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1. Introduction

We are honoured to present this Special Issue of Axioms with the title “Topology and
Functional Analysis” to showcase recent work on this and related topics and to provide
an opportunity for María Jesús Chasco’s friends and colleagues to pay tribute to her
mathematical career on the occasion of her 65th birthday. This issue includes significant
papers dealing with topological groups, topological semi-groups and topological vector
spaces. Many of them exploit the rich and fruitful interaction between topology and
functional analysis, which has been a wellspring of powerful mathematical ideas and
development since the early stages of both disciplines.

One of the many important programs originating within this framework can be
described as borrowing some of the tools and concepts of topological vector space theory to
study the structure and duality properties of Abelian topological groups. Such a viewpoint
turns out to be particularly useful, for instance, when dealing with Pontryagin duality and
reflexivity outside the class of locally compact groups. It should be noted that the notion of
convexity admits a counterpart in the field of Abelian topological groups. Inspired by the
Hahn–Banach theorem, Vilenkin introduced in [1] the notion of a quasi-convex subset of an
Abelian topological group, which immediately led to the definition of locally quasi-convex
groups. With these objects at hand, it is natural to extend well-known theorems from the
class of locally convex spaces to the broader class of locally quasi-convex groups.

María Jesús Chasco completed her doctoral dissertation under the direction of Antonio
Plans while she was working as a high-school chair. Her first research was in Hilbert space
theory, and the defense of her thesis took place at the University of Zaragoza in 1985.

Soon after, she obtained a position as a Professor at the Department of Mathematics
at the Engineering School of the University of Vigo, where she remained for 7 years.
She was involved in multiple collaborations with her colleagues in the Department of
Mathematics, and became director of the department for some time. She encouraged visits
from numerous professors from other countries who contributed to creating a fruitful
scientific environment, which attracted students to attend the university to write their
doctoral dissertations. Concretely, she was coadvisor of the theses of Ricardo Vidal and
Xabier Domínguez.

In 1997, she obtained a professorship at the University of Navarre, in Pamplona, her
native town, where she has remained ever since. Her brilliant work there spanned fruitful
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research, pedagogical tasks that included advising the theses of Hugo Bello and Carlos
Bejines and administrative positions as the Vice Dean of the Faculty of Sciences.

As a university professor, she has enjoyed the interaction with her students, who
recognize her generous dedication to them and her unconditional availability to help solve
their problems.

Mª Jesús has a special quality of discovering beautiful problems in mathematics
and sharing ideas with colleagues. She has published more than 40 papers, mainly in
topological groups, but also in functional analysis dealing with locally convex spaces and
Banach spaces. Her favourite topic is duality in topological groups. She knows how to
extract the best from her colleagues and discover talent wherever it is. She can easily make
a team work, being a loyal friend that always speaks the truth.

She also has deep convictions which guide her actions, not falling into relativism or
preconceived opinions. Friendship is one of her highest values. She enjoys travelling, art,
nature and beauty wherever it is. Thus, we expect to keep sharing her enthusiastic attitude
to life, her friendship and new results in mathematics for many years.

2. Overview of the Published Papers

Large-scale topology or, in other words, the study of coarse structures, is currently an
important area of topology, with essential geometric and combinatorial connections [2].
In the natural coarse structures associated with any given group, the discrete subsets are
exactly the so-called thin subsets: a subset X of a group G is called thin if given any finite
subset F of G, one has both Fx ∩ Fy = ∅ and xF ∩ yF = ∅ for all but finitely many different
x, y ∈ X. The paper On factoring groups into thin subsets (Contribution 1 by I. Protasov) is
devoted to the proof of the following factorization result: Every Hausdorff nondiscrete
countably infinite topological group G has two thin subsets A and B such that every g ∈ G
can be uniquely expressed as a product g = ab with a ∈ A and b ∈ B.

The contribution Factoring continuous characters defined on subgroups of products of topo-
logical groups (Contribution 2 by M. Tkachenko) mainly deals with extensions of characters
defined on such subgroups to the whole product space. For precompact Abelian subgroups
(without requiring the Hausdorff property of the spaces involved), a nice result is obtained,
which includes a factorization theorem (Theorem 4). It is well known that factorization
theorems constitute a powerful tool to study continuity of functions defined on products of
topological spaces. The author provides interesting examples and poses the problem of
whether precompact subgroups of products of paratopological Abelian groups are dually
embedded (Problem 1).

In A distinguished subgroup of compact Abelian groups (Contribution 3), D. Dikranjan, W.
Lewis, P. Loth and A. Mader consider the family of all subgroups Δ of a compact abelian
group G that are compact, totally disconnected and such that G/Δ is a torus. The sum
of all the subgroups with these properties is a functorial subgroup Δ(G) that is dense,
zero-dimensional and such that the quotient G/Δ(G) is torsion-free and divisible. Using
these ideas, the authors survey and extend earlier results on the resolution theorem for
compact Abelian groups and about minimal groups.

Aggregation operators are an essential tool in science and engineering due to the
ubiquitous necessity of combining several input values into a single value. In the paper
On self-aggregations of min-subgroups (Contribution 4 by C. Bejines, S. Ardanza-Trevijano
and J. Elorza), the authors study the preservation of the min-subgroup structure under
aggregation functions. Min-subgroups of a group G are fuzzy sets μ with domain G
satisfying μ(x) = μ(x−1) and μ(xy) ≥ min{μ(x), μ(y)} for any x, y ∈ G. P. Das proved
that a fuzzy set of G is a min-subgroup of G if and only if all its nonempty level sets are
subgroups of G. He also introduced a natural equivalence relation between min-subgroups
in terms of their level sets. The main result of this paper is the following: If G is a group and
A : [0, 1]n → [0, 1] is an aggregation function, then A(μ, . . . , μ) and μ induce the same level
sets for every min-subgroup μ of G if and only if A is strictly increasing on its diagonal;
that is, A(x, . . . , x) < A(y, . . . , y) whenever x < y. From this result, it follows that for any
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min-subgroup μ of G, A(μ, . . . , μ) and μ belong to the same Das class whenever A is a strict
t-norm or a strict t-conorm.

The notion of boundedness is a fundamental tool in many fields of mathematics,
particularly in the framework of topological vector spaces. In 1959, Hejcman dealt with
boundedness in uniform spaces and in topological groups [3]. The article Bounded sets in
topological spaces (Contribution 5 by C. Bors, M. Ferrer and S. Hernández) approaches this
notion for a topological space subject to the action of a monoid. They define the G-bounded
sets of the topological space X, where G is a monoid that acts on X. This notion can be the
seed of important developments, taking into account that the topic of actions of groups on
topological spaces is nowadays a challenging one. In this paper, the authors prove, among
other properties, that for a metrizable separable G-space X, the G-bounded subsets of X
are completely determined by the G-bounded subsets of any dense subspace.

The paper Distinguished property in tensor products and weak* dual spaces (Contribution 6
by S. López-Alfonso, M. López-Pellicer and S. Moll-López) deals with locally convex spaces.
Recall that a locally convex space E is distinguished if its strong dual E′β is a barrelled
space or equivalently if for every bounded subset M in (E′β)

′
β there is a bounded set N in E

such that M ⊂ N◦◦. The notion of distinguished Fréchet spaces was already defined by
Dieudonné and Schwartz. Here, the authors obtain distinguished properties of injective
tensor products Lp(X)

⊗
ε E, where Lp(X) denotes the dual space of the classical space

Cp(X) (the space of continuous real functions over a topological space X, endowed with
the pointwise convergence topology) and E denotes a locally convex space. By imposing
conditions either on X or on E, they are able to find many classes of distinguished spaces
of the above-mentioned form.

The article Aspects of differential calculus related to infinite-dimensional vector bundles and Pois-
son vector spaces (Contribution 7 by H. Glöckner) deals with infinite-dimensional differential
calculus. Among other questions, the differentiability properties of operator-valued maps
and compositions with hypocontinuous k-linear mappings are investigated. A wide scope
of applications is provided. In the field of infinite-dimensional vector bundles, these results
are used to construct new bundles from given ones, such as dual bundles, topological tensor
products, infinite direct sums and completions under suitable hypotheses. Another field of
applications is in the class of locally convex Poisson spaces, a class defined by the author
in earlier work. Roughly speaking, locally convex Poisson vector spaces are locally convex
spaces E such that E× E is a kR-space, and a “Poisson bracket”—a more restrictive notion
than that of a Lie bracket—is defined for the dual space of E. The differentiability results are
used in this context to prove the continuity of the Poisson bracket and the continuity of the
passage from a function to the associated Hamiltonian vector field.

Pro-Lie groups, which are defined as projective limits of finite-dimensional Lie groups,
have been the subject of many fruitful investigations in recent years. In the article Advances
in the theory of compact groups and pro-Lie groups in the last quarter century (Contribution 8), K.
Hofmann and S. Morris provide a masterful summary that motivates and contextualizes
their own contributions and those of others. Particular attention is paid to structure
theorems for pro-Lie groups that are connected, almost connected or Abelian. The authors
also explore the connection between pro-Lie groups and linear algebra, thereby identifying
a new approach to the Hochschild–Tanaka duality of compact groups. This is one of several
areas that they mention as ripe for further study.

Exploiting the connection between topological vector spaces and topological groups
that were mentioned in the Introduction, an analogue of the Mackey–Arens theorem for
the class of topological groups is considered in [4], a paper which initiated an extensive
literature on this topic. The Mackey topology for a topological Abelian group G is defined
as the finest locally quasi-convex topology which admits the same character group as G,
and G is said to be a Mackey group if its original topology coincides with its Mackey
topology. The class of Mackey groups includes all locally compact groups, as well as all
complete metrizable ones [4]; however, there are topological Abelian groups which do
not admit a Mackey topology, as was proven in [5,6]. Thus, the natural counterpart of
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the Mackey–Arens theorem does not hold for Abelian topological groups. As a result,
it is natural to ask what is the relationship between the properties of “being a Mackey
space” and “being a Mackey group” in the field of locally convex spaces. In [7], it was
shown that a metrizable locally convex space might not be a Mackey group, a fact that
disproved a conjecture stated in [8], (8.1). It is well known that a metrizable locally convex
space carries its Mackey topology. In the paper Normed spaces which are not Mackey groups
(Contribution 9 by S. Gabriyelyan), it is further proven that even a normed space may fail
to be a Mackey group.

In an infinite dimensional topological vector space, the closed convex hull of a compact
set might not be compact. Krein’s theorem is an important result in this line, which can be
formulated as follows: “If E is a complete locally convex space, then the closed convex hull
of a weakly compact subset of E is again weakly compact”. In the paper Krein’s theorem in
the context of topological Abelian groups (Contribution 10 by T. Borsich, X. Domínguez and
E. Martín-Peinador), the authors interpret this result in the class of locally quasi-convex
Abelian topological groups, analyze the resulting concepts and properties and expose an
obstruction to the generalization of Krein’s theorem to this wider context. In fact, if G
denotes the family of null sequences of a compact metrizable connected group X, G has
a natural group structure provided by that of XN. Under the uniform topology of XN,
G becomes a complete metrizable locally quasi-convex topological group. However, the
corresponding weak topology on G does not satisfy Krein’s property. In other words, there
exist weakly compact subsets of G whose quasi-convex hulls are not weakly compact .

A sequence (xn) of elements of a locally convex space X is said to be absolutely
summable if ∑n p(xn) < ∞ whenever p is a continuous seminorm on X or, equivalently, the
Minkowski functional of an absolutely convex neighborhood of zero in X. This definition
can be carried over to an arbitrary topological Abelian group G via Kaplan’s generalization
of Minkowski functionals. The same functionals can be then invoked to endow the group
�1(G) of all absolutely summable sequences in G with a natural group topology. These
concepts and constructions can be applied to a wide range of situations, and they often
provide illuminating generalizations of the normed or the topological vector space setting.
The article On the group of absolutely summable sequences (Contribution 11 by L. Außenhofer)
contains quite a few of these generalizations; among other results, it is shown here that
�1(G) is a Pontryagin reflexive group if G is either reflexive and metrizable or an LCA
group, and �1(G) has the Schur property if and only if G has it.

The classical theorems by Dirichlet and Riemann on the convergence of a series of real
terms can be partially generalized to much wider contexts, giving rise to a rich theory which
is still being developed in a relevant way. The paper Permutations, signs and sum ranges
(Contribution 12 by S. Chobanyan, X. Domínguez, V. Tarieladze and R. Vidal) consists mostly
of a detailed survey of the advances in the sum range problem from its first formulations to
the present day, including some results by M. J. Chasco and the first named author.

Along the same lines, in the paper Series with commuting terms in topologized semi-
groups (Contribution 13 by A. Castejón, E. Corbacho and V. Tarieladze), the authors
present a version of the Riemann–Dirichlet unconditional convergence theorem for topolo-
gized semigroups.

The contribution An expository lecture of María Jesús Chasco on some applications of Fubini’s
theorem (Contribution 14 by A. Castejón, M. J. Chasco, E. Corbacho and V. Rodríguez de
Miguel) is an elegant and powerful piece of mathematical exposition at the advanced
undergraduate level, based on a masterclass given by M. J. Chasco at the University of
Vigo. It contains a remarkable presentation of the Brunn–Minkowski and isoperimetric
inequalities as consequences of Fubini’s theorem, as well as some estimations of volumes
of sections of n-dimensional balls.

3. Conclusions

The authors of the fourteen papers in this volume include friends, colleagues and
collaborators of María Jesús Chasco. Ranging over many different branches of mathematics,
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the papers reflect the breadth of her mathematical interests. Several deal with various
aspects of topological groups, but we expect that this volume will also interest specialists in
general topology, functional analysis, algebra, geometry and number theory. Their quality
and depth make them a fitting tribute for María Jesús Chasco’s 65th birthday.
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1. Introduction

Let G be a group, and [G]<ω denote the set of all finite subsets of G. A subset X of
is called:

• left thin if, for every F ∈ [G]<ω, there exists H ∈ [G]<ω such that Fx ∩ Fy = ∅ for all
distinct x, y ∈ X \ H;

• right thin if, for every F ∈ [G]<ω , there exists H ∈ [G]<ω such that xF ∩ yF = ∅ for all
distinct x, y ∈ X \ H;

• thin if X is left and right thin.

The notion of left thin subsets was introduced in [1]. For motivation to study left
thin, right thin and thin subsets and some results and references, see Comments and
surveys [2–5]. In asymptology, thin subsets play the part of discrete subsets (see Comments
1 and 2).

We recall that the product AB of subsets A, B of a group G is a factorization if G = AB
and each element g ∈ G has the unique representation g = ab, a ∈ A, b ∈ B (equivalently,
the subsets {aB : a ∈ A} are pairwise disjoint). For factorizations of groups into subsets,
see [6].

Our goal is to prove the following theorem. By a countable set, we mean a countably
infinite set. The group topology τ is supposed to be Hausdorff.

Theorem 1. Let (G, τ) be a non-discrete countable topological group. Then G can be factorized
G = AB into thin subsets A, B.

2. Proof

Proof of Theorem 1. Let G = {gn : n < ω}, g0 = e, e is the identity of G, Fn = {gi : i ≤ n}.
Given two sequences (an)n<ω, (bn)n<ω in G, we denote

An = {ai, a−1
i : i ≤ n}, Bn = {bi : i ≤ n}, A = ∪n<ω An, B = ∪n<ωBn.

We want to choose (an)n<ω, (bn)n<ω so that AB is a factorization of G and A, B are
thin.

Let X, Y be subsets of G. We say that XY is a partial factorization of G if the subsets
{Xy : y ∈ Y} are pairwise disjoint (equivalently, the subsets {Yx : x ∈ X} are pairwise
disjoint).

Axioms 2021, 10, 89. https://doi.org/10.3390/axioms10020089 https://www.mdpi.com/journal/axioms6
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We put a0 = e, b0 = e and suppose that a0, . . . , an and b0, . . . , bn have been chosen so
that the following conditions are satisfied

(1) AnBn is a partial factorization of G and gn ∈ AnBn;

(2) Fibi ∩ Fjbj = ∅, biFi ∩ bjFj = ∅ for all distinct i, j ∈ {0, . . . , n};

(3) Fiai ∩ Fjaj = ∅, aiFi ∩ ajFj = ∅, Fia−1
i ∩ Fja−1

j = ∅, a−1
i Fi ∩ a−1

j Fj = ∅ and

Fia−1
i ∩ Fjaj, a−1

i Fi ∩ ajFj = ∅ for all distinct i, j ∈ {0, . . . , n};

(4) if ai �= a−1
i then Fiai ∩ Fia−1

i = ∅, aiFi ∩ a−1
i Fi = ∅, i ∈ {0, . . . , n}.

We take the first element gm ∈ G \ AnBn, put g = gm and show that there exists a
symmetric neighborhood U of e such that

(5) (An ∪ {x, x−1})(Bn ∪ {xg}) is a partial factorization for each x ∈ U \ {e}.

We choose a symmetric neighborhood V of e such that (An ∪ {x, x−1})Bn is a partial
factorization of G for each x ∈ V \ {e}.

Then we use An = A−1
n , g ∈ G \ AnBn and e ∈ An ∩ Bn to choose a symmetric

neighborhood U of e such that U ⊂ V and

(An ∪ {x, x−1})Bn ∩ (An ∪ {x, x−1})xg = ∅,

equivalently, AnBn ∩ Anxg = ∅, AnBn ∩ {x, x−1}xg = ∅, {x, x−1}Bn ∩ Anxg = ∅,
{x, x−1}Bn ∩ {x, x−1}xg = ∅ for each x ∈ U \ {e}, so we get (5). By the continuity of the
group operations, the latter is possible because these 4 equalities hold for x = e.

If the set {x ∈ U : x2 = e} is infinite then we use (5) and choose an+1 ∈ U, an+1 = a−1
n+1

and bn+1 = an+1g to satisfy (1)–(3) with n + 1 in place of n. Otherwise, we choose
an+1 ∈ U, an+1 �= a−1

n+1 and bn+1 = an+1g to satisfy (1)–(4).
After ω steps, we get the desired factorization G = AB.

3. Comments

1. Given a set X, a family E of subsets of X × X is called a coarse structure on X if

• each E ∈ E contains the diagonal �X := {(x, x) : x ∈ X} of X;
• if E, E′ ∈ E then E ◦ E′ ∈ E and E−1 ∈ E , where E ◦ E′ = {(x, y) : ∃z ((x, z) ∈

E, (z, y) ∈ E′)}, E−1 = {(y, x) : (x, y) ∈ E};
• if E ∈ E and �X ⊆ E′ ⊆ E then E′ ∈ E .

Elements E ∈ E of the coarse structure are called entourages on X.
For x ∈ X and E ∈ E the set E[x] := {y ∈ X : (x, y) ∈ E} is called the ball of radius E

centered at x. Since E =
⋃

x∈X({x} × E[x]), the entourage E is uniquely determined by the
family of balls {E[x] : x ∈ X}. A subfamily E′ ⊆ E is called a base of the coarse structure E
if each set E ∈ E is contained in some E′ ∈ E ′.

The pair (X, E) is called a coarse space [7] or a ballean [8,9].
A subset B of X is called bounded if B ⊆ E[x] for some E ∈ E and x ∈ X. A subset

Y of X is called discrete if, for every E ∈ E , there exists a bounded subset B such that
E[x] ∩ E[y] = ∅ for all distinct x, y ∈ Y \ B.

2. Formally, coarse spaces can be considered as asymptotic counterparts of uniform
topological spaces. However, actually, this notion is rooted in geometry, geometrical group
theory and combinatorics (see [7,8,10,11]).

Given a group G, we denote by El and Er the coarse structures on G with the bases

{{(x, y) : x ∈ Fy} : F ∈ [G]<ω, e ∈ F}, {{(x, y) : x ∈ yF} : F ∈ [G]<ω, e ∈ F}

and note that a subset A of G is left (resp. right) thin if and only if A is discrete in the coarse
space (G, El) (resp. (G, Er) ).

3. By [12], every countable group G has a thin subset A such that G = AA−1. By [13],
every countable topological group G has a closed discrete subset A such that G = AA−1.
For thin subsets of topological groups and factorizations into dense subsets, see [14,15].
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4. Can every countable group G be factorized G = AB into infinite subsets A, B? By
Theorem 1, an answer to the following question could be negative only in the case of a
non-topologizable group G.

On the other hand, analyzing the proof, one can see that Theorem 1 remains true if all
mappings x �−→ xg, x �−→ gx, g ∈ G, x �−→ x−1 and x �−→ x2 are continuous at e. By [16],
every countable group G admits a non-discrete Hausdorff topology in which all shifts and
the inversion x �−→ x−1 are continuous.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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1. Introduction

Factorization of continuous functions defined on (dense) subspaces of topological
products has a long and illustrious history, with several new ideas and discoveries. The
articles [1–5] provide an excellent overview of the methodologies employed in this area
of research.

The current paper is a natural extension of [6,7], in which we investigated continuous
homomorphisms of subgroups (submonoids) of topological group products (monoids).
We proved in those articles that in many circumstances, a continuous homomorphism
f : S → H of a submonoid (subgroup) S of a product D = ∏ i ∈ IDi of topological monoids
(groups) to a topological monoid (group) H enables a factorization in the form

f = g ◦ pJ �S, (1)

where J is a “small” subset of the index set I, pJ : D → DJ = ∏i∈J Di is the projection, and
g : pJ(S)→ H is a continuous homomorphism. If one can find a finite (countable) set J for
which (1) holds true, we say that f has a finite (countable) type. Most of the results in [6,7]
present different conditions on S and/or H under which f has a countable or even finite
type. Purely algebraic aspects of this study can be found in [8].

In this article we go further and try to decompose a given continuous homomorphism
f : S → H into a product of ‘coordinate’ homomorphisms, as explained below.

It follows from the Pontryagin–van Kampen duality theory that every continuous
homomorphism of a product D = ∏i∈I Di of compact abelian groups to the circle group
T (called character) has a finite type. Hence, every continuous character of D is a linear
combination of finitely many continuous characters, each of which depends on exactly one
coordinate. This fact remains valid in a considerably more general situation presented by
S. Kaplan in [9]:

Proposition 1. Let χ be a continuous character of a product Π = ∏i∈I Gi of (reflexive) topological
abelian groups. Then one can find pairwise distinct indices i1, . . . , in ∈ I and continuous characters
χ1, . . . , χn of the respective groups Gi1 , . . . , Gin such that the equality

Axioms 2021, 10, 167. https://doi.org/10.3390/axioms10030167 https://www.mdpi.com/journal/axioms9
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χ(x) =
n

∏
k=1

χk(xik ) (2)

holds for each x ∈ Π.

An examination of the argument offered in [9] demonstrates that the ‘reflexive’ can be
omitted from the assumptions of Proposition 1. Thus, we may reformulate the conclusion
of Proposition 1 by asserting that the dual group Π∧ is algebraically isomorphic to the
direct sum of the factors’ duals,

⊕
i∈I D∧

i . Our objective is to extend the conclusion of
Proposition 1 to a much broader class of objects, such as subgroups or submonoids of
Cartesian products of monoids or paratopological groups (see Theorem 2, Corollary 1, and
Theorems 4–6).

An important property of the torus T is that it is an NSS group, which means that
there exists an open neighborhood of the identity in T containing no nontrivial subgroups.
Every Lie group is an NSS group. According to ([7], Theorem 3.11), every continuous
homomorphism of an arbitrary subgroup of a product of topological monoids to a Lie
group has a finite type. This is an essential ingredient in several arguments presented in
Section 2.

In Section 3 we complement several results from ([7], Section 2) about the continuous
character of a dense submonoid S of the P-modification of a product D = ∏i∈I Di of topolo-
gized monoids. We show in Proposition 3 and Example 3 that if ϕ : S → H is a nontrivial
continuous homomorphism of S to a topologized monoid of countable pseudocharacter,
then the family J (χ) of the subsets J of the index set I such that ϕ depend on J is often a
filter on I, and this filter can have an empty intersection, even if S = D and the product
D = Z(2)ω is a compact metrizable topological group (hence the P-modification of D is a
discrete group).

Notation and Auxiliary Results

Let C be the field of complex numbers with the usual Euclidean topology. The torus T
is identified with the multiplicative subgroup {z ∈ C : |z| = 1} of C.

A semigroup is a nonempty set S with a binary associative operation (called mul-
tiplication). A semigroup with an identity is called a monoid. Clearly a monoid has a
unique identity.

A semigroup S with some topology is said to be a semitopological semigroup if multi-
plication in S is separately continuous. This is equivalent to saying that the left and right
shifts in S are continuous. If multiplication in S is jointly continuous, we say that S is a
topological semigroup. The concept of topological monoid is defined similarly.

Assume that G is a semigroup (monoid, group) with a topology. If the left shifts in
G are continuous, then G is called a left topological semigroup (monoid, group). If both
left and right shifts in G are continuous, then G is said to be a semitopological semigroup
(monoid, group). Further, if G is a group and multiplication in G is jointly continuous, we
say that G is a paratopological group. A paratopological group with continuous inversions
is a topological group.

A topologized monoid (group) is a monoid (group) with an arbitrary topology that may
have no relation to multiplication in the monoid (group). We say that a left topological
monoid G has open left shifts if for every x ∈ G, the left shift λx of G defined by y �→ x · y
for each y ∈ G is an open mapping of G to itself.

The character of an arbitrary monoid G is a (not necessarily continuous) homomorphism
of G to the torusT. The continuity of a character, if it applies, will always be specified explicitly.

In the sequel we follow the notation of Proposition 1. For every i ∈ I, let pi be the
projection of Π onto the factor Gi. Then the conclusion of the proposition is equivalent
to saying that χ = ∏n

k=1 χk ◦ pik . It is worth noting that the projections pi are continuous
open homomorphisms, so the characters χ1, . . . , χn are ‘automatically’ continuous. This
assertion follows from the next simple result, which shows that for finitely many factors,
the conclusion of Proposition 1 remains valid, even if the factors are topologized monoids.
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Lemma 1. Let G = G1 × · · · × Gn be a product of topologized monoids and χ be a contin-
uous homomorphism of G to a topologized semigroup K. Then there exist homomorphisms
χ1, . . . , χn of the respective monoids G1, . . . , Gn to K such that χ(x) = χ1(x1) · · · χn(xn), for
each x = (x1, . . . , xn) ∈ G. This representation of χ is unique and the homomorphisms χ1, . . . , χn
are continuous.

Proof. For every k = 1, . . . , n, let ek be the identity of Gk and pk be the projection of G onto
the factor Gk. We define a homomorphism χk of Gk to K by χk(y) = χ(e1, . . . , y, . . . , en) for
every y ∈ Gk, where y stands at the kth position in (e1, . . . , y, . . . , en). A direct verification
shows that χ(x) = χ1(x1) · · · χn(xn), for each x = (x1, . . . , xn) ∈ G.

Let ψ1, . . . , ψn be homomorphisms of G1, . . . , Gn, respectively, to K, satisfying χ(x) =
ψ1(x1) · · ·ψn(xn), for each x ∈ G. We fix an integer k with 1 ≤ k ≤ n, and for every y ∈ Gk,
consider the element ŷ = (e1, . . . , y, . . . , en) ∈ G, where y stands at the kth position in ŷ.
Then χk(y) = χ(ŷ) = ψk(y), so ψk = χk for each k ≤ n, and hence, the representation
χ(x) = χ1(x1) · · · χn(xn) is unique.

It follows from the continuity of the homomorphism χ and the equalities χk(y) =
χ(e1, . . . , y, . . . , en), where 1 ≤ k ≤ n and y ∈ Gk, that χ1, . . . , χn are continuous.

Let X = ∏i∈I Xi be the Tychonoff product of a family {Xi : i ∈ I} of spaces and a ∈ X
be an arbitrary point. For every i ∈ I, the projection of X to the factor Xi is denoted by pi.
In addition, for every x ∈ X, we make

diff(x, a) = {i ∈ I : pi(x) �= pi(a)}.

Then
ΣX(a) = {x ∈ X : |diff(x, a)| ≤ ω}

and
σX(a) = {x ∈ X : |diff(x, a)| < ω}

are dense subspaces of X which are called, respectively, the Σ-product and σ-product of
the family {Xi : i ∈ I} with centers at a. If every Xi is a monoid (group), we will always
choose a to be the identity e of X. In the latter case, ΣX(e) and σX(e) are dense submonoids
(subgroups) of the product monoid (group) X and we shorten ΣX(e) and σX(e) to ΣX and
σX, respectively.

Assume that Z is a nonempty subset of the product X = ∏i∈I Xi of a family {Xi :
i ∈ I} of sets and f : Z → Y is an arbitrary mapping. We say that f depends on J, for
some J ⊂ I, if the equality f (x) = f (y) holds for all x, y ∈ Z with pJ(x) = pJ(y), where
pJ : X → ∏i∈J Xi is the projection. It is clear that if f depends on J, then there exists a
mapping g of pJ(Z) to Y satisfying f = g ◦ pJ �Z. Conversely, if there exists such a mapping
g of pJ(Z) to Y, then f depends on J.

Definition 1. Assume that Di is a monoid with identity ei, where i ∈ I. For a nonempty subset J
of I, we define a retraction rJ of D = ∏i∈I Di by letting

rJ(x)i =

{
xi if i ∈ J;
ei if i ∈ I \ J,

for each element x ∈ D. A subset S of D is said to be retractable if rJ(S) ⊂ S, for each J ⊂ I. If
the inclusion rJ(S) ⊂ S holds for each finite set J ⊂ I, we call S finitely retractable.

The concept of finite retractability is used in Theorem 5.

Given a space X, we denote by PX the underlying set X with the topology whose
base consists of all nonempty Gδ-sets in X. The space PX is usually referred to as the
P-modification of X. If X is a (left) topological group (monoid), then PX with the same
multiplication is also a (left) topological group (monoid).
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The family of countable subsets of a given set I is denoted by [I]≤ω.

2. Factoring Continuous Characters

In this section, we deal with not necessarily Hausdorff objects of topological algebra.
Since a major proportion of the research articles and books on this subject treat the Haus-
dorffian case exclusively, we need to extend several well-known facts to non-Hausdorffian
monoids and groups. We start with the following result that, informally, goes back to
Graev’s article ([10], pp. 52–53).

Lemma 2. Let G be a topological group with identity e, N be the closure of the singleton {e}
in G, and π : G → G/N be the quotient homomorphism. For every continuous homomorphism
f : G → H to a Hausdorff topological group H, there exists a unique homomorphism g : G/N → H
satisfying f = g ◦ π, and g is automatically continuous.

Proof. Notice that N is a closed invariant subgroup of G, so the quotient topological group
G/N is a T1-space. Hence G/N is a Hausdorff. Denote by K the kernel of f . Since H
is a Hausdorff, K is a closed subgroup of G. Hence, ker π = N ⊂ K = ker f . It now
follows from ([11], Proposition 1.5.10) that there exists a homomorphism g : G/N → H
satisfying f = g ◦ π. Assume that a homomorphism g̃ : G/N → H also satisfies f = g̃ ◦ π.
If y ∈ G/N, we take an element x ∈ G with π(x) = y. Then g(y) = g(π(x)) = f (x), and
similarly, g̃(y) = g̃(π(x)) = f (x). Hence g̃(y) = g(y) for each y ∈ G/N, so g̃ = g. As π is
open and continuous, we conclude that g is continuous.

The pair (G/N, π) in Lemma 2 is called the Hausdorff reflection of G. Abusing termi-
nology, we usually refer to G/N as the Hausdorff reflection of G, thereby omitting the
quotient homomorphism π. We also denote G/N by T2(G).

Informally speaking, the following lemma states that the functor of the Hausdorff
reflection in the category of topological groups and continuous homomorphisms describes
arbitrary subgroups.

Lemma 3. Let G be a topological group with identity e, N be the closure of the singleton {e} in
G, and π : G → G/N be the quotient homomorphism. Let S be an arbitrary subgroup of G and
NS = S ∩ N. Then the quotient group T2(S) = S/NS is topologically isomorphic to the subgroup
π(S) of T2(G) = G/N and the restriction of π to S is an open continuous homomorphism of S
onto π(S).

Proof. It follows from the definition of π that every closed subset C of G satisfies C =
π−1π(C). Therefore, if the subgroup S is closed in G then N ⊂ S, S = π−1π(S), and the re-
striction of π to S is an open continuous homomorphism of S onto the subgroup π(S) of G/N.
By the first isomorphism theorem, the groups π(S) and S/N are topologically isomorphic.

In the general case, let K be the closure of S in G. Then K is a closed subgroup of
G, N ⊂ K, and by the above argument, the groups T2(K) = K/N and π(K) ⊂ T2(G) are
topologically isomorphic. Hence it suffices to verify that the group T2(S) is topologically
isomorphic in relation to the subgroup π(S) of K/N. To this end we show that the
restriction of π to S is an open homomorphism onto the subgroup π(S) of K/N. Let U
be a nonempty open set in K and V = U ∩ S. Since K = π−1π(K) and N ⊂ K, the set U
satisfies the equality U = π−1π(U). Hence the set π(U) ∩ π(S) = π(U ∩ S) = π(V) is
open in π(S). Thus, π�S is an open homomorphism of S onto π(S) whose kernel is S ∩ N,
so the groups T2(S) and π(S) are topologically isomorphic.

Let us recall that the precompact Hausdorff reflection of a given topological group G is a
pair (H, ϕG), where H is a precompact Hausdorff topological group and ϕG : G → H is a
continuous homomorphism, such that for every continuous homomorphism g : G → K to
a Hausdorff precompact topological group K, there exists a continuous homomorphism
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h : H → K satisfying g = h ◦ ϕG. Every topological group G has a precompact Haus-
dorff reflection and this reflection is unique up to topological isomorphism [12]. The
homomorphism ϕG is referred to as universal for G.

Lemma 4. Let S be a dense subgroup of a topological group G and (H, ϕG) be the precompact
Hausdorff reflection of G. Let T = ϕG(S) and ψ = ϕG�S. Then (T, ψ) is the precompact Hausdorff
reflection of the group S.

Proof. Since H is a precompact Hausdorff topological group, so is its dense subgroup
T. Therefore it suffices to verify that the continuous onto homomorphism ψ : S → T is
universal for S. Let g : S → K be a continuous homomorphism to a precompact Hausdorff
group K. The completion of K, say, K, is a compact Hausdorff topological group. Hence
the group K is complete. Since S is dense in G, g extends to a continuous homomorphism
g∗ : G → K. By the universality of ϕG, there exists a continuous homomorphism h∗ : H →
K such that g∗ = h∗ ◦ ϕG. Let h be the restriction of h∗ to T. Then g = g∗� S = h∗ ◦ ϕG�S =
h∗ ◦ ψ = h ◦ ψ. This proves the universality of ψ for S.

A subgroup S of a topological abelian group G is said to be dually embedded in G if
every continuous character of S extends to a continuous character of G. The next lemma is
well known in the special case of Hausdorff topological groups ([13], Lemma 2.2).

Lemma 5. Every subgroup S of a precompact topological abelian group G is dually embedded in G.

Proof. Let e be the identity of G and N be the closure of the singleton {e} in G. Additionally,
let p : G → G/N be the quotient homomorphism. Since G is precompact, the pair (G/N, p)
is the precompact Hausdorff reflection of G. Let S be a subgroup of G. Denote by K the
closure of S in G. It follows from the definition of N that N ⊂ K and K = p−1 p(K), so
K/N ∼= p(K) and (p(K), q) is the precompact Hausdorff reflection of K, where q = p�K.
Since S is dense in K, Lemma 4 implies that (q(S), q�S) = (p(S), p�S) is the precompact
Hausdorff reflection of S.

Let χ be a continuous character of S. There exists a continuous character λ of the
subgroup T = p(S) of the precompact Hausdorff group G/N such that χ = λ ◦ p�S. By
([13], Lemma 2.2), T is dually embedded in the Hausdorff precompact abelian group G/N,
so λ extends to a continuous character λ∗ of G/N. Hence χ∗ = λ∗ ◦ p is an extension of χ
to a continuous character of G and S is dually embedded in the group G.

The following fact complements Lemma 5 in the non-abelian case.

Lemma 6. Every dense subgroup S of an arbitrary topological group G is dually embedded in G.

Proof. Let (H, ϕG) be the precompact Hausdorff reflection of the group G. We put T =
ϕG(S) and ψ = ϕG�S. By Lemma 4, the pair (T, ψ) is the precompact Hausdorff reflection
of S.

Let χ be a continuous character of S. Then there exists a continuous character χT of
T such that χ = χT ◦ ψ. Since the group H is precompact and Hausdorffian, it follows
from ([13], Lemma 2.2) that T is dually embedded in H. Hence, χT extends to a continuous
character λ of H. Thus, χ∗ = λ ◦ ϕG is a continuous character of G which extends χ.

Lemma 6 is not valid for closed subgroups of Hausdorff topological groups. In fact,
even a compact subgroup of a separable metrizable topological abelian group can fail to be
dually embedded ([11], Example 9.9.61).

According to Proposition 3.6.12 of [11], a continuous homomorphism of a dense
subgroup S of a Hausdorff topological group G to a complete Hausdorffian topological
group H extends to a continuous homomorphism of G to H. Below we generalize this
fact by showing that it remains valid for dense subgroups of arbitrary paratopological
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groups. Our argument makes use of the topological group reflection of a paratopological
group (see [14]).

Theorem 1. Let S be a dense subgroup of a paratopological group G and f : S → H be a continuous
homomorphism of S to a complete Hausdorff topological group H. Then f extends to a continuous
homomorphism g : G → H.

Proof. Let iG : G → G∗ be the identity mapping of G onto the topological group reflection
G∗ of G. It follows from ([14], Theorem 12) that the subgroup T = iG(S) of G∗ is topologi-
cally isomorphic to the topological group reflection S∗ of S, so we can identify the groups
T and S∗ algebraically and topologically.

Since H is a topological group, there exists a continuous homomorphism f∗ : T → H
satisfying f = f∗ ◦ iG�S. It follows from the continuity of iG that T is a dense subgroup of
G∗. However, the groups G∗ and T may fail to be Hausdorffian.

To reduce our further argument to the case of Hausdorff groups, we denote by N the
closure of the singleton {eG} in G∗ and consider the quotient homomorphism π : G∗ →
G∗/N. Then the quotient group G∗/N is the Hausdorff reflection of G∗. By Lemma 3,
the subgroup π(T) of G∗/N is the Hausdorff reflection of T and the homomorphism
ϕ = π� T of T onto π(T) is open and continuous. Since the group H is Hausdorffian,
Lemma 2 implies the existence of a continuous homomorphism f ∗ : π(T)→ H satisfying
the equality f∗ = f ∗ ◦ ϕ. Notice that T is dense in G∗ and π(T) is dense in G∗/N. Therefore,
by ([11], Corollary 3.6.17), f∗ extends to a continuous homomorphism g∗ : G∗/N → H (we
use the completeness of H here).

G
iG ��

g

��

G∗
π

��
S

iG ��

f
��

idS

��

T

idT

��

ϕ ��

f∗

��

G∗/N
g∗

��H π(T)
f ∗		

idπ(T)

��

Then g = g∗ ◦ π ◦ iG is a continuous homomorphism of G to H which extends f . This
proves the theorem.

We complement Theorem 1 in Proposition 2 by considering continuous homomor-
phisms defined on dense submonoids of topological monoids.

Example 1. Closed subgroups of completely regular paratopological groups need not be
dually embedded. Hence Theorem 1 does not extend to closed subgroups of paratopologi-
cal groups.

Proof. Let S be the Sorgenfrey line endowed with the usual topology and addition. Clearly
S is a regular (even hereditarily normal) paratopological group. Additionally, let Δ =
{(x,−x) : x ∈ S} be the second diagonal of S× S. It is well known and easy to verify that
the subgroup Δ is discrete and closed. Hence every character of Δ is continuous and Δ can
be identified with the real line Rd endowed with the discrete topology. On the one hand,
an easy calculation shows that the family of characters of Δ has the cardinality cc = 2c,
where c = 2ω. On the other hand, the groups S and S× S are separable, so there are at
most cω = c continuous characters of S× S. Therefore, not every character of Δ extends to
a continuous character of S× S. In other words, Δ fails to be dually embedded in S× S. It
is also clear that not every character of Δ admits the representation described in Lemma 1
(or in Theorem 2 that follows).

The next result is a considerable generalization of Proposition 1.

14
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Theorem 2. Let D = ∏i∈I Di be a product of paratopological groups and S be a subgroup of D.
Assume that for every finite set F ⊂ I, the subgroup pF(S) of DF = ∏i∈F Di is dually embedded in
DF, where pF : D → DF is the projection. Then for every continuous character χ of S, one can find a
finite set E ⊂ I and continuous characters χi of pi(S), for i ∈ E, such that χ =

(
∏i∈E χi ◦ pi

)
�S.

Proof. By Corollary 3.12 in [7], one can find a finite set E ⊂ I and a continuous character
χE of pE(S) such that χ = χE ◦ pE�S, where pE : D → ∏i∈E Di is the projection. By the
assumptions of the theorem, T = pE(S) is a dually embedded subgroup of DE = ∏i∈E Di.
Hence χE extends to a continuous character ψ of DE. According to Lemma 1, for every i ∈ E,
there exists a continuous character ψi of Gi such that ψ = ∏i∈E ψi ◦ qi, where qi : DE → Di
is the projection. Let pi : D → Di be the projection, for each i ∈ E. Since pi = qi ◦ pE and
χ = ψ ◦ pE�S, we conclude that the required equality χ =

(
∏i∈E χi ◦ pi

)
�S is valid.

Example 1 explains why in Theorem 2, we require the projections of a subgroup S ⊂ D
to finite subproducts to be dually embedded, though this does not exclude the possibility
that the theorem be valid for arbitrary subgroups of products of (para)topological groups.
Later, in Example 2, we will show that such a generalization of Theorem 2 is impossible,
even if the factors of the product D = ∏i∈I Di are topological groups.

By Theorem 1, a dense subgroup of a paratopological group is dually embedded.
Hence the next corollary is immediate from Theorem 2.

Corollary 1. Let D = ∏i∈I Di be a product of paratopological groups, S be a dense subgroup of D,
and χ be a continuous character of S. Then one can find a finite set E ⊂ I and continuous characters
χi of Di, for i ∈ E, such that χ =

(
∏i∈E χi ◦ pi

)
�S, where pi : D → Di is the projection.

The next example shows that the conditions on S for ‘dual embedding’ in Theorem 2
and ‘dense’ in Corollary 1 are essential.

Example 2. There exist countably infinite, metrizable topological abelian groups G1 and G2, and a
closed discrete subgroup Δ of the product Π = G1 × G2 such that p1(Δ) = G1, p2(Δ) = G2, and
the only continuous character of the group Π is the trivial one. Here p1 and p2 are projections of Π
onto G1 and G2, respectively. In particular, the trivial character of Δ is the only one representable
in the form described in Corollary 1.

Proof. Let G be a countable, infinite Boolean group. Then G is the direct sum of countable
copies of the group Z(2) = {0, 1}, so G is as in item (2) of Lemma 0 in [15]. Therefore,
Theorem′ on page 22 of [15] implies that G admits a metrizable topological group topology
τ1 such that the only continuous character of G1 = (G, τ1) is the trivial one.

Our first observation is that the group G1 is not precompact — otherwise continuous
characters of G1 would separate elements of G1. Since every non-zero element of the
countable group G1 has order 2, one can apply ([16], Theorem 5.28) to find an open
neighborhood U of zero e1 in G1 and a (necessarily discontinuous) automorphism f of the
group G1 such that f (U) ∩U = {e1}. In other words, the group G1 is self-transversal.

Let τ2 = { f (V) : V ∈ τ1} be the image of the topology τ1 under the automorphism
f and G2 = (G, τ2). Then f is a topological isomorphism of G1 onto G2 and the only
continuous character of G2 is the trivial one. By Lemma 1 the product group Π = G1 × G2
has the same property. Denote by Δ the subgroup {(x, x) : x ∈ G} of the group Π. It
is clear that p1(Δ) = G1 and p2(Δ) = G2. The set O = U × f (U) is open in Π and it
follows from our choice of the set U that the intersection O ∩ Δ contains only the identity
element of G1 × G2. Hence the subgroup Δ of Π is discrete and closed. It is clear that every
character of Δ is continuous, and that the only character of Δ that can be expressed in the
form presented in Corollary 1 is the trivial one.

Since the subgroup Δ of the group G1 × G2 in Example 2 is discrete, we see that
Corollary 1 is not valid for locally compact subgroups of products of topological groups.
However, it is valid for precompact abelian subgroups of product groups.
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First, we present a well-known result from [17] often called the Comfort–Ross duality
for precompact topological abelian groups. We denote the family of all characters of an
abstract group G to the torus T by Hom(G,T). Clearly, the pointwise multiplication of
characters in Hom(G,T), (χ1 · χ2)(x) = χ1(x) · χ2(x), makes it an abelian group.

Theorem 3. For every abelian group G, there exists a natural (i.e., functorial) monotone bijection
between the family of precompact topological group topologies on G and the subgroups of the group
Hom(G,T).

‘Monotone’ in Theorem 3 means that a finer precompact topological group topology on
G corresponds to a bigger subgroup of Hom(G,T). For more details on this correspondence,
see [17].

In the following theorem we do not impose any separation restrictions on the
factors Di:

Theorem 4. Let C be a precompact abelian subgroup of a product D = ∏i∈I Di of topological
groups and χ be a continuous character of C. Then one can find a finite set E ⊂ I and continuous
characters χi of pi(C), for i ∈ E, such that χ =

(
∏i∈E χi ◦ pi

)
�C, where pi : D → Di is

the projection.

Proof. The projection pi(C) is a precompact abelian subgroup of the group Di, for each
i ∈ I. We can assume, therefore, that each factor Di = pi(C) is a precompact abelian group.
Then D is also a precompact topological abelian group. For every i ∈ I, let D∧

i be group
of continuous characters of Di. By ([17], Theorem 1.2), the topology of Di is initial with
respect to D∧

i . Consider the family

A = {χ ◦ pi : i ∈ I, χ ∈ D∧
i }.

Then each element of A is a continuous character of D, so A ⊂ D∧. Let H be the
subgroup of D∧ generated by A. Every element χ of H has the form

χ =
n

∏
k=1

χk ◦ pik , (3)

where i1, . . . , in are pairwise distinct elements of I and χk ∈ D∧
ik

for each k = 1, . . . , n. It is
clear that the topology of D is initial with respect to H. Since C is a topological subgroup
of D, the family of restrictions HC = {χ�C : χ ∈ H} generates the topology of C. Notice
that HC is a subgroup of C∧ ∩ Hom(C,T), so Theorem 3 implies that HC = C∧. The latter
equality, together with (3), implies the required conclusion.

Problem 1. Does Theorem 4 extend to precompact subgroups of products of paratopological
abelian groups?

The main difficulty in solving Problem 1 is the fact that the topological group reflection
of a subgroup C of a paratopological abelian group D can have a strictly finer topology
than the topology of C inherited from D∗. In other words, Lemma 4 cannot be extended to
paratopological groups. Even the very special case of Problem 1, where C is a precompact
subgroup of the product of two (precompact) paratopological groups, is not clear.

The following result extends a well-known property of continuous homomorphisms
of topological groups to a more general case when the domain of a homomorphism is a
dense submonoid of a topological monoid with open shifts. First we recall the notions of
Roelcke uniformity and Roelcke completeness in topological groups.
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Let G be a topological group and N (e) be the family of open neighborhoods of the
identity e in G. For every U ∈ N (e), the set

OU = {UxU : x ∈ G}

is an open entourage of the diagonal in G× G and the family {OU : U ∈ N (e)} constitutes
a base for a compatible uniformity on G, say, VG, which is called the Roelcke uniformity of G
(see [11], Section 1.8). If the uniform space (G,VG) is complete, we say that the group G is
Roelcke-complete.

Proposition 2. Let S be a dense submonoid of a topological monoid D with open shifts. Then every
continuous homomorphism f : S → K to a Roelcke-complete Hausdorff topological group K extends
to a continuous homomorphism f ∗ : D → K.

Proof. Let N (e) be the family of open neighborhoods of the identity e in D. We denote by
Q the quasi-Roelcke uniformity of D whose base consists of the sets

QV = {(x, y) ∈ D× D : Vx ∩ yV �= ∅ �= Vy ∩ xV},

where V ∈ N (e) (see [18]). It is easy to see that the topology of D generated by Q is weaker
than the original topology of D. Additionally, let VK be the Roelcke uniformity of the
group K.

Consider a continuous homomorphism f : S → K to a Roelcke-complete Hausdorff
topological group K with identity eK. We claim that f is uniformly continuous considered
as a mapping of (S,Q�S) to (K,VK). To this end, take an arbitrary symmetric element
U ∈ N (eK) and choose an element W ∈ N (eK) such that W2 ⊂ U. Then W ⊂ U. By
the continuity of f , we can find an element V ∈ N (e) satisfying f (V ∩ S) ⊂ W. We
are yet to verify that ( f (x), f (y)) ∈ OU whenever (x, y) ∈ QV ∩ S2, or equivalently,
( f × f )(QV ∩ S2) ⊂ OU .

Let (x, y) ∈ QV ∩ S2. Then Vx ∩ yV �= ∅ and Vy ∩ xV �= ∅. Since S is dense in D and
the sets Vx and yV are open in D, we can choose a point z ∈ S ∩Vx ∩ yV. It follows from
the continuity of shifts in D and the density of S ∩V in V that for z ∈ Vx ⊂ (S ∩V) · x, the
closure is taken in D. As z ∈ S, we see that z is in the closure of (S ∩ V) · x in S. Hence
f (z) ∈ f (V ∩ S) · f (x) = f (V ∩ S) · f (x), by the continuity of f ; the closure is taken in
K. Since f (V ∩ S) ⊂ W ⊂ U, the latter implies that f (z) ∈ U f (x). A similar argument,
starting with z ∈ yV, shows that f (z) ∈ f (y)U. Thus f (z) ∈ U f (x) ∩ f (y)U �= ∅, whence
f (y) ∈ U f (x)U−1 = U f (x)U. This implies that ( f (x), f (y)) ∈ OU and proves the uniform
continuity of f as a mapping of (S,Q�S) to (K,VK).

Since the space (K,VK) is complete, f extends to a uniformly continuous mapping
f ∗ : (D,Q) → (K,VK). It follows from the density of S in D and the Hausdorffness of K
that f ∗ is a homomorphism.

Corollary 2. Let S be a dense submonoid of a topological monoid D with open shifts. Then every
continuous homomorphism f : S → K to a locally compact topological group K extends to a
continuous homomorphism f ∗ : D → K.

Proof. According to Proposition 2 it suffices to verify that every locally compact topolog-
ical group K is Roelcke-complete. The latter fact is immediate since for every compact
neighborhood U of the identity in K, every Cauchy filter ξ in the uniform space (K,VK) has
an element contained in the compact set UxU, for some x ∈ K. Hence ξ converges to an
element of K and (K,VK) is complete, where VK is the Roelcke uniformity of K.

Now we apply Proposition 2 in a less obvious way.

Theorem 5. Let S be a dense submonoid of a product D = ∏i∈I Di of topological monoids with
open shifts and f : S → K be a continuous homomorphism to a Lie group K. If S is either finitely
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retractable or open in D, then f extends to a continuous homomorphism f ∗ : D → K. Hence, one
can find a finite set E ⊂ I and continuous homomorphisms χi : Di → K for i ∈ E, such that
f ∗(x) = ∏i∈E χi(xi) for each x = (xi)i∈I ∈ D.

Proof. Depending on whether S is finitely retractable or open, we apply, respectively,
Theorem 2.12 or Theorem 3.8(b) of [7] to conclude that f depends on a finite set E ⊂ I. In
either case, there exists a continuous homomorphism g : pE(S)→ K satisfying f = g ◦ pE�S,
where pE is the projection of D to DE = ∏i∈E Di. Then pE(S) is a dense submonoid
of DE and DE is a topological monoid with open shifts, by ([7], Lemma 3.5). Hence
we are entitled to apply Proposition 2 to the homomorphism g. Hence, there exists a
continuous homomorphism g∗ : DE → K extending g. According to Lemma 1 we can find
continuous homomorphisms χi : Di → K for i ∈ E such that g(y) = ∏i∈E χi(yi), for each
y = (yi)i∈E. Then f ∗ = g∗ ◦ pE is a continuous homomorphism of D to K extending f and
satisfying f ∗(x) = ∏i∈E χi(xi), for each x ∈ D. This implies the required equality for the
homomorphism f .

According to ([7], Theorem 5), every continuous homomorphism f : S → K of an
arbitrary subgroup S of a product D of topological monoids to a Lie group K has a finite type,
i.e., can be represented as the composition of the projection pE of S to a finite subproduct
DE of D and a continuous homomorphism of pE(S) to K. Therefore, by arguing as in the
proof of Theorem 5 and applying Proposition 2 we deduce the following:

Theorem 6. Let D = ∏i∈I Di be a product of topological monoids with open shifts, S be a dense
subgroup of D, and f : S → K be a continuous homomorphism to a Lie group K. Then f extends
to a continuous homomorphism f ∗ : D → K, so one can find a finite set E ⊂ I and continuous
homomorphisms χi : Di → K, for i ∈ E, such that f ∗(x) = ∏i∈E χi(xi) for each x = (xi)i∈I ∈ D.

3. More on Continuous Homomorphisms of P-Modifications of Products and Their
Dense Submonoids

First we introduce notation which is used in this section and clarifies our aim.
Let X = ∏i∈I Xi be the product of a family {Xi : i ∈ I} of sets, Z be a subset of X, and

f : Z → Y be a mapping. Denote by J ( f ) the family of all sets J ⊂ I such that f depends
on J. Our main concern is to determine the properties of the family J ( f ). For example, one
can ask whether J ( f ) is a filter or whether it has minimal, by inclusion, elements, or even
the smallest element. It has been shown by W. Comfort and I. Gotchev in [19–21] that the
family J ( f ) can have quite a complicated set-theoretic structure, even if X is a Cartesian
product of topological spaces and f is a continuous mapping to a space Y. It is worth
mentioning that the thorough study of the family J ( f ) was motivated by a somewhat
simpler question on whether J ( f ) had a countable element J ⊂ I. The reader can find an
extensive bibliography related to this question in the aforementioned articles and in the
earlier survey article [22] by M. Hušek.

It turns out that the intersection of the family J ( f ), denoted by J f , admits a clear
description in terms of f . We say that an index i ∈ I is f -essential if there exist points
x, y ∈ Z such that diff(x, y) = {i} and f (x) �= f (y). Let Ef be the set of all f -essential
indices in I. By Proposition 2.2 in [23], J f = Ef =

⋂J ( f ). In particular, the set J f is empty
if and only if no index i ∈ I is f -essential.

Below we present a useful fact which is not valid for arbitrary dense subgroups of
the topological group PD, the P-modifications of the product D = ∏i∈I Di of topologized
monoids Di, not even if the factors Di are finite discrete groups (see [6], Example 1).

Proposition 3. Let D = ∏i∈I Di be a Cartesian product of topologized monoids, S be a submonoid
of D with ΣD ⊂ S, and ϕ : PS → H be a nontrivial continuous homomorphism of the P-
modification of S to a topologized monoid H of countable pseudocharacter. Then the family

J (ϕ) = {J ⊂ I : ϕ depends on J}
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is a filter on the index set I.

Proof. Since the subspace PS of PD is a P-space, the homomorphism ϕ : PS → PH remains
continuous (see, e.g., [6], Lemma 6). Notice that PH is a discrete space. Therefore, we can
assume that H carries the discrete topology. By applying ([6], Proposition 2), we find a
countable subset E of I and a continuous homomorphism ϕE of pE(S) ⊂ PDE to H such
that ϕ = ϕE ◦ pE�S, where pE : D → DE = ∏i∈E Di is the projection. It follows from
ΣD ⊂ S that pE(S) = DE. Hence ϕ̄ = ϕE ◦ pE is a continuous homomorphism of PD to H.
It follows from the definition of ϕ̄ that this homomorphism depends on E. Furthermore, if
ϕ̄ depends on F, for some F ⊂ I, then so does ϕ. It is now clear that J (ϕ̄) = J (ϕ).

Therefore, we can assume without loss of generality that ϕ is a continuous character
of PD = S. Assume that J1 ⊂ J2 ⊂ I and J1 ∈ J (ϕ). Then there exists a mapping
g : DJ1 = ∏i∈J1

Di → H satisfying ϕ = g ◦ pJ1 , where pJ1 : PD → PDJ1 is the projection.
Clearly g is a homomorphism. Since the projection pJ1 is open, the homomorphism g is
continuous. Therefore, g is a continuous homomorphism of PDJ1 to H. Let pJ2

J1
be the

projection of DJ2 to DJ1 . Then ϕ = g ◦ pJ1 = g ◦ pJ2
J1
◦ pJ2 = f ◦ pJ2 , where f = g ◦ pJ2

J1
is a

continuous homomorphism of PDJ2 . Hence, ϕ depends on J2 and J2 ∈ J (ϕ).
Let J1 and J2 be arbitrary elements of J (ϕ). It is easy to see that ker pJ1 ⊂ ker ϕ and

ker pJ2 ⊂ ker ϕ. Put J = J1 ∩ J2. Then

ker pJ = ker pJ1 · ker pJ2 ⊂ ker ϕ �= D.

In particular, J �= ∅ (we identify p∅ with the constant mapping of D to the identity eD of D).
It follows from the inclusion ker pJ ⊂ ker ϕ that there exists a homomorphism h : DJ → H
satisfying ϕ = h ◦ pJ (see [24], Theorem 1.48 or [6], Lemma 2). We conclude that J ∈ J (ϕ).

To sum up, the family J (ϕ) is a filter.

The reader can find several results about continuous homomorphisms or charac-
ters defined on dense submonoids and subgroups of Cartesian (equivalently, Tychonoff )
products in [6,7]. On many occasions, the conclusions there are stronger than the one in
Proposition 3.

It is natural to ask whether the filter J (ϕ) in Proposition 3 contains a minimal by
inclusion element. The next example answers this question in the negative, even if S is the
P-modification of the compact metrizable group Z(2)ω (so S is discrete). Notice that the
continuous characters of the compact group Z(2)ω are described in Proposition 1.

Example 3. Let the group G = Z(2)ω carry the discrete topology. There exist a non-trivial
character χ of G and a decreasing sequence {Jn : n ∈ ω} of infinite subsets of ω with empty
intersection such that χ depends on Jn, for each n ∈ ω. Hence the filter J (χ) does not have
minimal elements.

Proof. Let Jn = ω \ {0, 1, . . . , n}, for each n ∈ ω. Denote by 1 the point of Z(2)ω all
coordinates of which are equal to 1. Additionally, let

Hn = {x ∈ Z(2)ω : x(i) = 0 for each i ∈ Jn}.

Clearly, Hn is a subgroup of G and Hn ⊂ Hn+1, for each n ∈ ω. Hence H =
⋃∞

n=0 Hn is also
a subgroup of G. Since 1 /∈ H, there exists a character χ of G such that χ(H) = {1} and
χ(1) = −1. It is immediate from the definition that χ depends on Jn, for each n ∈ ω. Since⋂∞

n=0 Jn = ∅, the family J (χ) has no smallest element. Taking into account that J (χ) is a
filter (see Proposition 3), we infer that it does not contain minimal elements either.

Since the subgroup H of G in the proof of Example 3 is dense in G = Z(2)ω provided
the latter group is endowed with the usual Tychonoff product topology, the above character
χ is discontinuous on the compact group Z(2)ω . It turns out that considering the Tychonoff
product topology improves the situation greatly — the family J (χ) always has a finite
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minimal (by inclusion) element, for each continuous character χ of an arbitrary subgroup G
of a product of left topological groups. This conclusion can be recovered using techniques
from [9] in the special case where G itself is a product of topological groups, but the reader
can find a direct argument in the more general Proposition 2.1 of [7].
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Abstract: Here “group” means additive abelian group. A compact group G contains δ–subgroups,
that is, compact totally disconnected subgroups Δ such that G/Δ is a torus. The canonical subgroup
Δ(G) of G that is the sum of all δ–subgroups of G turns out to have striking properties. Lewis, Loth
and Mader obtained a comprehensive description of Δ(G) when considering only finite dimensional
connected groups, but even for these, new and improved results are obtained here. For a compact
group G, we prove the following: Δ(G) contains tor(G), is a dense, zero-dimensional subgroup of G
containing every closed totally disconnected subgroup of G, and G/Δ(G) is torsion-free and divisible;
Δ(G) is a functorial subgroup of G, it determines G up to topological isomorphism, and it leads to a
“canonical” resolution theorem for G. The subgroup Δ(G) appeared before in the literature as td(G)

motivated by completely different considerations. We survey and extend earlier results. It is shown
that td, as a functor, preserves proper exactness of short sequences of compact groups.

Keywords: full free subgroup; (locally) compact abelian group; Pontryagin Duality; totally discon-
nected; 0-dimensional; precompact; functorial subgroup; quasi-torsion element; minimal group;
totally minimal group; exotic torus

MSC: 20K15; 22K45; 22C05

1. Introduction

The topological groups studied in this paper are mainly the Pontryagin duals of
discrete abelian groups with some emphasis on the duals of torsion-free groups. The lat-
ter are exactly the compact connected abelian groups. Non-compact topological groups
prominently appear in Section 7.

The result ([1], Proposition 8.15, p. 416) deals with the existence of compact totally
disconnected subgroups Δ of a compact group G such that G/Δ is a torus. These δ–
subgroups enter into the Resolution Theorem for compact abelian groups ([1], Theorem 8.20,
p. 420, see also Section 6). The duals of the short exact sequences Δ � G � T where G
is a compact group, Δ is a δ–subgroup of G and thus T is a torus, are precisely the exact
sequences F � A � D where A is a discrete group, F is a free subgroup of A and D
is a torsion group. This suggests the study of the full free subgroups F of A, i.e., the
free subgroups of A with torsion quotient. Let F (A) denote the family of all full free
subgroups of A and let D(G) denote the family of all δ–subgroups of the compact group
G. In Theorem 1, a comprehensive description of F (A) is established, and by duality a
similarly comprehensive description of D(G) is obtained (Theorem 6). In fact, there is an
anti-isomorphism of semi-lattices δ : F (A)→ D(G) where G = A∧ (Theorem 5).

The canonical subgroup Δ(G) := ∑D(G) of G, referred to as “Fat Delta”, has interest-
ing properties:

Axioms 2022, 11, 200. https://doi.org/10.3390/axioms11050200 https://www.mdpi.com/journal/axioms21
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(FD1) It contains tor(G), is dense in G, and G/Δ(G) is torsion-free and divisible (Theo-
rem 6(2),(4),(6) and Theorem 10(2)).

(FD2) If G is not totally disconnected, then Δ(G) is a proper subgroup of G, and hence is
not locally compact (Proposition 6(1)).

(FD3) Δ(G) is zero-dimensional (Theorem 19), and contains every closed totally discon-
nected subgroup of G (Proposition 5).

(FD4) Fat Delta is a functorial subgroup in the sense that for any morphism f : G → H we
have f [Δ(G)] ⊆ Δ(H) (Corollary 3, Proposition 10(1)), moreover f [Δ(G)] = Δ(H) if
f is surjective (Proposition 10(2)).

(FD5) The Fat Delta of a product is the product of the Fat Deltas of the factors (Theo-
rem 10(4), Proposition 10(4)).

(FD6) If G = A∧ is a compact group, then Δ(G) = Hom(A,Q/Z) (see Theorem 10(1) for a
more rigorous formulation).

(FD7) Δ(G) determines G up to topological isomorphism (Theorem 12).

The group Δ(G) coincides with tor(G) if and only if G = T × E with T a finite
dimensional torus and E a bounded group (Theorem 9). We obtain a “canonical” resolution
theorem (Theorem 15) for a compact abelian group G where the canonical Δ(G) replaces a
random δ–subgroup.

In [2], the case of connected compact groups of finite dimension was studied; here we
generalize to arbitrary compact abelian groups of any dimension, but even in the case of
finite dimension, our results on Fat Delta surpass by far those in [2].

Furthermore, Fat Delta, defined differently, in greater generality, and called td(G),
previously appeared in the literature ([3], pp. 127–128, [4]). We quote, elaborate, and extend
results from earlier works as follows.

In Section 7, we provide a different ‘projective’ characterization of td(G) (see Propo-
sition 9(1)) and various applications of Δ(G) = td(G). It is proved that td, as a functor,
preserves proper exactness of short sequences of compact groups (Corollary 4). The interest
in the subgroup td(G) of compact groups (see Definition 4) was triggered by the intensive
research on the Open Mapping Theorem since the early seventies of the last century [3–15]
(see Definition 5 for the relevant properties and Theorem 17 for criteria for the inheritance of
these properties from dense subgroups). Section 7.3 is focused on the topological p-Sylow
subgroups tdp(G) of td(G).

The characterization (FD6) of Fat Delta for compact groups first appeared in ([6], (2),
p. 217) and ([3], Proposition 4.1.4).

In Section 8, we discuss some open problems.
In a forthcoming paper [16], we extend the characterization (FD6) to larger classes of

topological abelian groups (e.g., subgroups of LCA groups). To this end, we introduce there
a new series of functorial subgroups in TAG, related to td(G) and tdp(G), and consider
alternative definitions of Fat Delta for non compact groups.

2. Notation and Background

Our reference on abelian groups is [17]. As a rule A, B, C, D, E, . . . denote discrete
groups and G, H, K, L, . . . are used to denote topological groups. Unless otherwise stated,
p is an arbitrary prime number. If C is a category of groups, then “A is a C–group” and
“A ∈ C” means that A is an object of C. By A ≤ B we mean that A is a sub-object of B when
A, B ∈ C. We will deal with the following categories:

• The category AG of discrete abelian groups with morphisms algebraic homomor-
phisms, ∼= denoting isomorphism in this category, also called algebraic isomorphism;

• TAG is the category of topological abelian groups with morphisms continuous alge-
braic homomorphisms, ∼=t denoting isomorphism in this category;

• LCA is as usual the full subcategory of TAG consisting of locally compact Hausdorff
groups.

We will use N := {1, 2, . . .} and N0 := N ∪ {0} while P denotes the set of all prime
numbers. Furthermore, R denotes the additive group of real numbers, Z the integers and
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T the additively written circle group R/Z equipped with the compact quotient topology.
A torus is a topological group isomorphic with a power Tm where m is any cardinal.

The torsion subgroup (p-torsion subgroup) of an abelian group G is denoted by tor(G)
(torp(G), respectively). We have tor(T) = Q/Z ≤ T with the subspace topology, and
torp(T) ≤ Q/Z with the subspace topology. We use Z(p∞) := torp(T) = {m/pn + Z |
m, n ∈ N0} in agreement with ([1], p. 27).

The m–socle of a group X is X[m] := {x ∈ X | mx = 0} and the socle of X is
Soc(X) =

⊕
p∈P X[p]. By μX

m we denote multiplication by m in X. For a subgroup, Y of X
and m ∈ N, define

m−1
X Y = {x ∈ X | mx ∈ Y}, equivalently, m−1

X Y/Y = (X/Y)[m].

This concept is used to construct larger full free subgroups from given full
free subgroups.

In the following discussion of divisible hulls, Z(p∞) is the discrete quasi-cyclic
group ([17], p. 16).

The group D is a divisible hull of A if D is divisible and A is an essential subgroup
of D, equivalently, if D/A is a torsion group and

⊕
p∈P D[p] ⊆ A. Divisible hulls exist for

any group and divisible groups are direct sums of copies of Q and of Z(p∞), p ∈ P ([17],
p. 136).

The Z–adic topology of Z (having as a local base at 0 the filter base {nZ : n ∈ N}) will
be denoted by νZ. We denote by G∧ the Pontryagin dual of a TAG–group G, while Ĝ is
reserved for the completion of G. In particular, Ẑ is the completion of (Z, νZ) and Ẑp is the
completion of Z in the p-adic topology.

For topological groups G, H we will deal with cHom(G, H), the set of all continuous
homomorphisms from G to H. Throughout, we assume that the groups of morphisms
cHom(G, H) carry the compact-open topology. We will use the notation of ([1], p. 337), so
recall that the sets W(C, U) = { f ∈ cHom(G, H) | f [C] ⊆ U} where C is compact in G and
U is open in H, form a basis for the topology of cHom(G, H).

By c(G) we denote the 0–component of G and by a(G) the arc component of 0 ∈ G.
A Hausdorff topological group G is zero-dimensional if G has a base of clopen sets. Clearly,
every linearly topologized group is zero-dimensional and every zero-dimensional group is
totally disconnected. Recall that a group is linearly topologized if it possesses a neighbor-
hood basis at 0 consisting of subgroups.

Lemma 1 ([1], E8.6, p. 414). Let G be a locally compact abelian group. Then G is totally discon-
nected if and only if G is zero-dimensional.

A topological abelian group G is said to be precompact if its completion is compact.
It is a well-known and deep fact that a topological abelian group G is precompact if and
only if the topology of G is generated by its continuous characters, which means that the
characters χ ∈ G∧ separate the points of G and the injective (continuous) diagonal map
G → ∏χ∈G∧ χ[G] ≤ TG∧

is an embedding ([3]).

Proposition 1. Let G be a topological abelian group and let Gi, i ∈ I, be a family of topological
groups. Then

cHom(G, ∏i∈I Gi) ∼=t ∏i∈I cHom(G, Gi).

Proof. Let πj : ∏i∈I Gi → Gj be the projections. Then

π : cHom(G, ∏i∈I Gi)→ ∏i∈I cHom(G, Gi) : π( f ) = (. . . , πi ◦ f , . . .).

is the restriction of the well-known algebraic isomorphism. Evidently, π( f ) = (. . . , πi ◦
f , . . .) ∈ ∏i∈I cHom(G, Gi), so π is well-defined.
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To show that π is continuous, consider the generic open neighborhood V = ∏i∈I Vi,
Vi = W(C, Ui), of 0 ∈ ∏i∈I cHom(G, Gi) where J is a finite subset of I, C ⊆ G is compact,
Uj, j ∈ J, is an open neighborhood of 0 ∈ Gj, ∀ i /∈ J : Ui = Gi. Then W := W(C, ∏i∈I Vi) is
an open neighborhood of 0 ∈ ∏i∈I cHom(G, ∏i∈I Gi) and π[W] ⊆ V.

To show that π is open, we consider a basic open subset U of Hom(A, ∏i∈I Gi),
i.e., U = W(C, ∏i Ui) where C is compact in G and ∏i Ui is open in ∏i∈I Gi, i.e., there
is a finite subset J of I such that ∀ i ∈ J : Ui is open in Gi and ∀ i �∈ J : Ui = Gi. Then
∀ i ∈ J : W(C, Ui) is open in Hom(G, Gi) and ∀ i �∈ J : W(C, Ui) = W(C, Gi) = Gi. Hence,
∏i∈I W(C, Ui) is open in ∏i∈I Hom(G, Gi) and it is easily checked that π[W(C, ∏i Ui)] =

∏i∈I W(C, Ui) showing that π is an open map.

Let A be a discrete group and G any topological group. Then, the compact open
topology on Hom(A, G) coincides with the subspace topology of Hom(A, G) ⊆ GA where
GA carries the product topology (=topology of point-wise convergence). This is well-known
and is easily seen noting that the compact subsets of A are exactly the finite subsets.

Let G and H be topological groups. Recall ([18], p. 1) that α ∈ cHom(G, H) is proper if
α is open onto its range. A short exact sequence K � G � H is proper if both maps are
proper. Embeddings of subgroups are examples of proper monomorphisms, and proper
epimorphisms are quotient maps. For a subgroup H of an abelian group G, we denote by

H
ins� G the inclusion homomorphism, a proper map.

In ([1], Proposition 1.17, p. 12) Proposition 2 is proved for G = T in which case
∏i∈I Hom(Ai, G) is compact and it is easy to show that Φ is a quotient map.

Proposition 2. Let Ai, i ∈ I, be a family of discrete abelian groups, G a topological abelian
group. Then

Φ : ∏
i∈I

Hom(Ai, G)
→∼=t Hom

(⊕
i∈I

Ai, G

)
: (Φ((. . . , fi, . . .)))

(
∑
i∈I

ai

)
= ∑

i∈I
fi(ai).

Proof. Let insi : Ai →
⊕

i∈I Ai be the insertions belonging to the direct sum. The map Φ is
the standard algebraic isomorphism and

Φ−1 : Hom(
⊕

i∈I Ai, G)→ ∏i∈I Hom(Ai, G) : Φ−1( f ) = (. . . , f ◦ insi, . . .).

We first show that Φ−1 is continuous. By definition of the product topology, Φ−1 is
continuous if and only if πi ◦Φ−1 : Hom(

⊕
i∈I Ai, G)→ Hom(Ai, G) is continuous where

πi : ∏j∈I Hom(Aj, G) → Hom(Ai, G) is the projection belonging to the product. Let U
be an open neighborhood of 0 ∈ G and let F be a finite subset of Ai. Then W := W(F, U)
is a generic neighborhood of 0 ∈ Hom(Ai, G). As F ⊆ ⊕

i∈I Ai, the set W ′ = { f ∈
Hom(

⊕
i∈I Ai, G) | f [F] ⊆ U} is an open neighborhood of 0 ∈ Hom(

⊕
i∈I Ai, G). Evi-

dently Φ−1[W ′] ⊆ W.
We show next that Φ is continuous. Let F be a finite subset of

⊕
i∈I Ai and U an

open neighborhood of 0 ∈ G. Then W = W(F, U) is a generic open neighborhood of
0 ∈ Hom(

⊕
i∈I Ai, G). Then there is a finite subset J of I such that F ⊆ ⊕

i∈J Ai. Fur-
thermore, for j ∈ J, there exist finite sets Bj ⊆ Aj such that F ⊆ ∑j∈J Bj. For i /∈ J,
let Bj = {0}. There exists an open neighborhood V of 0 ∈ G such that V|J| ⊆ U.
Then ∏i∈I W(Bi, V) is an open neighborhood of 0 ∈ ∏i∈I Hom(Ai, G). We claim that
Φ[∏i∈I W(Bi, V)] ⊆ W(F, U). Let f = ( fi) ∈ ∏i∈I W(Bi, V) and b = ∑j∈J bj ∈ F. Then
(Φ( f ))(b) = ∑j∈J f j(bj) ∈ V|J| ⊆ U.

The following is surely well-known.

Lemma 2. Let G and H be topological abelian groups and ϕ : G → H a surjective homomorphism
with kernel K.
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(1) Suppose that ϕ is continuous and K is dense in G. Then H is indiscrete.
(2) Suppose that ϕ is an open map and H is indiscrete. Then K is dense in G.
(3) Suppose that H is indiscrete and cHom(G, H) is endowed with the compact-open topology.

Then cHom(G, H) is indiscrete.

Proof. (1) Suppose that C is a non-empty closed subset of H. Then ϕ−1[C] is closed in G
containing K. As K is dense in G it follows that ϕ−1[C] = G. It follows that C = H. Hence,
the only closed sets in H are H and ∅, so H is indiscrete.

(2) Let x ∈ G and U = −U a symmetric open neighborhood of 0 ∈ G. Then ϕ[U] is
non-empty and open in H and as H is indiscrete, ϕ[U] = H. Hence, there is y ∈ U such
that ϕ(y) = ϕ(x) and so x− y = z ∈ K and z ∈ x + U showing that K is dense in G.

(3) The open sets of cHom(G, H) are the sets of the form W := W(C, U) = { f ∈
cHom(G, H) | f [C] ⊆ U} where C is a compact subset of G and U is an open subset of H.
By hypothesis U = ∅ or U = H. Whatever C may be, in the first case W = ∅ and in the
second case W = cHom(G, H).

3. The Meet Semi-LatticeF (A)F (A)F (A) of Full Free Subgroups in AG

The following notation relating an arbitrary group A with its torsion-free quotient
A0 := A/ tor(A) will be used throughout.

Let A ∈ AG and let ϕ0 : A → A0 be the natural epimorphism. For future use we
record the short exact sequence

E0 : tor(A)
ins� A

ϕ0� A0.

It is well-known that QA0 := Q⊗Z A0 ∼= Q⊗Z A is a Q–vector space containing
A0 ∼= Z⊗Z A0 as an essential subgroup. Thus QA0 is a divisible hull of A0. The rank of A
is the dimension of QA0: rk(A) := rk(A0) := dimQ(QA0).

For F ∈ F (A), set F0 := ϕ0[F] =
F⊕tor(A)

tor(A)
∼= F. Then rk(A) = rk(F) = rk(F0).

In the literature, the dimension of a compact abelian group is defined in several
equivalent ways. The cardinal dim(G) = rk(G∧) will serve for the purposes of this article.

For every prime p we define the p-rank of A by rkp(A) := dimZ/pZ(A[p]).
A discrete divisible group D is determined up to isomorphism by the invariants rkp(D)

counting the summands isomorphic to Z(p∞) and rk(D/ tor(D)) counting the summands
isomorphic to Q. See ([17], Chapter 4) for details.

Lemma 3. If A is a torsion-free group, then rkp(A/pA) ≤ rk(A).

Proof. It suffices to check that if {b1, . . . , bn} is a linearly independent subset of A/pA,
where bi = ai + pA, ai ∈ A, then {a1, . . . , an} is linearly independent in A. Assume that
m1a1 + · · ·+ mnan = 0, with mi ∈ Z for i = 1, 2, . . . , n. As A is torsion-free, we can assume
without loss of generality that gcd(p, mj) = 1 for some j = 1, 2, . . . , n. After projecting in
A/pA we obtain m1b1 + · · ·+ mnbn = 0. By the choice of {b1, . . . , bn} this gives mi = pZ
for all i. This contradicts gcd(p, mj) = 1.

Now we see that the p-ranks of a compact connected group G of finite dimension are
bounded from above by dim(G).

Corollary 1. Let A be a discrete torsion-free group of finite rank n. Then rkp(A∧) = rkp(A/pA) ≤ n.

Proof. Clearly, G = A∧ is a compact connected group with dim(G) = n. The socle G[p] of
G is the kernel of μG

p , the multiplication by p in G, and hence closed and therefore compact.

We have the proper exact sequence G[p] � G
μG

p
� G which gives the proper exact sequence
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G∧
μG∧

p
� G∧ = A∧∧ = A � A/pA ∼= G[p]∧. Hence, rkp(G[p]∧) = rkp(A/pA) ≤ rk(A) =

n < ∞, by Lemma 3. Thus, G[p] ∼= G[p]∧ and rkp(G) = rkp(G[p]) = rkp(G[p]∧) ≤ n.

We first illuminate the abundance of full free subgroups in a group.

Lemma 4. Let tor(A) �= A ∈ AG. Then the following hold.

(1) {ai | i ∈ I} is a linearly independent set in A if and only if {ai + tor(A) | i ∈ I} is a linearly
independent set in A0. Moreover, {ai | i ∈ I} is maximal linearly independent if and only if
{ai + tor(A) | i ∈ I} is maximal linearly independent.

(2) If {ai | i ∈ I} is a (maximal) linearly independent set in A and ∀ i ∈ I : ti ∈ tor(A), then
{ai + ti | i ∈ I} is a (maximal) linearly independent subset of A.

(3) Every linearly independent set extends to a maximal linearly independent set. In particular,
every torsion-free element in A is contained in a maximal linearly independent subset.

(4) If {ai | i ∈ I} is a maximal linearly independent subset of A, then F =
⊕

i∈I Zai is a full free
subgroup of A. Conversely, if F =

⊕
i∈I Zai is a full free subgroup of A, then {ai | i ∈ I} is

a maximal linearly independent subset of A.
(5) If F ∈ F (A), then F0 ∼= F and A0/F0 ∼= A/(F ⊕ tor(A)), F0 ∈ F (A0), and ϕ−1

0 [F0] =
F⊕ tor(A).

(6) Given F0 ∈ F (A0), there exists F ∈ F (A) such that ϕ0[F] = F0 and ϕ−1[F0] = F ⊕
tor(A). If F, F′ ∈ F (A) and F0 = F′0, then there is ϕ ∈ Hom(F, tor(A)) such that
F′ = {ϕ(x) + x | x ∈ F}. Note that Hom(F, tor(A)) ∼= tor(A)rk(A)

(7) A maximal linearly independent subset of A0 is a Q–basis of QA0.
(8) If {vi | i ∈ I} is a Q–basis of QA0, then there exist positive integers mi such that ∀ i ∈ I :

mivi ∈ A and F =
⊕

i∈I Z(mivi) is a full free subgroup of A.

Proof. Maximal linearly independent subsets exist by Zorn’s Lemma.
(6) Suppose that F, F′ ∈ F (A) and F0 = F′0. Then F⊕ tor(A) = F′ ⊕ tor(A). By ([19],

Lemma 1.1.3, p. 6) there exists ϕ ∈ Hom(F, tor(A)) such that F′ = {ϕ(x) + x | x ∈ F}.
The rest consists of easy and well-known observations.

We always assume that A0 �= {0}, i.e., we assume that A is not a torsion group.
The dual T∧ of a torsion group T is a compact totally disconnected group.

Theorem 1. For A ∈ AG, the family F := F (A) has the following properties.

(1) Let F, F′ ∈ F . Then F ∩ F′ ∈ F .
(2) If F ∈ F , F′ ≤ F and F/F′ is a torsion group, then F′ ∈ F .
(3) If F ∈ F , then ∀m ∈ N : mF ∈ F and

⋂
m mF = {0}.

(4)
⋂F = {0}. If A �= tor(A) then

⋃F = A \ tor(A) and ∑F = A.
(5) F is a meet semi-lattice with meet ∩.
(6) Let F ∈ F . Then ∀m ∈ N : m−1

A F = F′ ⊕ A[m] for some F′ ∈ F , and (F′ ⊕ A[m])/F =

(A/F)[m]. If A is torsion-free, then m−1
A F ∈ F .

Proof. (1) Certainly F ∩ F′ is free as subgroup of free groups. The map A/(F ∩ F′) →
A/F⊕ A/F′ : a + (F ∩ F′) �→ (a + F, a + F′) is well-defined and injective. Hence, A/(F ∩
F′) is torsion.

(2) and (3) are trivial.
(4) It follows from (3) that

⋂F = {0}. If A �= tor(A), then
⋃F = A \ tor(A) is

evident, and it follows from Lemma 4(2) that ∑F = A.
(5) Follows from (1).
(6.1) We first assume that A is torsion-free. Then the multiplication μA

m is injective,
and μA

m : A → mA is an isomorphism. Thus, m−1F = (μA
m)

−1[mA ∩ F] is free since F is free.
As F ⊆ m−1

A F it follows that m−1
A F ∈ F .

(6.2) Recall that F0 ∈ F (F0) and by (6.1) F0 ⊆ m−1
A0

F0 ∈ F (A0) with (m−1
A0

F0)/F0 =

(A0/F0)[m]. It is straightforward to check that ϕ0[m−1
A F] ⊆ m−1

A0
F0 and it follows that
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ϕ0[m−1
A F] is free. Hence, the epimorphism ϕ0 : m−1

A F → ϕ0[m−1
A F] splits with kernel

m−1
A F ∩ tor(A) = tor(A)[m]. Hence, m−1

A F = F′ ⊕ tor(A)[m] for some free group F′ ∼=
ϕ0[m−1

A F].
It remains to show that A/F′ is a torsion group. As A0/F0 is torsion and F0 ⊆

ϕ0[m−1
A F], we see that A0/ϕ0[m−1

A F] is a torsion group. Let a ∈ A. Then there is k ∈ N
such that kϕ0(a) ∈ ϕ0[m−1

A F] = ϕ0[F′]. Hence, kϕ0(a) = ϕ0(ka) = ϕ0(b) for some b ∈ F′

and ka− b ∈ Ker(ϕ0) = tor(A). Thus, there is k′ ∈ N such that k′ka = k′b ∈ F′. Finally,
(F′ ⊕ A[m])/F = (m−1

A F)/F = (A/F)[m].

Remark 1. In general, F (A) is not closed under finite sums, so F (A) may not be a lattice, and
therefore, A = ∑F (A) may not be the directed union (direct limit) of its members. However, for
A = A0, using Theorem 1(6) (with tor(A) = {0}), given F ∈ F (A), also the larger m−1

A F is a
full free subgroup, and as A/F is a torsion group, we obtain an ascending chain

F = (1!)−1
A F ⊆ (2!)−1

A F ⊆ · · · ⊆ (m!)−1
A F ⊆ ((m + 1)!)−1

A F ⊆ · · ·

of full free subgroups of A whose union is A.

In the case of a torsion-free group A of finite rank, the quotients A/F for F ∈ F (A) are
somewhat alike ([2], Theorem 3.5(9)). For arbitrary rank there is a great variety of quotients
A/F.

Proposition 3. Let A be an abelian group of infinite rankm. Let F ∈ F (A). Then rk(F) = |F| = m.
Let T be any torsion group that is m–generated. Then there is an epimorphism ϕ : F � T with
Fϕ := Ker(ϕ) ∈ F (A), and there is an exact sequence T � A/Fϕ � A/F. Moreover,
rkp(A/F) ≤ m.

Proof. Routine and simple.

In the case of infinite rank, the sum of two full free subgroups need not be free,
as shown by Jim Reid (([20], Theorem 2.2)):

Theorem 2. Let A be a torsion-free group of infinite rank.

(a) (([20], Theorem 2.2) and its proof) Given a free subgroup F of A with rk(F) = rk(A), there
is a second free subgroup F1 such that A = F + F1.

(b) ([20], Corollary 3.5) There exists a full free subgroup F0 of A such that A/F0 is divisible (A is
“quotient divisible”).

One can deduce from (a) that in a torsion-free group A of infinite rank every non-free
subgroup of torsion index is the sum of two full free subgroups.

Definition 1. An abelian group A is F-summable if for any F1, F2 ∈ F (A) also F1 + F2 ∈
F (A).

Theorem 2(a) yields:

Theorem 3. A ∈ AG is F -summable if and only if A is either torsion-free of finite rank or is free
of arbitrary rank.

