the precision of MR image
reconstruction has been shown to significantly increase when the latter employs recent
deep learning developments. A crucial part of implementing a deep learning model to
a particular task is finding a suitable loss function, sensitive to the difference between the
generated and the target image. In this study, to enhance the quality of MR image recon-
struction, we proposed a new hybrid spatial and k-space loss function which combines two
loss functions in the spatial and frequency domains. The results of MR image reconstruction
show that the developed hybrid loss could increase the precision of investigated models
compared to the conventional L1-norm loss function. The developed models were trained
and evaluated using the public Multi-Coil k-Space Dataset for Cardiovascular Magnetic
Resonance Imaging, called OCMR [9]. Assessing the quality of cardiac MRI reconstruction
was performed using the evaluation metrics of the structural similarity (SSIM) [10,11] and
the peak signal to noise ratio (PSNR) [12]. Our deep learning approach allowed us to
avoid the well-known parallel imaging effect of the SNR reduction, as the square root of
the acceleration factor helped to mitigate this problem. The suggested algorithms and
network architectures can therefore be used in applications where both fast acquisition
and a high SNR is critical (with cardiac imaging being one of these areas) as a substitution
for the classic parallel imaging algorithms, which do not conserve the SNR. Moreover, we
investigated two state-of-the-art U-Net and CGAN networks and compared the reconstruc-
tion results using the proposed hybrid loss function against the conventional ones. The
latter include L1-norm and GAN loss functions. The performance was evaluated on the
OCMR [9] dataset using SSIM and PSNR metrics. The major objectives and contributions
of this work are summarized as follows:

• A new AI-based accurate parallel imaging reconstruction framework was proposed
for better CMR image reconstruction.

• A new hybrid spatial and k-space loss function was proposed, which improves the
SNR by taking into account the difference between the target (ground-truth, GT) and
the reconstructed images in both spatial and frequency domains.

• Comprehensive reconstruction experimental studies were conducted with the aim to
select the best AI model for the proposed framework. The model search additionally
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included the direct implementation of the conventional loss functions as well as their
comparison with the proposed hybrid loss function.

2. Related Work

In this section, we summarize the recent deep-learning-based reconstruction methods
for various MR imaging techniques. Based on the classical architecture of the deep network
U-Net, Chang Min Hyun et al. [13] developed an algorithm for MR image reconstruction.
Cardiac and brain images, obtained using the classical full k-space sampling technique,
were used. The key point of their work was to combine the U-Net model with the following
k-space data correction. The U-Net takes a folded image obtained from under-sampled
zero-padded k-space data as input and recovers the zero-padded part of the k-space data.
Then, the unpadded parts are replaced by the original k-space data to preserve the original
measured data. Finally, inverse Fourier transform is performed to obtain the final recon-
structed MR images. The developed algorithm showed decent results, with an average
0.90 SSIM. However, the complexity of the algorithm led to significant memory constraints
when generating high-resolution images, which severely limited the output image resolu-
tion. Ghodrati et al. [14] investigated two CNN architectures: a simplified version of U-Net
and the residual network (ResNet) for cardiac MR image reconstruction. The effect of four
loss functions was investigated: pixel-wise L1 and L2, patch-wise structural dissimilarity
(DSSIM), and feature-wise perceptual loss. According to the 57th quartile of SSIM score
(0.88), U-Net–DSSIM (U-Net with DSSIM loss) performed significantly better than ResNet
with different combinations of loss functions. However, U-Net has ten times the number of
trainable parameters compared to ResNet, which results in increases in its computational
complexity and computational time.

A GAN-based algorithm was developed for knee joint image restoration from the
reduced k-space without a reference fully sampled image [15]. The authors changed the
concept of the classical GAN structure, where the generator network output is compared to
the fully sampled data, by letting the generator serve as a seed for imitating the imaging
process via subjecting the generator output to coil sensitivity map multiplication, FFT, and
a randomized under-sampling mask. As a result, this produced sparsely sampled k-space
data, which could be compared to the experimentally acquired sparse data. The proposed
unsupervised GAN had superior PSNR, normalized root mean-square error (NRMSE), and
SSIM compared to the common compressed sensing reconstruction. The unsupervised
GAN only had 0.78% worse PSNR, 4.17% worse NRMSE, and equal SSIM compared to
the supervised GAN. Reinforcement learning (RL) has also found an application in the
field of medical image analysis, particularly in the reconstruction of brain and knee MR
images [16]. The approach differs from the classical deep learning (DL) techniques in that
MRI reconstruction is formulated as a Markov Decision Process—with discrete actions and
continuous action parameters. An agent in such a process is a separate neural network that
is assigned to each pixel of the MR image and processes it according to the reward received
at each step of the algorithm training. The reward is formed as the difference between
the values of the processed pixels at step s and (s − 1). The results on fastMRI data using
a random 40% under-sampling mask were PSNR of 30.3 dB and SSIM of 88.0%.

The examples above, as well as this work, utilize the deep learning architecture net-
work called U-Net which was used for biomedical image processing at the beginning of
2015 and has since shown the most powerful results. The U-Net structure is symmetrical
and is divided into two main sections: the left half is called the encoder or contracting path
and is made up of the basic convolutional processes, while the right section is known as
the encoder or expansive path and is made up of transposed 2D convolutional layers [17].
Another candidate architecture considered in this work is the conditional generative adver-
sarial network (CGAN), a modification of the conventional GAN. The GAN is one of the
best neural network architectures for image processing and analysis, particularly for image
synthesis and reconstruction [18]. Along with the complexity of some of the considered
algorithms, a common drawback of the above methods is the low value of the signal to
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noise ratio. We assume that developing a custom hybrid loss function which calculates the
difference between target and reconstructed images in both spatial and frequency domains
will allow the model to overcome the drawback in recent works, i.e., the increase in the
SNR, and lead to the high structural similarity of constructed images.

3. Materials and Methods
3.1. The Proposed RecCGAN Framework: End-to-End Execution Scenario

In this section, we describe the abstract view of the proposed AI-based framework for
cardiac MR under-sampled image reconstruction using the hybrid spatial and frequency
loss function. The proposed end-to-end workflow is presented in Figure 1 and is explained
as follows:

• The fast MRI raw k-space data are collected and transformed into the spatial domain
using the inverse fast Fourier transformer (IFFT).

• The MR images are resized into a fixed size of 256 × 256 pixels.
• After resizing, the FFT is applied to allow us to generate the under-sampled MR data

in the frequency domain by removing each second column in the k-space domain
(known as interleaved under-sampling).

• The IFFT is applied again to convert the under-sampled k-space data into the aliased
MR images.

• All aliased images are normalized to fit all pixels within a fixed value range of [0, 255]
to improve the AI learning process, and hence, the reconstruction performance. More
detail about the data preparation can be found in Algorithm 1 (Section 3.2.2).

• The prepared aliased MR images are randomly split into 70% training, 10% validation,
and 20% testing sets.

• To increase the number of training MR images, the augmentation strategy is applied
to avoid any overfitting or bias, assist in better hyper-parameters’ optimization, and
improve the reconstruction performance.

• For reconstruction purposes, two well-known deep learning architectures of U-Net
and CGAN are adopted and used. The CGAN structure is adopted by using U-Net in
an encoder–decoder fashion to build the generator network. However, we test and
investigate the reconstruction performance of both U-Net and CGAN separately.

• The hybrid spatial and frequency loss function is proposed in order to improve the
reconstructed image quality over conventional loss functions acting only in the spatial
domain, such as L1-norm and GAN loss as a discriminator classification loss function.

• Finally, the proposed framework is evaluated using the individual U-Net and CGAN
against the widely used conventional SENSE reconstruction algorithm. A direct, fair
comparison is conducted using the same dataset and training environment settings.

3.2. Dataset
3.2.1. Dataset Description

To build, train, and validate the proposed AI framework, the public Multi-Coil k-Space
OCMR dataset for cardiovascular magnetic resonance imaging [9] was used. The dataset
is available online at https://ocmr.info/download (accessed on 20 December 2022). The
OCMR dataset consists of 53 fully sampled scans and 212 under-sampled scans. The fully
sampled scans comprise 81 slices, while the under-sampled scans comprise 842 slices. These
slices were collected from three different planes: 2-chamber, 4-chamber, and short-axis. To
build and train the proposed AI reconstruction framework, the fully sampled scan data
were used. The different available cine-frames were used as separate images, resulting
in a total of 1383 multi-channel (from 15 to 35) full k-space data entries used for network
training and testing.

3.2.2. Dataset Preparation

Algorithm 1 shows the data preparation scenario for all 1383 multi-channel k-space data.
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Algorithm 1 Dataset preparation for parallel imaging simulation.

Start:
Input: Fully sampled k-space cardiac MRI data
Step 1: load data
k-space data = {‘kx’ ‘ky’ ‘kz’ ‘coil’ ‘phase’ ‘set’ ‘slice’ ‘rep’ ‘avg’}← {read
k-space data in *.h5 format}
ISMRMRD← ISMRMRD; Python toolbox for MR image reconstruction [19]
Step 2: Average the k-space data accumulations (kData) if ‘avg’ > 1
k-space data← numpy.mean(kData, axis= −1)
Step 3: Apply IFFT to transform the k-space averaged data into the spatial domain
ImageSpaceData← transform data from k-space into image space

Step
4:

• Resize the MR image tensor for real and imaginary parts separately
Resized_image_tensor← complex_mri_resize (ImageSpaceData, new_size)

• Create a copy of Resized_image_tensor for under-sampling track

copy_resized_image_tensor← numpy.copy(Resized_image_tensor)

Step
5:

Generate aliased MR images

1. Transform the copy of resized image tensor back to the k-space

resized_kspace_tensor←transform_image_to_kspace(copy_resized_image_tensor])

2. Generate Cartesian binary sampling mask Binary_mask←
numpy.zerose_like(resized_kspace_tensor) Binary_mask[:..:2] = 1

3. Under-sample the resized_kspace by removing every second column based on the
designed binary sampling mask (Step 5: 2) US_kspace← resized_kspace_tensor *
Binary_mask

4. Apply IFFT to get the under-sampled MR images US_MR_image_tensor←
{transform_kspace_to_image(US_k-space)}

5. Merge the different channels via the sum-of-squares procedure im_sos_full =
numpy.sqrt(np.sum(np.abs(US_MR image_tensor) ** 2, 3))

6. Remove singleton dimensions Aliased_MR image_tensor← numpy.squeeze(im_sos_full)

Step
6:

Generate fully sampled ground-truth (GT) MR images

• Merge the different channels (Step 4) via the sum-of-squares procedure im_sos_full =
numpy.sqrt(np.sum(np.abs(resized_image_tensor) ** 2, 3))

• Remove singleton dimensions Fully sampled GT images← numpy.squeeze(im_sos_full)

END

Figure 2 shows the qualitative process of the MR data generation in terms of the
reference or ground-truth (GT) images and aliased images. The IFFT was used twice to
generate the GT and aliased MR images using the fully and under-sampled k-space data.
To down-sample the fully sampled k-space data, the interleaved down-sampling strategy
was used to generate the binary mask. Once the binary mask was generated with the same
size as the k-space data, we multiplied it in the frequency domain with the original fully
sampled data to generate the under-sampled k-space data.

3.2.3. MR Data Splitting and Augmentation

Once the MR images were prepared in the spatial domain, the whole OCMR dataset
was randomly split into 70% for training (887 k-spaces), 10% for validation (99 k-spaces),
and 30% for testing (415 k-spaces). The 10% validation set was randomly picked from
the training set. Table 1 shows the OCMR data distribution used to reach the goal of
this study. For augmentation, we used random rotation, vertical and horizontal flipping,
and cropping.
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Start: 
Input: Fully sampled k-space cardiac MRI data 
Step 1:  load data 
k-space data = {‘kx’  ‘ky’  ‘kz’  ‘coil’  ‘phase’  ‘set’  ‘slice’  ‘rep’  ‘avg’} ← {read 

k-space data in *.h5 format}  
ISMRMRD ← ISMRMRD; Python toolbox for MR image reconstruction [19] 
Step 2:  Average the k-space data accumulations (kData) if ‘avg’ > 1 
k-space data ← numpy.mean(kData, axis= −1) 
Step 3:  Apply IFFT to transform the k-space averaged data into the spatial domain 
ImageSpaceData ← transform data from k-space into image space  
Step 4:  

• Resize the MR image tensor for real and imaginary parts separately 
Resized_image_tensor ← complex_mri_resize (ImageSpaceData, new_size) 

Figure 1. The proposed AI-based MRI reconstruction framework.
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• Create a copy of Resized_image_tensor for under-sampling track 
copy_resized_image_tensor ← numpy.copy(Resized_image_tensor) 

Step 5: Generate aliased MR images  
1. Transform the copy of resized image tensor back to the k-space 
resized_kspace_tensor←transform_image_to_kspace(copy_resized_image_tensor]) 
2. Generate Cartesian binary sampling mask 

Binary_mask ← numpy.zerose_like(resized_kspace_tensor) 
Binary_mask[:..:2] = 1 

3. Under-sample the resized_kspace by removing every second column 
based on the designed binary sampling mask (Step 5: 2) 

    US_kspace ← resized_kspace_tensor * Binary_mask 
4. Apply IFFT to get the under-sampled MR images 
    US_MR_image_tensor ← {transform_kspace_to_image(US_k-space)} 
5. Merge the different channels via the sum-of-squares procedure  
   im_sos_full = numpy.sqrt(np.sum(np.abs(US_MR image_tensor) ** 2, 3)) 
6. Remove singleton dimensions 

Aliased_MR image_tensor ← numpy.squeeze(im_sos_full) 
Step 6: Generate fully sampled ground-truth (GT) MR images 

• Merge the different channels (Step 4) via the sum-of-squares procedure  

im_sos_full = numpy.sqrt(np.sum(np.abs(resized_image_tensor) ** 2, 3)) 

• Remove singleton dimensions 

Fully sampled GT images ← numpy.squeeze(im_sos_full) 

END 

Figure 2. Generating the reference ground-truth (GT) and aliased MR images using the fully and
under-sampled k-space data, respectively.

Table 1. MCOR data distribution.

Training (70%) Validation (10%) Testing (30%)

Original Dataset 887
99 415Augmented Dataset 3548

3.3. Deep Learning Network Architecture and Training Details
3.3.1. U-Net with Hybrid Loss

We decided to investigate the U-Net model for MR image reconstruction due to its high
efficiency in biomedical image processing. As mentioned above, the U-Net architecture
comprises two parts [17]: the left part is the contracting path, in which a 3 × 3 convolution
with zero-padding is applied for feature extraction from the input image. The rectified
linear function is used as an activation function. Image down-sampling down to the
bottleneck layer is conducted via a max-pooling layer with a 2 × 2 stride. The right section
following the bottleneck layer is known as the expansive path and is made up of transposed
2D convolutional layers. To increase the reconstruction precision, the architecture suggests
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concatenating the up-sampled layer output on the expansive path with the corresponding
feature tensor from the contracting path.

As the performance of the deep learning model depends not only on the network
architecture, but also on the loss function, which plays an important role in minimizing the
model error, a number of loss functions were assessed. The initial approach was to train
the model with L1 loss function [13] and L2 regularization.

J(θ) =
1
N

N

∑
s=1
‖H(s)
L − Ĥ

(s)
L ‖+ λ·‖Θ2‖, (1)

where Ĥ(s)
L ,H(s)

L are the model output and reference image, respectively, Θ is the tensor of
trainable parameters, and λ is the regularization parameter. N denotes the batch size. To
improve the model efficiency, we later extended the loss function by additionally taking into
account the difference between target and reconstructed images in the frequency domain
(i.e., in the k-space). The new loss term, which we call Fourier loss, is then provided by

LF1 =
1
N

N

∑
s=1
‖F{H(s)

L } − F{Ĥ
(s)
L }‖, (2)

where F{H(s)
L } , F{Ĥ(s)

L } are the Fourier transform of the reconstructed and the reference
images, respectively. The suggested loss function was tested as a part of an extended loss
function obtained by adding the Fourier loss (2) to Equation (1)

J(θ) =
1
N

N

∑
s=1
‖H(s)
L − Ĥ

(s)
L ‖+ α· 1

N

N

∑
s=1
‖F{H(s)

L } − F{Ĥ
(s)
L }‖+ λ·‖Θ2‖, (3)

where α = 0.1.

3.3.2. CGAN with Hybrid Loss

The GAN is another neural network architecture well-suited for image process-
ing and analysis, particularly for image synthesis and reconstruction. GANs consist of
two competing networks: the first, the generator, is the network that transforms the ran-
dom noise to generate ‘fake’ but realistic-looking images. The second network, called the
discriminator, is a different network, trained to classify whether the images generated by
the generator are real or ‘fake’. Here, we implemented the GAN with the U-Net architecture
as a generator and a convolutional network as a discriminator. The discriminator network
comprised six consecutive convolutional layers, four out six followed by batch normaliza-
tion and all followed by an activation function (ReLU in the first five and sigmoid in the
last layer). Another adopted modification to the classic GAN architecture fed the generator
not with random noise, but with an MR image obtained from the reduced k-space [18]. This
modification allowed such a model to be called image-conditional GAN (CGAN), as shown
in Figure 3.

Training the generator comprises finding the minimum of the objective function. The
objective specific to the CGAN is minimizing the loss function through the generator
network and maximizing it through the discriminator.

min
G

max
D
LCGAN(D, G) = Ex,y[log D(x, y)] +Ex,G(x)[log(1− D(x, G(x)))] (4)

where E[arg] is the mean of arg, and D(x, y) and G(x) are the discriminator and the generator
functions, respectively. It is also recommended to add L1 or L2 distance between the
reference and the generated image to the CGAN objective [18] to increase the method
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accuracy. We used the L1 distance here because it encourages less blurring [18]. Adding L1
distance changes the objective to

LossCGAN = min
G

max
D
LCGAN(D, G) + σ·Ex,y[‖y− G(x)‖1], (5)

where the coefficient σ is chosen empirically. As in the case of the standalone U-Net
architecture, we have found it beneficial to use Fourier loss in the objective function of the
CGAN:

LF1 = EF (x), F (G(x))[‖F (y)−F (G(x))‖1]. (6)
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Figure 3. The CGAN model architecture. The generator employs the U-Net architecture, whereas the
discriminator is a convolutional network.

Thus, identically to the bare U-Net case, two options for the loss function improvement
were explored: the L1 norm and the Fourier loss as a part of the combined loss. The latter
is given by

Loss∗CGAN = Ex,y[log D(x, y)] +Ex,G(x)[log(1− D(x, G(x)))] + σ·Ex,y[‖y− G(x)‖1]

+α·EF (x), F (G(x))[‖F (y)−F (G(x))‖1].
(7)

The discriminator model is trained separately on fake data (pairs of images acquired from
the reduced k-space and the corresponding CGAN-generated images) and real data (pairs
of images acquired from the reduced k-space and the reference image). The two input
images are concatenated together to create one 256 × 256 × 2 input to the first hidden
convolutional layer. The discriminator training strategy is illustrated in Figure 4.

In the training process, the discriminator model can be updated directly, whereas
the generator model must be updated via the discriminator model. This can be achieved
by creating a new composite model that connects the generator model’s output to the
discriminator model’s input. The discriminator model can then predict whether a generated
image is real or fake. To prevent a misleading update of the discriminator when employing
a discriminator to update the generator, the discriminator weights are specified as not
trainable [18,20]. Figure 5 illustrates the training strategy for the complete CGAN model
with Fourier loss.
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To evaluate the efficiency of the deep learning approach, we compared the deep-
learning-based results with the SENSE reconstruction, which is one of the most widely
used parallel imaging methods, offered by the majority of MR scanner vendors. As the
coil sensitivity profiles are not the part of the OCMR dataset, they were estimated for the
SENSE reconstruction from fully sampled MR data using the algorithm presented in [21].

3.4. Evaluation Strategy

Two metrics were used to assess the quality of the cardiac MRI reconstruction in both
the bare U-Net and CGAN cases. The first was the peak signal to noise ratio. The PSNR is
a metric for assessing the degree of pixels’ distortion caused by compression and noise [12].
It is defined as

PSNR = 20· log10

(
MAXI√

MSE

)
, (8)

where MAXI is the maximum possible pixel value of the image, and MSE is the mean
squared deviation.
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Structure similarity (SSIM) is the second metric, which is more complex and more
informative than the PSNR. It comprises an assessment of three characteristics of the
investigated images: intensity, contrast, and structural difference [11].

SSIM(I, K)local =
(2µIµK + c1)(2σI,K + c2)(

µ2
I + µ2

K + c1
)(

σ2
I + σ2

K + c2
) (9)

SSIM(I, K) =
1
M

M

∑
i=1

SSIM(I, K)local

where SSIM(I, K) ∈ [0, 1] is the structural similarity between the target image I and the
generated image K. µ and σ are the average and standard deviation, respectively. c is
the constant.

The SSIM value ranges from 0 to 1. If SSIM is 1, then the images are identical. As
a rule, SSIM is not used for the entire image at once, but it is used locally with a sliding
window and then averaged. The local calculation of SSIM metrics allows the variability in
statistical characteristics and spatial heterogeneity of the image structure to be taken into
account. Here, the kernel size was chosen to be (8 × 8) according to [10].

3.5. Experimental Setup

End-to-end training was used for the proposed AI model. In this study, we employed
a learning rate of 0.0002 with Adam optimizer. We trained all AI models using 100 epochs
with Random Normal weight initialization (stddev = 0.02) and a batch size of 8. The input
and output image size was fixed to the dimensions of 256 × 256. On the encoder side, the
activation function of LeakyReLU (alpha = 0.2) was used, while ReLU was used for the
decoder side.

3.6. Execution Development Environment

A computer with the following specifications was used to carry out the experiments:
AMD Ryzen 7 5800X 8-Core Processor 3.80 GHz 32 GB RAM with RTX 3060 (8 GB) GRAPH-
ICS CARD. Python 3.10 running on Windows 10 along with the Keras and TensorFlow
backend libraries were utilized to conduct the experiments that were analyzed in this study.

4. Experimental Results

The considered models were evaluated on the test MR data subset using the PSNR
and the SSIM evaluation metrics. The latter employed the image reconstructed from the
under-sampled k-space with deep learning models as I in (9) and the reference images
obtained from the fully sampled data as K in (9). Figure 6 and Table 2 display compar-
isons of SSIM and PSNR metrics of the reconstructed test MR images using: the U-Net
model with the L1-loss (U-Net_L1), the U-Net model with the combination of the L1-
and Fourier loss (U-Net_Hybrid_Loss), the CGAN model with L1-loss (GAN_L1), and the
CGAN model with the combination of the L1 and Fourier losses (GAN_ Hybrid_Loss).
As an addition, the abovementioned models were compared to the SENSE parallel MR
imaging algorithm reconstruction.

Table 2. Reconstruction performance evaluation of the proposed methodology against SENSE over
the test dataset.

AI Model
SSIM PSNR

No. of
Trainable Parameters

(Million)

Training
Time/Epoch (s)

Testing
Time/Image (s)Mean ± SD Median Mean ± SD Median

U-Net_L1_Loss 0.857 ± 0.059 0.87 31.834 ± 2.66 32.77 54.41 1.23 0.1
GAN_L1_Loss 0.880 ± 0.054 0.89 33.678 ± 2.6 33.91 61.38 4 0.15
U-Net_Hybrid_Loss 0.876 ± 0.054 0.89 33.112 ± 2.56 33.79 54.41 1.23 0.1
GAN_ Hybrid_Loss 0.903 ± 0.050 0.92 35.683 ± 2.77 36.11 61.38 4 0.15
SENSE 0.902 ± 0.058 0.92 26.288 ± 5.48 26.70 - - 0.29
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4.1. Quality of the MR Image Reconstruction against Different AI Architectures

Our first goal was to study the impact of the deep network architecture type on the
quality of the MR image reconstruction. For this purpose, the U-Net and the CGAN ar-
chitectures were investigated. According to the median values of the evaluation metrics,
the CGAN architecture exceeded the U-net by 2% in terms of the SSIM score, in which
they reached the values of 0.89 and 0.87, respectively. The CGAN architecture also showed
a better median PSNR score (33.91) when compared to the median PSNR of images recon-
structed with the U-Net (32.77). Thus, the CGAN model showed overall better performance
according to the SSIM and PSNR metrics.
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Figure 6. Comparison of the SSIM and PSNR metrics of the reconstructed test images for different
algorithms: U-Net model with the L1-loss (U-Net_L1), U-Net model with the combination of the L1-
and Fourier loss (U-Net_L1_fft), CGAN model with the L1-loss (GAN_L1), CGAN model with the
combination of the L1 and Fourier losses (GAN_L1_fft), and the classic SENSE reconstruction.

4.2. Quality of the MR Image Reconstruction against the Proposed Hybrid Loss Function

Our second goal was to explore the impact of the introduced modified loss function.
The results in Table 2 and Figure 6 show the contribution of the proposed Fourier loss
function, which was designed to take into account the difference between target and
reconstructed images in the frequency domain. Adding Fourier loss to the U-Net and the
CGAN model resulted in increases in the SSIM score by 2% and 3%, respectively, whereas
the PSNR score increased by about 1.02 and 2.2 for the two network architectures. Thus, we
can see that the proposed Fourier hybrid loss helped to enhance the image reconstruction
quality. Making the model minimize the error in the k-space resulted in minimizing the
reconstruction error.

5. Discussion
5.1. Deep Learning Approach against Classical Algorithms of MR Image Reconstruction

The results above show the ability of the deep learning algorithms to reconstruct MRI
images as an alternative to classical algorithms such as SENSE. Different deep network
architectures (U-Net and CGAN) achieve better image reconstruction quality against SENSE
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in terms of the PSNR by 6.84 and 9.57, respectively. Similarly, the deep network architectures
studied in this paper display comparable SSIM results of the reconstructed MR images.
The advantage of the developed deep learning approach is that there is no need for coil
sensitivity maps compared to the SENSE algorithms of the MRI image reconstruction.
The higher value of PSNR, comparable SSIM metric, and the absence of the need for
a coil sensitivity map, along with other possibilities, open up promising prospects for the
development of deep learning approaches in MRI image reconstruction problems.

L1 distance in image space forces the model to enhance the structural characteristics
of generated (reconstructed) images. Using Fourier (k-space) L1 loss, we encouraged the
model to take important frequency components into account; thus, we achieved an increase
in the quality of image reconstruction for both networks. Adding Fourier (k-space) loss
to the U-Net and the CGAN model resulted in increasing the SSIM score by 2% and 3%,
respectively, whereas the PSNR score increased by about 1.02 and 2.2 for the two network
architectures. Thus, we can see that the proposed hybrid loss helps to enhance the image
reconstruction quality.

5.2. Statistical Significance of the Results

After the PSNR and SSIM metrics were calculated using the test dataset for every
architecture, the metrics distributions were tested for statistically significant differences.
The choice of the statistical significance test depends critically on the type of the data
distribution. As a rule, if the samples have a normal distribution, then a t-test is used. If
the data distribution does not meet the requirements for normality, then other approaches
are undertaken, the most commonly known being the Mann–Whitney U-test. It is therefore
necessary to first conduct a test for data normality and then evaluate the statistical signifi-
cance. Normality tests were carried out using a qualitative histogram evaluation as well as
a Shapiro–Wilk normality test. The essence of normality verification is to put forward the
null hypotheses that the data are distributed normally with the error probability of 0.05.
Thus, H0 is “the data come from the normal distributions (accepted if p > 0.05)”; otherwise,
H1 (rejected), meaning that data do not come from the normal distribution. The results of
the Shapiro–Wilk normality test are presented in Table 3.

Table 3. Shapiro–Wilk normality test for SSIM and PSNR of studied AI models.

AI Model
SSIM PSNR

Statistics df p-Value Statistics df p-Value

U-Net_L1_Loss 0.885

414

5.3 × 10−17 0.925

414

1.61 × 10−13

GAN_L1_Loss 0.921 7 × 10−14 0.943 1.66 × 10−11

U-Net_Hybrid_Loss 0.882 2.8 × 10−17 0.905 2.30 × 10−15

SENSE 0.819 5.75 × 10−17 0.954 1.11 × 10−13

GAN_Hybrid_Loss 0.868 3 × 10−18 0.941 9.46 × 10−12

Since for all the architectures in Table 3, the p-values for SSIM and PSNR distributions
were much less than the alpha (p-value 0.05), we rejected all the null hypotheses and
concluded that none of the samples came from normal distributions. These results were
also confirmed by the graphic evaluation. It can be seen in Figure 7 that the data were not
distributed normally.

Due to the non-normality of the SSIM and PSNR distributions, we could not use a t-
test to study statistical significance, and thus, a nonparametric Mann–Whitney U-test was
used. We compared the SSIM and PSNR distributions provided by the final architecture
(GAN_Hybrid_Loss) with the rest of the reconstruction strategies. The results of the
Mann–Whitney U-test are presented in Table 4.
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Table 4. The results of Mann–Whitney U test for SSIM and PSNR of the studied AI models against
the model with the highest SSIM and PSNR (GAN_Hybrid_Loss).

AI Model
SSIM PSNR

p-Value p-Value

U-Net_L1_Loss 3.26 × 10−38 3.20 × 10−74

GAN_L1_Loss 3.83 × 10−12 2.02 × 10−28

U-Net_Hybrid_Loss 2.02 × 10−18 2.12 × 10−43

SENSE 0.092 2.40 × 10−116

Using the Mann–Whitney U paired test with a significance level of a 0.05 p-value, the
AI models were investigated. Assuming the null hypothesis, there was no significant perfor-
mance difference between our proposed model (GAN_Hybrid_Loss) and others, whereas
the alternative hypothesis intended to show if the proposed GAN_ Hybrid_Loss model
provided metrics that were statistically different from the other approaches. According to
the obtained p-values of the SSIM metric, shown in Table 4, we could infer that statistical
differences existed between GAN_ Hybrid_Loss and other models (p-value much smaller
than 0.05), except SENSE (p-value = 0.09 > 0.05). This shows the differences between the
GAN_Hybrid_Loss model and other models (seen in Figure 6 and Table 2) were statistically
significant differences in all cases except SENSE, which thus can be concluded to have had
a comparable performance. On the other hand, the p-values of the PNSR distribution tests
for all models were smaller than the 0.05 threshold, which confirms the improvement in the
performance of our GAN_Hybrid_Loss model against other models, including the SENSE
algorithm, to be statistically significant.

5.3. Comparison Results against the Recent Research Works

During this study, we conducted a comparison of the proposed algorithm with the
latest AI research works for MRI image reconstruction. Table 5 shows the used models,
implemented loss functions, and some quantitative results of studied deep learning algo-
rithms for MR image construction. The analysis of these approaches shows that regardless
of how good the SSIM metrics are, the PSNR is still close to the mean PSNR of the clas-
sical SENSE algorithm. In [9], some k-space correction was used, but it was employed
as a post-processing step, so the model itself did not learn this correction in the k-space.
Unfortunately, the it did not provide any information about the PSNR, so it is difficult
to evaluate the contribution of this post-processing procedure. However, our approach,

22



Diagnostics 2023, 13, 1120

thanks to the use of hybrid spatial and k-space loss, overcame the presented models in the
PSNR metric (mean PSNR = 35.68). Thus, we can conclude that in MR image reconstruction,
it is important to pay attention to the difference between reconstructed and target images
not only in the special space, but also in the k-space. This will guarantee the achievement
of the more accurate quality of the image reconstruction.

Table 5. Comparison of the evaluation results against the latest AI research works for MRI image
reconstruction.

Reference Model Loss Function SSIM PSNR

Hyun CM et al. (2017), [9] U-net with k-space correction L2-norm 0.903 -
Ghodrati V et al. (2019), [10] Resnet-L1 L1-norm 0.81 26.39

Ghodrati V et al. (2019), [10] Unet–Dssim Structural
dissimilarity 0.86 27.04

Cole, Elizabeth et al. (2020), [11] Unsupervised GAN GAN loss 0.88 29

The proposed,
(U-Net_Hybrid_Loss) U-Net Hybrid

Loss function
Hybridd Loss

0.876 ± 0.03 33.11 ± 2.56

The proposed,
(GAN_Hybrid_Loss) CGAN 0.903 ± 0.05 35.68 ± 2.77

6. Conclusions

In this work, we developed a deep learning approach to reconstruct cardiac MR images
from under-sampled k-space data. Two deep network architectures were considered: the
U-Net and the CGAN. The results showed that the CGAN model outperformed the U-Net
model by 2% in terms of the SSIM score. To enhance the model efficiency, we extended
the loss function by additionally taking into account the difference between target and
reconstructed images in the frequency domain. The proposed loss, referred to as the Fourier
loss, was shown to increase the SSIM by another 2% for the U-Net model and by 3% for
the CGAN. The PSNR score was also improved by employing the Fourier loss by 1 for the
U-net model and by 2.2 for the CGAN model.

Because the GAN model with the combination of L1 and Fourier losses (GAN_Hybrid_Loss)
yielded the best results among the other studied deep learning models, we also compared it
with the reconstruction employing the SENSE algorithm. According to the SSIM metric, the
results of GAN_Hybrid_Loss are comparable to the SENSE results. However, the PSNR of
GAN_Hybrid_Loss was greater than that of the SENSE by 8.7 (36.11 and 27.40, respectively).
The latter could have resulted from the known effect of SNR reduction in parallel imaging
as the square root of the acceleration factor, while the deep learning algorithms do seem
to help mitigate this problem. The suggested algorithms and network architectures can
therefore be used in applications in which both fast acquisition and a high SNR is critical
(cardiac imaging being one of these areas) as a substitution for the classic parallel imaging
algorithms, which do not conserve the SNR.
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Abstract: In this paper, a novel strategy to perform high-dimensional feature selection using an
evolutionary algorithm for the automatic classification of coronary stenosis is introduced. The
method involves a feature extraction stage to form a bank of 473 features considering different types
such as intensity, texture and shape. The feature selection task is carried out on a high-dimensional
feature bank, where the search space is denoted by O(2n) and n = 473. The proposed evolutionary
search strategy was compared in terms of the Jaccard coefficient and accuracy classification with
different state-of-the-art methods. The highest feature selection rate, along with the best classification
performance, was obtained with a subset of four features, representing a 99% discrimination rate.
In the last stage, the feature subset was used as input to train a support vector machine using an
independent testing set. The classification of coronary stenosis cases involves a binary classification
type by considering positive and negative classes. The highest classification performance was
obtained with the four-feature subset in terms of accuracy (0.86) and Jaccard coefficient (0.75) metrics.
In addition, a second dataset containing 2788 instances was formed from a public image database,
obtaining an accuracy of 0.89 and a Jaccard Coefficient of 0.80. Finally, based on the performance
achieved with the four-feature subset, they can be suitable for use in a clinical decision support system.

Keywords: bank of features; coronary angiograms; evolutionary algorithm; feature selection;
K-nearest neighbor; stenosis classification

1. Introduction

Coronary artery disease (CAD) stands as a leading cause of mortality in the majority
of developed countries [1]. According to the British Heart Foundation (BHF) [2], coronary
heart disease was the main cause of death in the year 2021 around the world. In Figure 1,
a comparative chart of different death causes with data extracted from the BHF is illustrated.

According to Figure 1, coronary heart disease presents the highest rate of cases, with
9.2 million registered cases around the world.

In coronary artery disease, atherosclerosis leads to the development of coronary steno-
sis at various locations [3]. Nowadays, X-ray coronary angiograms are the gold standard
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for the detection of coronary stenosis in clinical practice. Consequently, a cardiology
specialist must exhaustively examine the entire angiogram, and according to their exper-
tise, all regions in which coronary stenosis cases can occur are labeled by hand. Figure 2
presents X-ray coronary angiogram samples with stenosis regions labeled by a specialist in
cardiology.

Figure 1. Comparison of five main diseases around the world: coronary heart disease (C.H.D.),
stroke, chronic inflammatory pulmonary disease (C.I.P.D.), lower respiratory infections (L.R.I.) and
lung cancer.

Figure 2. Coronary angiograms with their respective coronary stenosis regions labeled by the specialist.

The coronary stenosis problem has been studied in digital image processing, in which
several challenging issues must be addressed, such as the presence of noise and weak
contrast. In the literature, the method proposed by Saad [4] requires a previous vessel
segmentation of a coronary angiogram to identify atherosclerosis using a vessel-width
variation measure. A coronary stenosis measure grading method was proposed by Kishore
and Jayanthi [5], using the pixel intensities of a previously enhanced image. Alternative
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methods, such as Brieva et al. [6], used a Hessian-based approach to extract different
texture and shape vessel features to classify positive and negative stenosis cases.

Moreover, machine learning-based techniques have been used to address the stenosis
classification problem. A naive Bayes classifier was used by Taki et al. [7] to classify
calcified and non-calcified coronary artery plaques. The method of Cruz–Aceves et al. [8]
uses a 3D intensity feature vector computed from the histogram of an image to detect a
specific type of stenosis using a Bayesian-based classifier. Giannoglou et al. [9] proposed a
fuzzy criterion for a feature selection process in atherosclerotic plaques. Chen et al. [10]
use a 6D vector of shape features for the detection of coronary artery disease.

The main disadvantage of previous methods is the use of a fixed threshold mea-
surement in order to classify coronary stenosis cases. Since image datasets of coronary
angiograms have different size, contrast, and noise levels, the artery feature values present
considerable variations. In consequence, the obtained results are highly dependent on the
applied vessel enhancement method. In the proposed method, a number of spatial and
frequency domain filters have been adopted for vessel enhancement in order to capture
relevant information from different domains.

The method proposed by Antczak and Liberadzki [11], generates synthetic coronary
stenosis and non-stenosis patches aiming to enhance the performance of a convolutional
neural network (CNN) from scratch. Data augmentation techniques [12] are also used
to generate a large number of instances that are used in the training and testing steps
of a CNN. In addition, using the explainable AI concept, it is difficult to identify what
features are really useful for correct classification and what they represent, which is the
main drawback of the CNN [13]. Convolutional neural networks are still considered “black
box” systems that do not offer any insight or explanations on how the decision is obtained,
limiting the clinical applicability due to their lack of transparency and interpretability. Since
the proposed method works with identifiable features, it is possible to know their relevance
in the coronary stenosis classification by performance employing statistical analysis.

In the present paper, a novel strategy to perform high-dimensional feature selec-
tion using an evolutionary algorithm for the classification of coronary stenosis is pro-
posed. The method involves a binary classification in order to identify positive and
negative coronary stenosis cases. An automatic feature selection step is driven by a
hybrid-evolutionary algorithm over a high-dimensional bank of features. The accuracy
metric was used as a fitness function, while the discrimination rate was also maximized.
Shape feature values such as vessel length, bifurcation points and others are dependent
on a vessel enhancement technique. Therefore, different enhancement methods were
applied to the original images. This strategy allows the formation of a feature bank
of 473 different features. To obtain an optimal subset of features, an automatic feature
selection stage is performed using a K-nearest neighbor classifier (KNN) to select rel-
evant features. The classification of positive and negative stenosis cases is performed
adequately in terms of the accuracy and Jaccard coefficients, which are useful to evalu-
ate the rate of true-positive coronary stenosis cases and avoid the rate of true-negative
cases. Since the problem involves a high-dimensional search space, which can be expressed
as O(2473), a hybrid-evolutionary algorithm is appropriate for addressing the feature
selection optimization problem. An evolutionary algorithm is a high-dimensional opti-
mization technique for working in discrete and continuous domains using the Darwinian
theory about the evolution of biological organisms throughout various generations. The
hybrid-evolutionary strategy achieved a discrimination rate of 0.99, obtaining a subset of
four features from the extracted bank of 473. In the experiments, a database containing
608 images was used for training of the proposed method (508 for training and 100 for
testing). In addition, a second public domain database [11], of 2788 coronary patch images
was used for testing.

The rest of this paper is structured as follows. The background methods of vessel
enhancement methods, along with intensity, texture, and shape features, are presented in
Section 2. In Section 3, the bank of 473 features, the hybrid-evolutionary algorithm, and
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the performance metrics of the proposed method are introduced. Experimental results are
described in Section 4, and conclusions are presented in Section 5.

2. Materials and Methods
2.1. Experiment Materials

For the experiments, two distinct banks of images were used. The first image database
was formed from a bank of images provided by the Mexican Institute for Social Healthcare
and authorized by an institutional review board only for research purposes under the refer-
ence R-2019-1001-078. The bank contains 180 digital images of coronary angiograms, which
are 512× 512 pixels and have a grayscale color scheme. It also included the corresponding
ground-truth images with the coronary stenosis cases labeled by a cardiology specialist.
From the provided image bank, 304 patches of size 64× 64 pixels containing coronary
stenosis cases were extracted. In addition, 304 additional patches with non-stenosis cases
were extracted in order to form a balanced database. A total set of 608 image patches
were extracted to form the first database. The size of the patches corresponds to the area
enclosing the stenosis cases and was labeled and validated by the specialist.

In order to assess the obtained results, a second image database was formed from the
Antczak [11] image database, which is in the public domain. Each image corresponds to
a coronary patch of size 32× 32 pixels in a grayscale color scheme. The original bank is
formed by 122 natural coronary patches containing a stenosis case. In addition, it contains
1394 natural coronary patches with non-coronary stenosis cases. Since the proportion
of positive and negative stenosis cases is unbalanced, 1272 additional synthetic patches
with a coronary stenosis case were added, which were taken from the same image bank.
Consequently, the second image database consists of 2788 images with a balance of positive
and negative coronary stenosis cases.

2.2. Feature Extraction

The description and measurement of objects of interest, properties of an image, or a
specific region is commonly known as feature extraction [14]. It is possible to extract distinct
feature types, as described in the literature [15,16]. According to their nature, features can
be classified into texture, intensity, and shape.

2.2.1. Intensity Features

Intensity features are relevant in digital image processing because they are related to
the corresponding value for each pixel in the image. Here, the five minimum, maximum,
median, average, and standard deviation statistical measures of the pixel intensity have
been extracted.

2.2.2. Texture Features

Texture features are relevant in different cardiovascular problems [17,18]. One of the
most used approaches for the extraction of texture-related features over images is the gray-
level co-occurrence matrix (GLCM) [19]. The GLCM computes the frequency of variation
between the intensity levels of a pixel. It is expressed as a matrix whose rows and columns
correspond to the entire image’s pixel intensities. The frequencies of intensity variations
are computed in a specific spatial relationship denoted by (∆x, ∆y) between two different
pixels with intensity levels i and j as follows:

C∆x,∆y(i, j) =
n

∑
x=1

m

∑
y=1

{
1, if I(x, y) = i and I(x + ∆x, y + ∆y) = j
0, otherwise

, (1)

where C∆x,∆y(i, j) is the frequency in which two pixels with intensities i and j at a specific
offset (∆x, ∆y) occur, and n and m represent the height and width of the image.

Additionally, it is also possible to extract texture features from the output of alternative
representation methods, such as the Radon transform [20]. The Radon transform is the
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projection of the image intensity along with a radial line oriented at some specific angle,
which can be computed as follows:

R(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(ρ− x cos θ − y sin θ)dxdy, (2)

where R(ρ, θ) is the Radon Transform of a function f (x, y) at an angle θ, δ(r) is the Dirac
delta function, and δ(ρ− x cos θ − y sin θ) forces the integration of f (x, y) along the line
ρ− x cos θ − y sin θ = 0.

2.2.3. Shape Features

Shape-based features enable the extraction of quantifiable information concerning
various aspects related to the artery shape; for example, a segment length, the tortuosity
level present in a determined arterial section, or the number of bifurcations present on
it and the vessel width. Nevertheless, to extract shape-based features, it is necessary to
perform a previous vessel enhancement process over the original image in which useless
information such as noise and background are identified. Consequently, the shape measure
values are highly dependent on the applied filtering method. The use of the Hessian matrix
and eigenvalues methodology [21] has proved to be adequate for vessel enhancement.
However, an automatic thresholding strategy such as the Otsu method [22] is necessary to
separate vessel and non-vessel pixels.

The vessel skeleton has been used to extract vessel-shape-related information. To ob-
tain the corresponding vessel skeleton from a binary segmented image, the medial-axis
transform method has been commonly applied [23].

2.3. Vessel Enhancement Methods

Vessel enhancement methods are useful for discriminating irrelevant non-vessel in-
formation on coronary angiograms. In the literature, spatial and frequency domain filters
have been applied to the vessel enhancement problem, achieving suitable results. In the
experiments, eight state-of-the-art vessel enhancement methods have been adopted, which
are mentioned below.

1. Spatial domain filters

(a) Hessian-based methods.

i. Vesselness measure [24]. The Frangi method computes a vesselness mea-
sure using the eigenvalues of a Hessian matrix.

ii. Hessian matrix and clustering [25]. The Hessian matrix is also used by
Salem et al. for vessel enhancement by computing the largest eigenvalue
and vessel orientation over all scales.

(b) Morphological top-hat filter [26]. In mathematical morphology, the top-hat filter is
useful to enhance images with non-uniform illumination. Because of this property,
the top-hat operator has been used to enhance vessel-like structures [27,28].

(c) Multi-scale line detection [29]. An alternative approach that has been used for
artery enhancement is the linear matched filter. This method works under the
assumption that blood vessels can be modeled by linear segments that share the
same orientation and length.

(d) Gaussian matched filter

i. Single-scale Gaussian filter (GMF). In this approach, a gray-scale template
is formed from a Gaussian distribution, which is convolved with the
input image.

ii. Multi-scale Gaussian filter. The main limitation of GMF is the use of
a fixed vessel diameter represented by the σ parameter in which non-
corresponding vessel diameters will be distinguished. In order to over-
come this disadvantage, a multi-scale Gaussian matched filter was pro-
posed by Cruz–Aceves et al. [30] considering different vessel width scales.
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2. Frequency domain filters

(a) Gabor filter

i. Single-scale Gabor filter [31]. The Gabor filter is a Gaussian curve modu-
lated by a sinusoidal function, which is useful for the detection of direc-
tional features. In addition, Rangayyan et al. [32] simplified the matching
template equation so it is governed by only two parameters.

ii. Multi-scale Gabor filter [33]. Similar to the GMF, the use of a fixed vessel
diameter represented by the τ parameter will only detect the main artery
tree and, as a consequence, discriminate vessels with diameters lower than
τ. In order to overcome this disadvantage, Rangayyan et al. proposed a
multi-scale Gabor filter for retinal vessels.

2.4. Metaheuristics

The classification techniques learn and predict by classifying instances defined by their
features. Therefore, the classification accuracy performance is highly dependent on the used
feature set since not all of the used features could be relevant for the classification process.
In this context, a feature selection task is necessary after the feature extraction stage is per-
formed. However, the feature selection task is turned into a high-dimensional complexity
problem when the number of involved features is elevated because the number of different
combinations that are required to find the most suitable feature subset is denoted by 2n,
where n is the number of involved features. Consequently, the use of high-dimensional
optimization algorithms is appropriate to address the feature selection problem.

2.4.1. Simulated Annealing

Simulated annealing (SA) is a metaheuristic that was abstracted from an industrial
process. In the annealing process, the material is exposed to a certain high temperature,
and after, a controlled cooling process is performed. Simultaneously, care must be taken in
order to preserve certain molecular alignments in the material to ensure their quality. This
process was adapted as a computational search technique by Kirpatrick et al. [34] to solve
combinatorial and continuous optimization problems. The algorithm is governed by the
Tmin, Tmax and Tstep parameters, which refer to the minimum, maximum, and changing-step
temperatures, respectively. At each iteration step, a new solution is generated based on a
computed probability that involves the current temperature and the decreasing parameter
∆E, which represents the objective function response. The probability is calculated from
the Boltzmann distribution as follows:

P(∆E, T) =
f (s′)− f (s)

T
, (3)

where P(∆E, T) is the probability computed from the Boltzmann distribution, and f (s′)
and f (s) denote the objective function value obtained with the current and the previous SA
solution, respectively.

2.4.2. Boltzmann Univariate Marginal Distribution Algorithm (BUMDA)

BUMDA [35] is a population-based method that uses the estimation of distribution to
generate new individuals. The main idea of BUMDA is the use of a distribution probability
computed from the best solutions of the current generation in order to generate the new
one [36]. The Boltzmann probability distribution used by BUMDA is calculated as follows:

µ = ∑
j

W(Xj)xj, where W(Xj) =
g(Xj)

∑Xj
g(Xj)

, (4)

ν = ∑
j

W ′(Xj)(Xj − µ)2, where W ′(Xj) =
g(Xj)

∑Xj
g(Xj) + 1

, (5)
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where µ is the objective function average, ν is the objective function variance that was
obtained from the population. g(Xj) corresponds to the value of the objective function
obtained by the individual jth, which is an individual of the population X. Consequently,
in order to generate the next population, a fraction of the current one that contains the best
individuals is used to produce the new generation, as follows (npop is the population size):

θt+1 =





f (xnpop) if t = 1,
f (x npop

2
) if f (x npop

2
) >= θt,

f (xi) when f (xi) >= θt
∣∣∣∣
npop

i= npop
2 +1

,
(6)

2.5. Machine Learning-Based Classifiers

Classifiers are useful for deciding if a specific instance belongs to part of one class or
another. For the coronary stenosis classification problems, they are useful for determining
if an image or a region over it corresponds to a positive stenosis case or a negative one.

2.5.1. K-Nearest Neighbor

K-nearest neighbor (KNN) represents a fast classification method that was first pro-
posed by Evelyn Fix and Joseph Hodges in 1952 [37]. Later, in 1967, Thomas Cover and
Peter E. Hart expanded the initial proposal by introducing the concept of nearest neigh-
bor [38]. The KNN is governed only by the k parameter, which is a positive integer and
indicates the number of associated nearest neighbors that a new instance will have in order
to measure its probability of membership to different classes. The KNN inputs are labeled
vectors in a multidimensional feature space. In the first stage, the training of the KNN
model consists only of the storage of the feature vectors and their corresponding class.
In the second stage, the KNN classifies new instances by measuring their frequency among
the k nearest instances to determine the label of the new instance. In addition, the “nearest”
term is associated with the similarity concept in which measurement is commonly based
on a distance metric (commonly, Euclidean distance).

2.5.2. Support Vector Machine

Originally conceived as a linear separator for binary classification in supervised learn-
ing, the Support Vector Machine (SVM) faces challenges when dealing with instances
characterized by significant data overlaps, making linear separability unattainable [39].
To address this issue, SVM has the capability of projecting instances from their original
representation space into higher-dimensional orders, enabling successful classification [40].
To execute these projections, SVM leverages instances situated on both sides of the separa-
tion boundary, whether it be a line, plane, or hyperplane. The SVM is then formulated as
follows [41]:

f (x) = WTφ(X) + b, (7)

where W is the weight vector and normal to the hyperplane, φ is the projection function or
kernel, b is the bias or threshold, and X is the data point to be classified.

3. Proposed Method

The proposed strategy consists of three stages. The first stage corresponds to the
feature extraction in order to form a bank of 473 features involving intensity, shape, and
texture types. For shape features, 8 vessel enhancement methods from the state-of-the-art
were used. In the second stage, a subset of features is selected (feature selection) by using a
hybrid-evolutionary algorithm in order to maximize the classification accuracy in training
data while minimizing the number of features. In the final stage, the selected subset is
tested for the classification of coronary stenosis using an independent test set of angiograms.
In Figure 3, the steps of the proposed strategy are illustrated.
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Figure 3. Proposed feature extraction, selection, and classification methods to classify coronary stenosis.

The bank of 473 features is formed as follows. Intensity-based features, such as mini-
mum, maximum, median, mean, and standard deviation of the pixel intensities, are present
in the original image. In addition, these features were also extracted from the responses of
the different enhancement methods. In texture features, the Haralik [42] methodology was
applied in order to obtain 14 distinct texture-related features. Consequently, 50 different
shape features were extracted, including those used by Welikala [43]. Since shape feature
values depend on the previous image enhancement process used, different methods were
applied, such as those by Frangi et al. and Salem et al., as well as single and multi-scale
Gaussian matched filtering, single and multi-scale Gabor filtering, linear multi-scale, and a
multi-scale top-hat operator. All extracted features are described below.

Intensity-based Features

The intensity features correspond to the statistical measures of standard deviation,
minimum, maximum, average, and median of the pixel intensities. Those features were
computed from the original image and from the filter response of the 8 enhancement
methods described previously. Consequently, 45 intensity-based features were extracted.

Texture Features

From the original image, the set of 14 texture features proposed by Haralik [42] were
computed. In addition, this set of features was also applied to the Radon transform
response. The total number of texture features is 28.

Shape Features

For shape features, 14 of them were extracted as described in the Welikala methodol-
ogy [43], as follows:

1. The total number of vessel pixels.
2. The total number of vessel segments.
3. Vessel density.
4. Tortuosity.
5. The minimum vessel length.
6. The maximum vessel length.
7. The median vessel length.
8. The mean vessel length.
9. The standard deviation length.
10. The number of bifurcation points.
11. Gray level coefficient of variation.
13. Gradient mean.
14. Gradient coefficient of variation.

