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Thomas Klähn, Lee C. Loveridge and Mateusz Cierniak

Chaos in QCD? Gap Equations and Their Fractal Properties
Reprinted from: Particles 2023, 6, 470–484, doi:10.3390/particles6020026 . . . . . . . . . . . . . . . 181

Cédric Mezrag

Generalised Parton Distributions in Continuum Schwinger Methods: Progresses, Opportunities
and Challenges
Reprinted from: Particles 2023, 6, 262–296, doi:10.3390/particles6010015 . . . . . . . . . . . . . . . 196

Armen Sedrakian

Impact of Multiple Phase Transitions in Dense QCD on Compact Stars
Reprinted from: Particles 2023, 6, 713–730, doi:10.3390/particles6030044 . . . . . . . . . . . . . . . 231
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Preface

The Standard Model of particle physics (SM) was formulated roughly fifty years ago, and, with

discovery of the Higgs boson at CERN in 2012, it became complete. However, despite the SM’s

enormous body of successes, it still presents an array of unsolved problems. Primary among them

is the following question: can the SM explain the origin of nuclear size masses? This is the puzzle of

emergent hadron mass (EHM), whose solution is supposed to lie within quantum chromodynamics

(QCD), the SM’s strong interaction component. EHM could provide the unifying explanation for all

the SM’s remarkable nonperturbative phenomena, including confinement and absolute stability of the

proton, the proton’s mass and radii, the lepton-like scale of the pion mass and its hadron-like radius,

and so much more, running up to the character and composition of dense astrophysical objects. Of

course, as a source of mass, EHM interferes constructively with a range of Higgs boson effects. For

instance, such feedback sets the kaon apart from the pion and separates heavy quark systems from

those containing only light quarks. Presented with such a plethora of interrelated phenomena, whose

implications reach throughout nature, the world has responded with huge investments of personnel

and resources in strong interaction experiment and theory.

Reflecting the scope of associated endeavors, this volume collects a diverse range of perspectives

on the problem of EHM, its observable manifestations, and the approaches and tools that are today

being employed to deliver an insightful understanding and, perhaps, finally, a solution. Some of the

contributions are reviews, but all may be described as feature articles, containing novel perspectives on

topical problems and original material that highlights promising new directions in strong interaction

physics. The collection was compiled with a view to stressing the importance of openness in basic

research, with authors drawn from a wide range of backgrounds and operational environments. All

contributions recognize and emphasize the vitality of international collaborative endeavors, whether

it be through experimentation, phenomenology, or theory, and they aim, ultimately, to explain the

emergence of nuclei from the remarkably simple Lagrangian of QCD. This, indeed, is one of the

greatest challenges facing science today. Moreover, if QCD is, as some of the contributions argue, the

first mathematically well-defined quantum field theory in four dimensions that science has produced,

then it might serve as the paradigm for extending physics beyond the SM. With such coverage, the

volume is likely to be of interest to all students and researchers working in high-energy nuclear physics,

hadron physics, and particle physics.

We, the guest editors, and the Members of the Editorial Board of Particles are grateful to all those

who contributed to the collection, as well as to the referees who donated their time in order to ensure

that the project was a success.

Minghui Ding, Craig Roberts, and Sebastian M. Schmidt

Editors

ix





Citation: Carman, D.S.; Gothe, R.W.;

Mokeev, V.I.; Roberts, C.D. Nucleon

Resonance Electroexcitation

Amplitudes and Emergent Hadron

Mass. Particles 2023, 6, 416–439.

https://doi.org/10.3390/

particles6010023

Academic Editor: Armen Sedrakian

Received: 19 January 2023

Revised: 1 March 2023

Accepted: 2 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Nucleon Resonance Electroexcitation Amplitudes and Emergent
Hadron Mass

Daniel S. Carman 1,*,†, Ralf W. Gothe 2,*,†, Victor I. Mokeev 1,*,† and Craig D. Roberts 3,4,*,†

1 Jefferson Laboratory, 12000 Jefferson Ave., Newport News, VA 23606, USA
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3 School of Physics, Nanjing University, Nanjing 210093, China
4 Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, China
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cdroberts@nju.edu.cn (C.D.R.)
† These authors contributed equally to this work.

Abstract: Understanding the strong interaction dynamics that govern the emergence of hadron
mass (EHM) represents a challenging open problem in the Standard Model. In this paper we
describe new opportunities for gaining insight into EHM from results on nucleon resonance (N∗)
electroexcitation amplitudes (i.e., γv pN∗ electrocouplings) in the mass range up to 1.8 GeV for virtual
photon four-momentum squared (i.e., photon virtualities Q2) up to 7.5 GeV2 available from exclusive
meson electroproduction data acquired during the 6-GeV era of experiments at Jefferson Laboratory
(JLab). These results, combined with achievements in the use of continuum Schwinger function
methods (CSMs), offer new opportunities for charting the momentum dependence of the dressed
quark mass from results on the Q2-evolution of the γv pN∗ electrocouplings. This mass function
is one of the three pillars of EHM and its behavior expresses influences of the other two, viz. the
running gluon mass and momentum-dependent effective charge. A successful description of the
Δ(1232)3/2+ and N(1440)1/2+ electrocouplings has been achieved using CSMs with, in both cases,
common momentum-dependent mass functions for the dressed quarks, for the gluons, and the
same momentum-dependent strong coupling. The properties of these functions have been inferred
from nonperturbative studies of QCD and confirmed, e.g., in the description of nucleon and pion
elastic electromagnetic form factors. Parameter-free CSM predictions for the electrocouplings of the
Δ(1600)3/2+ became available in 2019. The experimental results obtained in the first half of 2022
have confirmed the CSM predictions. We also discuss prospects for these studies during the 12-GeV
era at JLab using the CLAS12 detector, with experiments that are currently in progress, and canvass
the physics motivation for continued studies in this area with a possible increase of the JLab electron
beam energy up to 22 GeV. Such an upgrade would finally enable mapping of the dressed quark
mass over the full range of distances (i.e., quark momenta) where the dominant part of hadron mass
and N∗ structure emerge in the transition from the strongly coupled to perturbative QCD regimes.

Keywords: exclusive meson photo- and electroproduction; exclusive reactions with the CLAS and
CLAS12 detectors; nucleon resonance photo- and electroexcitation amplitudes; nucleon resonance
spectrum and structure; emergence of hadron mass; continuum Schwinger function methods; hadron
structure and interactions

1. Introduction

Studies of the strong interaction dynamics that govern the generation of hadron ground
and excited states in the regime where the running coupling of quantum chromodynamics
(QCD) is large, i.e., αs/π ≈ 1, known as the strong QCD (sQCD) regime, represent a
crucial challenge in modern hadron physics [1]. The rapid growth of αs in the transition
from the perturbative to sQCD domains and particularly its saturation, driven by gluon
self-interactions, are predicted by CSMs [2,3] and supported by recent experimental results

Particles 2023, 6, 416–439. https://doi.org/10.3390/particles6010023 https://www.mdpi.com/journal/particles1



Particles 2023, 6

on the Bjorken sum rule [4]. These trends suggest that the generation of hadron structure
in the sQCD regime is defined by emergent degrees of freedom that are related to the
partons of QCD’s Lagrangian in a non-trivial manner. While this evolution with distance
is determined by the QCD Lagrangian, it cannot be analyzed by employing perturbative
QCD (pQCD) when αs/π becomes comparable with unity. The active degrees of freedom
seen in hadron structure and their interactions change substantially with distance at the
scales where the transition from sQCD to pQCD takes place, and the structure of hadron
ground and excited states emerges. Understanding how the active degrees of freedom
emerge from the QCD Lagrangian and how their interactions evolve with distance requires
the development of nonperturbative methods capable of making predictions, both in the
meson and baryon sectors, that can be confronted with empirical results on hadron structure
extracted using electromagnetic and hadronic probes.

A decade of rapid progress in the development and application of CSMs in hadron
physics [5–15], complemented by advances in and results from lattice QCD (lQCD) [16–25],
have delivered numerous predictions for properties of mesons and baryons within a com-
mon theoretical framework. Studies of hadron structure from data obtained in experiments
with electromagnetic probes at JLab [1,26–29], MAMI [30–35], and Babar and Belle [36,37],
have provided experimental results that can be confronted with predictions from the QCD-
connected approaches to hadron structure. More results are expected from experiments in
the ongoing 12-GeV era at JLab [1,38–40] and from planned research programs at the US
electron ion collider (EIC) [39,41–43], the electron ion collider in China (EicC) [44,45], and
experiments with hadronic probes conducted by the AMBER Collaboration at CERN [46].

Studies of exclusive meson electroproduction in the nucleon resonance excitation region
using data from 6-GeV-era experiments at JLab have provided the first and still only avail-
able comprehensive information on the electroexcitation amplitudes (i.e., γv pN∗ electrocou-
plings) of most nucleon excited states in the mass range up to 1.8 GeV for photon virtualities
Q2 < 5 GeV2 (or Q2 < 7.5 GeV2 for the Δ(1232)3/2+ and N(1535)1/2−) [47–51]. Analy-
ses of these results have revealed many facets of strong interactions in the sQCD regime
seen in the generation of N∗ states of different quantum numbers with different structural
features [28,39,52–61]. These results also enable the evaluation of the resonant contributions
to inclusive electron scattering observables [62–64], substantially expanding the capability
to explore both polarized and unpolarized parton distribution functions (PDFs) of the
nucleon for fractional parton light-front momenta close to unity. Analyses of the results
on γv pN∗ electrocouplings within CSMs [1,28,48,59,65–75] have demonstrated a new and
promising potential for elucidation of the sQCD dynamics that are responsible for the
generation of >98% of the visible mass in the Universe.

Explaining the emergence of hadron mass represents one of the most challenging
open problems in the Standard Model (SM). The emergent nature of hadron mass is made
manifest by a comparison between the measured proton and neutron masses and the sum
of the current masses of their valence quark constituents. Protons and neutrons are bound
systems of three light u- and d-quarks. The sum of the current masses of these quarks,
which is generated by Higgs couplings into QCD, accounts for less than 2% of the measured
nucleon masses (see Table 1). This accounting clearly indicates that the overwhelmingly
dominant component of the nucleon mass is created by mechanisms other than those
associated with the Higgs boson [8–15].

The past decade of progress using CSMs to study the evolution of hadron structure
with distance, maintaining a traceable and often direct connection to the QCD Lagrangian,
has conclusively demonstrated that the dominant part of each hadron’s mass is generated
by strong interactions in the regime of large QCD running coupling [1,8–15,73]. Solving
QCD’s equations-of-motion for the gluon and quark fields has revealed the emergence
of quasiparticles, with the quantum numbers of the Lagrangian partons but carrying
momentum-dependent masses that are large in the sQCD domain. It is the presence of
these quasiparticles within mesons and baryons that explains the greatest part of the visible
mass in the Universe.
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Table 1. Comparison between the measured masses of the proton and neutron, mp,n, and the sum
of the current-quark masses of their three u- and d-quark constituents [76]. (Current quark masses
are listed at a scale of 2 GeV, but the comparison remains qualitatively unchanged if renormalization
group invariant current masses are used.)

Proton Neutron

Measured masses (MeV) 938.2720813 ± 0.0000058 939.5654133± 0.0000058

Sum of the current quark
masses (MeV) 8.09+1.45

−0.65 11.50+1.45
−0.60

Contribution of the current
quark masses to the measured

nucleon mass (%)
<1.1 <1.4

Herein we describe advances in the exploration of the structure of nucleon excited states,
using data from the 6-GeV-era experiments at JLab, and discuss the impact of these results
on the understanding of EHM. A successful description of JLab results on the Δ(1232)3/2+

and N(1440)1/2+ electrocouplings has been achieved using CSMs [65,66,68,69,71]. The CSM
calculations are distinguished by (a) having employed common momentum-dependent
mass functions for the dressed quarks, whose behavior is intimately connected with the
running of the gluon mass and QCD’s effective charge [77] and (b) thereby unifying the
description of these electrocouplings with kindred studies of, inter alia, nucleon and pion
elastic form factors [68,78,79]. Such successes provide a sound foundation for arguments
supporting the potential of experimental results on the Q2-dependence of nucleon reso-
nance electrocouplings to deliver new information on the running quark mass.

Parameter-free CSM predictions for the Q2-evolution of the Δ(1600)3/2+ electrocou-
plings became available in 2019 [74]. At that time, there were no experimental results
for the electroexcitation amplitudes of this resonance. Herein, too, we present the first
preliminary experimental results on these amplitudes, obtained from analysis of π+π−p
electroproduction data off protons in the W-range up to 1.7 GeV and 2 < Q2/GeV2 < 5
using the JLab-Moscow State University (JM) meson–baryon reaction model [67,80–83].
The comparison between the CSM predictions and these experimental results represents a
further sensitive test of the capability for validating the EHM paradigm [8–15].

Our discussion is organized as follows. In Section 2, the basic features of the EHM
paradigm are outlined, with special emphasis on the dressed-quark and gluon running
masses and their evolution in the transition from the weak to strong coupling domains
of the strong interaction. We also emphasize the complementarity and critical role of
combined studies of both meson and baryon structure in validating any understanding
of the generation of the dressed masses of gluon and quark quasiparticles. We outline
the analysis framework used for extraction of the γv pN∗ electrocouplings from data on
exclusive meson electroproduction available from experiments during the 6-GeV era at
JLab in Section 3. The impact of these results on the understanding of EHM is presented in
Section 3.2. In Section 4, plans for future studies and their prospects in ongoing experiments
in the 12-GeV era at JLab are highlighted, along with physics motivations for a possible
increase of the JLab electron beam energy up to 22 GeV. Such an upgrade would offer the
only foreseeable opportunities to explore QCD dynamics in the full range of distances
over which the dominant part of hadron mass and structure emerge, particularly reaching,
for the first time, into the kinematic region where perturbative and nonperturbative QCD
calculations overlap.

2. Basics for Insight into EHM Using CSMs

The notable progress in developing an understanding of EHM via CSMs has con-
clusively demonstrated that the dominant part of hadron mass is generated by strong
interactions at momentum scales k � 2 GeV. We now sketch the EHM paradigm and dis-
cuss how studies of the meson and baryon structure of both ground and excited states

3
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offer complementary and crucial information that will enable the elucidation of the sQCD
dynamics responsible for EHM and its manifold corollaries.

2.1. CSMs and the EHM Paradigm

Every scheme proposed for the solution of QCD reveals that the current-quark masses,
which are generated by Higgs boson couplings into the Lagrangian, acquire momentum-
dependent corrections owing to gluon emission and absorption, as illustrated in Figure 1
(top row). Gluons, too, come to be dressed by the analogous processes shown in Figure 1
(lower rows). Treated in a weak coupling expansion, these “gap equations” generate every
diagram in perturbation theory. On the other hand, nonperturbative analyses can reveal
emergent features of the strong interaction, such as dynamical chiral symmetry breaking
(DCSB) and intimations of confinement [14] (Section 5).

Figure 1. Integral equations for the dressed quark and gluon two-point functions [84] (Section 2.2),
drawn in terms of the Feynman diagrams that govern the emergence of gluon and quark quasiparticles
from the partons used to express the QCD Lagrangian. (Total momentum k flows from left to right
in each diagram, being conserved in passing through the loop integrals.) These quasiparticles
are the active components in hadron structure at low resolving scales. Their parton content is
revealed at higher resolutions. (Unbroken lines—quarks; spring-like lines—gluons; short-dashed
lines—ghosts; filled circles—dressed propagators; open circles—two-point = self-energies and three/
four-point = dressed vertices. The vertices satisfy their own Dyson–Schwinger equations, involving
higher n-point functions [84]).

As explained elsewhere [84], the integral equations in Figure 1 and their analogs
for higher-n-point functions can be understood as QCD’s Euler–Lagrange equations, viz.
QCD’s equations of motion. The solutions of those shown explicitly for the dressed quark
and gluon two-point functions predict the emergence of gluon and quark quasiparticles.
Each is a superposition of enumerably many gluon and quark (and ghost) partons, is
characterized by its own momentum-dependent mass function—

S(k) = Z(k2)/[iγ · k + M(k2)] , D(k) = 1/[k2 J(k2) + m2
g(k

2)] , (1)

4
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drawn in the left panel of Figure 2 (the wave function renormalizations, Z(k2) and J(k2),
are not displayed and, here, only the gluon’s scalar dressing function is written—see
References [3,85] for details— and evolves with distance 1/k, where k is the momentum
scale flowing through the diagram, in a well-defined manner that reproduces perturbative
results on mp/k � 0.

Figure 2. (Left): CSM predictions for the momentum dependence of the dressed-gluon (blue solid)
and quark (green dot-dashed) masses [9–11]. The associated like-colored bands express the uncertain-
ties in the CSM predictions. (N.B. Since the Poincaré-invariant kinetic energy operator for a vector
boson has mass–dimension two and that for a spin-half fermion has mass–dimension unity, then for
m2

p/k2 → 0, M0(k) ∝ 1/k2 and m2
g(k) ∝ 1/k2, up to ln k2 corrections). (Right) CSM prediction [3]

(magenta band) for the process-independent QCD running coupling α̂(k) compared with the empiri-
cal results [4] for the process-dependent effective charge defined via the Bjorken sum rule, which is
prominent in deep inelastic scattering.

Of primary significance is the dressing of gluons, described by the lower three rows
in Figure 1, with effects driven by the three-gluon vertex being most prominent. It was
realized long ago [86] that this led to the emergence of a running gluon mass, like that
in Figure 2 (left panel), through the agency of a Schwinger mechanism [87,88] in QCD,
the details of which have steadily been unfolded during the past fifteen years [89–93].
This essentially nonperturbative consequence of gauge sector dynamics, revealed in both
continuum and lattice-regularized studies of QCD, is the first pillar of EHM.

Capitalizing on such progress in understanding gauge sector dynamics, a unique
QCD analog of the Gell-Mann–Low effective charge has been defined and calculated [2,3],
α̂(k), with the result shown in Figure 2 (right panel). For k � 2 GeV, this charge matches
the pQCD coupling, but it also supplies an infrared completion of the running coupling,
which is free of a Landau pole and saturates to the value α̂(k = 0) = 0.97(4). Both
these latter features are direct consequences of the emergence of a gluon mass function,
whose infrared value is characterized by the renormalization-group-invariant mass-scale
m̂ = 0.43(1)GeV ≈ mp/2. This effective charge is the second pillar of EHM.

As highlighted in Figure 2 (right panel), the pointwise behavior of α̂(k) is almost
identical to that of the process-dependent charge [94,95] defined via the Bjorken sum
rule [96,97] for reasons that are explained in Reference [14] (Section 4). The form of α̂(k)—in
particular, its being defined and smooth on the entire domain of spacelike momentum
transfers—provides strong support for the conjecture that QCD is a mathematically well-
defined quantum gauge field theory. As such, it can serve as a template for extensions of
the SM using the notion of compositeness for seemingly pointlike objects.

Turning to the quark gap equation, Figure 1 (top row), and constructing its kernel using
the first two pillars of EHM, one obtains a dressed-quark propagator that is characterized
by the mass-function shown in Figure 2 (left panel). Critically, for k � 2 GeV, the behavior
of this mass function is practically unchanged in the absence of Higgs boson couplings into
QCD, i.e., in the chiral limit. Such an outcome is impossible in pQCD. The emergence of

5
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M(k) is the principal manifestation of DCSB in QCD; and this dressed-quark mass function,
again a prediction common to both continuum and lattice-regularized QCD, is the third
pillar of EHM.

The appearance of dressed-gluon and -quark quasiparticles following the transition
into the domain of sQCD, whose strong mutual- and self-interactions are described by a
process-independent momentum-dependent effective charge, form the basis for the EHM
paradigm and its explanation of hadron mass and structure. Indeed, it is worth reiterating
that the dressed-quark mass function in Figure 2 (left panel) shows how the almost massless
current-quark partons, which are the degrees-of-freedom best suited for the description of
truly high-energy phenomena, are transmogrified, by a nonperturbative accumulation of
interactions, into fully dressed quarks. It is these quark quasiparticles, to which is attached
an infrared mass-scale M(k � 0) ≈ 0.4 GeV, that provide a link between QCD and the long
line of quark potential models developed in the past sixty years [98].

Insofar as the light u- and d-quarks are concerned, Higgs boson couplings into QCD
are almost entirely irrelevant to the size of their infrared mass, contributing < 2% (Refer-
ence [11] (Figure 2.5)); hence, equally irrelevant to the masses of the nucleon and its excited
states. The dominant component of the masses of all light-quark hadrons is that deriving
from M(k � 0), viz. EHM.

Since the quark quasiparticles carry the same quantum numbers as the seed quark-
partons, then N∗ electroexcitation processes can be used to chart M(k) by exploiting
the dependence of the associated N∗ electroexcitation amplitudes on the momentum
transfer squared. Sketched simply, owing to the quasielastic nature of the transition, the
momentum transferred in the process, Q, is shared equally between the three bound
quark quasiparticles in the initial and, subsequently, the final states. This means that the
quark mass function is predominantly sampled as M(Q/3) because bound-state wave
functions are peaked at zero relative momentum. Hence, increasing Q takes the reaction
cross section smoothly from the sQCD (constituent-quark) domain into the pQCD domain.
Any Poincaré-invariant, QCD-connected calculational framework can then relate the Q2-
dependence of the electroexcitation amplitudes to the momentum dependence of the
quark mass function and, crucially, when it comes to predictions, vice versa. Examples
are provided in References [28,59,65,66,68–71,73,74,99]. Regarding M(k) in Figure 2, one
enters the perturbative domain for k � 2 GeV; hence, a comprehensive mapping of the
nonperturbative part of the dressed-quark mass requires

0 ≤ Q2/GeV2 � 20 − 30 . (2)

Experiments at JLab during the 6-GeV era provided a beginning, their progeny during
the 12-GeV era will extend the map further, but only an upgrade of the JLab accelerator
energy to beyond 20 GeV will deliver near exhaustive coverage of the full EHM domain.

2.2. Some Highlights from the EHM Experiment-Theory Connection

Charting the dressed-quark mass function using results from hadron structure exper-
iments is a principal goal of modern hadron physics. As always, there are challenges to
overcome, but the potential rewards are great. Empirical verification of the EHM paradigm
will pave the way to understanding the origin of the vast bulk of the visible mass in the
Universe. As an illustration, we note that CSMs have supplied a large body of results for
meson and baryon structure observables; some examples are shown in Figure 3. Each of
these predictions was obtained within a common theoretical framework and expresses
different observable consequences of the dressed-gluon and -quark mass functions shown
in Figure 2; hence, each draws a clear connection between observation and the QCD La-
grangian. Notably, here we have only highlighted results for ground-state hadrons because
CSM predictions for the γv pN∗ electrocouplings and their comparison with experimental
results are discussed below.
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Figure 3. CSM predictions for observables of the structure for the ground state hadrons in comparison
with experimental results (points with error bars) or comparable theory. (Upper left)—pion valence
quark PDF [100]; (Upper right)—nucleon axial form factor GA [101]; (Lower left)—pion elastic form
factor [11]; and (Lower right)—ratio of nucleon elastic electric and magnetic form factors [79]. Sources
for comparison curves and points are listed in References [11,79,100,101].

Owing to the pattern of DCSB in QCD, a quark-level Goldberger–Treiman
identity [85,102–105]:

fNGENG(k2) = B(k2) , (3)

relates the leading term in the bound-state amplitude of all Nambu–Goldstone (NG) bosons,
ENG(k2), to the scalar piece of the dressed-quark self energy, B(k2), with the NG boson lep-
tonic decay constant, fNG, providing the constant of proportionality. This exact relationship
in chiral-limit QCD is Poincaré-invariant, gauge-covariant, and renormalization-scheme
independent. It is also the SM’s most fundamental expression of the Nambu–Goldstone
theorem [106,107]. Equation (3) explains the seeming dichotomy of massless NG bosons
being composites built from massive quark and antiquark quasiparticles, ensuring that all
one-body dressing effects that give rise to the quasiparticle masses are canceled exactly by
binding energy within the bound states so that they emerge as massless composite objects
in the chiral limit [108].

Equation (3) expresses other remarkable facts. It is also a precise statement of equiva-
lence between the pseudoscalar-meson two-body and matter-sector one-body problems in
chiral-QCD. These problems are usually considered to be essentially independent. More-
over, it reveals that the cleanest expressions of EHM in the SM are located in the properties
of the massless NG bosons. It is worth stressing here that π- and K-mesons are indis-
tinguishable in the absence of Higgs couplings into QCD. Furthermore, as noted above,
Equation (3) entails that they are entirely massless in this limit: the π and K mesons are the
NG bosons that emerge as a consequence of DCSB. At realistic Higgs couplings, however,
π and K observables are windows onto both EHM and its modulation by Higgs boson
couplings into QCD.

It is now widely recognized [27,41,43–46] that the quark-level Goldberger–Treiman identity,
Equation (3), and its corollaries lift studies of π and K structure to the highest level of importance.
CSM calculations are available for a broad range of such observables; e.g., in a challenge for
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future high-luminosity, high-energy facilities, a prediction for the elastic electromagnetic pion
form factor is now available out to Q2 = 40 GeV2 (see Reference [41] (Figure 9)).

The peculiar character of NG bosons is further highlighted by the mass budgets drawn
in Figure 4, which identify that component of the given hadron’s mass that is generated
by (i) EHM; (ii) constructive interference between EHM and the Higgs-boson (HB) mass
contribution; and (iii) that part generated solely by the Higgs. The proton annulus depicts
information already presented in Table 1 and highlights again that the proton mass owes
almost entirely to the mechanisms of EHM. New information is expressed in the second
annulus, which is the ρ-meson mass budget. Plainly, the ρ-meson and proton mass budgets
are qualitatively and semi-quantitatively identical, despite one being a meson and the other
a baryon.

Figure 4. Mass budgets for the proton (outermost annulus), ρ-meson, kaon, and pion (innermost
annulus). Each annulus is drawn using a Poincaré-invariant decomposition. The separation is made
at a renormalization scale ζ = 2 GeV, calculated using information from References [76,109–111].

The π and K mass budgets in Figure 4 are completely different. For these (near) NG
bosons, there is no pure EHM component—no blue part of the ring—because they are
massless in the chiral limit. On the other hand, the HB contribution to the pion mass
is commensurate with the kindred component of the proton and ρ-meson masses. The
biggest contribution for the π is EHM+HB interference: the small HB-only contribution
is magnified by a huge, latent EHM component. The K-meson mass budget is similar.
However, the larger current mass of the s-quark entails that the HB-alone contribution
is four times larger in the K than in the π, but it is not ∼15-times larger, as a simple
counting of current masses would suggest. Evidently, there is some subtlety in EHM+HB
interference effects.

This discussion summarizes what others have explained in detail [8–15], namely,
that studies of NG bosons on one hand and the nucleon and its excited states on the other
provide complementary information about the mechanisms behind EHM: NG bosons reveal
much about EHM+HB interference, whereas the other systems are directly and especially
sensitive to EHM-only effects. It follows that consistent results on the dressed-quark mass
function and, therefrom, indirectly, on the gluon mass and QCD effective coupling, obtained
from experimental studies of these complementary systems—NG bosons and the nucleon
and its excitations—will shine the brightest light on the many facets and expressions of
emergent hadron mass and structure in Nature. Such a broad approach is the best (only?)
way to properly verify the EHM paradigm.

8



Particles 2023, 6

3. Nucleon Resonance Electrocouplings and Their Impact on the Insight into EHM

The contemporary application of CSMs provides a QCD-connected framework that
enables the development of an understanding of EHM [8–15] from the comparison of
theory predictions with experimental results on the Q2-evolution of nucleon elastic form
factors and nucleon resonance electroexcitation amplitudes [48,67,72,75]. In this Section,
we provide an overview of experimental γv pN∗ results where comparisons with CSM
predictions exist.

3.1. Extraction of Electrocouplings from Exclusive Meson Electroproduction Data

Nucleon resonance electroexcitations can be fully described in terms of three electroex-
citation amplitudes or γv pN∗ electrocouplings. A1/2(Q2) and A3/2(Q2) describe resonance
production in the process γv p → N∗, Δ∗ by transversely polarized photons of helicity +1
(−1) and target proton helicities ±1/2 (∓1/2) in the center-of-mass (CM) frame, with
the resonance spin projection, directed parallel (antiparallel) to the γv momentum, equal
to 1/2 (−1/2) and 3/2 (+3/2), respectively. The resonance electroexcitation amplitudes
of the other (flipped) helicities of the initial photon and target proton and the resonance
spin projections are related by parity transformations. S1/2(Q2) describes accordingly the
resonance electroexcitation by a longitudinal virtual photon of zero helicity and target
proton helicities ±1/2, with the absolute value of the resonance spin projection equal to
1/2 [49]. Since parity is conserved in both electromagnetic and strong interactions, the
A1/2(Q2), A3/2(Q2), and S1/2(Q2) electrocouplings describe all possible N∗ electroexci-
tation amplitudes. These electrocouplings are unambiguously determined through their
relation with the resonance electromagnetic decay widths, ΓT

γ and ΓL
γ, to the final state for

transversely and longitudinally polarized photons:

ΓT
γ(W = Mr, Q2) =

q2
γ,r(Q2)

π

2MN
(2Jr + 1)Mr

(
|A1/2(Q2)|2 + |A3/2(Q2)|2

)
, (4a)

ΓL
γ(W = Mr, Q2) =

q2
γ,r(Q2)

π

2MN
(2Jr + 1)Mr

|S1/2(Q2)|2, (4b)

with qγ,r = qγ|W=Mr
, the absolute value of the γv three momentum at the resonance point,

Mr and Jr being the resonance mass and spin, respectively, and MN the nucleon mass. W is
the sum of the energies of the γv and target proton in their CM frame.

Alternatively, the resonance electroexcitation can be described by three transition form
factors, G1,2,3(Q2) or G∗

M,E,C(Q
2), which represent Lorentz invariant functions in the most

general expressions for the N → N∗ electromagnetic transition currents. For spin 1/2
resonances, the F∗

1,2(Q
2) Dirac and Pauli transition form factors can also be used instead

of G1,2,3(Q2) or G∗
M,E,C(Q

2). The description of resonance electroexcitation in terms of the
electrocouplings and the electromagnetic transition form factors is completely equivalent,
since they are unambiguously related, as described in References [49,112].

The γv pN∗ electrocouplings have been determined from data on exclusive meson
electroproduction for most relevant channels in the resonance excitation region, including
πN, ηp, and π+π−p. The extractions for KY channels are still awaiting the development
of a reaction model capable of describing electroproduction observables with accuracy
sufficient for the reliable separation of the resonant/non-resonant contributions [113,114].
The full amplitude for any exclusive electroproduction channel can be described as the
coherent sum of the N∗ electroexcitations in the s-channel for the virtual photon–proton
interaction and a complex set of non-resonant mechanisms, as depicted in Figure 5. The
electrocouplings determined from all exclusive meson electroproduction channels should
be the same for a given N∗ state since they should be independent of their hadronic decays,
while the non-resonant amplitudes are different for each exclusive meson electroproduction
channel. Hence consistent results on the Q2-evolution of the electrocouplings extracted
from different decay channels enable evaluation of the systematic uncertainties related to
the use of the reaction models employed in the analysis.

9



Particles 2023, 6

Figure 5. Resonant and non-resonant amplitudes contributing to exclusive meson electroproduction
channels in the resonance region.

Systematic studies of N∗ electroexcitation from the data became feasible only af-
ter experiments during the 6-GeV era with the CLAS detector in Hall B at JLab. This
detector has collected the dominant part of available world data on most single- and
multi-meson electroproduction channels off protons in the resonance region for Q2 up to
5 GeV2 [47–49,72,75]. The data are stored in the CLAS Physics Database [115,116]. For the
first time, a large body of data (≈ 150k points) on differential cross sections and polarization
asymmetries has become available with nearly complete coverage for the final state hadron
CM emission angle, which is important for the reliable extraction of electrocouplings.