Proof. If tor(A) �= {0}, then there are full free subgroups whose sum contains torsion
elements (Lemma 4(2)). So a summable group must be torsion-free.

Suppose that A is torsion-free and F -summable of infinite rank. Then A is the sum
of two free subgroups and hence of two full free subgroups. As A is summable, it is free.
The converse is clear.
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If the torsion-free group A has finite rank, then full free subgroups are finitely gener-
ated and finitely generated torsion-free subgroups are free.

4. The Semi-LatticesF (A)F (A)F (A) andD(G)D(G)D(G)

Let A ∈ AG and G = A∧. Then G is compact, not necessarily connected. Let F ∈ F (A).

Then F
ins� A

α� A/F is exact where α is the natural epimorphism. Therefore,

(A/F)∧
α∧� G

restr� F∧

is exact, where F∧ is a torus isomorphic to Trk(A) and α∧[(A/F)∧] is a compact totally
disconnected subgroup of G. Hence, α∧[(A/F)∧] ∈ D(G). We obtained the mapping

F (A)→ D(G) : F �→ α∧
[
(A/F)∧

]
. (1)

Let G be a compact group and A = G∧. Then A is a possibly mixed group. Let

Δ ∈ D(G). Then Δ
ins� G

β
� G/Δ is exact where β is the natural epimorphism and G/Δ is a

torus. Therefore,

(G/Δ)∧
β∧
� A

restr� Δ∧

is exact, where Δ∧ is a torsion group and β∧[(G/Δ)∧] is a full free subgroup of A. Hence,
β∧[(G/Δ)∧] ∈ F (A). We obtained

D(G)→ F (A) : Δ �→ β∧
[
(G/Δ)∧

]
. (2)

Lemma 5. Let G ∈ LCA and H a closed subgroup of G. The sequence H
ins� G

ϕ
� G/H is exact

in LCA. Hence,

(G/H)∧
ϕ∧
� G∧ restr� H∧ (3)

is exact in LCA, and ϕ∧[(G/H)∧] = (G∧, H).

Proof. Suppose first that χ ∈ (G∧, H). Then χ[H] = {0}, so χ �H= 0. Hence, χ is in
the kernel of the restriction map in (3), i.e., χ ∈ Ker(restr) = α∧[(A/F)∧]. Conversely,
if χ ∈ Ker(restr), then χ[H] = {0} and χ ∈ (G∧, H).

For a general topological abelian group G, the family Lat(G) of closed subgroups is
a lattice with the operations C1 ∧ C2 = C1 ∩ C2 and C1 ∨ C2 = C1 + C2. There also exist
greatest lower bounds and least upper bounds for infinite families: Let C be a family of
closed subgroups of G. Then

⋂ C is a closed subgroup of G and
⋂ C =

∧ C. The subgroup
∑ C is closed and ∑ C =

∨ C. See ([1], p. 361).

We will establish that F (A) and D(A∧) are anti-isomorphic semi-lattices. To do so,
we use results of ([1], p. 351) where we find annihilators H⊥ defined as follows.

For G ∈ LCA, we have the pairing G∧ × G → T : (χ, g) �→ χ(g). For a subset X of G,
we define the annihilator X⊥ of X ⊆ G in G∧ by X⊥ := (G∧, X) = {χ ∈ G∧ | χ[X] = 0}
while for Y ⊆ G∧, we define Y⊥ = {g ∈ G | ∀ ρ ∈ Y : ρ(g) = 0}

Note that X⊥⊥ ⊆ G is not the same as (G∧∧, X⊥) = (G∧∧, (G∧, X)). However, they
are topologically isomorphic:

Lemma 6. Let A ∈ LCA. Then, for X ⊆ A, the natural evaluation isomorphism ηA : A → A∧∧

restricts to an isomorphism X⊥⊥ → (A∧∧, X⊥), ηA
[
X⊥⊥] = (A∧∧, X⊥). In particular, X⊥⊥ is

a full free subgroup of A if and only if (A∧∧, X⊥) is a full free subgroup of A∧∧.

Proof. We need to check that ηA[X⊥⊥] = (A∧∧, X⊥). Let a ∈ A. Then
ηA(a) ∈ (A∧∧, X⊥)⇐⇒ ∀ χ ∈ X⊥ : ηA(a)(χ) = χ(a) = 0 ⇐⇒ a ∈ X⊥⊥.
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We rely on the basic properties of annihilators ([1], pp. 351–362), in particular see ([1],
Theorem 7.64, p. 392); alternatively see ([21], pp. 270–275).

Theorem 4 ([1], Theorem 7.64(iv),(v), (vi), p. 392). Let G ∈ LCA. Then H �→ H⊥ = (G∧, H)
with H⊥⊥ = H, is a lattice anti-isomorphism between Lat(G) and Lat(G∧). In particular, H ⊆ K
if and only if K⊥ ⊆ H⊥.

If H � G � G/H is proper exact in LCA, then

(G/H)∧ ∼=t H⊥ and H∧ ∼=t G∧/H⊥.

Theorem 5. Let A ∈ AG and G = A∧. The lattice anti-isomorphism H �→ H⊥ of Theorem 4
restricts to an anti-isomorphism of semi-lattices δ : F (A)→ D(G). In particular we have:

• D(G) is a join semi-lattice with join +.
• ∀ F, F1, F2 ∈ F (A) : δ(F) = F⊥ ∈ D(G); if F1 ⊆ F2, then δ(F2) ⊆ δ(F1); δ(F1 ∩ F2) =

δ(F1) + δ(F2).

Proof. By Theorem 4 we only need to show that δ(F (A)) = D(G).
Let F ∈ F (A). Then F⊥ = (G, F) by definition, and (G, F) = α∧[(A/F)∧] ∈ D(G) by

Lemma 5 and (1). So δ is well defined.
Let Δ ∈ D(G). By (2) β∧[(G/Δ)∧] ∈ F (A∧∧) and by Lemma 6 Δ⊥ ∈ F (A) and

δ(Δ⊥) = Δ⊥⊥ = Δ.

We now establish, for a compact group G = A∧, the properties of D(G) corresponding
to the properties of F (A). Recall that for any m ∈ N and any subgroup Y of X, we have
m−1

X Y = {x ∈ X | mx ∈ Y}.

Definition 2. For a compact abelian group G set Δ(G) := ∑D(G).

We collect here some properties of the subgroup Δ(G), “Fat Delta”.

Theorem 6. Let G = A∧, A ∈ AG. The family D := D(G) has the following properties.

(1) D is a join semi-lattice with join +. Hence, Δ(G) =
⋃D.

(2) Δ(G) is dense in G, while
⋂D = {0} if c(G) �= {0}, otherwise

⋂D = G.
(3) Let Δ = δ(F) and Δ′ = δ(F′) and assume that Δ ⊆ Δ′. Then F′ ⊆ F and Δ′/Δ ∼=t (F/F′)∧.
(4) If Δ ∈ D, then m−1

G Δ ∈ D for any m ∈ N. Hence, tor(G/Δ) ⊆ Δ/Δ and tor(G) ⊆ Δ(G).
(5) Let Δ ∈ D and m ∈ N. Then there is Δ′ ∈ D such that mΔ = Δ′ ∩mG. If A is torsion-free,

then mΔ ∈ D.
(6) G/Δ(G) is torsion-free.

Proof. (1) Theorem 5 establishes the semi-lattice property. As D is closed under finite sums,
we have ∑D =

⋃D.
(2) By ([1], Theorem 7.64(vii), p. 392)

⋃D = (G,
⋂F (A)) = (G, 0) = G and

⋂D =
(G, ∑F (A)). If A �= tor(A), then ∑F (A) = A, by Theorem 1(4). So,

⋃D = (G, A) = {0}
in this case. If G is totally disconnected, then D = {G}, so

⋂D = G.
(3) We have the following commutative diagram with natural maps and exact rows

F/F′

F′ A A/F′

F A A/F

ins

ins

ins

ϕ′

= ψ

ins ϕ

and its dual

(A/F)∧ G F∧

(A/F′)∧ G (F′)∧

(F/F′)∧

ψ∧

ϕ∧

=

restr

restr

(ϕ′)∧

restr

restr
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We conclude that

Δ′

Δ
=

(ϕ′)∧[(A/F′)∧]
ϕ∧[(A/F)∧]

∼=t
(A/F′)∧

ψ∧[(A/F)∧]
∼=t

(
F
F′

)∧
(4) Let Δ = F⊥ = (G, F) ∈ D with F ∈ F (A). If m ∈ N, then m−1

G Δ = m−1
G (G, F) =

(G, mF) (cf. [21], Lemma 6.4.14, p. 274), so since mF ∈ F (A) we have m−1
G Δ ∈ D.

(5) Let Δ = δ(F) for some F ∈ F (A). By Theorem 1(3) we know that m−1
A F = F′ ⊕

A[m] for some F′ ∈ F (A). Using ([21], Lemma 6.4.13, p. 27) and ([21], Lemma 6.4.15, p. 27)
we obtain mΔ = mδ(F) = m(G, F) = (G, m−1

A F) = (G, F′ + A[m]) = (G, F′) ∩ (G, A[m]) =
δ(F′) ∩mG. Furthermore, δ(F) and G are both compact and hence, so are mδ(F) and mG,
therefore closed, and equal to the closures.

(6) Let x ∈ G. If mx ∈ Δ(G) for some m ∈ N, then mx ∈ Δ for some Δ ∈ D. Then
x ∈ m−1

G Δ ∈ D by (4), thus x ∈ Δ(G). Therefore G/Δ(G) is torsion-free.

The fact that linearly independent sets can be enlarged to maximal linearly indepen-
dent sets has the following dual.

Proposition 4. Let G = A∧ be a compact abelian group of infinite dimension.
Suppose that Θ is a subgroup of G such that G/Θ is a torus of dimension m. Then Θ contains

some Δ ∈ D(G) and m ≤ dim(G).

Proof. Θ = E⊥ for some subgroup E of A (Theorem 4). We claim that E is a free subgroup

of A. From Θ
ins� G � T where T is a torus of dimension m, we conclude the exact sequence

T∧ � A∧∧ restr� Θ∧. By Lemma 5 T∧ ∼= (A∧∧, Θ) and by Lemma 6 (A∧∧, Θ) ∼= (A, Θ) =
E⊥⊥ = E. As T∧ is free of rank m as the dual of a torus, so is E and m ≤ rk(A). Let F be a
full free subgroup containing E. Then Δ := F⊥ ∈ D(G) and Θ = E⊥ ⊇ F⊥ = Δ.

Let G = A∧. We next study the connection betweenD(G),D(c(G)), Δ(G), and Δ(c(G)).
Given A, let T = tor(A) and let F ∈ F (A). Then, we obtain the following commutative
diagram with exact rows and its dual.

F F0

T A A0

T⊕F
F

A
F

A0
F0

ϕ0

ins ins

ins

ψT

ϕ0

ψ ψ0

ins ϕ0

with dual

(
A0
F0

)∧ (
A
F

)∧ (
T⊕F

F

)∧

A∧
0 G T∧

F∧0 F∧

ψ∧0

ϕ∧0

ψ∧

restr

ψ∧T
ϕ∧0

restr

restr

restr

ϕ∧0

We now set

• Δ := ψ∧[
(

A
F

)∧
]

• G0 := ϕ∧0 [A
∧
0 ]

• Δ0 := (ϕ∧0 ◦ ψ∧0 )[
(

A0
F0

)∧
] = (ψ∧ ◦ ϕ∧0 ))[

(
A0
F0

)∧
] ⊆ G

and obtain
Δ0 Δ T∧

G0 G T∧

F∧ F∧

ins

ins

insΔ

restrΔ

=

ins

restr

restr

restrG

=

(4)
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We have the following easy consequences.

Theorem 7. Let G = A∧ where A ∈ AG and consider (4), where T = tor(A).

(1) G0 = ϕ∧0 [A
∧
0 ] = tor(A)⊥ coincides with the 0–component c(G) of G.

(2) c(G) is divisible and so, algebraically, G ∼= c(G)⊕ T∧ and G ∼=t c(G)⊕ T∧ if and only if A
splits, i.e., A ∼= A0 ⊕ T.

(3) Δ0 = Δ ∩ c(G). Thus D(c(G)) = {D ∩ c(G) | D ∈ D(G)}, Δ(c(G)) = Δ(G) ∩ c(G),
and Δ(c(G)) is closed in Δ(G).

(4) G = Δ + c(G) and Δ(G) = Δ + Δ(c(G)).
(5) c(G)/Δ0 ∼=t G/Δ and Δ/Δ0 ∼=t G/ c(G) ∼=t T∧.
(6) With the established notation Δ(c(G)) is divisible and hence algebraically a direct summand

of Δ(G).
(7) There is a topological isomorphism tor(A)∧ ∼=t

Δ
Δ0
→ Δ(G)

Δ(c(G))
.

Proof. (1) As A0 is torsion-free, its dual G0 is connected and G/G0 is totally disconnected.
Hence, G0 is the 0–component of G: c(G) = G0. The equality ϕ∧0 [A

∧
0 ] = tor(A)⊥ follows

from Lemma 5.
(2) c(G) is divisible as the dual of a torsion-free group. The rest is evident.
(3) It follows from the definition that Δ0 ⊆ Δ ∩ c(G). On the other hand, let x ∈

Δ ∩ c(G). Then 0 = restrG(x) = (restrG ◦ insΔ)(x) = restrΔ(x), hence, x ∈ Δ0. This proves
the equality Δ0 = Δ ∩ c(G).

The topological isomorphism A∧
0 → c(G) = ϕ∧0 [A

∧
0 ] maps the family D(A∧

0 ) onto
D(c(G)). Thus, the annihilator (A∧

0 , (F⊕ T)/T), a typical member of D(A∧
0 ), is mapped

onto Δ0 = (G, F) ∩ c(G), a typical member of D(c(G)). Therefore, D(c(G)) = {D ∩ c(G) |
D ∈ D(G)} and Δ(c(G)) = Δ(G) ∩ c(G).

(4) We have Δ + c(G) = ψ∧[(A/F)∧] + ϕ∧0 [A
∧
0 ] = (G, F) + (G, T) = (G, F ∩ T) = G.

By (4) we have Δ + Δ(c(G)) = Δ + (c(G) ∩ Δ(G)) = (Δ + c(G)) ∩ Δ(G) = Δ(G).
(5) Follows immediately from (3) and (4).
(6) c(G) is divisible and Δ(c(G)) is pure in c(G). Hence, Δ(c(G)) is divisible.
(7) We have the following commutative diagram with exact row and natural maps:

Δ0 Δ Δ
Δ0

Δ(c(G)) Δ(G) Δ(G)
Δ(c(G))

ins

ins

ins

α

ξ

ins

The map ξ is injective because Δ ∩ Δ(c(G)) = Δ0. By (5), Δ(G) = Δ + Δ(c(G)), so ξ is
surjective. To show that ξ is continuous, let U be open in Δ(G)/Δ(c(G)). By commutativity
of the right square in the diagram, W := {x ∈ Δ | ξ(α(x)) ∈ U} is open in Δ, thus
ξ−1[U] = α[W] is open in Δ/Δ0. Therefore, ξ is continuous. Since Δ/Δ0 is compact, we
conclude that ξ is a topological isomorphism.

A number of results on free subgroups are worth dualizing.

Theorem 8. Let G = A∧ be a compact abelian group of infinite dimension.

(1) Suppose that D is a closed subgroup of G such that G/D is a torus. Then there exists
Δ ∈ D(G) such that D ∩ Δ ∩ c(G) = 0. In particular, for every Δ ∈ D(G), there is
Δ′ ∈ D(G) such that Δ ∩ Δ′ ∩ c(G) = 0.

(2) There exists Δ ∈ D(G) such that Δ0 = Δ ∩ c(G) ∈ D(c(G)) is torsion-free.

Proof. (1) Let F = D⊥. Then F ∼=t (G/D)∧ is a free subgroup of A. So ϕ0[F] is free
in A0. By Theorem 2(a), there exists a free subgroup F1 of A0 such that A0 = F + F1.
By enlarging F1 if necessary we may assume that F1 is maximal, i.e., full free. There exists
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a (full) free subgroup F2 of A such that ϕ0[F2] = F1. Then A = F + F2 + tor(A) and
0 = F⊥ ∩ F⊥2 ∩ tor(A)⊥. The claim is established by setting Δ′ = F⊥2 .

(2) By Theorem 2(b), there exists a full free subgroup F0 of A0 such that A0/F0 is
divisible. There exists F ∈ F (A) : ϕ0[F] = F0 and tor(A)⊕F

F � A
F � A0

F0
is exact. By duality

(A0/F0)
∧ � (A/F)∧ � tor(A)∧. As A0/F0 is divisible, its dual is torsion-free ([1],

corollary 8.5, p. 410), so Δ0 := (A0/F0)
∧ ∈ D(A∧

0 ) is torsion-free. Modulo embeddings
Δ0 ⊆ Δ = (A/F)∧ ∈ D(A) and Δ0 = Δ ∩ c(G).

Corollary 2. Let G = A∧ be a compact connected abelian group of infinite dimension, i.e., A is
torsion-free of infinite torsion-free rank.

(1) Suppose that D is a subgroup of G such that G/D is a torus. Then there exists a subgroup D′

of G such that D ∩ D′ = 0 and G/D′ is a torus. In particular, for every Δ ∈ D(G), there is
Δ′ ∈ D(G) such that Δ ∩ Δ′ = 0.

(2) There exists a torsion-free Δ ∈ D(G).

We can easily settle the question when Δ(G) is as small as possible, i.e., Δ(G) = tor(G).

Theorem 9. Let G = A∧ be a compact abelian group. Then Δ(G) = tor(G) if and only if
G ∼=t Tn × E where n ∈ N0 and E is bounded.

Proof. We only need to consider the consequences of Δ(G) being a torsion group. As Δ(G) =

∑D(G), this occurs if and only if every Δ ∈ D(G) is a torsion group. Since Δ is compact, it
must be bounded torsion. Furthermore, we use that for every F ∈ F (A), the dual (A/F)∧

is topologically isomorphic to some Δ ∈ D(G), so a bounded torsion group.
(a) Assume first that A is torsion-free. By Corollary 2(2) we have n := rk(A) < ∞.

Now pick an arbitrary F ∈ F (A). Since (A/F)∧ is a bounded torsion group, so is A/F,
hence, mA ⊆ F for some m ∈ N, so A ∼= mA is free of rank n and G ∼=t Tn.

(b) In the general situation, by Theorem 7(3), Δ(c(G)) must be a torsion group and
hence by (b), A/ tor(A) must be free of finite rank. So A = F ⊕ tor(A) for some finite
rank free subgroup F of A, thus G ∼=t H × E with H ∼=t Tn and E ∼=t tor(A)∧ ∼=t (A/F)∧.
For the latter group to be torsion, it must be bounded.

Remark 2. The dual concept (in the category sense of reversing arrows) of F (A) is the family
K(A) := {Ker(ψ) | ψ ∈ Hom(A, F), F free}. It is easy to see that K(A) is closed under
finite intersections and K(A) =

⋂K(A) =
⋂{Ker(ψ) | ψ ∈ Hom(A,Z)} is a fully invariant

subgroup of A that has no free direct summands. Mostly we have K(A) = A, e.g., if A is divisible
or torsion. We call A free-reduced if Hom(A,Z) = {0}, equivalently, if A has no free direct
summands. Evidently, A is free-reduced if and only if G = A∧ is torus-free. For a compact
group G, let T (G) = {T | T is a torus subgroup of G}.

For any A ∈ AG, and a short exact sequence K
ins� A

ϕF� F where F is free, it follows that

F∧
ϕ∧F� G := A∧ restr� K∧ is exact in LCA. Hence, ϕ∧F [F

∧] = K⊥ is a torus subgroup of G and we
have a map

κ : K(A)→ T (G) : κ(K) = K⊥.

As for F (A) and D(G) it follows that κ is a bijective map satisfying κ(K1 ∩ K2) = κ(K1) + κ(K2)
and K1 ⊆ K2 if and only if κ(K2) ⊆ κ(K1). In particular, T(G) := ∑ T (G) =

⋃ T (G) and
κ(K(A)) = (K(A))⊥ = T(G). This recaptures most of the results of ([1], p.p 440, 441). The group
A/K(A) need not be free and the dual group T(G) need not be a torus.

A theorem of K. Stein ([17], Corollary 8.3, p. 114) says that every countable torsion-free group
A0 has a decomposition A0 = F⊕K(A0) where F is free. The duals of countable torsion-free groups
are exactly the compact connected metric groups ([1], pp. 447–450).
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Remark 3. One can ask further whether a compact group has other connected factors of dimension
1 (so-called solenoids of which T is an example). For finite dimensional connected compact groups
this leads to the “Main Decomposition” that was derived in [22].

5. The Fat Delta of Compact Groups

So far we know from Theorem 6 that for any compact abelian group G,

• Δ(G) = ∑D(G) =
⋃D(G),

• Δ(G) is dense in G,
• tor(G) ⊆ Δ(G) and G/Δ(G) is torsion-free.
• Δ(c(G)) is divisible.

In this section, we will establish further properties of Fat Delta. We start with a
preliminary observation.

Lemma 7. Let G and H be compact abelian groups and let α : G → H be a continuous epimor-
phism. Then we have:

(1) If G is totally disconnected, then so is H.
(2) If G is a torus, then so is H.

Proof. (1) Since α is surjective, the adjoint map α∧ : H∧ → G∧ is injective ([23], (24.38),
p. 392). Assume that G is totally disconnected. Then G∧ is torsion, thus H∧ is torsion and
therefore H is totally disconnected (see [23], (24.26), p. 385).

(2) Now suppose G is a torus. Then G∧ is free, so since subgroups of free groups are
free, H∧ is free. Thus, H is a torus.

In general, Fat Delta does not contain every totally disconnected subgroup. However,
it contains all closed totally disconnected subgroups:

Proposition 5. Let G be a compact abelian group and D a closed totally disconnected subgroup of
G. Then D ⊆ Δ(G). Thus Δ(G) is the subgroup of G generated by all closed totally disconnected
subgroups of G.

Proof. Choose Δ ∈ D(G). Then Δ + D is compact ([23], (4.4), p. 17), and the natural map
α : Δ × D → Δ + D is a continuous epimorphism. By Lemma 7(1), Δ + D is totally
disconnected. Now consider the continuous epimorphism β : G/Δ → (G/Δ)/[(Δ +
D)/Δ] ∼=t G/(Δ + D) (see [23], (5.35), p. 45). Since G/Δ is a torus, so is G/(Δ + D) by
Lemma 7(2). This means that Δ + D ∈ D(G), so D ⊆ Δ + D ⊆ Δ as claimed.

The significance of Proposition 5 is that it shows that for a compact group G Fat Delta
Δ(G) coincides with the subgroup td(G) that is defined and motivated by totally different
considerations (see Definition 4 and Proposition 9(2)). For the sake of easy reference, we
list the results that could be proved easily in the present context but are proved in greater
generality in the exhaustive study of td(G) in Section 7.

Proposition 6. Let G be a compact abelian group. Then the following are true.

(1) Δ(G) is zero-dimensional, in particular totally disconnected (Theorem 19). Consequently,
if G is not totally disconnected, then G �= Δ(G) and hence Δ(G) is not a locally compact
subgroup of G.

(2) Any countable extension of Δ(G) is zero-dimensional (in particular totally disconnected) as
well (Proposition 11).

Δ(A∧) = Hom(A,Q/Z)

We first establish some background.

Lemma 8. Let G, H, K be topological abelian groups.
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(1) Suppose that H is a topological subgroup of K such that for all f ∈ cHom(G, K) we have
f [G] ⊆ H. Let ins : H → K be the insertion. Then ins∗ : cHom(G, H) → cHom(G, K) :
ins∗( f ) = ins ◦ f is a topological isomorphism.

(2) Suppose that H
α� K

β
� L is a short exact sequence in TAG, α is proper, and G is some other

topological group. Then

cHom(G, H)
α∗� cHom(G, K)

β∗→ cHom(G, L), where α∗( f ) = α ◦ f , β∗( f ) = β ◦ f ,

is an exact sequence in TAG and α∗ is proper. The map β∗ is not claimed to be surjective.

(3) Let A
α� B

β
� C be a short exact sequence of discrete groups and let G be a divisible

topological group. Then

cHom(C, G)
β∗
� cHom(B, G)

α∗� cHom(A, G), where β∗( f ) = f ◦ β, α∗( f ) = f ◦ α,

is an exact sequence of topological groups. In addition, β∗ is proper.
(4) For a discrete torsion group T =

⊕
p∈P torp(T), we have cHom(T,Q/Z) ∼=t T∧, the topo-

logical isomorphism being ins∗, and T∧ ∼=t ∏p∈P(torp(T))∧ where (torp(T))∧ ∼=t
Hom(torp(T),Z(p∞)).

Proof. (1) It is evident that ins∗ is bijective and maps W(C, H ∩V) onto W(C, V) where C
is compact in G and V is open in K.

(2) By standard discrete homological algebra

Hom(G, H)
α∗� Hom(G, K)

β∗→ Hom(G, L)→ Ext(G, H)

is exact in AG. Let f ∈ cHom(G, H). Then α∗( f ) = α ◦ f is continuous and α∗ is well-
defined. Similarly, β∗ : cHom(G, K)→ cHom(G, L) is well-defined.

To show that α∗ is continuous, let C be a compact subset of G and let UK be an
open neighborhood of 0 ∈ K. Then V := W(C, UK) is a basic open neighborhood of
0 ∈ cHom(G, K). It follows that U := W(C, α−1[UK]) is an open neighborhood of 0 ∈
cHom(G, H) and α∗ maps U into V as is easily checked.

We show next that our sequence is exact at cHom(G, K). As β∗ ◦ α∗ = (β ◦ α)∗ = 0
we have Im(α∗) ⊆ Ker(β∗). To show that Ker(β∗) ⊆ Im(α∗), let f ∈ Ker(β∗). By the
discrete exactness there exist g ∈ Hom(G, H) such that f = α ◦ g. To conclude, we need to
show that g is continuous. To do so let U be open in H. By assumption α is proper, hence,
there is an open set V ⊆ K such that α[U] = α[H] ∩V. Then U ⊆ α−1[α[H] ∩V] = α−1[V]
and actually U = α−1[V]. In fact, let x ∈ H such that α(x) ∈ V ∩ α[H] = α[U]. So there
exists x′ ∈ U such that α(x) = α(x′) and as α is injective, x = x′ ∈ U. We now get that
g−1[U] = g−1[α−1[V]] = f−1[V] is open in G, showing that g is continuous.

It remains to show that α∗ is proper. Let C be compact in G and U open in H. Then
W(C, U) is a generic open set in cHom(G, H) and W(C, V), where α[U] = α[H] ∩ V, is
open in cHom(G, K). We claim that

α∗[W(C, U)] = α∗[cHom(G, H)] ∩W(C, V).

Let f ∈ W(C, U). Then f [C] ⊆ U and hence α∗( f )[W(C, U)] ⊆ α∗[cHom(G, H)]∩W(C, V)
because (α ◦ f )[C] ⊆ α[U] ⊆ V.

Now let g ∈ α∗[cHom(G, H)] ∩W(C, V). Then there is f ∈ cHom(G, H) such that
g = α ◦ f . We show that f ∈ W(C, U). In fact, (g[C] ⊆ V) =⇒ ((α[ f [C]] ⊆ α[H]∩V = α[U].
As α is injective it follows that f [C] ⊆ U, i.e., f ∈ W(C, U).

(3) By discrete abelian group theory we have that Hom(C, G)
β∗
� Hom(B, G)

α∗�
Hom(A, G) → Ext(C, G) is exact and Ext(C, G) = {0} as G is divisible. We have
cHom = Hom as A, B, C are discrete, so the exactness of the claimed sequence is clear.
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We need to show that β∗ and α∗ are continuous when the Hom groups are given the
compact-open topology.

To show that β∗ is continuous, let K be a compact (=finite) subset of B and let UG be
an open neighborhood of 0 ∈ G. Then V := W(K, UG) is a generic open neighborhood of
0 ∈ cHom(B, G). Hence, U := W(β[K], UG) is an open neighborhood of 0 ∈ cHom(C, G).
Let f ∈ U. Then f [β[K]] = β∗( f )[K] ⊆ UG, i.e., β∗( f ) ∈ V showing that β∗ is continuous.
Similarly, α∗ is continuous.

It remains to show that β∗ is proper. The set V := W(K, UG), where K is compact
(=finite) in C and UG open in G, is a generic open subset of cHom(C, G). As β is surjective,
there is a finite subset K′ of B such that β[K′] = K. Then U := W(K′, UG) is an open subset
of cHom(B, G). We claim that β∗[V] = U ∩ β∗[cHom(C, G)]. In fact, f ∈ V means that
f [K] ⊆ UG and hence β∗( f )[K′] = f [β[K′]] = f [K] ⊆ UG, so β∗[V] ⊆ U ∩ β∗[cHom(C, G)].
To show equality, let g ∈ U ∩ β∗[cHom(C, G)]. Then there exists f ∈ cHom(C, G) such that
g = f ◦ β and UG ⊃ g[K′] = ( f ◦ β)[K′] = f [β[K′]] = f [K], so f ∈ V.

(4) By Lemma 8(1) we have cHom(T,Q/Z) ∼=t cHom(T,T) ∼=t T∧. By Proposition 2
T∧ ∼=t ∏p∈P(torp(T))∧, and again Lemma 8(1) entails (torp(T))∧ ∼=t
Hom(torp(T),Z(p∞)).

Lemma 9. Let K, X, Y, K′, X′, Y′ be topological abelian groups. It is assumed that the diagram

K X Y

K′ X′ Y′

ins

ξK

α

ξX η

ins β

is commutative, all maps are continuous, its rows are exact, ξX is proper, β is a quotient map, i.e., β
is open, and ξK is an isomorphism. Then α is a quotient map.

Proof. Let U be open in X. As ξ is proper, there is an open set V of X′ such that
ξX [U] = ξX [X] ∩V. We claim that α[U] = η−1[β[V]] that is open in Y.

First let x ∈ U. Then η(α(x)) = β(ξX(x)) ∈ β[V], hence, α(x) ∈ η−1β[V].
Now suppose that y ∈ η−1[β[V]] ⊆ Y. Then η(y) = β(v) for some v ∈ V. There exists

x ∈ X such that α(x) = y. Hence, β(ξX(x)) = η(α(x)) = β(v), and thus,
v − ξX(x) ∈ Ker(β). It follows that there exists k ∈ K such that ξK(k) = v − ξX(x)
and so ξX(k + x) = v ∈ ξ[X] ∩ V = ξ[U]. As ξ is injective it follows that k + x ∈ U and
α(k + x) = α(x) = y.

We have the proper short exact sequence of topological groups

E : Q/Z
ins� T

γ
� R/Q

where, as usual, T is the quotient group of R, Q/Z the subgroup of T, and R/Q carries the
quotient topology which is indiscrete as Q is dense in R (Lemma 2(1)).

Let A be a discrete group and F a full free subgroup of A of rank m := rk(A). We

have exact sequences F
ins� A

ϕF� A/F where A/F is a torsion group. We obtain a diagram
as follows.

Hom(A/F,Q/Z) Hom(A,Q/Z) Hom(F,Q/Z)

Hom(A/F,T) Hom(A,T) Hom(F,T)

Hom(A,R/Q) Hom(F,R/Q)

ϕ∗F

ins∗

ins∗

ins∗ ins∗
ϕ∗F ins∗

γ∗ γ∗

ins∗

(5)
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(1) By standard discrete homological algebra the diagram is commutative and rows and
columns are exact.

(2) All the domains of the Hom groups carry the discrete topology, hence cHom = Hom
in all cases.

(3) All Hom groups in the diagram carry the compact-open topology. It follows from
Lemma 8(2) that all the maps (·)∗ are continuous. It follows from Lemma 8(3) that all
the maps (·)∗ are continuous.

(4) By Lemma 8(1) the left most ins∗ is a topological isomorphism.
(5) By Lemma 8(2) columns 2 and 3 are exact in TAG.
(6) By Lemma 8(3) the three rows are exact in TAG.
(7) The situation of Lemma 9 matches the top part of (5) and we conclude that ins∗ :

Hom(A,Q/Z) → Hom(F,Q/Z) is a quotient map. It is easy to see that ins∗ :
Hom(A,R/Q) → Hom(F,R/Q) is an isomorphism. Since both groups are indis-
crete (by Lemma 2(3)), this is a topological isomorphism.

Theorem 10. Let G = A∧ where A ∈ AG has torsion-free rank m. Then:

(1) Δ(G) = ins∗[Hom(A,Q/Z)] ⊆ G where ins : Q/Z→ T.
(2) G/Δ(G) ∼= Rm. Algebraically, c(G) = Δ(c(G))⊕ K where K ∼= Rm.
(3) If Gi = A∧

i where Ai ∈ AG (i ∈ I), then Δ(∏i∈I Gi) ∼=t ∏i∈I Δ(Gi).

Proof. (1) Row 2 of (5) implies that ϕ∗F(Hom(A/F,T)) ⊆ ins∗[Hom(A,Q/Z)] where
Δ = ϕ∗F(Hom(A/F,T)) is a delta subgroup of G. As F was arbitrary it follows that
Δ(G) ⊆ ins∗[Hom(A,Q/Z)]. It remains to show that Δ(G) ⊃ ins∗[Hom(A,Q/Z)].

Let f ∈ Hom(A,Q/Z) and set K = Ker( f ). Then f [A] ⊆ Q/Z is a torsion group, so
A/K is a torsion group and any full free subgroup F of K is a full free subgroup of A. Let
F be so given. Then g : A/F → Q/Z : g(a + F) = f (a) is a well-defined homomorphism
and f = g ◦ ϕF = ϕ∗F(g), so f ∈ Δ ⊆ Δ(G).

(2) We have algebraic isomorphisms G/Δ(G) ∼= Hom(A,R/Q) ∼= Hom(F,R/Q) ∼=
(R/Q)m ∼= Rm, the first isomorphism granted by exactness of column 2 of (5), the second
isomorphism by (7), and the remaining isomorphism is easy to see. The group Δ(c(G))
is divisible as observed earlier (see Theorem 6(6)), so it is algebraically a direct summand
of c(G). Since rk(A0) = m, applying the above argument to c(G) = A∧

0 we deduce
that c(G)/Δ(c(G)) ∼= (R/Q)m. Therefore, we have c(G) = Δ(c(G)) ⊕ K, with K ∼=
c(G)/Δ(c(G)) ∼= (R/Q)m ∼= Rm.

(3) Set A =
⊕

i∈I Ai and G = ∏i∈I Gi. Then we have G = ∏i∈I A∧
i
∼=t A∧, so G ∼=t A∧

and Δ(G) ∼=t Hom(A,Q/Z) ∼=t ∏i∈I Hom(Ai,Q/Z) ∼=t ∏i∈I Δ(Gi).

From now on, we will identify Δ(G) with Hom(A,Q/Z) if G = A∧ is compact.
The next corollary, establishing that Δ is a functorial subgroup and showing that Δ, as a
functor, preserves exactness of short sequences of compact groups, will be reproved in
greater generality in Proposition 10.

Corollary 3. (1) Let G and H be compact abelian groups and g ∈ cHom(G, H). Then
g(Δ(G)) ⊆ Δ(H); in particular Δ(G) is fully invariant in G and if G ≤ H, then
Δ(G) ≤ Δ(H).

(2) Let G, H, K be compact abelian groups. Suppose that G � H � K is a short exact sequence
in TAG. Then Δ(G) � Δ(H) � Δ(K) is a short exact sequence in TAG.

Proof. (1) Without loss of generality G = A∧, H = B∧ and g = f∧ = f ∗ for some

f ∈ Hom(B, A). Then Δ(G) = Hom(A,Q/Z)
g→ Hom(B,Q/Z) = Δ(H).

(2) Without loss of generality G = A∧, H = B∧, K = C∧ and G � H � K is the
dual of C � B � A. Then Hom(A,Q/Z) � Hom(B,Q/Z) � Hom(C,Q/Z) is an exact
sequence of topological groups (Lemma 8(3)).
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The next proposition shows how Fat Delta can be used to recognize finite-dimensional
compact groups.

Proposition 7. Let G be a compact abelian group and Δ ∈ D(G) with G/Δ ∼=t Tκ , where
κ = dim(G) = rk(G∧). Then Δ(G)/Δ ∼= (Q/Z)κ . In particular, Δ(G)/Δ = tor(G/Δ) if and
only if G is finite-dimensional.

Proof. To the proper short exact sequence Δ � G � G/Δ apply Corollary 3(2) to deduce
that Δ(G)/Δ ∼= Δ(G/Δ), due to the fact that Δ = Δ(Δ). Since G/Δ ∼=t Tκ , we have
Δ(G)/Δ ∼= Δ(Tκ) ∼=t (Δ(T))κ = (Q/Z)κ by Theorem 10(3). Since (Q/Z)κ is torsion
precisely when κ < ∞, we are done.

We will use the following well-known result below.

Theorem 11 ([24], page 86, Corollary 8.48). Let G, C be Hausdorff abelian groups, assume that
C is complete, H is a dense subgroup of G. Then every morphism f : H → C has a unique extension
f : G → C.

Theorem 12. Let G and H be compact abelian groups. Then G ∼=t H if and only if Δ(G) ∼=t Δ(H).

Proof. (a) Suppose φ : G → H is an isomorphism of topological groups. By Corollary 3
applied to φ and φ−1, we obtain φ(Δ(G)) = Δ(H), hence Δ(G) ∼=t Δ(H).

(b) Let f : Δ(G) → Δ(H) be an isomorphism of topological groups. The group H
is compact, hence complete, and Δ(G) is dense in G. Hence, there is a unique extension
morphism f : G → H of f . Similarly, we have the unique continuous extension f−1 : H →
G of f−1 : Δ(H)→ Δ(G). The morphism f−1 ◦ f : G → G extends idΔ(G) : Δ(G)→ Δ(G)

which is also extended by idG, hence, by uniqueness we have f−1 ◦ f = idG. Similarly,
f ◦ f−1 = idH . Hence, ( f )−1 = f−1 is continuous.

Theorem 12 and Corollary 3 imply that G �→ Δ(G) is a category equivalence on the
category of compact abelian groups to the category of all Δ(G). This calls for a useful
characterization of the class of topological groups that appear as Δ(G) for some compact abelian
group G. So far we can say the following. If D is a topological group such that D ∼=t Δ(G)
for some compact group G, then the following are true.

(1) D is totally disconnected and zero-dimensional (Proposition 11).
(2) The completion D̂ of D is compact (i.e., D is precompact), D = Δ(D̂) and tor(D) =

tor(D̂).
(3) D contains a directed family D of compact totally disconnected subgroups such that

D =
⋃D.

(4) D ∈ LCA if and only if D̂ is totally disconnected, and, if so, D = D̂ is compact.
(5) D is totally minimal (Theorem 19).

Given a group D with all the required properties, we would have Δ(D̂) ∼=t D, i.e., the
completion functor is the inverse of the functor Δ.

Theorem 12 and the preceding discussion suggest to study the structure of Δ(G) for
a given compact group G. We will attempt this below in the simplest possible case of
solenoids. A solenoid is a compact connected group of dimension 1, i.e., the dual of a
torsion-free group of rank 1. To do so, we will use a simple result on divisible hulls of
discrete groups and Lemma 10 on divisible hulls of certain products of groups.

Lemma 10. Let P be a set of prime numbers, Xp be discrete groups and X = ∏p∈P Xp. For each
p ∈ P, let Dp be a divisible hull of Xp. Let D := ∏p∈P Dp. Assume that each Dp/Xp is a p-
primary group. Let D(X) be a subgroup of D containing X such that D(X)/X = tor(D/X). Then

(1) D(X) is a divisible hull of X,
(2) D(X) = ∏loc

p∈P(Dp, Xp) := {(dp) ∈ D | dp ∈ Xp for almost all p ∈ P},

37



Axioms 2022, 11, 200

(3) D(X)/X ∼= ⊕
p∈P Dp/Xp.

Proof. (1) Clearly D is divisible as a product of divisible groups and

D/ D(X) ∼= (D/X)/(D(X)/X) ∼= (D/X)/(tor(D/X))

is torsion-free, hence D(X) is pure in D and therefore divisible. It remains to show that X is
essential in D(X). For any prime q, we have D[q] = ∏p∈P Dp[q] ≤ ∏p∈P Xp = X. Indeed,
for q �= p ∈ P we have Dp[q] ≤ Xp because Dp/Xp is p-primary, while Dq[q] ⊆ Xq because
Dq is the divisible hull of Xq.

(2) Let (dp) ∈ D(X). Then m(dp) ∈ X for some m �= 0 which requires that ∀ p ∈ P :
mdp ∈ Xp. Our hypotheses imply that dp ∈ Xp for all those p that do not divide m. So
D(X) ⊆ ∏loc

p∈P(Dp, Xp) and equality is evident.
(3) The map ξ : D(X) → ⊕

p∈P Dp/Xp : ξ((dp)) = ∑p∈P dp + Xp is evidently well-
defined, surjective, and Ker(ξ) = X.

Torsion-free groups A with rk(A) = 1, rank-one groups for short, are discussed and
classified in ([17], Chapter 12, Section 1). These are exactly the groups isomorphic with
additive subgroups of Q containing Z. Types are equivalence classes [(hp)p∈P] of “height
sequences” (hp)p∈P where 0 ≤ hp ≤ ∞. Two height sequences are equivalent if they differ
only at finitely many places where both sequences have finite entries. For the precise
definition of type see Lemma 11(1) or ([17], p. 409, 411).

Two rank-one groups are isomorphic if and only if their types are equal.
Lemma 11 displays a representative rank-one group, its type, and dual solenoid. For a

prime p, we define 1
p∞ Z :=

〈
1
pk Z | k ∈ N

〉
.

Lemma 11. (1) Let Z ≤ A ≤ Q. Then there exist values hp such that

A =

〈
1

php Z | p ∈ P, 0 ≤ hp ≤ ∞
〉

, A
Z
∼= ⊕

p∈P Z(php), and tp(A) = [(hp)p∈P].

For P∞ := {p | hp = ∞}, one has p ∈ P∞ if and only if pA = A.
(2) Let Σ = A∧ and Δ := (A/Z)∧. Then (with a harmless identification) Δ ∈ D(Σ), and Δ ∼=t

∏p∈P Ẑ(php) where Ẑ(p∞) = Ẑp is the group of p-adic integers and Ẑ(php) = Z(php) is
the cyclic group of order php for hp < ∞. Furthermore, Σ and Δ(Σ) are divisible, Δ(Σ)/Δ ∼=
Q/Z, and tor(Σ) ⊆ Δ(Σ).

(3) Soc(Σ) =
⊕

p �∈P∞ Z(p) and tor(Σ) =
⊕

p �∈P∞ Z(p∞).

Proof. (1) Given p ∈ P either A contains every fraction 1/pk (in which case hp = ∞) or A
contains a smallest fraction 1/php . These fractions generate A and determine the type of A.
(The hp are the “p-heights” of 1 ∈ A.)
To prove the last assertion, note that pA = A implies hp = ∞. Conversely, if hp = ∞, then

1
php Z = 〈 p

pk Z | k ∈ N〉 = p
(

1
php Z

)
, thus pA = A.

(2) Σ is divisible by ([1], Corollary 8.5, p. 410). By Theorem 6(6) it follows that Δ(Σ) is
pure in Σ and hence is also divisible. By Proposition 7 Δ(Σ)/Δ ∼= Q/Z and by Theorem 6(4)
tor(Σ) ⊆ Δ(Σ). The rest is clear.

(3) By Corollary 1, rkp(Σ) = rkp(A/pA) ≤ 1.
According to (1), rkp(A/pA) > 0 if and only if A �= pA, i.e., when hp < ∞. Hence,

rkp(Σ) > 0 if and only if hp < ∞ (i.e., when p �∈ P∞) and in this case rkp(Σ) = 1.
This proves that Soc(Σ) =

⊕
p/∈P∞ Z(p). As tor(Σ) is divisible, it is the divisible hull of⊕

p/∈P∞ Z(p) and so tor(Σ) =
⊕

p/∈P∞ Z(p∞).

We illustrate the situation with some special cases.
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Example 1. (1) For a first concrete example, let A1 = ∑p∈P
1
pZ and Σ1 = A∧

1 . Then
tp(A1) = [(1, 1, . . .)], and Δ(Σ1) is the divisible hull of Δ = ∏p∈P Z(p) and Δ(Σ1) =

∏loc
p∈P(Z(p∞),Z(p)).

(2) Next let A2 = Q. Then tp(A2) = [(∞, ∞, . . .)], Σ2 = Q∧ is torsion-free, Δ = ∏p∈P Ẑp

and Δ(Σ2) is the divisible hull of Δ, so Δ(Σ2) = ∏loc
p∈P(Q̂p, Ẑp) where Q̂p = 1

p∞ Ẑp is the
additive group of p-adic numbers.

(3) For A3 = Z, tp(A3) = [(0, 0, . . .)], Σ3 = Z∧ = T, Δ = {0}, but Soc(Σ3) =
⊕

p∈P Z(p) ⊆
Δ(Σ3), Δ(Σ3) is the divisible hull of Soc(Σ3), so Δ(Σ3) =

⊕
p∈P Z(p∞) = Q/Z = tor(Σ3).

Note that Δ is a particular δ–subgroup of Σ. Sometimes (e.g., (1), (2)), but not always
(e.g., (3)), Δ(Σ) is the divisible hull of Δ. In the general case additional δ–subgroups must
be employed.

Proof. (1) In this case, ∀ p ∈ P : hp = 1. By Lemma 11(1) Δ(Σ1) is the divisible hull of Δ,
and the rest follows from Lemma 10.

(2) Σ2 = Q∧ is torsion-free, Soc(Σ2) = {0} ⊆ Δ, A/Z = Q/Z =
⊕

p∈P Z(p∞),
Δ := (A/Z)∧ = ∏p∈P Ẑp, and Δ(Σ) is the divisible hull of Δ.

(3) Clear.

The next theorem deals with the general case. The relevance of the final assertion will
become clear in Section 7.3 (see Definition 9 and Example 4, see also Problem 2).

Theorem 13. Let A = ∑p∈P
1

php Z. Define Σ = A∧ and P∞ as above, and let

Pfin := {p | 0 < hp < ∞} and P0 := {p | hp = 0}.

Then Δ(Σ) is the divisible hull of ∏p∈P∞ Ẑp ⊕∏p∈Pfin
Z(php)⊕⊕

p∈P0
Z(p), so

Δ(Σ) =
loc

∏
p∈P∞

(Qp, Ẑp)⊕
loc

∏
p∈Pfin

(Z(p∞),Z(php))⊕
⊕
p∈P0

Z(p∞). (6)

Moreover, Soc(Σ) is dense in Σ if and only if P0 is infinite.

Proof. Δ = ∏p∈P∞ Ẑp ⊕∏p∈Pfin
Z(php) ⊆ Δ(Σ) and Δ(Σ) is not the divisible hull of Δ if

P0 �= ∅. However, (Lemma 11) D := Δ⊕⊕
p∈P0

Z(p) ⊆ Δ(Σ) and Soc(Δ(Σ)) ⊆ Soc(Σ) ⊆
D. Hence, Δ(Σ) is the divisible hull of D. Apply Lemma 10.

Recall that Soc(Σ) =
⊕

p∈P0
Z(p)⊕⊕

p∈Pfin
Z(p), where Z(p) = Σ[p] when the latter

is non-trivial. Let φ : Σ → Σ/Δ = T. We claim that

φ(
⊕
p∈P0

Z(p)) =
⊕
p∈P0

T[p]. (7)

Indeed, if t = φ(x) ∈ (Σ/Δ)[p] for some x ∈ Σ and p ∈ P0, then hp = 0 and pt = 0 in
Σ/Δ, so px ∈ Δ. It follows from the above description of Δ that Δ is p-divisible for p ∈ P0.
Hence, px = pz where z ∈ Δ. Then px − pz = 0, so x − z = Σ[p] = Z(p). Therefore,
t = φ(x) = φ(x− z). This proves (7).

If P0 is infinite,
⊕

p∈P0
T[p] is dense in T, hence (7) implies that the compact subgroup

Σ1 :=
⊕

p∈P0
Σ[p] of Σ satisfies φ(Σ1) =

⊕
p∈P0

T[p] = T. Hence, 1 = dimT ≤ dim Σ1 ≤
dim Σ = 1 and consequently, dim Σ1 = dim Σ = 1, hence dim Σ/Σ1 = dim Σ−dim Σ1 = 0.
Since Σ/Σ1 is connected, this implies Σ1 = Σ.
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If P0 is finite, then Σ1 is finite, while Σ2 =
⊕

p∈Pfin
Σ[p] ≤ Δ. Therefore, using again

Lemma 11(3),

Soc(Σ) =
⊕
p∈P0

Σ[p] +
⊕

p∈Pfin

Σ[p] = Σ1 +
⊕

p∈Pfin

Σ[p] = Σ1 + Σ2 ≤ Σ1 + Δ �= Σ,

since Σ1 + Δ is a totally disconnected, while Σ is connected.

Remark 4. By Theorem 12, two compact groups are isomorphic if and only if their Fat Deltas
are isomorphic as topological groups. A classification of Fat Deltas amounts to a classification of
compact groups. A compact group is just the completion of its Fat Delta. Solenoids indicate the
problems ahead.

For any solenoid Σ, we have rkp(Σ) = 0 for p ∈ P∞, rkp(Σ) = 1 for p ∈ P f in ∪ P0.
For the concrete examples rk(Δ(Σ1)) = 2ℵ0 , rk(Δ(Σ2)) = 2ℵ0 , while rk(Δ(Σ3)) = 0. In general
rk(Δ(Σ)) = 2ℵ0 except that rk(Δ(Σ)) = 0 for Σ = Z∧ = T. The algebraic invariants of Δ(Σ)
are the same for many non-isomorphic solenoids Σ. So the topological isomorphism class of Δ(Σ),
and hence of Σ, is in no way determined by these invariants. To distinguish between two Fat Deltas
that are algebraically isomorphic one needs to know their topology. The description (6) involves the
types of Σ. It may help in determining the topology of Δ(Σ). Conversely, knowing the topology of
Δ(Σ) should make it possible to recapture the type of Σ.

6. Resolutions

The Resolution Theorem, a structure theorem for compact abelian groups, first ap-
peared in [25] and later in an extended form in ([1], Theorem 8.20, p. 420), where it got
its name.

Definition 3. Recall that the “Lie algebra” of G, L(G), defined as L(G) = cHom(R, G), is a
real topological vector space via the stipulation (r f )(x) := f (rx) where f ∈ L(G) and r, x ∈ R,
and carries the topology of uniform convergence on compact sets ([1], Definition 5.7, p. 117,
Proposition 7.36, p. 373). For every morphism ϕ : G → H in TAG, one obtains a morphism L(ϕ) :
L(G)→ L(H) in the category TAGR of real topological vector spaces by letting L(ϕ)( f ) := ϕ ◦ f
for f ∈ L(G). This defines a functor L : TAG → TAGR with the following useful properties:

(i) ([1], Proposition 7.38(i), p. 374) L(G) = L(c(G)) and L commutes with products, i.e.,
L(∏i Gi) ∼=t ∏i L(Gi).

(ii) ([1], Proposition 7.38(ii), p. 374) If ϕ : G → H is a morphism in TAG, then L(ϕ) is injective,
whenever Ker ϕ is totally disconnected;

(iii) ([1], Corollary 8.19, p. 419) if G is a compact group and Δ ∈ D(G) with G/Δ = Tm, then,
with ϕ : G → G/Δ, L(ϕ) : L(G)→ L(G/Δ) = Rm is a topological isomorphism. The last
equality is in fact a topological isomorphism obtained as composition of two others. The first
one is the isomorphism L(Tm) ∼=t L(T)m from (i). The second one is L(T) ∼=t R, that can be
obtained from the obvious equality L(T) = R∧, by letting ρ : R→ L(T) : ρ(r)(x) = rx +Z
for r, x ∈ R.

The exponential map is the morphism expG : L(G) → G defined by exp(χ) = χ(1) ([1],
p. 372). It “commutes" with morphisms ϕ : G → H in TAG, i.e., ϕ ◦ expG = expH ◦L(ϕ). This
means that exp = (expG)G∈TAG is a natural transformation from the functor L to the identity
functor of TAG. For further properties of the “Lie algebra” L(G) and the “exponential morphism”
see ([1] Proposition 7.38, p. 374, Theorem 7.66, p. 395)). In particular, expT : L(T)→ T is defined
by expT(ρ(r)) = r +Z for r ∈ R and ρ as in (iii) above.

We can now recall the original Resolution Theorem.
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Proposition 8 ([25], Proposition 2.2). For a compact abelian group G there is a compact zero-
dimensional subgroup Δ of G such that the homomorphism

ϕ : Δ× L(G)→ G : ϕ((d, χ)) = d + exp(χ)

satisfies the following conditions:

(1) ϕ is continuous, surjective, and open, i.e., is a quotient morphism.
(2) Ker(ϕ) is algebraically and topologically isomorphic to Γ := exp−1[Δ], and Γ is a closed to-

tally disconnected subgroup of L(G). In particular, it does not contain any nonzero vector spaces.
(3) ϕ[{0} × L(G)] = exp[L(G)] is dense in c(G), the identity component of G.

In the above notation, one can prove also that exp[L(G)] = a(G), the path connected
component of 0, while c(G) = a(G) ([1], Theorem 8.30, p. 430 and Theorem 8.4, p. 409).

We first revisit the classical Resolution Theorem for compact connected groups of
finite dimension with substantial additions as we determine the kernel of the resolution
map ϕ explicitly up to topological isomorphism (see (4)).

Theorem 14 (Resolution Theorem). Let G be a compact abelian group of finite dimension n :=
dim(G). For Δ ∈ D(G) define ϕ : Δ × L(G) → G by ϕ(d, χ) = d + exp(χ) for (d, χ) ∈
Δ× L(G). Then:

(1) ϕ is surjective, continuous, and open.
(2) Γ := Ker(ϕ) = {(− exp(χ), χ) | χ ∈ exp−1[Δ]}. The projection Δ × L(G) → L(G)

maps Γ isomorphically onto exp−1[Δ], so Γ ∼=t exp−1[Δ]. Furthermore, exp−1[Δ] is a closed
totally disconnected subgroup of L(G).

(3) L(G) ∼=t Rn, in particular dimR(L(G)) = n;
(4) Γ ∼=t Zn where Zn carries the discrete topology, i.e., the subspace topology in Rn.
(5) exp[exp−1[Δ]] = Δ ∩ a(G) is dense in Δ.

Proof. (1) and (2) are part of ([1], Theorem 8.20, p. 420).
(3) Follows from (iii).
(4) By (2) the projection Δ× L(G)→ L(G) induces a continuous epimorphism

G ∼=t
Δ× L(G)

Γ
� L(G)

exp−1[Δ]

hence L(G)
exp−1[Δ] is compact. By ([1], Theorem A1.12.(i), p. 715) and (3), there is a basis {ei}

of L(G) ∼=t Rn, i.e., L(G) = Re1 ⊕ · · · ⊕ Ren, such that exp−1[Δ] ∼=t Re1 ⊕ · · · ⊕ Rep ⊕
Zep+1 ⊕ · · · ⊕Zep+q and L(G)

exp−1[Δ]
∼=t Tq ⊕Rn−p−q. As exp−1[Δ] is totally disconnected we

have p = 0, and as L(G)/ exp−1[Δ] is compact, 0 = n− p− q = n− q and it follows that
q = n.

(5) It is routine to verify that exp[exp−1[Δ]] = Δ ∩ a(G). Set ZΔ := Δ ∩ a(G). It is
easily seen that Γ ⊂ ZΔ × L(G) ⊂ ZΔ × L(G) ⊂ Δ× L(G). We obtain the exact sequence

ZΔ × L(G)

Γ
ins� Δ× L(G)

Γ

f
� Δ× L(G)

ZΔ × L(G)
∼=t

Δ
ZΔ

Here Δ×L(G)
Γ

∼=t G is connected, hence Δ/ZΔ is connected as well, by the surjectivity of
f . On the other hand, Δ/ZΔ is totally disconnected because Δ, being compact and totally
disconnected is profinite ([1], Theorem 1.34, p. 22), and quotients of profinite groups are
profinite ([26], Proposition 2.2.1(a), p. 28), and in particular totally disconnected. This is
possible only when the quotient Δ/ZΔ is trivial. Therefore, ZΔ = Δ.
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Remark 5. (a) For the torus G = Tn one has L(G) = Rn, so the Resolution theorem applied to G
is simply the covering homomorphism ϕ : Rn → Tn if one takes Δ = 0 (in general Δ must be a
finite subgroup of Tn).

(b) Using the fact that exp[L(G)] = a(G), the covering map ϕ could be replaced by the
surjective, continuous, and open map ψ : Δ× a(G)→ G : ϕ(d, x) = d+ x, for (d, x) ∈ Δ× a(G)
which has the advantage that now both groups Δ and a(G) are subgroups of G. One has to
take into account that the map expG : L(G) → a(G) need not be injective. More precisely,
K(G) = Ker(exp) is trivial precisely when G is torus-free. However, even when G is torus-free,
this map is only a continuous isomorphism that need not be a homeomorhism.

(c) As an application of Theorem 14 we obtain a nice presentation of the solenoid Σ2 = Q∧

from Example 1 (2). As shown there, Σ2 has a delta subgroup Δ = Ẑ = ∏p∈P Ẑp and Σ2/Δ ∼= T.
So by Definition 3 (iii), L(Σ2) ∼=t R. Hence, Theorem 14 gives a resolution ϕ : Δ × R → Σ2,
with Γ = ker ϕ ∼=t Z and Δ∩ a(Σ2) = 〈χ1〉 ∼= Z, where χ1 : Q→ T is defined by χ1(x) = x+Z
for x ∈ Q.

The same representation can also be obtained directly by standard use of Pontryagin duality.
Indeed, let 1 = (1p)p∈P ∈ Δ and u = (1,−1) ∈ Δ×R. Then 〈u〉 ∼=t Z and K = (Δ×R)/〈u〉
is a compact connected torsion-free group of dimension one, so its dual K∧ is a discrete divisible
torsion-free group of rank one. Therefore, K∧ ∼= Q and K ∼=t Q∧.

We also obtain a “canonical resolution”, where the arbitrary Δ ∈ D(G) is replaced by
the canonical subgroup Δ(G).

Theorem 15 (Canonical Resolution Theorem). Let G be a compact abelian group and Δ(G) =⋃D(G). Then

(1) the map ϕ : Δ(G) × L(G) → G : ϕ((d, χ)) = d + exp(χ) = d + χ(1) is surjective,
continuous, and open;

(2) Γ := Ker(ϕ) = {(exp(χ),−χ) | χ ∈ exp−1[Δ(G)]} ∼=t exp−1[Δ(G)] ⊂ L(G) is
torsion-free and ϕ induces an isomorphism (Δ(G)× L(G))/Γ ∼=t G;

(3) If G is connected of finite dimension dim(G) = n, then Γ ∼=t Qn.
(4) exp[exp−1[Δ(G)]] = a(G) ∩ Δ(G) is dense in G.

Proof. (1) The map ϕ is clearly homomorphic, continuous and surjective. To show that it is
open, let W be an open set in Δ(G)× L(G). We can assume without loss of generality that
it is a basic open set, i.e., W = U ×U′, where U is open in Δ(G) and U′ is open in L(G).
Then ∀Δ ∈ D(G) : Δ ∩U is an open set of Δ, so (Δ ∩U)×U′ is an open set of Δ× L(G).
By the ordinary Resolution Theorem OΔ := ϕ[(Δ ∩U)×U′] is open in G. Hence, so is

ϕ[U ×U′] = ϕ

⎡⎣⎛⎝ ⋃
Δ∈D(G)

(Δ ∩U)

⎞⎠×U′

⎤⎦ = ϕ

⎡⎣⎛⎝ ⋃
Δ∈D(G)

(Δ ∩U)×U′

⎞⎠⎤⎦= ⋃
Δ∈D(G)

OΔ.

(2) The map Γ → exp−1[Δ] : (exp(χ),−χ) → χ clearly is bijective, homomorphic,
continuous and open. Being isomorphic to a subgroup of L(G), the group Γ is torsion-free.
The last assertion is obvious.

(3) Fix arbitrarily Δ ∈ D(G) and let

ϕΔ : Δ× L(G)→ G, defined by ϕΔ(d, χ) = d + exp(χ), and ΓΔ = Ker(ϕΔ).

By (2) Γ is torsion-free. We will show that Γ is divisible and Γ/ΓΔ is a torsion group. This
says that Γ is the usual algebraic divisible hull of ΓΔ

∼=t Ze1 ⊕ · · · ⊕ Zen ⊂ L(G) (see the
proof of item (4) of Theorem 14). Hence, exp−1[Δ(G)] ∼=t Γ is the divisible hull of exp−1[Δ]
and is Qe1 ⊕ · · · ⊕Qen ⊂ L(G) with the subspace topology. This shows that Γ ∼=t Qn.

To show that exp−1[Δ], and hence Γ, is divisible, suppose that x ∈ L(G) and exp(x) ∈
Δ(G). As L(G) is divisible, given m ∈ N, there is y ∈ L(G) such that my = x. Hence,
m exp(y) = exp(x) and as Δ(G) is divisible (Proposition 7(4)) there is d ∈ Δ(G) such that

42



Axioms 2022, 11, 200

m exp(y) = md. It follows that exp(y)− d ∈ tor(G) ⊂ Δ(G), hence exp(y) ∈ Δ(G) and
y ∈ exp−1(Δ) which establishes the claim.

Finally, to show that Γ/ΓΔ is a torsion group let χ ∈ exp−1[Δ(G)], i.e., exp(χ) ∈ Δ(G).
By Proposition 7, there is m ∈ N such that mχ ∈ Δ. It follows that m(exp(χ),−χ) =
(exp(mχ),−mχ) ∈ ΓΔ.

(4) Write Δ(G) =
⋃

Δ∈D(G) Δ and use the fact that a(G) ∩ Δ is dense in Δ for every
Δ ∈ D(G), by Theorem 14(5). Then

a(G) ∩ Δ(G) = a(G) ∩
⋃

Δ∈D(G)

Δ =
⋃

Δ∈D(G)

a(G) ∩ Δ ⊇
⋃

Δ∈D(G)

a(G) ∩ Δ ⊇
⋃

Δ∈D(G)

Δ = Δ(G).

Since Δ(G) is dense in G, this proves that a(G) ∩ Δ(G) is dense in G.

In the next example, we apply the canonical resolution theorem 15 to two solenoids.
The first one is T = Z∧ and its canonical resolution adds nothing essentially new.

Example 2. (a) For the solenoid, T = Z∧ there is an isomorphism ρ : R → L(G) and
exp(ρ(r)) = r + Z, where r ∈ R, by Definition 3(iii). Since Δ(T) = tor(T) = Q/Z, we
obtain the canonical resolution ϕ : Q/Z×R→ T : ϕ((a +Z, r)) = (a +Z) + (r +Z) =
a + r +Z with Γ = {(r +Z,−r) | r ∈ Q} and evidently Γ ∼=t Q.

(b) For the solenoid Σ2 = Q∧ from Example 1 (2) Δ(Σ2) is the divisible hull of its delta subgroup
Δ = ∏p Ẑp. Moreover, L(Σ2) ∼=t R (see Remark 5(c)). Theorem 15 gives the canonical
resolution ϕ : Δ(Σ2)×R → Σ2 with Γ = ker ϕ ∼=t Q as in (a) and a(Σ2) ∩ Δ(Σ2) ∼= Q
dense in Σ2.
Denote by Q̃ the group Δ(Σ2) equipped with the finer topology obtained by taking Δ as an
open topological subgroup of Q̃. Then Q̃ is a locally compact ring and A := Q̃×R is the adele
ring of Q. Composing ϕ with the identity A→ Δ(Σ2)×R we obtain a continuous surjective
homomorphism ϕ : A → Σ2 which is again open by the Open Mapping Theorem (as A is
σ-compact). Hence, Σ2 is a quotient of A.

7. Fat Delta Through the Looking Glass of Quasi-Torsion Elements

Fat Delta existed previously in the literature in a rather different form and in greater
generality. In Section 7.1 we recall the definition of quasi-torsion element and the sub-
group td(G) of quasi-torsion elements, showing that td(G) = Δ(G) for compact groups
(Proposition 9).

7.1. Quasi-Torsion Elements

Definition 4 (([3], p. 127), [4]). Let G be a Hausdorff abelian topological group. Define td(G) to
be the set of all quasi-torsion elements of G, where x ∈ G is quasi-torsion if 〈x〉 is either finite or
its subspace topology is non-discrete and linear.

This definition was given by [4] for arbitrary, not necessarily abelian, topological
groups. Then td(G) need not be a subgroup of G, as the following example shows.

Example 3. Take the compact group G = SL3(R) of rotations of R3. Then td(G) = tor(G) is
the set of all torsion elements of G, while the subgroup 〈td(G)〉 generated by td(G) is the whole
G since td(G) is invariant under conjugations and G is a simple group. A geometric proof of the
equality 〈td(G)〉 = G is based on the well-known fact that every rotation can be presented as a
composition of two symmetries (known to have order 2).

Remark 6. If every convergent sequence is eventually constant in a topological abelian group
G, then td(G) = tor(G) (the assumption td(G) �= tor(G) leads to a contradiction: if x ∈
td(G) \ tor(G), then the group 〈x〉 is non-discrete and metrizable, so 〈x〉 has convergent sequences
that are not eventually constant).
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Infinite compact groups always have convergent sequences that are not eventually constant
(since they contain copies of the Cantor set {0, 1}ω). An example of an infinite precompact abelian
group where every convergent sequence is eventually constant can be obtained as follows. For a
TAG–group (G, τ) the Bohr topology of (G, τ) is the initial topology τ+ of all χ ∈ (G, τ)∧ (that
can be obtained by the diagonal embedding G → TG∧

). For the sake of brevity we also write G+ for
(G, τ+). In case τ is discrete, G+ is usually denoted by G#. It is a well-known fact that in G# every
convergent sequence is eventually constant ([3]), so td(G#) = tor(G#).

Proposition 9. Let G be a topological abelian group.

1. If x ∈ G, then x ∈ td(G) if and only if there exists a continuous homomorphism f :
(Z, νZ)→ G with f (1) = x;

2. td(G) is a subgroup of G containing every compact totally disconnected subgroup of G;
3. If G is complete (in particular, locally compact), then td(G) coincides with the union of all

compact, totally disconnected subgroups of G.

Proof. (1) Assume that x ∈ td(G). If 〈x〉 is finite, then 〈x〉 is isomorphic to a quotient
group of (Z, νZ), so the desired homomorphism f is easy to obtain. If 〈x〉 is infinite
and carries a non-discrete linear topology, then the homomorphism f : (Z, νZ) → G
with f (1) = x is obviously continuous. On the other hand, if there exists a continuous
homomorphism f : (Z, νZ) → G with f (1) = x, then the subgroup 〈x〉 is either finite or
has linear precompact topology, so x ∈ td(G).

(2) If x, y ∈ td(G), then by (1) there exist continuous homomorphisms f , g : (Z, νZ)→
G with f (1) = x and g(1) = y. This gives a continuous homomorphism h = f ⊕ g :
(Z, νZ) × (Z, νZ) → G defined by h(n, m) = nx + my. The restriction h �ΔZ

: ΔZ → G
satisfies h(1, 1) = x + y and since ΔZ

∼= (Z, νZ), witnesses x + y ∈ td(G) by (1).
If N is a compact, totally disconnected subgroup of G, then N has a linear topology.

Therefore, for every x ∈ N, the subgroup 〈x〉 is either finite or its subspace topology is linear
and non-discrete (as otherwise 〈x〉 it would be a closed (so compact) discrete subgroup of
N, a contradiction). Therefore, x ∈ td(G).

(3) Assume now that G complete and x ∈ td(G). Then x is quasi-torsion and 〈x〉 is
either finite or its subspace topology is non-discrete and linear. Hence, its closure 〈x〉 is the
completion of 〈x〉, and thus, compact and totally disconnected.

For a compact group G = A∧, by Proposition 5 and Proposition 9(2), we have td(G) =
Δ(G), and by Theorem 10 Δ(G) = Hom(A,Q/Z). We summarize:

Theorem 16. Let G = A∧ where A ∈ AG. Then

Δ(G) = td(G) = Hom(A,Q/Z).

We quote from previous papers reconfirming foregoing results.

Proposition 10. (1) ([3], Theorem 4.1.7(a)) If f : G → H is a continuous homomorphism of
topological abelian groups, then f [td(G)] ⊆ td(H), i.e., td is a functorial subgroup; in
particular td(G) is fully invariant in G.

(2) ([27], Theorem 11) If G and H in (1) are compact and f is surjective, then f [td(G)] = td(H).
(3) (([4], Proposition 1.3(a)) and ([3], Theorem 4.1.7(b))) If G is a topological abelian group and

H is a subgroup of G, then td(H) = H ∩ td(G);
(4) (([4], Proposition 1.4(a)) and ([3], Theorem 4.1.7(e))) Let {Gi : i ∈ I} be a family of topological

abelian groups. Then td(∏i∈I Gi) = ∏i∈I td(Gi).

Remark 7. Comments on the various items of Proposition 10.

(a) Items (1), (3) and (4) follow from Proposition 9 and reinforce Corollary 3(1) by showing that
td is a functorial subgroup in the larger category TAG.
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(b) In (2) “compact" cannot be replaced by “locally compact" (take G = R, H = T and f the
canonical quotient map, then td(R) = {0}, while td(T) = Q/Z �= {0}).

(c) Item (4) reinforces Theorem 10(3) showing that it remains valid in the larger category TAG.

Now we use item (1) from Proposition 10 to show that the subgroup td(G) is zero-
dimensional when G is precompact, i.e., a subgroup of a compact group. We shall see
in [16] that this remains true under the weaker assumption that G is locally precompact,
i.e., a subgroup of a locally compact group.

Proposition 11. Let G be a precompact abelian group. Then every subgroup H of G with [H :
(H ∩ td(G))] < c is zero-dimensional. In particular, td(G) is zero-dimensional.

Proof. The following folklore fact will be needed in the sequel:

Claim 1. Every proper subgroup H of T is zero-dimensional.

Proof. H is either finite of dense. If H is finite then it is clearly zero-dimensional. If H
is dense, then for any fixed a ∈ T \ H also a + H is dense and disjoint from H. Hence,
{Γb,c ∩ H : b, c ∈ a + H}, where Γb,c is an open arc in T with ends b and c, is a base of the
induced topology on H consisting of clopen sets of H.

First, we show that χ[td(G)] ⊆ Q/Z for any χ ∈ G∧. Assume that x ∈ td(G), to check
that χ(x) ∈ Q/Z pick an arbitrary χ ∈ G∧. Then χ(x) ∈ td(T), by Proposition 10(1).
By Example 1(3), td(T) = Q/Z, so χ(x) ∈ Q/Z.

Since H/(H ∩ td(G)) ∼= (H + td(G))/ td(G), our hypothesis implies that [(H +
td(G)) : td(G)] < c. Hense, for every χ ∈ G∧ the subgroup χ[H + td(G)] contains
the countable subgroup χ[td(G)] ⊆ Q/Z as a subgroup of index < c, so |χ[H]| ≤
|χ[H + td(G)]| < c too. Consequently χ[H] �= T, so χ[H] is zero-dimensional for every
χ ∈ G∧. Since zero-dimensionality is preserved under taking direct products, ∏χ∈G∧ χ[H]
is zero-dimensional, by Claim 1. Since H is precompact (as a subgroup of G), H isomor-
phic to a subgroup of ∏χ∈G∧ χ[H] by ([3], Theorem 2.3.2). Since zero-dimensionality is
preserved under taking subgroups, we deduce that H is zero-dimensional.

7.2. The Subgroup td(G) of Compact Groups and Minimality

The Open Mapping Theorem can be reached in two steps:

Definition 5. A Hausdorff topological group G is:

(a) minimal if every continuous isomorphism f : G → H onto a Hausdorff topological group H
is open.

(b) totally minimal if G satisfies the (full) Open Mapping Theorem, i.e., every continuous
homomorphism f : G → H onto a Hausdorff topological group H is open.

Compact groups are well-known to be totally minimal. On the other hand, a Haus-
dorff topological group G is totally minimal if and only if all Hausdorff quotients of G
are minimal.

The first supply of non-compact (totally) minimal groups was obtained by means of
the following notions of “strong" density:

Definition 6 ([28]). A subgroup H of a topological abelian group G is totally dense if N ∩ H = N
for every closed subgroup N of G.

Clearly, totally dense subgroups are dense (while Z(p∞) is dense in T, but not totally
dense). Obviously, the totally dense subgroups have the following weaker property:
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Definition 7 ([5,11,15]). A subgroup H of a topological abelian group G is topologically essen-
tial if N ∩ H �= {0} for every non-trivial closed subgroup N of G.

The term used for this property in [5,11,15] and in the remaining literature on the
Open Mapping Theorem is “essential”, but we prefer the more precise term “topologically
essential” to avoid possible confusion.

Theorem 17. Let H be a dense subgroup of a compact abelian group G.

(a) ([11,15]) H is minimal if and only if H is topologically essential in G.
(b) ([28]) H is totally minimal if and only if H is totally dense in G.

Banaschewski [5] found the following general criterion: if H is a dense subgroup of a
topological abelian group G, then H is minimal if and only if G is minimal and H is topologically
essential in G. These criteria match perfectly the following remarkable result of Prodanov
and Stoyanov [14] proved at a later stage, but conjectured by Prodanov in 1972 (see [13] for
an earlier partial result in the totally minimal case):

Theorem 18 (Prodanov–Stoyanov Theorem). Minimal abelian groups are precompact.

This theorem allows one to use exclusively the form of the criteria given in Theorem 17,
so to reduce the study of the (totally) minimal abelian groups to that of the dense topo-
logically essential (resp., totally dense) subgroups of the compact abelian groups. This
explains the interest in topologically essential or totally dense subgroups of the compact
abelian groups.

Proposition 12 ([11]). The minimal topologies on Z are precisely the p-adic topologies.

It was proved in [9] that the 2–adic topology of Z is minimal.

Proof. Assume that τ is a minimal topology on Z and let K be the completion of (Z, τ).
By the Prodanov–Stoyanov Theorem the group K is compact. By Theorem 17(a), Z is
essential in K, hence K is torsion-free. Therefore, the dual of K is a discrete divisible
group [1,3,23,29], hence a direct sums of copies of Q and of Z(p∞), p ∈ P. Therefore,

K = (Q∧)α ×∏p Ẑ
βp
p . Again by Theorem 17(a), Z must be essential in this product, hence

only one of these cardinals α, βp can be non-zero, and it must be equal to 1. Since Q∧ has
a Delta subgroup isomorphic to ∏p Ẑp, again Theorem 17(a) implies that α = 0. In other
words, K ∼= Ẑp for some prime p, therefore, τ coincides with the p-adic topology on Z.
To conclude, the minimality of the p-adic topology follows from Theorem 17(a), since Z is
essential in K = Ẑp, as all non-trivial closed subgroups of K are open.

A similar argument shows that Qn admits no minimal topologies for 0 < n < ∞.
The functorial subgroup td(G) of a compact abelian group G is not only dense in G

(Theorem 6(2)), but it is totally dense in G, as the next proposition shows.

Proposition 13. Let G be a compact abelian group. Then td(G) is totally dense in G.

Proof. Let N be a closed subgroup of G. Then N ∩ td(G) = td(N) by Proposition 10.
Therefore, it suffices to check that td(G) is dense in G for every compact group G. This
follows from Theorem 6, but we prefer to give an independent proof here.

Let N := td(G). Applying to the closed subgroup N of G the exactness of td in
the sense of Proposition 10(2), we deduce that td(G/N) = {0}. To see that this implies
G/N = {0} and so N = G, consider the discrete dual X = (G/N)∧ and assume by way
of contradiction that X �= {0}. Then there exists a subgroup Y of X such that X/Y �= {0}
is torsion. Then Y⊥ ∼= (X/Y)∧ is a non-trivial compact totally disconnected subgroup of
G/N, so td(G/N) �= {0}, a contradiction.
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We obtain the following theorem which, among other things, reconfirms that Δ(G) is
dense in G when G is compact.

Theorem 19. Let G be a compact abelian group. Then td(G) is a dense totally minimal zero-
dimensional subgroup of G.

Proof. Proposition 13 ensures the total density (hence, density as well) of td(G). Total
minimality of td(G) is then an immediate consequence of Theorem 17. To prove that td(G)
is zero-dimensional, apply Proposition 11.

Since td(G) �= G when G is not totally disconnected, this theorem provides a universal
example of a non-compact totally minimal (and zero-dimensional) abelian group. This
explains why it is not surprising that most of the first known examples of non-compact
totally minimal groups known in the seventies were just Q/Z = td(T) ([15]), (Q/Z)n =
td(Tn) ([9]), (Q/Z)N = td(TN) ([10]), and (Q/Z)α = td(Tα) ([27,30]).

Corollary 4. Let G be a compact abelian group and H be a closed subgroup of G. Then td(H)
ins�

td(G) � td(G/H) is a proper short exact sequence in TAG.

Proof. By Proposition 10 td(H) = td(G) ∩ H and q[td(G)] = td(G/H) for the quotient
homomorphism q : G → G/H. This proves the exactness of the short exact sequence

td(H)
ins� td(G)

f
� td(G/H), where f = q �td(G). The openness of f follows from the fact

that td(G) is totally minimal, in view of Theorem 19.

7.3. Sylow Subgroups of td(G) for G ∈ TAG

The characterization in Theorem 9 of the compact abelian groups G with td(G) =
tor(G) gives a very narrow class (practically rather close to the class of Lie groups). This
shows that the restraint td(G) = tor(G) is too stringent, or from another point of view,
the subgroup td(G) is too large to be useful in certain circumstances. This is why here
we recall a smaller subgroup of td(G) containing tor(G) that still keeps the advantages of
td(G), but it is closer to tor(G). This subgroup is simply the subgroup generated by all
topologically p-Sylow subgroups tdp(G) of td(G) defined as follows:

Definition 8 ([3,31]). An element x of a topological abelian group G is topologically p-torsion
if pnx → 0. Let

Gp := {x ∈ G | x is topologically p-torsion}
and let tdp(G) := (td(G))p.

Then Gp is a subgroup of G. In case G is a profinite group, Gp is usually called the
topological p-Sylow subgroup of G. We shall also keep this terminology when G is not
necessarily profinite. Clearly, Hp = Gp ∩ H for a subgroup H of G.

Obviously, torp(G) ≤ tdp(G) ≤ Gp for every G.
The notation tdp(G) used in Definition 8 is borrowed from [4,27], where tdp(G)

denotes the subgroup of all elements x ∈ G (called quasi-p-torsion in [4]) such that
〈x〉 is either a cyclic p-group, or 〈x〉 is isomorphic to Z equipped with the p-adic topology.

The equivalence of both definitions follows from: if 〈x〉 ∼= Z is equipped with a
Hausdorff linear topology such that pnx → 0, then this linear topology necessarily coincides
with the p-adic topology.

The sum ∑p tdp(G) is direct ([4]). Following [4], we write wtd(G) =
⊕

p∈P tdp(G) in
the sequel. Clearly,

tor(G) ≤ wtd(G) ≤ td(G),

but these subgroups need not coincide in general. It is proved in [4] that, when G is
compact, even the smaller subgroup wtd(G) is still totally dense in G. Since both total
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density and topological essentiality are transitive properties, a dense subgroup G of a
compact abelian group K is totally dense (resp., topologically essential) in K if and only
if td(G) = G ∩ td(K) is totally dense (resp., topologically essential) in td(K) if and only if
wtd(G) is totally dense (resp., topologically essential) in wtd(K).

The next theorem from [29] shows that one can characterize the totally disconnected
compact abelian groups in the class of all compact abelian groups G by specifying whether
the subgroups tdp(G) of G are closed (compact) or not:

Theorem 20 ([3,29]). For a compact abelian group G and every prime p the subgroup tdp(c(G))
is dense in c(G). In particular, the following conditions are equivalent:

(1) G is totally disconnected;
(2) td(G) = G, i.e., td(G) is compact;
(3) tdp(G) is compact for every prime p;
(4) tdp(G) is compact for some prime p;
(5) tdp(G) is closed in G for some prime p (equivalently, for all primes p);
(6) the topology induced from G on wtd(G) =

⊕
p∈P tdp(G) coincides with the topology induced

by the product topology of ∏p∈P tdp(G).

In case these conditions hold, then G ∼=t ∏p∈P tdp(G).

In Theorem 9, we determined the compact groups for which Δ(G) = tor(G). Using
the smaller subgroup wtd(G) instead of Δ(G), we impose the condition wtd(G) = tor(G)
instead of collapsing the whole chain tor(G) ≤ wtd(G) ≤ td(G). This leads to a concept
introduced in [32]:

Definition 9 ([32]). A compact abelian groups G is an exotic torus, if wtd(G) = tor(G).

Clearly, the usual tori are also exotic tori, but the solenoid Σ1 defined in Example 1(1)
is an exotic torus that is not a torus. The next theorem from [32] giving eleven equivalent
characterizations of exotic tori (of those (2) was used in [32] as the original definition)
provides further examples of exotic tori (see also Example 4 (3), (4)).

Theorem 21 ([32]). For a compact abelian group G = A∧ the following are equivalent:

(1) wtd(G) is torsion;
(2) Soc(G) is topologically essential;
(3) G contains copies of the p-adic integers Ẑp for no prime p;
(4) n = dim(G) < ∞ and for every continuous surjective homomorphism f : G → Tn we have

Ker f = ∏p Bp, where each Bp is a (bounded) compact p-group;
(5) n = dim(G) < ∞ and there exists a homomorphism f : G → Tn as in (3);
(6) wtd(G) ∼= (Q/Z)n ×⊕

p∈P Bp algebraically, where each Bp is a (bounded) compact p-
group;

(7) A is strongly non-divisible, i.e., all non-trivial quotients of A are non-divisible;
(8) every proper subgroup of A is contained in some maximal subgroup of A;
(9) A admits a surjective homomorphism A → Z(p∞) for no prime p;
(10) n = rk(A) < ∞ and A/F ∼= ⊕

Tp, where each Tp is a bounded p-group, for every
F ∈ F (A);

(11) n = rk(A) < ∞ and there exists F ∈ F (A) as in (10).

Corollary 5. If G is a non-trivial connected exotic torus, then n = dim(G) < ∞ and wtd(G) =
tor(G) ∼= (Q/Z)n, i.e., all p-ranks of G coincide and equal dim(G).

It was deduced from this corollary that the only divisible torsion abelian group that
may carry minimal topologies are the groups (Q/Z)n, n ∈ N ([32]).
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Following [12], call a compact group almost countable if it is the completion of count-
able minimal abelian group. This class of compact groups was described by Prodanov [12]
as follows: a compact abelian group G is almost countable if and only if n = dim(G) < ∞
and there exists a homomorphism f : G → Tn such that Ker f = ∏p(Ẑ

ep
p × Fp), where Fp is

a finite p group and ep ∈ {0, 1} for every prime p. These are the compact abelian groups G
such that td(G) has a countable essential subgroup.

The larger class K of compact abelian groups, that contain copies of the group ẐN
p

for no prime p was studied in [6]. It is stable under extension and contains all almost
countable compact groups, as well as all exotic tori. Its subclass of compact groups G that
contain copies of the group Ẑ2

p for no prime p coincides with the completions of minimal
abelian groups of countable rank, or equivalently, these are the compact abelian groups G
such that td(G) has an essential subgroup of countable rank (see [3] or [6]).

Example 4. Let G = A∧ where Z ≤ A ≤ Q, be a solenoid, as in Lemma 11 and Theorem 13. It
follows from Z � A � A/Z ∼= ⊕

p∈P Z(php) that

(A/Z)∧ = Hom(A/Z,Q/Z)→ G = A∧ φ
� T

is exact and (A/Z)∧ → Δ(G) = Hom(A,Q/Z) � Q/Z is exact, with (A/Z)∧ ∼=t ∏p∈P Δp

where Δp ∼=t Z(php)
∧

, so Δp ∼=t Ẑp when p ∈ P∞ and Δp is a cyclic p-group otherwise.

(1) G is an exotic torus if and only if P∞ = ∅ (i.e., tp(A) has no entries ∞).
(2) It follows from (1) that there are c many pairwise non-isomorphic connected one-dimensional

exotic tori G; they all have wtd(G) ∼= Q/Z, according to Corollary 5. Nevertheless, for these
exotic tori G the subgroups wtd(G) remain pairwise non isomorphic (since, similarly to
Theorem 12, if wtd(G) ∼=t wtd(H), then G ∼=t H for every pair of compact abelian groups
G, H).

(3) According to Theorem 13, if G is an exotic torus, then Soc(G) is dense in G if and only if P0
is infinite (see ([32], Proposition 2.5) for a more general result in the case of connected exotic
tori of arbitrary dimension). According to Theorem 21, in this case, Soc(G) is the smallest
dense topologically essential subgroups of G.

(4) The second assertion in (3) is related to the following more general fact proved in ([33],
Theorem 5.1) justifying the interest in dense socles: a connected compact abelian group G
contains a smallest dense topologically essential (i.e., smallest dense minimal) subgroup of G
if and only if G is an exotic torus with dense Soc(G).

8. Final Comments and Open Problems

One can deduce from Lemma 11(2) that for a solenoid Σ all delta subgroups Δ of Σ
have the property that all subgroups of finite index of Δ are open.

Problem 1. Classify the compact abelian groups whose delta subgroups have the property that all
their subgroups of finite index are open.