In addition, in the study by Gil et al. [23], 5 shape features were extracted considering
continuous arterial sections and their corresponding segments delimited by tortuosity
as follows:

1. The minimum standard deviation of the segments in length pixels considering all
arterial sections. Since each arterial section is composed of continuous segments, it is
possible to measure the length of each segment and compute the standard deviation
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for each section. Therefore, if several arterial sections are present in the image, it is
possible to obtain statistical measures over the arterial sections.

2. The maximum standard deviation of segments in length pixels considering all arterial
sections.

3. The median standard deviation of the segments in length pixels considering all arterial
sections.

4. The average of standard deviations of the segments in length pixels considering all
arterial sections.

5. The variance of the standard deviations of the segments in length pixels considering
all arterial sections.

In addition, 25 shape features were computed as following:

1. Minimum perimeter. The perimeter of an arterial section is the length of its boundary.
2. Maximum perimeter.
3. Median perimeter.
4. Mean perimeter.
5. Standard deviation of the perimeters.
6. Minimum compactness. It can be computed as follows:

Compactness =
Perimeter2

Area
. (8)

7. Maximum compactness.
8. Median compactness.
9. Mean compactness.
10. Standard deviation of compactness.
11. Minimum circularity ratio. It can be computed as follows:

Circularity Ratio =
4 · π ·Area
Perimeter2 . (9)

Similar to previous measures, for images containing several arterial sections, it is
possible to compute circularity for each section and obtain statistical measurements.

12. Maximum circularity ratio.
13. Median circularity ratio.
14. Mean circularity ratio.
15. Standard deviations of the circularity ratios.
16. Minimum rectangularity. It can be computed as follows:

Rectangularity =
Area of Arterial Region

Area of Bounding Rectangle of Arterial Region
. (10)

17. Maximum rectangularity.
18. Median rectangularity.
19. Mean rectangularity.
20. Standard deviation of rectangularities.
21. Minimum elongatedness. It can be computed as follows:

Elongatedness =
l
w

, (11)

where l is the arterial section length in pixels, and w represents the vessel width in
pixels.

22. Maximum elongatedness.
23. Median elongatedness.
24. Mean elongatedness.
25. Standard deviation of elongatedness.

Finally, 6 shape-density features were also extracted.

34



Diagnostics 2024, 14, 268

1. Minimum vessel pixel density of all arterial sections present in the patch.
2. Maximum vessel pixel density.
3. Median vessel pixel density.
4. Mean vessel pixel density.
5. Standard deviation of the vessel pixel densities.
6. Sum of the vessel pixel densities of all arterial sections.

A set with 50 distinct shape-based features was described previously. Since shape
feature values are dependent on the applied enhancement method, they were extracted
from the 8 responses corresponding to each applied enhancement method in order to
extract a set with 400 shape-related features.

After the feature extraction process is concluded, a numeric feature dataset is gener-
ated and partitioned randomly into training and testing instances in a balanced manner.
The feature selection task is performed on the training dataset, and it is turned into a search
process that is conducted by the hybrid-evolutionary algorithm involving the BUMDA and
SA metaheuristics.

Since the total number of extracted features is 473, the identification of an optimal
feature subset using an exhaustive search process involves a computational cost of O(2473),
which is highly difficult to perform. By involving a single search evolutionary method,
the problem can be solved partially. However, due to the high-dimensional complexity of
the problem, it is possible to improve the solution achieved by the evolutionary method at
each iteration, applying a refined search. This will lead to the use of a hybrid-evolutionary
method in which the main goal of feature selection is to identify an optimal subset that
improves classification accuracy and reduces model complexity.

The proposed method for the automatic feature selection task is formed by the BUMDA
and the SA strategies. The use of BUMDA is adequate because the use of the Boltzmann
distribution produces spread populations in comparison with the UMDA and other re-
lated techniques [35], which also decreases the risk of falling into local-optima solutions.
In addition, since the SA algorithm is a single-solution search method, it is suitable to
improve the best solution produced by the BUMDA at each iteration in a refined search
step. The combination of these metaheuristics produces a hybrid-evolutionary method
focused on the search for the best suitable feature subset by considering the minimization
of its size and the maximization of the accuracy classification performance.

Since the feature selection task involves the evaluation of each feature subset produced
by the search techniques, a classification model must be trained. By considering that
BUMDA is governed by the population size (ps) and the number of generations (ng), and
the SA is governed by the number of iterations (ni) computed from the initial, final, and step
temperature, the total number of classification models to train is computed as ps× ng× ni.
For instance, if ps = 100, ng = 1000, and ni = 1000, the total number of different classifiers
to be evaluated is 1× 108. Consequently, a fast-convergent classification method such as
the K-nearest neighbor is suitable in this stage. Subsequently, when the feature selection
stage is completed, a more complex classification technique, such as the SVM, can be used
in a testing stage to improve the classification performance.

Figure 4 illustrates the flowchart corresponding to the proposed hybrid-
evolutionary method.

To evaluate the feature selection performance of the proposed method, the feature
decreasing rate (FDR) metric was used and it can be computed as follows:

FDR = 1− Number of Selected Features
Total Number of Features

. (12)

The FDR metric is used as a way to measure the feature selection performance.
When the number of selected features decreases, the FDR increases, allowing the hybrid-
evolutionary method to conduct the search for an optimal feature subset by maximizing
the FDR.
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BEGIN

SET bpsize //BUMDA Population Size
SET bmg //BUMDA Max Generations
SET smi //SA    Max Iterations
SET cbg = 1 //Current BUMDA Generation

cbg <= bmg

//Train a KNN-based classifier
//with each population individual
//and store its corresponding performance:
population.fo = EVALUATE(population)

//Create the Initial Population
GENERATE population USING bpsize

//Find the Best BUMDA Individual 

SET cbest = SELECT_BEST_INDIVIDUAL(population)

SET cbg = cbg + 1

SET csi = 1 //Current SA Iteration

csi <= smi

//Improve Current Individual
//according with SA strategy:

SET cbest = IMPROVE_SA(cbest)

cbest.fo > gbest.fo

csi = 1 
OR

SET gbest = cbest
REMOVE cbest FROM population
ADD gbest TO population

SET csi = csi + 1

Yes

No

Yes

//Create New BUMDA Population
//based on the current one:
population = NEWPOP(population)

END

Yes

No
STORE gbest

Figure 4. Flowchart of the proposed hybrid method to perform automatic feature selection.

The final step of the proposed method is the classification of an independent test set
using the subset of selected features. In the experiments, the first database of 608 images
was divided into training (508 images) and testing (100 images) sets. Both datasets use a
balance of positive and negative cases. Each patch is in a grayscale color scheme and their
corresponding size is 64× 64 pixels. In Figure 5, a subset of sample images, along with its
filter response, are presented.

In order to evaluate the obtained results, a dataset was formed from the second image
database described in Section 2.1. The dataset was divided into the training set with ≈65%
(1828 instances) and testing set (960 instances). In Figure 6, sample patches corresponding
to the second dataset, are presented.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(1)

(2)

(3)

(4)

Figure 5. Patch samples from a database of 608 images. Rows (1) and (2) correspond to positive
stenosis cases. Rows (3) and (4) correspond to negative stenosis cases. Column (a) corresponds to
the original patch image. Columns (b–i) correspond to the different vessel enhancement method
responses, as follows: Frangi, Salem, simple-scale Gabor, multi-scale Gabor, multi-scale linear, multi-
scale matched filter, single-scale matched filter, and top-hat operator.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(1)

(2)

(3)

(4)

Figure 6. Patch samples from the second database of 2788 images. Rows (1) and (2) correspond
to positive stenosis cases. Rows (3) and (4) correspond to negative stenosis cases. Column (a)
corresponds to the original patch image. Columns (b–i) correspond to the different enhancement
method responses as follows: Frangi, Salem, simple-scale Gabor, multi-scale Gabor, multi-scale linear,
multi-scale matched filter, single-scale matched filter, and top-hat operator.

To determine the classification performance, the accuracy and the Jaccard Coefficient
metrics were used. The accuracy metric can be calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
, (13)

where Acc is the classification accuracy, TP is the fraction of positive cases classified
correctly, TN is the fraction of negative cases classified correctly, FP is the fraction of
negative cases classified as positive, and FN represents the fraction of positive cases
classified as negative. Moreover, the Jaccard coefficient (JC) is calculated as follows:

JC =
TP

TP + FP + FN
, (14)

The accuracy and the JC metrics are convenient for measuring binary classification
performance. The accuracy metric allows us to know how well the classification of positive
and negative stenosis cases is performed. However, in coronary stenosis classification, it
is important to know the performance of positive coronary stenosis classification, which
is evaluated by the JC metric. These two metrics are the most commonly used in image
binary classification problems.

4. Results and Discussion

In this section, the results achieved in each stage of the proposed method are presented
and discussed. Moreover, they are compared with other methods from the literature. All
the experiments were implemented in MATLAB software version 2018 and executed on a
computer with an Intel Core i7 processor and 8 GB of RAM.

In the first stage, a bank of 473 features was extracted. This stage involved the original
images as well as the responses of the different vessel enhancement methods applied to
them. In Table 1, a summary of the distinct feature types extracted is described.

After the feature extraction step was concluded, an optimal subset of features was
obtained by applying a hybrid-evolutionary algorithm. The feature subset was evaluated
in terms of the training accuracy and FDR metrics. Furthermore, the obtained results
were compared with other search methods from the literature. In Table 2, different search
methods are described with their corresponding parameter settings, including a statistical
analysis of the FDR for each of them.
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Table 1. Summary of the different feature types extracted from the original images and their corre-
sponding vessel-enhancement responses.

Feature Type Require the Original Image Require Vessel-Enhancement Quantity

Intensity Yes Yes 45
Texture Yes No 28
Shape Yes Yes 400

Total Extracted Features: 473

Table 2. Parameter settings and statistical analysis of the feature decreasing rate (FDR) for the feature
selection performance of distinct search metaheuristics of 30 independent trials.

Method Pop. Size Max. Gens. Min. FDR Max. FDR Median
FDR Mean FDR Std. Dev.

FDR

UMDA 100 1000 0.48 0.98 0.92 0.83 0.17
BUMDA 100 1000 0.57 0.50 0.57 0.53 0.02
GA 100 1000 0.94 0.91 0.94 0.93 0.01
SA 1 - 10000 0.87 0.97 0.92 0.92 0.03
Hybrid Evolutionary 2 100 100/5000 1 0.92 0.99 0.97 0.97 0.03

1 Simulated annealing (Tmax = 1, Tmin = 0, Tstep = 0.0001). 2 BUMDA was configured with 100 maximum number
of generations. Subsequently, the inner SA strategy was configured with (Tmax = 1, Tmin = 0, Tstep = 0.005).
In total, the hybrid-evolutionary strategy iterated 5× 105 times.

By considering the results described in Table 2, the highest FDR was obtained using
the hybrid-evolutionary strategy, which uses the smallest feature subset of four shape
features, as follows:

• Mean Intensity extracted from the Frangi method response.
• Average standard deviation of the segments in length pixels for all arterial sections,

extracted from the Frangi filter response.
• Gradient mean extracted from the linear multi-scale method response.
• Gradient coefficient of variation extracted from the top-hat method response.

In addition, the training classification accuracy performance was also considered.
For almost all techniques, the FDR variation was small, which means that the search
behavior was stable. By involving the FDR and the training classification accuracy, a
performance evaluation was conducted. Figure 7 illustrates the performance chart of the
best trial for each compared strategy considering the FDR and the training accuracy.
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Figure 7. Performance evaluation chart considering the FDR and the training accuracy for selected
metaheuristics: UMDA, BUMDA, GA, SA, and the hybrid-evolutionary method.
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The classification performance of each method was measured using the testing set.
In Table 3, the performance obtained using the testing dataset, which corresponds to
the first database, is described in terms of the accuracy and Jaccard coefficient metrics.
In addition to the KNN-based classifier, an SVM was also trained in order to measure the
performance of the selected features under different classifiers. It was established that there
was a maximum number of 1000 iterations for KNN and the SVM and a cross-validation
with k = 10. The values for those parameters were chosen as a tradeoff between an optimal
result and the computational time.

Table 3. Description of the test results for each compared strategy using the KNN and the SVM clas-
sifiers, including the number of selected features (NSF) with their corresponding feature decreasing
rate (FDR), the achieved classification accuracy, and Jaccard coefficient (JC), using the first image
database containing 100 balanced instances.

Method NSF FDR Classifier Accuracy JC

GLNet [44] – – – 0.85 0.76
UNet [45] – – – 0.85 0.75
CNN-16C [11] – – – 0.86 0.76

UMDA [46] 10 0.98 KNN 0.81 0.75
SVM 0.80 0.67

BUMDA 205 0.57 KNN 0.81 0.70
SVM 0.82 0.72

GA 29 0.94 KNN 0.79 0.65
SVM 0.79 0.66

SA 16 0.97 KNN 0.81 0.65
SVM 0.85 0.75

Hybrid-Evolutionary 4 0.99 KNN 0.87 0.76
SVM 0.86 0.75

The results described in Table 3 shows that the highest rate, in terms of the accuracy
and Jaccard coefficient was obtained using the subset of 4 features selected by the hybrid-
evolutionary method along with the KNN and the SVM classifiers. Correspondingly,
using only 4 of the 473 features represents a discrimination rate of 0.99% over the initial
bank of features. Moreover, the obtained results are similar to those achieved using the
Deep Learning CNN-16C and GLNet architectures, which exhibits the robustness of the
proposed strategy.

To evaluate the efficiency of the previously discussed results, an additional dataset
formed from the publically available database [11], was used for training and testing a
KNN and an SVM with the bank of 4 features described in Table 4.

Table 4 shows that the highest classification rate in terms of the accuracy and Jaccard
coefficient metrics was also achieved by the proposed method, along with the SVM-based
classifier. This result is relevant because it shows that the SVM classification performance
is competitive using the bank of four features. Similarly, results obtained using the KNN-
based classifier were close to those achieved by the SVM, also using the 4D feature vector.
Consequently, the accuracy and Jaccard coefficient rates show how competitive the feature
subset was in classifying stenosis cases. An analysis of the frequency for each of the selected
features is described in Figure 8.
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Table 4. Description of the testing results for each compared strategy using the KNN and the
SVM classifiers, including the number of selected features (NSF) with their corresponding feature
decreasing rate (FDR), the achieved classification accuracy and Jaccard coefficient, using a dataset
formed from the Antczak image database, containing 960 balanced instances.

Method NSF FDR Classifier Accuracy JC

GLNet [44] – – – 0.72 0.63
UNet [45] – – – 0.76 0.72
CNN-16C [11] – – – 0.86 0.74

UMDA [46] 10 0.98 KNN 0.85 0.75
SVM 0.83 0.71

BUMDA 205 0.57 KNN 0.86 0.77
SVM 0.74 0.56

GA 29 0.94 KNN 0.85 0.75
SVM 0.87 0.78

SA 16 0.97 KNN 0.85 0.75
SVM 0.85 0.75

Hybrid Evolutionary 4 0.99 KNN 0.84 0.74
SVM 0.89 0.80
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Figure 8. Frequencies for each selected feature in the best solution achieved by the hybrid-
evolutionary method contrasted with the frequency for that same feature in the best solution achieved
by the other methods. Selected features are as follows: Frangi filter—mean intensity (F1), Frangi
filter—mean std. dev. of segments length in all arterial sections (F2), linear multi-scale filter—gradient
mean (F3), top-hat—gradient coefficient of variation (F4).

According to Figure 8, almost all selected features by the hybrid-evolutionary method
have a presence in the other contrasted search methods, which provides evidence of their
relevance in the classification process.

Based on Figure 9, it is relevant that two of the four features that were selected by
the hybrid-evolutionary strategy are in the group of features with the highest selection
probabilities considering all trials of all compared techniques. This finding is important
because it statistically validates the relevance of the final selected 4D feature vector for the
automatic classification of coronary stenosis cases. In addition, the mean time required for
the classification of a single testing instance was ≈0.02 s.
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Figure 9. Selection probability for all 473 features based on the frequency in which each of them was
selected in all trials considering all contrasted strategies.

Even when the achieved results were competitive, the weak vessel contrast present
in almost all coronary angiograms and the continuous heart movement decreased the
response accuracy of vessel enhancement methods, leading to classification errors. Since
the human body is composed of a variety of molecular substances, the reaction of the
contrast medium to the X-rays is not enough to produce an optimal artery distinction in
the majority of the coronary angiograms. However, although technological innovations
have been produced to improve the generation of coronary angiograms [47], the elevated
cost of medical imaging devices makes it difficult to adopt in the short term.

One of the strengths of the proposed methods is the identification of a subset with
relevant features, which allows performing a positive and negative classification of coronary
stenosis cases with a high accuracy rate. However, the conformation of the feature bank can
be a limitation in the proposed method and also a robust discrete optimization technique
for high-dimensional problems.

After the testing stage was finished, the obtained results with the proposed method
achieved a high classification performance in terms of the accuracy and the JC metrics using
only a 4D feature vector. For instance, using the proposed method with the first testing
set, accuracy and JC rates of 0.87 and 0.76 were achieved, respectively. It is relevant that
the obtained accuracy was slightly higher than that achieved by the deep learning model
proposed by Antczak et al., which was 0.86. In addition, the hybrid-evolutionary strategy
results also overcome to those obtained using single search metaheuristics. The single
BUMDA and SA methods achieved a classification accuracy performance of 0.82 and 0.85 in
their best result. Accordingly, the single SA technique was close to the best accuracy result.
However, the single SA found a 15D feature vector with respect to the 4D feature vector
found using the hybrid-evolutionary strategy, which shows how the hybrid approach
was relevant to producing an optimal feature vector in terms of size and classification
performance. Furthermore, when the second testing dataset was used to measure the
classification performance, accuracy and JC rates of 0.89 and 0.80 were achieved, respec-
tively, which surpassed those obtained by all the compared methods, including the results
obtained with deep learning techniques (0.86 and 0.74 for accuracy and JC metrics) and
single metaheuristics.

5. Conclusions

In this paper, a novel strategy consisting of three stages was presented for the automatic
classification of positive and negative coronary stenosis cases. In the first step, a bank of
473 features was formed, which represents a computational search complexity of O(2473),
which was explored using different search strategies from the literature. Results achieved in
this stage were relevant since only 4 of the 473 features (decreasing rate of 0.99) were selected
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using the hybrid-evolutionary method across all of the other methods compared. It was
also relevant that three of the four features are of shape type: Frangi filter—average of the
standard deviations of the segments length across all arterial sections, the linear multi-scale
filter—gradient mean, and the tophat—gradient coefficient of variation. The remaining
feature is intensity type and corresponds to the mean intensity, which is also extracted from
the response of the Frangi enhancement method. It is relevant that none of the selected
features were obtained from the original image directly. In the testing stage, the proposed
method achieved the highest classification performance in terms of accuracy and JC metrics.
For the first testing set, the highest accuracy and JC rates were 0.87 and 0.86, respectively.
Correspondingly, with the second dataset, the highest performance in terms of accuracy and
JC was 0.84 and 0.89, respectively. Additionally, taking into account the computational time
and classification accuracy of the proposed method based on four selected features, it can
be a potential method as part of a computer-aided diagnosis system in cardiology. Finally,
future work can be conducted in fast convergence of feature selection for high-dimensional
spaces in order to improve the computational time without decreasing the classification
performance rate.
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Abstract: Cardiovascular diseases present a significant global health challenge that emphasizes the
critical need for developing accurate and more effective detection methods. Several studies have
contributed valuable insights in this field, but it is still necessary to advance the predictive models
and address the gaps in the existing detection approaches. For instance, some of the previous studies
have not considered the challenge of imbalanced datasets, which can lead to biased predictions,
especially when the datasets include minority classes. This study’s primary focus is the early
detection of heart diseases, particularly myocardial infarction, using machine learning techniques.
It tackles the challenge of imbalanced datasets by conducting a comprehensive literature review
to identify effective strategies. Seven machine learning and deep learning classifiers, including
K-Nearest Neighbors, Support Vector Machine, Logistic Regression, Convolutional Neural Network,
Gradient Boost, XGBoost, and Random Forest, were deployed to enhance the accuracy of heart disease
predictions. The research explores different classifiers and their performance, providing valuable
insights for developing robust prediction models for myocardial infarction. The study’s outcomes
emphasize the effectiveness of meticulously fine-tuning an XGBoost model for cardiovascular diseases.
This optimization yields remarkable results: 98.50% accuracy, 99.14% precision, 98.29% recall, and
a 98.71% F1 score. Such optimization significantly enhances the model’s diagnostic accuracy for
heart disease.

Keywords: cardiovascular diseases; deep learning; disease detection; heart diseases; machine
learning; ensemble learning; XGBoost

1. Introduction

The heart plays a crucial role in sustaining life by effectively pumping oxygenated
blood and regulating important hormones to maintain optimal blood pressure levels. Any
deviation from its functioning can lead to the development of heart conditions, collectively
known as cardiovascular diseases (CVD). CVD includes a range of disorders that affect
both the heart and blood vessels, such as cerebrovascular problems, congenital anomalies,
pulmonary embolisms, irregular heart rhythms (arrhythmias), peripheral arterial issues,
coronary artery disease (CAD), rheumatic heart ailments, coronary heart disease (CHD),
and cardiomyopathies that affect the heart muscle.

Notably, CHD is the subtype among cardiovascular diseases, accounting for a signif-
icant 64% of all cases. While it primarily affects men, women are also susceptible to its
impact. Within the realm of CVDs, CAD is particularly concerning due to its association
with global mortality rates. According to the World Health Organization (WHO) [1], the
consequences of CVDs are profound, with staggering statistics indicating an estimated
17.9 million deaths annually are attributed to these diseases worldwide. These alarming
numbers highlight the significance of research efforts and medical advancements dedicated
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to combatting and lessening the impact of cardiovascular diseases worldwide. There are
risk factors that contribute to the development of CVDs, including blood pressure, excess
body weight and obesity, abnormal lipid profiles, glucose irregularities or diabetes condi-
tions, tobacco usage or smoking habits, physical inactivity or sedentary lifestyle, alcohol
consumption, and cholesterol levels. The WHO predicts that CVD will remain a cause
of mortality, silently posing a substantial threat to human life for the foreseeable future,
possibly even beyond 2030.

Machine learning, as highlighted by Ramesh et al. [2], enjoys major transformative
capability within the healthcare industry. Its outstanding advancements can be ascribed to
its exceptional data processing abilities, which are far superior to those of humans. Conse-
quently, the field of healthcare has observed the development of several AI applications that
leverage machine learning’s speed and accuracy, paving the way for revolutionary solutions
to diverse healthcare challenges. Several machine learning methods have been applied for
the purpose of detecting cardiovascular diseases. However, there is still a need to enhance
the predictive models and address the research gaps in the existing detection approaches,
such as the challenge of imbalanced datasets, which can lead to biased predictions.

By investigating the effectiveness of hybrid models combining different techniques,
various researchers have explored diverse methodologies, including neural networks
and various machine learning methods, to enhance prediction accuracy [3–12]. While
these studies provide valuable insights, the variability in datasets, models, and outcomes
underscores the complexity of the predictive task. Despite the advancements, there remains
a pressing need for further investigations to refine existing models and improve the overall
performance of cardiovascular disease prediction. The diverse landscape of machine
learning applications in this domain emphasizes the importance of continued research
to enhance the accuracy, reliability, and generalizability of predictive models, ultimately
contributing to more effective clinical interventions and patient care.

In this paper, we have explored the strengths and limitations of the existing machine
learning (ML) techniques in the context of heart disease analysis. Then, we investigated
and applied seven machine learning-driven predictive models that can enhance the de-
tection of cardiovascular and cerebrovascular diseases; these models include K-Nearest
Neighbors, Support Vector Machine, Logistic Regression, Convolutional Neural Network,
Gradient Boost, XGBoost, and Random Forest. Two datasets were used in this study, which
were pre-processed using different techniques such as oversampling, feature scaling, nor-
malization, and dimensionality reduction to optimize data for effective machine learning
analysis. Finally, we evaluated and compared the efficacy of different machine learning
(ML) techniques for analyzing heart diseases within the healthcare sector.

2. Related Works

In this paper, we present a concise technical background and review pertinent literature
related to research studies conducted on the early forecast of heart disease utilizing machine
learning and deep learning techniques. We highlight the different methods that have been
employed in these studies to foretell heart disease at an initial stage.

2.1. Machine Learning Approach

Machine learning remains a rapidly advancing discipline of computational algorithms
that try to imitate human intelligence by learning through data and the surrounding
environment. These algorithms play a crucial role in processing and analyzing large-scale
data, often referred to as “big data”. Machine learning techniques have demonstrated
their effectiveness in various domains, including pattern recognition, computer vision,
spacecraft engineering, as well as biomedical and medical applications. Their versatility
and success have made them indispensable tools in addressing complex challenges and
extracting valuable insights from diverse datasets [13].

Machine learning is a specialized approach that automates the process of model
building. Using algorithms, machines can discover hidden patterns and insights within
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datasets. Importantly, in machine learning, we do not particularly instruct machines on
where to explore for insights; instead, the algorithms enable the machines to learn and
adapt their techniques and outputs as they uncover new-found data and scenarios. This
iterative nature of machine learning allows for continuous improvement and adaptation,
making it a powerful tool for processing and analyzing complex datasets [14].

There exist two main approaches in machine learning: supervised learning and un-
supervised learning. In one approach, supervised learning, algorithms are trained using
specific examples. The machine is provided with input data along with their corresponding
correct outputs. Learning takes place by comparing the machine’s experimental outcomes
with the accurate outputs to discover blunders. This sort of learning is suitable after
previous data has been utilized to foretell future occurrences [15].

The other approach, unsupervised learning, involves the machine exploring the
records and attempting to discover patterns or structures on its own. It needs to cre-
ate models commencing from scratch and is not provided with any precise outputs to
guide its learning process. Unsupervised learning is commonly employed to detect and
distinguish outliers in the data. This approach is particularly useful when there is limited
or no labeled data available for training [14]. Researchers worldwide have made signifi-
cant efforts to combat cardiovascular disease (CVD) and improve patient outcomes [16].
These efforts include enhancing clinical decision support systems to achieve precise early
detection and enable effective treatment. Machine learning (ML) and artificial intelligence
(AI) techniques have played a pivotal role in the early detection and diagnosis of CVD.

CVD detection encompasses different distinct approaches. The first approach involves
utilizing AI models that analyze various test reports to distinguish between CVD patients
and healthy citizens. The second approach utilizes signals such as electrocardiogram (ECG)
and heart sound signals as vital information for ML models to classify individuals as either
healthy or having CVD [16].

2.2. Deep Learning Approach

In recent years, there has been remarkable progress in the field of deep learning, with
a primary focus on developing intelligent automated systems that aid doctors in predicting
and diagnosing diseases through the utilization of the Internet of Things (IoT). While
conventional machine learning techniques were often restricted by their dependency on
single datasets, the advent of deep learning has brought significant enhancements to the
accuracy of existing algorithms. Deep learning leverages artificial neural networks, which
consist of multiple hidden layers organized in a cascading pattern. This architecture enables
the processing of non-linear datasets, allowing for more complex patterns and relationships
to be captured and learned by the model. As a result, deep learning has emerged as a
powerful tool in medical applications, providing improved predictive capabilities and
enhancing disease diagnosis through the integration of IoT devices and data sources. This
approach has shown promising results, outperforming older machine learning algorithms
in terms of accuracy. As accurate medical support systems for detecting hidden patterns
and predicting diseases are still lacking, deep learning offers the potential to accurately
predict heart diseases at an early stage, allowing for timely intervention and treatment [17].

Sudha and Kumar [18] observed that the Convolutional Neural Network (CNN) is
a suitable method for diagnosing heart disease. CNN’s ability to learn and represent
features in a concise and conceptual manner is advantageous, especially as the network’s
depth increases. Additionally, they proposed a hybrid model that combines Convolutional
Neural Networks (CNN) with Long Short-Term Memory (LSTM) units, which are a type
of recurrent neural network (RNN). LSTM units are known for their ability to store and
transmit relevant information over long sequences, making them particularly useful for
time-series data such as heart disease data. By integrating CNN and LSTM, the hybrid
model aimed to enhance the accuracy of heart disease classification. The CNN component
is adept at capturing spatial patterns in the data, while the LSTM component excels at
recognizing temporal dependencies and patterns. This combination allows the model to
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effectively learn complex features from the data, leading to improved classification accuracy.
Experimental results from the study revealed promising outcomes, with the hybrid model
achieving an accuracy of 89%, sensitivity of 81%, and specificity of 93%. These results
outperformed conventional machine learning classifiers, indicating the potential of the
proposed hybrid approach in advancing the accuracy of heart disease classification [18].

The healthcare sector has emerged as a prime beneficiary of the growing volume
and accessibility of data [19]. Various entities, such as healthcare providers, pharmaco-
logical firms, research institutions, and government parastatals, are now accumulating
vast volumes of data from diverse sources, including research, clinical trials, public health
programs, and insurance data. The merging of such data holds immense potential for
advancing healthcare practices and decision-making [20]. Traditionally, doctors used to
diagnose and treat patients based on their symptoms alone. However, evidence-based
medicine has become the prevailing approach, where physicians review extensive datasets
obtained from medical trials and treatment paths on a huge scale to make decisions built
on the most comprehensive and up-to-date information available. This shift towards data-
driven decision-making is transforming healthcare practices, improving patient outcomes,
and driving further advancements in the medical field [14].

Numerous industry and research initiatives are actively working on implementing
machine learning expertise in the healthcare sector to enhance patient care and well-being
globally. One such initiative is the Shah Lab, based at Stanford University [14]. The
Shah Lab focuses on leveraging machine learning and data science to address critical
healthcare challenges and develop innovative solutions for various medical applications.
Through these initiatives, researchers and experts aim to harness the power of machine
learning to analyze large-scale healthcare data, including electronic health records, medical
imaging, genomics, and patient outcomes. By extracting valuable insights and patterns
from this data, they aim to improve disease diagnosis, treatment prediction, personalized
medicine, and overall patient management. The goal is to provide healthcare professionals
with advanced tools and technologies that can assist them in making more accurate and
timely clinical decisions, leading to better patient outcomes and an overall improvement
in healthcare services worldwide. Table 1 below presents a summary of the performance
metrics related to the existing methods under evaluation, with each entry corresponding to
specific evaluation criteria.

Table 1. Summary of the performance of the existing methods.

Study Method Results

Mohan et al. [21] Hybrid Random Forest with Linear
Model (HRFLM)

Accuracy: 88%
Sensitivity: 92.8%
Specificity: 82.6%

Singh et al. [22]

SVM
K-Nearest Neighbors

Decision Tree
Linear Regression

83% Accuracy SVM
79% (DT)
78% (LR)

87% (KNN)

Gavhane et al. [23] Neural Network Precision rate: 91%
Recall rate: 89%

Kavitha et al. [24] Hybrid Model (Random Forest (RF)
and Decision Tree (DT)) Accuracy: 88%

Amiri and Armano [25] Classification—CART
Accuracy: 99.14%
Sensitivity: 100%

Specificity: 98.28%

Liu and Kim [26] Classifier—Long Short Term Memory
(LSTM) Accuracy: 98.4%

2.3. Datasets Collection and Preprocessing

In their study, Algarni et al. [27] utilized a dataset of coronary artery X-ray angiography
images obtained from a clinical database. These images exhibited challenging character-
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istics, including uneven vessel thickness, complex vascular structures in the background,
and the presence of noise. The dataset consisted of 130 X-ray coronary angiograms, each
having a size of 300× 300 pixels. The data was collected from the cardiology department of
the Mexican Social Security Institute, and ethical approval was obtained (reference number
R-2019-1001-078) for the use of this medical database in heart disease diagnosis. To train
and evaluate their proposed model, called ASCARIS, the dataset was randomly divided
into two parts: a training set containing 100 images and a test set comprising 30 images.
The ASCARIS model was developed based on color, diameter, and shape features extracted
from the angiography images.

Al Mehedi et al. [28] utilized a dataset of 299 heart failure patients obtained from
the Faisalabad Institute of Cardiology and the Allied Hospital in Faisalabad. The dataset
consisted of 13 attributes, including features such as Age, Anemia, High Blood Pressure,
Creatinine Phosphokinase (CPK), Diabetes, Ejection Fraction, Sex, Serum Creatinine, Serum
Sodium, Smoking, Time, and a target column labeled as “Death Event”, which was used
for binary classification. The dataset underwent preprocessing to ensure its quality and
consistency. After preprocessing, the dataset was divided into separate train and test sets
for model training and evaluation. Two feature selection methods were applied to the train
set to identify the most relevant features for the heart failure prediction task.

Deepika and Seema [29] conducted a study on heart disease with datasets available
online from the UCI Machine Learning Repository at the University of California, Irvine.
They comprise 76 attributes, including the target property, but only 14 of these attributes
were considered essential for analysis. The researchers used two specific datasets for their
study: the Cleveland Clinic Foundation dataset, with records from 303 patients, and the
Hungarian Institute of Cardiology dataset, with records from 294 patients. Various machine
learning algorithms, including Naïve Bayes (NB), Support Vector Machine (SVM), Decision
Tree (DT), and Artificial Neural Networks, were employed in the analysis to predict heart
disease. Within the broader context, Table 2 clarifies the preprocessing approaches and
predictive methodologies utilized in previous studies.

Table 2. Preprocessing and predictive methods.

Study Dataset Preprocessing and Modeling Results

Algarni et al. [27]
Coronary artery X-ray

angiography images obtained
from a clinical database.

Training: 100 images
Test: 30 images

ASCARIS model (based on color,
diameter, and shape features).

Accuracy: 97%

Uyar and İlhan [30]
Cleveland dataset for heart

disease.

Removal of 6 instances with missing
entries from the dataset and

categorization of the diagnosis
attribute (num) into two classes:
absence (num = 0) and presence

(num = 1, 2, 3, or 4) of heart disease.
Recursive Fuzzy Neural Network

(RFNN)

Testing set accuracy: 97.78%
Overall accuracy: 96.63%

Deng et al. [31] Fuwai ECG database and public
PTB database

training phase for dynamics
acquisition and a test phase for

dynamics reuse
Attention-based Res-BiLSTM-Net

model

F1 scores ranging from 0.72
to 0.98

Das et al. [32] UCI dataset SAS-based software
Neural Networks

Training accuracy: 86.4%,
Validation accuracy: 89.011%

2.4. Discussions on the Research Limitations

The literature review involved an in-depth exploration of the existing research and
knowledge pertaining to heart disease prediction using diverse machine learning and deep
learning techniques. Several studies reviewed the recent advancements and limitations of
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applying machine learning for cardiovascular disease detection [10,33–36]. For instance,
the studies [8,37–40] proposed different data mining and machine learning methods based
on heartbeat segmentation and selection process, ECG images, images of carotid arteries,
and others.

Numerous studies have concentrated on applying machine learning algorithms such
as Decision Tree, Naïve Bayes, Random Forest, Support Vector Machine, and Logistic Re-
gression on the Heart Disease Dataset, yielding promising accuracy rates for classification.
Moreover, deep learning methods, particularly Convolutional Neural Networks (CNN),
have gained significant traction for effectively handling complex tasks and unstructured
data. The review also examined discussions regarding the implementation of data pre-
processing techniques, feature selection methods, and performance evaluation metrics to
optimize the efficiency of predictive models. Some studies underscored the importance of
data quality and the relevance of specific features in enhancing the accuracy of the models.

Machine learning algorithms play a crucial role in precisely foretelling heart disease by
discovering suppressed patterns in data, making predictions, and improving performance
based on historical data. These programs make it possible for us to anticipate and diagnose
heart disease more accurately, while deep learning, fueled by artificial neural networks, is a
critical factor in handling complex computations on large volumes of data. These algorithms
play an essential role in identifying key attributes and patterns in both structured and
unstructured data, enhancing more efficient data analysis and processing.

Employing machine learning and deep learning approaches offers considerable poten-
tial in the field of heart disease diagnosis and treatment. These sophisticated techniques
enable the integration of various data sources, such as medical records, imaging data, ge-
netics, and lifestyle factors, to create a universal and individualized approach to healthcare.
The iterative nature of machine learning acknowledges continuous learning and adapta-
tion, resulting in progressed diagnostic and predictive models over time. This promises to
enhance the accuracy and effectiveness of heart disease management, ultimately leading to
better patient outcomes.

After reviewing the available literature, it is evident that there is a lack of exten-
sive experimentation on the use of Gradient Boosting models in the detection of heart
disease. However, considering the unique capabilities of Gradient Boosting models in
analyzing data and capturing temporal dependencies, their potential in this domain is
worth exploring.

The potential of Gradient Boosting models to progressively enhance predictive accu-
racy by refining weaker learners within the model positions them as promising contenders
for improving the precision of heart disease detection. Consequently, there is a need for fur-
ther exploration and experimentation dedicated to harnessing the capabilities of Gradient
Boosting models in this context.

By embracing the use of Gradient Boosting models in heart disease detection and
conducting more targeted experiments, we can unlock new possibilities for advancing
healthcare interventions and ultimately enhancing patient outcomes and well-being.

3. Materials and Methods

The following methods are adapted to achieve the goals of this research. They are
applied to explore and comprehend various dimensions of heart-related conditions, ul-
timately contributing to the creation of precise models for the diagnosis and prediction
of these conditions. The general research method framework of this study is shown in
Figure 1.
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Figure 1. Research method workflow.

3.1. Datasets

To carry out this research study, two datasets were examined, namely the Cardiovascu-
lar Heart Disease Dataset, which was retrieved from the Mendeley database, and the Heart
Disease Cleveland Dataset, which was retrieved from the Kaggle database. The “Cardio”
and “Target” columns on both datasets refer to the column we are trying to predict with
numeric values 0 (no disease) and 1 (disease). It is important to note that neither dataset
has any missing values. The detailed descriptions of all these attributes are listed below:

The Cardiovascular Heart Disease Dataset (Table 3) holds significant importance
within the healthcare and machine learning domains. It serves as an asset for tasks associ-
ated with the prediction and classification of cardiovascular diseases while holding data of
1000 data samples in 13 attributes, each representing a potential risk factor.

Table 3. Cardiovascular Heart Disease Dataset.

Features Details

1. Patient Id Individual unique identifier.
2. Age Numeric representation of patients’ age in years.

3. Gender Binary (1, 0 (0 = female, 1 = male))

4. Chestpain Nominal (0, 1, 2, 3 (Value 0: typical angina Value 1: atypical
angina Value 2: non-anginal pain Value 3: asymptomatic))

5. restingBP Numeric (94–200 (in mm HG))
6. serumcholestrol Numeric (126–564 (in mg/dL))

7. fastingbloodsugar Binary (0, 1 > 120 mg/dL (0 = false, 1 = true))

8. restingrelectro

Nominal (0, 1, 2 (Value 0: normal, Value 1: having ST-T wave
abnormality (T wave inversions and/or ST elevation or

depression of >0.05 mV), Value 2: showing probable or definite
left ventricular hypertrophy by Estes’ criteria))

9. maxheartrate Numeric (71–202)
10. exerciseangia Binary (0, 1 (0 = no, 1 = yes))

11. oldpeak Numeric (0–6.2)
12. slope Nominal (1, 2, 3 (1-upsloping, 2-flat, 3-downsloping))

13. noofmajorvessels Numeric (0, 1, 2, 3)

14. target Binary (0, 1 (0 = Absence of Heart Disease, 1= Presence of Heart
Disease))

51



Diagnostics 2024, 14, 144

Shifting our focus to the Heart Disease Cleveland Dataset (Table 4), a widely rec-
ognized dataset frequently employed in the fields of machine learning and healthcare,
which has been extensively used in tasks related to predicting and classifying heart disease.
This dataset holds prominence for its pivotal role in assessing the effectiveness of diverse
machine learning algorithms in diagnosing heart disease with 303 patients’ information
in 14 attributes. Its primary objective revolves around predicting whether heart disease is
present or absent.

Table 4. Heart Disease Cleveland Dataset.

Features Details

1. Age Numeric representation of patients’ age in years.

2. Sex Categorical feature representing gender, where Male is encoded as 1 and
Female as 0.

3. cp
Categorical attribute indicating the various types of chest pain felt by the
patient. 0 for typical angina, 1 for atypical angina, 2 for non-anginal pain,

and 3 for asymptomatic.

4. trestbps Numerical measurement of the patient’s blood pressure at rest, recorded in
mm/HG.

5. chol Numeric value indicating the serum cholesterol intensity of the patient,
calculated in mg/dL.

6. fbs Categorical representation of fasting blood sugar levels, with 1 signifying
levels above 120 mg/dL and 0 indicating levels below.

7. restecg

Categorical feature describing the result of the electrocardiogram
conducted at rest. 0 for normal, 1 for ST-T wave abnormalities, and 2 for
indications of probable or definite left ventricular hypertrophy according

to Estes’ criteria.
8. thalach Numeric representation of the heart rate realized by the patient.

9. exang Categorical feature denoting whether exercise-induced angina is present.
0 signifies no, while 1 signifies yes.

10. oldpeak Numeric value indicating exercise-induced ST-depression relative to the
rest state.

11. slope
Categorical attribute representing the slope of the ST segment during peak

exercise. It can take three values: 0 for up-sloping, 1 for flat, and 2 for
down-sloping.

12. ca Categorical feature indicating the number of major blood vessels, ranging
from 0 to 3.

13 thal

Categorical representation of a blood disorder called thalassemia. 0 for
NULL, 1 for normal blood flow, 2 for fixed defects (indicating no blood
flow in a portion of the heart), and 3 for reversible defects (indicating

abnormal but observable blood flow).

14. target The target variable to predict heart disease, encoded as 1 for patients with
heart disease and 0 for patients without heart disease.

3.2. Data Pre-Processing

Data preprocessing is an essential step within machine learning that aims to improve
dataset quality and reliability before analysis and modeling. This phase tackles challenges
such as missing data, inconsistencies, outliers, and skewed class distributions. Address-
ing missing values is crucial to ensure accurate insights by utilizing techniques such as
imputation. Detecting and managing outliers is also vital, as these data points can skew
results. A key concern is class distribution balance, where methods like oversampling
mitigate imbalanced datasets. Considering these considerations, employing techniques
such as feature scaling, normalization, and dimensionality reduction can optimize data for
effective machine learning analysis.

3.3. Model Development

The conclusion of the thorough literature work brings us to the pivotal stage of
model development. This section encompasses seven notable machine learning techniques:

52



Diagnostics 2024, 14, 144

Logistic Regression, Convolutional Neural Network, Support Vector Machine (SVM),
Gradient Boosting, K-Nearest Neighbors (KNN), XGBoost, and Random Forest. Each
algorithm contributes distinct characteristics to unveil predictive revelations in the analysis
of cardiovascular and cerebrovascular diseases, utilizing resources such as Scikit-Learn and
Keras libraries.

Each of these models possesses unique traits, spanning from linear approaches to
ensemble techniques and deep learning architectures. Through thorough empirical investi-
gations, we assessed the effectiveness of every model in terms of recall, precision, accuracy,
and F1-score metrics.

3.4. Model Evaluation

Model Evaluation stands as a pivotal phase in the realm of machine learning, dedicated
to thoroughly gauging how well-trained models predict outcomes. This essential step
ensures that models can generalize to new data effectively, informing decisions about
deployment and refinement. The following key techniques and metrics will contribute to a
comprehensive evaluation of this study:

Confusion Matrix: Offering insight into true positives, true negatives, false positives,
and false negatives, this matrix forms the basis for calculating vital metrics.

Accuracy: Providing an overall view of model performance by measuring correctly
predicted instances against the total dataset.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

Precision and Recall: Precision assesses positive prediction accuracy, while recall
gauges the model’s ability to capture positive instances.

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1-Score: Striking a balance between precision and recall, this score is essential for
harmonizing performance aspects.

F1 = (2 × precision × recall)/(precision + recall) (4)

Cross-Validation: This technique partitions data for training and testing, guarding
against overfitting.

Hyperparameter Tuning: Optimizing model parameters through techniques like
GridSearch enhances performance.

4. Results

This section explores the detailed analysis of machine learning models for heart disease
prediction, leveraging two distinct datasets: the Cardiovascular Heart Disease Dataset and
the Heart Disease Cleveland Dataset using the Python programming language.

Our primary objective is to identify the most effective predictive models, considering
both traditional tabular datasets while keeping in mind the aims of the study.

4.1. Pre-Processing Results

To harness the potential of the Cardiovascular Heart Disease Dataset and the Heart
Disease Cleveland Dataset for machine learning applications, it becomes imperative to
execute preliminary data preprocessing procedures. These procedures encompass a range
of actions, including managing missing data, encoding categorical variables, standardizing
or normalizing feature values, and partitioning the dataset into distinct training and testing
subsets. Additionally, the utilization of exploratory data analysis (EDA) techniques and
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data visualization tools proves instrumental in gaining insights into data distributions and
inter-variable relationships.

Firstly, a correlation matrix heatmap is created, as shown in Figure 2. This heatmap
computes the correlation coefficients among diverse attributes in the datasets and represents
them graphically. Its purpose is to facilitate the visual examination of associations between
various features. Positive correlations are depicted using green hues, whereas negative
correlations are represented in red. This heatmap serves the purpose of identifying the
features that exhibit the most substantial correlations with the target variable, thereby
revealing their impact on the presence or absence of cardiovascular disease. On the left
side is the Cardiovascular Heart Disease Dataset, while on the right is the Heart Disease
Cleveland Dataset.
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Figure 2. Heatmap distribution of the dataset features.

The histograms corresponding to individual dataset attributes provide valuable in-
sights by allowing exploration of each feature’s distribution, as shown in Figure 3. They
are instrumental in the detection of potential outliers and provide a rapid overview of
the characteristics and spans of these features. This visualization is a helpful tool for
comprehending the overall shape and distribution of the data. The pictorial evidence of
both datasets can be seen below, where the Cardiovascular Heart Disease Dataset is on the
left, and the Heart Disease Cleveland Dataset can be seen on the right.
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Figure 3. Histogram distribution of the dataset features.

As shown in Figure 4, the pie chart is utilized to depict the distribution of the target
variable, which signifies the existence or non-existence of cardiovascular disease. The figure
shows the distribution of features in the target variable, where 1 represents features with
heart disease, and 0 represents features without heart disease. It enumerates the instances
of each class and exhibits the proportions as percentages in the pie chart, illustrating the
presence and absence of cardiovascular disease. In Figure 4, the pie chart on the right
represents features of the target column distribution of the Cardiovascular Heart Disease
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Dataset, while the left represents the feature of the target column distribution of the Heart
Disease Cleveland Dataset.
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Figure 4. The distribution of features in the target variable.

After successfully preprocessing and visualizing the features of the dataset, we con-
ducted an in-depth exploration of various machine learning models to discern their predic-
tive efficacy.

4.2. K-Nearest Neighbors (KNN) Results

We commenced the analysis by employing the K-Nearest Neighbors (KNN) algorithm
with varying ‘k’ values, representing the number of nearest neighbors considered during the
predictions. Employing cross-validation, we computed scores for each ‘k’ value, ultimately
discerning that ‘k = 7’ yielded the most favorable mean cross-validation score. This outcome
underscores that configuring KNN with ‘k = 7’ exhibits significant promise.

As shown in Tables 5–8, the implementation of this model yielded an impressive
accuracy rate of 96.50% and 91.80% on the datasets, respectively, serving as an overarching
measure of the model’s correctness in its predictions. Furthermore, meticulous hyperpa-
rameter tuning was carried out to guarantee optimal performance. The precision score,
gauging the proportion of true positive predictions among all positive predictions, achieved
a notable level, approximately 96.61% and 96.55%. Additionally, the recall, representing the
proportion of true positive predictions among all actual positives, exhibited a strong value,
approximately 97.44%, and 87.50%. Similarly, the F1 Score attained an impressive value,
hovering around 97.02% and 91.80%. These metrics collectively affirm the exceptional
performance of the KNN model within the dataset.

Table 5. Results on Precision measure.

Classification Model Precision (in %)

Dataset 1 Dataset 2
KNN 96.50% 96.55%

RF 98.63% 94.44%
LR 96.55% 93.10%
GB 99.13% 90.00%

SVM 95.00% 80.65%
CNN 99.14% 87.50%

XGBoost 99.14% 90.00%
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Table 6. Results on Recall measure.

Classification Model Recall (in %)

Dataset 1 Dataset 2
KNN 97.44% 87.50%

RF 98.97% 85.61%
LR 95.73% 84.38%
GB 97.44% 84.38%

SVM 97.44% 78.12%
CNN 98.29% 89.77%

XGBoost 98.29% 84.38%

Table 7. Results on F1-Score measure.

Classification Model F1-Score (in %)

Dataset 1 Dataset 2
KNN 97.02% 91.80%

RF 98.80% 89.81%
LR 96.14% 88.52%
GB 98.28% 87.10%

SVM 96.20% 79.37%
CNN 97.80% 87.50%

XGBoost 98.71% 87.10%

Table 8. Results on Accuracy measure.

Classification Model Accuracy (in %)

Dataset 1 Dataset 2
KNN 96.50% 91.80%

RF 98.60% 91.09%
LR 95.50% 88.52%
GB 98.00% 86.89%

SVM 95.50% 78.69%
CNN 97.50% 86.89%

XGBoost 98.50% 86.89%

4.3. Random Forest Results

By conducting an extensive hyperparameter tuning process, we modified the number
of trees (n_estimators) to 200 within the Random Forest ensemble model. As shown in
Tables 5–8, the tuned model achieved an outstanding accuracy level, hovering at around
98.60% and 91.09%. The assessment of precision showed a significant enhancement, which
obtained 98.63% and 94.44%.

Similarly, the F1 Score, which amalgamates precision and recall, demonstrated the
model’s robustness, registering a value of 98.80% and 89.81, respectively. Furthermore,
the recall score, measuring the model’s aptitude for recognizing genuine positive cases,
reached a remarkable value of 98.97% and 85.61.

4.4. Logistic Regression (LR) Results

By implementing a custom threshold of 0.6, the model was configured to adopt a
cautious approach when classifying instances as positive. To be specific, if the predicted
probability of an instance belonging to the positive class (class 1) equaled or exceeded 0.6, it
was categorized as positive; otherwise, it was designated as negative. This threshold selec-
tion significantly influenced how the model struck a balance between precision and recall.
As shown in Tables 5–8, the model’s precision score was 96.55% and 93.10%, signifying its
proficiency in minimizing false positive predictions.
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The recall scores stood at 95.73% and 84.38%, emphasizing the model’s importance in
correctly identifying all positive cases, particularly in scenarios where missing potential
cases of heart disease is a critical concern. The F1 Score captured genuine positive cases at
96.14% and 88.52%. Regarding overall accuracy, the model achieved an accuracy score of
95.50% and 88.52%.

4.5. Gradient Boosting (GB) Results

Through the GridSearchCV process, we effectively fine-tuned the model’s hyperpa-
rameters. The optimal hyperparameters selected encompassed a learning rate of 0.2, a
maximum depth of 3 for individual trees, and 100 boosting stages (n_estimators). These
hyperparameters were chosen based on their exceptional performance on the validation
datasets. When tested on independent data, the refined Gradient Boosting model consis-
tently delivered exceptional results. As shown in Tables 5–8, it attained an impressive
precision score of 99.13% and 90.90%, indicative of its ability to minimize false positive
predictions effectively.

Furthermore, the model exhibited a recall score of 97.44% and 84.38%, which holds
paramount importance in medical applications where identifying potential cases of heart
disease is critical. The F1 Score, which harmonizes precision and recall, reached an impres-
sive value of 98.28% and 87.10.

The model’s accuracy on the test dataset was consistently high, measuring 98.00%,
although it achieved 86.89% on the Heart Disease Cleveland Dataset. These findings
collectively underscore the Gradient Boosting model’s exceptional suitability for the task of
heart disease classification, highlighting its potential to accurately detect individuals with
heart disease while maintaining a low rate of false positives. Such performance makes it an
asset for healthcare professionals and researchers in the cardiology field.

4.6. Support Vector Machine (SVM) Results

The process of tuning hyperparameters, carried out through GridSearchCV, effectively
determined the most suitable hyperparameter configuration for the SVM model. This
configuration included a regularization parameter (C) set to 10, a polynomial kernel with a
degree of 2, and the utilization of a linear kernel.

As shown in Tables 5–8, for post-tuning, the model achieved a precision score of 95.00%
and 80.65%, a recall score of 97.44% and 78.12%, and an F1 Score of 96.20% and 79.37%.

On the test dataset, the model exhibited an accuracy of approximately 95.50% and
78.69%, affirming its consistent and accurate predictive capabilities.

4.7. Convolutional Neural Network (CNN) Results

The model architecture consists of three layers: an initial layer with 128 units employ-
ing the ReLU activation function, followed by a hidden layer featuring 64 units with ReLU
activation, and ultimately, an output layer utilizing the sigmoid activation function. During
model compilation, the Adam optimizer was employed alongside binary cross-entropy
loss, with accuracy serving as the evaluation metric.

To mitigate the risk of overfitting, a precautionary measure known as early stopping
was integrated into the training process. This involved monitoring the validation loss for
a maximum of 10 epochs and restoring the model’s weights to their best configuration.
The training was conducted using scaled training data over a maximum of 100 epochs,
employing a batch size of 64.