Several reaction models have been developed for the extraction of electrocouplings
from independent studies of the πN [117–126], ηN [126–130], and π+π−p [67,80–83] elec-
troproduction channels off protons. Coupled-channel approaches [131–133] are making
steady progress toward determining the electrocouplings from global multichannel analy-
ses of the combined data for exclusive meson photo-, electro-, and hadroproduction. These
analyses will allow for the explicit incorporation of final state interactions between all
open channels for the strong interactions between the final state hadrons. Application
of such advanced coupled-channel approaches will also enable the restrictions imposed
on the photo-, electro-, and hadroproduction amplitudes by the general unitarity condi-
tion to be consistently taken into account. An important extension of the database on
the exclusive meson hadroproduction channels is expected from the JPARC experimental
program [134,135]. These data will be of particular importance in extending the extraction
of the electrocouplings within global multichannel analyses toward W > 1.6 GeV.

Analyses of CLAS results from the exclusive πN, ηp, and π+π−p electroproduction
channels have provided the first and still only available comprehensive information on
the electrocouplings of most excited proton states in the range of W < 1.8 GeV and
Q2 < 5 GeV2 (see Table 2). The experiments of the 6-GeV era in Halls A/C at JLab further
extended this information, providing Δ(1232)3/2+ and N(1535)1/2− electrocouplings for
Q2 < 7 GeV2 [50,51].

As representative examples, the transverse A1/2(Q2) electrocouplings versus Q2 for
the N(1440)1/2+ and N(1520)3/2−, obtained from independent studies of the
πN [121,123] and π+π−p [67,83] channels, are shown in Figure 6. The electrocouplings
inferred from data on the two major πN and π+π−p electroproduction channels, with
different non-resonant contributions, are consistent. This success, reproduced for all
available electrocouplings and reaction channels (see Table 2), has demonstrated the
capabilities of these reaction models, developed by the CLAS Collaboration, for the
credible extraction of the γv pN∗ electrocouplings from independent studies of different
electroproduction channels.
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Table 2. Summary of the results for the γv pN∗ electrocouplings from the πN, ηp, and π+π−p
electroproduction channels measured with the CLAS detector in Hall B at JLab.

Meson Electroproduction Channels Excited Proton States
Q2 Ranges for Extracted γv pN∗

Electrocouplings, GeV2

π0 p, π+n Δ(1232)3/2+ 0.16–6
N(1440)1/2+, N(1520)3/2− 0.30–4.16

N(1535)1/2− 0.30–4.16

π+n N(1675)5/2−, N(1680)5/2+ 1.6-4.5
N(1710)1/2+

ηp N(1535)1/2− 0.2–2.9

π+π−p N(1440)1/2+, N(1520)3/2− 0.25–1.50
Δ(1600)3/2+, Δ(1620)1/2− 2.0–5.0

N(1650)1/2−, N(1680)5/2+,
Δ(1700)3/2− 0.50–1.50

N(1720)3/2+, N′(1720)3/2+ 0.50-1.50

Figure 6. N(1440)1/2+ and N(1520)3/2− electrocouplings extracted from the πN [121,123] and
π+π−p [67,83,136,137] electroproduction channels. The photocouplings from the Review of Particle
Properties (RPP) [76] and from Reference [138] are shown by the blue squares and triangles, respectively.

3.2. Insights into the Dressed-Quark Mass Function from the γv pN∗ Electrocouplings

Results on the Q2-evolution of the γv pN∗ electrocouplings available from experiments
performed during the 6-GeV era at JLab have already had a substantial impact on under-
standing the sQCD dynamics responsible for the saturation of the running coupling α̂,
N∗ structure, and the generation of a significant portion of hadron mass [1,28]. Analyses
of these results have revealed N∗ structure to emerge from a complex interplay between
the inner core of three dressed quarks and an outer meson–baryon cloud [1,28,67,139].
Successful descriptions of the data on the dominant N → Δ(1232)3/2+ magnetic transition
form factor [50,121] and the electrocouplings of the N(1440)1/2+ [75,121,123] have been
achieved using CSMs [65,66,68,69] for Q2 > 1.0 GeV2 and Q2 > 2.0 GeV2, respectively (see
Figure 7). These Q2 ranges correspond to the distance scales where contributions from the
quark core to the resonance structure come to dominate. Since the CSM evaluations account
for the contributions from only the quark core, they can only reasonably be confronted
with experimental results in the higher-Q2 range, where the quark core contributions to N∗

structure dominate over those from the meson–baryon cloud.
It is worth noting here that the character of this separation between the inner core

and outer cloud is detailed, e.g., in Ref. [140] (Section 4.2). It posits that all hadron quark
cores are the same, remaining practically unaffected by exterior meson–baryon dynamics.
Verification of this perspective must await an exact solution of the coupled core+cloud
many-body problem in quantum field theory. Meanwhile, the fact that it delivers agree-

11



Particles 2023, 6

ment with form factor data on numerous ground- and excited-state hadrons (mesons and
baryons) provides strong empirical evidence in support of the position.

The sensitivity of the electroexcitation amplitudes to the momentum-dependence
of the quark mass function is dramatically illustrated by Figure 7, which deliberately
shows results obtained with M(k) = constant [65,66] and M(k) from Figure 2 [68,69]. The
M(k) = 0.36 GeV results were computed first in order to provide a “straw-man” benchmark
against which the subsequent realistic M(k) results could be contrasted. The constant-mass
results (dotted red curves in Figure 7) overestimate the data on the N → Δ magnetic
transition form factor for Q2 � 1 GeV2. The discrepancy increases with Q2, approaching
an order of magnitude difference in the ratio at 5 GeV2. Moreover, whilst reproducing the
zero in A1/2 for the N(1440)1/2+, the frozen mass result is otherwise incompatible with
the data. Plainly, therefore, the data speak against dressed quarks with a frozen mass. On
the other hand, in both cases, the transition form factors are well described by an internally
consistent CSM calculation built upon the mass function in Figure 2—see the solid blue
curves in Figure 7. These observations confirm the statements made above, viz. nucleon
resonance electroexcitation amplitudes are keenly sensitive to the form of the running
quark mass. Moreover, the agreement with the larger-Q2 data clearly points to a dominance
of the dressed-quark core of the nucleon resonances in the associated domains.

Figure 7. Description of the results for the N → Δ magnetic transition form factor G∗
M (left) and the

electrocoupling amplitude A1/2 for the N → N(1440)1/2+ (right) achieved using CSMs [65,66,68,69].
Results obtained with a momentum-independent (frozen) dressed-quark mass [65,66] (dotted
red curves) are compared with QCD-kindred results (solid blue curves) obtained with the
momentum-dependent quark mass function in Figure 2. The electrocoupling data were taken from
References [50,121,123]—πN electroproduction, and References [67,83,136,137]—π+π−p electropro-
duction. The photocouplings for the N(1440)1/2+ are from the RPP [76] and from Reference [138]—
blue square and triangle, respectively. The ranges of Q2 where the contributions from the meson–
baryon cloud remain substantial are highlighted in gray.

It is worth stressing that the CSM results for the Δ(1232)3/2+ and N(1440)1/2+

electroexcitation amplitudes were obtained using the same dressed-quark mass function,
i.e., M(k) in Figure 2: indeed, the theoretical analyses of both transitions used precisely the
same framework. The common quark mass function matches that obtained by solving the
quark gap equation in Figure 1 with a kernel built from the best available inputs for [77]: the
gluon two-point function, running coupling, and dressed gluon–quark vertex. Moreover,
the same mass function was also used in the successful description of the experimental
results on nucleon elastic electromagnetic form factors [68,79], and axial and pseudoscalar
form factors [101,141]. Such a mass function is also a key element in an ab initio treatment
of pion electromagnetic elastic and transition form factors [78,142,143].

These CSM results for meson and baryon properties, both ground and excited states,
are part of a large body of mutually consistent predictions. Their success in describing and
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explaining data relating to such a diverse array of systems provides strong evidence in
support of the position that dressed quarks, with dynamically generated running masses,
are the appropriate degrees-of-freedom for use in the description of the mass and structure
of all hadrons. This realization is one of the most important achievements of hadron physics
during the past decade, and it was only accomplished through numerous synergistic
interactions between experiment, phenomenology, and theory.

3.3. Novel Tests of CSM Predictions

In 2019, CSM predictions became available for the electrocouplings of the Δ(1600)3/2+ [74].
This baryon may be interpreted in quantum field theory as a state with aspects of the char-
acter of a first radial excitation of the Δ(1232)3/2+ [56,61], for which CSM electrocoupling
results became available earlier [68] and are discussed above.

No relevant experimental results were available when the Δ(1600)3/2+ predictions
were made. The first (and still preliminary) results for the Δ(1600)3/2+ electrocou-
plings only became available in the first half of 2022 [136,137,144]. They were extracted
from the analysis of π+π−p electroproduction off protons measured with the CLAS
detector [145,146] for W from 1.4–2.1 GeV and Q2 from 2–5 GeV2. Nine independent
one-fold differential cross sections were analyzed in each (W,Q2) bin. The final-state
hadron kinematics is fully determined by the five-fold differential cross sections. The
one-fold differential cross sections were obtained by integrating the five-fold differential
cross sections over different sets of four kinematic variables [82,83]. For extraction of the
electrocouplings, it was necessary to fit the data for the three invariant mass distributions
for the different pairs of final-state hadrons, the distributions of the final-state hadrons
over the CM polar angles θi (i = π+, π−, p f ), and the distributions over the three CM
angles α[i],[j] between the two planes: one of which [i] is the reaction plane defined by
the three-momentum of the γv and one of the final state hadrons, and the second [j] is
determined by the three-momenta of the other two final-state hadrons for the three possible
choices of the hadron pairs. Representative examples of the data measured are shown in
Figure 8 at the W-bins closest to the Breit–Wigner mass of the Δ(1600)3/2+ and in different
bins of Q2.

Figure 8. Regarding extraction of Δ(1600)3/2+ electrocouplings, representative examples of the
nine independent one-fold differential cross sections available from the π+π−p measurements with
CLAS [145,146] at two different Q2 values, along with the data fits within the data-driven meson–
baryon JM reaction model [75,82,83].

The N∗ electrocouplings on the domain W < 1.65 GeV were obtained from the fit of
the differential π+π−p photo- and electroproduction cross sections carried out within the
framework of the data-driven JM meson–baryon reaction model [67,80–83]. This model has
been developed by the CLAS Collaboration for the extraction of nucleon resonance electro-
couplings and their partial hadronic decay widths to the πΔ and ρp final states. Within the
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JM model, the full 3-body π+π−p electroproduction amplitude includes the contributions
from π−Δ++, ρp, π+Δ0, π+N(1520)3/2−, and π+N(1685)5/2+, with subsequent decays
of the unstable intermediate hadrons. It also contains direct 2π photo-/electroproduction
processes, where the final π+π−p state is created without the generation of unstable in-
termediate hadrons. Here the nucleon resonances contribute to the π−Δ++, π+Δ0, and
ρp channels.

Modeling of the non-resonant contributions is described in References [80–83]. For the
resonant contributions, the JM model includes all four-star Particle Data Group (PDG) N∗

states with observed decays to ππN, as well as the new N′(1720)3/2+ resonance [147,148]
observed in the combined analysis of π+π−p photo- and electroproduction data. The
resonant amplitudes are described within the unitarized Breit–Wigner Ansatz [83], thereby
ensuring consistency with restrictions imposed by the general unitarity condition. The
JM model offers a good description of the π+π−p differential cross sections in the entire
kinematic area covered by the data at W < 2.1 GeV and Q2 < 5 GeV2. All of the electro-
couplings extracted from the π+π−p data (published, in part, also in the PDG) have been
determined using the JM reaction model.

In the analyses of the π+π−p data [145,146], the following quantities were varied:
the γv pN∗ electrocouplings for the resonances in the mass range < 1.75 GeV, their partial
hadronic decay widths into the πΔ and ρp final states, their total decay widths, and the
non-resonant parameters of the JM model. For each trial attempt at a data description,
χ2/d.p. (d.p. = data point) was computed using the comparison between the measured
and computed nine one-fold differential cross sections. In the fits, the computed cross
sections closest to the data were selected by requiring χ2/d.p. to be below a predetermined
threshold, ensuring that the spread of the selected phenomenological fit cross sections lies
within the data uncertainties for most experimental data points. Representative examples
are shown by the family of curves in Figure 8.

The electrocouplings for the computed cross sections selected from the data fits were
averaged together, and their means were treated as the experimental value. The RMS
width of the determined electrocouplings was assigned as the corresponding uncertainty.
The preliminary results of this extraction for the Δ(1600)3/2+ [136,137,144] are shown
in Figure 9, wherein they are compared with the CSM predictions obtained three years
earlier [74]. These results were determined for overlapping W-intervals: 1.46–1.56 GeV,
1.51–1.61 GeV, and 1.56–1.66 GeV for Q2 from 2–5 GeV2. The non-resonant contributions
in these W-intervals are different. The electrocouplings determined from the independent
fits of the data within the three W-intervals are consistent, establishing their reliability
and confirming the CSM predictions. This success has markedly strengthened the body
of evidence that indicates that detailed information can be obtained on the momentum
dependence of the dressed-quark mass function from sound data on N∗ electroproduction
and, therefrom, deep insights into the character of EHM in the SM.

Figure 9. Preliminary Δ(1600)3/2+ electrocouplings with their assigned uncertainties, determined
from independent analysis of the π+π−p differential cross sections in three overlapping W intervals:
1.46–1.56 GeV (filled blue squares), 1.51–1.61 GeV (filled red triangles), and 1.56–1.66 GeV (filled black
triangles) [136,137,144]. CSM predictions [74] are drawn as solid red curves.
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4. Studies of N∗ Structure in Experiments with CLAS12 and Beyond

Most results on the N∗ electrocouplings have been obtained for Q2 < 5 GeV2. Detailed
comparison of these results with the CSM predictions allows for exploration of the quark
mass function within the range of quark momenta < 0.75 GeV, assuming equal sharing of
the virtual-photon momentum transfer between the three dressed quarks in the transition
between the ground and excited nucleon states. The results on the resonance electrocou-
plings in this range of quark momentum, shown in Figure 10 (top), cover distances over
which less than 30% of hadron mass is generated [9,10].

Figure 10. (Top) Momentum ranges accessible in the exploration of the momentum dependence of
the dressed-quark mass function using results on the Q2-evolution of γv pN∗ electrocouplings. The
range of k covered by available data is mostly from experiments with CLAS, shown in yellow. The
expected reach of CLAS12 experiments is shown in purple, and that achievable after a proposed
increase of the JLab beam energy to 22 GeV in cyan. (Bottom) Yields of representative exclusive
meson electroproduction channels available from the experiments with the CLAS12 detector.

In the northern spring of 2018, after completion of the 12-GeV-upgrade project, mea-
surements with the CLAS12 detector in Hall B at JLab commenced [47,48,149]. Currently,
CLAS12 is the only facility in the world capable of exploring exclusive meson electropro-
duction in the resonance region, exploiting the highest Q2 ever achieved for these processes.
Ongoing experiments with electron beam energies up to 11 GeV with CLAS12 offer a unique
opportunity to obtain information on the electrocouplings of the most prominent N∗ states
in the mass range up to 2.5 GeV at Q2 up to 10 GeV2 from the exclusive πN, KY (Y = Λ or
Σ), K∗Y, KY∗, and π+π−p channels [113,114,150–152]. Q2 versus W event distributions for
these exclusive reaction channels measured with CLAS12 at a beam energy of ∼11 GeV are
shown in Figure 10 (bottom). The first results from the CLAS12 N∗ program (at lower beam
energies of 6.5/7.5 GeV) have recently been published on the beam-recoil hyperon trans-
ferred polarization in K+Y electroproduction [153]. The increase in the Q2-coverage for
results on the electrocouplings from CLAS12 will enable exploration of the dressed-quark
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mass within the range of quark momenta where roughly 50% of hadron mass is expected
to be generated (see Figure 10 (top)).

In order to solve the challenging SM problems relating to EHM, the dressed quark
mass function should be charted over the entire quark momentum range up to ≈2 GeV.
This is the domain of transition from strong to perturbative QCD (see Figure 10 (top)) and
where dressed quarks and gluons become the relevant degrees-of-freedom as α̂/π → 1,
approaching the sQCD saturation regime (see Figure 2). This objective requires a further
extension of the electrocoupling measurements up to Q2 ≈ 30 GeV2. Discussions and
planning are currently underway, focusing on an energy increase of the JLab accelerator to
a beam energy of 22 GeV, after the completion of the experiments planned for the 12-GeV
program. Initial simulations of πN, KY, and π+π−p electroproduction at 22 GeV using the
existing CLAS12 detector at a luminosity up to (2 − 5)× 1035 cm−2s−1 have shown that
a measurement program of 1–2 years duration would enable measurements of sufficient
statistical accuracy to determine the γv pN∗ electrocouplings of the most prominent N∗

states over this full kinematic range.
Figure 11 shows the luminosity versus CM energy in lepton–proton collisions for

existing and foreseeable facilities capable of exploring hadron structure in measurements
with large-acceptance detectors. The luminosity requirements for the extraction of elec-
trocouplings within the Q2 range 10-30 GeV2 exceed by more than an order-of-magnitude
the maximum luminosity planned for experiments with the EIC [42] and EicC [45] ep
colliders and even more for other facilities. The combination of a high duty-factor JLab
electron beam at 22 GeV with the capacity to measure exclusive electroproduction reactions
at luminosities of (2 − 5)× 1035 cm−2s−1 using a large-acceptance detector, would make a
22 GeV JLab unique. It would be the only facility in the world able to explore the evolution
of hadron structure over essentially the full range of distances where the transition from
strong-coupling QCD to the weak-field domain is expected to occur.

Figure 11. Luminosity versus CM energy in lepton–proton collisions for existing and foreseeable
facilities capable of exploring hadron structure in measurements with large-acceptance detectors.

The increase of the JLab energy to 22 GeV, pushing the current CLAS12 detector
capabilities to measure exclusive electroproduction to the highest possible luminosity and
extending the available reaction models used for the extraction of the electrocouplings, will
offer the only foreseeable opportunity to explore how the dominant part of hadron mass
(up to 85%) and N∗ structure emerge from QCD. This would make an energy-upgraded
JLab at 22 GeV the ultimate QCD facility at the luminosity frontier.

5. Conclusions and Outlook

Baryons are the most fundamental three-body systems in Nature. If we do not understand
how QCD generates these bound states of three dressed quarks, then our understanding of
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Nature is incomplete. Remarkable progress has been achieved in recent decades through
the studies of the structure of the ground and excited nucleon states in experiments at JLab
during the 6-GeV era [1,28,47–49,72,154,155]. These experiments have provided a large array
of new opportunities for QCD-connected hadron structure theory by opening a door to the
exploration of many hitherto unseen facets of the strong interaction in the regime of large
running coupling, i.e., αs/π � 0.2, by providing the results on the γv pN∗ electrocouplings
for numerous N∗ states, with different quantum numbers and structural features.

High-quality meson electroproduction data from the 6-GeV era at JLab have enabled
the determination of the electrocouplings of most nucleon resonances in the mass range
up to 1.8 GeV for Q2 < 5 GeV2 (up to 7.5 GeV2 for the Δ(1232)3/2+ and N(1535)1/2−).
Consistent results on the Q2-evolution of these electrocouplings from analyses of π+n, π0 p,
ηp, and π+π−p electroproduction have demonstrated the capability of the reaction models
employed to extract the electrocouplings in independent studies of all of these different
exclusive channels. Above, we have sketched how comparisons between the experimental
results on the Q2-evolution of the γv pN∗ electroexcitation amplitudes and QCD-connected
theory have vastly improved our understanding of the momentum dependence of the
dressed-quark mass function, which is one of the three pillars of EHM. The remaining two
pillars are the running gluon mass and the QCD effective charge, and these entities, too,
are constrained by the electroexcitation data.

A good description of the Δ(1232)3/2+ and N(1440)1/2+ electrocouplings has been
achieved using CSMs in the full range of photon virtualities where the structure of these
excited states is principally determined by contributions from a core of three dressed
quarks. The successful description of the electrocouplings for nucleon resonances of
different structures, spin+isospin flip for the Δ(1232)3/2+, and the first radial excitation
of three dressed quarks for the N(1440)1/2+, was achieved with the same dressed quark
mass function. This mass function is determined with QCD dynamics, and such a running
mass has also been used in the successful description of data on elastic electromagnetic
nucleon and pion form factors, as well as for the description of the nucleon axial form factor
GA. In thereby arriving at a unification of diverse observables, one obtains compelling
evidence in support of the momentum dependence of the dressed quark mass used to
describe the results on the Q2-evolution of the electrocouplings.

This impressive hadron physics achievement in the past decade was accomplished through
synergistic efforts between experiment, phenomenology, and QCD-connected hadron struc-
ture theory. In 2019, CSMs provided parameter-free predictions for the electrocouplings of
the Δ(1600)3/2+. There were no experimental results available at that time. The first, pre-
liminary results on the Δ(1600)3/2+ electrocouplings extracted from the data on π+π−p
electroproduction are reported herein. They have strikingly confirmed the CSM predictions.

Most results for the γv pN∗ electrocouplings are currently available for Q2 < 5 GeV2,
allowing for the exploration of the dressed quark mass within the limited range of quark
momenta where less than 30% of hadron mass is expected to be generated. Experiments on
exclusive meson electroproduction in the resonance region are now in progress with the CLAS12
detector in Hall B at JLab, following the completion of the 12-GeV-upgrade project. CLAS12
is the only facility in the world capable of obtaining the electrocouplings of all prominent N∗

states in the still unexplored Q2 range from 5–10 GeV2 from measurements of πN, ηp, π+π−p,
and KY electroproduction. These data will probe the dressed-quark mass function at quark
momenta up to ≈1.1 GeV, a domain where up to 50% of hadron mass is generated.

In order to solve the problem of EHM, a key challenge within the SM, the dressed-
quark mass function should be mapped over the entire range of quark momenta up to
≈2 GeV, where the transition from strong to perturbative QCD takes place and where gluon
and quark quasiparticles with dynamically generated running masses emerge as α̂/π → 1.
This requires an extension of existing and anticipated data so that it covers the Q2-domain
from 10–30 GeV2. Explorations of the possibility to increase the JLab beam energy to
22 GeV are now in progress. Such a machine would enable coverage over the desired Q2

range within the region of W < 2.5 GeV. Simulations with the existing CLAS12 detector

17



Particles 2023, 6

configuration for the exclusive πN, KY, and π+π−p electroproduction channels at 22 GeV
beam energy and a luminosity of (2 − 5)× 1035 cm−2s−1 show that, with beam-times of
1–2 years, differential cross section and polarization asymmetry measurements of sufficient
statistical precision can be achieved to extract electrocouplings of all prominent resonances
up to 30 GeV2. Both the EIC and EicC ep colliders would need much higher and foreseeably
unreachable luminosities than currently envisaged in order to carry out such a program.
The combination of a high duty-factor 22 GeV JLab electron beam and the capability to
measure exclusive electroproduction events at high luminosities with a large-acceptance
detector would make JLab the ultimate QCD facility at the luminosity frontier. It would be
unique in possessing the capacity to explore the evolution of hadron mass and structure
over the full range of distances where the transition from sQCD to pQCD is expected.

Drawing a detailed map of proton structure is important because the proton is Nature’s
only absolutely stable bound state. However, understanding how QCD’s simplicity explains
the emergence of hadron mass and structure requires investment in a facility that can deliver
precision data on much more than one of Nature’s hadrons. An energy-upgraded JLab
complex is the only envisaged facility that could enable scientists to produce a sufficient
quantity of precise structure data on a wide range of hadrons with distinctly different quantum
numbers and thereby move into a new realm of understanding. There is elegance in simplicity
and beauty in diversity. If QCD possesses both, then it presents a very plausible archetype for
taking science beyond the Standard Model. In that case, nuclear physics at JLab 20+ has the
potential to deliver an answer that takes science far beyond its current boundaries.
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Abbreviations

The following abbreviations are used in this manuscript:

CM center-of-mass
CSM continuum Schwinger function method
DCSB dynamical chiral symmetry breaking
d.p. data point
EHM emergence of hadron mass
EIC Electron-Ion Collider (at Brookhaven National Laboratory)
EicC Electron-ion collider China
HB Higgs boson
JLab Thomas Jefferson National Accelerator Facility (Jefferson Laboratory)
JM JLab-Moscow State University
lQCD lattice-regularized quantum chromodynamics
NG (mode/boson) Nambu-Goldstone (mode/boson)
PDFs Particle Distribution Functions
PDG Particle Data Group (and associated publications)
pQCD perturbative QCD
QCD quantum chromodynamics
RMS root mean square
RPP Review of Particle Properties (and associated publications)
sQCD strong QCD
SM Standard Model of particle physics
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Abstract: The hadronization of a high-energy parton is described by fragmentation functions which
are introduced through QCD factorizations. While the hadronization mechanism per se remains
uknown, fragmentation functions can still be investigated qualitatively and quantitatively. The
qualitative study mainly concentrates on extracting genuine features based on the operator definition
in quantum field theory. The quantitative research focuses on describing a variety of experimental
data employing the fragmentation function given by the parameterizations or model calculations.
With the foundation of the transverse-momentum-dependent factorization, the QCD evolution of
leading twist transverse-momentum-dependent fragmentation functions has also been established.
In addition, the universality of fragmentation functions has been proven, albeit model-dependently,
so that it is possible to perform a global analysis of experimental data in different high-energy
reactions. The collective efforts may eventually reveal important information hidden in the shadow of
nonperturbative physics. This review covers the following topics: transverse-momentum-dependent
factorization and the corresponding QCD evolution, spin-dependent fragmentation functions at
leading and higher twists, several experimental measurements and corresponding phenomenological
studies, and some model calculations.

Keywords: fragmentation function; transverse-momentum-dependent factorization; QCD evolution;
spin-related effects

1. Introduction

Quantum chromodynamics (QCD) [1] is known as the fundamental theory of strong
interaction in the framework of Yang-Mills gauge field theory [2]. As a key property of QCD,
the color confinement prohibits direct detection of quarks and gluons, the fundamental
degrees of freedom, with any modern detectors. The emergence of color neutral hadrons
from colored quarks and gluons is still an unresolved problem and has received particular
interest in recent years [3]. With the progress of QCD into the precision era, unraveling the
hadronization mechanism in the high-energy scattering processes has become one of the
most active frontiers in nuclear and particle physics.

Due to the nonperturbative nature of QCD, it is still challenging to directly calculate
the hadronization process from first principles. Similar to the parton distribution functions
(PDFs) [4,5], which were originally defined as the probability density of finding a parton
inside the parent hadron, the concept of fragmentation functions (FFs) was introduced by
Berman, Bjorken, and Kogut [6] right after the parton model to describe the emergence of a
system of the hadron from a high-energy parton isolated in the phase space. An alternative
name, the parton decay function, has also frequently been used in early literature.

The modern concept of FFs in QCD was first introduced to describe the inclusive
production of a desired hadron in the e+e− annihilation [7,8], which is still the cleanest
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reaction currently available to investigate the fragmentation process. Within the QCD-
improved parton model, the FF has its foundation in the factorization theorem [9,10], in
which the differential cross section is approximated as a convolution of short-distance
hard scattering and long-distance matrix elements with corrections formally suppressed
by inverse powers of a hard scale, e.g., the center-of-mass (c.m.) energy Q =

√
s in the

e+e− annihilation. The predictive power of this theoretical framework relies on the control
of the hard probe, which can be achieved by our ability to calculate the partonic cross
section order by order in the perturbation theory, and the universality of the long-distance
functions, such as the FFs, to be tested in multiple high-energy scattering processes.

For a single-scale process, e.g., e+e− → hX, where h represents the identified hadron
in the final state and X denotes the undetected particles, the process is not sensitive to the
confined motion of quarks and gluons in the hadronization process, and one can apply the
colinear factorization with the emergence of the detected hadron described by a colinear
FF Df→h(z), where the subscript f stands for the parton flavor and z is the longitudinal
momentum fraction carried by the hadron h with respect to the fragmenting parton. If two
hadrons are identified in a process, e.g., e+e− → hAhBX, where hA and hB are detected
hadrons in the final state, the reaction becomes a double-scale problem with one scale
Q given by the hard probe and the other scale provided by the transverse momentum
imbalance, |pA⊥ + pB⊥|. When the second scale is much smaller than Q, i.e., the two
hadrons are nearly back to back, one needs to use the transverse-momentum-dependent
(TMD) factorization. The emergence of each of the hadrons is described by a TMD FF
Df→h(z, k⊥), where k⊥ is the transverse momentum of the fragmenting parton with respect
to the observed hadron [8,11]. When the two scales are compatible, the reaction effectively
becomes a single-scale process, and one can again use the colinear factorization. The
matching between the two regions has been developed. The TMD FFs defined in the
e+e− annihilation also play an important role in the study of nucleon three-dimensional
structures via the semi-inclusive deep inelastic scattering (SIDIS) process [12]. Instead of
identifying two hadrons in a reaction, one can also access TMD FFs in the single-hadron
production process by reconstructing the thrust axis, which provides the sensitivity to the
transverse momentum of the observed hadron, as proposed in recent years [13–16].

Taking the parton spin degree of freedom into account, one can define polarized or
spin-dependent TMD FFs. They essentially reflect the correlation between parton transverse
momentum and its spin during the hadronization process and result in rich phenomena
in high-energy scattering processes. For example, the Collins fragmentation function
H⊥

1 (z, k⊥) [17], naively interpreted as the probability density of a transversely polarized
quark fragmenting into an unpolarized hadron, can lead to a single spin asymmetry (SSA)
in the SIDIS process with a transversely polarized target [18]. This asymmetry is a key
observable for the determination of the quark transversity distribution, the net density
of a transversely polarized quark in a transversely polarized nucleon. It also leads to
azimuthal asymmetries in e+e− annihilation as measured by Belle, BaBar, and BESIII. The
progress of experimental techniques to determine the spin state of produced hyperons,
such as Λ and Ω, and vector mesons, such as ρ and K∗, offer us the opportunity to extract
additional information from FFs. This is far beyond a trivial extension since the spin has
been proven to be a powerful quantity to test theories and models, especially in hadron
physics. The recent measurement of the spontaneous polarization of Λ from unpolarized
e+e− annihilation is such an instance [19]. This observation can be explained by a naively
time-reversal odd (T-odd) TMD FF D⊥

1T(z, k⊥) and has received interests from various
groups [15,20–32].

In addition to the leading-twist FFs, which usually have probability interpretations,
the high-twist FFs have been found o be much more important than expected in recent years
for understanding precise experimental data [33–66]. Although the colinear factorization at
subleading power was demonstrated some time ago, the TMD factorization beyond the
leading power is still under exploration, and some approaches have been proposed [67–75].
Although high-twist contributions are formally power suppressed, their contributions to the
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cross section might not be negligible and may have significant effects in certain kinematics
or observables. The inclusion of high-twist FFs will also modify the evolution equation and
consequently affect the leading-twist FFs. The TMD factorization at subleading power was
recently explored with different approaches. Overall, many efforts, both theoretical and
experimental, are still required to understand the hadronization process and the upcoming
data from future electron-ion colliders.

The remainder of this review is organized as follows. In Section 2 we use e+e− → hAhBX
as an example to present the flow of deriving the TMD factorization and the QCD evo-
lution equation of TMD FFs. In Section 3, we present the FFs up to the twist-4 level for
spin-0, -1/2, and 1 hadron productions. In Section 4, we summarize the experimental
measurements towards understanding the spin-dependent FFs. In Section 5, we briefly lay
out some model calculations. A summary is given in Section 6.