If G = A∧ is a finite-dimensional compact connected abelian group, one can easily
extend the argument in the proof of Theorem 13 and prove that Soc(G) is dense in G if
P0(G) is infinite, where P0(G) is defined in this more general case as follows (a different
proof in case G is an exotic torus can be found in ([32], Proposition 2.5)). Let n = dim G,
then there exists a short exact sequence Zn � A � A/Zn, where A/Zn is torsion (actually,
isomorphic to a subgroup of (Q/Z)n). In this notation, P0(G) = {p ∈ P : rkp(A/Zn) = 0}.
Obviously, P0(G) = P0, as defined in Theorem 13, when n = 1. The following example
shows that when dim G > 1, infinity of P0(G) is not a necessary condition for the density
of Soc(G).

Example 5. Split P = π1 � π2 in two disjoint infinite subsets π1, π2 (e.g., take π1 to be the set of
all primes of the form 4k + 1). For i = 1, 2 define the rational group Ai = 〈1/p : p ∈ πi〉 and the
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solenoid Σi = A∧
i . Then both Σ1 and Σ2 have dense socles, by Theorem 13, so G = Σ1 × Σ2 has

dense socle as well. Nevertheless, P0(G) = ∅.

Problem 2. Find a criterion for density of Soc(G) for a finite-dimensional compact connected
abelian group G.
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Abstract: Preservation of structures under aggregation functions is an active area of research with
applications in many fields. Among such structures, min-subgroups play an important role, for
instance, in mathematical morphology, where they can be used to model translation invariance.
Aggregation of min-subgroups has only been studied for binary aggregation functions. However,
results concerning preservation of the min-subgroup structure under binary aggregations do not
generalize to aggregation functions with arbitrary input size since they are not associative. In this
article, we prove that arbitrary self-aggregation functions preserve the min-subgroup structure.
Moreover, we show that whenever the aggregation function is strictly increasing on its diagonal, a
min-subgroup and its self-aggregation have the same level sets.

Keywords: aggregation function; T-subgroup; strictly monotone function

1. Introduction

Aggregation operators have become an important research topic in the last two
decades. The motivation to use such functions comes from the need to summarize different
pieces of information into a single object, which is a particularly challenging task when
the incoming information is heterogeneous, imprecise, or incomplete. These operators
are nowadays a fundamental tool of computer sciences with applications in classifica-
tion, databases, control, decision making, or image processing among others. Recent
monographs on this topic are [1–3].

An aggregation operator is a non-decreasing function A : [0, 1]n → [0, 1] satisfying
certain boundary conditions (see Definition 1). This construction allows one to aggregate
not only numerical values but also any functions, or structures on a set that have output in
the unit interval.

Min-subgroups were introduced by Rosenfeld in ([4]) as a fuzzy set μ whose domain
is a group G such that μ(x) = μ(x−1) and μ(xy) ≥ min{μ(x), μ(y)} for all x, y in G. Note
that from the definition, we immediately obtain μ(e) ≥ μ(x) for all x in G, and hence
the normalization condition μ(e) = 1 is often added to the definition of fuzzy subgroup.
Das studied min-subgroups thoroughly in [5], introducing a characterization in terms
of level sets in which the level sets of μ correspond to crisp subgroups of G. Das also
introduced an equivalence relation between fuzzy groups concerning level sets. Anthony
and Sherwood (see [6]) extended Rosenfeld’s definition using an arbitrary t-norm T instead
of the minimum. These groups are called T-subgroups. Formato and Gerla constructed
a correspondence between T-indistinguishability operators on a set (relations that are
reflexive, symmetric, and T-transitive) and T-subgroups related with the permutation
group of the set further motivating the study of T-subgroups (see [7]).

Min-subgroups can be identified as indistinguishability operators that are invariant
by translations (see [8]). This type of indistinguishability operator plays a fundamental
role in some applications, notably in mathematical morphology (see [8–11]).
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When the set of inputs of an aggregation function share a structure (i.e., they are all
indistinguishability operators, min-subgroups, or other fuzzy relations with additional
properties), the main problem is the preservation of that structure. In other words, the
problem is determining conditions guarantee that the output has the same structure.
Preservation of structures under aggregation has been widely studied in recent decades
(see [12–21]).

In particular, preservation of the min-subgroup structure under binary aggregations
was studied in [12]. However, these results cannot be immediately translated into n-ary
aggregation functions since these operators are not necessarily associative. In this article,
we obtain the first results concerning the preservation of the min-subgroup structure
for aggregation of more than two min-subgroups. More concretely, we focus on the
preservation of the min-subgroup structure under self-aggregation motivated by the central
role they play in the binary case. Note that the minimum t-norm is the only t-norm that is
idempotent, and it is characterized by its level-sets, which makes it very useful in certain
contexts ([22]).

The remainder of the article is organized as follows. In Section 2, we introduce the
relevant definitions and known facts. Section 3 contains our first new results. We show
that the aggregations of an arbitrary number of min-subgroups are also min-subgroups.
We also study the behavior of the fuzzy subgroup obtained from conjunctive, averaging,
disjunctive, and mixed aggregation functions. Section 4 is devoted to investigate self-
aggregations with respect to the equivalence classes of fuzzy subgroups given by its level
sets. Our main result states that, for aggregation functions that are strictly increasing on
their diagonal, the self-aggregation of a min-subgroup has the same level sets that the
original min-subgroup. The article ends with some concluding remarks and future lines of
research.

2. Preliminary Facts

Definition 1 ([1]). An operation A : [0, 1]n −→ [0, 1] is called an aggregation function if it
satisfies the following axioms:

(A1) Monotonicity. If xi ≤ yi for each i ∈ {1, . . . , n}, then A(x1, . . . , xn) ≤ A(y1, . . . , yn).
(A2) Boundary conditions. A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Moreover, A is called jointly strictly monotone if whenever xi < yi for all i ∈ {1, . . . , n},
then A(x1, . . . , xn) < A(y1, . . . , yn).

Among the most relevant aggregation functions, we find the arithmetic mean, the
geometric mean, the harmonic mean, and the quadratic mean (see [1,3]). Aggregation
functions are classified into four broad classes: conjunctive, averaging, disjunctive, and
mixed functions.

1. A conjunctive aggregation function A is an aggregation function such that A(r1, . . . , rn)
≤ min{r1, . . . , rn} for all (r1, . . . , rn) ∈ [0, 1]n. A prototypical example is any t-norm.

2. An averaging aggregation function A is an aggregation function such that min{r1, . . . ,
rn} ≤ A(r1, . . . , rn) ≤ max{r1, . . . , rn} for all (r1, . . . , rn) ∈ [0, 1]n. Ordered weighted
averaging operators belong to this category.

3. A disjunctive aggregation function A is an aggregation function such that max{r1, . . . ,
rn} ≤ A(r1, . . . , rn) for all (r1, . . . , rn) ∈ [0, 1]n. One example is any t-conorm.

4. An aggregation function A is called mixed if A is not conjunctive, averaging, nor
disjunctive. Uninorms belong to this type of aggregation functions.

Note that the averaging class is frequently called idempotent class since every aver-
aging aggregation function A satisfies A(r, . . . , r) = r for all (r, . . . , r) ∈ [0, 1]n. Extensive
information about aggregation functions can be found in [3].

Definition 2 ([4]). Let (G, ·) be a group. We say that μ : G −→ [0, 1] is a min-subgroup of G if:

(G1) For all x ∈ G, μ(x) ≥ μ(x−1).
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(G2) For all x, y ∈ G, μ(xy) ≥ min{μ(x), μ(y)}.

Note that G1 is equivalent to μ(x) = μ(x−1) for all x ∈ G. In the paper, e denotes the
neutral element of the group G.

Definition 3 ([23]). Let μ be a fuzzy subset of a given universe X. For each t ∈ [0, 1], the level set
μt and strict level set μt are defined as follows:

μt = {x ∈ X | μ(x) ≥ t} μt = {x ∈ X | μ(x) > t}

The support of μ is defined by supp μ = μ0.

Level sets (or α-cuts) have been studied extensively in fuzzy subgroups (see for
instance [24,25]). P. Das used level sets to characterize the notion of min-subgroup ([5]).

Proposition 1 ([5]). Let G be a group and μ a fuzzy set of G; then μ is a min-subgroup of G if and
only if all its non-empty level sets are subgroups of G.

3. Self-Aggregation

Given an aggregation function A and n fuzzy subsets μ1, . . . , μn of a group G, we
consider the fuzzy set A(μ1, . . . , μn) on G defined by

A(μ1, . . . , μn)(x) = A(μ1(x), . . . , μn(x))

for each x ∈ G. We say that A(μ1, . . . , μn) is the aggregation of μ1, . . . , μn through A.
In this section, we will study the aggregation of A(μ, . . . , μ) whenever μ is a min-

subgroup of a group G, i.e., the self-aggregation of μ through A.
Anthony and Sherwood (see [6]) introduced T-subgroups as an extension of min-

subgroups using an arbitrary t-norm T instead of the minimum.
The following theorem underlines the relevance of min-subgroups within T-subgroups

since the minimum is the only t-norm that guarantees preservation of the T-subgroup
structure for any binary self-aggregation process.

Theorem 1 ([12]). Let G be a group with at least four elements and T a t-norm satisfying T �= TD,
where TD is the drastic t-norm. The following assertions are equivalent:

1. T = min.
2. For each T-subgroup μ and each aggregation function A, A(μ, μ) is a T-subgroup.

Due to this result, given any aggregation function and any min-subgroup μ, A(μ, μ)
is also a min-subgroup. However, since A is not necessarily associative, the previous result
does not guarantee that A(μ, μ, . . . , μ) is also a min-subgroup. We establish that this is the
case for arbitrarily sized aggregations.

Proposition 2. Let A : [0, 1]n −→ [0, 1] be an aggregation function and μ a min-subgroup of a
group G. Then, A(μ, . . . , μ) is also a min-subgroup of G.

Proof. Take x ∈ G; we have that

A(μ, . . . , μ)(x) = A(μ(x), . . . , μ(x)) = A(μ(x−1), . . . , μ(x−1)) = A(μ, . . . , μ)(x−1).

Take x, y ∈ G. Without loss of generality, let us assume that μ(x) ≤ μ(y). Under this
premise, using the fact that A is a non-decreasing function, we have that

A(μ, . . . , μ)(x) = min
{

A(μ, . . . , μ)(x), A(μ, . . . , μ)(y)
}

. (1)

54



Axioms 2021, 10, 201

Therefore,

A(μ, . . . , μ)(xy) = A(μ(xy), . . . , μ(xy)) ≥ A
(

min{μ(x), μ(y)}, . . . , min{μ(x), μ(y)}
)
.

Since μ(x) ≤ μ(y) and the monotonicity of A,

A
(

min{μ(x), μ(y)}, . . . , min{μ(x), μ(y)}
)
= A(μ(x), . . . , μ(x)) = A(μ, . . . , μ)(x).

Taking into account (1), the proof is completed.

We proceed to study the comparison between A(μ, . . . , μ) and μ with respect to the
usual order of fuzzy sets, that is, if A(μ, . . . , μ) ≤ μ or A(μ, . . . , μ) ≥ μ. The following
result shows sufficient conditions on A in order to compare both of them.

Proposition 3. Let A : [0, 1]n −→ [0, 1] be an aggregation function and μ a min-subgroup of a
group G.

1. If A is a conjunctive aggregation function, then A(μ, . . . , μ) ≤ μ.
2. If A is an averaging aggregation function, then A(μ, . . . , μ) = μ.
3. If A is a disjunctive aggregation function, then A(μ, . . . , μ) ≥ μ.

Proof. Let us consider x ∈ G.

1. A(μ, . . . , μ)(x) = A(μ(x), . . . , μ(x)) ≤ min
{

μ(x), . . . , μ(x)
}
= μ(x).

2. On the one hand, μ(x) = min
{

μ(x), . . . , μ(x)
}
≤ A(μ(x), . . . , μ(x)) = A(μ, . . . , μ)(x).

On the other hand, A(μ, . . . , μ)(x) = A(μ(x), . . . , μ(x)) ≤ max
{

μ(x), . . . , μ(x)
}
=

μ(x).
3. A(μ, . . . , μ)(x) = A(μ(x), . . . , μ(x)) ≤ max

{
μ(x), . . . , μ(x)

}
= μ(x).

However, if A is mixed, it is possible that A(μ, . . . , μ) is not comparable to μ, and
when it is, all the above inequalities can appear, as the following example shows.

Example 1. Consider the group G = (Z6,+) and the fuzzy sets μ, η, ν, σ defined in the table below.

G 0 1 2 3 4 5
μ 0.9 0.5 0.5 0.9 0.5 0.5
η 1 0.2 0.8 0.2 0.8 0.2
ν 0.4 0.3 0.3 0.4 0.3 0.3
σ 1 0 0 0.5 0 0

Clearly, they are min-subgroups of G because their level sets are crisp subgroups of G. Let
us consider the following binary aggregation function A, where e = 0.5 is the neutral element:

A(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y if x = e,
x if y = e,
0 if x < e, y < e,
1 if x > e, y > e,
e otherwise.

It is easy to check that A is a mixed aggregation function. The self-aggregations of the previous
min-subgroups are:

G 0 1 2 3 4 5
A(μ, μ) 1 0.5 0.5 1 0.5 0.5
A(η, η) 1 0 1 0 1 0
A(ν, ν) 0 0 0 0 0 0
A(σ, σ) 1 0 0 0.5 0 0

We can conclude that
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A(μ, μ) ≥ μ,

A(ν, ν) ≤ ν,

A(σ, σ) = σ,

but A(η, η) is not comparable to η.

4. Self-Aggregation on the Equivalence Class

There are infinitely many min-subgroups that generate the same chain of subgroups.
In order attempt any classification, it is natural to relate two such min-subgroups. P. Das
introduced in [5] the following relation between min-subgroups of a group.

Definition 4. Let G be a group and μ, η two min-subgroups of G. We say that μ is equivalent to
η, written μ ∼ η, if

{
μt
}

t∈μ(G)
=
{

ηs
}

s∈η(G)
where μ(G) and η(G) are the ranges of μ and η,

respectively. The class of an element μ will be denoted by [μ].

There are other significant equivalences on min-subgroups [26–28]. A study on their
connections has been recently presented in [29]. Our paper focuses only on the given one
by P. Das, which is the most relevant in the literature. Many results can be transferred
easily taking into account the implications diagram from [29]. A. Jain characterized the
equivalence relation ∼ as follows.

Proposition 4 ([30]). Let G be a group and μ, η two min-subgroups of G. The following assertions
are equivalent:

1. μ(x) > μ(y) if and only if η(x) > η(y).
2. μ(x) ≥ μ(y) if and only if η(x) ≥ η(y).
3. {μt}t∈μ(G) = {ηs}s∈η(G).
4. {μt}t∈μ(G) = {ηs}s∈η(G).

We introduce the following example showing equivalence classes according to ∼ in
order to illustrate how self-aggregation acts on the equivalence class.

Example 2. Consider the min-subgroups μ, η, ν, σ and the aggregation A presented in Example 1.
We have:

[σ] �= [μ] = [ν] �= [η] and [σ] �= [η].

Moreover, self-aggregating each of these min-subgroups through A provides:

[A(μ, μ)] = [μ]

[A(η, η)] �= [η]

[A(ν, ν)] �= [ν]

[A(σ, σ)] = [σ]

The example shows that self-aggregation does not preserve equivalence classes in
general. We dedicate the last part of the section to finding conditions on an aggregation
function A, which ensures that a min-subgroup and its self-aggregation by A belong to the
same equivalence class.

The following result is a straightforward consequence of Proposition 3.

Proposition 5. If A is an averaging aggregation function and μ a min-subgroup of a group G, then
[A(μ, . . . , μ)] = [μ].
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The next proposition shows the relevance of jointly strictly monotone aggregation func-
tions.

Proposition 6. Let G be a group and A : [0, 1]n −→ [0, 1] be an aggregation function. If A is
jointly strictly monotone, then [A(μ, . . . , μ)] = [μ] for each min-subgroup μ of G.

Proof. We need to prove that A(μ, . . . , μ) and μ induce the same level sets. We will use the
characterization of the Proposition 4. Let us take x, y ∈ G. Firstly, assume that μ(x) ≥ μ(y);
by monotonicity of A, we have that A(μ, . . . , μ)(x) ≥ A(μ, . . . , μ)(y).

Conversely, assume that A(μ, . . . , μ)(x) ≥ A(μ, . . . , μ)(y). We must check that
μ(x) ≥ μ(y). By contradiction, μ(x) < μ(y). Since A is jointly strictly monotone, we conclude
that A(μ(x), . . . , μ(x)) < A(μ(y), . . . , μ(y)); equivalently, A(μ, . . . , μ)(x) < A(μ, . . . , μ)(y),
obtaining the desired contradiction.

We proceed with the main result of the article. Let us recall that an aggregation
function A is strictly increasing on its diagonal if for each x, y ∈ [0, 1], satisfying x < y;
then

A(x, . . . , x) < A(y, . . . , y).

Theorem 2. Let G be a group and A : [0, 1]n −→ [0, 1] be an aggregation function. The following
assertions are equivalent:

1. A is a strictly increasing function on its diagonal.
2. A(μ, . . . , μ) and μ induce the same level sets.

Proof. 1 =⇒ 2. We will use the characterization of the Proposition 4. Let us take
x, y ∈ G. Assume that μ(x) ≥ μ(y); by monotonicity of A, we have that A(μ, . . . , μ)(x) ≥
A(μ, . . . , μ)(y).

Conversely, assume that A(μ, . . . , μ)(x) ≥ A(μ, . . . , μ)(y). We must check that μ(x) ≥
μ(y). By contradiction, suppose that μ(x) < μ(y). Since A is a strict increasing function
on its diagonal, we conclude that A(μ(x), . . . , μ(x)) < A(μ(y), . . . , μ(y)), and equivalently,
A(μ, . . . , μ)(x) < A(μ, . . . , μ)(y), which is a contradiction.

2 =⇒ 1. We prove that if A is not strictly increasing on its diagonal, then there is a
min-subgroup μ ∈ G such that A(μ, . . . , μ) and μ do not have the same level sets. Under
this premise, there are a, b ∈ [0, 1] such that

a < b and A(a, . . . , a) ≥ A(b, . . . , b).

By monotonicity, we have that A(a, . . . , a) = A(b, . . . , b). Let us create the fuzzy
set μ : G −→ [0, 1], satisfying μ(e) = b and μ(x) = a whenever x �= e. (We remember
that e denotes the neutral element of G.) Clearly, μ is a min-subgroup of G according to
Proposition 1. Therefore, considering an element x �= e, we conclude that

A(μ(x), . . . , μ(x)) = A(a, . . . , a) = A(b, . . . , b) = A(μ(e), . . . , μ(e)).

Since μ(x) < μ(e), they induce different level sets.

As a direct consequence of the previous theorem, we have obtained the desired
characterization.

Corollary 1. Let μ be a min-subgroup of a group G. If A is a strict t-norm or a strict t-conorm,
then A(μ, . . . , μ) belongs to the same equivalence class as μ.

5. Concluding Remarks

Let A be a generic aggregation function, G a group, μ a min-subgroup of G, and [μ]
the Das class of μ.
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Firstly we have shown that the structure of min-subgroup is preserved by arbitrary
self-aggregation functions—i.e., A(μ, . . . , μ) is a min-subgroup—and we have studied
when A(μ, . . . , μ) is comparable to μ.

Secondly, we have shown an example of an aggregation function A and a fuzzy
subgroup μ satisfying [A(μ, . . . , μ)] �= [μ]. Hence, the Das class of a min-subgroup is not
necessarily preserved by an arbitrary aggregation function. We have shown that this class
is preserved if A is an averaging or a jointly strictly monotonous aggregation function.

Thirdly, our main results states that A(μ, . . . , μ) and μ induce the same level sets if
and only if A is a strictly increasing function on its diagonal. This result implies that if A is
a strict t-norm or a strict t-conorm, A(μ, . . . , μ) belong to the same equivalence class as μ.

Future research could examine under what conditions the Lukasiewicz and product
subgroup structures are preserved by arbitrary self-aggregation functions and explore
the implications of the migrativity property ([31]) for the preservation of these subgroup
structures under self-aggregation functions.
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Abstract: Let G be a monoid that acts on a topological space X by homeomorphisms such that there
is a point x0 ∈ X with GU = X for each neighbourhood U of x0. A subset A of X is said to be
G-bounded if for each neighbourhood U of x0 there is a finite subset F of G with A ⊆ FU. We prove
that for a metrizable and separable G-space X, the bounded subsets of X are completely determined
by the bounded subsets of any dense subspace. We also obtain sufficient conditions for a G-space
X to be locally G-bounded, which apply to topological groups. Thereby, we extend some previous
results accomplished for locally convex spaces and topological groups.

Keywords: bounded set; group action; G-space; barrelled space

MSC: 22A05; 22D35; 22B05; 54H11; 54A25

1. Introduction and Basic Facts

The notion of a bounded subset is ubiquitous in many parts of mathematics, parti-
cularly in functional analysis and topological groups. Here, we approach this concept
from a broader viewpoint. Namely, we consider the action of a monoid G on a topological
space X and associate it with a canonical family of G-bounded subsets. This provides a
very general notion of boundedness that includes both the bounded subsets considered in
functional analysis and in topological groups. In this paper, we initiate the study of this
new notion of G-bounded subset. Among other results, it is proved that for a metrizable
and separable G-space X, the bounded subsets of X are completely determined by the
bounded subsets of any dense subspace, extending results obtained by Grothendieck
for metrizable separable locally convex spaces [1], generalized subsequently by Burke
and Todorčević and, separately, Saxon and Sánchez-Ruiz for metrizable locally convex
spaces [2,3] and by Chis, Ferrer, Hernández and Tsaban for metrizable groups [4,5]. We
also obtain sufficient conditions for a G-space X to be locally G-bounded, which applies
to topological groups. This also provides the frame for extending to this setting some
results by Burke and Todorčević and, separately, Saxon and Sáchez-Ruiz (loc. cit.) for
metrizable locally convex spaces. A different approach to the notion of the bounded set
was given by Hejcman [6] and Hu [7], who studied this concept in the realm of uniform
and even topological spaces. Vilenkin [8] applied this general approach in the realm of
topological groups.

2. G-Spaces

Let X be a topological space and let G be a monoid, i.e, a semigroup with a neutral
element, which will be denoted by e. A left action of G on X is a map π : G × X → X
satisfying that ex = x and g1(g2x) = (g1g2)x for all g1, g2 ∈ G and x ∈ X, where as usual,
we write gx instead of π(g, x) = πg(x) = πx(g). A topological space X is said to be a
(left) G-space if all translations πg : X → X are homeomorphisms. We sometimes denote
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the G-space X by the pair (G, X). Let G× X → X and G×Y → Y be two actions. A map
f : X → Y between G-spaces is a G-map if f (gx) = g f (x) for every (g, x) ∈ G× X. Given
x ∈ X, its orbit is the set Gx = {gx : g ∈ G}. Given A ⊆ X, we define GA = ∪{Gx : x ∈ A}.

A right G-space (X, G) can be defined analogously. If Gop is the opposite semigroup
of G with the same topology then (X, G) can be treated as a left G-space (Gop, X) (and
vice versa).

We say that a point x ∈ X topologically generates a G-space X if for each neighborhood
U of x we have GU = X. The set of generating points is denoted by Xtg. We say that X is
point-generated when Xtg �= ∅. We refer to [9] for unexplained topological definitions.

2.1. G-Boundedness

Let (G, X) be a point-generated G-space and let us fix a point x0 ∈ Xtg. We say that a
set A ⊆ X is (G, x0)-bounded (or G-bounded for short when there is no possible confusion)
if for every neighborhood U of x0, there is a finite set F ⊆ G such that A ⊆ FU. The
set B(G, X, x0) (or B(G, X) for short) of all G-bounded sets in X is called the canonical
(G, x0)-boundedness on X. The G-space (G, X) is said to be homogeneous if for every pair of
points x, y in X, there is a homeomorphism fxy : X → X such that fxy(x) = y and fxy(A) is
G-bounded for every G-bounded subset A ⊆ X. The proof of the following proposition
is straightforward.

Proposition 1. Let (G, X) be a G-space with a generating point x0 ∈ Xtg. The following assertions
hold true:

1. A ⊆ X is (G, x0)-bounded if and only if A is (G, x1)-bounded for any other point x1 ∈ Xtg.
2. Subsets of G-bounded sets are G-bounded.
3. If A and B are G-bounded so is A ∪ B.
4. Finite sets are G-bounded.
5. If A is G-bounded so is gA for all g ∈ G.
6. Relatively compact subsets are G-bounded.
7. Every topological vector space E is an R∗-space with the action (r, v) �→ rv, r ∈ R∗ and

v ∈ E, where R∗ = R \ {0}. The usual family of bounded subsets of E coincides with the
canonical R∗-boundedness, with 0 ∈ E as the point that topologically generates E.

8. If H is a topological group, K is a closed subgroup and G is a dense submonoid of H then the
coset space H/K defined by the quotient map p : H → H/K is canonically a G-space by the
action ghK := p(gh). We say that a set A ⊆ H/K is G-bounded if for every neighborhood U
of K (seen as an element of H/K) there is a finite set F ⊆ G such that A ⊆ FU. This defines
the canonical G-boundedness on H/K, where K is the point that topologically generates H/K.
Here, the family of G-bounded subsets coincide with the family of all precompact subsets for
the left uniformity on H/K.

Definition 1. A point-generated G-space X is said to be locally G-bounded if for every point
x ∈ X there is a G-bounded open subset U containing it.

The proof of the following proposition is straightforward.

Proposition 2. Let X be a point-generated G-space. If there is a point x ∈ Xtg and a neighborhood
U of x that is G-bounded, then X is locally G-bounded.

Remark 1. From the above proposition, it follows that if a point-generated G-space X is not locally
G-bounded then no neighborhood of a point x ∈ Xtg can be G-bounded.

2.2. Infinite Cardinals

In what follows, we shall use the notation ZFC for Zermelo-Fraenkel set theory
including the axiom of choice, CH for the continuum hypothesis (C = ℵ1) and GCH for the

61



Axioms 2022, 11, 71

generalized continuum hypothesis (2ℵl = ℵl+1 for each cardinal ℵl). If CH is false, then
there are cardinals strictly between ℵ0 and C.

Following [10], consider the set of functions NN from N into N endowed with the
quasi-order ≤∗ defined by

f ≤∗ g if {n ∈ N : f (n) > g(n)} is finite.

A subset C of NN is said to be cofinal if for each f ∈ NN there is some g ∈ C with
f ≤∗ g. A subset of NN is said to be unbounded if it is unbounded in (NN,≤∗). One defines

b = min{|B| : B is an unbounded subset of NN}
and

d = min{|D| : D is a cofinal subset of NN},

yielding ℵ1 ≤ b ≤ d ≤ c.
If instead of f ≤∗ g we consider f ≤ g, that is f (n) ≤ g(n) for all n ∈ N, the value of

b would be ℵ0. As for d, it would not change its value. Indeed, let D be a d-sized cofinal
subset of NN. Thus, given any f ∈ NN, there exists g ∈ D with f (n) ≤ g(n) for almost all
n ∈ N. Now the set D = {mg : m ∈ N and g ∈ D} still has size ℵ0 · d = d.

3. Dense Subspaces

In [1], Grothendieck proved that, when E is a metrizable and separable locally convex
space, the bounded subsets of E are completely determined by the bounded subsets of any
dense subspace. This result has been extended by Burke and Todorčević [2] and, separately,
Saxon and Sánchez-Ruiz [3] for some nonseparable spaces. Subsequenly, Chis, Ferrer,
Hernández and Tsaban [5] extended these results for metrizable groups. As we show next,
the same assertion holds for point-generated G-spaces if G is a countable monoid. First, we
need the following lemma, which is analogous to ([4], Lemma 2.2.10) (resp. [5], Th. 3.6).
We include its proof here for the reader’s sake.

Lemma 1. Let G = {gi : i ∈ N} be a countable monoid and let X be a non locally G-bounded
G-space with a generating point x0 ∈ Xtg that has a countable neighborhood basis. Then there are
two order preserving maps

ΦV : B(G, X)→ NN Ψ : NN → B(G, X)

such that ΦV (B(G, X)) is cofinal in NN and Ψ(NN) is cofinal in B(G, X).

Proof. The map ΦV is defined in a similar way as in ([4], Section 2.2.4) (resp. [5], Def. 3.5).
Indeed, let U = {Um}m<ω be a countable neighborhood basis at x0. By Proposition 1, no
neighborhood of x0 is G-bounded. Therefore, there is Um0 ∈ U such that U1 �

⋃
i≤n

giUm0 ,

∀n < ω. Analogously there is Um1 ∈ U such that V1 := U1 ∩Um0 �
⋃

i≤n
giUm1 , ∀n < ω.

Repeating this procedure, we obtain a decreasing neighborhood base V = {Vm}m<ω at x0
by Vm+1 := Vm ∩Un+1 ∩Umn �

⋃
i≤n

giUmn+1 , ∀n < ω.

Define
ΦV : B(G, X)→ NN

by the rule

ΦV (K)(m) := min

{
n : K ⊆

⋃
i≤n

giVm

}
.
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Obviously,
ΦV (K) := {ΦV (K)(m)}m≤ω.

This map is order preserving and relates the confinality of B(G, X) and NN. Indeed,

take α ∈ NN. Set V0 := U1 and take xm ∈ Vm−1 \
α(m)⋃
i=1

giVm. The sequence K := {xm}m<ω

converges to x0. Thus K ∪ {x0} is G-bounded and ΦV (K)(m) = min
{

n : K ⊆ ⋃
i≤n giVm

}
.

It follows that α ≤ ΦV (K).
As for the map Ψ, set

Ψ : NN → B(G, X)

by

Ψ(α)(n) :=
⋂

m<ω

α(n)⋃
i=1

giVm.

Obviously this map is order preserving. Moreover, Ψ(NN) is cofinal in B(G, X). To
see this, take an arbitrary G-bounded subset K, then for every n < ω there is a finite subset
Fn ⊆ N such that K ⊆ ⋃

i∈Fm

giVm. Set α ∈ NN such that α(m) := max{i : i ∈ Fm} for every

m < ω. Then K ⊆ Ψ(α).

Theorem 1. Let G = {gn : n ∈ N} be a countable monoid and let X be a first countable G-space
with a generating point x0 ∈ Xtg. If Y is a dense subset of X, then for each G-bounded K ⊆ X
whose density is less than b, there is a G-bounded P ⊆ Y such that P ⊇ K.

Proof. Suppose first that X is locally G-bounded and let U be a G-bounded neighborhood
of x0. Let F be a finite subset of G such that K ⊆ FU. Since G acts on X by homeomor-

phisms and Y is dense in X, it follows that F(U ∩Y)
X ⊇ FU. Therefore, it suffices to take

P = F(U ∩Y).

Assume without loss of generality that X is not locally G-bounded and set D ⊆ K such
that |D| < b and DK

= K. Since K is G-bounded, we take the map ΦV defined in Lemma 1
above, where V = {Vm}m<ω is a decreasing basis at x0. We have

K ⊆
ΦV (K)(m)⋃

n=1

gnVm

for all m < ω. On the other hand, since Y is dense in X, for all d ∈ D ⊆ K, there is a
sequence Sd ⊆ Y which converges to d. Therefore, since Sd

⋃{d} is compact, we have

Sd = Sd
⋃
{d} ⊆

ΦV (Sd)(m)⋃
n=1

gnVm

for all m < ω. So, we have a family
{

ΦV (Sd)
}

d∈D ⊆ NN of cardinality less than b, then it is
bounded in (NN,≤∗). Therefore, there is α ∈ NN such that ΦV (Sd) ≤∗ α ∀d ∈ D. That is,
if d ∈ D, then there is md < ω with ΦV (Sd)(m) ≤ α(m) ∀m ≥ md. We also assume that
ΦV (K)(m) ≤ α(m) ∀m < ω. Pick now a fixed element d ∈ D. If m < md, we have

K ⊆
ΦV (K)(m)⋃

n=1

gnVm ⊆
α(m)⋃
n=1

gnVm.

Therefore,

K ⊆
md−1⋂
m=1

⎛⎝α(m)⋃
n=1

gnVm

⎞⎠ = Ad
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that is an open set. Since this open set contains the element d ∈ D and the sequence Sd
converges to d, there is S′d = Sd � {a finite subset} such that S′d ⊆ Ad. Consider now

P :=
⋃

d∈D

S′d ⊆ Y

and let us verify that P is G-bounded. Take an open set V of X such that x0 ∈ V, then there
is Vm ∈ V such that Vm ⊆ V. For each d ∈ D we have one of the following two options:

(1) m < md, which implies S′d ⊆ Ad ⊆
α(m)⋃
n=1

gnVm.

(2) m ≥ md, then S′d ⊆ Sd ⊆
ΦV (Sd)(m)⋃

n=1
gnVm ⊆

α(m)⋃
n=1

gnVm.

In both cases, S′d ⊆
α(m)⋃
n=1

gnVm ⊆
α(m)⋃
n=1

gnV.

Therefore, P =
⋃

d∈D
S′d ⊆

α(m)⋃
n=1

gnV, and since V is arbitrary this means that P is

G-bounded.
It is readily seen that P ⊇ K.
A consequence of this theorem is the following.

Corollary 1. Let G be a countable monoid and let X be a point-generated, metrizable, G-space. If
X contains a dense subset of cardinality less than b, and D is an arbitrary dense subset of X, then
for each G-bounded K ⊆ X, there is a G-bounded P ⊆ D such that P ⊇ K.

Proof. Since X is metrizable, it is first countable and the generating point x0 has a countable
neighborhood basis and K contains a dense subset of cardinality less than b.

The following result improves Corollary 2.3.3 in [4] (resp. Corollary 3.19 in [5]).

Corollary 2. Let H be a topological group, K a closed subgroup of H such that H/K is metrizable
and let L be a dense subgroup of H. If P ⊆ H/K is precompact, then there is a precompact subset
Q ⊆ L/K such that P ⊆ Q.

Proof. Let p : H → H/K denote the canonical quotient map. Observe that P is separable
because it is metrizable and precompact. Let D be a countable dense subset of P. For
every d ∈ D, there is a sequence Sd ⊆ L such that p(Sd) converges to d. Consider the

countable subset E = D
⋃( ⋃

d∈D
p(Sd)

)
=

⋃
d∈D

p(Sd) = {yi}∞
i=1 and the set HE = < E >

with the topology inherited from H/K. We have that P ⊆ HE, and HE is separable and
metrizable. Let G be a countable subgroup of p−1(HE) such that p(G) = 〈{yi}∞

i=1〉, which
is dense in HE. Then H/K is a point generated G-space according to Proposition 1(viii),
where the family of G-bounded subsets coincides with the family of precompact subsets of
the left uniformity of H/K. On the other hand, L

⋂
HE is countable and dense in HE and

P is G-bounded. Accordingly, we apply Theorem 1 to deduce that there is Q ⊆ L
⋂

HE,
which is G-bounded (therefore, precompact) and P ⊆ QHE ⊆ Q. It is readily seen that Q is
precompact in L.

The metrizability condition in the previous theorem is essential even for the special
case of topological groups ([4], Example 2.3.5) (resp. [5], [Remark 3.21]).

4. G-Barrelled Groups

In this section, we have a countable monoid G = {gi : i ∈ N} and a metrizable
G-space X. We assume WLOG that g1 = eG is the neutral element of G.
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Definition 2. Given a G-space X, we say that A ⊆ X is G-absorbent (or simply A is absorbent
for short) when GA = X. A G-space X is said to be barrelled when for every closed absorbent
subset Q there is an index i ∈ N such that giQ has a nonempty interior.

Theorem 2. Suppose that G = {gi : i ∈ N} is a countable monoid and X is a homogeneous,
barrelled G-space with a generating point x0 ∈ Xtg that has a countable neighborhood basis at x0.
If X can be covered by less than b bounded subsets, then X is locally bounded.

Proof. Let V = {Vm}m<ω be a decreasing neighborhood base at x0 defined as in Lemma 1
and let π : G× X → X denote the action of G on X. For every gm ∈ G we define the map

pm : X → N by pm(x) = min{n : x ∈
⋃
j≤n

gjVm}.

As a consequence, every element x ∈ X defines a sequence {pm(x)}m<ω and, therefore,
we have defined the map p : X → NN as p(x) = {pm(x)}m<ω so that p(x)[m] = pm(x).
Suppose there is a collection of G-bounded sets B such that |B| < b and X =

⋃
P∈B

P. Every

P ∈ B is associated with a map ΦV (P) ∈ NN defined previously; that is

ΦV (P)(m) = min{n : P ⊆
⋃
j≤n

gjVm}.

Take x ∈ X. Then, there is P ⊆ B such that x ∈ P. Therefore p(x) ≤ ΦV (P). Since
|B| < b it follows that ΦV (B) = {ΦV (P) : P ∈ B} is bounded in (NN,≤∗). Thus, there is
α ∈ NN such that ΦV (P) ≤∗ α and, since p(x) ≤ ΦV (P), we have p(x) ≤∗ α for all x ∈ X.
So, for every x ∈ X, there is mx < ω such that pm(x) ≤ α(m) for all m ≥ mx.

Define

Qα = {x ∈ X : pm(x) ≤ α(m) ∀m < ω} =
⋂

m<ω

⎛⎝ ⋃
j≤α(m)

gjVm

⎞⎠.

Clearly, the set Qα is bounded. Let us verify that Qα is also absorbent. Take x ∈ X.
Then, since pm(x) ≤ α(m) ∀m ≥ mx, we have

x ∈
⋂

m≥mx

⎛⎝ ⋃
j≤α(m)

gjVm

⎞⎠.

Thus,

x ∈ Qα

⋃⎛⎝ ⋂
m<mx

⎛⎝ ⋃
j≤pm(x)

gjVm

⎞⎠⎞⎠.

Set
Fx = {i ∈ N : i ≤ pm(x), m < mx}.

We claim that
x ∈

⋃
i∈Fx

giQα.

Indeed, since each map πg, is a bijection and g1 is the neutral element of G, we have

⋃
i∈Fx

giQα =
⋃

i∈Fx

gi

⎛⎝ ⋂
m<ω

⋃
j≤α(m)

gjVm

⎞⎠ =
⋃

i∈Fx

⎛⎝ ⋂
m<ω

gi
⋃

j≤α(m)

gjVm

⎞⎠
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=
⋃

i∈Fx

⎛⎝ ⋂
m<ω

⋃
j≤α(m)

gigjVm

⎞⎠ ⊇

⎛⎝ ⋂
m≥mx

⋃
j≤α(m)

gjVm

⎞⎠⋂( ⋂
m<mx

⋃
i∈Fx

giVm

)
 x.

This proves that Qα is absorbent. Therefore Qα is absorbent too and, since X is G-
barrelled, there is g ∈ G such that gQα has nonempty interior. Thus, gQα is a G-bounded
subset containing an open, G-bounded, subset U. Take any point u ∈ U. Since X is
homogeneous, there is a homeomorphism fux0 : X → X such that fux0(u) = x0 and fux0(U)
is an open, bounded subset containing x0. By Proposition 2, it follows that X is locally
G-bounded.

As a consequence, we next obtain results that contain the previous results obtained by
locally convex spaces [2] and topological groups [5].

Let G be a topological group, we say that a subset A ⊆ G is absorbent when for every
dense subgroup H of G it holds that HA = G. The group G is said to be barrelled when
every closed absorbent subset Q has a nonempty interior. Remark that every separable
Baire group is barrelled.

Corollary 3. Let G be either a metrizable, barrelled, locally convex space or a separable, metrizable,
barrelled group. If G is covered by less than b bounded (resp. precompact) subsets. Then G is
normable (resp.locally precompact).

Proof. In both cases, G is homogeneous and the homeomorphisms preserving bounded
subsets are translations. If G is a metrizable, barrelled, locally convex space, applying
Theorem 2, we obtain that G has a neighborhood basis of zero consisting of bounded
subsets, which implies that G is normable. If G is a topological group, take any countable
dense subgroup H of G and consider the canonical action of H on G that makes G an
H-space. By Proposition 1, a subset A of G is H-bounded if and only if it is precompact.
Again, it suffices now to apply Theorem 2.

5. Discussion

We have considered the action of a monoid G on a topological space X and associated
it with a canonical family of G-bounded subsets. This provides a very general notion of
boundedness that include both the bounded subsets considered in functional analysis and
in topological groups. In this paper, we have initiated the study of this new notion of a
G-bounded subset. Among other results, it is proved that for a metrizable and separable
G-space X, the bounded subsets of X are completely determined by the bounded sub-
sets of any dense subspace, extending results obtained by Grothendieck for metrizable
separable locally convex spaces [1], generalized subsequently by Burke and Todorčević
and, separately, Saxon and Sánchez-Ruiz for metrizable locally convex spaces [2,3] and by
Chis, Ferrer, Hernández and Tsaban for metrizable groups [4,5]. We have also obtained
sufficient conditions for a G-space X to be locally G-bounded, which applies to topological
groups. This also provides the frame for extending to this setting some results by Burke
and Todorčević and, separately, Saxon and Sáchez-Ruiz (loc. cit.) for metrizable locally
convex spaces.
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Abstract: A local convex space E is said to be distinguished if its strong dual E′β has the topology
β(E′, (E′β)

′), i.e., if E′β is barrelled. The distinguished property of the local convex space Cp(X) of real-
valued functions on a Tychonoff space X, equipped with the pointwise topology on X, has recently
aroused great interest among analysts and Cp-theorists, obtaining very interesting properties and
nice characterizations. For instance, it has recently been obtained that a space Cp(X) is distinguished
if and only if any function f ∈ RX belongs to the pointwise closure of a pointwise bounded set in
C(X). The extensively studied distinguished properties in the injective tensor products Cp(X)⊗ε E
and in Cp(X, E) contrasts with the few distinguished properties of injective tensor products related
to the dual space Lp(X) of Cp(X) endowed with the weak* topology, as well as to the weak* dual
of Cp(X, E). To partially fill this gap, some distinguished properties in the injective tensor product
space Lp(X)⊗ε E are presented and a characterization of the distinguished property of the weak*
dual of Cp(X, E) for wide classes of spaces X and E is provided.

Keywords: distinguished space; injective and projective tensor product; vector-valued continuous
function; Fréchet space; nuclear space

MSC: 46M05; 54C35; 46A03; 46A32

1. Introduction

In this paper, X is an infinite Tychonoff space and C(X) is the linear space of all real-
valued continuous functions over X. Cp(X) and Ck(X) denote the space C(X) equipped
with the pointwise and compact-open topology, respectively. Lp(X) represents the weak*
dual of Cp(X), i.e., the topological dual L(X) of Cp(X) endowed with the weak topology
σ(L(X), C(X)) of the dual pair 〈L(X), C(X)〉, i.e., Lp(X) has the topology of pointwise
convergence on C(X).

Moreover, all local convex spaces are assumed to be real and Hausdorff and the
symbol ‘!’ indicates some canonical algebraic isomorphism or linear homeomorphism.
The strong dual E′β of a local convex space E is the topological dual E′ of E equipped
with the strong topology β(E′, E), which is the topology of uniform convergence on the
bounded subsets of E. 〈E, E′〉 is a dual pair. For a subset A of E the polar A0 of A with
respect to a dual pair 〈E, F〉 is

A0 = {x ∈ F : |〈a, x〉| ≤ 1, ∀a ∈ A}.

A local convex space E is barrelled if for each pointwise bounded subset M of E′ there
exists a neighborhood of the origin U in E such that M is uniformly bounded on U. Hence
E is barrelled if and only if its topology is the topology β(E, E′), i.e., [E′(weak∗)]′β = E.

Axioms 2021, 10, 151. https://doi.org/10.3390/axioms10030151 https://www.mdpi.com/journal/axioms68
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Roughly speaking, E is barrelled if it verifies the local convex version of the Banach–
Steinhaus uniform boundedness theorem.

The local convex space E is called distinguished if E′β is barrelled. In [1–7] the dis-
tinguished property of the space Cp(X) has been extensively studied. Furthermore, [8]
[Proposition 6.4] is connected with distinguished Cp(X) spaces. It is observed in [3] [The-
orem 10] that Cp(X) is distinguished if and only if Cp(X) is a large subspace of RX, i.e.,
if each bounded set in RX is contained in the closure in RX of a bounded set of Cp(X),
or, equivalently, if the strong bidual of Cp(X) is RX [5]. In [7], [Theorem 2.1] it is shown
that Cp(X) is distinguished if and only if X is a Δ-space in the sense of Knight [9], and
several applications of this fact are given. Equivalently, Cp(X) is distinguished if for each
countable partition {Xk : k ∈ N} of X into nonempty pairwise disjoint sets, there are open
sets {Uk : k ∈ N} with Xk ⊆ Uk, for each k ∈ N, such that each point x ∈ X belongs to Un
for only finitely many n ∈ N, [5] [Theorem 5].

If E and F are local convex spaces, E ⊗ε F and E ⊗π F represent the injective and
projective tensor product of E and F, respectively. A basis of neighborhoods of the origin in
E′β ⊗ε F′β is determined by the sets ε(A, B) :=

(
A00 ⊗ B00)0, where A is a bounded set in E,

B is a bounded set in F, A0 ⊆ E′, A00 ⊆ E′′, B0 ⊆ F′, B00 ⊆ F′′ and
(

A00 ⊗ B00)0 ⊆ E′ ⊗ F′.
Analogously, a basis of neighborhoods of the origin in the tensor product space E′β ⊗π F′β
is formed by the sets π(A, B) := acx

(
A0 ⊗ B0), where A is a bounded set in E, B is a

bounded set in F and acx
(

A0 ⊗ B0) denotes the absolutely convex cover of the tensor
product A0 ⊗ B0. Recall that if E carries the weak topology, then (E⊗ε F)′ ! (E⊗π F)′ !
E′ ⊗ F′, [10] [41.3 (9) and 45.1 (2)]. A local convex space E is called nuclear if E⊗ε F = E⊗π F
for every local convex space F, [11] [21.2].

The distinguished property of Cp(X) under the formation of some tensor products
is examined in [2]. Among other results it is showed in [2] [Corollary 6] that for a local
convex space E the injective tensor product Cp(X)⊗ε E is distinguished if both Cp(X) is
distinguished and R(X) ⊗ε E′β is barrelled, where R(X) the local convex direct sum of |X|
real lines.

If E is a local convex space Cp(X, E) and Ck(X, E) will denote the linear space of all
E-valued continuous functions defined on X equipped with the pointwise topology and
compact-open topology, respectively. It is also proved in [2] [Corolary 21] that, for any
Tychonoff space X and any normed space E, the vector-valued function space Cp(X, E) is
distinguished if and only if Cp(X)⊗ε E is distinguished. In particular, if X is a countable
Tychonoff space and E a normed space, then Cp(X, E) is distinguished. Indeed, if X is
countable, on the one hand Cp(X) is distinguished by [5] [Corollary 6] and on the other
hand R(X) is both barrelled and nuclear (the latter because [11] [21.2.3 Corollary]), so
that R(X) ⊗ε E′β = R(X) ⊗π E′β is barrelled by [12] [Theorem 1.6.6]. Thus, Cp(X)⊗ε E is
distinguished by the already mentioned [2] [Corolary 6] and, since E is normed, Cp(X, E)
is distinguished too by [2] [Corollary 21]. A corresponding result for the compact-open
topology, due to Díaz and Domański [13] [Corolary 2.5], states that the space Ck(K, E)
of continuous functions defined on a compact Hausdorff space K and with values in a
reflexive Fréchet space E is also distinguished, being its strong dual naturally isomorphic
to L1(μ)⊗̂πE′β.

According to [1] [Theorem 3.9], the strong dual Lβ(X) of Cp(X) is always distin-
guished. The distinguished property of the weak* dual Lp(X) of Cp(X) is investigated
in [5], where the following theorem is proved.

Theorem 1 ([5] [Theorem 27]). If X is a μ-space, then the weak* dual Lp(X) of Cp(X) is distinguished.

Recall that a Tychonoff space X is called a μ-space if each functionally bounded set is
relatively compact.

The extensively studied distinguished properties in the injective tensor products
Cp(X)⊗ε E and in Cp(X, E) contrasts with the few distinguished properties related with
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the injective tensor products Lp(X)⊗ε E and with the weak* dual of Cp(X, E). Theorem 1
and the fact that Lp(X) spaces are studied so extensively as Cp(X) spaces motivated us to
fill partially this gap in this paper obtaining distinguished properties of injective tensor
products Lp(X)⊗ε E and providing a characterization of the distinguished property of
the weak* dual of Cp(X, E) for wide classes of spaces X and E. To reach these goals we
require [2] [Theorem 5] and [2] [Proposition 19], which we include here for convenience.

Theorem 2 ([2] [Theorem 5]). Let E and F be local convex spaces, where E carries the weak
topology. If τε and τπ denote the injective and projective topologies of E′β ⊗ F′β, the following
properties hold

1. If E′β ⊗ε F′β is barrelled, then τε = β(E′ ⊗ F′, E⊗ F) and E⊗ε F is distinguished.
2. If E′β ⊗π F′β is barrelled then τε ≤ β(E′ ⊗ F′, E⊗ F) ≤ τπ .

Theorem 3 ([2] [Proposition 19]). For any local convex space E, the dual of the space Cp(X, E)
is algebraically isomorphic to L(X)⊗ E′, i.e., Cp(X, E)′ ! L(X)⊗ E′.

It should be noted that if Σn
i=1 fi ⊗ ui is a representation of ϕ ∈ C(X) ⊗ E then

Theorem 3 is due to the fact that the canonical map T : Cp(X)⊗ε E → Cp(X, E) given by

(Tϕ)(x) = Σn
i=1 fi(x)ui,

is a linear homeomorphism from Cp(X) ⊗ε E into a dense linear subspace of Cp(X, E).
Furthermore,

(
Cp(X)⊗ε E

)′ ! L(X)⊗ E′, because Cp(X) carries the weak topology, so
one has Cp(X, E)′ ! L(X)⊗ E′, as stated.

2. Distinguished Tensor Products of Lp(X) Spaces

This section deals mainly with the injective tensor product of Lp(X) and a nuclear
metrizable space E. It should be noted that the class of nuclear metrizable spaces is large.
Recall that the space s of all rapidly decreasing sequences, as well as the test space of
distributions D(Ω), where Ω is an open set in Rn, with their usual local convex inductive
topologies, are examples of nuclear Fréchet spaces [11] [Section 21.6]. The strong dual of
D(Ω) is the space of distributions on Ω and it is denoted by D′(Ω).

Theorem 4. Assume that X is a μ-space and let E be a nuclear metrizable local convex space. If every
countable union of compact subsets of X is relatively compact, then Lp(X)⊗ε E is distinguished.

Proof. The space X is a μ-space if and only if Ck(X) is barrelled, by the Nachbin-Shirota
theorem [14] [Proposition 2.15]. On the other hand, as every countable union of compact
subsets of X is assumed to be relatively compact, the space Ck(X) is also a (DF)-space [15]
[Theorem 12]. In addition, the strong dual E′β of a metrizable local convex space E it is a
complete (DF)-space by [16] [see 29.3 -in “By 2(1)”-]. Moreover, nuclearity of E implies
that E′β is nuclear too by [11] [21.5.3 Theorem]. As E′β is a nuclear (DF)-space, one has
that E′β is a quasi-barrelled space [11] [21.5.4 Corollary]. Finally, the completeness of the
quasi-barrelled space E′β implies that E′β is barrelled [16] [27.1.(1)], so E is distinguished.

The projective tensor product Ck(X)⊗π E′β is barrelled by [11] [15.6.8 Proposition].
Thus, taking into consideration E′β nuclearity, it can be obtained that Ck(X)⊗ε E′β is also
barrelled. On the other hand, since X is a μ-space it follows from [5] [Theorem 27] that
Ck(X) coincides with the strong dual of Lp(X), i.e.,

(
Lp(X)

)′
β
= Ck(X), hence

(
Lp(X)

)′
β
⊗ε E′β

is barrelled. Finally, as Lp(X) carries the weak topology, the first statement of Theorem 2,
ensures that the space Lp(X)⊗ε E is distinguished.
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Example 1. In particular, for each compact topological space X and for each nuclear metrizable
local convex space E it follows that Lp(X)⊗ε E is distinguished.

Hence, if X is the Cantor space K or the interval [0, 1], and if E is one of the local
convex spaces D(Ω) or s, then the injective tensor products Lp(K)⊗ε D(Ω), Lp(K)⊗ε s,
Lp([0, 1])⊗ε D(Ω) and Lp([0, 1])⊗ε s are distinguished.

Corollary 1. If X is a compact space and Y is a countable Tychonoff space, then the space
Lp(X)⊗ε Cp(Y) is distinguished.

Proof. Clearly, Cp(Y) is metrizable (hence distinguished [1] [Theorem 3.3]) and nuclear
(by [11] [21.2.3 Corollary]), so the statement follows from the previous theorem.

If we apply this Corollary with X equal to the Stone-Čech compactification βN of the
topological space N formed by the natural numbers endowed with the discrete topology
and Y equal to the space Q of rational numbers endowed with the usual metrizable
topology then we get that Lp(βN)⊗ε Cp(Q) is a distinguished space.

If the factor E of Lp(X)⊗ε E is a normed space, the following theorem holds true.

Theorem 5. If X is a μ-space with finite compact sets (equivalently, if every functionally bounded
subset of X is finite) and E is a normed space, then Lp(X)⊗ε E is distinguished.

Proof. If X is a μ-space with finite compact sets, the space Ck(X) = Cp(X) is barrelled
and nuclear. As E′β is a Banach space, [12] [Corollary 1.6.6] assures that Ck(X)⊗π E′β is
a barrelled space, and Ck(X) nuclearity yields that Ck(X)⊗ε E′β is also a barrelled space.

Bearing in mind that
(

Lp(X)
)′

β
= Ck(X), as a consequence of the fact that X is a μ-space

(cf. [5] [Theorem 27]), Theorem 2 ensures that Lp(X)⊗ε E is distinguished.

A P-space in the sense of Gillman–Henriksen is a topological space in which every
countable intersection of open sets is open.

Corollary 2. If X is a P-space and E is a normed space, then Lp(X)⊗ε E is distinguished.

Proof. Every P-space is a μ-space with finite compact sets (cf. [17] [Problem 4K]).

Example 2. If L(m) denotes the Lindelöfication of the discrete space of cardinal m ≥ ℵ1, the space
Lp(L(m))⊗ε Ck([0, 1]) is distinguished. In this case L(m) is a Lindelöf P-space.

Theorem 6. If X is a μ-space with finite compact sets and E is normed space, then Lp(X)⊗ε E′(weak∗)
is distinguished.

Proof. By [12] [Theorem 1.6.6] the projective tensor product Ck(X) ⊗π E is a barrelled
space, hence Ck(X) nuclearity yields that Ck(X) ⊗ε E is barrelled. So, the conclusion
follows from the first statement of Theorem 2.

Example 3. The space Lp(L(m))⊗ε �p(weak∗) is distinguished for 1 ≤ p < ∞.

A topological space is said to be hemicompact if it has a sequence of compact subsets
such that every compact subset of the space lies inside some compact set in the sequence.

Theorem 7. If X is a hemicompact space and E is a nuclear metrizable barrelled space (for instance
a nuclear Fréchet space), then Lp(X)⊗ε E′(weak∗) is distinguished.
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Proof. Clearly X is a Lindelöf space, hence it is a μ-space, and then both Ck(X) and E are
metrizable and barrelled spaces. Then [12] [Corollary 1.6.4] ensures that Ck(X)⊗π E is also
a (metrizable) barrelled space. This property and the E nuclearity imply that Ck(X)⊗ε E
is a barrelled space. Consequently, using that

(
Lp(X)

)′
β
= Ck(X) and E′(weak∗)′β = E,

we get
Lp(X)′β ⊗ε E′(weak∗)′β = Ck(X)⊗ε E.

So, Theorem 2 applies to guarantee that Lp(X)⊗ε E′(weak∗) is distinguished.

By Theorem 7 the injective tensor product Lp(R)⊗ε D′(Ω)(weak∗) is distinguished
since R is hemicompact and D′(Ω)(weak∗) is a nuclear Fréchet space. Theorem 7 is also
applied in the next Example 4.

Example 4. If N is equipped with the discrete topology, p ∈ βN \N and Z = N ∪ {p} has the
topology induced by βN, then Lp(Z)⊗ε Lp(Z) is distinguished.

Proof. The subspace Z = N∪ {p} of βN is countable and has finite compact sets, so that
it is hemicompact. Since Z is countable, Cp(Z) is metrizable and, on the other hand, as
a subspace of the nuclear space RX, the space Cp(Z) is nuclear. In addition, since Z is a
μ-space with finite compact sets, the space Cp(Z) is barrelled [18]. So, according to the
previous theorem, Lp(Z)⊗ε Lp(Z) is distinguished.

3. Distinguished Property of the Weak* Dual of Cp(X)⊗ε E

The preceding theorems are going to be applied to examine the distinguished property
of the weak* dual of the injective tensor product Cp(X)⊗ε E. To get this property we need
the following lemma.

Lemma 1. The injective topology of the tensor product Lp(X)⊗ E′(weak∗) coincides with the
weak topology σ(L(X)⊗ E′, C(X)⊗ E).

Proof. Since Lp(X) carries the weak topology(
Lp(X)⊗ε E′(weak∗)

)′ ! C(X)⊗ E.

Hence, the injective topology τε of Lp(X) ⊗ E′(weak∗) is stronger than the weak
topology σ(L(X)⊗ E′, C(X)⊗ E). We prove that both topologies are the same. Indeed,
if U is a closed absolutely convex neighborhood of the origin in Lp(X) and V is a closed
absolutely convex neighborhood of the origin in E′(weak∗), there are finite sets Φ in C(X)
and Δ in E such that Φ0 = U and Δ0 = V. Setting Λ = Φ ⊗ Δ, then Λ is a finite set in
C(X)⊗ E such that

εU,V(ψ) = sup
f∈U0,u∈V0

∣∣∣∣∣ n

∑
i=1

f (xi)〈vi, u〉
∣∣∣∣∣ = sup

f∈U0,u∈V0

∣∣∣∣∣
〈

n

∑
i=1

δxi ⊗ vi, f ⊗ u

〉∣∣∣∣∣ ≤ sup
F∈Λ

|〈ψ, F〉|

for any ψ = ∑n
i=1 δxi ⊗ vi ∈ L(X)⊗ε E′, since

U0 ⊗V0 = Φ00 ⊗ Δ00 = acx(Φ)⊗ acx(Δ) ⊆ acx(Λ).

Therefore τε = σ(L(X)⊗ E′, C(X)⊗ E).

Corollary 3. If X is a hemicompact space and E is a nuclear Fréchet space, the weak* dual of
Cp(X)⊗ε E is distinguished.

Proof. According to Lemma 1 the weak* dual of Cp(X)⊗ε E is linearly homeomorphic to
Lp(X)⊗ε E′(weak∗), so Theorem 7 applies.
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The space Z considered in Example 4 is hemicompact, hence from Corollary 3 we
have that the weak* duals of Cp(R)⊗ε Cp(Z) and Cp(Z)⊗ε D(Ω) are distinguished.

Corollary 4. If X is a μ-space with finite compact sets and E is a normed space, the weak* dual of
Cp(X)⊗ε E is distinguished.

Proof. The proof is analogous to the proof of Corollary 3, with the difference of using
Theorem 6 instead of Theorem 7.

Example 5. The weak* dual of Cp(L(m))⊗ε Ck([0, 1]) is distinguished.

4. A Characterization of the Distinguished Weak* Dual of Cp(X, E)

Let E be a local convex space. We will denote by Lp(X, E′) the weak* dual of Cp(X, E).
Since by Theorem 3 the dual space Cp(X, E)′ is algebraically isomorphic to L(X) ⊗ E′,
one has

Lp
(
X, E′

)
!
(

L(X)⊗ E′, σ
(

L(X)⊗ E′, C(X, E)
))

.

A completely regular topological space X is a kR-space if every real function f defined
on X whose restriction to every compact subset K of X is continuous, is continuous on X.

Theorem 8. Let X be a hemicompact kR-space and let E be a nuclear Fréchet space. The space
Lp(X, E′) is distinguished if and only if the strong dual of Lp(X, E′) coincides with Ck(X, E).

Proof. We will denote by Cβ(X, E) the linear space C(X, E) equipped with the strong
topology β(C(X, E), L(X)⊗ E′), i.e., the strong dual of Lp(X, E′). Since X is a kR-space
and E is complete, [11] [16.6.3 Corollary] ensures that

Ck(X, E) ! Ck(X) ⊗̂ε E. (1)

So, as both Ck(X) and E are metrizable, Ck(X, E) is a Fréchet space. Consequently, if
Cβ(X, E) = Ck(X, E) then Cβ(X, E) is barrelled and Lp(X, E′) is distinguished.

Assume, conversely, that Lp(X, E′) is distinguished. From Ck(X, E) ! Ck(X) ⊗̂ε E
it follows that Ck(X, E)′ = (Ck(X)⊗ε E)′. Since L(X) ⊗ E′ is algebraically isomorphic
to a subspace of (Ck(X)⊗ε E)′, it follows that the compact-open topology of C(X, E) is
stronger than β(C(X, E), L(X)⊗ E′). Hence, the identity map J : Ck(X, E) → Cβ(X, E)
is continuous.

Since X is a hemicompact, Ck(X) is metrizable. As a consequence of E nuclearity,
Ck(X)⊗ε E = Ck(X)⊗π E is a metrizable space. Hence, by (1) Ck(X, E) is a Fréchet space.
If Lp(X, E′) is distinguished, then Cβ(X, E) is barrelled. So J is a linear homeomorphism
by the closed graph theorem. Thus, Cβ(X, E) = Ck(X, E).

5. Conclusions and Two Open Problems

This paper has been motivated by the contrast between the extensively distinguished
properties obtained recently in the injective tensor products Cp(X)⊗ε E and in the spaces
Cp(X, E) with the few distinguished properties of injective tensor products related to the
dual space Lp(X) of Cp(X) endowed with the weak* topology, as well as to the weak* dual
of Cp(X, E). In Section 2, distinguished properties in the injective tensor product space
Lp(X)⊗ε E are provided and in Sections 3 and 4, the distinguished property of the weak*
dual of Cp(X)⊗ε E and a characterization of the distinguished property of the weak* dual
of Cp(X, E) for wide classes of spaces X and E are provided.

We do not know the answer for the following two problems when the Tychonoff space
X is uncountable. It is easy to prove that the answer of these two problems is positive if X
is countable.
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Problem 1. Is it true that if X is an uncountable P-space and E is a Fréchet space, then Lp(X)⊗ε

E′(weak∗) is distinguished?

Problem 2. Is it true that if X is an uncountable P-space and E is a Fréchet space, then the weak*
dual of Cp(X)⊗ε E is distinguished?
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14. Kąkol, J.; Kubiś, W.; López-Pellicer, M. Descriptive Topology in Selected Topics of Functional Analysis; Developments in Mathematics

24; Springer: New York, NY, USA, 2011. [CrossRef]
15. Warner, S. The topology of compact convergence on continuous function spaces. Duke Math. J. 1958, 25, 265–282. [CrossRef]
16. Köthe, G. Topological Vector Spaces I; Die Grundlehren der Mathematischen Wissenschaften Band 159; Springer: New York, NY,

USA, 1969. Available online: https://link.springer.com/book/10.1007%2F978-3-642-64988-2 (accessed on 7 July 2021).
17. Gillman, L.; Jerison, M. Rings of Continuous Functions, 1960 ed.; Graduate Texts in Mathematics No. 43; Springer: New York,

NY, USA; Berlin/Heidelberg, Germany, 1976. Available online: https://link.springer.com/book/10.1007/978-1-4615-7819-2
(accessed on 7 July 2021).

18. Buchwalter, H.; Schmets, J. Sur quelques propiértés de l’espace Cs(T). J. Math. Pures Appl. IX Sér. 1973, 52, 337–352.

74



Citation: Glöckner, H. Aspects of

Differential Calculus Related to

Infinite-Dimensional Vector Bundles

and Poisson Vector Spaces. Axioms

2022, 11, 221. https://doi.org/

10.3390/axioms11050221

Academic Editors: Elena

Martín-Peinador, Mikhail Tkachenko,

Christine Stevens and Xabier

Domínguez

Received: 3 March 2022

Accepted: 29 April 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Aspects of Differential Calculus Related to
Infinite-Dimensional Vector Bundles and Poisson Vector Spaces

Helge Glöckner

Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany;
glockner@math.upb.de

Abstract: We prove various results in infinite-dimensional differential calculus that relate the
differentiability properties of functions and associated operator-valued functions (e.g., differentials).
The results are applied in two areas: (1) in the theory of infinite-dimensional vector bundles, to
construct new bundles from given ones, such as dual bundles, topological tensor products, infinite
direct sums, and completions (under suitable hypotheses); (2) in the theory of locally convex Poisson
vector spaces, to prove continuity of the Poisson bracket and continuity of passage from a function
to the associated Hamiltonian vector field. Topological properties of topological vector spaces are
essential for the studies, which allow the hypocontinuity of bilinear mappings to be exploited.
Notably, we encounter kR-spaces and locally convex spaces E such that E× E is a kR-space.

Keywords: vector bundle; dual bundle; direct sum; completion; tensor product; cocycle; smoothness;
analyticity; hypocontinuity; k-space; compactly generated space; infinite-dimensional Lie group;
Poisson vector space; Poisson bracket; Hamiltonian vector field; group action; multilinear map

MSC: 26E15 (primary); 17B63; 22E65; 26E20; 46G20; 54B10; 54D50; 55R25; 58B10

1. Introduction

We study questions of infinite-dimensional differential calculus in the setting of
Keller’s Ck

c -theory [1] (going back to [2]). Applications to infinite-dimensional vector bun-
dles are given, and also applications in the theory of locally convex Poisson vector spaces.

Differentiability properties of operator-valued maps. Our results are centred around
the following basic problem: Consider locally convex spaces X, E and F, an open set U ⊆ X
and a map f : U → L(E, F)b to the space of continuous linear maps, endowed with the
topology of uniform convergence on bounded sets. How are the differentiability properties
of the operator-valued map f related to those of

f∧ : U × E → F , f∧(x, v) := f (x)(v) ?

We show that if f∧ is smooth, then also f is smooth (Proposition 1). Conversely,
exploiting the hypocontinuity of the bilinear evaluation map

L(E, F)b × E → F , (α, v) �→ α(v) ,

we find natural hypotheses on E and F ensuring that smoothness of f entails smoothness
of f∧ (Proposition 2; likewise for compact sets in place of bounded sets). Without extra
hypotheses on E and F, this conclusion becomes false, e.g., if U = X is a non-normable,
real, locally convex space with dual space X′ := L(X,R). Then, f := idX′ : X′

b → X′
b is

continuous linear and thus smooth, but f∧ : X′
b × X → R is the bilinear evaluation map

taking (λ, x) to λ(x), which is discontinuous for non-normable X (see [3] (p. 2)) and hence
not smooth in the sense of Keller’s C∞

c -theory. We also obtain results concerning finite-order
differentiability properties, as well as real and complex analyticity. Furthermore, L(E, F) can
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be replaced with the space Lk(E1, . . . , Ek, F) of continuous k-linear maps E1 × · · · × Ek → F,
if E1, . . . , Ek are locally convex spaces. (Related questions also play a role in the comparative
study of differential calculi [1].) As a very special case of our studies, the differential

f ′ : U → L(E, F)b

is Cr−2, for each r ∈ N ∪ {∞} with r ≥ 2, locally convex spaces E and F, and Cr-map
f : U → F on an open set U ⊆ E (see Corollary 1).

Applications to infinite-dimensional vector bundles. Apparently, mappings of the
specific form just described play a vital role in the theory of vector bundles: If F is a
locally convex space, M a (not necessarily finite-dimensional) smooth manifold and (Ui)i∈I
an open cover of M, then the smooth vector bundles E → M, with fibre F, which are
trivial over the sets Ui, can be described by cocycles gij : Ui ∩ Uj → GL(F) such that
Gij := g∧ij : (Ui ∩ Uj) × F → F, (x, v) �→ gij(x)(v) is smooth (Proposition 3, Remark 7).
Then, gij is smooth as a mapping to the space L(F)b := L(F, F)b (see Proposition 1). In
various contexts—for example, when trying to construct dual bundles—we are in the
opposite situation: we know that each gij is smooth, and would like to conclude that
also the mappings Gij are smooth. Although this is not possible in general (as examples
show), our results provide additional conditions ensuring that the conclusion is correct in
the specific situation at hand. Notably, we obtain conditions ensuring the existence of a
canonical dual bundle (Proposition 13). Without extra conditions, a canonical dual bundle
need not exist (Example 2).

Besides dual bundles, we discuss a variety of construction principles of new vector
bundles from given ones, including topological tensor products, completions, and finite
or infinite direct sums. More generally, given a (finite- or infinite-dimensional) Lie group
acting on the base manifold M, we discuss the construction of new equivariant vector
bundles from given ones. Most of the constructions require specific hypotheses on the base
manifold, the fibre of the bundle, and the Lie group.

As to completions, complementary topics were considered in the literature: Given an
infinite-dimensional smooth manifold M, completions of the tangent bundle with respect
to a weak Riemannian metric occur in [4] (p. 549), in hypotheses for a so-called robust
Riemannian manifold.

We mention that multilinear algebra and vector bundle constructions can be performed
much more easily in an inequivalent setting of infinite-dimensional calculus, the convenient
differential calculus [3]. However, a weak notion of vector bundles is used there, which
need not be topological vector bundles. Our discussion of vector bundles intends to
pinpoint additional conditions ensuring that the natural construction principles lead to
vector bundles in a stronger sense (which are, in particular, topological vector bundles).

The work [5] was particularly important for our studies. For an open subset U of a Fréchet
space E, smoothness of f∧ : U × Ek → R is deduced from smoothness of f : U → Λk(E′)b
in the proof of [5] (Proposition IV.6). A typical hypocontinuity argument already appears
in the proof of [5] (Lemma IV.7). In contrast to the local calculations in charts, the global
structure on a dual bundle (and bundles of k-forms) asserted in the first remark of [5] (p. 339)
is problematic if Keller’s C∞

c -theory is used, without further hypotheses.
Applications related to locally convex Poisson vector spaces. In the wake of works

by Odzijewicz and Ratiu on Banach–Poisson vector spaces and Banach–Poisson mani-
folds [6,7], certain locally convex Poisson vector spaces were introduced [8], which gen-
eralise the Lie–Poisson structure on the dual space of a finite-dimensional Lie algebra
going back to Kirillov, Kostant and Souriau. By now, the latter spaces can be embedded
in a general theory of locally convex Poisson manifolds (see [9]; for generalisations of
finite-dimensional Poisson geometry with a different thrust, cf. [10]). Recall that many
important examples of bilinear mappings between locally convex topological vector spaces
are not continuous, but at least hypocontinuous (cf. [11] for this classical concept). In
Sections 12 and 13, we provide the proofs for two fundamental results in the theory of lo-
cally convex Poisson vector spaces which are related to hypocontinuity. (These proofs were
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stated in the preprint version of [8], but not included in the actual publication.) We show
that the Poisson bracket associated with a continuous Lie bracket is always continuous
(Theorem 1) and that the linear map C∞(E,R) → C∞(E, E) taking a smooth function to
the associated Hamiltonian vector field is continuous (Theorem 2). Ideas from [8] and the
current article were also taken further in [12] (Section 13).

2. Preliminaries and Notation

We describe our setting of differential calculus and compile useful facts. Either refer-
ences to the literature are given or a proof; the proofs can be looked up in Appendix A.

Infinite-dimensional calculus. We work in the framework of infinite-dimensional
differential calculus known as Keller’s Ck

c -theory [1]. Our main reference is [13] (see
also [14–17]). If K ∈ {R,C}, we let D := {t ∈ K : |t| ≤ 1} and Dε := {t ∈ K : |t| ≤ ε} for
ε > 0. We write N := {1, 2, . . .} and N0 := N∪{0}. All topological vector spaces considered
in the article are assumed Hausdorff, unless the contrary is stated. For brevity, Hausdorff
locally convex topological vector spaces will be called locally convex spaces. As usual, a
subset M of a K-vector space is called balanced if tx ∈ M for all x ∈ M and t ∈ D. The subset
M is called absolutely convex if it is both convex and balanced. If q : E → [0, ∞] is a seminorm
on a K-vector space E, we write Bq

ε (x) := {y ∈ E : q(y− x) < ε} for x ∈ E and ε > 0. We
also write ‖x‖q in place of q(x). If E is a locally convex K-vector space, we let E′ be the dual
space of continuous K-linear functionals λ : E → K. We write M◦ := {λ ∈ E′ : λ(M) ⊆ D}
for the polar of a subset M ⊆ E. If α : E → F is a continuous K-linear map between locally
convex K-vector spaces, we let α′ : F′ → E′, λ �→ λ ◦ α be the dual linear map. We say
that a mapping f : X → Y between topological spaces is a topological embedding if it is a
homeomorphism onto its image. We recall:

Definition 1. Let E and F be locally convex K-vector spaces over K ∈ {R,C} and U ⊆ E be an
open subset. A map f : U → F is called C0

K if it is continuous, in which case we set d0 f := f .
Given x ∈ U and y ∈ E, we define

d f (x, y) := (Dy f )(x) := lim
t→0

f (x + ty)− f (x)
t

if the limit exists (using t ∈ K× such that x + ty ∈ U). Let r ∈ N ∪ {∞}. We say that a
continuous map f : U → F is a Cr

K-map if the iterated directional derivative

dk f (x, y1, . . . , yk) := (Dyk · · ·Dy1)( f )(x)

exists for all k ∈ N such that k ≤ r and all (x, y1, . . . , yk) ∈ U × Ek, and if the mappings
dk f : U × Ek → F so obtained are continuous. Thus, d1 f = d f . If K is understood, we write Cr

instead of Cr
K. As usual, C∞-maps are also called smooth.

Remark 1. For k ∈ N, it is known that a map f : U → F as before is Ck
K if and only if f is C1

K and
d f : U × E → F is Ck−1

K (cf. [13] (Proposition 1.3.10)).

Remark 2. If K = C, it is known that a map f : E ⊇ U → F as before is C∞
C if and only if it is

complex analytic in the sense of [18] (Definition 5.6): f is continuous and for each x ∈ U, there
exists a 0-neighbourhood Y ⊆ E such that x + Y ⊆ U and f (x + y) = ∑∞

n=0 βn(y) for all y ∈ Y
as a pointwise limit, where βn : E → F is a continuous homogeneous polynomial over C of degree n,
for each n ∈ N0 [13] (Theorem 2.1.12). Furthermore, f is complex analytic if and only if f is C∞

R
and d f (x, ·) : E → F is complex linear for all x ∈ U (see [13] (Theorem 2.1.12)). Complex analytic
maps will also be called C-analytic or Cω

C .

Definition 2. If K = R, then a map f : U → F as before is called real analytic (or R-analytic,
or Cω

R ) if it extends to a complex analytic mapping Ũ → FC on some open neighbourhood Ũ of U in
the complexification EC of E.
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In the following, r ∈ N0 ∪{∞, ω}, unless the contrary is stated. We use the conventions
∞ + k := ∞− k := ∞ and ω + k := ω − k := ω, for each k ∈ N. Furthermore, we extend
the order on N0 to an order on N0 ∪ {∞, ω} by declaring n < ∞ < ω for each n ∈ N0.

Remark 3. Compositions of composable Cr
K-mappings are Cr

K-mappings (see Proposition 1.3.4,
Remark 2.1.13, and Proposition 2.2.4 in [13]). Thus, Cr

K-manifolds modelled on locally convex
K-vector spaces can be defined in the usual way (see [13] (Chapter 3) for a detailed exposition). In
this article, the word “manifold” (resp., “Lie group”) always refers to a manifold (resp., Lie group)
modelled on a locally convex space.

The following basic fact will be used repeatedly.

Lemma 1. For k ∈ N, let X, E1, . . . , Ek, and F be locally convex K-vector spaces, U ⊆ X be an
open subset and

f : U × E1 × · · · × Ek → F

be a C1
K-map such that f∨(x) := f (x, ·) : E1 × · · · × Ek → F is k-linear, for each x ∈ U. Let

x ∈ U and q be a continuous seminorm on F. Then, there exists a continuous seminorm p on X
with Bp

1 (x) ⊆ U, and continuous seminorms pj on Ej for j ∈ {1, . . . , k} such that

‖ f (y, v1, . . . , vk)‖q ≤ ‖v1‖p1 · · · ‖vk‖pk and (1)

‖ f (y, v1, . . . , vk)− f (x, v1, . . . , vk)‖q ≤ ‖y− x‖p‖v1‖p1 · · · ‖vk‖pk (2)

for all y ∈ Bp
1 (x) and (v1, . . . , vk) ∈ E1 × · · · × Ek.

We shall also use the following fact:

Lemma 2. Let E and F be locally convex K-vector spaces, k ≥ 2 be an integer and f : U× Ek → F
be a mapping such that f (x, ·) : Ek → F is k-linear and symmetric for each x ∈ U. Let r ∈
N0 ∪ {∞, ω}. If

h : U × E → F, (x, y) �→ f (x, y, . . . , y)

is Cr
K, then also f is Cr

K. Notably, f is continuous if h is continuous.

k-spaces, kR-spaces, k∞-spaces, and kω-spaces. Recall that a topological space X is
said to be completely regular if it is Hausdorff and its topology is initial with respect to the
set C(X,R) of all continuous real-valued functions on X. Every locally convex space is
completely regular, as with every Hausdorff topological group (cf. [19] (Theorem 8.2)).
Compare [20,21] for the following.

A topological space X is called a k-space if it is Hausdorff and a subset A ⊆ X is
closed if and only if A ∩ K is closed in K for each compact subset K ⊆ X. Every metrisable
topological space is a k-space, and every locally compact Hausdorff space. A Hausdorff
space X is a k-space if and only if, for each topological space Y, a map f : X → Y is
continuous if and only if f is k-continuous in the sense that f |K is continuous for each
compact subset K ⊆ X. If X is a k-space, then also every subset M ⊆ X which is open or
closed in X, when the induced topology is used on M.

A topological space X is called a kR-space if it is Hausdorff and a function f : X → R
is continuous if and only if f is k-continuous. Then also a map f : X → Y to a completely
regular topological space Y is continuous if and only if it is k-continuous (as the latter
condition implies continuity of g ◦ f for each g ∈ C(Y,R)). For more information, cf. [22].

Every k-space is a kR-space. The converse is not true: RI is known to be a kR-space for
each set I (see [22]). If I has cardinality ≥ 2ℵ0 , then RI is not a k-space. (If RI was a k-space,
then a certain non-discrete subgroup G of (RR,+) constructed in [23] would be discrete,
which is a contradiction (see [13] (Remark A.6.16 (a)) for more details). Compare also [22].)

The following facts are well known (cf. [22]):
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Lemma 3. (a) If a kR-space X is a direct product X1 × X2 of Hausdorff spaces and X1 �= ∅,
then X2 is a kR-space.

(b) Every open subset U of a completely regular kR-space X is a kR-space in the induced topology.

Notably, U is a kR-space for each open subset U of a locally convex space E which is a
kR-space. If E× E is a kR-space, then also E.

Following [8], a topological space X is called a k∞-space if the Cartesian power Xn

is a k-space for each n ∈ N, using the product topology. A Hausdorff space X is called
hemicompact if X =

⋃
n∈N Kn for a sequence K1 ⊆ K2 ⊆ · · · of compact subsets Kn ⊆ X

such that each compact subset of X is a subset of some Kn. Hemicompact k-spaces are
also called kω-spaces. If X and Y are kω-spaces, then the product topology makes X ×Y a
kω-space. Notably, every kω-space is a k∞-space. See [24,25] for further information. Finite
products of metrisable spaces being metrisable, every metrisable topological space is a
k∞-space. Recall that a locally convex space E is said to be a Silva space or (DFS)-space if it
is the locally convex inductive limit of a sequence E1 ⊆ E2 ⊆ · · · of Banach spaces such
that each inclusion map En → En+1 is a compact operator. Every Silva space is a kω-space
(see, e.g., [13] (Proposition B13.13(g))).

Spaces of multilinear maps. Given k ∈ N, locally convex K-vector spaces E1, . . . , Ek
and F, and a set S of bounded subsets of E1 × · · · × Ek, we write Lk(E1, . . . , Ek, F)S or
Lk
K(E1, . . . , Ek, F)S for the space of continuous k-linear maps E1 × · · · × Ek → F, endowed

with the topology OS of uniform convergence on the sets B ∈ S . Recall that finite intersec-
tions of sets of the form

#B, U$ := {β ∈ Lk(E1, . . . , Ek, F) : β(B) ⊆ U}

yield a basis of 0-neighbourhoods for this (not necessarily Hausdorff) locally convex
vector topology, for U ranging through the 0-neighbourhoods in F and B through S .
If
⋃

B∈S B = E1 × · · · × Ek, then OS is Hausdorff. If E1 = · · · = Ek, we abbreviate
Lk(E, F)S := Lk(E, . . . , E, F)S . If k = 1 and E := E1, we abbreviate L(E, F)S := L1(E, F)S ,
LK(E, F)S := L1

K(E, F)S and L(E)S := L(E, E)S . We write GL(E) = L(E)× for the group
of all automorphisms of the locally convex K-vector space E. If S is the set of all bounded,
compact, and finite subsets of E1 × · · · × Ek, respectively, we shall usually write “b,” “c,”
and “p” in place of S . For example, we shall write Lk(E1, . . . , Ek, F)b, Lk(E1, . . . , Ek, F)c, and
Lk(E1, . . . , Ek, F)p.

Remark 4. Let E1, . . . , Ek and F be complex locally convex spaces and f : U→ Lk
C(E1, . . . , Ek, F)

be a map, defined on an open subset U of a real locally convex space. Let S := b or S := c.
Since Lk

C(E1, . . . , Ek, F)S is a closed real vector subspace of Lk
R(E1, . . . , Ek, F)S , the map f is Cr

R
as a map to Lk

C(E1, . . . , Ek, F)S if and only if f is Cr
R as a map to Lk

R(E1, . . . , Ek, F)S (see [13]
(Lemma 1.3.19 and Exercise 2.2.4)).

Given a Cr
K-map f : E ⊇ U → F as in Definition 1, we define f (0) := f and

f (j) : U → Lj
K(E, F), f (j)(x) := (dj f )∨(x) = dj f (x, ·)

for j ∈ N such that j ≤ r.
Hypocontinuous multilinear maps. Beyond normed spaces, typical multilinear maps

are not continuous, but merely hypocontinuous. Hypocontinuous bilinear maps are dis-
cussed in many textbooks. An analogous notion of hypocontinuity for multilinear maps (to
be described presently) is useful to us. It can be discussed similarly to the bilinear case.

Lemma 4. For an integer k ≥ 2, let β : E1 × · · · × Ek → F be a separately continuous k-linear
mapping and j ∈ {2, . . . , k} such that, for each x ∈ E1 × · · · × Ej−1, the map

β∨(x) := β(x, ·) : Ej × · · · × Ek → F
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is continuous. Let S be a set of bounded subsets of Ej × · · · × Ek. Consider the conditions:

(a) For each M ∈ S and each 0-neighbourhood W ⊆ F, there exists a 0-neighbourhood V ⊆
E1 × · · · × Ej−1 such that β(V × M) ⊆ W.

(b) The (j− 1)-linear map β∨ : E1 × · · · × Ej−1 → Lk−j+1(Ej, . . . , Ek, F)S is continuous.
(c) β|E1×···×Ej−1×M : E1 × · · · × Ej−1 × M → F is continuous, for each M ∈ S .

Then (a) and (b) are equivalent, and (b) implies (c). If

(∀M ∈ S) (∃N ∈ S) DM ⊆ N, (3)

then (a), (b), and (c) are equivalent.

Definition 3. A k-linear map β which satisfies the hypotheses and Condition (a) of Lemma 4
is called S-hypocontinuous in its arguments (j, . . . , k). If j = k, we also say that β is S-
hypocontinuous in the k-th argument. Analogously, we define S-hypocontinuity of β in the
j-th argument, if j ∈ {1, . . . , k} and a set S of bounded subsets of Ej are given.

We are mainly interested in b-, c-, and p-hypocontinuity, viz., in S-hypocontinuity with
respect to the set S of all bounded subsets of Ej × · · · × Ek, the set S of all compact subsets,
and the set S of all finite subsets, respectively. If S and T are sets of bounded subsets of
Ej × · · · × Ek such that S ⊆ T and β is T -hypocontinuous in its variables (j, . . . , k), then β
is also S-hypocontinuous in the latter. The following is obvious from Lemma 4 (c) (as the
elements of a convergent sequence, together with its limit, form a compact set):

Lemma 5. If β : E1 × · · · × Ek → F is c-hypocontinuous in some argument, or in its arguments
(j, . . . , k) for some j ∈ {2, . . . , k}, then β is sequentially continuous.

In many cases, separately continuous bilinear maps are automatically hypocontinuous.
Recall that a subset B of a locally convex space E is a barrel if it is closed, absolutely convex,
and absorbing. The space E is called barrelled if every barrel is a 0-neighbourhood. See
Proposition 6 in [11] (Chapter III, §5, no. 3) for the following fact.

Lemma 6. If β : E1 × E2 → F is a separately continuous bilinear map and E1 is barrelled, then β
is S-hypocontinuous in its second argument, with respect to any set S of bounded subsets of E2.

Evaluation maps are paradigmatic examples of hypocontinuous multilinear maps.

Lemma 7. Let E1, . . . , Ek and F be locally convex K-vector spaces and S be a set of bounded
subsets of E := E1 × · · · × Ek with

⋃
M∈S M = E. Then, the (k + 1)-linear map

ε : Lk(E1, . . . , Ek, F)S × E1 × · · · × Ek → F , (β, x) �→ β(x)

is S-hypocontinuous in its arguments (2, . . . , k + 1). If k = 1 and E = E1 is barrelled, then
ε : L(E, F) × E → F is also hypocontinuous in the first argument, with respect to any locally
convex topology O on L(E, F) which is finer than the topology of pointwise convergence, and any
set T of bounded subsets of (L(E, F),O).