As shown in Tables 5–8, the model’s performance on the test dataset is particularly
noteworthy. Precision achieved an impressive score of 97.46% and 87.50%.

This suggests that when the model predicts an individual as having heart disease, it is
highly likely to be accurate. Furthermore, the recall scores were 98.29% and 87.50%. The F1
Score demonstrates resilience at 97.87% and 87.50%. Overall accuracy, which reflects the
ratio of correctly predicted cases to the total cases, stands at 97.50% and 86.89%, respectively.
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4.8. XGBoost Results

Through the utilization of GridSearchCV, a highly effective process of hyperparameter
tuning was carried out. This process led to the discovery of optimal hyperparameters
for the XGBoost model, which included a learning rate of 0.2, a maximum tree depth
of 3, 100 boosting rounds (n_estimators), and a subsample fraction of 1.0. The recall
of these chosen hyperparameters was substantiated by a remarkable validation score of
approximately 98.00% on the Cardiovascular Heart Disease Dataset and 84% on the Heart
Disease Cleveland Dataset, respectively.

On the test dataset, the fine-tuned XGBoost model upheld its exceptional performance
by achieving a precision score of 99.14% and 90.00%, signifying its adeptness in accurately
categorizing positive cases. Moreover, the recall score, at 98.29% and 84.38%, holds par-
ticular significance. The F1 Score exhibits resilience at 98.71% and 87.10%. The model’s
overall accuracy on the test data hovers at 98.50% and 86.89%. These remarkable outcomes
underscore the XGBoost model’s aptness for heart disease classification.

5. Discussion

The experimental results are shown in Tables 5–8 and Figure 5. The thorough as-
sessment of machine learning models, specifically the XGBoost and K-Nearest Neighbors
models, in the context of heart disease prediction, provides valuable insights. These insights
align with the research conducted by Zhang et al. [41], which underscores the effectiveness
of the XGBoost algorithm in this specific domain.
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Across both datasets, these models consistently demonstrate exceptional performance,
emphasizing their efficacy in heart disease prediction. Notably, the XGBoost model stands
out with an impressive accuracy rate of 98.50% in the Cardiovascular Heart Disease Dataset,
while the K-Nearest Neighbors (KNN) model achieves a commendable accuracy of 91.80%
in the Heart Disease Cleveland Dataset. These high levels of accuracy emphasize the
models’ reliability, positioning them as valuable tools for diagnosing heart disease.

Precision, a critical metric in healthcare, reflects the models’ ability to identify heart
disease cases precisely. Both models achieve outstanding precision, with the XGBoost
model leading at 99.14%, closely followed by the KNN model at 96.55%. These elevated
precision levels significantly reduce the occurrence of false positive diagnoses, alleviating
unnecessary concerns for patients.

Furthermore, the F1 Score, which balances precision and recall, highlights the XGBoost
model’s effectiveness in recognizing heart disease cases while minimizing the risk of
overlooking positive instances. The model achieves F1 Scores of 98.71% and 91.80% in both
datasets, showcasing its ability to strike this delicate balance effectively.
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6. Conclusions and Future Scope

As we discussed the broader scope of model selection and its implications for heart
disease prediction, the conducted analysis has unearthed invaluable insights. Among the
array of models under scrutiny, K-Nearest Neighbors and XGBoost have consistently risen
to prominence as top-performing candidates across both datasets, as shown below. These
models have exhibited remarkable accuracy and recall scores, rendering them robust con-
tenders for the precise classification of heart disease. It is noteworthy, however, that other
models, including Logistic Regression, Convolutional Neural Network, Gradient Boost,
Random Forest (RF), and Support Vector Machines (SVM), have showcased significant
predictive capabilities once their hyperparameters were meticulously tuned. In this diverse
ensemble, XGBoost emerges as a standout performer, marked by its exceptional accuracy
and recall scores, coupled with a harmoniously balanced F1 Score and precision on the
Cardiovascular Heart Disease Dataset. This points out XGBoost’s transformative potential
in the realm of heart disease prediction and diagnosis, positioning it as an invaluable tool
for healthcare professionals. The model instills a high level of confidence in identifying
potential cases of heart disease, firmly establishing itself as an exemplary choice within this
dataset. The exceptional precision and accuracy exhibited by these models bear profound
implications for the diagnosis and care of individuals with heart disease. Such precision not
only enhances diagnostic accuracy but also opens new avenues for interventions and treat-
ments that can be initiated with heightened confidence. In the quest for the most suitable
model, it is imperative to align the selection with the specific requirements and constraints
of the application at hand. Practical considerations such as interpretability, computational
complexity, and data availability should guide the decision-making process, ensuring that
the chosen model is tailored to meet the unique needs of the task. These findings culminate
in a valuable resource that can empower informed decision-making within the realm of
heart disease prediction, particularly in clinical settings. The potential to revolutionize
heart disease diagnosis and patient care is emphasized, further cementing the significance
of machine learning in the field of healthcare. In practical terms, this implies that when the
model indicates an individual as having heart disease, the likelihood of accuracy is notably
high, signifying a significant advancement in the landscape of medical diagnostics. Future
directions for this study could involve expanding the scope by incorporating more exten-
sive medical imaging datasets. Leveraging such data could enhance image-based heart
disease prediction, potentially leading to even more accurate and robust diagnostic tools
in the field of cardiovascular health. Furthermore, exploring ensemble models that merge
the strengths of multiple algorithms may offer promising avenues for further improving
predictive accuracy in the field of heart disease prediction. These considerations shed
light on the multifaceted nature of heart disease prediction research, emphasizing the need
for ongoing refinement and innovation in this critical domain. Future research directions
should also prioritize the refinement of models and expansion of datasets. In contrast
to [42,43], our study employs a distinct dataset, leveraging its unique characteristics to
enhance the robustness and generalizability of the models. Furthermore, the selection
of machine learning models in our work deviates from those used in the cited studies,
contributing to the innovative aspect of our approach. Importantly, the outcomes of our
models exhibit a noteworthy improvement in predictive accuracy, establishing a superior
performance benchmark.

This nuanced combination of dataset, model selection, and elevated accuracy under-
scores the distinctive contribution of our work to the field of heart disease prediction. It
positions our study as an advancement beyond existing research, offering a more refined
and accurate predictive framework.
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Abstract: This study evaluates the diagnostic accuracy and clinical utility of two artificial intelli-
gence (AI) techniques: Kakao Brain Artificial Neural Network for Chest X-ray Reading (KARA-
CXR), an assistive technology developed using large-scale AI and large language models (LLMs),
and ChatGPT, a well-known LLM. The study was conducted to validate the performance of the two
technologies in chest X-ray reading and explore their potential applications in the medical imaging
diagnosis domain. The study methodology consisted of randomly selecting 2000 chest X-ray
images from a single institution’s patient database, and two radiologists evaluated the readings
provided by KARA-CXR and ChatGPT. The study used five qualitative factors to evaluate the
readings generated by each model: accuracy, false findings, location inaccuracies, count inaccura-
cies, and hallucinations. Statistical analysis showed that KARA-CXR achieved significantly higher
diagnostic accuracy compared to ChatGPT. In the ‘Acceptable’ accuracy category, KARA-CXR
was rated at 70.50% and 68.00% by two observers, while ChatGPT achieved 40.50% and 47.00%.
Interobserver agreement was moderate for both systems, with KARA at 0.74 and GPT4 at 0.73. For
‘False Findings’, KARA-CXR scored 68.00% and 68.50%, while ChatGPT scored 37.00% for both
observers, with high interobserver agreements of 0.96 for KARA and 0.97 for GPT4. In ‘Location
Inaccuracy’ and ‘Hallucinations’, KARA-CXR outperformed ChatGPT with significant margins.
KARA-CXR demonstrated a non-hallucination rate of 75%, which is significantly higher than
ChatGPT’s 38%. The interobserver agreement was high for KARA (0.91) and moderate to high for
GPT4 (0.85) in the hallucination category. In conclusion, this study demonstrates the potential of
AI and large-scale language models in medical imaging and diagnostics. It also shows that in the
chest X-ray domain, KARA-CXR has relatively higher accuracy than ChatGPT.

Keywords: ChatGPT; KARA-CXR; chest X-ray; LLM

1. Introduction

Artificial intelligence (AI) revolutionizes healthcare by improving clinical diagnosis,
administration, and public health infrastructures. AI applications in healthcare include dis-
ease diagnosis, drug discovery, assisted surgeries, and patient care. AI can enhance health-
care outcomes, reduce costs, and optimize treatment planning [1]. However, challenges to
be overcome include ensuring ethical boundaries, addressing bias in AI algorithms, and
maintaining diversity, transparency, and accountability in algorithm development. AI is not
meant to replace doctors and healthcare providers but to complement their skills through
human—AI collaboration. The human-in-the-loop approach ensures safety and quality in
healthcare services, where AI systems are guided and supervised by human expertise.

The rise in large language models (LLMs) in AI has garnered significant attention
and investment from companies like Google, Amazon, Facebook, Tesla, and Apple. LLMs,
such as OpenAI’s GPT series and ChatGPT, have shown remarkable progress in tasks like
text generation, language translation, and question answering. These models are trained
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on massive amounts of data and have the potential to display intelligence beyond their
primary task of predicting the next word in a text.

LLMs have the potential to revolutionize healthcare by assisting medical professionals
with administrative tasks, improving diagnostic accuracy, and engaging patients [2]. LLMs,
such as GPT-4 and Bard, can be implemented in healthcare settings to facilitate clinical
documentation, obtain insurance pre-authorization, summarize research papers, and an-
swer patient questions [3]. They can generate personalized treatment recommendations,
laboratory test suggestions, and medication prompts based on patient information [4]. It is
essential to ensure LLMs’ responsible and ethical use in medicine and healthcare, consider-
ing privacy, security, and the potential for perpetuating harmful, inaccurate, race-based
content [5]. LLMs, like ChatGPT, can accelerate the creation of clinical practice guidelines
by quickly searching and selecting evidence from numerous databases [6].

KakaoBrain AI for Radiology Assistant Chest X-ray (KARA-CXR) is a new medical
technology that helps in radiological diagnosis. Developed by leveraging the cutting-edge
capabilities of large-scale artificial intelligence and advanced language models, this cloud-
based tool represents a significant leap in medical imaging analysis. The core functionality
of KARA-CXR lies in its ability to generate detailed radiological reports that include
findings and conclusions. This process is facilitated by its sophisticated AI, which has been
trained on vast datasets of chest X-ray images. By interpreting these images, KARA-CXR
can provide accurate and swift diagnostic insights essential in clinical decision-making.

Based on the GPT-4V architecture, ChatGPT has potential in the medical field, es-
pecially for interpreting chest X-ray images. This language model can analyze medical
images, including chest X-ray data, to generate human-like reading reports. Although not
yet available for clinical use, by providing a general interpretation of chest X-rays, ChatGPT
has the potential to improve the diagnostic process, especially in settings with limited
access to radiology expertise [7]. In this study, we analyze the diagnostic accuracy and
utility of KARA-CXR and ChatGPT and discuss their potential for use in clinical settings.

2. Materials and Methods
2.1. Dataset

We randomly selected 2000 chest X-ray images (PA projection) from a single institution
(Inha University Hospital, Incheon, Republic of Korea) from 2010 to 2022. The selected
images were all of Asian individuals, with a male and female ratio of 46% and 54%,
respectively. To ensure ease of reading, we excluded pediatric patients, poor-quality images
(images not taken with digital equipment or taken with portable equipment) and selected
only images of adult patients (aged 19 to 99 years, median age: 46.8± 2.5 SD). Furthermore,
to ensure fairness in the assessment of reading difficulty, percentages were not separately
established for each image’ disease. Finally, the examination of the selected images and the
decision to include them in the dataset was performed by a radiologist with 10 years of
experience (Ro Woon, Lee). Furthermore, all included images were fully anonymized using
Python (version 3.12) and then serially numbered for analysis. The files were exported as
DICOM files.

2.2. Input Data

Anonymized DICOM files were uploaded to both KARA-CXR (Kakaobrain, Seoul,
Republic of Korea) and ChatGPT (OpenAI, San Francisco, CA, USA). To anonymize medical
images for analysis in ChatGPT and KARA-CXR, we removed all identifiable patient
information to comply with the privacy and confidentiality standards set forth by the
Health Insurance Portability and Accountability Act (HIPAA). Anonymization involved
removing details such as patient names, dates of birth, medical record numbers, and other
unique identifiers from the images.

Even after anonymization, we further enhanced privacy by turning off the “Chat
History and Training” option in ChatGPT. This setting ensures that conversations and
images shared during a session are not used for further training of the AI model or accessed
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in future sessions. This is a precautionary measure to ensure that residual or indirect
information is not used in ways that could compromise patient confidentiality.

In KARA-CXR, a cloud-based analysis system, immediately deleted the input DICOM
data after analysis for personal information protection. Unlike ChatGPT, KARA-CXR gen-
erates text-based readings shortly after uploading DICOM files without requiring separate
prompts. KARA-CXR utilized a closed beta version prior to public release (Figure 1), and
there are plans to make it publicly available via the website in December 2023.
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Figure 1. The appearance of KARA-CXR operating in a web browser. When a DICOM file is uploaded,
findings and corresponding impressions are displayed on the right-side tab.

In the case of ChatGPT, to obtain the right results for our research, we first chose the
prompt to be entered into ChatGPT. ChatGPT is designed with guidelines that prevent it
from providing professional interpretations or diagnoses, especially in contexts requiring
specialized expertise, such as medical imaging, including chest X-rays [8]. To overcome the
limitations of this large language model, we employed a carefully crafted, non-directive
bypass prompt: ‘This is a chest PA image. Tell me more about what is going on?’ This
prompt was strategically chosen to navigate ChatGPT’s usage policies and ethical con-
straints, allowing us to obtain a chest x-ray reading from ChatGPT. Furthermore, ChatGPT
was used in its paid version, GPT-4V, and to protect personal information, the ‘Chat history
& training’ option was disabled, ensuring data were not stored on OpenAI’s servers.

The interpretation texts thus generated were qualitatively analyzed by two observers.
A rough schematic of this process can be seen in Figure 2.
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Figure 2. Schematic of data input and analysis process.

2.3. Analyzing Readings by LLMs

We selected five qualitative factors (accuracy, false findings, location inaccuracies,
count inaccuracies, and hallucination) to evaluate the quality of the readings generated by
KARA-CXR and ChatGPT. The detailed descriptions of the factors are shown in Table 1.

Table 1. The qualitative factors with which to evaluate the quality of the readings.

Assessment Description

Accuracy

Acceptable The reading is accurate and clinically useful.

Questionable There are errors in the reading, but it retains some clinical usability.

Unacceptable There are significant errors in the reading, rendering it clinically useless.
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Table 1. Cont.

Assessment Description

False Findings

None There are no false findings.

False Positive (FP) The reading includes a false positive.

False Negative (FN) The reading includes a false negative.

Both The reading has both false positives and false negatives.

Location Inaccuracy

None There is no location inaccuracy.

Not significant
The location of lesions is inaccurately identified, but it does not significantly
affect clinical judgment.

Significant
The location of lesions is inaccurately identified, and it severely affects
clinical judgment.

Count Inaccuracy

None There is no count inaccuracy.

Single The count of lesions is inaccurate, but single error is noted.

Multiple The count of lesions is incorrect and multiple count errors of lesion are seen.

Hallucination

None There are no hallucinations in the reading.

Not significant Hallucinations are present but do not significantly affect clinical judgment.

Significant Hallucinations are present and significantly affect clinical judgment.

For the five items mentioned in Table 1, two readers with ten years of experience in
chest radiology reading evaluated the images in independent sessions. We evaluated the
interpretation results of each model for chest X-ray images and recorded the evaluation
results according to the case numbers of the anonymized images.

2.4. Statistical Analytics

We analyzed the percentages of details in each of the five assessment categories rated
by each reader and obtained interobserver agreement between each reader. The statistical
analysis of the data was performed in Python (version 3.12).

3. Results

In evaluating diagnostic accuracy, two observers assessed the performance of KARA
and GPT4. Observer 1 found that KARA achieved 70.50% accuracy in the category deemed
‘Acceptable’, while GPT4 was reported at a notably lower value of 40.50% in the same
category. Observer 2’s assessments were slightly lower for KARA at 68.00% but higher for
GPT4 at 47.00% in the ‘Acceptable’ category (Figure 3). The interobserver agreement rates,
which reflect the consistency between observers, were relatively close, with KARA at 0.74
and GPT4 at 0.73, indicating moderate agreement.

In the category of ‘False Findings’ with no findings being the subcategory, both
observers recorded similar results for KARA, with Observer 1 at 68.00% and Observer 2 at
68.50%. In comparison, GPT4 was observed at 37.00% by both observers (Figure 4). The
interobserver agreement for KARA stood at a high rate of 0.96, and GPT4 also had a high
agreement rate of 0.97. These high agreement rates suggest a consistent assessment of false
findings between the two observers for KARA and GPT4.

When it came to ‘Location Inaccuracy’ with no inaccuracies noted, Observer 1 reported
KARA at 76.00% and GPT4 at 46.50%, and Observer 2 reported KARA at 77.50% and GPT4
at 46.00% (Figure 5). The interobserver agreement for KARA was 0.93, indicating high
consistency, whereas GPT4’s agreement was lower at 0.83, signifying a moderate-to-high
consistency between observers.
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‘Count Inaccuracy’ with no inaccuracies was observed at a high rate by both observers
for KARA (94.00%) and GPT4 (90.00%), reflecting a very high level of performance in
this category (Figure 6). The interobserver agreement for KARA and GPT4 was at 0.99,
indicating almost perfect consistency between the two observers.
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Lastly, the ‘Hallucination’ category with no instances reported by Observer 1 showed
KARA at 75.88% and GPT4 at 38.69%, while Observer 2 reported the same percentage for
KARA and a slightly lower 38.19% for GPT4 (Figure 7). The interobserver agreement was
0.91 for KARA and 0.85 for GPT4, demonstrating high consistency for KARA assessments
and moderate-to-high consistency for GPT4.
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4. Discussion

AI is being increasingly used in the field of chest X-ray reading. It has various applica-
tions, including lung cancer risk estimation, detection, and diagnosis, reducing reading
time, and serving as a second ‘reader’ during screening interpretation [9]. Doctors in a
single hospital reported positive experiences and perceptions of using AI-based software
for chest radiographs, finding it useful in the emergency room and for detecting pneumoth-
orax [10]. A model for automatic diagnosis of different diseases based on chest radiographs
using machine learning algorithms has been proposed [11]. In a multicenter study, AI
was used as a chest X-ray screening tool and achieved good performance in detecting
normal and abnormal chest X-rays, reducing turnaround time, and assisting radiologists in
assessing pathology [12]. AI solutions for chest X-ray evaluation have been demonstrated
to be practical, perform well, and provide benefits in clinical settings [13].

However, conventional labeling-based chest X-ray reading AI has limitations in terms
of accuracy and efficiency. The manual labeling of large datasets is expensive and time-
consuming. Automatic label extraction from radiology reports is challenging due to
semantically similar words and missing annotated data [14]. In a multicenter evaluation,
the AI algorithm for chest X-ray analysis showed lower sensitivity and specificity values
during prospective validation compared to retrospective evaluation [15]. However, the AI
model performed at the same level as or slightly worse than human radiologists in most
regions of the ROC curve [15]. A method for standardized automated labeling based on
similarity to a previously validated, explainable AI model-derived atlas has been proposed
to overcome these limitations. Fine-tuning the original model using automatically labeled
exams can preserve or improve performance, resulting in a highly accurate and more
generalized model.

The effectiveness of deep-learning based computer-aided diagnosis has been demon-
strated in disease detection [16]. However, one of the major challenges in training deep
learning models for medical purposes is the need for extensive, high-quality clinical annota-
tion, which is time-consuming and costly. Recently, CLIP [17] and ALIGN [18] have shown
the ability to perform vision tasks without any supervision. However, vision-language
pre-training (VLP) in the CXR domain still lacks sufficient image-text datasets because
many public datasets consist of image-label pairs with different class compositions.
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The rise in medical image reading with large language models has gained signifi-
cant attention in recent research [19]. Language models have been explored to improve
various tasks in medical imaging, such as image captioning, report generation, report
classification, finding extraction, visual question answering, and interpretable diagnosis.
Researchers have highlighted the potential benefits of accurate and efficient language mod-
els in medical imaging analysis, including improving clinical workflow efficiency, reducing
diagnostic errors, and assisting healthcare professionals in providing timely and accurate
diagnoses [20].

KARA-CXR is an innovative cloud-based medical technology that utilizes artificial
intelligence and advanced language models to revolutionize radiological diagnostics. It
operates over the web and offers a user-friendly interface for healthcare professionals.
KARA-CXR generates detailed radiological reports with findings and conclusions by
analyzing chest X-ray images uploaded in DICOM format. This is made possible by
its sophisticated AI, which has been trained on vast datasets of chest X-ray images.
The technology provides accurate and swift diagnostic insights, aiding radiologists
in ensuring precise diagnoses and reducing report generation time. KARA-CXR is
particularly valuable in high-volume or resource-limited settings where radiologist
expertise may be scarce or overburdened.

In this study, ChatGPT based on GPT-4V architecture showed some potential in
interpreting chest X-ray images but also revealed some limitations. ChatGPT can generate
human-like diagnostic reports based on chest X-ray data through extensive reinforcement
learning on the medical text and imaging data included during development. However,
due to the limitations of reinforcement learning based on information openly available
on the internet, we must recognize that the data generated by ChatGPT do not guarantee
medical expertise. In conclusion, it is essential to note that ChatGPT is not a substitute for
professional medical advice, diagnosis, or treatment [21].

In our study, detailed observations of reports indicate that KARA generally outper-
forms GPT4 across various categories of diagnostic accuracy, with consistently higher
percentages and interobserver agreement rates. The data suggest a significant discrepancy
between the two systems, with KARA displaying more reliable and accurate performance
as per the observers’ evaluations. Particularly in terms of hallucination, KARA-CXR
demonstrated superior performance compared to ChatGPT. ChatGPT sometimes produced
incorrect interpretation results, including hallucinations, even in cases with clinically sig-
nificant and obvious abnormalities such as pneumothorax (Figure 8).

In our comparative analysis between KARA-CXR and ChatGPT, a striking advan-
tage of KARA-CXR was observed in the hallucination. Notably, KARA-CXR demon-
strated a significantly higher percentage in non-hallucinations with a non-hallucination
rate of 75% as compared to that of only 38% for ChatGPT, as agreed upon by both ob-
servers. This substantial difference underscores the superior capability of KARA-CXR
in providing reliable and accurate interpretations in chest X-ray diagnostics, a crucial
aspect in the field of medical imaging where the precision of diagnosis can significantly
impact patient outcomes. The propensity of ChatGPT to generate more hallucinations in
medical contexts can be attributed to its foundational design and training methodology.
As a large language model, ChatGPT is trained on a vast corpus of text from diverse
sources, not specifically tailored for medical diagnostics. This generalist approach, while
versatile, can lead to inaccuracies and hallucinations, especially in highly specialized
fields like medical imaging [22]. Despite its potential, the accuracy and reliability of
ChatGPT responses should be carefully assessed, and its limitations in understanding
medical terminology and context should be addressed [23]. In contrast, KARA-CXR,
designed explicitly for medical image analysis, benefits from a more focused training
regime, enabling it to discern nuanced details in medical images more effectively and
reducing the likelihood of generating erroneous interpretations.
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In our exploration of ChatGPT’s application to medical imaging, particularly in
chest X-ray interpretation, a notable limitation emerged, meriting explicit mention. Chat-
GPT, in its current design, is programmed to refuse direct requests for the professional
interpretation of medical images, such as X-rays [8]. This usage policy and ethical bound-
ary, built into ChatGPT to avoid the non-professional practice of medicine, significantly
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impacts its clinical application in this context. In the initial process of our study, we
observed that direct prompts requesting chest X-ray interpretation were consistently
declined by ChatGPT, aligning with its programming to avoid assuming the role of a
radiologist or other medical professional. This limitation is critical to understand for any
future research utilizing ChatGPT or similar language models in medical image interpre-
tation. Despite the impressive capabilities of AI in healthcare, such as KARA-CXR and
ChatGPT, hallucinations can cause serious problems in real-world clinical applications
of AI. Such hallucinations may be of minimal consequence in casual conversation or
other contexts but can pose significant risks when applied to the healthcare sector, where
accuracy and reliability are of paramount importance. Misinformation in the medical
domain can lead to severe health consequences on patient care and outcomes. The accu-
racy and reliability of information provided by language models can be a matter of life
or death. They pose real-life risks, as they could potentially affect healthcare decisions,
diagnosis, and treatment plans. Hence, the development of methods to evaluate and
mitigate such hallucinations is not just of academic interest but of practical importance.

While promising, the integration of SaMD (software as medical device), including
KARA-CXR and ChatGPT, into medical diagnostics faces several challenges that must be
addressed in future research. A primary concern is the diversity of data used to train these
AI models. Often, AI systems are trained on datasets that may only adequately represent
some population groups, leading to potential biases and inaccuracies in diagnostics, par-
ticularly for underrepresented demographics. Moreover, these AI systems’ “black box”
nature poses a significant challenge. The internal mechanisms of how they analyze and
interpret chest X-ray images are only partially transparent, making it difficult for healthcare
professionals to understand and thus trust the conclusions drawn by these technologies.

Another notable limitation is the integration of these AI tools into clinical practice.
Healthcare professionals may be hesitant to depend on AI for critical diagnostic tasks due
to concerns about the accuracy and reliability of these systems, as well as potential legal
and ethical implications. Building trust in AI technologies is essential for their successful
adoption in medical settings [24]. In addition to these concerns, it is essential to keep in
mind that even if an AI-powered diagnostic solution is highly accurate, the final judgment
should still be made by a medical professional—a doctor.

To overcome these challenges, future research should focus on enhancing the di-
versity of training datasets, including a broader range of demographic data, to ensure
that AI models can deliver accurate diagnostics across different populations [25]. It
is also crucial to improve the transparency and explainability of AI algorithms, devel-
oping methods to demystify the decision making process and increase acceptability
and trustworthiness among medical practitioners [26]. Although this paper evaluates
the diagnostic accuracy of two potential SaMDs, ChatGPT and KARA-CXR, one of the
limitations is that there needs to be a clear rationale or recommendation for evaluating
or approving such software, legally or within the academic community. The limitation in
approving software for medical use (SaMD) stems from the need for a clear definition of
SaMD, which makes it difficult to create standards and regulations for its development
and implementation [27]. Without clear boundaries, there are risks to patient safety
because not all components potentially impacting SaMD are covered by regulations [27].
This lack of clarity also affects innovation and design in the field of SaMD, as new tech-
nology applications that support healthcare monitoring and service delivery may need
to be more effectively regulated [28]. We believe that gradually, along with software de-
velopment, we will need to establish factors and regulations that will define the clinical
accuracy and safety of these SaMDs. Extensive clinical validation studies are necessary
to establish the reliability and accuracy of AI-based diagnostic tools, adhering to high
ethical standards and regulatory compliance [29]. These studies should also address
patient privacy, data security, and the potential ramifications of misdiagnoses [29]. By
focusing on these areas, the potential of AI in medical diagnostics can be more fully
realized, leading to enhanced patient care and more efficient healthcare delivery.
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The limitations of this study include that this research was conducted as a single-
institution study, which presents certain limitations. One of the primary constraints was the
limited number of images that could be analyzed due to the restricted number of researchers
involved in the study. This limitation could potentially impact the generalizability of our
findings to broader image populations and diverse clinical settings. Another significant
limitation was the lack of a reference standard for the chest X-ray interpretations. Although
we analyzed the interobserver agreement between the readers, the absence of a definitive
standard means that even interpretations by experienced readers cannot be considered
definitive answers. This aspect could affect the reliability and validity of the diagnostic
conclusions drawn in our study. Additionally, ethical considerations programmed into
ChatGPT led to the refusal of direct requests for chest image interpretation, necessitating the
use of indirect prompts to obtain diagnostic interpretations. This workaround might have
influenced the quality and accuracy of the results derived from ChatGPT. We acknowledge
that the possibility of obtaining more accurate results from ChatGPT cannot be entirely
ruled out if direct requests for chest X-ray interpretation were permissible.

5. Conclusions

This study underscores the potential of AI in improving medical diagnostic processes,
with specific emphasis on chest X-ray interpretation. While KARA demonstrates superior
precision in image analysis, ChatGPT excels in contextual data interpretation. The key take-
away is the complementary nature of these technologies. A hybrid approach, integrating
KARA’s imaging expertise with ChatGPT’s comprehensive analysis, could lead to more
accurate and efficient diagnostic processes, ultimately improving patient care.

The future of AI in healthcare is about more than replacing human expertise but
augmenting it. Combining AI systems like KARA and ChatGPT with human oversight
could offer a robust diagnostic tool, maximizing the strengths of both artificial intelligence
and human judgment. As AI continues to evolve, its integration into healthcare systems
must be approached thoughtfully, ensuring that it supports and enhances the work of
medical professionals for the betterment of patient outcomes.
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Abstract: Stuttering is a widespread speech disorder affecting people globally, and it impacts ef-
fective communication and quality of life. Recent advancements in artificial intelligence (AI) and
computational intelligence have introduced new possibilities for augmenting stuttering detection
and treatment procedures. In this systematic review, the latest AI advancements and computational
intelligence techniques in the context of stuttering are explored. By examining the existing literature,
we investigated the application of AI in accurately determining and classifying stuttering manifes-
tations. Furthermore, we explored how computational intelligence can contribute to developing
innovative assessment tools and intervention strategies for persons who stutter (PWS). We reviewed
and analyzed 14 refereed journal articles that were indexed on the Web of Science from 2019 onward.
The potential of AI and computational intelligence in revolutionizing stuttering assessment and
treatment, which can enable personalized and effective approaches, is also highlighted in this review.
By elucidating these advancements, we aim to encourage further research and development in this
crucial area, enhancing in due course the lives of PWS.

Keywords: stuttering detection; systematic review; rehabilitation; machine learning

1. Introduction

Stuttering, a prevalent speech disorder that affects millions all over the globe [1], lacks
comprehensive research in terms of accurately determining and categorizing its manifes-
tations. Even though speech is a fundamental medium to convey ideas and emotions,
not all individuals can flawlessly verbally communicate. The efficacy of speech is depen-
dent on its fluency, which denotes the natural flow between phonemes that constitute a
message [2]. Dysfluencies, which include stuttering, disrupt this flow and represent a
complexity that impacts over 80 million people worldwide, that is, approximately 1% of
the world’s population [3].

Stuttering is characterized by the repetition of sounds, syllables, or words; the pro-
longation of sounds; and the interruption of speech through blocks. PWS often have a
clear understanding of their intended speech but struggle with its fluid expression. These
disruptions in speech can manifest with accompanying struggle behaviors, including sec-
ondary behaviors such as rapid eye blinks and quivering lip movements. The impacts of
stuttering extend beyond its surface manifestations; it impairs effective communication,
thus affecting interpersonal relationships and the overall quality of life of people suffering
from it [4]. People with varying degrees of stuttering severity may find difficulties in
both social interactions and professional settings, with heightened severity correlated with
potential emotional struggles [5].
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The traditional approach to evaluating stuttering is to manually tally the instances
of different stuttering types and express them as a ratio that is relative to the total words
in a speech segment. Nevertheless, owing to its time-intensive and subjective nature, this
method is not without limitations that lead to inconsistencies and potential errors when dif-
ferent evaluators are involved [2]. Manually detecting stuttering exhibits several challenges.
First, distinguishing stuttering from other speech disfluencies can be difficult, considering
that subtle instances may resemble hesitations or pauses. Furthermore, consistent detection
of stuttering becomes a complex task because the severity and frequency of stuttering can
vary widely among people and across different contexts. Moreover, factors such as the
speaker’s age, gender, and language as well as the speaking task and the context in which
the speech is produced can further complicate the identification of stuttering [6].

Considering the increasing need for improved detection and management of stutter-
ing, there is a noticeable trend in adopting innovative technologies, particularly artificial
intelligence (AI) [7]. The application of AI in identifying and classifying stuttering indicates
an essential development in the study of speech-related issues. AI has a special ability to
understand complex speech patterns that might not be easy for humans to notice, and this
capability can help in the early detection of stuttering. This potential has sparked a wave of
novel research efforts, each influenced by the prospect of revolutionizing the understanding
and treatment of stuttering. The way AI and stuttering research work together can modify
how speech assessment and management are carried out and enhance the quality of life of
PWS. This exciting progress demonstrates that AI can greatly assist in managing stuttering
and can even alter how speech therapy is performed, which makes it more personalized
and effective.

This study highlights a perspective on the utilization of AI technologies for determin-
ing and classifying stuttering. While AI holds promise for the assessment of stuttering, this
area has received limited attention, likely due to the complexity of the disorder, the need
for extensive and diverse datasets, and the challenges of developing robust and accurate
AI models. This study analyzes the existing research to extract recent efforts and methods
in the field. The primary objective is to categorize and summarize the relevant litera-
ture concerning to stuttering identification, offering insights and organizing these articles
for future research focused on the use of AI in stuttering identification. This approach
aims to facilitate advancements in the field by highlighting the recent developments and
methodologies employed in automated stuttering identification.

In the field of ASD research, it is essential to acknowledge the prior systematic reviews
that have explored machine learning approaches for stuttering identification. Two notable
systematic reviews have been published in recent years, namely Sheikh et al. (2022) [8] and
Barrett et al. (2022) [9], who conducted a comprehensive review that encompassed various
aspects of stuttering identification, including stuttered speech characteristics, datasets, and
automatic stuttering-identification techniques. On the other hand, Barrett et al. focused
specifically on machine learning techniques for detecting developmental stuttering. Their
systematic review concentrated on studies utilizing supervised learning models trained on
speech data from individuals who stutter. They emphasized the importance of accuracy
reporting, sample sizes, and specific inclusion criteria in their analysis.

This study aims to answer the following questions: (i) What are the recent advance-
ments in AI and computational intelligence for stuttering detection and treatment, and how
can they contribute to improving assessment and intervention strategies? (ii) What are the
challenges and future directions in computational intelligence-based stuttering detection,
and how can they be addressed to enhance accuracy and effectiveness?

Our review aims to differentiate itself by providing a distinct contribution to the
field. We focus on the latest developments in AI and computational intelligence within
the timeframe of 2019–2023, specifically addressing the challenges and advancements in
stuttering detection. Our review offers a comprehensive analysis of the datasets used, the
specific types of stuttering investigated, the techniques employed for feature extraction, and
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the choice of classifiers. Furthermore, we aim to highlight potential pathways for improving
accuracy and effectiveness in computational intelligence-based stuttering detection.

The rest of this paper is structured as follows: Section 2 explains the method utilized
for this organized review. Section 3 covers the results and discussion. Section 4 provides
insights for future research. Finally, Section 5 presents the conclusions.

2. Research Methodology

Research articles that are focused on automating the identification of stuttering are
spread throughout different conference proceedings and journals, encompassing distinct ar-
eas for enhancement. These areas include refining methods for improving stuttering-identification
accuracy, assessing various forms of stuttering, refining severity evaluation, and enhancing
accessible datasets. This section describes the approach employed to locate relevant articles,
along with the criteria for article selection and the procedures for filtering. Despite being a
relatively novel and emerging field, research into stuttering detection using AI has received
attention from researchers from various fields, eventually becoming a significant area of
academic investigation. The outcomes of studies in this domain have been published in
scholarly journals and conferences and indexed in the Web of Science (WoS) database [10].

The Web of Science (WoS) database is widely recognized for its comprehensive coverage
of academic literature and its commitment to delivering high-quality research. The WoS Core
Collection database provides us with robust access to prominent citation databases, including
Science Direct (Elsevier), IEEE/IEE Library, ACM Digital Library, Springer Link Online Libraries,
and Taylor & Francis. Utilizing the WoS for research provides numerous advantages owing
to its comprehensive coverage of scholarly literature. This robust platform provides access
to an extensive range of high-quality journals, conference proceedings, and research articles
from different disciplines. The platform’s precise indexing and citation tracking help
researchers determine key studies and trends. Moreover, its rigorous evaluation and
inclusion of reputable sources enhance the reliability and credibility of accessed materials,
elevating the overall quality of research efforts. Articles and review articles published
between 2019 and 2023 were precisely searched within the WoS Core Collection database
(Figure 1).
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Figure 1. Number of published articles per year.

By using the search field, to guarantee the inclusion of all studies pertinent to the
identification of stuttering via several AI technologies, we entered the following terms:
(stuttering detection using machine learning) or (stuttering detection with the use of AI)
or (stuttering detection) or (stuttering detection or stuttering recognition) or (stuttering
classification) or (automatic stutter detection). Figure 2 illustrates the search process.
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Initially, the search yielded a total of 384 research papers. From this pool, we selected
journal and conference articles for inclusion and excluded meeting abstracts, proceedings
papers, and book reviews. This selection also focused on articles published between
2019 and 2023. Following this initial stage, we finally obtained a refined collection of
85 search results. Afterward, a secondary screening procedure was performed, where we
conducted an in-depth manual assessment to identify whether each article was relevant
to the subject matter. Consequently, any articles that were considered unrelated were
excluded from consideration.

In the second phase of revision, we reviewed the titles, abstracts, introductions, key-
words, and conclusions of the articles. Then, we refined the collection by specifically choos-
ing papers that centered around the application of machine learning and AI in stuttering
detection. This yielded a set of 18 articles. In the third phase of revision, we meticulously
examined the complete texts of the remaining 18 articles. After careful consideration,
four articles were found to be unrelated to our designated theme, as they focused on the
medical field. Consequently, these articles were excluded from our analysis, resulting in a
final selection of 14 articles.

These 14 articles served as the basis for a further in-depth analysis and comparison
of important aspects in automatic stuttering-detection (ASD) research. Our analysis was
conducted based on specific criteria, taking into account the need for a comprehensive
evaluation. These criteria included the dataset utilized in each study, the specific type of
stuttering investigated (such as prolongation, block, or repetition), the techniques employed
for feature extraction, the choice of classifier used, and the achieved performance accuracy.

By considering these five dimensions—dataset, classified stuttering type, feature-extraction
approach, classifier selection, and performance evaluation—we aim to provide a structured
and comprehensive overview of the diverse studies within the field of ASD. This framework
will facilitate a deeper understanding and effective comparison of the different research
approaches in this domain.
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3. Results
3.1. Datasets

The success of stuttering detection using deep learning and AI models crucially
depends on the quality and diversity of the data applied for training these systems. This
critical dependency underscores the need for encompassing datasets that capture a wide
spectrum of stuttering patterns, speech variations, and linguistic contexts.

In the literature, researchers have applied various datasets, including University College
London’s Archive of Stuttered Speech (UCLASS) [11], SEP-28k [12], FluencyBank [13], and
LibriStutter [14], and have also used resources like VoxCeleb [15] (see Table 1). Furthermore,
some researchers such as [16–18] have even made their own customized datasets to cater
to their specific research needs. This combined endeavor emphasizes the importance
of carefully curated and extensive data in advancing the field of stuttering-detection
technology via deep learning and AI methods. Table 1 presents the benchmark datasets
along with their respective descriptions.

Table 1. Benchmark datasets.

Dataset Classes Description

UCLASS (2009)
[11]

Interjection, sound repetition, part-word
repetition, word repetition, phrase
repetition, prolongation, and no stutter

The University College London’s Archive of Stuttered Speech
(UCLASS) is a widely used dataset in stuttering research. It
includes monologs, conversations, and readings, totaling
457 audio recordings. Although small, UCLASS is offered in
two releases by UCL’s Department of Psychology and
Language Sciences. Notably, UCLASS3 release 1 contains
138 monolog samples, namely 120 and 18 from male and
female participants, respectively, from 81 individuals who
stutter, aged 5–47 years. Conversely, release 2 contains a
total of 318 monologs, reading, and conversation samples
from 160 speakers suffering from stuttering, aged
5–20 years, with samples from 279 male and 39 female
participants. Transcriptions, including orthographic
versions, are available for some recordings, making them
suitable for stutter labeling.

VoxCeleb (2017)
[15]

The dataset does not have classes in the
traditional sense, as it is more focused on
identifying and verifying
individual speakers

It is developed by the VGG, Department of Engineering
Science, University of Oxford, UK. It is a large-scale dataset
designed for speaker-recognition and verification tasks. It
contains a vast collection of speech segments extracted from
celebrity interviews, talk shows, and online videos. This
dataset covers a diverse set of speakers and is widely
employed in research that is related to speaker recognition,
speaker diarization, and voice biometrics.

SEP-28k (2021)
[12]

Prolongations, repetitions, blocks,
interjections, and instances of
fluent speech

Comprising a total of 28,177 samples, the SEP-28k dataset
stands as the first publicly available annotated dataset to
include stuttering labels. These labels encompass various
disfluencies, such as prolongations, repetitions, blocks,
interjections, and instances of fluent speech without
disfluencies. Alongside these, the dataset covers
nondisfluent labels such as natural pauses, unintelligible
speech, uncertain segments, periods of no speech, poor
audio quality, and even musical content.
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Table 1. Cont.

Dataset Classes Description

FluencyBank (2021)
[13]

Individuals who stutter (IWS) and
individuals who do not stutter (IWN)

The FluencyBank dataset is a collection of audio recordings
of people who stutter. It was created by researchers from the
United States and Canada and contains over 1000 h of
recordings from 300 speakers. The dataset is divided into
two parts, namely research and teaching. The research data
are password-protected, and the teaching data are
open-access. The teaching data include audio recordings of
10 speakers who stutter, transcripts, and annotations of
stuttering disfluencies. The dataset is valuable for
researchers and clinicians studying stuttering.

LibriStutter (2021)
[14]

Sound, word, and phrase repetitions;
prolongations; and interjections.

The LibriStutter dataset is a corpus of audio recordings of
speech with synthesized stutters. It was created by the
Speech and Language Processing group at Queen’s
University in Canada. The dataset contains 100 h of audio
recordings of 10 speakers, each of whom stutters differently.
The stutters were synthesized via a technique known as the
hidden Markov model. It is a valuable resource for
researchers who are developing automatic
speech-recognition (ASR) systems for people who stutter.
The dataset can also be used to train models for detecting
and classifying different types of stutters.

In Table 1, the dataset most commonly applied is UCLASS, which has been utilized in
studies [14,19–24], closely followed by the SEP-28k dataset, which is featured in various
works [6,23,25–27]. Notably, the latter dataset has gained popularity in recent research
endeavors. FluencyBank contributes to investigations in previous studies [6,23,24], whereas
the utilization of the LibriStutter/LibriSpeech dataset is relatively less frequent, as seen in
previous studies [6,25]. Conversely, the VoxCeleb dataset plays a more minor role, appearing
only once in [25].

Furthermore, several studies [16–18] chose to create their own tailored datasets to
address their specific research objectives. For instant, in [16], the dataset comprised
20 individuals aged between 15 and 35, all of whom had been diagnosed with stuttering
by qualified speech language pathologists. This group consisted of 17 males and 3 females.
They were all directed to read a specific passage, and their speech was recorded in a room
at the All India Institute of Speech and Hearing (AIISH) in Mysuru using the PRAAT
tool, which has a sampling rate of 44 KHz. The participants displayed characteristics of
stuttering, including repeating sounds or syllables, prolongations, and blocks.

Pravin et al. [17] created a dataset that consists of recordings of natural speech from
children who came from bilingual families (speaking both Tamil and English). The children
included in the dataset were between the ages of 4 and 7. Furthermore, the dataset included
recordings of the pronunciation of phonemes as well as mono-syllabic and multi-syllabic
words in both English and Tamil.

Asci et al. [18] recruited 53 individuals with stuttering (24 females and 29 males
aged 7–30) alongside 71 age- and sex-matched controls (29 females and 44 males aged
7–30). All participants were native Italian speakers, non-smokers, and had no cognitive
or mood impairments, hearing loss, respiratory disorders, or other conditions that could
affect their vocal cords. None were taking central nervous-system-affecting drugs at the
time of the study, and demographic and anthropometric data were collected during the
enrollment visit.

Some studies [14,16–22,26,27] used just one dataset, whereas others [6,23–25] opted
for multiple datasets. In one particular study [6], the researchers went a step further by
enhancing their data with the MUSAN dataset for added diversity. In terms of stutter-
ing, implementing data augmentation can be difficult, considering that many common
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techniques such as time stretch and high rate of speech fundamentally alter the structure
of disfluent speech samples. The proposed approach, however, uses techniques such as
speech shadowing, threshold masking, and delayed auditory feedback, which closely
mimic real-world conditions without significantly altering the underlying stuttering char-
acteristics of the speech sample. This diversity in dataset choice and augmentation methods
showcases the evolving nature of research approaches in this field.

3.2. Classified Stuttering Type

Diverse forms of stuttering have been the subject of investigation across various
research studies. These encompass repetition, prolongation, block, interjection, sound
repetitions, part-word repetitions, word repetitions, phrase repetitions, syllable repetition,
and revision.

Table 2 illustrates each type and its definition. Among these categories, prolongation
emerged as the most frequently explored, being referenced in 13 out of the 14 studies, fol-
lowed by interjection, which was cited in 9 out of the 14 studies. Contrarily, part-word rep-
etition and syllable repetition were the least discussed, having only a single mention each.

Table 2. Classification of stuttering type.

Type Definition Example

Repetition Repeating a sound, syllable, or word multiple times. “I-I-I want to go to the park.”

Prolongation Extending or elongating sounds or syllables within words. “Sssssend me that email, please.”

Block Temporary interruption or cessation of speech flow. “I can’t... go to the... park tonight.”

Interjection Spontaneous and abrupt interruption in speech with
short exclamations. “Um, I don’t know the answer.”

Sound repetitions Repeating individual sounds within a word. “Th-th-that movie was great.”

Part-word repetitions Repetition of part of a word, usually a syllable or sound. “Can-c-c-come over later?”

Word repetitions Repeating entire words within a sentence. “I like pizza, pizza, pizza.”

Phrase repetitions Repeating phrases or groups of words. “He said, “he said it too.”

Syllable repetition Repeating a syllable within a word. “But-b-but I want to go.”

Revision Rewording or revising a sentence during speech to
avoid stuttering. “I’ll take the, um, the bus.”

The predominant stuttering categories, namely repetition, prolongation, and block,
were discussed in previous works [6,16,18,22,24]. Other variations of stuttering, which can
be considered subcategories of the primary classes, were addressed in previous studies [14,19,20],
including sound repetitions, word repetitions, and phrase repetitions. Interjection was
highlighted in various studies [6,14,19,20,23–25], whereas sound repetition and word repe-
tition were jointly explored in different studies [21,23,26,27]. Additional examinations of
prolongation, block, and interjection occurred in studies [26,27]. Revisions and prolonga-
tions were linked in previous works [14,20], and prolongation was connected with syllable
repetition in one study [21]. Repetition and prolongation were jointly examined in one
study [25], and singularly, prolongation was explored in another [23].

3.3. Feature-Extraction Approach

Feature extraction stands as a pivotal step within speech-recognition systems, serving
to convert raw audio signals into informative data for subsequent processing. It is a
foundational element in the translation of spoken language into digital information, which
facilitates human–technology communication. Previous studies have targeted various
speech features, such as the Mel frequency cepstral coefficient (MFCC) [28]. Table 3 presents
each type and its description.
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Table 3. Computational methods for the feature-extraction phase.

Method No. of
Studies Ref.

Mel frequency cepstral coefficient (MFCC) 6

Sheikh et al., 2023 [6]
Manjula et al., 2019 [16]
Sheikh et al., 2021 [22]
Jouaiti and Dautenhahn, 2022 [23]
Sheikh et al., 2022 [25]
Filipowicz and Kostek, 2023 [27]

Weighted MFCC (WMFCC) 1 Gupta et al., 2020 [21]

Spectrograms 3
Kourkounakis et al., 2020 [20]
Al-Banna et al., 2022 [24]
Prabhu and Seliya, 2022 [26]

Phonation features 1 Pravin and Palanivelan, 2021 [17]

Ngram 1 Alharbi et al., 2020 [19]

Character-based features 1 Alharbi et al., 2020 [19]

Utterance-based features 1 Alharbi et al., 2020 [19]

Acoustic analysis of voice recordings 1 Asci et al., 2023 [18]

Word distance features 1 Alharbi et al., 2020 [19]

Phoneme features 2 Sheikh et al., 2023 [6]
Sheikh et al., 2022 [25]

Squeeze-and-excitation (SE) residual networks 1 Kourkounakis et al., 2021 [14]

Bidirectional long short-term memory (BLSTM) layers 1 Kourkounakis et al., 2021 [14]

Speaker embeddings from the ECAPA-TDNN model 1 Sheikh et al., 2022 [25]

Contextual embeddings from the Wav2Vec2.0 model 1 Sheikh et al., 2022 [25]

Pitch-determining feature 1 Filipowicz and Kostek, 2023 [27]

Two-dimensional speech representations 1 Filipowicz and Kostek, 2023 [27]

In research, the method of feature extraction has undergone diverse exploration, with
various techniques being employed to extract valuable insights from speech data. Among
these methods, MFCC emerges as the most prevalent choice, with mentions in 6 out of the
total 14 studies. The primary feature employed in automatic speech-recognition systems is
the Mel frequency cepstral coefficient (MFCC). MFCC is obtained by applying the discrete
cosine transform to the logarithm of the power spectrum, which is computed on a Mel
scale frequency. It offers a more effective representation of speech, capitalizing on human
auditory perception, and is widely applied in the majority of speech-recognition research.
Its popularity can be attributed to its effectiveness in translating audio signals into a format
that facilitates further analysis [29]. Table 3 also summarizes the computational methods to
extract features from speech signals.

Nevertheless, in one particular study [21], a departure from the conventional MFCC
approach is observed. Instead, the researchers opted for the utilization of the weighted
MFCC (WMFCC). This distinctive choice stems from WMFCC’s unique ability to capture
dynamic information inherent in speech samples, consequently bolstering the accuracy
in detecting stuttering events. Furthermore, this alternative method offers the added
advantage of reducing the computational overhead during the subsequent classification
process, making it an intriguing avenue of exploration.

Spectrograms, a graphical representation of audio signals over time, have gained
attention in multiple studies, notably in several studies [20,24,26]. These studies leverage
spectrograms as a feature-extraction tool, emphasizing their utility in speech analysis.
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Exploring more specialized domains, one study [17] delved into phonation features
such as pitch, jitter, shimmer, amplitude perturbation quotient, pitch-period perturbation
quotient, logarithmic energy, and the duration of voiceless speech. This nuanced approach
offers a comprehensive understanding of the acoustic characteristics of speech.

Beyond the aforementioned methods, various other feature-extraction techniques have
also been explored, including Ngram, character-based features, and utterance-based fea-
tures. The combination of squeeze-and-excitation (SE) residual networks and bidirectional
long short-term memory (BLSTM) layers, as witnessed in one study [14], illustrates the
innovative strides taken to extract spectral features from input speech data, pushing the
boundaries of feature extraction.

In Asci et al. [18], acoustic analysis of voice recordings was employed to further
augment the array of feature-extraction methods applied. Intriguingly, Alharbi et al. [19] fo-
cused on word distance features, whereas Sheikh et al. [5] and Jouaiti and Dautenhahn [16]
delved into the utilization of phoneme features. On a different note, Sheikh et al. [25] took
a unique approach by extracting speaker embeddings from the ECAPA-time-delay neural
network (TDNN) model and contextual embeddings from the Wav2Vec2.0 model, further
enriching the feature-extraction landscape.

Lastly, Filipowicz and Kostek [27] introduced a pitch-determining feature into the
signal processing toolkit, also exploring various 2D speech representations and their impact
on classification results. This multifaceted exploration of feature-extraction techniques
within the research realm highlights the dynamic and evolving nature of this crucial aspect
of speech analysis.

3.4. Classifier Selection

In the world of ASD, different AI models have been employed in research with varying
levels of accuracy and performance. These AI models have been investigated to see how
well they can identify and understand stuttering, which has led to a range of results. Table 4
summarizes the computational methods for classifying speech features.

Table 4. Computational methods for classifying speech features.

Method Ref.

Artificial neural network (ANN) Manjula et al., 2019 [16]
Sheikh et al., 2022 [25]

K-nearest neighbor (KNN) Sheikh et al., 2022 [25]
Filipowicz and Kostek, 2023 [27]

Gaussian back-end Sheikh et al., 2022 [25]

Support vector machine (SVM) Asci et al., 2023 [18]
Filipowicz and Kostek, 2023 [27]

Bidirectional long short-term memory (BLSTM)

Pravin and Palanivelan, 2021 [17]
Asci et al., 2023 [18]
Alharbi et al., 2020 [19]
Gupta et al., 2020 [21]

Convolutional neural networks (CNNs) Kourkounakis et al., 2020 [20]
Prabhu et al., 2022 [26]

Two-dimensional atrous
convolutional network Al-Banna et al., 2022 [24]

Conditional random fields (CRF) Alharbi et al., 2020 [19]

ResNet18 Filipowicz and Kostek, 2023 [27]

ResNetBiLstm Filipowicz and Kostek, 2023 [27]
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Table 4. Cont.

Method Ref.