2. Factorization and Evolution

The modern concept of FFs has established on the QCD factorization theorems, which
can be derived either from calculating traditional Feynman diagrams in perturbative field
theory [10,11,76–81] or in effective theories [82–86]. In the former approach, one first
identifies a collection of Feynman diagrams that offers the leading contribution through
the Libby–Sterman analysis [87,88]. In this method, the leading contribution is represented
by the reduced diagrams.

Taking e+e− → hAhBX process with hA, hB traveling along almost back-to-back direc-
tions as an example [11], the leading regions are presented in Figure 1. The cross section
is the product of various ingredients, such as the hard part H, the soft part S, and the
colinear parts JA, JB. We work in the light-cone coordinate, so that a four momentum
p can be written as follows: pμ = (p+, p−, p⊥) with p± = 1√

2
(p0 ± p3). In the kinematic

region where TMD factorization applies, the transverse momentum is considerably small
compared with that along the longitudinal direction. Therefore, the momenta of the almost
back-to-back hadrons A and B scale as pA ∼ Q(1, λ,

√
λ) and pB ∼ Q(λ, 1,

√
λ), where Q

is the large momentum scale and λ � 1 is a small parameter. The hard part H computes
the cross section of interaction among hard partons whose momenta scale as Q(1, 1, 1)
in perturbative field theory. The contribution from colinear partons whose momenta are
colinear with the final state hadrons A and B are evaluated in the colinear function JA/B.
This process results in the gauge invariant bare FFs. The soft part calculates the contri-
bution from soft gluons whose momenta typically take the form of Q(λ, λ, λ). They will
be absorbed into the definition of TMD FFs eventually and convert the bare FFs into the
renormalized ones.

...

... ...

...
...

...

S

JA

JB

H H

Figure 1. Leading regions for e+e− → hAhBX.
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The interactions between different parts can be eliminated via applying appropriate
kinematic approximations and the Ward identity. Finally, the cross section is given by a
convolution of those well-separated parts, and we arrive at the factorization theorem of
this process.

Depending on the physics of interest, we may derive either colinear factorization or
transverse-momentum-dependent (TMD) factorization theorems. For the differential cross
section of e+e− → hAhBX as a function of the relative transverse momentum between hA
and hB, the TMD factorization theorem applies.

In the single-photon-exchange approximation, the differential cross section of this
process can be written as the production of a leptonic tensor and a hadronic tensor.
It reads as follows [43]:

dσ

dydzAdzBd2PA⊥
=

2πNcα2

Q4 LμνWμν, (1)

where, α is the coupling constant, Nc = 3 is the color factor, Q is the center-of-mass energy
of the colliding leptons, y = (1 + cos θ)/2 with θ the angle between incoming electron and
the outgoing hadron hA, zA and zB are light-cone momentum fractions of hA and hB, and
PA⊥ is the transverse momentum of hA with respect to the direction of the hB momentum.
For the unpolarized lepton beams, the leptonic tensor Lμν is given by the following:

Lμν = l1μl2ν + l1νl2μ − gμνl1 · l2, (2)

with l1 and l2 being the momenta of colliding leptons. The hadronic tensor Wμν contains
nonperturbative quantities and is laid out as follows:

Wμν =∑
f
|Hf (Q, μ)2|μν

∫
d2kA⊥d2kB⊥δ(2)(kA⊥ + kB⊥ − q⊥)

×
[

DhA
1q (zA, pA⊥; μ, ζA)DhB

1q̄ (zB, pB⊥; μ, ζB) + . . .
]
, (3)

where q⊥ = −PA⊥/zA, and Hf (Q, μ) is the hard scattering factor that can be evaluated in

the perturbative QCD. Here, DhA
1q (zA, pA⊥; μ, ζA) is the TMD FF with pA⊥ the transverse

momentum of hadron with respect to the fragmenting quark direction, μ is a renormal-
ization scale, and ζA is a variable to regularize the rapidity divergence. Notice that ki,⊥ is
the relative transverse momentum of the fragmenting parton with respect to the hadron
momentum. Therefore, we have pi,⊥ by pi,⊥ = −ziki,⊥. Please also notice the difference
between PA⊥ and pA⊥. The three-dot symbol stands for various spin-dependent terms
which are not explicitly shown.

It is more convenient to perform the TMD evolution in the coordinate space than in
the momentum space. Therefore, we need the Fourier transform,

Dh
1q(z, p⊥; μ, ζ) =

1
z2

∫
d2 p⊥ei 1

z bT ·p⊥ D̃h
1q(z, bT ; μ, ζ), (4)

to translate the TMD FF into coordinate space one. The hadronic tensor then becomes
the following:

Wμν =∑
f
|Hf (Q, μ)2|μν

∫ d2bT

(2π)2 e−iq⊥·bT
[

D̃hA
1q (zA, bT ; μ, ζA)D̃hB

1q̄ (zB, bT ; μ, ζB) + . . .
]
. (5)

The TMD FF in the coordinate space is defined as the product of transition matrix
elements between the vacuum and the hadronic final states.
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Before presenting the final definition for the TMD FF in the coordinate space, we first
show the unsubtracted version, which appears in the LO calculation. For the production of
hadron A, it reads as follows:

D̃hA ,unsub
1q (z, bT ; ypA − yB) =

1
4Nc

TrCTrD
1
z ∑

X

∫ dx−

2π
eik+x−〈0|γ+L( x

2
;+∞, nB)

× ψq(
x
2
)|h1, X〉〈h1, X|ψ̄q(−

x
2
)L(− x

2
;+∞, nB)

†|0〉, (6)

where the position vector x = (0, x−, bT) contains only minus and transverse components,

ypA = 1
2 ln 2(p+A)

2

m2
A

is the rapidity of hadron A, TrC is a trace in the color space, and TrD

is a trace in the Dirac space. The direction of the Wilson lines in the FF of hadron A is
specified by the direction of hadron B which is denoted as nB and vice versa. Notice that the
rapidity parameters yA → +∞ and yB → −∞ are introduce, so that nA = (1,−e−2yA , 0T)
and nB = (−e2yB , 1, 0T) are slightly space-like. Please also notice the difference between
ypA and yA. The Wilson line starting from the position x is defined as follows:

L(x;+∞, n)ab = P
{

e−ig0
∫ +∞

0 dλn·Aα
(0)(x+λn)tα

}
ab

. (7)

with a and b being the color indices, and g0 and Aα
(0) the bare coupling and the bare

gluon field.
Taking the yA → +∞ and yB → −∞ limit and absorbing the soft factors into the

unsubtracted TMD FF, we arrive at the final definition of the TMD FF:

D̃hA
1q (z, bT ; μ, ζA) = D̃hA ,unsub

1q (z, bT ; ypA − (−∞))

×

√√√√ S̃(0)(bT ;+∞, yn)

S̃(0)(bT ;+∞,−∞)S̃(0)(bT ; yn,−∞)
× ZDZ2, (8)

where yn is an arbitrary rapidity introduced to separate ζA ≡ m2
A

z2
A

e2(ypA−yn) from

ζB ≡ m2
B

z2
B

e2(yn−ypB ), and ZD, Z2 are renormalization factors. The bare soft factor S̃(0) is

defined as the expectation values of Wilson lines on the vacuum, reading as follows:

S̃(0)(bT ; yA, yB) =
1

Nc
〈0|L(bT

2
;+∞, nB)

†
caL(

bT
2

;+∞, nA)ad

×L(−bT
2

;+∞, nB)bcL(−
bT
2

;+∞, nA)
†
db|0〉. (9)

2.1. Evolution Equations for TMD FFs

To regularize the ultraviolet (UV) and rapidity divergences, the energy scale μ and√
ζ are introduced. As a consequence, the TMD FFs differ at different energy scales. The

evolution effects are important for phenomenological studies. The QCD evolution for TMD
FFs with respect to ζ is controlled by the Collins–Soper (CS) equation [10,11], which is
given as follows:

∂ ln D̃h
1q(z, bT ; μ, ζ)

∂ ln
√

ζ
= K̃(bT ; μ), (10)

with K̃(bT ; μ) being the CS evolution kernel. The scale dependence of the evolution kernel
is governed by

dK̃(bT ; μ)

d ln μ
= −γK(μ), (11)
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where γK(μ) is the anomalous dimension. It is given by γK(μ) =
2CF

π αs(μ) with CF = 4/3
being the color factor and αs being the running coupling at the LO accuracy [12].

The μ dependence of the TMD FF is then given by

d ln D̃h
1q(z, bT ; μ, ζ)

∂ ln μ
= γD(μ;

ζ

μ2 ), (12)

where γD is another anomalous dimension. At the LO accuracy [12], it is given as follows:
γD(μ, ζ/μ2) = αs(μ)

CF
π ( 3

2 − ln ζ
μ2 ).

The TMD FF defined by Equation (8) is actually calculable in the colinear factorization
approach in the small-bT regime. However, at the large bT region, the discrepancy of
these two approaches grows in terms of ΛQCDbT . This region is usually referred to as
the nonperturbative regime since a large coordinate corresponds to a small energy scale.
The perturbative treatment of the QCD evolution in this region is no longer reliable. To
have a consistent formula, the b∗-prescription is usually adopted in phenomenology. By

introducing b∗ = |bT |/
√

1 + b2
T/b2

max and μb = 2e−γE /b∗, we can separate the perturbative
part from the nonperturbative part in the QCD evolution. Here, γE is the Euler constant,
and bmax is an infrared cutoff which is properly chosen to guarantee that μb � ΛQCD.
Employing the b∗ prescription, the QCD evolution is always performed in the realm of
the perturbative QCD. Therefore, this approach underestimates the contribution from the
nonperturbative regime. This part of the contribution can be reintegrated into the final
prescription by the introduction of a nonperturbative factor.

Ultimately, we arrive at [12]

Dh
1q(z, bT ; μ, ζ) = Dh

1q(z, b∗T ; μ0 = μb, ζ0 = μ2
b)

× exp
{

ln
√

ζ

μb
K̃(b∗; μb) +

∫ μ

μb

dμ′

μ′ γD(μ
′;

ζ

μ′2 )
}

× exp
{
− Snp(z, |bT |, ζ)

}
, (13)

where the last line is the nonperturbative function that returns the nonperturbative effect
that has been deliberately removed from the QCD evolution in the b∗-prescription. There is
no theoretical approach that can evaluate this nonperturbative function other than the one
that extracts it from experimental data [89–98]. Notice that [99] present a different method
to address the nonperturbative physics. Here, Dh

1q(z, b∗T ; μ0 = μb, ζ0 = μ2
b) is the FF at the

initial scale. In the phenomenology, it is usually chosen to coincide with the colinear FF
Dh

1q(z, μ f ) with the factorization scale specified by μ f = μb.
Similar to the PDF case, QCD evolution tends to broaden the kT distribution width at

higher energy scales. Both unpolarized and spin-dependent FFs show such a behavior [100].

2.2. TMD Factorization at the Higher Twist

In a semi-inclusive process, normally we can find two energy scales: the typical transverse
momentum q⊥ and the hardest energy scale Q. In the region of Q � q⊥ � ΛQCD, the TMD
factorization framework at the leading twist usually works very well. When q⊥ ∼ Q � ΛQCD,
we should fall back to the colinear factorization. However, in between, there is still a large phase
space where q⊥ is smaller than Q but not much smaller. This is the kinematic region where
both the TMD factorization and the colinear factorization can approximately apply. However,
the prediction from the TMD factorization deviates from the experimental measurements
when q⊥/Q becomes not very small, calling for the inclusion of higher twist corrections. The
higher twist corrections are also usually referred to as power corrections since they provide
contributions in terms of (q⊥/Q)n. In addition, twist-3 contributions usually introduce new
asymmetries that do not appear at the leading twist level. A comprehensive study on the
higher twist contributions is thus vital in phenomenology. Contributions from higher twist
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TMD PDFs and FFs were studied some time ago [42], but few advances have been made in
the systematic derivations of the TMD factorization formula at the higher twist gain. Various
theoretical methods have been applied to derive the TMD factorization scheme at the twist-3
level, such as the TMD operator expansion technique [67–69], the soft-colinear effective theory
approach [70], factorization from functional integral [71–74], and a very recent work from [75],
etc. The TMD factorization at the higher twist level is far from being completed, which requires
further theoretical efforts.

3. Spin-Dependent TMD FFs

In semi-inclusive reactions, the experimental observables are usually different az-
imuthal asymmetries. In the kinematic region of TMD factorization, they are directly linked
to TMD PDFs or FFs. The transverse momenta of partons and hadrons are often entangled
with their polarizations. As a consequence, there are abundant polarization-dependent
azimuthal asymmetries that can be measured in the experiment. This is particularly true for
the transverse polarization. It is thought to provide only subleading power contributions
compared to the longitudinal polarization at high energy; however, it often generates
leading power contributions when correlated with the transverse momenta. In this section,
we summarize the definition of the spin-dependent TMD FFs for hadrons with different
spins. The following discussion only applies at the LO level since the TMD factorization
for higher twist contributions is still far from being concluded. Therefore, we remove the
scale dependence from TMD FFs.

3.1. The Intuitive Definition of TMD FFs

FFs represent the momentum distribution of a hadron inside of a hadronic jet produced
by the fragmenting high-energy parton. We use Dq→h(k; p) to denote the probability density
of producing a hadron h with momentum p from a quark with momentum k.

In the high-energy limit, we can safely neglect the quark and hadron mass. Therefore,
we have k2 = p2 = 0. In the naive parton model picture, the hadrons move colinearly with
the parent quark. We thus have p = zk where p is the hadron momentum, k is the quark
momentum, and z is the momentum fraction. In this case, the FF is only a scalar function
of z. We have

Dq→h(k; p) = Dq→h
1 (z), (14)

where Dq→h
1 (z) is simply the unpolarized FF.

With the spin degree of freedom being taken into account, the FFs will also depend
on additional parameters which characterize the polarization of the final state hadron or
the fragmenting quark. For example, for the production of spin-1/2 hadrons, we need
to introduce λq and λ to describe the helicities and introduce�sTq and �ST to describe the
transverse polarizations of the quark and the hadron. With more available parameters, we
can construct two additional scalar structures, λqλh and�sTq · �ST , according to the parity
conservation. Therefore, the complete decomposition of the FF is given by

Dq→h(k, Sq; p, S) = Dq→h
1 (z) + λqλGq→h

1L (z) +�sTq · �ST Hq→h
1T (z), (15)

where G1L(z) and H1T(z) are the longitudinal and transverse spin transfers from the quark
to the hadron, respectively. The physical interpretations of these probability densities
coincide with those of the leading twist FFs in the colinear factorization approach.

In some cases, the transverse momentum of the final state hadron with respect to the
quark momentum becomes relevant to the observable of interest. The interplay between the
transverse momentum p⊥ and the polarization parameters induces considerably intriguing
phenomena. Again, we use the spin-1/2 hadron production as an example. From the
parton model, we obtain the following eight TMD probability densities:
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D(k, Sq; p, S) =D1(z, p⊥) + λqλG1L(z, p⊥) +�sTq · �ST H1T(z, p⊥)

+
1
M

�ST · (�̂k × �p⊥)D⊥
1T(z, p⊥) +

1
M

λq(�ST · �p⊥)G⊥
1T(z, p⊥)

+
1
M
�sTq · (�̂k × �p⊥)H⊥

1 (z, p⊥) +
1
M

λ(�sTq · �p⊥)H⊥
1L(z, p⊥)

+
1

M2 (�sTq · �p⊥)(�ST · �p⊥)H⊥
1T(z, p⊥). (16)

Here, we have dropped the q → h superscript for simplicity. These TMD FFs cor-
respond to the eight leading twist TMD FFs defined in the TMD factorization approach.
Among them, we notice in particular the famous Collins function H⊥

1 [17] and the Sivers-
type FF D⊥

1T [101,102]. They are usually referred to as the naive-T-odd FFs. In neglecting
the interaction among the final state hadrons and the gauge link (which will be explained
below), the time-reversal invariance demands that these two functions disappear. How-
ever, the time-reversal operation converts the “out” state to the “in” state. The interaction
among hadrons suggests that one cannot find a simple relation between the “in” and “out”
states any longer. Therefore, the time-reversal invariance actually poses no constraints
on FFs. This feature can be fully appreciated in the context of parton correlators in the
next subsection. Furthermore, we use H to denote FFs accompanied with the transverse
polarization of the fragmenting quark�sTq. They are chiral-odd FFs. The reason for this will
also be explained later.

3.2. The Definition of TMD FFs from the Parton Correlators

In the language of quantum field theory, the quark FFs are defined via the decom-
position of parton correlators, such as the quark–quark correlator and the quark–gluon
correlator. Usually, we need to define the gauge-invariant quark–quark correlators in the
very beginning. From [8,42,43,50,64], we have the following:

Ξ̂(0)
ij (k; p, S) =

1
2π ∑

X

∫
d4ξe−ikξ〈0|L†(0; ∞)ψi(0)|p, S; X〉〈p, S; X|ψ̄j(ξ)L(ξ; ∞)|0〉, (17)

where ξ is the coordinate of the quark field, k and p denote the 4-momenta of the fragment-
ing quark and the produced hadron, respectively; S denotes the hadron spin; and L(ξ; ∞)
is the gauge link that ensures the gauge invariance of the definition of the correlator. We
use i and j to represent one component of the corresponding spinor. Therefore, Ξ̂(0)

ij (k; p, S)

is actually one element in a 4 × 4 matrix which is denoted by Ξ̂(0)(k; p, S).
As for the TMD FFs, we can integrate the above master correlator over the k− compo-

nent and obtain the following TMD quark–quark correlator:

Ξ̂(0)
ij (z, k⊥; p, S) = ∑

X

∫ p+dξ−

2π
d2ξ⊥e−i(p+ξ−/z−�k⊥·�ξ⊥)

× 〈0|L†(0; ∞)ψi(0)|p, S; X〉〈p, S; X|ψ̄j(ξ)L(ξ; ∞)|0〉, (18)

where z = p+/k+ is the longitudinal momentum fraction of the hadron, and k⊥ is the
transverse momentum of the fragmenting quark with respect to the hadron momentum.
Unlike the discussion in the previous sections, it is more convenient to express the parton
correlators as a function of k⊥ instead of p⊥. Nonetheless, since we have the approximation
k⊥ = −p⊥/z, these two methods are equivalent.

Although the TMD quark–quark correlator is a nonperturbative object, we can still
discuss some general features from the definition. For instance, it possesses hermiticity,
parity invariance, and charge-conjugation symmetry. As will be shown below, these
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properties will constrain the structures of the correlator. However, unlike the case for PDFs,
the time-reversal invariance does not mean much for FFs.

Furthermore, the quark–quark correlator is a 4× 4 matrix in the Dirac space. Therefore,
it can always be decomposed in terms of 16 Γ-matrices, i.e.,

Ξ̂(0)(z, k⊥; p, S) = Ξ(0)(z, k⊥; p, S) + iγ5Ξ̃(0)(z, k⊥; p, S) + γαΞ(0)
α (z, k⊥; p, S)

+ γ5γαΞ̃(0)
α (z, k⊥; p, S) + iσαβγ5Ξ(0)

αβ (z, k⊥; p, S). (19)

The coefficient functions Ξ(0), Ξ̃(0), Ξ(0)
α , Ξ̃(0)

α and Ξ(0)
αβ are given by the trace of the corre-

sponding Γ-matrix with the correlator. These coefficient functions can further be decom-
posed into the products of scalar functions with basic Lorentz covariants according to their
Lorentz transformation properties. The basic Lorentz covariants are constructed in terms
of the available kinematic variables used in the reaction process. The scalar functions are
the corresponding TMD FFs. We will present the detailed decomposition in the following
subsections. Notice that the TMD quark–quark correlator given by Equation (18) satisfies
the constraints of hermiticity and parity conservation. This will limit the allowed Lorentz
structures of the parton correlator.

Higher twist TMD FFs also receive contributions from quark–gluon
correlators [42,43,50,64] in addition to the quark–quark correlator mentioned above. For
example, the complete decomposition of twist-3 TMD FFs also involves contributions from
the following correlator:

Ξ̂(1)
ρ,ij(k; p, S) =∑

X

∫ d4ξ

2π
e−ik·ξ〈0|L†(0; ∞)Dρ(0)ψi(0)|p, S; X〉〈p, S; X|ψ̄j(ξ)L(ξ; ∞)|0〉, (20)

where Dρ(y) ≡ −i∂ρ + gAρ(y) and Aρ(y) denote the gluon field. However, the twist-3
TMD FFs defined via these quark–gluon correlators are not independent from those defined
via the quark–quark correlator [64,65]. They are related to each other by a set of equations
derived using the QCD equation of motion γ · D(y)ψ(y) = 0. Therefore, we will only
show the explicit decomposition of the TMD FFs from the quark–quark correlator in the
following subsections.

3.3. The Spin Dependence

With the spin degree of freedom being taken into account, the basic Lorentz covariants
in the decompositions of the coefficient functions in Equation (19) depend on not only
momenta but also parameters describing the hadron polarization. The hadron polarization
is defined in the rest frame of the hadron and is described by the spin density matrix.

For spin-1/2 hadrons, the spin density matrix is given by

ρ =
1
2

(
1 + �S ·�σ

)
, (21)

where�σ is the Pauli matrix, and �S is the polarization vector in the rest frame of the hadron.
The covariant form of the polarization vector reads as follows:

Sμ = λ
p+

M
n̄μ + Sμ

T − λ
M

2p+
nμ. (22)

Here, M is the hadron mass, λ is the helicity, and Sμ
T is the transverse polarization

vector of the hadron. We have employed n̄μ to represent the light-cone plus direction and
nμ to denote the minus direction. For spin-1/2 hadrons, an additional pseudo-scalar λ and
an axial-vector Sμ

T are at our disposal for constructing the basic Lorentz tensors.
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For spin-1 hadrons, such as the vector mesons, the polarization is described by a
3 × 3 density matrix, which is usually given as [47]

ρ =
1
3
(1 +

3
2

SiΣi + 3TijΣij). (23)

Here, Σi is the spin operator of spin-1 particle. The rank-2 tensor polarization basis Σij

is defined by

Σij ≡ 1
2
(ΣiΣj + ΣjΣi)− 2

3
1δij. (24)

where the second term subtracts the diagonal elements from the product in the first term to
give the relation

Σxx + Σyy + Σzz = 0. (25)

This can be easily seen from the square of the spin-1 operator, i.e., Σ2 ≡ ΣxΣx +
ΣyΣy + ΣzΣz = s(s + 1)1 with s = 1 for spin-1. From Equation (23), we find that a
polarization tensor T is required to fully describe the polarization of a vector meson
besides the polarization vector S. The polarization vector S is similar to that of spin-1/2
hadrons. It takes the same covariant form as laid out in Equation (22). The polarization
tensor Tij = Tr(ρΣij) has five independent components that consist of a Lorentz scalar
SLL, a Lorentz vector Sμ

LT = (0, Sx
LT , Sy

LT , 0) and a Lorentz tensor Sμν
TT that has two nonzero

independent components (Sxx
TT = −Syy

TT and Sxy
TT = Syx

TT). It is parameterized as follows:

T =
1
2

⎛⎝ − 2
3 SLL + Sxx

TT Sxy
TT Sx

LT
Sxy

TT − 2
3 SLL − Sxx

TT Sy
LT

Sx
LT Sy

LT
4
3 SLL

⎞⎠. (26)

The Lorentz covariant form for the polarization tensor is expressed as [47]

Tμν =
1
2

[4
3

SLL

( p+

M

)2
n̄μn̄ν +

p+

M
n{μSν}

LT − 2
3

SLL(n̄{μnν} − gμν
T )

+ Sμν
TT − M

2p+
n̄{μSν}

LT +
1
3

SLL

( M
p+

)2
nμnν

]
, (27)

where we have used the shorthand notation A{μBν} ≡ AμBν + AνBμ.
For spin-3/2 hadrons, such as the decuplet baryons, the polarization is described by a

4 × 4 density matrix which is given by [103,104]

ρ =
1
4

(
1 +

4
5

SiΣi +
2
3

TijΣij +
8
9

RijkΣijk
)

. (28)

Here, Σi is the spin operator of the spin-3/2 particle, and Si is the corresponding
polarization vector. Similar with that for spin-1 case, (Σij) is the polarization tensor basis
which has five independent components. It can be constructed from Σi and is given by

Σij =
1
2

(
ΣiΣj + ΣjΣi

)
− 5

4
δij1, (29)

Notice that the square of the spin-3/2 operator is given by ∑i(Σi)2 = 3
2 (

3
2 + 1)1 = 15

4 1.
The rank-2 tensor polarization basis for spin-3/2, Σij, is also chosen to be traceless as laid
out by Equation (25). Therefore, the second term in Equation (29) is different from that
in Equation (24) for spin-1 hadrons. The corresponding polarization tensor Tij also has
five independent components which are the same as those for spin-1 hadrons. The rank-3
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tensor polarization basis Σijk is unique for spin-3/2 hadrons. It has seven independent
components which can be constructed as follows:

Σijk =
1
6

Σ{iΣjΣk} − 41
60

(
δijΣk + δjkΣi + δkiΣj

)
=

1
3

(
ΣijΣk + ΣjkΣi + ΣkiΣj

)
− 4

15

(
δijΣk + δjkΣi + δkiΣj

)
, (30)

where the symbol {· · · } stands for the sum of all possible permutations. The corresponding
rank-3 spin tensor Rijk is defined as follows:

Rijk =
1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ −3Sx
LLT + Sxxx

TTT −Sy
LLT + Syxx

TTT −2SLLL + Sxx
LTT

−Sy
LLT + Syxx

TTT −Sx
LLT − Sxxx

TTT Sxy
LTT

−2SLLL + Sxx
LTT Sxy

LTT 4Sx
LLT

⎞⎠
⎛⎝ −Sy

LLT + Syxx
TTT −Sx

LLT − Sxxx
TTT Sxy

LTT
−Sx

LLT − Sxxx
TTT −3Sy

LLT − Syxx
TTT −2SLLL − Sxx

LTT
Sxy

LTT −2SLLL − Sxx
LTT 4Sy

LLT

⎞⎠
⎛⎝ −2SLLL + Sxx

LTT Sxy
LTT 4Sx

LLT
Sxy

LTT −2SLLL − Sxx
LTT 4Sy

LLT
4Sx

LLT 4Sy
LLT 4SLLL

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (31)

Meanwhile, the Lorentz covariant form is given as follows:

Rμνρ =
1
4

{
SLLL

[
1
2

(
M

P · n̄

)3
n̄μn̄νn̄ρ − 1

2

(
M

P · n̄

)(
n̄{μn̄νnρ} − n̄{μgνρ}

T

)
+

(
P · n̄
M

)(
n̄{μnνnρ} − n{μgνρ}

T

)
− 4

(
P · n̄
M

)3
nμnνnρ

]

+
1
2

(
M

P · n̄

)2
n̄{μn̄νSρ}

LLT + 2
(

P · n̄
M

)2
n{μnνSρ}

LLT − 2n̄{μnνSρ}
LLT +

1
2

S{μ
LLT gνρ}

T

+
1
4

(
M

P · n̄

)
n̄{μSνρ}

LTT − 1
2

(
P · n̄
M

)
n{μSνρ}

LTT + Sμνρ
TTT

}
. (32)

3.4. Decomposition Result for Spin-Dependent TMD FFs

The results for TMD FFs of spin-1 hadrons defined via quark–quark correlator exist
up to twist-4 level in the literature [65]. The leading twist TMD FFs for spin-3/2 hadrons
have also been presented in [104]. In this section, we summarize the general decomposition
of the quark–quark correlator in terms of TMD FFs for the unpolarized part, polarization-
vector-dependent part, rank-2-polarization-tensor-dependent part, and rank-3-polarization-
tensor-dependent parts. To describe the production of pseudoscalar mesons, we only need
the unpolarized part. To describe the production of baryons, we need to combine the
unpolarized and the polarization-vector-dependent parts. The description of the spin-3/2
hadron production requires all four parts. However, it should be noted that different
conventions are employed in different works.

The notation system for TMD FFs in this review are laid out here. We use D, G, and H
to denote FFs of unpolarized, longitudinally polarized, and transversely polarized quarks,
respectively. They are obtained from the decomposition of the γμ, γ5γμ and γ5σμν terms
of the quark–quark correlator. Those FFs defined from the decomposition of the 1 and γ5
terms are denoted as E. We use the numbers 1 and 3 in the subscripts to denote the leading
twist and twist-4 FFs, respectively. Other FFs without numbers in the subscripts are at the
twist-3 level. The polarization of the produced hadron will be specified in the subscripts,
where L and T represent longitudinal and transverse polarizations, and LL, LT, and TT
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stand for the rank-2-tensor polarizations. The symbol ⊥ in the superscript implies that the
corresponding basic Lorentz structure depends on the transverse momentum k⊥.

The decomposition for the unpolarized part is given by the following:

zΞU(0)(z, k⊥; p) = ME(z, k⊥), (33)

zΞ̃U(0)(z, k⊥; p) = 0, (34)

zΞU(0)
α (z, k⊥; p) = p+n̄αD1(z, k⊥) + k⊥αD⊥(z, k⊥) +

M2

p+
nαD3(z, k⊥), (35)

zΞ̃U(0)
α (z, k⊥; p) = −k̃⊥αG⊥(z, k⊥), (36)

zΞU(0)
ρα (z, k⊥; p) = − p+

M
n̄[ρ k̃⊥α]H

⊥
1 (z, k⊥) + Mε⊥ρα H(z, k⊥)−

M
p+

n[ρ k̃⊥α]H
⊥
3 (z, k⊥). (37)

Here, k̃⊥α ≡ ε⊥μαkμ
⊥ denotes the transverse vector orthogonal to k⊥α, with ε⊥μν being

defined as ε⊥μν ≡ εμναβn̄αnβ. There are eight TMD FFs for the unpolarized part. Among
them, the number density D1 and the Collins function H⊥

1 are at the leading twist. They
both have twist-4 companions i.e., D3 and H⊥

3 , respectively. The other four are twist-3
FFs. The TMD FFs D⊥

1T ,G⊥, H⊥
1 , H, and H⊥

3 are usually referred to as the naive T-odd FFs.
The reader may have already discerned that the T-odd FFs are always associated with the
Levi-Civita tensor, εμναβ. It should be noted that T-odd PDFs can only survive thanks to
the gauge link. However, for the FFs, the final state interactions between the produced
hadrons in the hadronization process can also contribute to the T-oddness. This difference
has a more important impact on the polarization-vector-dependent T-odd PDFs and FFs,
which are discussed below.