Lemma 8. Consider locally convex spaces E1, . . . , Ek and F with k ≥ 2 and a k-linear map
β : E1 × · · · × Ek → F.

(a) If β is sequentially continuous, then the composition β ◦ f is continuous for each continuous
function f : X → E1 × · · · × Ek on a topological space X which is metrisable or satisfies the
first axiom of countability.

(b) If β is c-hypocontinuous in its arguments (j, . . . , k) for some j ∈ {2, . . . , k} and X is a
kR-space, then β ◦ f is continuous for each continuous function f : X → E1 × · · · × Ek.
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Lipschitz differentiable maps. In Section 7, it will be useful to work with certain
Lipschitz differentiable maps, instead of Cr-maps. We briefly recall concepts and facts.

Definition 4. Let E and F be locally convex K-vector spaces, U ⊆ E be open and f : U → F be a
map. We say that f is locally Lipschitz continuous or LC0

K if it has the following property: For
each x ∈ U and continuous seminorm q on F, there exists a continuous seminorm p on E such that
Bp

1 (x) ⊆ U and
q( f (z)− f (y)) ≤ p(z− y) for all y, z ∈ Bp

1 (x).

Given r ∈ N0 ∪ {∞}, we say that f is LCr
K if f is Cr

K and dk f : U × Ek → F is LC0
K for each

k ∈ N0 such that k ≤ r.

Every C1-map is LC0
K (see, for example, [13] (Exercise 1.5.4)). As a consequence, for

each r ∈ N∪ {∞}, every Cr
K-map is LCr−1

K . Notably, every smooth map is LC∞
K . Moreover,

a Cr
K-map with finite r is LCr

K if and only if dr f is LC0
K. The following facts are known, or

part of the folklore.

Lemma 9. For locally convex spaces over K ∈ {R,C} and r ∈ N0 ∪ {∞}, we have:

(a) A map f : E ⊇ U → ∏j∈J Fj to a direct product of locally convex spaces is LCr
K if and only

each component is LCr
K;

(b) Compositions of composable LCr
K-maps are LCr

K;
(c) Let F be a locally convex space and F0 ⊆ F be a vector subspace which is closed in F, or

sequentially closed. Then, a map f : E ⊇ U → F0 is FCr
K if and only if it is FCr

K as a map
to F.

(d) A map E ⊇ U → P to a projective limit P = lim
←−

Fj of locally convex spaces is LCr
K if and

only if pj ◦ f : U → Fj is LCr
K for all j ∈ J, where pj : P → Fj is the limit map.

Our concept of local Lipschitz continuity is weaker than the one in [13] (Definition 1.5.4).
The compact-open Cr-topology. If E and F are locally convex K-vector spaces, U ⊆ E

is an open set and r ∈ N0 ∪ {∞}, then the vector space Cr
K(U, F) of all Cr

K-maps U → F
carries a natural topology (the “compact-open Cr-topology”), namely the initial topology
with respect to the mappings

Cr
K(U, F)→ C(U × Ej, F)c.o. f �→ dj f

for j ∈ N0 such that j ≤ r, where the right-hand side is endowed with the compact-open
topology. Then, Cr

K(U, F) is a locally convex K-vector space. If F is a complex locally
convex space, then also Cr

K(U, F). See, e.g., [13] (§1.7) for further information, or [26].

3. Differentiability Properties of Operator-Valued Maps

Let L ∈ {R,C}, K ∈ {R,L}, and r ∈ N0 ∪ {∞, ω}. In this section, we establish the
following proposition.

Proposition 1. Let k ∈ N, r ∈ N0 ∪ {∞, ω}, E1, . . . , Ek and F be locally convex L-vector spaces,
X be a locally convex K-vector space, and U ⊆ X be an open subset. Let f : U → Lk

L(E1, . . . , Ek, F)
be a map such that

f∧ : U × E1 × · · · × Ek → F , f∧(x, v) := f (x)(v) for x ∈ U, v ∈ E1 × · · · × Ek

is Cr
K. Then, the following holds:

(a) f is Cr
K as a map to Lk

L(E1, . . . , Ek, F)c.
(b) If r ≥ 1, then f is Cr−1

K as a map to Lk
L(E1, . . . , Ek, F)b.

81



Axioms 2022, 11, 221

Furthermore,

dj f (x, y1, . . . , yj)(v) = dj( f∧)((x, v), (y1, 0), . . . , (yj, 0)) (4)

for all j ∈ N with j ≤ r (resp., j ≤ r− 1, in (b)), all x ∈ U, v ∈ E1× · · · × Ek, and y1, . . . , yj ∈ X.

Corollary 1. Let E and F be locally convex K-vector spaces and f : U → F be a Cr
K-map on an

open subset U ⊆ E, where r ∈ N∪ {∞, ω}. Then, the following holds:

(a) The map f (k) : U → Lk
K(E, F)c, x �→ f (k)(x) = dk f (x, ·) is Cr−k

K , for each k ∈ N such that
k ≤ r.

(b) The map f (k) : U → Lk
K(E, F)b is Cr−k−1

K , for each k ∈ N such that k ≤ r− 1.

Furthermore, dj( f (k))(x, y1, . . . , yj) = dj+k f (x, ·, y1, . . . , yj), for all j ∈ N with j + k ≤ r
(resp., j + k ≤ r− 1), all x ∈ U, and y1, . . . , yj ∈ E.

Proof. For each k ∈ N such that k ≤ r, the map dk f : U × Ek → F is Cr−k
K (see [13]

(Remark 1.3.13 and Exercise 2.2.7)), and f (k)(x) = dk f (x, ·) is k-linear for each x ∈ U,
by [13] (Proposition 1.3.17). Moreover, ( f (k))∧ = dk f . Thus, Proposition 1 applies with f (k)

in place of f and r− k in place of r.

Given a topological space X and locally convex space F, we endow the space C(X, F)
of continuous F-valued functions on X with the compact-open topology. It is known that
this topology coincides with the topology of uniform convergence on compact sets. The
next lemma will be useful when we discuss mappings to Lk(E, F)c.

Lemma 10. Let X, E, and F be locally convex K-vector spaces, U ⊆ X and W ⊆ E be open
subsets, and f : U ×W → F be a Cr

K-map, with r ∈ N0 ∪ {∞}. Then, also the map

f∨ : U → C(W, F) , x �→ f (x, ·)

is Cr
K. If K = R and f admits a complex analytic extension h : Ũ × W̃ → FC for suitable open

neighbourhoods Ũ of U in XC and W̃ of W in EC, then f∨ is real analytic.

Proof. We first assume that r ∈ N0, and proceed by induction. For r = 0, the assertion is
well known (see, e.g., [13] (Proposition A.6.17)). Now assume that r ∈ N. Given x ∈ U and
y ∈ X, there exists ε > 0 such that x +D0

ε y ⊆ U, where D0
r := {t ∈ K : |t| < ε}. Consider

g : D0
ε ×W → F , (t, w) �→

{
f (x+ty,w)− f (x,w)

t if t �= 0;
d f ((x, w), (y, 0)) if t = 0.

Then, g(t, w) =
∫ 1

0 d f ((x + sty, w), (y, 0)) ds, by the Mean Value Theorem. The inte-
grand being continuous, also g is continuous (by the Theorem on Parameter-Dependent
Integrals, [13] (Lemma 1.1.11)). Hence, g∨ : V → C(W, F) is continuous, by induction,
and hence

f∨(x + ty)− f∨(x)
t

= g∨(t) → g∨(0)

as t → 0, where g∨(0) = d f ((x, ·), (y, 0)) = k∨(x, y) with

k : (U × E)×W → F , (x, y, w) �→ d f ((x, w), (y, 0)) .

Since k is Cr−1
K , the map d( f∨) = k∨ is Cr−1

K , by the inductive hypothesis. Notably,
d( f∨) is continuous and hence f∨ is C1

K. Now, f∨ being C1
K with d( f∨) a Cr−1

K -map, f∨

is Cr
K.
The case r = ∞. If f is C∞

K , then f is Ck
K for each k ∈ N0. Hence, f∨ is Ck

K for each
k ∈ N0 (by the case already treated), and thus f∨ is C∞

K .
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Final assertion. By the C∞
C -case already treated, the map

h∨ : Ũ → C(W̃, FC)

is C∞
C . The restriction map

ρ : C(W̃, FC)→ C(W, FC) , γ �→ γ|W

being continuous C-linear and thus C∞
C , it follows that the composition

ρ ◦ h∨ : Ũ → C(W, FC) = C(W, F)C

is C∞
C and thus complex analytic. Since ρ ◦ h∨ extends f∨, we see that f∨ is real analytic.

Proof of Proposition 1. (a) Abbreviate E := E1 × · · · × Ek. Because Lk
L(E1, . . . , Ek, F)c is a

closed K-vector subspace of C(E, F) and carries the induced topology, f will be Cr
K as a map

to Lk
L(E1, . . . , Ek, F)c if we can show that f is Cr

K as a map to C(E, F) (see [13] (Lemma 1.3.19
and Exercise 2.2.4)). Since f∧ is Cr

K and f = ( f∧)∨, the latter follows from Lemma 10. This
is obvious unless K = R and r = ω. In this case, the map f∧ admits a C-analytic extension
p : Q → FC to an open neighbourhood Q of U × E in XC × EC. For each x ∈ U, there exists
an open, connected neighbourhood Ux of x in XC and a balanced, open 0-neighbourhood
Wx ⊆ EC such that Ux ×Wx ⊆ Q and Ux ∩ X ⊆ U. Let D := {z ∈ C : |z| < 1}. Then,

q : Ux ×Wx × D → FC , (y, w, z) �→ p(y, zw)− zk p(y, w)

is a C-analytic map which vanishes on (Ux ×Wx ×D) ∩ (X× E×R). Hence, q = 0, by the
Identity Theorem (see [13] (Theorem 2.1.16 (c))). Then, p(y, zw) = zk p(y, w) for all z ∈ C
such that |z| ≤ 1, by continuity. This implies that the map

g : Ux × EC → FC , (y, w) �→ zk p(y, z−1w) for some z ∈ C× with z−1w ∈ Wx

is well defined. Since g is C-analytic, the final statement of Lemma 10 applies.

(b) We prove the assertion for r ∈ N first; then, also the case r = ∞ follows. If
r = 1, let x ∈ U. Given an open 0-neighbourhood W ⊆ F and bounded subset B ⊆ E :=
E1 × · · · × Ek, let q be a continuous seminorm on F such that Bq

1(0) ⊆ W. By Lemma 1, there
exist continuous seminorms p on X and pj on Ej for j ∈ {1, . . . , k} such that Bp

1 (x) ⊆ U and

‖ f∧(y, v)− f∧(x, v)‖q ≤ ‖y− x‖p‖v1‖p1 · · · ‖vk‖pk

for all y ∈ Bp
1 (x) and all v = (v1, . . . , vk) ∈ E1 × · · · × Ek. Since B is bounded, we have

C := sup{‖v1‖p1 · · · ‖vk‖pk : v = (v1, . . . , vk) ∈ B} < ∞ .

Choose δ ∈ ]0, 1] such that δC ≤ 1. For each y ∈ Bp
δ (x), we get ‖ f∧(y, v)− f∧(x, v)‖q <

δC ≤ 1 for each v ∈ B and thus f∧(y, v)− f∧(x, v) ∈ Bq
1(0) ⊆ W. Hence,

f (y)− f (x) ∈ #B, W$ for each y ∈ Bp
1 (x),

entailing that f is continuous.
Induction step: Now, assume that r ≥ 2. Given x ∈ U and y ∈ X, there exists ε > 0

such that x +D0
ε y ⊆ U, where D0

r := {t ∈ K : |t| < ε}. Consider

g : D0
ε × Ek → F , (t, v) �→

{
f∧(x+ty,v)− f∧(x,v)

t if t �= 0;
d( f∧)((x, v), (y, 0)) if t = 0.
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Then, g is Cr−1
K and hence C1

K, as a consequence of [27] (Propositions 7.4 and 7.7). Since
g(t, v) is k-linear in v, it follows that g∨ : U → Lk(E, F)b is continuous, by induction. As a
consequence,

f (x + ty)− f (x)
t

= g∨(t) → g∨(0)

as t → 0, where g∨(0) = d( f∧)((x, ·), (y, 0)) = h∨(x, y) with

h : (U × Ek)×W → F , h((x, y), v) := d( f∧)((x, v), (y, 0)) .

Since h is Cr−1
K and h((x, y), v) is k-linear in v, the map d f = h∨ is Cr−2

K , by induction.
Hence, d f is continuous and thus f is C1

K. Now, f being C1
K with d f a Cr−2

K -map, f is Cr−1
K .

The case K = R, r = ω. By Remark 4, we may assume that L = R (the case
L = C then follows). Given x ∈ U, let g : Ux × EC → FC be as in the proof of (a).
Identifying EC with (E1)C × · · · × (Ek)C, the mapping g is complex k-linear in the sec-
ond variable. Hence g∨ : Ux → Lk

C((E1)C, . . . , (Ek)C, FC)b is C-analytic, by the C∞
C -case

already discussed. Because the map ρ : Lk
C((E1)C, . . . , (Ek)C, FC)b → Lk

R(E1, . . . , Ek, FC)b =

(Lk
R(E1, . . . , Ek, F)b)C, α �→ α|E is continuous C-linear, the composition ρ ◦ g∨ is C-analytic.

However, this mapping extends f |Ux∩X. Hence, f |Ux∩X is real analytic and hence so is f ,
using that the open sets Ux ∩ X form an open cover of U.

Formula for the differentials: Let j ∈ N with j ≤ r, x ∈ U, v ∈ E1 × · · · × Ek and
y1, . . . , yj ∈ X. Exploiting that evv : Lk

L(E1, . . . , Ek, F)c → F, β �→ β(v) is continuous and
linear, we deduce that

evv(dj f (x, y1, . . . , yj)) = dj(evv ◦ f )(x, y1, . . . , yj) = dj( f∧(·, v))(x, y1, . . . , yj)

= dj( f∧)((x, v), (y1, 0), . . . , (yj, 0))

for f as a map to Lk
L(E1, . . . , Ek, F)c. If j ≤ r − 1, the same calculation applies to f as a

mapping to Lk
L(E1, . . . , Ek, F)b.

For the special case of (a) when r = 0 and X as well as E1 = · · · = Ek are metrisable,
see already [1] (Lemma 0.1.2).

4. Compositions with Hypocontinuous k-Linear Maps

We study the differentiability properties of compositions of the form β ◦ f , where β is
a k-linear map which need not be continuous.

Lemma 11. Let k ≥ 2 be an integer, E1, . . . , Ek, X, and F be locally convex K-vector spaces,
β : E1 × · · · × Ek → F be a k-linear map, r ∈ N0 ∪ {∞, ω} and f : U → E1 × · · · × Ek =: E be
a Cr

K-map on an open subset U ⊆ X. Assume that

(a) β is sequentially continuous and X is metrisable; or
(b) For some j ∈ {2, . . . , k}, the k-linear map β is c-hypocontinous in its variables (j, . . . , k).

Moreover, X × X is a kR-space, or r = 0 and X is a kR-space, or (r,K) = (∞,C) and X is a
kR-space.

Then, β ◦ f : U → F is a Cr
K-map.

Proof. The case r = 0 was treated in Lemma 8. We first assume that r ∈ N.

(a) Assuming (a), let x ∈ U, y ∈ X, and (tn)n∈N be a sequence in K \ {0} such that
tn → 0 as n → ∞ and x + tny ∈ U for all n ∈ N. Using the components of f = ( f1, . . . , fk),
we can write the difference quotient 1

tn
(β( f (x + tny))− β( f (x))) as the telescopic sum

k

∑
ν=1

β
(

f1(x + tny), . . . , fν−1(x + tny),
fν(x + tny)− fν(x)

tn
, fν+1(x), . . . , fk(x)

)
,

84



Axioms 2022, 11, 221

which converges to

k

∑
ν=1

β( f1(x), . . . , fν−1(x), d fν(x, y), fν+1(x), . . . , fk(x)) = d(β ◦ f )(x, y) (5)

as n → ∞, using the sequential continuity of β. By Lemma 8, d(β ◦ f ) is continuous, whence
β ◦ f is C1

K. If r ≥ 2, then

gν : U × X → E, (x, y) �→ ( f1(x), . . . , fν−1(x), d fν(x, y), fν+1(x), . . . , fk(x))

is a Cr−1
K -map and d(β ◦ f ) = ∑k

ν=1 β ◦ gν is Cr−1
K by induction; thus β ◦ f is Cr

K. If r = ∞,
the preceding shows that β ◦ f is Cs

K for each s ∈ N0, whence β ◦ f is Cr
K.

(b) If X × X is a kR-space, then U × X and U are kR-spaces. By Lemma 5, β is
sequentially continuous. The argument from (a) shows that d(β ◦ f )(x, y) exists for all
(x, y) ∈ U × X and is given by (5). Thus d(β ◦ f ) is continuous, by Lemma 8, and thus β ◦ f
is C1

K. Let f be Cr+1
K now and assume β ◦ f is Cr

K with rth differential of the form

dr(β ◦ f )(x, y1, . . . , yr) = ∑
(I1,...,Ir)

β(d|I1| f1(x, yI1), . . . , d|Ik | fk(x, yIk )) (6)

for x ∈ U and y1, . . . , yr ∈ X, where (I1, . . . , Ik) ranges through k-tuples of (possibly empty)
disjoint sets I1, . . . , Ik with I1 ∪ · · · ∪ Ik = {1, . . . , r}, and the following notation is used: For
ν ∈ {1, . . . , k}, we let |Iν| ∈ N0 be the cardinality of Iν and define yIν := (yi1 , . . . , yim) ∈ Xm

if i1 < i2 < · · · < im are the elements of Iν, abbreviating m := |Ij| (if Iν is empty, the symbol
y∅ is to be ignored). Holding y1, . . . , yr fixed, we can apply the case r = 1 to the function
dr f (·, y1, . . . , yr) and find that, for each x ∈ U and yr+1 ∈ X, the directional derivative at x
in the direction yr+1 exists and is given by

dr+1(β ◦ f )(x, y1, . . . , yr+1) = ∑
(I1,...,Ir)

k

∑
ν=1

β
(
d|I1| f1(x, yI1), . . . , d|Iν−1| fν−1(x, yIν−1),

d|Iν |+1 fν(x, yIν , yr+1), d|Iν+1| fν+1(x, yIν+1), . . . , d|Ik | fk(x, yIk )
)
.

Thus, also dr+1(β ◦ f ) is of the form (6), with r + 1 in place of r. Using Lemma 8, we
deduce from the preceding formula that the map

U × E → F, (x, y) �→ dr+1(β ◦ f )(x, y, . . . , y)

is continuous. Thus, dr+1(β ◦ f ) is continuous, by Lemma 2, and thus β ◦ f is Cr+1
K .

If (r,K) = (∞,R), then β ◦ f is Cs
R for each s ∈ N0 and hence C∞

R (still assuming (b)).
If (r,K) = (∞,C) and X is only assumed kR, then β ◦ f is continuous by the case

r = 0. Moreover, the restriction β ◦ f |U∩Y is C∞
C for each finite-dimensional vector subspace

Y ⊆ X, by case (a). Hence, f is Cω
C (and thus C∞

C ) as a mapping to a completion of F (see [18]
(Theorem 6.2)). Then, f is also C∞

C as a map to F, as all of its iterated directional derivatives
are in F.

Both in (a) and (b), it remains to consider the case (r,K) = (ω,R). Then, f admits a
C-analytic extension f̃ : Ũ → (E1)C × · · · × (Ek)C, defined on an open neighbourhood Ũ
of U in XC. The complex k-linear extension βC : (E1)C × · · · × (Ek)C → FC of β is given by

z �→
1

∑
a1,...,ak=0

ia1+···+ak β(x1,a1 , . . . , xk,ak
)

for z = (x1,0 + ix1,1, . . . , xk,0 + ixk,1) with xν,0 ∈ Eν and xν,1 ∈ Eν for ν ∈ {1, . . . , k}. By the
latter formula, βC is sequentially continuous in the situation of (a), and c-hypocontinuous
in its arguments (j, . . . , k) in the situation of (b). The case (∞,C) shows that βC ◦ f̃ is
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complex analytic. As this mapping extends β ◦ f , the latter map is real analytic. In case (b),
we used here that XC

∼= X × X is a kR-space.

Moreover, the following variant will be useful.

Lemma 12. Let X1, X2, E1, E2 and F be locally convex K-vector spaces, and U1 ⊆ X1, U2 ⊆ X2
be open subsets. Let r ∈ N0 ∪ {∞, ω} and β : E1 × E2 → F be a K-bilinear map. Assume that
X1 is finite-dimensional and β is c-hypocontinuous in its first variable. Then, for all Cr

K-maps
f1 : U1 → E1 and f2 : U1 ×U2 → E2, also the following map is Cr

K:

g : U1 ×U2 → F , (x1, x2) �→ β( f1(x1), f2(x1, x2)) .

Proof. We first prove the assertion for r ∈ N0 (from which the case r = ∞ follows). If
r = 0, we have to show that g is continuous. If (x1, x2) ∈ U1 ×U2, then x1 has a compact
neighbourhood W = Wx1 in U1. Then, f1(W) is compact, and thus β| f1(W)×E2

is continuous,
by c-hypocontinuity. Hence, g|W×U2 = β| f1(W)×E2

◦ ( f1 ◦ πW , f2) is continuous, where
πW : W ×U2 → W is the projection onto the first factor. Since (W0

x1
×U2)x1∈U1 is an open

cover of U1 ×U2, the map g is continuous.
Since β is sequentially continuous by Lemma 5, we see as in the preceding proof that

the directional derivative dg(x, y) exists for all x = (x1, x2) ∈ U1 ×U2 and y = (y1, y2) ∈
X1 × X2, and is given by

dg(x, y) = β(d f1(x1, y1), f2(x)) + β( f1(x1), d f2(x, y)) . (7)

Note that (x1, y1) �→ f1(x1) and d f1 are Cr−1
K -mappings U1 × X1 → E1. Moreover,

((x1, y1), (x2, y2)) �→ f2(x1, x2) and ((x1, y1), (x2, y2)) �→ d f2((x1, x2), (y1, y2)) are Cr−1
K -

maps (U1 × X1)× (U2 × X2)→ E2 (cf. Remark 1). By induction, the right-hand side of (7)
is a Cr−1

K -map. Hence, g is Cr
K.

The case (r,K) = (ω,R) follows from the case (∞,C) as in the preceding proof.

Remark 5. In a setting of differential calculus in which continuity on products is replaced with
k-continuity (as championed by E. G. F. Thomas), every bilinear map β which is c-hypocontinuous
in the second factor is smooth (see [28] (Theorem 4.1)); smoothness of β ◦ f for a smooth map f
then follows from the Chain Rule (cf. also [29]). Likewise, β is smooth in the sense of convenient
differential calculus.

5. Differentiability Properties of f∧

For k = 1, the following result is essential for our constructions of vector bundles.

Proposition 2. Let L ∈ {R,C}, r ∈ N0 ∪ {∞, ω}, K ∈ {R,L}, k ∈ N, E1, . . . , Ek and F be
locally convex L-vector spaces, X be a locally convex K-vector space, and U ⊆ X be an open subset.
Then, the following holds.

(a) If (X× E1× · · · × Ek)× (X× E1× · · · × Ek) is a kR-space, or r = 0 and X× E1× · · · × Ek
is a kR-space, or (r,K) = (∞,C) and X × E1 × · · · × Ek is a kR-space, or all of the vector
spaces E1, . . . , Ek are finite dimensional, then

f∧ : U × E1 × · · · × Ek → F , (x, y1, . . . , yk) �→ f (x)(y1, . . . , yk)

is Cr
K for each Cr

K-map f : U → Lk
L(E1, . . . , Ek, F)c.

(b) If E := E1 = E2 = · · · = Ek holds and, moreover, (X× E)× (X× E) is a kR-space or r = 0
and X × E is a kR-space, or (r,K) = (∞,C) and X × E is a kR-space, then

f∧ : U × Ek → F , (x, y1, . . . , yk) �→ f (x)(y1, . . . , yk)

is Cr
K for each Cr

K-map f : U → Lk
L(E, F)c such that f (x) is a symmetric k-linear map for

each x ∈ U.
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(c) If X is finite-dimensional, k = 1, and E := E1 is barrelled, then f∧ : U × E → F, (x, y) �→
f (x)(y) is Cr

K for each Cr
K-map f : U → LL(E, F)c.

(d) If all of the spaces E1, . . . , Ek are normable, then f∧ : U × E1 × · · · × Ek → F is Cr
K for each

Cr
K-map f : U → Lk

L(E1, . . . , Ek, F)b.

Proof. Let ev : Lk
L(E1, . . . , Ek, F)c × E1 × · · · × Ek → F be the evaluation map, which is

c-hypocontinuous in its arguments (2, . . . , k + 1) by Lemma 7.

(a) Assuming the respective kR-property, the map f∧ = ev ◦( f × idE1×···×Ek ) is
Cr
K, by Lemma 11 (b). If E1, . . . , Ek are finite-dimensional, then Lk

L(E1, . . . , Ek, F)c equals
Lk
L(E1, . . . , Ek, F)b, whence the conclusion of (a) is a special case of (d).

(b) By Lemma 11 (b), the map

g : U × E → F, (x, y) �→ f∧(x, y, . . . , y)

is Cr
K, as g = ev ◦( f × δ) with δ : E → Ek, y �→ (y, . . . , y), which is continuous K-linear.

Then, also f∧ is Cr
K, by Lemma 2.

(c) The bilinear map ev : LK(E, F)c × E → F is c-hypocontinuous in its first argument,
by Lemma 7. Hence, f∧ = ev ◦( f × idE) is Cr

K, by Lemma 12.

(d) If E1, . . . , Ek are normable, then the evaluation map

ε : Lk
L(E1, . . . , Ek, F)b × E1 × · · · × Ek → F

is continuous (k + 1)-linear and hence Cr
K, whence also f∧ = ε ◦ ( f × idE1×···×Ek ) is Cr

K.

Remark 6. If X and all of E1, . . . , Ek are metrisable, then the topological space
(X × E1 × · · · × Ek) × (X × E1 × · · · × Ek) is metrisable and hence a k-space. If X and all
of E1, . . . , Ek are kω-spaces, then also (X × E1 × · · · × Ek)× (X × E1 × · · · × Ek) is a kω-space
and hence a k-space. In either case, we are in the situation of (a).

6. Infinite-Dimensional Vector Bundles

In this section, we provide foundational material concerning vector bundles modelled
on locally convex spaces (cf. also [13] (Chapter 3)). Notably, we discuss the description of
vector bundles via cocycles, and define equivariant vector bundles.

Let L ∈ {R,C}, K ∈ {R,L}, and r ∈ N0 ∪ {∞, ω}. The word “manifold” always
refers to a manifold modelled on a locally convex space. Likewise, the Lie groups that we
consider need not have finite dimension.

Definition 5. Let M be a Cr
K-manifold and F be a locally convex L-vector space. An L-vector

bundle of class Cr
K over M, with typical fibre F, is a Cr

K-manifold E, together with a surjective
Cr
K-map π : E → M and endowed with an L-vector space structure on each fibre Ex := π−1({x}),

such that, for each x ∈ M, there exists an open neighbourhood U ⊆ M of x and a Cr
K-diffeomorphism

ψ : π−1(U)→ U × F

(called a “local trivialisation”) such that ψ(Ey) = {y} × F for each y ∈ U and the map
prF ◦ψ|Ey : Ey → F is L-linear (and hence an isomorphism of topological vector spaces, if we
give Ey the topology induced by E), where prF : U × F → F is the projection.

In the situation of Definition 5, let (ψi)i∈I be an atlas of local trivialisations for E, i.e., a
family of local trivialisations

ψi : π−1(Ui)→ Ui × F

of E whose domains Ui cover M. Then, given i, j ∈ I, we have

ψi(ψ
−1
j (x, v)) = (x, gij(x)(v))
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for x ∈ Ui ∩Uj, v ∈ F, for some function

gij : Ui ∩Uj → GL(F) ⊆ L(F).

Here,
Gij : (Ui ∩Uj)× F → F, (x, v) �→ gij(x)(v)

is Cr
K, as ψi(ψ

−1
j (x, v)) = (x, Gij(x, v)) is Cr

K in (x, v) ∈ (Ui ∩Uj)× F. By Proposition 1,

gij : Ui ∩Uj → L(F)c is a Cr
K-map, and as a map to L(F)b, it is at least Cr−1

K (if r ≥ 1). Note
that the “transition maps” gij satisfy the “cocycle conditions”{

(∀i ∈ I) (∀x ∈ Ui) gii(x) = idF and
(∀i, j, k ∈ I) (∀x ∈ Ui ∩Uj ∩Uk) gij(x) ◦ gjk(x) = gik(x) .

Proposition 3. Let L ∈ {R,C}, K ∈ {R,L}. Assume that

(a) M is a Cr
K-manifold modelled on a locally convex K-vector space Z;

(b) E is a set and π : E → M a surjective map;
(c) F is a locally convex L-vector space;
(d) (Ui)i∈I is an open cover of M;
(e) (ψi)i∈I is a family of bijections π−1(Ui)→ Ui × F such that ψi(π

−1({x})) = {x} × F for
all x ∈ Ui;

(f) gij(x)(v) := prF(ψi(ψ
−1
j (x, v))) depends L-linearly on v ∈ F, for all i, j ∈ I, x ∈ Ui ∩Uj;

(g) Gij : (Ui ∩Uj)× F → F, Gij(x, v) := gij(x)(v) is a Cr
K-map.

Then, there is a unique L-vector bundle structure of class Cr
K on E making ψi a local trivialisa-

tion for each i ∈ I.

Proof. For i, j ∈ I, let prij : (Ui ∩Uj)× F → Ui ∩Uj be the projection onto the first compo-
nent. As the maps

ψi ◦ ψ−1
j |(Ui∩Uj)×F = (prij, Gij)

are Cr
K, there is a uniquely determined Cr

K-manifold structure on E making ψi a Cr
K-

diffeomorphism for each i ∈ I. Given x ∈ M, we pick i ∈ I with x ∈ Ui; we give
Ex := π−1({x}) the unique L-vector space structure making the bijection prF ◦ψi|Ex : Ex →
F an isomorphism of vector spaces. It is easy to see that the vector space structure on Ex
is independent of the choice of ψi, and it is easily verified that we have turned E into an
L-vector bundle of class Cr

K with the asserted properties.

Remark 7. Let M be a Cr
K-manifold, F be a locally convex L-vector space, (Ui)i∈I be an open cover

of M, and (gij)i,j∈I be a family of maps gij : Ui ∩Uj → GL(F) satisfying the cocycle conditions
and such that

Gij : (Ui ∩Uj)× F → F , (x, v) �→ gij(x)(v)

is Cr
K, for all i, j ∈ I. Using Proposition 3, the usual construction familiar from the finite-

dimensional case provides an L-vector bundle π : E → M of class Cr
K, with typical fibre F, and a

family (ψi)i∈I of local trivialisations π−1(Ui) → Ui × F, whose associated transition maps are the
given gij’s. The bundle E is unique up to canonical isomorphism.

Combining Proposition 3 and Proposition 2, we obtain:

Corollary 2. Retaining the hypotheses (a)–(f) from Proposition 3 but omitting (g), consider the
following conditions:

(g)′ gij(x) ∈ L(F) for all i, j ∈ I, x ∈ Ui ∩Uj, and gij : Ui ∩Uj → L(F)c is Cr
K;

(g)′′ gij(x) ∈ L(F) for all i, j ∈ I, x ∈ Ui ∩Uj, and gij : Ui ∩Uj → L(F)b is Cr
K;

(i) (Z× F)× (Z× F) is a kR-space, or r = 0 and Z× F is a kR-space, or (r,K) = (∞,C) and
Z× F is a kR-space;
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(ii) dim(M) < ∞ and F is barrelled;
(iii) F is normable.

If (g)′ holds as well as (i) or (ii), then the conclusions of Proposition 3 remain valid. They also
remain valid if (g)′′ and (iii) hold.

Example 2 below shows that Conditions (a)–(f) and (g)′ alone are not sufficient for the
conclusion of Proposition 3, without extra conditions on Z and F. Note that (i) is satisfied if
both Z and F are metrisable, or both Z and F are kω-spaces.

Equivariant vector bundles. Beyond vector bundles, we shall discuss equivariant
vector bundles in the following, i.e., vector bundles together with an action of a (finite- or
infinite-dimensional) Lie group G. Choosing G = {e} as a trivial group, we obtain results
about ordinary vector bundles (without a group action), as a special case.

For the remainder of this section, and also in Section 7, let L ∈ {R,C}, K ∈ {R,L},
s ∈ {∞, ω}, and r ∈ N0 ∪ {∞, ω} with r ≤ s. Let G be a Cs

K-Lie group (modelled on a
locally convex K-vector space Y) and M be a Cr

K-manifold. We assume that a Cr
K-action

α : G× M → M

is given. Then, (M, α) is called a G-manifold of class Cr
K.

Definition 6. An equivariant L-vector bundle of class Cr
K over a G-manifold (M, α) of class

Cr
K is an L-vector bundle π : E → M of class Cr

K, together with a Cr
K-action

β : G× E → E

such that β(g, Ex) ⊆ Eα(g,x) for all (g, x) ∈ G× M, and β(g, ·)|Ex : Ex → Eα(g,x) is L-linear.

In other words, β(g, ·) takes fibres linearly to fibres and coincides with α(g, ·) on the
zero section. The mapping π is then equivariant in the sense that α ◦ (idG ×π) = π ◦ β.

Example 1. If M is a G-manifold of class Cr
K, with r ≥ 1, then the tangent bundle TM is an

equivariant L-vector bundle of class Cr−1
K in a natural way, with L := K. In fact, the action

α : G × M → M has a tangent map Tα : T(G × M) → TM, which is Cr−1
K . Let 0G : G → TG

be the 0-section. Identifying T(G× M) with TG× TM in the usual way, we obtain a Cr−1
K -map

β : G× TM → TM via
β := (Tα) ◦ (0G × idTM) .

It is easy to see that β(g, v) = Tx(α(g, ·))(v) ∈ Tα(g,x)M for g ∈ G and v ∈ Tx M, whence
β(g, Tx M) ⊆ Tα(g,x)M and β(g, ·)|Tx M = Tx(α(g, ·)). Clearly, β is an action making TM an
equivariant K-vector bundle of class Cr−1

K over the G-manifold M.

Induced action on an invariant subbundle. Given an L-vector bundle π : E → M
of class Cr

K, with typical fibre F, we call a subset E0 ⊆ E a subbundle if there exists a
sequentially closed L-vector subspace F0 ⊆ F such that for each x ∈ M there exists a local
trivialisation ψ : π−1(U) → U × F of E such that ψ(E0 ∩ π−1(U)) = U × F0. It readily
follows from [13] (Lemma 1.3.19 and Exercise 2.2.4) that there is a unique L-vector bundle
structure of class Cr

K on π|E0 : E0 → M making ψ|π−1(U)∩E0
: π−1(U) ∩ E0 → U × F0 a

local trivialisation of E0, for each local trivialisation ψ as before. Then, the inclusion map
E0 → E is Cr

K, and a mapping N → E from a Cr
K-manifold N to E with image in E0 is Cr

K
as a mapping to E if and only if its co-restriction to E0 is Cr

K, by the facts just cited. In the
preceding situation, suppose that a Cs

K-Lie group G acts Cs
K on M and E is an equivariant

vector bundle of class Cr
K with respect to the action β : G× E → E. If E0 is invariant under

the G-action, i.e., if β(G × E0) ⊆ E0, as a special case of the preceding observations, we
deduce from the Cr

K-property of β that β|G×E0 and thus also β|G×E0 : G × E0 → E0 is Cr
K.

We can summarise as follows.
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Proposition 4. If E is an equivariant L-vector bundle of class Cr
K over a G-manifold M, then the

action induced on any G-invariant subbundle E0 is Cr
K and thus makes the latter an equivariant

L-vector bundle of class Cr
K.

7. Completions of Vector Bundles

Let π : E → M be an equivariant L-vector bundle of class Cr
K, as in Definition 6, with

typical fibre F and G-actions α : G× M → M and β : G× E → E. Assume that r ≥ 1. Our
goal is to complete the fibre of the bundle, i.e., to find a G-equivariant vector bundle Ẽ
whose typical fibre is a completion of the locally convex space F, and which contains E as a
dense subset.

Let F̃ be a completion of F such that F ⊆ F̃ and, for each x ∈ M, let Ẽx be a completion
of Ex such that Ex ⊆ Ẽx. We may assume that the sets Ẽx are pairwise disjoint for x ∈ M.
Consider the (disjoint) union

Ẽ :=
⋃

x∈M
Ẽx . (8)

We shall turn Ẽ into an equivariant vector bundle. Consider the map β̃ : G × Ẽ →
Ẽ, defined using the continuous extension (β(g, ·)|Ex )̃ : Ẽx → Ẽα(g,x) of the linear map
β(g, ·)|Ex : Ex → Eα(g,x) via

β̃(g, v) := (β(g, ·)|Ex )̃ (v)

for g ∈ G, x ∈ M, and v ∈ Ẽx. It is clear that β̃ makes Ẽ a G-set. Let

π̃ : Ẽ → M (9)

be the map taking elements from Ẽx to x. Then, π̃ is G-equivariant. If ψ : π−1(U)→ U × F
is a local trivialisation of E and prF : U × F → F, (x, y) �→ y, we define

ψ̃ : π̃−1(U)→ U × F̃ , Ẽx  v �→ (x, (prF ◦ψ|Ex )̃ (v)) . (10)

Then, the following holds:

Proposition 5. (Ẽ, β̃) can be made an equivariant L-vector bundle of class Cr−1
K over the G-

manifold M, such that ψ̃ is a local trivialisation of Ẽ for each local trivialisation ψ of E.

Remark 8. Omitting the hypothesis that r ≥ 1, assume instead that E is an equivariant L-vector
bundle of class LCr

K. That is, both E and M are LCr
K-manifolds (each admitting an atlas with

transition maps of class LCr
K), a family of local trivialisations can be chosen with LCr

K-transition
maps, and the G-actions on E and M are LCr

K. Then, also Ẽ is an equivariant vector bundle of class
LCr

K (and hence of class Cr
K).

Extension of differentiable maps to subsets of the completions. To enable the proof
of Proposition 5, we need to discuss conditions ensuring that a Cr-map f : E ⊇ U → F
(with locally convex spaces E and F) can be extended to a Cr-map Ũ → F̃ on an open
subset of the completion Ẽ of E, or at least to a Cr−1-map. Although this is not possible in
general, it is possible if F is normed and r is finite. This will be sufficient for our purposes.
The natural framework for the discussion of the problem is not Cr-maps, but Lipschitz
differentiable maps, as in Definition 4.

Proposition 6. Let E be a locally convex K-vector space, (F, ‖ · ‖) be a Banach space over K,
U ⊆ E be open and f : U → F be an LCr

K-map, where r ∈ N0. Let Ẽ be a completion of E such that
E ⊆ Ẽ. Then, f extends to an LCr

K-map f̃ : Ũ → F on an open subset Ũ ⊆ Ẽ which contains U as
a dense subset.

The following lemma enables an inductive proof of Proposition 6.
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Lemma 13. Let k ∈ N, X be a locally convex K-vector space, and E1, . . . , Ek, F be locally convex
L-vector spaces, with completions X̃, Ẽ1, . . . , Ẽk and F̃, respectively. Let U ⊆ X be open and
f : U × E1 × · · · × Ek → F be a map such that f∨(x) := f (x, ·) : E1 × · · · × Ek → F is k-linear
over L for each x ∈ U. Assume that there exists an LCr

K-map h : W → F̃ which extends f , defined
on an open set W ⊆ X̃ × Ẽ1 × · · · × Ẽk in which U × E1 × · · · × Ek is dense. Then, there exists
an LCr

K-map
f̃ : Ũ × Ẽ1 × · · · × Ẽk → F̃ (11)

which extends f , for some open subset Ũ ⊆ Ẽ in which U is dense. The maps ( f̃ )∨(x) :=
f̃ (x, ·) : Ẽ1 × · · · × Ẽk → F̃ are k-linear over L, for each x ∈ Ũ.

Proof. For each x ∈ U, there exists an open neighbourhood Vx of x in X̃ and a balanced,
open 0-neighbourhood Qx ⊆ Ẽ1 × · · · × Ẽk such that Vx ×Qx ⊆ W. After shrinking Vx, we
may assume that X ∩Vx = U, whence U ∩Vx = X ∩Vx is dense in Vx. Given z ∈ L such
that |z| ≤ 1, consider the map

Vx ×Qx → F̃ , (y, v) �→ h(y, zv)− zkh(y, v) .

This map vanishes, because it is continuous and vanishes on the dense subset
(Vx ∩ X)× (Qx ∩ (E1 × · · · × Ek)). As a consequence, we obtain a well-defined map

fx : Vx × Ẽ1 × · · · × Ẽk → F̃ , (y, v) �→ z−kh(y, zv)

for y ∈ Vx, v ∈ Ẽ1 × · · · × Ẽk and z ∈ L \ {0} with zv ∈ Qx. As fx(y, v) = z−kh(y, zv) is
LCr

K in (y, v) ∈ Vx × z−1Qx and these sets form an open cover of Vx × Ẽ1 × · · · × Ẽk, we
see that fx is LCr

K. Given x, y ∈ U, the set U ∩Vx ∩Vy = X ∩Vx ∩Vy is dense in the open
set Vx ∩ Vy ⊆ X̃. Since fx, fy, and f coincide on the set (U ∩ Vx ∩ Vy)× E1 × · · · × Ek, it
follows that the continuous maps fx and fy coincide on the set (Vx ∩Vy)× Ẽ1 × · · · × Ẽk in
which the former set is dense. Hence, setting Ũ :=

⋃
x∈U Vx, a well-defined map f̃ as in (11)

is obtained if we set

f̃ (y, v) := fx(y, v) if x ∈ U, y ∈ Vx and v ∈ Ẽ1 × · · · × Ẽk.

The final assertion follows by continuity from the k-linearity of the mappings f∨(x)
for x ∈ U.

Proof of Proposition 6. We proceed by induction on r ∈ N0.
The case r = 0. Given x ∈ U, there exists a continuous seminorm q on E such that

Bq
1(x) ⊆ U and

‖ f (z)− f (y)‖ ≤ q(z− y) for all y, z ∈ Bq
1(x). (12)

Then, Nq := {y ∈ E : q(y) = 0} is a closed vector subspace of E and ‖y + Nq‖q := q(y)
for y ∈ E defines a norm on Eq := E/Nq making the map αq : E → Eq, y �→ y + Nq

continuous linear. By (12), we have ‖ f (z) − f (y)‖ = 0 for all y, z ∈ Bq
1(x) such that

y− z ∈ Nq. Hence,
h : αq(Bq

1(x))→ F , y + Nq �→ f (y)

is a well-defined map. Note that αq(Bq
1(x)) is the open ball B := {y ∈ Eq : ‖y− αq(x)‖q < 1}

in Eq. Let Ẽq be the completion of the normed space Eq; the extended norm will again be
denoted by ‖.‖q. Applying (12) to representatives, we see that

‖h(z)− h(y)‖ ≤ ‖z− y‖q for all y, z ∈ B.

Hence, h satisfies a global Lipschitz condition (with Lipschitz constant 1), and hence h is
uniformly continuous, entailing that h extends uniquely to a uniformly continuous map

h̃ : B̃ → F
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on the corresponding open ball B̃ in Ẽq. Then, ‖h̃(z)− h̃(y)‖ ≤ ‖z− y‖q for all y, z ∈ B̃, by
continuity. Let α̃q : Ẽ → Ẽq be the continuous extension of the continuous linear map αq.
Then, Vx := (α̃q)−1(B̃) is an open neighbourhood of x in Ẽ such that Vx ∩ E = Bq

1(x) ⊆ U.
Moreover, fx := h̃ ◦ α̃q|Vx is a continuous map extending f |Vx∩E, which furthermore satisfies

‖ fx(z)− fx(y)‖ ≤ q̃(z− y) for all y, z ∈ Vx, (13)

where we use the continuous seminorm q̃ := ‖.‖q ◦ α̃q : Ẽ → [0, ∞[ extending q. Then

Ũ :=
⋃

x∈U
Vx

is an open subset of Ẽ and E ∩ Ũ = U is dense in Ũ. Given x, y ∈ U, the set U ∩Vx ∩Vy =

E ∩Vx ∩Vy is dense in the open set Vx ∩Vy ⊆ Ẽ. Since

fx|U∩Vx∩Vy = f |U∩Vx∩Vy = fy|U∩Vx∩Vy ,

it follows that fx|Vx∩Vy = fy|Vx∩Vy . Hence

f̃ : Ũ → F , z �→ fx(z) for x ∈ U such that z ∈ Vx

is a well-defined map. Since f̃ |Vx = fx is LC0
K for each x ∈ U (by (13)), the map f̃ is LC0

K.
Furthermore, f̃ extends f by construction.

Induction step. If f is LCr+1
K , then f extends to an LC0

K-map f̃ : Ũ → F on an open
subset Ũ ⊆ Ẽ such that Ũ ∩ E = U, and d f : U × E → F extends to an LCr

K-map h : W → F
on an open subset W of Ẽ× Ẽ, by induction. Using Lemma 13, we find an open neighbour-
hood V of U in Ẽ and an LCr

K-map g : V × Ẽ → F which extends d f . After replacing Ũ
and V with their intersection, we may assume that Ũ = V. If x0 ∈ Ũ and y0 ∈ Ẽ, there exist
open neighbourhoods Q of x0 and P of y0 in Ẽ, and ε > 0 such that Q +DεP ⊆ Ũ. Then,
the map

� : Q× P×Dε → F, (x, y, t) �→
∫ 1

0
g(x + sty, y) ds

is continuous, being given by a parameter-dependent weak integral with continuous
integrand. For (x, y, t) in the dense subset (Q ∩ E) × (P ∩ E) × (Dε \ {0}) of the set
Q× P× (Dε \ {0}), the Mean Value Theorem implies that

�(x, y, t) =
f (x + ty)− f (x)

t
=

f̃ (x + ty)− f̃ (x)
t

.

Then, �(x, y, t) = f̃ (x+ty)− f̃ (x)
t for all (x, y, t) ∈ Q× P× (Dε \ {0}), by continuity. Thus,

f (x0 + ty0)− f (x0)

t
= �(x0, y0, t) → �(x0, y0, 0) = g(x0, y0)

as t → 0. Hence, d f̃ (x0, y0) = g(x0, y0). Since g is LCr
K, it follows that f̃ is LCr+1

K .

The conclusion of Proposition 6 becomes false in general if the Banach space F is
replaced by a complete locally convex space. In fact, there exists a smooth map E → (�1)Ω

from a proper, dense vector subspace E of �1 to a suitable power of �1, which has no
continuous extension to E ∪ {x} for any x ∈ �1 \ E (see Appendix B). Nonetheless, we have
the following result.

Proposition 7. Let k ∈ N, X be a locally convex K-vector space, and E1, . . . , Ek, F be locally
convex L-vector spaces, with completions X̃, Ẽ1, . . . , Ẽk and F̃, respectively. Let U ⊆ X be open
and f : U × E1 × · · · × Ek → F be a mapping such that f∨(x) := f (x, ·) : E1 × · · · × Ek → F
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is k-linear over L for each x ∈ U. If f is LCr
K for some r ∈ N0 ∪ {∞} (resp., Cr

K for some
r ∈ N∪ {∞, ω}), then there exists a unique map

f̃ : U × Ẽ1 × · · · × Ẽk → F̃ (14)

which is LCr
K (resp., Cr−1

K ) and extends f . The maps f̃∨(x) := f̃ (x, ·) : Ẽ1 × · · · × Ẽk → F̃ are
k-linear over L, for each x ∈ U.

Proof. Abbreviate E := E1 × · · · × Ek and Ẽ := Ẽ1 × · · · × Ẽk. Assume first that r �= ω.
Since LCr

K-maps are continuous and U × E is dense in U × Ẽ, there is at most one map f̃
with the asserted properties. We may therefore assume that r ∈ N0. We may also assume
that F is complete. Then, F = lim

←−
Fj for some projective system ((Fj)j∈J , (pij)i≤j) of Banach

spaces Fj and continuous linear maps pij : Fj → Fi, with limit maps pj : F → Fj. We claim
that pj ◦ f : U × E → Fj has an LCr

K-extension gj := (pj ◦ f )̃ : U × Ẽ → Fj, for each j ∈ J. If
this is true, then pij ◦ gj = gi for i ≤ j, by uniqueness of continuous extensions. Hence, by
the universal property of the projective limit, there exists a unique map f̃ : U × Ẽ → F such
that pj ◦ f̃ = gj. Then, pj ◦ f̃ |U×E = gj|U×E = pj ◦ f and hence f̃ |U×E = f . Furthermore, f̃
is LCr

K, by Lemma 9 (d). To prove the claim, note that Proposition 6 yields an LCr
K-extension

hj : Wj → Fj of pj ◦ f to an open subset Wj ⊆ X̃× Ẽ, which contains U× E as a dense subset.
Now, Lemma 13 yields an open subset Uj ⊆ X̃ in which U is dense, and an LCr

K-extension
ej : Uj × Ẽ → Fj of pj ◦ f . Then, gj := ej|U×Ẽ is as desired.

We now consider the case (r,K) = (ω,R). If L = C, by the density of U × E in U × Ẽ,
for any real analytic extension f̃ : U × Ẽ → F̃ and x ∈ U, the map f̃ (x, ·) will be k-linear
over L. We may therefore assume that L = R. Let h : W → FC be a C-analytic extension
of f , defined on an open subset W ⊆ XC × EC such that U × E ⊆ W. For each x ∈ U, there
exist an open x-neighbourhood Ux ⊆ U and balanced open 0-neighbourhoods Vx ⊆ X
and Wx ⊆ EC such that (Ux + iVx) ×Wx ⊆ W. We claim that there exists a C-analytic
map gx : (Ux + iVx)× EC → FC such that gx|Ux×E = f |Ux×E. For x, y ∈ U, the intersection
((Ux + iVx)× EC) ∩ ((Uy + iVy)× EC) = ((Ux ∩Uy) + i(Vx ∩Vy))× EC is connected and
meets U × E whenever it is non-empty. Hence, by the Identity Theorem, gx and gy coincide
on the intersection of their domains. We therefore obtain a well-defined C-analytic map
g : Q × EC → FC such that g|(Ux+iVx)×EC

= gx for each x ∈ U, using the open subset
Q :=

⋃
x∈U(Uj + iVj) of XC. For each x ∈ U, the map g(x, ·)|E = gx(x, ·)|E = f (x, ·) is

k-linear over R. Using the Identity Theorem, we see that g(x, ·) is k-linear over C for each
x ∈ U, and hence for each x ∈ Q by the Identity Theorem. By the case (∞,C), g has a
C-analytic extension g̃ : Q× ẼC → F̃C. Since g(U × E) = f (U × E) ⊆ F ⊆ F̃ and U × E is
dense in U × Ẽ, we deduce that g̃(U × Ẽ) ⊆ F̃; we therefore obtain a map

f̃ : U × Ẽ → F̃, (x, y) �→ g̃(x, y)

for x ∈ U, y ∈ Ẽ. Since g̃ is a C-analytic extension for f̃ , the function f̃ is R-analytic. To
prove the claim, consider for x ∈ U and n ∈ N the C-analytic map

gx,n : (Ux + iVx)× nWx → FC, (z, y) �→ nkh(z, (1/n)y).

If n ≤ m and y ∈ nWx ∩ E, we have for all z ∈ Ux

gx,m(z, y) = mkh(z, (1/m)y) = mk f (z, (1/m)y) = f (z, y) = nk f (t, (1/n)y) = gx,n(z, y),

whence gx,m(z, y) = gx,n(z, y) for all z ∈ Ux + iVx and y ∈ nWx, by the Identity Theorem.
Thus, gx : (Ux + iVx)× EC → FC, (z, y) �→ gx,n(z, y) if y ∈ nWx is a well-defined C-analytic
extension of f |Ux×E.

Proof of Proposition 5. It suffices to prove the strengthening described in Remark 8. Let
(ψi)i∈I be a family of local trivialisations ψi : π−1(Ui)→ Ui × F of an LCr

K-vector bundle E
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such that each local trivialisation is some ψi. Let (gij)i,j∈I be the corresponding cocycle and
Gij be the LCr

K-map g∧ij : (Ui ∩Uj)× F → F, which is L-linear in the second argument. By

Proposition 7, there is a unique LCr
K-map G̃ij : U × F̃ → F̃ which extends Gij, and G̃ij is

L-linear in the second argument. Thus, we obtain a map

g̃ij : Ui ∩Uj → LL(F̃), x �→ G̃ij(x, ·).

By continuity and density, for all i ∈ I, we have G̃ii(x, y) = y for all (x, y) ∈ Ui × F̃.
Thus, g̃ii(x) = idF̃ for all x ∈ U. For all i, j, k ∈ I, we have

G̃ij(x, G̃jk(x, y)) = G̃ik(x, y) for all (x, y) ∈ (Ui ∩Uj ∩Uk)× F̃,

as both sides are continuous in (x, y) and equality holds for y in the dense subset F of F̃; thus,
g̃ij(x) ◦ g̃jk(x) = g̃ik(x). Notably, g̃ij(x) ◦ g̃ji(x) = g̃ii(x) = idF̃ for all x ∈ U and i, j ∈ I,
entailing that g̃ij(x) ∈ GL(F̃). By the preceding, the g̃ij satisfy the cocycle conditions. Let Ẽ
and π̃ be as in (8) and (9); define ψ̃i : π̃−1(Ui)→ Ui × F̃ as in (10), replacing ψ with ψi. For
all i, j ∈ I and x ∈ U, we then have that

ψ̃i(ψ̃
−1
j (x, y)) = (x, G̃ij(x, y))

holds for all y ∈ F̃, as equality holds for all y ∈ F. As an analogue of Proposition 3 holds
with LCr

K-maps in place of Cr
K-maps, we get a unique L-vector bundle structure of class

LCr
K on Ẽ making ψ̃i a local trivialisation for each i ∈ I.

It is apparent that β̃ : G × Ẽ → Ẽ is an action, and Ẽx is taken L-linearly to Ẽα(g,x)

by β̃(g, ·), for each g ∈ G and x ∈ M. It only remains to show that β̃ is LCr
K. To this

end, let g0 ∈ G and x0 ∈ M; we show that β̃ is LCr
K on U × π̃−1(V) for some open

neighbourhood U of g0 in G and an open neighbourhood V of x0 in M. Indeed, there exists
a local trivialisation ψ : π−1(W)→ W × F of E over an open neighbourhood W of α(g0, x0)
in M. The action α being continuous, we find an open neighbourhood U of g0 in G and an
open neighbourhood V of x0 in M over which E is trivial, such that α(U × V) ⊆ W. Let
φ : π−1(V)→ V × F be a local trivialisation of E over V. Then,

φ(β(g−1, ψ−1(α(g, x), v))) = (x, A(g, x, v)) for all g ∈ U, x ∈ V, and v ∈ F,

for an LCr
K-map A : U×V× F → F, which isL-linear in the third argument. By Proposition 7,

there is a unique extension of A to an LCr
K-map

Ã : U ×V × F̃ → F̃,

and the latter is L-linear in its third argument. For all g ∈ U and x ∈ V, we then have

φ̃(β̃(g−1, ψ̃−1(α(g, x), v))) = (x, Ã(g, x, v))

for all v ∈ F̃, as equality holds for all v ∈ F. Thus, β̃ is LCr
K.

8. Tensor Products of Vector Bundles

Throughout this section, let L ∈ {R,C}, K ∈ {R,L}, s ∈ {∞, ω}, and r ∈ N0 ∪ {∞, ω}
such that r ≤ s. Let G be a Cs

K-Lie group modelled on a locally convex K-vector space Y, M
be a Cr

K-manifold modelled on a locally convex K-vector space Z, and α : G× M → M be a
Cr
K-action. For k ∈ {1, 2}, let πk : Ek → M be an equivariant L-vector bundle of class Cr

K
over M, whose typical fibre is a locally convex L-vector space Fk. Let βk : G × Ek → Ek
be the G-action of class Cr

K. Consider the set A of all pairs of local trivialisations of E1
and E2 trivialising these over the same open subset of M. Using an index set I, we have
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A = {(ψ1
i , ψ2

i ) : i ∈ I}, where ψk
i : π−1

k (Ui) → Ui × Fk is a local trivialisation of Ek for
k ∈ {1, 2}, for each i ∈ I. Apparently, (Ui)i∈I is an open cover of M.

For our first result concerning tensor products, Proposition 8, we assume that F1 is
finite-dimensional. Then, fixing a basis e1, . . . , en for F1, the map θ : (F2)

n → F1 ⊗L F2,
(y1, . . . , yn) �→ ∑n

τ=1 eτ ⊗ yτ is an isomorphism of L-vector spaces. We give F1 ⊗L F2 the
topology T , making θ a homeomorphism. This topology makes F1 ⊗L F2 a locally convex
L-vector space and θ an isomorphism of topological L-vector spaces. It is easy to check
(and well known) that the topology T is independent of the chosen basis. Let e∗1, . . . , e∗n ∈ F′1
be the basis dual to e1, . . . , en. Our goal is to make the union

E1 ⊗ E2 :=
⋃

x∈M
(E1)x ⊗L (E2)x

an equivariant L-vector bundle of class Cr
K over M, with typical fibre F1 ⊗L F2; the tensor

products (E1)x ⊗L (E2)x are chosen pairwise disjoint here for x ∈ M. Let π : E1 ⊗ E2 → M
be the mapping which takes v ∈ (E1)x ⊗L (E2)x to x.

We define ψi : π−1(Ui)→ Ui × (F1 ⊗L F2) via

ψi(v) := (x, ((prF1
◦ψ1

i |(E1)x )⊗ (prF2
◦ψ2

i |(E2)x ))(v))

for x ∈ Ui and v ∈ (E1)x ⊗L (E2)x, where prFk
: M× Fk → Fk is the projection.

Given i, j ∈ I and x ∈ Ui ∩ Uj, we have ψk
i ((ψ

k
j )
−1(x, v)) = (x, Gk

ij(x, v)) for all

k ∈ {1, 2} and v ∈ Fk, where Gk
ij : (Ui ∩Uj)× Fk → Fk is Cr

K and gk
ij(x) := Gk

ij(x, ·) an L-

linear mapping. Then, cσ,τ : Ui ∩Uj → K, x �→ e∗σ(G1
ij(x, eτ)) is Cr

K, and ψi((ψj)
−1(x, v)) =

(x, Gij(x, v)) for x ∈ Ui ∩Uj and v = ∑n
τ=1 eτ ⊗ vτ ∈ F1 ⊗L F2, where

Gij(x, v) = (g1
ij(x)⊗ g2

ij(x))(v) =
n

∑
τ=1

(g1
ij(x)eτ)⊗ (g2

ij(x)vτ)

=
n

∑
σ,τ=1

eσ ⊗ (cσ,τ(x)g2
ij(x)vτ) = θ

((
n

∑
τ=1

cσ,τ(x)G2
ij(x, vτ)

)n

σ=1

)
.

As F1 ⊗L F2 → F2, v �→ vτ = prτ(θ
−1(v)) is a continuous linear map (where prτ :

(F2)
n → F2 is the projection onto the τ-component), in view of the preceding formula Gij

is Cr
K. Thus, by Proposition 3, there is a unique L-vector bundle structure of class Cr

K on
E1 ⊗ E2 making each ψi a local trivialisation.

Note that β : G× (E1 ⊗ E2) → E1 ⊗ E2, (g, v) �→ (β1(g, ·)|Eα(g,x)
(E1)x

⊗ β2(g, ·)|(E2)α(g,x)
(E2)x

)(v)
for g ∈ G, x ∈ M, v ∈ (E1 ⊗ E2)x defines an action of G on E1 ⊗ E2 by L-linear mappings,
which makes π : E1 ⊗ E2 → M an equivariant mapping and such that β(g, ·) is L-linear on
(E1)x ⊗L (E2)x for all g ∈ G and x ∈ M.

To show that β is Cr
K, let g0 ∈ G and x0 ∈ M. We pick i ∈ I such that α(g0, x0) ∈ Ui.

The mapping α being continuous, we find open neighbourhoods U of g0 in G and V of x0
in M such that α(U ×V) ⊆ Ui. There is j ∈ I such that x0 ∈ Uj ⊆ V. For k ∈ {1, 2}, g ∈ U,
x ∈ Uj and v ∈ Fk, we have

ψk
i (βk(g, (ψk

j )
−1(x, v))) = (α(g, x), ak(g, x, v))

for some Cr
K-map ak : U ×Uj × Fk → Fk, which is L-linear in the final argument. Define

bσ,τ : U × Uj → L, (g, x) �→ e∗σ(a1(g, x, eτ)); then, bσ,τ is Cr
K. If g ∈ U, x ∈ Uj and

v = ∑n
τ=1 eτ ⊗ vτ ∈ F1 ⊗L F2, then ψi(β(g, ψ−1

j (x, v))) equals(
α(g, x),

n

∑
τ=1

a1(g, x, eτ)⊗ a2(g, x, vτ)

)
=

(
α(g, x), θ

((
n

∑
τ=1

bσ,τ(g, x)a2(g, x, vτ)

)n

σ=1

))
,

95



Axioms 2022, 11, 221

which is a Cr
K-function of (g, x, v). As a consequence, β|U×π−1(Uj)

is Cr
K and thus β, being Cr

K
locally, is Cr

K. We summarise as follows.

Proposition 8. Let G be a Cs
K-Lie group and M be a G-manifold of class Cr

K. Let E1 and E2 be
equivariant L-vector bundles of class Cr

K over M. If the typical fibre of E1 is finite-dimensional,
then E1 ⊗ E2, as defined above, is an equivariant L-vector bundle of class Cr

K over M.

Instead of dim(F1) < ∞ (as before) assume that F1 and F2 are Fréchet spaces and the
modelling spaces of G and M are metrisable. The completed projective tensor product

F := F1⊗̂π F2

over L then is a Fréchet space (cf. [30] (p. 438, lines after Definitions 43.4)). We define

E := E1⊗̂πE2 :=
⋃

x∈M
(E1)x⊗̂π(E2)x,

where the (E1)x⊗̂π(E2)x for x ∈ M are chosen pairwise disjoint. Let π : E → M be the map
taking v ∈ Ex := (E1)x⊗̂π(E2)x to x. Define ψi : π−1(Ui)→ Ui × (F1⊗̂π F2) via

ψi(v) :=
(
x, ((prF1

◦ψ1
i |(E1)x )⊗̂π(prF2

◦ψ2
i |(E2)x ))(v)

)
for x ∈ Ui and v ∈ (E1)x⊗̂π(E2)x, where prFk

: M × Fk → Fk is the projection. Note that
β : G× E → E, (g, v) �→ (β1(g, ·)|(E1)x ⊗̂π β2(g, ·)|(E2)x )(v) for g ∈ G, x ∈ M, v ∈ Ex defines
an action of G on E which makes π : E → M an equivariant mapping. We show:

Proposition 9. π : E1⊗̂πE2 → M admits a unique structure of equivariant L-vector bundle of
class Cr

K over M such that ψi is a local trivialisation for each i ∈ I.

Proof. The uniqueness for prescribed local trivialisations is clear. Let us show the existence
of the structure. Given i, j ∈ I and x ∈ Ui ∩Uj, we have ψk

i ((ψ
k
j )
−1(x, v)) = (x, Gk

ij(x, v))

for all k ∈ {1, 2} and v ∈ Fk, where Gk
ij : (Ui ∩Uj)× Fk → Fk is Cr

K and gk
ij(x) := Gk

ij(x, ·) an

L-linear mapping. By Proposition 1 (a), the map gk
ij : Ui ∩Uj → L(Fk)c is Cr

K. Now,

LL(F1)c × LL(F2)→ LL(F1⊗̂π F2)c, (S, T) �→ S⊗̂πT

being continuous L-bilinear (as recalled in Lemma 14), we deduce that

gij : Ui ∩Uj → LL(F1⊗̂π F2)c, x �→ g1
ij(x)⊗̂π g2

ij(x)

is Cr
K. Hence, Gij := g∧ij : (Ui ∩Uj)× (F1⊗̂π F2) → F1⊗̂π F2, (x, v) �→ gij(x)(v) is Cr

K, by

Proposition 2 (a). We easily check that ψi((ψj)
−1(x, v)) = (x, Gij(x, v)) holds for Gij as just

defined, for all x ∈ Ui ∩Uj and v ∈ F1⊗̂π F2. Hence, E1⊗̂πE2 can be made an L-vector
bundle of class Cr

K in such a way that each ψi is a local trivialisation, by Proposition 3.
Note that β(g, ·) is L-linear on Ex for all g ∈ G and x ∈ M. To show that β is Cr

K, let g0,
x0, i, U, V, j and the Cr

K-map ak be as in the proof of Proposition 8. By Proposition 1 (a),
a∨k : U ×Uj → L(Fk)c, (g, x) �→ ak(g, x, ·) is Cr

K. Hence,

a : U ×Uj → L(F1⊗̂π F2)c, (g, x) �→ a∨1 (g, x)⊗̂πa∨2 (g, x)

is Cr
K, by the Chain Rule and Lemma 14. Using Proposition 2 (a), we find that the map

a∧ : U × Uj × (F1⊗̂π F) → F1⊗̂π F2, (g, x, v) �→ a(g, x)(v) is Cr
K. We easily verify that

ψi(β(g, (ψj)
−1(x, v))) = (α(g, x), a∧(g, x, v)) for all (g, x, v) ∈ U ×Uj × (F1⊗̂π F2). Thus,

ψi(β(g, (ψj)
−1(x, v))) is Cr

K in (g, x, v), which completes the proof.
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We used the following fact:

Lemma 14. Let E1, E2, F1, and F2 be Fréchet spaces over L ∈ {R,C}. Then, the following bilinear
map is continuous:

Ξ : LL(E1, F1)c × LL(E2, F2)c → LL((E1⊗̂πE2), (F1⊗̂π F2))c, (S1, S2) �→ S1⊗̂πS2.

Proof. Let K ⊆ E1⊗̂E2 be compact, q be a continuous seminorm on F1⊗̂π F2, and ε > 0.
After increasing q, we may assume that q = q1 ⊗ q2 for continuous seminorms qk on Fk
for k ∈ {1, 2}. By [30] (p. 465, Corollary 2 to Theorem 45.2), K is contained in the closed,
absolutely convex hull of K1 ⊗ K2 for certain compact subsets Kk ⊆ Ek for k ∈ {1, 2}. For
all Sk ∈ L(Ek, Fk) such that sup qk(Sk(Kk)) ≤

√
ε, we have

sup q((S1⊗̂πS2)(K)) ≤ sup q((S1⊗̂πS2)(K1 ⊗ K2)) = sup q1(S1(K1))q2(S2(K2)) ≤
√

ε
2
= ε,

using [30] (Proposition 43.1). The assertion follows.

Remark 9. If E1 and E2 are Hilbert spaces over L with Hilbert space tensor product E1⊗̂E2, and
also F1 and F2 are Hilbert spaces over L, then the bilinear map

Ξ : L(E1, F1)b × L(E2, F2)b → L((E1⊗̂E2), (F1⊗̂F2))b

is continuous, as ‖S1⊗̂S2‖op ≤ ‖S1‖op‖S2‖op.

Replace the hypotheses in Proposition 9 with the requirements that G and M are
modelled on metrisable locally convex spaces, r ≥ 1 and F1, F2 are Hilbert spaces. We
now use Remark 9 instead of Lemma 14, replace F1⊗̂π F2 with the Hilbert space F1⊗̂F2,
Proposition 1 (a) with Proposition 1 (b) (so that operator-valued maps are only Cr−1

K ) and
use Proposition 2 (b) with r− 1 in place of r. Repeating the proof of Proposition 9, we get:

Proposition 10. On E1⊗̂E2 =
⋃

x∈M(E1)x⊗̂(E2)x, there is a unique equivariant L-vector bun-
dle structure of class Cr−1

K over M whose typical fibre is the Hilbert space F1⊗̂F2, such that
ψi : π−1(Ui)→ Ui × (F1⊗̂F2) is a local trivialisation for each i ∈ I.

Remark 10. If r ≥ 1, G and M are modelled on metrisable spaces and both F1 and F2 are pre-
Hilbert spaces with Hilbert space completions F̃1 and F̃2, we can use the non-completed tensor
product F1 ⊗L F2 ⊆ F̃1⊗̂F̃2 with the induced topology as the fibre and get an equivariant L-vector
bundle structure over M of class Cr−1

K over M on E1 ⊗ E2 =
⋃

x∈M(E1)x ⊗L (E2)x, exploiting
that the L-bilinear map LL(F1)b × LL(F2)b → LL(F1 ⊗L F2)b, (S1, S2) �→ S1 ⊗ S2 is continuous.

9. Locally Convex Direct Sums of Vector Bundles

Let L ∈ {R,C}, K ∈ {R,L}, s ∈ {∞, ω}, r ∈ N0 ∪ {∞, ω} such that r ≤ s, G be a
Cs
K-Lie group modelled on a locally convex space Y, and M be a Cr

K-manifold modelled on
a locally convex K-vector space Z, together with a Cr

K-action α : G× M → M.
Let n ∈ N and πk : Ek → M be an equivariant L-vector bundle of class Cr

K over M for
k ∈ {1, . . . , n}, with typical fibre a locally convex L-vector space Fk; let βk : G× Ek → Ek be
the G-action and prFk

: M× Fk → Fk be the projection onto the second component. We easily
check that there is a unique L-vector bundle structure of class Cr

K on the “Whitney sum”

E := E1 ⊕ · · · ⊕ En :=
⋃

x∈M
(E1)x × · · · × (En)x,

with the apparent map π : E → M, such that ψ : π−1(U) → U × F1 × · · · × Fn, v =
(v1, . . . , vn) �→ (π(v), prF1

(ψ1(v1)), . . . , prFn
(ψn(vn))) is a local trivialisation of E, for all

families (ψk)
n
k=1 of local trivialisations ψk : (πk)

−1(U) → U × Fk, which trivialise the Eks
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over a joint open subset U of M. Then, β(g, v) := (β1(g, v1), . . . , βn(g, vn)) for g ∈ G,
v = (v1, . . . , vn) ∈ E yields an action of G on E. It is straightforward that β is Cr

K. Thus,

Proposition 11. If E1, . . . , En are equivariant L-vector bundles of class Cr
K over a G-manifold M

of class Cr
K, then also E1 ⊕ · · · ⊕ En is an equivariant L-vector bundle of class Cr

K over M.

The following lemma allows infinite direct sums to be tackled.

Lemma 15. Let (Ei)i∈I and (Fi)i∈I be families of locally convex spaces over K ∈ {R,C}, with
locally convex direct sums E :=

⊕
i∈I Ei and F :=

⊕
i∈I Fi, respectively. Let V be an open subset of

a locally convex K-vector space Z. Let r ∈ N0 ∪ {∞}, and assume that fi : V × Ei → Fi is a map
which is linear in the second argument, for each i ∈ I. Moreover, assume that (a) or (b) holds:

(a) Z is finite-dimensional; or
(b) Z and each Ei is a kω-space and I is countable.

If fi is of class Cr
K for each i ∈ I, then also the following map is Cr

K:

f : V × E → F , (x, (vi)i∈I) �→ ( fi(x, vi))i∈I .

Proof. If (b) holds, we may assume that I is countably infinite, excluding a trivial case.
Thus, assume that I = N. For each n ∈ N, identify E1 × · · · × En with a vector subspace of
E, identifying x ∈ E1 × · · · × En with (x, 0). For each n ∈ N, we then have

Z× E =
⋃

n∈N
(Z× E1 × · · · × En) and V × E =

⋃
n∈N

(V × E1 × · · · × En),

where Z× E1 × · · · × En is a kω-space in the product topology. The inclusion map

λn : F1 × · · · × Fn →
⊕
i∈N

Fi, v �→ (v, 0)

is continuous and K-linear. Moreover,

gn : V × E1 × · · · × En → F1 × · · · × Fn, (x, v1, . . . , vn) �→ ( f1(x, v1), . . . , fn(x, vn))

is a Cr
K-map and so is f |V×E1×···×En = λn ◦ gn, for each n ∈ N. Hence, f is Cr

K on the open
subset V × E of Z× E, considered as the locally convex direct limit lim

−→
(Z× E1 × · · · × En),

by [31] (Proposition 4.5 (a)). This locally convex space equals Z × lim
−→

(E1 × · · · × En) =

Z× E with the product topology (see [32] (Theorem 3.4)).
If (a) holds, it suffices to prove the assertion for r ∈ N0. We proceed by induction. The

case r = 0. Let (x, v) = (x, (vi)i∈I) ∈ V × E; we show that f is continuous at (x, v). To this
end, let Q be an absolutely convex, open 0-neighbourhood in F. There is a finite subset
J ⊆ I such that vi = 0 for all i ∈ I \ J. Let N := |J|+ 1. For each i ∈ I, the intersection
Qi := ( 1

N Q) ∩ Fi is an absolutely convex, open 0-neighbourhood in Fi. For the absolutely
convex hull, we get absconv(

⋃
i∈I Qi) ⊆ 1

N Q. Since fi is continuous for each i ∈ J and J
is finite, we find a compact neighbourhood K of x in V such that fi(y, vi)− fi(x, vi) ∈ Qi
for all y ∈ K and i ∈ J. Since fi(K× {0}) = {0}, where K is compact and fi is continuous,
for each i ∈ I, there is an absolutely convex, open 0-neighbourhood Pi in Ei such that
fi(K × Pi) ⊆ Qi. Then, W := v + absconv(

⋃
i∈I Pi) is an open neighbourhood of v in E.

Let y ∈ K and w ∈ W be given, say w = (wi)i∈I = v + (ti pi)i∈I , where pi ∈ Pi and
(ti)i∈I ∈

⊕
i∈I R such that ti ∈ [0, 1] and ∑i∈I ti = 1. Then, for each i ∈ I \ J, since vi = 0,

we obtain
fi(y, wi)− f (x, vi) = fi(y, ti pi) = ti fi(y, pi) ∈ tiQi .
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For i ∈ J, on the other hand, we have

fi(y, wi)− f (x, vi) = fi(y, wi − vi) + ( fi(y, vi)− fi(x, vi))

= ti fi(y, pi) + ( fi(y, vi)− fi(x, vi)) ∈ tiQi + Qi.

As a consequence, f (y, w)− f (x, v) ∈ (∏i∈I tiQi) + ∑i∈J Qi ⊆ 1
N Q + ∑i∈J

1
N Q = Q,

using the convexity of Q. We have shown that f is continuous at (x, v).
Induction step. Let r ≥ 1 and assume the assertion is true for all numbers < r. Given

u, v ∈ E, x ∈ V, and z ∈ Z, we have u, v ∈ ⊕
i∈J Ei = ∏i∈J Ei for some finite subset J ⊆ I.

The map f J : V ×∏i∈J Ei → ∏i∈J Fi, (x, (vi)i∈J) �→ ( fi(x, vi))i∈J is C1
K, whence

d fJ((x, u), (z, v)) = lim
t→0

t−1( f J((x, u) + t(z, v))− f J(x, u))

= lim
t→0

t−1( f ((x, u) + t(z, v))− f (x, u)) = d f ((x, u), (z, v))

exists in ∏i∈J Fi and thus in F; its ith component is

d fi((x, ui), (z, vi)) = d1 fi(x, ui, z) + d2 fi(x, ui, vi)

in terms of partial differentials. Note that the mappings gi : (V × Z) × (Ei × Ei) → Fi,
(x, z, ui, vi) �→ d1 fi(x, ui, z) and hi : (V×Z)× (Ei×Ei)→ Fi, (x, z, ui, vi) �→ d2 fi(x, ui, vi) =
fi(x, vi) are Cr−1

K and linear in (ui, vi). By induction, the mappings

g : (V × Z)× (E× E)→ F, (x, z, (ui)i∈I , (vi)i∈I) �→ (gi(x, z, ui, vi))i∈I and

h : (V × Z)× (E× E)→ F, (x, z, (ui)i∈I , (vi)i∈I) �→ (hi(x, z, ui, vi))i∈I

are Cr−1
K , using that E × E ∼= ⊕

i∈I(Ei × Ei). Hence, also d f : (V × E) × (Z × E) → F
is Cr−1

K , as d f ((x, u), (z, v)) = g(x, z, u, v) + h(x, z, u, v). Since d f exists and is Cr−1
K , the

continuous map f is Cr
K.

Remark 11. The conclusion of Lemma 15 does not hold for (r,K) = (ω,R) in the example I = N,
V = Z = R, Ek = R, fk(r, t) := t

1+kr2 , using that the Taylor series of fk(·, t) around 0 has radius
of convergence 1√

k
for all t ∈ R \ {0}.

Assuming now r �= ω, consider a family (Ei)i∈I of equivariant L-vector bundles
πi : Ei → M of class Cr

K with typical fibre Fi and G-action βi : G× Ei → Ei. We assume that
(a) or (b) is satisfied:

(a) G and M are finite-dimensional; or
(b) I is countable and each Fi as well as the modelling spaces of G and M are kω-spaces.

Moreover, we assume:

(c) For each x ∈ M, there exists an open neighbourhood U of x in M, such that, for each
i ∈ I, the vector bundle Ei admits a local trivialisation ψi : (πi)

−1(U)→ U × Fi.

Thus, the Cr
K-vector bundle Ei|U is trivialisable for each i ∈ I. Define E :=

⋃
x∈M

⊕
i∈I(Ei)x

with pairwise disjoint direct sums and π : E → M,
⊕

i∈I(Ei)x  v �→ x. Then

β : G× E → E, (g, (vi)i∈I) �→ (βi(g, vi))i∈I

is a G-action such that β(g, ·)|Ex : Ex → Eα(g,x) is L-linear for all (g, x) ∈ G × M, where
Ex := π−1({x}). We readily deduce from Proposition 3 and Proposition 15 that there is a
unique L-vector bundle structure of class Cr

K on E such that

π−1(U)→ U ×
⊕
i∈I

Fi, Ex  (vi)i∈I �→ (x, (prFi
(ψi(vi)))i∈I)
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is a local trivialisation for E, for each family (ψi)i∈I of local trivialisations as above. The
latter makes E an equivariant L-vector bundle of class Cr

K. In fact, the Cr
K-property of β can

be checked using pairs of local trivialisations, as in the proofs of Propositions 5, 8, and 9.
Then, apply Proposition 15, with Fi in place of Ei and Y × Z in place of Z. Thus,

Proposition 12. In the preceding situation,
⊕

i∈I Ei is an equivariant L-vector bundle of class Cr
K

over M.

Remark 12. If M is a Cr
R-manifold, then every x ∈ M has an open neighbourhood U which is

Cr
R-diffeomorphic to a convex open subset W in the modelling space Z of M. If W can be chosen

Cr
R-paracompact, then every Cr

R-vector bundle over U is trivialisable (see [12] (Corollary 15.10)).
The latter condition is satisfied, for example, if Z is finite-dimensional, a Hilbert space, or a
countable direct limit of finite-dimensional vector spaces (and hence a nuclear Silva space), cf. [3]
(Theorem 16.10 and Corollary 16.16). If (r,K) = (∞,C) and Z has finite dimension, then each
finite-dimensional holomorphic vector bundle over a, say, polycylinder in Z is C∞

C -trivialisable
(cf. [33]). Under suitable hypotheses, holomorphic Banach vector bundles over contractible bases are
C∞
C -trivialisable as well [34].

10. Dual Bundles and Cotangent Bundles

In this section, we discuss conditions ensuring that a vector bundle has a canonical
dual bundle. Let L ∈ {R,C}, K ∈ {R,L}, r ∈ N0 ∪ {∞, ω}, and M be a Cr

K-manifold
modeled on a locally convex space Z.

Definition 7. Let π : E → M be an L-vector bundle of class Cr
K, with typical fibre F. Consider

the disjoint union
E′ :=

⋃
x∈M

(Ex)
′ ;

let p : E′ → M be the map taking λ ∈ (Ex)′ to x, for each x ∈ M. Given t ∈ N0 ∪ {∞, ω} such
that t ≤ r, we say that E has a canonical dual bundle of class Ct

K with respect to S ∈ {b, c} if E′

can be made an L-vector bundle of class Ct
K over M, with typical fibre F′S and bundle projection p,

such that

ψ̃ : p−1(U)→ U × F′S , (E′)x = (Ex)
′  λ �→ (x, ((prF ◦ψ|Ex )

−1)′(λ)) (15)

is a local trivialisation of E′, for each local trivialisation ψ : π−1(U)→ U × F of E.

To pinpoint situations where the dual bundle exists, we recall a fact concerning the
formation of dual linear maps (see [8] (Proposition 16.30)):

Lemma 16. Let E and F be locally convex spaces, and S ∈ {b, c}. If the evaluation homomorphism
ηF,S : F → (F′S )

′
S , ηF,S (x)(λ) := λ(x) is continuous, then

Θ : L(E, F)S → L(F′S , E′S )S , α �→ α′

is a continuous linear map.

Remark 13. Let F be a locally convex K-vector space over K ∈ {R,C}. It is known that ηF,b is con-
tinuous if and only if F is quasi-barrelled, i.e., every bornivorous barrel in F is a 0-neighbourhood [35]
(Proposition 2 in Section 11). In particular, ηF,b is continuous if F is bornological or barrelled. It
is also known that ηF,c is continuous (and actually a topological embedding) if F is a kR-space. If
K = R, this follows from [36] (Theorem 2.3) and [37] (Lemma 14.3) (cf. also [37] (Propositions 2.3
and 2.4)). If K = C and F is a kR-space, then ηFR,c is a topological embedding for the real topological
vector space FR underlying F. Now, (F′c)R ∼= (FR)′ as a real topological vector space, using that a
continuous C-linear functional λ : F → C is determined by its real part. Transporting the complex
vector space structure from F′c to (FR)′, the latter becomes a complex locally convex space. Thus,
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((F′c)′c)R can be identified with ((FR)′c)′c, and it is easy to verify that ηF,c corresponds to ηFR,c if we
make the latter identification.

Proposition 13. Let π : E → M be an L-vector bundle of class Cr
K, with typical fibre F. Let

S ∈ {b, c}. If S = c, let r− := r; if S = b, assume r ≥ 1 and set r− := r − 1. Consider the
following conditions:

(α) The modelling space Z of M is finite-dimensional, ηF,S is continuous, and F′S is barrelled.
(β) ηF,S is continuous and, moreover, (Z× F′S )× (Z× F′S ) is a kR-space, or r− = 0 and Z× F′S

is a kR-space, or (r,K) = (∞,C) and Z× F′S is a kR-space.
(γ) F is normable.

If (α) or (β) is satisfied with S = c, then E has a canonical dual bundle of class Cr
K with

respect to S = c. If (α), (β), or (γ) is satisfied with S = b, then E has a canonical dual bundle of
class Cr−1

K with respect to S = b.

For S = b, condition (α) of Proposition 13 is satisfied, for example, if F is a reflexive
locally convex space (then ηF,b is continuous and F′b is barrelled, being reflexive.)

Proof. Let E′ be the disjoint union
⋃

x∈M(Ex)′, and p : E′ → M be as in Definition 7. Let
(ψi)i∈I be a family such that the ψi : π−1(Ui)→ Ui × F form the set of all local trivialisations
of E. Let (gij)i,j∈I be the associated cocycle (as explained before Proposition 3). Then,
Gij := g∧ij is Cr

K and hence gij = (Gij)
∨ is Cr−

K , by Proposition 1. Given i ∈ I, we define

ψ̃i : p−1(Ui)→ Ui × F′S as in (15), using ψi instead of ψ. Then,

ψ̃i(ψ̃
−1
j (x, λ)) = (x, ((prF ◦ψi|Ex )

−1)′ ◦ (prF ◦ψj|Ex )
′(λ))

= (x, (prF ◦ψj|Ex ◦ (prF ◦ψi|Ex )
−1)′(λ)) = (x, gji(x)′(λ))

for all x ∈ Ui ∩Uj and λ ∈ F′ shows that

(ψ̃i ◦ ψ̃−1
j )(x, λ) = (x, hij(x)(λ)) ,

where hij(x) := gji(x)′ ∈ GL(F′S ). If (α) or (β) holds, then ηF,S : F → (F′S )
′
S is continuous

by hypothesis. If S = b and (γ) holds, then ηF,b is an isometric embedding (as is well
known) and hence continuous. Thus, Θ : L(F)S → L(F′S )S , α �→ α′ is a continuous
L-linear map (Lemma 16). Since gji : Ui ∩ Uj → L(F)S is Cr−

K , we deduce that hij =

Θ ◦ gji : Ui ∩Uj → L(F′S )S is Cr−
K . Thus Condition (g)′ of Corollary 2 is satisfied, with r−

in place of r. Conditions (a)–(f) being apparent, the cited corollary provides an L-vector
bundle structure of class Cr−

K on E′.

Without specific hypotheses, a canonical dual bundle need not exist.

Example 2. Let A be a unital, associative, locally convex topological K-algebra whose group of
units A× is open in A, and such that the inversion map ι : A× → A× is continuous. Then, ι is
smooth (and indeed K-analytic); see, e.g., [13] (Propositions 10.1.12 and 10.1.13). We assume
that the locally convex space underlying A is a non-normable Fréchet–Schwartz space and hence
Montel, ensuring that L(A)b = L(A)c. For example, we might take A := C∞(K,K), where K
is a connected, compact, smooth manifold of positive dimension (cf. [13] (Lemma 10.2.2 (c))). Let
r, t ∈ N0 ∪ {∞, ω} with t ≤ r and S ∈ {b, c}. We consider the trivial vector bundle

pr1 : E := A× × A → A× .