Wav2Vec2 Filipowicz and Kostek, 2023 [27]

Deep LSTM autoencoder (DLAE) Pravin and Palanivelan, 2021 [17]

FluentNet Kourkounakis et al., 2021 [14]

StutterNet Sheikh et al., 2023 [6]
Sheikh et al., 2021 [22]

In our exploration of the existing literature, it was apparent that most studies have
leaned toward applying deep learning models. By contrast, only 3 out of the 14 studies
exclusively utilized machine learning. Additionally, several studies chose to combine both
machine learning and deep learning models, whereas others opted for the creation of
innovative architectural approaches.

Machine learning has emerged as a powerful tool in the domain of stuttering detection
and classification. In this context, several studies have leveraged various traditional
machine learning models, such as artificial neural network (ANN), K-nearest neighbor
(KNN), and support vector machine (SVM), to develop faster diagnostic approaches.

Manjula et al. [8] employed ANN, which was fine-tuned using the adaptive fish
swarm optimization (AFSO) algorithm. This ANN was purposefully trained to distinguish
between various types of speech disfluencies, including repetitions, prolongations, and
blocks, commonly observed in disfluent speech. The integration of the AFSO algorithm
was instrumental in enhancing the network’s architectural design, thereby optimizing its
performance in the disfluency classification task. In Sheikh et al. [25], a range of classifiers,
including KNN, Gaussian back-end, and neural network classifiers, were applied for stut-
tering detection. Utilizing Wav2Vec2.0 contextual embedding-based stuttering-detection
methods, the study achieved a notable improvement over baseline methods, showcasing
superior performance across all disfluent categories. Asci et al. [18] utilized a support vector
machine (SVM) classifier to extract acoustic features from audio recordings, achieving high
accuracy in classifying individuals with stuttering. The study also identified age-related
changes in acoustic features associated with stuttering, holding potential applications in
clinical assessment and telehealth practice. In the ever-changing field of stuttering detection
and classification, the use of deep learning techniques has led to significant advancements.
The following studies highlighted how deep neural networks, especially the BLSTM and
convolutional neural networks (CNNs), have played a transformative role in tackling the
complexities of stuttering analysis.

In Kourkounakis et al. [20], a deep learning model that combines CNNs for extracting
features from spectrograms with BLSTM layers for capturing temporal dependencies was
introduced. This system outperformed existing methods in terms of detecting sound rep-
etitions and revisions, boasting high accuracy and low miss rates across all stutter types.
Moreover, Gupta et al. [21] employed the BLSTM model, achieving an impressive overall
classification accuracy of 96.67% in detecting various types of stuttered events. This achieve-
ment was attributed to the utilization of WMFCC for feature extraction and BLSTM for
classification, which outperformed conventional methods and displayed heightened accu-
racy in recognizing speech disfluencies. Furthermore, the utility of BLSTM emerged again
in Jouaiti and Dautenhahn [23], where a deep neural network incorporating BLSTM was in-
troduced for stuttering detection and dysfluency classification. The network’s architecture
comprised multiple layers, including BLSTM layers, dense layers, batch normalization, and
dropout layers, along with an embedding layer for processing phoneme-estimation data.
Impressively, this network matched or exceeded state-of-the-art results for both stuttering
detection and dysfluency classification.

Additionally, Al-Banna et al. [24] introduced a novel detection model comprising a
2D atrous convolutional network designed to learn spectral and temporal features from
log Mel spectrogram data. This network architecture featured multiple layers, including
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convolutional layers with varying dilation rates, batch normalization, dropout layers, and
softmax activation for predicting stuttering classes. When compared with other stuttering-
detection methods, the proposed model exhibited superior performance, especially in
the detection of prolongations class and fluent speech class. Meanwhile, in Prabhu and
Seliya [26], a CNN-based classifier was designed for stutter detection, distinguishing itself
from previous models relying on long short-term memory (LSTM)-based structures. This
CNN-based model demonstrated high accuracy and precision, albeit with varying recall,
making it exceptionally adept at achieving high F1 scores and surpassing other models
across different datasets.

Several studies adopted a comprehensive approach by integrating both machine
learning and deep learning models. These studies aim to identify the most effective
approach for detecting and analyzing stuttering. In Alharbi et al. [19], a combination
of conditional random fields (CRF) and BLSTM classifiers was utilized to detect and
transcribe stuttering events in children’s speech. The study’s findings revealed that BLSTM
outperformed CRFngram when evaluated using human-generated reference transcripts.
Notably, the CRFaux variant, which incorporated additional features, achieved superior
results compared to both CRFngram and BLSTM. Nevertheless, it is worth noting that when
these classifiers were evaluated with ASR (automatic speech recognition) transcripts, all of
them experienced a decrease in performance because of ASR errors and data mismatches.

In a parallel study, Sheikh et al. [25] used a range of classifiers, including KNN,
Gaussian back-end, and neural network classifiers, to detect stuttering detection. Utilizing
Wav2Vec2.0 contextual embedding-based stuttering-detection methods, the study obtained
a noteworthy improvement over baseline methods, showcasing superior performance
across all disfluent categories. Moreover, in Filipowicz and Kostek [27], various classifiers,
including KNN, SVM, deep neural networks (ResNet18 and ResNetBiLstm), and Wav2Vec2,
were evaluated for the classification of speech disorders. Notably, ResNet18 displayed
superior performance over the other algorithms tested in the research.

Recently, in the field of ASD, various innovative approaches have surfaced to address
the complex aspects of this speech condition. These studies embody significant advance-
ments, each presenting fresh methods and structures for improving the comprehension
of stuttering. Pravin and Palanivelan [17] presented a novel approach in the form of a
deep long short-term memory (LSTM) autoencoder (DLAE) using long short-term memory
(LSTM) cells, which are specialized recurrent neural network units designed for sequential
data. The DLAE model was evaluated against various baseline models, including shal-
low LSTM autoencoder, deep autoencoder, and stacked denoising autoencoder, showing
superior accuracy in predicting the severity class of phonological deviations. Meanwhile,
Kourkounakis et al. [14] introduced FluentNet, a cutting-edge end-to-end deep neural
network architecture designed exclusively for automated stuttering speech detection. Flu-
entNet’s architecture comprises components such as SE-ResNet blocks, BLSTM networks,
and an attention mechanism, achieving state-of-the-art results for stutter detection and
classification across different stuttering types in both the UCLASS and LibriStutter datasets.

Furthermore, Sheikh et al. [22] proposed the StutterNet architecture, based on a
time-delay neural network (TDNN) and specifically designed to detect and classify various
types of stuttering. This architecture treats stuttering detection as a multiclass classification
problem, featuring components such as an input layer, time-delay layers, statistical pooling,
fully connected layers, and a softmax layer. Experimental results demonstrated the Stut-
terNet model’s promising recognition performance across various stuttering types, even
surpassing the performance of the ResNet + BiLSTM method in some cases, particularly
in detecting fluent speech and core behaviors. Notably, the StutterNet model was also
adopted by Sheikh et al. [6].

3.5. Preformance Evaluation

Within this section, an overview of the best accuracy across all studies is presented.
In some of the studies, accuracy numbers were not explicitly provided, such as in [16],
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where the authors stated that the proposed AOANN effectively predicts the occurrences of
repetitions, prolongations, and blocks with accuracy.

In contrast, the majority of the studies presented specific numerical data to illustrate
their results. For instance, according to Al Harbi et al. [19], the BLSTM classifiers outper-
formed the CRF classifiers by a margin of 33.6%. However, incorporating auxiliary features
for the CRFaux classifier led to performance enhancements of 45% compared to the CRF
baseline (CRFngram) and 18% compared to the BLSTM outcomes.

Kourkounakis et al. [20] reported that their proposed model achieved a 26.97% lower
miss rate on the UCLASS dataset compared to the previous state of the art. It also slightly
outperforms the unidirectional LSTM baseline across all stutter types. Similarly, the DLAE
model proposed by [17] outperformed the baseline models, achieving an AUC of 1.00 and
a perfect test accuracy of 100%. This capability enables accurate discrimination between
“mild” and “severe” cases of phonation deviation, ensuring precise assessment of speech
disorders and avoiding any conflicting diagnoses.

The method of Gupta et al. [21] achieved the best accuracy of 96.67%, outperforming
the LSTM model. Promising recognition accuracies were also observed for fluent speech
(97.33%), prolongation (98.67%), syllable repetition (97.5%), word repetition (97.19%), and
phrase repetition (97.67%). Furthermore, the FluentNet model proposed by Kourkounakis et al. [14]
achieved an average miss rate and accuracy of 9.35% and 91.75% on the UCLASS dataset.
The StutterNet model [22] outperformed the state-of-the-art method utilizing a residual
neural network and BiLSTM, with a considerable gain of 4.69% in overall average accuracy
and 3% in MCC. Also, the methodology proposed by Sheikh et al. [6] achieved a 4.48%
improvement in F1 over the single-context-based MB StutterNet. Furthermore, data aug-
mentation in the cross-corpora scenario improved the overall SD performance by 13.23% in
F1 compared to clean training.

Moreover, the method proposed by Sheikh et al. [25] showed a 16.74% overall accu-
racy improvement over the baseline. Combining two embeddings and multiple layers
of Wav2Vec2.0 further enhanced SD performance by up to 1% and 2.64%, respectively.
During the training phase using SEP-28K + FluencyBank + UCLASS datasets, Jouaiti and
Dautenhahn [23] achieved the following F1 scores: 82.9% for word repetition, 83.9% for
sound repetition, 82.7% for interjection, and 83.8% for prolongation. In another training
scenario using FluencyBank and UCLASS, the obtained F1 scores were 81.1% for word
repetition, 87.1% for sound repetition, 86.6% for interjection, and 81.5% for prolongation.

The model proposed by Al-Banna et al. [24] surpassed the state-of-the-art models in
detecting prolongations, with F1 scores of 52% and 44% on the UCLASS and FluencyBank
datasets. It also achieved gains of 5% and 3% in classifying fluent speech on the UCLASS
and FluencyBank datasets. In the study proposed by Prabhu and Seliya [26], interjection
had the best performance with F1 score: 97.8%. Furthermore, in [18], machine learning
accurately differentiated individuals who stutter from controls with an 88% accuracy.
Age-related effects on stuttering were demonstrated with a 92% accuracy when classifying
children and younger adults with stuttering. Additionally, in [27], ResNet18 was able to
classify speech disorders at the F1 measure of 93% for the general class.

4. Discussion

In this section, the importance of understanding the challenges and identifying future
directions in computational intelligence-based stuttering detection is examined further. By
exploring these aspects, we gain valuable insights into the current limitations of existing ap-
proaches and pave the way for advancements in the field. Figure 3 provides insights into the
challenges and future directions of computational intelligence-based stuttering detection.
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4.1. Challenges

In this section, an overview of the challenges that automatic stuttering-identification
systems encounter is provided, and possible solutions that could be explored in the field of
stuttering research are suggested. Although there have been notable developments in the
automated detection of stuttering, several issues must still be addressed to ensure a robust
and effective identification of stuttering.

A significant obstacle that should be addressed is the limited availability of data for
research in stuttering identification. A notable challenge is the scarcity of natural speech
datasets that include disfluent speech. The limitations posed by the availability of a limited
dataset have been a recurring concern in several studies [19,20,23,25]. This constraint
can significantly impact the outcomes of their proposed methods, which often leads to
results that do not meet expectations. The deficiency in extensive and diverse datasets has
emerged as a pivotal factor that influences the overall performance and robustness of the
methods explored in these studies. Hence, addressing the challenge of dataset scarcity is
a fundamental step toward enhancing the accuracy and reliability of research findings in
this domain.

Medical data collection is generally a costly and resource-intensive endeavor, and
stuttering research is no exception in this regard [25]. Moreover, the complexity of the
stuttering domain is compounded by the need for a diverse set of speakers and sentences
for comprehensive analysis. One of the obstacles that contribute to the scarcity of available
datasets is the challenge of data collection itself. This challenge arises since it involves
organizing meetings and recording sessions with PWS while they engage in spontaneous
speech. This approach is necessary to capture authentic instances of stuttering speech
considering that requesting PWS to read from a predetermined list can often result in a
reduction in the frequency of stuttering occurrences [30].

Sheikh et al. [6] introduced a possible solution to the challenge posed by the limited
availability of datasets in the field. They proposed that data augmentation could prove
beneficial in the context of stuttering research. However, notably, the application of data
augmentation in the realm of stuttering is not a straightforward process. This complexity
arises because several conventional data augmentation techniques, such as time stretch
and the fundamentally high rate of speech, can significantly alter the underlying structure
of stuttering speech samples.

To make data augmentation more effective for stuttering research, specialized data
augmentation techniques tailored specifically to the unique characteristics of stuttering
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speech must be developed. Such domain-specific data augmentation methods would enable
researchers to enhance their datasets while preserving the vital features of disfluent speech,
ultimately contributing to more accurate and meaningful results in this field of study.

Another significant concern that affects the outcomes of proposed procedures in
various studies is the class imbalance within the available datasets, as highlighted by
Jouaiti and Dautenhahn [23] and Filipowicz and Kostek [27]. This problem arises from
several factors, one of which is the limited availability of datasets. Notably, certain datasets
may exhibit an underrepresentation of specific types of core stuttering behaviors, such as
the case of “prolongations” in the FluencyBank dataset. Stuttering, which is a highly diverse
speech disorder, can manifest in diverse ways among individuals. Some individuals may
predominantly display repetitions, whereas others may experience more prolonged speech
sounds or blocks. This inherent variability in stuttering presentations contributes to the
disparities observed in stuttering datasets.

Speech data collection from PWS, especially in authentic conversational settings, intro-
duces its own set of challenges. Some core stuttering behaviors may occur less frequently
or may be less perceptible because PWS may be more likely to stutter when they are
feeling anxious or stressed [30]. Moreover, PWS may be more likely to use avoidance
strategies (e.g., pausing and substituting a word) in authentic conversational settings, such
as avoiding words or phrases that they know are likely to trigger stuttering, rendering it
more challenging to capture the events during data collection endeavors [31]. Furthermore,
stuttering datasets often suffer from limited size because of the relatively low prevalence
of stuttering in the general population. This limited sample size increases the likelihood
of imbalances that arise purely by chance. Fundamentally, the issue of class imbalance in
stuttering datasets stems from multifaceted factors, which include the diverse nature of
stuttering, data collection challenges, and the inherent constraints associated with dataset
size. Recognizing and addressing these factors are necessary steps in striving for more
balanced and representative datasets in stuttering research.

4.2. Future Directions

Based on the findings of our systematic review, we have identified several potential
future directions for research in the field. These directions include the exploration of
multiclass learning techniques, improvements in classifier algorithms, advancements in
model generalization and optimization methods, as well as enhancements in dataset
quality and diversity. These areas present promising avenues for further investigation and
development in the domain of stuttering assessment and treatment.

4.2.1. Multiclass Learning

Numerous researchers have sought to enhance their systems by incorporating the
concept of multiclass learning. This means that instead of restricting their proposed models
to identifying only one type of stuttering at a time, these models can recognize multiple
stuttering types concurrently. PWS can exhibit various forms of stuttering within a single
sentence, which occur simultaneously in their speech.

Kourkounakis et al. [20] aimed to build upon existing models and embarked on
research regarding multiclass learning for different stuttering types. Considering that
multiple stuttering types can manifest simultaneously in a sentence (e.g., “I went to uh to
to uh to”), this approach has the potential to yield a more robust classification of stuttering.

Furthermore, Sheikh et al. [22] outlined future work in which they would examine thor-
oughly the realm of multiple disfluencies. They intended to explore advanced variations of
TDNN for stuttering detection in real-world settings. This advancement aims to address
the complexity of stuttering, where different disfluency types can co-occur, contributing to
a more comprehensive understanding of stuttering patterns in spontaneous speech.
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4.2.2. Classifier Improvements

This research strongly highlights the importance of enhancing the classifiers as a
central focus for future work. Improving the classifiers is a pivotal aspect of our future
research agenda, which reflects its importance in achieving more accurate and effective
ASR classification.

Alharbi et al. [19] proposed enhancements to the ASR stage, intending to reduce
the word error rate. They also suggested exploring alternative methods for detecting
prolongation events, which proved challenging using the current approach.

Pravin and Palanivelan [17] aimed to employ deep learning for the solitary classifi-
cation of disfluencies, contributing to a more descriptive severity assessment for subjects
and enhanced self-assessment. Nevertheless, notably, an increase in the number of training
epochs resulted in longer model run times, which requires consideration for future improve-
ments. Moreover, Gupta et al. [21] suggested the exploration of different feature-extraction
and classification techniques to improve stuttering detection. Kourkounakis et al. [14]
proposed experimenting with FluentNet’s architecture, potentially implementing different
attention mechanisms, including transformers, to investigate their impact on results.

Sheikh et al. [6] proposed exploring the combination of various types of neural net-
works in stuttering detection to pinpoint precisely where stuttering occurs in speech frames.
Furthermore, investigating different context variations, depths, and convolutional kernel
numbers in stutter detection poses a promising area of focus. The study also identified
blocks as particularly difficult to detect, prompting further analysis and ablation studies on
speakers with hard-to-determine disfluencies.

Future work involves exploring self-supervised models that utilize unlabeled audio
data, building upon the research of Sheikh et al. [25], which aimed at fine-tuning the
Wav2Vec2.0 model to identify and locate stuttering in speech frames. Al-Banna et al. [24]
suggested the incorporation of atrous spatial pyramid pooling and local and global attention
mechanisms to enhance detection scores.

Prabhu and Seliya [26] identified potential enhancements to the model as possibly
including the incorporation of LSTM layers to capture temporal relationships in data and
improve performance. The possibility of utilizing different machine models, such as LSTM
models, has also been considered for better data interpretation with the SEP-28k dataset.
Finally, Filipowicz and Kostek [27] proposed extending the training duration for each
model and potentially expanding the ResNet18 model with additional convolutional layers,
which are dependent on available resources.

4.2.3. Model Generalization and Optimization

Several researchers have stressed the importance of a crucial area for future research:
enhancing their models’ ability to generalize. This means making their models better at
working effectively in different situations, not just the specific ones for which they were
originally designed. The reason behind this recommendation is slightly straightforward:
Researchers want their models to be versatile and adaptable. They understand that a
model’s success should not be confined to specific datasets or conditions. By focusing on
improving generalization, researchers aim to strengthen their methods, which enables them
to handle a wide range of real-world challenges and variations effectively.

Kourkounakis et al. [14], for example, proposed the idea of conducting more studies
that bridge synthetic datasets such as LibriStutter with real-world stutter datasets. They
suggested exploring domain adaptation techniques, which include the use of adversar-
ial networks, to enhance the transfer of learning and create more adaptable and broadly
applicable solutions. Furthermore, researchers could investigate optimizing various pa-
rameters concurrently, such as context, filter bank size, and layer dimensions within the
proposed system.

Additionally, Sheikh et al. [25] suggested that it would be interesting to study how
well the proposed method can generalize across multiple datasets. This exploration would
shed light on the method’s adaptability and effectiveness in various data scenarios. Finally,
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Al-Banna et al. [24] recommended investigating ways to improve model generalization and
robustness by analyzing different datasets and using domain-adaptation techniques. These
recommendations collectively highlight researchers’ dedication to advancing methods that
are not only effective in specific situations but also excel in various real-world contexts.

4.2.4. Dataset Improvement

In terms of dataset enhancement, Prabhu and Seliya [26] highlighted the potential
for improving the SEP-28k dataset. Notably, the SEP-28k dataset is recognized for its
robustness, comprising a substantial volume of stuttering data that serve as a valuable
resource for model development. Nevertheless, this dataset still offers room for refinement
and optimization.

A key proposal involves revising the labeling scheme currently applied to each
3-second audio clip. By creating more specific labels with distinct start and end points,
the dataset could pave the way for the development of more effective classifiers. Such an
adjustment would render disfluent and fluent events entirely independent of each other,
potentially facilitating the detection of these events within arbitrary speech contexts.

5. Conclusions

Stuttering is a complex speech disorder that necessitates accurate detection for effective
assessment and treatment. This paper has discussed the challenges, advancements, and
future directions in computational intelligence-based stuttering detection.

The challenges of limited datasets and dataset imbalance were determined, with
proposed solutions including specialized data-augmentation techniques and balanced
dataset creation. Advancements in stuttering detection using computational intelligence
techniques have shown promising results from employing various algorithms and feature-
extraction methods.

Future research directions include multiclass learning approaches, classifier enhance-
ments, model generalization, and optimization. When these challenges and the exploration
of future directions are addressed, we can enhance the accuracy and reliability of stuttering-
detection systems, benefiting individuals who stutter and improving their quality of life.
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Abstract: Influenza has been a stationary disease in Mexico since 2009, and this causes a high cost
for the national public health system, including its detection using RT-qPCR tests, treatments, and
absenteeism in the workplace. Despite influenza’s relevance, the main clinical features to detect the
disease defined by international institutions like the World Health Organization (WHO) and the
United States Centers for Disease Control and Prevention (CDC) do not follow the same pattern
in all populations. The aim of this work is to find a machine learning method to facilitate decision
making in the clinical differentiation between positive and negative influenza patients, based on their
symptoms and demographic features. The research sample consisted of 15480 records, including
clinical and demographic data of patients with a positive/negative RT-qPCR influenza tests, from
2010 to 2020 in the public healthcare institutions of Mexico City. The performance of the methods for
classifying influenza cases were evaluated with indices like accuracy, specificity, sensitivity, precision,
the f1-measure and the area under the curve (AUC). Results indicate that random forest and bagging
classifiers were the best supervised methods; they showed promise in supporting clinical diagnosis,
especially in places where performing molecular tests might be challenging or not feasible.

Keywords: machine learning; decision support system; medical diagnosis; influenza; artificial intelligence

1. Introduction

Influenza is a respiratory disease that can increase the incidence of pneumonia and
cause a high number of hospitalizations [1]. In March 2009, Mexico, the United States
and Canada were the focus of international attention when the influenza A H1N1 virus
burst onto the epidemiological scene [2]. In June of that same year, the World Health
Organization (WHO) declared an influenza pandemic of moderate severity. Since 2009,
respiratory diseases due to influenza have recurred in numerous nations during the colder
months annually, thus acquiring the category of seasonal influenza. There are four types
of influenza viruses: A, B, C and D. Influenza A and B viruses cause seasonal epidemics
of disease, and have been responsible for thousands of deaths worldwide, despite the
annual vaccination campaigns [3]. In Mexico, between 2020 and 2021, the incidence of
influenza decreased substantially due to the Coronavirus disease (COVID-19) caused by
the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2); however, influenza
cases increased again in 2022 [4]. Before the COVID-19 pandemic, an estimated 291,000 to
646,000 respiratory deaths occurred worldwide each year due to seasonal influenza [5,6].
In Mexico, information regarding influenza infections has been registered since 2010 in
the Influenza Epidemiological Surveillance System to identify its behavior and be able
to predict how the next influenza season will develop [7]. The data in this system are
obtained from symptomatic patients treated at healthcare centers and who had undergone
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a quantitative reverse transcription polymerase chain reaction (RT-qPCR) test to detect the
presence of influenza viral RNA.

The Centers for Disease Control and Prevention (CDC) specify the common symptoms
experienced by influenza patients, such as fever or feeling feverish/chills, cough, sore
throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue (tiredness) [8].
The presence of these symptoms is not a guarantee of having been infected by the influenza
virus; moreover, they vary among the population. Distinguishing the causal agent of
the illness between the influenza virus and other viral or bacterial agents proves to be
challenging through clinical evaluation alone. Therefore, other tests should be applied to
confirm the diagnosis of influenza, RT-qPCR being the most successful test for the molecular
diagnosis [9]. However, in developing countries, this test is not routinely performed due to
high costs and the limited availability of testing facilities. Not all hospitals and clinics have
the necessary equipment and supplies to perform these tests, leading to potentially lengthy
turnaround times [10].

We propose to use alternative methods to facilitate the diagnosis of influenza, like
methods based on Artificial Intelligence (AI), as they could serve as tools to assist in medical
attention for diagnosis prior to RT-qPCR tests or can be applied in locations with difficult
access to molecular analysis. In Figure 1, the workflow applied in this work to find the best
Machine Learning method to diagnose influenza is shown.
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Machine Learning (ML) is a component of AI that encompasses a set of techniques
which enable the implementation of adaptive algorithms to make predictions and self-
organize input data based on common characteristics. When ML is trained with a correct
data set and the algorithm is standardized to accurately respond to all inputs, it is called a
supervised ML [11].

Since the 1970s, interest in applying AI-ML in the health sector has grown [12]. In the
medical field, a significant amount of patient data is managed, including sociodemographic
and epidemiological information, results from physical examinations, diagnostic support
test outcomes, and procedures performed, among others [10,13–47]. Because ML can
effectively handle a large number of attributes (features), and due to its ability to identify
and leverage the interactions among these numerous attributes, it becomes a particularly
compelling tool in this domain [20]. ML algorithms have found extensive application across
numerous medical specialties, serving purposes in prevention, diagnosis, treatment, and
survival analysis alike.

In the case of influenza, ML has been applied to achieve several objectives, one of
which is predicting the incidence of cases in the upcoming influenza seasons [38–40],
including predicting the most prevalent types of influenza viruses for the season [41–43].
In the diagnostic stage, studies have demonstrated how metabolomic data from patients
can be used to infer whether they are positive or negative for influenza [44]. There is even
a report in which open access data were employed to develop a classifier for influenza
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diagnosis; however, not all included patients had a RT-qPCR result to confirm the diagnosis
and validate the classifier’s functionality [10]. ML has also been applied to forecast the
efficacy of influenza vaccines [45–47].

2. Materials and Methods
2.1. Data Set

In this study, a clinical data set comprising 19,160 patient records from Mexico City
was used. The database was made to track influenza’s seasonal behavior and make prog-
nosis for the next season. Data excluded patients’ names, home addresses and hospital
registration numbers. The data set was exported to the authorized researcher for this retro-
spective study, which was reviewed and approved by the institutional ethical committee
(D1/19/501-T/03/096).

We applied three exclusion criteria: (1) age < 7 years, (2) patients with a negative
influenza test but positive for another respiratory virus, and (3) no RT-qPCR result record.
After these criteria, the study included 15,480 records of patients aged between 7 and
119 years old. Figure 2 shows the data distribution. The age ranges were 7–19 (41.5%),
20–39 (20.1%), 40–59 (21.2%), and age ≥ 60 (17.2%); according to the RT-qPCR test, 11,268
(72.8%) were negative and 4212 (27.2%) were positive for influenza virus, and the distri-
bution by sex was 7710 (49.8%) men, and 7770 (50.2%) women. The data set consisted of
24 attributes encompassing clinical and demographic information collected from patients
upon arrival at healthcare institutions for clinical examination and before the sample taking
(nasopharyngeal and/or oropharyngeal exudate) for a RT-qPCR test.
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The set of symptoms and demographic features selected was the vector. The data were
subjected to manual labeling by a clinician who assessed each patient and assigned values
of ‘yes’ or ‘no’ to denote the presence or absence of symptoms, and ‘unknown’ otherwise.

2.2. Data Preprocessing

The symptoms and demographic data were labeled by binary numbers to indicate the
presence or absence of a feature (1, 0, respectively); an unknown case was labeled as 0. Age
range was mapped into the range {0. . .1}, to normalize the data.

In this study, two-step approaches were used to select the main features for training
and testing the supervised ML methods. In the first step, Spearman’s correlation was used
to determine the correlation coefficient between features, as these are categorical variables.
We selected them with a weak correlation (r < 0.75). In the second approach, chi-squared
was computed to analyze the association between independent variables and influenza.
The features selected had a strong association (p < 0.001).

To examine ML models and evaluate their performance, the data set was randomly
split into 80% for the training set and 20% for the testing set. The models were evaluated
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with 10-fold cross-validation to select the best one. Python 3 functions were applied to
create the k-Fold distribution and stratification.

The original data set was unbalanced, with the majority of the cases being negative
for influenza (72.8%) and a minority of cases with a positive influenza test (27.2%). In
this study, the target classes of the training set were balanced 50:50, and the skew was
eliminated to obtain a most appropriate performance of the ML methods [48]. The minority
oversampling technique used was Random Oversampling (ROS), which increases the
size of the data set by randomly resampling the original minority class without creating
new samples or changing the sample variability [49]. All samples from the majority class
(negative for influenza) were used, and through ROS, data were added to the minority
class (positive for influenza), obtaining an equal number of samples in both classes.

2.3. Machine Learning Algorithms

ML methods are an automatic and objective way to classify the samples into two
classes, positive or negative for influenza, using records with inputs and outputs for the
process, features and their classification [50–52]. In this way, we tried to find patterns in the
known data in order to apply them to the new unclassified data.

We had the pair (X,Y) in all cases, X = {x1, x2, . . ., xn} and Y = [positive|negative] for
influenza, according to the RT-qPCR test.

The set of signs, symptoms and demographic features selected are represented by
the vector X, and the data are binary numbers that indicate the absence or presence of the
feature. The age was normalized to a range {0. . .1}.

The aim was to find a model F of ML to represent the approximation between inputs
and outputs.

F: X→ Y (1)

For this study, 10 popular supervised ML methods through python.sklearn libraries for
binary classification were used [53,54]: Adda Boost, Decision Tree, Bagging classification,
Gradient Boosting Classifier (GBC), Random Forest (RF), K-nearest neighbors (Neighbors
KNN), Naive Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR) and
Discriminant Analysis. Taking advantage of the implementation of supervised ML models
available in the python 3.7 programming language, the tests were carried out with several
algorithms to evaluate their performance and be able to select the most accurate for this
case study, and not only with the classical ML algorithms such as SVM, decision tree, KNN
and NB.

Adaptive Boosting, named the AdaBoost algorithm, is a ML Meta-algorithm that can
be used with many other ML algorithms to enhance its performance [55]. AdaBoost is
sometimes denominated as the strongest out-of-the-box classifier for the so-called weak
learners [56].

Decision trees used to predict categorical variables are called classification trees and
decision trees [49]. The decision tree classifier is a flowchart-like tree structure; each internal
node represents a test on an attribute, each branch represents an outcome of the test, and
the class label is represented by each leaf nodes (or terminal nodes). Decision trees can be
transformed into classification rules [57]. This ML algorithm is used to create the ensemble
ML methods.

Random forest is a set of decision tree classifiers; in this ML model, each decision
tree depends on a random vector of the training data set. They vote independently for the
most popular class, and their classification is ensembled to give the final output using the
classes given by each model [58]. The random forest algorithm is a special type of ensemble
method. A random forest consists of many small classification decision or regression trees.
Each tree, individually, is a weak learner; however, all the decision trees together can build
a strong learner. It is random because (a) when building trees, a random sampling of
training data sets is followed; and (b) when splitting nodes, a random subset of features is
considered [59].
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Bagging is a classifier which generates different subsets of the training data set by
selecting data points randomly and with replacement. It can select the same instance
multiple times. It is also called bootstrap aggregation and was created before the random
forest. Given that a small change in the data can bring diverse effects in the model, the
structure of the tree can completely change each tree to randomly sample the data set with
a replacement, results on different trees [60].

The random forest algorithm is considered an extension of the bagging method. The
difference is the number of features used in the decision tree construction: in bagging, all
attributes are used for every decision tree, whereas in random forest, the decision trees have
a random sample of attributes. Both ML methods are based on the decision tree method.
The decision tree method works only with one tree to represent all samples and can be
overfitting. Bagging and random forest work with several trees to represent different types
of samples for each one.

Gradient boosting is a class of ensemble algorithms for machine learning that is
used for regression or classification prediction modeling problems. It combines several
sequential classifiers [61]. At an iteration, trees are added to the ensemble to fit correctly
to the prediction errors made by prior models (boosting) and model fittings, using any
arbitrary differentiable loss function and gradient descent optimization algorithm. The
techniques is known as gradient boosting (Gboost) [62].

In the case of the KNN classifier, the main goal is to predict the closest value using
distance as a basis. The Euclidean distance is a widely used technique [48]. The classification
of the input data is based mainly on the selection of the majority class among its nearest
neighbors [63].

The Naive Bayes classifier is considered a powerful probabilistic algorithm, based on
Bayes theorem: the word “naïve” indicates interdependencies between characteristics. The
version Bernoulli Naive Bayes (BNB) is used for Boolean variables as predictors [64,65].

Support Vector Machine (SVM) is a popular machine learning tool, which offers
solutions to problems in classification and regression [66]. SVM separates classes and finds
the hyperplane that best separates the data into different classes with a maximal margin
between the classes. Initially using a linear decision boundary called a hyperplane to
classify the data, Vapnik introduced a way of building a nonlinear classifier by using kernel
functions [67]; it is placed at a location that maximizes the distance between the hyperplane
and instances [68].

On the other hand, Discriminant Analysis aims to classify objects, by a set of inde-
pendent variables, into one of two or more mutually exclusive and exhaustive categories.
Discriminant analysis can be used only for classification (i.e., with a categorical target
variable), not for regression. The target variable may have two or more categorical data by
the use of multivariate information from the samples studied [69]. There are two methods:
linear and quadratic discrimination. The first is the most widely used where classes are
linearly separated. When a multi-classes analysis is needed, the two-groups method is
used repeatedly in the analysis of pairs of data and the separation is linearity. Quadratic
discrimination is used with nonlinearly separable classes.

2.4. Validation

The model performances were evaluated with a k-fold cross-validation method, which
is an objective way to find the most robust ML algorithm, and we used the contingency
table with the classification results [70].

In k-fold cross validation, the entire data set was divided into k equal parts, with
k-1 subsets used for training while the remaining set was for testing. Each algorithm was
trained and tested k times and the model output for each sample configuration obtained
using cross validation was averaged to provide the global performance output of the model.
The partition of the set with the folds in the subsets was arbitrary and with equal numbers
of positive and negative cases in the training.
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The confusion matrix helps to compare the classification result, and it has 4 values:
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).
The columns in the matrix are the results obtained, while in the rows are the expected
and results. (

TP FP
FN TF

)

We compared the performance of the methods in cross validation with the results
using the following metrics:

Accuracy, Acc =
TP + TF

TN + FP + FN + TP
(2)

This measure is for the samples correctly classified.

Precision, Prec =
TP

TP + FP
(3)

measures the positive samples correctly classified vs. only positive samples.

Recall, Rec =
TP

TP + FN
(4)

calculates the positive samples correctly classified vs. the samples expected to be positive.
This is also called sensitivity.

Specificity, Spec =
TN

TN + FP
(5)

measures the fraction of negative samples classified as negative.

F1-score, F1 =
2TP

2TP + FP + FN
(6)

It is an average between recall and precision.
Additionally, all the models were evaluated with the area under the curve (AUC) score

in ROC analysis. This measure uses the ROC curve that shows the ability to make the
difference between 2 classes with a graphical method using recall and specificity, and the
AUC summarizes the performance of the classifiers in the training.

3. Results

At the beginning, the database had 24 attributes. According to Spearman’s correlation,
the feature arthralgia was highly correlated with myalgia (r = 0.87); hence, only myal-
gia was selected in the analysis, as it had fewer missing values. In the chi-squared test
(p-value in Table 1), factors like sex, diarrhea and vaccination presented a low association
with influenza (p > 0.01); therefore, these factors were also dismissed. Finally, 20 features
were selected, many more than the 8 main symptoms of influenza indicated by the CDC:
fever or feeling feverish/chills, cough, sore throat, runny or stuffy nose, muscle or body
aches, headaches, fatigue (tiredness). Age data were used like one factor normalized in the
range {0. . .1}.
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Table 1. Attributes from influenza database of Mexico City.

Attributes
All Patients
n = 15,480

n (%)

Positive
n = 4212

n (%)

Negative
n = 11,268

n (%)
p-Value

Demographic information

Sex—Feminine 7770 (50.2) 2162 (51.3) 5608 (49.8)
0.087

Sex—Masculine 7710 (49.8) 2050 (48.7) 5660 (50.2)

Hospitalized 10516 (67.9) 2449 (58.1) 8067 (71.6) <0.001

Contact
influenza-patients 2012 (13.0) 715 (17.0) 1297 (11.5) <0.001

Vaccinated for influenza 2096 (13.5) 534 (12.7) 1562 (13.9) 0.059

Age 7–19 years 6417 (41.5) 1511 (35.9) 4906 (43.5)

<0.001
Age 20–39 years 3111 (20.1) 967 (23.0) 2144 (19.0)

Age 40–59 years 3283 (21.2) 1056 (25.0) 2227 (19.8)

Age ≥ 60 years 2669 (17.2) 678 (16.1) 1991 (17.7)

Symptoms

Fever 13,112 (84.7) 3853 (84.2) 9259 (82.2) <0.001

Cough 13,953 (90.1) 3918 (85.7) 10,035 (89.1) <0.001

Chest pain 3750 (24.2) 1160 (25.4) 2590 (23.0) <0.001

Dyspnea 8642 (55.8) 2079 (45.5) 6563 (58.2) <0.001

Irritability 4688 (30.3) 1159 (25.3) 3529 (31.3) <0.001

Diarrhea 1833 (11.8) 492 (10.8) 1341 (11.9) 0.727

Shaking chills 5738 (37.1) 2003 (43.8) 3735 (33.1) <0.001

Headache 8692 (56.1) 2896 (63.3) 5796 (51.4) <0.001

Myalgia 6255 (40.4) 2279 (49.8) 3976 (35.3) <0.001

Arthralgia 5539 (35.8) 2014 (44.0) 3525 (31.3) <0.001

Malaise 9826 (63.5) 2947 (64.4) 6879 (61.0) <0.001

Rhinorrhea 9277 (59.9) 2817 (61.6) 6460 (57.3) <0.001

Polypnea 4602 (29.7) 1073 (23.5) 3529 (31.3) <0.001

Vomiting 1958 (12.6) 606 (13.2) 1352 (12.0) <0.001

Abdominal pain 2114 (13.7) 683 (14.9) 1431 (12.7) <0.001

Sore throat 5321 (34.4) 1850 (40.4) 3471 (30.8) <0.001

Conjunctivitis 3074 (19.9) 1104 (24.1) 1970 (17.5) <0.001

Cyanosis 1703 (11.0) 395 (8.6) 1308 (11.6) <0.001
The p-value corresponds to chi-squared. For the study, the attributes sex, vaccinated for influenza, and diarrhea
were excluded with p-value > 0.001, and the others were selected.

The number of samples to test with ML was 15,840. This database was unbalanced
with 11,268 (72.8%) negative and 4212 (27.2%) positive for influenza, according to the
RT-qPCR tests. In this work, Random Over Sampling (ROS) was used to increase the
number of positive records in the training set to improve the method performance with an
equal number of samples in positive and negative classes.

The features sex, vaccination and diarrhea were not significant in the chi-squared test,
with the dependent variable influenza: these features showed small variation between the
positive and the negative classes.

Finally, our balanced training set had 7918 of positive and the same number of negative
rows and 20 columns of features for training and testing 10 supervised ML algorithms,
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validated with k-fold cross validation (k = 10). In Table 2 are the results of ML methods
with cross-validation. RF had the best evaluation (AUC = 0.94, Acc = 0.86, Rec = 0.91 and
Spec = 0.88 were the best); in second place was the bagging classifier, which works similarly
to RF. With the resampling technique, the number of the minor class (positive for influenza)
increased, and the scores reflected the equilibrium. Figure 3 shows the ROC curves of the
four best ML methods in the 10-fold cross-validation.

Table 2. Results of supervised machine learning algorithms.

Algorithm AUC Acc Rec Prec Spec F1

Random Forest 0.94 0.86 0.91 0.82 0.88 0.86

Bagging 0.93 0.85 0.90 0.82 0.87 0.85

Decision Tree 0.85 0.70 0.71 0.73 0.73 0.72

Kneighbors (7) 0.73 0.63 0.67 0.63 0.60 0.63

Gradient Boosting 0.69 0.62 0.69 0.61 0.56 0.62

SVM rbf 0.67 0.62 0.65 0.61 0.59 0.62

Quadratic Discriminant 0.66 0.62 0.70 0.60 0.54 0.62

Ada Boost 0.66 0.62 0.62 0.61 0.61 0.62

Linear Discriminant * 0.65 0.61 0.62 0.61 0.61 0.61

Linear SVM * 0.65 0.61 0.62 0.61 0.61 0.61

Logistic Regression 0.65 0.61 0.62 0.61 0.61 0.61

BernoulliNB 0.65 0.61 0.59 0.61 0.62 0.61
* Discriminant Analysis and SVM were used twice with different parameters. AUC, area under the curve; Acc,
accuracy; Rec, recall; Prec, precision; Spec, specificity; D1, F1-score.
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Figure 3. ROC graphics of the best ML algorithms with training set. (A) Random Forest,
AUC = 0.94 ± 0.004; (B) Bagging, AUC = 0.93 ± 0.004; (C) Decision Tree, AUC = 0.85 ± 0.006;
and (D) Kneighbors (7), AUC = 0.73 ± 0.014.

Random Forest, Bagging, and Decision Tree are supervised learning algorithms that
can effectively handle categorical or binary features like the ones we have. The applied
resampling seemed to have benefited the sensitivity results as it increased the number of

102



Diagnostics 2023, 13, 3352

positive samples in the training set. Bagging and Random Forest are ensemble techniques,
based on Decision Tree, which ranked third, and along with Kneighbors, are algorithms
capable of capturing non-linear relationships in the data.

The performance of the top four ML methods is shown in Figure 4, and their respective
ROC plots are shown in Figure 5, both showing the results obtained with the test set. The
RF and bagging methods demonstrated the highest scores when applied to the independent
samples in the test set. However, it is important to note a substantial disparity between the
sensitivity and specificity results in the test set. random forest achieved a sensitivity (rec) of
0.30 and a specificity (spec) of 0.90, while bagging had a sensitivity of 0.29 and a specificity
of 0.88. Additionally, the significant differences observed between the results during the
training and testing phases highlight certain limitations in this study. One potential factor
contributing to these limitations is the sensitivity of machine learning models to class
imbalance. Even after implementing random oversampling (ROS) on the training set to
address the issue of imbalance, especially considering the considerably higher proportion of
negative samples compared to positive samples, the desired variability was not effectively
introduced into the training data. Another contributing factor might be attributed to the
nature of the data set itself. In this study, we utilized binary data to represent the presence
or absence of specific characteristics, with the exception of age, which was represented as
a continuous variable. In contrast, other studies in the medical field that have achieved
superior results have not only incorporated binary variables but have also integrated
continuous variables obtained from laboratory tests and biometric measurements to assess
patients’ conditions [19,20,32,37]. An illustrative case from [21] involved the transformation
of continuous data into binary values, but this approach also yielded unsatisfactory results.
It is plausible that, in our case, the lack of relevant information and the use of subjective
values to evaluate the health status of patients may have led to weaker associations between
these characteristics and the occurrence of influenza.

Diagnostics 2023, 13, x FOR PEER REVIEW 9 of 15 
 

 

Figure 3. ROC graphics of the best ML algorithms with training set. (A) Random Forest, AUC = 0.94 
± 0.004; (B) Bagging, AUC = 0.93 ± 0.004; (C) Decision Tree, AUC = 0.85 ± 0.006; and (D) Kneighbors 
(7), AUC = 0.73 ± 0.014. 

The performance of the top four ML methods is shown in Figure 4, and their respec-
tive ROC plots are shown in Figure 5, both showing the results obtained with the test set. 
The RF and bagging methods demonstrated the highest scores when applied to the inde-
pendent samples in the test set. However, it is important to note a substantial disparity 
between the sensitivity and specificity results in the test set. random forest achieved a 
sensitivity (rec) of 0.30 and a specificity (spec) of 0.90, while bagging had a sensitivity of 
0.29 and a specificity of 0.88. Additionally, the significant differences observed between 
the results during the training and testing phases highlight certain limitations in this 
study. One potential factor contributing to these limitations is the sensitivity of machine 
learning models to class imbalance. Even after implementing random oversampling (ROS) 
on the training set to address the issue of imbalance, especially considering the consider-
ably higher proportion of negative samples compared to positive samples, the desired 
variability was not effectively introduced into the training data. Another contributing fac-
tor might be attributed to the nature of the data set itself. In this study, we utilized binary 
data to represent the presence or absence of specific characteristics, with the exception of 
age, which was represented as a continuous variable. In contrast, other studies in the med-
ical field that have achieved superior results have not only incorporated binary variables 
but have also integrated continuous variables obtained from laboratory tests and bio-
metric measurements to assess patients’ conditions [19,20,32,37]. An illustrative case from 
[21] involved the transformation of continuous data into binary values, but this approach 
also yielded unsatisfactory results. It is plausible that, in our case, the lack of relevant in-
formation and the use of subjective values to evaluate the health status of patients may 
have led to weaker associations between these characteristics and the occurrence of influ-
enza. 

 
Figure 4. Results with test set using the four ML algorithms. The top scores are associated with 
specificity for the four algorithms: RF (spec = 0.90), Bagging (spec = 0.87), DT (spec = 0.77), and KNN 
(spec = 0.89). Conversely, the remaining metrics indicate the misclassification of positive influenza 
cases. 

Figure 4. Results with test set using the four ML algorithms. The top scores are associated with
specificity for the four algorithms: RF (spec = 0.90), Bagging (spec = 0.87), DT (spec = 0.77), and
KNN (spec = 0.89). Conversely, the remaining metrics indicate the misclassification of positive
influenza cases.
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4. Discussion

The use of artificial intelligence techniques through ML has increased its possibility as
an alternative or powered tool in the diagnosis of infectious diseases [71–73]. With this idea,
in this work we searched for an ML method as an alternative to the PCR test to perform
diagnostics of influenza. Here, 19 category features and age were used, collected when
the patient arrived with symptoms of influenza. In order to eliminate the unbalanced data
between the positive and negative influenza cases of 15840 samples and to reduce the
skew, we applied a resampling technique, random over sampling to positives. With resam-
pling techniques, the Ensemble ML methods like Random Forest and Bagging could be
favored—RF with AUC = 0.94, Acc = 0.86, Spec = 0.88 and, sensibility = 0.91, and Bagging
with AUC = 0.93, Acc = 0.85, Spec = 0.87 and sensibility = 0.90—in the cross-validation. In
other works [74,75] RF and Bagging were also combined with resampling techniques and
showed good performance.

Nevertheless, it is important to note that these ML methods may serve as valuable
screening tools to assist medical practitioners in distinguishing between positive and
negative influenza cases, yielding promising results that could aid in decision making. This
is particularly relevant for scenarios where the RT-qPCR test results are expected to be
negative, potentially leading to reduced costs associated with testing.

Our research findings were based exclusively on data obtained from Mexican patients.
This approach was chosen due to the unique health conditions prevalent in Mexico, which
may differ significantly from those in other countries. It is important to consider that
COVID-19 has changed the patterns of respiratory diseases [76,77]. Even though vaccines
are applied every year, many people around the world are infected with influenza, causing
a large number of deaths [4,78,79].

The potential advantage highlighted in our study is the use of an alternative decision-
support tool, particularly relevant to regions where healthcare providers or patients, armed
solely with basic questioning information, can assess the necessity for treatment and the
conduction of PCR tests for the influenza disease.

4.1. Limitations of Work

Our results show problems in the prediction of positive influenza cases, maybe because
the data set is imbalanced, and the binary features lose representativeness of the patient’s
health status. ML techniques hold potential in diverse applications; however, it is crucial to
acknowledge that, in this study, these methods play a limited role as detection tools. They
should not be perceived as a complete substitute for clinical diagnosis. RT-qPCR tests retain
their indispensable status for precise influenza results, and therefore, machine learning
models should be considered as complementary rather than as a complete replacement for
conventional diagnostic approaches. Our findings indicate challenges in predicting positive
influenza cases, possibly due to data imbalance and the diminished representativeness of
binary features concerning a patients’ health status.
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It is possible that the low prediction values could be improved with our data set
through several avenues. One approach could involve grouping individuals according
to age, as symptoms may exhibit more pronounced patterns within specific age groups.
Exploring alternative machine learning models is also a worthwhile consideration in our
quest for improved predictions. Additionally, expanding the data set by including more
positive cases from different Mexican regions could enhance the models’ performance.

4.2. Future Work

This research has the potential for ongoing improvement and broader application.
Comprehensive ablation studies can provide deeper insights into the algorithm’s capabili-
ties, allowing for a clearer grasp of its strengths and weaknesses. These studies encompass
various facets, including feature selection, the incorporation of additional continuous
data to enhance patient health assessment, the adoption of class balancing techniques,
and the use of advanced machine learning models like convolutional neural networks to
handle larger data sets and continuous data. Furthermore, it is essential to explore the
creation of comprehensive models that effectively differentiate between COVID-19 and
influenza cases.

5. Conclusions

In this study, machine learning models showcased a notably higher specificity com-
pared to sensitivity, suggesting their potential utility in the identification of negative cases.
This capability could help minimize the number of unnecessary molecular tests for individ-
uals presenting with symptoms resembling influenza. This aspect is particularly pertinent
in Mexico, where, for epidemiological reasons, during the influenza season around 10% of
the population with symptoms resembling influenza are randomly selected for RT-qPCR
testing, with approximately 70% of those cases turning out to be negative. By incorpo-
rating a tool akin to the one outlined in this study, clinicians can make more informed
decisions about which patients require PCR testing, ultimately enhancing data quality for
national-level decision making. Furthermore, given the limited availability of RT-qPCR
testing facilities in certain areas, this tool can serve as valuable support for healthcare
practitioners, aiding them in determining the necessity of conducting tests. This approach
has the potential to reduce costs for patients and ease the burden on the healthcare sector.
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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder marked by motor and non-motor
symptoms that have a severe impact on the quality of life of the affected individuals. This study
explores the effect of filter feature selection, followed by ensemble learning methods and genetic
selection, on the detection of PD patients from attributes extracted from voice clips from both PD
patients and healthy patients. Two distinct datasets were employed in this study. Filter feature
selection was carried out by eliminating quasi-constant features. Several classification models were
then tested on the filtered data. Decision tree, random forest, and XGBoost classifiers produced
remarkable results, especially on Dataset 1, where 100% accuracy was achieved by decision tree and
random forest. Ensemble learning methods (voting, stacking, and bagging) were then applied to the
best-performing models to see whether the results could be enhanced further. Additionally, genetic
selection was applied to the filtered data and evaluated using several classification models for their
accuracy and precision. It was found that in most cases, the predictions for PD patients showed more
precision than those for healthy individuals. The overall performance was also better on Dataset 1
than on Dataset 2, which had a greater number of features.

Keywords: Parkinson’s disease (PD); filter feature selection; ensemble learning; genetic selection

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects millions of
individuals worldwide. It is characterized by motor symptoms such as tremors, rigidity,
bradykinesia (slowness of movement), and postural instability. PD not only impairs the
quality of life for patients but also poses significant challenges for accurate and timely
diagnosis. The presence of voice deficits, which are frequently defined by alterations
in speech patterns, cadence, and tone, emerges as an important element of Parkinson’s
disease symptomatology. The study by Tjaden, Lam, and Wilding [1] revealed that speakers
with PD displayed expanded peripheral and non-peripheral vowel space areas during
articulate speech, accompanied by a reduction in speech rate and an increased vocal
intensity. Furthermore, the study by Tsanas et al. [2] highlighted the feasibility of utilizing
straightforward, self-administered, and non-intrusive speech tests as a potential strategy for
regular, remote, and precise monitoring of PD symptom progression with the employment
of the Unified Parkinson’s Disease Rating Scale (UPDRS). These studies showcase the
potential of voice-related changes to act as valuable indicators for the early detection of
Parkinson’s disease, despite receiving less recognition than motor symptoms.

Recent advances in machine learning techniques, as well as the availability of large-
scale datasets, have opened new avenues for the automated identification of PD utilizing
various forms of data, including voice recordings. Furthermore, machine learning-based
PD detection systems have the potential to be non-invasive, low-cost, and easily scalable.
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A voice recording can be collected easily through commonly available devices such as
smartphones, making it a convenient and accessible tool for screening and monitoring PD.

A series of studies have delved into the domain of Parkinson’s disease (PD) classifi-
cation, harnessing voice data as a diagnostic indicator. However, one notable gap is the
limited size and diversity of the datasets employed in many prior studies. This limitation
raises concerns about the generalizability and reliability of the resulting classification mod-
els. This study makes a significant contribution to the field by decisively addressing this
issue through the utilization of two distinct datasets. Another gap has been the lack of
comprehensive feature selection methods employed in PD classification studies. While
some efforts have been made to apply feature selection techniques, this study takes a
step forward by introducing a novel combination of filter feature selection methods with
ensemble learning and genetic selection. This fusion holds the promise of uncovering more
relevant and discriminative features inherent in the voice data, potentially leading to a
substantial enhancement in the accuracy of PD classification. Furthermore, the limited
exploration of model ensemble techniques in prior studies has presented a significant
gap, which this research effectively addresses. While several investigations have focused
primarily on individual classification algorithms, the untapped potential of leveraging the
strengths of various algorithms through ensemble methods has been underutilized. Ensem-
ble learning methods have the inherent advantage of integrating the diverse strengths of
different algorithms, thereby enhancing the overall predictive power and accuracy of the
classification process. By exploring this avenue, this research provides a vital contribution
to the field by demonstrating the potential of ensemble techniques to significantly elevate
the performance and efficacy of PD classification models.