The decomposition for the vector polarized part is given by the following:

zΞV(0)(z, k⊥; p, S) = (k̃⊥ · ST)E⊥
T (z, k⊥), (38)

zΞ̃V(0)(z, k⊥; p, S) = M
[
λEL(z, k⊥) +

k⊥ · ST
M

E′⊥
T (z, k⊥)

]
, (39)

zΞV(0)
α (z, k⊥; p, S) = p+n̄α

k̃⊥ · ST
M

D⊥
1T(z, k⊥)− MS̃TαDT(z, k⊥)

− k̃⊥α

[
λD⊥

L (z, k⊥) +
k⊥ · ST

M
D⊥

T (z, k⊥)
]
+

M
p+

nα(k̃⊥ · ST)D⊥
3T(z, k⊥), (40)

zΞ̃V(0)
α (z, k⊥; p, S) = p+n̄α

[
λG1L(z, k⊥) +

k⊥ · ST
M

G⊥
1T(z, k⊥)

]
− MSTαGT(z, k⊥)− k⊥α

[
λG⊥

L (z, k⊥) +
k⊥ · ST

M
G⊥

T (z, k⊥)
]

+
M2

p+
nα

[
λG3L(z, k⊥) +

k⊥ · ST
M

G⊥
3T(z, k⊥)

]
, (41)

zΞV(0)
ρα (z, k⊥; p, S) = p+n̄[ρSTα]H1T(z, k⊥) +

p+

M
n̄[ρk⊥α]

[
λH⊥

1L(z, k⊥) +
k⊥ · ST

M
H⊥

1T(z, k⊥)
]

+ k⊥[ρSTα]H
⊥
T (z, k⊥) + Mn̄[ρnα]

[
λHL(z, k⊥) +

k⊥ · ST
M

H′⊥
T (z, k⊥)

]
+

M2

p+
n[ρSTα]H3T(z, k⊥) +

M
p+

n[ρk⊥α]

[
λH⊥

3L(z, k⊥) +
k⊥ · ST

M
H⊥

3T(z, k⊥)
]
. (42)

There are in total 24 polarization-vector-dependent TMD FFs. Of these, 6 contribute
at the leading twist, 12 at twist-3, and remaining 6 at twist-4. Among the six leading
twist FFs, G1L is the longitudinal spin transfer, H1T and H⊥

1T are transverse spin transfers,
G⊥

1T is the longitudinal to transverse spin transfer, H⊥
1L is the transverse to longitudinal

spin transfer, and D⊥
1T induces the transverse polarization of hadrons in the fragmentation

of an unpolarized quark. We note in particular that the D⊥
1T FF resembles the Sivers

function in PDFs [101]. It is responsible for the hadron transverse polarization along the
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normal direction of the production plane in high-energy collisions. It is also a naive T-
odd FF. However, as mentioned above, the T-oddness has little meaning in the context
of hadronization. The T-odd PDFs arise solely from the gauge link. Therefore, it has
been proven theoretically that there is a sign-flip between the Sivers functions in SIDIS
and Drell-Yan [105–107]. However, the T-oddness of FFs can also be generated from the
interaction among final state hadrons. Therefore, there is no such similar relation for the
D⊥

1T FF between different processes. Besides D⊥
1T , there are seven other T-odd FFs, namely,

E⊥
T , EL, E′⊥

T , D⊥
L , DT , D⊥

T , and D⊥
3T . The rest are T-even. All of T-odd FFs are accompanied

by the Levi-Civita tensor except for EL and E′⊥
T .

The decomposition for the rank-2-polarization-tensor-dependent part is given as follows:

zΞT(0)(z, k⊥; p, S) = M
[
SLLELL(z, k⊥) +

k⊥ · SLT
M

E⊥
LT(z, k⊥) +

Skk
TT

M2 E⊥
TT(z, k⊥)

]
, (43)

zΞ̃T(0)(z, k⊥; p, S) = M
[ k̃⊥ · SLT

M
E′⊥

LT(z, k⊥) +
Sk̃k

TT
M2 E′⊥

TT(z, k⊥)
]
, (44)

zΞT(0)
α (z, k⊥; p, S) = p+n̄α

[
SLLD1LL(z, k⊥) +

k⊥ · SLT
M

D⊥
1LT(z, k⊥) +

Skk
TT

M2 D⊥
1TT(z, k⊥)

]
+ MSLTαDLT(z, k⊥) + Sk

TTαD′⊥
TT(z, k⊥)

+ k⊥α

[
SLLD⊥

LL(z, k⊥) +
k⊥ · SLT

M
D⊥

LT(z, k⊥) +
Skk

TT
M2 D⊥

TT(z, k⊥)
]

+
M2

p+
nα

[
SLLD3LL(z, k⊥) +

k⊥ · SLT
M

D⊥
3LT(z, k⊥) +

Skk
TT

M2 D⊥
3TT(z, k⊥)

]
, (45)

zΞ̃T(0)
α (z, k⊥; p, S) = p+n̄α

[ k̃⊥ · SLT
M

G⊥
1LT(z, k⊥) +

Sk̃k
TT

M2 G⊥
1TT(z, k⊥)

]
− MS̃LTαGLT(z, k⊥)− S̃k

TTαG′⊥
TT(z, k⊥)

− k̃⊥α

[
SLLG⊥

LL(z, k⊥) +
k⊥ · SLT

M
G⊥

LT(z, k⊥) +
Skk

TT
M2 G⊥

TT(z, k⊥)
]

+
M2

p+
nα

[ k̃⊥ · SLT
M

G⊥
3LT(z, k⊥) +

Sk̃k
TT

M2 G⊥
3TT(z, k⊥)

]
, (46)

zΞT(0)
ρα (z, k⊥; p, S) = −p+n̄[ρS̃LTα]H1LT(z, k⊥)−

p+

M
n̄[ρS̃k

TTα]H
′⊥
1TT(z, k⊥)

− p+

M
n̄[ρ k̃⊥α]

[
SLLH⊥

1LL(z, k⊥) +
k⊥ · SLT

M
H⊥

1LT(z, k⊥) +
Skk

TT
M2 H⊥

1TT(z, k⊥)
]

+ Mε⊥ρα

[
SLLHLL(z, k⊥) +

k⊥ · SLT
M

H⊥
LT(z, k⊥) +

Skk
TT

M2 H⊥
TT(z, k⊥)

]
+ n̄[ρnα]

[
(k̃⊥ · SLT)H′⊥

LT(z, k⊥) +
Sk̃k

TT
M

H′⊥
TT(z, k⊥)

]
− M

p+
n[ρ k̃⊥α]

[
SLLH⊥

3LL(z, k⊥) +
k⊥ · SLT

M
H⊥

3LT(z, k⊥) +
Skk

TT
M2 H⊥

3TT(z, k⊥)
]

− M
p+

n[ρMS̃LTα ]

[
H3LT(z, k⊥) + S̃k

TTα]H
′⊥
3TT(z, k⊥)

]
. (47)

We have used the shorthanded notations such as Skk
TT ≡ Sαβ

TTk⊥αk⊥β. There are in total
40 tensor polarization-dependent TMD FFs; of these.10 contribute at the leading twist,
20 contribute at twist-3, and the remaining 10 contribute at twist-4. The 24 TMD FFs defined
from the decomposition of Ξ̃T(0)

α and ΞT(0)
ρα are naive T-odd. Among these TMD FFs, we

notice in particularly that the SLL dependent TMD FF D1LL, which is responsible for the
spin alignment of the produced vector meson, is decoupled from the quark polarization.
This suggests that the vector meson spin alignment can also be observed in the unpolarized
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high-energy collisions [108–110]. Besides, D1LL also survives the k⊥-integral. Therefore, it
also appears in the colinear factorization.

The rank-3-polarization-tensor-dependent TMD FFs are unique for spin-3/2 (or higher)
hadrons. A complete set of leading twist quark TMD FFs for spin-3/2 hadrons has
been given in [104]. There are in total 14 rank-3-polarization-tensor-dependent TMD
FFs that can be defined at the leading twist level. We refer interested readers to [104] for a
detailed discussion.

3.5. TMD FFs of Antiquarks and Gluons

One can define antiquark TMD FFs by replacing the fermion fields in the correlator of
quark TMD FFs with the charge-conjugated fields. Therefore, it is easy to find that the traces
of the correlator with Dirac matrices I, iγ5 and γμγ5 will have an opposite sign between
quark and antiquark cases, while the traces with γμ and iσμγ5 are the same [42,43,56]. The
definition and parameterization of the antiquark TMD FFs are then full analogous to those
of quark TMD FFs.

The gluon FFs are defined through the gluon correlator given by [8,111]

Γ̂μν;ρσ(k; p, S) = ∑
X

∫ d4ξ

(2π)4 eik·ξ〈0|Fρσ(ξ)|p, S; X〉〈p, S; X|U (ξ, 0)Fμν(0)|0〉, (48)

where Fρσ(ξ) ≡ Fρσ,aTa is the gluon field field strength tensor, and U (ξ, 0) is the Wilson
line in the adjoint representation that renders the correlator gauge invariant. Under the
assumption that the fragmenting parton moves in the plus direction, an integration over
the k− component is carried out to give the TMD gluon correlator.

At the leading twist, we need to consider

MΓ̂ij(z, k⊥; p, S) =
∫

dk− Γ+j;+i(k; p, S), (49)

where i and j are transverse Lorentz indices in the transverse directions.
For the spin-1/2 hadron production, there are eight leading twist gluon TMD FFs

which are given by the decomposition of the TMD gluon correlator [111]. We have
the following:

Γ̂ij
U(z, k⊥; p, S) =

p+

M

[
−gij

T D1g(z, k⊥) +

(
ki
⊥kj

⊥
M2 + gij

T
k2
⊥

2M2

)
H⊥

1g(z, k⊥)

]
,

Γ̂ij
L(z, k⊥; p, S) =− λ

p+

M

[
iεij
⊥G1Lg(z, k⊥)−

ε
k⊥{i
⊥ kj}

⊥
2M2 H⊥

1Lg(z, k⊥)

]
,

Γ̂ij
T(z, k⊥; p, S) =− p+

M

[
gij

T
ε

k⊥ST
⊥
M

D⊥
1Tg(z, k⊥) + iεij

⊥
k⊥ · ST

M
G⊥

1Tg(z, k⊥)

− ε
k⊥{i
⊥ Sj}

T + ε
ST{i
⊥ kj}

⊥
4M

H1Tg(z, k⊥)−
ε

k⊥{i
⊥ kj}

⊥
2M2

k⊥ · ST
M

H⊥
1Tg(z, k⊥)

]
. (50)

Γ̂U , Γ̂L, and Γ̂T stand for the unpolarized, the longitudinal, and transverse polarized
parts for the hadron production, respectively. Analogously to the quark FFs, we have
used D to represent FFs of the unpolarized gluons, G to represent the FFs of the circularly
polarized gluons, and H to represent the FFs of the linearly polarized gluons. Higher twist
gluon TMD FFs are also discussed in [111], who further detail the parameterizations.

4. Experiment and Phenomenology

In high-energy experiments, the polarization of final state hadrons is usually measured
from the angular distribution of their decay products. It is very challenging to acquire
accurate experimental data. In light of a considerably large amount of free parameters, the
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spin-dependent FFs are not well-constrained experimentally. Compared with the case for
unpolarized PDFs or FFs, the quantitative study of spin-dependent FFs is still immature.
That said, there are already quite a few phenomenological studies making full use of the
available experimental data. In this section, we summarize the available experimental data
and the corresponding phenomenological studies.

4.1. Λ Hyperons

The polarization of Λ0 hyperons is usually measured from the angular distribution of
the daughter proton in the parity-violating Λ0 → p + π− decay channel. In the rest frame
of Λ0, the normalized angular distribution of the daughter proton reads as follows:

1
N

dN
d cos θ∗

=
1
2
(1 + αP cos θ∗), (51)

where α = 0.732 ± 0.014 is the decay parameter of Λ [112], P is the polarization of Λ along
a specified direction, and θ∗ is the angle between the proton momentum and the specified
direction to measure the Λ polarization.

The LEP experiment is an e+e− collider at the Z0-pole. Due to the parity violation
in the weak interaction, the produced quark and antiquark are strongly polarized along
the longitudinal direction. The longitudinal polarizations of those final state quarks and
antiquarks in e+e− annihilation at different collisional energies can be easily computed at
the LO level and are explicitly shown in [113]. At the Z0-pole, the longitudinal polarization
of the final state down-type quarks can reach 0.9. That of the up-type quarks is a bit smaller
but is still about 0.6 ∼ 0.7. Based on the SU(6) spin-flavor symmetry, the polarization
of Λ0 is determined by the polarization of the s quark. It is thus proposed in [114] that
the final state Λ0 hyperons are also strongly polarized at LEP, and the measurement of
this polarization can probe interesting information on the hadronization mechanism. In
the language of QCD factorization, the LEP experiment is the ideal place to study the
longitudinal spin transfer G1L(z), which represents the number density of producing
longitudinally polarized Λ0 hyperons from longitudinally polarized quarks. It is the
pT-integrated version of the TMD FF G1L(z, p⊥).

At the leading order and leading twist, the longitudinal polarization of Λ0

reads as follows: [108,113]

PL(y, z) =
∑q λq(y)ωq(y)G1L,q(z) + {q ↔ q̄; y ↔ (1 − y)}

∑q ωq(y)D1,q(z) + {q ↔ q̄; y ↔ (1 − y)} , (52)

where λq(y) = Δωq(y)/ωq(y) is the helicity of the fragmenting quark with Δωq(y) and
ωq(y) being defined as follows:

Δωq(y) = χTq
1 (y) + χ

q
int Iq

1(y), (53)

ωq(y) = χTq
0 (y) + χ

q
int Iq

0(y) + e2
q A(y), (54)

Tq
1 (y) = −2cq

Vcq
A[(c

e
V)

2 + (ce
A)

2]A(y) + 2[(cq
V)

2 + (cq
A)

2]ce
Vce

AB(y), (55)

Tq
0 (y) = [(cq

V)
2 + (cq

A)
2][(ce

V)
2 + (ce

A)
2]A(y)− 4cq

Vcq
Ace

Vce
AB(y), (56)

Iq
1(y) = −cq

Ace
V A(y) + cq

Vce
AB(y), (57)

Iq
0(y) = cq

Vce
V A(y)− cq

Ace
AB(y). (58)

Here, y = (1 + cos θ)/2 with θ is the angle between the outgoing Λ and the incoming
electron. The coefficient functions are given as A(y) = (1 − y)2 + y2, B(y) = 1 − 2y,
χ = Q4/[(Q2 − M2

Z)
2 + Γ2

Z M2
Z] sin4 2θW , and χ

q
int = −2eqQ2(Q2 − M2

Z)/[(Q
2 − M2

Z)
2 +

Γ2
Z M2

Z] sin2 2θW . cq/e
V and cq/e

A are the coupling constants of the vector current and axis-
vector current parts of the quark/electron, with Z0. MZ being the mass of Z0 and ΓZ being
the width. Notice that λq̄(y) = −λq(1 − y). The quark helicity and antiquark helicity have
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the opposite sign. This is in line with the sign flip in Section 3.5. Therefore, the polarization
of Λ̄0 is expected to have the opposite sign with that of Λ0.

Since the quark helicity λq(y) and the production weight ωq(y) are calculable in quan-
tum field theory, the measurement of the longitudinal polarization of final state Λ0 as
a function of z can directly provide information of the longitudinal spin transfer. Such
experiments were eventually carried out by ALEPH and OPAL collaborations at LEP in
the 1990s [115,116]. As shown in Figure 2, the longitudinal polarization increases monoton-
ically with increasing z, which provides a hint on how to parameterize the longitudinal
spin transfer.

e+e− → Λ0 +X

√
s = 91.2 GeV

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

z

P L
(z
)

ALEPH, 1996

OPAL, 1997

Figure 2. Reproduction of the longitudinal polarization of Λ0 in e+e− annihilation at
√

s = 91.2 GeV
measured by the ALEPH [115] and OPAL [116] collaborations at LEP. We have combined the statistical
and systematic errors. Neglecting the mass of Λ hyperons in the high-energy limit, the definitions of z
in these two experiments are the same as those of the momentum fraction in the light-cone coordinate
currently used in the QCD factorizations.

Following the release of these experimental data, many phenomenological
studies [108,117–124] were carried out to understand the longitudinal spin transfer G1L(z).
Among them, the de Florian–Stratmann–Vogelsang (DSV) parameterization [118] offers three
scenarios. The first scenario is based on the naive parton model, which assumes that only
the s quark contributes to the longitudinal spin transfer at the initial scale. The second
scenario assumes that the u and d quarks contribute to negative G1L(z) at the initial scale.
The third scenario assumes that u, d, and s contribute equally. All three can describe
the experimental data reasonably well. A more recent Chen–Yang–Zhou–Liang (CYZL)
analysis [108] also obtained a good description of the experimental data utilizing the LO
formula. The ambiguity again highlights the difficulties in the quantitative study of FFs. It
can only be removed through a global analysis of the experimental data in various high-
energy reactions. Therefore, many works have also made predictions for the longitudinal
polarization of Λ produced in polarized SIDIS [117,125–127] and pp collisions [128–131].

The inclusive DIS process with the polarized lepton beam has been used to probe
the spin structure of the nucleon [132–134]. In this process, only the momentum of the
final state lepton was measured. Therefore, we can gain information on the nucleon
structure but lose those on the hadronization. To restore the access to (spin-dependent)
FFs, we have to rely on the semi-inclusive process and measure (the polarization of) one
final state hadron (There are two fragmentation regimes in SIDIS, namely the current
fragmentation and the target fragmentation. Although the target fragmentation function is
also currently a hot topic, it is beyond the scope of this review. We only focus on the study
of the current fragmentation function). However, it is not a simple task to do so in the
real world. Despite the difficulties, early attempts from the E665 [135] and HERMES [136]
collaborations were still successfully performed. Recent measurements from HERMES [137]
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and COMPASS [138] collaborations have also elevated the quality of experimental data to a
level that sheds light on phenomenological studies. These experiments measure the spin
transfer coefficient DLL(z) (it is important to not get confused with the spin-alignment-
dependent FF D1LL(z) of vector mesons) which, at the leading order and leading twist
approximation, is given by [42]

DLL(xB, z) =
∑q e2

qxB f1,q(xB)G1,q(z)

∑q e2
qxB f1,q(xB)D1,q(z)

, (59)

with f1,q(xB) being the unpolarized PDF. Due to the presence of the unpolarized PDF of
proton/nucleus, the polarized SIDIS experiment favors more contributions from the u and d
quarks at large xB than from the e+e− collider. We show the HERMES data set as a function
of z (integrating over xB) and the COMPASS data set as a function of xB (integrating over z)
in Figure 3.
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Figure 3. Spin transfer coefficient DLL as a function of z and xB in polarized SIDIS measured by the
HERMES [136] and COMPASS [138] collaborations. Only the statistic errors are shown in both plots.
Axes 1 and 2 refer to two different definitions of the longitudinal direction of Λ in the experiment.
They are approximately the same at the high-energy limit. However, at the HERMES energy, they are
not parallel to each other.

The experimental data from E665 [135] suggested a difference between DLL for
the Λ0 production and that for the Λ̄0 production. This was later confirmed by the
COMPASS [138] experiment. In [139–141], it was shown that such a difference serves as a
flavor tag in the study of the G1L FF. More studies on the flavor dependence of PDFs/FFs
have been performed [122,142–149]. The NOMAD collaboration also carried out similar
measurements in the neutrino SIDIS experiment [150,151]. Because of the flavor-changing
feature of the charged weak interaction, this experiment opens more opportunities for
quantitative research on the flavor dependence of spin-dependent FFs. A sophisticated
investigation was presented in [152].

RHIC is the first and, so far, the only polarized proton–proton collider. The helicity of
the incident protons can be transferred to that of the partons through the longitudinal spin
transfer g1L(x) of PDFs. Therefore, it also has the capability of probing G1L(z) of the frag-
mentation. The first measurement was performed in 2009 [153], while an improved analysis
was presented in 2018 [154]. These experiments measure the spin transfer coefficient DLL
which is defined as follows:

DLL ≡ σp+p→Λ++X − σp+p→Λ−+X

σp+p→Λ++X + σp+p→Λ−+X
. (60)
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The + symbol in the superscript denotes the helicity of the corresponding proton or Λ
hyperon. The updated experimental data from the STAR collaboration [154] at RHIC are
shown in Figure 4. This experimental data tend to favor the first and second scenarios in
the DSV parameterization [118]. However, it cannot concretely rule out any scenario yet
due to the large uncertainties. Moreover, the Xu–Liang–Sichtermann approach [131] based
on the SU(6) spin-flavor symmetry can also describe this data well. Moreover, RHIC also
measured the transverse spin transfer coefficient DTT , which is sensitive to the convolution
of the transversity PDF and the transversity FF [155].
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Figure 4. The spin transfer coefficient DLL in polarized pp collisions at
√

s = 200 GeV measured by
the STAR collaboration at RHIC [154]. Data points are taken from [154]. The systematic error and the
statistical error have been combined.

The polarizations of partons participating the same hard scattering are strongly cor-
related. The helicity amplitudes of different partonic processes have been evaluated and
summarized in [156]. Thus, [157] proposes the dihadron polarization correlation as a
probe to the longitudinal spin transfer G1L in e+e− annihilations at low energy where the
fragmenting quarks are not polarized. Recently, this idea was further investigated and ap-
plied to the unpolarized pp collisions in [158]. By measuring the longitudinal polarization
correlation of two almost back-to-back hadrons, we also gain access to the longitudinal
spin transfer in unpolarized pp collisions. Since this observable avoids the contamination
from the longitudinal spin transfer g1L in PDFs. which is also poorly known, [158] inno-
vated a means to investigating the longitudinal spin transfer G1L in FFs at RHIC, Tevatron,
and the LHC. Furthermore, this work can also be used to constrain the FF of circularly
polarized gluons.

Recently, the Belle collaboration measured the transverse polarization of Λ hyperons
in e+e− annihilations [19], sparking considerable theoretical interest [15,20–32]. In this
experiment, one first defines the hadron production plane and then measures the transverse
polarization along its normal direction. Since there are two transverse directions, we refer to
the polarization along one as PN and the other one as PT . The hadron production plane can
be defined in two ways. The first one is defined by the thrust axis and the Λ momentum. In
the second, the thrust axis is replaced by the momentum of a reference hadron (in the back-
to-back side). Therefore, this experiment is dedicated to probing the D⊥

1T(z, p⊥) FF. While
the pT-differential experimental data of PN contain sizable uncertainties, the pT-integrated
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version is quite precise, as shown in Figure 5. Employing the Trento convention [159] for the
definition of D⊥

1T(z, p⊥), the p⊥ integrated transverse polarization is given by [24,25,28,160]

PN(zΛ) =
∑q e2

q
∫

d2 p⊥d2 ph⊥
−P̂⊥Λ ·p⊥

zΛ MΛ
Dh

1,q(zh, ph⊥)D⊥Λ
1T,q(zΛ, p⊥)

∑q e2
q
∫

d2 p⊥d2 ph⊥Dh
1,q(zh, ph⊥)DΛ

1,q(zΛ, p⊥)

∣∣∣∣∣
P⊥Λ=

zΛ
zh

ph⊥+p⊥

, (61)

where P̂⊥Λ is the unit vector along the direction of P⊥Λ. The integral in the denominator
simply reduces to the product of two colinear FFs. However, to evaluate the numerator,
we need to first parameterize the p⊥ and ph⊥ dependence at the initial scale, which then
evolves to the TMD factorization scale through use of the Collins–Soper–Sterman evolution
equation. Nonetheless, since the collisional energy at Belle is not very high, a Gaussian
ansatz is already a good approximation. More sophisticated approaches incorporating the
p⊥ dependence can be found in [29,31,32].
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Figure 5. Transverse polarization of Λ in e+e− annihilation measured by the Belle collaboration [19].
Data points are taken from [19]. Statistical and systematic errors are combined in quadrature.

As shown in Figure 5, the distinct difference between PN measured in the Λ + π+(or K+)
and Λ+π−(or K−) processes offers an opportunity to explore the flavor dependence. Early
attempts, such as the D’Alesio–Murgia–Zaccheddu (DMZ) [24] and Callos-Kang–Terry
(CKT) [25] parameterizations, adopted the strategy that valence parton FFs differ from each
other and that parton FFs are the same, i.e., D⊥Λ

1T,u �= D⊥Λ
1T,d �= D⊥Λ

1T,s �= D⊥Λ
1T,sea. However,

this approach violates the isospin symmetry, which is one of the most important features
of strong interaction. Furthermore, a model calculation [27] based on the strict SU(6)
spin-flavor symmetry failed to describe the experimental data. However, it was first shown
in [28] that the isospin symmetric Chen–Liang–Pan–Song–Wei (CLPSW) parameterization
can still describe the experimental data well as long as the artificial constraint on sea parton
FFs is released. This perspective was further investigated in Ref. [31] recently, which
concluded that one can obtain good fit to the Belle data with and without implementing
the isospin symmetry constraint after taking into account the charm contribution. This
confirms that the current Belle dataset does not represent an isospin symmetry violation in
the hadronization. Furthermore, [160] proposed to test the isospin symmetry at the future
EIC experiment. By comparing the transverse polarizations in ep and eA scatterings at
large x, we can ultimately check the difference between D⊥

1T,u and D⊥
1T,d.

The future EIC is a polarized electron–proton/ion collider with unprecedentedly high
luminosity. It will open a new window for the quantitative study of spin-dependent FFs.
Several works [161–164] have proposed and made predictions for different observables at
the future EIC with polarized proton beams. These observables are sensitive to various
combinations of spin-dependent PDFs and FFs. Therefore, the future measurement will
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reveal information on both hadron structure and hadronization. A recent work [160]
also proposed a method to study spin-dependent PDFs/FFs in unpolarized experiments.
The key idea is that the polarizations of the final state quark and initial state parton
are correlated. Thanks to the Boer–Mulders function in the PDFs, the initial state quark
are transversely polarized although the polarization depends on the azimuthal angle.
This transverse polarization can further propagate into final state observables through
chiral-odd FFs. By measuring the azimuthal-angle-dependent longitudinal and transverse
polarizations of final state Λ, we can probe H⊥

1L and H⊥
1T even in the unpolarized SIDIS

process. Moreover, we can also measure the azimuthal-angle-dependent polarizations
in e+e− annihilations to probe combinations of the Collins function and spin-dependent
chiral-odd FFs [160]. This idea is akin to those explored in [30,165].

4.2. Vector Mesons

Most vector mesons decay through parity-conserving strong interactions. Their polar-
ization vector does not enter the angular distribution of the daughter hadrons. Therefore,
it is not possible to measure their polarization vector. In contrast, the tensor polarization
does play a role in the angular distribution and therefore can be measured. Among them,
spin alignment, which quantifies the deviation from 1/3 of ρ00 in the spin-density matrix,
has received the most attention.

Several collaborations [166–169] at LEP have measured the spin alignment of differ-
ent vector mesons produced in the e+e− annihilation at the Z0-pole. We show the spin
alignment of K∗0 and ρ0 measured by the OPAL [166] and DELPHI [167] collaborations
in Figure 6. The off-diagonal matrix elements were also measured in some of the experi-
ments. Thereafter, the NOMAD collaboration measured the vector meson spin alignment
for the first time in the neutrino DIS experiment [170]. These measurements offer more
information on the hadronization mechanism and have led to several phenomenological
studies [171–179].
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Figure 6. Spin alignment of K∗0 and ρ0 measured by the OPAL [166] and DELPHI [167] collaborations
at LEP. Data points are taken from [166,167].

Figure 6 shows that ρ00 is consistent with 1/3 (i.e., no spin alignment) at the small-z
region. However, at large z, a clear spin alignment is observed. This pattern is similar
to that for the longitudinal polarization of Λ also measured at LEP [115,116] (shown
in Figure 2).

As mentioned above, the quarks produced at LEP and also those at NOMAD are
strongly polarized. Therefore, it is tempting to attribute the tensor polarization of final
state vector mesons to the longitudinal polarization of the fragmenting quarks. However,
a simple tensor structure analysis [47,63,64,175] shows that this is not the case. The spin
alignment of the final state mesons is not coupled with the quark polarization. Instead,
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it is coupled with the quark-polarization-summed cross section. The vector meson spin
alignment in e+e− collisions is given by

ρ00 =
1
3
− 1

3
∑q ωq(y)D1LL,q(z)

∑q ωq(y)D1,q(z)
, (62)

where, ωq is defined to be the same as that for the Λ production in the previous section, and
D1LL(z) is the corresponding FF that is responsible for the vector meson spin alignment. As
shown in the above equation, the longitudinal polarization of the fragmenting quark does
not play a role here. It was thus first proposed in [63] that the vector meson spin alignment
can also be observed in other high-energy collisions with unpolarized quarks fragmenting.
Fitting to the experimental data from LEP, other work [108,109] extracted D1LL(z) and made
predictions for the spin alignment of high pT vector mesons in unpolarized pp collisions at
RHIC and the LHC [109]. Furthermore, from the same mechanism, there will be a significant
spin alignment for vector mesons produced in the unpolarized SIDIS. Measuring vector
meson spin alignment at the future EIC will cast new light on the quantitative study of the
D1LL(z) FF.

Notice that the spin alignment of low-pT vector mesons in AA collisions has also been
measured at RHIC [110,180] and LHC [181] recently. These low-pT hadrons in relativistic
heavy-ion collisions are produced through a different hadronization mechanism than those
of fragmentation. Their tensor polarization originates from a different source.

5. Model Calculation

The PDFs and FFs are defined in terms of quark–gluon correlators as laid out in
Section 3. Owing to the nonperturbative nature of the hadron state, we cannot directly
evaluate them theoretically. Thus far, several proposals for computing quantities that can be
related to the PDFs in the lattice QCD approach have been put forward [182–186]. However,
it is not possible to study FFs in the lattice QCD yet. In the current stage, the quantitative
information is mainly extracted from the experimental data.

However, due to the limited amount of experimental data, the TMD PDFs and FFs
are not yet well constrained. As a complementary tool, model calculations have usually
been employed to compute different PDFs over the past decades [106,187–219]. These
investigations offer quantitative insight into the hadron structure and therefore are indis-
pensable for phenomenological study. The same also goes for the FFs. Most of the models
can be used to evaluate both PDFs and FFs. We make a nonexclusive brief summary on
FF calculations.

There are quite a few models that can be categorized as a spectator model [220,221].
Among them, the quark–diquark model is a simple one which provides the quark–baryon–
diantiquark vertex, so that the baryon FFs can be easily evaluated. In [222], the colinear
baryon FFs were calculated at the leading twist using the quark–diquark model, while
in [189,223–226], the TMD FFs were further computed at the leading and subleading twists.
To compute the meson FFs or the gluon FFs, we need an improved version which offers the
vertex among the fragmenting parton, hadron, and spectator. In [227], the Collins function
was calculated for pions and kaons in this method. Recently, in [228], approach to calculate
leading twist gluon TMD FFs was presented. The chiral invariant model [229] investigated
the chiral symmetry and the spontaneous breaking with an effective Lagrangian of quarks,
gluons, and goldstone bosons. It can also be classified into the spectator model category.
Utilizing this model, several authors [230–235] calculated the pion and kaon FFs. In [236],
an extended version was also developed to compute the vector meson FFs. Furthermore,
several works [237–240] have evaluated the FFs of different hadrons using a parameterized
quark–hadron coupling.

The Nambu–Jona–Lasinio (NJL) model originates from [241,242] who developed an
effective theory describing the quark–hadron interaction. It has been employed to evaluate
PDFs of different hadrons [191,243–248]. Incorporating with the Feynman–Field model
(also known as the quark–jet model) established in [249,250], the NJL=-jet model has been
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employed to calculate both colinear and TMD FFs of different hadrons [235,251–257]. Recent
works have also computed FFs of gluon [258] and charm quark [259] with this approach.
The Feynman–Field model relates the total FF to the first rank FF. However, it does not
specify how to compute the first rank FF. Therefore, in principle, it can be hybridized with
another model which provides with the first rank FF to prolong the applicability of the
corresponding model.

We make a final remark on the model calculation to conclude this section. All the
above-mentioned models compute FFs employing the effective Lagrangian of partons and
hadrons of interest. While these calculations offer quantitative insight into the hadroniza-
tion scheme, we should draw a line between conclusions that are model-dependent and
those that are model-independent.