(Thus, E ∼= TA×, the tangent bundle). Then, E is a K-vector bundle of class Cr
K over the base

A×, with typical fibre A. Both ψ1 := id : A× × A → A× × A and ψ2 : A× × A → A× × A,
(a, v) �→ (a, av) are global trivialisations of E. Identifying E′ :=

⋃
a∈A×(Ea)′ with the set

A× × A′, we consider the associated bijections ψ̃i : E′ = A× × A′ → A× × A′ for i ∈ {1, 2}
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(cf. (15)). Thus, ψ̃1 = id, and ψ̃2(a, λ) = (a, λ(a−1·)) for a ∈ A×, λ ∈ A′. The map Gij :
A× × A → A, (a, v) �→ pr2(ψi(ψ

−1
j (a, v))) is Cr

K for i, j ∈ {1, 2}, where pr2 : A× × A → A is
the projection onto the second factor. Then, also gij : A× → L(A)c = L(A)b, a �→ Gij(a, ·) is Cr

K,
by Proposition 1 (a). Now, A being Fréchet and thus barrelled, the evaluation homomorphism ηA,b
is continuous; since A is metrisable and hence a k-space, also ηA,c is continuous (see Remark 13).
Since gij is Cr

K, we deduce with Lemma 16 that also hij : A× → L(A′
S )S , a �→ (gji(a))′ is Cr

K.
Define

Hij : A× × A′
S → A′

S (a, λ) �→ hij(a)(λ)

for i, j ∈ {1, 2}. Then, H12 is discontinuous. To see this, we compose H12 with the map ev1 : A′
b →

K, λ �→ λ(1), which evaluates functionals at the identity element 1 ∈ A, and recall that ev1 is
continuous. Then, ev1(H12(a, λ)) = λ(g21(a)(1)) = λ(a) for a ∈ A× and λ ∈ A′. However, A
being a non-normable locally convex space, the bilinear, separately continuous evaluation map ε :
A× A′

b → K, (a, λ) �→ λ(a) is discontinuous, and hence so is its restriction ε|A××A′b
= ev1 ◦H12

to the non-empty open subset A× × A′
b, as is readily verified. Now, ev1 ◦H12 being discontinuous,

also H12 is discontinuous (and therefore not Ct
K). As a consequence, also ψ̃1 ◦ ψ̃−1

2 = (pr1, H12) is
discontinuous. Summing up:

There is no canonical vector bundle structure of class Ct
K on E′ because the two vector

bundle structures on E′ making ψ̃1 (resp., ψ̃2) a global trivialisation do not coincide.

Remark 14. In the preceding situation, set M := A×, F := A′
b, I := {1, 2}, Ui := M for

i ∈ I, and π := pr1 : M × F → M. If we let M × A′
b play the role of E in Proposition 3

and ψ̃i : π−1(Ui) → Ui × F the role of ψi in Proposition 3 (e), then all of Conditions (a)–(f) of
Proposition 3 and Condition (g)′ of Corollary 2 are satisfied for r ∈ N0 ∪ {∞, ω} (with L := K).
However, there is no Cr

K-vector bundle structure on M× F making each ψ̃i a trivialisation, as just
observed, i.e., the conclusion of Corollary 2 becomes false.

Remark 15. Let K ∈ {R,C}, r ∈ N ∪ {∞, ω}, t ∈ N0 ∪ {∞, ω} with t ≤ r and M be a Cr
K-

manifold modelled on a locally convex space Z. Then, the tangent bundle TM is a K-vector bundle
of class Cr−1

K over M, with typical fibre Z. Pick a locally convex vector topology T on Z′. Let A be
the set of all maps ψ̃ as in (15), with (Z′, T ) in place of F′S , for ψ ranging through the set of all local
trivialisations of TM (alternatively, only those of the form (πTU , dφ) for charts φ : U → V ⊆ Z
of M, using the bundle projection πTU : TU → U). Let us say that M has a canonical cotangent
bundle of class Ct

K with respect to T if T′M :=
⋃

x∈M(Tx M)′ admits a K-vector bundle structure
of class Ct

K over M with typical fibre (Z′, T ), which makes each ψ̃ : p−1(U) → U × (Z′, T ) a
local trivialisation (with p : T′M → M, (Tx M)′  λ �→ x). Then, the evaluation map

ε : (Z′, T )× Z → K, (λ, x) �→ λ(x)

must be continuous and hence Z normable. For K = R, this is explained in [17] (Remark 1.3.9)
(written after Example 2 was found) if r = ∞. This implies the case r ∈ N. As the diffeomorphism f
employed as a change of charts is real analytic, the case (ω,R) follows and also the complex case,
using a C-analytic extension of f . When T is the compact-open topology, existence of a canonical
cotangent bundle for M even implies that Z is finite-dimensional. (If ε is continuous on Z′c ×Z, then
there exists a compact subset K ⊆ Z and a 0-neighbourhood W ⊆ Z such that ε((K◦)×W) ⊆ D.
Hence, K◦ ⊆ W◦. Since K◦ is a 0-neighbourhood in Z′c and W◦ compact (by Ascoli’s Theorem),
Z′c is locally compact and hence finite-dimensional. As Z′c separates points on Z, also Z must be
finite-dimensional.)

Cotangent bundles are not needed to define 1-forms on an infinite-dimensional mani-
fold M. Following [38], these can be considered as smooth maps on TM which are linear
on the fibres (and a similar remark applies to differential forms of higher order).

Differentiability properties of the G-action on the dual bundle. Let L ∈ {R,C},
K ∈ {R,L}, s ∈ {∞, ω}, r ∈ N0 ∪ {∞, ω} with r ≤ s, and G be a Cs

K-Lie group modelled on
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a locally convex K-vector space Y. Let M be a Cr
K-manifold modelled on a locally convex

K-vector space Z and α : G× M → M be a G-action of class Cr
K.

Proposition 14. Let π : E → M be an equivariant L-vector bundle of class Cr
K, with typical

fibre F and G-action β : G× E → E of class Cr
K. Let S ∈ {b, c}. If S = c, set r− := r; if S = b,

assume r ≥ 1 and set r− := r− 1. Consider the following conditions:

(a) ηF,S is continuous, and, moreover, (Y × Z× F′S )× (Y × Z× F′S ) is a kR-space, or r− = 0
and Y × Z× F′S is a kR-space, or (r,K) = (∞,C) and Y × Z× F′S is a kR-space;

(b) M and G are finite-dimensional, ηF,S is continuous, and F′S is barrelled; or
(c) F is normable.

If S = c and (a) or (b) holds, then E has a canonical dual bundle E′ of class Cr−
K with respect

to S , and the map β∗ : G× E′ → E′, defined using adjoint linear maps via

β∗(g, λ) := (β(g−1, ·)|Ex
Eα(g,x)

)′(λ)

for g ∈ G, λ ∈ (Ex)′, turns E′ into an equivariant L-vector bundle of class Cr−
K over the G-

manifold M. If S = b and (a), (b), or (c) is satisfied, then the same conclusion holds.

Proof. In view of Proposition 13, the hypotheses imply that E has a canonical dual bundle
p : E′ → M of class Cr−

K . It is apparent that β∗ : G × E′ → E′ is an action, and E′x is taken
L-linearly to E′

α(g,x) by β∗(g, ·), for each g ∈ G and x ∈ M. It therefore only remains to

show that β∗ is Cr−
K . To this end, let g0 ∈ G and x0 ∈ M; we show that β∗ is Cr−

K on
U × p−1(V), for some open neighbourhood U of g0 in G and an open neighbourhood V
of x0 in M. Indeed, there exists a local trivialisation ψ : π−1(W) → W × F of E over an
open neighbourhood W of α(g0, x0) in M. The action α being continuous, we find an open
neighbourhood U of g0 in G and an open neighbourhood V of x0 in M over which E is
trivial, such that α(U × V) ⊆ W. Let φ : π−1(V) → V × F be a local trivialisation of E
over V. Then

φ(β(g−1, ψ−1(α(g, x), v))) = (x, A(g, x, v)) for all g ∈ U, x ∈ V, and v ∈ F,

for a Cr
K-map A : U×V × F → F, which is L-linear in the third argument. By Corollary 1, the

map a : U ×V → L(F)S , (g, x) �→ A(g, x, ·) is Cr−
K . In view of the hypotheses, Lemmas 16

and 13 entail that also a∗ : U × V → L(F′S )S , (g, x) �→ (a(g, x))′ is Cr−
K -map. Now, again

using the specific hypotheses, Proposition 2 shows that also the mapping A∗ : U × V ×
F′S → F′S , (g, x, λ) �→ a∗(g, x)(λ) is Cr−

K . However, for g ∈ U, x ∈ V, and λ ∈ F′,
we calculate

ψ̃(β∗(g, φ̃−1(x, λ))) =

(
α(g, x),

(
prF ◦φ|Ex ◦ β(g−1, ·)|Ex

Eα(g,x)
◦ (prF ◦ψ|Eα(g,x)

)−1
)′
(λ)

)
= (α(g, x), A∗(g, x, λ)) ,

using the notation as in (15). We conclude that β∗|U×p−1(V) is Cr−
K .

Example 3. For elementary examples, recall that the group Diff(M) of all smooth diffeomorphisms
of a σ-compact, finite-dimensional smooth manifold M can be made a smooth Lie group, modelled on
the (LF)-space Γc(TM) of compactly supported smooth vector fields on M (see [13,15]). The natural
action Diff(M)× M → M is smooth [13]. In view of Example 1, Proposition 14 (b), Proposition 8
and Proposition 4, we readily deduce that also the natural action of Diff(M) on TM is smooth, as
well as the natural actions on T∗M := (TM)′, TM⊗n ⊗ (T∗M)⊗m for all n, m ∈ N0, and the
natural action on the subbundles Sn(T∗M) and

∧n T∗M of (T∗M)⊗n given by symmetric and
exterior powers, respectively.
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11. Locally Convex Poisson Vector Spaces

We discuss a slight generalisation of the concept of a locally convex Poisson vector
space introduced in [8]. Fix K ∈ {R,C}.

A bounded set-functor S associates with each locally convex K-vector space E a set
S(E) of bounded subsets of E, such that {λ(M) : M ∈ S(E)} ⊆ S(F) for each continuous
K-linear map λ : E → F between locally convex K-vector spaces (cf. [8] (Definition 16.15)).
Given locally convex K-vector spaces E and F, we shall write L(E, F)S as a shorthand for
LK(E, F)S(E). We write E′S := LK(E,K)S .

Throughout this section, we let S be a bounded set-functor such that, for each locally
convex space E, we have

{K ⊆ E : K is compact} ⊆ S(E). (16)

Then, {x} ∈ S(E) for each x ∈ E, and we get a continuous linear point evaluation

ηE,S (x) : E′S → K, λ �→ λ(x).

Definition 8. A locally convex Poisson vector space with respect to S is a locally convex
K-vector space E such that E× E is a kR-space and

ηE,S : E → (E′S )
′
S , x �→ ηE,S (x)

a topological embedding, together with a bilinear map [., .] : E′S × E′S → E′S , (λ, η) �→ [λ, η],
which makes E′S a Lie algebra, is S(E′S )-hypocontinuous in its second argument, and satisfies

ηE,S (x) ◦ adλ ∈ ηE,S (E) for all x ∈ E and λ ∈ E′, (17)

writing adλ := ad(λ) := [λ, .] : E′ → E′.

Remark 16. (a) Definition 16.35 in [8] was more restrictive; E was assumed to be a k∞-space there.
(b) In [8] (16.31 (b)), the following additional condition was imposed: For each M ∈ S(E′S ) and

N ∈ S(E), the set ε(M× N) is bounded in K, where ε : E′ × E → K is the evaluation map.
As we assume (16), the latter condition is automatically satisfied, by [8] (Proposition 16.11 (a)
and Proposition 16.14).

(c) Let us say that a locally convex space E is S-reflexive if ηE,S : E → (E′S )
′
S is an isomorphism

of topological vector spaces.
(d) Of course, we are mostly interested in the case where [., .] is continuous, but only hypocontinu-

ity is required for the basic theory.

Definition 9. Let (E, [., .]) be a locally convex Poisson vector space with respect to S , and U ⊆ E
be open. Given f , g ∈ C∞

K (U,K), we define a function { f , g} : U → K via

{ f , g}(x) := 〈[ f ′(x), g′(x)], x〉 for x ∈ U, (18)

where 〈., .〉 : E′ × E → K, 〈λ, x〉 := λ(x) is the evaluation map and f ′(x) = d f (x, .).
Condition (17) in Definition 8 enables us to define a map X f : U → E via

X f (x) := η−1
E,S
(
ηE,S (x) ◦ ad( f ′(x))

)
for x ∈ U. (19)

Using Lemma 11 instead of [8] (Theorem 16.26), we see as in the proof of [8]
(Theorem 16.40 (a)) that the function { f , g} : U → K is C∞

K . The C∞
K -function { f , g} is

called the Poisson bracket of f and g. Using Lemma 11 instead of [8] (Theorem 16.26), we
see as in the proof of [8] (Theorem 16.40 (b)) that X f : U → E is a C∞

K -map; it is called the
Hamiltonian vector field associated with f . As in [8] (Remark 16.43), we see that the Poisson
bracket just defined makes C∞

K (U,K) a Poisson algebra.

104



Axioms 2022, 11, 221

We shall write “b” and “c” in place of S if S is the bounded set functor, taking a
locally convex space E to the set S(E) of all bounded subsets and compact subsets of E,
respectively. Both of these satisfy the hypothesis (16).

In the following, we describe new results for locally convex Poisson vector spaces over
S = c. We mention that the embedding property of ηE,c is automatic in this case, as E× E
is a kR-space in Definition 9; thus, E is a kR-space and Remark 13 applies.

Example 4. Let (gj)j∈J be a family of finite-dimensional real Lie algebras gj. Endow g :=
⊕

j∈J gj
with the locally convex direct sum topology, which coincides with the finest locally convex vec-
tor topology. Then, g is c-reflexive, as with every vector space with its finest locally convex
vector topology (see [39] (Theorem 7.30 (a))). As a consequence, also g′c is c-reflexive (cf. [39]
(Proposition 7.9 (iii))). Using [40] (Proposition 7.1), we see that the component-wise Lie bracket
g× g → g is continuous on the locally convex space g× g, which is naturally isomorphic to the
locally convex direct sum

⊕
j∈J(gj × gj). We set E := g′c and give E′c the continuous Lie bracket

[., .] making ηg,c : g→ (g′c)
′
c = E′c an isomorphism of topological Lie algebras. Then

E = g
′
c
∼= ∏

j∈J
(gj)

′
c

and E × E are kR-spaces, being Cartesian products of locally compact spaces (see [22]). Thus,
(E, [., .]) is a locally convex Poisson vector space over S = c, in the sense of Definition 8. If J has
cardinality ≥ 2ℵ0 and gj �= {0} for all j ∈ J (e.g., if we take an abelian 1-dimensional Lie algebra
gj for each j ∈ J), then E ∼= RJ is not a k-space. Hence, E is not a k∞-space, and hence it is not a
Poisson vector space in the more restrictive sense of [8].

12. Continuity Properties of the Poisson Bracket

If E and F are locally convex K-vector spaces and U ⊆ E an open subset, we endow
C∞(U, F) with the compact-open C∞-topology. Our goal is the following result:

Theorem 1. Let (E, [., .]) be a locally convex Poisson vector space with respect to S = c. Let
U ⊆ E be open. Then, the Poisson bracket

{., .} : C∞
K (U,K)× C∞

K (U,K)→ C∞
K (U,K)

is c-hypocontinuous in its second variable. If [., .] : E′c × E′c → E′c is continuous, then also the
Poisson bracket is continuous.

Various auxiliary results are needed to prove Theorem 1. With little risk of confusion
with subsets of spaces of operators, given a 0-neighbourhood W ⊆ F and a compact set
K ⊆ U, we shall write #K, W$ := { f ∈ C(U, F) : f (K) ⊆ W}.

Lemma 17. Let E, F be locally convex spaces and U ⊆ E be open. Then, the linear map

D : C∞
K (U, F)→ C∞

K (U, L(E, F)c) , f �→ f ′

is continuous.

Proof. By Corollary 1, f ′ ∈ C∞
K (U, L(E, F)c) for each f ∈ C∞

K (U, F). As D is linear and also
C∞(U, L(E, F)c)→ C(U × Ek, L(E, F)c), f �→ dk f is linear for each k ∈ N0,

dk ◦ D : C∞(U, F)→ C(U × Ek, L(E, F)c)c.o. (20)

is linear, whence it will be continuous if it is continuous at 0. We pick a typical 0-
neighbourhood in C(U × Ek, L(E, F)c)c.o., say #K, V$ with a compact subset K ⊆ U × Ek

and a 0-neighbourhood V ⊆ L(E, F)c. After shrinking V, we may assume that V = #A, W$
for some compact set A ⊆ E and 0-neighbourhood W ⊆ F.
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We now recall that for f ∈ C∞
K (U, F), we have

dk( f ′)(x, y1, . . . , yk) = dk+1 f (x, y1, . . . , yk, ·) : E → F (21)

for all k ∈ N0, x ∈ U and y1, . . . , yk ∈ E (cf. Corollary 1). Since #K × A, W$ is an open 0-
neighbourhood in C(U × Ek+1, F) and the map C∞(U, F)→ C(U × Ek+1, F)c.o., f �→ dk+1 f
is continuous, we see that the set Ω of all f ∈ C∞(U, F) such that dk+1 f ∈ #K × A, W$ is
a 0-neighbourhood in C∞(U, F). In view of (21), we have dk( f ′) ∈ #K, #A, W$$ for each
f ∈ Ω. Hence, dk ◦ D from (20) is continuous at 0, as required.

Lemma 18. Let X be a Hausdorff topological space, F be a locally convex space, K ⊆ X be compact
and M ⊆ C(X, F)c.o. be compact. Let ev : C(X, F)× X → F, ( f , x) �→ f (x) be the evaluation
map. Then, ev(M× K) is compact.

Proof. The map ρ : C(X, F)c.o. → C(K, F)c.o., f �→ f |K is continuous by [20] (§3.2 (2)). Thus,
ρ(M) is compact in C(K, F)c.o.. The map ε : C(K, F)× K → F, ( f , x) �→ f (x) is continuous
by [20] (Theorem 3.4.2). Hence, ev(M× K) = ε(ρ(M)× K) is compact.

Lemma 19. Let E, F1, F2, and G be locally convex K-vector spaces and β : F1 × F2 → G be a
bilinear map which is c-hypocontinuous in its second argument. Let U ⊆ E be an open subset and
r ∈ N0 ∪ {∞}. Assume that E× E is a kR-space, or r = 0 and E is a kR-space, or (r,K) = (∞,C)
and E is a kR-space. Then, the following holds:

(a) We have β ◦ ( f , g) ∈ Cr
K(U, G) for all ( f , g) ∈ Cr

K(U, F1)× Cr
K(U, F2). The map

Cr
K(U, β) : Cr

K(U, F1)× Cr
K(U, F2)→ Cr

K(U, G), ( f , g) �→ β ◦ ( f , g)

is bilinear. For each compact subset M ⊆ Cr
K(U, F2) and 0-neighbourhood W ⊆ Cr

K(U, G),
there is a 0-neighbourhood V ⊆ Cr

K(U, F1) such that Cr
K(U, β)(V × M) ⊆ W.

(b) For each g ∈ Cr
K(U, F2), the map Cr

K(U, F1) → Cr
K(U, G), f �→ β ◦ ( f , g) is continuous

and linear.
(c) If β is also c-hypocontinuous in its first argument, then Cr

K(U, β) is c-hypocontinuous in its
second argument and c-hypocontinuous in its first argument.

(d) If β is continuous, then Cr
K(U, β) is continuous.

Proof. (a) By Lemma 11, β ◦ ( f , g) ∈ Cr
K(U, G). The bilinearity of Cr(U, β) is clear. It

suffices to prove the remaining assertion for each r ∈ N0. To see this, let M ⊆ C∞
K (U, F2) be a

compact subset and W ⊆ C∞
K (U, G) be a 0-neighbourhood. Since the topology on C∞

K (U, G)
is initial with respect to the family of inclusion maps C∞

K (U, G) → Cr
K(U, G) for r ∈ N0,

there exists r ∈ N0 and a 0-neighbourhood Q in Cr
K(U, G) such that C∞

K (U, G) ∩ Q ⊆
W. If the assertion holds for r, we find a 0-neighbourhood P ⊆ Cr

K(U, F1) such that
Cr
K(U, β)(P× M) ⊆ Q. Then, V := C∞

K (U, F1) ∩ P is a 0-neighbourhood in C∞
K (U, F1) and

C∞
K (U, β)(V × M) ⊆ C∞

K (U, G) ∩ Cr
K(U, β)(P× M) ⊆ C∞

K (U, G) ∩Q ⊆ W.
The case r = 0. Let M ⊆ C(U, F2) be compact and W ⊆ C(U, G) be a 0-neighbourhood.

Then, #K, Q$ ⊆ W for some compact subset K ⊆ U and some 0-neighbourhood Q ⊆ G.
By Lemma 18, the set N := ev(M× K) ⊆ F2 is compact, where ev : C(U, F2)×U → F2 is
the evaluation map. Since β is c-hypocontinuous in its second argument, there exists a
0-neighbourhood P ⊆ F1 with β(P× N) ⊆ Q. Then, β ◦ (#K, P$ × M) ⊆ #K, Q$ ⊆ W.

Induction step. Let M ⊆ Cr
K(U, F2) be a compact subset and W ⊆ Cr

K(U, G) be a
0-neighbourhood. The topology on Cr(U, G) is initial with respect to the linear maps
λ1 : Cr

K(U, G)→ C(U, G)c.o., f �→ f and λ2 : Cr
K(U, G)→ Cr−1

K (U × E, G), f �→ d f (by [26]
(Lemma A.1 (d))). Note that the ordinary Cr-topology is used there, by [26] (Proposition
4.19 (d) and Lemma A2). After shrinking W, we may therefore assume that

W = (λ1)
−1(W1) ∩ (λ2)

−1(W2)
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with absolutely convex 0-neighbourhoods W1 ⊆ C(U, G) and W2 ⊆ Cr−1
K (U × E, G). Ap-

plying the case r = 0 to C(U, β), we find a 0-neighbourhood V1 ⊆ C(U, F1) such that
C(U, β)(V1 × M) ⊆ W1. The map δj : Cr

K(U, Fj) → Cr−1
K (U × E, Fj), f �→ d f is continuous

linear and π : U × E → U, (x, y) �→ x is smooth, whence ρj : Cr
K(U, Fj)→ Cr−1

K (U × E, Fj),
f �→ f ◦ π is continuous linear (cf. [26] (Lemma 4.4) or [13] (Proposition 1.7.11)). By (5),

λ2 ◦ Cr
K(U, β) = Cr−1

K (U × E, β) ◦ (δ1 × ρ2) + Cr−1
K (U × E, β) ◦ (ρ1 × δ2) . (22)

The subsets ρ2(M) ⊆ Cr−1
K (U × E, F2) and δ2(M) ⊆ Cr−1

K (U × E, F2) are compact.
Using the case r− 1 (with U × E in place of U), which holds as the inductive hypothesis,
we find 0-neighbourhoods V2, V3 ⊆ Cr−1

K (U × E, F1) such that Cr−1
K (U, β)(V2 × ρ2(M)) ⊆

(1/2)W2 and Cr−1
K (U, β)(V3 × δ2(M)) ⊆ (1/2)W2. Then, Q := (δ1)

−1(V2) ∩ (ρ1)
−1(V3)

is an open 0-neighbourhood in Cr
K(U, F1). Since (1/2)W2 + (1/2)W2 = W2, we deduce

from (22) that

λ2(Cr
K(U, β)(Q× M)) ⊆ Cr−1

K (U × E, β)(V2 × ρ2(M)) + Cr−1
K (U × E, β)(V3 × δ2(M)) ⊆ W2.

Thus, Cr
K(U, β)(Q× M) ⊆ (λ2)

−1(W2). Now, V := V1 ∩ Q is a 0-neighbourhood in
Cr
K(U, F1) such that Cr

K(U, β)(V × M) ⊆ (λ1)
−1(W1) ∩ (λ2)

−1(W2) = W.
(b) Since Cr

K(U, β) is bilinear, the map f �→ β ◦ ( f , g) is linear. Its continuity follows
from (a), applied with the singleton M := {g}.

(c) By (a) just established, the condition in Lemma 4 (a) is satisfied. By (b), the map
Cr
K(U, β) is continuous in its first argument. Interchanging the roles of F1 and F2, we see

that Cr
K(M, β) is also continuous in its second argument and hence c-hypocontinuous in its

second argument. Likewise, Cr
K(U, β) is c-hypoocontinuous in its first argument.

(d) If β is continuous and hence smooth, then Cr(U, β) is smooth and hence continuous,
as a very special case of [26] (Proposition 4.16) or [13] (Corollary 1.7.13).

Proof of Theorem 1. By Lemma 17, the mapping D : C∞(U,K) → C∞(U, E′c), f �→ f ′ is
continuous and linear. By Lemma 19 (c), the bilinear map

C∞(U, [., .]) : C∞(U, E′)× C∞(U, E′)→ C∞(U, E′) , ( f , g) �→ (x �→ [ f (x), g(x)])

is c-hypocontinuous in its second argument; if [., .] is continuous, then also C∞(U, [., .]), by
Lemma 19 (d). The evaluation map β : E× E′c → K, (x, λ) �→ λ(x) is c-hypocontinuous
in its first argument, by Proposition 7. As a consequence, β∗ : C∞(U, E′c) → C∞(U,K),
f �→ β ◦ (idU , f ) is continuous linear by Lemma 19 (b). Since

{., .} = β∗ ◦ C∞(U, [., .]) ◦ (D× D)

by definition, we see that {., .} is a composition of continuous maps if [., .] is continuous,
and hence continuous. In the general case, {., .} is a composition of a bilinear map which
is c-hypocontinuous in its second argument and continuous linear maps, whence {., .} is
c-hypocontinuous in its second arguemnt.

13. Continuity of the Map Taking f to the Hamiltonian Vector Field X f

In this section, we show the continuity of the mapping which takes a smooth function
to the corresponding Hamiltonian vector field, in the case S = c.

Theorem 2. Let (E, [., .]) be a locally convex Poisson vector space with respect to S = c. Let
U ⊆ E be an open subset. Then, the map

Ψ : C∞
K (U,K)→ C∞

K (U, E) , f �→ X f (23)

is continuous and linear.
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Proof. Let ηE : E → (E′c)′c be the evaluation homomorphism and V := {A ∈ L(E′c, E′c) :
(∀x ∈ E) ηE(x) ◦ A ∈ ηE(E)}. Then, V is a vector subspace of L(E′c, E′c) and ad(E′) ⊆ V.
The composition map Γ : (E′c)′c × L(E′c, E′c)c → (E′c)′c, (α, A) �→ α ◦ A is hypocontinuous
with respect to equicontinuous subsets of (E′c)′c, by Proposition 9 in [11] (Chapter III, §5,
no. 5). If K ⊆ E is compact, then the polar K◦ is a 0-neighbourhood in E′c, entailing that
(K◦)◦ ⊆ (E′c)′ is equicontinuous. Hence, ηE takes compact subsets of E to equicontinuous
subsets of (E′c)′, and hence

β : E×V → E , (x, A) �→ η−1
E (Γ(ηE(x), A))

is c-hypocontinuous in its first argument. By Lemma 19 (c), β∗ : C∞(U, V) → C∞(U, E),
f �→ β ◦ (idU , f ) is continuous linear. Moreover, the map D : C∞(U,K) → C∞(U, E′c),
f �→ f ′ is continuous linear by Lemma 17. Furthermore, ad = [., .]∨ : E′c → L(E′c, E′c)c is
continuous linear since [., .] is c-hypocontinuous in its second argument (see Lemma 4 (b)),
whence

C∞(U, ad) : C∞(U, E′c)→ C∞(U, L(E′c, E′c)c) , f �→ ad ◦ f

is continuous linear (see, e.g., [26] (Lemma 4.13), or [13] (Corollary 1.7.13)). Hence,
Ψ = β∗ ◦ C∞(U, ad) ◦ D is continuous and linear.
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Appendix A. Proofs for Some Basic Facts

We give proofs for various facts stated in Section 2.

Proof of Lemma 1. Let E := E1 × · · · × Ek. Since d f : U × E× X × E → F is continuous
and d f (x, 0, 0, 0) = 0, given q, there exists a continuous seminorm p on X such that
Bp

1 (x) ⊆ U, and continuous seminorms pj on Ej for j ∈ {1, . . . , k} such that

‖d f (y, v1, . . . , vk, z, w1, . . . , wk)‖q ≤ 1 (A1)

for all vj, wj ∈ B
pj
1 (0), y ∈ Bp

1 (x), and z ∈ Bp
1 (0). For y ∈ Bp

1 (x) and (v1, . . . , vk) ∈
Bp1

1 (0)× · · · × Bpk
1 (0), the Mean Value Theorem (see [13] (Proposition 1.2.6)) shows that

f (y, v1, . . . , vk) =
∫ 1

0
d f (y, tv1, . . . , tvk, 0, v1, . . . , vk) dt .

Since ‖d f (y, tv1, . . . , tvk, 0, v1, . . . , vk)‖q ≤ 1 for each t, it follows that ‖ f (y, v1, . . . , vk)‖q
≤ 1 in the preceding situation. Because f (y, ·) is k-linear, we deduce that (1) holds. To
prove (2), we first note that (A1) implies that

‖d f (y, v1, . . . , vk, z, 0, . . . , 0)‖q ≤ ‖z‖p (A2)

for all y ∈ Bp
1 (x), (v1, . . . , vk) ∈ Bp1

1 (0)× · · · × Bpk
1 (0) and z ∈ X, exploiting the linearity of

d f (y, v1, . . . , vk, z, 0, . . . , 0) in z. We now use the Mean Value Theorem to write

f (y, v1, . . . , vk)− f (x, v1, . . . , vk) =
∫ 1

0
d f (x + t(y− x), v1, . . . , vk, y− x, 0, . . . , 0) dt
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for y ∈ Bp
1 (x) and (v1, . . . , vk) ∈ Bp1

1 (0)× · · · × Bpk
1 (0). By (A2), we have

‖d f (x + t(y− x), v1, . . . , vk, y− x, 0, . . . , 0)‖q ≤ ‖y− x‖p

and hence ‖ f (y, v1, . . . , vk) − f (x, v1, . . . , vk)‖q ≤ ‖y − x‖p. Now, (2) follows, using the
k-linearity of the map f (y, ·)− f (x, ·) : E1 × · · · × Ek → F.

Proof of Lemma 2. By the Polarisation Formula for symmetric k-linear maps (see, e.g., ([13],
Proposition 1.6.19)), we have

f (x, y1, . . . , yk) =
1

k!2k ∑
ε1,...,εk∈{−1,1}

ε1 · · · εk h(x, ε1y1 + · · ·+ εkyk)

for all x ∈ U and y1, . . . , yk ∈ E. Thus, f is Cr
K if h is so.

Proof of Lemma 3. (a) Let pr2 : X1 × X2 → X2, (x, y) �→ y be the projection onto the
second component and pick x0 ∈ X1. Since pr2 is continuous, every k-continuous function
f : X2 → R yields a k-continuous function f ◦ pr2 on X. Then, f ◦ pr2 is continuous and
hence also f = ( f ◦ pr2)(x0, ·).

(b) Let f : U → R be k-continuous and x ∈ U. As X is completely regular, we find a
continuous function g : X → R with g(x) �= 0 and support supp(g) ⊆ U. Define h : X → R
via h(y) := f (y)g(y) if y ∈ U, h(y) := 0 if y ∈ X \ supp(g). If K ⊆ X is a compact
subset, then each x ∈ K has a compact neighbourhood Kx in K which is contained in U
or in X \ supp(g). In the first case, h|Kx = f |Kx g|Kx is continuous by k-continuity of f .
In the second case, h|Kx = 0 is continuous as well. Thus, h|K is continuous. Since X is
a kR-space, continuity of h follows. Thus, f is continuous on the open x-neighbourhood
g−1(R \ {0}).

A simple fact will be useful (see, e.g., [8] (Lemma 1.13)).

Lemma A1. Let X be a topological space, F be a locally convex space, and BC(X, F) be the space of
bounded F-valued continuous functions on X, endowed with the topology of uniform convergence.
Then, μ : BC(X, F)× X → F, ( f , x) �→ f (x) is continuous.

Proof of Lemma 4. (If k = 2, see Proposition 3 and 4 in [11] (Chapter III, §5, no. 3) for the
equivalence (a)⇔(b) and the implication (b)⇒(c); (c)⇒(a) can be found in [8] (Proposition 1.8).)
(a)⇔(b): β(V × M) ⊆ W is equivalent to β∨(V) ∈ #M, W$. Hence, (a) is equivalent to
continuity of β∨ in 0 and hence to its continuity (see Proposition 5 in [11] (Chapter I, §1,
no. 6)).

(b)⇒(c): If M ∈ S , then ε : Lk−j+1(Ej, . . . , Ek, F)S × M → F, ε(α, x) := α(x) is continu-
ous as a consequence of Lemma A1. Hence, β|E1×···×Ej−1×M = ε ◦ (β∨ × idM) is continuous.

(c)⇒(a) if (3) holds: Given M ∈ S and a 0-neighbourhood W ⊆ F, by hypothesis,
we can find N ∈ S such that DM ⊆ N. By continuity of β|E1×···×Ej−1×N , there exist
0-neighbourhoods Vi ⊆ Ei for i ∈ {1, . . . , k} such that β(V × (N ∩ U)) ⊆ W, where
V := V1 × · · · × Vj−1 and U := Vj × · · · × Vk. Set a := j−1

k−j+1 . Since M is bounded,

M ⊆ naU for some n ∈ N. Then, 1
na M ⊆ N ∩ U. Using that β is k-linear, we obtain

β(( 1
n V)× M) = β(V × ( 1

na M)) ⊆ β(V × (N ∩U)) ⊆ W.

Proof of Lemma 7. Given α ∈ Lk(E1, . . . , Ek, F), we have ε∨(α) = ε(α, ·) = α, which is a
continuous k-linear map. The map ε is also continuous in its first argument, as the topology
on Lk(E1, . . . , Ek, F)S is finer than the topology of pointwise convergence, by the hypothesis
on S . The linear map ε∨ : Lk(E1, . . . , Ek)S → Lk(E1, . . . , Ek)S , α �→ α being continuous,
condition (b) of Lemma 4 is satisfied by ε in place of β and hence also the equivalent
condition (a), whence ε is S-hypocontinuous in its arguments (2, . . . , k + 1).
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Now, assume that k = 1. Since O is finer than the topology of pointwise convergence,
the map ε remains separately continuous in the situation described at the end of the lemma.
Hence, if E is barrelled, Lemma 6 ensures hypocontinuity with respect to T .

Proof of Lemma 8. (a) The composition β ◦ f is sequentially continuous and hence contin-
uous, its domain X being first countable.

(b) Write f = ( f1, . . . , fk) with components f j : X → Eν for ν ∈ {1, . . . , k}. If K is a
compact subset of X, then M := ( f j, . . . , fk)(K) is a compact subset of Ej × · · · × Ek. Since
β|E1×···×Ej−1×M is continuous by Lemma 4 (c), the composition

β ◦ f |K = β|E1×···×Ej−1×M ◦ f |K

is continuous. Thus, β ◦ f is k-continuous and hence continuous, as X is a kR-space and F
is completely regular.

Proof of Lemma 9. (a) The case r = 0: Let q be a continuous seminorm on F := ∏j∈J Fj,
and x ∈ U. After increasing q, we may assume that

q(y) = max{qj(yj) : j ∈ Φ} for all y = (yj)j∈J ∈ F, (A3)

for some non-empty, finite subset Φ ⊆ J and continuous seminorms qj on Fj for j ∈ Φ.
If each f j is LC0

K, then we find a continuous seminorm pj on E for each j ∈ Φ such that

B
pj
1 (x) ⊆ U and qj( f j(z)− f j(y)) ≤ pj(z− y) for all z, y ∈ B

pj
1 (x). Then

p : E → [0, ∞[, y �→ max{pj(y) : j ∈ Φ}

is a continuous seminorm on E such that Bp
1 (x) ⊆ U and q( f (z)− f (y)) ≤ p(z− y) for all

z, y ∈ Bp
1 (x). If f is LC0

K, let us show that f j is LC0
K for each j ∈ J. Let q be a continuous

seminorm on Fj and x ∈ U. Let prj : F → Fj, (yi)i∈J �→ yj be the continuous linear projection
onto the jth component. Then, q ◦ prj is a continuous seminorm on F, whence we find a

continuous seminorm p on E such that Bp
1 (x) ⊆ U and (q ◦ prj)( f (z)− f (y)) ≤ p(z− y)

for all z, y ∈ Bp
1 (x). Since (q ◦ prj)( f (z)− f (y)) = q( f j(z)− f j(y)), we see that f j is LC0

K.

If r ∈ N ∪ {∞}, then f is Cr
K if and only if each f j is Cr

K, and dk f = (dk fj)j∈J in this
case for all k ∈ N0 such that k ≤ r (see [13] (Lemma 1.3.3)). By the case r = 0, the map dk f
is LC0

K if and only if dk( f j) is LC0
K for all j ∈ J. The assertion follows.

(b) Let E, F, and Y be locally convex K-vector spaces and f : U → F as well as
g : V → Y be LCr

K-maps on open subsets U ⊆ E and V ⊆ F, such that f (U) ⊆ V.

If r = 0, let x ∈ U and q be a continuous seminorm on Y. There exists a continuous
seminorm p on F such that Bp

1 ( f (x)) ⊆ V and q(g(b) − g(a)) ≤ p(b − a) for all a, b ∈
Bp

1 ( f (x)). There exists a continuous seminorm P on E with BP
1 (x) ⊆ U and p( f (z)− f (y))

≤ P(z− y) for all z, y ∈ BP
1 (x). Then, f (BP

1 (x)) ⊆ Bp
1 ( f (x)) and hence

q(g( f (z))− g( f (y))) ≤ p( f (z)− f (y)) ≤ P(z− y)

for all y, z ∈ BP
1 (x). Thus, g ◦ f : U → Y is LC0

K.
If r ∈ N∪ {∞} and k ∈ N such that k ≤ r, we can use Faà di Bruno’s Formula

dk(g ◦ f )(x, y) =
k

∑
j=1

∑
P∈Pk,j

djg( f (x), d|I1|(x, yI1), . . . , d|Ij |(x, yIj)) (A4)

for x ∈ U and y = (y1, . . . , yk) ∈ Ek, as in [13] (Theorem 1.3.18). Here, Pk,j is the set of
all partitions P = {I1, . . . , Ij} of {1, . . . , k} into j disjoint, non-empty subsets I1, . . . , Ij ⊆
{1, . . . , k}. For a non-empty subset J ⊆ {1, . . . , k} with elements j1 < · · · < jm, let yJ :=
(yj1 , . . . , yjm). Using (a) and the case r = 0, we deduce from (A4) that dk(g ◦ f ) is LC0

K.
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(c) For each continuous seminorm q on F, the restriction q|F0 is a continuous seminorm
on F0, and each continuous seminorm Q on F0 arises in this way. In fact, we find an open,
absolutely convex 0-neighbourhood V ⊆ F such that V ∩ F0 ⊆ BQ

1 (0). Then, the absolutely
convex hull W of V ∪ BQ

1 (0) is a 0-neighbourhood in F with W ∩ F0 = BQ
1 (0), whence

q|F0 = Q holds for the Minkowski funtional q of W. The case r = 0 follows.

If r ∈ N ∪ {∞}, let ι : F0 → F be the inclusion map and f : U → F0 be a map on an
open subset U ⊆ E. Then, f is Cr

K if and only if ι ◦ f is Cr
K, and dk(ι ◦ f ) = ι ◦ (dk f ) for all

k ∈ N0 such that k ≤ r (see [13] (Lemma 1.3.19)). By the case r = 0, each of the maps dk f is
LC0

K if and only if ι ◦ (dk f ) is so, from which the assertion follows.

(d) is immediate from (a) and (c).

Appendix B. Smooth Maps Need Not Extend to the Completion

Let E := {(xn)n∈N ∈ �1 : (∃N ∈ N)(∀n ≥ N) xn = 0} be the space of finite sequences,
endowed with the topology induced by the real Banach space �1 of absolutely summable
real sequences. Then, E is a dense proper vector subspace of �1, and �1 is a completion of E.
In this appendix, we provide a smooth map with the following pathological properties.

Proposition A1. There exists a smooth map f : E → F to a complete locally convex space F which
does not admit a continuous extension to E ∪ {z} for any z ∈ �1 \ E.

Proof. Given z = (zn)n∈N ∈ �1 \ E, the set S := {n ∈ N : zn �= 0} is infinite. For each
n ∈ N, we pick a smooth map hn : R → R such that hn(zn) = 1; if n ∈ S, we also require
that hn vanishes on some 0-neighbourhood. Endow RN with the product topology. Then

g : �1 → RN , x = (xn)n∈N �→ (h1(x1) · · · hn(xn))n∈N

is a smooth map, as its components gn : �1 → R, x �→ h1(x1) · · · hn(xn) are smooth. If
x = (xn)n∈N ∈ E, then there is N ∈ S such that xn = 0 for all n ≥ N. Thus, gn(x) = 0 for
all n ≥ N and hence g(x) ∈ E. Notably, g(x) ∈ �1. It therefore makes sense to define

fz : E → �1 , x �→ g(x) .

We now show: fz : E → �1 is a smooth map to �1 which does not admit a continuous
extension to E ∪ {z}.

In fact, for x and N as above, there exists ε > 0 such that hN(t) = 0 for each t ∈ ]−ε, ε[.
Identify RN with the closed vector subspace RN × {0} of E and RN. Then,

U := {y = (yn)n∈N ∈ E : |yN | < ε}

is an open neighbourhood of x in E such that fz(U) ⊆ RN . Thus, fz|U is smooth as a map
to RN and hence also as a map to �1. As a consequence, fz : E → �1 is smooth.

Now, suppose that p = (pn)n∈N : E ∪ {z} → �1 was a continuous extension of fz; we
shall derive a contradiction. To this end, set yk := (z1, . . . , zk, 0, 0, . . .) ∈ E for k ∈ N. Then,
yk → z in E as k → ∞. The inclusion map �1 → RN being continuous, we deduce that

pn(yk)→ pn(z) as k → ∞,

for each n ∈ N. Since pn(yk) = gn(yk) = h1(z1) · · · hn(zn) = 1 for all k ≥ n, it follows that
pn(z) = 1 for all n ∈ N and thus (1, 1, . . .) = p(z) ∈ �1, which is absurd. Therefore, fz has
all of the asserted properties.

We now define Ω := �1 \ E and endow F := (�1)Ω with the product topology. We let
f := ( fz)z∈Ω : E → F be the map with components fz as defined before. By construction, f
has the properties described in Proposition A1.
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Abstract: This article surveys the development of the theory of compact groups and pro-Lie groups,
contextualizing the major achievements over 125 years and focusing on some progress in the last
quarter century. It begins with developments in the 18th and 19th centuries. Next is from Hilbert’s
Fifth Problem in 1900 to its solution in 1952 by Montgomery, Zippin, and Gleason and Yamabe’s
important structure theorem on almost connected locally compact groups. This half century included
profound contributions by Weyl and Peter, Haar, Pontryagin, van Kampen, Weil, and Iwasawa. The
focus in the last quarter century has been structure theory, largely resulting from extending Lie Theory
to compact groups and then to pro-Lie groups, which are projective limits of finite-dimensional Lie
groups. The category of pro-Lie groups is the smallest complete category containing Lie groups and
includes all compact groups, locally compact abelian groups, and connected locally compact groups.
Amongst the structure theorems is that each almost connected pro-Lie group G is homeomorphic to
RI × C for a suitable set I and some compact subgroup C. Finally, there is a perfect generalization
to compact groups G of the age-old natural duality of the group algebra R[G] of a finite group G to
its representation algebra R(G,R), via the natural duality of the topological vector space RI to the
vector space R(I), for any set I, thus opening a new approach to the Hochschild-Tannaka duality of
compact groups.

Keywords: topological group; Lie group; compact group; pro-Lie group; Lie algebra; duality;
Tannaka duality; Pontryagin duality; LCA group

1. Introduction

Certain areas of mathematical research draw their particular fascination from the fact
that they are based between two principal domains of mathematics, such as algebra and
topology. Between these two, we find algebraic topology and topological algebra. An
observer looking at mathematics from a distance may wonder if these two fields differ
much. The language itself points out the difference: Topological algebra is a specialty
located in algebra, the art of calculating—adding and multiplying, while using the tools of
geometry, and manipulating the concept of continuity adds an extra attraction.

Groups emerged in 1770 in the work on permutation groups of Joseph-Louis Lagrange
(1736–1813) and in 1799 in the context of solving quintic equations in the work of Paolo
Ruffini (1765–1822). Groups in their abstract form can to be traced back to Augustin-Louis
Cauchy (1789–1857), Niels Henrik Abel (1802–1829), and Évariste Galois (1811–1832), when
groups were formative in the development of abstract algebra. Galois was, in fact, the first
to use the word group (groupe in French). The beginnings of Topology reach back hundreds
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of years; however, as August Ferdinan Möbius (1790–1868) said, it was Jules Henri Poincaré
(1854–1912) who “gave topology wings” in several articles, the first of which appeared
in 1895. (Johann Benedict Listing (1808–1882) introduced the (German) term Topologie in
1847.) Topology as an independent area had not yet crystallized, though Geometry was quite
present, when Felix Klein (1849–1925) and Sophus Lie (1842–1899) (and followers, such as
Friedrich Engel (1861–1941) and Wilhelm Karl Joseph Killing (1847–1923)) founded the area
of what later became named Lie groups. Algebra, geometry, and analysis were thoroughly
mixed into the genesis of Lie group theory.

2. Hilbert’s Fifth Problem and Locally Compact Groups

In 1900, David Hilbert (1862–1943) gave his famous address to the International
Congress of Mathematicians in Paris. In an apparently unforgettable fashion, it fore-
shadowed crucial developments of mathematical research in the 20th century. Hilbert
formulated 23 open problems leading to groundbreaking research in the 20th century. By
that time, topology was present in the minds of mathematicians, although it may not have
reached the heights it would attain in the course of the century. Yet, enough was available
to Hilbert for him to formulate, for instance, his famous Fifth Problem:
If a group is defined on a euclidean manifold in such a way that multiplication and inversion

are continuous functions, can it be given the structure of a differentiable manifold so that the
continuous group operations are in fact differentiable?

This would make it a group of the kind that Lie had created in a visionary way. In
modern parlance, Hilbert posed the question:
Is a locally euclidean topological group a Lie group?

He envisioned a positive answer. However, it would take a little over half a century to
confirm his vision.

Yet, this half century advanced the research of topological groups enormously. The
most consequential steps were:

(i) the discovery of fundamental properties of compact groups by Hermann Weyl (1885–
1955) and his doctoral student Fritz Peter (1899–1949) in 1927;

(ii) the discovery that every locally compact group has a (left) invariant measure by Alfréd
Haar (1885–1933) in 1932; and

(iii) the discovery in 1934 of the duality between the category of (discrete) abelian groups
and the category of compact abelian groups by Lev Semyonovich Pontryagin (1908–1988),
rounded off in 1935 with the extension to arbitrary locally compact abelian groups by
Egbert van Kampen (1908–1942), and by André Weil (1906–1998) in 1938, who also
established that a complete topological group with a Haar measure has to be locally compact.
(See References [1–3]. For a discussion of Pontryagin Duality outside the class of
locally compact abelian groups, see Reference [4] and its references. For a category
theory proof of Pontryagin Duality, see Reference [5].)

Inasmuch as these milestones were set up close to Lie groups, they are naturally
linked to topological groups whose underlying topological spaces (for the most part)
are connected. It was recognized early on that, in a topological group G, the connected
component G0 of the identity is a closed normal subgroup which is mapped into itself
by any continuous endomorphism of G. (We recall that such a subgroup is called fully
characteristic.) Obviously, therefore, it is very special. Indeed, in any Lie group (real or
complex), the benefit drawn from the presence of the Lie algebra of G invented by Sophus
Lie reaches as far as G0, and not the tiniest bit beyond. One is tempted to remark that G0
supports all the (traditional) geometry of group theory.

The observation that real Lie algebras are attached to topological groups in a more
general sense was first anticipated by Richard Lashof (1922–2010) in 1957 for locally
compact groups. More recently, as explained and illustrated in our book (Reference [6]),
this was extended to a much wider class of topological groups. It is natural to ask how
much of the structure of a topological group G is supported by the elementary concept of
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Hom(R, G), the space of morphisms of topological groups R→ G, also called one-parameter
subgroups of G.

That half-a-century of developments of topological groups went alongside an as-
tounding unfolding of topology. However, there was a second impact on the domain of
topological groups. This advance emerged from algebra itself, more specifically, from
GALOIS THEORY. As a typical example, the algebraic completion A of a field F is the
directed colimit of all finite extensions (K:F). Inevitably, the Galois group G(A:F) is the
projective limit of the finite Galois groups G(K:F). A projective limit G of a directed inverse
system of finite groups automatically carries a group topology making it a compact totally
disconnected topological group. Here, totally disconnected means exactly that G0 is a single-
ton subgroup. This example clearly illustrates the fact that this group theory, belonging to
the home of pure classical algebra, uncontroversially leads to a class of topological groups
located opposite to the type of connected topological groups which have arisen, historically,
out of Lie theory. Yet, the link between the two disparate classes of topological groups was,
from the very beginning, the fact that:
every topological group G gives rise to a connected topological subgroup G0, its identity compo-
nent, and, by contrast, the totally disconnected quotient group Gt = G/G0.

The complete solution of Hilbert’s Fifth Problem arrived in 1952 (9 years after the death
of Hilbert), when Andrew Mattei Gleason (1921–2008), Deane Montgomery (1909–1992),
and Leo Zippin (1905–1995) settled it with a positive answer. This effort was crowned by
the fundamental discovery in 1953 by Hidehiko Yamabe (1923–1960) that:
in a topological group G whose component factor group Gt is compact, any compact identity neigh-
borhood of G contains a closed normal subgroup N, such that the factor group G/N is a Lie group,
indeed, precisely one of those Lie groups, which had so fascinated Hilbert in 1900. The com-
pactness of the factor group Gt = G/G0 led to the standard terminology that a topological
group having this property is called almost connected.

Yamabe’s major contribution to the solution of Hilbert’s Fifth Problem was soon
followed by an immensely influential paper [7], by Kenkichi Iwasawa (1917–1998), on the
structure of locally compact groups.

One way of expressing the theorem of Yamabe was to say that:
every almost connected group is a projective limit of Lie groups.
(Projective limits are discussed and explained, e.g., in References [1,6].)

This fact caused much of the work on locally compact groups in the second half of last
century to be focused on projective limits of Lie groups. In this endeavor, it is truly very
helpful that the projective limit presentation of an almost connected locally compact group G,
in terms of its Lie group quotients G/N, has limit maps G → G/N that are particularly
well behaved because each of them is a proper morphism, i.e., it is a closed continuous map
such that the inverse image of each compact set is compact.

A substantial step in a general structure theory of locally compact totally disconnected
groups occurred in the 1990s, when George A. Willis innovated the theory by introducing
concepts, such as tidy subgroups and scaling functions [8,9].

The second half of the twentieth century saw a substantial amount of research on
what has become known as Abstract Harmonic Analysis. This subject, outside the scope of
this survey, was built on the realization by André Weil that, using Haar measure, Fourier
series and Fourier integrals are a special case of a construction on locally compact groups.
The standard references are References [2,10,11], but also see Reference [12].

3. Pro-Lie Groups: From Connected to Almost Connected Ones

One should be aware of the fact that not every locally compact group is a projective
limit of Lie groups, as SL(2,Qp), the group of p-adic 2 by 2 matrices of determinant 1,
illustrates for any prime p.

However, within topological group theory, in this immense activity of the 20th century
on the projective limit representation of locally compact (and, in particular, compact)
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groups, it was almost overlooked that a topological group G which has a filter basis N of
closed normal subgroups N such that, firstly,

(1) G/N is a Lie group for all N ∈ N
and, secondly,

(2) the natural map G → limN∈N G/N is an isomorphism
certainly does not force G to be locally compact. In fact, under these circumstances, G is
locally compact if and only if N contains a compact member. The simplest examples
failing to be locally compact are groups, such as ZN or RN, with their product topologies.
Indeed, the second of these examples illustrates the fact that we are touching a subject that
is understood with the concepts of basic linear algebra over the real or complex field (or,
indeed, any locally compact field). Given the Axiom of Choice, we know that every vector
space V over R has a basis, equivalently, that it is a direct sum

⊕
j∈J Rj of some family of

copies Rj
∼= R of R, denoted by R(J). The vector space Hom(V,R) of all linear forms of V is

(naturally isomorphic to) the Cartesian product Hom(
⊕

j∈J Rj,R) ∼= ∏j∈J Hom(Rj,R) ∼=
RJ of copies of R. Since R has a natural topology, this is true for RJ with its Tychonov
topology or product topology—and that is locally compact if and only if J is a finite set. So,
with J = N, the topological vector space RN is the first one to break this barrier. Topological
vector spaces which are isomorphic to RJ for some set J are called weakly complete vector
spaces. There is no problem in extending this terminology to vector spaces over the complex
ground field C.

It has become customary to call a topological group satisfying (1) and (2) above a
pro-Lie group. Their systematic study coincides neatly with the beginning of the twenty-first
century. The simplest examples are the weakly complete vectors spaces themselves. They
are even closer to elementary vector spaces than one spontaneously thinks. Indeed, if
W ∼= RJ is a weakly complete vector space, then the vector space Homcontinuous(W,R)
of all continuous linear forms on W is isomorphic to R(J), and a slightly more detailed
consideration shows that this is the background of a perfect duality between the category of
real vector spaces and that of weakly complete vector spaces. This rather elementary duality is
discussed in detail in the first edition of Reference [1] in 1998 and in the first monograph of
Reference [6] to have a systematic study of pro-Lie groups in 2007.

Here, the natural question arises how the concepts of a pro-Lie group and that of
the historically fundamental one of a manifold based Lie group differ. The concept of a
manifold had developed at that time vastly, being now based on locally convex topological
vector spaces. Accordingly, the concept of a Lie group had developed deeply into the
domain of infinite dimensional manifolds [13]. Nevertheless, from Reference [14], we know
precisely how the two concepts are related:

Theorem 1. A pro-Lie group is a Lie group if and only if it is locally contractible.

Here, a topological group G is called locally contractible, if some identity neighborhood
U can be homotopically contracted to a point in G, and it is called 1-connected if π1(G)
is singleton. In the spirit of Lie theory from any viewpoint, it is fascinating that local
contractibility of a 1-connected pro-Lie group can be detected purely from the Lie algebra g

of G: Every pro-finite dimensional Lie algebra g has a maximal (semi-)direct summand s

being a product of some collection of simple finite dimensional Lie algebras. Indeed,
a 1-connected pro-Lie group G is locally contractible iff, apart from a finite number of these factors,
each of the factors is isomorphic to the Lie algebra of SL(2,R) (the group of 2 by 2 real matrices
of determiant 1).

The weakly complete real vector spaces provide an exemplarily simple class of pro-Lie
groups beyond traditional Lie groups. In Reference [6], the authors proved the fairly deep
theorem, saying that:
a connected pro-Lie group G contains a closed subspace E and a compact subgroup C such that E is
homeomorphic to some weakly complete real vector space and the function

(e, c) �→ ec : E× C → G is a homeomorphism.
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We might say, so far so good, for connected pro-Lie groups. However, the free abelian
group Z(N) of countably infinitely many generators supports a nondiscrete pro-Lie topology
with rather bizarre properties. (This is described in Proposition 2 in Chapter 5 on abelian
pro-Lie groups in Reference [6].) So, one ventures outside connected pro-Lie groups with
trepidation. Even basic issues are settled only very partially, exemplified by the question:
when is a quotient of a pro-Lie group a pro-Lie group? (See, e.g., Reference [6], Chapter 4,
Theorem 4.28.)

It is, therefore, astonishing how much positive information has been gathered on
pro-Lie groups, even if they fail to be connected.

Our monograph [6] presents a reasonably comprehensive theory of connected pro-Lie
groups. While classical Lie theory is used intensively, the technical difficulties to bring
them to bear on the general situation are often painfully complex on the technical level.

At the opposite end, we face totally disconnected pro-Lie groups. By definition, such
a group G is a projective limit of Lie group quotients G/N. The pro-Lie algebra map
L(G) → L(G/N) induced by the quotient morphism is surjective. (See Reference [6],
4.21.) However, L(G) = {0}, since G is totally disconnected. So, the Lie algebra of the
Lie group G/N vanishes. Therefore, it is discrete. Accordingly, G is a projective limit
of discrete quotients. Therefore, it is called prodiscrete. In the domain of locally compact
groups, prodiscrete groups are generally considered still tractable. This applies certainly to
the realm of compact groups where they are traditionally known as profinite groups and are
treated extensively in the monograph literature. (See, e.g., Reference [15].) By contrast, one
would have to admit, however, that no coherent structure or representation theory exists
for prodiscrete groups, in general, outside the locally compact domain.

So, there arise obvious questions which link connectivity and prodiscreteness.

Problem 1. Let G be a pro-Lie group. Is there a neighborhood of G0 whose structure is reasonably
well understood, at least topologically?

Perhaps more explicitly (and optimistically):

Problem 2. Let G be a pro-Lie group. Is there a closed totally disconnected subgroup H of G such
that the subgroup G0H is open?

The consequences of such pieces of information would be far reaching. In the case of
a locally compact group G, indeed, there exists a totally disconnected compact subgroup D
such that G0D is open. So, the answers for both Problem 1 and Problem 2 are affirmative
if G is locally compact. Conclusive answers are not available if G fails to be locally
compact, but partial answers to these questions were provided after the appearance of
Reference [6] by the authors in Reference [16], and in a survey in Reference [17], including
the following result:

Theorem 2. Let G be an almost connected pro-Lie group. Then, every compact subgroup is
contained in a maximal one and all of these are conjugate. There is a closed subspace homeomorphic
to a weakly complete vector space E in G such that, for each maximal compact subgroup C,
the function

(e, c) �→ ec : E× C → G

is a homeomorphism.

The proof in Reference [16], in 2011 (after the appearance of Reference [6]), provides
additional information on the way that E is constructed. A shorter, but perhaps more easily
recalled, formulation is the following:

Corollary 1. Any almost connected pro-Lie group is homeomorphic to RJ × C, for some set J and
a compact subgroup C of G.
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It should be emphasized that this theorem gives a definitive insight into the topological
structure of an almost connected pro-Lie group modulo the known structure of a compact
group, as detailed in Reference [1]. Indeed,
a compact group C is homeomorphic to C0 × C/C0, where C/C0 is either finite or is homeomorphic
to a power {0, 1}J of the two element space for a suitable set J. (See Reference [1], 10.40.)
The compact connected group C0 itself is a semidirect product of the closed commutator group C′0
and a compact connected abelian subgroup A ∼= C/C′0. (See Reference [1], 9.39.)

The compact semisimple commutator subgroup is described explicitly in Reference [1],
9.19, where it is argued that it is not too far from a product of a possibly large family of
compact connected simple Lie groups.

For the pro-Lie group-theoretical understanding of the abelian connected compact
group A, we also have explicit knowledge, namely the Resolution Theorem (Reference [1],
8.20), which specifies a profinite subgroup Δ of A and a continuous open surjective homo-
morphism Δ×L(A)→ A for the Lie algebra L(A) of A. Here, the Lie algebra L(A) is none
other than a weakly complete real vector space. In particular, these pieces of information
together with Theorem 2 above yield the following rather complete information of the
topology of an almost connected pro-Lie group:

Theorem 3. The Topology of Almost Connected Pro-Lie Groups: Any infinite almost
connected pro-Lie group is homeomorphic to a pro-Lie group of the form

RI × S× A× F,

where F is either finite or Z(2)J ; here, I and J are sets, Z(2) is the two-element group, where S is
a compact connected group that agrees with its commutator subgroup S′ and is, modulo a central
profinite subgroup, a Cartesian product of compact connected simple Lie groups, and, where, finally,
A is a compact connected abelian group.

It may be helpful here to recall a consequence of Pontryagin Duality, namely that
the category of all compact connected abelian groups is dual to the (vast) category of all torsion-free
abelian groups.

The history of locally compact groups has illustrated that an insight into the structure
of abelian locally compact groups preceded the solution of Hilbert’s 5th Problem. In this
spirit, we have had some success in getting the basics of a structure theory of abelian pro-Lie
groups formulated. (See Reference [6], 5.20).) Indeed, we proved the following result.

Theorem 4. Main Structure Theorem of Abelian Pro-Lie Groups: Any abelian pro-Lie group
G is the direct sum E⊕ H of closed subgroups, where E is isomorphic to RJ , for a set J, and H has
the following properties:

(i) H0 is compact and is the unique largest compact connected subgroup;
(ii) every compact subgroup of G is contained in H;
(iii) the totally disconnected quotient groups Gt = G/G0 and Ht = H/H0 are isomorphic; and
(iv) The union comp(G) of all compact subgroups of G is a fully characteristic closed subgroup of

G that is contained in H, and

G0 + comp(G) = E⊕ comp(G)

is a fully characteristic closed subgroup G1 of G such that every monothetic subgroup of G/G1
is isomorphic to the discrete group Z.

The factor group G/ comp(G) does not contain any nonsingleton compact subgroup,
and the Main Structure Theorem implies immediately that its identity component is a
weakly complete real vector space isomorphic to RJ and is a direct summand.

The factor group G/G1 is a totally disconnected abelian pro-Lie group without any
nontrivial compact subgroup whose structure remains largely uncharted and mysterious.
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Indeed, A. Weil’s Lemma on the Classification of Monothetic Subgroups of Locally Com-
pact Groups (Reference [1], 7.43) was extended by the authors to pro-Lie groups in the
following fashion:

Theorem 5. Weil’s Lemma for Pro-Lie Groups: Let E = Z or E = R and X : E →
G a morphism of topological groups into a pro-Lie group. Then, exactly one of the following
statement holds:

(i) r �→ X(r) : E → X(E) is an isomorphism of topological groups;
(ii) X(E) is compact.

As a consequence, if a pro-Lie group G has no nontrivial compact subgroups, then every
monothetic subgroup is isomorphic to Z as a topological group.

In all of topological group theory, the subclass of commutative topological groups is
usually considered a test class which is representative of the status of information provided
by current research. This is exemplified by information provided for locally compact
abelian groups (often called LCA-groups) and, similarly, by all the information on real
topological vector spaces made available by functional analysis.

It was, therefore, natural to raise the issue of duality for abelian pro-Lie groups in
Reference [6], pp. 237ff.

Notably, satisfactory results emerged for almost connected abelian pro-Lie groups, and
some interesting general additional aspects were pointed out in Reference [6] (5.36, 5.40,
5.41). In particular, it was observed in Reference [6] (Comments to 14.15) that an abelian
pro-Lie group G may fail to be reflexive. (Here, a topological abelian group is called reflexive,

if the natural morphism G → ̂̂G is an isomorphism of topological groups.) Overall, one
might consider the structure theory of abelian pro-Lie groups still as regrettably incomplete.
Some aspects that we do know are collected in the following theorem.

Theorem 6. The Structure of Almost Connected Abelian Pro-Lie Groups: Let G be an
almost connected abelian pro-Lie group. Then, comp(G) is a compact subgroup, and

(i) G ∼= RJ × comp(G). In particular, each weakly complete real vector space is reflexive.
(ii) The annihilator of G0 in Ĝ is comp Ĝ.

Now, assume that G is an abelian pro-Lie group which is algebraically generated by a compact
subset. Let G1 = G0 + comp(G) be the fully characteristic subgroup of G introduced in Theorem
3(iv). Then, G1 is locally compact, and G/G1 is a Polish space (i.e., it is completely metrizable and
separable) if and only if G ∼= Rm × comp(G)×Zn, for nonnegative integers m and n.

More details can be found in Reference [6], including a version of a universal covering
theorem which, in Reference [1], was called a “Resolution Theorem”.

Wayne Lewis noted recently that the Resolution Theorem suggests introducing into
the study of LCA groups a more systematic use of the adele ring

local

∏
p prime

(Qp,Zp)×R ,

thus relating the structure theory of LCA groups to algebraic number theory. (The term
idele was introduced by Claude Chevalley (1909–1984) and is an abbreviation of “ideal
element”. The term adele stands for “additive idele”.)

Theorem 5 confirms the impression that we can regard the condition of being almost
connected in the theory of pro-Lie groups as very satisfactory, but that we do not have
a comprehensive theory of totally disconnected abelian pro-Lie groups, in general. The
recent study of Reference [18] on locally compact totally disconnected abelian groups G
satisfying G = comp(G) deals with this subject, as well as illustrates the fact that not even
the presence of a wealth of compact open subgroups provides for structural simplicity.
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While we noted that each locally compact group G having a pro-Lie group as identity
component G0 is largely determined by a profinite dimensional Lie algebra L(G), neverthe-
less, we observed that L(G) has no effect on the totally disconnected portion Gt = G/G0
of G.

One recent branch in the research on locally compact groups provides noteworthy
connections between locally compact groups and topology without having such restric-
tions. Indeed, the set of all closed subgroups of any locally compact group G always
supports a compact topology making that set into a compact Hausdorff space Ch(G), called
the Chabauty space of G. (The names of Leopold Vietoris (1891–2002) or James Michael
Gardner Fell (1923–2016) would have been just as appropriate as that of Claude Chabauty
(1910–1990).) The example of the circle group G = T shows that the Chabauty space may
have pathological aspects even in the compact connected case. On the other hand, this
tool appears to come in handy for totally disconnected locally compact groups G, as the
following example shows:
For any locally compact group G, the function g �→ 〈g〉 : G → Ch(G) is continuous iff G is
totally disconnected.

In this sense, the operators L and Ch are opposite in their prospect as tools for the
structure theory of G. (See Reference [19].)

4. Linear Algebra Meets Pro-Lie Group Theory

In Reference [20], in 1939, Tadeo Tannaka (1908–1986) formalized the process of recon-
structing a compact group from the systematically structured class of finite dimensional
linear representations. This approach he proved to be a way of generalizing Pontryagin’s
duality of the categories of abelian compact, respectively, discrete groups to a noncommu-
tative situation. This led to vast generalizations in the abstract world of category theory.
(See Reference [21].) On the other hand, at a very early point in his book [22], Gerhard
Paul Hochschild (1915–2010) formalized very concretely the idea that the real vector space
R(G,R) of coefficient functions of finite dimensional linear representations of a compact
group G is not only a commutative algebra, but also a coalgebra and, indeed, a symmetric
Hopf algebra. He specified the conditions under which the spectrum of a symmetric Hopf
algebra is a compact group G whose Hopf algebra R(G,R) is isomorphic to the given one.
This produces a duality between the category of compact groups and a category of certain
symmetric Hopf algebras. The connection between R(G,R) and the linear representations
indicates an existing equivalence of Hochschild’s duality with Tannaka’s.

We have proposed a topological group algebra R[G] of any compact group G. This
allows us to produce a certain category of topological symmetric Hopf algebra which is
equivalent to the category of compact groups via G �→ R[G]. This links us with Hochschild-
Tannaka duality through the fact that R(G,R) and R[G] are natural duals of each other as
symmetric Hopf algebras in their respective domains of plain vector spaces and topological
vector spaces.

From the very beginning of the study of pro-Lie groups, it was clear that one would
have to consider pro-Lie algebras. One of the difficult problems with which Sophus Lie
found himself confronted was the question of whether, for each Lie algebra g, one could
find a Lie group G whose Lie algebra was (isomorphic to) g. A satisfactory answer became
known in the history of Lie theory as Lie’s Third Fundamental Theorem. In the development
of the theory of pro-Lie groups, it seemed conceptually fitting to find a response to a more
comprehensive question. At that point in the history of topological groups, one had a good
hold of category theory, and it was understood that the Lie algebra functor L from the
category G of pro-Lie groups to the category of profinite-dimensional Lie algebras L has
a right adjoint Γ. Thus, for every morphism f : g → L(G), there is a unique morphism
f ′ : Γ(g)→ G, producing a natural isomorphism

f �→ f ′ : L(g,L(G))→ G(Γ(g), G)).
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In particular, the right adjoint functor L preserves all limits, so, if G is a projective limit
of finite dimensional Lie groups, then L(G) is a projective limit of finite dimensional Lie
algebras, i.e., a profinite dimensional Lie algebra. (See Reference [23].) As an immediate
elementary consequence, the real topological vector space underlying L(G) is a projective
limit of finite dimensional vector spaces. This returns us to the fact that one had to
discuss at a comparatively early stage in References [1,6] that the projective limit property,
indeed, characterized a real or complex topological vector space to be weakly complete.
The insight that the category of K-vector spaces, where K = R or K = C, is dual to
the category of weakly complete topological K-vector spaces was explicitly elucidated
both in References [1,6]. We note here with some circumspection that, for K = R, the
duality between real vector spaces, on the one hand, and weakly complete topological real
vector spaces, on the other, may be regarded a special case for abelian pro-Lie groups of
Pontryagin duality (also see Reference [1], A7.10).

It is clear that pro-Lie group theory and elementary linear algebra are tied together
from the beginning. However, when the first systematic study of pro-Lie groups [6] was
compiled, another avenue leading from “elementary linear algebra” directly to pro-Lie
groups had not yet been observed, even though its mathematical underpinning would
have been available. This avenue leads from weakly complete topological vector spaces to
weakly complete associative topological algebras. That associative unital algebras would
appear in the vicinity of groups and their linear representation theory is perhaps not
surprising, given the history of representation theory and module theory. It is perhaps
astonishing that the concept of weakly complete algebras appeared so late.

Indeed, a weakly complete unital algebra A is an associative algebra whose addition and
scalar multiplication are that of a weakly complete vector space and whose multiplication
is associative and continuous and has an identity. Let us denote the multiplicative group
of invertible elements by A−1. At first glance, and in light of the numerous types of
associative unital algebras that functional analysis deals with in the representation theory
of topological groups, the following fact may come as a surprise:

Theorem 7. Every weakly complete unital algebra A is a projective limit of finite dimensional
unital quotient algebras.

In other words, a weakly complete associative algebra is automatically profinite dimen-
sional.

The essence of the above result was first observed by Bogfiellmo, Dahmen, and
Schmeding [24]. For more on this theorem, see Reference [1], A7.32–A7.43.

These facts require absolutely no additional hypothesis apart from the fact that the
algebra topology is the weakly complete one. We recorded that the categories V of vector
spaces over K = R or K = C and the category W of weakly complete topological vector
spaces are dual. This suggests that Theorem 7 is just one step away from a purely algebraic
result. Indeed, let us reconsider the categories V and W and, for each of the two, the
occasionally tricky concept of its tensor product⊗V , respectively,⊗W . (The basic properties
of ⊗W were first studied in the Master’s thesis (Diplomarbeit) in 2007 of Raphael Dahmen.)
The most significant property of this pair of tensor products is its compatibility with duality:

(V1 ⊗V V2)
∗ ∼= V∗

1 ⊗W V∗
2 and (W1 ⊗W W2)

′ ∼= W ′
1 ⊗V W ′

2.

With the aid of the tensor product, the multiplication of a weakly complete algebra A
may now be expressed as a W-morphism m : A⊗W A → A subject to the commutativity
of a diagram expressing associativity (Reference [1], Definition A3.63a), and the identity
element 1 of the algebra may be expressed by a morphism u : K→ A, u(t) = t · 1, subject
to a commutative diagram (cf. loc. cit.). Now, the dual object m′ : A′ → A′ ⊗V A′, together
with u′ : A′ → K, represents a coassociative coalgebra with coidentity. So, all such coalgebras,
being purely algebraic objects in the category V , are locally finite in the sense that every
element is contained in a finite dimensional subcoalgebra. In other words, each associative
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counital coalgebra is a directed colimit of finite dimensional subcoalgebras, or, once again
reformulated, each counital coassociative coalgebra in V is a projective colimit of finite
dimensional subalgebras. This result is referred to as the “CARTIER Lemma”, and also as
“The Fundamental Theorem of Coalgebras”. (See Michaelis, in Reference [25].) Now, we
see that Theorem 7 is the dual of the Cartier Lemma.

An almost immediate consequence of Theorem 7 is the following.

Theorem 8. Fundamental Theorem of Weakly Complete Algebras: Let A be a weakly
complete unital algebra. The group of units (that is, multiplicatively invertible elements), A−1,
is an almost connected pro-Lie group. It is dense in A, and the exponential function exp : A →
A−1 converges everywhere and defines the exponential function of the pro-Lie group A−1 if A is
considered as a Lie algebra with respect to the bracket [a, b] = ab− ba.

The Fundamental Theorem of Weakly Complete Algebras yields an assignment A �→
A−1, which is clearly functorial, mapping the category WA of weakly complete unital
algebras into the categoryL of pro-Lie groups. Its left adjoint functor G → K[G] : L → WA
assigns to a pro-Lie group G its group algebra (over the groundfield K = R or K = C). In the
case of K = R the duality yields an isomorphism R[G]′ ∼= R(G,R) with the topological dual
R[G]′ of the weakly complete group algebra R[G] and the ring of representative functions
R(G,R) ⊆ C(G,R), familiar notably in the representation theory of compact groups. (See
Reference [1], Chapter 3, Definition 3.3.) The group algebra K[G] was discussed in detail
in References [26,27] and in the book of Reference [6]. In a natural way, K[G] is, in fact, a
symmetric Hopf algebra. Here, a Hopf algebra is simultaneously an associative unital algebra
and an associative counital coalgebra linked in a compatible fashion. It is a symmetric Hopf
algebra if it further includes a “symmetry”, an involutory self-map, acting in a similar way
as “inversion” makes a semigroup into a group.

For compact groups, this concept, the equivalence of the category of compact groups
with a certain category of weakly complete symmetric Hopf algebras, via duality, eventually
leads us to the conclusive form of the Hochschild-Tannaka Duality of the category of compact
groups and a certain subcategory of the category of purely algebraic symmetric Hopf
algebras. (The interested reader will find this discussed in Reference [1], Chapter 3: Part 3,
pp. 90–12, and in Appendix 3 on Category Theory: Section on Commutative Monoidal
Categories and their Monoids, Part 5: Symmetric Hopf Algebras over R and C, pp. 856–862,
and, finally, in Appendix 7: Weakly Complete Topological Vector Spaces, Subsection on:
Weakly Complete Unital Algebra, pp. 936–941.)

It must be noted here that, for a Hopf algebra A with multiplication m : A⊗ A → A
and identity u : K→ A, comultiplication c : A → A⊗ A, and coidentity k : A → K, we call
an element a ∈ A group-like if c(a) = a⊗ a and k(a) = 1, and primitive if c(a) = a⊗ 1+ 1⊗ a.
Then, an additional general structural feature is to be added to Theorem 8:

Theorem 9. Fundamental Theorem of Weakly Complete Hopf Algebras: If A is a weakly
complete symmetric Hopf algebra, then the set G(A) of group-like elements is a closed subgroup of
A−1 and, thus, is a pro-Lie subgroup of A−1.

The set P(A) of primitive elements is a closed Lie subalgebra of ALie and is the Lie algebra
of G(A), and its exponential function expG(A) : P(A) → G(A) is induced by the exponential
function of A.

This applies, in particular, to the group algebra R[G] of each compact group G, where
we have:

Theorem 10. The Group Algebra Theorem for Compact Groups: A compact group G may
be identified with the subgroup G(R[G]) of group-like elements in the group algebra R[G], and
its Lie algebra L(G) may be identified with the Lie subalgebra of P(R[G]) of primitive elements of
R[G], and, finally, its exponential function exp : L(G) → G is then induced by the exponential
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function of the weakly complete algebra R[G]. The cocommutative weakly complete symmetric Hopf
algebra R[G] is dual to the commutative symmetric Hopf algebra R(G,R). (See Reference [26].)

The essential feature of a Lie group G is its Lie algebra g, which is at the heart of
its algebraic structure. In analogy to the way that leads from groups to group algebras,
there is a traditional path leading from Lie algebras to associative algebras. It has been
observed recently that the functor from the category of weakly complete unital algebras to
the category of profinite dimensional Lie algebras which associates with a weakly complete
unital algebra A the Lie algebra ALie whose underlying vector space is that underlying
A with the Lie bracket [a, b] = ab− ba. Since A is profinite dimensional, so is the weakly
complete Lie algebra ALie. The assignment A �→ ALie is a functor from the category WA
of weakly complete associative unital algebras to the category FL of profinite dimensional
Lie algebras. The left adjoint U : FL → WA yields for a profinite dimensional Lie algebra
g the weakly complete unital associative algebra U(g). (See References [27,28].)

Theorem 11. The Enveloping Algebra Theorem: Let g be a profinite dimensional Lie algebra
and U(g) its traditional enveloping algebra over K. Then, U(g) is a weakly complete unital
associative symmetric Hopf algebra containing the classical enveloping algebra U(g) as a dense sub-
Hopf algebra. The weakly complete algebra U(g) has an exponential function exp : U(g)Lie →
U(g)−1.

The Lie subalgebra P(U(g)) of primitive elements contains naturally a copy of g which
generates U(g) algebraically and topologically as an algebra. P(U(g)) is the Lie algebra of the
pro-Lie group of group-like elements G(U(g)).

While the classical enveloping algebra does not contain any nonidentity group-like
elements, the weakly complete enveloping algebra U(g) contains within the pro-Lie group
U(g)−1 the group G(U(g)) of group-like elements, which, in turn, contains the group
Γ(g) = 〈exp g〉 that is attached to g by Lie’s Third Theorem, and the exponential function
exp : g→ Γ(g) is induced by the exponential of the weakly complete algebra U(g).

5. Postscript

After a brief review of 100 years of history of Lie groups and locally compact groups,
we have tried to emphasize the widening of the horizon from the landscape of classical
Lie group and locally compact group theory to pro-Lie groups. Apart from an emphasis to
include functorial thinking into the study of topological groups, this enlargement of scope
is strengthened by the viewpoint that Lie group theory deals in essence with topological
groups G having a Lie algebra L(G) and an exponential function exp : L(G) → G that
crucially determines the structure of G via the Lie algebra structure of L(G). Functorial
thinking tells us how far we have to go from the long standing classical field of finite
dimensional Lie algebras and connected (or at least almost connected!) Lie groups, and, so,
we shall unquestionably arrive at pro-Lie groups.

The prime testing ground for pro-Lie group theory remains the field of compact groups.
At the beginning of their history, decades ago, it was detected that they were pro-Lie groups
automatically by their representation theory. Now, they tell us how far we can go with
a clear structure theory of pro-Lie groups past the boundaries imposed by connectivity.
In that process, we redetect the significance of “almost connected” groups, namely those
G whose space Gt = G/G0 of connected components is compact. In the realm of locally
compact groups, Hidehiko Yamabe had justly drawn attention to almost connected locally
compact groups for which one could demonstrate that they were pro-Lie groups.

A second testing ground for any theory of topological groups is the class of commuta-
tive ones. As far as pro-Lie groups are concerned, this territory is largely uncharted. Yet,
once more, the subterritory of almost connected abelian pro-Lie groups is crystal clear: it
comprises all groups which are direct products E× C, where E is (the additive group of) a
so-called “weakly complete” real topological vector space. These topological vector spaces
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are also the ones that are underlying the Lie algebras of all pro-Lie groups. So, they play a
significant role in pro-Lie theory on both the group and the algebra level. How complicated
are they?

The answer was simple since the beginning of their presence a quarter of a century
ago: They are simply the duals of ordinary real vector spaces V, together with the topology

that these inherit from their nature as function spaces E = Hom(V,R) def
= V∗ ⊆ RV

in the form of the topology of pointwise convergence, or, equivalently expressed, the
topology induced by the Tychonov product topology of RV . Traditionally, this topology
on E is called the “weak-∗ topology”, which led to the terminology of weakly complete
vector spaces. Their truly basic nature is emphasized by the fact that the topological dual
E′ = Homcontinuous(E,R) ⊆ C(E,R) is naturally isomorphic to V, that is V ∼= V∗′, and
that, likewise, E ∼= E′∗. Compactly phrased, the categories W of weakly complete vector
spaces and the category V of (ordinary) real vector spaces are dual. This interplay pertains,

therefore, to elementary linear algebra. Moreover, the quotient map R �→ T def
= R/Z induces

an isomorphism:

V∗ = Hom(V,R) ∼= Hom(V,T) = V̂ = Pontryagin Dual of V.

Thus, a closer appropriate inspection shows that the duality between V and W is just

another manifestation of Pontryagin Duality expressed as V ∼= ̂̂V and E ∼= ̂̂E (where an
ordinary vector space V is equipped with its unique smallest locally convex topology).

The category W allows an immediate natural access from elementary linear algebra
to the category WA of all weakly complete unital associative algebras. It is astonishing
that each such algebra A provides an immediate connection to the world of pro-Lie groups
insofar as A is a projective limit of finite dimensional algebras and as the group of units
A−1 is a pro-Lie group whose Lie algebra L(A−1) is the Lie algebra ALie defined on A
by the Lie bracket, while their exponential function is the ordinary exponential function
exp ALie → A−1, exp a = 1 + a + 1

2! · a2 + · · · defined on all of A. This opens up the
general definition of a weakly complete group algebra R[G] of a pro-Lie group G and a
weakly complete universal enveloping algebra U(g) of a profinite-dimensional Lie algebra
g. Here, pro-Lie group theory meets weakly complete algebras in the form of appropriate
group algebras and appropriate weakly complete enveloping algebras on the basis of a
weakly complete symmetric Hopf algebra theory which we have described. Yet, even for
compact groups, this opens up previously unnoticed connections to the classical Tannaka-
Hochschild duality theory.
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1. Introduction

Let (E, τ) be a locally convex space (lcs for short). A locally convex vector topology ν
on E is called compatible with τ if the spaces (E, τ) and (E, ν) have the same topological dual
space. The famous Mackey–Arens Theorem states that there is a finest locally convex vector
space topology μ on E compatible with τ. The topology μ is called the Mackey topology on
E associated with τ, and if μ = τ, the space E is called a Mackey space. The most important
class of Mackey spaces is the class of quasibarrelled spaces. This class is sufficiently rich
and contains all metrizable locally convex spaces. In particular, every normed space is a
Mackey space.

For an abelian topological group (G, τ) we denote by Ĝ the group of all continuous
characters of (G, τ). Two topologies μ and ν on an abelian group G are said to be compatible
if (̂G, μ) = (̂G, ν). Being motivated by the concept of Mackey spaces, the following notion
was implicitly introduced and studied in [1], and explicitly defined in [2] (for all relevant
definitions see the next section): A locally quasi-convex abelian group (G, μ) is called a
Mackey group if for every locally quasi-convex group topology ν on G compatible with μ it
follows that ν ≤ μ.

Every lcs considered as an abelian topological group is locally quasi-convex. So, it
is natural to ask whether every Mackey space is also a Mackey group. Surprisingly, the
answer to this question is negative. Indeed, answering a question posed in [2], we show
in [3] that there is even a metrizable lcs which is not a Mackey group. Recall that for every
Tychonoff space X, the space Cp(X) of all continuous functions on X endowed with the
pointwise topology is quasibarrelled, and hence it is a Mackey space. However, in [4] we
proved that the space Cp(X) is a Mackey group if and only if it is barrelled. In particular,
the metrizable space Cp(Q) is not a Mackey group. These results motivate the following
question. For 1 ≤ p ≤ ∞, denote with T�p the topology on the direct sum R(N) :=

⋃
n∈N Rn

induced from �p.

Problem 1 ([3]). Does there exist a normed space E which is not a Mackey group? What about
(R(N),T�p)?

The main goal of this note is to answer Problem 1 in the affirmative. More pre-
cisely, we show that the normed spaces c00 := (R(N),T�∞) and �1

00 := (R(N),T�1) are not
Mackey groups.
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2. Main Result

Set N := {1, 2, . . . }. Denote by S the unit circle group and set S+ := {z ∈ S : Re(z) ≥ 0}.
Let G be an abelian topological group. A character χ ∈ Ĝ is a continuous homomor-

phism from G into S. A subset A of G is called quasi-convex if for every g ∈ G \ A there
exists χ ∈ Ĝ such that χ(g) /∈ S+ and χ(A) ⊆ S+. An abelian topological group is called
locally quasi-convex if it admits a neighborhood base at the neutral element 0 consisting of
quasi-convex sets. It is well known that the class of locally quasi-convex abelian groups is
closed under taking products and subgroups.

The following group plays an essential role in the proof of our main results,
Theorems 1 and 2. Set

c0(S) :=
{
(zn) ∈ SN : zn → 1

}
,

and denote by F0(S) the group c0(S) endowed with the metric d
(
(z1

n), (z2
n)
)
= sup{|z1

n −
z2

n|, n ∈ N}. Then F0(S) is a Polish group, and the sets of the form VN ∩ c0(S), where V
is a neighborhood at the unit 1 ∈ S, form a base at the identity 1 = (1n) ∈ F0(S). In [5]
(Theorem 1), we proved that the group F0(S) is reflexive and hence locally quasi-convex.

A proof of the next important result can be found in [6] [Proposition 2.3].

Fact 1. Let E be a real lcs. Then the map ψ : E′ → Ê, ψ(χ) := e2πiχ, is an algebraic isomorphism.

We use the next standard notations. Let {en}n∈N be the standard basis of the Banach
space (c0, ‖ · ‖∞), and let {e∗n}n∈N be the canonical basis in the dual Banach space (c0)

′ = �1,
i.e.,

en = (0, . . . , 0, 1, 0, . . . ) and e∗n = (0, . . . , 0, 1, 0, . . . ),

where 1 is placed in position n. Then c00 = (R(N),T�∞) is a dense subspace of c0 consisting
of all vectors with finite support.