In this study, a combination of filter feature selection methods with ensemble learning
and genetic selection was used to detect PD from voice clips. The filtered data was fed into
different classification models, which were then evaluated based on their accuracy and
precision. By evaluating the models on these diverse datasets with varying characteristics
and complexities, the generalizability and scalability of the approach may be assessed. The
outcomes of this study may enhance our understanding and augment the efficacy of early
PD detection, ultimately leading to improved patient care and prognosis.

2. Related Work

Several studies have investigated the use of machine learning and statistical mod-
elling techniques to extract discriminative features from voice recordings and to develop
classification models for PD detection. These have been summarized in Table 1.

Table 1. Summary of studies that utilized machine learning for PD detection.

Study Dataset Method Results

Sheikhi and Kheirabadi,
2022 [3] Voice UCI PD dataset

Combination of the Random
Forest (RF) and Rotation

Forest algorithms for
classifying prediction

outcomes as severe
or non-severe

Accuracy for:
total UPDRS—76.09%

motor UPDRS—79.49%

Mohammed et al., 2021 [4] Voice UCI PD dataset Feature selection and
classification Accuracy—96.6%

Velmurugan and Dhinakaran,
2022 [5]

UCI machine
learning repository

Combination of linear
regression and Adaboost
ensemble methods with
Random Forest (RF) and

extreme gradient
boosting (XGBoost)

Accuracy—90.13%
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Table 1. Cont.

Study Dataset Method Results

Sharma et al., 2021 [6]

Dataset collected by Max
Little of Oxford University for

voice disorders by
collaborating with the

National Centre for Voice
and Speech

Feature selection using the
Rao algorithm and

classification using the
k-Nearest Neighbors

(KNN) classifier

Accuracy—99.25%

Sabeena et al., 2022 [7] Voice dataset from the UCI
machine learning repository

Feature selection using
optimization-based ensembles

and different
classification algorithms

Accuracy ranging from 83.66%
to 98.77%.

Ul Haq et al., 2020 [8] Voice dataset

Feature selection using
different feature selection

methods and different
classification using Support

Vector Machine (SVM)

Accuracy ranging from 98.20%
to 99.50%

Sarankumar et al., 2022 [9] Voice dataset

Feature selection using the
firming bacteria foraging

algorithm and classification
using the Deep Brooke
inception net algorithm

Accuracy—99.88%

Pahuja and Nagabhushan,
2021 [10]

Voice dataset from the
UCI repository

Classification using Artificial
Neural Network (ANN),
Support Vector Machine

(SVM) and k-Nearest
Neighbors (KNN) algorithms

Accuracy—95.89%, 88.21%,
and 72.31%, respectively

Yücelbaş, 2021 [11] Voice dataset

Feature selection using the
Information gain

algorithm-based KNN hybrid
model (IGKNN)

Accuracy—98%

Pramanik et al., 2021 [12]
Acoustic features from the

UCI machine
learning repository

Feature selection using
Correlated Feature Selection
(CFS), Fisher Score Feature

Selection (FSFS), and Mutual
Information-based Feature

Selection (MIFS) techniques,
and classification using Naïve

Bayes classifier

Accuracy—78.97%

Salmanpour, Shamsaei, Saberi,
et al., 2021 [13]

Combination of non-imaging,
imaging, and radiomic

features from
DAT-SPECT images

Sixteen algorithms for feature
reduction, eight algorithms for
clustering, and 16 classifiers

Subdivided the PD into three
subtypes, namely mild,

intermediate, and severe

Nahar et al., 2021 [14]
Acoustic features from the

UCI machine
learning repository

Feature selection using Boruta,
Recursive Feature Elimination

(RFE), and Random Forest
(RF), and classification using
Gradient Boosting, Extreme
Gradient Boosting, Bagging,

and Extra Tree Classifier

Accuracy—82.35% from
applying the RFE feature

selection methods and
Bagging classifier

In a recent study by Sheikhi and Kheirabadi [3], a voice dataset from the UCI Reposi-
tory was utilized for the classification of PD. The dataset comprised voice recordings from
42 patients, totaling 5875 instances. They proposed a model that combined the Random
Forest (RF) and Rotation Forest algorithms to classify the predictions into two categories:
severe or non-severe. The accuracy results for the total Unified PD Rating Scale (UPDRS)
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and motor UPDRS using this model were found to be 76.09% and 79.49%, respectively. In
another study conducted by Mohammed et al. [4], a multi-agent approach was employed to
filter and identify the most relevant features that could enhance PD classification accuracy
while reducing training time. They utilized a dataset consisting of 31 human voice record-
ings, 23 of which were diagnosed with PD. Initially, the dataset contained 22 features, which
were reduced to 14 after the filtering process. Eleven different classification algorithms were
applied to the selected features, and the results were evaluated. This approach achieved an
accuracy of 96.6%.

Recently, Velmurugan and Dhinakaran [5] proposed an approach known as the Ensem-
ble Stacking Learning Algorithm (ESLA) for PD classification. The ESLA method integrated
the linear regression and Adaboost ensemble techniques with the RF and Extreme Gradient
Boosting (XGBoost) algorithms to effectively identify individuals with PD. The dataset
employed was collected from 188 PD patients. Initially, basic models were developed
using the RF and XGBoost algorithms for prediction. Subsequently, the outputs of these
prediction models were utilized as inputs in the next step to fine-tune parameters and
create models with enhanced accuracy. The top models for the RF and XGBoost were then
chosen. The RF model’s accuracy increased from 84.21% to 84.86%, while the XGBoost
model’s accuracy increased from 88.15% to 88.85%. The proposed ESLA method leveraged
the stacking technique to create four stacked models, combining RF, XGBoost, logistic re-
gression, Adaboost, and multilayer perceptron (MLP), to further enhance the classification
performance. This method outperformed the individual classifiers, yielding an accuracy
of 90.13%.

The study by Sharma et al. [6] proposed a binary version of the Rao algorithm to
overcome the problem of feature selection. The Rao algorithm was applied to four public
PD datasets using the kNN classifier for PD classification. The highest accuracy of the
classifications obtained from the four datasets was 99.25%.

In their study, Sabeena et al. [7] proposed a novel framework for feature selection and
classification to identify individuals with PD. The dataset used consisted of speech samples
from 188 PD patients and 64 healthy individuals. An optimization-based ensemble feature
selection method was employed. It involved three different approaches for selecting the
optimized subsets of features. The results from these approaches were combined using an
ensemble technique. The selected features were then utilized in various classifiers, which
yielded accuracies ranging from 83.66% to 98.77%. In another study by Ul Haq et al. [8],
a dataset of 196 voice samples with 23 attributes was utilized. Among the 31 individuals
in the dataset, 23 were diagnosed with PD, and eight were considered healthy. Relief-ant-
colony optimization (ACO), and Relief-ACO methods were employed to select subsets of
features. The selected feature subsets were then used with the SVM classifier. The results
showed that when the Relief-ACO feature selection method was combined with SVM using
the radial basis function (RBF) kernel, an accuracy of 98.20% was achieved, outperforming
other feature selection methods. Similarly, when used with SVM using the linear kernel,
the Relief-ACO feature selection method achieved a high accuracy of 99.50% compared to
other feature selection methods.

In the study conducted by Sarankumar et al. [9], a dataset of voice data collected
from 42 patients was analyzed. The dataset contained a total of 5875 audio files. After
preprocessing the dataset, a clustering process was performed using wavelet cleft fuzzy.
Next, feature selection was carried out from the clustering step using the firming bacteria
foraging algorithm. The selected features were then employed to predict PD patients using
the Deep Brooke inception net classification algorithm, resulting in an accuracy of 99.88%.
In another study by Pahuja and Nagabhushan [10], a free voice dataset of PD patients from
the UCI repository was used. This dataset had six recordings for each patient. Classification
algorithms ANN, SVM, and kNN, were employed and achieved accuracies of 95.89%,
88.21%, and 72.31%, respectively.

The research conducted by Yücelbaş [11] used a dataset comprising voice recordings
of 252 individuals. The dataset employed 188 patients with PD and 64 healthy individuals,
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with three recordings for each person, resulting in a total of 756 recordings. The study
proposed an information gain algorithm-based KNN hybrid model (IGKNN) for feature
selection analysis. The proposed IGKNN method, using 22 selected features, achieved an
accuracy of 98%. Pramanik et al. [12] used a publicly available dataset from the UCI machine
learning repository in a different study. This dataset included 752 acoustic features for
252 people, including 188 PD patients and 64 healthy people. A total of 21 baseline features
(BF), 22 vocal fold features (VFF), and 11-time frequency features (TFF) were extracted
from this dataset. A collaborative feature bank was built to evaluate the performance of
PD detection using three feature selection techniques: Correlated Feature Selection (CFS),
Fisher Score Feature Selection (FSFS), and Mutual Information-based Feature Selection
(MIFS). The Naïve Bayes classifier was used in the evaluation. The best accuracy obtained
from utilizing the three feature selection strategies was 78.97%.

The study conducted by Salmanpour, Shamsaei, Saberi, et al. [13] aimed to categorize
PD into its distinct subtypes. To achieve this, the researchers compiled 30 datasets over a
period of four years from 885 individuals diagnosed with Parkinson’s Progressive Marker
and 163 healthy individuals. These datasets encompassed a combination of non-imaging,
imaging, and radiomic features extracted from DAT-SPECT images. The study used
16 algorithms for feature reduction, eight algorithms for clustering, and 16 classifiers.
The radiomics features aided in generating a consistent cluster structure, enabling the
subdivision of PD into three distinct subtypes: mild, intermediate, and severe.

The study by Nahar et al. [14] was based on 44 acoustic features extracted from
a dataset of 80 people, 40 of whom were PD patients and 40 who were healthy. The
feature selection was performed using three different methods: Boruta, Recursive Feature
Elimination (RFE), and RF. Gradient Boosting, Extreme Gradient Boosting, Bagging, and
an Extra Tree Classifier were employed. The classifier results were examined using the
original 44 features, and the Extreme Gradient Boosting classifier achieved a good accuracy
of 78.08%. Furthermore, the classification results were analyzed after using the three feature
selection methods, and an accuracy of 82.35% was achieved using the RFE feature selection
method and the Bagging classifier.

While previous studies have explored PD diagnosis using voice analysis, significant
gaps remain. Concerns related to generalizability and accuracy have been highlighted due
to the inadequate dataset diversity and feature selection methodologies. This study tackles
these limitations by combining two independent datasets and offering a fusion of filter
feature selection with ensemble learning and genetic selection.

3. Materials and Methods
3.1. Datasets

Two distinct biomedical voice datasets were employed in this study for the assessment
of PD.

The first dataset encompasses a compilation of biomedical voice measurements ob-
tained from 31 individuals, 23 of whom were diagnosed with PD. Each row in the dataset
corresponds to a voice recording from these individuals, while each column represents a
specific voice measure. This dataset was expertly curated through a collaborative effort
between Max Little of the University of Oxford and the National Center for Voice and
Speech in Denver, Colorado, entailing the meticulous recording of speech signals [15].

The dataset contains 195 sustained vowel phonations, encompassing a range of time
since diagnosis spanning from 0 to 28 years. The subjects’ ages vary from 46 to 85 years,
with a mean age of 65.8 and a standard deviation of 9.8. For each subject, an average of six
phonations were captured, varying in duration from one to 36 s. These phonations were
recorded within an IAC sound-treated booth, utilizing a head-mounted microphone (AKG
C420) positioned 8 cm away from the lips. The calibration of the microphone involved a
Class 1 sound level meter (B&K 2238) situated 30 cm from the speaker. The voice signals
were directly recorded onto a computer through CSL 4300B hardware (Kay Elemetrics),
sampled at 44.1 kHz, and with a 16 bit resolution. To ensure the robustness of the algorithms,
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all samples underwent digital amplitude normalization prior to the computation of the
metrics. The details of the subjects are given in Table 2.

Table 2. List of subjects with sex, age, Parkinson’s stage, and number of years since diagnosis 1.
Entries labeled “n/a” for healthy subjects for whom Parkinson’s stage and years since diagnosis are
not applicable. “H&Y” refers to the Hoehn and Yahr PD stage, where higher values indicate a greater
level of disability.

Subject Code Sex Age Stage (H&Y) Years Since
Diagnosis

S01 M 78 3.0 0
S34 F 79 2.5 1

4
S44 M 67 1.5 1
S20 M 70 3.0 1
S24 M 73 2.5 1
S26 F 53 2.0 1 1

2
S08 F 48 2.0 2
S39 M 64 2.0 2
S33 M 68 2.0 3
S32 M 50 1.0 4
S02 M 60 2.0 4
S22 M 60 1.5 4 1

2
S37 M 76 1.0 5
S21 F 81 1.5 5
S04 M 70 2.5 5 1

2
S19 M 73 1.0 7
S35 F 85 4.0 7
S05 F 72 3.0 8
S18 M 61 2.5 11
S16 M 62 2.5 14
S27 M 72 2.5 15
S25 M 74 3.0 23
S06 F 63 2.5 28

S10 (healthy) F 46 n/a n/a
S07 (healthy) F 48 n/a n/a
S13 (healthy) M 61 n/a n/a
S43 (healthy) M 62 n/a n/a
S17 (healthy) F 64 n/a n/a
S42 (healthy) F 66 n/a n/a
S50 (healthy) F 66 n/a n/a
S49 (healthy) M 69 n/a n/a

1 Adapted from [15].

The second dataset utilized in this study was built by Sakar et al. [16] for their study,
which comprised a comparative analysis of speech signal processing algorithms for PD
classification and the use of the tunable Q-factor wavelet transform. This dataset was
collected at the Department of Neurology in the Cerrahpaşa Faculty of Medicine, Istanbul
University. It entailed the comprehensive data of 188 PD patients (107 men and 81 women)
spanning an age range of 33 to 87 years (mean age: 65.1 ± 10.9). Additionally, a control
group consisting of 64 healthy individuals (23 men and 41 women) with ages ranging from
41 to 82 years (mean age: 61.1± 8.9) was included. During the data collection process, voice
recordings were captured using a microphone set to a frequency of 44.1 KHz. Specifically,
sustained phonation of the vowel /a/ was necessary to collect from each subject with three
repetitions. Subsequently, a comprehensive set of speech signal processing algorithms,
including Time-Frequency features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet
Transform-based features, Vocal Fold features, and TWQT features, were diligently applied
to the speech recordings of PD patients.
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3.2. Filter Feature Selection

The goal of feature selection in machine learning and data mining is to identify and
maintain a subset of important features from the original dataset. The motivation for
feature selection stems from its ability to increase model performance, reduce compu-
tational complexity, and improve model interpretability. Filter methods have received
substantial attention among the various approaches to feature selection due to their simplic-
ity, efficiency, and capacity to evaluate feature significance independently of any specific
learning algorithm.

Filter feature selection methods attempt to prioritize and choose features based on
their unique properties and association with the target variable without considering the
learning process of the specific model. In this study, we focus on the importance of filtering
quasi-constant features as a crucial step in the filter feature selection process. Quasi-constant
features refer to those with minimal variance or almost constant values across the dataset,
providing limited or negligible discriminatory information.

Identifying and removing quasi-constant features reduces dimensionality and im-
proves model generalization. By eliminating these features, we may reduce noise, improve
computational performance, and promote more meaningful dataset exploration. However,
to effectively filter out quasi-constant features, it is essential to set an appropriate thresh-
old that determines the acceptable level of variance below which a feature is considered
quasi-constant and subsequently removed.

3.3. Genetic Algorithm

Genetic Algorithms (GAs), members of the evolutionary algorithm family, have
emerged as a popular and robust solution to addressing the limitations encountered by
conventional optimization techniques in terms of efficiency and effectiveness. They are
inspired by concepts of natural selection and genetics, imitating the process of evolution to
find optimal solutions within a specific area.

The concept of a population-based search is at the heart of GAs, in which a set of poten-
tial solutions, referred to as individuals or chromosomes, undergo iterative refinement to
explore the solution space. GAs enable the propagation of desirable features and the exami-
nation of new solution regions by utilizing genetic operators such as selection, crossover,
and mutation. This population-centric method enables GAs to tackle complicated optimiza-
tion problems with high dimensionality, non-linearity, and multimodality effectively.

GAs work by iteratively generating new populations, with each population being
evaluated based on a fitness function that assesses the quality of individual solutions. They
promote convergence towards optimal or near-optimal solutions across generations by
repeatedly applying selection, crossover, and mutation operators. This repeated exploration
and exploitation approach enables them to navigate the solution space with ease, exceeding
local optima and delivering strong solutions.

3.4. Methods

Two distinct methods were employed in the experiments to evaluate the effectiveness
of the filtering approach.

The selection of the quasi-constant threshold for filtering features was performed
using a trial-and-error method. After careful evaluation of different threshold values, it was
found that the best results were achieved when the threshold was set to 0.0001. However,
both lower and higher threshold values yielded decreased accuracy in our experiments.

A combination of filter feature selection and ensemble learning methods was employed
in the first method. First, quasi-constant features with a threshold value of 0.0001 were
identified and subsequently removed from the dataset, resulting in a refined dataset. This
refined dataset was then subjected to five different classification algorithms: Gaussian
Naïve Bayes classifier, Support Vector Machine (SVM), Decision Tree, Random Forest,
and XGBoost.
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The performance evaluation revealed that among the tested classification algorithms,
Decision Tree, Random Forest, and XGBoost exhibited the highest classification accuracy
and predictive power. Building upon this finding, further analysis was conducted by em-
ploying ensemble learning methods: stacking and voting, using the three best-performing
algorithms. Additionally, bagging was also applied to the three selected algorithms to
explore potential performance enhancements and model robustness. The first method is
summarized in Figure 1.
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Figure 1. Method 1, where filter feature selection was applied to five different classification algorithms
followed by ensemble learning methods.

In the second method, after filtering out the quasi-constant features, a genetic algo-
rithm was utilized to further optimize the feature selection process for the same set of
classification algorithms: GaussianNB, SVM, Decision Tree (with entropy and Gini index),
XGBoost, Random Forest, and additionally, logistic regression. A pictorial representation
of the second method is shown in Figure 2.

The genetic selection was performed after 40 generations of populations with 50 in-
dividuals. The crossover probability was 0.5, and the mutation probability was 0.2. The
crossover independent probability was set to 0.5 and the mutation independent probability
to 0.05. The tournament size was set to three, and the number of generations after which
the optimization is terminated when the best individual has not changed in all the previous
generations (n_gen_no_change) was set to 10.
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4. Results and Discussion

With the quasi-constant threshold set to 0.0001, five of the twenty-four features in
Dataset 1 and 188 of the 754 features in Dataset 2 were identified as quasi-constant and
subsequently eliminated. This was a significant number of features in both datasets
and enabled streamlining the feature space to enhance the efficiency and effectiveness of
subsequent modeling tasks.

Different classification models were then tested on the filtered datasets. The accuracies
of these models are given in Table 3.

Table 3. Results on applying filter feature selection.

Classification Model Accuracy (in %) after Filter Feature Selection

Dataset 1 Dataset 2

GuassianNB 67.34 75.13
SVM 85.71 76.72

Decision Tree-entropy 100.00 76.72
Random Forest 97.95 92.06

XGboost 100.00 86.24

Among the various models tested, Decision Tree, Random Forest, and XGBoost demon-
strated notably higher accuracies compared to the others on both datasets. Therefore, en-
semble methods, namely voting, stacking, and bagging, were applied to these three models.
Both hard voting and soft voting were employed. The models were stacked to leverage the
strengths of multiple classifiers. Bagging was applied independently to each of the three
models, utilizing 5-fold cross-validation and a total of 500 trees. The resulting accuracies
obtained from these ensemble approaches on Dataset 1 and Dataset 2 are presented in
Tables 4 and 5, respectively.

Voting with both hard and soft voting classifiers attained perfect accuracy (100%) on
Dataset 1. Stacking also displayed good results, with a 96.2% accuracy on Dataset 1 and a
90.06% accuracy on Dataset 2. Bagging had lower accuracy than voting and stacking.

Ensemble approaches take advantage of the diversity and complementary features
of individual models, resulting in higher accuracy. The perfect accuracy achieved by
voting on Dataset 1 suggests strong agreement among the models, contributing to accurate
classification. The relatively high accuracy of the stacked models verifies the efficiency of
combining the predictions of the base models to produce greater performance. Bagging
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decreases the variance and instability of classification models by training individual models
on diverse subsets of the dataset and aggregating their predictions. The slight decrease
in accuracy from bagging could have resulted from the intrinsic randomness introduced
during the resampling process, which may result in a minor trade-off between accuracy
and model stability.

Table 4. Results on applying ensemble learning methods to Dataset 1.

Ensemble Learning Method Accuracy (in %)

Voting Hard voting 100.00
Soft voting 100.00

Stacking Stacking 96.20
Bagging Decision Tree-entropy 91.05

Random Forest 89.70
XGBoost 92.40

Table 5. Results on applying ensemble learning methods to Dataset 2.

Ensemble Learning Method Accuracy (in %)

Voting Hard voting 91.53
Soft voting 88.89

Stacking Stacking 90.06
Bagging Decision Tree-entropy 88.34

Random Forest 86.56
XGBoost 87.76

In the second method, the filtered dataset was subjected to further feature refinement
using genetic selection. A genetic algorithm investigates several feature combinations
to determine an optimal subset that achieves the maximum classification accuracy. The
genetic selection process begins with the generation of an initial population of potential
feature subsets, each of which represents a unique combination of features. These subsets
were then analyzed using the same classification models in addition to logistic regression.
The results thus obtained are summarized in Table 6.

Table 6. Results from applying genetic selection.

Classification Model Accuracy (in %) after Filter Feature Selection

Dataset 1 Dataset 2

GuassianNB 91.83 77.63
SVM 81.63 77.63

Decision Tree-entropy 81.63 76.65
Decision Tree-Gini 81.63 74.34

Random Forest 83.67 74.34
XGboost 87.75 76.97

Logistic Regression 89.79 76.97

It can be observed that the accuracy of the Guassian Naïve Bayes classifier improved
to 91.83% for Dataset 1 and 77.63% for Dataset 2 after genetic selection. This indicates
that genetic algorithms were effective in choosing the relevant features that boosted the
performance of the classifier. However, with the SVM classifier, the accuracy declined to
81.63% for Dataset 1 and improved only slightly for Dataset 2 with 77.63% accuracy. The
accuracy of the decision tree model, measured using both entropy and the Gini index,
also failed to improve significantly with genetic selection. The same was true for random
forest and XGBoost classifiers. Logistic regression also produced similar results to the rest,
with an accuracy of 89.79% with Dataset 1 and 76.97 with Dataset 2. In summary, genetic
selection had varying effects on the accuracy of the different classification models. This
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implies that the effectiveness of genetic algorithms may also be dependent on the properties
of the classification model.

Precision may also be an important evaluation metric for the detection of PD. Precision
is a performance metric that quantifies the accuracy of a classification model’s positive
predictions. It determines the proportion of true positive predictions (positive instances
correctly identified) out of all predicted positive instances (true positives + false positives).
By focusing on precision, we can ensure that the models accurately identify actual PD
patients while also reducing the risks of misclassifying individuals in good health as having
the disease, as that can lead to unnecessary fear, stress, and even medical interventions. A
high precision score gives reliability and greater confidence to employ the models in PD
diagnosis. The precision of the predictions made by the models with filter feature selection
and genetic selections on both datasets is given in Tables 7 and 8, respectively.

Table 7. Precision in applying filter feature selection.

Classification Model Precision (in %) after Filter Feature Selection

Dataset 1 Dataset 2

PD Patient Healthy PD Patient Healthy

GuassianNB 100 41 83 48

SVM 84 100 77 100

Decision Tree-entropy 100 100 86 51

Random Forest 100 92 94 86

XGboost 100 100 88 79

Table 8. Precision in applying genetic algorithms.

Classification Model Precision (in %) after Genetic Selection

Dataset 1 Dataset 2

PD Patient Healthy PD Patient Healthy

GuassianNB 90 100 78 73

SVM 85 62 78 78

Decision Tree-entropy 84 67 76 62

Decision Tree-Gini 85 62 77 50

Random Forest 89 64 74 0

XGBoost 94 69 78 64

Logistic Regression 92 80 79 61

It is notable that the decision tree and XGBoost classifiers achieved perfect precision
in identifying both PD patients and healthy individuals. The Gaussian Naïve Bayes and
random forest classifiers attained perfect precision in identifying PD patients in Dataset
1, whereas the SVM classifier showed perfect precision in detecting healthy individuals
in both datasets. It is also noteworthy that SVM was the only classifier that achieved
perfect precision in identifying at least one category (PD patients or healthy individuals) in
Dataset 2.

After genetic selection on Dataset 1, all the models achieved relatively high precision in
identifying PD patients, ranging from 84% to 94%. The Gaussian Naïve Bayes classifier was
100% precise in identifying healthy individuals. However, all the other models showed less
precision in identifying healthy individuals (ranging from 62% to 80%) than PD patients.
The same can also be observed in the case of Dataset 2 after genetic selection. All models
showed higher precision in identifying PD patients (ranging from 74% to 79%) than in

119



Diagnostics 2023, 13, 2816

identifying healthy individuals (ranging from 0% to 78%). This suggests that identifying
PD patients may be easier than identifying healthy people from the selected datasets.
One possible reason for this could be the unequal distribution of PD patients and healthy
individuals in both datasets. Both datasets contained information from a higher number of
PD patients than healthy people, which made the models more proficient in learning the
patterns and characteristics associated with PD. This imbalance in class distribution may
have led to a bias towards PD patients during the training process, potentially resulting in
higher precision in identifying PD cases.

The overall results for Dataset 1 were better than those for Dataset 2. This disparity
may be due to the difference in the number of features between the two datasets. Initially,
Dataset 1 had only 24 features, which is substantially fewer than Dataset 2, which had
754 features. Even after applying the filter feature selection technique, a relatively large
number of features (566 features) were preserved in Dataset 2 compared to Dataset 1. The
presence of a larger feature space in Dataset 2 might have introduced additional complexity
and made it more challenging for the models to discern the meaningful patterns associated
with PD. This demonstrates that having a greater number of features may not necessarily
translate to better results and may even generate noise or redundancy, resulting in poor
model performance.

While previous research has established the efficacy of ensemble techniques [5,7], a
comparative analysis with the current literature demonstrates a remarkable outperformance
of ensemble learning methods, as exemplified by the perfect accuracy (100%) achieved
by both hard and soft voting on Dataset 1. Moreover, the hard voting classifier achieved
an accuracy of 91.53% on Dataset 2, surpassing the performance reported in the related
literature [5]. The introduction of genetic selection is a novel approach. While certain
models responded differently to genetic selection, this nuanced approach illustrates the
complicated interplay between feature selection strategies and classification outcomes.
Following genetic selection, the GaussianNB classifier achieved the best accuracy for both
datasets, with an accuracy of 91.83% for Dataset 1 and 77.63% for Dataset 2. The emphasis
on precision ensures that PD patients are accurately identified while minimizing the risk
of misclassifying healthy individuals, a crucial aspect for real-world clinical applications.
Filter feature selection led to perfect (100%) precision in the predictions of decision trees
and XGBoost classifiers. With genetic selection, there was an average precision of 88.42% in
identifying PD patients and 72% in identifying healthy individuals in Dataset 1. In Dataset
2, these values were 77.14% for PD patients and 55.43% for healthy individuals. This
holistic viewpoint illustrates the depth and breadth of this research, effectively establishing
its relevance and impact on improving patient care and prognosis. Overall, this research
not only benchmarks favorably against the prior literature but also offers a novel strategy
for enhancing the accuracy and reliability of PD detection through voice data analysis.

5. Conclusions and Future Scope

This study aimed to develop an efficient method for the detection of PD from voice
clips. A combination of filter feature selection, ensemble learning, and genetic selection
was employed. The results of the study demonstrated the effectiveness of filter feature
selection in streamlining the feature space and enhancing the efficiency of subsequent
modeling tasks. By eliminating quasi-constant features, a significant number of irrelevant
features were successfully removed, leading to high model accuracy. The application of
ensemble learning techniques, such as voting, stacking, and bagging, further explored the
classification performance of these models. Additionally, the genetic selection approach
analyzed the precision of the classification models in identifying PD patients and healthy
individuals. The models exhibited relatively high precision in identifying PD patients,
while the precision in identifying healthy individuals was comparatively lower. Moreover,
the comparison between Dataset 1 and Dataset 2 demonstrated the effect of feature space
on model performance. Dataset 1, with a smaller number of features, yielded better results
compared to Dataset 2, which had a larger feature space even after filter feature selection.
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While this study contributes significantly to the field of PD detection, a few limitations
warrant careful consideration. The precision analysis performed in this study reveals
a potential bias toward recognizing PD patients more accurately than healthy people.
This bias stems from the inherent class imbalance within the datasets, where PD patients
are overrepresented compared to healthy individuals. This discrepancy could lead to a
skewed learning process, affecting the models’ generalizability when applied to larger,
more balanced populations. Furthermore, the variation in performance between Dataset
1 and Dataset 2 underscores the sensitivity of model outputs to the dimensionality of the
feature space. The larger feature set of Dataset 2, even after filter feature selection, sug-
gests the possibility of increased noise or redundancy, thereby affecting model robustness
and performance.

Future studies could explore the use of sampling techniques, such as oversampling or
undersampling, to balance the datasets. This would help in achieving better performance
and addressing the bias towards the majority class. The current study utilized specific
datasets for model development and evaluation. Future research could involve testing
the developed models on external datasets or real-world data to assess their generaliz-
ability and robustness. This would provide insights into the practical applicability of the
proposed methods and their performance across different populations. By addressing
these future research areas, we can further advance the field of PD detection from voice
data and contribute to the development of accurate, reliable, and clinically applicable
diagnostic tools.
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Abstract: Breast cancer is one of the most prevalent cancers among women worldwide, and early
detection of the disease can be lifesaving. Detecting breast cancer early allows for treatment to begin
faster, increasing the chances of a successful outcome. Machine learning helps in the early detection
of breast cancer even in places where there is no access to a specialist doctor. The rapid advancement
of machine learning, and particularly deep learning, leads to an increase in the medical imaging
community’s interest in applying these techniques to improve the accuracy of cancer screening. Most
of the data related to diseases is scarce. On the other hand, deep-learning models need much data
to learn well. For this reason, the existing deep-learning models on medical images cannot work as
well as other images. To overcome this limitation and improve breast cancer classification detection,
inspired by two state-of-the-art deep networks, GoogLeNet and residual block, and developing
several new features, this paper proposes a new deep model to classify breast cancer. Utilizing
adopted granular computing, shortcut connection, two learnable activation functions instead of
traditional activation functions, and an attention mechanism is expected to improve the accuracy
of diagnosis and consequently decrease the load on doctors. Granular computing can improve
diagnosis accuracy by capturing more detailed and fine-grained information about cancer images.
The proposed model’s superiority is demonstrated by comparing it to several state-of-the-art deep
models and existing works using two case studies. The proposed model achieved an accuracy of 93%
and 95% on ultrasound images and breast histopathology images, respectively.

Keywords: medical image; breast cancer diagnoses; machine learning; deep learning; classification

1. Introduction

Breast cancer is the most commonly diagnosed form of cancer worldwide and the
second leading cause of cancer-related deaths. In 2020, breast cancer was diagnosed in
2.3 million women globally, resulting in 685,000 fatalities. Additionally, as of the end of
2020, 7.8 million women had received a breast cancer diagnosis within the last five years [1].
Clinical studies have demonstrated that early detection is crucial for effective treatment
and can significantly improve the survival rate of breast cancer patients [2].

Computer-aided detection and diagnosis (CAD) software systems have been devel-
oped and clinically used since the 1990s to support radiologists in screening, improve predic-
tive accuracy, and prevent misdiagnosis due to fatigue, eye strain, or lack of experience [3].

The rapid progress of machine learning in both application and efficiency, especially
deep learning, has increased the interest of the medical community in using these tech-
niques to improve the accuracy of cancer screening from images. Machine learning can
play an essential role in helping medical professionals in the early detection of cancerous
lesions. Despite the benefits of using these techniques, cancer screening is associated with
a high risk of false positives and false negatives. However, early detection of cancer can
contribute to up to a 40% decrease in the mortality rate [2].
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Deep-learning networks employ a deeply layered architecture that enables hierarchical
learning and progressive extraction of features from data, starting from simple to progres-
sively more complex abstractions. By autonomously learning the maximum possible set of
features, the deep-learning algorithm can deliver the most precise results, rendering these
networks highly effective for medical image classification and the identification of features
such as lesions [4,5].

The performance of convolutional neural networks (CNNs) is hindered by several
challenges, and the most popular CNNs attempt to improve their performance by simply
stacking convolution layers deeper and deeper. However, the significant areas in an image
can vary considerably in size, making it difficult to select the appropriate kernel size for
the convolution operation due to the extreme variability in the information’s location. For
information that is more locally distributed, a smaller kernel is recommended, whereas
a larger kernel is chosen for information distributed more widely. Very deep networks
are more prone to overfitting, and gradient updates are challenging to share throughout
the entire network, in addition to being computationally expensive to naively stack large
convolution processes [6,7].

Granular computing is a type of computing that focuses on the use of granules,
which are small, discrete pieces of knowledge that can be combined, manipulated, or
analyzed to solve complex problems. It is a form of computing that is based on the idea
of breaking down complex problems into smaller, more manageable pieces. Granular
computing has been used in various areas, such as data mining, decision support systems,
and knowledge discovery. Granular computing can be used in image classification by
dividing the image into smaller regions or sub-regions, also known as granules, and
extracting features from them [8].

This study proposes a novel deep-learning model designed to enhance the accuracy
of breast cancer detection while simultaneously reducing the network’s parameters to
improve training time. Inspired by GoogLeNet and the residual block, the proposed model
considers both the depth and width of the network. Multiple filters of varying sizes operate
at the same level, and their outputs are concatenated and transmitted to the next mod-
ule. Additionally, the use of shortcut connections and two learnable activation functions,
as opposed to traditional activation functions, is expected to reduce time consumption
and improve diagnostic accuracy, thereby potentially alleviating the workload of medi-
cal professionals. We also propose a granular computing-based algorithm for capturing
more detailed and fine-grained information about cancer images. We will apply granular
computing to the dataset before starting the training process.

The paper’s contributions can be outlined as follows:

1. The proposed model has the highest diagnostic accuracy compared to existing breast
cancer methods;

2. This paper is the first study to use the granular computing concept in disease diagnosis;
3. Utilizing wide and depth networks, shortcut connections, and intermediate classifiers,

we design a new deep network to improve the detection of breast cancer;
4. An attention mechanism is proposed to highlight the important features in the input

image, thereby resulting in improved accuracy of the classifier;
5. Two learnable activation functions are developed and utilized instead of traditional

activation functions. Learnable activation functions provide a flexible framework that
can be fine-tuned during training for optimal performance on specific tasks.

The following is the structure of this work: Section 2 addresses the related works,
Section 3 presents the model and implementation, Section 4 presents the results and
discussion, and ultimately, the conclusion is presented.

2. Related Work

Breast cancer ranks among the most prevalent cancers affecting women worldwide.
Early detection and accurate diagnosis are crucial factors for effective treatment and im-
proved patient outcomes [9]. Ultrasound imaging is a widely used method for breast
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cancer screening and diagnosis, but it requires skilled radiologists to interpret the images
accurately [10]. According to the National Breast Cancer Foundation’s 2020 report, AI has
been successfully used to diagnose more than 276,000 breast cancer cases. By analyzing
breast cancer images using AI, breast lumps (masses), mass segmentation, breast density,
and breast cancer risk can be identified. In the majority of patients, lumps in the breast are
the most common sign of breast cancer [9]; therefore, their detection is an essential step
used in CAD.

A review of deep-learning applications in breast tumor diagnosis utilizing ultrasound
and mammography images is provided in [11]. Moreover, the research summarizes the
latest progressions in computer-aided diagnosis/detection (CAD) systems that rely on deep-
learning methodologies to automatically recognize breast images, ultimately enhancing
radiologists’ diagnostic precision. Remarkably, the classification process underpinning the
novel deep-learning approaches has demonstrated significant usefulness and effectiveness
as a screening tool for breast cancer.

Recent studies have explored the use of deep-learning techniques, particularly convolu-
tional neural networks (CNNs), for automated breast ultrasound image classification [12–15].
These studies have shown encouraging results. Several convolutional neural networks
(CNNs) models are used for breast cancer image classifications including AlexNet, VGGNet,
GoogLeNet, ResNet, and Inception. In their study, the authors of [5] categorized breast
lesions as either benign or malignant. They developed a CNN model to remove speckle
noise from the ultrasound images and then proposed another CNN model for classifying
the ultrasound images. The study [16] discriminates benign cysts from malignant masses
in US images.

In the study presented in [17], various deep-learning models were employed to clas-
sify breast cancer ultrasound images based on their benign, malignant, or normal status.
A dataset comprising a total of 780 images was utilized, and data augmentation and
preprocessing techniques were applied. Three models were evaluated for classification.
Specifically, ResNet50 achieved an accuracy of 85.4%, ResNeXt50 achieved 85.83%, and
VGG16 achieved 81.11%.

The study [18] introduced a novel ensemble deep-learning-enabled clinical decision
support system for the diagnosis and classification of breast cancer based on ultrasound
images. The study presented an optimal multilevel thresholding-based image segmentation
technique for identifying tumor-affected regions. Additionally, an ensemble of three deep-
learning models was developed to extract features, and an optimal machine-learning
classifier was utilized to detect breast cancer.

In the study [14], the authors proposed a system to classify breast masses into normal,
benign, and malignant. Ten well-known, pre-trained CNNs classification models were
compared, and the best model was Inception ResNetV2. In [19], a vector-attention network
(BVA Net) was proposed to classify benign and malignant mass tumors in the breast.

In [20], the authors proposed a CNN-based CAD system for breast ultrasound image
classification (benign and malignant lesions). The study [21] developed a deep-learning
model based on ResNet18 CNN architecture for breast ultrasound image classification.
In addition, the study [22] compared the performance of different deep-learning models,
including CNNs, recurrent neural networks (RNNs), and hybrid models, for breast cancer
diagnosis on ultrasound images. In addition to binary classification, some studies have also
explored multiclass classification of breast ultrasound images. For example, the study [23]
proposed a CNN-based CAD system that can classify breast lesions into four categories:
benign, malignant, cystic, or complex cystic-solid. The system achieved an overall accuracy
of 87% on a dataset of 1000 images.

Gao et al. have devised a computer-aided diagnosis (CAD) system geared toward
screening mammography readings, which demonstrated an accuracy rate of approximately
92% [24]. Similarly, in several studies [25,26], multiple convolutional neural networks
(CNNs) were employed for mass detection in mammographic and ultrasound images.

125



Diagnostics 2023, 13, 1944

The study conducted by [3] provides a comprehensive review of the techniques used
for the diagnosis of breast cancer in histopathological images. The state-of-the-art machine-
learning approaches employed at each stage of the diagnosis process, including traditional
methods and deep-learning methods, are presented, and a comparative analysis between
the different techniques is provided. The technical details of each approach and their
respective advantages and disadvantages are discussed in detail.

Lee et al. [27] conducted a study utilizing a deep-learning-based computer-aided pre-
diction system for ultrasound (US) images. The research involved a total of 153 women with
breast cancer, comprising 59 patients with lymph node metastases (LN+) and 94 patients
without (LN−). Multiple machine-learning algorithms, including logistic regression, sup-
port vector machines (SVMs), XGBoost, and DenseNet, were trained and evaluated on the
US image data. The study found that the DenseNet model exhibited the best performance,
achieving an area under the curve (AUC) of 0.8054. This study highlights the potential of
deep-learning techniques in the development of accurate and efficient prediction systems
for breast cancer diagnosis using US imaging.

Sun et al. [28] conducted a study utilizing a convolutional neural network (CNN)
trained and tested on ultrasound images of 169 patients. The training dataset consisted of
248 US images from 124 patients, while the testing dataset comprised 90 US images from
45 patients. The results of the study revealed a somewhat inferior performance, with an
AUC of 0.72 (SD 0.08) and an accuracy of 72.6% (SD 8.4). Notably, the validation process did
not include cross-validation or bootstrapping methods. These findings suggest that further
research is necessary to improve the performance of CNNs in breast cancer diagnosis using
ultrasound imaging.

In a study by [29], a comparison was made between convolutional neural networks
(CNNs) and traditional machine-learning (ML) methods, specifically random forests, in the
context of breast cancer diagnosis. The study utilized a dataset of 479 breast cancer patients,
comprising 2395 breast ultrasound images. The research also focused on different regions
of the ultrasound images, including intratumoral, peritumoral, and combined regions, to
train and evaluate the models. The study found that CNNs outperformed random forests
in all modalities (p < 0.05), and the combination of intratumoral and peritumoral regions
provided the best result, with an AUC of 0.912 [0.834–99.0]. While confidence intervals
were provided, the method used to determine them was not mentioned. These results
highlight the potential of CNNs in breast cancer diagnosis using ultrasound imaging and
the importance of considering different regions of the image in the analysis.

The study proposed by [30] implemented the multilevel transfer-learning (MSTL) algo-
rithm using three pre-trained models, namely EfficientNetB2, InceptionV3, and ResNet50,
along with three optimizers, which included Adam, Adagrad, and stochastic gradient
descent (SGD). The study utilized 20,400 cancer cell images, 200 ultrasound images from
Mendeley, and 400 from the MT-Small dataset. This approach has the potential to reduce
the need for large ultrasound datasets to realize powerful deep-learning models. The
results of this study demonstrate the effectiveness of the MSTL algorithm in breast cancer
diagnosis using ultrasound imaging.

The study [31] presents a review of studies investigating the ability of deep-learning
(DL) approaches to classify histopathological breast cancer images. The article evaluates
current DL applications and approaches to classify histopathological breast cancer im-
ages based on papers published by November 2022. The study findings indicate that
convolutional neural networks, as well as their hybrids, represent the most advanced DL
approaches currently in use for this task. The authors of the study defined two categories
of classification approaches, namely binary and multiclass solutions, in the context of DL-
based classification of histopathological breast cancer images. Overall, this review provides
insights into the current state of the art in DL-based classification of histopathological
breast cancer images and highlights the potential of advanced DL approaches to improve
the accuracy and efficacy of breast cancer diagnosis.
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The study [32] proposed a breast cancer classification technique that leverages a
transfer-learning approach based on the VGG16 model. To preprocess the images, a median
filter was employed to eliminate speckle noise. The convolution layers and max pooling
layers of the pre-trained VGG16 model were utilized as feature extractors, while a two-layer
deep neural network was devised as a classifier.

The vision transformer (ViT) architecture has been proven to be advantageous in
extracting long-range features and has thus been employed in various computer vision
tasks. However, despite its remarkable performance in traditional vision tasks, the ViT
model’s supervised training typically necessitates large datasets, thereby posing difficulties
in domains where it is challenging to amass ample data, such as medical image analysis.
In [33], the authors introduced an enhanced ViT architecture, denoted as ViT-Patch, and
investigated its efficacy in addressing a medical image classification problem, namely,
identifying malignant breast ultrasound images.

In summary, these studies showcase the capability of deep-learning techniques in
automating breast image classification and underscore the significance of devising precise
CAD systems to support radiologists in detecting breast cancer. The majority of current
approaches employ pre-existing deep-learning architectures for detecting breast cancer. In
the following, we introduce a novel architecture that surpasses all previous methods.

3. Methodology

Inspired by GoogLeNet [34] and residual block [35] and adding several other features,
in this paper, we developed a new deep architecture for breast cancer detection from
images. GoogLeNet and residual block are based on convolutional neural network (CNN)
architecture. GoogLeNet is a deep convolutional neural network architecture developed
by Google’s research team in 2014. It was the winner of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2014 and achieved state-of-the-art performance on a
variety of computer vision tasks.

The GoogLeNet architecture consists of a 22-layer deep neural network with a unique
“Inception” module that enables the network to efficiently capture spatial features at differ-
ent scales using parallel convolutional layers. The Inception module combines multiple
convolutional filters of different sizes and concatenates their outputs, allowing the network
to capture both fine-grained and high-level features. On the other hand, a residual block
is a building block used in deep neural networks that helps to address the problem of
vanishing gradients during training. A residual block consists of two or more stacked
convolutional layers followed by a shortcut connection that bypasses these layers. The
shortcut connection allows the gradient to be directly propagated to earlier layers, allowing
for better optimization and deeper architectures.

This study introduces a novel deep-learning-based architecture for breast cancer
detection that stands out from existing architectures in four significant aspects, resulting in
superior performance.

1. Proposing a granular computing-based algorithm aiming to extract more detailed and
fine-grained information from breast cancer images, leading to improved accuracy
and performance;

2. Utilizing wide and deep modules, shortcut connections, and intermediate classifiers
simultaneously in the architecture;

3. Designing an attention mechanism; the attention mechanism in CNNs provides a
powerful tool for selectively focusing on relevant features in the input data, enabling
the network to achieve better accuracy and efficiency;

4. Designing two learnable activation functions and using them instead of traditional
activation functions.

Figure 1 depicts the overall process proposed in this paper. The input of the proposed
method is a breast cancer image. If the size of the images is different, they are resized to
a pre-determined size. After that, the pixels of the image are normalized between [0,1].
Resizing and normalization are preprocessing steps. After the preprocessing step, we use
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granular computing to highlight important features of an image. The output of the previous
step is used to train the proposed deep-learning model. These steps are used for all images
in the dataset. In the following, we will describe each of these cases.
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all images.

3.1. Granular Computing

Granular computing can be used in image classification by dividing the image into
smaller regions or sub-regions, also known as granules, and extracting features from them.
This approach can improve the accuracy of the classification task by capturing more detailed
and fine-grained information about the image [8].

Here, we propose general steps by which granular computing can be applied to image
classification in deep learning:

Input: An image to be classified.
Output: A label representing the class of the image.
Preprocessing: Resize the image to a fixed size and normalize the pixel values to a

range between 0 and 1.
Granulation: Divide the image into smaller regions or sub-regions, known as granules.

This can be performed by using techniques such as windowing, tiling, or segmentation.
Feature Extraction: For each granule, extracts features using techniques such as local

binary patterns, histograms of oriented gradients, or CNN. This will result in a set of feature
vectors, one for each granule.

Feature Aggregation: Combine the feature vectors obtained from the granules and
use them to classify the image. This can be performed by using techniques such as mean
pooling or max pooling.
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Figure 2 shows the proposed steps for granular computing used in this paper. Con-
sidering the above steps, we propose Algorithm 1 for applying granular computing in
this paper. In this algorithm, we have used the pre-trained VGG16 architecture to extract
features for each granularity. The size of each granular is considered to be 32 × 32. We
apply granular computing to the dataset before starting the training process.

Algorithm 1. Extracting more detailed features by granular computing

Repeat the following steps for all images
img = Load the image

Preprocessing step: resizing and normalization
img = resize(img, (224, 224))
img = normalize(img/255.0)

Granulation step: split the image in windows of size 24 * 24
granules = []
for i in range(0, 224, 32):
for j in range(0, 224, 32):
granule = img[i:i + 32, j:j + 32,:]
granules.append(granule)

Feature Extraction step:
model = VGG16(weights= ‘imagenet’, include_top = False, input_shape = (32, 32, 3))
features = []
for granule in granules:
feature = model.predict(np.expand_dims(granule, axis = 0)).squeeze()
features.append(feature)

Feature Aggregation step:
features = np.array(features)
aggregated_features = np.mean(features, axis = 0)

3.2. Learnable Activation Function

Sigmoid, ReLU, and tanh are widely used activation functions in artificial neural
networks, and they perform satisfactorily in many cases. However, these functions have
some limitations that make their use suboptimal, thus necessitating the development of
learnable activation functions.

Learnable activation functions in artificial neural networks are like functions that
can adapt and modify themselves based on the input received by the neural network.
These functions are characterized by a group of parameters that can be fine-tuned by the
neural network during the training process. The primary advantage of learnable activation
functions is their flexibility and adaptability in adjusting to different types of input data
being processed. There are two primary types of learnable activation functions in artificial
neural networks:

- Parametric activation functions: These functions have a fixed form (such as sigmoid or
ReLU), but they add extra learnable parameters to them. The neural network changes
these parameters to adjust the activation function appropriately on training data;

- Adaptive activation functions: These functions do not have any fixed form or formula.
Instead, they rely on a neural network structure such as RNN or LSTM to learn
appropriate activation functions.

We, here, develop two learnable activation functions named LAF_sigmoid and LAF_relu.
To develop a new parametric learnable activation function, we start by defining a general
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form of the function that has learnable parameters. Let us call this function “Learnable
Activation Function”, or LAF for short:

LAF(x; W) = a ∗ F(x; W) + b (1)

Here, a and b are adjustable parameters that are learned during training, and F()
is a non-linear function that defines the shape of the activation function. The weight
matrix W contains learnable values that determine the shape of F(), and it is optimized
through backpropagation.
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To further develop the LAF, we can choose a suitable non-linear function F(). One
possible choice is the sigmoid function:

F(x; W) = 1/(1 + exp(−Wx)) (2)

The sigmoid function is a common choice for activation functions due to its smoothness
and boundedness, which is important for the stable training of neural networks. The LAF
with the Sigmoid function becomes:

LAF_sigmoid(x; W, a, b) = a ∗ (1/(1 + exp(−Wx))) + b (3)
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This activation function will be used in the dense layers of the network.
Another possible choice for F() is the ReLU function:

F(x; W) = max(0, Wx) (4)

The ReLU function is preferred for some tasks because of its simplicity and computa-
tional efficiency. The learnable parameters a and b can be added to shift and scale the ReLU
function, resulting in the LAF with the ReLU function:

LAF_relu(x; W, a, b) = a ∗max(0, Wx) + b (5)

This activation function will be used in the convolutional layers of the network.
The values of a, b, and W can be trained through backpropagation using gradient

descent or other optimization algorithms. The choice of the initial values and number of
hidden units are important factors that can affect the success of training the neural network
using LAFs. There are several advantages of using learnable activation functions in artificial
neural networks:

1. Improved performance: By incorporating learnable activation functions, the neural
network performance can be improved significantly. This is because the activation
function adapts to the input data, allowing for a more accurate representation of
complex relationships between features;

2. Non-linear mapping: Learnable activation functions allow for non-linear mappings
between input and output, which can capture more complex patterns in the data;

3. Flexibility: With traditional activation functions, the network architecture is fixed.
However, using learnable activation functions allows for more flexibility in the
network architecture, as the activation function can be modified according to the
specific task;

4. Reduced overfitting: Learnable activation functions can also help reduce overfitting,
as they can adapt to the input data and generalize better to new data that has not been
seen before;

5. Efficient training: The use of learnable activation functions can also make the training
process more efficient by allowing gradients to be propagated through the network
more smoothly. This can lead to faster convergence and improved performance.

3.3. The Attention Mechanism

The attention mechanism in convolutional neural networks (CNNs) is a tool that
enables networks to selectively focus on specific parts of input data that are crucial for
making decisions. Mimicking the process of human attention, this mechanism allows
neural networks to attend selectively to relevant features in input data. The attention
mechanism can be incorporated into various parts of a network, including the input layer,
the convolutional layer, or the dense layer. Typically, the attention mechanism is added on
top of the convolutional layer as an auxiliary module.

The attention mechanism takes as input the output features of the preceding layer and
computes a set of attention weights for each feature. These weights reflect the importance of
each feature for the current task. To compute these attention weights, a sub-network called
the attention module, which comprises one or more layers, is employed. The attention
weights are then multiplied element-wise with the output features of the preceding layer to
obtain a weighted sum of the characteristics. This weighted sum is then passed to the next
layer of the network. By doing this, the attention mechanism selectively focuses on key
parts of the input data and enhances their impact on the output.

The attention mechanism can be trained end-to-end using backpropagation, and the
attention weights can be learned jointly with the neural network parameters. During
training, the attention mechanism learns to weigh the importance of various features based
on their relevance to the task. This enables the network to selectively attend to the most
informative parts of the input data and ignore irrelevant or noisy features.
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In this section, we propose an attention mechanism to apply to the output layer (top
layer). The attention mechanism in CNNs can highlight the salient regions in images that
are significant for the classification task.

In the case of breast cancer detection, this can be useful since certain regions of the
breast image may contain more relevant features for cancer detection compared to others.
Here, we develop an attention mechanism for CNN:

1. Start with a standard convolutional layer with filters of size (k, k) and stride s;
2. Add a second convolutional layer with filters of size 1 × 1 and stride 1. This layer will

compute a scalar attention weight for each pixel in the input image;
3. Apply a Softmax activation function to the output of the attention layer to ensure that

the weights sum up to 1 for each pixel;
4. Multiply the attention weight maps element-wise with the input image to obtain the

attended input image;
5. Feed the attended input image into the next layer of the CNN.

The idea behind this attention mechanism is that the second convolutional layer learns
to compute a scalar attention weight for each pixel in the input image, based on its relevance
to the task at hand. The softmax activation function ensures that the attention weights
sum up to one for each pixel, making them interpretable as a probability distribution
over the pixels. The element-wise multiplication of the attention weight maps and input
image highlights or downplays certain pixels, improving the accuracy of the CNN on the
given task.