6. Summary

There are a multitude of topics within the subject of FFs. In this review, we constrain
ourselves in a very limited scope that we are familiar with. First, we briefly summarized the
derivation of the TMD factorization and the establishment of the QCD evolution equation
at the leading twist level. The TMD factorization and the corresponding evolution at the
higher twist level are still ongoing topics. Second, we are particularly interested in the
spin-related effects. With the spin degree of freedom being taken into account, the interplay
between the transverse momentum and the hadron/quark polarization presents a highly
intriguing phenomena that can be investigated in experiments. As a result, we need to
define more TMD FFs to fully describe the fragmentation process. In quantum field theory,
TMD FFs are introduced in the decomposition of parton correlators. We summarized the
final results up to the twist-4 level for spin-0, spin-1/2, and spin-1 hadron productions.
Finally, although all the TMD FFs have clear definitions in terms of parton fields and hadron
states, they are nonperturbative quantities that cannot be directly evaluated from quantum
field theory. In contrast to TMD PDFs, FFs cannot be computed even in the lattice QCD
approach. The quantitative investigation thus mainly concentrates on the extraction from
experimental measurements and model calculations. We summarized several spin-related
experiments conducted over the past decades and the corresponding phenomenological
studies. In the last section, we also briefly presented several model calculations.

The study of TMD FFs is still a very active field, and many mysteries remain to be
explored. The Electron-Ion Collider (EIC) and the Electron-Ion Collider in China (EicC)
have been proposed to be built as the new high-energy colliders in the next generation.
They will provide new experimental data for the quantitative study of TMD FFs and can
significantly boost our understanding of the hadronization mechanism.
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Abstract: The QCD effective charge αg1 (Q) is an observable that characterizes the magnitude of the
strong interaction. At high momentum Q, it coincides with the QCD running coupling αs(Q). At
low Q, it offers a nonperturbative definition of the running coupling. We have extracted αg1 (Q) from
measurements carried out at Jefferson Lab that span the very low to moderately high Q domain,
0.14 ≤ Q ≤ 2.18 GeV. The precision of the new results is much improved over the previous extractions
and the reach in Q at the lower end is significantly expanded. The data show that αg1 (Q) becomes
Q-independent at very low Q. They compare well with two recent predictions of the QCD effective
charge based on Dyson–Schwinger equations and on the AdS/CFT duality.

Keywords: strong interaction; QCD; nonperturbative; running coupling constant; hadrons; nucleon;
spin structure

1. Introduction

The behavior of quantum chromodynamics (QCD), the gauge theory of the strong
interaction, is determined by the magnitude of its coupling αs. It is large at low momen-
tum, characterized here by Q ≡

√
−q2 with q2 the square of momentum transferred in

the process of electromagnetically probing a hadron. For Q � 1 GeV, αs(Q) � 1, which
is one of the crucial pieces leading to quark confinement. For Q � 1 GeV, αs(Q) � 0.2,
which enables the use of perturbative computational techniques (perturbative QCD, pQCD)
constituting an accurate analytical approximation of QCD. In this domain, α

pQCD
s is well

defined and known within an accuracy of 1% at Q = MZ0 = 91 GeV, the Z0 mass, and
within a few percents at Q values of a few GeV [1]. However, using pQCD at Q � 1 GeV
produces a diverging α

pQCD
s (Landau pole) that prohibits any perturbative expansion in

α
pQCD
s and signals the breakdown of pQCD. In contrast, most nonperturbative methods,

including lattice QCD [2], the AdS/CFT (Anti-de-Sitter/Conformal Field Theory) dual-
ity [3,4] implemented using QCD’s light-front (LF) quantization [5] and a soft-wall AdS
potential (Holographic LF QCD, HLFQCD [6]) or solving the Dyson–Schwinger equations
(DSEs) [7] yield a finite αs. In fact, many theoretical approaches predict that αs “freezes” as
Q → 0, viz, it loses its Q-dependence [8].

There are several possible definitions of αs in the nonperturbative domain
(Q � 1 GeV) [8]. We use here the effective charge approach that defines αs from the pertur-
bative series of an observable truncated to its first order in αs [9]. Although this definition
can be applied for any Q value, it was initially proposed for the pQCD domain where
it makes αs the equivalent of the Gell-Mann Low coupling of quantum electrodynamics
(QED), α [10]. With this definition, αs can be evaluated at any Q value, has no low Q
divergence and is analytic around quark mass thresholds. Furthermore, since the first order
in α

pQCD
s of a pQCD approximant is independent of the choice of renormalization scheme

Particles 2022, 5, 171–179. https://doi.org/10.3390/particles5020015 https://www.mdpi.com/journal/particles56
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(RS), effective charges are independent of RS and gauge choices. This promotes αs from a
parameter depending on chosen conventions to an observable, albeit with the caveat that it
becomes process-dependent since two observables produce generally different effective
charges. Yet, pQCD predictability is maintained because effective charges are related with-
out renormalization scale ambiguities by commensurate scale relations (CSR) [11]. CSR
are known to hold for pQCD and QED since the latter corresponds to the NC → 0 limit
of QCD, with NC the number of colors. For example, CSR explicitly relate αg1 , αF3 , ατ

and αR defined using the generalized Bjorken sum rule [12], the Gross–Llewellyn Smith
sum rule [13], and the perturbative approximant for the τ-decay rate [14] and Re+e− [15],
respectively. In fact, the choice of process to define an effective charge is analogous to an
RS choice for α

pQCD
s [16] and the procedure of extracting an effective charge, e.g., from

τ-decay the τ-scheme is denoted. Here, we discuss the effective charge αg1(Q) (g1-scheme)
extracted using the generalized Bjorken sum rule:

Γp−n
1 (Q2) ≡

∫ 1−
0 gp

1 (x, Q2)− gn
1 (x, Q2)dx = gA

6

[
1 − α

pQCD
s (Q)

π − 3.58
(

α
pQCD
s (Q)

π

)2

−20.21
(

α
pQCD
s (Q)

π

)3
− 175.7

(
α

pQCD
s (Q)

π

)4
+O

((
α

pQCD
s

)5
)

...
]
+ ∑n>1

μ2n
Q2n−2 ,

(1)

where x is the Bjorken scaling variable [17], gA = 1.2762(5) [2] is the nucleon axial charge,

gp(n)
1 is the longitudinal spin structure function of the proton (neutron) obtained in polar-

ized lepton-nucleon scattering [18] and μ2n are the operator product expansion’s (OPE)
nonperturbative higher twist (HT) terms. The integral excludes the elastic contribution at
x = 1. The series coefficients are computed for n f = 3 and in the MS RS for the n > 1 αn

s
terms [19]. They originate from the pQCD radiative corrections. Although the expansion (1)
is only applicable in the perturbative domain, i.e., at distance scales where confinement
effects are weak, the HT terms can be related to the latter [20], and one may picture the
terms of Equation (1) as coherently merging together at low Q to produce confinement.

The effective charge αg1 is defined from Equation (1) expressed at first order in coupling
and twist:

Γp−n
1 (Q2) ≡ gA

6

(
1 − αg1(Q)

π

)
−→ αg1(Q) ≡ π

(
1 − 6

gA
Γp−n

1 (Q)

)
. (2)

Thus, in the domain where Equation (2) applies, αg1 can be interpreted as a running
coupling that not only includes short-distance effects such as vertex correction and vacuum
polarization, but all other effects, e.g., pQCD radiative corrections and, in the lower-Q
domain of pQCD, HT terms and other nonperturbative effects not formalized by OPE
and therefore not included in Equation (2). The latter comes from coherent reactions of a
hadron (resonances). In the nonperturbative domain where pQCD radiative corrections and
HT effects have merged into global confinement effects, αg1 may approximately retain its
interpretation as a coupling if the contribution to Γp−n

1 of nonresonant reactions continues
to dominate, as they do at large Q [21].

There are several advantages to αg1 [8]. First, rigorous sum rules constrain αg1(Q) for
Q → 0 (the Gerasimov–Drell–Hearn (GDH) sum rule [22]) and Q → ∞ (the Bjorken sum
rule). They provide analytical expressions of αg1(Q) in these limits (blue dashed line and
cyan hatched band in Figure 1). Furthermore, contributions from Δ baryons are quenched
in Γp−n

1 [23], enhancing the nonresonant reactions contribution to Γp−n
1 relatively to the

resonance contribution, which helps toward interpreting αg1 as a coupling. If so, αg1 would
remain approximately equivalent to the Gell-Mann Low coupling in the nonperturbative
domain, a crucial property that it is not obvious and may be specific to αg1 . Such a property
is supported by the agreement between αg1 and calculations of couplings [24,25] using a
definition consistent with αg1 .
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Former extractions of αg1 [26] were obtained from experimental data on Γp−n
1 from

CERN [27], DESY [28], Jefferson Lab (JLab) [29] and SLAC [30]; see Figure 1. Since the
results reported in Ref. [26], progress has occurred on both the experimental and theoretical
fronts. Firstly, when Ref. [26] was published, the meaning of αg1 in the nonperturba-
tive region was unclear. Thus, the comparison in [26] of αg1 to theoretical predictions
of the nonperturbative coupling was tentative. This is now better understood: as just
discussed, αg1 essentially retains its meaning of effective charge at low Q [8,21]. Secondly,
new data on Γp−n

1 have become available from CERN (COMPASS experiment) [31] and
JLab (EG1dvcs experiment) [32] at high Q, and from JLab (E97110, E03006 and E05111
experiments) [33] at very low Q. Finally, new theoretical studies of the nonperturbative
behavior of αs were conducted, including the first use of the AdS/CFT duality to describe
the strong coupling in its nonperturbative domain [24] and the identification of a process-
independent (PI) effective charge α̂PI(Q) that unifies a large body of research from DSE
and lattice QCD to αs [25,34]. Connections between the nonperturbative and perturbative
effective charges were made [8,16,35], which permitted a prediction of αs at the Z0 pole,
αMS

s (M2
z) = 0.1190 ± 0.0006 at N3LO [36] that agrees well with the 2021 Particle Data

Group compilation, αs(MZ) = 0.1179 ± 0.0009 [2]. In addition to predicting quantities
characterizing hadronic structures [3,25,37], the effective charge helps establish conformal
behavior at low Q. Through AdS/CFT, this helps the investigation of the physics beyond
the standard model [4] or of the quark-gluon plasma [38] in heavy ion collisions [39] and
nuclear hydrodynamics [40] for the latter and neutron stars [41].

Here, we report on new experimental data on αg1 extracted from [31–33] and how they
compare with the latest theory predictions.

2. Experimental Extraction of αg1

The new JLab data on Γp−n
1 (Q) were taken by four experiments. The first experiment,

E97110 [42], occurred in Hall A [43] of JLab. The three others used the CLAS spectrome-
ter [44] in JLab’s Hall B and were experiments EG1dvcs [45], E03006 [46] and E05111 [47]
(the two latter being referred to as Experimental Group EG4). The four experiments oc-
curred during the 6 GeV era of JLab, before its 12 GeV upgrade. The experiments used a
polarized electron beam with energies ranging from 0.8 to 6 GeV. E97110 studied the spin
structures of the neutron and 3He using the Hall A polarized 3He target with longitudinal
and transverse polarization directions [48]. EG1dvcs, E03006, and E05111 studied the
proton, neutron and deuteron spin structures using the Hall B longitudinally polarized
ammonia (NH3 or ND3) target [49]. The main purpose of EG1dvcs was high Q, up to
2.65 GeV (Q2 = 7 GeV2), exclusive measurements of deep virtual Compton scattering.
Therefore, it provided highly precise inclusive Γp−n

1 data compared to the older data in the
same domain [27–30]. E97110, E03006 and E05111 were dedicated to test chiral effective
field theory predictions by covering very low Q domains: 0.19 ≤ Q ≤ 0.49, 0.11 ≤ Q ≤ 0.92
and 0.14 ≤ Q ≤ 0.70 GeV, respectively. To reach low Q while covering the large x range nec-
essary for the Γ1 integral, high beam energy (up to 4.4 GeV) was needed, and the scattered
electrons had to be detected at small angles (down to about 5◦). In Hall A, the low angles
were reached via a supplementary dipole magnet installed in front of the spectrometer [50].
In Hall B, a Cherenkov counter designed for high efficiency at small angles was installed
in one of the six sectors of CLAS [47] for which magnetic field was set to bent outward
the scattered electrons. In addition, both the Hall A and B targets were placed about 1 m
upstream of their usual positions.

The EG1dvcs data on protons and deuterons were combined to form Γp−n
1 over the

range 0.78 ≤ Q ≤ 2.18 GeV [32]. The Γp−n
1 formed with the E97110 and EG4 data covers the

0.14 ≤ Q ≤ 0.70 GeV range [33]. The αg1 data, obtained following Equation (2), are shown
in Figure 1 and given in Table 1. Also shown in the figure are the older data presented
in Ref. [29] , including αF3 extracted from the data [51] and αg1(τ)

from the OPAL data
on τ-decay [14]. The effective charge αF3 is nearly identical to αg1 [26], and αg1(τ)

was

58



Particles 2022, 5

transformed from the τ-scheme to the g1-scheme using the CSR [11]. Consequently, αF3

and αg1(τ)
are directly comparable to αg1 . We also show in Figure 1 the theory predictions

from AdS/CFT [24] and DSE [25]. Remarkably, both predictions are parameter-free and
gauge-invariant.

Table 1. Data on αg1 (Q) from JLab experiments EG4 (top, from Q = 0.143 GeV to 0.704 GeV),
EG4/E97110 (middle, from Q = 0.187 GeV to 0.490 GeV) and EG1dvcs (bottom, from Q = 0.775 GeV
to 2.177 GeV).

Q (GeV) αg1
± stat. ± syst.

0.143 3.064 ± 0.043 ± 0.018

0.156 3.129 ± 0.046 ± 0.019

0.171 2.955 ± 0.046 ± 0.023

0.187 3.083 ± 0.044 ± 0.024

0.204 3.022 ± 0.049 ± 0.024

0.223 3.002 ± 0.052 ± 0.027

0.243 2.988 ± 0.055 ± 0.031

0.266 2.947 ± 0.060 ± 0.035

0.291 2.983 ± 0.065 ± 0.035

Q (GeV) αg1
± stat. ± syst.

0.317 2.961 ± 0.062 ± 0.038

0.347 2.730 ± 0.070 ± 0.044

0.379 2.853 ± 0.077 ± 0.040

0.414 2.745 ± 0.076 ± 0.041

0.452 2.779 ± 0.090 ± 0.043

0.494 2.451 ± 0.094 ± 0.044

0.540 2.397 ± 0.092 ± 0.039

0.590 2.349 ± 0.101 ± 0.040

0.645 2.431 ± 0.109 ± 0.043

0.704 1.996 ± 0.131 ± 0.104

Q (GeV) αg1
± stat. ± syst.

0.187 3.016 ± 0.009 ± 0.027

0.239 2.973 ± 0.015 ± 0.035

0.281 2.952 ± 0.021 ± 0.041

0.316 2.929 ± 0.017 ± 0.048

0.387 2.815 ± 0.021 ± 0.076

0.447 2.704 ± 0.025 ± 0.086

0.490 2.575 ± 0.031 ± 0.053

0.775 1.743 ± 0.007 ± 0.071

0.835 1.571 ± 0.007 ± 0.101

0.917 1.419 ± 0.009 ± 0.132

0.986 1.341 ± 0.010 ± 0.147

1.088 1.272 ± 0.010 ± 0.156

1.167 1.121 ± 0.013 ± 0.153

1.261 0.955 ± 0.016 ± 0.146

1.384 0.874 ± 0.016 ± 0.269

1.522 0.730 ± 0.012 ± 0.280

1.645 0.708 ± 0.009 ± 0.257

1.795 0.617 ± 0.007 ± 0.254

1.967 0.581 ± 0.006 ± 0.223

2.177 0.636 ± 0.003 ± 0.187
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The AdS/CFT coupling αHLF
g1

is obtained in the HLFQCD approach where QCD is
quantized using LF coordinates [5]. The use of the HLFQCD approach incorporates the
underlying conformal (i.e., scale-invariant) character of QCD at low and large Q. The
deformation of the AdS5 space is dual to a semiclassical potential that models quark
confinement. This potential can be determined with various methods that all lead to the
same harmonic oscillator form [3,52,53]. The effective charge αHLF

g1
is dual to the product of

the AdS5 coupling constant by the AdS5 space deformation term. Since the latter is dual
to the CFT confinement force, the meaning of αHLF

g1
is analogous to that of αg1 , which, at

low Q, incorporates in αs confinement effects. The Q-dependence of αHLF
g1

is controlled by a
single scale, e.g., the proton mass. The coupling is normalized to αHLF

g1
(0) = π to obey the

kinematic constraint that Γp−n
1 (0) = 0, i.e., αg1(0) = π, see Equation (2). This normalization

amounts to the RS choice of pQCD [16]. Thus, the αHLF
g1

(Q) prediction is parameter-free.
Above Q � 1 GeV, HLFQCD ceases to be valid because its semiclassical potential does not
include, by definition, the short distance quantum effects responsible for the running of a
coupling. This is palliated by matching HLFQCD and pQCD near Q � 1 GeV where both
formalisms apply, thereby providing αHLF

g1
(Q) at all Q [16].

The DSE effective charge α̂PI [25] is obtained starting with the pinch technique [54]
and background field method [55]. They allow us to define a process-independent QCD
coupling in terms of a mathematically reconstructed gluon two-point function analogous
to the Gell-Mann Low effective charge of QED. The α̂PI is then computed by combining the
solution of DSE compatible with lattice QCD results. The definition of α̂PI explicitly factors
in a renormalization group invariant interaction, thus causing it, like αg1(Q) and αHLF

g1
(Q),

to incorporate confinement [56]. Like them, α̂PI(Q) freezes at low Q with a predicted
infrared fixed-point of α̂PI(0) = (0.97 ± 0.04)π. The mechanism at the origin of the freezing
in the DSE framework is the emergence of a dynamical gluon mass mg(Q) [54,57] that (A)
regulates the Landau pole and (B) decouples the dynamics at scales Q � mg(0), thereby
causing the coupling to lose its Q-dependence [58]. Like αHLF

g1
, α̂PI is parameter-free and

gauge-invariant but, in contrast to the former and αg1 , α̂PI is also process-independent. No
parameter is varied to predict the infrared fixed-point α̂PI(0) since it is largely fixed by the
value of mg(0), nor is a matching necessary to ensure agreement with the perturbative

determination of α
pQCD
g1 from the renormalization group equations and the Bjorken sum

rule. Crucially, the practical determination of α̂PI(Q) consistently incorporates the extensive
information from Lattice QCD on the gluon and ghost propagators, thereby connecting
this technique to αg1 .

The new data on αg1 agree well with the older data and display a much improved
precision over the whole Q range covered. In addition, the data now reach clearly the
freezing domain of QCD at very low Q. That αg1 freezes could be already inferred with the
old data but only by complementing them with the GDH sum rule or/and the αg1(0) = π
constraint. For the first time, the onset of freezing is now visible with data only. One notes
that only three of the lowest Q points agree with the GDH expectation. This may signal a
fast arising Q-dependence beyond the leading behavior given by GDH. The data agree well
with the αHLF

g1
and α̂PI predictions. That such agreements would occur was not obvious

and is a significant finding. The possible tension between the data and α̂PI for the range
0.3 � Q � 0.5 GeV may be because αg1 and α̂PI are not exactly the same effective charges

(e.g., at high Q, αg1/α̂PI � 1 + 0.05α
pQCD
s �= 1), but it is noteworthy that it occurs only in

the moderately low Q domain where the ghost-gluon vacuum effect as computed in the
Landau gauge contributes the most to α̂PI.
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Figure 1. Effective charge αg1 (Q)/π obtained from JLab experiments E03006/E97110 [33] (solid
stars), E03006/E05111 [33] (solid circles) and EG1dvcs [32] (solid triangles) and from COMPASS [31]
(solid square). Inner error bars represent the statistical uncertainties, and outer ones represent the
systematic and statistical uncertainties added quadratically. The open symbols show the older world
data [27–30] with the error bars the quadratic sum of the systematic and statistical uncertainties. Also
shown are the HLFQCD [24] (red line, using the HLFQCD scale κ = 0.534 GeV [59]) and DSE [25]
(magenta line and hatched band) parameter-free predictions of effective charges. The dashed line
and hatched cyan band are αg1 (Q)/π obtained from the GDH and Bjorken sum rules, respectively.

3. Summary and Conclusions

We used the new JLab data and COMPASS datum on the Bjorken sum to extract the
QCD effective charge αg1(Q) in the Q-range 0.14 ≤ Q ≤ 2.18 GeV. The new result displays
a significantly higher precision compared to the older extractions of αg1(Q), and improve
the low Q reach by about a factor of 2.

The new data show that αg1(Q) “freezes”, viz, loses its Q-dependence, at small Q,
saturating at an infrared fixed-point αg1(Q � 0) � π. This was already apparent with the
older data when combined with the GDH sum rule expectation, but the new data explicitly
display the behavior without needing the sum rule and with significantly higher precision.
The freezing of αg1(Q) together with the smallness of the light quark masses makes QCD
approximately conformal at low Q. The conformal behavior vanishes when transiting from
the low-Q effective degrees of freedom of QCD (hadrons) to the large-Q fundamental ones
(partons) where conformality is then restored (the long-known Bjorken scaling [17]). This
transition is revealed by the drastic change of value of the effective charge. It occurs at a Q
value indicative of the chiral symmetry breaking parameter, ΛB � 1 GeV. The breaking at
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low Q of chiral symmetry, one of the crucial properties of QCD, is believed to cause the
emergence of the global properties of hadrons.

The new data agree well with sum rule predictions and with the latest predictions
from DSE and from a AdS/CFT-based approach. They show that a strong coupling can be
consistently defined in the nonperturbative domain of QCD, namely as an effective charge
analogous to the definition used in QED, and that it can then be used to compute a large
variety of hadronic quantities and other phenomena in which the strong interaction plays
a role.
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Abstract: Visible matter is characterised by a single mass scale; namely, the proton mass. The
proton’s existence and structure are supposed to be described by quantum chromodynamics (QCD);
yet, absent Higgs boson couplings, chromodynamics is scale-invariant. Thus, if the Standard Model is
truly a part of the theory of Nature, then the proton mass is an emergent feature of QCD; and emergent
hadron mass (EHM) must provide the basic link between theory and observation. Nonperturbative
tools are necessary if such connections are to be made; and in this context, we sketch recent progress
in the application of continuum Schwinger function methods to an array of related problems in
hadron and particle physics. Special emphasis is given to the three pillars of EHM—namely, the
running gluon mass, process-independent effective charge, and running quark mass; their role in
stabilising QCD; and their measurable expressions in a diverse array of observables.

Keywords: confinement of gluons and quarks; continuum Schwinger function methods; Dyson–
Schwinger equations; emergence of hadron mass; parton distribution functions; hadron form factors;
hadron spectra; hadron structure and interactions; nonperturbative quantum field theory; quantum
chromodynamics
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1. Introduction

Our Universe exists; and even the small part that we occupy contains much which
might be considered miraculous. Nevertheless, science typically assumes that the Uni-
verse’s evolution can be explained by some collection of equations—even a single equation,
perhaps, which replaces distinct theories of many things with a single theory of everything.
Choosing not to approach that frontier, then, within the current paradigm, the Standard
Model of particle physics (SM) is given a central role; and it must account for a huge array
of observable phenomena. Herein, we focus on one especially important aspect, viz. the
fact that the mass of the vast bulk of visible material in the Universe is explained as soon
as one understands why the proton is absolutely stable and how it comes to possess a
mass mp ≈ 1 GeV. In elucidating this connection, we will argue that the theory of strong
interactions may deliver far more than was originally asked of it.

We have evidently supposed that quantum gauge field theory is the correct paradigm
for understanding Nature. In this connection, it is important to note that, in our tangible
Universe, time and space give us four noncompact dimensions. Consider, therefore, that
quantum gauge field theories in D �= 4 dimensions are characterised by an explicit, intrinsic
mass scale: the basic couplings generated by minimal substitution are mass-dimensioned
and set the scale for all calculated quantities. For D > 4, such theories manifest uncontrol-
lable ultraviolet divergences, making them of little physical use. In contrast, for D < 4,
they are super-convergent, but are afflicted with a hierarchy problem, viz. dynamical
mass-generation effects are typically very small when compared with the theory’s explicit
scale [1–5]. Hence, perhaps unsurprisingly, D = 4 is a critical point. Removing Higgs
boson couplings, the classical gauge theory elements of the SM are scale-invariant. Taking
the step to quantum theories, they are all (at least perturbatively) renormalisable; and
that procedure introduces a mass scale. As we have noted, the scale for visible matter is
mNature ≈ mp ≈ 1 GeV. However, the size of this scale is not determined by the theory; so,
whence does it come? Further, how much tolerance does Nature give us? Is the Universe
habitable when mNature → (1 ± δ)mNature, with δ = 0.1 or 0.2, etc.? It is comforting to
imagine that our (ultimate?) theory of Nature will answer these questions, but the existence
of such a theory is not certain.

Returning to concrete issues, strong interactions within the SM are described by
quantum chromodynamics (QCD). Therefore, consider the classical Lagrangian density
that serves as the starting point on the road to QCD:

LQCD = ∑
f =u,d,s,...

q̄f [γ · ∂ + ig 1
2 λaγ · Aa + mf ]qf + 1

4 Ga
μνGa

μν, (1a)

Ga
μν = ∂μ Aa

ν + ∂ν Aa
μ − g f abc Ab

μ Ac
ν, (1b)

where {qf | f = u, d, s, c, b, t} are fields associated with the six known flavours of quarks;
{mf } are their current–masses, generated by the Higgs boson; {Aa

μ | a = 1, . . . , 8} represent

the gluon fields, whose matrix structure is encoded in { 1
2 λa}, the generators of SU(3)

in the fundamental representation; and g is the unique QCD coupling, using which one
conventionally defines α = g2/[4π]. As remarked above, if one removes Higgs boson
couplings into QCD, so that {mf ≡ 0} in Equation (1), then the classical action associated
with this Lagrangian is scale-invariant. A scale-invariant theory cannot produce compact
bound states; indeed, scale-invariant theories do not support dynamics, only kinematics [6].
So, if Equation (1) is really capable of explaining, amongst other things, the proton’s
mass, size, and stability, then remarkable features must emerge via the process of defining
quantum chromodynamics.

This point is placed in stark relief when one appreciates that the gluon and quark fields
used to express the one-line Lagrangian of QCD are not the degrees-of-freedom measured
in detectors. This is an empirical manifestation of confinement. Amongst other things, a
solution of QCD will reveal the meaning of confinement, predict the observable states, and
explain how they are built from the Lagrangian’s gluon and quark partons. However, the
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search for a solution presumes that QCD is actually a theory. Effective theories are tools
for use in obtaining a realistic description of phenomena perceived at a given scale. A true
theory must be rigorously defined at all scales and unify phenomena perceived at vastly
different energies. If QCD really is a well-defined quantum field theory, then it may serve
as a paradigm for physics far beyond the SM.

Having raised this possibility, then it is appropriate to provide a working definition of
“well-defined” in relation to quantum field theory. Aspects of the mathematical problem
are discussed elsewhere [7,8]. Herein, we consider that a quantum (gauge) field theory is
well-defined if its ultraviolet renormalisation can be accomplished with a finite number of
renormalisation constants, {Zj|j = 1, . . . , N}, N � 10,1 all of which can (a) be computed
nonperturbatively and (b) remain bounded real numbers as any regularisation scale is
removed. Further, that the renormalisation of ultraviolet divergences is sufficient to ensure
that any/all infrared divergences are eliminated, i.e., the theory is infrared-complete.

Quantum electrodynamics (QED) is not well-defined owing to the existence of a
Landau pole in the far ultraviolet (see, e.g., Reference [9] (Ch. 13) and References [10–13]).
Furthermore, weak interactions are essentially perturbative because the inclusion of the
Higgs scalar boson introduces an enormous infrared scale that suppresses all nonperturba-
tive effects; moreover, the Higgs boson mass is quadratically divergent, making the theory
non-renormalisable.

On the other hand, as we will explain herein, it is beginning to seem increasingly
likely that QCD satisfies the tests listed above; hence, is the first well-defined quantum
field theory that humanity has developed. QCD may thus stand alone as an internally
consistent theory, so that after quantisation of Equation (1), with nothing further added, it is
a genuinely predictive mathematical framework for the explanation of natural phenomena.

We have used a Euclidean metric and consistent Dirac matrices in writing Equation (1)
because if there is any hope of arriving at a rigorous definition of QCD, then it is by
formulating the theory in Euclidean space. There are many reasons for adopting this
perspective. Amongst the most significant being the fact that a lattice regularisation of
the theory is only possible in Euclidean space, where one can use the action associated
with Equation (1) to define a probability measure [14] (Section 2.1). Notably, a choice
must be made because any “Wick rotation” between Minkowski space and Euclidean
space is a purely formal exercise, whose validity is only guaranteed for perturbative
calculations [15,16]. If QCD really does (somehow) explain the emergence of hadron mass
and structure, then nonlinear, nonperturbative dynamics must be crucial. Consequently,
one cannot assume that any of the requirements necessary to mathematically justify a Wick
rotation are satisfied when calculating and summing the necessarily infinite collection of
processes associated with a given experimental observable.

One concrete example may serve to illustrate the point. Both continuum and lattice
analyses of the gluon two-point Schwinger function (often called the Euclidean space
gluon propagator) yield a result whose analytic properties are very different from those
one would obtain in perturbation theory at any finite order [17]. As a consequence, the
Minkowski space gluon gap equation that is obtained from the Euclidean form via the
standard transcriptions used to implement the Wick rotation [16] (Section 2.3), whilst being
similar in appearance, cannot possess the same solutions. Thus, to avoid confusion, one
should begin with all such equations formulated in Euclidean space, where the solutions
determined have a direct and unambiguous connection with results obtained using nu-
merical simulations of the lattice-regularised theory. Anything else is an unnecessary and
potentially misleading pretence. Furthermore, only those Schwinger functions correspond-
ing to observable quantities need have a continuation to Minkowski space, and that can be
accomplished following standard notions from constructive field theory ([15] (Sections 3
and 4), [16] (Section 2.3)).

1 Here, the value “10” is arbitrary. More generally, the number should be small enough to ensure that predictive
power is not lost through a need to fit too many renormalised observables to measured quantities.
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We proceed then by supposing that QCD is defined by the Euclidean-space generating
functional built using the Lagrangian density in Equation (1). Here, a new choice presents
itself. One might attempt to solve the thus-quantised theory using a lattice regularisa-
tion [18,19]. Lattice-regularised QCD (lQCD) is a popular framework, which, owing to
growth in computer power and algorithm improvements, is becoming more effective—see,
e.g., Reference [20]. On the other hand, continuum Schwinger function methods (CSMs)
are also available [14,16,21–25]. Much has been achieved using this approach, especially
during the past decade [26–31] and particularly in connection with elucidating the origins
and wide-ranging expressions of emergent hadron mass (EHM) [32–37]. It is upon those
advances that we focus herein.

2. Hadron Mass Budgets

There is one generally recognised mass-generating mechanism in the SM; namely, that
associated with Higgs boson couplings [38,39]. Insofar as QCD is concerned, there are
six distinct such couplings, each of which generates the current–mass of a different quark
flavour. Those current–quark masses exhibit a remarkable hierarchy of scales, ranging from
an electron-like size for the u and d quarks up to a value five-orders-of-magnitude larger for
the t quark ([40] (p. 32)). Faced with such discordance, we choose to begin our discussion
of mass by considering the proton and its closest relatives, viz. the π- and ρ-mesons.