Theorem 1. The normed space c00 is not a Mackey group.

Proof. For simplicity and clearness of notations we set E := c00 and τ := T�∞ . For every
n ∈ N, set χn := ne∗n. It is clear that χn → 0 in the weak∗ topology on E′ and hence in
σ(Ê, E). Therefore we can define the linear injective operator F : E → E × c0 and the
monomorphism p : E → E× F0(S) setting (for all x = (xn) ∈ E)

F(x) :=
(

x, R(x)
)
, where R(x) :=

(
χn(x)

)
= (nxn) ∈ c0,

p(x) :=
(
x, R0(x)

)
, where R0(x) := Q ◦ R(x) =

(
exp{2πiχn(x)}

)
=
(

exp{2πinxn}
)
∈ F0(S).

Denote with T and T0 the topologies on E induced from E × c0 and E × F0(S), re-
spectively. So T is a locally convex vector topology on E and T0 is a locally quasi-convex
group topology on E. By construction, τ ≤ T0 ≤ T, so taking into account Fact 1 and the
Hahn–Banach extension theorem, we obtain

ψ(E′) = ψ
(
�1
)
⊆
(̂
E,T0

)
⊆ ψ

(
(E,T)′

)
⊆ ψ

(
�1 × �1

)
. (1)

Step 1: The topologies τ and T0 are compatible. By (1), it is sufficient to show that each

continuous character of
(
E,T0

)
belongs to ψ

(
�1
)
. Fix χ ∈

(̂
E,T0

)
. Then (1) implies that

χ = ψ(η) = exp{2πiη} for some

η =
(
ν, (cn)

)
∈ �1 × �1, where ν ∈ �1 and (cn) ∈ �1,

and
η(x) = ν(x) + ∑

n∈N
cnχn(x) = ν(x) + ∑

n∈N
cn · nxn

(
x = (xn) ∈ E

)
.

To prove that χ ∈ ψ
(
�1
)

it is sufficient (and also necessary) to show that
(
cnn

)
n ∈ �1.

Replacing, if needed, η by η − ν, we assume that ν = 0.
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Suppose for a contradiction that ∑n |cn|n = ∞. Since χ is continuous, Fact 1 shows
that, for every ε < 0.01, there is a δ < ε such that

η(x) = ∑
n∈N

ncnxn ∈ (−ε, ε) +Z, for every x ∈ Uδ, (2)

where Uδ is a canonical T0-neighborhood of zero

Uδ :=
{

x = (xn) ∈ E : |xn| ≤ δ and nxn ∈ [−δ, δ] +Z for every n ∈ N
}

. (3)

In what follows ε and δ are fixed as above. We distinguish between three cases.

Case 1: There is a subsequence {nk}k∈N ⊆ N such that |cnk |nk → ∞ as k → ∞. As
|cnk |nk → ∞ and cn → 0, there is k ∈ N such that

1
8|cnk |

> 1 and 3
8|cnk |nk

< δ. (4)

The first inequality in (4) implies that there is

mk ∈
(

1
8|cnk |

, 3
8|cnk |

)
∩N. (5)

Set x = (xn) := (0, . . . , 0, sign(cnk )
mk
nk

, 0, . . . ), where the nonzero element is placed in
position nk. Then nxn ∈ Z for every n ∈ N, and the second inequality of (4) and (5) imply

‖x‖∞ = |xnk | =
mk
nk

< 3
8|cnk |nk

< δ.

Therefore x ∈ Uδ. On the other hand, (5) implies

1
8 < η(x) = ∑

n∈N
cnnxn = |cnk |nk

mk
nk

= |cnk |mk <
3
8 .

Hence η(x) �∈ (−ε, ε) +Z since ε < 0.01. However, this contradicts (2).

Case 2: There is a subsequence {nk}k∈N and a number a > 0 such that |cnk |nk → a as
k → ∞. Choose N ∈ N such that

a
2 < |cnk |nk <

3a
2 for all k ≥ N. (6)

Choose a finite subset F of {nk}k≥N and, for every n ∈ F, a natural number in such
that the following two conditions are satisfied:

in ∈ {1, 2, . . . , #δn$} for every n ∈ F, (7)

and
10
72a < ∑

n∈F

in
n < 30

72a (8)

(this is possible because 1
n ≤ in

n ≤ #δn$
n ≈ δ and n → ∞: so, if 10

72a < δ the set F can be
chosen to have only one element, and if δ ≤ 10

72a , the set F also can be easily chosen to be
finite). Now we define x = (xn) ∈ E by

xn = sign(cn) · in
n if n ∈ F, and xn = 0 if n ∈ N\F.

Then nxn ∈ Z for every n ∈ Z, and, by (7), ‖x‖∞ = max
{ in

n : n ∈ F
}
≤ δ. Therefore

x ∈ Uδ. On the other hand, (6) and (8) imply

5
24 < a

2 ∑
n∈F

in
n < η(x) = ∑

n∈N
cnnxn = ∑

n∈F
|cn|n · in

n < 3a
2 ∑

n∈F

in
n < 5

8 .
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Hence η(x) �∈ (−ε, ε) +Z which contradicts (2).

Case 3: limn |cn|n = 0. Choose N ∈ N such that (recall that (cn) ∈ �1)

∑
n≥N

|cn| < δ
100 and sup

{
|cn|n : n ≥ N

}
< δ

100 . (9)

Since ∑n |cn|n = ∞, choose a finite subset F ⊆ {N, N + 1, . . . } such that

∑
n∈F

|cn|n > 2
δ . (10)

Define x = (xn) ∈ E by

xn := Δn · sign(cn) · #δn$
n if n ∈ F, and xn := 0 if n ∈ N\F,

where Δn ∈ {0, 1} will be chosen afterwards. Then, for all n ∈ N and arbitrary Δns, we
have xn · n ∈ Z and |xn| ≤ δ. Therefore x ∈ Uδ. On the other hand, we have

0 < η(x) = ∑
n∈N

cnnxn = ∑
n∈F

|cn|nΔn · #δn$
n ≤ ∑

n∈F
|cn|nδ + ∑

n∈F
|cn|n #δn$−δn

n , (11)

(to obtain the last inequality we put Δn = 1 for all n ∈ F) and (9) and (10) imply

∑
n∈F

|cn|nδ + ∑
n∈F

|cn|n #δn$−δn
n > 2− δ

100 > 1. (12)

From the second inequality in (9), we have

cnnxn = |cn|nΔn ≤ |cn|n < δ
100 < 1

100 for every n ∈ F.

Using this inequality and (11) and (12), one can easily find a family {Δn : n ∈ F}
such that

1
4 < η(x) = ∑

n∈N
cnnxn < 3

4 ,

and hence η(x) �∈ (−ε, ε) +Z which contradicts (2).

Cases 1–3 show that the assumption ∑n |cn|n = ∞ is wrong. Thus the topologies τ
and T0 are compatible.

Step 2. The topology T0 is strictly finer than the original topology τ. Thus, E is not a
Mackey group. Indeed, it is clear that 1

2k ek → 0 in the norm topology τ on E. On the other
hand, since

R0
( 1

2k ek
)
=
(

exp
{

2πi · χn
( 1

2k ek
)})

n∈N
= (1, . . . , 1,−1, 1, . . . , ) for every k ∈ N,

where −1 is placed in position k, we obtain that 1
2k ek �→ 0 in the topology T0. Since, by

construction, τ ≤ T0 we obtain τ � T0 as desired.

Analogously we prove that the normed space �1
00 = (R(N),T�1) is not a Mackey group.

To this end, let {en}n∈N be the standard basis of the Banach space (�1, ‖ · ‖1), and let
{e∗n}n∈N be the canonical dual sequence in the dual Banach space (�1)

′ = �∞, i.e.,

en = (0, . . . , 0, 1, 0, . . . ) and e∗n = (0, . . . , 0, 1, 0, . . . ),

where 1 is placed in position n. Then �1
00 is a dense subspace of �1 consisting of all vectors

with finite support.

Theorem 2. The normed space �1
00 is not a Mackey group.
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Proof. For simplicity and clearness of notations we set E := �1
00 and τ := T�1 . For every

n ∈ N, set χn := ne∗n. It is clear that χn → 0 in the weak∗ topology on E′ and hence in
σ(Ê, E). Therefore we can define the linear injective operator F : E → E × c0 and the
monomorphism p : E → E× F0(S) setting (for all x = (xn) ∈ E)

F(x) :=
(

x, R(x)
)
, where R(x) :=

(
χn(x)

)
= (nxn) ∈ c0,

p(x) :=
(
x, R0(x)

)
, where R0(x) := Q ◦ R(x) =

(
exp{2πiχn(x)}

)
=
(

exp{2πinxn}
)
∈ F0(S).

Denote with T and T0 the topologies on E induced from E × c0 and E × F0(S), re-
spectively. So T is a locally convex vector topology on E and T0 is a locally quasi-convex
group topology on E. By construction, τ ≤ T0 ≤ T, so taking into account Fact 1 and the
Hahn–Banach extension theorem we obtain

ψ(E′) = ψ
(
�∞
)
⊆
(̂
E,T0

)
⊆ ψ

(
(E,T)′

)
⊆ ψ

(
�∞ × �1

)
. (13)

Step 1: The topologies τ and T0 are compatible. By (13), it is sufficient to show that each

continuous character of
(
E,T0

)
belongs to ψ

(
�∞
)
. Fix χ ∈

(̂
E,T0

)
. Then (1) implies that

χ = ψ(η) = exp{2πiη} for some

η =
(
ν, (cn)

)
∈ �∞ × �1, where ν ∈ �∞ and (cn) ∈ �1,

and
η(x) = ν(x) + ∑

n∈N
cnχn(x) = ν(x) + ∑

n∈N
cn · nxn

(
x = (xn) ∈ E

)
.

To prove that χ ∈ ψ
(
�∞
)

it is sufficient (and also necessary) to show that
(
cnn

)
n ∈ �∞.

Replacing if needed η by η − ν, we assume that ν = 0.
Suppose for a contradiction that

(
|cn|n

)
n is unbounded. Then there is a subsequence

{nk}k∈N ⊆ N such that |cnk |nk → ∞ as k → ∞. Since χ is continuous, Fact 1 shows that, for
every ε < 0.01, there is a δ < ε such that

η(x) = ∑
n∈N

ncnxn ∈ (−ε, ε) +Z, for every x ∈ Uδ, (14)

where Uδ is a canonical T0-neighborhood of zero

Uδ :=
{

x = (xn) ∈ E : ‖x‖1 ≤ δ and nxn ∈ [−δ, δ] +Z for every n ∈ N
}

. (15)

As |cnk |nk → ∞ and cn → 0, there is k ∈ N such that

1
8|cnk |

> 1 and 3
8|cnk |nk

< δ. (16)

The first inequality in (16) implies that there is

mk ∈
(

1
8|cnk |

, 3
8|cnk |

)
∩N. (17)

Set x = (xn) := (0, . . . , 0, sign(cnk )
mk
nk

, 0, . . . ), where the nonzero element is placed in
position nk. Then nxn ∈ Z for every n ∈ N, and the second inequality of (16) and (17) imply

‖x‖1 = |xnk | =
mk
nk

< 3
8|cnk |nk

< δ.

Therefore x ∈ Uδ. On the other hand, (17) implies

1
8 < η(x) = ∑

n∈N
cnnxn = |cnk |nk

mk
nk

= |cnk |mk <
3
8 .

Hence η(x) �∈ (−ε, ε) +Z since ε < 0.01. However, this contradicts (14).
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Step 2. The topology T0 is strictly finer than the original topology τ. Thus E is not a
Mackey group. Indeed, it is clear that 1

2k ek → 0 in the norm topology τ on E. On the other
hand, since

R0
( 1

2k ek
)
=
(

exp
{

2πi · χn
( 1

2k ek
)})

n∈N
= (1, . . . , 1,−1, 1, . . . , ) for every k ∈ N,

where −1 is placed in position k, we obtain that 1
2k ek �→ 0 in the topology T0. Since, by

construction, τ ≤ T0 we obtain τ � T0 as desired.

We finish this note with the following problem.

Problem 2. Let E be a real normed (metrizable, bornological or quasibarrelled) locally convex
space. Is it true that E is a Mackey group if and only if it is barrelled?

Note that every barrelled lcs is a Mackey group, see [1].
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Abstract: A topological abelian group G is said to have the quasi-convex compactness property
(briefly, qcp) if the quasi-convex hull of every compact subset of G is again compact. In this paper we
prove that there exist locally quasi-convex metrizable complete groups G which endowed with the
weak topology associated to their character groups G∧, do not have the qcp. Thus, Krein’s Theorem,
a well known result in the framework of locally convex spaces, cannot be fully extended to locally
quasi-convex groups. Some features of the qcp are also studied.

Keywords: quasi-convex subset; determining subgroup; quasi-convex compactness property; Krein’s
Theorem

MSC: 54H11; 54D50; 46A20

1. Introduction

Krein’s Theorem is a key result in the classical theory of topological vector spaces.
It admits different formulations with varying degrees of generality; for instance the one
presented in [1] (5.3, Theorem 4) reads as follows:

Theorem 1. Let E be a locally convex space and let A be a weakly compact subset of E. Then the
closed convex hull of A is weakly compact if and only if it is complete for the given topology.

From this result it immediately follows that the weak topology of a complete locally
convex space has the convex compactness property (we recall the relevant notions be-
low). In this paper we deal with the extension of Krein’s Theorem to topological abelian
groups, in the natural form, which consists of replacing classical objects of the theory of
topological vector spaces by corresponding objects of the theory of topological abelian
groups. For instance, the natural substitution of continuous linear forms is realized by
continuous characters, the notion of convexity by that of quasi-convexity etc. This process
may result in natural counterparts of important theorems of Functional Analysis for the
class of topological abelian groups. Our main result Theorem 6 confirms that this is not
always the case.

We first deal with the quasi-convex compactness property (qcp), a convenient notion
which mimics the convex compactness property as defined in [2]. In Sections 2 and 3 some
aspects of the qcp are outlined, including the description of classes of abelian topological

Axioms 2022, 11, 224. https://doi.org/10.3390/axioms11050224 https://www.mdpi.com/journal/axioms132
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groups which have the qcp, the hereditary behaviour and some obstructions to the qcp.
In Section 4 we study the relation between the qcp and the convex compactness property
in topological vector spaces. With these instruments at hand, in Section 5 we prove that a
counterpart of Krein’s Theorem holds for the class of locally convex spaces considered as
topological abelian groups. However, it cannot be extended to the bigger class of locally
quasi-convex groups. We provide a family of locally quasi-convex metrizable groups G
which endowed with their weak topology σ(G, G∧) do not have the qcp. The groups in
this family can be considered as counterexamples to the version of Krein’s Theorem for
topological groups.

In Section 6 we study some interactions between the qcp and other properties like
being g-barrelled, or the Glicksberg property.

The many ways in which completeness-like properties relate to convexity in topologi-
cal vector spaces have been studied for a long time and Krein’s theorem is just an important
milestone in this ongoing exploration. As suggested by one of the referees of this paper, it
would make sense to look for relevant topological group counterparts of other concepts and
results which have arisen in connection with this topic, e.g., those concerning the metric
convex compactness property, or Mackey completeness.

Preliminaries

Define T as R/Z and denote by π : R→ T the canonical projection. On T we consider
the group norm |π(r)| = dR(r + Z, 0). Note that |π(r)| ≤ min{|r|, 1/2} for every r ∈ R,
and |π(r)| = |r| whenever |r| ≤ 1/2. We put T+ = π([−1/4, 1/4]).

A character of an abelian group X is a homomorphism χ : X → T. We denote by
Hom(X,T) the group of all characters of X with pointwise sum.

If X is a topological abelian group, we write X∧ for the subgroup of Hom(X,T) whose
elements are the continuous characters of X. A topological abelian group X is said to be
MAP (an abbreviation of “maximally almost periodic“) if for every x �= 0 in X there exists
χ ∈ X∧ with χ(x) �= 0. Two group topologies on an abelian group are called compatible if
they give rise to the same family of continuous characters.

If U is a subset of the topological abelian group X, the set U� := {χ ∈ X∧ : χ(U) ⊆
T+} is called the polar of U. Note that a subset of X∧ is equicontinuous if and only if it
is a subset of the polar of a neighborhood of zero in X. If B is a subset of X∧, where X is
clear from the context, we will sometimes denote by B� the set {x ∈ X : B(x) ⊆ T+}. Note
that U�� =

⋂
χ∈U� χ−1(T+) for every U ⊆ X. We will say that U is quasi-convex if U = U��.

For an arbitrary U ⊆ X, the set U�� is the smallest quasi-convex subset of X which contains
U; we call it the quasi-convex hull of U in X and denote it usually by qcX(U).

A topological abelian group is called locally quasi-convex if it has a basis of neighbor-
hoods of zero formed by quasi-convex sets. Given a topological abelian group X with
topology τ, the quasi-convex neighborhoods of zero in X form a basis of neighborhoods
of zero for the finest topology among the group topologies on X which are coarser than τ
and locally quasi-convex. We call Xlqc the group X endowed with this locally quasi-convex
modification of its original topology. The groups X and Xlqc have the same continuous
characters. Moreover, Xlqc is Hausdorff if and only if X is MAP. See ([3], Proposition 6.18)
for details on this construction.

Given an abelian group X and a subgroup H of Hom(X,T) , we denote by σ(X, H) the
initial topology on X with respect to the characters in H. The topological group (X, σ(X, H))
is precompact and its dual group is exactly H. In what follows X will often carry a group
topology and H will be taken as X∧; also, for a MAP topological group X we will sometimes
consider the weak topology σ(X∧, X) where X is regarded as a subgroup of Hom(X∧,T)
in the natural way.

A topological abelian group (X, τ) is said to satisfy the Glicksberg property if every
σ(X, (X, τ)∧)−compact subset of X is τ−compact. The classical Glicksberg Theorem
establishes that all locally compact abelian groups have the Glicksberg property.
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If X is a topological abelian group, we denote by Tc the topology on X∧ of uniform
convergence on compact subsets of X. We will often write X∧

c as a shorthand for (X∧, Tc).
The topology Tc admits as a basis of neighborhoods of zero the family of all sets of the form
K� where K runs over all compact subsets of X.

For any topological abelian group X we define the homomorphism αX : X → (X∧
c )

∧
c

by αX(x)(χ) = χ(x). We say that X is semi-reflexive if αX is onto. We say that X is reflexive if
αX is a topological isomorphism. The classical Pontryagin-van Kampen theorem asserts
that every locally compact abelian group is reflexive.

Let H be a subgroup of a topological abelian group X, and let ı : H → X be the
inclusion mapping. We say that H is dually embedded in X if every continuous character of
H can be extended to X, i.e., if the restriction mapping ı∧ : X∧ → H∧ is onto. It is clear that
ı∧ : X∧

c → H∧
c is always continuous; we say that H is strongly dually embedded in X if it is

actually a quotient mapping (i.e., it is onto and open). Every open subgroup is strongly
dually embedded ([4], Lemma 2.2). Assume that H is dense in X; then clearly H is strongly
dually embedded in X if and only if ı∧ : X∧

c → H∧
c is a topological isomorphism. We

say in this case that H determines X. A metrizable group is determined by all of its dense
subgroups (see ([3], Theorem 4.3) and ([5], Theorem 2)).

The k−refinement or k-modification of a topological space (X, t) is the topological space
(X, kt) where kt is the family formed by those U ⊆ X with U ∩ K ∈ t �K for every
t−compact set K ⊆ X. The topology kt is the finest topology on X among those which
induce t �K on every t−compact K ⊆ X. If t is a Hausdorff topology, kt admits the following
characterization: a subset C ⊆ X is kt−closed if and only if C ∩ K is t−compact for every
t−compact subset K ⊆ X. The space (X, t) is a k−space if kt = t. Metrizable spaces and
locally compact spaces are k−spaces. If an abelian topological group X is a k−space, then
all compact subsets of X∧

c are equicontinuous, i.e., the homomorphism αX : X → (X∧
c )

∧
c

is continuous.
We say that the topological abelian group X is locally precompact if it admits a nonempty

precompact open subset or, equivalently if it is a subgroup of a locally compact group.
A topological group is almost metrizable if it contains a compact subset of countable

character. As proved in ([3], 2.20), an abelian Hausdorff topological group X is almost
metrizable if and only if it has a compact subgroup K such that X/K is metrizable.

We only consider vector spaces over R. A subset A of a topological vector space E is
said to be balanced if [−1, 1]A ⊆ A. A subset of E is absolutely convex if it is both convex and
balanced. For any subset A ⊆ E, we denote by accE(A) the closure of the absolutely convex
hull of A. A topological vector space E is said to have the convex compactness property (ccp in
what follows) if accE(A) is compact for every compact subset A ⊆ E.

If E is a topological vector space, we denote by E∗ the dual space of E, i.e., the space
of all linear continuous functionals defined on E. We say that E is dually separated if for
every x �= 0 in E there exists x∗ ∈ E∗ with x∗(x) �= 0. We denote by ω(E, E∗) the initial
vector space topology on E with respect to all linear functionals in E∗.

The symbol E∗c stands for the space E∗ endowed with the topology of uniform conver-
gence on compact subsets of E. For any topological abelian group E the mapping

TE : E∗c −→ E∧c , TE( f ) = π ◦ f (1)

is an isomorphism of topological abelian groups (see [6] or ([7], Proposition 2.3)).
If U is a subset of a topological vector space E, we put U◦ := { f ∈ E∗ : f (U) ⊆ [−1, 1]}.

We call the set
⋂

f∈U◦ f−1([−1, 1]) the bipolar of U and denote it by U◦◦. The well-known
Bipolar Theorem asserts ([8], II.4, Corollary 1) that U◦◦ = accE(U) for any subset U of a
locally convex space E.

Every topological vector space has a topological abelian group structure which arises
from its internal operation and its topology. The topological vector spaces whose underlying
topological groups are MAP (resp. locally quasi-convex) are exactly the dually separated
(resp. locally convex) ones ([7], Proposition 2.4). Other aspects of topological vector spaces
considered as abelian groups are studied in the book [9].
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2. Generalities on the Quasi-Convex Compactness Property

We start by formulating the natural group counterpart of the convex compactness
property:

Definition 1. Let X be a topological abelian group. We say that X satisfies the quasi-convex
compactness property (qcp) if qcX(K) is a compact subset of X for any compact subset K ⊆ X.

The qcp was defined for the first time in [10]. In the next Proposition we collect some
(mostly known) information regarding this property.

Proposition 1.

(a) Every semi-reflexive locally quasi-convex group has the qcp.
(b) Every complete locally quasi-convex group has the qcp.
(c) A locally quasi-convex group with the qcp can fail to be semi-reflexive. Actually there exists a

complete, metrizable, locally quasi-convex group which is not semi-reflexive.
(d) A locally quasi-convex group with the qcp can fail to be complete.
(e) A metrizable, locally quasi-convex group with the qcp is necessarily complete.
(f) If X is a topological abelian group such that αX : X → (X∧

c )
∧
c is continuous, then X∧

c has the
qcp.

(g) If σ and τ are compatible locally quasi-convex group topologies on an abelian group X where
σ ≤ τ, and (X, σ) has the qcp, then (X, τ) has the qcp too.

Proof. (a) and (b) are proved in ([11], Proposition 3.1).
(c) Such an example can be found in ([3], Corollary 11.15). Note that this group has the

qcp by (a).
(d) Let G be any locally compact, noncompact abelian group. Put X = (G, σ(G, G∧)). By

Glicksberg’s Theorem, X∧
c = G∧

c . This implies, on the one hand, that (X∧
c )

∧ = G, that
is, X is semi-reflexive and by (a) has the qcp. On the other hand, X is not complete
since otherwise it would be compact and in particular (X∧

c )
∧
c = (G∧

c )
∧
c
∼= G would be

compact as well, a contradiction.
(e) (f) and (g) are Theorem 3.6, Proposition 3.4 and Proposition 3.3 in [11], respectively.

A different proof of (e) can be found in ([12], Theorem 2).

It makes sense to ask whether local quasi-convexity can be relaxed to the MAP property
in Proposition 1 (a), (b) and (e). The answer is negative in the case of (b) (see Example 3
below) and positive in the case of (e); actually within the class of MAP metrizable groups
the qcp already implies local quasi-convexity (see Theorem 2).

Lemma 1. Let X be a metrizable, MAP topological abelian group. The identity mapping (Xlqc)
∧
c →

X∧
c is a topological isomorphism.

Proof. See ([3], Proposition 6.18).

The following result is included in the preprint [13] as Theorem I.34. We provide a
different, very natural proof.

Theorem 2. Let X be a metrizable, MAP topological abelian group with the qcp. Then X is locally
quasi-convex and complete.

Proof. Call τ the given metrizable topology on X and τlqc its locally quasi-convex modifi-
cation. We are going to show that τ = τlqc. Since τlqc ≤ τ and τlqc (being metrizable) is a
k−space topology, it is enough to show that every τlqc−compact set is τ−compact. Fix a
τlqc−compact set K. The set K� is a neighborhood of zero in (Xlqc)

∧
c . By Lemma 1 K� is also

a neighborhood of zero in X∧
c . Hence there exists a τ−compact set C with C� ⊆ K�. This
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implies K ⊆ K�� ⊆ C��. Since C�� is τ−compact by hypothesis, and K is τlqc−closed, we
deduce that K is actually τ−compact.

This implies that X is locally quasi-convex. The fact that it is also complete follows
from Proposition 1(e).

Problem 1. Is it possible to extend Theorem 2 to the class K of MAP topological groups which are
k-spaces? Is the dual group of any group X in K a k-space?

Note that if X is a metrizable topological vector space, we can even remove the
restriction of being MAP from Theorem 2 (see Proposition 7 below). A non-metrizable
topological vector space with the qcp does not need to be locally (quasi-)convex; see ([14],
Example 2) and Section 4 below.

In order to give a characterization of the qcp in terms of topologies of uniform conver-
gence on the dual group, we need the following result:

Lemma 2. Let X be an abelian group. Let τ1 and τ2 be group topologies on X such that τ1 < τ2
and τ2 has a basis of neighborhoods of zero formed by τ1-closed sets. If L ⊂ X is τ1−complete, then
it is τ2−complete, too.

Proof. Assume that L is τ1-complete. Let {xα}α ⊆ L be a Cauchy net in τ2. The inequality
τ1 < τ2 implies that {xα}α is a Cauchy net in τ1, thus we can find x ∈ L such that
xα

τ1−→ x ∈ L.
Let V be a zero neighborhood in τ2, which is τ1-closed. Since {xα}α is a Cauchy

net in τ2 there is an index α0 such that xα − xβ ∈ V for all α, β > α0. For a fixed α,

xα − xβ
τ1−→ xα − x and xα − x ∈ V since V is τ1-closed. This is true for all α > α0, thus

xα ∈ x + V for all α > α0. In other words, xα
τ2−→ x.

Recall that for any topological abelian group X we denote by Tc the topology on X∧ of
uniform convergence on compact subsets of X. In what follows we also denote by Tσqc the
topology on X∧ of uniform convergence on σ(X, X∧)−compact, quasi-convex subsets of X.

Proposition 2. For a Hausdorff locally quasi-convex topological group (X, τ) the following state-
ments are equivalent:

(a) X has the qcp.
(b) Tc ≤ Tσqc.

Proof. (a) ⇒ (b) A basic Tc-neighborhood of zero has the form K� for some compact
K ⊂ X. Fix such a subset K. By (a) the quasi-convex hull qcXK of K is compact in τ,
and hence also in the weaker topology σ(X, X∧). Now (qcXK)� = K� is a neighborhood of
zero in Tσqc.

(b) ⇒ (a) Let K ⊂ X be τ-compact. By b) we can find a σ(X, X∧)-compact, quasi-
convex C ⊂ X such that C� ⊆ K�. This implies qcXK ⊆ qcXC = C. Since qcXK is a
σ(X, X∧)-closed subset of C, it is σ(X, X∧)-compact, therefore complete with respect to
σ(X, X∧). By Lemma 2, qcXK is also complete with respect to τ (note that quasi-convex
subsets of X are σ(X, X∧)−closed). On the other hand it is τ- precompact, being the quasi-
convex hull of a τ-compact set ([3], Theorem 7.12). Thus qcXK is τ-compact and (X, τ) has
the qcp.

3. The qcp on Subgroups

In this section we analyze the hereditary behavior of the quasi-convex compactness
property. Clearly, the qcp is not preserved by proper dense subgroups in general. Actually
a noncomplete metrizable group cannot have the qcp (Proposition 1(e)). This can be gener-
alized to proper dense, determining subgroups of groups that are k−spaces (Corollary 2).
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The following result gives a quite general condition under which a subgroup inherits
the qcp from its ambient group.

Proposition 3. Let X be a topological abelian group with the qcp. Let H be a subgroup of X which
is closed in the k−modification of X. Then H also has the qcp.

Proof. Since H is closed in the k-modification of X, the set C ∩ H is compact for any
compact subset C in X. By hypothesis for every compact subset K of H the set qcXK is
compact. Hence (qcXK) ∩ H is compact as well. Since qcHK is closed in H and is clearly a
subset of (qcXK) ∩ H, the result follows.

Corollary 1. Let X be a topological abelian group with the qcp. Let H be a closed subgroup of X.
Then H has the qcp.

The following result is a partial converse of Proposition 3. Note that the qcp of the
group X is not required.

Theorem 3. Let X be a Hausdorff topological abelian group and let H be a strongly dually embedded
subgroup of X. If H has the qcp, then H is closed in the k−modification of X.

Proof. Fix a compact subset C in X. We need to show that C ∩ H is compact. Since
C ∩ H is closed in H, it suffices to find a compact subset of H which contains it. Let us
denote by r : X∧

c → H∧
c the restriction mapping given by r(χ) = χ �H ; this is an open

mapping by hypothesis, so there exists a compact subset K of H such that K� ⊆ r(C�).
(The symbol � denotes a polar set computed in the dual pair 〈H, H∧〉.) Since clearly
r(K�) = K�, we deduce that K� ⊆ C� + H⊥, where H⊥ denotes the subgroup of X∧ formed
by those characters which are identically zero on H. This implies qcXK ⊇ (C� + H⊥)� and
consequently

C ∩ H ⊆ (C� + H⊥)� ∩ H ⊆ (qcXK) ∩ H = qcHK

which is compact by hypothesis. (The identity (qcXK) ∩ H = qcHK follows easily from the
fact that H is dually embedded in X.)

As expressed in Section 1, the notion of strongly dually embedded subgroup directly
leads to that of determining subgroup. Thus, Theorem 3 yields the following results:

Corollary 2. Let X be a Hausdorff topological abelian group which is a k−space. If H is a proper
dense subgroup of X which determines X, then H fails to have the qcp.

Note that Corollary 2 implies (e) in Proposition 1, since every metrizable group deter-
mines its completion. An analogous consequence in a different context follows:

Corollary 3. If a topological abelian group H is (locally) precompact, has the qcp and determines
its completion, then it is actually (locally) compact.

It is known ([3], Theorem 7.11) that the quasi-convex hull of a finite subset of a MAP
group is again finite. This gives the following

Corollary 4. If H is a precompact non-compact topological group whose compact subsets are finite,
then H does not determine its completion.

We prove below (Theorem 6) that the locally precompact groups X which determine
their completions can be characterized by means of the joint continuity of the evaluation
mapping eX : X∧

c × X → T, defined by eX(φ, x) = φ(x). Previously we establish a few
results related with the weaker condition of continuity of the associated mapping αX .

The following result has a straightforward proof.
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Lemma 3. Let X be a topological abelian group. If eX : X∧
c × X → T is continuous then

αX : X → (X∧
c )

∧
c is continuous.

Lemma 4. Let H be a dense subgroup of a topological abelian group X, r : X∧ → H∧ the restriction
mapping, and L ⊂ H∧ equicontinuous with respect to H. Then r−1(L) is equicontinuous with
respect to X.

Proof. Let V be an open zero neighborhood in H with φ(V) ⊆ T+ for every φ ∈ L. Let W
be an open zero neighborhood in X such that V = W ∩ H. We next check that r−1(L) ⊂ W�.
If φ ∈ L and φ̃ = r−1(φ) is its unique extension to a continuous character on X, we have
φ̃(W ∩ H) ⊂ T+. Since φ̃ is continuous, also φ̃(W ∩ H) ⊂ T+ where the closure is taken in
X. The density of H implies W ∩ H = W. Thus φ̃ ∈ W�

= W�.

Proposition 4. Let H be a dense subgroup of a topological abelian group X and let r : X∧ → H∧

be the restriction mapping. If αH is continuous then the inverse image r−1(K) of any compact
subset K ⊂ H∧

c is compact in X∧
c .

Proof. This is Theorem I.19(b) in the preprint [13]. We provide the reader with a proof
anyway. Pick K ⊂ H∧

c compact. Since αH is continuous, K is equicontinuous with respect to
H and by Lemma 4, r−1(K) is equicontinuous with respect to X. On the other hand, r−1(K)
is closed in X∧

c by the continuity of r. By Ascoli’s Theorem ([15], Theorem 9), r−1(K) is
compact in X∧

c .

Proposition 5. Let H be a dense subgroup of a topological abelian group X. If αH is continuous
(in particular, if H is a k-space) and H∧

c is a k−space, then H determines X.

Proof. The restriction mapping r : X∧
c → H∧

c is a continuous isomorphism whenever H is
a dense subgroup. Thus it is only left to prove that r is open, equivalently closed. Pick a
closed C ⊂ X∧

c . We must prove that r(C) ∩ K is compact in H∧
c for every compact K ⊂ H∧

c .
Since r−1(r(C) ∩ K) = C ∩ r−1(K) and r−1(K) is compact by Proposition 4, we obtain that
r−1(r(C) ∩ K) is compact. Now r continuous implies that r(C) ∩ K is compact.

The continuity of αH in Proposition 5 cannot be removed as the following example shows.

Example 1. Let L be a locally compact, non-compact abelian group and let H := (L, σ(L, L∧)).
By Glicksberg’s theorem H∧

c = L∧c , therefore H∧
c is even locally compact. However H does not

determine its completion X: clearly, X∧
c is discrete whereas H∧

c is non-discrete. Observe further
that H has the qcp (see the proof of Proposition 1(d)).

Under the more restrictive assumption that eH : H∧
c × H → T is continuous, it is easily

obtained that H∧
c is locally compact, ([16], Proposition 1.2). We claim the following:

Theorem 4. Let H be a locally quasi-convex, Hausdorff group. The following conditions are equiv-
alent:

(i) eH : H∧
c × H → T is continuous.

(ii) H is locally precompact and determines its completion.

Proof. (ii)⇒ (i) : Let X be the completion of H and ı : H → X be the inclusion mapping.
By hypothesis X is locally compact and the restriction mapping r : X∧

c → H∧
c is a topological

isomorphism. The diagram
H∧

c × H
eH

��

� �

r−1×ı
��

X∧
c × X eX

���� T
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is commutative and eX is clearly continuous. The assertion follows.
(i)⇒ (ii) : By Prop. 1.2 in [16], H∧

c is locally compact, and in particular a k−space. The
homomorphism αH : H → (H∧

c )
∧
c is an embedding: take into account that H is Hausdorff,

locally quasi-convex and apply Lemma 3 and ([7], Lemma 14.3). Since (H∧
c )

∧
c is locally

compact, we deduce that H is locally precompact.
From Proposition 5 we obtain that H determines X.

Corollary 5. Let X be a locally compact abelian group and let H be a dense subgroup of X. Then
H determines X if and only if eH : H∧

c × H → T is continuous.

Remark 1. In the class of reflexive groups, continuity of eX implies local compactness of X,
as proved in [17]. On the other hand, a reflexive noncomplete group does not determine its
completion ([18], Theorem 5.2). For a general topological group X, continuity of eX is equivalent to
continuity of αX plus local compactness of X∧

c [19].

Example 1 shows that a topological group which is a k-space may have dense sub-
groups which are not k-spaces. In particular, H does not determine X in the mentioned
example. The following are natural questions:

Problem 2.

(i) If a topological group X contains a dense subgroup which is a k-space and determines X, must
X be a k-space?

(ii) If a topological group X contains a dense subgroup H which is a k-space, does H determine X?

Corollary 6. Let H be a dense subgroup of X. If H is almost metrizable, then H determines X.

Proof. If H is almost metrizable, then H is a k-space ([3], Proposition 1.24) therefore αH is
continuous and H∧

c is a k-space (Proposition 5.20 in the same reference). Thus H satisfies
the hypothesis of Proposition 5.

Remark 2. If H is a dense subgroup of X and H is almost metrizable, then X is almost metrizable
too. In fact, if K is a compact subgroup of H such that H/K is metrizable, clearly K is also a compact
subgroup of X. On the other hand H/K is dense in X/K, therefore H/K metrizable implies X/K
metrizable. Thus, X is almost metrizable.

In the preceding Remark “almost metrizable“ cannot be replaced by “k−space“, as the
following example shows:

Example 2. Let X := Rβ, where β is any uncountable ordinal, and let H be the corresponding
Σ-product (i.e., the subgroup formed by those x ∈ Rβ with countable support). If X is endowed with
its usual product topology, H is Fréchet-Urysohn ([20], Theorem 2.1), therefore it is a k-space ([21],
1.6.14, 3.3.20). Clearly H is dense in X. However X is not a k-space. ([22], Chapter 7, Ex. J(b)).

In ([23], Theorem 4.8) it is proved that any compact abelian group X contains an almost
metrizable proper dense subgroup which determines X. Our Corollary 6 shows that the
fact that H determines X is a consequence of the remaining hypothesis. The following
question arises naturally:

Problem 3. Does every almost metrizable (resp. k-space) X contain an almost metrizable (resp.
k-space) proper dense subgroup which determines X?

4. The qcp in Topological Vector Spaces

In this section we study the relationship between the ccp and the qcp on a topological
vector space.
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The next result is a slight improvement of Proposition 4.5 in [11] (see also ([7], Propo-
sition 15.1)). In its proof we will need the following fact: If E is any dually separated
topological vector space, ω(E, E∗)−compact subsets and σ(E, E∧)−compact subsets coin-
cide. This result is proved in ([24], Lemma 1.2) in the locally convex case but it can be easily
generalized since it only involves weak topologies.

Proposition 6. Let E be a topological vector space. Consider the following properties:

(a) For every compact subset K of E, the set qcE(K) is compact (i.e., E has the qcp).
(a’) For every compact subset K of E, the set qcE(K) is σ(E, E∧)−compact.
(b) For every compact subset K of E, the set K◦◦ is compact.
(b’) For every compact subset K of E, the set K◦◦ is ω(E, E∗)−compact.
(c) For every compact subset K of E, the set accE(K) is compact (i.e., E has the ccp).
(d) The natural mapping αE : E → (E∧c )∧ defined by αE(x)(χ) = χ(x) is onto (i.e., E is

semi-reflexive as a topological abelian group).
(e) The natural mapping γE : E → (E∗c )∗ defined by γE(x)( f ) = f (x) is onto.

Then the following implications hold:

(a) 

 ��

��

(b) ��

��

(c)

(a′) 

 �� (b′)

(d) 

 �� (e)

If E is locally convex then all these properties are equivalent.

Proof. (a) ⇔ (b) : Note that if B ⊆ E is balanced and nonempty then qcEB = B◦◦ ([25],
Prop. 1.11(c)). Since [−1, 1]K is compact for every compact K ⊆ E, and quasi-convex
hulls are closed sets, it is clear that (a) holds if and only if qcE([−1, 1]K) is compact for
every compact set K ⊆ E. Now qcE([−1, 1]K) = ([−1, 1]K)◦◦ = K◦◦ and the equivalence
is proved.

(a′) ⇔ (b′) : Again, since [−1, 1]K is compact for every compact K ⊆ E, and quasi-
convex hulls are σ(E, E∧)−closed sets, it is clear that (a’) holds if and only if qcE([−1, 1]K) =
K◦◦ is σ(E, E∧)−compact for every compact set K ⊆ E. It only remains to apply that
ω(E, E∗)−compact subsets and σ(E, E∧)−compact subsets coincide.

(a)⇒ (a′) and (b)⇒ (b′) are trivial.
(b)⇒ (c): Let K be a compact subset of E. The set accEK is closed and a subset of K◦◦,

which is compact by hypothesis. Hence it is compact, too.
(d)⇔ (e) : As we have mentioned (1), the mapping

TE : E∗c −→ E∧c , TE( f ) = π ◦ f

is an isomorphism of topological abelian groups. Hence its adjoint mapping

T∧E : (E∧c )
∧ −→ (E∗c )

∧, T∧E (κ) = κ ◦ TE

is an isomorphism of abelian groups.
Analogously, the mapping

TE∗ : (E∗c )
∗ −→ (E∗c )

∧, TE∗(λ) = π ◦ λ

is an isomorphism of abelian groups.
It is easy to check that T−1

E∗ ◦ T∧E ◦ αE = γE. This shows that (d) and (e) are equivalent.
(c)⇒ (b) if E is locally convex: This is an immediate consequence of the Bipolar Theorem.
(c)⇔ (e) if E is locally convex: This is known ([26], Theorem 9.2.12).

140



Axioms 2022, 11, 224

(a′) ⇒ (a) if E is locally convex: Fix a compact subset K ⊆ E. By hypothesis the
set qcE(K) is σ(E, E∧)−compact. Since E is a locally quasi-convex group, qcE(K) is both
complete (Lemma 2) and precompact ([3], 7.12), hence compact.

The equivalence between qcp and ccp holds for metrizable spaces, and actually these
properties characterize Fréchet spaces within this class:

Proposition 7. Let E be a metrizable topological vector space. The following properties are equivalent:

(a) E has the qcp.
(b) E has the ccp.
(c) E is locally convex and complete.

Proof. (a)⇒ (b) follows from Proposition 6.
(b) ⇒ (c): If E has the ccp then it is locally convex by ([27], 1.642). Hence it is also

complete ([2], Theorem 2.3).
(c) ⇒ (a): This is true for locally quasi-convex complete groups ([11], Proposi-

tion 3.1).

Local convexity in (c) plays an essential role. Below we present an example of a
metrizable complete topological vector space which does not have the qcp.

Example 3. Consider the space �p (with 0 < p < 1) endowed with the p-norm ‖x‖p = ∑∞
k=1 |xk|p.

It is known that �p is a non locally convex, complete metric linear space. Its dual space is �∞ (in
the usual sense for sequence spaces), and in particular �p is a MAP group. (Details can be found
for instance in Chapter 2.3 of [28].) The fact that �p does not have the ccp follows from (b)⇒ (c)
in Proposition 7. Let us give a concrete example of a compact subset of this space whose absolutely
convex closure is not compact. Define the sequence {xn} ∈ �p by

xn(n) = np−1 and xn(m) = 0 if n �= m.

The sequence {xn} converges to 0 in the space �p, since

‖xn‖p = xn(n)p = n(p−1)p → 0.

However, the convex hull of the compact subset K := {0} ∪ {xn : n ∈ N} is unbounded with
respect to the p-norm ‖ · ‖p. Indeed, define

yN =
x1 + · · ·+ xN

N
=
( 1

N
,

2p−1

N
, . . . ,

Np−1

N
, 0, 0, . . .

)
for each N ∈ N. This sequence is clearly contained in the convex hull of K. We have

‖yN‖p =
N

∑
k=1

k(p−1)p

Np ≥
N

∑
k=1

N(p−1)p

Np = N(p−1)2

which goes to infinity as N → ∞. Thus {yN} is unbounded in �p and consequently, the closed
convex hull of K is not compact.

Let us now analyze the presence of the qcp in weak vector space topologies.

Proposition 8. Let E be a dually separated topological vector space. The following properties
are equivalent:

(a) The group (E, σ(E, E∧)) has the qcp.
(b) The space (E, ω(E, E∗)) has the ccp.
(c) (E, σ(E, E∧)) is a semi-reflexive group.
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Proof. It is known that for any dually separated topological vector space E, the dual
space of (E, ω(E, E∗)) is E∗ (see for instance ([29], Chapter IV, 1.2)). Moreover, as we have
mentioned above, given any topological vector space F the natural group homomorphism
F∗ → F∧ given by f �→ π ◦ f is actually an isomorphism. These facts clearly imply that

(E, ω(E, E∗))∧ = E∧ = (E, σ(E, E∧))∧ (2)

From (2) and the above mentioned fact that ω(E, E∗)−compact subsets and σ(E, E∧)−compact
subsets coincide, we deduce on the one hand that (a) is equivalent to

(a’) (E, ω(E, E∗)) has the qcp and on the other hand that

(E, ω(E, E∗))∧c = (E, σ(E, E∧))∧c (3)

By (a)⇔ (c) in Proposition 6 applied to the locally convex space (E, ω(E, E∗)), (b) is
equivalent to (a’). Since (a’) is equivalent to (a), we have proved (a)⇔ (b).

By (c)⇔ (d) in Proposition 6 applied to the locally convex space (E, ω(E, E∗)), (b) is
equivalent to

(b’) (E, ω(E, E∗)) is semi-reflexive as a topological abelian group.

From (3) we deduce that (b’) is equivalent to (c). This shows (b)⇔ (c).

5. The Krein Property for Topological Abelian Groups

In the sequel we will call Krein’s Theorem the following statement which is an imme-
diate consequence of Theorem 1:

Theorem 5. If E is a complete locally convex space, then the space (E, ω(E, E∗)) has the ccp.

We will see below that Krein’s Theorem cannot be totally extended to the class of
locally quasi-convex groups, but some approach is possible and we first study positive
results in this line. For convenience we introduce the Krein property:

Definition 2. Let X be a MAP topological abelian group. We say that X has the Krein property if
(X, σ(X, X∧)) has the qcp.

By Proposition 1(g), any locally quasi-convex group with the Krein property has
the qcp.

Denote by Tσc the topology on X∧ of uniform convergence on σ(X, X∧)−compact
subsets of a topological abelian group X. Proposition 2 yields the following:

Proposition 9. Let X be a MAP topological abelian group. The following conditions are equivalent:

(a) X has the Krein property.
(b) The topologies Tσc and Tσqc coincide on X∧.

We denote by bX the completion of the group (X, σ(X, X∧)), where X is a MAP
topological abelian group. The compact group bX can be realized as Hom(X∧,T) with the
topology it carries as a subgroup of TX∧

. The following result is an immediate consequence
of Corollary 3:

Proposition 10. Let X be a MAP topological abelian group. If X has the Krein property then either
(X, σ(X, X∧)) = bX or (X, σ(X, X∧)) does not determine bX.

The following result follows at once from Proposition 8. It shows that the Krein
property, as we have just defined it, generalizes its natural vector-space counterpart in a
satisfactory way.
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Proposition 11. Let (X, τ) be a dually separated topological vector space. Then its underlying
group has the Krein property if and only if (X, ω(X, X∗)) has the ccp.

Hence Krein’s (Theorem 5 above) can be restated as the fact that all complete locally
convex spaces have the Krein property as groups. In order to show that Krein’s Theorem
does not remain true for complete locally quasi-convex groups, we present a family of
counterexamples considered in [30] with a different purpose.

We follow the notation of the mentioned paper, and outline the parts that allow us to
reach our conclusion.

Notation 1. For a Hausdorff topological abelian group X, let u and p be, respectively, the
uniform and the product topology on XN. A basis of zero neighborhoods for u is given
by the family {UN, U ∈ N (X)} where N (X) stands for a zero-neighborhood basis at X.
Denote by c0(X) the subgroup of (XN, u) formed by the null sequences of X, by u0 the
topology induced by u in c0(X) and by p0 the topology induced by p in c0(X).

Theorem 6. Let X be an infinite compact, connected metrizable topological abelian group, and let G :=
(c0(X), u0). Then G is a complete metrizable group. However, G does not have the Krein property.

Proof. Straightforward calculations show that c0(X) is closed in (XN, u). Therefore G is
complete and metrizable.

The important fact is that its dual group G∧ is countable, and this is obtained in [30],
after several steps that include the definition of a subclass of the locally generated abelian
groups. A steady reasoning leads to the fact that (c0(X), u0)

∧ = (c0(X), p0)
∧, whenever X

is a nontrivial compact connected metrizable group ([30], Theorem 7.3).
Now it is easy to prove that (c0(X), p0)

∧ is countable. Taking into account that c0(X) is
dense in (XN, p), (c0(X), p0)

∧ can be identified with the dual group of (XN, p) which is the
direct sum of countably many copies of X∧, say (X∧)(N). Since X is a compact metrizable
group, X∧ is countable. Thus, G∧ = (X∧)(N) is also countable.

The topology σ(G, G∧) coincides with p0, so we have that (G, σ(G, G∧)) is metriz-
able. The fact that G does not have the Krein property follows by contradiction: had
(G, σ(G, G∧)) the qcp, by Proposition 1(e), it would be complete. But this is not the case
since (G, σ(G, G∧)) = (c0(X), p0) and c0(X) is a proper dense subgroup of the complete
group (XN, p).

6. The Krein and the Glicksberg Properties in the Context of Duality

There is some interaction between these properties as we present below.

Proposition 12. Let X be a locally quasi-convex topological group with the Krein property. The fol-
lowing statements are equivalent:

(a) X has the Glicksberg property.
(b) Tc = Tσc = Tσqc.

Proof. (a)⇒ (b) derives from the equality Tc = Tσc and from Proposition 9.
(b)⇒ (a) : Let K ⊂ X be σ(X, X∧)-compact. Thus K� is a Tσc-neighborhood of zero,

and since Tc = Tσc we can find a compact subset C of (X, τ) such that C� ⊂ K�. This
implies K ⊂ qcXC. Since, by Proposition 1 (g), (X, τ) also has the qcp, we obtain that qcXC
is compact in τ. Consequently, K is τ-compact.

We recall that a topological abelian group (X, τ) is g-barrelled if every σ((X, τ)∧, X)−
compact subset of X∧ is τ−equicontinuous. For reflexive groups, the “Glicksberg property“
and “being g-barrelled“ are dual to each other as shown below (Corollary 7).

Proposition 13. Let (X, τ) be a Hausdorff locally quasi-convex group. Consider the assertions:

(a) X∧
c is g-barrelled.
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(b) X has the Glicksberg property.

Then (a)⇒ (b). If (X, τ) is further semi-reflexive, then (b)⇒ (a).

Proof. (a)⇒ (b) Let S ⊂ X be σ(X, X∧)-compact. Through the natural embedding

β : (X, σ(X, X∧)) ↪→ ((X∧
c )

∧, σ((X∧
c )

∧, X∧))

we obtain that β(S) is a σ((X∧
c )

∧, X∧)-compact subset of (X∧
c )

∧. By (a) there is a zero-
neighborhood V in X∧

c such that β(S) ⊂ V�. Since V� is a compact subset of (X∧
c )

∧
c

and β(S) is closed, we obtain that β(S) is also compact in (X∧
c )

∧
c . From the assumption

that X is locally quasi-convex, we have that α : (X, τ) → (X∧
c )

∧
c is relatively open, thus

α−1(β(S)) = S is compact in τ, which ends the proof.
Assume now that (X, τ) is semi-reflexive. In order to prove (b) ⇒ (a) observe

that β : (X, σ(X, X∧)) → ((X∧
c )

∧, σ((X∧
c )

∧, X∧)) is a topological isomorphism. Thus,
if K ⊂ (X∧

c )
∧ is σ((X∧

c )
∧, X∧)-compact, β−1(K) is a σ(X, X∧)-compact subset of X. By (b)

it is also τ-compact, therefore (β−1(K))� = K� is a neighborhood of zero in X∧
c such that

K ⊂ (β−1(K))��. Thus, K is equicontinuous. Consequently, X∧
c is g-barrelled.

Corollary 7. Let (X, τ) be a reflexive group. The following two properties are equivalent:

(a) X∧
c is g-barrelled.

(b) X has the Glicksberg property.

Remark 3. (a)⇒ (b) of Corollary 7 is a generalization of ([25], Proposition 1.7). In [31] it was
wrongly stated that every reflexive group satisfies (b). A counterexample can be seen in [24]. Thus,
we conclude that the dual of a reflexive group is not necessarily g-barreled.

Corollary 7 can also be obtained from Proposition 5.3 of [32], where several notions of barreled-
ness for groups are considered.

Melting Proposition 12 and Corollary 7, we obtain:

Corollary 8. Let X be a reflexive group with the Krein property. The following statements are equivalent:

(i) X∧
c is g-barrelled.

(ii) X has the Glicksberg property.
(iii) The topologies Tc and Tσqc coincide on X∧.

Example 4.

(i) Banach spaces provide examples of reflexive topological groups with the Krein property. Just
take into account that a Banach space is a reflexive topological group ([6]), and Theorem 5 and
Proposition 11 of the present paper.

(ii) A reflexive group (G, τ) with the Krein property, such that G∧
c is not g-barrelled: Let G be an

infinite dimensional, reflexive Banach space (in the ordinary sense of reflexivity for Banach
spaces). It does not have the Glicksberg property: in fact, the unit ball B is ω(G, G∗)-compact
and by [24] also σ(G, G∧)-compact. Clearly B is not compact in the norm topology of G. Thus,
Corollary 8 applies to obtain that G∧

c is not g-barrelled.
(iii) A non reflexive group with Krein and Glicksberg properties such that G∧

c is g-barrelled: Let
G := (E, ω(E, E∗)) where E is an infinite dimensional Banach space and ω(E, E∗) is its
weak topology. The group G is locally quasi-convex nonreflexive (αG is not continuous)
and by (i) it has the Krein property. Since the ω(E, E∗)-compact subsets of E coincide
with the σ(E, E∧)-compact subsets ([24], Lemma 1.2), G has the Glicksberg property. By
Proposition 12, the compact-open topology on G∧ coincides with Tσqc.
By Proposition 8, G is semi-reflexive and Proposition 13 proves that G∧

c is g-barrelled. Observe
also that G itself is not g-barrelled.
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Abstract: For an abelian topological group G, the sequence group �1(G) of all absolutely summable
sequences in G is studied. It is shown that �1(G) is a Pontryagin reflexive group in case G is a reflexive
metrizable group or an LCA group. Further, �1(G) has the Schur property if and only if G has it and
�1(G) is a Schwartz group if and only if G is linearly topologized.
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1. Preliminaries

1.1. Introduction

It is a well-known result in the theory of locally convex vector spaces that for a
metrizable locally convex space (E, τ), the underlying topology τ is the finest locally
convex topology giving rise to the dual space (E, τ)′ in all continuous linear forms ([1],
p. 263). The idea of a finest compatible topology was generalized in [2] to locally quasi-
convex groups. More precisely, for a locally quasi-convex group (G, τ), the topology τ is
called the Mackey topology (see [2] for details) if it is the finest among all locally quasi-
convex group topologies giving rise to the character group (G, τ)∧. For several years, it
was an open question as to whether every metrizable locally quasi-convex group topology
is a Mackey topology. The first example giving a negative answer to this question was the
group of all null-sequences in the torus c0(T) = {(zn) ∈ TN : zn → 0} endowed with
the topology of uniform convergence. The important observation was that the dual group
of c0(T) is isomorphic to Z(N); in particular, it is countable. This implies that the weak
topology σ(c0(T), c0(T)∧) is metrizable and precompact. Because this topology is strictly
weaker than the topology of uniform convergence on c0(T), the metrizable weak topology
cannot be the Mackey topology. In [3], this was generalized to c0(G) where G is a compact
connected abelian metrizable group. The main idea was to show that the character group
of such a group has a countable dual group. In [4] (Theorem 3.4), an alternative proof for
this was given, the structure of the character group of c0(G) was described, and many
properties of these groups have been studied since then (cf. [4–7]).

In [7] (Theorem 1.3), Gabriyelyan proves that for an LCA group G, the following
assertions are equivalent: G is totally disconnected iff c0(G) is a nuclear group iff c0(G) is a
Schwartz group iff c0(G) respects compactness. Further, in [4] (Theorem 1.2), he generalized
the results from [5] and shows that c0(G) is a reflexive group.

In [5], groups of the form �p(T) = {(zn) ∈ TN : ∑∞
n=1 |1− zn|p < ∞} were investi-

gated and it was shown that for 0 < p < ∞, �p(T) is a monothetic Polish group which is
topologically isomorphic to �p/Z(N) ([5] Proposition 5/Theorem 1) and �1(T) is reflexive.

Because in the theory of Banach spaces, the sequence space c0 of (real or complex) null-
sequences, the space �1 of all absolutely summable sequences, and the space �∞ of bounded
sequences play an important role, it is natural to generalize them to the corresponding
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sequence groups for abelian Hausdorff groups G. This was performed in the case c0(G)
by Gabriyelyan and will now be carried out for the groups �1(G) of absolutely summable
sequences (Definition 3).

Alternatively, unconditionally Cauchy sequences and absolutely summable sequences
(suitably defined) were studied in the realm of topological vector spaces in order to char-
acterize nuclear vector spaces (cf. ([8], 21.2.1) and ([9], p.73)). This idea was picked up
by Domínguez Pérez and Tarieladze in [10,11] in order to characterize nuclear groups
(see below).

Our main interest is to find sufficiency conditions for a group G such that �1(G) is reflexive.
We prove that a metrizable group G is reflexive if and only if the sequence group �1(G)
is reflexive (Corollary 6). Moreover, for every LCA group G, the group �1(G) is reflexive
(Theorem 4).

A normed vector space has the Schur property if every sequence which converges
in the weak vector space topology is also convergent with respect to the norm. As the
vector space �1 has the Schur property ([12], 27.13), it is natural to ask whether �1(G) also
has a similar property. It turns out that for a locally quasi-convex group G, �1(G) has the
(analogue of the) Schur property for groups if and only if G has this property (Theorem 6).

In [13], Banaszczyk introduced nuclear groups, a Hausdorff variety of groups which
contains all locally convex nuclear vector spaces and all LCA groups. In [14], Schwartz
groups were defined, examples were given, and first properties were shown. Because no
infinite-dimensional normed space is neither a Schwartz space nor a nuclear vector space,
it is not surprising that the hypotheses on a group G such that �1(G) is a Schwartz group or
a nuclear group must be rather restrictive. Indeed, we show that for a locally quasi-convex
group G, the group �1(G) is a Schwartz group iff �1(G) is a nuclear group iff G is linearly
topologized (Theorem 8). This is an analogue of Gabriyelyan’s result for c0(G) as every
totally disconnected LCA group is linearly topologized.

The paper is organized as follows:
In Section 1.2, we gather material concerning reflexive groups, and in Section 1.3,

we study properties of the Minkowski functional for groups. Section 2 is dedicated to
the study of the sequence group �1(G), the focus of the paper. We start in Section 2.1
with the definition and basic properties of the topological group �1(G). We show that,
on the one hand, G can be embedded in �1(G) and, on the other, G is a quotient group
of �1(G) (Lemma 1). Thus, it is not surprising that G and �1(G) have many properties in
common in the sense that G satisfies property P iff �1(G) satisfies P. For example, this
holds for cardinal invariants, separation axioms, completeness, and local quasi-convexity.
The mapping G → �1(G) is a covariant functor from the category of abelian topological
groups into itself (Lemma 6). Further, the compact subsets of �1(G) are characterized
(Proposition 8). In Section 2.2, the dual group of �1(G) is described and it is shown that G
is a locally quasi-convex group if and only if �1(G) has this property. Further, sufficiency
conditions are established for the continuity of α�1(G), the canonical mapping in the bidual
group G∧∧ (see Section 1.2 for a precise definition). In Theorem 2, it is shown that α�1(G) is
continuous if G is reflexive and G∧ is complete with a countable point-separating subgroup.
In Section 2.3, the second character group is studied. It is shown that under mild conditions
on the group G (e.g., if G is reflexive), �1(G)∧∧ can be canonically identified with �1(G∧∧),
from which it follows that �1(G) is reflexive if G is a metrizable reflexive group or an
LCA group.

In Section 2.4, we recall first the Schur property for groups (Definition 4) and prove
for G locally quasi-convex that �1(G) has the Schur property if and only if G does. In
Section 2.5 of this chapter, we recall the definition of Schwartz groups, properties of nuclear
groups, and classify locally quasi-convex groups for which �1(G) is a Schwartz group,
respectively, a nuclear group.

Finally, in Section 3, we present some open questions related to this article.
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1.2. Notation and Preliminaries

Let N = {1, 2, . . .} denote the natural numbers. For m ∈ N, put m := {1, . . . , m} and
denote by ℵ0 the cardinality of N. As usual, R is the set of real numbers and Z denotes the
set of integers.

For a topological group G, let NG(0) denote the set of all symmetric neighborhoods
of 0. If the group G is clear from context, the index G will be omitted.

The compact torus T = R/Z is isomorphic to the complex numbers of modulus one.
For technical reasons, we prefer the additive notation.

Let G be an abelian Hausdorff group. The set of all continuous characters (i.e., contin-
uous homomorphisms from G into the torus T) is called the character group of G, denoted
G∧. With pointwise addition, G∧ is an abelian group; endowed with the compact-open
topology, it is an abelian Hausdorff group, allowing us to form the second character group
(G∧)∧ =: G∧∧. An abelian Hausdorff group G is called (Pontryagin) reflexive if the
evaluation homomorphism

αG : G → G∧∧, x �→ (αG(x) : χ �→ χ(x))

is a topological isomorphism. The famous Pontryagin–van Kampen duality theorem states
that every locally compact abelian group (abbreviated LCA group) is Pontryagin reflexive.
It was shown by Smith [15] that every reflexive topological vector space and every Banach
space are Pontryagin reflexive groups. The latter result depends deeply on the fact that,
in the character group (which can be algebraically identified with the dual space), the
compact-open and strong topologies do not agree in general. However, this implies that
the real or complex vector spaces c0, �1, and �∞, well-known to be non-reflexive topological
vector spaces, are Pontryagin reflexive groups. All other notation and terminology not
recalled here can be found in [16] or [17].

Let T+ = {x + Z ∈ T : |x| ≤ 1
4}. For a subset A of G, we call the set A� = {χ ∈

G∧ : χ(A) ⊆ T+} the polar of A, and for a subset B ⊆ G∧, we consider B� = {x ∈ G :
χ(x) ∈ T+ ∀χ ∈ B}, the prepolar of B. A subset A of an abelian topological group G is
called quasi-convex if, for every x ∈ G \ A, there exists a continuous character χ ∈ A�

such that χ(x) /∈ T+. An abelian topological group G is named locally quasi-convex

(abbreviated lqc) if there is a neighborhood base at 0 consisting of quasi-convex sets.
According to ([13], 2.4), a topological vector space is lqc (as an abelian topological group) if
and only if it is locally convex.

A subset B of the character group G∧ is called equicontinuous if B ⊆ U� for a suitable
neighborhood U ∈ NG(0). It is well known that the polar of each neighborhood U is
a compact subset of G∧. The canonical mapping αG is continuous if and only if every
compact subset of G∧ is equicontinuous. By a result of Kye ([18]), αG restricted to every
compact subset of G is continuous ([17], 13.4.1). In particular, if G is metrizable (more
generally, a k-space), then αG is continuous.

If G is reflexive, then the sets α−1
G (U��) = U�� form a neighborhood base at 0. Hence,

every reflexive group is lqc. The set U�� =: qc(U) is called the quasi-convex hull of U. It
is the smallest quasi-convex set containing U.

If a group G is lqc and Hausdorff, then the characters of G separate points; in other
words, αG is injective or, equivalently, G is a maximally almost periodic group (abbreviated
MAP group). Further, it is straightforward to prove that if G is an lqc Hausdorff group,
then the mapping α−1

G : αG(G)→ G, αG(x) �→ x is continuous.
Thus, in order to prove that G is reflexive, one has to verify that:

• G is an lqc Hausdorff group;
• Every compact subset of G∧ is equicontinuous;
• αG is surjective.

Next, we collect some elementary properties applied later.
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Proposition 1. If G is a second countable Hausdorff group, then G∧ is separable.

Proof. Because G is a second countable regular space, it is separable and metrizable ([16],
4.2.9), in particular, first countable. Thus, G∧ =

⋃
n∈N U�

n where (Un) is a countable
neighborhood base at 0. It suffices, therefore, to prove that every U�

n is separable. However,
on the compact set U�

n , the compact-open topology coincides with the point-separating
topology σ(G∧, D) for D, a countable dense subset of G. Thus, each polar U�

n , whence G is
separable.

Note that the character group of a separable group need not be separable, as TR shows.
It is separable by the Pondiczery theorem ([16], 2.3.16), but its discrete character group
is uncountable.

Proposition 2. Let G be an abelian MAP group. If G∧ endowed with the compact-open topology
is separable, then G∧ has a countable point-separating subgroup.

Proof. The weak topology σ(G∧, G), induced by the mapping G∧ → TG, χ �→ (χ(x))x∈G,
is coarser than the compact-open topology on G∧ and hence also separable. Let D ≤ G∧ be
a countable dense subgroup and let H =

⋂
χ∈D ker(χ). We have to show that H = {0} is

the trivial subgroup of G. Thus, assume there exists 0 �= x ∈ H. Because G is a MAP group,
there exists χ ∈ G∧ which satisfies χ(x) �= 0T. Because D is dense in (G∧, σ(G∧, G)), there
exists a net (χα)α∈A in D such that (χα(x)) converges to χ(x). Hence, χα(x) �= 0T for some
α ∈ A, which shows that D separates the points of G.

Definition 1 ([19]). A subset A of a topological group G is called qc-precompact if for every
U ∈ N (0) there exists a finite subset F of G such that A ⊆ qc(F + U).

Proposition 3 ([19], Corollary 3.7). If G is a locally quasi-convex group, then every qc-precompact
subset of G is precompact.

Remark 1 ([20], 6.3.10). Let C be a compact subset of a reflexive group G, then also qc(C) is
compact.

Indeed, qc(C) = C�� = α−1
G (C��) holds. Because C� is a neighborhood of 0 in

G∧, its polar C�� is a compact subset of G∧∧. Because αG is a topological isomorphism,
qc(C) = α−1

G (C��) is a compact subset of G.

1.3. The Minkowski Functional for Groups

We define an analogue of the Minkowski functional for groups:

Definition 2 ([13], p.8). Let G be an abelian group and let S ⊆ G be a symmetric subset
containing 0. Set

κS : G → R, x �→
{

2 : x /∈ S
inf{ 1

m : kx ∈ S ∀1 ≤ k ≤ m} : x ∈ S.

We omit an index indicating the group, because κS depends only on S ⊆ G and not on
the group containing S.

In [13], κS was only defined for elements of S. Kaplan defined a generalization of the
Minkowski functional slightly differently in [21].

For n ∈ N, we define Tn = {x +Z : − 1
4n ≤ x ≤ 1

4n} and we put T1 =: T+.

Fact 1. For w ∈ T and n ∈ N the following assertions are equivalent:

(a) w ∈ Tn;
(b) kw ∈ T+ for all 1 ≤ k ≤ n.
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Thus, Fact 1 can be reformulated as follows: κT+
(w) ≤ 1

n for some w ∈ T is equivalent
to w ∈ Tn.

Lemma 1.

(a) If A ⊆ B are symmetric sets containing 0, then κB ≤ κA.
(b) Let A and B be symmetric subsets of G and k ∈ N such that 0 ∈ A and A + . . . + A︸ ︷︷ ︸

k summands

⊆ B.

Then, κB(x) ≤ 1
k κA(x) holds for all x ∈ A.

(c) If A is quasi-convex, then κA(x) ≤ 1
m for some m ∈ N if and only if χ(x) ∈ Tm for all

χ ∈ A�.
(d) If A is a subgroup of G, then κA(x) = 0 if x ∈ A and κA(x) = 2 for x /∈ A.
(e) If H is a subgroup of G and A ⊆ G is a symmetric set containing {0}, then κA(x) = κA∩H(x)

holds for all x ∈ H.
(f) If A1 ⊆ G1 and A2 ⊆ G2 are symmetric subsets containing the respective neutral elements,

then κA1×A2(x1, x2) = max{κA1(x1), κA2(x2)} for all (x1, x2) ∈ G1 × G2.

Proof. The proofs of (a) and (b) are straightforward.
(c) Fix m ∈ N and x ∈ G with κA(x) ≤ 1

m . This means, kx ∈ A for all 1 ≤ k ≤ m.
Because A is quasi-convex, y ∈ A if and only if χ(y) ∈ T+ for all χ ∈ A�. Thus, we obtain
kχ(x) = χ(kx) ∈ T+ for all 1 ≤ k ≤ m and all χ ∈ A�. By Fact 1, this is equivalent to
χ(x) ∈ Tm.

(d) and (e) are trivial.
(f) Fix m ∈ N. Assume that κA1×A2(x1, x2) ≤ 1

m . This is equivalent to kx1 ∈ A1 and
kx2 ∈ A2 for all 1 ≤ k ≤ m. Thus, κA1(x1) ≤ 1

m and κA2(x2) ≤ 1
m . This shows that

κA1×A2(x1, x2) ≥ max{κA1(x1), κA2(x2)}. Conversely, if max{κA1(x1), κA2(x2)} ≤ 1
m , then

k(x1, x2) ∈ A1 × A2 for all 1 ≤ k ≤ m and consequently κA1×A2(x1, x2) ≤ 1
m . This implies

κA1×A2(x1, x2) ≤ max{κA1(x1), κA2(x2)}.

κS does, in general, not satisfy the triangle inequality, as the following example shows:
Let A = [−1, 1] ⊆ R;
κA(

3
2 ) = 2 > 1 + 1

2 = κA(1) + κA(
1
2 ).

However, we have:

Proposition 4. If 0 ∈ A ⊆ G is symmetric, then κA+A(x + y) ≤ max{κA(x), κA(y)} ≤
κA(x) + κA(y).

Proof. It is sufficient to prove the first inequality. If x /∈ A or y /∈ A, the assertion trivially
holds. Thus, let us assume that x, y ∈ A. Fix m ∈ N. If κA(x), κA(y) ≤ 1

m , then kx, ky ∈ A
for all 1 ≤ k ≤ m and hence k(x + y) ∈ A + A. This implies κA+A(x + y) ≤ 1

m .

Lemma 2. If A ⊆ G is quasi-convex, m ∈ N, and x, y ∈ G satisfy κA(x), κA(y) ≤ 1
2m , then

κA(x + y) ≤ 1
m .

Proof. By Lemma 1 (c), κA(x), κA(y) ≤ 1
2m is equivalent to χ({x, y}) ⊆ T2m for all χ ∈ A�.

Thus, χ(x + y) ∈ Tm for all χ ∈ A�, which is equivalent to κA(x + y) ≤ 1
m .

Lemma 3. For A ⊆ G and χ ∈ G∧ and m ∈ N, the following holds:

(a) κA�(χ) = 1
m if and only if χ(A) ⊆ Tm but χ(A) � Tm+1;

(b) κA�(χ) = 0 if and only if χ(A) = {0}.
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Proof.

(a) κA�(χ) = 1
m is equivalent to kχ ∈ A� for all 1 ≤ k ≤ m and (m + 1)χ /∈ A�. This

means that kχ(a) ∈ T+ for all 1 ≤ k ≤ m and all a ∈ A and there exists a0 ∈ A such
that (m + 1)χ(a0) /∈ T+. The first assertion is equivalent to χ(A) ⊆ Tm, the second
(combined with the first) is equivalent to χ(A) � Tm+1.

(b) The assertions κA�(χ) = 0 are equivalent to kχ ∈ A� and to kχ(a) ∈ T+ for all a ∈ A
and k ∈ N. The latter is equivalent to χ(A) = {0}.

Lemma 4. Let ϕ : G → H be a homomorphism. Assume that 0 ∈ A ⊆ G and 0 ∈ B ⊆ H are
symmetric subsets such that ϕ(A) ⊆ B holds. Then, κB ◦ ϕ ≤ κA follows.

Proof. Let x ∈ G. WLOG, we may assume that x ∈ A. Assume that κA(x) ≤ 1
m for

some m ∈ N. Hence, kx ∈ A for all 1 ≤ k ≤ m and hence kϕ(x) ∈ B, which implies
κB(ϕ(x)) ≤ 1

m .

Lemma 5. Let G be an abelian topological group and A ⊆ G a symmetric and closed set contain-
ing 0. Then, κA is lower semicontinuous (i.e., κ−1

A (]y, ∞]) is open for all y ∈ R or, equivalently,
κ−1

A ([0, y]) is closed for all y ≥ 0).
For any sequence (An) of closed symmetric subsets of G containing 0, the mapping G →

[0, ∞], x �→ ∑n∈N κAn(x) is lower semicontinuous as well.

Proof. For y < 0, κ−1
A (]y, ∞[) = G. Fix y ≥ 0 and let x0 ∈ G satisfy κA(x0) > y. If

κA(x0) = 2, then G \ A is an open neighborhood of x0 contained in κ−1
A (]y, ∞[). Otherwise,

κA(x0) =
1
m for some m ∈ N. Thus, (m + 1)x0 /∈ A. For a suitable open neighborhood W

of x0, we have (m + 1)x /∈ A for all x ∈ W. This implies κA(x) ≥ 1
m > y for all x ∈ W and

hence x0 ∈ W ⊆ κ−1
A (]y, ∞[).

Assume now that (An) is a sequence of closed and symmetric sets containing 0. Put
κ := ∑n∈N κAn . Fix y ∈ R. As above, κ−1(]y, ∞[) = G in case y < 0. Thus, assume now that
y ≥ 0 and let x0 ∈ G satisfy κ(x0) > y. Then, there is N ∈ N such that ∑N

n=1 κAn(x0) > y.

Let yn := κAn(x0) and ε := 1
N

(
(∑N

n=1 yn)− y
)

. By what was shown above, there exists an
open neighborhood W of x0 such that κAn(x) > yn − ε for all 1 ≤ n ≤ N and all x ∈ W.
Then, κ(x) ≥ ∑N

n=1 κAn(x) > ∑N
n=1(yn − ε) = ∑N

n=1 yn − Nε = y. This shows that κ is lower
semicontinuous.

2. The Group of Absolutely Summable Sequences �1(G)

2.1. Basic Properties of �1(G)

Definition 3. Let (G, τ) be an abelian topological group. Denote by

�1(G) = �1(G, τ) = {(xn) ∈ GN : ∀U ∈ NG(0) : ∑
n∈N

κU(xn) < ∞}.

The set �1(G) is a group under pointwise addition.
(Indeed, let (xn), (yn) ∈ �1(G). For U ∈ N (0), there exists W ∈ N (0) such that W + W ⊆
U. Then, by Lemma 1 (a) and Proposition 4, ∑n∈N κU(xn + yn) ≤ ∑n∈N κW+W(xn + yn) ≤
∑n∈N κW(xn) + ∑n∈N κW(yn) < ∞ holds.)

The group �1(G) is the group of all absolutely summable sequences in G. The family
of sets (SU)U∈N (0) where

SU = {(xn) ∈ �1(G) : ∑
n∈N

κU(xn) ≤ 1}
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forms a neighborhood base at 0 of a group topology on �1(G).

(Indeed, fix a symmetric neighborhood U ∈ N (0) and let (xn), (yn) ∈ SU . Then,

∑n∈N κU+U+U+U(xn + yn) ≤ ∑n∈N κU+U(xn) + ∑n∈N κU+U(yn)

≤ 1
2 (∑n∈N κU(xn) + ∑n∈N κU(yn)) ≤ 1 by Proposition 4 and Lemma 1 (b).

Thus, the symmetric set SU satisfies SU + SU ⊆ SU+U+U+U).
This topology will be denoted Σ�1(G).
Further, for N ∈ N and U ∈ N (0), let

SN,U := {(xn) ∈ �1(G) : ∑
n≥N

κU(xn) ≤ 1}.

Thus, SU = S1,U for all U ∈ N (0).

Remark 2. The direct sum G(N) is contained in �1(G), while the latter group is a subgroup of
c0(G), the group of all null sequences in G. (The first assertion is trivial. In order to prove
the second one, fix (xn) ∈ �1(G) and U ∈ N (0). Because ∑n∈N κU(xn) < ∞, there exists
n0 ∈ N such that κU(xn) ≤ 1 for all n ≥ n0. However, this means that xn ∈ U for all n ≥ n0.
Hence, xn → 0.)

In case G does not admit any non-trivial convergent sequences, G(N) = �1(G) = c0(G)
holds algebraically. Hrušák, van Mill, Ramos-García, and Shelah [22] proved (under
ZFC) that there exists an infinite countably compact group G of exponent 2 which has no
non-trivial convergent sequences, whence �1(G) = G(N).

Lemma 6. If ϕ : G → H is a continuous homomorphism of topological groups, then ϕ# : �1(G)→
�1(H), (xn) �→ (ϕ(xn)) is a well-defined continuous homomorphism. More precisely, if ϕ(U) ⊆ V
holds for symmetric neighborhoods U ∈ NG(0) and V ∈ NH(0), then ϕ#(SU) ⊆ SV.

Thus, F1 : ATOP → ATOP, G �→ �1(G) and ϕ �→ ϕ# defines a covariant functor from the
category of all abelian topological groups into itself. In particular, if ϕ is a topological isomorphism,
then so is ϕ#.

Proof. For V ∈ NH(0), there exists U ∈ NG(0) such that ϕ(U) ⊆ V. By Lemma 4,
κV(ϕ(x)) ≤ κU(x) holds for all x ∈ G. Thus, for (xn) ∈ �1(G) this gives ∑n∈N κV(ϕ(xn)) ≤
∑n∈N κU(xn) < ∞. This yields that ϕ# is well-defined and obviously a homomorphism
which satisfies ϕ#(SU) ⊆ SV . Thus, in particular, ϕ# is continuous. It is straightforward to
check that (ϕ ◦ ψ)# = ϕ# ◦ ψ# for an appropriate continuous homomorphism ψ : G0 → G.
Now, the assertion follows easily.

Corollary 1. Let G be a non-necessarily Hausdorff abelian group and denote by N = {0} the
core of G and by π : G → G/N the canonical projection. Then, π# : �1(G) → �1(G/N) is
a projection.

Proof. By Lemma 6, π# is continuous, and for a symmetric neighborhood U ∈ NG(0),
we have π#(SU) ⊆ Sπ(U). Conversely, we are going to show that π#(SU+U) ⊇ Sπ(U)

holds. Therefore, we verify first that κU+U(x) ≤ κπ(U)(π(x)) holds for all x ∈ G. Thus,
assume that κπ(U)(π(x)) ≤ 1

m for some m ∈ N. This implies that kπ(x) ∈ π(U) for all
1 ≤ k ≤ m and hence kx ∈ U + N ⊆ U + U for all 1 ≤ k ≤ m. Thus, κU+U(x) ≤ 1

m .
Next, fix (π(xn)) ∈ Sπ(U). Then, ∑n∈N κU+U(xn) ≤ ∑n∈N κπ(U)(π(xn)) ≤ 1 follows. Thus,
(xn) ∈ SU+U and hence (π(xn)) ∈ π#(SU+U).

Proposition 5. Let G be an abelian topological group and F a finite subset of N. Then:

(a) μF : GF → �1(G), (xn)n∈F �→ (xn)n∈N, where xn = 0 for all n ∈ N \ F, is an embedding.
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(b) pF : �1(G)→ GF, (xn)n∈N �→ (xn)n∈F is a projection.
(c) G is Hausdorff if and only if �1(G) is Hausdorff.
(d) G is linearly topologized if and only if �1(G) has this property.

For F = {n}, we write μn and pn instead of μ{n} and p{n}.

Proof. We start with the following observation:
For every U ∈ NG(0) and W ∈ NG(0) such that W + . . .+︸ ︷︷ ︸

|F| times

W ⊆ U one has

μF(WF) = WF × {0}N\F ⊆ SU .

Proof of observation: For x ∈ W, one has κU(x) ≤ 1
|F|κW(x) by Lemma 1 (b); hence,

μF(W× . . .×W) ⊆ SU , because ∑n∈F κU(xn) ≤ ∑n∈F
1
|F| · κW(xn) ≤ 1 for all (xn)n∈F ∈ WF,

as desired.

(a) The observation above implies that μF is continuous. In order to show that μF is an em-
bedding, observe the following: μF(GF) ∩ SW ⊆ μF(WF), because μF((xn)n∈F) ∈ SW
if and only if ∑n∈F κW(xn) ≤ 1, which implies xn ∈ W for all n ∈ F.

(b) Because pF(SU) ⊆ UF for all U ∈ NG(0), the mapping pF is continuous. In order
to show that pF is open, let U and W be as in the observation. Then, pF(SU) ⊇
pF(WF × {0}N\F) ⊇ WF. This shows that pF is open.

(c) Assume that G is Hausdorff. It is straightforward to prove that
⋂

U∈N
SU = {0}. Thus,

�1(G) is also a Hausdorff group. Conversely, because μ1 : G → �1(G) is an embedding
by item (a), G is Hausdorff provided �1(G) has this property.

(d) Assume that G is linearly topologized. If U is an open subgroup of G, then κU = 2 · 1G\U
where 1G\U denotes the indicator function (by Lemma 1 (d)). Thus, SU = {(xn) ∈
�1(G) : xn ∈ U ∀n ∈ N} = UN ∩ �1(G) is a subgroup. Hence, �1(G) is also linearly
topologized.

The converse implication is a consequence of item (a).

A consequence of item (b) is the continuity of the canonical projections pn, which
immediately implies the following.

Corollary 2. The canonical mapping (�1(G), Σ�1(G))→ (GN, τp), where τp denotes the product
topology, is continuous.

Proposition 6.

(a) If H is a subgroup of G and ι : H → G denotes the embedding , then ι# : �1(H) → �1(G)
is an embedding. Furthermore, if H is an open, respectively, closed subgroup of G, then
ι#(�

1(H)) is an open, respectively, closed subgroup of �1(G).
(b) For abelian topological groups G1 and G2, the sequence space �1(G1 × G2) is canonically

topologically isomorphic to �1(G1)× �1(G2).

Proof.

(a) Because for every symmetric neighborhood U ∈ NG(0) the equation ι#(SU∩H) =

SU ∩ ι#(�
1(H)) holds by Lemma 1 (e), this yields that ι# is an embedding. Further,

if H is open, U can be chosen to be contained in H and then SU ⊆ ι#(�
1(H)), so

ι#(�
1(H) is an open subgroup of �1(G). Now, let H be a closed subgroup of G and

let pn : �1(G) → G denote the projection on the n-th coordinate. Then, ι#(�
1(H)) =⋂

n∈N p−1
n (H) is closed in �1(G) by Proposition 5 (b).

(b) For i ∈ {1, 2}, let πi : G1 × G2 → Gi be the canonical projection and consider the
canonical mapping
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ψ = ((π1)# × (π2)#) : �1(G1 × G2) → �1(G1) × �1(G2), ((xn, yn)) �→ ((xn), (yn)),
which is a continuous monomorphism by Lemma 6.

By Lemma 1 (f), we have for Ui ∈ NGi (0) and x ∈ G1, y ∈ G2 κU1×U2(x, y) ≤
κU1(x) + κU2(y). This implies that ψ is surjective. In order to prove that ψ is open, we are
going to show that ψ(S(U1+U1)×(U2+U2)

) ⊇ SU1 × SU2 for Ui ∈ NGi (0). Thus, fix (xn) ∈ SU1

and (yn) ∈ SU2 . Then, by Lemma 1 (b),
∑

n∈N
κ(U1+U1)×(U2+U2)

((xn, yn)) = ∑
n∈N

max{κU1+U1(xn), κU2+U2(yn)} ≤

≤ ∑
n∈N

κU1+U1(xn) + ∑
n∈N

κU2+U2(yn) ≤ ∑
n∈N

1
2

κU1(xn) + ∑
n∈N

1
2

κU2(yn) ≤ 1.

This shows that ψ is open and completes the proof.

Lemma 7. Let (Cn) be a sequence of complete subsets of a Hausdorff abelian group G and let
((x(α)n )n)α∈A be a Cauchy net in �1(G). Assume that {x(α)n : α ∈ A} ⊆ Cn for every n ∈ N.
Then, ((x(α)n )n)α∈A is convergent.

Proof. By Proposition 5 (b), all pn are continuous, so for every n ∈ N, the net (x(α)n )α∈A is a
Cauchy net in G contained in Cn. Because Cn was assumed to be complete, xn = limα∈A x(α)n
exists for all n ∈ N.

Claim: For every U ∈ N (0), there exists α0 ∈ A such that ∑n∈N κU(x(α)n − xn) ≤ 1 for all
α ≥ α0.

Proof. Fix U ∈ N (0). We choose a closed and symmetric neighborhood W ∈ N (0) such
that W + W + W + W ⊆ U. By assumption, there exists αW ∈ A such that ∑n∈N κW(x(α)n −
x(β)

n ) ≤ 1 holds for all α, β ≥ αW . Because W is closed and x(α)n − x(β)
n ∈ W for all

α, β ≥ αW , we obtain x(α)n − xn ∈ W for all α ≥ αW . Now, fix α ≥ αW and assume
that ∑n∈N κU(x(α)n − xn) > 1. Choose a finite subset F ⊆ N such that κU(x(α)n − xn) > 0
for all n ∈ F and ∑n∈F κU(x(α)n − xn) > 1. For n ∈ F, we have 0 < κU(x(α)n − xn) ≤
κW(x(α)n − xn) ≤ 1. Thus, choose mn ∈ N such that 1

mn
= κW(x(α)n − xn). Because (x(β)

n )β∈A

converges to xn, there exists β ≥ αW such that κW(x(β)
n − xn) ≤ 1

|F| for all n ∈ F. We obtain

1 < ∑
n∈F

κU(x(α)n − xn)

≤ ∑
n∈F

κW+W+W+W(x(α)n − x(β)
n + x(β)

n − xn)

Proposition 4
≤ ∑

n∈F
κW+W(x(α)n − x(β)

n ) + ∑
n∈F

κW+W(x(β)
n − xn)

Lemma 1(b)
≤ 1

2 ∑
n∈F

κW(x(α)n − x(β)
n ) +

1
2 ∑

n∈F
κW(x(β)

n − xn)

≤ 1
2 ∑

n∈N
κW(x(α)n − x(β)

n ) +
1
2 ∑

n∈F

1
|F| ≤

1
2
+

1
2
= 1

This contradiction proves the Claim with α0 = αW .
We now show that (xn) ∈ �1(G). Fix a symmetric closed neighborhood U ∈ N (0).