3.4. Wide and Depth Networks, Short Connections, and 1 × 1 Convolutional Layers

Our developed network takes advantage of the features of wide and deep networks,
short connections, and 1 × 1 convolutional layers. In the following, we will examine
each one.

Wide and deep neural networks such as GoogLeNet offer improved accuracy, higher
capacity, faster convergence, and better regularization. They have demonstrated impressive
performance in various tasks, including image recognition, speech recognition, and natural
language processing. Their advantages make them an attractive choice when designing
neural networks.

In neural networks, short connections, which are used in ResNet and DenseNet
networks, are a type of connection between the neurons that bypass one or more layers
in the network. These connections allow information to flow between two layers that are
not directly connected in the network architecture. Short connections, also known as skip
connections, in neural networks can be represented mathematically as an element-wise
summation or concatenation operation between the input to a layer and the output of that
layer. In other words, the output of a layer is added to or concatenated with the input to
that layer or a previous layer. For example, in a convolutional neural network (CNN), a
short connection can be introduced between two convolutional layers by adding the output
of the first convolutional layer to the input of the second convolutional layer. This can be
added as follows:

x1 = Convolutional_layer_1(input)

x2 = Convolutional_layer_2(x1 + input)

where “+” denotes element-wise summation.
Short connections or residual connections in neural networks have several advantages:

1. Improved gradient flow: By adding short connections, the gradient can flow through
the network more effectively, which eliminates the vanishing gradient problem. The
gradient can be propagated directly to earlier layers, allowing the network to train
deeper architectures;
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2. Improved training speed: The use of short connections reduces the number of layers in
the critical learning path, which can speed up the training process. The reduced depth
also means that less computation is required, resulting in a more efficient model;

3. Improved accuracy: Short connections enable the learning of more complex functions
by allowing the network to make use of the information from earlier layers. This can
result in higher accuracy in tasks such as image recognition and speech processing;

4. Reduced overfitting: Short connections can help reduce overfitting by providing a
regularization mechanism. They allow the network to learn simpler representations
for the input data, which leads to better generalization.

In CNNs, 1 × 1 convolutional layers are utilized as a type of layer that executes a
convolution operation by convolving the input tensor with a kernel of size 1 × 1. Despite
their small size, 1 × 1 convolutional layers have various advantages in CNNs:

1. Dimensionality reduction: 1× 1 convolutional layers can be used to reduce the dimen-
sionality of feature maps, which can be useful in reducing the computational complex-
ity of CNNs while maintaining their accuracy. By using 1 × 1 convolutional layers,
the number of parameters can be reduced while still retaining the important features;

2. Non-linear transformations: Even though it has a kernel of size 1× 1, this layer applies
non-linear transformations to the input feature maps. The non-linear activation
function applied after the convolution operation contributes to this non-linearity;

3. Improved model efficiency: By reducing the number of parameters, 1 × 1 convolu-
tional layers reduce the computational cost of the model. This can, in turn, improve
the efficiency of the implementation of the model, allowing it to be run on smaller
devices or with fewer computational resources;

4. Feature interaction: A 1 × 1 convolutional layer can act as a feature interaction layer
and induce correlations between features, which can further enhance the representa-
tion power of the network.

These advantages make 1 × 1 convolutional layers an important building block in
CNNs, especially in deeper networks where computational cost and memory usage are of
key concern.

3.5. The Designed Architecture

To reduce the high volume of processing in the GoogLeNet network, we changed the
architecture from fully connected to sparsely connected network architectures within the
convoluted layers. The Inception layer, which was inspired by the Hebbian principle of
human learning, is critical to this sparsely connected architecture. For example, a deep-
learning model for recognizing a particular pattern (e.g., face) in an image might have
a layer that focuses on individual parts of an image. The next layer then focuses on the
overall pattern in the image and identifies the various objects in it. To this end, the layer
requires appropriate filter sizes to detect these objects. The Inception layer is crucial in this
scenario, allowing internal layers to determine which filter size is relevant for learning the
required information. Therefore, even if the size of the pattern in the image is different, the
layer can recognize it accordingly.

The proposed system is shown in Figure 3, which shows the block diagram used
to diagnose medical images. The proposed system has the same structure as the simple
GoogLeNet network. We replaced the Inception module with a new module named
X-module. The structure of the new deep neural network consists of the following:

1. Input layer;
2. A convolutional-based attention layer;
3. Convolution layer;
4. Two X modules with different filter sizes followed by a down-sample module;
5. An auxiliary classifier with a learnable Softmax classifier;
6. Three X modules with different filter sizes followed by a down-sample module;
7. An auxiliary classifier with a learnable Softmax classifier;
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8. An X-module followed the Average pool, dropout layer;
9. A dense layer-based attention layer;
10. Learnable Softmax classifier as output layer.
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Figure 3. The new CNN system proposed to diagnose medical images.

The details are explained as follows:
Input Layer: In this step, the medical image is entered into the system.
Convolutional-based attention layer: This layer allows for the selective focus on

specific parts of the input data that hold significance in determining an outcome.
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Convolution Layer: This layer uses convolution operations to produce new feature maps.
X-Module: This module considers both the depth and width of the network, with

multiple filters of varying sizes operating at the same level. The outputs of these filters
are concatenated before being transmitted to the subsequent module. The main unit in
X-module is a sub-block called R-block (Figure 4), which is inspired by the residual block.
The main difference is that the designed block uses learnable activation functions. The
block uses a shortcut connection; the input is added to the output of the block to pass
gradient updates through the entire network easily and reduce overfitting. The R-block
consists of two convolutional layers stacked on top of each other, with the first layer
being succeeded by a batch normalization layer and a learnable activation function that is
dependent on parameters. Using a parameter learnable activation function helps to reduce
time consumption and better learning. Three types of R-blocks are implemented upon
the filter size. The filter size of the two convolutional layers in the first R-block is 3 × 3.
In the second R-block, the filter size of the two convolutional layers is 5 × 5. The first
convolutional layer in the third R-block has a 3 × 3 filter size and the second convolutional
layer has a 5 × 5 filter size. We have reduced the number of parameters and computational
costs in the X-module by incorporating an additional 1 × 1 convolution in the initial layer,
preceding the 3 × 3 and 5 × 5 convolutions. An extra 1 × 1 convolution is also utilized
after the max pooling layer.

Diagnostics 2023, 13, x FOR PEER REVIEW 13 of 24 
 

 

The details are explained as follows: 
Input Layer: In this step , the medical image is entered into the system. 
Convolutional-based attention layer: This layer allows for the selective focus on spe-

cific parts of the input data that hold significance in determining an outcome.  
Convolution Layer: This layer uses convolution operations to produce new feature 

maps.  
X-Module: This module considers both the depth and width of the network, with mul-

tiple filters of varying sizes operating at the same level. The outputs of these filters are 
concatenated before being transmitted to the subsequent module. The main unit in X-
module is a sub-block called R-block (Figure 4), which is inspired by the residual block. 
The main difference is that the designed block uses learnable activation functions. The 
block uses a shortcut connection; the input is added to the output of the block to pass 
gradient updates through the entire network easily and reduce overfitting. The R-block 
consists of two convolutional layers stacked on top of each other, with the first layer being 
succeeded by a batch normalization layer and a learnable activation function that is de-
pendent on parameters. Using a parameter learnable activation function helps to reduce 
time consumption and better learning. Three types of R-blocks are implemented upon the 
filter size. The filter size of the two convolutional layers in the first R-block is 3 × 3. In the 
second R-block, the filter size of the two convolutional layers is 5 × 5. The first convolu-
tional layer in the third R-block has a 3 × 3 filter size and the second convolutional layer 
has a 5 × 5 filter size. We have reduced the number of parameters and computational costs 
in the X-module by incorporating an additional 1 × 1 convolution in the initial layer, pre-
ceding the 3 × 3 and 5 × 5 convolutions. An extra 1 × 1 convolution is also utilized after the 
max pooling layer.  

 
(a) (b) (c) 

Figure 4. Structure of R-block (the main units of X-module): (a) R-block 3 × 3. (b) R-block 5 × 5. (c) 
R-block 3 × 5. 

Figure 4. Structure of R-block (the main units of X-module): (a) R-block 3 × 3. (b) R-block 5 × 5.
(c) R-block 3 × 5.

Different configurations of the X-module are implemented to build different deep
neural network (DNN) models. In the first X-module, the first R-block is 3 × 3, the second
is 5 × 5, and the third R-block has a 3 × 5 convolution filter size. In the second model,
three R-blocks of filter sizes 3 × 3 are utilized. In the third model, three R-blocks of
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filter sizes 5 × 5 are utilized. The structure of the R-block and X-module are shown in
Figures 4 and 5, respectively.
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Figure 5. The different used structures into X-module: (a) X-module includes three R-blocks of
3 × 3, called DNN R3_R3_R3. (b) X-module includes three R-blocks of 5 × 5, called DNN R5_R5_R5.
(c) X-module includes three R-blocks of 3 × 3, 5 × 5, and 3 × 5, called DNN R3_R5_R35.

Downsampling module: Following the X-module, this module is implemented to
decrease both the size of the feature map and the number of network parameters. The
pooling max function is concatenated with a 3 × 3 convolutional layer. As stated before,
deep neural networks are computationally expensive. To make it cheaper, the number of
input channels is limited by adding a 1 × 1 convolution before the 3 × 3 convolution.
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Dense layer-based attention layer: This attention takes as input a 3D tensor represent-
ing the output features of the previous layer and outputs a 2D tensor of attention scores,
where each score represents the relevance of a specific feature.

Output layer: The output in this step will be normal or abnormal.

4. Result and Discussion

The experiments were conducted using the Cairo University ultrasound images dataset
and the breast histopathology images dataset for training and testing. The code was written
in Python, and the experiments were performed on Kaggle, leveraging the power of their
hardware, including GPUs. To train the model, the following settings were employed:
Adam optimizer with a learning rate set to 0.0001, 100 epochs, a batch size of 32, and a
dropout rate of 50%. The number of epochs in a CNN is one of the hyperparameters that
can be tuned to improve the performance of the model. The number of epochs refers to the
number of times the entire training dataset is passed through the CNN during the training
phase. To tune the number of epochs, we used the early stopping technique. Early stopping
is a method used to prevent overfitting by monitoring the validation loss during training
and stopping the training process once the validation loss starts to increase. After applying
this technique, we set the number of epochs to 100.

In this study, the proposed approach is assessed in terms of several performance
metrics, including accuracy, loss, precision, recall, and F1 score. These metrics are defined
as follows:

Accuracy: This metric measures the overall performance of the model by calculating
the percentage of correctly predicted labels to the total number of samples in the test dataset.
Mathematically, it can be expressed as:

Accuracy = (Number of Correct Predictions)/(Total Number of Predictions) (6)

Loss: This metric represents the error between the predicted output and the actual
output. The loss function is typically defined during the training phase of the model,
and it is used to optimize the model parameters by minimizing the difference between its
predictions and the true values. The most commonly used loss function in deep learning
is the mean squared error (MSE), which measures the average of the squared differences
between the predicted and true values.

Precision: This metric measures the proportion of true positives (samples that were
correctly classified as positive) to the total number of positive predictions made by the
model. It can be calculated as:

Precision = True Positives/(True Positives + False Positives) (7)

Recall: This metric measures the proportion of true positives to the total number of
true positives and false negatives in the dataset.

F1: This metric calculates the harmonic mean of precision and recall.
Different DNN models are implemented using different configurations of the X-module,

as depicted in Figure 5. The first model has three R-blocks of 3 × 3 convolution filters.
The second model utilized three R-blocks of 5 × 5. In the third model, the first R-block
is 3 × 3, the second is 5 × 5, and the third R-block has a 3 × 3 filter size in the first
convolutional layer, and the second convolutional layer has a 5 × 5 filter size. We have
utilized various filters and kernels (kernel size). By specifying multiple values for the kernel
parameter within a filter, our model can effectively identify patterns that occur at different
scales within an image. The incorporation of multiple kernels also assists in reducing
overfitting and improving the generalization of the model. This is because including filters
with varying kernel sizes compels the network to learn more diverse and robust feature
representations, leading to an improved ability to generalize the model to new images.

The Cairo University ultrasound images dataset was collected in 2018 that consists of
780 images with an average image size of 500 × 500 pixels [36]. The images are categorized
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into three classes, which are normal (133 images), benign (487 images), and malignant
(210 images). The data collected at baseline include breast ultrasound images among
women in ages between 25 and 75 years old. The number of patients is 600 female patients.
Because the number of images in different classes is unbalanced, this may cause the
model to learn some classes better than others, and this can cause the model to perform
inappropriately during use or testing. To prevent this from happening, we randomly
selected an equal number of images from each class. Before starting the training process
of the model, due to the lack of data, we start the data augmentation process. We resize
the dataset using cubic interpolation to fit the input requirements of the model. For
augmentation, we applied width and height shifts of 0.1 and a horizontal flip, which tripled
the size of the dataset. With this technique, we tripled the number of data for each class.
After this process, we split the dataset into training and test sets, allocating approximately
80% for training and 20% for testing. Of course, we have not used these new images for
testing. We maintain the sequence of each image so that every image appears only once in
each of the aforementioned sets.

Figure 6 depicts the accuracy and loss diagrams for the three proposed models on the
Cairo University ultrasound dataset.

On the Cairo University ultrasound images dataset, the performance of the three
proposed CNN models in the testing phase is summarized in Table 1. The third model,
DNN R3_R5_R35, which uses a different size of convolutional filters, achieves the best
accuracy and low loss. It achieved 93% accuracy performance.

Table 2 is the resultant confusion matrix of the DNN R3_R5_R35 model. This table
shows promising results so that the proposed model has correctly diagnosed the presence
or absence of cancer in most cases, and it has not been able to correctly diagnose only five
cases out of 68 cases.
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Figure 6. Accuracy and loss diagrams for the three proposed models.

Table 1. The newly developed model results on Cairo University ultrasound images dataset
(test part).

Deep-Learning Model Precision Recall F1-Score Loss Accuracy
Proposed DNN R5_R5_R5 0.88 0.88 0.88 0.2919 0.88
Proposed DNN R3_R3_R3 0.91 0.91 0.91 0.2445 0.91

Proposed DNN R3_R5_R35 0.93 0.93 0.93 0.2103 0.93

Table 2. Confusion matrix for the test dataset. (0 indicating no breast cancer and 1 indicating existing
breast cancer, one of the benign and malignant in the image.).
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As we used some of the features of the state-of-the-art GoogLeNet and ResNet archi-
tectures in the design of the new architecture, we compared the proposed architecture, i.e.,
DNN R3_R5_R35, with these architectures in Table 3. To perform this comparison, we have
utilized GoogLeNet with 22 layers and ResNet with 50 layers for comparison. The results
indicate that ResNet outperformed GoogLeNet in two critical evaluation metrics: accuracy
and F1 score. Inspection of the table containing the results reveals that the proposed method
has surpassed both of these models and yielded a higher detection accuracy than these two
state-of-the-art architectures.

Table 3. Comparison of the proposed model against GoogLeNet and ResNet on the test dataset.

Deep-Learning Model Precision Recall F1-Score Loss Accuracy
GoogLeNet 0.86 0.87 0.85 0.59 0.87

ResNet50 (Residual Network) 0.87 0.85 0.86 0.51 0.88
DNN R3_R5_R35 0.93 0.93 0.93 0.2103 0.93

The performance of GoogLeNet during the training phase is shown in Figure 7. A
comparison between Figures 6 and 7 demonstrates that there is a suitable performance for
the proposed models and no overfitting compared to GoogLeNet. The DNN R3_R5_R35
model that uses different sizes of convolutional filters achieves the best performance.
Here, we compare the proposed architecture with the state-of-the-art image processing
architectures in terms of prediction accuracy and loss on test data. Table 4 shows these
comparisons. The proposed model is superior to all existing image processing architectures
in terms of prediction accuracy on breast cancer images.
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Figure 7. Accuracy and loss diagrams for the GoogLeNet.

Table 4. Comparison of the proposed model against nine state-of-the-art image processing models
on the Cairo University ultrasound images dataset.

Deep-Learning Model Loss (%) Accuracy (%)
AlexNet 66 69
ZFNet 64 69

VGG-16 6 73
Inception v4 46 85
MobileNet 55 85

WideResNet 39 88
GoogLeNet 59 87
ResNet34 61 83
ResNet50 51 88

Proposed DNN R3_R5_R35 21 93

We also applied the proposed model to the breast histopathology images dataset to
further evaluate it. The original dataset consisted of 162 whole-mount slide images of breast
cancer specimens scanned at 40×. From that, 277,524 patches of size 50 × 50 were extracted
(198,738 IDC-negative and 78,786 IDC-positive). Invasive Ductal Carcinoma (IDC) is the
most common subtype of all breast cancers. We choose 40,000 images in total from the
dataset: 20,000 random images from both classes. We split the dataset into training and
test sets, allocating 80% for training and 20% for testing. The comparison results of the
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proposed DNN R3_R5_R35 model against existing approaches are listed in Table 5. The
best results are highlighted in bold. It is evident from the table that the proposed model
has outperformed the other models in the two assessed criteria.

Table 5. Comparative analysis on breast histopathology images dataset.

Ref. Year Method/Model Accuracy (%) F1-Score (%)
[32] 2023 Transfer learning with VGG16 91 89
[33] 2023 ViT-Patch 32 89 -
[37] 2021 CNN architecture 87 87
[38] 2021 DenseNet121 Model 86 87
[38] 2021 DenseNet169 85 86
[38] 2021 MobileNet 86 85
[38] 2021 ResNet50 84 83
[38] 2021 VGG19 84 80
[38] 2021 VGG16 85 85
[38] 2021 EfficientNetB0 84 84
[38] 2021 EfficientNetB4 82 82
[38] 2021 EfficientNetB5 84 84
[39] 2020 Residual learning-based CNN 84 83
[40] 2020 CNN 85 82

[41] 2021 Patch-Based Deep-Learning
Modeling 85 85

Proposed Study Proposed DNN R3_R5_R35 Model 95 93

The objective of this study was to enhance the accuracy of breast cancer detection
through the application of deep-learning techniques in the development of computer-aided
detection systems. The proposed model, utilizing various filter sizes, demonstrated 93%
and 95% accuracy on two distinct datasets: ultrasound images and breast histopathology
images, respectively. The second goal was to decrease the parameters of the network,
aiming to improve the training time. The time issue during the training process for any
deep-learning model is still challenging and depends on the facilities that be used. Training
the model on ultrasound and histopathology images takes less than two hours and less
than six hours, respectively, which is suitable compared to other DNN models.

A short review above, we can conclude the main findings of this paper as follows:

1. The granular computing technique used in this paper, by breaking down images
into smaller, more granular components, can effectively extract features from images,
allowing for more accurate and efficient image analysis. This leads to increased effi-
ciency by reducing the computational complexity of image analysis tasks. Moreover,
breaking down images into smaller, granular computing can improve the accuracy of
image analysis tasks, leading to more reliable results;

2. Activation functions with learnable parameters offer greater flexibility and adaptabil-
ity compared to traditional activation functions with fixed parameters. This allows
the network to better adapt to different types of data and tasks. These functions can
also improve the flow of gradients through the network during training, making it
easier to optimize the network and reduce the risk of vanishing gradients. Better
regularization is another advantage of these functions. Learnable activation functions
can be used as a form of regularization, helping to prevent overfitting by constraining
the network’s capacity and reducing the risk of memorization;

3. In this study, a range of filters and kernels of varying sizes were employed to effec-
tively identify patterns at multiple scales within an image. By incorporating multiple
kernels within a filter, the network was able to learn diverse and robust feature repre-
sentations, which helped to reduce overfitting and improve the generalization of the
model. This approach enabled the model to consider a wider range of input features,
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leading to higher accuracy in complex tasks compared with a model that employs a
single filter and kernel. The use of multiple kernels within a filter, therefore, represents
an effective strategy for improving the ability of a neural network to generalize to
new images by facilitating the learning of more sophisticated features across a range
of spatial scales;

4. Utilizing a wide and depth network, shortcut connections, attention layers, auxil-
iary classifiers, and using a learnable activation function improves the accuracy of
diagnosis and consequence and decreases the load on doctors. In addition, using
1 × 1 convolutions reduces time consumption in the model. Compared to existing
breast cancer methods, the proposed model achieves the highest diagnostic accuracy.

There are two potential limitations to the presented model:

1. The extraction of some patterns from the image may be dependent on the granularity
size. In the proposed granulation, the granularity size was set to 32 × 32 pixels,
regardless of the image size. Consequently, some patterns may not be extracted, weak-
ening the effectiveness of granulation. However, the model’s overall performance
demonstrates that the proposed granulation method outperformed state-of-the-art
models for the datasets under consideration;

2. Incorporating granularity in a model requires additional time before the training
process can commence. It is worth noting, however, that once these granules have
been established, they can be reused multiple times.

5. Conclusions and Future Work

By automating the diagnosis process, healthcare professionals can focus on providing
personalized treatment plans for patients. This not only improves patient outcomes but
also reduces healthcare costs by minimizing unnecessary procedures and tests. The use of
machine-learning and deep-learning techniques in breast cancer detection has the potential
to revolutionize the way breast cancer is diagnosed and managed. Incorporating these
tools into healthcare systems has the potential to lower cancer-related mortality rates and
enhance the overall management of breast cancer. This paper proposed a novel granular
computing-based deep-learning model for breast cancer detection, which is evaluated
under ultrasound images and breast histopathology images datasets. The proposed model
has used some effective features of GoogLeNet and ResNet architectures (such as wide
and depth modules, 1 × 1 convolutional filters, auxiliary classifiers, and skip connection)
and has added some new features such as granular computing, activation functions with
learnable parameters, and attention layer to the new architecture. Granular computing
can extract the important features of the image and create a new image with the important
features highlighted before sending it to the training process. This feature makes the model
require fewer images than in the case where granularity is not used. The proposed model
achieved an accuracy improvement compared to state-of-the-art models. In particular,
the deep-learning model based on granular computing exhibited an accuracy of 93% and
95% on two real-world datasets, ultrasound images and breast histopathology images,
respectively. The model delivered promising results on the datasets. The findings may
encourage radiologists and physicians to leverage the model in the early detection of breast
cancer, leading to improved diagnosis accuracy, reduced time consumption, and eased
workload of doctors. It has been confirmed that granular computing has a positive effect
on the performance of problems where the number of available images is small, such as
breast cancer.

For future work, the following items can be performed: (1) The framework can
be further optimized for real-time performance. Taking inspiration from the MobileNet
architecture, e.g., separable convolutions feature, the number of parameters of the proposed
architecture can be reduced so that the accuracy does not decrease much. (2) Instead of
granular computing, one can use fuzzy clustering. This method uses fuzzy logic to group
pixels in an image into clusters based on their similarity. (3) There are usually very few
medical photos. The number of these photos can be increased with techniques such as
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Sketch2Photo [42] before starting the learning process. This will increase the accuracy of
the model. (4) Over the last 30 years, hyperspectral imagery (HSI) has gained prominence
for its ability to discern anomalies from natural ground objects based on their spectral
characteristics. The importance of HSI has been recognized in a variety of remote sensing
applications, including but not limited to object classification, hyperspectral unmixing,
anomaly detection, and change detection [43]. We can use this technique to identify breast
cancer. (5) The primary challenge in content-based image retrieval (CBIR) systems is the
presence of a semantic gap that must be narrowed for effective retrieval. To address this
issue, various techniques, such as those outlined in [44], can be employed to incorporate
semantic considerations. (6) To reduce the processing time, it is suggested to use distributed
and parallel similarity retrieval techniques, such as [45], on large CT image sequences.
(7) The proposed framework can be extended to include other types of cancer detection,
such as lung or prostate cancer. This would enable the development of a comprehensive
cancer detection system that can be integrated into existing healthcare systems.
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Abstract: Knee osteoarthritis (OA) detection is an important area of research in health informatics that
aims to improve the accuracy of diagnosing this debilitating condition. In this paper, we investigate
the ability of DenseNet169, a deep convolutional neural network architecture, for knee osteoarthritis
detection using X-ray images. We focus on the use of the DenseNet169 architecture and propose an
adaptive early stopping technique that utilizes gradual cross-entropy loss estimation. The proposed
approach allows for the efficient selection of the optimal number of training epochs, thus preventing
overfitting. To achieve the goal of this study, the adaptive early stopping mechanism that observes
the validation accuracy as a threshold was designed. Then, the gradual cross-entropy (GCE) loss
estimation technique was developed and integrated to the epoch training mechanism. Both adaptive
early stopping and GCE were incorporated into the DenseNet169 for the OA detection model. The
performance of the model was measured using several metrics including accuracy, precision, and
recall. The obtained results were compared with those obtained from the existing works. The
comparison shows that the proposed model outperformed the existing solutions in terms of accuracy,
precision, recall, and loss performance, which indicates that the adaptive early stopping coupled with
GCE improved the ability of DenseNet169 to accurately detect knee OA.

Keywords: knee OA detection; DenseNet169; early stopping; self-adaptive; GCE

1. Introduction

Osteoarthritis is a degenerative joint disorder that affects millions of people worldwide,
leading to pain and loss of mobility in the affected joints [1,2]. Early detection and diagnosis
of osteoarthritis are crucial for effective treatment, but traditional diagnostic methods can be
time-consuming and invasive. In recent years, deep learning-based techniques have shown
great potential in the early detection of knee osteoarthritis using medical imaging [2,3]. This
type of approach can automate the analysis of radiographic images, reducing the dependence
on subjective interpretations, and increasing the accuracy and consistency of diagnosis [4,5].

Deep learning is a powerful tool used for image analysis, pattern recognition, and
decision making. It is based on the use of artificial neural networks, which are modelled
after the human brain, and can learn from data [6]. In the context of knee osteoarthritis
detection, deep learning algorithms can be trained to recognize patterns and features that
are indicative of the disease in radiographic images [7,8]. The ability to automatically
extract and analyze these features can provide a more objective and accurate diagnosis than
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traditional methods [8,9]. Recent studies have shown that deep learning-based techniques
can achieve high accuracy in the detection of knee osteoarthritis using X-ray and MRI
images [9,10]. These results demonstrate the potential of deep learning-based techniques
for the early detection of knee osteoarthritis and pave the way for the development of more
accurate and efficient diagnostic tools.

However, it is worth noting that knee osteoarthritis detection using deep learning is
still in the development phase, and more research is required to validate and improve these
solutions before they become widely adopted in clinical practice [11]. One of the main
challenges in deep learning-based solutions for osteoarthritis detection is overfitting, which
occurs when a model is trained on a limited dataset and performs well on the training data
but performs poorly on new, unseen data [12,13]. According to [14], the limited size and
diversity of available datasets can lead to poor generalization and overfitting of the models.
This can result in a high accuracy on the training set but a low accuracy on the test set and
real-world data [15].

Increasing the number of epochs in a deep learning model can also lead to overfitting
and affect the accuracy of the model in various ways [16]. Generally speaking, as the
number of training epochs increases, the model will continue to learn from the training
data, and the accuracy of the training set will typically increase [17]. However, as the model
continues to learn, it may start to overfit the training data, resulting in a decrease in the
accuracy on the test set or real-world data [18].

In the case of a DenseNet169 model, which is a type of convolutional neural network,
increasing the number of epochs can lead to an improvement in the accuracy on the training
set. The model will be able to learn more from the training data, and the weights and biases
of the network will be adjusted to better fit the data. However, after a certain number of
epochs, the accuracy on the validation set may start to decrease, indicating that the model
has started to overfit [19].

It is worth noting that the optimal number of epochs will depend on the specific
data, the architecture of the model, and the task at hand [20]. One way to determine the
optimal number of epochs is to use techniques such as early stopping, which involves
monitoring the performance of the model on a validation set and stopping the training
when the performance starts to degrade [21]. By stopping the training before the model
starts to overfit, early stopping can help to prevent overfitting and improve the accuracy of
the model on new, unseen data.

Recent research has proposed various early stopping methods to improve the accu-
racy of DenseNet169-based models. For example, Ref. [21] proposed an early stopping
strategy that monitors the performance of the model on the validation set and stops the
training when the performance starts to degrade. In addition, Refs. [22,23] employed the
early stopping regularization that monitors the performance of the model on the valida-
tion set and stops the training when the performance starts to degrade. In their study,
Ref. [13] investigated knee OA early detection, and OA grading identification using deep
learning. The researchers developed a new approach to classify data in deep learning
models using the Laplace distribution-based strategy (LD-S) and created an aggregated
multiscale dilated convolution network (AMD-CNN) to extract features from multivariate
data of knee osteoarthritis (KOA) patients. They combined the AMD-CNN and LD-S to
create a new KOA-CAD method that achieves three objectives in computer-aided diagnosis.
Similarly, Ref. [24] introduced a new method for identifying knee osteoarthritis (KOA) in its
early stages, which involves using deep learning to extract features from data and classify
it. The algorithm being suggested utilizes X-ray images to both train and test the results.
It uses hybrid feature descriptors, which extract features through combinations of CNN
with HOG and CNN with LBP. The system employs three multi-classifiers to categorize
diseases based on the KL grading system using KNN, RF, and SVM. However, there are
several current research issues related to early stopping methods in deep learning models
including the DenseNet169. One issue is determining the optimal stopping point [23]. The
optimal stopping point will depend on the specific data, the architecture of the model, and
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the task at hand, and it is not clear yet how to determine it in an automated and general way
that works well across different datasets and tasks [25,26]. Another issue is related to the
trade-off between the accuracy and the generalization of the model. While early stopping
can prevent overfitting, it can also result in underfitting if the model is stopped too early;
this can lead to decreased accuracy on the test set or real-world data [27]. Therefore, there is
a need to strike a balance between preventing overfitting and ensuring that the model has
enough capacity to generalize well to new data. Additionally, the definition of performance
degradation can vary depending on the dataset and the task, which makes it difficult to
generalize early stopping methods across different datasets and tasks [28].

To this end, this study is devoted to investigating the applicability and efficacy of
a novel adaptive early stopping technique in DenseNet169 in the context of knee OA
detection. Our early stopping mechanism sets a patience threshold for early stopping by
calculating the running average of the validation loss. In such a way, our technique can
avoid arbitrary termination of the training. The proposed technique also embeds a novel
gradual cross-entropy coefficient for accurate loss estimation during the early stopping of
model training. The contribution of this paper is three-fold, as follows:

1. An adaptive early stopping technique was proposed for DenseNet169 that dynami-
cally adjusts the number of epochs and the batch size during the training, based on
the contribution of each batch to the accuracy of the model.

2. A gradual loss estimation method based on cross-entropy was proposed for measuring
the dissimilarity between the predicted class probabilities and the true class labels.

3. An improved DenseNet169-based knee OA detection model which incorporates the
techniques in (1) and (2) was developed and experimentally evaluated using the Knee
Osteoarthritis Severity Grading dataset.

The rest of this paper is structured as follows. Section 2 provides the details on the
methodology design and techniques proposed in this study. Section 3 describes the dataset
and experimental environment used to carry out the model evaluation. It also explains the
results and analytically discusses the findings from the experimental evaluation. Section 4
concludes the paper with suggestions for further research suggestions.

Related Works

The evolution in detecting and assessing the severity level of knee OA has seen a
transition from traditional methods to the utilization of advanced machine learning and deep
learning techniques. These include the use of complex network theory [11], circular Fourier
filters [2], and deep learning algorithms to analyze radiographic knee X-ray images and aid
in the early detection and diagnosis of the disease. A pivotal development in this research
is the usage of a deep learning-based algorithm to automatically assess and grade the OA
severity, often achieving comparable accuracy with expert radiologists [7,8]. In some instances,
utilizing deep learning techniques on properly preprocessed images, such as through image
sharpening, has resulted in improved accuracy rates [24]. Similarly, a semi-automatic model
based on deep Siamese convolutional neural networks has been used to detect OA lesions
according to the KL scale [29]. Furthermore, transfer learning has been deployed to aid the
classification performance of models trained on imbalanced datasets.

With the advancement in deep learning architectures, new methodologies for OA sever-
ity assessment are introduced. A variety of deep-learning models have been proposed in the
literature for diagnosing the severity of knee OA. For example, Ref. [30] leveraged a fully
convolutional network (FCN) to locate knee joints and a deep convolutional neural network
(CNN) to differentiate various stages of knee OA severity. Likewise, Ref. [31] introduced a
technique using deep Siamese CNNs for automatic grading of knee OA severity following
the KL grading scale, treating knee OA as a multi-class problem based on KL grades.
Moreover, Ref. [32] presented a Discriminative Regularized Auto-Encoder (DRAE) for the
early detection of knee OA, specifically differentiating between non-OA and minimal OA.
The DRAE combines a discriminative loss function with the standard auto-encoder training
criterion to improve the identification of knee OA.

148



Diagnostics 2023, 13, 1903

Pre-trained deep learning models such as DenseNet and ResNet were also used in several
studies for the knee OA severity level assessment. In particular, DenseNet201 was employed
in [33] to develop knee OA grading. The model trains the DenseNet201 architecture on knee
radiographic images from the OAI dataset. Using the Kellgren and Lawrence (KL) grading
system, the model classifies the severity from grade 0 through grade 4. Similarly, the knee OA
model proposed in [34] utilized DenseNet169. The model involves training the DenseNet169
using a balanced combination of two loss functions, categorical cross-entropy and mean
squared error. This model inherently enables the prediction of knee OA severity on both an
ordinal scale (0, 1, 2, 3, 4) and a continuous scale (0–4).

The study [35] proposed two novel learning structures, Deep Hybrid Learning-I
(DHL-I) and Deep Hybrid Learning-II (DHL-II), both devised for efficient knee osteoarthri-
tis (OA) severity classification based on Kellgren-Lawrence (KL) grades. DHL-I, based on
a convolutional neural network (CNN), introduces a five-class prediction structure. This
model is trained on knee X-ray images, then extracts features, applies principal component
analysis (PCA) for dimensionality reduction, and then uses support vector machines (SVMs)
for classification. DHL-II follows the same process, but the pre-trained CNN developed for
DHL-I is fine-tuned using the concept of transfer learning to classify knee OA into four,
three, and two classes.

When training a deep neural network model for assessing knee OA severity level,
setting the appropriate number of training epochs and batch size per epoch often poses
a challenge [36]. Overfitting might occur if too many epochs are used, while underfitting
may result from too few epochs [37]. Training a neural network involves finding the right
balance to avoid overfitting the training data. While adjusting the number of training
epochs can help, it is computationally intensive and is not guaranteed to find an optimal
value. Early stopping offers a more efficient solution [36]. This strategy involves training
the model for many epochs, then halting the training when the model’s performance on
a validation dataset starts to decline, ensuring optimal generalization performance [37].
This can be achieved by setting a potentially large number of training epochs initially, and
then halting the training process when there is no further improvement in the model’s
performance on the validation dataset.

Several studies have adopted early stopping for knee OA severity level assessment. A
convolutional neural network with ResU-Net architecture (ResU-Net-18) was used in [38]
to develop a Multiple-JSW for knee OA severity and progression. The model segments
the knee X-ray images, and the minimum and multiple joint space widths (JSW) were
estimated from this segmentation and verified against radiologist measurements. During
ResU-Net-18 training, the early stopping mechanism was implemented. This technique
ends the training if there is no reduction in the loss for 10 consecutive epochs, serving as a
preventive measure against overfitting.

The study conducted by [39] developed a fully automated deep-learning model for
assessing the severity of knee osteoarthritis (OA) using the Kellgren–Lawrence (KL) grading
system. The algorithm was developed to use posterior–anterior (PA) and lateral (LAT)
views of knee radiographs for this assessment. Early stopping was employed to halt
the training before the model overfitted. The early stopping parameter was set to 20,
which stops the training after 20 epochs. Nonetheless, identifying the ideal number of
epochs poses a significant challenge. Similar to methods not employing early stopping,
this approach could lead to overfitting if the early stopping criteria are set too high, and to
underfitting if the criteria are set too low.

A pre-trained CNN model was also used in [29], which developed a semi-automatic
computer-aided diagnosis (CAD) for detecting knee OA based on ResNet-34. The model
used deep Siamese convolutional neural networks and a fine-tuned ResNet-34 to detect OA
lesions in both knees based on the Kellgren and Lawrence (KL) scale. In order to balance
the prevention of overfitting with maintaining model accuracy, an early stopping criterion
was implemented. This stopped training when there was not any improvement in the
validation accuracy observed after 50 epochs.
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Although some of the existing knee OA grading models employ early stopping, they
rely on statically set patience parameter values based on the number of epochs and the
batch size. Such a static approach makes the model rigid and unable to adapt to the varying
characteristics of the OA in X-ray images. If the patience value is set statically, it may not be
optimal, as a value that is too high may lead to overfitting. This is because the model could
continue training beyond the point of optimal generalization, learning the noise in the
training data. On the other hand, a value that is too low may stop the training prematurely,
leading to an underfit model that does not capture the underlying patterns in the data.
Hence, it is crucial to find a balance and possibly employ dynamic strategies in setting the
patience parameter for early stopping.

2. Materials and Methods

The methodology section of this paper describes the methods and procedures used to
develop and evaluate the deep learning-based knee osteoarthritis (OA) detection method
using X-ray images. We first present the dataset used in this study and the pre-processing
steps applied to the images. Next, we describe the DenseNet169 architecture, and the fine-
tuning process used to adapt the model to the knee OA detection task. We also describe
the implementation details of the early stopping methods used to prevent overfitting and
improve the accuracy of the model. Finally, we present the evaluation metrics and statistical
analysis used to assess the performance of the proposed method. This section provides a
detailed description of the steps taken to achieve the results and conclusions of this study,
allowing for replication and further research on the topic.

2.1. X-ray Images Pre-Processing

The model development was carried out in three phases, i.e., pre-processing, training,
and fine-tuning. At pre-processing phase, X-ray images underwent several procedures,
namely, embedding, data augmentation, transposition, and flipping. Furthermore, vi-
sion transformer (ViT) was used to divide the input images into fixed-size patches and
then positionally embed them into the transformer’s encoder (TE). This step reduces the
overhead on the model as it replaces the convolutions while maintaining a high level of
accuracy. Concretely, the ViT takes an image, x ∈ R(H ×W × C), as input and turns it
into a sequence of patches , xp ∈ R(N × P× P× C), where (H, W) denotes the hight and
width of the original image, C denotes the number of channels, (P, P) denotes the patch
resolution, and N is the number of patches, which is calculated as follows.

N =
WH
P2 (1)

Then, the generated patches are embedded linearly into the TE. The TE uses a multi-
head self-attention layer to control the embedding and generates a richer representation of
image data. In particular, the self-attention layer consolidates the ability of TE to relate the
sequence of inputs with each other.

2.2. An Adaptive Early Stopping for DenseNet169-Based Knee OA Detection Model

The model adopts the DenseNet169 architecture in which each layer is connected to
every other layer [40,41]. The rationale behind this choice is that DenseNet169 architecture
has far fewer trainable parameters compared to other architectures. Therefore, DenseNet169
helps to increase the depth of deep CNNs while avoiding information vanishing, which
happens when the path between input and output layers becomes too big. By reducing the
number of parameters, DenseNet169 gets rid of redundant feature maps, which, in turn,
reduces the number of filters as well [42]. Figure 1 shows the architecture of DenseNet169.
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Figure 1. The architecture of DenseNet169.

The DenseNet169 architecture is composed of several types of layers including con-
volutional, maxpool, dense, and transition layers [41]. Moreover, the architecture uses
two activation functions, namely, Relu and SoftMax. The former is used throughout the
architecture, except for the final layer, in which SoftMax is used instead. The purpose of
convolutional layers is to apply multiple filters to the X-ray image and generate a feature
map that describes the intensity of the extracted features. Concretely, if we take an image
input with L × N size followed by a convolutional layer and apply an m × m filter, the
output of the convolution will be an (l −m + 1) × (l − n + 1).

The maxpool layer in DenseNet169 is then used to decrease the feature map size.
To achieve that, a pooling filter is applied over the feature map, which aggregates the
features in the area covered by the filter region. Concretely, a feature map with (nh, nw, nc)
dimensions can be reduced by applying the MaxPool technique as described in Equation 1
as follows:

MaxPool =
nc × (nh − f + 1)× (nw − f + 1)

s2 (2)

where h denotes the height, w denotes the width, c denotes the channel of the feature map,
and f denotes the size of the filter.

The dense layer in DenseNet169 architecture consists of nodes (neurons) that receive
inputs from all nodes in the preceding layer. Those inputs undergo matrix–vector mul-
tiplication. Concretely, it is assumed that M is an x × y matrix, p is a (1 × y) vector, and
the matrix λ of parameters of the preceding layer was learned using the backpropagation.
Therefore, the weights (ϕly ) and biases (ηly ) associated with layer ly can be calculated
as follows:

ϕly = ϕly − α× dϕly (3)

ηly = ηly − α× dηly (4)

The dϕly and dηly are the partial derivatives of the loss function of ϕ and η. Finally,
the transition layer decreases the model complexity by reducing the number of channels
using 1 × 1 convolution. Table 1 shows the layered architecture of DenseNet169. It details
the information for each layer, including the kernel size, tensor size, and used parameters.
From the table, we can observe that Relu and SoftMax are used as activation functions.
Moreover, the stride value (which determines the number of pixels that shift over the input
matrix) was set to 2 in all convolutions, pooling, and transition layers. In addition, the
dropout that helps in preventing overfitting and reduces the variance is set to 0.2 for all
dense layers. We can also observe that the tensor size decreases by half when moving
toward the output layer.

Table 1. DenseNet169 layered architecture.

Layer Kernel Size Parameters Tensor Size

Convolution Conv = 7× 7 Stride = 2, Relu 112× 112
Pooling MaxPool = 3× 3 Stride = 2 56× 56

Dense1 Conv = 1× 1× 6
Conv = 3× 3× 6 Dropout = 0.2 56× 56

151



Diagnostics 2023, 13, 1903

Table 1. Cont.

Layer Kernel Size Parameters Tensor Size

Transition 1 Conv = 1× 1
AvgPool = 2× 2 Stride = 2 56× 56

28× 28

Dense 2 Conv = 1× 1× 12
Conv = 3× 3× 12 Dropout = 0.2 28× 28

Transition 2 Conv = 1× 1
AvgPool = 2× 2 Stride = 2 28× 28

14× 14

Dense 3 Conv = 1× 1× 32
Conv = 3× 3× 32 Dropout = 0.2 14× 14

Transition 2 Conv = 1× 1
AvgPool = 2× 2 Stride = 2 14× 14

7× 7

Dense 4 Conv = 1× 1× 32
Conv = 3× 3× 32 Dropout = 0.2 7× 7

Classification AvgPool = 1× 1
1000D (fully connected SoftMax) 1× 1

2.3. An Adaptive Early Stopping Technique

Unlike classical sequential models, our model dynamically adjusts the number of
epochs as well as the number of steps per epoch (batch size) during the training, based on
the contribution of each batch to the accuracy of the model. An early stopping mechanism
was incorporated into the feedforward and backpropagation during the model training.
This mechanism solves the issue of identifying an appropriate number of training epochs
as well as batch size per epoch. The early stopping allows the model to start with arbitrary
values for both parameters and stops the training when no further improvement happens
at both levels. During the model’s training, the early stopping mechanism monitors one
or more performance measures based on which the training can be aborted. In our study,
we monitor the loss on the validation set. The model stops the training when no further
decrement is achieved in the validation loss. To avoid immature early stopping, we set
a patience threshold as a baseline value calculated using the running average of the loss
difference (ε). Equation (5) was used to calculate the value of the patience parameter. The
equations show that the value is updated at every step within the epoch based on the
average of previous values, which avoids arbitrary stopping.

Patience =
avg

(
εti−1

)
+ εti

i + 1
(5)

ε = ti − ti−1 (6)

where ti denotes the ith value of the observed measure.
The model waits until the threshold’s value is satisfied, then triggers the early stop-

ping. Such a controlling mechanism relies on two parameters, a global parameter (macro
controller), and a local parameter (micro controller). On the one hand, the macro con-
trolling parameter aborts the training when a set of preceding and current epochs make
no improvement to the accuracy. On the other hand, the micro-controlling parameter
aborts the running epoch at the time when it detects that no further improvement to the
accuracy is made during that epoch. Therefore, model training takes less time and uses
fewer resources.

However, dropping part of the data on the macro and micro level could deprive the
model of valuable data located that would have been used in later epochs. To mitigate
such drawback of early stopping, an improved loss function technique with the ability to
compensate for potentially lost data was developed.
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2.4. A Gradual Cross-Entropy Loss Estimation Technique

As pointed out above, the existing loss function techniques rely on the entire data
allocated for the epoch to calculate the loss. However, the early stopping aborts the
epoch execution and drops a portion of training data. Consequently, the loss estimation
is negatively affected. To address the effect of early stopping on the accuracy of the loss
estimation, our study proposes a gradual cross-sntropy (GCE) technique which improves
the loss estimation at the micro (epoch) level. Unlike the existing loss calculation techniques
that consider all epoch data, the GCE calculates the loss based on only the portion of the
data that was consumed in the epoch until the moment of abortion. Intuitively, the early
stopping at the micro level discards the remaining data in the batch allocated for the current
epoch. Therefore, it is necessary to exclude the discarded data from the loss calculation.
Concretely, Equation (7) shows that the entropy value is divided by the total number of
examples (N) in the epoch.

J(w) = − 1
N

N

∑
i=1

C

∑
c=1

1yiεCc logpmodel
[yiεCc] (7)

where C denotes the category (class) and 1yiεCc denotes the ith observation that belongs to
the cth category. Such a calculation overlooks the effect of early stopping. To rectify such a
drawback, our study introduces a gradual weighting coefficient δ into the loss function as
shown in Equation (8). The calculation of δ value is shown in Equation (9).

J(w) = − δ

N

N

∑
i=1

C

∑
c=1

1yiεCc logpmodel
[yiεCc] (8)

δ =
N
l

(9)

where l denotes the number of examples that were consumed so far during the current
epoch. The coefficient δ reduces the weight of N according to the actual number of training
examples that were used during the epoch. If an epoch stops early, the loss calculation is
carried out based on the consumed data only. Therefore, the accuracy of loss estimation is
improved, which consequently improves the accuracy of the model. The GCE is integrated
into the detection model and used during the training phase to support the feed-forward
and backpropagation.

2.5. Dataset Description

In this study, the Knee Osteoarthritis Severity Grading dataset is used to train and
evaluate the performance of the proposed model. It contains knee X-ray images for OA
detection and KL grading. Five gradings constitute the dataset labels as follows: healthy
knee image (grade 0), doubtful joint space narrowing (JSN) with possible OA (grade 1 or
healthy), confirmed OA and possible joint space narrowing (grade 2 or minimal), multiple
moderate OA with confirmed JSN and mild sclerosis (grade 3 or moderate), and large OA
with significant JSN and severe sclerosis (grade 4 or severe). The data are distributed based
on the grades, such that there are 604 images for grade 0, 275 images for grade 1, 403 files
for grade 2, 200 images for grade 3, and 44 images for grade 4. Figure 2 shows samples of
images with various labels.
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From the data distribution illustrated above, it can be seen that the dataset has a class
imbalance, which might lead to classification bias toward the majority label. To mitigate
this drawback, data augmentation was used to balance the training set so that each class
contains 500 samples. Several techniques were employed to conduct the augmentation,
including flipping, rotation, shifting, and zooming. Table 2 shows the augmentation
parameter customization used in this study, which was determined experimentally.

Table 2. Augmentation optimization parameters.

Parameter Value

horizontal_flip True
rotation_range 25

width_shift_range 0.22
height_shift_range 0.23

zoom_range 0.25

The augmented samples were then added to the dataset and used for training the
detection model. The dataset was divided into three subsets, training, validation, and
testing, using the cross-validation method by which the data were sampled randomly, and
the five labels were represented in all subsets. Table 3 shows the data distribution among
the three subsets after conducting the K-fold cross-validation split.

Table 3. Data distribution among the training, validation, and testing subsets.

Subset Name Number of Samples

Training set 2500
Validation set 826

Testing set 1656
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2.6. Development and Evaluation Environment

This experiment was carried out in an MS Windows 10 machine with 16 GB RAM, 12th
Gen Intel Core i 7, 4.7 GHz, and NVIDIA 1050 Ti GPU. Python with several libraries such
as Tensor flow, Keras, Pandas, Numpy, Matplotlib, and Sci-kit learn was used to develop
the DenseNet169 DL model.

2.7. Evaluation Metrics

This study makes use of the confusion matrix to evaluate the performance of the
proposed model. On one side, the matrix shows the actual values, and on another side, it
shows the predicted values. Then, the ratio of true positive, true negative, false positive,
and false negative can be deduced. Several metrics were used to measure the performance
of the model including accuracy, F1 score, loss rate, precision, and recall. The following
equations are used to calculate these metrics for multi-class classification:

Accuracy =
∑ TP + ∑ TN

∑ TP + ∑ TN + ∑ FP + ∑ FN
(10)

Recall = ∑ TP
∑ TP + ∑ FN

(11)

Precision =
∑ TP

∑ TP + ∑ FP
(12)

F1 Score =
2× Pr× Re

Pr + Re
(13)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and
false negative, respectively.

3. Results and Discussion

In this section, the experimental results are detailed. The experiments were conducted
on the training dataset in three rounds. During the first round, we built a multi-class
classifier using the five labels in the dataset. In the second round, another multi-class
classifier was built using only three class labels. To achieve this, the class labels in the
dataset were categorized into three classes, including healthy, moderate, and severe. Lastly,
we built a binary classifier where the labels were put under two categories, healthy and
unhealthy. The purpose of such multi-round training is to investigate the effect of multi-
classes on the accuracy of the model. This helps to determine whether increasing the classes
affects the ability of DenseNet169 to detect the stage of OA.

Table 4 summarizes the performance of the proposed model with respect to accuracy,
F1 score, precision, and recall. The model applies the adaptive early stopping when
the training process does not make any further improvements, which helps to prevent
overfitting. The results show that the five-class classification achieved 0.62 accuracies,
0.65 F score, 0.58 precision, and 0.61 recall. For the three-class classification, the results
show an increase in the accuracy to 0.93, F1 score to 0.90, precision to 0.91, and recall to
0.91. When we used the binary class classification, the results were increased to 0.94 for
accuracy, F1 score, precision, and recall. The confusion matrix for the three classification
tasks was used to calculate the performance metrics (accuracy, recall, precision and F1
score). The horizontal side of those matrices represents the actual labels, while the vertical
side represents the predicted labels. The intersection between the actual and predicted
labels determines the performance of the model as to whether it generates true positives
(TP), true negatives (TN), false positives (FP), or false negatives (FN). Based on such a
prediction, the accuracy of the model was calculated.
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Table 4. The performance of the proposed model with respect to the accuracy, F1 score, precision,
and recall.

Precision Recall F1 Score Accuracy

2-class 0.9456 0.9469 0.9449 0.9408
3-class 0.9315 0.9058 0.9132 0.9179
5-class 0.5995 0.6220 0.6059 0.6274

Figure 3 shows the training and validation performance of the model for the three-class
tasks (5-class (a), 3-class (b), and 2-class (c)) over the training epochs. It also shows the
best fit where the training and validation curves intersect. It can be observed that the loss
decreases in both the training and validation sets when the number of epochs increases.
In the three classification tasks (i.e., five-class, three-class, and two-class classification),
it can be noticed that the training loss was higher than the validation loss at the early
epochs. While the training loss continues to decrease at the late epochs during the five-class
training (3:a), the validation loss curve tends to flatten, which indicates that the loss does
not improve by increasing the epochs. However, during the three-class and two-class
classifications, both the training and validation losses overlap most of the time. The loss
curves also show the effect of the adaptive early stopping technique as the training stops at
12 epochs (five-class), 13 epochs (three-class), and 14 epochs (two-class) when the model
detects no more improvement on the validation set.
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Figure 3. Training and validation performance of the model for the 5-class (a), 3-class (b), and
2-class (c) tasks over the training epochs.

Figure 4 shows the comparison between five-class classification, three-class classifi-
cation, and the binary classification that we conducted using our proposed model. The
results were taken after each epoch using the validation set. It can be observed that the
binary classification achieved the highest accuracy, while the accuracy of the five-class clas-
sification was the lowest. Moreover, it can be observed that the training accuracy increases
when the number of epochs increases, until the number of epochs reaches 25, where we
can see that the increase becomes less gradual. Furthermore, the comparison shows that
the validation accuracy was not stable and oscillated around 0.6. This indicates that the
data with five-class labels negatively affect the accuracy when new data are introduced to
the model. The reason behind this drop in the model’s accuracy could be the overlapping
between the class boundaries, which makes it difficult for the model to distinguish between
the characteristics of those classes. The high training accuracy confirms such claim as the
model overfits the training examples. In contrast, the validation accuracy for three-class
classification and binary classification increased to around 0.9. This means that the model
performed well when the target label was less granular but dropped when the labeling
became more specific. This could be due to the inability of the model to explore discrimi-
native features that represent the fine granular labels (the five-class case). One potential
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solution is to embed an attention layer as a feature selection mechanism into the model
structure so that it can focus on a set of features relevant to the target classes.
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Figure 4. Adaptive DenseNet169 accuracy trending based on the number of epochs for 2-class, 3-class,
and 5-class classification.