The proton is defined as the lightest state constituted from the valence quark com-
bination u + u + d. π+ is a pseudoscalar meson built from u + d̄ valence quarks, and the
ρ+ is its kindred vector meson partner: in quark models, the π and ρ are identified as 1S0
and 3S1 states, respectively ([40] (Section 63)). Table 1 presents a breakdown of the masses
of these states into three contributions: the simplest to count is that associated with the
Higgs-generated current–masses of the valence quarks (HB); the least well understood is
that part which has no connection with the Higgs boson (EHM); and the remainder is that
arising from constructive interference between these two sources of mass (EHM+HB).

Table 1. Mass budgets of a collection of hadrons, with each panel ordered according to the
contribution from Higgs boson couplings into QCD (HB) and including the component that is
entirely unrelated to the Higgs (EHM) and that arising from constructive interference between
these two mass sources (EHM+HB) (separation at ζ = 2 GeV, produced using information from
References [35,40–43]).

Mass Fraction (%)
Hadron (Mass/GeV) HB EHM+HB EHM

p (0.938) 1 6 93
ρ (0.775) 1 2 97

D∗ (2.010) 63 30 7
B∗ (5.325) 78 21 1

π (0.140) 5 95 0
K (0.494) 20 80 0
D (1.870) 68 32 0
B (5.279) 79 21 0

The information listed in Rows 1, 2, 5, and 6 of Table 1 is represented pictorially in
Figure 1: plainly, there are significant differences between the upper and lower panels.
Regarding the proton and ρ-meson, the HB-alone component of their masses is just 1% in
each case. Notwithstanding that, their masses are large and remain so even in the absence
of Higgs boson couplings into QCD, i.e., in the chiral limit. This overwhelmingly dominant
component is a manifestation of EHM in the SM. It produces roughly 95% of the measured
mass. Evidently, baryons and vector mesons are similar in these respects.
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A BA B

C DC

Figure 1. Mass budgets: (A) proton; (B) ρ-meson; (C) pion; (D) kaon. Each is drawn using a
Poincaré-invariant decomposition and the numerical values listed in Table 1 (separation at ζ = 2 GeV,
calculated using information from References [40–43]).

Conversely and yet still owing to EHM via its dynamical chiral symmetry breaking
(DCSB) corollary, the pion is massless in the chiral limit—it is the SM’s Nambu–Goldstone
(NG) mode [27,44–52]. Returning to the quark model picture, the only difference between
ρ- and π-mesons is a spin-flip: in the ρ, the constituent quark spins are aligned, whereas
they are antialigned in π. Yet, their mass budgets are fundamentally different: Figure 1B; cf.
Figure 1C. An inability to explain this difference is a conspicuous failure of quark models:
whilst it is easy to obtain a satisfactory mass for the ρ, a low-mass pion can only be obtained
by fine-tuning the quark model’s potential. Nature, however, does not fine-tune the pion:
in the absence of Higgs boson couplings, it is massless irrespective of the size of mρ and, in
fact, the mass of any other hadron.

The kaon mass budget is also drawn—see Figure 1D. In the chiral limit, then, like the π,
the K-meson is an NG boson. However, with realistic values of Higgs boson couplings into
QCD, the s quark current–mass is approximately 27-times the average of the u and d current–
masses [40]: 2ms ≈ 27(mu + md). Consequently, the HB wedge in Figure 1D accounts for
20% of mK. The remaining 80% is generated by constructive EHM+HB interference. It fol-
lows that comparisons between π and K properties present good opportunities for studying
Higgs boson modulation of EHM, because the HB mass fraction is four-times larger in kaons
than in pions. Moreover, the array of images in Figure 1 highlights that additional, comple-
mentary information can be obtained from comparisons between baryons/vector mesons
and the set of kindred pseudoscalar mesons. For instance, studies of spectra (Section 6),
transitions between vector mesons and pseudoscalar mesons (Section 10), and comparative
analyses of proton and pion parton distribution functions (DFs) (see Section 11). In all
cases, predominantly EHM systems, on the one hand, are contrasted/overlapped with final
states that possess varying degrees of EHM+HB interference.

These observations highlight that EHM—whatever it is—can be accessed via experi-
ment. The task for theory is to identify and explain its source, then elucidate a broad range
of observable consequences so that the origins and explanations can be validated.
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3. Gluons and the Emergence of Mass

The requirement of gauge invariance ensures that the Higgs boson does not couple to
gluons and precludes any other means of generating an explicit mass term for the gluon
fields in Equation (1). Consequently, it is widely believed that gluons are massless; and this
is recorded by the Particle Data Group (PDG) [40] (p. 25). (We stress that gluon partons are
massless).

In QCD, this “gauge invariance” statement is properly translated into a property of
the two-point gluon Schwinger function. Namely, using the class of covariant gauges as an
illustrative tool, characterised by a gauge-fixing parameter ξ, the inverse of the gluon two-
point function can be expressed in terms of a gluon vacuum polarisation (or self-energy):

D−1
μν (k) = δμνk2 − kμkν(1 − ξ) + Πμν(k) =: 0D−1

μν (k) + Πμν(k) + ξkμkν , (2)

where k is the gluon momentum. (Regarding ξ, common choices in perturbation theory
are ξ = 0, 1, viz. Landau and Feynman gauges, respectively.) Gauge invariance (BRST
symmetry of the quantised theory [53] (Ch. II)) is expressed in the following Slavnov–Taylor
identity [54,55]:

kμΠμν(k) = 0 = Πμν(k)kν . (3)

This restrictive, yet generous, constraint states that interactions cannot affect the four-
longitudinal component of the gluon two-point function, but leaves room for modifications
of the propagation characteristics of the three four-transverse degrees-of-freedom.

Equation (3) means

Πμν(k) = [δμνk2 − kμkν]Π(k2) =: Tk
μνk2Π(k2) , (4)

where Π(k2) is the dimensionless gluon self-energy; hence, the gauge invariance constraint
entails

Dμν(k) = Tk
μν

1
k2[1 + Π(k2)]

+ ξ
kμkν

k4 =: Tk
μνD(k2) + ξ

kμkν

k4 . (5)

This is the propagator of a massless vector boson, unless

Π(k2)
k2�0
=

m2
J

k2 , (6)

in the event of which both the dressed gluon acquires a mass and all symmetry constraints
are preserved. That Equation (6) is possible in an interacting quantum gauge field theory
was first shown in a study of two-dimensional QED [56,57], and the phenomenon is now
known as the Schwinger mechanism of gauge boson mass generation. Three-dimensional
QED supports a similar outcome [3–5,58,59], as does D = 3 QCD [60,61]; but, as already
noted above, there is a difference between both these examples and QCD. Namely, whereas
the Lagrangian couplings in D < 4 theories carry a mass dimension, which explicitly
breaks scale invariance, this is not the case for D = 4 chromodynamics.

The existence of a Schwinger mechanism in QCD was first conjectured forty years
ago [62]. The idea has subsequently been explored and refined [63–67], so that, today, a
detailed picture is emerging, which unifies both the gauge and matter sectors [68]. The
dynamical origin of the QCD Schwinger mechanism and its intimate connection with non-
perturbative dynamics in the three-gluon vertex are elucidated elsewhere [36,37]. This is an
area of continuing research, where synergies between continuum and lattice QCD are being
exploited [69,70]. For our purposes, it is sufficient to know that Equation (6) is realised in
QCD. Indeed, owing to their self-interactions, gluon partons transmogrify into gluon quasi-
particles, whose propagation characteristics are determined by a momentum-dependent
mass function. That mass function is power-law suppressed in the ultraviolet—hence,
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invisible in perturbation theory, yet large at infrared momenta, being characterised by a
renormalisation-point-independent value [71]:

m0 = 0.43(1)GeV. (7)

The renormalisation-group-invariant (RGI) gluon mass function is drawn in Figure 2.

gluon
quark

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

k / GeVM
0(k)/M

0(0),
[m J(k

)/m J(
0)]2

Figure 2. Renormalisation-group-invariant dressed gluon mass function (solid blue curve) calculated,
following the method in Reference [72], from a gluon two-point function obtained using the lQCD
configurations in References [73–75]. The mass-squared curve is plotted, normalised by its k = 0 value,
and compared with the kindred chiral-limit dressed quark mass function drawn from Reference [76]
(dotted-dashed green curve). It is this pair of curves that is 1/k2-suppressed in the ultraviolet, each
with additional logarithmic corrections.

Before closing this section, it is worth stressing the importance of Poincaré covariance
in modern physics.2 If one chooses to formulate a problem in quantum field theory using a
scheme that does not ensure Poincaré invariance of physical quantities, then artificial or
“pseudodynamical” effects are typically encountered [77]. In connection with gauge theory
Schwinger functions, Poincaré covariance very effectively limits the nature and number
of independent amplitudes that are required for a complete representation. In contrast,
analyses and quantisation procedures that violate Poincaré covariance engender a rapid
proliferation in the number of such functions. For instance, the covariant-gauge gluon
two-point function in Equation (5) is fully specified by one scalar function, whereas, in the
class of axial gauges, two unconnected functions are required, and unphysical, kinematic
singularities appear in the associated tensors [78,79]. This is why covariant gauges are
normally employed for concrete calculations in both continuum and lattice-regularised
QCD. In fact, Landau gauge, i.e., ξ = 0 in Equation (5), is often used because, amongst
other things, it is a fixed point of the renormalisation group [53] (Ch. IV) and implemented
readily in lQCD [80]. We typically refer to Landau gauge results herein. Naturally, gauge
covariance of Schwinger functions ensures that expressions of EHM in physical observables
are independent of the gauge used for their elucidation.

Equation (7) is the cleanest expression of EHM in Nature, being truly a manifestation
of mass emerging from nothing: infinitely many massless gluon partons fuse together
so that, for all intents and purposes, they behave as coherent quasiparticle fields with a
long-wavelength mass, which is almost half that of the proton. The implications of this
result are enormous and far-reaching, including, e.g., key steps toward the elimination of

2 When working with a Euclidean formulation, as we do, Poincaré covariance maps straightforwardly into
Euclidean covariance, viz. valid Schwinger functions must transform covariantly under O(4) rotations and
linear translations in R4. Owing to the simplicity of this connection, we avoid transliteration and speak of
Poincaré covariance and invariance throughout.
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the problem of Gribov ambiguities [81], which were long thought to prevent a rigorous
definition of QCD.

4. Process-Independent Effective Charge

In classical field theories, couplings and masses are constants. Typically, this is also
true in quantum mechanics models of strong interaction phenomena. However, this is
not the case in renormalisable quantum gauge field theories, as highlighted by the Gell-
Mann–Low effective charge/running coupling in QED [82], which is a textbook case [9]
(Ch. 13.1).

A highlight of Twentieth Century physics was the realisation that QCD, in particular,
and non-Abelian gauge theories, in general, express asymptotic freedom ([83–85], [86]
(Ch. 7.1)), i.e., the feature that the interaction between charge carriers in the theory be-
comes weaker as k2, the momentum-squared characterising the scattering process, becomes
larger. Analysed perturbatively at one-loop order in the modified minimal subtraction
renormalisation scheme, MS, the QCD running coupling takes the form

αMS(k
2) =

γmπ

ln k2/Λ2
QCD

, (8)

where γm = 12/[33 − 2n f ], with n f the number of quark flavours whose mass does
not exceed k2, and ΛQCD ∼ 0.2 GeV is the RGI mass parameter that sets the scale for
perturbative analyses.

Asymptotic freedom comes with a “flip side”, which came to be known as infrared
slavery ([87] (Section 3.1.2)). Namely, beginning with some k2 � Λ2

QCD, then the interaction
strength grows as k2 is reduced, with the coupling diverging at k2 = Λ2

QCD. (This is the
Landau pole.) Qualitatively, this statement is true at any finite order in perturbation theory:
whilst the value of ΛQCD changes somewhat, the divergence remains. In concert with the
area law demonstrated in Reference [18], which entails that the potential between any two
infinitely massive colour sources grows linearly with their separation, many practitioners
were persuaded that the complex dynamical phenomenon of confinement could simply be
explained by an unbounded potential that grows with parton separation. As we shall see,
that is not the case, but the notion is persistent.

Given the character of QCD’s perturbative running coupling, two big questions arise:

(a) Does QCD possess a unique, nonperturbatively well-defined and calculable effective
charge, viz. a veritable analogue of QED’s Gell-Mann–Low running coupling; and

(b) Does Equation (8) express the large-k2 behaviour of that charge?

If both questions can be answered in the affirmative, then great strides have been
made toward verifying that QCD is truly a theory.

Following roughly forty years of two practically disjoint research efforts, one focused
on QCD’s gauge sector [66,67,88] and another on its matter sector [21,23–25], a key step on
the path to answering these questions was taken in Reference [68]. The two distinct efforts
were designated therein as the top-down approach—ab initio computation of the interaction
via direct analyses of gauge sector gap equations; and the bottom-up scheme—inferring
the interaction by describing data within a well-defined truncation of those matter sector
equations that are relevant to bound state properties. Reference [68] showed that the top-
down and bottom-up approaches are unified when the RGI running interaction predicted
by then-contemporary analyses of QCD’s gauge sector is used to explain ground state
hadron observables using nonperturbatively improved truncations of the matter sector
bound state equations. The first such truncation was introduced in Reference [89].

It was a short walk from this point to a realisation [90] that in QCD, by means of the
pinch technique [65,91,92] and background field method [93], one can define and calculate
a unique, process-independent (PI) and RGI analogue of the Gell-Mann–Low effective
charge, now denoted α̂(k2). The analysis was refined in Reference [71], which combined
modern results from continuum analyses of QCD’s gauge sector and lQCD configurations
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generated with three domain-wall fermions at the physical pion mass [73–75] to obtain a
parameter-free prediction of α̂(k2). The resulting charge is drawn in Figure 3. It is reliably
interpolated by writing

α̂(k2) =
γmπ

ln
[
K 2(k2)/Λ2

QCD

] , K 2(y = k2) =
a2

0 + a1y + y2

b0 + y
, (9)

with (in GeV2): a0 = 0.104(1), a1 = 0.0975, b0 = 0.121(1). The curve was obtained using a
momentum subtraction renormalisation scheme: ΛQCD = 0.52 GeV when n f = 4.

Figure 3. Process-independent effective charge, α̂(k)/π, obtained by combining modern results
from continuum and lattice analyses of QCD’s gauge sector [71]. Existing data on the process-
dependent charge αg1 [94,95], defined via the Bjorken sum rule, is shown for comparison—see
References [95–121]. (Image courtesy of D. Binosi).

Notably, α̂(k2) is PI and RGI in any gauge; but, it is sufficient to know α̂(k2) in Landau
gauge, ξ = 0 in Equation (5), which is the choice both for easiest calculation and the result in
Equation (9). This is because α̂(k2) is form-invariant under gauge transformations, as may
be shown using identities discussed elsewhere [122], and gauge covariance ensures that any
such transformations can be absorbed into the Schwinger functions of the quasiparticles
whose interactions are described by α̂(k2) [123].

The following physical features of α̂ deserve to be highlighted because they expose a
great deal about QCD.

Absence of a Landau pole. Whereas the perturbative running coupling, e.g., Equation (8),
diverges at k2 = Λ2

QCD, revealing the Landau pole, the PI charge is a smooth function
on k2 ≥ 0: the Landau pole is eliminated owing to the appearance of a gluon mass
scale, Equation (7).
Implicit in the “screening function”, K (k2), is a screening mass:

ζH = K (k2 = Λ2
QCD) ≈ 1.4 ΛQCD < mp, (10)

at which point the perturbative coupling would diverge but the PI coupling passes
through an inflection point on its way to saturation. On

√
k2 � ζH, the PI charge enters

a new domain, upon which the running slows, practically ceasing on
√

k2 ≤ m0/2, so
that QCD is once again effectively a conformal theory and the charge saturates to a
constant infrared value α̂(k2 = 0) = π × 0.97(4). This value is a prediction: within
3(4)%, the coupling saturates to a value of π at k2 = 0. It is not yet known whether
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this proximity to π has any deeper significance in Nature, but a potential explanation
is provided in the next bullet.
These features emphasise the role of EHM as expressed in Equation (7): the existence of
m0 ≈ mp/2 guarantees that long-wavelength gluons are screened, so play no dynami-
cal role. Consequently, ζH marks the boundary between soft/nonperturbative and
hard/perturbative physics. It is therefore a natural choice for the “hadron scale”, viz.
the renormalisation scale at which valence quasiparticle degrees-of-freedom should
be used to formulate and solve hadron bound state problems [71]. Implementing that
notion, then those quasiparticles carry all hadron properties at ζ = ζH. This approach
is today being used to good effect in the prediction of hadron parton distribution
functions (DFs)—see Section 11 and References [124–136].
Match with the Bjorken process-dependent charge. The theory of process-dependent
(PD) charges was introduced in References [137,138]: “. . . to each physical quantity
depending on a single scale variable is associated an effective charge, whose corresponding
Stückelberg–Peterman–Gell-Mann–Low function is identified as the proper object on which
perturbation theory applies.” PD charges have since been widely canvassed [94,139,140].
One of the most fascinating things about the PI running coupling is highlighted by its
comparison with the data in Figure 3, which express measurements of the PD effective
charge, αg1(k

2), defined via the Bjorken sum rule [141,142]. The charge calculated in
Reference [71] is an essentially PI charge. There are no parameters; and, prima facie,
no reason to expect that it should match αg1(k

2). The almost precise agreement is a
discovery, given more weight by new results on αg1(k

2) [95], which now reach into
the conformal window at infrared momenta.
Mathematically, at least part of the explanation lies in the fact that the Bjorken sum
rule is an isospin non-singlet relation, which eliminates many dynamical contributions
that might distinguish between the two charges. It is known that the two charges are
not identical; yet, equally, on any domain for which perturbation theory is valid, the
charges are nevertheless very much alike:

αg1(k
2)

α̂(k2)

k2�m2
0= 1 +

1
20

αMS(k
2) , (11)

where αMS is given in Equation (8). At the c quark current–mass, the ratio is 1.007, i.e.,
indistinguishable from unity insofar as currently achievable precision is concerned. At
the other extreme, in the far infrared, the Bjorken charge saturates to αg1(k

2 = 0) = π;
hence,

αg1(k
2)

α̂(k2)

k2�m2
0= 1.03(4) . (12)

Evidently, the PD charge determined from the Bjorken sum rule is, for practical intents
and purposes, indistinguishable from the PI charge generated by QCD’s gauge sector
dynamics [71,90].
Infrared completion. Being process-independent, α̂(k2) serves numerous purposes
and unifies many observables. It is therefore a good candidate for that long-sought
running coupling which describes QCD’s effective charge at all accessible momentum
scales [139], from the deep infrared to the far ultraviolet, and at all scales in between,
without any modification.
Significantly, the properties of α̂(k2) support the conclusion that QCD is actually a
theory, viz. a well-defined D = 4 quantum gauge field theory. QCD therefore emerges
as a viable tool for use in moving beyond the SM by giving substructure to particles
that today seem elementary. A good example was suggested long ago; namely, perhaps
all spin-J = 0 bosons may be [57] “. . . secondary dynamical manifestations of strongly
coupled primary fermion fields and vector gauge fields . . . ”. Adopting this position, the
SM’s Higgs boson might also be composite, in which case, inter alia, the quadratic
divergence of Higgs boson mass corrections would be eliminated.
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Qualitatively equivalent remarks have been developed using light-front holographic
models of QCD based on anti-de Sitter/conformal field theory (AdS/CFT) duality [143,144].

Returning to the two questions posed following Equation (8) in Items (a) and (b), it
is now apparent that they are answerable in the affirmative: QCD does possess a unique,
nonperturbatively well-defined and calculable effective charge whose large-k2 behaviour
connects smoothly with that in Equation (8). These facts provide strong support for the
view that QCD is a well-defined 4D quantum gauge field theory.

5. Confinement

Confinement is much discussed, but little understood. In large part, both these things
stem from the absence of a clear, agreed definition of confinement. With certainty, it is only
known that nothing with quantum numbers matching those of the gluon or quark fields in
Equation (1) has ever reached a detector.

An interpretation of confinement is included in the official description of the Yang–
Mills Millennium Problem [145]. The simpler background statement is worth repeating:

“Quantum Yang–Mills theory is now the foundation of most of elementary particle theory,
and its predictions have been tested at many experimental laboratories, but its mathe-
matical foundation is still unclear. The successful use of Yang–Mills theory to describe
the strong interactions of elementary particles depends on a subtle quantum mechanical
property called the ‘mass gap’: the quantum particles have positive masses, even though
the classical waves travel at the speed of light. This property has been discovered by
physicists from experiment and confirmed by computer simulations, but it still has not
been understood from a theoretical point of view. Progress in establishing the existence of
the Yang–Mills theory and a mass gap will require the introduction of fundamental new
ideas both in physics and in mathematics.”

The formulation of this problem focuses entirely on quenched-QCD, i.e., QCD without
quarks; so, its solution is not directly relevant to our Universe. Confinement in pure
quantum SU(3) gauge theory and in QCD proper are probably very different because
the pion exists and is unnaturally light on the hadron scale [27]. On the other hand,
the remarks concerning the emergence of a “mass gap” relate directly to Figure 2 and
Equation (7) herein. Whilst these properties of QCD may be considered proven by the
canons of theoretical physics, such arguments do not meet the standards of mathematical
physics and constructive field theory because they involve input from numerical analyses
of QCD Schwinger functions. Hereafter, therefore, we will continue within the theoretical
physics perspective.

As noted above, a mechanism for the total confinement of infinitely massive charge
sources has been identified in the lattice-regularised treatment of quantum field theories
using compact representations of Abelian or non-Abelian gauge fields [18], viz. the area
law ≡ linear source–antisource potential. However, no treatment of the continuum meson
bound state problem has yet been able to demonstrate how such an area law emerges as
the masses of the meson’s valence degrees-of-freedom grow to infinity.

In the era of infrared slavery, it was widely assumed that some sort of nonperturba-
tively improved one-gluon exchange could simultaneously produce asymptotic freedom
and a linearly rising potential between quarks; and many models were developed with
just such features [146–150]. However, as highlighted by our discussion of QCD’s effective
charge, ongoing developments in the study of mesons, using rigorous treatments of the
Schwinger functions involved, do not support this picture of confinement via dressed
one-gluon exchange. The path to an area law is far more complex.

One direction that deserves exploration is connected with the gluon “H-diagrams”
drawn in Reference [151] (Figure 8) and reproduced in Figure 4A. Imagine a valence quark
and antiquark scattering via such a process, as drawn in Figure 4B; then keep adding
H-diagrams within H-diagrams, exploiting both gluon–quark and gluon self-couplings.
Such H-diagram scattering processes produce an infrared divergence in the perturbative
computation of a static quark potential [152], viz. a contribution that exhibits unbounded
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growth as the source–antisource separation increases. Nonperturbatively, that divergence
is tamed because the effective charge saturates—Figure 3. On the other hand, there are
infinitely many such contributions; and in the limit of static valence degrees-of-freedom,
the entire unbounded sum of planar H-diagrams is contracted to a point connection of
infinitely dense fisherman’s net/spider’s web diagrams on both the source and antisource.
It is conceivable that the confluence of these effects could yield the long-sought area law
via the Bethe–Salpeter equation [151,153].

A B

Figure 4. Panel (A): primitive gluon H-diagram. Panel (B): one-H-diagram contribution to
quark+antiquark scattering. Legend: Dressed gluon two-point function—spring with open cir-
cle insertion; dressed quark two-point function—straight line with open circle insertion; blue-filled
circle at 3-gluon junction—dressed 3-gluon vertex; red-filled circle at gluon–quark junction—dressed
gluon–quark vertex. Repeated insertion of H-diagrams within H-diagrams, exploiting both gluon–
quark and gluon self-couplings, leads to a plaquette-like area-filling structure, reminiscent of the
planar summation of elementary squares in Reference [18].

Real-world QCD, however, is characterised by light degrees-of-freedom: u and d
quarks with electron-size current–masses; s quarks with a mass roughly one order-of-
magnitude larger, so still much less than mp. Pions and kaons are constituted from such
valence degrees-of-freedom, and these mesons are light. In fact, the pion has a lepton-like
mass [40]: mπ ≈ mμ, where mμ is the mass of the μ lepton. Owing to the presence of
such degrees-of-freedom, light particle annihilation and creation effects are essentially
nonperturbative in QCD. Consequently, despite continuing dedicated efforts [154–156], it
has thus far proven impossible to either define or calculate a static quantum mechanical
potential between two light quarks.

This may be illustrated by apprehending that a potential which increases with separa-
tion can be described by a flux tube extending between the source and antisource. As the
source–antisource separation increases, so does the potential energy stored in the flux tube.
However, it can only increase until the stored energy matches that required to produce
a particle+antiparticle pair of the theory’s lightest asymptotic states—in QCD, a π+π−

pair. Numerical simulations of lQCD reveal [157,158] that once the energy exceeds this
critical value, the flux tube then dissolves along its entire length, leaving two isolated
colour singlet systems. Given that mπ = 0.14 GeV, then this disintegration must occur at
source+antisource centre-of-mass separation r ≈ (1/3) fm [159], which is well within the
interior of any hadron. This example assumes that the source and antisource are static.
The situation is even more complex for real, dynamical quarks. Thus, at least in the u, d,
s quark sector, confinement is manifested in features of Schwinger functions that are far
more subtle than can be captured in typical potential models.

One non-static, i.e., dynamical, picture of confinement has emerged from studies of the
analytic properties of the two-point Schwinger functions associated with the propagation
of coloured gluon and quark quasiparticles—see, e.g., Figure 2. The development of this
perspective may be traced back to its beginning almost forty years ago [15,160–164]. It has
subsequently been carefully explored [17,22,33,51,81,163,165–170]; and in this connection,
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one may profitably observe that only Schwinger functions which satisfy the axiom of
reflection positivity [7,171,172] can be connected with states that appear in the Hilbert
space of observables.

The axioms referred to here are those first presented in References [171,172] and
subsequently modified in [7], which identify the properties of Schwinger functions that are
necessary and sufficient to ensure equivalence between the formulation of a given quantum
field theory in Euclidean and Minkowski space. (A contemporary literature compilation is
presented elsewhere [173].) In effect, this means that all and only those Schwinger functions
which satisfy the five Osterwalder–Schrader axioms possess connections with elements in
the Hilbert space of physical states. Regarding strong interactions, all physical states are
colour singlets. Consequently, for QCD to be the theory of strong interactions, all its colour
singlet Schwinger functions must satisfy the Osterwalder–Schrader axioms; equally, all its
colour-nonsinglet functions must violate at least one.

Reflection positivity is a severe constraint. It requires that the Fourier transform of the
momentum space Schwinger function, treated as a function of analytic, Poincaré-invariant
arguments, is a positive-definite function. To illustrate, consider the gluon Schwinger
function in Equation (5). A massless partonic gluon is described by D(k2) = 1/k2; and the
4D Fourier transform of this function is∫ d4k

(2π)4 eik·x 1
k2 =

1
4π2x2 > 0 ∀x2 > 0 . (13)

More generally, regarding two-point functions, viz. those connected with the prop-
agation of elementary excitations in QCD, reflection positivity is satisfied if, and only if,
the Schwinger function has a Källén–Lehmann representation. Returning to the gluon
Schwinger function in Equation (5), this means one must be able to write

D(k2) =
∫ ∞

0
dζ

ρ(ς)

k2 + ς2 , ρ(ς) > 0 ∀ς > 0. (14)

Plainly, ρ(ς) = δ(ς) yields D(k2) = 1/k2, i.e., the two-point function for a bare gluon
parton. Hence, according to Equations (13) and (14), absent dressing, the gluon parton
could appear in the Hilbert space of physical states.

It is important to observe that any function which satisfies Equation (14) is positive-
definite itself. Moreover, given Equation (14),

sgn
(
[

d
dk2 ]

n D(k2)

)
= (−1)n ; (15)

consequently, inter alia, treated as a function of the analytic, Poincaré-invariant variable
k2, no function with a Källén–Lehmann representation of the form written in Equation (14)
can possess an inflection point. Conversely, any function that exhibits an inflection point
or, more generally, has a second derivative that changes sign must violate the axiom of
reflection positivity [22]; hence, the associated excitation cannot appear in the Hilbert space
of observables.

Take another step, and consider the following configuration space Schwinger function
(τ = x4, � = k4):

Δ(τ) =
∫

d3x
∫ d4k

(2π)4 eik·xD(k2) =
1
π

∫ ∞

0
d� cos(�τ)D(�2) . (16)

Suppose that interactions generate a constant mass for the gluon parton, so that D(k2) =
1/(k2 + μ2). Does that trigger confinement? The answer is “no” because this Schwinger
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function has a spectral representation with ρ(ς) = δ(ς2 − μ2); Equation (15) is satisfied;
and so is positivity:

Δ(τ) =
1

2μ
e−μτ . (17)

Suppose instead that interactions produce a momentum-dependent mass-squared
function like that in Figure 2, which is 1/k2 suppressed in the ultraviolet:

m2
J (k

2) =
μ4

0
k2 + μ2

0
⇒ D(k2) =

k2 + μ2
0

k2(k2 + μ2
0) + μ4

0
. (18)

The mass function itself is a monotonically decreasing, concave-up function; yet, in this
case, the Schwinger function has an inflection point at k2 = 0.53μ2

0. Hence, it does not
have a Källén–Lehmann representation; so, the associated excitation cannot appear in the
Hilbert space of observables. Furthermore, evaluation of the configuration space Schwinger
function defined by Equation (16) yields [81]

Δ(τ) =
1

μ0
e−τμ0

√
3

2 cos
μ0τ

2
=: Δp(τ) cos

μ0τ

2
, (19)

using which the curve in Figure 5 is drawn: plainly, the configuration space Schwinger func-
tion violates reflection positivity. (Notably, the algebraic calculation of Δ(τ) is often difficult
and not always possible; so, uniform positivity of the second-derivative, Equation (15),
is a much quicker means of testing for reflection positivity. Nevertheless, when it can be
obtained, an explicit form of Δ(τ) does provide additional insights.)
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Figure 5. Δ(τ)μ0 exp(μ0τ
√

3
2 ) computed from the Schwinger function in Equation (18) using

Equation (16).

It is interesting to extend Equation (18) using m2
J (k

2) = αμ4
0/[k2 + μ2

0], in which case

D(k2 = μ2
0y) =

1
μ2

0

1 + y
y2 + y + α

=:
1

μ2
0

d (y) . (20)

This type of Schwinger function lies within the so-called “refined Gribov–Zwanziger”
class [166]. For α > 1

2 , as in the example above, the function in Equation (20) exhibits
an inflection point at some y > 0; and when α ∈ ( 1

4 , 1
2 ), the inflection point is found at

a location y ∈ (− 1
2 , 0). With α ∈ (0, 1

4 ), on the other hand, the function in Equation (20)
separates into a sum of two terms:

d (y) =
n1

y + p1
− n2

y + p2
, (21)
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where p1,2 ∈ R and sgn(p1/p2) = +1. In this case, there is no inflection point; nevertheless,
the second derivative does change sign, switching ±∞ ↔ ∓∞ as y passes through the pole
locations. Consequently, any excitation whose propagation is described by a Schwinger
function obtained with α > 0 in Equation (20) cannot appear in the Hilbert space of
observable states.

Inserting Equation (20) into Equation (16), one finds, after some careful algebra [81]
(a = α1/4):

Δ(τ) =
1

2μ0asϕ/2
e−τμ0acϕ/2

×
[
(1 + 1

a2 )sϕ/2 cos(τμ0asϕ/2)− (1 − 1
a2 )cϕ/2 sin(τμ0asϕ/2)

]
, (22)

where cϕ/2 = [ 1
2 + 1

4a2 ]
1/2, sϕ/2 = [1 − c2

ϕ/2]
1/2. (Equation (19) is a special case of this

result.) Equation (22) reveals that the distance from τ = 0 of the first zero in the configura-
tion space Schwinger function, τz, increases with decreasing α, i.e., as the infrared value
of the gluon mass-squared function is reduced. Thus, confinement would practically be
lost if τz were to become much greater than π/μ0. Considering realistic gluon two-point
functions, however, one finds μ0 ≈ (3/4)mp, α ≈ 1 [81]; so, τz ≈ 1 fm, expressing a natural
confinement length scale. (It is worth observing that if τz were instead measured on the Å
scale, then the notion of confinement would be lost because modern detectors are able to
directly image targets of this size [174].)