Choose α0 as in the Claim. We obtain ∑
n∈N

κU+U(xn) ≤ ∑
n∈N

κU(xn − x(α0)
n )+ ∑

n∈N
κU(x(α0)

n ) ≤

1 + ∑
n∈N

κU(x(α0)
n ) < ∞. Thus, (xn) ∈ �1(G). It follows from the Claim that ((x(α)n )n)α∈A

converges to (xn)n.
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Corollary 3. If G is a Hausdorff complete abelian group, then so is �1(G).

Proof. Apply Lemma 7 to Cn = G for all n ∈ N.

Proposition 7. G(N) is dense in �1(G).

Proof. Fix (xn) ∈ �1(G) and U ∈ N (0). Because ∑n∈N κU(xn) < ∞, there exists n0 ∈ N
such that ∑∞

n=n0+1 κU(xn) ≤ 1. This shows that (xn)− μn0(x1, . . . , xn0) ∈ SU .

Proposition 8. Let G be an abelian Hausdorff group. A subset K of �1(G) is compact if and only
if the following three conditions hold:

(a) K is closed;
(b) pn(K) is compact for every n ∈ N;
(c) For every U ∈ N (0), there exists NU ∈ N such that K ⊆ SNU ,U.

Proof. Assume that K ⊆ �1(G) is compact. Then, obviously, conditions (a) and (b) are
satisfied. In order to prove (c), fix U ∈ N (0). Because K is totally bounded and G(N) is
dense in �1(G) by Proposition 7, there exists a finite subset F ⊆ G(N) such that K ⊆ F + SU .
Fix NU ∈ N such that pk((yn)) = 0 for all k ≥ NU and all (yn) ∈ F. Fix (xn) ∈ K. There
exists (yn) ∈ F such that (xn − yn) ∈ SU . Hence, ∑n≥NU

κU(xn) = ∑n≥NU
κU(xn − yn) ≤

∑n≥1 κU(xn − yn) ≤ 1. This shows that K ⊆ SNU ,U .
Conversely, assume that K ⊆ �1(G) satisfies the conditions (a), (b), and (c). By Lemma 7

(with Cn = pn(K)), we conclude that K is complete. In order to prove that K is totally
bounded, we fix U ∈ N (0). By item (c), there exists NU ∈ N such that ∑n≥NU

κU(xn) ≤ 1

for all (xn) ∈ K. Because K ⊆ μNU (∏
NU
n=1 pn(K)) + SU and μNU (∏

NU
n=1 pn(K)) is compact, K

is totally bounded.

Corollary 4. Let G be an abelian Hausdorff group. For the density (the minimal cardinality of a
dense subset), the following holds: d(�1(G)) = max{ℵ0, d(G)} in case d(G) > 1.

Proof. Let D ⊆ G be a dense subset of cardinality d(G). Because μn is an embedding for
every n ∈ N, the closure of D(N) contains the dense set G(N). This shows that D(N) is dense
in �1(G) and hence d(�1(G)) ≤ max{ℵ0, d(G)}. In case d(G) is infinite, d(G) = d(�1(G)),
because p1 maps a dense subset of �1(G) onto a dense subset of G.

Assume now that 1 < d(G) < ∞. Then, G is a finite discrete group and hence
�1(G) = G(N) is a countably infinite discrete group. Hence, d(�1(G)) = ℵ0 in this case.

Proposition 9. Let G be an abelian Hausdorff group. For the character χ (the minimal cardinality
of a neighborhood base at 0) and the weight w (the minimal cardinality of a base), the following holds:

(a) χ(G) = χ(�1(G)).
(b) w(G) = w(�1(G)) if w(G) is infinite.

Proof.

(a) is trivial.
(b) Recall that for every topological group H, one has w(H) = χ(H) · d(H) (Lemma 5.1.7

in [17]). If d(G) were finite, then G would be a finite discrete group and hence w(G)
had to be finite in contradiction to the assumption. Thus, d(G) is infinite. Applying
item (a) and Corollary 4, we obtain

w(�1(G)) = χ(�1(G)) · d(�1(G)) = χ(G) ·max{ℵ0, d(G)} = χ(G) · d(G) = w(G).
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2.2. The Character Group of �1(G)

Proposition 10. The mapping

(μ∧n ) : �1(G)∧ −→ G∧N, χ �−→ (μ∧n (χ)) = (χ ◦ μn)

is a continuous injective homomorphism. Thus, algebraically, �1(G)∧ can be identified with a
subgroup of G∧N.

Proof. Because μn is continuous for every n ∈ N by Proposition 5 (a), so is (μ∧n ). We are
going to show now that (μ∧n ) is injective: Let χ ∈ �1(G)∧ and assume that μ∧n (χ) = χ ◦ μn
is the trivial character for every n ∈ N. This implies that χ restricted to the subgroup G(N)

is trivial. By Proposition 7, G(N) is dense in �1(G); hence, χ is trivial.

This result allows us to identify a character χ ∈ �1(G)∧ with the sequence
(χn) = (μ∧n (χ))n∈N.

Next, we are going to describe the structure of the dual group of �1(G).

Proposition 11. For an abelian topological group, the following assertions hold:

�1(G)∧ =
⋃

U∈N (0)(U�)N.

and
(SU)

� = (U�)N.

Proof. A homomorphism χ : �1(G) → T is continuous if and only if χ maps a suitable
neighborhood of 0 in �1(G) into T+ or, equivalently, if χ belongs to the polar of a neighbor-
hood of 0. Hence, �1(G)∧ =

⋃
U∈NG(0)(SU)

�.
Next, we are going to describe such a polar (SU)

�: Fix χ = (χn) ∈ (SU)
�. Because

μn(U) ⊆ SU for all n ∈ N, we obtain χn = μ∧n (χ) = χ ◦ μn ∈ U�. This shows that
(SU)

� ⊆ (U�)N.
Conversely, assume that χ = (χn) ∈ (U�)N and fix (xn) ∈ SU . Recall that for ψ ∈ U�

and x ∈ U with κU(x) ≤ 1
m , one has kψ(x) ∈ T+ for all 1 ≤ k ≤ m and hence ψ(x) ∈ Tm

(Fact 1). We obtain χ(xn) = ∑n∈N χn(xn) ∈ T+, so χ ∈ (SU)
�.

Proposition 12. A topological group G is lqc if and only if �1(G) is lqc.

Proof. Because μ1 : G → �1(G) is an embedding and because subgroups of lqc groups are
again lqc, the condition is necessary. Conversely, assume that G is lqc. Fix a quasi-convex
neighborhood U ∈ NG(0) and choose W ∈ NG(0) quasi-convex such that W +W +W ⊆ U.
We are going to prove that qc(SW) ⊆ SU . Thus, let (xn) /∈ SU , i.e., ∑n∈N κU(xn) > 1. We
have to find χ = (χn) ∈ (SW)� = (W�)N such that χ(xn) /∈ T+. In case there is n ∈ N such
that xn /∈ W, there exists χn ∈ W� such that χn(xn) /∈ T+. Then, χ = p∧n (χn) has the desired
property. Assume now that xn ∈ W for all n ∈ N. This implies κU(xn) ≤ 1

3 . Let N ∈ N be
minimal with the property that ∑N

n=1 κU(xn) > 1, F = {n : 1 ≤ n ≤ N, κU(xn) > 0}, and
put κU(xn) =

1
mn

for n ∈ F, where mn ≥ 3 must hold. By the minimality condition, N ∈ F.

For n ∈ F, we choose χn ∈ U� such that χn(xn) = tn + Z where
1

4(mn + 1)
< tn ≤

1
4mn

(cf. Lemma 1 (c)). Because W + W ⊆ U, we obtain U� + U� ⊆ W� (Fact 1). Thus,
χ = p∧F ((2χn)n∈F) ∈ (W�)N. We obtain: χ(xn) = ∑n∈F 2χn(xn) = ∑n∈F 2tn +Z where

1
4
<

1
4 ∑

n∈F
κU(xn) = ∑

n∈F

1
4mn

≤ ∑
n∈F

1
2mn + 2

< ∑
n∈F

2tn ≤

≤ ∑
n∈F

1
2mn

= ∑
n∈F\{N}

1
2mn

+
1

2mN
≤ 1

2
+

1
2mN

≤ 2
3
<

3
4
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because N was chosen to be minimal and hence ∑n∈F\{N}
1

mn
≤ 1; further, because

xN ∈ W, we have 1
mN

= κU(xN) ≤ 1
3 . This shows that χ = p∧F ((2χn)n∈F) has the

desired properties.

Proposition 13. Let G be a Hausdorff abelian group. Then, (G∧)(N) is dense in �1(G)∧.

Proof. Fix χ = (χn) ∈ �1(G)∧ and a compact subset K of �1(G). Because χ is continuous,
there exists U ∈ NG(0) such that χ ∈ (SU)

� = (U�)N. Choose NU ∈ N such that K ⊆ SNU ,U
(cf. Proposition 8).

For (xn) ∈ SNU ,U we have
(χ− p∧NU

(χ1, . . . , χNU ))(xn) = ∑n>NU
χn(xn) ∈ T+ because ∑n>NU

κU(xn) ≤ 1 and χn ∈
U� for all n ∈ N, so χ− p∧NU

(χ1, . . . , χNU ) ∈ (SNU ,U)
� ⊆ K�, as desired.

Next, we are going to study the continuity of α�1(G) and start with the following obvious

Proposition 14. Let G be a metrizable group. Then, α�1(G) is continuous.

Proof. Because G is first countable, so is �1(G) by Proposition 9 (a). Hence, α�1(G) is
continuous.

Lemma 8. Let G be an abelian Hausdorff group. Then, α�1(G) is continuous if and only if for every

compact subset K ⊆ �1(G)∧ the set TK :=
⋃

m∈N μ∧m(K) ⊆ G∧ is equicontinuous.

Proof. Recall that for an abelian topological group G, the canonical homomorphism αG is
continuous if and only if every compact subset of G∧ is equicontinuous. Thus, α�1(G) is
continuous if and only if for every compact subset K of �1(G)∧ there exists a neighborhood
U ∈ NG(0) such that K ⊆ (SU)

� = (U�)N. This implies μ∧m(K) ⊆ U� for all m ∈ N and
hence TK ⊆ U�.

Conversely, assume that for every compact subset K ⊆ �1(G)∧ there exists U ∈ NG(0)
such that TK ⊆ U�. Then, K ⊆ ∏m∈N μ∧m(K) ⊆ (U�)N = (SU)

�. This shows that K is
equicontinuous and hence α�1(G) is continuous.

For a continuous homomorphism ψ : H → G between Hausdorff groups, the ho-
momorphism ψ# : �1(H) → �1(G) is continuous and so is its dual homomorphism
(ψ#)

∧ : �1(G)∧ → �1(H)∧.

Lemma 9. Let ψ : H → G be a continuous homomorphism between abelian Hausdorff groups.
Then, (ψ#)

∧(χn) = (ψ∧(χn)) holds for all (χn) ∈ �1(G)∧.
If K ⊆ �1(G)∧ is compact and TK =

⋃
m∈N μ∧m(K) and T(ψ#)∧(K) is the analogous subset of

H∧ corresponding to the compact set (ψ#)
∧(K), then ψ∧(TK) ⊆ T(ψ#)∧(K).

Proof. By Lemma 6, the mapping ψ# : �1(H) → �1(G) is a continuous homomorphism.
Hence, (ψ#)

∧ : �1(G)∧ → �1(H)∧ is a well-defined continuous homomorphism. Fix
(χn) ∈ �1(G)∧ and (hn) ∈ �1(H). Then, we have (ψ#)

∧((χn))(hn) = (χn)(ψ#(hn)) =
(χn)(ψ(hn)) = ∑n∈N χn(ψ(hn)) = ∑n∈N ψ∧(χn)(hn) = (ψ∧(χn))(hn). Now, the first
assertion follows. This yields

ψ∧(TK) ⊆ {ψ∧(μ∧m(χ)) : χ ∈ K, m ∈ N}

= {ψ∧(χm) : χ = (χn) ∈ K, m ∈ N} = T(ψ#)∧(K).

Theorem 1. For every compact abelian group G, the mapping α�1(G) is continuous.
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Proof. Let K ⊆ �1(G)∧ be compact and let TK be as in Lemma 8. Assume that TK is an
infinite subset of G∧. Let D be the divisible hull of the discrete group G∧ and consider
the embedding G∧ → D. Let D0 be a divisible countably infinite subgroup of D such that
TK ∩ D0 is infinite. Because D0 splits, there is a continuous homomorphism γ : G∧ → D0
such that γ(TK) is infinite. Because G and D0 are reflexive groups, we may consider γ = ψ∧

for a suitable homomorphism ψ : D∧
0 → G (after identifying D0 with its second dual group).

Indeed, let γ∧ : D∧
0 → G∧∧ be the dual homomorphism and let ψ = α−1

G ◦ γ∧ : D∧
0 → G

be the composition of γ∧ with the topological isomorphism α−1
G . (Observe that G is

compact and hence reflexive.) Then, ψ∧ = γ∧∧ ◦ (α−1
G )∧ = γ∧∧ ◦ αG∧ : G∧ → D∧∧

0 holds,
because (α−1

G )∧ = αG∧ . Finally, because the discrete group D0 is reflexive, α−1
D0
◦ ψ∧ =

α−1
D0
◦γ∧∧ ◦ αG∧ = γ. We are going to identify D∧∧

0 with D0 via the topological isomorphism

α−1
D0

and obtain that ψ∧ = γ. Thus, ψ∧(TK) is an infinite subset of D0.
By Lemma 9, ψ∧(TK) is contained in the set T(ψ#)∧(K). Because D∧

0 is metrizable,
α�1(D∧

0 )
is continuous by Proposition 14. As (ψ#)

∧(K) is a compact subset of �1(D∧
0 )

∧, the
set T(ψ#)∧(K) is an equicontinuous and hence compact subset of the discrete group D∧∧

0 by
Lemma 8, and hence finite. This contradiction proves that TK must be finite and hence
equicontinuous. Thus, again by Lemma 8, α�1(G) is continuous.

Lemma 10. Let (G, τ) be a reflexive group such that G∧ has a countable point-separating subgroup.
For a compact subset K of �1(G)∧ and m ∈ N, put Tm = μ∧m(K) and T =

⋃
m∈N Tm. Then, T is

totally bounded.

Recall that the hypothesis that G∧ has a countable point-separating subgroup is
fulfilled in case G is second countable or G∧ is separable by Propositions 1 and 2.

Proof. Let D = {ψk : k ∈ N} be a countable point-separating subgroup of G∧. Because
the topology σ(G, D) induced by the mapping G → TD, x �→ (ψ(x))ψ∈D is Hausdorff, we
obtain that on every τ-compact subset C of G, the subspace topologies induced by τ and
by σ(G, D) coincide. Denote by F the set of all finite subsets of G∧ containing 0.

Assume that T is not precompact. By Proposition 3, T is not qc-precompact either,
because G∧ is lqc. Thus, there exists a compact subset 0 ∈ C ⊆ G such that for every F ∈ F
we have T � qc(F + C�). Because qc(F ∪ C�) ⊆ qc(F + C�), we even have T � qc(F ∪ C�)
for all F ∈ F . This is equivalent to

qc(T) � qc(F ∪ C�).

As C� = qc(C)� and because qc(C) is compact according to Remark 1, we may assume
that C is quasi-convex. Hence, we have

T�� (∗)
= T�� = qc(T) � qc(F ∪ C�) = (F ∪ C�)��

(∗)
= (F ∪ C�)�� = (F� ∩ C��︸︷︷︸

=qc(C)=C

)� = (F� ∩ C)�

The equations marked by (∗) hold because G is reflexive, so αG is surjective. Hence,
we have

∀F ∈ F T� � F� ∩ C. (1)

We inductively construct:

(a) A sequence (χ(n))n∈N0 in K where χ(n) = (χ
(n)
k )k∈N;

(b) A strictly increasing sequence (mn)n∈N of natural numbers;
(c) An increasing sequence (Fn)n∈N in F such that ψn ∈ Fn for all n ∈ N;
(d) A sequence (xn)n∈N in C such that for all n ∈ N

(i) xn ∈ C ∩ F�
n

(ii) χ
(n)
mn (xn) /∈ T+;
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(iii) χ
(j)
m (C ∩ F�

n ) ⊆ T2 for all m ∈ N and 0 ≤ j < n.

Choose χ(0) ∈ K arbitrarily.
Assume now that for some n ∈ N0 (χ(0), χ(1), . . . , χ(n)), m1 < . . . < mn, F1 ⊆ . . . ⊆

Fn and (x1, . . . , xn) have been constructed, satisfying the above-listed properties.
Because χ(0), χ(1), . . . , χ(n) are continuous, there exists U ∈ NG(0) such that χ(j) ∈

(SU+U)
� for all 0 ≤ j ≤ n, which implies

χ
(j)
m (U) ⊆ T2 for all m ∈ N and 0 ≤ j ≤ n. (2)

As a finite union of compact sets,
⋃mn

k=1 μ∧k (K) is compact. (In case n = 0, this set
is empty and hence compact.) Because αG is assumed to be continuous,

⋃mn
k=1 μ∧k (K) is

equicontinuous. Thus, for a suitable neighborhood W ∈ NG(0), we have

ψ(x) ∈ T+ for all x ∈ W and ψ ∈
mn⋃
k=1

μ∧k (K). (3)

Because C is compact, the original topology τ coincides with the weak topology
σ(G, G∧) on C; hence, there exists a finite subset Fn+1 ∈ F such that

0 ∈ C ∩ F�
n+1 ⊆ C ∩U ∩W. (4)

WLOG, we may assume that Fn ∪ {ψn+1} ⊆ Fn+1, so that item (c) is fulfilled. Thus, for
all 0 ≤ j ≤ n and m ∈ N, we have χ

(j)
m (C ∩ F�

n+1) ⊆ χ
(j)
m (U) ⊆ T2 by Equations (2) and (4)

(i.e., (d)(iii) is satisfied).
Because by Equation (1) T� � C ∩ F�

n+1, there exists xn+1 ∈ C ∩ F�
n+1 \ T�. This means

that there exist χ(n+1) ∈ K and mn+1 ∈ N such that μ∧mn+1
(χ(n+1))(xn+1) = χ

(n+1)
mn+1 (xn+1) /∈

T+. As xn+1 ∈ C ∩ F�
n+1 ⊆ W by Equation (4), the index mn+1 must be strictly larger than

mn, because otherwise χ
(n+1)
mn+1 (xn+1) ∈ T+ would follow from Equation (3). Thus, χ(n+1),

xn+1 and mn+1 satisfy the properties stated in (a), (b), (d)(i), and (d)(ii). This completes the
inductive step.

Let S := {0} ∪ {μmn(xn) : n ∈ N}. Applying Proposition 8, we are going to show first
that S is a compact subset of �1(G). Of course, pm(S) consists of at most 2 points, because
the sequence (mn)n∈N is strictly increasing. It can be easily checked that S is closed in the
product topology and by Corollary 2 also in the topology Σ�1(G).

Fix U ∈ NG(0). We have to show that there exists NU ∈ N such that for all (yn) ∈ S
∑n≥NU

κU(yn) ≤ 1 holds. By the special form of the elements of S, this is equivalent to
κU(xn) ≤ 1 for all n such that mn ≥ NU . Because C is compact, there exists a finite subset
F of D such that F� ∩ C ⊆ U ∩ C. By item (c), there exists n0 ∈ N such that F ⊆ Fn0 ⊆ Fn
for all n ≥ n0. Thus, for n ≥ n0, we have xn ∈ F�

n ∩ C ⊆ F�
n0
∩ C ⊆ U ∩ C ⊆ U by item

(d)(i) and hence κU(xn) ≤ 1 for all n ≥ n0. Now, choose NU := 1 + mn0 . For n, such that
mn ≥ NU , we have (because (mn) is strictly increasing) n > n0 and hence κU(xn) ≤ 1. This
shows that S is compact.

Let us prove that

∀k1, k2 ∈ N k1 �= k2 =⇒ χ(k2) − χ(k1) /∈ (S + S)� : (5)

WLOG, we may assume that k1 < k2. Because χ
(k1)
m (F�

k2
∩ C) ⊆ T2 for all m ∈ N by

item (d)(iii) and xk2 ∈ F�
k2
∩ C by item (d)(i) and χ

(k2)
mk2

(xk2) /∈ T+ by item (d)(ii), this implies

(χ(k2) − χ(k1))(μmk2
(xk2)) = χ

(k2)
mk2

(xk2)︸ ︷︷ ︸
/∈T+

− χ
(k1)
mk2

(xk2)︸ ︷︷ ︸
∈T2

/∈ T2. (6)
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Because ψ ∈ (S + S)� if and only if ψ(S) ⊆ T2, Equation (5) is an immediate conse-
quence of Equation (6).

Because by item (a) χ(n) ∈ K for all n ∈ N, Equation (5) implies that K is not totally
bounded. This contradiction implies that T is precompact, whence totally bounded.

Theorem 2. Let G be a reflexive group which has the following additional properties:

1. G∧ has a countable point-separating subgroup.
2. G∧ is complete.

Then, α�1(G) is continuous.

Proof. Let K be a compact subset of �1(G)∧. By Lemma 10, T =
⋃

m∈N μ∧m(K) is totally
bounded. Hence, its closure TK = T is also totally bounded and complete by the assumption
that G∧ is complete. Thus, TK is a compact subset of G∧. Because αG is continuous, the
compact subset TK of G∧ is equicontinuous. By Lemma 8, the canonical homomorphism
α�1(G) is continuous.

2.3. The Second Character Group of �1(G)

In this section, we study the second character group of �1(G) and show that each ele-
ment η ∈ �1(G)∧∧ can be identified with a sequence (ηn) in G∧∧. Next, we study necessary
and sufficient conditions for G such that (ηn) belongs to �1(G∧∧). As a consequence, it is
possible to prove the main theorems of this paper, asserting that �1(G) is reflexive if G is
metrizable and reflexive or an LCA group.

Proposition 15. For every abelian topological group G, the mapping

Ψ = (p∧∧n ) : �1(G)∧∧ → (G∧∧)N, η �→ (p∧∧n (η))n

is a continuous monomorphism. For all (xn) ∈ �1(G), Ψ ◦ α�1(G)(xn) = (αG(xn)) holds. If αG
is continuous, then

Ψ ◦ α�1(G) = (αG)#.

Proof. It is clear that Ψ is a continuous homomorphism. Fix η ∈ �1(G)∧∧ with p∧∧n (η) = 0
for all n ∈ N. Then, η ◦ p∧n is trivial for all n ∈ N. Hence, η vanishes on the subgroup G∧(N)

of �1(G)∧, which is dense by Proposition 13. This implies that η is trivial. Because Ψ is a
homomorphism, we conclude that Ψ is injective.

Observe that for (xn) ∈ �1(G), we have Ψ(α�1(G)((xn))) = (p∧∧m (α�1(G)((xn))))m∈N =

(α�1(G)((xn)) ◦ p∧m)m∈N. Further, for χ ∈ G∧, we have

α�1(G)((xn))(p∧m(χ)) = α�1(G)((xn))(χ ◦ pm) = (χ ◦ pm)((xn)) = χ(xm) = αG(xm)(χ).

Combining these observations yields Ψ(α�1(G)((xn))) = (αG(xn)). If αG is continuous
(and hence (αG)# is well-defined), then Ψ ◦ α�1(G) = (αG)#.

For the remainder, we identify an element η ∈ �1(G)∧∧ with the sequence Ψ(η) = (ηn)
where ηn = p∧∧n (η).

Proposition 16. Let G be an abelian Hausdorff group and let Ψ be as in Proposition 15.

(a) If αG is continuous, then Ψ(�1(G)∧∧) ⊆ �1(G∧∧).
(b) If αG is surjective and G is lqc, then Ψ(�1(G)∧∧) ⊇ �1(G∧∧).

In particular, if G is reflexive, then Ψ(�1(G)∧∧) = �1(G∧∧).

Proof. (a) Assume first that αG is continuous. Fix η ∈ �1(G)∧∧ and let ηn := p∧∧n (η).
Because η is a continuous character of �1(G)∧, there exists—by definition of the compact-
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open topology—a compact subset K ⊆ �1(G) such that η ∈ K��. In order to show
that Ψ(η) = (ηn) ∈ �1(G∧∧), we fix a compact subset C of G∧ and wish to prove that
∑n∈N κC�(ηn) < ∞. Because, by assumption, αG is continuous, there exists a neighborhood
U ∈ NG(0) such that C ⊆ U�, whence C� ⊇ U��. Because K ⊆ �1(G) is compact, there
exists by Proposition 8 NU ∈ N such that K ⊆ SNU ,U . Hence, η ∈ K�� ⊆ (SNU ,U)

�� =(
{0}{1,...,NU−1} × (U�)N\{1,...,NU−1}

)�
.

Because p∧n (U�) ⊆ {0}{1,...,NU−1} × (U�)N\{1,...,NU−1} =: M for all n ≥ NU , we obtain
ηn(U�) = p∧∧n (η)(U�) = η(p∧n (U�)) ⊆ T+, which implies that ηn ∈ U�� for all n ≥ NU .
We want to show that

∑
n≥NU

κU��(ηn) < 2.

Assume that this does not hold and let ν ≥ NU be minimal with
ν

∑
n=NU

κU��(ηn) ≥ 2.

Let N = {n ∈ N : NU ≤ n ≤ ν and κU��(ηn) > 0}. For n ∈ N, we have κU��(ηn) =
1

mn
for a suitable natural number mn, because ηn ∈ U��. Next, for n ∈ N, choose χn ∈ U�

such that ηn(χn) = tn +Z where
1

4(mn + 1)
< tn ≤

1
4mn

. For k ∈ N \ N, put χk = 0. Then,

χ = (χn)n∈N ∈ M and hence η(χ) = (∑n∈N tn) +Z ∈ T+. Further,

1
4
≤ ∑

n∈N

1
8mn

≤ ∑
n∈N

1
4(mn + 1)

< ∑
n∈N

tn ≤ ∑
n∈N

1
4mn

holds. Because ν was chosen minimal, we conclude that ∑
n∈N

1
4mn

= ∑
n∈N,n �=ν

1
4mn

+
1

4mν
<

1
2
+

1
4
=

3
4

. This yields η(χ) = ∑n∈N tn +Z /∈ T+ and gives the desired contradiction.

Now, it easily follows that ∑n∈N κC�(ηn) ≤ ∑n∈N κU��(ηn) < ∞.
(b) Assume now that αG is surjective and G is lqc. Then, α−1

G : G∧∧ → G is continuous.
We show that the composition

�1(G∧∧)
(α−1

G )#−→ �1(G)
α
�1(G)−→ �1(G)∧∧ Ψ−→ (G∧∧)N

is the identity on �1(G∧∧). Fix (ηn) ∈ �1(G∧∧). Because αG is surjective, there is a sequence
(xn) ∈ GN such that αG(xn) = ηn for all n ∈ N. Applying Proposition 15, we obtain

Ψ ◦ α�1(G) ◦ (α−1
G )#(ηn) = Ψ ◦ α�1(G)(xn) = (αG(xn)) = (ηn)

This shows �1(G∧∧) ⊆ Ψ(�1(G)∧∧). The final statement is an immediate consequence of
(a) and (b).

Corollary 5. Let G be a reflexive group. Then, α�1(G) is surjective.

Proof. By Proposition 15, Ψ ◦ α�1(G) = (αG)# holds. Because αG is a topological isomor-
phism, Proposition 6 implies that (αG)# : �1(G)→ �1(G∧∧) is a topological isomorphism.
Because Ψ : �1(G)∧∧ → �1(G∧∧) is an isomorphism by Proposition 16, we obtain that
α�1(G) = Ψ−1 ◦ (αG)# is an isomorphism, whence surjective.

Theorem 3. Let G be a reflexive group. Then, α�1(G) is an open isomorphism. If

(a) G is metrizable or
(b) G∧ is complete and has a countable point-separating subgroup,

then �1(G) is reflexive.
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Proof. If G is reflexive, then G is an lqc Hausdorff group. According to Propositions 5 (c)
and 12, �1(G) is lqc and Hausdorff as well and hence α�1(G) is an open isomorphism by
Corollary 5.

It remains to show that α�1(G) is continuous if (a) or (b) holds. In case (a), it is a
consequence of Proposition 14. In case (b), it is a consequence of Theorem 2.

Theorem 4. For every LCA group G, the group �1(G) is reflexive.

Proof. Let G be an LCA group. By the structure theorem for LCA groups, G has an open
subgroup H topologically isomorphic to Rn × K where n ∈ N0 and K is a compact abelian
group. By Proposition 6 (a), �1(H) can be considered to be an open subgroup of �1(G).
Because by Theorem (2.3), in [23], a group is reflexive if and only if it has an open reflexive
subgroup, it is sufficient to show that �1(H) is reflexive, or, by Proposition 6 (b), that
�1(R)n × �1(K) is reflexive. The group �1(R) is reflexive by Theorem 3.

By Corollary 5, α�1(K) is surjective, and by Theorem 1, α�1(K) is continuous. As the
group �1(K) is lqc and Hausdorff by Propositions 12 and 5 (c), the assertion follows.

Recall that a subgroup H of an abelian topological group G is dually closed if for
every x ∈ G \ H there exists a continuous character χ ∈ G∧ such that χ(H) = {0} and
χ(x) �= 0. The subgroup H is dually embedded if every continuous character of H can be
extended to a continuous character of G; in other words, the dual homomorphism of the
canonical embedding ι : H → G is surjective.

It is straightforward to check that μ1(G) is a dually closed and dually embedded
subgroup of �1(G) provided that G is an MAP group. We are going to apply the following
result of Noble:

Proposition 17 ([24], Theorem 3.1). Let G be an abelian Hausdorff group such that αG is an open
isomorphism. If H is a dually closed and dually embedded subgroup of G, then also αH is an open
isomorphism.

Theorem 5. If �1(G) is Pontryagin reflexive, then so is G.

Proof. Assume that �1(G) is reflexive. Because μ1 is an embedding and μ1(G) is a dually
closed and dually embedded subgroup of �1(G), we obtain from Proposition 17 that αG is an
open isomorphism. Because p1 : �1(G)→ G is a projection (Proposition 5 (b), Lemma (14.7)
in [13]) implies αG is continuous.

Corollary 6. Let G be a metrizable group. Then, G is reflexive if and only if �1(G) is reflexive.

Proof. If G is a metrizable reflexive group, then �1(G) is reflexive by Theorem 3 (a). If
�1(G) is reflexive, then G is reflexive by Theorem 5.

2.4. The Schur Property of �1(G)

A normed space V is said to have the Schur property if a sequence (xn) converges to
0 provided that ( f (xn)) converges to 0 for every continuous linear form. In this section, we
first recall the definition of the Schur property for MAP groups; afterward, having in mind
that �1(R) has the Schur property, we prove that �1(G) has the Schur property for groups if
and only if G has this property (Theorem 6).

Definition 4. For a topological group (G, τ), denote by τ+ the topology on G induced by G →
TG∧

, x �→ (χ(x))χ∈G∧ . The topology τ+ is called weak topology.

The weak topology τ+ is Hausdorff if and only if the characters of G separate the
points. A subset C of G is called weakly compact if it is compact with respect to τ+.

163



Axioms 2022, 11, 218

Definition 5. A MAP group (G, τ) is said to have the Schur property if every τ+-convergent
sequence converges in τ.

Theorem 6. Let G be an lqc Hausdorff group. Then, G has the Schur property if and only if �1(G)
has the Schur property.

Proof. Assume first that G has the Schur property. Let (x(m))m∈N be a weakly convergent
sequence in �1(G), where x(m) = (x(m)

n )n∈N. WLOG, we may assume that (x(m))m∈N
converges to 0. For χ ∈ G∧ and n ∈ N, the sequence (p∧n (χ)(x(m)))m∈N = (χ(x(m)

n ))m∈N
converges to 0 in T. The assumption that G has the Schur property implies that (x(m)

n )m∈N
converges in the original topology of G to 0 for every n ∈ N.

Assume that the sequence (x(m))m∈N is not convergent in the original topology. This
means that there exists a quasi-convex neighborhood U ∈ NG(0) such that for infinitely
many m ∈ N, x(m) /∈ SU . After passing to a subsequence, we may assume that x(m) /∈ SU for
all m ∈ N. In order to obtain a contradiction, we are going to inductively construct strictly
increasing sequences (mk), (nk) and (Nk) of natural numbers and a sequence (χk) ∈ (U�)N

such that

(a) Nk ≤ nk < Nk+1 for all k ∈ N;

(b) ∑nk
n=1 χn(x(mk)

n ) /∈ T3, and ∑n>nk
κU(x(mk)

n ) < 1
8 for all k ∈ N.

Let m1 = 1. Because x(1) /∈ SU, there exists N1 ∈ N minimal such that ∑N1
n=1 κU(x(1)n ) > 1.

Further, there is n1 ≥ N1 such that ∑n>n1
κU(x(1)n ) < 1

8 . If for some 1 ≤ n ≤ N1 the element

x(1)n /∈ U, then we choose χn ∈ U� such that χn(x(1)n ) /∈ T+ and for j ∈ {1 . . . , n1} \ {n}
we put χj = 0. Otherwise, let F = {n : 1 ≤ n ≤ N1, κU(x(1)n ) > 0}. Fix n ∈ F. Because

x(1)n ∈ U, we have 0 < κU(x(1)n ) ≤ 1; hence, there exists ln ∈ N such that 1
ln
= κU(x(1)n )

for some ln ∈ N. The minimality of N1 implies that N1 ∈ F and ∑n∈F κU(x(1)n ) =

∑N1
n=1 κU(x(1)n ) ≤ 2. For every n ∈ F, choose χn ∈ U� such that χn(x(1)n ) = tn + Z for

some tn ∈] 1
4(ln+1) , 1

4ln
]. Because

1
8
<

1
4 ∑

n∈F

1
2ln

≤ 1
4 ∑

n∈F

1
ln + 1

< ∑
n∈F

tn ≤
1
4 ∑

n∈F

1
ln
≤ 1

2
,

we obtain ∑n∈F χn(x(1)n ) /∈ T3. For n ∈ {1, . . . , n1} \ F, we put χj = 0. Then, conditions (a)
and (b) are satisfied for k = 1.

Assume now that for some k ∈ N, m1, . . . , mk, N1, . . . , Nk, n1, . . . , nk and χ1, . . . , χnk ∈ U�

have been constructed such that (a) and (b) hold. By the initial observation, (κU(x(m)
n ))m∈N

converges to 0 for every n ∈ N; hence, there exists mk+1 > mk such that ∑nk
n=1 κU(x(mk+1)

n ) < 1
8 .

Because x(mk+1) /∈ SU , there exists a minimal Nk+1 > nk such that ∑
Nk+1
n=nk+1 κU(x(mk+1)

n ) > 7
8 .

We choose nk+1 ≥ Nk+1 such that ∑n>nk+1
κU(x(mk+1)

n ) < 1
8 .

Fix s ∈ [− 1
4 , 1

4 ] such that ∑nk
n=1 χn(x(mk+1)

n ) = s +Z. If s +Z /∈ T3, we define χj = 0 for
all nk < j ≤ nk+1.

Assume now that s+Z ∈ T3 and that for some nk < j ≤ Nk+1, the element x(mk+1)
j /∈ U.

Then, we choose χj ∈ U� such that χj(x(mk+1)
j ) /∈ T+ and then ∑nk

n=1 χn(x(mk+1)
n )+χj(x(mk+1)

j )

/∈ T3. Further, for all n ∈ {nk + 1, . . . , nk+1} \ {j}, we put χn = 0.

Finally, assume that s + Z ∈ T3 and x(mk+1)
j ∈ U for all nk < j ≤ Nk+1. The min-

imality of Nk+1 implies ∑
Nk+1
n=nk+1 κU(x(mk+1)

n ) ≤ 15
8 . Let F = {n ∈ N : nk < n ≤ Nk+1

and κU(x(mk+1)
n ) > 0}. For n ∈ F, κU(x(mk+1)

n ) = 1
ln

for suitable ln ∈ N. Hence,
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there exist χn ∈ U� such that χn(x(mk+1)
n ) = tn + Z where |tn| ∈ [ 1

4(ln+1) , 1
4ln

]. Because

∑n∈F
1
ln
= ∑

Nk+1
n=nk+1 κU(x(mk+1)

n ) ∈ [ 7
8 , 15

8 ], we obtain

1
12

<
1
4
· 7

16
<

1
4 ∑

n∈F

1
2ln

≤ 1
4 ∑

n∈F

1
ln + 1

< ∑
n∈F

|tn| ≤
1
4 ∑

n∈F

1
ln
≤ 15

32
<

1
2

.

For n ∈ {nk + 1, . . . , nk+1} \ F, we put χn = 0.
If s ∈ [0, 1

12 ], then ∑
nk+1
n=1 χn(x(mk+1)) /∈ T3.

If s ∈ [− 1
12 , 0], replace χn by −χn for n ∈ F such that ∑

nk+1
n=1 χn(x(mk+1)) /∈ T3 holds.

We have constructed the subsequence (x(mk))k of (x(m))m∈N and the character χ =
(χn) ∈ (U�)N ⊆ �1(G)∧. We obtain

χ(x(mk)) =
∞

∑
n=1

χn(x(mk)
n ) =

nk

∑
n=1

χn(x(mk)
n )︸ ︷︷ ︸

/∈T3

+ ∑
n>nk

χn(x(mk)
n )︸ ︷︷ ︸

∈T8⊆T6

/∈ T6,

because ∑n>nk
κU(x(mk)

n ) < 1
8 and χn ∈ U� for all n ∈ N (cf. Lemma 1 (c)). This shows

(χ(x(mk))) does not converge to 0 and gives the desired contradiction.
Because μ1 : G → �1(G) is an embedding, and the class of groups having the Schur

property is closed under taking subgroups, the result follows.

An MAP group (G, τ) is said to have the Glicksberg property if every weakly compact
subset is compact.

Every group which has the Glicksberg property also has the Schur property. This
definition honors Glicksberg who proved that every LCA group has this property. Because
then many other examples of groups having the Glicksberg property were established,
for example, it is a consequence of the Eberlein–Šmulian theorem [25] and the Schur
theorem [12] that �1(R) has the Glicksberg property. Further, the class of groups having the
Glicksberg property is stable under taking subgroups and products. In particular, if for an
MAP group G, the sequence group �1(G) has the Glicksberg property, then also G has the
Glicksberg property (as G can be embedded in �1(G)). However, the converse implication
is not clear, see Question 6.

2.5. Schwartz Groups

In this final section, we show that only under very restrictive conditions is the sequence
group �1(G) a Schwartz group, a class of groups introduced in [14] generalizing Schwartz
topological vector spaces (see ([8], p. 201) for the definition).

Notation 1. Let G be an abelian group. For a symmetric subset U of G containing 0, one defines

(1/n)U := {x ∈ G : jx ∈ U ∀ 1 ≤ j ≤ n} = κ−1
U ([0,

1
n
]).

Observe that if U is a symmetric neighborhood of 0 in a topological group, then also
(1/n)U is a neighborhood of 0 for every n ∈ N.

Definition 6 ([14]). An abelian topological group G is called a Schwartz group if for every
symmetric neighborhood U ∈ NG(0) there exists a symmetric neighborhood V ∈ NG(0) and a
sequence (Fn) of finite subsets of G such that V ⊆ (1/n)U + Fn for all n ∈ N.

The class of Schwartz groups is closed under taking subgroups, arbitrary products,
and Hausdorff quotients ([14], 3.6). Every lqc Schwartz group has the Glicksberg property,
in particular, the Schur property ([19]). A topological vector space is a Schwartz space if
and only if the additive group is a Schwartz group ([14], 4.2).

165



Axioms 2022, 11, 218

Definition 7 (Tarieladze). A symmetric subset U containing 0 of an abelian group G is called a
GTG-set (Group Topology Generating set), if the sets ((1/n)U)n∈N form a neighborhood base at
0 of a not-necessarily Hausdorff group topology. An abelian topological group G is called a locally

GTG-group if it has a neighborhood base at 0 consisting of GTG-sets.

The following two statements follow straightforward from the definitions. For a
GTG-set U in G, the intersection U∞ :=

⋂
n∈N(1/n)U is a subgroup of G. It is a direct

consequence of Lemma 1 (c) that every lqc group is locally GTG.
By ([8], 10.4.3), every bounded subset of a Schwartz space is precompact. Hence, a

normed space is a Schwartz space if and only if it is finite-dimensional. Thus, �1(R) is not
a Schwartz space and hence no Schwartz group either. Conversely, if �1(G) is a Schwartz
group, then necessarily G is a Schwartz group, because G embeds in �1(G). However, the
example R→ �1(R) shows that this property is not sufficient.

Theorem 7. For a locally GTG-group G, the following assertions are equivalent:

(a) �1(G) is a Schwartz group.
(b) G is linearly topologized.

Proof. (a) =⇒ (b) Let N0 be a neighborhood base at 0 ∈ G consisting of GTG-sets. Fix a
neighborhood U ∈ N0. There is neighborhood W ∈ N0 such that W + W + W + W ⊆ U.
Because �1(G) is a Schwartz group by assumption, there is a sequence (F̃n) of finite subsets
in �1(G) and a neighborhood V ∈ N0 such that SV ⊆ F̃n + (1/n)SW . Because G(N) is dense
in �1(G) (Proposition 7), there exists for every n ∈ N a finite subset Fn ⊆ G(N) such that
F̃n ⊆ Fn + (1/n)SW . Thus, we have SV ⊆ Fn + (1/n)SW + (1/n)SW . We are going to
show that (1/n)SW + (1/n)SW ⊆ (1/n)SU . Therefore, we fix (xn), (yn) ∈ (1/n)SW . For
1 ≤ j ≤ n, we obtain by Lemma 1 (a) and (b) and Proposition 4

∑n∈N κU(j(xn + yn)) ≤ ∑n∈N κW+W+W+W(jxn + jyn) ≤

≤ ∑n∈N κW+W(jxn) + ∑n∈N κW+W(jyn) ≤ 1
2 ∑n∈N κW(jxn) +

1
2 ∑n∈N κW(jyn) ≤ 1.

It follows that
SV ⊆ Fn + (1/n)SU

for all n ∈ N. Fix n ∈ N. Because Fn is a finite subset of G(N), we can choose Nn ∈ N
such that pm(Fn) = {0} for all m ≥ Nn. For m ≥ Nn, μm(V) ⊆ SV ⊆ Fn + (1/n)SU , or
equivalently because pm(Fn) = {0}, μm(V) ⊆ (1/n)SU . Thus, for all x ∈ V and 1 ≤ j ≤ n,
we have jμm(x) ∈ SU which is equivalent to κU(jx) ≤ 1 for all 1 ≤ j ≤ n. Thus, jx ∈ U
for all 1 ≤ j ≤ n, which means that x ∈ (1/n)U. We have shown that V ⊆ (1/n)U for all
n ∈ N. This yields V ⊆ ⋂

n∈N(1/n)U = U∞. As a consequence, U∞ is an open subgroup of
G. Hence, (U∞)U∈N0 is a neighborhood base at 0 for G consisting of open subgroups. This
means that G is linearly topologized.

(b) =⇒ (a) If G is linearly topologized, so is �1(G) by Proposition 5. It is obvious that
every linearly topologized group is a Schwartz group, so the assertion follows.

The class of nuclear groups was introduced by Banaszczyk in [13]. Nuclear groups
include all Schwartz groups ([14], 4.3), all LCA groups ([13], 7.10), and all nuclear locally
convex vector spaces ([13], 7.4). This class of groups is closed under taking products,
subgroups, and Hausdorff quotient groups ([13], 7.5 and 7.6), and every nuclear group is
lqc ([13], 8.5). Because every Hausdorff linearly topologized group can be embedded into a
product of discrete groups, every linearly topologized Hausdorff group is nuclear.

Theorem 8. For an lqc Hausdorff group G, the following are equivalent:

(a) �1(G) is a nuclear group;
(b) �1(G) is a Schwartz group;
(c) G is linearly topologized.

166



Axioms 2022, 11, 218

Proof.

(a)=⇒ (b) holds, because every nuclear group is a Schwartz group ([14], 4.3).
(b)=⇒ (c) is a consequence of Theorem 7.
(c)=⇒ (a) If G is linearly topologized, so is �1(G) by Proposition 5. Hence, �1(G) is a
nuclear group.

3. Open Questions

In this final chapter, we gather some open questions concerning sequence groups.

Question 1. Characterize those abelian Hausdorff groups for which �1(G) = G(N) holds. In
particular, is it possible that c0(G) �= G(N) = �1(G)?

A dense subgroup H of an abelian Hausdorff group G is said to determine G if the dual
homomorphism ι∧ : G∧ → H∧ of the natural embedding ι is a topological isomorphism.
It was shown in [26] and in ([27], 4.10) that every metrizable abelian group determines its
completion.

Question 2. Assume that H is a dense subgroup of the abelian topological group G which deter-
mines G. Does �1(H) determine �1(G)?

It was shown (Theorem 5) that if �1(G) is reflexive, then G must be reflexive. Con-
versely, if G is reflexive, then α�1(G) is an open isomorphism (Theorem 3). However, we do
not know if α�1(G) is continuous.

Question 3. Let G be an abelian Hausdorff group such that αG is continuous. Is it true that α�1(G)
is continuous?

Or, a bit weaker,

Question 4. Let G be a reflexive group. Is it true that α�1(G) is continuous (and hence �1(G) is
reflexive)?

It was shown in [4] that for every LCA group G, the group of null-sequences c0(G) is
reflexive.

Question 5. Is it true that G is a reflexive group if and only if c0(G) is reflexive?

Question 6. Assume that G has the Glicksberg property. Does �1(G) have the Glicksberg property?

Question 7. What can be said about the groups

�p(G) = {(xn) ∈ GN : ∑
n∈N

(κU(xn))
p < ∞ ∀U ∈ NG(0)}

for 1 ≤ p < ∞? In particular, what are the properties of �2(G)?
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Abstract: The sum range SR[x; X], for a sequence x = (xn)n∈N of elements of a topological vector
space X, is defined as the set of all elements s ∈ X for which there exists a bijection (=permutation)
π : N → N, such that the sequence of partial sums (∑n

k=1 xπ(k))n∈N converges to s. The sum range
problem consists of describing the structure of the sum ranges for certain classes of sequences. We
present a survey of the results related to the sum range problem in finite- and infinite-dimensional
cases. First, we provide the basic terminology. Next, we devote attention to the one-dimensional case,
i.e., to the Riemann–Dini theorem. Then, we deal with spaces where the sum ranges are closed affine
for all sequences, and we include some counterexamples. Next, we present a complete exposition
of all the known results for general spaces, where the sum ranges are closed affine for sequences
satisfying some additional conditions. Finally, we formulate two open questions.

Keywords: series; permutation; convergence; sum range

MSC: 54C35; 54E15

1. Basic Definitions

We write N for the set {1, 2, . . . } of natural numbers with its usual order, and

Nn := {k ∈ N : k ≤ n}, n = 1, 2, . . . .

For any set I, a bijection σ : I → I is called a permutation of I; we denote by S(I) the
set of all permutations of I.

For a semigroup (X,+), a natural number n, and a finite sequence xk ∈ X, k = 1, . . . , n

• The sum ∑n
k=1 xk is defined in the usual way;

• It is known that if (X,+) is Abelian, then for every permutation σ ∈ S(Nn), the equality

n

∑
k=1

xσ(k) =
n

∑
k=1

xk

holds.

A (formal infinite) series corresponding to a sequence x = (xn)n∈N of elements of an
additive semigroup (X,+) is the sequence of partial sums(

n

∑
k=1

xk

)
n∈N

. (1)
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The ’multiplicative’ counterpart of the similar concept would be: a (formal) infinite product
corresponding to a sequence x = (xn)n∈N of elements of a multiplicative Abelian semigroup
(X, ·) is the sequence of partial products(

n

∏
k=1

xk

)
n∈N

. (2)

A topologized semigroup is a pair (X, τ), where X is a semigroup, and τ is a topology
in X.

A topological semigroup is a topologized semigroup (X, τ) for which the semigroup
operation is τ-continuous.

A D-convergence space is a pair (X, lim), where X is a set, and lim ⊂ XN × X is a
relation with natural properties, see [1,2].

If (X, lim) is a D-convergence space, s = (sn)n∈N ∈ XN, and a ∈ X, then instead of
(s, a) ∈ lim, we write lim s = a or limn sn = a and say that the sequence s = (sn)n∈N
converges to the element a.

A D-convergence semigroup is a D-convergence space (X, lim), where X is a semigroup.
A series corresponding to a sequence x = (xn)n∈N of elements of a topologized

semigroup (X,+, τ) or a D-convergence semigroup (X,+, lim) is said to be convergent in
X, if there exists an element s ∈ X, such that the sequence(

n

∑
k=1

xk

)
n∈N

converges in (X, τ), respectively, in (X, lim) to s.
If the series corresponding to a sequence x = (xn)n∈N of elements of a topologized or

D-convergence semigroup X converges to an element s ∈ X, then the element s is called a
sum of the series, and we write

s =
∞

∑
k=1

xk or
∞

∑
k=1

xk = s .

Note that Bourbaki uses the notation S∞
k=1xk instead of ∑∞

k=1 xk.
In connection with these notions, the following questions can be posed.

Question 1. Let X be a Hausdorff topological Abelian group and x = (xn)n∈N be a sequence of
elements of X. If the series corresponding to a sequence x = (xn)n∈N is convergent in X, and
σ ∈ S(N) is a permutation, is the series corresponding to the sequence xσ = (xσ(n))n∈N convergent
in X?

Question 2. Let X be a Hausdorff topological Abelian group and x = (xn)n∈N be a sequence of
elements of X. If the series corresponding to a sequence x = (xn)n∈N is convergent in X, and
σ ∈ S(N) is a permutation, such that the series corresponding to a sequence xσ = (xσ(n))n∈N is
convergent in X too, is the equality

∞

∑
k=1

xσ(k) =
∞

∑
k=1

xk

true?

It seems that Augustin-Luis Cauchy (1789–1857) was the first who noticed (in 1833)
that the answer to Question 1, in the case of the set (R,+) of real numbers with the usual
notion of convergence, is negative.

Namely, Cauchy (pp. 57–58, [3]), first indicated (without giving any reference) a
proof of the assertion that the series corresponding to the sequence xn = (−1)n+1 1

n ,
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n = 1, 2, . . . converges in R and then describes a permutation σ : N → N, such that the
series corresponding to the sequence xσ(n), n = 1, 2, . . . does not converge in R.

The second was Peter Lejeune-Dirichlet (1805–1859), who noticed in his 1837 paper
(p. 3, [4]) (without any reference either) that the answers to both Questions 1 and 2 were
negative. See Remark 1 below about Dirichlet’s statements.

Motivated by the abovementioned negative answers to Questions 1 and 2, for any se-
quence x = (xn)n∈N of elements of a topologized semigroup or a D-convergence semigroup
(X,+), we define the subsets

P[x; X], E[x; X]

of S(N) and the subsets
SR[x; X], LPR[x; X]

of X as follows:

• A permutation π : N → N is in P[x; X], if and only if the series corresponding to
(xπ(n))n∈N is convergent in X.

• A permutation π : N → N is in E[x; X], if and only if some subsequence of the
sequence (∑n

k=1 xπ(k))n∈N converges in X.
• An element t ∈ X is in SR[x; X], if and only if ∃π ∈ P[x; X], such that t = ∑∞

k=1 xπ(k).
• An element t ∈ X belongs to LPR[x; X], if and only if ∃π ∈ E[x; X] such that some

subsequence of the sequence (∑n
k=1 xπ(k))n∈N converges in X to t.

The set SR[x; X] is called the sum range for the sequence x = (xn)n∈N (see Definition 2.1.1, [5]),
and the set LPR[x; X] is called the limit-point range of the series corresponding to the
sequence x = (xn)n∈N (see Definition 3.2.1, [5], where this set is denoted by LPR(∑∞

k=1 xk)).
In (p. 95, [6]), instead of LPR[(xn)n∈N; X], the notation C(∑n xn; X) is used.
Evidently,

SR[x; X] ⊂ LPR[x; X]. (3)

It may be that for a sequence x = (xn)n∈N, the set P[x; X] (respectively, the set E[x; X]) is
empty, in which case, SR[x; X] = ∅ (respectively LPR[x; X] = ∅) as well.

In the multiplicative case, of course, we need to say that a permutation π : N→ N be-
longs to P(x), if and only if the infinite product corresponding to (xπ(n))n∈N is convergent
in X, and we define the the product range

PR[x; X]

in a similar way.
The sum range problem can be stated as follows: to describe the structure of the set

SR[x; X] for a sequence x = (xn)n∈N of elements of a topologized semigroup (X,+, τ) or of a
D-convergence semigroup (X,+, lim).

Similarly, we can state the product range problem as follows: to describe the structure
of the set PR[x; X] for a sequence x = (xn)n∈N of elements of a topologized semigroup (X, ·, τ) or
of a D-convergence semigroup (X, ·, lim).

Let us first comment on the case of the set of extended real numbers R = R ∪
{−∞,+∞} with the usual order, addition, and notion of convergence.

For a sequence x = (xn)n∈N in R, for which the set {n ∈ N : xn < 0} is finite, the series
corresponding to a sequence x = (xn)n∈N is always convergent in R; so, the expression

∞

∑
k=1

xk

is always defined.
Surely the following observation was known much earlier, but it is precisely formu-

lated in one of the first papers [7] written by Maurice Fréchet (1878–1973) in 1903.
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Proposition 1. Let X = R+ = {x ∈ R : x ≥ 0} with the usual order, addition, and topology.
Then, X is a compact metrizable topological Abelian monoid, which has the following properties:

(I) For every sequence x = (xn)n∈N of elements of X, the series corresponding to x = (xn)n∈N
is convergent in X.

(II) For every sequence x = (xn)n∈N of elements of X and for every permutation σ : N → N,
the equality

∞

∑
k=1

xσ(k) =
∞

∑
k=1

xk

holds.
(III) For every sequence x = (xn)n∈N of elements of X, the sum range SR[x; X] is a singleton.
(IV) For every x ∈ X, there exists a sequence x = (xn)n∈N of elements of X for which SR[x; X] = {x}.

The following ’multiplicative’ analogue of Proposition 1 is true as well.

Proposition 2. Let X = [0, 1] with the usual multiplication, order, and topology. Then, X is a
compact metrizable topological Abelian monoid, which has the following properties:

(I) For every sequence x = (xn)n∈N of elements of X, the infinite product corresponding to
x = (xn)n∈N is convergent in X.

(II) For every sequence x = (xn)n∈N of elements of X and for every permutation σ : N → N,
the equality

∞

∏
k=1

xσ(k) =
∞

∏
k=1

xk

holds.
(III) For every sequence x = (xn)n∈N of elements of X, the product range PR[x; X] is a singleton.
(IV) For every x ∈ X, there exists a sequence x = (xn)n∈N of elements of X for which PR[x; X] = {x}.

We adopt the following definitions.

Definition 1. The series corresponding to a sequence x = (xn)n∈N in a topologized semigroup
(X,+, τ) or a D-convergence semigroup (X,+, lim) is called unconditionally convergent (Bourbaki
says commutatively convergent [8]) in (X,+, τ), if

P[x; X] = S(N) ;

i.e., if for every permutation σ : N→ N, the series corresponding to xσ = (xσ(n))n∈N is convergent
in (X,+, τ) or in (X,+, lim).

Definition 2. The infinite product corresponding to a sequence x = (xn)n∈N in a topologized
semigroup (X, ·, τ) or a D-convergence semigroup (X, ·, lim) is called unconditionally convergent,
if for every permutation σ : N → N, the infinite product corresponding to xσ = (xσ(n))n∈N is
convergent in (X, ·, τ) or in (X, ·, lim).

Sometimes the series corresponding to a sequence x = (xn)n∈N is called conditionally
convergent or semi-convergent, if it converges but does not converge unconditionally. We
do not use these terms.

The following statement, which in a more general setting was obtained in [9], implies
that the sum range problem has an easy solution in the case of unconditional convergence.

Theorem 1. For a sequence x = (xn)n∈N of elements of a Hausdorff topologized Abelian semigroup
(X,+, τ), the following statements are true.

(a′) If the series corresponding to x is convergent in (X,+, τ), and SR[x; X] is not a singleton,
then there is a permutation λ : N→ N, such that the series corresponding to xλ = (xλ(n))n∈N is
not convergent in (X,+, τ).
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(a) (Commutativity theorem) If the series corresponding to x is unconditionally convergent
in (X,+, τ), then SR[x; X] is a singleton.

In the next section, we consider the problem in the case of R. We see in particular that
the converse to Theorem 1(a) is true for X = R, but it fails in general, see Remark 7.

A topological group X is called protodiscrete, if every neighborhood of the neutral
element of X contains an open subgroup of X.

The following assertion shows that for protodiscrete groups, the sum range problem
has an easy solution too.

Proposition 3. Let (X,+, τ) be a topological group and x = (xn)n∈N be a sequence of elements of
X. Consider the statements:

(i) The set SR[x; X] is not empty.
(ii) The sequence x = (xn)n∈N converges in X to the neutral element.
(iii) The series corresponding to x = (xn)n∈N is unconditionally convergent in X.

Then,

(I) (i) =⇒ (ii).
(II) (ii) =⇒ (iii), provided (X,+, τ) is protodiscrete, sequentially complete, and Abelian.
(III) (See (Ch.III, Section 5, Exercise 2) [8], (i) =⇒ (iii) provided (X,+, τ) is protodiscrete

sequentially complete and Abelian.
(IV) If (X,+, τ) is protodiscrete, sequentially complete, Hausdorff, and Abelian, then SR[x; X]

either is empty or is a singleton.

Proof.

(I) This is well-known and is easy to verify.
(II) We fix a permutation σ : N→ N and set un = xσ(n), sn = ∑n

k=1 uk, n = 1, 2, . . . . Since
(ii) is satisfied, it is easy to verify that the sequence u = (un)n∈N also converges in X
to the neutral element. Let us deduce from this that (sn) is a Cauchy sequence in X.
Indeed, let V be an arbitrary neighborhood of zero in X. Since X is protodiscrete, there
is an open subgroup H of X with H ⊂ V. Since limn un = 0, there exists NH ∈ N,
such that un ∈ H for each n > NH . We now fix arbitrarily natural numbers n and m,
such that NH < m < n; then, sn − sm = ∑n

k=m+1 uk ∈ H ⊂ V, and so, (sn) is a Cauchy
sequence in X.
Since X is sequentially complete, the sequence (sn) converges in X, i.e., the series
corresponding to u = (un)n∈N converges in X. Since σ : N → N was an arbitrary
permutation, (II) is proved.

(III) Since (i) is satisfied, by (I), for x = (xn)n∈N, condition (ii) is satisfied too. Hence, by
(II), we obtain that (iii) is true.

(IV) Suppose that the set SR[x; X] is not empty. Then, by (I), condition (ii) is satisfied, and
then by (II), the series corresponding to x = (xn)n∈N is unconditionally convergent in
X. From this, according to Theorem 1(a), we can conclude that SR[x; X] is a singleton.

To formulate a general result related to the sum ranges, let us fix one more notation
that does not directly involve permutations, see (p. 95, [6]).

For sequence x = (xn)n∈N of elements of a topologized Abelian semigroup (X,+, τ)
and for each m = 1, 2, . . . , let

Am[x; X]

be the closure in (X, τ) of the set

{s ∈ X : ∃I ⊂ {m, m + 1, . . . }, I is finite, I �= ∅ , s = ∑
i∈I

xi},

and
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A[x; X] =
∞⋂

m=1

Am[x; X] .

Proposition 4. (See (pp. 95–96, [6]); see also [10]) Let X be a metrizable topological Abelian
group and x = (xn)n∈N be a sequence of elements of X for which the set SR[x; X] is not empty. Then,

A[x; X]

is a closed subgroup of X.
Moreover,

A[x; X] + s = LPR[x; X],

for every s ∈ SR[x; X].

It can be said that this proposition is the only result related to the sum range, which is
valid for all metrizable topological Abelian groups. In the next section, we consider the
classical case of real numbers.

2. Riemann–Dini Theorem

Let us reproduce a piece from (p. 3, [4]):

“. . . we respect the essential difference which exists between two kinds of infinite
series. If we regard each value instead of each term or, it being imaginary, its
module, then two cases can happen. Either it is possible to give a finite value
which is greater than the sum of any of however many of these values or moduli,
or this condition cannot be satisfied by any finite number. In the first case, the
series always converges and has a completely defined sum regardless how the
series terms are ordered, . . . ”

It follows that the following result was discovered by Dirichlet in 1837.

Theorem 2. Let x = (xn)n∈N be a sequence of real or complex numbers, such that for some finite
number L, we have ∑n

k=1 |xk| ≤ L, n = 1, 2, . . . ; i.e., in modern terms, the series corresponding to
x = (xn)n∈N is absolutely convergent.

Then, the series corresponding to x = (xn)n∈N is unconditionally convergent, and SR[x;R]
is a singleton.

Dirichlet continues as follows:

“. . . In the second case the series can converge too but convergence is essentially
dependent on the kind of order of terms. Does convergence hold for a specific
order then it can stop when this order is changed, or, if this does not happen, then
the sum of the series might become completely different.

So, for example, of the two series made from the same terms:

1− 1√
2
+

1√
3
− 1√

4
+

1√
5
− 1√

6
+ . . . ,

1 +
1√
3
− 1√

2
+

1√
5
+

1√
7
− 1√

4
+ . . . ,

only the first converges while of the following:

1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ . . . ,

1 +
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+ . . . ,

both converge, but with different sums.”
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Remark 1. Let us formulate Dirichlet’s statements in terms of the present article. We introduce the
sequences of real numbers a = (an)n∈N and c = (cn)n∈N defined for a fixed n ∈ N by the equalities:

an = (−1)n+1 1√
n

, cn = (−1)n+1 1
n

.

Let σ : N→ N be a mapping defined for a fixed n ∈ N by the equalities:

σ(3n− 2) = 4n− 3, σ(3n− 1) = 4n− 1, σ(3n) = 2n .

Clearly, σ is a bijection, i.e., σ ∈ S(N).
We have:

(D1) The series corresponding to the sequence a = (an)n∈N converges in R.
The convergence follows from Leibniz’s alternating series theorem; we have, moreover, that

0 < a1 + a2 <
∞

∑
k=1

ak < a1 = 1, 0 <
2n

∑
k=1

ak <
∞

∑
k=1

ak <
2n−1

∑
k=1

ak < 1, n = 2, 3, . . . .

The exact value of ∑∞
n=1 an seems to be unknown.

(D2) The series corresponding to the sequence (aσ(n))n∈N does not converge in R.
This needs little work; it can be shown that, in fact,

lim
n

n

∑
k=1

aσ(k) = +∞ .

(D3) The series corresponding to the sequence c = (cn)n∈N converges in R.
This follows again from the alternating series theorem. The value of ∑∞

n=1 cn is known; it
is ln 2.

(D4) The series corresponding to the sequence (cσ(n))n∈N converges in R too, and
∞

∑
n=1

cσ(n) =
3
2

ln 2 .

This needs more work.

As we see, Dirichlet’s conclusions are correct. Now, we know that Dirichlet could consider
only one sequence, either a = (an)n∈N or c = (cn)n∈N, to obtain the same conclusions, because the
following statements are true as well:

(D2’) By Riemann’s Theorem 3, there exists σ′ ∈ S(N), such that the series corresponding to
(aσ′(n))n∈N converges in R, but

∞

∑
n=1

aσ′(n) �=
∞

∑
n=1

an .

(D4’) By Dini’s Theorem 4(c), there exists σ′′ ∈ S(N), such that the series corresponding to
(cσ′′(n))n∈N does not converge in R.

It is not clear in advance that an unconditionally convergent series of real numbers is
absolutely convergent as well. We shall see (Proposition 6 below) that this is in fact true
due to the following Riemann rearrangement theorem, which was first published in 1867:

Theorem 3. Let x = (xn)n∈N be a sequence of real numbers, such that the series corresponding to
it is convergent, but it is not absolutely convergent. Then, SR[x;R] = R.

Let us reproduce Riemann’s (1826–1866) text:

“. . . Dirichlet found a way to solve this problem noting that infinite series form
two essentially distinct classes: those which remain convergent if all their terms
are made positive and those where this is not the case. In the first case the terms
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of a series can be permutated arbitrarily, while in the second case the sum of a
series depends on the order of terms. In fact, let for a series from the second class
the positive terms be

a1, a2, a3, . . . ,

and the negatives be
−b1,−b2,−b3, . . .

Then it is clear that both of the sums ∑ a and ∑ b must be divergent; in fact, if
both of them are convergent, then the given series would be convergent after
making all signs of its terms the same; if only one of them is convergent, then
the given series would be divergent. It is not hard to see that after appropriate
permutation of terms the series may take an arbitrary given value C. In fact, let us
take alternately first positive terms of the series until their sum does not exceed C,
and then the negative terms until the sum will not be less than C; in this way the
deviation of the sum from C will never be greater than the absolute value of the
preceding term whose sign has been changed. But as the values a and b when the
indices increase became infinitely small, we get that the deviation from C after
sufficient continuation of the series will become arbitrarily small, and hence the
series converges to the value C.” (Translated from (Section 3, p. 232, [11]))

“. . . infinite series fall into two distinct classes, depending on whether or not they
remain convergent when all the terms are made positive. In the first class the
terms can be arbitrarily rearranged; in the second, on the other hand, the value is
dependent on the ordering of the terms. Indeed, if we denote the positive terms
of a series in the second class by

a1, a2, a3, . . . ,

and the negative terms by
−b1,−b2,−b3, . . .

then it is clear that ∑ a as well as ∑ b must be infinite. For if they were both
finite, the series would still be convergent after making all the signs the same. If
only one were infinite, then the series would diverge. Clearly now an arbitrarily
given value C can be obtained by a suitable reordering of the terms. We take
alternately the positive terms of the series until the sum is greater than C, and
then the negative terms until the sum is less than C. The deviation from C never
amounts to more than the size of the term at the last place the signs were switched.
Now, since the numbers a as well as the numbers b become infinitely small with
increasing index, so do also the deviations from C. If we proceed sufficiently far
in the series, the deviation becomes arbitrarily small, that is, the series converges
to C.” (See (pp. 226–227, [12]))

According to (p. 19, [13]) Theorem 3 “made its first appearance in the work of
B. Riemann (1854). It was not until after Riemann’s death that a small gap in his reasoning
was discovered and closed by U. Dini (1868).” Here, B. Riemann (1854) is [14], and
U. Dini (1868) is [15]. We could not find any mention of ’a small gap’ either in [15] or
in [16].

These two theorems amount to a complete solution of the sum range problem for R.

Proposition 5. Let x = (xn)n∈N be a sequence of real numbers. Then,

(I) One of the following must be true:

(a) SR[x;R] = ∅.
(b) SR[x;R] is a singleton.
(c) SR[x;R] = R.
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(II) Case (b) takes place if and only if the series corresponding to x = (xn)n∈N is unconditionally
convergent.

Proof.

(I) Suppose that SR[x;R] �= ∅. We fix a permutation π : N → N, such that the series
corresponding to (xπ(n))n∈N is convergent. We write yn = xπ(n), n = 1, 2, . . . and
y = (yn)n∈N. It is clear that

SR[x;R] = SR[y;R]. (4)

If the series corresponding to y = (yn)n∈N is absolutely convergent, then by Theorem 2,
we have that SR[y;R] is a singleton, and by equality (4), we have that the set SR[x;R]
is a singleton too.
If the series corresponding to y = (yn)n∈N is not absolutely convergent, then by
Theorem 3, we have SR[y;R] = R, and by equality (4), we have that the equality
SR[x;R] = R holds, too.

(II) It remains to prove that if the set SR[x;R] is a singleton, then the series correspond-
ing to x = (xn)n∈N is unconditionally convergent. Since SR[x;R] �= ∅, we can fix
again a permutation π : N→ N, such that the series corresponding to (xπ(n))n∈N is
convergent; we write yn = xπ(n), n = 1, 2, . . . , and y = (yn)n∈N. By equality (4), we
have that the set SR[y;R] is a singleton too; in particular, SR[y;R] �= R. From this, by
Theorem 3, the series corresponding to y = (yn)n∈N is absolutely convergent. Hence,
by Theorem 2, the series corresponding to y = (yn)n∈N is unconditionally convergent;
so, the series corresponding to x = (xn)n∈N is unconditionally convergent too.

Proposition 6 (Riemann–Dirichlet theorem). For a sequence x = (xn)n∈N of real numbers, the
following statements are equivalent:

(i) The series corresponding to x = (xn)n∈N is unconditionally convergent in R.
(ii) The series corresponding to x = (xn)n∈N is absolutely convergent in R.

Proof. (i) =⇒ (ii). By Theorem 1(a), condition (i) implies that SR[x;R] is a singleton. If
(i) is satisfied, but (ii) is not true, then by Theorem 3, we should have that SR[x;R] = R,
a contradiction.

(ii) =⇒ (i) by Theorem 2.

In what follows, for x ∈ R, we write:

x+ = max(x, 0), x− = max(−x, 0).

The following version of Theorem 3 was proved by Dini in [15] in 1868 and was
included in [16] too.

Theorem 4 (Dini). Let x = (xn)n∈N be a sequence of real numbers.

(a) (Dirichlet) If ∑∞
n=1 x+n < +∞, and ∑∞

n=1 x−n < +∞, then P[x;R] = S(N) ;
(b) If ∑∞

n=1 x+n < +∞, but ∑∞
n=1 x−n = +∞, or ∑∞

n=1 x+n = +∞, but ∑∞
n=1 x−n < +∞, then

P[x;R] = ∅;
(c) If xn → 0, and ∑∞

n=1 x+n = ∑∞
n=1 x−n = +∞, then SR

[
x;R

]
= R; moreover, there exists a

permutation π : N→ N, such that

−∞ ≤ lim inf
n

n

∑
k=1

xπ(k) < lim sup
n

n

∑
k=1

xπ(k) ≤ +∞ ,

where the lower and the upper limits are taken in R.

Remark 2. Note that:
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(1) In Theorem 4(c), unlike in Theorem 2, it is not required in advance that the initial series be
convergent. Theorem 4(c) easily implies Theorem 2, although this is not noted in [15], where,
as we have noted already, the name of Riemann is not mentioned at all.

(2) The conclusion of Theorem 4(a) in [15] reads as follows: the series corresponding to
x = (xn)n∈N is “convergent in whatever order its terms are taken".
As we see, Dini did not write that reorderings do not affect the sum (however, prior to the
formulation of his theorem, he did point this out).

(3) The “moreover” part of Theorem 4(c) in [15] (up to the notation) is as follows: there exists
a permutation π : N → N such that the series corresponding to (xπ(n))n∈N “will also
become indeterminate”.

The following statement is related to Theorem 4; the implication (B) =⇒ (C) is taken
from (Ch. IV, Section 7, Ex. 15 [8]), where the names of Riemann and Dini are not mentioned
in connection with this.

Theorem 5 (Riemann–Dini–Bourbaki). Let x = (xn)n∈N be a sequence of real numbers. Con-
sider the following statements.

(A) The series corresponding to x = (xn)n∈N converges in R, but ∑∞
n=1 |xn| = +∞.

(B) limn xn = 0, and ∑∞
n=1 x+n = ∑∞

n=1 x−n = +∞.
(C) For each two elements a and b of R with a ≤ b, there is a permutation σ of N such that:

(I) lim infn ∑n
k=1 xσ(k) = a and, lim supn ∑n

k=1 xσ(k) = b , where lim inf and lim sup
are taken in R,
and

(II) The set of cluster points of the sequence (∑n
k=1 xσ(k))n∈N coincides with the interval [a, b].

(D) SR[x;R] = R.
Then, the following implications are true:

(A) =⇒ (B) =⇒ (C) =⇒ (D) =⇒ (B) .

Proof. The implication (A) =⇒ (B) is well known.
A proof of (B) =⇒ (C, (I)) is in fact contained in (Theorem 3.54 (p. 76), [17]). We

present a proof of the implication (B) =⇒ (C, (I I)) below.
To prove the implication (C, (I)) =⇒ (D), we fix an arbitrary c ∈ R and apply (C, (I))

for a = b = c. We obtain a permutation σ of N, such that lim infn→∞ ∑n
k=1 xσ(k) = c and

lim supn→∞ ∑n
k=1 xσ(k) = c . Hence, limn→∞ ∑n

k=1 xσ(k) = c. Therefore, c ∈ SR[x;R].
(D) =⇒ (B). From (D), we can find and fix a permutation π : N→ N, such that the se-

ries corresponding to xπ := (xπ(n))n∈N is convergent. Clearly, we have SR[xπ ;R) = SR[x;R].
So, we have also that SR[xπ ;R] = R. From this equality and Theorem 2, we conclude that
the series corresponding to xπ := (xπ(n))n∈N is not absolutely convergent. So, we can apply
the (already proved) implication (A) =⇒ (B) for the sequence xπ := (xπ(n))n∈N and obtain
that limn xπ(n) = 0, and both of the series corresponding to (x+

π(n))n∈N and (x−
π(n))n∈N are

divergent. Hence, we have also that limn xn = 0, and both of the series corresponding to
(x+n )n∈N and (x−n )n∈N are divergent as well.

The following example shows that the implication (D) =⇒ (A) in Theorem 5 is false
in general.

Example 1. Let

an =
1 + 2(−1)n

n
, n = 1, 2, . . . .

Then,

(a) The series corresponding to (an)n∈N does not converge in R (in fact, ∑∞
n=1 an = +∞).

(b) limn an = 0, and ∑∞
n=1 a+n = ∑∞

n=1 a−n = +∞.
(c) SR[(an)n∈N;R] = R.
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Proof. (a) and (b) are easy to verify. (c) follows from (b) by the implication (B) =⇒ (D)
in Theorem 5.

From the following assertion, it becomes clear that the implication (B) =⇒ (C, (I I))
in Theorem 5 is a consequence of the implication (B) =⇒ (C, (I)) in the same Theorem.

Theorem 6. Let x = (xn)n∈N be a sequence of real numbers. Consider the statements:

(B1) limn xn = 0.
(B2) The set of cluster points in R of the sequence

(
n

∑
k=1

xk)n∈N

coincides with the interval [
lim inf

n

n

∑
k=1

xk, lim sup
n

n

∑
k=1

xk

]
,

where the lower and the upper limits are taken in R.

Then, (B1) =⇒ (B2).

We prove Theorem 6 by means of the next two propositions, which are “series free”
and may be of an independent interest.

Proposition 7. Let (sn) be a sequence of real numbers, such that both the sets N+ = {n ∈ N : sn ≥ 0}
and N− = {n ∈ N : sn < 0} are infinite. Consider the following statements:

(1) limn(sn+1 − sn) = 0.
(2) For every sequence (βn) of strictly positive real numbers, the sequence (sn) has a subsequence

(sjn), such that
0 ≤ sjn < βn, n = 1, 2, . . . .

(3) The sequence (sn) has a subsequence (sjn) such that

sjn ≥ 0, n = 1, 2, . . . , and lim
n

sjn = 0 .

Then, (1) =⇒ (2) =⇒ (3).

Proof. (1) =⇒ (2).
We fix a sequence (βn) of strictly positive real numbers. (1) implies the existence of a

sequence (kn) of natural numbers, such that

k ∈ N, k ≥ kn =⇒ |sk+1 − sk| < βn, n = 1, 2, . . . .

Since N+ is an infinite set, we have that {i ∈ N+ : i ≥ k1} �= ∅; so, we can define

l1 := min{i ∈ N+ : i ≥ k1} .

We have: l1 ≥ k1.
Since N− is an infinite set as well, we have that {i ∈ N− : i > l1} �= ∅; so,

we can define
m1 := min{i ∈ N− : i > l1} .

We have: m1 > l1, k1 ≤ j1 := m1 − 1 ∈ N \ N− = N+, and

0 ≤ sj1 < sj1 − sm1 = |sj1 − sm1 | < β1 .

In this way, we can inductively construct a sequence (ln) of elements of N+ and a sequence
(mn) of elements of N−, such that

179



Axioms 2023, 12, 760

kn ≤ ln = min{i ∈ N+ : i ≥ kn} , mn = min{i ∈ N− : i > ln}, and n = 2, 3, . . . .

Then, we have:

mn > ln, kn ≤ jn := mn − 1 ∈ N \ N− = N+, n = 1, 2, . . . ,

and
0 ≤ sjn < sjn − smn = |sjn − smn | < βn, n = 1, 2, . . . .

(2) =⇒ (3). From (2) applied for the sequence (βn) with limn βn = 0, we obtain a
subsequence (sjn) of (sn) for which (3) is satisfied.

Proposition 8. Let (tn) be a sequence of real numbers, such that

lim
n
(tn+1 − tn) = 0 .

Then, the set of cluster points of the sequence (tn)n∈N in R is the interval [a, b], where

a := lim inf tn, b := lim sup tn.

(The lower and the upper limits are taken in R.)

Proof. The assertion is clearly true (without the assumption that limn(tn+1 − tn) = 0), if
a = b ∈ R. So, we can suppose that a < b.

We fix c ∈]a, b[ and put
sn = tn − c, n = 1, 2, . . .

We observe that

lim inf
n

sn = lim inf
n

tn − c = a− c < 0, and lim sup
n

sn = lim sup
n

tn − c = b− c > 0 . (5)

Clearly,
(1b) limn(sn+1 − sn) = 0, and (5) implies that
(2b) The sets N+ = {n ∈ N : sn ≥ 0} and N− = {n ∈ N : sn < 0} are infinite.
So, by the implication of (1) =⇒ (3) in Proposition 7, we obtain that (sn) has a

subsequence (sjn), such that limn sjn = 0. Hence,

lim
n

tjn = c,

and since c ∈]a, b[ is arbitrary, Proposition 8 is proved.

Proof of Theorem 6. Consider the sequence tn = ∑n
k=1 xk, n = 1, 2, . . . Observe that since

(B1) is satisfied, we have limn(tn+1 − tn) = 0. An application of Proposition 8 for (tn)
gives that (B2) holds for (xn).

Using Theorem 5, we can prove the following rearrangement theorem:

Theorem 7. Let x = (xn)n∈N be a sequence of real numbers such that LPR[x;R] �= ∅. The
following statements are equivalent:

(i) limn xn = 0 .
(ii) SR[x;R] = LPR[x;R].

Proof. (i) =⇒ (ii). Take s ∈ LPR[x;R]. We can find and fix a permutation π : N → N
and a strictly increasing sequence (jn)n∈N of natural numbers, such that the sequence(

∑
jn
k=1 xπ(k)

)
n∈N

converges to s. If the sequence
(

∑n
k=1 xπ(k)

)
n∈N

converges to s, then

s ∈ SR[x;R]. Suppose now that the sequence
(

∑n
k=1 xπ(k)

)
n∈N

does not converge to s.

From these properties, we conclude easily that ∑∞
k=1 x+

π(k) = +∞, and ∑∞
k=1 x−

π(k) = +∞.
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These equalities together with (i) according to implication (B) =⇒ (D) of Theorem 5
implies that SR[x;R] = R; in particular, s ∈ SR[x;R].

(ii) =⇒ (i). The equality (ii) and the condition LPR[x;R] �= ∅ imply SR[x;R] �= ∅.
Hence, (i) holds.

We conclude this section with the following theorem, the second item of which can be
considered as a “sign analogue” of Theorem 3.

Theorem 8. For a sequence x = (xn)n∈N of real numbers, the following statements are true.

(Ia) If limn xn = 0 , then there exists a sequence tn ∈ {1,−1}, n = 1, 2, . . . , such that the series
corresponding to the sequence (tnxn) converges in R.

(Ib) Chapter 6, Example 6,[18]) If limn xn = 0 , and the series corresponding to the sequence
(|xn|) does not converge in R, then for every s ∈ R, there exists a sequence tn ∈ {1,−1},
n = 1, 2, . . . , such that the series corresponding to the sequence (tnxn) converges in R and

∞

∑
k=1

tkxk = s .

Proof. (Ia) If ∑∞
n=1 |xn| < +∞, then the assertion is true for every sequence tn ∈ {1,−1},

n = 1, 2, . . . .
If ∑∞

n=1 |xn| = +∞, then the conclusion follows from (Ib).
(Ib) A proof of (Ib) can be seen in (Chapter 6, Example 6 [18]), where the requirements of

(Ib) are used.

Remark 3. Theorem 8(Ia) remains true for a sequence of complex numbers [19].
In a footnote of the Russian translation of (Chapter 6, Example 6 [18]), it is noted

that the following variant of Theorem 8(Ib) is true as well: let x = (xn)n∈N be a se-
quence of complex numbers, such that the series corresponding to the sequence (xn)
converges in C, but ∑∞

n=1 |xn| = +∞. Then, for every s ∈ C, there exists a sequence tn ∈ C,
|tn| = 1, n = 1, 2, . . . , such that the series corresponding to the sequence (tnxn) converges
in C, and ∑∞

n=1 tnxn = s.

3. Levy–Steinitz Theorem

The sum range problem for complex numbers was treated by Paul Pierre Lévy
(1886–1971) in his first article [20] written in 1905 (which contains no separately formulated
theorems). The problem for ’numbers’ belonging to Rd, d = 2, 3, . . . was investigated by
Ernst Steinitz (1871–1928) in his cycle of articles [21–23]. As written in [23], this problem
was proposed to Steinitz by Edmund Landau (1877–1938), who included his version and
proof of the Riemann rearrangement theorem (without mentioning Riemann’s name) in [24],
as Theorem 217.

In this section, we treat the case of Hausdorff topological vector spaces over R.
A general statement which includes Levy’s and Steinitz’s results was published by

Banaszczyk in [25]. To formulate this statement, we first comment on the notion of a nuclear
space (whose definition is not given in [25]).

We follow [26–28]. For a nonempty subset U of a monoid (X,+), let
kU : X → [0, 1] be the functional defined at x ∈ X by the equality

kU(x) = sup{ 1
n

: n ∈ N and nx /∈ U}

(we agree that sup(∅) = 0). Let us call the series corresponding to a sequence x = (xn)n∈N
in a topologized Abelian monoid (X,+, τ) absolutely convergent, if

∞

∑
n=1

kU(xn) < +∞
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for every τ-neighborhood U of the neutral element of (X,+, τ).
It follows from [27] that the series corresponding to a sequence x = (xn)n∈N of

• Real numbers is absolutely convergent, if and only if ∑∞
n=1 |xn| < +∞.

• Elements of a normed space (X, ‖ · ‖) are absolutely convergent, if and only if
∑∞

n=1 ‖xn‖ < +∞.
• Elements of a locally convex topological vector space X are absolutely convergent, if

and only if ∑∞
n=1 ‖xn‖ < +∞ for every continuous semi-norm ‖ · ‖ : X → R+.

The notion of a nuclear locally convex space was introduced in 1953 by Grothendieck in
terms of topological tensor products. We use as a definition the second item of the following
consequence of Grothendieck–Pietsch’s theorem (see (Ch. IV, 10.7, Corollary 2) [28] and the
text following it):

Theorem 9. For a metrizable locally convex topological vector space X over R, the following
statements are equivalent:

(N) X is nuclear.
(GPS) For every sequence x = (xn)n∈N of elements of X, such that the series corresponding

to x = (xn)n∈N is unconditionally convergent in X, we have that the same series is absolutely
convergent as well.

We note that the metrizability assumption in Theorem 9 is essential only for the validity
of the implication (GPS) =⇒ (N).

It follows from the Riemann–Dirichlet theorem that (R,+) with the usual topology
is nuclear. This implies that the spaces (Rd,+), d = 2, 3 . . . and (RN,+) with their usual
topologies are nuclear as well. It follows that any finite-dimensional normed space is
nuclear. For other examples and for the general definition of nuclearity, we refer the reader
to [28].

In what follows, for a topological vector space X over R,

• We write X∗ for the (topological) dual space, which consists of all continuous linear
functionals x∗ : X → R;

• The set X∗ is regarded as a vector space over R with the usual pointwise addition and
multiplication by real scalars.

A topological vector space X is called dually separated or a DS-space, if X∗ separates
the points of X.

The Hahn–Banach theorem implies that a Hausdorff locally convex topological vector
space X over R is a DS-space. There are also DS-spaces, which are not locally convex.

For a sequence x = (xn)n∈N in a topological vector space X over R, let

Γx = {x∗ ∈ X∗ :
∞

∑
n=1

|x∗(xn)| < +∞},

(the set Γx is called in [29] the weak summability domain of x), and let

⊥Γx := {x ∈ X : x∗(x) = 0 ∀x∗ ∈ Γx}

be the inverse polar of Γx in X.
For a sequence x = (xn)n∈N in a topological vector space X over R, the set Γx is a

vector subspace of X∗, while the set ⊥Γx is a closed vector subspace of X.
Let us introduce also, for a sequence x = (xn)n∈N in a topological vector space X,

Steinitz’s range
StR[x; X]

as follows:

StR[x; X] = {s ∈ X : x∗(s) ∈ SR[(x∗(xn))n∈N;R] ∀x∗ ∈ X∗ }.

For a non-empty subset A of a vector space X and an element a ∈ X, we write
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A− a = {x− a : x ∈ A}, A + a = {x + a : x ∈ A}, a + A = {a + x : x ∈ A} .

A subset A of a vector space X over R or over C is called real affine, if

a1 ∈ A, a2 ∈ A, t ∈ R =⇒ ta1 + (1− t)a2 ∈ A .

The empty set is affine. A non-empty subset A of a vector space X over R is real affine, if
and only if for some a ∈ A, the set A− a is a vector subspace of X.