Tables 5–7 show a comparison between the proposed adaptive DenseNet169 model
with the results of existing works. The comparison is also visualized in Figures 5–7.
The comparison was conducted between the proposed adaptive DenseNet169 and the
standard DenseNet169. We also compared the performance of the proposed model with the
existing studies related to pre-trained models for knee OA detection with early stopping
capabilities, namely, AMD-CNN [13], deep CNN [24], DHL-II [35], and ResNet-34 [29]. In
this comparison, we used several metrics, namely, precision, recall, F1 score, and accuracy.
By comparing the results obtained from our model with those obtained by related works,
it can be observed that the proposed model outperformed the previous models in terms
of accuracy, recall, and precision. In the comparison, the proposed model as well as the
models developed by existing works were trained using the same number of epochs. In
our model, the adaptive early stopping was applied at a batch level, in which the model
aborts the training of the respective epoch if new instances have little or no contributions
to improving the validation accuracy.

Table 5. Comparison between the performance of the proposed model with the related models for
the 2-class classification.

Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169

Precision 0.936 0.9298 0.9043 0.9 0.896 0.9456
Recall 0.9354 0.9155 0.8753 0.904 0.902 0.9469

F1 score 0.9371 0.9197 0.8889 0.92 0.907 0.9449
Accuracy 0.9354 0.9155 0.9358 0.917 0.9 0.9408

Table 6. Comparison between the performance of the proposed model with the related models for
3-class classification.

Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169

Precision 0.9241 0.9107 0.9132 0.867 0.86 0.9315
Recall 0.8954 0.884 0.892 0.88 0.875 0.9058

F1 score 0.9075 0.9021 0.9027 0.898 0.884 0.9132
Accuracy 0.9054 0.8979 0.8979 0.893 0.881 0.9179
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Table 7. Comparison between the performance of the proposed model with the related models for
the 5-class classification.

Standard DenseNet169 [13] [24] DHL II [35] ResNet [29] Adaptive DenseNet169

Precision 0.5822 0.5716 0.5873 0.581 0.583 0.5995
Recall 0.6059 0.5921 0.6174 0.604 0.61 0.622

F1 score 0.587 0.5735 0.5951 0.596 0.602 0.6059
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The improved performance (in terms of precision, recall, F1 score, and accuracy) that
our proposed adaptive DenseNet169 model shows over existing models in the two-class,
three-class, and five-class classifications can be primarily credited to the incorporation of
adaptive early stopping and the use of the gradual cross-entropy (GCE) loss estimation
technique. Early stopping allows our model to run an adequate number of epochs with
an appropriate batch size for each classification, preventing overfitting and avoiding
premature termination of training when the epochs and batch sizes are underestimated.
This adaptability allows for the dynamic readjustment of the patience parameter, which
ensures optimal data utilization, consequently leading to maximized accuracy.

This improved performance is attributed to the efficacy of the GCE technique, which
adaptively tunes the patience parameter based on the validation loss at the epoch level.
Unlike conventional methods that solely depend on the number of epochs for setting the
patience parameter, our model incorporates GCE to base the loss estimate on the data
processed at the epoch level before early stopping. This technique negates the influence of
discarded data on the loss calculation, ensuring more precise loss estimation. Hence, these
combined strategies allow our model to adapt and learn more effectively and accurately,
resulting in its improved performance over the existing models.

It can also be observed that the five-class classification achieved the lowest performance
by all models across all metrics (precision, recall, F1 score, and accuracy). This can stem from
the class imbalance, as the class “Healthy” has the highest number of images (2286), and the
class “Severe” has the least number of images (173). This creates a significant discrepancy
between the classes, and, as a result, the model might become biased toward the “Healthy”
class, simply because it encounters more examples of this class during training, making it less
capable of accurately detecting and differentiating between the less represented “Doubtful”,
“Minimal”, “Moderate”, and “Severe” classes. To address this issue, multimodal deep
learning can be an effective solution, as it leverages multiple types of data input, such
as combining image data with structured clinical data. For example, the model could be
trained on both X-ray images and corresponding clinical data such as patient age, weight,
gender, pain levels, and other relevant health metrics. By integrating these additional data
sources, the model could learn more complex representations and dependencies, leading
to more accurate OA severity predictions. However, collecting and integrating diverse
types of knee OA-related data (such as images, text, structured clinical data, etc.) can be
challenging due to data privacy and protection regulations such as the Health Insurance
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Portability and Accountability Act (HIPPA). These regulations, either mandated by local or
federal jurisdictions, strictly control the access to and usage of personal health information,
thereby adding a layer of complexity to the data collection process for multimodal training.
In addition, ensuring accurate alignment across different types of data is essential and
non-trivial. For successful and accurate multimodal training, it is critical to ensure that all
data types—the images, the textual information, and the structured clinical data—correctly
correspond to the same entity, such as a patient. This alignment guarantees that the
integrated data maintain their contextual relevance, thereby enabling the model to develop
a coherent understanding of the information. Moreover, it can be difficult to understand
which modality is contributing to the predictions and how they are interacting with each
other. These challenges can be investigated further in future studies. Researchers could
delve deeper into these issues, developing innovative solutions to streamline the alignment
process across different data types, and enhance the interpretability of multimodal models.

4. Conclusions

In this study, we present a novel approach to improve the performance of DenseNet169-
based knee osteoarthritis detection using X-ray images. Our approach utilizes an adaptive
early stopping technique coupled with gradual cross-entropy loss estimation. We have
shown that our approach improved the accuracy of knee osteoarthritis detection when com-
pared to traditional early stopping techniques. Our results demonstrate that the proposed
approach can lead to more accurate and efficient diagnostic tools for knee osteoarthritis.
This study also investigates the effect of several types of classification on detection accuracy
and shows that fewer classes generate accurate predictions. It is important to note that
our approach is not without limitations. Further research is needed to investigate the
generalizability of our method to other types of imaging modalities and to different types
of osteoarthritis. Additionally, more efforts are needed to improve the model for multi-class
classification when the number of classes increases. This is crucial for diagnosing the
development of OA and identifying what stage the disease is at. The incorporation of other
types of information, such as clinical data, may further improve the performance of the
proposed method. Despite these limitations, our results are a promising step toward the
development of more effective deep learning-based diagnostic tools for knee osteoarthritis.
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Abstract: Monkeypox, a virus transmitted from animals to humans, is a DNA virus with two distinct
genetic lineages in central and eastern Africa. In addition to zootonic transmission through direct
contact with the body fluids and blood of infected animals, monkeypox can also be transmitted from
person to person through skin lesions and respiratory secretions of an infected person. Various lesions
occur on the skin of infected individuals. This study has developed a hybrid artificial intelligence
system to detect monkeypox in skin images. An open source image dataset was used for skin
images. This dataset has a multi-class structure consisting of chickenpox, measles, monkeypox and
normal classes. The data distribution of the classes in the original dataset is unbalanced. Various
data augmentation and data preprocessing operations were applied to overcome this imbalance.
After these operations, CSPDarkNet, InceptionV4, MnasNet, MobileNetV3, RepVGG, SE-ResNet and
Xception, which are state-of-the-art deep learning models, were used for monkeypox detection. In
order to improve the classification results obtained in these models, a unique hybrid deep learning
model specific to this study was created by using the two highest-performing deep learning models
and the long short-term memory (LSTM) model together. In this hybrid artificial intelligence system
developed and proposed for monkeypox detection, test accuracy was 87% and Cohen’s kappa score
was 0.8222.

Keywords: artificial intelligence; deep learning; image classification; monkeypox disease

1. Introduction

Monkeypox is a type of zootonic virus that first emerged through transmission from
animals to humans. There appear to be two different lineages of this virus, a west African
lineage and a central African lineage. There are animal species that are susceptible to this
double-stranded DNA virus. These include tree and rore squirrels, dormice and Gambian
pouched rats. Monkeypox is a serious global health problem, affecting the rest of the
world in addition to West and East Africa, where its genetic lineage is found. Although it
originated in animals, it can also be transmitted from person to person through respiratory
secretions and skin lesions during travel. So far, monkeypox has been reported in many
countries including Nigeria, Israel, Singapore, Singapore, the United States and the United
Kingdom, in addition to Africa, where it first emerged. With monkeypox, it generally takes
between 6 and 13 days after infection for symptoms to appear. The infection is divided into
two parts: invasion period and skin eruption. In the invasion period, back pain, intense
headache, fever, etc., are observed and this lasts between 0 and 5 days. In skin eruption, the
appearance of fever varies between 1 and 3 days. Depending on factors such as the health
status of the patient and the duration of exposure to the virus, the duration of symptoms
in monkeypox, where severe cases are mostly seen in children, is between 2 and 4 weeks.
Case fatality rates are observed to be between 3% and 6% [1].

In addition to monkeypox, chickenpox and measles are among the diseases caused
by the virus on the skin. This study uses a 4-class open source dataset of skin images
and performs monkeypox detection by multi-class classification with a hybrid artificial
intelligence system. The main contributions of this study are listed below.
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• Since the open source dataset used in this study, which consists of normal, mon-
keypox, measles, and chickenpox classes, initially had an unbalanced structure, a
balanced dataset was created by equalizing the amount of data in each class with data
preprocessing and data augmentation operations.

• In the new augmented dataset, the dataset was randomly divided into 80% train,
10% validation and 10% test for training the deep learning models to be used for
monkeypox detection.

• In order to analyze the classification results more accurately, augmentation was per-
formed on the train dataset, while no augmentation was performed on the validation
and test datasets.

• First, the classification process was performed using state-of-the-art deep learning
models, CSPDarkNet, InceptionV4, MnasNet, MobileNetV3, RepVGG, SE-ResNet and
Xception.

• Then, in order to improve the classification results and to develop a unique model,
a hybrid deep learning model was created by combining the two models with the
highest results from these deep learning models and the long short-term memory
(LSTM) model.

• In order to further improve monkeypox detection, a unique hybrid artificial intel-
ligence system was developed with a convolutional neural network (CNN)-based
model and a LSTM encoder network.

2. Related Works

There are various artificial intelligence studies on the detection of monkeypox dis-
ease in the literature. Abdelhamid et al. developed a hybrid algorithm to optimize deep
neural networks on a monkeypox-related dataset shared openly on the Kaggle platform.
By using transfer learning with deep learning models such as AlexNet, VGG, ResNet,
and GoogLeNet, they achieved the highest classification accuracy of 98.8% [2]. Almutairi
optimized the hyperparameters of the VGG, Xception and MobileNet deep learning models
with the metaheuristic Harris Hawks optimizer algorithm using open source, multi-class
and two different datasets including monkoypex, and then performed classification with
various machine learning classifiers and obtained the highest accuracy values of 98.09%
and 97.75% for the two datasets [3]. Dwivedi et al. used the ResNet and EfficientNet-based
deep learning models for monkeypox skin lesion detection and found the highest accuracy
value was 87% with the EfficientNetB3 model [4]. Gairola and Kumar obtained an accuracy
of 95.55%, one of the highest accuracy values in monkeypox detection using the AlexNet,
GoogleNet and VGG deep learning models and various machine learning classifiers on
an open source monkeypox dataset [5]. Irmak et al. obtained 91.38% as the highest accu-
racy value in classification processes using pretrained MobileNetV2 and two VGG deep
learning models with different number of layers on open source monkeypox skin image
dataset [6]. Using an open source dataset for monkeypox image classification, Khafaga
et al. obtained 98.83% accuracy in monkeypox detection using deep convolutional neural
network optimized with the AL-Biruni Earth radius stochastic fractal search algorithm
in addition to the VGG19, ResNet50, GoogleNet, and AlexNet deep learning models [7].
On a two-class dataset consisting of normal and monkeypox classes, Singh and Songare
used the deep learning models InceptionV3, GoogLeNet, ResNet50 and VGG16 and found
the highest accuracy value of 88.27% in the GoogLeNet model [8]. Sitaula and Shahi first
performed classification with 13 different deep learning models on the monkeypox dataset,
and then obtained the best accuracy value of 87.13% for multi-class classification with
ensemble learning using Xception and DenseNet169, which are the two best-performing
models among these models [9]. Sahin et al. obtained the highest classification accuracy of
91.11% in Mo-bileNetV2 model for monkeypox detection for different epoch values using
the ResNet18, MobileNetV2, EfficientNet, NasNetMobile, GoogLeNet, and ShuffleNet
pretrained deep learning models. They also developed an Android mobile application
with Android Studio using Android SDK 12 and the Java programming language [10].
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Ahsan et al. first performed data augmentation on a very small amount of normal and
monkeypox images, and then obtained a wide range of accuracy values in many different
classification processes with the ResNet, VGG, Xception, NasNet, and EfficientNet deep
learning models using three different optimizers [11]. Altun et al. obtained the best results
with the hybrid MobileNetV3, which was optimized with an f1 score of 0.98 and an accuracy
of 96%, in classification processes performed with the ResNet50, DenseNet121, Efficient-
NetV2, MobileNetV3, Xcception, and VGG19 deep learning models on a two-class dataset
containing monkeypox images [12]. Özşahin et al. used the proposed convolutional neural
network model, AlexNet, VGG16 and VGG19 in their detection process on two datasets
associated with monkeypox and chickenpox and found the best classification accuracy of
99.6% in the proposed deep learning model [13]. Saleh and Rabie used the binary chimp
optimization algorithm on the data collected over the internet and obtained a 98.48% classi-
fication accuracy in monkeypox operations with an ensemble model consisting of weighted
naive bayes, weighted k-nearest neighbors and long short-term memory deep learning
model [14]. Almufareh et al. obtained the highest accuracy of 93% by using the model they
proposed and the InceptionV3, ResNet, MobileNetV2, EfficientNet deep learning models
on two different open source monkeypox skin image datasets [15]. Using the open source
monkeypox dataset by Al-rusaini, the highest accuracy value was obtained in the VGG16
model with 96% in the classification processes performed with the support vector machine,
ResNet50, SqueezeNet, VGG16 and InceptionV3 models [16]. In the classification process
performed by Ariansyah et al. using a dataset containing monkeypox, measles and normal
classification, the highest accuracy in the VGG models with the proposed convolutional
neural network was achieved in the VGG16 model [17]. VGG16, ResNet50, MobileNetV1,
InceptionV3, Xception models were used both alone and as feature extractors in various
machine learning classifiers for classification operations on a dataset consisting of nor-
mal, monkeypox, measles and chickenpox classes by Bala et al. and also a model called
MonkeyNet has been proposed within the scope of this study [18]. Çelik and Özkan per-
formed many classification operations with pretrained VGG, EfficientNet, MobileNet and
GoogleNet models on a multi-class dataset, including monkeypox images, and achieved the
highest accuracy in the EfficientNet model with the original dataset and in the MobileNet
model in the augmented dataset [19]. The highest accuracy value was obtained as 98.8%
with Xception, VGG16, VGG19 and modified fine-tuned ResNet50 models for monkeypox
detection by Gupta et al. and a secured blockchain-enabled framework was proposed [20].
For monkeypox detection, 93.39% accuracy was achieved by Pramanik et al., by proposing
beta normalization-based ensemble learning framework using the InceptionV3, Xception
and DenseNet169 deep learning models [21]. Thieme et al. developed a web-based app for
the classification of skin lesions caused by monkeypox virus infection using a large number
of monkeypox datasets, and 0.91 sensitivity and 0.898 specificity values were obtained in
the test dataset with the pretrained ResNet34 deep learning model [22]. On an open-source
monkeypox dataset, Velu et al. performed classification with the EfficientNet model and
then compared with the reinforcement learning approach Policy Gradient, Actor–Critic,
Deep Q-learning network and Double Deep Q-learning network, the highest accuracy was
achieved as 0.985 [23]. For the detection of monkeypox disease by Yasmin et al., using
DenseNet201, EfficientNetB7, Inception-ResNetV2, InceptionV3, VGG16, and ResNet50
models, the highest accuracy was obtained in the InceptionV3 model, and a fine-tuned
version of this model was recommended, and 100% accuracy in the new model called
PoxNet22 was achieved [24].

It is observed that studies in the literature often use deep learning models such as
AlexNet, VGG, and ResNet for monkeypox detection on multi-class, mostly two-class,
datasets and also use machine learning models for classification. This study develops a
novel hybrid artificial intelligence system for monkeypox detection on an open source,
four-class dataset using state-of-the-art deep learning models and the LSTM model, which
has not been used so far in the literature.
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In Section 3, the details of the monkeypox dataset used in this study, the data augmen-
tation and data preprocessing applied to this dataset, and the deep learning models used
for classification are described. Section 4 describes the proposed hybrid model, evaluation
metrics and detailed classification results. In Section 5, the results obtained for monkeypox
detection are analyzed and interpreted, the main contributions of this study and its differ-
ences from the literature are emphasized, and what improvements could be made in the
future following the current study are stated.

3. Materials and Methods

The dataset used in this study for monkeypox detection is an open source shared
dataset through the Kaggle platform [25]. The dataset consists of normal, monkeypox,
measles and chickenpox classes. It is understood that the distribution in the dataset is
unbalanced. However, in artificial intelligence models used in classification problems,
the class distribution should be as balanced as possible in order to fully realize network
training. For this reason, various data augmentation operations were first performed on the
dataset. These augmentations are equalize, horizontal flip, random brightness contrast, hue
saturation value, shift scale rotate and RGB shift. The parameters and values of the data
augmentations are given in Table 1. Additionally, Figures 1 and 2 show the first version of
the dataset and the new version after augmentation, respectively.

Table 1. Data augmentation types and parameters (p = probability).

Types Parameters Types Parameters

Equalize p = 0.5

Shift Scale Rotate

shift_limit = 0.1

Horizontal Flip p = 0.7 scale_limit = 0.05

Random Brightness Contrast
brightness_limit = 0.1 rotate_limit = 60

contrast_limit = 0.5 p = 0.7

p = 0.5

RGB Shift

r_shift_limit = 5

Hue Saturation Value

hue_shift_limit = 20 g_shift_limit = 5

sat_shift_limit = 30 b_shift_limit = 5

val_shift_limit = 20 p = 0.2

p = 0.5Diagnostics 2023, 13, 1772 5 of 23 
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Figure 1. Original first version of the dataset.
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A total of 770 skin image datasets are available in the initial version of the dataset,
including 293 normal, 279 monkeypox, 91 measles and 197 chickenpox images. Before data
augmentation, a total of 240 images, 60 from each class in the original dataset, were selected
for use in the test and validation dataset. Data augmentation was applied to the remaining
images from the original dataset and a train dataset containing 960 images was obtained.
Thanks to this method, the images in the test and validation set are not included in the
train dataset. In this way, the success of this study and the designed models were handled
in a more realistic way. After the data augmentation operations obtained by performing
data preprocessing, a new dataset with a total of 1200 skin images, 300 in each class, was
obtained. A sample image of both the original images and the images after data processing
for each class of the dataset used in this study are given in Figures 3 and 4, respectively.
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In the new version of the dataset with data augmentation and data preprocessing, the
training, validation and test distributions required for network training and classification
in deep learning models are 80%, 10% and 10%, respectively. The images in each class were
randomly determined in this data percentage distribution. No splitting occurred in the
augmented dataset. A total of 30 test and 30 validation images were randomly selected
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for each class from the original dataset. The purpose of the random selection is that the
researcher does not have the images in the test and validation dataset relatively easily.
After this step, a test and validation dataset containing 120 images in total was obtained. A
training dataset containing 960 images is required to ensure 80% training, 10% validation
and 10% testing. Therefore, these 960 training datasets were obtained by augmenting the
remaining 530 images in the original dataset. There is no imbalance as the test dataset
contains 30 images from each class. Information on the amount and distribution of the data
for each class is also shown in Figure 5 below.
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In the open source dataset used in this study, there are 300 images for each class—240 in
the training data, 30 in the test data, and 30 in the validation data. A total of 960 images were
used for training in the dataset. No augmentation was made to analyze the classification
results performed with the test dataset more realistically and accurately. Since the dataset
distribution was determined as 80%, 10%, and 10%, the size of the training dataset was
determined in this way.

First of all, a total of 7 different state-of-the-art deep learning models were used:
CSPDarkNet with 53 layers, MnasNet with 100 layers, SE-ResNet with 50 layers, Xcep-tion
with 71 layers, and InceptionV4, MobileNetV3, and RepVGG with different layer values. In
addition to using these deep learning models for classification, a unique hybrid model was
created by combining the best two CNN models with the LSTM model. All deep learning
models that were customized and used in the classification process are given below as
subheadings.

3.1. CSPDarkNet

DarkNet is a convolutional neural network used as a backbone in the YOLO object
detection model. This backbone, which contains 3 × 3 and 1 × 1 convolutional layers,
has different types depending on the number of layers [26]. Cross Stage Partial Network
(CSPNet) is a backbone that can be applied in many different deep learning models and
makes the model lightweighted [27]. In the YOLOv4 object detection model, CSPDarkNet
with 53 layers was used as the backbone [28]. In addition to being used as a backbone in
object detection models, it is also used in classification problems since it is a convolution
neural network. In this study, CSPDarkNet-53 model is used for monkeypox detection by
modifying the last layer.

3.2. InceptionV4

InceptionV4 is a convolutional neural network with more inception modules compared
to its predecessor InceptionV3. InceptionV4 is an inception variant of the hybrid inception
version Inception-ResNetV2 which does not include residual connections [29]. InceptionV4
model architecture used in this study was used for monkeypox detection.
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3.3. MnasNet

MnasNet is a convolutional neural network whose main building block is the in-verted
residual block in MobileNetV2 and proposes an automated mobile neural architecture
search approach [30]. The MnasNet model used in this study has 100 layers and the
number of features in the last layer is adapted for multi-class classification in accordance
with the monkeypox dataset classes.

3.4. MobileNetV3

MobileNetV3 is a convolutional neural network that boasts an efficient design in-
corporating squeeze-and-excitation modules, making it suitable for various tasks such as
classification, segmentation, and detection. This network has two variants, MobileNetV3-
Large and MobileNetV3-Small, which cater to different levels of resource usage. On the
ImageNet dataset for classification and the COCO dataset for detection, MobileNetV3
demonstrates improved performance compared to its predecessor, MobileNetV2 [31]. In
this study, the MobileNetV3-Large model with 100 layers was adapted and used for mon-
keypox detection.

3.5. RepVGG

RepVGG is fundamentally a deep learning model that employs 3 × 3 convolution
layers and ReLU non-linear activation functions. It features two primary types, RepVGG-
A and RepVGG-B, each with distinct subtypes corresponding to the layers within each
stage [32]. The RepVGG-B0 model, with its varying number of layers among the subtypes,
was adapted to accommodate the specific task of monkeypox detection in this current
study.

3.6. SE ResNet

SE ResNet is a variant of the ResNet model and is a deep learning model that in-cludes
squeeze-and-excitation blocks. This model, which uses the SE ResNet module instead of
the original ResNet module, gives better classification performance than many models
on the ImageNet dataset [33]. A modified SE ResNet model architecture was used for
monkeypox detection. In monkeypox detection using the 50-layer SE ResNet model, the
number of features was reduced to 4 in the last layer in accordance with the multi-class
classification and the number of classes was equalized.

3.7. Xception

The Xception model is a convolutional neural network that includes depthwise sep-
arable convolution layers instead of the inception module and uses model parameters
more efficiently compared to the InceptionV3 model. The Xception deep learning model,
which stands out with its better performance than the InceptionV3 model, especially on the
ImageNet database, can be used for many image classification problems [34]. In this study,
Xception is used by modifying the last layer to generate an output with 4 classes suitable
for monkeypox detection.

3.8. LSTM

The LSTM model is a deep learning model, which is a type of recurrent neural net-
works. Its basic architecture consists of input, recurrent LSTM and output layers, respec-
tively. LSTMs actually address the vanishing gradient problem. The recurrent connections
in the LSTM layer are cyclic [35,36]. In this study, the LSTM model is used as an en-
coder network immediately after the CNN structure in the developed hybrid model. The
architectural details of the LSTM used are described in detail in the experiments section.

4. Experiments

In the classification studies for monkeypox detection, seven different deep learning
models with different layers and structures were used alone. The training process was
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carried out in this study by adapting pretrained deep learning models that utilized transfer
learning from the ImageNet dataset. The initial 1000-class structure in the final layers was
transformed to a four-class configuration, tailored to the dataset employed in the current
research. After data augmentation and preprocessing, the results of these classification
processes were analyzed and the best two CNN models were determined. These models
were combined with a LSTM encoder network and a hybrid artificial intelligence system for
monkeypox detection was developed. The proposed approach for monkeypox detection is
presented in Figure 6 below.
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The block diagram of the hybrid artificial intelligence system proposed within the
scope of this study is given in Figure 7 below. The “Image” section refers to human skin
images utilized in this research. Following the necessary augmentation and preprocessing
of the dataset images, they are fed into two distinct encoders. “Encoder 0” corresponds
to the RepVGG-B0 deep learning model, whereas “Encoder 1” denotes the MnasNet-100
deep learning model. Upon entering the artificial intelligence system, the two encoders
yield “Features 0” and “Features 1”, comprising 1280 features for RepVGG and MnasNet,
respectively. Subsequently, a concatenation operation is performed on both models’ fea-
tures, resulting in 2560 combined features, as indicated in the “Total Features” section.
This novel CNN encoder structure is then integrated with an LSTM model. Following the
LSTM outputs, referred to as “LSTM Features”, a “Dropout FCs” layer with a ratio of 0.1 is
connected to the “FC Layer”. Finally, the monkeypox detection process is executed through
the “Prediction” output. The structure of the proposed hybrid model is further detailed in
Algorithm 1 below.

Algorithm 1 Proposed CNN–LSTM Hybrid Model

Input: test_dataset
Process:

for image in test_dataset:
features_0 = Model_I (image)
features_1 = Model_II (image)
total_features = concat (features_0, features_1)
features_lstm = LSTM (total_features)
out = nn.Linear (1024, 256) (features_lstm)
Dropout (0.1)
out = nn.Linear (256, 128) (features_lstm)
Dropout (0.1)

prediction = nn.Linear (128, num_classes) (features_lstm)
Output: prediction
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The operation of the above proposed algorithm is as follows: Images from any dataset
are sent to both CNN architectures, respectively, and two different feature maps are ob-
tained. Then, a single vector is obtained by combining both feature maps. This feature
vector obtained is given as an input to an LSTM network and the LSTM network is provided
to perform a feature extraction. The final feature vector obtained is passed through two
layers and the classification process is performed.

Classification was performed using the Google Colab environment. All classifications
in Colab are based on PyTorch, an open source machine learning framework. In addition,
torch was used for the LSTM model, timm [37] for CNN encoder, albumentations [38] for
data augmentation, and splitfolders for dataset generation. The parameters used in all
artificial intelligence models for monkeypox detection are learning rate 0.001, epoch 100,
batch size 8, optimizer Adam, loss function cross entropy loss.

4.1. Evaluation Metrics

There are many evaluation metrics in the literature to clearly evaluate the results
obtained in binary and/or multi-class classification problems. In order to accurately
analyze the results of multi-class classification for monkeypox detection, many possible
evaluation metrics have been obtained in this study. These metrics are confusion matrices
consisting of true-positive (TP), false-positive (FP), true-negative (TN) and false-negative
(TN) values for each class; precision, recall, f1 score, ROC curve, AUC score obtained for
each class; and accuracy, Cohen’s kappa score and Matthews correlation coefficient score
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obtained using training, validation and test data. Equations (1)–(9) were taken into account
in the calculation of all metrics.

Accuracy = p0 =
TP + TN

TP + TN + FP + FN
(1)

ppositive =
(TP + FP)(TP + FN)

(TP + TN + FP + FN)2 (2)

pnegative =
(FN + TN)(FP + TN)

(TP + TN + FP + FN)2 (3)

pe = ppositive + pnegative (4)

Cohen
′
s kappa =

p0 − pe
1− pe

(5)

Matthews correlation =
(TN ∗ TP)− (FP ∗ FN)√

(TN + FN)(FP + TP)(TN + FP)(FN + TP)
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 score =
2TP

2TP + FP + FN
(9)

4.2. Monkeypox Detection Results of Deep Learning Models

The mean accuracy with standard deviation (±SD), highest accuracy, Cohen’s kappa,
and Matthews correlation coefficient (MCC) scores obtained in the training phase for
seven different state-of-the-art deep learning models used in monkeypox detection and
the precision, recall, f1 score and AUC score values in the monkeypox class are given in
Table 2 below. Epoch change graphs of accuracy for training are included in Figure A1 in
Appendix A.

Table 2. Training results of deep learning models (SD: Standard Deviation, AUC: Area Under the
ROC (Receiver Operator Characteristic) Curve, MCC: Matthews Correlation Coefficient).

Model
Name

Mean Accuracy
(±SD)

Highest
Accuracy Precision Recall F1 Score AUC Score Cohen’s

Kappa MCC

CSPDarkNet 0.9417 (±0.0525) 0.9906 0.96 0.90 0.92 0.911 0.9263 0.9268

InceptionV4 0.8808 (±0.0821) 0.9875 0.98 0.80 0.88 0.865 0.8888 0.8905

MnasNet 0.9645 (±0.0410) 1.0000 0.94 0.84 0.89 0.917 0.875 0.8761

MobileNetV3 0.9615 (±0.0435) 0.9979 0.99 0.89 0.94 0.877 0.95 0.9506

RepVGG 0.9176 (±0.0828) 0.9938 0.96 0.88 0.92 0.984 0.9166 0.9181

SE-ResNet 0.9624 (±0.0439) 0.9990 0.99 1.00 0.99 0.997 0.9847 0.9847

Xception 0.9330 (±0.0705) 0.9948 1.00 0.95 0.98 0.984 0.9805 0.9806

The training results in the table above show that network training was performed in
the best way in the MnasNet model with the highest accuracy value. The precision, recall,
f1 score and AUC score values and mean accuracy with standard deviation (±SD), highest
accuracy, Cohen’s kappa, Matthews correlation coefficient scores in the monkeypox class
obtained for the validation phase in deep learning models used for monkeypox detection
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are given in Table 3 below. Epoch change graphs of accuracy for validation are included in
Figure A2 in Appendix B.

Table 3. Validation results of deep learning models (SD: Standard Deviation, AUC: Area Under the
ROC (Receiver Operator Characteristic) Curve, MCC: Matthews Correlation Coefficient).

Model
Name

Mean Accuracy
(±SD)

Highest
Accuracy Precision Recall F1 Score AUC Score Cohen’s

Kappa MCC

CSPDarkNet 0.8023 (±0.0534) 0.9083 0.89 0.83 0.86 0.843 0.8777 0.8789

InceptionV4 0.7670 (±0.0572) 0.8417 0.82 0.93 0.87 0.860 0.7888 0.7957

MnasNet 0.8027 (±0.0483) 0.9083 0.90 0.90 0.90 0.929 0.8777 0.8778

MobileNetV3 0.8010 (±0.0502) 0.9000 0.88 0.97 0.92 0.930 0.8666 0.8701

RepVGG 0.7714 (±0.0711) 0.8833 0.88 0.93 0.90 0.980 0.8444 0.8470

SE-ResNet 0.8043 (±0.0422) 0.8750 0.79 0.90 0.84 0.940 0.8333 0.8373

Xception 0.7782 (±0.0520) 0.8667 0.86 1.00 0.92 0.979 0.8222 0.8270

Table 3 shows that the best-performing models are CSPDarkNet and MnasNet for
accuracy, Cohen’s kappa and Matthews correlation coefficient scores. Best epoch of accuracy
for training and validation is included in Table A1 in Appendix C. Table 4 shows the
accuracy with standard deviation (±SD), Cohen’s kappa, Matthews correlation coefficient
scores for the classifications performed on the test data after training and validation, as
well as the precision, recall, f1 score and AUC score values in the monkeypox class.

Table 4. Test results of deep learning models (SD: Standard Deviation, AUC: Area Under the ROC
(Receiver Operator Characteristic) Curve, MCC: Matthews Correlation Coefficient).

Model Name Accuracy (±SD) Precision Recall F1 Score AUC Score Cohen’s Kappa MCC

CSPDarkNet 0.80 (±0.0408) 0.76 0.83 0.79 0.813 0.7333 0.7364

InceptionV4 0.74 (±0.0528) 0.88 0.70 0.78 0.809 0.6555 0.6712

MnasNet 0.84 (±0.0348) 0.84 0.87 0.85 0.873 0.7888 0.7901

MobileNetV3 0.79 (±0.0499) 0.79 0.87 0.83 0.873 0.7222 0.7277

RepVGG 0.85 (±0.0290) 0.84 0.87 0.85 0.961 0.8 0.8025

SE-ResNet 0.73 (±0.0295) 0.67 0.87 0.75 0.892 0.6444 0.6508

Xception 0.73 (±0.0396) 0.73 0.80 0.76 0.939 0.6444 0.6552

In the multi-class classification process for monkeypox detection, the highest accuracy
values among seven different deep learning models were obtained as 0.85 in RepVGG and
0.84 in MnasNet. The ROC curves obtained for each class with deep learning models on
the test dataset are given in Figure 8 below.
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The classification results obtained using the test dataset show that the models to be
used in the CNN part of the hybrid model should be RepVGG and MnasNet to further
improve classification accuracy.

4.3. Monkeypox Detection Results of the Proposed Hibrid Deep Learning Model

The proposed CNN–LSTM hybrid deep learning model for monkeypox detection
achieved the following scores on the test dataset: 0.87 accuracy, 0.8222 Cohen’s kappa, and
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0.8240 Matthews correlation coefficient score. Furthermore, for the monkeypox class, the
model attained 0.93 precision, 0.87 recall, 0.90 f1 score, and 0.9344 AUC score values. Below,
Figure 10 shows the ROC curve for the proposed hybrid deep learning model and Figure 11
shows the confusion matrix.
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Figure 11. Confusion matrix in the proposed hybrid model.

Two deep learning models, RepVGG and MnasNet, which produced the highest results
among the seven different models employed for monkeypox detection, were utilized in the
proposed hybrid deep learning model within the scope of this study. The evaluation metric
results for the test dataset can be found in Figure 12 and Table 5 below. The results show an
increase in accuracy, Cohen’s kappa and Matthews correlation coefficient scores with the
hybrid model.
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Table 5. Test results of RepVGG, MnasNet and the proposed hybrid deep learning model (SD:
Standard Deviation, AUC: Area Under the ROC (Receiver Operator Characteristic) Curve, MCC:
Matthews Correlation Coefficient).

Model Name Accuracy (±SD) Precision Recall F1 Score AUC Score Cohen’s Kappa MCC

RepVGG 0.84 (±0.0290) 0.84 0.87 0.85 0.961 0.7888 0.7901

MnasNet 0.85 (±0.0348) 0.84 0.87 0.85 0.873 0.8 0.8025

Proposed
CNN–LSTM
hybrid model

0.87 (±0.0352) 0.93 0.87 0.90 0.934 0.8222 0.8240

There are many independent variables such as the dataset used in studies on similar
subjects, batch sizes and image sizes that change depending on the performance of the
devices used during model training, and hyper parameters (optimizer, learning rate, mini
batch size) preferred during model training. In two different studies using the same model,
different results can be achieved by using different batch sizes. However, this does not
mean that one of the models is worse. In this context, since the classification results obtained
depend on the dataset, it is more appropriate to evaluate it in itself. In this study, it was
found that hybrid models achieve higher performance than conventional models.

5. Conclusions and Future Works

In this study, firstly, data augmentation and preprocessing operations were per-formed
on open source and 4-class human skin images in order to make the dataset balanced. In
the created balanced dataset, classification was performed with seven different pretrained
deep learning models. Each of these various deep learning models used in this study
was used pretrained in ImageNet. The structure, which has 1000 classes in ImageNet, has
been made into 4 classes to be suitable for operation. While machine learning algorithms
and traditional neural networks process the image as a single input, convolutional neural
networks use a moving filter to allow the model to learn local features such as edges
and corners. Convolutional neural network architectures can have a very deep structure,
containing tens or even hundreds of layers, making it easier to learn complex features
in the data compared to other methods. Therefore, better results were obtained using
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convolutional neural networks in this study. The results obtained were analyzed and a
hybrid deep learning model was created by using the best two CNN models and LSTM
encoder together in order to further improve monkeypox detection. A 140-layer RepVGG-
B0 and a 100-layer MnasNet100 were used in the CNN part of the CNN–LSTM hybrid model
proposed in this study. In the LSTM part, there are four layers. The final classifier network
of the hybrid model consists of two layers. With this hybrid artificial intelligence system
created for monkeypox disease detection, the highest classification results were obtained,
0.87, 0.8222 and 0.8240 in test accuracy, Cohen’s kappa and Matthews correlation coefficient
scores, respectively. Since hybrid systems are designed by combining different types
of models, they can learn more generalizable features and thus overfitting is prevented.
Likewise, combining different architectures gives reliable results with higher accuracy for
the problem being dealt with. For this reason, a hybrid artificial intelligence system was
used in this study. The contributions of this study to the literature are listed below.

• In order to analyze the classification results correctly, the imbalance in the dataset was
eliminated with various data augmentation methods and the dataset was balanced.

• The augmentation procedures for the new balanced dataset were applied only to
the training dataset. Thus, since the validation and test datasets were in its original
state, the evaluation metrics obtained in the classification could be analyzed in a more
realistic way.

• In order to detect monkeypox, many different state-of-the-art deep learning models
were used, adapted to multi-class classification.

• The classification results of deep learning models with different layers and structures
were analyzed with many different evaluation metrics and the two most appropriate
CNN models were determined.

• A study-specific hybrid deep learning model was developed with CNN models and
LSTM encoder models.

• With the proposed CNN–LSTM hybrid artificial intelligence system, the highest test
accuracy, Cohen’s kappa and Matthews correlation coefficient scores in monkeypox
detection were obtained.

In future studies, machine learning models can be utilized for monkeypox disease
detection alongside the deep learning models used in this study and the hybrid model
developed in this study. In addition to the multi-class classification, which is a more
comprehensive classification problem, binary classifications can be performed for different
human skin diseases. In the future, an online web interface, an offline graphical user
interface and/or a mobile application for monkeypox detection can be developed for
real-time use by physicians.
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Appendix A. Epoch Change Graphs of Accuracy for Training

Epoch change graphs of accuracy for training are given in Figure A1 below. The
training accuracies given in Table 2 are the highest values in the training accuracy and
epoch change graphs given in Figure A1.
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values corresponding to the best epochs given in Table A1. When the epoch values with
the highest accuracy given in this table are examined, it is observed that network training
in the training part is completed with a rate close to 100%. When the validation part is
examined, it is seen that the highest scores are mostly obtained within the first 50 epochs.
Classification processes in the test dataset were carried out using weights at the highest
epoch values obtained in validation, and no network training was performed in the test
dataset. The independence of the test dataset from the validation dataset made the results
more realistic and reliable.

Table A1. Best epoch of accuracy for training and validation.

Model Name Best Epoch of Accuracy
for Training

Best Epoch of Accuracy
for Validation

CSPDarkNet 83 17

InceptionV4 100 19

MnasNet 95 3

MobileNetV3 99 4

RepVGG 84 41

SE-ResNet 98 100

Xception 87 35
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Abstract: Disease severity identification using computational intelligence-based approaches is gain-
ing popularity nowadays. Artificial intelligence and deep-learning-assisted approaches are proving
to be significant in the rapid and accurate diagnosis of several diseases. In addition to disease
identification, these approaches have the potential to identify the severity of a disease. The problem
of disease severity identification can be considered multi-class classification, where the class labels
are the severity levels of the disease. Plenty of computational intelligence-based solutions have been
presented by researchers for severity identification. This paper presents a comprehensive review
of recent approaches for identifying disease severity levels using computational intelligence-based
approaches. We followed the PRISMA guidelines and compiled several works related to the severity
identification of multidisciplinary diseases of the last decade from well-known publishers, such as
MDPI, Springer, IEEE, Elsevier, etc. This article is devoted toward the severity identification of two
main diseases, viz. Parkinson’s Disease and Diabetic Retinopathy. However, severity identification of
a few other diseases, such as COVID-19, autonomic nervous system dysfunction, tuberculosis, sepsis,
sleep apnea, psychosis, traumatic brain injury, breast cancer, knee osteoarthritis, and Alzheimer’s
disease, was also briefly covered. Each work has been carefully examined against its methodology,
dataset used, and the type of disease on several performance metrics, accuracy, specificity, etc. In
addition to this, we also presented a few public repositories that can be utilized to conduct research
on disease severity identification. We hope that this review not only acts as a compendium but also
provides insights to the researchers working on disease severity identification using computational
intelligence-based approaches.

Keywords: disease severity; deep learning; machine learning; Parkinson’s disease; diabetic retinopathy;
Alzheimer’s disease; CNN

PACS: J0101

1. Introduction

Early and accurate diagnosis of diseases is essential for the right treatment. In ad-
dition to accurate and rapid diagnosis, the severity identification using computational
intelligence-based approaches is becoming popular and challenging nowadays. Traditional
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computational approaches (i.e., classification) are mainly focused on solving two-class clas-
sification problems, i.e., positivity or negativity of disease, or presence or absence of certain
values. However, nowadays, with the advancements in deep learning technologies, one can
easily diagnose the disease and its severity. Most of the work on severity identification is
based on recent deep-learning-based models. The training of these models depends on the
labeling of disease severity levels by expert personnel. However, the process of multi-class
manual labeling is quite tedious, time-consuming, and non-quantitative [1].

In this paper, the problem of severity identification is addressed with the help of multi-
class classification. A comprehensive review of various research articles concentrating
on disease severity identification using computational intelligence-based approaches is
presented. Research articles focused on the severity identification of Parkinson’s Disease
(PD) and Diabetic Retinopathy (DR) are mainly considered for this study. We followed
the PRISMA statement to prepare this review on the severity identification of diseases
using computational intelligence-based approaches. The search terms/combinations to
search sources for this study followed search phrases such as “(disease AND severity AND
deep learning)”, “(severity identification AND computational intelligence)”, “(Diabetic
Retinopathy AND severity AND artificial intelligence)”, “(Parkinson’s Disease AND sever-
ity AND artificial intelligence)”, etc. The search strategy followed by the identification
and analysis of sources for this study is also depicted in Figure 1. In addition to this,
we briefly surveyed a few articles on the severity identification of some other diseases,
i.e., COVID-19, Knee Osteoarthritis (KOA) [2], Autonomic Nervous System Dysfunction
(ANSD) [3], Tuberculosis [4], and Sepsis [5], etc. It is evident that radiology is widely used
for the diagnosis of various critical diseases. Some computational approaches also consider
radiological images for disease identification. Radiology is one discipline of medicine that
uses imaging technologies to diagnose diseases [6]. Radiology is divided into two main
classes, viz. Diagnostic Radiology and Interventional Radiology [7]. Diagnostic radiology
provides structures inside the body, whereas interventional radiology is associated with
minimally invasive procedures.

Figure 1. Strategy for inclusion of sources for this study.

Due to the recent advances in deep learning and machine learning, the potential of
computational approaches regarding the recognition of complex patterns from radiological
images has increased to a great extent. Nowadays, the integration of computational
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approaches and radiological imaging technologies is gaining tremendous popularity and
becoming an active research area. Undoubtedly, future clinical decision support systems
and monitoring systems will be equipped with state-of-the-art artificial intelligence. It is
observed that plenty of deep-learning- and machine-learning-based research work has been
carried out on radiological imaging. Deep-learning-based disease identification follows
several steps, viz. data collection, labeling, classification, and model evaluation. These
models can be optimized by fine-tuning the parameters, as depicted in Figure 2.

Figure 2. Process of optimizing a classification model for disease identification.

In the case of machine-learning-based disease identification, the non-imaging data
values and efficient algorithms play an important role in decision support systems. Machine-
learning and deep-learning techniques have numerous applications in the medical domain.
The work embodied in this paper mainly focuses on diagnosing Parkinson’s disease,
Diabetic Retinopathy (DR), and some other diseases (infectious diseases, tuberculosis,
COVID-19, sepsis, etc.) using computational approaches. The subsequent sections will
highlight some of the work conducted by researchers to diagnose these diseases. In short,
the major contributions of this paper are highlighted as follows:

• In-depth analysis of several recent pieces of work for disease severity identification
using computational intelligence-based approaches.

• A comprehensive discussion on the challenges and issues of each approach for sever-
ity identification.

• Classification of several works according to major disease types such as Parkinson’s
Disease and Diabetic Retinopathy.

• Presentation of several public repositories for conducting disease severity identifica-
tion research.

The remainder of this paper is organized as follows. Sections 2 and 3 discuss some of
the work related to detecting the severity of Parkinson’s Disease and Diabetic Retinopathy,
respectively. Works based on severity identification of a few other diseases, i.e., COVID-19,
autonomic nervous system dysfunction, tuberculosis, sepsis, sleep apnea, psychosis, trau-
matic brain injury, breast cancer, knee osteoarthritis, and Alzheimer’s disease, are briefly
presented in Section 4. A few public repositories are depicted in Section 5. Finally, Section 6
presents concluding remarks along with future directions for severity identification using
computational intelligence-based approaches.

2. Severity Identification of Parkinson’s Disease

Movement disorders caused by PD may not remain the same in different patients.
Thus, it is essential to develop an automated tool to evaluate a patient’s gait. Xia et al. [8]
presented a novel gait evaluation approach (known as “dual-modal attention-enhanced
deep learning network”), which not only distinguishes between normal gaits and PD gaits
but also computes the severity of PD by quantification of gaits. The system is capable of
modeling both left and right gaits separately. Multiple 1D vertical ground reaction force
(VGRF) signals achieve the segmentation of left and right samples. A CNN-LSTM-based
dual-modal attention-enhanced network was utilized to analyze the gait movements on
the gait dataset [9] with two severity levels, viz. Hoehn and Yahr (H&Y) and the Unified
Parkinson’s Disease Rating Scale (UPDRS). Their architecture utilizes an input with the
dimensions B × 150 × 9 × 1, where B indicates the batch size of samples, 150 indicates
the period of a sample, and 9 indicates the number of VGRF signals. Their CNN consists
of three layers in which every convolution operation is followed by the ReLU activation
function for feature extraction. However, pooling is not incorporated due to the limited data
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samples. After the last convolution, the output of the feature map comprises dimensions of
B × 150 × 9 × C3. Using flattening, the feature map 9 × C3 is converted into a tensor, i.e., C4,
which was fed to an attention-enhanced LSTM (AE-LSTM). The AE-LSTM concatenates
the branches and passes them to the fully connected (FC) layer. Finally, the severity
of PD is achieved using probability distribution by mapping the output of FC using a
SoftMax classifier. Experimental results claim 99.01% accuracy in classifying PD patients
into different severity levels.

Pereira et al. [10] have reviewed several papers to predict PD at the earliest stage.
After reviewing the papers, the authors have concluded that there are still many problems
that need to be addressed, so they proposed image processing techniques to address these
existing problems. For this experiment, handed datasets are utilized, collected from Brazil
University. It contains the meander and spiral images gathered through the handwritten
exam and 92 handwritten exams conducted on healthy people (control group) and PD
patients. Handwritten Trace (HT) and Exam Template (ET) features are extracted through
the blurring method. The feature extraction technique is applied to compare and evaluate
both the HT and ET features. The Support Vector Machine (SVM) with some modifications,
Naïve Bayes (NV) technique, and Optimum path forest (OPF) pattern recognition methods
are used for the severity classification. The experimental results show 67% accuracy in
identifying the precise class to predict the stage of the severity. As per the amount of
information concerned for PD identification, meander images represent more information
than spiral images. Although they presented an automated system that diagnosed the
PR at an early stage, the performance can be improved by considering large as well as
consistent datasets.

Prashanth et al. [11] addressed the fact that if PD disease is detected at an early stage,
it can be cured by the proper therapies and medicines. In this regard, they utilized Single-
Photon Emission Computed Tomography (SPECT) along with 123I-Ioflupane to diagnose
the PD disease at an earlier stage on the PPMI database. The dataset contains the Striatum
Binding Ratio (SBR) value of 179 normal people and 369 PD patients in the initial stage.
The logical regression is applied for the calculation of the significant numerical features.
The visualization of each SBR feature is calculated through histograms. The notched plots
mark the patients separately in normal, PD, and early-stage categorization. The classifica-
tions and prediction have been acquired through the Support Vector Machine (SVM) and
Logistic Regression (LR). The SVM uses a linear kernel to classify the decision boundary
through by input features. The binomial logistic regression model uses the logit transfor-
mation method to develop the prediction model to predict the risk factor in PD patients.
The experimental results report that the SVM classification method has achieved 96.14%
accuracy and 95.03% specificity for the classification of PD patients. Although this system
provided high performance and distinguished early PD patients from normal patients,
the system can be enhanced through the Scans Without Evidence of Dopaminergic Deficit
(SWEDD) and other validation approaches.

Parkinson’s Disease can be identified on various input signals, as depicted in Figure 3.
In this regard, Cernak et al. [12] proposed a model to identify voice characteristics to
predict the PD patient’s information. They utilized the read Voice Quality (VQ) datasets by
Kane (2012) and Laver (1980). They covered the five non-model vocalizations, viz. creaky,
breathiness, falsetto, harsh, and tense. To study the vocalization features, the Spanish
database contains the speech recording detail of PD patients and a healthy control group.
With the help of statistical measures, the authors differentiated the model and non-model
vocalization. They computed the probability of the vocalization features through a machine-
learning-based approach. The Euclidean distance calculates the similarity of the model
in PD, and the alignment of the non-model is calculated through the inverse distance.
The vocalization analysis section is computed through the Deep Neural Network (DNN).
Further, the binary classification method was utilized to identify the probability of a specific
vocalization class. They also applied the acoustic model for the phonic configurations.
The experimental results reported the characteristics of PD patients: the composition of
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a maximum of 30% of breathy voice and a minimum of 12% of harsh voice. The system
provided the accuracy of the vocalization speech based on the voice quality, but analysis of
the speech was limited due to available datasets.

Figure 3. Various inputs to Parkinson’s Disease diagnosis.

Lahmiri et al. [13] also proposed a method to detect PD through voice patterns. They
utilized the 195 vowels and voices data set comprising 147 PD-affected and 48 healthy
patients. The Wilcoxon and ROC techniques were used to identify eight different patterns.
The well-established SVM classification technique was applied to classify the PD patient
and the healthy one. The system reported a 92.21% accuracy, 82.79% specificity, and 99.63%
sensitivity. Although this automated system provided a good performance through voice
patterns only, the researchers may combine some other parameters for the identification of
PD patients at an early stage because voice is not the only symptom that characterizes PD.

Ertuǧrul et al. [14] presented a machine-learning model to detect PD disease at an ear-
lier stage. Initially, the data are collected from the gaitpdb datasets that contain information
about healthy people and PD patients. Eight sensors are placed under the foot for 2 min,
and the recorded sensor information is converted into the LBP domain and processed
through shifted 1D-LBP. The LBP signal value lies between 0 and 255, matched with a
special and distinct pattern formed through the shifted 1D-LBP signal. Then, the histogram
technique illustrated the 256 different signal patterns according to their corresponding
signal. The statistical features such as correlation, entropy, and skewness are computed
through the 1D-LBP histogram sensor. The classification and design features were pro-
cessed through the machine-learning approach. The experiment evaluation on 10-fold
cross-validation reported an accuracy of 88.89% and a sensitivity of 0.89. The authors
implemented the proposed system on biomedical information, and in addition to this, some
other symptoms such as speech may be considered in the future.

Marek et al. [15] stated that PD detection at the earliest age is crucial because there
is no accurate method to detect PD. Either motor symptoms or non-motor symptoms can
be detected through PD diseases. They proposed an automated multi-modal feature and
machine-learning techniques based on non-motor symptoms for detecting PD. Based on
biomarkers, the feature description is processed through the REM sleep Behavior Disorder
Screening Questionnaire (RBDSQ) and CerebroSpinal Fluid (CSF). The Wilcoxon sum test
is applied for the feature analysis. The PD classification is achieved through SVM, random
forest, and logistic regression. The experimental result reported a 96.0% accuracy for the
tested dataset.

Acharya et al. [16] differentiated PD patients from normal persons by drawing move-
ments. They investigated handwriting markers for muscular movements and interpretation
of other activities of the patients. To experiment with this model, the dataset was cate-
gorized into two parts, i.e., 20 healthy and 57 PD patients. The data pre-processing was
achieved through five different score vectors. The Normalized Velocity Variability (NVV)
is applied to identify the speed of the pen of the subject. They applied the NVVALL score
to focus on healthy and PD patients. The receiver operating characteristic (ROC) was
observed to be 0.9354. The UPDRS score represented the writing behavior of PD patients
on the Hoehn (H) and Yahr (Y) scale. Naïve Bayes, Adaboost, and logistic regression
methods were applied for the PD classification. The experimental results reported the

190



Diagnostics 2023, 13, 1212

highest accuracy of 90.90% through Naïve bays and the lowest accuracy of 86.36% through
the SVM classifier.