This discussion is readily summarised. Owing to complex nonlinear dynamics in QCD,
gluon and quark partons acquire momentum-dependent mass functions, as a consequence
of which they emerge as quasiparticles whose propagation characteristics are described by
two-point Schwinger functions that are incompatible with reflection positivity. Normally,
the dynamical generation of running masses is alone sufficient to ensure this outcome. It
follows that the dressed gluons and quarks cannot appear in the Hilbert space of physical
states. In this sense, they are confined. The associated confinement length scale is τz ≈ 1 fm.
It is worth stressing that the use of such two-point functions in the calculation of colour
singlet matrix elements ensures the absence of coloured particle+antiparticle production
thresholds [175], thereby securing the empirical expression of real-QCD confinement.

Considering these quasiparticle Schwinger functions further, one may also define
a parton persistence or fragmentation length, τF, as the scale whereat the deviation of the
Schwinger function from parton-like behaviour is 50%: Δ(τF)/Δp(τF) = 0.5. Referring
to Equation (19), one reads τF = (2/3)τz. This result is also found using realistic gluon
two-point functions [81]. (The value of 50% is merely a reasonable choice. At this level,
30% would also be acceptable, in which case τF → τ′

F = (1/2)τz.)
A physical picture of dynamical confinement now becomes apparent [165]. Namely,

once a gluon or quark parton is produced, it begins to propagate in spacetime. However,
after traversing a spacetime distance characterised by τF, interactions occur, causing the
parton to lose its identity, sharing it with others. Ultimately, combining the effects on
this parton with similar impacts on those produced along with it, a countable infinity of
partons (a parton cloud) is produced, from which detectable colour singlet final states
coalesce. This train of events is the physics expressed in parton fragmentation functions
(FFs) [176]. Such distributions describe how the QCD partons in Equation (1), generated in
a high-energy event and almost massless in perturbation theory, transform into a shower
of massive hadrons, viz. they describe how hadrons with mass emerge from practically
massless partons. It is natural, therefore, to view FFs as the cleanest expression of dynamical
confinement in QCD. Furthermore, in the neighbourhood of their common boundary of
support, DFs and FFs are related by crossing symmetry [177]: FFs are timelike analogues
of DFs. Hence, an understanding of FFs and their deep connection with DFs can deliver
fundamental insights into EHM. This picture of parton propagation, hadronisation, and
confinement—of DFs and FFs—can be tested in experiments at modern and planned
facilities [178–186]. A pressing demand on theory is delivery of predictions for FFs before
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such experiments are completed so as, for instance, to guide development of facilities
and detectors. As yet, however, there are no realistic computations of FFs. In fact, even a
formulation of this problem remains uncertain.

Before moving on, it is worth reiterating that confinement means different things to
different people. Whilst some see confinement only in an area law for Wilson loops [18],
our perspective stresses a dynamical picture, in which dynamically driven changes in the
analytic structure of coloured Schwinger functions ensures the absence of colour-carrying
objects from the Hilbert space of observable states. In time, perhaps, as strong QCD is
better understood, it may be found that these two realisations are connected. The only
certain thing is the necessity to keep an open mind on this subject.

6. Spectroscopy

Insofar as the spectrum of hadrons is concerned, results from nonrelativistic or some-
what relativised quark models [187–189] are still often cited as benchmarks. Indeed, a
standard reference ([40] (Section 63)) includes the following assertions: “The spectrum of
baryons and mesons exhibits a high degree of regularity. The organizational principle which best
categorizes this regularity is encoded in the quark model. All descriptions of strongly interacting
states use the language of the quark model.” This is despite the facts that neither the “quarks”
nor the potentials in quark models have been shown to possess any mathematical link with
Equation (1)—rigorous or otherwise; and, furthermore, the orbital angular momentum and
spin used to label quark model states are not Poincaré-invariant (observable) quantum
numbers.

In step with improvements in computer performance, lQCD is delivering interesting
results for hadron spectra [190,191], amongst which one may highlight indications for
the existence of hybrid and exotic hadrons [192–195]. Continuum studies in quantum
field theory are lagging behind owing in part to impediments placed by the character of
the Bethe–Salpeter equation; primarily the fact that it is impossible to write the complete
Bethe–Salpeter kernel in a closed form.

A systematic approach to truncating the integral equations associated with bound state
problems in QCD was introduced almost thirty years ago [196,197]. Amongst other things,
the scheme highlighted the importance of preserving continuous and discrete symmetries
when formulating bound state problems; enabled proof of Goldberger–Treiman identities
and the Gell-Mann–Oakes–Renner relation in QCD [198,199]; and opened the door to
symmetry-preserving, Poincaré-invariant predictions of hadron observables, including
elastic and transition form factors and DFs [21,23–25,28,125,200–207]. Some of the more
recent developments are sketched below.

An issue connected with the leading-order (rainbow ladder (RL)) term in the truncation
scheme of References [196,197] is that it only serves well for those ground state hadrons
which possess little rest-frame orbital angular momentum, L, between the dressed valence
constituents [208–218]. This limitation can be traced to its inability to realistically express
the impacts of EHM on hadron observables, a weakness that is not overcome at any finite
order of elaboration [210]. Improved schemes, which express EHM in the kernels, have
been identified [68,89,151,219–221]. They have shown promise in applications to ground
state mesons constituted from u and d valence quarks and/or antiquarks. However, that is
a small subset of the hadron spectrum; so, a recent extension to the spectrum and decay
constants of u, d, and s meson ground and first-excited states is welcome [222].

Returning to quark models, it was long ago claimed [149] “. . . that all mesons—from the
pion to the upsilon—can be described in a unified framework.” The context for this assertion
was a model potential built using one-gluon-like exchange combined with an infrared
slavery “confinement” term that increases linearly with colour source separation. The
basic mass scales in such potential models are set by the constituent quark masses; and
one might draw a qualitative link between those scales and the far-infrared values of
the momentum-dependent dressed quark running masses ([35] (Figure 2.5)): Mu,d(0) �
0.41 GeV, Ms(0) � 0.53 GeV. Thereafter, mass splittings and level orderings are arranged by
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tuning details of the potential. Such a procedure can be quantitatively efficacious; however,
it is qualitatively incorrect. This is readily seen by recalling the Gell-Mann–Oakes–Renner
relation [46,198,223]: m2

π ∝ m̂, where m̂ is Nature’s explicit source of chiral symmetry
breaking, generated by Higgs boson couplings to quarks in the SM. Such behaviour is
impossible in a potential model [25,27], but natural in the CSM treatment of bound states—
see, e.g., References [198,208], [21] (Figure 3.3), [224] (Figure 7), [89] (Figure 1A). Thus,
whilst potential models might deliver a fit to hadron spectra, they do not provide an
explanation.

That such challenges are surmounted when using CSMs to treat hadron bound state
problems is further exemplified in Reference [222], which adapts a novel scheme for in-
cluding EHM effects in the Bethe–Salpeter kernel [221] to simultaneously treat ground and
first-excited states of u, d, and s quarks. As revealed in Figure 6, the empirical spectrum
displays some curious features, e.g.: consistent with quark mass–scale counting, mρ < mK∗ ,
but this ordering is reversed for the first excitations of these states; the first excited state of
the π is lighter than that of the ρ, but the ordering is switched for K, K∗; and all axial vector
mesons are nearly degenerate, with the larger mass of the s quarks appearing to have little
or no impact. In delivering the first symmetry-preserving analysis of this collection of
states to employ an EHM-improved kernel, Reference [222] supplies fresh insights into the
dynamical foundations of the properties of lighter quark mesons.





  







 

 











 






 




























 


















    

            















Figure 6. Empirical spectrum [40] (PDG summary tables): blue circles (bars)—u, d states; green
diamonds (bar)—systems with s and/or s̄ quarks. Little is known about K(1460), which is therefore
drawn as an open red diamond. Gold six-pointed stars—spectrum of low-lying u, d, and s mesons
predicted by the EHM-improved Bethe–Salpeter kernel developed in Reference [222]; black five-
pointed stars—same spectrum computed using RL truncation.

In order to sketch that effort, we note that, using CSMs, the dressed propagator (two-
point Schwinger function) for a quark with flavour g is obtained as the solution of the
following gap equation:

S−1
g (k) = iγ · k Ag(k2) + Bg(k2) = [iγ · k + Mg(k2)]/Zg(k2) , (23a)

= Z2 (iγ · k + mg) + Σg(k) , (23b)

Σ(k) = Z1

∫ Λ

dq
g2Dμν(k − q)

λa

2
γμSg(q)

λa

2
Γg

ν(k, p), (23c)

where Mg(k2) is RGI;
Dμν(k) = Δ(k2) 0Dμν(k) ; (24)

Γg
ν is the quark-gluon vertex;

∫ Λ
dq denotes a Poincaré-invariant regularisation of the four-

dimensional integral, with Λ the regularisation mass scale; and Z1,2(ζ
2, Λ2) are, respectively,

the vertex and quark wave function renormalisation constants, with ζ the renormalisation
point. (In such applications, when renormalisation is necessary, a mass-independent scheme
is important, as discussed elsewhere [225].)
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It was anticipated almost forty years ago [226,227], and confirmed more
recently [76,228–230], that EHM engenders a large anomalous chromomagnetic moment
(ACM) for the lighter quarks; and with development of the first EHM-improved kernels, it
was shown that such an ACM has a big impact on the u, d meson spectrum [219–221].

The aim in Reference [222] was to extend References [219–221] and highlight additional
impacts of an ACM on the spectrum of mesons constituted from u, d, and s quarks. An
ACM emerges as a feature of the dressed gluon–quark vertex, a three-point Schwinger
function. Its character and impacts can be exposed by writing (l = k − q)

Γg
ν(q, k) = γν + τν(l) , τν(l) = ηκ(l2)σlν , (25)

σlν = σρνlρ, κ(l2) = (1/ω) exp (−l2/ω2). Here, η > 0 is the strength of the ACM term,
τν(l); and it is assumed that the vertex is flavour-independent, which is a sound approxi-
mation for the lighter quarks [224,231]. When considering Equation (25), one might remark
that the complete gluon–quark vertex is far more complicated—potentially containing
twelve distinct terms—and, in QCD, κ(l2) is power-law suppressed in the ultraviolet.
Notwithstanding these things, illustrative purposes are well served by Equation (25).

ACM effects are most immediately felt by the dressed quark propagator. The presence
of an ACM in the kernel of Equation (23) increases positive EHM-induced feedback on
dynamical mass generation. Consequently, as shown elsewhere [76], realistic values of
the dressed quark mass at infrared momenta are achieved using the PI effective charge
in Figure 3. Such an outcome requires tuning when using the PI charge in a rainbow
truncation of the gap equation; in fact, DCSB cannot be guaranteed in that case [68].

Following References [89,221,228] in continuing to emphasise clarity over numerical
complexity, Reference [222] also simplified the kernel in Equation (23), writing

g2Δ(k2) = 4πα̂(0)
D(η)

ω4 e−k2/ω2
, (26)

where ω = 0.8 GeV, a value matching that suggested by analyses of QCD’s gauge
sector [68,71], and D(η) = DRL(1 + 0.27η)/(1 + 1.47η), with ωDRL = (1.286 GeV)3 cho-
sen to achieve mρ = 0.77 GeV in RL truncation. The η-dependence of D(η) was fixed a
posteriori by requiring that mρ remain unchanged as η is increased. Since η > 0 adds EHM
strength to the gap equation’s kernel, then D must become smaller as η grows in order to
maintain a fixed value of mρ. Following this procedure, mρ becomes the benchmark against
which all ACM-induced changes are measured.

It is worth noting that when one identifies (g2/[4π])Δ(k2 = 0) = 1/μ2
0, then μ0 =

0.39 GeV in RL truncation and μ0 = 0.57 GeV at η = 1.2. Therefore, the interaction
specified by Equation (26) is consistent with gluon mass generation, as it is described in
Section 3. On the other hand, the large-k2 behaviour of Equation (26) does not respect
the renormalisation group flow of QCD. This would be an issue if one were using it, e.g.,
to calculate hadron form factors at large-Q2 [200,201,203,204], where Q2 is momentum
transfer squared, or parton distribution functions and amplitudes near the endpoints of
their support domains [124–127].3 However, it is far less important when calculating global,
integrated properties, like hadron masses. In such applications, Equation (26) is satisfactory.
Indeed, good results can even be obtained using a symmetry-preserving treatment of a
momentum-independent interaction [232–234]. A key merit of Equation (26) lies in its
elimination of the need for renormalisation, which simplifies analyses without materially
affecting relevant results.

3 This is well known and explains why the truncated interaction in Equation (26) was not used for any of the
calculations described in Sections 7–11 below. All those studies are based on interactions that at least preserve
QCD’s ultraviolet power-law behaviour, where more has not yet been achieved—Sections 7 and 9—and also
the one-loop logarithmic improvement, when the necessary algorithms are already available—Sections 8, 10,
and 11.
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The scheme introduced in Reference [221] provides a direct route from any reasonable
set of gap equation elements to closed-form Bethe–Salpeter kernels for meson bound state
problems. Thus having specified physically reasonable gap equations via Equations (25)
and (26), Reference [222] adapted that scheme to arrive at Bethe–Salpeter equations for
each of the mesons identified in Figure 6, obtaining solutions in all cases. The image
compares the experiment with the RL truncation results, also calculated in Reference [222],
and predictions obtained using the EHM-improved kernel.4

It is first worth mentioning the RL truncation mass predictions in Figure 6. On
the whole, the mean absolute relative difference, ard, between RL results and central
experimental values is 13(8)%. This is tolerable. However, there is substantial scatter and
there are many qualitative discrepancies.

In contrast, compared with central experimental values, the EHM-improved masses in
Figure 6 agree at the level of ard = 2.9(2.7)%. This is a factor of 4.6 of improvement over
the RL spectrum. Moreover, correcting RL truncation flaws and reproducing empirical
results: mK′ > mπ′ , mρ′ > mπ′ , mρ′ ≈ mK∗′ ; the mass splittings a1-ρ and b1-ρ match the em-
pirical values because including the ACM in the kernel has markedly increased the masses
of the a1 and b1 mesons, whilst mρ was deliberately kept unchanged; mφ′ − mφ agrees
with experiment to within 2%; the K+−

1 , K++
1 -level order is correct; and quark+antiquark

scalar mesons are heavy, providing room for the addition of strongly attractive resonant
contributions to the bound state kernels [235,236].

Using the Bethe–Salpeter amplitudes obtained in solving for the meson spectrum,
canonically normalised in the standard fashion ([237] (Section 3)), Reference [222] also de-
livered predictions for the entire array of associated leptonic decay constants, fH , including
many that have not yet been measured. The predicted values are depicted in Figure 7, which
also includes the few available empirical results. The ground state leptonic decay constants
in Figure 7 were calculated directly on-shell, but extrapolation was necessary to obtain
on-shell values for those of the excited states. For these observables, two extrapolation
schemes were used and they yielded consistent results in all cases.

 


 

 







 
  

 
  

 

 

     
 


      


   

 
     




   

  

 

  
  
  
  

           
















Figure 7. Leptonic decay constants for all states whose masses are reported in Figure 6: ground
states, n = 0; lowest lying radial excitations, n = 1. For the excited states, two extrapolation results
are presented for each state, viz. one obtained with Padé approximants and the other employing
the Schlessinger point method (SPM) [206,207,238,239]—the distinct approaches yield consistent
outcomes. Results inferred from data are also plotted, where available [40] (PDG).

Given that Reference [222] used a simplified interaction, viz. Equation (26), then
the Figure 7 comparison between predicted ground state decay constants and the few

4 Dressed-quark propagators form an important part of the kernels of all bound state equations. As on-shell
meson masses increase, poles in those propagators enter the complex plane integration domain sampled by the
Bethe–Salpeter equation [199]. For such cases—here, meson excited states—a direct on-shell solution cannot
be obtained using simple algorithms. Therefore, to obtain the masses of those mesons, Reference [222] used an
extrapolation procedure based on Padé approximants. This is the origin of the uncertainty bar on the CSM
predictions.
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known empirical values is favourable, particularly because decay constants are sensitive to
ultraviolet physics, which was omitted. There are also indications that the EHM-improved
kernels deliver better agreement.

The decay constants of radially excited states are especially interesting. Quantum
mechanics models of positronium-like systems produce a single zero in the radial wave
function of n = 1 states. The decay constant of a first radial excitation is thus (1/8)-times
that of the ground state. The predictions in Reference [222] are generally consistent with
this pattern, except for JP = 0− mesons. In the pseudoscalar channel, as a corollary
of EHM, QCD predicts f n=1

H ≡ 0 in the chiral limit [208,209,240,241]. The results in
Reference [222] meet this requirement, whereas such outcomes cannot be achieved in quark
models without tuning parameters. For this reason alone, the decay constant predictions
of [222] warrant testing.

Notwithstanding the simplifications used in formulating the problem, Reference [222]
delivered the first Poincaré-invariant analysis of the spectrum and decay constants of the u, d,
and s meson ground and first-excited states. The results include predictions for masses of as-yet
unseen mesons and many unmeasured decay constants. One may look forward to extensions
of the approach to heavy+light mesons [239,242,243], hybrid/exotic mesons [213,244–246], and
glueballs [247–250]. These directions are especially important owing to worldwide investments
in studies of the former and searches for the latter [179,183,186,251–253].

Such progress with meson properties should not obscure the need to calculate the
spectrum of baryons. Indeed, baryons are the most fundamental three-body systems in
Nature; if we do not understand how QCD, a Poincaré-invariant quantum field theory,
structures the spectrum of baryons, then we do not understand Nature. Within the context
of the truncation scheme introduced in References [196,197], baryon masses and bound
state amplitudes have been calculated using a Poincaré-covariant Faddeev equation that
describes a six-point Schwinger function for three-quark→ three-quark scattering. The first
solution of this problem for the nucleon (N) was presented in Reference [254]; continuing
studies are reviewed elsewhere [28,31,181,255]; efforts are now under way to adapt the
methods in References [221,222] to the formulation and solution of the baryon Faddeev
equations.

Meanwhile, the quark+dynamical diquark approach to baryon properties, intro-
duced in References [256–259], is also being pursued vigorously. This treatment begins
with solutions of the equation illustrated in Figure 8. As sketched, e.g., in Reference [21]
(Section 5.1), this is an approximation to the three-body Faddeev equation, whose kernel is
constructed using dressed quark and nonpointlike diquark degrees-of-freedom. Binding
energy is lodged within the diquark correlation and also produced by the exchange of
a dressed quark, which, as drawn in Figure 8, emerges in the break-up of one diquark
and propagates to be absorbed into formation of another. In the general case, five distinct
diquark correlations are possible: isoscalar–scalar, (I, JP = 0, 0+); isovector–axial vector;
isoscalar–pseudoscalar; isoscalar–vector; isovector–vector. Channel dynamics within a
given baryon determines the relative strengths of these correlations therein.

Given the extensive coverage of the role of diquark correlations in hadron structure
presented in Reference [255], herein, we will only draw some recent highlights from anal-
yses of the baryon spectrum using the Faddeev equation in Figure 8, drawing largely
from Reference [232]. That study was built upon a symmetry-preserving treatment of
a vector×vector contact interaction (SCI), which was introduced a little over a decade
ago [260] and has since been employed with success in numerous applications, some of
which are reviewed in this volume [261]. Amongst the merits of the SCI are its algebraic
simplicity; limited number of parameters; simultaneous applicability to many systems
and processes; and potential for generating insights that connect and explain numerous
phenomena.

Reference [232] used the SCI to calculate the ground state masses of JP = 0±, 1± ( f ḡ)
mesons and JP = 1/2±, 3/2± ( f gh) baryons, where f , g, h ∈ {u, d, s, c, b}. Using JP = 1

2
±

states as exemplars, Figure 9 highlights the level of quantitative accuracy.
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Figure 8. Figurative representation of the integral equation satisfied by the Poincaré-covariant matrix-
valued function Ψ, viz. the Faddeev amplitude for a baryon with total momentum Q = �q + �d = kq +

kd built from three valence quarks, two of which are always participants in a nonpointlike, interacting
diquark correlation. Ψ describes the sharing of relative momentum between the dressed quarks and
diquarks. Shaded rectangle—Faddeev kernel. Legend: single line—dressed quark propagator, S(q);
ΓJP

(k; K)—diquark correlation amplitude; double line—diquark propagator, ΔJP
(K).
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Figure 9. Upper panel (A): SCI-calculated masses of ground state flavour-SU(5) JP = 1/2+

baryons [232] compared with either experiment (first 15) [40] or lQCD (last 9) [262,263]. Lower
panel (B): SCI masses of ground state flavour-SU(5) JP = 1/2− baryons in [232] compared with ex-
periment [40] (green bars), lQCD [264] (gold triangles), or three-body Faddeev equation results [218]
(orange asterisks). Analogous plots for JP = 3/2± baryons are presented elsewhere ([232] (Figures 4B
and 5B)).

Regarding the 33 mesons, then ard = 5(6)% when comparing SCI predictions with
empirical masses. In achieving this outcome, it was found that sound expressions of EHM
were crucial. Turning to baryons, the SCI generated 88 distinct bound states, namely every
possible three-quark 1/2±, 3/2± ground state. In this collection, 34 states have already been
identified empirically, and lQCD results are available for another 30: for these 64 states,
comparing SCI prediction with experiment, where available, or lQCD mass otherwise,
ard = 1.4(1.2)%. This level of agreement was only achieved through the implementation
of EHM-induced effects associated with spin–orbit repulsion in 1/2− baryons. Notably,
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the same 88 ground states are also produced by a three-body Faddeev equation [218]: in
comparison with those results, ard = 3.4(3.0)%.

Overall, Reference [232] delivered SCI predictions for 164 distinct quantities, 114 of
which have either been measured or calculated using lQCD: performing a comparison
on this subset yields ard = 4.5(7.1)%. Such quantitative success means that credibility
should be given to the qualitative conclusions that follow from the SCI analysis. We list
them here: (i) Nonpointlike, dynamical diquarks play a significant role in all baryons.
Usually, the lightest allowed diquark is the most important part of a baryon’s Faddeev
amplitude. This remains true, even if the lightest correlation is a (sometimes called bad)
axial vector diquark, and also for baryons containing one or more heavy quarks. In the
latter connection, this means one cannot safely assume that singly heavy baryons may
realistically be described as two-body light diquark+heavy quark (qq′ + Q) bound states or
that doubly heavy baryons (qQQ′) can be treated as two-body light quark+heavy diquark
bound states, q + QQ′. Corresponding statements apply to the treatment of tetra- and
penta-quark problems. (ii) Positive-parity diquarks dominate in positive-parity baryons.
Axial vector diquarks are prominent in all states. (iii) Negative-parity diquarks play a minor
role in positive-parity baryons. On the other hand, owing to EHM, they are significant and
sometimes dominant in J = 1/2− baryons. (iv) Curiously, however, J = 3/2− baryons
are built (almost) exclusively from J = 1+ diquark correlations. These conclusions are
being checked using Faddeev equations with momentum-dependent exchange interactions;
hence, a closer link to QCD. Where results are already available, the SCI conclusions have
been confirmed [265–268].

Following more than fifty years of hadron spectroscopy based on quark models, we
are beginning to see real progress with the use of bound state equations in quantum field
theory. Poincaré-invariant, symmetry-preserving analyses that reveal the expressions of
EHM in hadron masses and level orderings are becoming available. This increases the
value of experimental hadron spectra measurements, making them a clearer window onto
strong QCD.

7. Baryon Wave Functions

Concerning baryon structure, as noted when opening Section 6, quark models are still
considered to provide a useful picture [187–189,269]. In such models, baryons built from
combinations of u, d, and s valence quarks are grouped into multiplets of SU(6)⊗O(3). The
multiplets are labelled by their flavour content—SU(3), spin—SU(2), and orbital angular
momentum—O(3). However, as has been emphasised, quark potential models do not have
an explicit link with QCD, a Poincaré-invariant quantum gauge field theory.

For the lightest four (I, JP = 1
2 , 1

2
±
) baryons, with I denoting isospin, a comparison

between quark model expectations and insights drawn from solutions of the Poincaré-
covariant Faddeev equation is presented elsewhere [265]. Herein, we will illustrate the
qualitative character of such comparisons by considering more recent studies of ( 3

2 , 3
2
±
),

( 1
2 , 3

2
∓
) baryons [267,268].

These systems were studied in Reference [217] using RL truncation and direct calcula-
tions of all primary Schwinger functions. With current algorithms, owing to singularities
that enter the integration domains sampled by the Faddeev equations [199], this approach
limits the ability to compute wave functions because the on-shell point for many systems is
inaccessible. (Similar issues are encountered with meson structure studies—Section 6.) To
circumvent this issue, References [267,268] employed the QCD-kindred framework intro-
duced elsewhere [270], in which, instead of calculating all primary Schwinger functions,
one uses physics-constrained algebraic representations of the Faddeev kernel elements.
This weakens the connection with QCD, but that loss is well compensated because, with
reliably informed choices for the representation functions, the expedient enables access to
on-shell baryon wave functions. The QCD-kindred framework has widely been used with
success—see, e.g., References [271–276].
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Within the quark model framework and using standard spectroscopic notation, n 2S+1LJ ,
where n is the radial quantum number with “0” labelling the ground state, the lightest
four ( 3

2 , 3
2
±
) Δ baryons, constructed from isospin I = 3

2 combinations of three u and/or d
quarks, are understood as follows [277]:

1. Δ(1232) 3
2
+

. . . 0 4S 3
2
= S-wave ground state;

2. Δ(1600) 3
2
+

. . . 1 4S 3
2
= S-wave radial excitation of Δ(1232) 3

2
+

;

3. Δ(1700) 3
2
−

. . . 0 2P3
2
= P-wave orbital angular momentum excitation of Δ(1232) 3

2
+

;

4. Δ(1940) 3
2
−

. . . 1 4P3
2
= P-wave excitation of Δ(1600) 3

2
+

.

Analogously, the ( 1
2 , 3

2
∓
) states are interpreted thus [277]:

1. N(1520) 3
2
−

. . . 0 2P1
2
= P-wave ground state in this channel and an angular momentum

coupling partner of N(1535) 1
2
−

;
2. N(1700) 3

2
−

. . . 0 4P3
2
= P-wave angular momentum coupling partner of N(1520) 3

2
−

;

3. N(1720) 3
2
+

. . . 0 2D 3
2
= D-wave orbital angular momentum excitation of N(1520) 3

2
−

;

4. N(1900) 3
2
+

. . . 0 4D 3
2
= D-wave orbital angular momentum excitation of N(1700) 3

2
−

.

On the other hand, Poincaré-invariant quantum field theory does not readily admit
such assignments. Instead, the states appear as poles in the six-point Schwinger functions
associated with the given (I, JP) channels. Here, “(1 ↔ 3)” and “(2 ↔ 4)′’ in each block
above are related as parity partners. All differences between positive- and negative-
parity states can be attributed to chiral symmetry breaking in quantum field theory.
This is highlighted by the ρ-a1 meson complex [219–222,278]. Regarding light quark
hadrons, such symmetry breaking is almost exclusively dynamical [24,279–284]. As noted
above, DCSB is a corollary of EHM [32–37]; hence, quite probably linked tightly with
confinement—Section 5. These features imbue quantum field theory analyses of ( 3

2 , 3
2
±
),

( 1
2 , 3

2
∓
) baryons with particular interest; consequently, experiments that test predictions

made for structural differences between parity partners are highly desirable.
Working with the Faddeev equation sketched in Figure 8, then, a priori, the ( 3

2 , 3
2
±
)

baryons are the simpler systems because they can only contain isovector–axial vector and
isovector–vector diquarks, whereas the ( 1

2 , 3
2
∓
) systems may involve all five distinct types

of diquarks: (0, 0+), (1, 1+), (0, 0−), (1, 1−), (0, 1−). Nonetheless, the formulation of the
bound state problems in both channels is practically identical, using the same dressed quark
and diquark propagators; diquark correlation amplitudes; etc. This way, one guarantees
a unified description of all states in the spectrum. The propagators are parametrised
using entire functions [163,285,286]; hence, satisfy the confinement constraints described in
Section 5. It is this feature that enables on-shell calculations for all baryons.

The calculated spectrum of states is displayed in Figure 10. As highlighted else-
where [29,265,267,268,287,288], the kernel in Figure 8 does not include contributions that
may be understood as meson–baryon final state interactions. These are the interactions
that transform a bare baryon into the observed state, e.g., via dynamical coupled chan-
nels calculations [289–293]. The Faddeev amplitudes and masses calculated in Refer-
ences [265,267,268] should therefore be seen as describing the dressed quark core of the bound
state, not the fully dressed, observable object [294–296]. That explains why the masses are
uniformly too large. Evidently and importantly, in each sector, a single subtraction constant
is sufficient to realign the masses and produce a good description of the spectrum.

87



Particles 2023, 6

N1520
3 2-

N1700
3 2-

N1720
3 2+

N1900
3 2+

N940
1 2+

N1440
1 2+

N1535
1 2-

N1650
1 2-

1232
3 2+

1600
3 2+

1700
3 2-

1940
3 2-0.8

1.2

1.6

2.0

m
as
s/Ge

V

Figure 10. Real part of empirical pole position for each designated baryon [40] (red circle) compared
with: calculated masses in Reference [268] (gold asterisks) after subtracting δ

N3/2
MB = 0.13 GeV from

each; Reference [265] (teal diamonds) after subtracting δ
N1/2
MB = 0.30 GeV; and Reference [267] (green

five-pointed stars) after subtracting δ
Δ3/2
MB = 0.17 GeV. All Faddeev equation predictions are drawn

with an uncertainty that reflects a ±5% change in diquark masses.

Regarding ( 3
2 , 3

2
±
) baryons, Reference [267] found that although these states may

contain both (1, 1+) and (1, 1−) quark+quark correlations, one can neglect the (1, 1−)
diquarks because they have practically no impact on the masses or wave functions. After
this simplification, the Poincaré-covariant wave functions involve eight independent matrix-
valued terms, each multiplied by a scalar function of two variables: (k2, k · Q), with k the
quark+diquark relative momentum. Studying the properties of these functions, one may
conclude that Δ(1600) 3

2
+

is fairly interpreted as a radial excitation of the Δ(1232) 3
2
+

,
as suggested by the quark model. However, the wave functions of the Δ(1700) 3

2
−

and
Δ(1940) 3

2
−

states are complicated and do not readily admit direct analogies with quark
model pictures.

Projecting the Poincaré-covariant Faddeev wave functions of ( 3
2 , 3

2
±
) baryons into

their respective rest-frames, one arrives at a J = L + S separation which is comparable to
that associated with quark models. (Here, L is quark–diquark orbital angular momentum.)
Following this procedure, Reference [267] found that the angular momentum structure of
all these states is much more complicated than is typically generated in quark models—see
Figure 11.

Evidently, making a link to quark models, the Δ(1232) 3
2
+

and Δ(1600) 3
2
+

are char-
acterised by a dominant S-wave component and the Δ(1700) 3

2
−

by a prominent P-wave.
The Δ(1940) 3

2
−

, however, does not fit this picture: contrary to quark model expectations,
indicated on page 79, this state is S-wave-dominated. Moreover, each state contains every
admissible partial wave.