Proposition 9. For a sequence x = (xn)n∈N in a topological vector space X over R, the following
statements are true.

(1) SR[x; X] ⊂ StR[x; X] .
(2) Ref. [30], ([Proposition 2.1(b))

StR[x; X] �= ∅, s ∈ StR[x; X] =⇒ StR[x; X] = s + ⊥Γx . (6)

In particular, StR[x; X] is always a closed real affine subset of X.
(3) Ref. [31], (Proposition 1)

SR[x; X] �= ∅, s ∈ SR[x; X] =⇒ StR[x; X] = s + ⊥Γx . (7)

Proof.

(1) This is evident.
(2) Let us show first that

StR[x; X] ⊂ s + ⊥Γx (8)

We fix a ∈ StR[x; X], and we show that a ∈ s + ⊥Γx; i.e., we need to show that
a− s ∈ ⊥Γx. To see this, we fix an arbitrary x∗ ∈ Γx, and we see that x∗(a− s) = 0.
We can find and fix permutations π : N→ N and σ : N→ N, such that

∞

∑
n=1

x∗(xπ(n)) = x∗(s) and
∞

∑
n=1

x∗(xσ(n)) = x∗(a) . (9)

As x∗ ∈ Γx, the series corresponding to (|x∗(xn)|)n∈N converges in R. From this by
Theorem 2, we obtain that SR[(x∗(xn))n∈N;R] is a singleton. This and (9) imply:

x∗(s) = x∗(a) .

Hence, x∗(a− s) = 0, and (b1) is proved.
It remains to prove that

StR[x; X] ⊃ s + ⊥Γx (10)

We fix y ∈ s + ⊥Γx and x∗ ∈ X∗. We need to verify that

x∗(y) ∈ SR[(x∗(xn))n∈N;R] (11)

First, let x∗ ∈ Γx; then, (as y ∈ s + ⊥Γx), we have x∗(y) = x∗(s). As s ∈ StR[x; X], for
some permutation σ : N→ N, we have:

∞

∑
n=1

x∗(xσ(n)) = x∗(s) .

From this, (as x∗(y) = x∗(s)), we obtain:
∞

∑
n=1

x∗(xσ(n)) = x∗(y) .

So, (11) is true in this case.
Now, let x∗ ∈ X∗ \ Γx; then, as StR[x; X] �= ∅, we have that SR[(x∗(xn))n∈N;R] �= ∅,
and the series corresponding to (|x∗(xn)|)n∈N is not convergent in R. So by Riemann’s
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theorem, we have SR[(x∗(xn))n∈N;R] = R; hence, x∗(y) ∈ R = SR[(x∗(xn))n∈N;R].
Consequently, (11) is true in this case too.

(3) This follows from (i) and (iii).

Now, we are ready to formulate the result.

Theorem 10 (Wojciech Banaszczyk; Theorem 1, [25]). Let X be a metrizable nuclear locally
convex topological vector space over R and x = (xn)n∈N be a sequence in X.

(I) If SR[x; X] �= ∅, then
SR[x; X] = s + ⊥Γx

for each s ∈ SR[x; X].
(II) SR[x; X] is always a closed affine subset of X.

Proof.

(I) This can be seen in [25]; see also [5], (Ch.8, Section 3 (pp. 110–117)).
(II) This follows from (I).

The following statement is one of the key points for the proof of Theorem 10(I).

Proposition 10 (Lemma 6, [25]). Let X be a metrizable nuclear locally convex topological vector
space over R and x = (xn)n∈N be a sequence in X for which SR[x; X] �= ∅; then,

A[x; X] = ⊥Γx

The following surprising complement to Theorem 10(I) is true as well.

Theorem 11 (Wojciech Banaszczyk; [32]). For a metrizable locally convex topological vector
space over R, the following statements are equivalent:

(i) X is nuclear.
(ii) For every sequence x = (xn)n∈N in X such that SR[x; X] �= ∅, the equality

SR[x; X] = s + ⊥Γx

holds for each s ∈ SR[x; X].

In connection with this theorem, the following question seems very natural.

Question 3 (Remark 3, [32]). Can condition (ii) in Theorem 11 be replaced by the following
condition?

(ii′) For every sequence x = (xn)n∈N in X, the range SR[x; X] is always a closed affine subset
of X.

The question of whether the set SR[x; X] is always convex for every sequence x = (xn)n∈N
in a Banach space X over R was posed by Banach, see (Problem 106, [33]), where a negative
answer was included too. It is conjectured that the corresponding example for the case
X = L2([0, 1]) is due to Marcinkiewicz (see an interesting story in (pp. 31–32, [5])). Our
presentation of this example follows (p. 173, [34]).

Example 2. (Marcinkiewicz’s Example, 1936) For a natural number m, find the nonnegative
integers m′ and m′′ < 2m′

, such that m = 2m′
+ m′′, and define the function xm : [0, 1]→ {0, 1}

by the equality:
xm = 1[ m′′

2m′ , m′′+1
2m′

] .
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Now, let y = (yn)n∈N be the sequence defined by

y2n−1 = xn, y2n = −xn, n = 1, 2, . . . .

This sequence has the following properties:

(a0) The series corresponding to y = (yn)n∈N converges in X = L2([0, 1]) to zero; in particular,
0 ∈ SR[y; X].

(a1) 1 ∈ SR[y; X] .
(b) Every element of SR[y; X] is an integer-valued function.
(c) SR[y; X] is not a convex subset of X = L2([0, 1]).

Proof. (a0) follows at once from the observation that limn ‖xn‖2 = 0.
(a1) First, we reproduce the corresponding fragment from (p. 173, [34]): since

y3 + y5 + y2 = y7 + y9 + y3 = · · · = 0 (12)

(it can be verified that these equalities hold almost everywhere on [0, 1]), it follows
that the series corresponding to the sequence

(y1, y3, y5, y2, y7, y9, y3, . . . ) (13)

converges to 1.
From this, since the sequence (13) is indeed a permutation of the sequence y =
(yn)n∈N, we obtain that 1 ∈ SR[y; X].

(b) This is evident.
(c) From (b), we have that 1

2 �∈ SR[y; X] . From this and from (a0) and (a1), we conclude
that the set SR[y; X] is not convex.

It is known that an example of the same type as Example 2 can be constructed in
any infinite-dimensional Banach space X over R (Corollary 7.2.1 (p. 97), [5]). It follows
that if the answer to Question 3 for a Banach space X over R is positive, then X is finite
dimensional and, hence, is nuclear. In general, the answer to this question remains open.

For a sequence x = (xn)n∈N in an infinite-dimensional separable Hilbert space X, the
sum range SR[x; X]

• May not be closed [35] (see also (Example 3.1.3 (p. 31), [5]));
• It seems to be unknown whether it may be affine and non-closed (Remark 3.1.1 (p. 32) [5]);
• It is always an analytic subset of X; see [36] (hence, not any subset of a Hilbert space

“can serve as the sum range of a series”, see (p. 36, [5])). However, it seems to be
unknown whether a sum range is always a Borel subset of X.

Remark 4. Let X and y = (yn)n∈N be as in Example 2. Then,

• SR[y; X] = L2([0, 1];Z), see (Exercise 3.1.4, [5]), where it is noted also that the inclusion
L2([0, 1];Z) ⊂ SR[y; X] was proved by Bogdan in her MSc Thesis (Zaporozhie University,
Ukraine, 1992); see also (Assertion 2, [37]).

• Let Xw := (L2([0, 1]), weak). Then, SR[y; Xw], as a set, coincides with the whole space
X = L2([0, 1], see (Exercise 3.1.6, [5]).

Remark 5. Theorem 10(I) implies that that if X is a metrizable nuclear locally convex topological
vector space over R, then, for every sequence x = (xn)n∈N in X, such that SR[x; X] �= ∅ and
Γx = {0}, we have SR[x; X] = X. The question of validity of a similar conclusion for the case of an
infinite-dimensional separable Banach space X was posed in (Problem 3 (p.146), [29]). A negative
answer for the case X = L2([0, 1]) was obtained in [38] (see also (Proposition 3.4.4 (p. 84), [39])),
where it was shown that for Marcinkiewicz’s sequence y = (yn)n∈N, the equality Γy = {0} holds;
however, by Example 2(c), we have: SR[y; X] �= X = L2([0, 1]).
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Remark 6. The question of whether the set SR[x; X) is always convex for every sequence x = (xn)n∈N
in a separable infinite-dimensional Hilbert space X over R was posed (independently from Banach)
and was answered negatively by Hugo Hadwiger [40]. However, in [40], it was conjectured that for
each sequence x = (xn)n∈N, for which SR[x; X] �= ∅, the sum range SR[x; X] must be a co-set of
an additive subgroup of X. We reproduce an interesting piece from (p. 32, [5]):

“In this section we shall give an example of a series. . . whose sum range consists of two
points . . . This example disproves, in particular, H. Hadwiger’s conjecture that the sum
range of any conditionally convergent series is the coset of some additive subgroup of the
space under consideration. The construction given here belongs to M. I. Kadets; its justifi-
cation was first obtained independently, and about the same time, by P. A. Kornilov [37]
and K. Wozniakowski (see [41]). It is interesting that similar constructions were proposed
at least by two other mathematicians. A. Dvoretzky told us that many years ago he had
such an example, but he, too (like M. I. Kadets), was not able to find a justification. P.
Enflo constructed an example with a complete proof at about the same time [37,41] were
written, but he did not publish it because I. Halperin informed him about the preprint
containing the example presented below."

Note that now we know more: for each finite subset A ⊂ X of an infinite-dimensional separable
Banach space X over R, there exists a sequence x = (xn)n∈N in X, such that SR[x; X] = A [42].

Theorem 10 is applicable for finite-dimensional normed spaces (because they are
nuclear); however, for them, more is also true.

Theorem 12 (Ernst Steinitz). Let X be a finite-dimensional normed vector space over R and
x = (xn)n∈N be a sequence in X. The following statements are true.

(I1) If SR[(x∗(xn))n∈N;R] �= ∅, for every x∗ ∈ X∗, then SR[x; X] �= ∅.
(I2) SR[x; X] = StR[x; X].
(I3) If SR[x; X] �= ∅, and s ∈ SR[x; X], then SR[x; X] = s + ⊥Γx.
(I I) SR[x; X] is a real affine subset of X.

Comments on the Proof. (I1) and (I2) are nontrivial even when dim(X) = 2. According
to [43], (I1) was proved in [23]; however, we did not find its proof in [44] or in [5]. Only
in (Theorem II, [45]) and in [46] can one find some information about this implication (see
also [47]).

(I3) follows from (I2) and Proposition 9.
Direct proofs of (I3) can be seen in [45,48] and in (Chapter 2, Section 1 (pp. 13–20), [5]).

(I I) follows from (I3). (I I) is formulated as Lemma 4 in [49] and proved there for
the first time in the English literature. Proofs of (I I) appeared in Russian for the first time
in [50] and in [51].

Surely, the first attempt to understand and simplify Steinitz’s exposition was carried
out by the Austrian mathematician Wilhelm Gross (Groß) (1886–1918) in his 1917 article [52].
Later, many authors were interested in the proof of Theorem 12 (I I). Among them was
Kurt Gödel (1906–1978), one of the most outstanding logicians of the twentieth century [53]
(see a nicely written account of this work in [54]). In [54], after commenting on [52], the
following was written:

“Other authors, among them Abraham Wald (1933)(=[55]) published a proof of the
theorem which was close to the proof of Gödel, and it may well be that publication of
Wald’s proof lessened Gödel’s interest in the publication of his own manuscript."

Let us note also that Theorem 10(I I) for X = RN was derived from Theorem 12(II)
earlier by Wald [56].

Theorem 12(I I) coincides with (Ch. VII, Section 3, Exercise 2(ii), [57]), where a (rather
complicated) hint of its proof is also given. Surely, a complete realization of Bourbaki’s
claim requires a separate monograph.
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Let us formulate two ingredients of the proof of Theorem 12 (I I), which are of inde-
pendent interest. We follow the terminology of [5,45,48].

Theorem 13. (The polygonal confinement theorem.) There exists a sequence Cm, m = 1, 2, . . .
of strictly positive constants, with C1 = 1 and with Cm < m, m = 2, 3, . . . , for which the following
statement is true.

If X is a finite-dimensional vector space over R with dim(X) = m ≥ 1 and ‖ · ‖ a norm (or
a subadditive positively homogeneous function) on X, then for a natural number n > 1 and for
elements xj ∈ X, j = 1, . . . , n with

n

∑
j=1

xj = 0 ,

there exists a permutation σ : Nn → Nn, such that σ(1) = 1, and

‖
k

∑
j=1

xσ(j)‖ ≤ Cm max
j∈Nn

‖xj‖, k = 1, 2, . . . , n . (14)

A proof of Theorem 13 with Cm = 5
m−1

2 , m = 1, 2, . . . is indicated in (Ch. VII, Section 3,
Exercise 1b, [57]). A version of Theorem 13 with Cm = 2m − 1, m = 1, 2, . . . (without proof
and with references to [23,52]) was formulated as Lemma 1 in [49].

It is remarkable that Theorem 13 holds for every norm given on a vector space X
over R with dim(X) = m ≥ 1. For a fixed m (and concrete norm), the optimal value
of the constant in (14), as well as an elaboration of an optimal algorithm for finding the
corresponding permutation σ, plays a role in scheduling theory [58]. It is conjectured that
in the case of Euclidean norms, the theorem should hold with constants Cm, m = 1, 2, . . .
for which the sequence Cm√

m , m = 1, 2, . . . is bounded [59].
Using Theorem 13, it is possible to prove the following generalization of Theorem 7:

Theorem 14 (see Lemma 2, [49], and the rearrangement theorem (p. 346), [48]). Let X be a
finite-dimensional normed space over R and x = (xn)n∈N be a sequence of elements of X, such that
LPR[x; X] �= ∅. The following statements are equivalent:

(i) limn xn = 0 .
(ii) SR[x; X] = LPR[x; X].

It is known that if for a Banach space X over R, an analogue (of implication (i) =⇒ (ii))
of Theorem 14 is true, then X is finite-dimensional [60].

The following assertion implies in particular that an analogue of Theorem 12(I1) is
not true for all nuclear spaces.

Theorem 15 (Kadets, [43]). For an infinite-dimensional complete separable metrizable topological
vector space X over R, the following statements are equivalent.

(SI) For each sequence x = (xn)n∈N in X, such that

SR[(x∗(xn))n∈N;R] �= ∅ ∀x∗ ∈ X∗,

we have that SR[x; X] �= ∅.
(Is) X is topologically isomorphic to RN endowed with the topology of coordinatewise convergence.

The following example shows that a further improvement of Theorem 12(I1) is not
possible even in the two-dimensional case.

Example 3 (Kadets, [43]). Let X be a two-dimensional normed vector space over R. There is a
sequence x = (xn)n∈N in X, such that the set

Kx := {x∗ ∈ X∗ : SR[(x∗(xn))n∈N;R] �= ∅}

187



Axioms 2023, 12, 760

separates points of X, but the set
SR[(xn)n∈N; X]

is empty.

Proof. Take X = R2. Fix n ∈ N, put

an =
1 + 2(−1)n

n
, bn =

1− 2(−1)n

n
, xn = (an, bn),

and consider the sequences a = (an)n∈N, b = (bn)n∈N, and x = (xn)n∈N. Then,

(1) SR[(an)n∈N;R] = R, and SR[(bn)n∈N;R] = R.
(2) Re∗1 ∪Re∗2 ⊂ Kx, where e∗1 and e∗2 are the first and the second projections from X = R2

onto R, respectively. In particular, Kx separates points of X = R2.
(3) SR[(xn)n∈N; X] = ∅.

(1) This follows from implication (B) =⇒ (D) in Theorem 5.
(2) This follows from (1).
(3) Suppose (3) is not true, i.e., SR[(xn)n∈N; X] �= ∅. Then, we can find and fix a permuta-

tion σ : N→ N, for which the series corresponding to (xσ(n))n∈N converges in X = R2.
Then, both series corresponding to (aσ(n))n∈N and to (bσ(n))n∈N will converge in R.
This would imply that the series corresponding to (aσ(n) + bσ(n))n∈N will converge in
R too; but this is impossible, as aσ(n) + bσ(n) =

2
σ(n) , n = 1, 2, . . . .

4. Kadets-Type Theorems

The first result for infinite-dimensional Banach spaces was obtained in 1953 by Mikhail
Iosifovich Kadets (1923–2011).

Theorem 16 (Kadets, Lemma I and Theorem II, [61]). Let 1 < p < ∞, (T, Σ, ν) be some
σ-finite positive measure space, X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
, and x = (xn)n∈N be a sequence in

X. Then,
SR[(xn)n∈N; X] = LPR[(xn)n∈N; X],

and the sum range
SR[(xn)n∈N; X]

is a closed affine subset of X, provided the following condition is satisfied:
(KCp) ∑∞

n=1 ‖xn‖min(2,p)
p < +∞.

At the end of [61], it was written: “It is unknown for the author whether the condition
(KCp) is necessary”.

Then, the following more general result appeared:

Theorem 17. (Stanimir Troyanski, [62]) Let X be a uniformly smooth Banach space over R with
a modulus of smoothness ρ. Then, for a sequence x = (xn)n∈N in X, the sum range

SR[(xn)n∈N; X]

is a closed affine subset of X provided the following condition is satisfied:

(TC)
∞

∑
n=1

ρ(‖xn‖) < +∞.

In [62], it is noted also that it is unknown whether the condition (TC) is necessary.

Remark 7. Ref. [62] began with the following definition: “A series of vectors of linear topological
space is called conditionally convergent if two of its permutations have different sums." In view
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of this definition, one can expect that for a sequence x = (xn)n∈N in Hausdorff topological vector
space X, the following statement must be true:

(HM) If SR[(xn)n∈N; X] is a singleton, then the series corresponding to x is unconditionally
convergent in X.

We have:

(a) If X is finite-dimensional, then (HM) is true.
This follows from Steinitz’s Theorem 12(I3).

(b) If X is an infinite dimensional Hilbert space, then (HM) is not true [63].
(c) If X is an infinite dimensional Banach space, then (HM) is not true either [64].
(d) If X = R[0,1] is endowed with the topology of point-wise convergence, then (HM) is not true,

and there even exists a sequence x = (xn)n∈N in X consisting of continuous functions, such
that SR[(xn)n∈N; X] = {0}, and SR[(|xn(t)|)n∈N;R] = ∅, for each t ∈ [0, 1] [65] .

Next was paper [66], which was the first one to be written in English dealing with
infinite-dimensional Hilbert spaces (and containing a conclusion about the sum range in
the line of Steinitz’s Theorem 12(I3)).

Theorem 18 (Vladimir Drobot, Theorem 1, [66]). Let (T, Σ, ν) be [0, 1] endowed with the sigma-
algebra Σ of Lebesgue-measurable sets and the Lebesgue measure ν, X = (L2(T, Σ, ν;R), ‖ · ‖2) be
the Hilbert space over R, and x = (xn)n∈N be a sequence in X with the following properties:

(a) SR[(xn)n∈N; X] �= ∅.
(b) ∑∞

n=1 ‖xn‖2 = +∞.
(c) ∑∞

n=1 ‖xn‖2
2 < +∞.

(d) The set Γx is closed in X∗ = X.
Then,

SR[(xn)n∈N; X] = s + ⊥Γx,

for some s ∈ SR[(xn)n∈N; X].

Among all the previous works, ref. [66] only mentions Steinitz’s 1913 paper. At the
end of [66], two examples are presented.

Example 1 demonstrates that, in Theorem 18, conditions (a, b, c) may be satisfied,
while condition (d) is not;

Example 2 gives a sequence x = (xn)n∈N in X for which the conditions (a, b, c, d) of
Theorem 18 with Γx = {0} are satisfied; hence, by this theorem, we have that
SR[(xn)n∈N; X] = X.

The last example, together with a version of Theorem 18 in which Γx = {0}, is included
in the monograph [67].

It is a bit strange that in [66] the result is not formulated or proved for an abstract
infinite-dimensional Hilbert space over R, while later in [68], one of the main ingredients
of its proof is formulated and proved for the abstract case.

The first paper, written in Russian, to mention [66] was [69].

Theorem 19 (Vladimir Fonf, Theorem, [69]). Let X be a uniformly smooth Banach space over R
with a modulus of smoothness ρ and x = (xn)n∈N a sequence in X, such that

(a) SR[(xn)n∈N; X] �= ∅.
(b) ∑∞

n=1 ‖xn‖ = +∞.
(c) ∑∞

n=1 ρ(‖xn‖) < +∞.
Then,

SR[(xn)n∈N; X] = s + ⊥Γx

for some s ∈ SR[(xn)n∈N; X].

Note that this theorem contains and improves Theorem 18, removing condition (d)
from it.
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In 1971, a paper [70] by Evgenii Mikhailovich Nikishin (1945-1986) appeared, where
among other results, it was shown that in Kadets’ Theorem 16, condition (KCp) is in a
sense the best possible when p ≥ 2, and the above considered Banach’s question from the
"Scottish book" was answered negatively without actually knowing it.

Theorem 20 (Nikishin, Corollary 4 (p. 284), [70]). Let 1 ≤ p < ∞. Let (T, Σ, ν) be [−1, 1]
endowed with the sigma-algebra Σ of Lebesgue-measurable sets and the Lebesgue measure ν
X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
Then, there exists a sequence ϕn ∈ X, n = 1, 2, . . . , such that

∞

∑
n=1

‖ϕn‖2+ε
p < ∞ ∀ε > 0 ,

SR[(ϕn)n∈N; X] �= ∅, and SR[(ϕn)n∈N; X] is not affine.

Now, we formulate several other remarkable results contained in [70,71].

Theorem 21. Let ν be the Lebesgue measure on [0, 1] and X = L0 the vector space over R of
(ν-equivalence classes of) all ν-measurable functions ϕ : [0, 1]→ R; moreover, let Xν be the space
X endowed with the topology of convergence in measure ν and Xν,a.e be the space X endowed with
ν-almost everywhere convergence (sequences from X). For a sequence ϕn ∈ X, n = 1, 2, . . . ,
we write:

SRν[(ϕn)n∈N] := SR[(ϕn)n∈N]; Xν],

and
SRν,a.e[(ϕn)n∈N] := SR[(ϕn)n∈N]; Xν,a.e] .

The following statements are valid.

(I) (Theorem 1, [71]) (see Theorem 7) If for a sequence ψn ∈ X, n = 1, 2, . . . ,

(a) The series corresponding to the sequence (ψ2
n)n∈N converges in R ν-almost everywhere,

and
(b) Some subsequence of the sequence ∑n

k=1 ψk ∈ X, n = 1, 2, . . . converges ν-almost
everywhere to a function ϕ ∈ X,

then ϕ ∈ SRν,a.e[(ψn)n∈N].
(II) (Theorem 2, [71]) If for a sequence ϕn ∈ X, n = 1, 2, . . . , the series corresponding to the

sequence (ϕ2
n)n∈N converges in R ν-almost everywhere, then

(IIa) (Theorem 2, [71]) SRν,a.e[(ϕn)n∈N] is an affine subset of X, which is closed in Xν.
(IIb) SRν,a.e[(ϕn)n∈N] = SRν[(ϕn)n∈N].
(IIc) SRν[(ϕn)n∈N] is a closed affine subset of Xν.
(III) Ref. [70] There exists a sequence ϕn ∈ X, n = 1, 2, . . . , such that the series corresponding

to the sequence (|ϕn|2+ε)n∈N converges in R ν-almost everywhere for every ε > 0, and
SRν,a.e[(ϕn)n∈N] is not an affine subset of X.

Comments on the Proof. (I Ib) The inclusion SRν,a.e[(ϕn)n∈N] ⊂ SRν[(ϕn)n∈N] is true be-
cause the convergence of sequences ν-almost everywhere implies the convergence in measure.

The proof of the inclusion SRν[(ϕn)n∈N] ⊂ SRν,a.e[(ϕn)n∈N] is more delicate. So, we fix
ϕ ∈ SRν[(ϕn)n∈N] and take a permutation σ : N → N for which the series corresponding
to the sequence (ϕσ(n))n∈N converges in measure to ϕ. Then, it is easy to see that the
assumptions (a) and (b) of (I) are satisfied for the sequence ψn := ϕσ(n), n = 1, 2, . . . , and
from (I), we conclude that

ϕ ∈ SRν,a.e[(ψn)n∈N] = SRν,a.e[(ϕn)n∈N] .

(I Ic) follows from (I Ib) and (I Ia).
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As noted in [70], Theorem 21(III) answers negatively, in particular, a question which
(according to [72]) was posed by Banach. The following assertion shows that in Kadets’
Theorem 16 the condition (KCp) is in a sense the best possible one also when 1 < p < 2.

Theorem 22 (Kornilov, see Theorem 1, [73]). Let 1 ≤ p ≤ 2, (T, Σ, ν) be [0, 1] endowed with
the sigma-algebra Σ of Lebesgue-measurable sets and the Lebesgue measure ν,
X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
and let ω :]0, ∞[→]0, ∞[ be a function, such that

lim
t→0

ω(t) = 0 .

Then, there exists a sequence ϕn ∈ X, n = 1, 2, . . . , such that

(1) ∑∞
n=1 ‖ϕn‖p

pω(‖ϕn‖p) < ∞,
(2) 0 ∈ SR[(ϕn)n∈N; X] and 1 ∈ SR[(ϕn)n∈N; X],

but
(3) λ ∈]0, 1[ =⇒ λ �∈ SR[(ϕn)n∈N; X].

In 1973, the following variant of Theorem 16 was announced, which can be considered
the first infinite-dimensional version of Steinitz’s Theorem 12(I2):

Theorem 23. Let 1 < p < ∞, (T, Σ, ν) be [0, 1] endowed with the σ-algebra Σ of Lebesgue-
measurable sets, and the Lebesgue measure ν and X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
. Let, moreover,

x = (xn)n∈N be a sequence in X, which satisfies the condition (KCp).
Then, the following statements are valid.

(I) (Pecherskii, (Theorem 1, [74])) The equality

StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.
(II) Pecherskii, (Theorem 3, [74]))

∀x∗ ∈ X∗ \ {0} SR[(x∗(xn))n∈N;R] = R =⇒ SR[(xn)n∈N; X] = X .

We note that Theorem 23(II), in the case when p = 2, is included with a complete proof
in (Appendix, Section 6, Theorem 1 (pp. 352–357), [75]).

The first essential improvement of Theorem 16 in case 1 < p < 2 was the following result.

Theorem 24 (Nikishin, Theorem 1, [76]). Let 1 ≤ p < 2, (T, Σ, ν) be [0, 1] endowed
with the sigma-algebra Σ of Lebesgue-measurable sets and the Lebesgue measure ν, and
X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
. Moreover, let x = (xn)n∈N be a sequence in X that satisfies the

following condition.
(NikCp), the series corresponding to the sequence (|xn(t)|2)n∈N, converges inR for Lebesgue’s

almost every t ∈ [0, 1] and (
∞

∑
n=1

|xn|2
) 1

2

∈ X .

Then, for the sequence x = (xn)n∈N, the sum range

SR[(xn)n∈N; X]

is a closed affine subset of X.

In 1977, the following modification Theorem 23 appeared, which takes into account
Nikishin’s Theorem 24 too.

Theorem 25. Let 1 ≤ p < ∞, (T, Σ, ν) be [0, 1] endowed with the σ-algebra Σ of Lebesgue-
measurable sets and the Lebesgue measure ν and X =

(
Lp(T, Σ, ν;R), ‖ · ‖p

)
. Moreover, let
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x = (xn)n∈N be a sequence in X for which (NikCp) is satisfied when 1 ≤ p < 2, and (KC2) is
satisfied, when 2 ≤ p < ∞. The following statements are true.

(I) (Theorem 1, [77]) The equality

StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.
(II) (Corollary 1, [77]) If

SR[(x∗(xn))n∈N;R] = R ∀x∗ ∈ X∗ \ {0},

then the equality
SR[(xn)n∈N; X] = X

holds too.

The following result is applicable to the non-separable Banach space (l∞, ‖ · ‖∞) of all
bounded real sequences.

Theorem 26 (Barany, Theorems 2 and 3, [78]). Let 1 ≤ p ≤ ∞, c(j) := 23j
,

j = 1, 2, . . . , and X =
(
lp, ‖ · ‖p

)
. Moreover, let xn : N → R, n = 1, 2, . . . be a sequence

in X such that c · xn ∈ X, n = 1, 2, . . . .
Assume further that either
(BaCo∞) p = ∞, and lim supn ‖c · xn‖∞ = 0,
or
(BaCop) 1 ≤ p < ∞, and ∑∞

n=1 ‖c · xn‖p
p < ∞.

Then, for the sequence (xn)n∈N, the sum range,

SR[(xn)n∈N; X]

is a closed affine subset of X.

The result is new when p = ∞. In the case when 1 ≤ p ≤ 2, it is a consequence of
Kadets’ Theorem 16, while in the case when 2 < p < ∞, it is independent from this theorem.

From Theorem 26, unlike the previous results in the present section, it is possible to
derive the following corollary.

Corollary 1 (see Proposition 5). Let (tn)n∈N be a sequence of real numbers. Then, the sum range

SR[(tn)n∈N;R]

can be either empty, a singleton, or R.

Proof. If lim supn |tn| > 0, then clearly SR[(tn)n∈N;R] = ∅. So, let lim supn |tn| = 0.
Consider the sequence xn := tne1 ∈ l∞, n = 1, 2, . . . , where e1 = (1, 0, 0, . . . , 0, . . . ). Clearly,
c · xn = c1tne1, n = 1, 2, . . . , and so, lim supn ‖c · xn‖∞ = c1 lim supn |tn| = 0. Hence,
(BaCo∞) is satisfied for our sequence (xn)n∈N, and then by Theorem 26, SR[(xn)n∈N; X] is
a closed affine subset of X. Clearly,

SR[(xn)n∈N; X] = SR[(tne1)n∈N; X] ⊂ R · e1 = {te1 : t ∈ R} .

From this relation, we conclude that

SR[(tn)n∈N;R]

is a closed affine subset of R.

Of course, it would be interesting to find other sequences c(j), j = 1, 2, . . . for which
Theorem 26 will remain true.
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The first generalizations of Nikishin’s Theorem 24 appeared in [79,80]. To formulate
them, we recall the needed definitions.

For a natural number n, the Rademacher function rn : [0, 1]→ {−1, 1} is defined by
the equality

rn(t) = (−1)[2
nt], t ∈ [0, 1],

where [x] stands for the integer part of x ∈ R.
We say that a sequence x = (xn)n∈N in a Banach space X over R satisfies the (RSC)-

condition, if for Lebesgue’s almost every t ∈ [0, 1], the series corresponding to the sequence
(rn(t)xn)n∈N converges in X.

For a number q ∈ R, q ≥ 2, we say that a Banach space X over R is of cotype q, if for
every sequence x = (xn)n∈N in X satisfying the (RSC)-condition, the series corresponding
to the sequence (‖xn‖q)n∈N converges in R.

Theorem 27 (Theorems 8(a,b) and 9, [79]). Let X be a Banach space X over R and x = (xn)n∈N
a sequence in X, such that

SR[(xn)n∈N; X] �= ∅ .

If either

(I) X = Lp(T, Σ, ν;R), with 1 ≤ p ≤ 4 and with some σ-finite positive measure space (T, Σ, ν),
and for x = (xn)n∈N, the condition (NikCp) is satisfied,
or

(II) X is of cotype 2, and the sequence x = (xn)n∈N satisfies the (RSC)-condition,
then

(III) The equality
SR[(xn)n∈N; X] = StR[(xn)n∈N; X]

holds.

This theorem contains the promised first generalizations of Nikishin’s Theorem 24. At
the very end of [79], it was conjectured that ((I I) =⇒ (I I I)) in Theorem 27 should be true
for all Banach spaces. Soon, this conjecture was confirmed. See Theorem 30 below.

Theorem 28 (Particular cases of Theorems 1 and 2, [80]). Let 0 ≤ p < ∞, (T, Σ, ν) be some
σ-finite positive measure space, X = Lp(T, Σ, ν;R), and x = (xn)n∈N be a sequence in X.

(I) If for x = (xn)n∈N, the condition (NikCp) is satisfied, then the sum range

SR[(xn)n∈N; X]

is a closed affine subset of X.
(II) If 1 ≤ p < ∞, for x = (xn)n∈N, the condition (NikCp) is satisfied, and StR[(xn)n∈N; X] �= ∅,

then the equality
SR[(xn)n∈N; X] = s + ⊥Γx

holds for each s ∈ StR[(xn)n∈N; X].

This theorem contains the further generalizations of Nikishin’s Theorem 24. Theorem 28(I I)
also extends Theorem 25(I).

For a number r ∈ R, 1 < r ≤ 2, we say that a Banach space X over R is

• Of type r, if for every sequence x = (xn)n∈N in X, for which the series corresponding
to the sequence (‖xn‖r)n∈N converges in R, the (RSC)-condition is satisfied.

• Of infratype r, if there exists a positive finite constant C, such that for each natural
number n and elements xk ∈ X, k = 1, . . . , n, the inequality

‖
n

∑
k=1

θkxk‖ ≤ C

(
n

∑
k=1

‖xk‖r

) 1
r
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holds for some choice of ’signs’ θk ∈ {−1, 1}, k = 1, . . . , n.

In (Chapter 7, Section 1 (pp. 87–92) [5]), a machinery oriented to obtaining the following
result is developed.

Theorem 29 (Kadets–Ostrovskii [35,81] and Theorem 7.1.2 (p. 92), [5]). Let 1 < r ≤ 2, X be
a Banach space over R having the infratype r, and x = (xn)n∈N be a sequence in X for which

(a) SR[(xn)n∈N; X] �= ∅, and
(b) The sequence x = (xn)n∈N satisfies the condition:

(KCr) The series corresponding to the sequence (‖xn‖r)n∈N converges in R.
Then, the equality

SR((xn)n∈N) = s + ⊥Γx

holds for each s ∈ SR((xn)n∈N).

Theorem 29 covers Theorem 16 in the case when 1 ≤ p < ∞, as if X =
(

Lp([0, 1]), ‖ · ‖p
)
,

then it is known that X is of type r = min(p, 2).

Theorem 30 (Announced in Theorem 3, [82], and proved in Theorem 5, [31]). Let X be the
Banach space R, and let x = (xn)n∈N be a sequence in X for which

(a) SR[(xn)n∈N; X] �= ∅, and
(b) The sequence x = (xn)n∈N satisfies the (RSC)-condition.

Then, the equality
StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.

This statement was the first general result valid for all Banach spaces. It does not cover
Theorem 26, when 2 < p ≤ ∞. However, it implies the following final improvement of
Nikishin’s Theorem 24.

Theorem 31 (Announced in Corollary 2, [82], and proved in Corollary 3, [31]). Let
X = Lp(T, Σ, ν;R), with 1 ≤ p < +∞ and with some σ-finite positive measure space (T, Σ, ν),
and let x = (xn)n∈N be a sequence in X for which

(a) SR[(xn)n∈N; X] �= ∅, and
(b) The series corresponding to the sequence (|xn(t)|2)n∈N converges in R for ν-almost every

t ∈ T, and (
∞

∑
n=1

|xn|2
) 1

2

∈ X .

Then, the equality
StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.

Comments on the Proof. This follows from Theorem 30 due to the following theorem by
Jorgen Hoffman-Jorgensen (1942-2017): (b) holds if and only if the sequence x = (xn)n∈N
satisfies the (RSC)-condition (Corollary 2(b) to Theorem 5.5.2 (pp. 323–324), [83]).

Remark 8. We fix r ∈]1, 2] and a Banach space X over R. Let us note:

(1) If X is of type r, then Theorem 29 follows from Theorem 30.
(2) If 1 < r < 2, and X is of infratype r, then X is of type r too [84]. From this and (1), we

conclude that if 1 < r < 2, and X is of infratype r, then again Theorem 29 follows from
Theorem 30.

(3) Ref. [85] showed the existence of X of infratype 2, which is not of type 2. Consequently, in the
case of p = 2, Theorem 29 does not follow from Theorem 30.
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To formulate an important generalization of Theorem 30, it would be convenient to
provide a definition.

We say that a sequence x = (xn)n∈N in the Banach space (or the topological vector
space) X over R satisfies the (PSC)-condition, if for every permutation σ : N → N, there
exists a sequence of ’signs’ θn ∈ {1,−1}, n = 1, 2, . . . , such that the series corresponding to
the sequence (θnxσ(n))n∈N converges in X.

Theorem 32. Let X be a Banach space over R and x = (xn)n∈N be a sequence in X, which satisfies
the (PSC)-condition.

Then,

(I) (Theorem 1, [86]) The equality

StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.
(II) (Corollary 2, [86]) The equality

SR[(xn)n∈N; X] = X

holds, if and only if

SR[(x∗(xn))n∈N;R] = R ∀x∗ ∈ X∗ \ {0} . (15)

In particular, if (15) is satisfied, then SR[(xn)n∈N; X] �= ∅.

Theorem 32(I) implies Theorem 30 because, as proved in (Proposition 1, [86]) in a
somewhat sophisticated way, the (RSC)-condition implies the (PSC)-condition. Note also
that Theorem 32 would imply Theorem 29 in the case when p = 2 too, if the following
conjecture is true.

Conjecture 1 (Infratype 2 conjecture; see Conjecture (p. 92), [5]). Let X be a Banach space of
infratype 2. Then, for every sequence x = (xn)n∈N in X for which the series corresponding to the
sequence (‖xn‖2)n∈N converges in R, there exists a sequence of ’signs’ θn ∈ {1,−1}, n = 1, 2, . . . ,
such that the series corresponding to the sequence (θnxn)n∈N converges in X.

The following, weaker version, of Theorem 32(I) was announced (independently
of [86]) in [87] and is included in [5] as “Pecherskii’s theorem”.

Theorem 33 (Announced in Theorem 4, [87], and proved in Theorem 2.3.1, [5]). Let X be a
Banach space over R and x = (xn)n∈N be a sequence in X for which

(a) SR[(xn)n∈N; X] �= ∅, and
(b) The sequence x = (xn)n∈N satisfies the (PSC)-condition.

Then, the equality
StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.

In (p. 23, [5]), the following observation is included after the formulation of Theorem 33:

(1) “This assertion provides the most general of the known sufficient conditions for
linearity of the sum range of a series in an infinite-dimensional space”.

(2) “In the finite-dimensional case Theorem 2.3.1 is identical to Steinitz’s theorem. . . ”

(1) This is not completely true, as above, we state here too: Theorem 33 would imply
Theorem 29 in the case when p = 2, if the infratype 2 conjecture were true.

(2) This is true due to the following result.
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Theorem 34 (Dvoretzky–Hanani theorem, [19] in the case when dim(X) = 2 and Theo-
rem 2.2.1 (p. 22), [5], in general). Let X be a finite-dimensional normed space over R and
x = (xn)n∈N be a sequence in X, which converges to zero in X. Then, there exists a sequence of
’signs’ θn ∈ {1,−1}, n = 1, 2, . . . , such that the series corresponding to the sequence (θnxn)n∈N
converges in X.

We note that this result is presented on p. 24 of the Russian edition of [44] as
Exercise 1.3.7; then, on p. 28 after Exercise 2.1.2, it is noted that it is equivalent to the
following theorem.

Theorem 35 ( [19] in the case when dim(X) = 2 and Lemma 2.2.1 (p. 21), [5], in general; see
also [59]). There exists a sequence Dm, m = 1, 2, . . . of strictly positive constants, with D1 = 1
and with Dm ≤ 2m− 1, m = 2, 3, . . . , for which the following statement is true.

Let X be a finite-dimensional vector space over R with dim(X) = m ≥ 1, and let ‖ · ‖ be a
norm on X. Then, for a natural number n > 1 and for elements xj ∈ X, j = 1, . . . , n, there exist
’signs’ θj ∈ {−1, 1}, j = 1, . . . , n, such that

‖
k

∑
j=1

θjxj‖ ≤ Dm max
j∈Nn

‖xj‖, k = 1, 2, . . . , n . (16)

The following version of Theorem 35 (without proof and with a reference to [88]) was
formulated as Lemma 10 in [49].

There exists a sequence Dm, m = 1, 2, . . . of strictly positive constants for which the following
statement is true.

If X = Rm with m ∈ N and with the maximum norm ‖ · ‖ on X, then for a bounded sequence
of elements xj ∈ X, j = 1, 2, . . . , there exist ’signs’ θj ∈ {−1, 1}, j = 1, 2, . . . , such that

‖
k

∑
j=1

θjxj‖ ≤ Dm sup
j∈N

‖xj‖, k = 1, 2, . . . . (17)

However, in [88] it is hard to find such a statement. It seems that in the case when m > 2,
the first proof of Theorem 35 is Grinberg’s proof, which appeared on pp. 178–179 of the
Russian edition of [44] as a solution to Exercise 2.1.2.

It is conjectured (as in the case of Theorem 13) that for Euclidean norms, the theorem
should hold with constants Dm, m = 1, 2, . . . for which the sequence Dm√

m , m = 1, 2, . . . is
bounded [59].

The following result covers some cases of metrizable topological vector spaces, which
may not be locally convex.

Theorem 36 (Giorgobiani). Let X be a metrizable topological vector space over R, and let
x = (xn)n∈N be a sequence in X, which satisfies the (PSC)-condition.

Assume further that
(GiCo) the topology of X can be generated by a translation invariant metric d, such that

inf
{

d(2x, 0)
d(x, 0)

: x ∈ X \ {0}
}

> 1 .

Then, the following statements are valid.

(a) (Theorem 1.2.1 (p. 34), [39]) SR[(xn)n∈N; X] = LPR[(xn)n∈N; X].
(b) (Announced in (Remark (p. 45), [87]), and proved in [89]; see also (Theorem 1.3.1 (p. 41), [39])

SR[(xn)n∈N; X] is a closed affine subset of X.

This theorem covers Theorem 28(I). Does Theorem 36 remain true for all metrizable
topological vector spaces? The answer is unknown yet. The following result covers the
general case of metrizable locally convex topological vector spaces.
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Theorem 37 (Maria-Jesus Chasco–Sergei Chobanyan). Let X be a metrizable locally convex
topological vector space over R and x = (xn)n∈N be a sequence in X, which satisfies the (PSC)-
condition. Then, the following statements are valid.

(a) (Theorem 2, [90]) SR[(xn)n∈N; X] = LPR[(xn)n∈N; X].
(b) (Announced in (Theorem 5 (p. 15), [91]), also in [92], and proved in (Theorem 3, [90]); see

also (Theorem 1.3.2 (p. 45), [39])
If SR[(xn)n∈N; X] �= ∅, then the equality

StR[(xn)n∈N; X] = SR[(xn)n∈N; X]

holds.

The following inequality plays a key role in the proof of Theorem 37.

Proposition 11 (Lemma 1, [90]). Let n ≥ 2 be a natural number, let X be a vector space over R,
‖ · ‖ be a seminorm on X, and ak ∈ X, k = 1, 2, . . . , n. Moreover, let

(1) π : Nn → Nn be an ’optimal’ permutation in the following sense: for any permutation
λ : Nn → Nn, the inequality

max
1≤k≤n

‖
k

∑
j=1

aπ(j)‖ ≤ max
1≤k≤n

‖
k

∑
j=1

aλ(j)‖

holds, and
(2) σ : Nn → Nn be the permutation associated with π as follows

σ(k) = π(n− k + 1), k = 1, 2, . . . , n

Then,

max
1≤k≤n

‖
k

∑
j=1

aπ(j)‖ ≤ ‖
n

∑
j=1

aj‖+ max
1≤k≤n

‖
k

∑
j=1

θjaσ(j)‖

for every choice of ’signs’ θj ∈ {1,−1}, j = 1, 2, . . . , n.

Theorem 37 would imply Banaszczyk’s Theorem 10, if the following conjecture is true.

Conjecture 2 ((p. 109), [6], and (p. 615), [90]). Let X be a complete metrizable nuclear locally
convex topological vector space over R and x = (xn)n∈N be a sequence in X, which converges to
zero in X. Then, there exists a sequence of ’signs’ θn ∈ {1,−1}, n = 1, 2, . . . , such that the series
corresponding to the sequence (θnxn)n∈N converges in X.

Conjecture 2 is true when X is finite dimensional by Theorem 34, when X = RN

(Theorem 2, [49]), and for some other nuclear spaces [93]. The following result, related to
this conjecture, is true.

Theorem 38 (Wojciech Banaszczyk, [94]; announced in (Remark 10.15 (pp. 106–107), [6])).
For a complete metrizable locally convex topological vector space X over R, the following statements
are equivalent:

(i) X is nuclear.
(ii) For every sequence x = (xn)n∈N of elements of X, which converges to zero in X, there exists

a sequence of ’signs’ θn ∈ {1,−1}, n = 1, 2, . . . and a permutation σ : N → N, such that
the series corresponding to the sequence (θnxσ(n))n∈N converges in X.

After [90], a remarkable paper by Bonet and Defant [95] and a paper by Sofi [96] ap-
peared. The first one deals with Banaszczyk’s type rearrangement theorems for (not
necessarily metrizable) nuclear locally convex spaces. The second one contains Chasco–
Chobanyan-type results imposing conditions on series different from the (PSC)-condition.
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5. Additional Comments

During our expositions, we have indicated several problems, which would be interest-
ing to solve. In connection with Chasco–Chobanyan’s theorem, it would be interesting to
answer also the following questions.

Question 4. Is Theorem 37(b) true without the assumption that SR[(xn)n∈N; X] �= ∅?

Question 5. Let X be as in Theorem 37 and x = (xn)n∈N and y = (yn)n∈N be two sequences in
X, which satisfy the (PSC)-condition. Does their sum (xn + yn)n∈N satisfy the (PSC)-condition?
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1. Introduction

In 1827, Peter Lejeune-Dirichlet was the first to notice that it is possible to rearrange the
terms of certain convergent series of real numbers so that the sum changes [1]. According
to [2] (Ch. 2, §2.4), In 1833, Augustin-Louis Cauchy also noticed this in his “Resumes
analytiques”.

Later, in 1837, Dirichlet showed that this cannot happen if the series converges abso-
lutely: if a series formed by absolute values of a term of series of real numbers converges,
then the series itself converges and every rearrangement also converges to the same sum.
A series in which every rearrangement converges is called unconditionally convergent. Let
us define the sum range of series as the set of all sums of all its convergent rearrangements.

It is not clear in advance that an unconditionally convergent series of real numbers is
also absolutely convergent, and hence its sum range is a singleton. This is in fact true thanks
to the following Riemann rearrangement theorem: if a convergent series of real numbers is

not absolutely convergent, then some rearrangement is not convergent, and its sum range
is the set of all real numbers.

These results depend heavily on the structure of the set of real numbers. However,
the concepts of unconditional convergence and sum range make sense even in general
topologized semigroups. An abelian version of the statement in the abstract appears in
(unpublished) [3]. A non-abelian version for topological groups appears in [4].

Section 2 focuses on ‘finite series’ and Section 3 treats the general case. Section 4
contains additional comments.

2. Algebraic Part

We write N for the set {1, 2, . . . } of natural numbers with its usual order and

Nn := {k ∈ N : k ≤ n}, n = 1, 2, . . .

A non-empty set, X, endowed with a binary operation + : X × X → X is called a
groupoid or a magma. For a groupoid, (X,+) , the value of + at (x1, x2) ∈ X × X will be
denoted as x1 + x2.

Axioms 2021, 10, 237. https://doi.org/10.3390/axioms10040237 https://www.mdpi.com/journal/axioms201
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For a finite non-empty I ⊂ N and a family (xi)i∈I of elements of a groupoid (X,+),
following Bourbaki, we define the (ordered) sum

∑
i∈I

xi ∈ X (OS)

inductively as follows:
(1) If I consists of a single element, I = {j}, then ∑i∈I xi = xj;
(2) If I has more than one element, j is the least element of I and I′ = I \ {j}, then

∑
i∈I

xi = xj +

(
∑
i∈I′

xi

)
.

Note that:
If I consists of two elements, then ∑i∈I xi = xj + xk, where j is the least element of I

and k is the last element of I;
If I consists of three elements, then ∑i∈I xi = xj + (xm + xk), where again, j is the least

element of I, k is the last element of I and j < m < k.
If I = Nn, then instead of ∑i∈I xi we write also ∑n

i=1 xi.
A groupoid, (X,+), is a semigroup if its binary operation + is associative, i.e., for every

(x1, x2, x3) ∈ X × X × X we have x1 + (x2 + x3) = (x1 + x2) + x3.
For a finite non-empty I ⊂ N and a family (xi)i∈I of elements of a semigroup (X,+)

the above given definition of (OS) can be reformulated as follows:
(1r) if I consists of a single element, I = {k}, then ∑i∈I xi = xk,
(2r) if I has more than one element, k is the last element of I and I′ = I \ {k}, then

∑
i∈I

xi =

(
∑
i∈I′

xi

)
+ xk .

For a set I a bijection σ : I → I called a permutation of I; the set of all permutations of
I is denoted by S(I).

For a finite non-empty I ⊂ N and a family (xi)i∈I of elements of a groupoid (X,+),we
define its sum range

SR((xi)i∈I)

as follows:
SR((xi)i∈I) := {s ∈ X : ∃σ ∈ S(I), s = ∑

i∈I
xσ(i)} .

In a case where the multiplicative notation · is applied for the binary operation, it would be
natural to use the word ‘product’ instead of ‘sum’; ‘ordered product’ (OP) instead of ‘ordered sum’
(OS); ‘product range’ (PR) instead ‘sum range’ (SR) and ∏ instead of ∑.

Two elements, x1 and x2, of a groupoid, (X,+), are said to commute (or to be per-
mutable) if x1 + x2 = x2 + x1; i.e., if SR

(
(xi)i∈N2

)
is a singleton.

A family (xi)i∈I of elements of a groupoid (X,+) is commuting if for each i ∈ I and
j ∈ I, the elements xi and xj commute.

An element a of a groupoid (X,+) is left cancellable if the left translation mapping
x �→ a + x is injective; right cancellable is defined similarly. An element is cancellable if it is
both left and right cancellable.

Theorem 1 (Commutativity theorem). For a finite non-empty I ⊂ N and a family (xi)i∈I of
elements of a semigroup (X,+) the following statements are true.

(a) If (xi)i∈I is a commuting family, then SR((xi)i∈I) is a singleton.
(b) If SR((xi)i∈I) is a singleton and either Card(I) ≤ 2 or for every i ∈ I the element xi is

right (resp. left) cancellable, then (xi)i∈I is a commuting family.

Proof. (a) See [5] [Ch.1, §1.5, Theorem 2 (p. 9)].
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(b) For the case Card(I) ≤ 2 the statement is evident. Now, let n = Card(I) > 2 and
for every i ∈ I the element xi is right cancellable. Fix i, j ∈ I, i �= j, write I′′ = I \ {i, j}.
Also write I = {k1, k2, . . . , kn}, where k1 < k2 < · · · < kn. Moreover, consider permu-
tations σ and π of I such that σ(k1) = i, σ(k2) = j, σ({k3, . . . , kn}) = I′′ and π(k1) = j,
π(k2) = i, π({k3, . . . , kn}) = I′′. As SR((xi)i∈I) is a singleton, we can write:

xi + xj +

(
∑

r∈I′′
xr

)
= ∑

i∈I
xσ(i) = ∑

i∈I
xπ(i) = xj + xi +

(
∑

r∈I′′
xr

)
.

From this equality, as ∑r∈I′′ xr is right cancellable, we obtain xi + xj = xj + xi.
The case where Card(I) > 2 and for every i ∈ I the element xi is left cancellable is
considered similarly.

Our next claim is to find an analog of Theorem 1 when I = N.

3. Series

A (formal) series corresponding to a sequence x = (xn)n∈N of elements of a groupoid
(X,+) is the sequence (

∑
k∈Nn

xk

)
n∈N

. (S1)

The ‘multiplicative’ counterpart is: a (formal) infinite product corresponding to a sequence
x = (xn)n∈N of elements of a groupoid (X, ·) is the sequence(

∏
k∈Nn

xk

)
n∈N

. (P1)

We use the additive notation herein.
Let (X,+) be a groupoid and τ be a topology in X; such a triplet (X,+, τ) will be

called a topologized groupoid.
A topologized groupoid (X,+, τ) is a topological groupoid if its binary operation + is

continuous as mapping from (X × X, τ ⊗ τ) to (X, τ) (where τ ⊗ τ stands for the prod-
uct topology).

A series corresponding to a sequence x = (xn)n∈N of elements of a topologized
groupoid (X,+, τ) is said to be convergent in (X,+, τ) if the sequence (S1) converges to an
element s ∈ X in the topology τ; in such a case, we write

s =
∞

∑
k=1

xk

and call s a sum of the series.
To a sequence x = (xn)n∈N of elements of a topologized groupoid (X,+, τ), we

associate a subset P(x) of S(N) as follows: a permutation π : N → N belongs to P(x) if
and only if the series corresponding to (xπ(n))n∈N is convergent in (X,+, τ) and define the
sum range of the series corresponding to x = (xn)n∈N

SR(x)

as follows (cf. [6] (Definition 2.1.1)):

SR(x) := {t ∈ X : ∃π ∈ P(x), t =
∞

∑
k=1

xπ(k)} .

It may happen that for a sequence x = (xn)n∈N the set P(x) is empty; in which case,
SR(x) = ∅ as well.
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The series corresponding to x = (xn)n∈N is called unconditionally convergent (Bourbaki
says commutatively convergent [7]) in (X,+, τ) if

P(x) = S(N) ;

i.e., if for every permutation σ : N→ N the series corresponding to xσ = (xσ(n))n∈N is convergent
in (X,+, τ).

We proceed to our main result, extending to topologized semigroups the results for
topological groups in [4] (Theorem 2 and Theorem 1).

Theorem 2 (Commutativity Theorem 2). For a sequence x = (xn)n∈N of elements of a Hausdorff
topologized semigroup (X,+, τ), the following statements are true.

(a′) If the series corresponding to x is convergent in (X,+, τ), x is a commuting family and
SR(x) is not a singleton, then there is a permutation λ : N→ N such that the series corresponding
to xλ = (xλ(n))n∈N is not convergent in (X,+, τ).

(a) If the series corresponding to x is unconditionally convergent in (X,+, τ) and x =
(xn)n∈N is a commuting family, then SR(x) is a singleton.

(b) If SR(x) is a singleton, (X,+) is a group and for every n ∈ N the left translation
determined by xn is sequentially continuous, then x = (xn)n∈N is a commuting family.

Proof. (a′).
To prove (a′), denote by s the limit in (X,+, τ) of the sequence (S1), i.e.,

(τ) lim
n ∑

k∈Nn

xk = s . (1)

Since SR(x) is not a singleton, there is t ∈ SR(x) such that t �= s. Hence, there
is a permutation π : N → N such that the series corresponding to xπ = (xπ(n))n∈N is
convergent to t in (X,+, τ), i.e.,

(τ) lim
n ∑

k∈Nn

xπ(k) = t . (2)

Construction of a permutation λ : N→ N.
Find and fix a strictly increasing sequence of natural numbers (mk)k∈N such that

1 = m1, Nm2k−1
⊂ π(Nm2k

) ⊂ Nm2k+1
, k = 1, 2, . . . (3)

Now, define a mapping λ : N→ N as follows:

λ(1) = 1; λ(Nm2k
\Nm2k−1

) = π(Nm2k
) \Nm2k−1

;

λ(Nm2k+1
\Nm2k

) = Nm2k+1
\ π(Nm2k

), k = 1, 2, . . . (4)

It is easy to see that λ ∈ S(N).
From (3) and (4), we can conclude that

λ(Nm2k+1
) = Nm2k+1

, k = 1, 2, . . . (5)

and
λ(Nm2k

) = π(Nm2k
) , k = 1, 2, . . . (6)

From (5) and (6) together with Theorem 1(a) (which is applicable because x = (xn)n∈N
is a commuting family), we conclude that the following relations are true:

m2k+1

∑
i=1

xλ(i) =

m2k+1

∑
i=1

xi, k = 1, 2, . . . (7)
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and
m2k

∑
i=1

xλ(i) =

m2k

∑
i=1

xπ(i), k = 2, 3, . . . (8)

The equality (7) implies:

lim
k

m2k+1

∑
i=1

xλ(i) = s , (9)

while the equality (8) implies:

lim
k

m2k

∑
i=1

xλ(i) = t . (10)

From (9) and (10), since t �= s and τ is a Hausdorff topology, we conclude that
(∑n

i=1 xλ(i))n∈N is not a convergent sequence. Therefore, we found a permutation λ : N→ N
such that the series corresponding to xλ = (xλ(n))n∈N is not convergent in (X,+, τ) and
(a′) is proved.

(a) follows from (a′).
(b) In view of Theorem 1(b), it is sufficient to show that for a fixed natural number

n > 1 we find that SR((xi)i∈Nn) is a singleton.
We can suppose without loss of generality that the series corresponding to x is con-

vergent in (X,+, τ) to s ∈ X. This implies:

lim
m>n

⎛⎝ ∑
i∈Nn

xi + ∑
i∈Nm\Nn

xi

⎞⎠ = s .

From this, since the left translations are continuous, we obtain:

lim
m>n ∑

i∈Nm\Nn

xi = − ∑
i∈Nn

xi + s .

Now, fix an arbitrary permutation π : N→ N such that π(k) = k, k = n + 1, n + 2, . . .
From the above equality, since the left translations are continuous, we can now write

lim
m>n

⎛⎝ ∑
i∈Nn

xπ(i) + ∑
i∈Nm\Nn

xi

⎞⎠ = ∑
i∈Nn

xπ(i) + (− ∑
i∈Nn

xi + s) .

Hence, since SR(x) is a singleton, we conclude:

∑
i∈Nn

xπ(i) + (− ∑
i∈Nn

xi + s) = s .

Therefore,
∑

i∈Nn

xπ(i) = ∑
i∈Nn

xi

and, as π is arbitrary, we prove that SR((xi)i∈Nn) is a singleton.

Remark 1. Theorem 2(a) for a Banach space was first proved in [8], where the term “B-space”
was used and it was also noticed that this term is credited to M. Frechet. In [9], where the
term ‘Banach space’ is already used, one finds a nice discussion of equivalent characterizations of
unconditional convergence.
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4. Additional Comments

4.1. On Theorem 2

The statement (b) of Theorem 2 is not a complete converse of statement (a) of
Theorem 2; in the case of Hausdorff topological groups, such a complete converse can be
formulated as follows:

If for a sequence x = (xn)n∈N of elements of a Hausdorff topological group X the set SR(x)
is a singleton, then the series corresponding to x is unconditionally convergent in X and
x = (xn)n∈N is a commuting family.

Let us say that a Hausdorff topological group X has property (HM) if whenever for a
sequence x = (xn)n∈N the set SR(x) is a singleton, then the series corresponding to x is
unconditionally convergent in X.

The Riemann rearrangement theorem implies that X = R has property (HM). In [10], it was
shown that if X is an infinite-dimensional Hilbert space, then X does not have property
(HM); a similar result was obtained in [11] for infinite-dimensional Banach spaces. From
the general result of [12], we conclude that the finite-dimensional real normed spaces, as
well as the countable product of real lines RN, have property (HM).

4.2. On Sum Ranges

A subset A of a topological group X is a sum range if a sequence x = (xn)n∈N of
elements of X exists such that A = SR(x). Known results and the history of the study of
the structure of sum ranges in Banach spaces are found in [6]; see also, [12–18].

A subset A of a real vector space X is called affine if

x1 ∈ A, x2 ∈ A, t ∈ R, =⇒ tx1 + (1− t)x2 ∈ A .

It is known that:

• A subset of a finite-dimensional real Banach space is a sum range if and only if it is
affine (Steinitz’s theorem, see [6]);

• A subset of a real nuclear Frechet space is a sum range if and only if it is closed and
affine [13];

• Every closed affine subset of a separable real Frechet space can be a sum range (cf. [19],
where the following question is left open: is every separable infinite-dimensional complete
metrizable real topological vector space a sum range?);

• An arbitrary finite subset of an infinite-dimensional Banach space can be a sum range [20];
• A non-analytic subset of an infinite-dimensional separable Banach space cannot be a

sum range [21];
• A non-closed subset of an infinite-dimensional separable Banach space can be a sum

range (see [6,22]; however, it is unknown whether a non-closed vector subspace of an
infinite-dimensional separable Banach space can be a sum range [16]) .

Finally, note that it would be interesting to:
(1) Investigate, in connection with Theorem 2(a), the question of how rich the sum

range SR(x) can be for a non-commuting sequence x = (xn)n∈N, the series corresponding
to which is unconditionally convergent; may happen that SR(x) = X?

(2) Find a “semigroup version” of Theorem 2(b).
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1. Introduction

Fubini’s theorem and Brunn–Minkowski’s inequality are two cornerstones of analyti-
cal methods in convex geometry with important applications to probability theory, partial
differential equations and combinatorics. The present paper is an expository note on the
subject based on a master class given by the second author at the University of Vigo some
years ago. The aim of including it in this volume is to commemorate her teaching trajectory.
We have tried to maintain the original exposition, other than removing some very easy
facts from the original lecture. In this introduction, we intend to show that the subject is
still interesting and to provide the reader with some useful references in order to explore
the evolution of the subject until the present time.

The paper starts by recalling Fubini’s theorem. After that, we give a detailed proof
of Brunn–Minkowski’s inequality and, as a corollary of it, the classical isoperimetric
inequality which states that, among bodies of a given volume in Rn, the Euclidean balls
have the least surface area. This result appears to have been known in ancient times for
two dimensions. By the end of the last century, there were a number of proofs which
worked arbitrarily in many dimensions. It is interesting to remark that the formulation
of the reverse isoperimetric problem needs some care because even convex bodies can
have a large surface area and a small volume [1]. A big part of the classical Brunn–
Minkowski theory is concerned with establishing generalizations and analogues of the
Brunn–Minkowski inequality for other geometric invariants. See the excellent survey article
of Gardner [2] and the book of Schneider [3], which contains a comprehensive account of
different aspects and consequences of Brunn–Minkowski inequality. More recent papers
about Brunn–Minkowski-type inequalities include [4–7].

The second part of this paper is devoted to applying Fubini’s theorem and Brunn–
Minkowski’s inequality to obtain estimations of volumes of sections of balls in Rn. The
study of the geometry of convex bodies based on information about sections and projections

Axioms 2021, 10, 225. https://doi.org/10.3390/axioms10030225 https://www.mdpi.com/journal/axioms208
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of the bodies has important applications in many areas of science. The Fourier analytic
approach to sections of convex bodies is based on certain formulas expressing the volume
of sections in terms of the Fourier transform of powers of the Minkowski functional of
a body. This approach was extended to obtain volumes of projections of convex bodies
obtaining counterparts of the results of sections (see [8,9]).

In the study of convex bodies from a geometric and analytic point of view, some other
basic questions appeared. One is about the distribution of the volume of high-dimensional
convex bodies [10]. Moreover, in [11] the authors established the log-concavity of the
volume of central sections of dilations of the cross-polytope Bn

1 . Another remarkable paper
on the subject is [12], where the maximal and minimal volume of non-central sections of
the cross-polytope are obtained. There are also very recent, interesting results concerning
sections of other convex bodies, such as the cube (see [13]).

2. Preliminaries

We recall in this section the concepts and notations used in the rest of the article.
We will not go into great detail because they are elementary and can be found in any
introductory book on Functional Analysis or Measure Theory (see for instance [14]).

If ‖‖ is a fixed norm in Rn, the set B = {x ∈ Rn : ‖x‖ ≤ 1} is called the unit
ball. The dual space of Rn is the space of continuous linear forms endowed with the norm
‖ f ‖ = sup‖x‖≤1 | f (x)| and can be identified with Rn. For a subset B of Rn,
‖x‖ = ‖x‖B := inf {λ > 0 : λ−1x ∈ B} denotes the Minkowski functional corresponding to
the set B. Whenever you have a convex body B in Rn, that is, B is a compact convex set with
non-empty interior and symmetric, its Minkowski functional ‖‖B defines a norm whose unit
ball is B.

The unit ball for the normed spaces (Rn, ‖‖p), where 1 ≤ p < ∞ and ‖x‖p =

(∑n
i=1 |xi|p)

1
p for all x ∈ Rn, will be denoted by Bn

p = {x ∈ Rn s.t ‖x‖p ≤ 1}. In par-
ticular, when p = 2, ‖‖2 is called the euclidean norm and it generates the euclidean topology
in Rn.

A measure space (X,M, μ) is a triple formed by any set X, a σ-algebra M defined on
its subsets and a measure μ defined on M. Members of M are called measurable sets.
A measure space is called sigma-finite if there exists a countable number {An n ∈ N} of
measurable sets in M such that X = ∪n∈N An and μ(An) < ∞ for any n ∈ N.

A map f between two measure spaces (X,M, μ) and (Y,N, ν) is called measurable if
f−1(B) ∈M ∀ B ∈ N. Given two such measure spaces you can canonically construct the
measure product space (X × Y,M⊗N, μ× ν). M⊗N is called the product σ-algebra of
M and N, and μ× ν the product measure of μ and ν.

We are especially interested in the case where X = Rn, M = Mn is the Lebesgue
σ-algebra in Rn and μ = mn is the Lebesgue measure on Mn (mn is the completion of the
product measure m× ...n times...×m, where m is the Lebesgue measure on R). This measure
space is σ-finite. Mn properly contains the Borel σ-algebra Bn (generated by the open sets
of the euclidean topology in X = Rn). Moreover, the Lebesgue measure is a Radon measure:
that is, all compact sets K have finite measures, and it is outer and inner regular (for every
Borel set, its measure is the infimum of the measures of the open sets containing it and for
every open set its measure is the maximum of the measures of the compact sets contained
in it, respectively). For a measurable set A, vol(A), volume of A, will be just mn(A).

Our measurable functions will be defined on (Rn,Mn, mn) and will take real values
in (R,M, m). By

∫
Rn f dmn ,we denote the Lebesgue integral of a measurable function

f . We say that f is integrable if
∫
Rn | f | dmn < ∞. The set of all integrable functions is a

normed space denoted by L1(Rn) and ‖ f ‖1 =
∫
Rn | f | dmn. In the same way that L1(Rn), it

can be defined as the normed space Lp(Rn) for 1 < p ∈ R taking ‖‖p as the norm defined

by ‖ f ‖p = (
∫
Rn | f |p dmn)

1
p . We recall here the Dominated Convergence Theorem, which will

be used later on: if { fn} is a sequence of measurable functions pointwisely convergent to a
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function f and there exists an integrable g such that | fn| ≤ g ∀ n ∈ N, then f is integrable
and the limit of the integrals of fn equals the integral of f .

In the computation of volumes it plays an important role in the Euler Γ-function, which
is defined this way:

Γ : R+ → R
x �→

∫ ∞
0 tx−1e−tdt,

with the following property and values:

Γ(x + 1) = xΓ(x) ∀x > 0, Γ(1) = 1, Γ
(

1
2

)
=
√

π.

We finish this section with the statement of Fubini’s theorem ([14], Theorem 8.8):

Theorem 1. Let (X,M, μ), (Y,N , ν) be σ-finite measure spaces. Let F : X × Y → R be an
M×N -measurable function. Let us consider the functions:

ϕ∗ : X −→ [0, ∞)
x −→

∫
Y |F(x, .)|dν

and
ψ∗ : Y −→ [0, ∞)

y −→
∫

X |F(., y)|dμ
, then:

1. ϕ∗ ∈ L1(X, μ)⇒ F ∈ L1(X ×Y, μ× ν).
2. ψ∗ ∈ L1(Y, ν)⇒ F ∈ L1(X ×Y, μ× ν).

If F ∈ L1(X ×Y, μ× ν), then:
3. There is E ⊂ X with μ(X \ E) = 0 such that F(x, .) ∈ L1(Y, ν) ∀x ∈ E and

ϕ : E −→ R
x −→

∫
Y F(x, .)dν

is in L1(E, μE).

4. There is G ⊂ Y with ν(Y \ G) = 0 such that F(., y) ∈ L1(X, μ) ∀y ∈ G and
ψ : G −→ R

y −→
∫

X F(., y)dμ
is in L1(G, νG).

Moreover, ∫
E

ϕdμE =
∫

X×Y
Fd(μ× ν) =

∫
G

ψdνG.

3. Brunn-Minkowski’s Inequality

Next, we are going to use Fubini’s theorem in the proof of Brunn–Minkowski inequal-
ity [15], which will be done by induction.

Theorem 2. If A, B are compact sets in Rn with n ≥ 1,
(1) ∀λ ∈ [0, 1], vol(λA + (1− λ)B) ≥ vol(A)λ · vol(B)1−λ

(2) vol(A + B) ≥ (vol(A)1/n + vol(B)1/n)n (Brunn−−Minkowski)

Proof. First step: (2) is consequence of (1).
In fact, taking

λ =
vol(A)1/n

vol(A)1/n + vol(B)1/n

and, considering the compact sets A′ = vol(A)−1/n · A, B′ = vol(B)−1/n · B, we have

vol(λA′ + (1− λ)B′) ≥ [vol(vol(A)−1/n A)]λ · [vol(vol(B)−1/nB)]1−λ

= [vol(A)−1 · vol(A)]λ[vol(B)−1 · vol(B)]1−λ = 1.

In other words:
vol(

A + B
vol(A)1/n + vol(B)1/n ) ≥ 1
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and then
vol(A + B) ≥ (vol(A)1/n + vol(B)1/n)n

Second step: (1) is a consequence of the following lemma

Lemma 1. Let f , g, ϕ : Rn → [0, ∞] be measurable functions, such that for some λ ∈ (0, 1)

ϕ(λr + (1− λ)s) ≥ f (r)λ · g(s)1−λ, ∀r, s ∈ Rn.

Then, ∫
Rn

ϕ(x)dmn(x) ≥ (
∫
Rn

f (x)dmn(x))λ(
∫
Rn

g(x)dmn(x))1−λ.

Indeed, taking
ϕ = 1λA+(1−λ)B, f = 1A, g = 1B

(1) is obtained.
Third step: it is enough to prove the lemma for ‖ f ‖∞ = ‖g‖∞ = 1.
In fact if the lemma holds for ‖ f ‖∞ = ‖g‖∞ = 1, it will also be true (by linearity of the

integral) for any pair of bounded functions f , g, just applying the lemma to

Φ =
ϕ

‖ f ‖λ
∞‖g‖1−λ

∞
, F =

f
‖ f ‖∞

and G =
g

‖g‖∞
.

Fourth step: proof of the lemma for ‖ f ‖∞ = ‖g‖∞ = 1, n = 1.
For 0 ≤ t < 1, whenever f (x) ≥ t, g(y) ≥ t, we will have

ϕ(λx + (1− λ)y) ≥ f (x)λ · g(y)1−λ ≥ t.

So,

{x ∈ R, ϕ(x) ≥ t} ⊃ λ{x ∈ R, f (x) ≥ t}+ (1− λ){x ∈ R, g(x) ≥ t}

Now, since for non-empty compact sets A, B of R, we have

{minA}+ B ⊂ A + B and A + {maxB} ⊂ A + B

⇒ m(A + B) ≥ m[({minA}+ B) ∪ (A + {maxB})]
= m({minA}+ B) + m(A + {maxB}) = m(B) + m(A),

by the regularity of Lebesgue’s measure inR, for the measurable sets A = λ{x ∈ R, f (x) ≥ t}
and B = (1− λ){x ∈ R, g(x) ≥ t} we have

m{x ∈ R, ϕ(x) ≥ t} ≥ λm{x ∈ R, f (x) ≥ t}+ (1− λ)m{x ∈ R, g(x) ≥ t}.

Integrating with respect to t in R+:

∫ ∞

0
m{x ∈ R, ϕ(x) ≥ t}dm(t)

≥ λ
∫ ∞

0
m{x ∈ R, f (x) ≥ t}dm(t) + (1− λ)

∫ ∞

0
m{x ∈ R, g(x) ≥ t}dm(t).

The first integral is

∫ ∞

0
(
∫
{x∈R:ϕ(x)≥t}

dm(x))dm(t) =
∫
R
(
∫ ϕ(x)

0
dm(t))dm(x) =

∫
R

ϕ(x)dm(x).
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In the same way, the second and third integrals are:∫
R

f (x)dm(x) and
∫
R

g(x)dm(x).

So:∫
R

ϕ(x)dm(x) ≥ λ
∫
R

f (x)dm(x) + (1− λ)
∫
R

g(x)dm(x)

≥ (
∫
R

f (x)dm(x))λ(
∫
R

g(x)dm(x))1−λ),

where the last inequality comes from

λa + (1− λ)b ≥ aλ · b1−λ, ∀ a, b > 0,

because ln(x) is concave.
Let n > 1 and suppose the result is proved for n− 1.
Take a fixed y ∈ R and define

ϕy : Rn−1 −→ [0, ∞)
t −→ ϕ(t, y).

Define fy, gy analogously.
If y0, y1 ∈ R are such that y = λy1 + (1− λ)y0, then ∀r, s ∈ Rn−1 we have:

ϕy(λr + (1− λ)s) = ϕ(λ(r, y1) + (1− λ)(s, y0))

≥ ( f (r, y1))
λ · (g(s, y0)

1−λ = ( fy1(r))
λ · (gy0(s))

1−λ.

So, if we apply the induction hypothesis to ϕy, fy1 , gy0 , we get∫
Rn−1

ϕydmn−1 ≥ (
∫
Rn−1

fy1 dmn−1)
λ · (

∫
Rn−1

gy0 dmn−1)
1−λ

and applying again the result for n = 1,

∫
Rn

ϕ dmn =
∫
R
(
∫
Rn−1

ϕydmn−1)dm(y)

≥ [
∫
R
(
∫
Rn−1

fy1 dmn−1)dm(y)]λ · [
∫
R
(
∫
Rn−1

gy0 dmn−1)dm(y)]1−λ

= (
∫
Rn

f dmn)
λ.(

∫
Rn

gdmn)
1−λ.

4. Isoperimetric Inequality

Brunn–Minkowski’s inequality allows us to easily obtain the isoperimetric inequality.

Theorem 3. Let C be a convex body in Rn with n ≥ 2, let ∂(C) its border and A(∂(C)) its surface
area or perimeter,

Bn
2 = {x ∈ Rn : ‖x‖2 ≤ 1} and Sn−1 = {x ∈ Rn : ‖x‖2 = 1}

A(∂(C)) ≥ (
vol(C)
vol(Bn

2 )
)

n−1
n A(Sn−1)

(Among all convex bodies with fixed area, the maximum volume is attained by the spheres).
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Proof. Although it is difficult to give a notion of the perimeter or surface area (area for
short) of a general compact, the convex ones are well approximated by polytopes and their
area can be defined by continuity. Thus, we obtain a notion of area which coincides, for
differentiable manifolds of class C1, with that corresponding to the canonical measure.

If such definition is accepted, the area is obtained from the volume by the intuitive
formula [16]:

A(∂(C)) = lim
t→0

vol(C + tBn
2 )− vol(C)
t

.

Using the Brunn–Minkowski’s inequality,

vol(C + tBn
2 ) ≥ (vol(C)

1
n + (t vol(Bn

2 )
1
n )n ≥ vol(C) + nt vol(Bn

2 )
1
n vol(C)

n−1
n + o(t)

and so

A(∂(C)) ≥ nvol(Bn
2 )

1
n vol(C)

n−1
n

= nvol(Bn
2 )vol(C)

n−1
n vol(Bn

2 )
1
n−1 = A(Sn−1)(

vol(C)
vol(Bn

2 )
)

n−1
n .

The volume of convex bodies is related to the geometrical properties of the corre-
sponding spaces. So its study is important in the local theory of Banach spaces [15]. Next,
we will try to show how Fubini’s theorem can be used in the estimation of volumes of
sections of balls. We will see two illustrative theorems.

5. Estimations of Volumes of Sections of Balls in Rn

In the sequel, a ball B will be a symmetric convex body in Rn.
If ‖‖B is the Minkowski’s functional associated with B, (Rn, ‖‖B) is a Banach space

whose unit ball is B. (Rn, ‖‖B) is a Hilbert space if and only if B is an ellipsoid.
If E is a k-dimensional subspace of (Rn, ‖‖B) and E⊥ is the orthogonal complement of

E, the section E ∩ B is the unit ball of the normed subspace E and the projection PE⊥(B) is
the unit ball of the quotient normed space Rn/E.

Theorem 4. [15](
n
k

)−1
vol(E ∩ B)vol(PE⊥(B)) ≤ vol(B) ≤ vol(E ∩ B)vol(PE⊥(B))

Proof. First step: vol(B) can be expressed as vol(B) =
∫

PE⊥ (B) vol((x + E) ∩ B)dmn−k(x). By

Fubini’s theorem,

vol(B) = mn(B) =
∫

E⊥
mk{y ∈ E : x + y ∈ B}dmn−k(x)

=
∫

E⊥
vol((x + E) ∩ B)dmn−k(x) =

∫
PE⊥ (B)

vol((x + E) ∩ B)dmn−k(x),

because if x /∈ PE⊥(B), (x + E) ∩ B = ∅.
Second step: We obtain the inequality on the right vol(B) ≤ vol(E ∩ B)vol(PE⊥(B))

E ∩ B =
1
2
[((x + E) ∩ B) + ((−x + E) ∩ B)]

and
vol((x + E) ∩ B) = vol((−x + E) ∩ B)).
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Then applying Brunn–Minkowski’s inequality, it yields

vol(E ∩ B)
1
k ≥ 1

2
[vol((x + E) ∩ B)

1
k + vol((−x + E) ∩ B)

1
k ] = vol((x + E) ∩ B)

1
k

and hence, using First Step, we obtain vol(B) ≤ vol(E ∩ B)vol(PE⊥(B)).
Third step: We obtain the inequality on the left.

If x ∈ tPE⊥(B), 0 ≤ t ≤ 1, then x = tPE⊥(b) being b ∈ B and tb ∈ x + E.
By convexity tb + (1− t)(E ∩ B) ⊂ B, so tb + (1− t)(E ∩ B) ⊂ (x + E) ∩ B and, being

Lebesgue measure translation invariant

vol[(1− t)(E ∩ B)] ≤ vol((x + E) ∩ B)

hence
(1− t(x))kvol(E ∩ B) ≤ vol((x + E) ∩ B),

where t(x) represents the Minkowski functional of PE⊥(B). Finally,

vol(B) ≥ vol(E ∩ B)
∫

PE⊥ (B)
(1− t(x))kdmn−k(x)

= vol(E ∩ B)
∫

PE⊥ (B)
(
∫ 1

t(x)
k(1− t)k−1dt)dmn−k(x)

= vol(E ∩ B)
∫ 1

0
k(1− t)k−1(

∫
tPE⊥ (B)

dmn−k)(x)dt

= vol(E ∩ B)vol(PE⊥(B))
∫ 1

0
k(1− t)k−1tn−kdt

= vol(E ∩ B) · vol(PE⊥(B)) ·
(

n
k

)−1
.

The following lemma gives us an expression of the volumes of sections of balls in Rn.

Lemma 2. Let {u1, . . . , un−k} be an orthonormal basis of E⊥, ‖ · ‖ the norm associated with the
ball B and E(ε) = {x ∈ Rn : |〈x, uj〉| ≤ ε, 1 ≤ j ≤ n− k}.

Then,

Γ(1 +
k
p
)vol(E ∩ B) = lim

ε→0
(2ε)k−n

∫
E(ε)

e−‖x‖p
dmn(x), p > 0

Proof. First step.

vol(E ∩ B) ≥ (2ε)k−nvol(E(ε) ∩ B), ∀ε > 0

and
vol(E ∩ B) = lim

ε→0
(2ε)k−nvol(E(ε) ∩ B).

By Fubini’s theorem,

vol(E(ε) ∩ B) =
∫

E⊥
mk{y ∈ E : x + y ∈ E(ε) ∩ B}dmn−k(x)

=
∫

E⊥∩E(ε)
mk{y ∈ E : x + y ∈ B}dmn−k(x)

=
∫

PE⊥ (E(ε))
vol((x + E) ∩ B)dmn−k(x).
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Then, doing the change of variable x = εz,

(2ε)k−nvol(E(ε) ∩ B) = 2k−n
∫

PE⊥ (E(1))
vol((εz + E) ∩ B)dmn−k(z)

≤ 2k−nvol(E ∩ B)
∫

PE⊥ (E(1))
dmn−k(z) = vol(E ∩ B).

This last inequality allows us to apply the dominated convergence theorem and also
obtain that

lim
ε→0

(2ε)n−kvol(E(ε) ∩ B) = vol(E ∩ B)

Second step: Obtaining the result.

(2ε)k−n
∫

E(ε)
e−‖x‖p

dmn(x) = (2ε)k−n
∫

E(ε)
(
∫ +∞

‖x‖p
e−tdt)dmn(x)

= (2ε)k−n
∫ ∞

0
e−t(

∫
t

1
p B∩E(ε)

dmn(x))dt

= (2ε)k−n
∫ ∞

0
e−tvol(t

1
p B ∩ E(ε))dt

=
∫ ∞

0
(2εt

−1
p )k−ne−tt

k
p vol(B ∩ E(εt

−1
p ))dt

−→
ε→0

∫ ∞

0
vol(B ∩ E)t

k
p e−tdt = vol(B ∩ E)Γ(1 +

k
p
).

Remark 1. If E = Rn, we have Γ(1 + n
p )vol(B) =

∫
Rn e−‖x‖p

dmn(x), which for B = Bn
p allows

us to easily compute vol(Bn
p) because the integral

∫
Rn e−‖x‖p

p dmn(x) is transformed by Fubini’s
theorem into:

Πn
i=1

∫
R

e−|xi |p dxi = (2
∫ ∞

0
e−tp

dt)n = (2
∫ ∞

0
e−ss

1
p ds)n = (2Γ(1 +

1
p
))n

and so,

mn(Bn
p) =

(2Γ(1 + 1
p ))

n

Γ(1 + n
p ).

In particular,

mn(Bn
1 ) =

2n

n!

mn(B2k
2 ) =

πk

k!
and mn(B2k+1

2 ) =
πk

1/2(1 + 1/2) . . . (k + 1/2).

From the above lemma, we will obtain the next Theorem. In order to do that we need
two definitions:

Definition 1. Let
f : Rn −→ R

x −→ e−‖αpx‖p
p ,

where αp = 2Γ(1 + 1
p ). We define the measure μn

p as μn
p(A) =

∫
A f (x)dmn(x).

So defined, μn
p turns out to be a probability measure with density f (x) with respect to mn,

because precisely ∫
Rn

e−‖x‖p
p dmn(x) = αn

p.
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Definition 2. Let μ, ν be Radon positive measures on Rn. The measure μ is said to be finer than
the measure ν (μ ) ν), if for any ball B ⊂ Rn, μ(B) ≥ ν(B).

Theorem 5. [17] If 1 ≤ q ≤ p < ∞,
vol(Bn

p∩E)
vol(Bk

p)
≥ vol(Bn

q∩E)
vol(Bk

q).

Proof. Applying the former lemma to Bn
p, we have

vol(E ∩Bn
p) =

1
Γ(1 + k/p)

lim
ε→0

(2ε)k−n
∫

E(ε)
e−‖x‖p

p dmn(x).

Changing the variables x = αpz

vol(E ∩Bn
p) =

αk
p

Γ(1 + k/p)
lim
ε→0

(
2ε

αp
)k−n

∫
E( ε

αp )
e−‖αpz‖p

p dmn(z)

and calling η to ε
αp

vol(E ∩Bn
p) = vol(Bk

p) lim
η→0

(2η)k−nμn
p(E(η))

or equivalently
vol(E ∩Bn

p)

vol(Bk
p)

= lim
η→0

(2η)k−nμn
p(E(η))

and analogously
vol(E ∩Bn

q )

vol(Bk
q)

= lim
η→0

(2η)k−nμn
q (E(η)).

Let us see now that for p ≥ q, μ1
p ) μ1

q.

In fact, it is enough to see that g(x) =
∫ x

0 (e
−|αpt|p − e−|αqt|q)dt ≥ 0, ∀ x > 0 and this

is so because g(0) = 0, g(∞) = 1/2− 1/2 = 0, g′(x) vanishes in one single point and
moreover it is positive on a neighbourhood of 0.

Moreover, if μ1 ) ν1 and μ2 ) ν2 being μi, νi, i = 1, 2 Radon positive measures with
concave logarithm density with respect to msi in Rsi , for i = 1, 2, then μ1 × μ2 ) ν1 × ν2 in
Rs1+s2 [13].

Hence, if p ≥ q, μn
p ) μn

q .
Now, being E(η) symmetric convex with non-empty interior and the measures μn

p, μn
q

regular and satisfying μn
p ) μn

q , we have that μn
p(E(η)) ≥ μn

q (E(η)) and so

vol(E ∩Bn
p)

vol(Bk
p)

≥
vol(E ∩Bn

q )

vol(Bk
q)

We finish this note with some consequences:

Remark 2. Taking into account that E ∩Bn
2 = Bk

2, we obtain from Theorem 5:

For 2 ≤ p < ∞, vol(E ∩Bn
p) ≥ vol(Bk

p)

For 1 ≤ p ≤ 2, vol(E ∩Bn
p) ≤ vol(Bk

p).

On the other hand, if B, B′ are balls in Rn such that B ⊂ B′, we obtain from Theorem 5 that:

vol(B′ ∩ E)
vol(B′)

≤
(

n
k

)
1

vol(PE⊥(B′))
≤
(

n
k

)
1

vol(PE⊥(B))
≤
(

n
k

)
vol(B ∩ E)

vol(B).
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In particular:

For 2 ≤ p ≤ ∞, vol(E ∩Bn
p) ≤

(
n
k

)
vol(Bk

2)

vol(Bn
2 )

vol(Bn
p)

For 1 ≤ p ≤ 2, vol(E ∩Bn
p) ≥

(
n
k

)−1 vol(Bk
2)

vol(Bn
2 )

vol(Bn
p).
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