Nilashi et al. [17] presented a new automated method to predict and monitor PD
disease patients with characteristic motor and total UPDRS. Clustering was applied to
form a cluster with similar characteristics and merge similar features into one cluster. Thus,
in the output, different clusters were created of different sizes. A self-organizing map
(SOM)-based cluster approach effectively handled the large datasets and provided similar
clusters. The R2 method was utilized to evaluate the value of the SOM. In addition, the PCA
method was applied for the feature analysis of the cluster approach. Further, the deep
belief network was also applied to identify PD patients better. The RMSE method was
applied to find the exact and accurate information about PD patients. They also included
the SVR [18] and ANFIS [19] learning techniques and presented an accuracy of 89.4%.

Sztaho et al. [20] proposed a method to detect the severity level of Parkinson’s disease
through speech signals. To implement this method, the authors used the Hungarian speech
database that consists of the speech signals of 51 patients. The severity of patients was
classified according to the Hoehn (H) and Yahr (Y) scales. The sound card was utilized to
record the speech of patients. The feature extraction technique was utilized to categorize
speech, such as pause ratio and speech speed. The authors implemented this method using
two types of detection methods, viz. binary classification and regression. The classification
method was processed by the K-Nearest Neighbor (K-NN) method and SVM. They utilized
two types of regression methods, viz. linear regression and support vector regression.
The Root Mean Square Error (RMSE) was used to evaluate the performance of the regression
method. The binary classification method reported an overall accuracy of 83.56% for the
read text, 85.11% for the speech signal, and 84.62% for both.

Xia et al. [8] proposed a dual model based on the deep-learning method to detect the
characteristics of Parkinson’s disease from the gait signals. The left and right gaits were
recorded by the VGRF tool. The severity level is identified with the help of the Hoehn
(H) and Yahr (Y) scales. They applied an N-size vector for feature extraction and selection
through this vector gait cycle detection, which is processed by fixing the N = 150. The dual-
mode consists of two-channel levels for processing separate signals. The VGF gait signals
are first passed through the two-layer CNN model to understand the features of gait signals,
followed by LSTM for temporal features. Further, they utilized the attention method, which
provided meaningful information on the subject that can be accessed with the help of a
score. A Fully Connected layer (FC) was incorporated to combine both left and right gait
signals, followed by final classification through the SoftMax layer. The efficacy of the model
was measured using a five-fold cross-validation approach. The model experimentally
reported an accuracy of 99.31% and a sensitivity of 99.23%.

Park et al. [21] compared the performance of the PD diagnosis system through SVM
with the two methods, viz. Multiple Layer Perceptron (MLP) and Radial Basis Func-
tion Network (RBN). Seventy-four-year-old data are utilized to implement this method,
and the signal Electromyograph (EMG) is recorded through the AgCI conductor. In the pre-
processing stage, signals are firstly filtered into 3 to 10 Hz by a type-2 filter followed by Fast
Fourier Transformation (FFT) to identify the same frequency band of the tremor. After these
steps, EMG signals are classified into two stages, viz. experienced and visual signal to
detect the exact tremor status. The MLP network consists of the input layer, hidden layer,
and output layer, and it is used to reduce the overfitting issue in the datasets. The status of
tremors is detected through −1 and 1. On the other hand, the radial basis function utilized
the fuzzy c-mean clustering method to identify the initial stages of the cluster. Overall,
81.14% accuracy was reported using the SVM classification of tremor status.

Hariharan et al. [22] presented an intelligent system based on a hybrid model. They
initially incorporated the Gaussian mixture method as a pre-processing step to remove the
unwanted noise present in the dataset. They also utilized two types of feature reduction
methods, viz. PCA (Principal Component Analysis) to identify the hidden features pre-
sented in the datasets and LDA for mapping 22 features into a one-dimensional space. Gen-
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eral Regression Neural Network (GRNN), Probabilistic Neural Network (PNN), and SVM
were utilized for the severity classification of PD. The promising classification was reported
based on the cross-validation method.

On the other hand, Balaji E. et al. [23] proposed a machine-learning model that can
assist clinicians in detecting the stages of PD through gait information. Gait information
provides all mobility information about healthy people and PD-affected people. This
model is trained and tested with the public datasets based on the gait pattern provided by
Physionet. VGRF is placed under the foot to provide gait information through different
sensors. The feature extraction process is achieved using statistical and kinematic feature
extraction approaches. The statistical feature extraction process is used to identify the four
levels of PD through H and Y scales. It created a 16 × 166 matrix based on the sensor
and subject-level PD severity. In contrast, the kinematic features were used to identify PD
patients’ steps, swing time, and speed. A 10-fold cross-validation is adopted in which 90%
of data are used for training purposes and the remaining for testing purposes. Decision Tree
(DT), SVM, Bayes, and Ensemble classifier were utilized for the classification. Experimental
evaluation reported that the Decision Tree (DT) classifier has the highest accuracy of 99.04%,
the sensitivity of 99.06%, and the specificity of 99.08%.

Kim et al. [24] presented a novel approach based on CNN to detect the severity rate
of Parkinson’s disease by performing tremor quantification from raw datasets. For exper-
imental evaluation, 92 PD patients’ tremor sensor datasets were collected using a wrist
sensor device as wearable equipment. A neurologist was provided with the information on
PD on four-level severity, i.e., normal to severe, based on the unified Parkinson’s disease
rating scale (UPDRS). In addition, they designed a neural network to assess the severity
in PD patients. In this network, 2D images are used as input for the convolution layer,
and a 3 × 50 convolution filter combines both local and sensor information. They processed
the input signals computed by the wrist sensor in the form of gyroscope signals and
accelerometer signals. Experimental evaluation depicted a classification accuracy of 85%.

Oung et al. [25] addressed that the existing system does not differentiate between
people infected with Parkinson’s Disease (PD) and healthy people. Therefore, to handle
this issue, they proposed a multi-class classification system to classify PD severity levels
(low, mid, high) and a healthy control group. For experimental evaluation, datasets of
65 persons of different ages were collected from the Neurology hospitals and the severity
level in Hoehn (H) and Yahr (Y) was rated through the UPDRS measure. The dataset
signal is assorted through two stages, i.e., motion and speech-based signals. The speech
signals were recorded through the Motion Node Bus (MNB) from the IMU wearable device,
and the speech signals were recorded through the audio sensor, i.e., a headset placed
at 5 cm away from the mouth. The authors acquired the Empirical Wavelet Transform
(EWT) to decompose the motion signals to find the approximate information from the
detailed information, and the Empirical Wavelet Packet Transform (EWPT) was developed
to decompose the speech signals. The EWPT method uses Fast Fourier transform (FFT)
to obtain the exact frequency, i.e., lies between 0 and π. Feature extraction was processed
through the Hilbert transform based on amplitude and frequency. Extracted features are
categorized into three groups: speech signals, motion signals, and a mix of motion and
speech. They employed Probabilistic Neural Network (PNN), Extreme Learning Machine
(ELM), and K-Nearest Neighbor (kNN) for the classification. Experimental evaluation
reported an accuracy of 90% on classification using an Extreme Learning Machine (ELM)
for both motion and audio signals.

Recent studies analyzed that it is hard to diagnose PD at an earlier stage. Many
remote detecting tests were utilized to detect the PD severity and realized that variables
in gait signals could easily distinguish PD patients from healthy ones. In this regard,
Cantürk et al. [26] proposed a system to detect PD patients’ severity using gait signals.
Their system was trained and tested with 306 publicly available signals with 93 PD patients
and 73 healthy subjects based on different categories. The gait system was measured
through Ultraflex Computer Dyno Graphy (UCDG) with eight sensors placed under the
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foot. The Fuzzy Recurrence Plots (FRP) convert the signals into texture representations for
both PD and healthy patients. Further, AlexNet was applied to extract the deep features,
followed by implementing SVM and k-Nearest Neighbor (kNN) for binary and multi-class
classification. The experimental result of the kNN method reported an accuracy of 99%,
whereas the SVM reported 98%.

Zhao et al. [27] presented a machine-learning method to detect the severity level of PD
from the gait data. This is the hybrid technique consisting of both Long Short-Term Memory
(LSTM) and a Convolutional Neural Network (CNN) to recognize the spatial time-based
pattern through the gait data. The hybrid model has five convolution layers and two layers
of LSTM to detect the severity rate in PD patients. The authors acquired two convolution
layers of 5 × 5, in which the first layer is mapped with 32 features and the second one is
mapped with 64 features. LSTM and CNN are trained and tested on the PhysioNet [28]
dataset. The pre-processing and L2 normalization were applied to reshape the datasets into
100 × 19 × N (N =“Ga:13592, Si:7744, Ju:11734”). Further core parameters of LSTM were
transformed to achieve better classification results into four levels, viz. normal (severity 0),
severity 2, severity 2.5, and severity 3. Final classification was achieved using the SoftMax
layer. The model reported 98.70% accuracy for the first dataset, 98.41% for the second
dataset, and 98.88% for the third dataset. However, this method provided better accuracies
in PD detection, and this model is the baseline for detecting the PR disease.

An automated machine-learning-based method is proposed to detect and identify
the level of severity of Parkinson’s disease from the gait data by Maachi et al. [29]. They
employed a Deep Neural Network with the help of a 1D convolution Neural Network. This
algorithm has divided the information into two parts, viz. Parkinson’s and a control group.
For the experiment, publicly available datasets are used and cited from the PhysioNet.
The datasets contain 93 patients with Parkinson’s disease and 73 patients in the control
groups. The Vertical Ground Reaction Force (VGRF) based on 18-1D signals provides the
information of a recorded walk with the foot sensors positioned below the foot. The VGRF
signal is divided into datasets into m-parts that are based on subject categorization. Further,
these parts are the input of the proposed method of DNN. The DNN method is processed
with two parts, viz. 18 parallel 1D and a fully connected network. The feature extraction is
processed through the 18 1D-CNN. The Parallel 1D network has taken input from the VGRF
signal and processed it through the four convolution layers, which are fully connected.
Further, this layer has extracted the features used to help categorize the PD and control
groups. The output layer generates one neuron to detect the disease and five neurons to
classify the level of severity that were categorized into five classes based on some criteria.
This method reports an accuracy of 98.7% in detecting the severity and 85.8% accuracy in
the classification of the severity level.

Prashanth et al. [30] addressed different stages of PD as a very important factor
in a medical decision. The subject’s disordering features were measured by UPDRS,
but it does not give information about the PD stage. In this paper, they proposed a
new model based on machine-learning to detect the PD and different stages of PD (early,
normal, and moderate). This hybrid model supports SVM, AdaBoost, and RUSBoost-based
and ordinal logistic regression (OLR) classifiers. It utilized the Parkinson’s Progression
Markers Initiative (PPMI) datasets with 197 healthy and 434 PD subjects. The statistical
analyzer is used to classify the features into three categories based on a filter. They used
classification algorithms such as random forests, SVM, and logistic regression to classify the
PD stages. The validation of the performance was measured by the 10-fold cross method.
The experimental results indicated that AdaBoost reports the highest detection accuracy
of 97.46% for the normal PD subject, and SVM reports 98.04% for the early stage of PD
detection. Although automated detection improves the stage of PD, there is a need to
address more stages for PD patients.

Prashanth et al. [31] also presented a prediction model based on machine-learning to
distinguish healthy and early PD patients. The dataset utilized for the experiment is from
the Parkinson’s Progression Markers Initiative (PPMI). They further applied the Patient
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Questionnaire (PQ) to analyze the dataset. In PPMI, data are arranged in the longitudinal
format, so they performed the record and subject-wise cross-validations. The dataset is
divided into 90% training sets, and the remaining are test sets. To remove the redundancy
and select the appropriate features, they have used three different selection methods, viz.
Wilcoxon rank, Least Absolute Shrinkage and Selection Operator (LASSO), and Principal
Component Analysis (PCA). The Wilcoxon rank method is acquired for the significant
features through the sum test. The LASSO method is also applied to shrink the datasets,
and the PCA method is the reduction approach used for decomposing the multivariate
datasets into one manner format. The authors have processed the logistic regression, SVM,
random forests, and boosted trees for the classifications. The experimental results indicated
96.50% accuracy using SVM through the subject-wise validation.

Aydın et al. [32] presented the Hilbert–Huang Transform (HHT) method to detect
the severity of Parkinson’s Disease (PD) from the gait pattern. The datasets are utilized
from the PhysioNET [28], and the signals, such as step swing time, are measured through
the VGRF sensor. The authors applied three types of feature selection techniques, i.e., the
filter approach, the wrapper approach, and the embedded approach. The filter approach is
used to identify the common characteristic of the training datasets. The wrapper feature
selection approach is applied for mapping with relevance and extracting the optimal
features, and the last approach is applied to check the performance of the features. They
also applied the feature creation method, and a 10-fold cross-validation approach checks
the performance of this method. The regression tree classification approach is processed
to distinguish PD patients from healthy ones. The experimental results showed that the
accuracy of the proposed system is 98.79%, sensitivity is 98.92%, and specificity is 98.61%.
The performance analysis of some PD identification approaches is depicted in Table 1.
On the other hand, a systematic review of AI-based approaches for the diagnosis of PD is
presented by Saravanan et al. [33].

Table 1. Performance analysis of various Parkinson’s Disease (PD) identification approaches.

References Input Features Extraction
Approach Classifier Performance Accuracy

(%)

Pereira et al. (2016) [10] Spiral, Meander images Zhang–Suen-based
thinning algorithm NB, OPF, SVM 67.00

Cantürk (2021) [26] Gait Signals Alexnet SVM, kNN 99.00
Xia et al. (2019) [8] Gait information CNN 2D CNN & LSTM 99.31

Zhao et al. (2018) [27] Gait information CNN model CNN & LSTM 97.86
Hariharan et al.

(2014) [22] Speech samples PCA, LDA, SFS LS-SVM, PNN,
and GRNN 100.00

Prashanth et al.
(2014) [11] SPECT images LR SVM, LR 96.14

Sztaho et al. (2017) [20] Speech Rhythm Feature Vector SVM, Deep learning 94.87
Maachi et al. (2020) [29] Gait signals Manual method Deep 1D-convent 98.70

Lahmiri and Shmuel
(2019) [13] Voice pattern Wilcoxon-based SVM 92.21

Ertuǧrul et al. (2016) [14] Gait signals 1D-LBP LR, MLP, NB, BAyesNT 88.90

Yurdakul et al.
(2020) [34] Gait Signals Local Binary Patterns

Generalized Linear
Regression Analysis

(GLRA) and SVM
98.30

Oung et al. (2018) [25] Speech and Motion
signal

Wavelet Energy and
Entropy kNN, PNN, ELM 95.93

Prashanth and Roy
(2018) [30] Motor signals Wilcoxon rank-sum test

SVM, Random Forest,
probabilistic

ADAboost-based
ensemble

97.46

Aydın and Aslan
(2021) [32] Gait Pattern

One R Attribute
Evaluation and vibes

algorithm

Hilbert-Huang
transform 98.79

Kim et al. (2018) [24] Wrist sensor pattern Convolutional filters of
CNN CNN 85.00

Balaji E. et al. (2020) [23] Gait signals Statistical analysis DT, BC, EC and SVM 99.50
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Discussion

As stated earlier, the movement disorders caused by Parkinson’s Disease are not
uniform in all patients. Deep-learning models play crucial roles in developing automated
tools for evaluating a patient’s gait. It is obvious that to cure any disease, its detection must
take place at the early stages. To detect PD at an early stage, both artificial intelligence
and machine-learning-based techniques are contributing to a great extent, e.g., feature
extractions and pattern recognition from motor symptoms, voice pattern recognitions, etc.
Plenty of work has been carried out to identify PD at an early stage, but this field is still in
its infancy stage. It is observed that very few works are available on PD identification using
non-motor symptoms, and the availability of PD datasets is not adequate to develop auto-
mated models. The researchers may consider these issues while developing an automated
model for the detection of PD at an early stage with excellent efficiency.

3. Severity Identification of Diabetic Retinopathy

Excessive glucose growth in the blood causes diabetes that subsequently harms other
components of the human body, i.e., eyesight loss, kidney malfunctioning, nerve failure,
damage to blood vessels, etc. This excessive amount of glucose leads to damage to the
retina’s blood vessel, which is the main cause of Diabetic Retinopathy (DR) disease. Blur-
riness, color difficulty, floaters, and dark vision are early symptoms of DR disease. It
has become one of the major reasons globally for visual losses. Timely diagnosis and
subsequent treatment of its several stages/severities can save visual loss to some extent.
Several computational models are presented by plenty of researchers for the detection of
DR from fundus images. Shankar et al. [35] presented a novel automated model called
HPTI-v4 (Hyperparameter Tuning Inception-v4) DR detection from color fundus images.
Initially, the contrast of fundus images is enhanced using Contrast Limited Adaptive His-
togram Equalization (CLAHE) [36] followed by histogram-based segmentation. HPTI-v4
then processes the segmented images for feature extraction followed by a Multi-Layer
Perceptron (MLP) classifier. Experimental results on the MESSIDOR (Methods to Eval-
uate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology) DR
dataset exhibited that HPTI-v4 outperforms other state-of-the-art deep-learning models
(i.e., ResNet [37], GoogleNet [38], VGGNet-16 [39], VGGNetCOVID-19 [39], VGGNet-s,
AlexNet [40], Modified AlexNet, and DNN-MSO). The dataset consists of 1200 posterior
pole eye fundus images that were mainly classified into four classes, viz. normal, stage-1
(images with some microaneurysms), stage-2 (image with both microaneurysms and hem-
orrhages), and stage-3 (images with high microaneurysms and hemorrhages). In addition
to HPTI-v4, 10-fold cross-validation was used to subdivide the dataset into training and
testing sets; and Bayesian optimization was employed for selecting an optimal set of hyper-
parameters. The proposed HPTI-v4 obtained the highest accuracy of 99.49% as compared
to other models under consideration.

Wang et al. [41] presented a hierarchical multi-task framework based on deep learning
for simultaneously detecting DR features and severity levels. Severity levels in DR are
characterized by the presence of various signs in the fundus images. DR severity identi-
fication becomes easier if the DR disease-related signs are present in the fundus images.
Earlier, Wang et al. [42] investigated the feasibility of diagnosing DR severity levels and
the presence of DR-related features. Their hierarchical multi-task framework consists of
two main tasks, viz. severity diagnosis of DR and identification of DR-related features.
Their architecture consists of one backbone squeeze-and-excitation (SE) network [43] for
feature extraction and two neural networks (one for DR-related feature extraction and
the other for severity detection). To validate their framework, an experimental evaluation
was conducted on two independent test sets, followed by a grader study to compare the
performance of the proposed framework with experienced ophthalmologists. Results
depicted that the proposed model was able to improve the performance of traditional
machine-learning-based approaches.
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Torre et al. [44] developed a new method to detect diabetic retinopathy using a deep-
learning classifier. For the system’s good performance, they categorized the retinal images
according to the level of severity. To experiment with this model, the EyePacs dataset [45]
from Kaggle was utilized. The ophthalmologists classified the images into different criteria
based on the grading scale. The authors also applied the deep-learning model modifications
to classify the retinal images. They used the optimal retina images whose diameter size is
640 pixels. The Rectified Linear Unit (ReLU) is applied for the activation function with an
epoch size of 30. The multi-class classification model is used to obtain better identification
of the disease as well as severity levels. The experimental results reported a specificity
of 91.1% and a sensitivity of 90.8%. The main advantage of this model is classifying the
five-severity levels of DR disease and identifying the score levels of each class.

Shankar et al. [46] proposed a Synergic Deep-Learning Model (SDL) to classify the
severity level of diabetic retinopathy fundus images. The model utilized the MESSI-
DOR [47] dataset, which contains 1200 color fundus images. The first step was to apply
the pre-processing in which each image was converted into RGB format. Then the seg-
mentation was performed through a histogram to fetch the green color of the image for
further information. The SDL model has processed the classification to classify the DR
image into different stages. Different performance matrices, such as accuracy, sensitivity,
and specificity, are used to evaluate the system. The model experimentally proved 99.28%
accuracy for the classification, 98.54% sensitivity, and 99.38% specificity.

Nowadays, few smartphone-based systems help in performing the retinal screening
of diabetic patients. Still, the accuracy of DR identification is based on the quality of the
image and the region of the view. Therefore, the smartphone system must consider a highly
compact design to provide accurate information. In this regard, Hacisoftaoglu et al. [48]
presented a new system to detect DR based on a smartphone-based system through a deep
learning approach. The system uses transfer learning approaches such as GoogLeNet [38]
and ResNet [37]. The validation of the experiment has been processed through different
datasets, i.e., MESSIDOR and EyePacs. The experimental result reported an AUC of 0.99,
a sensitivity of 98.2%, a classification accuracy of 98.6%, and a specificity of 99.1%. On the
other hand, Son et al. [49] developed a new model that helps to identify the abnormality
in DR patients based on retinal images. They utilized three datasets for the validation
of the approach; 103262 images from 309786 were used to develop the model, and for
the testing, other external datasets were used. Finally, the MESSIDOR dataset [47] was
used for comparison purposes. The deep-learning model has been applied to classify
the abnormality in retinal images. The classification output has oscillated from 0 to 1,
which shows the probability of finding the existence of abnormalities. The experimental
evaluation reported an ROC value of 96.2% to 99.2%. The proposed deep-learning model
not only categorizes the finding by accuracy but also calculates the salient features of
the images.

A new automated method based on deep CNN for detection of DR is proposed in [50].
They utilized two datasets to validate their study: the EyePACS and MESSIDOR-1 & 2.
The pre-processing has been performed in both online and offline stages. In the online
stage, the image is cropped in the desired shape, followed by the removal of the black
border of the image, whereas in offline mode, the pre-processing has been processed by the
augmentation method. The results of the model show better accuracy on the same public
datasets compared to other existing algorithms. Moreover, the suitable preliminary process
for screening larger numbers of patients for an automated system is batch processing and
minimum assumption time. The efficient screening process helps to obtain the model’s best
results. The model was found to enhance the 0.92 AUC for the MESSIDOR-2 dataset [51]
with a sensitivity of 81.02% and a specificity of 86.09%.

The automated NAS (Neural Architecture Search) machine-learning model [52] pre-
dicts the DR patients with no and severe stages of DR disease. To train and validate the
model, a Kaggle dataset comprising the information of 3662 images was used. Out of
3662 images, 3113 images were used for the training data sets, and the remaining were used
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for the testing datasets. Harikrishnan et al. [52] first applied the pre-processing steps to
remove the unwanted noise and other information. They resized the image in a particular
format, then applied the Gaussian filter to improve the image quality. The NAS acquired
the RNN (Recurrent Neural Network) to add more functions with different combinations to
obtain the optimal solution. The accuracy of the model was reported to be 75%. To develop
this model, the learning rate was set as 0.0001, and the initial weight was chosen as the
net image weight. The authors observed that the model obtained the minimum accuracy
when including the dense layer without a pre-processing stage. The proposed model
was validated through the existing database based on E-Ophtha Exude. This model also
reported a sensitivity of 76.6% and a specificity of 77.1%.

Washburn et al. [53] proposed a new system design to detect the retinal image at the
earliest phase. The model utilized the public retinal image datasets. They applied the
image acquisition for the screening method with an existing database. The next step was
pre-processing, which helped in improving the images and removing the unwanted noise,
which consisted of three steps, viz. converting color space, filtering, and enhancement of
image for the quality of the retinal image. The region-based segmentation was processed
to identify the boundary of the backside images. The Gabor wavelets were applied for
the feature extraction approach to extract useful information from large datasets. Further,
the adaptive boost classification was applied to obtain a better prediction result for the
retinal images. The system experimentally reported an accuracy of 98.4%, a specificity of
98.8%, and a sensitivity of 98.4%.

Li et al. [54] developed a new optical coherence tomography system based on deep
learning to diagnose diabetic retinopathy at an earlier stage. The system was validated
with OCT images collected from the Wenzhou Medical University (WMU). The dataset
consists of 4168 OCT images collected from 155 patients. A total of 1112 images out
of the 4168 images belong to DR grade 1 and 1856 to DR grade 0. The pre-processing
was performed by resizing the OCT images to 224 × 224. The OrgNet and segmentation
calculated the deep characteristics to obtain an extra feature for better classifications. In this
work, the feature merging was processed through the summation method in place of
concatenation. The augmentation technique was processed to enhance the neural network
environment. The system is provided with the DR multi-classification, such as grades 0
and 1. An accuracy of 92%, specificity of 90%, and sensitivity of 0.95 were recorded for
grade 0 DR classification.

The fundus image is the perquisition stage to calculate the accurate severity rate of
DR. The manual scoring procedure is considered challenging because of the dissimilarity
in morphology, number, and image size. In this regard, Sambyal et al. [55] presented an
automated method based on segmentation that helps detect the boundaries and helps
ophthalmologists quickly detect the DR with severity grades. They developed an improved
U-Net architecture inspired by U-Net [56] that is pretrained on ResNet34 [37]. It contains
the encoder and decoder at their left and right parts, respectively, resulting in better system
performance. This method is also useful for improving the result compared to the existing
method. The system is validated on two public datasets, viz. e-ophtha [57] and IDRiD [58].
The experimental result reported 99.88% accuracy, 99.85% sensitivity, and 99.95% specificity
for the IDRiD Dataset. For the e-ophtha datasets, the accuracy was 99.98%, with a sensitivity
of 99.88%.

Quellec et al. [59] proposed a machine-learning-based solution for diabetic retinopathy
detection at an early stage. The authors utilized heat map concepts to identify the impor-
tance of a particular pixel in an image. To produce a good quality heat map, they trained the
ConvNets network with the help of the backpropagation method. Three different categories
of the dataset were used in this study (i.e., Kaggle Diabetic Retinopathy, DiaretDB1 [60],
and ‘e-ophtha’). The proposed method is validated on approximately 90,000 fundus images.
They followed data augmentation and pre-processing processes to transform images (i.e.,
448 × 448 pixels). To train the dataset, the three ConvNets were trained to detect diabetic
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retinopathy. The performance of the proposed model on different datasets was found to be
0.954, 0.955, and 0.949, respectively.

Liu et al. [61] proposed a weighted path CNN (WPCNN) model to detect the diabetic
retinopathy with severity levels. The system was validated through the raw database
comprising 60,000 images categorized into 0 and 1 on severity scales. The authors divided
the datasets into 80% and 20% training and testing sets. They scaled and resized the images
to 299 × 299 through the pre-processing steps. The data augmentation method was applied
to fit the image at standard formation such as right, up, left side, etc. The convolution
layer processed the feature extraction through CNN and extracted the noteworthy features
from the retinal fundus images. During the experimental setup, the authors suggested
an over-fitting issue if the size of the network expands. The coefficient of the WPCNN
was enhanced by using the backpropagation method. The system experimentally reported
94.02% accuracy in comparison to the existing models. It also achieved an AUC of 0.9823
and an F1-score of 0.9087, the highest compared to the existing methods. Although this
proposed system achieved a good performance, the authors pointed out that adding more
features to the automated system can improve the overall performance of the system.

Hua et al. [62] introduced a trilogy of skip-connection deep networks (Tri-SDN) to
analyze the DR images. The new attribute based on EMR was introduced to identify
the risk probability to increase the system’s performance. In the first phase, the feature
extraction was performed from the ImageNet database. The ResNet [37] is pre-trained by
the multiple convolution layers. Further, the corresponding vector mapped the feature map
to identify the risk factor in the DR images. The deep learning network was built with the
two skip connection blocks to identify the characteristics of the retinal images. The authors
also applied the EMR-based value to identify the risk factor of the severity because it
provides the numerical value, and in this work, 22 risk factors are involved. The EMR-
based value is used for the DR orientation characteristic to improve the performance.
The system was validated with the historical information of the 96 patients collected from
the medical university in South Korea. The system experimentally reported an accuracy of
90.6%, a sensitivity of 96.5%, and an of 88.8% of AUROC, which is higher than the existing
models such as random forest and 11-layer CNN. Although the system provides a good
performance compared to the existing algorithm, it needs to add more retinal images to
make the system more efficient so that the ophthalmologists can make easy decisions.

Reddy et al. [63] claimed that DR could be easily detected through different machine-
learning algorithms. For this experiment, they used the DIARETDb1 [60] data set containing
89 images, out of which 5 are of the normal stage, and the rest of the 84 images are Mild
Non-proliferative DR (NPDR) cases. The pre-processing was achieved through the grey
scaling method, image copper, and image resizing to remove the noise and improve detec-
tion accuracy. They applied the segmentation technique to visualize the blood vessels in the
retina. Further, the region growing technique was utilized to identify whether the pixels be-
long to the same region or different regions. The clustering method was applied for the data
analysis. Feature extraction was applied to generalize and extract different features from
the data sets. For classifications, the authors employed the SVM, k-NN, and probabilistic
neural network (PNN) techniques. Different matrices such as accuracy, TPR, and FPR
were employed to evaluate different classifiers. They experimentally determined the best
accuracy (96.57%) through cross-validation using SVM.

Wu et al. [64] proposed an automated hierarchically Coarse-to-Fine network (CF-
DRNet) tool to detect the DR, as depicted in Figure 4. They applied a convolution neural
network to classify severity, viz. no DR, mild DR, moderate DR, severe DR, and proliferative
DR. The experiment was performed on 88,400 fundus image datasets taken from Kaggle.
This technique integrates three steps in which the first step performed the pre-processing,
the second phase performed the CF-DRNet module, and the last stage performed the
aggregation concept. The pre-processing was performed through image enhancement,
image normalization, and data augmentation. Image enhancement is applied to remove
unwanted noise with varying luminous factors. Image normalization is used to reduce the
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complexity and normalize the pixels of images in the coarse network. Data augmentation
is performed to reduce over-fitting and imbalance issues in the datasets. Further, the CF-
DRNet is applied to check the presence of DR. For better detection, it is classified into two
different networks, such as the coarse and fine networks. Then, the aggregation method is
applied to determine the level of DR and No DR. The authors experimentally claimed that
CF-DRNet reported the highest accuracy of 83.10%, sensitivity of 53.99%, and specificity
of 91.22%.

Figure 4. Coarse–Fine Diabetic Retinopathy Network [64].

The detection of diabetes with different severity levels is a complicated system; hence,
it is very difficult and time-consuming. In this regard, Pratt et al. [65] proposed a machine-
learning-based approach with 75% accuracy for the diagnosis of diabetes in five levels
of severity classifications. To train the network, the KAGGLE dataset with 80,000 retinal
images was utilized. The color normalization has been processed through OpenCV for
the categorization of the data into a different age, group, and authenticity. Further, they
resized the images into 512 × 512 pixels for the identification of complex features. Stochastic
gradient descent was utilized for training the datasets with a 0.0001 learning rate for five
epochs. To concede, the first 10,290 images were pre-trained through the CNN network to
classify the severity levels. Further, 5000 images took 188 s for the validation process. This
technique achieved a specificity and sensitivity of 95% and 30%, respectively.

On the other hand, Yun et al. [66] proposed a backpropagation method to classify
the DR into four categories, viz. normal, severe, moderate, and proliferative DR. The
authors used 124 retinal images from Singapore University to process the work. This
method was trained with 27 samples as training sets and the remaining as testing data sam-
ples. A feed-forward neural network was utilized to classify images into different classes.
The pre-processing of images has been carried through the histogram and binarization
process. Further, the ANOVA process extracted the features of retinal images into different
areas and categories. The authors evaluated the model’s performance on three matrices,
i.e., accuracy, specificity, and sensitivity. The method reported 80% accuracy, 90% sensitivity
and 100% specificity.

Akram et al. [67] developed a multi-model for categorizing severity levels of DR into
normal, mild, moderate, and severe Non-Proliferative Diabetic Retinopathy (NPDR). This
model is the hybrid of medoids and the Gaussian Mixture Model (GMM) for the best
classification and solving the overfitting issue. The mean-based approach was utilized to
remove the noise and background. The segmentation process has been processed through
Gabor and the multi-layer thresholding processes. For processing, the authors utilized
datasets such as DRIVE and STARE, which are easily available in the public domain. They
divided the datasets into two parts: an image and a lesion. Further, the feature vector was
used to classify the severity of NPDR through color and intensity factors. The performance
was evaluated on accuracy, sensitivity, specificity, and AUC metrics. The model reported
97.56% accuracy and 97.39% sensitivity, with 98.02% specificity.
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Mookiah et al. [68] proposed a system for automated classification of normal, Non-
Proliferate Diabetes Retinopathy (NPDR) and Proliferated Diabetes Retinopathy (PDR)
using retinal images. They applied pre-processing techniques such as Wiener filtering, gray
level shading correction using low pass filtering, and contrast enhancement to remove noise
and uneven illumination. They also removed the optical disk to reduce the number of false
positives reported while detecting the lesions. The authors applied A-IFS Histon and the
2D Gabor-matched filter approach for segmentation. Further, they extracted the features
such as blood vessel area, exudate area, bifurcation point count, Local Binary Pattern
(LBP) energy, LBP entropy, Laws mask energy, and entropies from the fundus images.
The authors employed Probabilistic Neural Network (PNN), Decision Tree (DT), and SVM
for the classification. They applied genetic algorithm and Particle Swarm Optimization
(PSO) algorithms to optimize the efficacy of the classifiers. The authors experimentally
determined the threshold value as 0.0104 and claimed that PNN reports the highest accuracy
of 96.15%, sensitivity of 96.27%, and specificity of 96.08%.

Chowdhury et al. [69] developed a method to detect DR through four levels catego-
rized as normal, PDR, average PDR, and acute PDR. The categorization into four levels was
completed through a random forest classifier. The pre-processing was achieved through a
contrast enhancement technique which helped in extracting the RGB value from 120 reti-
nal images. The contrast augmentation was completed through adaptive thresholding
to remove the unwanted noise. For conversion to a binary image, the global threshold
technique was adopted. The authors utilized a feed-forward neural network based on
three-layer architecture. This technique reported 90% accuracy in normal cases, 87.5%
accuracy in the case of acute NPDR cases, and 90% sensitivity and 100% specificity classifi-
cation. Table 2 depicts the comparison of a few works based on the severity identification
for Diabetic Retinopathy. On the other hand, Kaur et al. [70] presented a systematic survey
of computational methods for DR diagnosis based on fundus image analysis.

Table 2. Performance analysis of some diabetic retinopathy identification approaches.

References Input Image Features Extraction
Approach Classifier Performance Accuracy

(%)

Hua et al. (2019) [62] Fundus Images ResNet 50 Tri-SDN 90.60
Wu et al. (2020) [64] Fundus Images Resnet CF-DRNet 83.10

Pratt et al. (2016) [65] Fundus Images PCA CNN 75.00
Chowdhury et al.

(2019) [69] Fundus Images Feature Vector RF, NB 93.58

Li et al. (2019) [54] OCT images Org_Net and Seg_Net OCTD_Net 92.00
Hacisoftaoglu et al.

(2020) [48] Fundus images Not mentioned SVM, NB, RF 98.60

Akram et al. (2014) [67] Fundus Images Gabor filter GMM and m-Mediods 97.56
Mookiah et al.

(2013) [68] Fundus images LBP, LTE PNN, DT, SVM 96.15

Sambyal et al. (2020)
[55] DR Images ResNet 34 Modified U-net with

ResNet 99.88

Liu et al. (2019) [61] Fundus images WP-CNN WP-CNN 94.23
Washburn et al.

(2020) [53] Color retinal images Gabor wavelets AdaBoost 98.40

Yun et al. (2008) [66] Retinal optical images Imaging technique Neural Network 84.00

Discussion

As mentioned earlier, early detection of the DR can help patients to recover quicker.
In this regard, most of the work toward DR detection involves extracting features and
classification using SVM and machine-learning-based models. The level of severity has
defined various stages of the disease. Based on the literature analysis, it can be stated that
although various techniques are still used to detect the disease, there is a need to improve
the system in terms of complexity, detection time, and severity stages. Many existing
techniques had worked on small datasets, and most of the algorithms did not elaborate
on the method of feature extraction approaches. Therefore, there is a need to develop a
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hybrid as well as an efficient computed model to identify the severity of the DR disease at
an earlier stage.

4. Severity Identification of Some Other Diseases

Infectious diseases, e.g., Tetanus and Hand Foot and Mouth Disease (HFMD), have
a significant influence on the low- and middle-income countries [3]. Mortalities due to
infectious diseases are associated with Autonomic Nervous System Dysfunction (ANSD).
In addition to clinical examinations, the development of some automated computerized
system is essential for the severity analysis of ANSD. In this regard, Tadesse et al. [3]
presented an automated system to diagnose the severity of HFMD based on the fusion of
multi-modal physiological data collected via low-cost wearable devices. For rapid diagnosis
of severity levels of HFMD, their multi-layer decision system comprises an on-site triage
process followed by a longitudinal model and the fusion of a multi-modal framework.
Finally, deep-learning-assisted mapping of time-series physiological signals with images
was obtained using spectrogram representations.

Mithra and Emmanuel [4] proposed a Gaussian Decision Tree-based Deep Belief
Network (GDT-DBN) for the detection of the degree of infection in the patients of Tuber-
culosis (TB), as depicted in Figure 5. This network is the hybrid of a Deep Belief Network
(DBN), Decision Tree (DT) and Gaussian model. Initially, the sputum smear image was
used as an input to the system, followed by color space transformation. For segmenta-
tion, thresholding-based mechanism was adopted. Once the segmentation is achieved,
the important features (e.g., length density, local direction pattern, histogram, etc.) were
extracted. The authors used the ZNSM-iDB [71] dataset comprising microscopic digital
images for training and testing of the model. A two-level classification was achieved using
the proposed GDT-DBN classifier. However, it is ineffective in distinguishing abnormal
mycobacteria from mycobacteria TB substances due to a similarity in their geometrical
structure. As mentioned earlier about the immense popularity of deep-learning-based
approaches in severity identification, Alebiosu et al. [72] presented a novel DAvoU-Net seg-
mentation framework for improving the severity assessment of tuberculosis. Experimental
evaluations on the ImageCLEF 2019 TB dataset showed promising results as compared to
seven other models under consideration.

Figure 5. Block diagram of GDT-DBN classification for TB infection level identification [4].

Sepsis is a fatal disease if not detected at an early phase. Sequential Organ Failure
Assessment (SOFA) is used to determine the level of Sepsis, but this method is totally
dependent upon the laboratory measurements. In this regard, Aşuroğlu [5] presented a
regression-based method to detect the level of sepsis. They used the Mart In Intensive
Care (MIMIC)-III dataset [73] for experimental evaluations and binary classification for the
prediction of sepsis. This model consumed less time and provided an AUC of 0.98, which
is higher than other existing models. However, due to the large number of samples in
the dataset, it seems difficult to balance the sepsis and un-sepsis samples, thereby causing
a delay.

COVID-19 is a contagious disease that has spread all over the world, affecting the
human body and health, and as such, it is very necessary to identify the level of severity at
an early stage. Deep-learning-based approaches proved to be significant in the diagnosis
of COVID-19 at earlier stages. CT-Scans are helpful in providing information about the
severity of COVID-19 patients in medical reports. Cai et al. [74] presented a deep-learning-
based approach for recognition of the infection region. Initially, patient data (RT-PCR, CT
Samples) were collected and examined at different levels of severity, i.e., moderate, severe,
and critical. In addition, the clinical data, including routine blood tests, clinical symptoms,
demographic data, and treatments, etc., were also considered for the same reason. The
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3DQI tool [75] was utilized for lesion quantifications, followed by data analysis with respect
to disease severity and clinical outcomes. Chi-squared test, Student’s t-test and other ML
models are applied for the analysis of clinical data. Two U-Net models were employed for
performance analysis on 99 chest CT scans. The mean Dice Similarity Coefficient (DSC) is
found to be 0.981 for lung segmentation and 0.778 for lesion segmentation. On the other
hand, Yao et al. [76] proposed a machine-learning-based model to detect the severity of
COVID-19. The level of severity of COVID-19 in a person is recognized by SVM with
32 features. The algorithm was used on 137 COVID-19 patients, which were confirmed
by Huazhong University. Among this dataset, only 17 patients were diagnosed with mild
cases, 45 cases were diagnosed with moderate cases, and the remaining 75 patients were
severely infected by this disease. The samples were categorized into 80% of testing and
20% of training sets. Feature extraction has been processed through the conservative re-
cursive features (cREF) technique to enhance the performance of the model by eliminating
redundant features. The model exhibited 81% accuracy and 0.699 specificity. Roy et al. [77]
presented a novel deep-learning model called Reg-STN (Regularized-Spatial Transformer
Network) based on Spatial Transformer Networks (STNs) [78] for analyzing Lung Ultra-
sonography (LUS) images. Disease severity was predicted for each input frame of LUS
images. Each frame of the LUS image was classified into four different severity levels.
In addition to this, they implemented a fully annotated database called “Italian COVID-19
Lung Ultrasound DataBase (ICLUS-DB)” [79] that consists of four-level scale labels. STNs
are composed of three components: (i) a localization network that is responsible for the
prediction of affine transformations, (ii) a grid generator for selecting grid coordinates from
images, and (iii) a sampler for wrapping the input image. The evaluation of their method
was conducted for accurate prediction and localization of COVID-19 at both the frame level
and video level. On the other hand, Lai et al. [80] presented a combination of ML- and
DL-based approaches for detecting novel coronavirus-infected pneumonia (NCIP) from
CT images. Their model is based on a few-shot learning approach. For the segmentation
of lung regions from CT images, a pre-trained network is utilized. Segmentation not only
reduces the lesion detection but also the computation time, thereby avoiding false positives.
For lesion detection and prediction, a multitask DCNN based on U-Net was utilized. Ex-
perimental results on a real patient’s data revealed Area Under the Curve (AUC) of 0.91.
Fouzia Altaf et al. [81] introduced a transfer learning concept by implementing augmented
ensemble transfer learning that gives better results as compared to conventional transfer
learning. To implement an efficient deep transfer learning model, they also modified the
architecture of the existing network by adding an extra layer to change the dimensionality
between the input image and the target image. They tested their model on the pre-trained
ImageNet model. The authors used two different publicly available datasets for their
execution purpose, namely Chest-Xray 14 radiographs and COVID-19 radiographs. Results
on the Chest-Xray 14 dataset indicated a 50% reduction in the error rate compared to the
baseline transfer learning technique. Another dataset was used for a binary problem as
well as a multi-class classification problem. The modified trained model secured a 99.49%
accuracy for the binary classification and 99.24% accuracy for multi-class classification.
Zekuan Yu [82] identified 19 severity levels in CT scans through the classification of deep
features. A total of 729 2D axial plan slices with 246 severe cases and 483 non-severe
cases were employed in this study. By taking advantage of the pre-trained deep neural
network, four pre-trained off-the-shelf deep models (Inception-V3, ResNet-50, ResNet-101,
DenseNet-201) were exploited to extract the features from these CT scans. To identify the
severe and non-severe COVID-19 cases, the features were then fed to multiple classifiers.
Three validation strategies (holdout validation, tenfold cross-validation, and leave-one-
out) were employed to validate the feasibility of the proposed pipelines. Experimental
evaluations represented promising results as the DenseNet-201 with cubic SVM model
achieved the best performance. Specifically, it achieved the highest severity classification
accuracy of 95.20% and 95.34% for 10-fold cross-validation and leave-one-out, respectively.
The established pipeline was able to achieve a rapid and accurate identification of the

202



Diagnostics 2023, 13, 1212

severity of COVID-19. This may assist physicians in making more efficient and reliable
decisions. Many other works on COVID-19 diagnosis using AI-based approaches [83–85]
were published by researchers. Chahar et al. [86] and Sinwar et al. [87] presented a survey
of such learning models.

Taehoon Kim et al. [88] implemented a machine-learning model to identify the severity
of sleep disorder breathing (sleep apnea). As a dataset, they considered patients that
were presented at a sleep center with snoring while breathing during sleep. The authors
developed four categories (i.e., normal, mild, moderate, and severe) of severity based on
their Apnea Hypopnea Index (AHI) value among 120 patients. To capture the breathing
sound, they used polysomnography, which records the sound using four different methods,
as mentioned in Figure 6.

Figure 6. Different categories to measure the sound using polysomnography [88].

The recorded sound also had some noise components (i.e., machine noise, conversion
noise); thus, the authors utilized two different filtering processes (i.e., spectral subtraction
filtering and sleep stage filtering) to capture the useful information from the recorded
sound. After filtering the sound, various audio features were extracted, and then four
group and binary classification algorithms were applied to it. As a result, they scored 88.3%
accuracy for the four-stage classifier and 92.5% accuracy for binary classification.

Linda A. Antonucci et al. [89] illustrated a machine-learning model to identify psy-
chosis at an early stage. To implement the model, the authors used a support vector
classifier and cross-validation section. They trained the model on approximately 105 sam-
ples composed of 71 samples of healthy controls, and 34 were psychosis samples. A total of
three tests were evaluated on the samples, namely the discovery sample (healthy controls
vs. psychosis), clinical validation sample (healthy controls vs. early stage of disease),
and validation of familial risk (healthy controls vs. familial high risk). The resultant accu-
racy achieved for all three above-mentioned tests was found to be 72.2%, 63.5%, and 44.2%,
respectively. The performance of the system may be improved with the help of a large
dataset because a small dataset may lead to an overfitting issue.

Ahmad Abujaber et al. [90] implemented two different machine-learning models (i.e.,
linear regression and Artificial Neural Network) to predict the severity level of traumatic
brain injury. The authors included 785 patients’ (581 survived and 204 deceased) data as a
dataset in their research. Pre-processing steps were also applied to the gathered dataset in
the form of cleaning and transformation. The trained model achieved an accuracy of 87%
using LR and 80.9% using ANN. In the end, they concluded that the LR model provided
good results compared to an ANN.

Zeng Z et al. [91] identified local recurrences in breast cancer using Electronic Health
Records (EHRs). They reviewed the development corpus of 50 progress notes and extracted
partial sentences that indicated breast cancer local recurrence. MetaMaps were used to
process these partial sentences to obtain a set of Unified Medical Language Systems (UMLS).
After using MetaMaps on patients’ progress notes, the sets that came under positive concept
sets were retained. An SVM was trained to identify the local recurrences using these features
with the pathology records of each patient. The model was compared with three baseline
classifiers using either full MetaMap concepts, filtered MetaMap concepts, or bag of words.
The model achieved the best AUC of 0.93 in cross-validation and 0.87 in held-out testing.
This model provides an automated way to identify local breast cancer recurrences as

203



Diagnostics 2023, 13, 1212

compared to a labor-intensive chart review. By minimally adapting the positive concept set,
the study can be replicated at other institutions with a moderately sized training dataset.

Kwon et al. [92] presented an automated classification of Knee Osteoarthritis (KOA) by
combining both deep-learning and machine-learning approaches. Their automated system
is based on the Kellgren–Lawrence (KL) grading system, gait analysis data, and radio-
graphical images. Inception-ResNet-v2 was utilized for extracting relevant features from
radiographical images followed by KOA multi-classification using SVM. Experimental
results on both radiographical images and gait data indicated that both radiographical
images and gait data are complementary for KOA classification.

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in
the world. Currently, the diagnosis of AD is carried out using Mini-Mental State Exam
(MMSE), which is quite a complex and time-consuming process. Martinez-Murcia et al. [93]
presented an autoencoder-based deep-learning methodology to find out the relationship
between neurodegeneration and cognitive symptoms. For the analysis and visualization of
distortion of extracted features, regression and SVM-based classification techniques were
employed. Experimental results on the ADNI dataset revealed the classification accuracy
to be 84%. On the other hand, Sethuraman et al. [94] evaluated the severity of Alzheimer’s
Disease using Biomarkers. They utilized an ADNI Dataset [95] that comprises neuroim-
ages of persons affected by AD. Their deep-learning-based model showed a performance
accuracy of 96.61%.

Discussion

Computational intelligence-based methods are used in a variety of ways to strengthen
the medical field. It is hard to imagine the existence of the medical field and the subsequent
treatment of several critical diseases without CI-based methods. In this section, a critical
review of various CI-based methods for identifying the severity of diseases is presented.
A variety of diseases (e.g., COVID-19, sleep disorder, psychosis, brain diseases, breast
cancer, knee osteoarthritis, sepsis, tuberculosis, etc.) are covered for severity identification
by different researchers using various techniques (deep belief networks, decision tree,
Chi-squared test, Student’s t-test, regression, deep learning, etc.). The performance of
these systems on a single type of data (e.g., imaging data, sensor data, etc.) is found
to be satisfactory. However, in the future, hybrid systems (comprising several types of
data as well as an ensemble of several techniques) need to be deployed to strengthen the
medical field.

5. Some Public Repositories for Disease Severity Identification

The dataset plays a very crucial role in analyzing the performance of disease identifi-
cation methods. Table 3 presents some public repositories that can be utilized to conduct
disease severity identification tasks, mainly on DR, PD, and COVID-19.

Table 3. Public datasets available for conducting disease severity identification tasks.

Contributor Name of Database Modality Disease

EyePACS [45] EyePACS Fundus Images DR
Decencière et al. [51] MESSIDOR Fundus Images DR

Porwal et al. [58] IDRiD fundus Fundus Images DR
Kauppi et al. [96] DIARETDB0 Fundus Images DR
Kauppi 2007 [96] DIARETDB1 Fundus Images DR

S. R. Rath [97] Diabetic Retinopathy Fundus Images DR
Chalakkal et al. [98] UoA-DR Fundus Images DR

J. Staal et al. [99] DRIVE Fundus Images DR
M. Goldbaum [100] STARE Fundus Images DR

Decencière [101] E-ophtha Fundus Images DR
Clayton et al. [102] HandPD Handwriting images PD

Goldberger et al. [9] PhysioNET Spiral & meander image PD
Alam et al. [103] VGRF Gait information PD
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Table 3. Cont.

Contributor Name of Database Modality Disease

Acharya et al. [16], University
of Bonn [104] EEG time series data EEG Signals Epilepsy

ICLUS [79] ICLUS—Italian COVID-19
Lung Ultrasound project Ultrasound

Cohen et al. [105] COVID-19 image data
collection X-ray, CT COVID-19 and other

associated diseases

Xuehai He et al. [106] CT-Dataset: a CT scan dataset
about COVID-19 CT COVID-19

Wang et al. [107] COVIDx X-ray COVID-19, Pneumonia,
Normal

RSNA [108] COVID-19 Imaging Data Sets X-ray, CT COVID-19, Pneumonia

Chowdhury et al. [109,110] COVID-19 Radiography
Database X-ray COVID-19, Pneumonia,

Normal
Eduardo Soares et al. [111] SARS-CoV-2 CT-scan dataset CT COVID-19, Normal

The EyePACS dataset [51] is found to be one of the famous datasets for performing
DR identification. It consists of approximately five million retinal images captured on
different degrees of DR. In addition to retinal images, fundus images are also playing
vital roles in the identification of diabetic retinopathy. MESSIDOR [58], IDRiD fundus [96],
DIARETDB0 [96], DIARETDB1 [97], and E-ophtha [16] are a few famous repositories
that contain fundus images to accomplish DR identification tasks. To perform COVID-19
identification from chest X-ray and CT-scan images at an early stage, several COVID-19
datasets [105–110] were made available to the public.

6. Conclusions

There is no doubt that on-time disease severity identification can save the lives of
human beings. Many researchers have used artificial intelligence and machine-learning-
based techniques to identify the severity level of different categories of diseases based on
their symptoms. The study embodied in this paper was focused mainly on two diseases, viz.
Parkinson’s Disease and Diabetic Retinopathy. However, severity identification of a few
other diseases, such as COVID-19, autonomic nervous system dysfunction, tuberculosis,
sepsis, sleep apnea, psychosis, traumatic brain injury, breast cancer, knee osteoarthritis,
and Alzheimer’s disease, was also briefly covered. For severity identification, the task of
multi-level classification was adopted. Based on patterns in the input data, the multiple
output classes indicated different severity levels of the disease. Hoehn (H) and Yahr (Y),
through the UPDRS measure, was found to be utilized mainly for severity identification. It
was observed from the literature on Parkinson’s Disease (PD) that there is a huge scope
to improve the accuracy using non-motor symptoms. On the other hand, for severity
identification of Diabetic Retinopathy (DR), a scope to reduce the algorithmic complexity
and detection rate was observed. For rapid diagnosis of COVID-19, researchers applied
various models (e.g., Inception-V3, ResNet, DenseNet, etc.) to a patient’s X-ray and CT
scan images. This article also provided the information of some public repositories for
conducting disease severity identification tasks on DR, PD, and COVID-19. It is evident
that that deep-learning models provide several advantages, viz. rapid diagnosis of diseases,
automatic feature extraction, learning from examples, etc. In addition to these, they also
suffer from several drawbacks, viz. lack of transparency, inefficiency in processing low-
quality images, a massive amount of data required for better accuracy, etc. It can be
stated that not only the development of automated disease severity identification is in its
infancy stage, but also the development of massive as well as hybrid datasets enriched
with epidemic characteristics. There is no doubt that deep-learning approaches have
the capability of rapid diagnosis of disease, but imaging data alone do not serve this
purpose. Thus, the integration of clinical and statistical observations with computational
intelligence-based approaches is essential not only for an enhancement in the accuracy
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of computations, severity identification, and subsequent validation of results but also for
minimizing outbreaks.
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