Combining all gathered information, Reference [267] furthermore concluded that the
negative-parity Δ baryons are not merely orbital angular momentum excitations of positive
parity ground states. In this observation, the results match those obtained earlier for ( 1

2 , 1
2
±
)

baryons [265].
Recalling now that the interpolating fields for positive- and negative-parity hadrons

are related by chiral rotation of the quark spinors used in their construction, then the
highlighted structural differences are largely generated by DCSB. Regarding the Δ(1940) 3

2
−

in particular, these novel structural predictions may be expected to encourage new experi-
mental efforts aimed at extracting reliable information about this little-understood state
from exclusive π+π−p electroproduction data [297,298].
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A B

C D

Figure 11. Rest-frame quark+axial vector–diquark orbital angular momentum content of ( 3
2 , 3

2
±
)

baryons considered in Reference [267], as measured by the contribution from the various components
to the associated canonical normalisation constant: A Δ(1232) 3

2
+

; B Δ(1600) 3
2
+

; C Δ(1700) 3
2
−

; D

Δ(1940) 3
2
−

. The overall positive normalisations receive both positive (above plane) and negative
(below plane) contributions. The central image provides the legend for the interpretation of the
other panels, identifying interference between the various identified orbital angular momentum basis
components in the baryon rest-frame.

Observations upon similar features were made about ( 1
2 , 3

2
±
) baryons in Reference [268].

To begin, despite the fact that such states may contain all possible diquark correlations, the
analyses showed that a good approximation is obtained by keeping only (0, 0+), (1, 1+)
correlations. This runs counter to the nature of ( 1

2 , 1
2
−
) systems, in which (0, 0−), (0, 1−)

diquarks are also important [265,299]. Projecting the Poincaré-covariant Faddeev wave
functions into the baryon rest-frames and considering the baryon mass fraction contributed
by each partial wave, this collection of states form a set related via orbital angular mo-
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mentum excitation: as in quark models, the parity-negative states are primarily P-wave in
nature, whereas the parity-positive states are D wave—see Reference [268] (Figure 4). How-
ever, looking with finer resolution, using charts of the canonical normalisation constant
contributions from the various partial waves in the Poincaré-covariant wave functions, like
Figure 11 herein, far greater L-complexity was observed than is usually found in quark
models—see Reference [268] (Figure 7). Here, too, one may anticipate that these structural
predictions can be tested using data from measurements of resonance electroexcitation at
large momentum transfers. For the N(1520) 3

2
−

, data are already available [300–305], and
calculations of the electroproduction form factors are underway. Large-Q2 data on the
other states is not available; so, the predictions in Reference [268] will also encourage new
experimental efforts in this area.

Parity partner channels are identical when chiral symmetry is restored [14,30]. It is
therefore interesting to note that the mass splitting between partner states does not exhibit
a simple pattern, viz. empirically [40]:

states mass splitting/GeV
N(1535) 1

2
− − N(940) 1

2
+

0.57 ,
N(1650) 1

2
− − N(1440) 1

2
+

0.29 ,
Δ(1700) 3

2
− − Δ(1232) 3

2
+

0.46 ,
Δ(1940) 3

2
− − Δ(1600) 3

2
+

0.44 ,
N(1720) 3

2
+ − N(1520) 3

2
−

0.17 ,
N(1900) 3

2
+ − N(1700) 3

2
−

0.22 .

(27)

This system dependence of the mass splitting is also linked to the deeper structural differ-
ences between these states that are expressed in their complex wave functions.

Using a familiar quantum mechanics framework, quark models produce baryon wave
functions that have an appealing simplicity. However, far richer structures are found when
quantum field theory is used to solve baryon bound state problems. The growing body
of quantum field theory predictions can be tested, e.g., in modern and future large-Q2

measurements of baryon elastic and transition form factors. In fact, the large-Q2 character
of such experiments is alone sufficient to demand the sort of Poincaré-invariant, symmetry-
preserving treatment that only analyses in quantum field theory can deliver. One may,
therefore, expect studies using the Faddeev equation approach outlined in this section to
become steadily more widespread.

8. Meson Form Factors

The truncation scheme explained in References [196,197] has been used to calculate
many meson elastic and transition form factors [21]; and modern algorithms have enabled
predictions to be delivered on the entire domain of spacelike Q2 [200,201,306–309], making
it possible to draw connections with hard scattering formulae derived using QCD perturba-
tion theory [310–312]. These new predictions, which unify the infrared and ultraviolet Q2

domains, are providing the impetus for measurements at new-generation high-energy and
high-luminosity facilities [35,180,182,184]. Recalling that QCD is not found in form factor
scaling, but in scaling violations, then the goal of these new experiments is, of course, to
discover the breakaway from scaling in a hard exclusive process and thus reveal the hand
of QCD.

In connection with these new facilities, it has been argued that the interaction of a
heavy vector meson, V = J/ψ, Υ, with a proton, p, may provide access to a QCD van der
Waals interaction, produced by multiple gluon exchange [313,314] and/or the QCD trace
anomaly [6,315–317]. The van der Waals interaction is of interest because it might relate to,
amongst other things, the observation of hidden-charm pentaquark states [318]; and the
trace anomaly is topical because of its connection with EHM.
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Lacking vector meson beams, ongoing and anticipated experiments at electron (e)
accelerators are based on an expectation that the desired V + p interactions can be accessed
through the electromagnetic production of vector mesons from the proton, in reactions
like e + p → e′ + V + p [183,252,319]. This is because some practitioners imagine that
single-pole vector meson dominance (VMD) [320–322] can reliably be employed to draw
a clean link between e + p → e′ + V + p and the desired Vp → Vp cross-sections. In this
picture (see Figure 12), the interaction is supposed to proceed via the following sequence
of steps: (i) e → e′ + γ(∗)(Q); (ii) γ(∗)(Q) → V; and (iii) V + p → V + p. γ(∗)(Q) is a
virtual photon; and step (ii) expresses the VMD hypothesis. As commonly used, VMD
assumes: (a) that a photon, which is generally spacelike, so that Q2 > 0, transforms into
an on-shell vector meson, with timelike momentum Q2 = −m2

V ; and (b) that the Q2 > 0
strength and form of the transition in (ii) is the same as that measured in the real vector
meson decay process, V → γ∗(Q2 = −m2

V) → e+ + e−. Property (b) means that γγV , the
associated decay constant, is fixed at its meson on-shell value and acquires no momentum
dependence:

γ2
γV = 4παemm2

V f 2
V , (28)

AVp

Figure 12. Electroproduction of a vector meson from the proton: e+ p → e′+V + p, often interpreted
as providing access to V + p → V + p using a vector meson dominance model. The γ(∗)(Q) → V
VMD transition is indicated by the crossed circle. It is usually assumed to occur with a momentum-
independent strength γγV [320–322]. However, regarding heavy mesons, at least, the VMD hypothesis
is unsound, as discussed below and in, e.g., References [204,323].

where αem is the QED fine-structure constant, mV is the vector meson mass, and
fV measures the strength of the meson’s Bethe–Salpeter wave function at the origin in
configuration space [324] (Section IIB).

The fidelity of these VMD assumptions was recently subjected to scrutiny via analyses
of the photon vacuum polarisation and photon–quark vertex [204]. Regarding the photon
vacuum polarisation, it was shown that there is no vector meson contribution to this polari-
sation at the photoproduction point, Q2 = 0. Consequently, massless real photons cannot
readily be linked with massive vector bosons, and the current field identity, Equation (28),
typical of VMD implementations, should not be used literally because it entails violations
of Ward–Green–Takahashi identities (breaking of symmetries) in QED.

Turning to the dressed photon–quark vertex, Γγ
ν (k; Q), this three-point Schwinger

function exhibits a pole at the mass of any vector meson bound state. A physical property,
it expresses the fact that the decay V → e+e− proceeds via a timelike virtual photon. The
VMD hypothesis may thus be seen as a claim that Γγ

ν (k; Q)
∣∣
Q2�0 maintains a rigorous link,

in both magnitude and momentum dependence, with the Bethe–Salpeter amplitude of an
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on-shell vector meson. However, as shown in Figure 13, that is not the case. The panels in
Figure 13 depict the ratios:

RV(k2; Q2 = 0) =
2 fV
mV

F0
1 (k

2;−m2
V)

G0
1(k

2; Q2 = 0)
, RB

V(k
2; Q2 = 0) =

fV
mV

F0
8 (k

2;−m2
V)

G0
3(k

2; Q2 = 0)
, (29)

where G0
1 is the zeroth Chebyshev moment5 of the dominant amplitude in the photon–quark

vertex, associated with the matrix structure γ · ε(Q), where ε(Q) is the photon polarisa-
tion vector—in fact, using the vector Ward–Green–Takahashi identity and Equation (23),
G0

1(k
2; Q2 = 0) = Ag(k2), where g is the flavour of the meson’s valence quark; F0

1 is its
analogue in the vector meson bound state amplitude; G0

3 is the zeroth moment of that term
in the photon–quark vertex, which is directly linked to the scalar piece of the dressed quark
self-energy via the vector Ward–Green–Takahashi identity, i.e., G0

3(k
2; Q2 = 0) = −2B′

g(k2);
and F0

8 is its analogue in the vector meson bound state amplitude. Were VMD to be a sound
assumption, then all these curves would lie near the thin horizontal line drawn at unity
in both panels of Figure 13. However, whilst one might discuss the case for lighter vector
mesons, the VMD hypothesis is plainly false for heavy vector mesons: the momentum-
dependence of the Q2 = 0 photon–quark vertex is completely different from that of the
vector meson Bethe–Salpeter amplitude.

A B

J/

0 0.4 0.8 1.2 1.6 2
0

0.4

0.8

1.2

k / GeV

R
V
(k,Q2

=0)

J/

0 1.0 2.0 3.0 4.0 5
0

1.0

2.0

3.0

k / GeV

R
VB
(k,Q2

=0)

Figure 13. Left panel (A): First ratio in Equation (29) computed using matched solutions of the gap
and Bethe–Salpeter equations for V = ρ, φ, J/ψ, Υ. Right panel (B): Second ratio in Equation (29),
computed similarly. In cases where the VMD hypothesis were sound, all these curves would lie close
to the thin horizontal line drawn at unity.

One is consequently led to conclude that, insofar as heavy mesons are concerned, no
extant attempt to link e+ p → e′ +V + p reactions with V + p → V + p via VMD is reliable.
A similar conclusion is drawn in Reference [323] using arguments within perturbative
QCD. It is strengthened by Reference [325], which demonstrates that even if VMD were
valid, then contributing relevant coupled channels processes would obscure connections
between e + p → e′ + V + p and V + p → V + p reactions. These analyses make tenuous
any interpretation of e + p → e′ + V + p reactions as a path to hidden-charm pentaquark
production or as a route to understanding the origin of the proton mass. In fact, the crudity
of existing models prevents sound conclusions being drawn about the capacity of heavy
meson production to reveal something about the SM [326].

On the other hand, numerous applications [28,31–33,327], including γ∗γ → π0, η,
η′, ηc, and ηb [201,308], show that a viable alternative to the VMD hypothesis exists in
adapting the CSMs discussed herein to a direct analysis of processes like γ(∗) + p →
V + p. Considering vector meson photoproduction/electroproduction from the proton,

5 The Chebyshev (or hyperspherical) expansion of Poincaré-invariant functions of two scalar variables is
discussed, e.g., in Reference [199] (IV.B).
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References [326,328,329] illustrate how one might proceed; and given developments in the
past vicennium, improvements of such studies are now possible.

Following the first studies almost thirty years ago [330], the CSM treatment of meson
elastic and transition form factors has now reached a mature level. Today, as sketched above,
sound predictions with a traceable connection to QCD are being delivered. This enables
new opportunities to be exploited, such as informative comparison with results from
lQCD [200], weak transitions of heavy mesons (see References [205–207] and Section 10),
calculations of form factors describing light-by-light scattering contributions to the muon
anomalous magnetic moment [331], and a beginning to the analysis of meson gravitational
form factors [332].

9. Baryon Form Factors

Advances in the calculation of meson form factors are complemented by progress with
the parameter-free prediction of baryon elastic and transition form factors. The first direct
RL truncation study of nucleon elastic form factors was presented in Reference [333]. It was
extended to nucleon axial and pseudoscalar form factors in Reference [334], the elastic form
factors of Δ and Ω baryons in Reference [335], and nucleon tensor charges in Reference [31].

Many other direct RL truncation analyses are in train. However, in all such studies, the
challenge of quark propagator singularities moving into the complex integration domain must
also be overcome [199]. Using existing algorithms, the singularities limit the Q2 reach of
baryon form factor calculations. Here, again, the QCD-kindred quark plus fully interacting,
nonpointlike diquark picture of baryon structure—outlined in Section 7—can profitably be
exploited. Some of the successes are summarised elsewhere [181,255]. Recently, the predictions
made for γ+ p → Δ(1600) transition form factors [273] have been tested in analyses of π+π−p
electroproduction data collected at Jefferson Lab (JLab), with preliminary results supporting the
quark+diquark picture [336].

Scanning the sources indicated above, it becomes apparent that, hitherto, nucleon properties
have largely been probed in e + N scattering. Aspects of this field are reviewed elsewhere [337].
An entirely new window onto baryon structure is opened when one uses neutrino scattering. In
fact, reliable predictions of nucleon and N → Δ(1232) electroweak form factors are crucial for
understanding new-generation long-baseline neutrino oscillation experiments [338–344]. Impor-
tantly, in this connection, recent developments within the framework of CSMs have enabled
practitioners to deliver the first Poincaré-invariant parameter-free predictions for such form
factors on a momentum transfer domain that extends to Q2 = 10 GeV2 [274–276]. Extensions to
even larger Q2 are feasible. Where data are available, the predictions confirm the measurements.
More significantly, the results are serving as motivation for new experiments at high-luminosity
facilities.

The key step in the use of CSMs was the construction of a symmetry-preserving current
that describes the coupling between axial vector and pseudoscalar probes and baryons whose
structure is determined by the Faddeev equation in Figure 8. This current is illustrated in
Figure 14 and explained by the legend in Table 2. The origins and characters of Diagrams 1–3
are obvious: the probe must interact with every “constituent” that carries a weak charge.
Diagram 4 is a two-loop diagram, made necessary by the quark exchange nature of the kernel
in Figure 8: the object exchanged in binding also carries a weak charge. Given the presence of
Diagram 4, so-called seagull diagrams—Diagrams 5 and 6—are necessary to ensure symmetry
preservation. The analogous contributions for baryon electromagnetic currents were derived in
Reference [345], but it took more than twenty years before the seagull terms were derived for
axial vector and pseudoscalar currents [275]. These contributions are both two-loop diagrams.
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Axial vector interactions of a nucleon are described by two form factors—-GA(Q2)
(axial) and GP(Q2) (induced pseudoscalar)—associated with the following matrix element:

Ĵ j
5μ(K, Q) := 〈N(Pf )|A j

5μ(0)|N(Pi)〉 (30a)

=ū(Pf )
τ j

2
γ5

[
γμGA(Q2) + i

Qμ

2mN
GP(Q2)

]
u(Pi) , (30b)

where Pi, f are, respectively, the initial and final nucleon momenta, with P2
i, f = −m2

N , mN is
the nucleon mass, and u(P) is the associated Euclidean spinor. (Associated conventions
are specified elsewhere, e.g., Reference [271] (Appendix B).) The average momentum of
the system is K = (Pi + Pf )/2, and Q = Pf − Pi is the momentum transferred between the
initial and final states. It is usual to consider the SU(2)F isospin limit mu = md =: mq, with
the flavour structure described using Pauli matrices {τ j|j = 1, 2, 3}: τ1±i2 := (τ1 ± iτ2)/2
correspond to the weak charged currents and τ3 is the neutral current. Moreover, the
isovector axial current operator is

A j
5μ(x) = q̄(x)

τ j

2
γ5γμq(x), q =

(
u
d

)
. (31)

A third form factor is defined via the kindred pseudoscalar current, a matrix element of
P j

5(x) = q̄(x) τ j

2 γ5q(x):

Ĵ j
5(K, Q) := 〈N(Pf )|P j

5(0)|N(Pi)〉 = ū(Pf )
τ j

2
γ5 G5(Q2) u(Pi) . (32)

Figure 14. Axial/pseudoscalar current that ensures a symmetry-preserving interaction with an on-
shell baryon described by a Faddeev amplitude obtained from the equation depicted in Figure 8: single
line, dressed quark propagator; undulating line, axial/pseudoscalar current; Γ, diquark correlation
amplitude; double line, diquark propagator; χ, seagull terms. A detailed legend is provided in Table 2.

Using the framework deployed to calculate the baryon wave functions discussed
in Section 7, References [274,275] delivered the parameter-free prediction for GA(Q2) dis-
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played in Figure 15: the lighter blue band expresses the impact of ±5% variations in the
diquark masses: m0+ = 0.80(1 ± 0.05); m1+ = 0.89(1 ± 0.05). The calculated values for the
nucleon axial charge gA = GA(Q2 = 0), associated axial charge radius, and axial mass are,
respectively,

gA = 1.25(3) , 〈r2
A〉1/2mN = 3.25(4) , mA/mN = 1.23(3) . (33)

For comparison, empirically, gA = 1.2756(13) [40] (PDG) and [346] 〈r2
A〉1/2mN = 3.23(72),

mA/mN = 1.15(08). Evidently, the CSM predictions agree with extant data. Regarding the
axial mass, we note that it is sometimes convenient, when comparing with other analyses,
to use a dipole Ansatz as an approximation for the axial form factor:

GA(Q2) =
gA(

1 + Q2/m2
A
)2 ; (34)

therefore References [274,275] extracted mA using Equation (34) to interpolate the global
Q2 behaviour of GA on x ∈ [0, 1.6], in which case mA is not simply related to the axial
radius. It is worth remarking that scalar and axial vector diquark mass variations interfere
destructively, e.g., reducing m0+ increases gA, whereas gA decreases with the same change
in the axial vector mass.

Table 2. Enumeration of terms in the baryon axial vector/pseudoscalar current, drawn in Figure 14.

1. Diagram 1, two terms: 〈J〉S
q—probe strikes dressed quark with scalar diquark spectator;

〈J〉A
q —probe strikes dressed quark with axial vector diquark spectator.

2. Diagram 2: 〈J〉AA
qq —probe strikes axial vector diquark with dressed quark spectator.

3. Diagram 3: 〈J〉{SA}
qq —probe mediates transition between scalar and axial vector diquarks,

with dressed quark spectator.
4. Diagram 4, three terms: 〈J〉SS

ex —probe strikes dressed quark “in-flight” between one scalar

diquark correlation and another; 〈J〉{SA}
ex —dressed quark “in-flight” between a scalar di-

quark correlation and an axial vector correlation; 〈J〉AA
ex —“in-flight” between one axial vector

correlation and another.
5. Diagrams 5 and 6, seagull diagrams describing the probe coupling into the diquark correla-

tion amplitudes: 〈J〉sg. There is one contribution from each diagram to match every term in
Diagram (4).

Jang et al.

Chen et al.

0 0.4 0.8 1.2 1.6

0.4

0.8

1.2

x=Q2/mN2

G
A
(x)

Figure 15. Predicted result for GA(x) in Reference [275] (Chen et al.) (blue curve within lighter blue
uncertainty band), compared with lQCD results from Reference [347] (Jang et al.) (green) diamonds.
With respect to the CSM central results, this comparison may be quantified by reporting the mean-χ2

value, which is 0.27.
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Turning to the induced pseudoscalar form factor, muon capture experiments (μ + p →
νμ + n) may be used to determine the induced pseudoscalar charge:

g∗p =
mμ

2mN
GP(Q2 = 0.88 m2

μ) . (35)

The CSM prediction is g∗p = 8.80(23). Compared with the recent MuCap Collaboration
result, g∗p = 8.06(55) [348,349], it agrees within uncertainties, but is slightly larger. The
CSM value is nicely aligned with the world average [350]: g∗p = 8.79(1.92).

The pseudoscalar form factor, G5(Q2), is of interest because, inter alia, it is used to
define the pion–nucleon form factor GπNN(Q2) via

G5(Q2) =:
m2

π

Q2 + m2
π

fπ

mq
GπNN(Q2) , (36)

where fπ is the pion leptonic decay constant (appearing in Figure 7) and GπNN(−m2
π) =

gπNN is the πNN coupling, a key input to nucleon+nucleon potentials. The CSM prediction
is [274,275]: gπNN/mN = 14.02(33)/GeV. This value overlaps with that inferred from
pion–nucleon scattering [351] (gπNN/mN = 13.97(10)/GeV) and compares favourably
with a determination based on the Granada 2013 np and pp scattering database [352]
(gπNN/mN = 14.11(3)/GeV) and a recent analysis of nucleon–nucleon scattering using
effective field theory and related tools [353] (gπNN/mN = 14.09(4)/GeV). All these results
are compared in Figure 16, which also highlights their error-weighted average:

gπNN/mN = 14.10(2)/GeV . (37)

13.6 13.8 14 14.2 14.4

Chen

Baru

Navarro

Reinert

g NN/mN [GeV-1]
Figure 16. Comparison of the CSM prediction for gπNN/mN (blue asterisk) [275] with values ex-
tracted from pion–nucleon scattering [351] (Baru) (black star), the Granada 2013 np and pp scattering
database [352] (Navarro) (purple circle), and nucleon–nucleon scattering [353] (Reinert) (red triangle).
The vertical grey band marks the estimated uncertainty in the CSM prediction. The error-weighted
average of the depicted results, Equation (37), is drawn as the gold line within the like-coloured band.

Continuing with an effort to inform nuclear physics potentials using hadron physics
results, it is worth noting that on −m2

π < Q2 < 2 m2
N , a fair approximation to the CSM

prediction for the pion–nucleon form factor is provided by (x = Q2/m2
N):

Gd
πNN(x) =

13.47mN

(1 + x/0.8452)2 . (38)

This corresponds to a πNN dipole mass ΛπNN = 0.845mN = 0.79 GeV, viz. a soft form
factor. (A commensurate value was obtained previously in a simpler quark+scalar-diquark
model [354].) Being just ∼ 20% greater, the CSM prediction is qualitatively equivalent
to the πNN dipole mass inferred in a dynamical coupled channels analysis of πN, γN
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interactions [292]. Future such coupled channels studies may profit by implementing
couplings and range parameters determined in CSM analyses.

An extension of this effort to the more general case of hyperon+nucleon potentials can
be found in Reference [355]. Using an SCI, predictions were made therein for an array of
meson+octet-baryon couplings. Comparing the results with extant phenomenological in-
teractions [292,356,357], one finds a mean absolute relative deviation (P is the pseudoscalar
meson absorbed in the baryon transition B → B′, and gPB′B is the associated coupling):

δ
g
r := {|gSCI

PB′B/gphen.
PB′B − 1|} = 0.18(14) . (39)

This result strengthens the case in favour of using CSM predictions for the couplings as
new constraints in the development of baryon+baryon potentials.

A little algebra reveals that the proton axial charge can be interpreted as a measure
of the valence quark contributions to the proton light-front helicity, e.g., Reference [358]
(Equations (6)–(8)):

gA =
∫ 1

0
dx [Δu p(x; ζH)− Δd p(x; ζH)] =: gu

A − gd
A , (40)

where Δq p(x; ζH) = q p
↑ (x; ζH) − q p

↓ (x; ζH) is the light-front helicity DF for a quark q.
Plainly, Δq p is the difference between the light-front number density of quarks with helicity
parallel and antiparallel to that of the proton. It is scale-dependent.

Equation (40) conveys additional significance to a flavour separation of the axial
charge form factor:

GA(Q2) = Gu
A(Q

2)− Gd
A(Q

2) . (41)

A detailed analysis is presented in Reference [276] (Section 4), which reveals the following
diagram contributions to the separate u, d axial form factors:

Gu
A = 〈J〉S

q − 〈J〉A
q + 〈J〉AA

qq + 1
2 〈J〉{SA}

qq + 2〈J〉{SA}
ex + 4

5 〈J〉AA
ex , (42a)

−Gd
A = 2〈J〉A

q + 1
2 〈J〉{SA}

qq + 〈J〉SS
ex − 〈J〉{SA}

ex + 1
5 〈J〉AA

ex , (42b)

where the nomenclature of Table 2 is used. Identified according to Equations (42), the calculated
Q2 = 0 contributions are listed in Table 3. It is worth stressing that Equations (42) express
the fact that since a 0+ diquark cannot couple to an axial vector current, then Diagram 1 in
Figure 14 only supplies a u quark contribution to the proton GA(Q2), viz. 〈J〉S

q. It follows that
in a scalar-diquark-only proton, a d quark contribution to GA(Q2) can only arise from Figure 14,
Diagram 4, i.e., 〈J〉SS

ex ; and |〈J〉SS
ex /〈J〉S

q| ≈ 0.06. Notably, many scalar-diquark-only models
omit Diagram 4, in which case Gd

A(Q
2) ≡ 0. An extension of these observations to the complete

array of octet baryons is described elsewhere [355] (Section IV).

Table 3. Flavour and diagram—Figure 14—separation of the proton axial charge: gu
A = Gu

A(0),
gd

A = Gd
A(0); gu

A − gd
A = 1.25(3). The listed uncertainties express the effect of ±5% variations in the

diquark masses, e.g., 0.886∓ ⇒ 0.88 ∓ 0.06.

〈J〉S
q 〈J〉A

q 〈J〉AA
qq 〈J〉{SA}

qq 〈J〉SS
ex 〈J〉{SA}

ex 〈J〉AA
ex

gu
A 0.886∓ −0.080± 0.030± 0.080∓ 0 ≈ 0 0.031±

−gd
A 0 0.160± 0 0.080∓ 0.051± ≈ 0 0.010±

Using the solution of the Faddeev equation (Figure 8), Reference [276] reports

gu
A/gA = 0.76 ± 0.01 , gd

A/gA = −0.24 ± 0.01 , gd
A/gu

A = −0.32 ± 0.02 . (43)
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In nonrelativistic quark models with uncorrelated wave functions, gd
A/gu

A = −1/4. Hence,
the relevant comparison reveals that the highly correlated wave function obtained by
solving the Faddeev equation gives the valence d quark a markedly larger fraction of the
proton’s light-front helicity than is found in simple quark models. Reviewing the discussion
after Equation (42), it becomes apparent that this feature owes to the presence of axial
vector diquarks in the proton: the current contribution arising from the {uu} correlation—
underlined term in Equation (42b)—measuring the probe striking the valence d quark, is
twice as strong as that from the {ud} correlation—underlined term in Equation (42a)—in
which the probe strikes the valence u quark.

It is natural to enquire after the robustness of the results in Equation (43). Consider,
therefore, that assuming SU(3) flavour symmetry in analyses of octet baryon axial charges,
these charges are expressed in terms of two low-energy constants ([359] (Table 1)): D,
F, with gu

A = 2F, gd
A = F − D. (This assumption is accurate to roughly 4%—see, e.g.,

Reference [355].) In this case, the values in Equation (43) correspond to

D = 0.78(2) , F = 0.48(1) , F/D = 0.61(2) . (44)

On the other hand, using available empirical information [40], one obtains D = 0.774(26),
F = 0.503(27), and gu

A/gA = 0.79(4), gd
A/gA = −0.21(3), and gd

A/gu
A = −0.27(4), val-

ues that are consistent with the results in Equations (43) and (44).6 In addition, the SCI
predicts [355]

D = 0.78 , F = 0.43 , F/D = 0.56 , (45)

and a covariant baryon chiral perturbation theory analysis yields D = 0.80(1), F = 0.47(1),
F/D = 0.59(1) [360].

Given the favourable realistic proton wave function comparisons presented above,
the values in Equation (43) can be viewed as reliable. This is important because of the
connection between flavour-separated axial charges and the so-called proton “spin cri-
sis” [361,362]. At any given resolving scale, the singlet, triplet, and octet axial charges of
the proton are, respectively:

a0 = gu
A + gd

A + gs
A , a3 = gA = gu

A − gd
A , a8 = gu

A + gd
A − 2gs

A . (46)

If working at the hadron scale, ζH, where dressed valence quasiparticles carry all proton
properties [126,127,132–135], then gs

A ≡ 0 a0 = a8; hence [276],

a0 = 0.65(2) . (47)

In general, a3,8 are conserved charges, viz. they are the same at all resolving scales, ζ. However,
that is not true of the individual terms in their definitions: the separate valence quark charges
gu

A, gd
A, gs

A evolve with ζ [362]. Consequently, the value of a0, which is the fraction of the
proton’s total J = 1/2 carried by valence degrees-of-freedom, changes with scale: the result in
Equation (47) is the maximum value of a0, and the fraction falls slowly with increasing ζ.

Returning to expectations based on simple, nonrelativistic quark models, textbook-level
algebra yields a0 = 1. Therefore, in such pictures, all the proton spin derives from that of the
constituent quarks. On the other hand, the CSM analysis in Reference [276] predicts that proton
dressed valence degrees-of-freedom carry only two-thirds of the spin. Since there are no other
degrees-of-freedom at ζH and the Poincaré-covariant proton wave function properly describes
a J = 1/2 system, then the “missing” part of the total J must be associated with quark+diquark
orbital angular momentum. Similar conclusions apply for all ground state octet baryons [355].

The study in Reference [276] delivered Poincaré-invariant parameter-free predictions for
the proton axial form factor and its flavour separation out to Q2 ≈ 10 m2

N. The axial form factor

6 If one eliminates axial vector diquarks from the proton wave function, then gd
A/gu

A = −0.054(13), a result
disfavoured by experiments at the level of 5.1σ, i.e., the probability that the scalar-diquark-only proton result
could be consistent with data is 1/7, 100, 000.
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itself agrees with available data [363,364], which extends to Q2 ≈ 5 m2
N—see Reference [276]

(Figure 3). More importantly, the results will likely serve as motivation for new experiments
aimed at exploring nucleon structure with axial vector probes instead of the photon, opening
a new window onto hadron structure. It is worth highlighting here that a dipole fit to data is
only a good approximation on the fitting domain. With increasing Q2, the dipole increasingly
overestimates the actual result, being 56(5)% too large at Q2 = 10 m2

N—see Reference [276]
(Figure 4B). It therefore becomes an unsound tool for developing qualitative insights and
quantitative cross-section estimates.

Furthermore, with flavour-separated form factors in hand on such a large-Q2-domain,
Reference [276] was able to calculate and contrast the u and d quark contributions to the
associated light-front transverse spatial density profiles:

ρ̂
f
A(|b̂|) =

∫ d2�q⊥
(2π)2 ei�q⊥·b̂G f

A(x) , (48)

with G f
A(x) interpreted in a frame defined by Q2 = m2

Nq2
⊥, mNq⊥ = (�q⊥1,�q⊥2, 0, 0) =

(Q1, Q2, 0, 0). These profiles are depicted in Figure 17. We note that |b̂| and ρ̂
f
A are dimen-

sionless; so, the images drawn in Figure 17 can be mapped into physical units using:

ρ
f
A(|b| = |b̂|/mN) = m2

N ρ̂
f
A(|b̂|) , (49)

in which case |b̂| = 1 corresponds to |b| ≈ 0.2 fm and ρ̂
f
1 = 0.1 ⇒ ρ

f
1 ≈ 2.3/fm2.

The top row of Figure 17 provides two-dimensional renderings of the flavour-separated
transverse density profiles calculated from a proton wave function which does not include
axial vector diquarks, i.e., a scalar-diquark-only proton. In this case, the u quark profile
is far more diffuse than that of the d quark, viz. its extent in the light-front transverse
spatial plane is much greater. One may quantify this by reporting the associated radii:
r⊥Ad = 0.24 fm, r⊥Au = 0.48 fm, so the d/u ratio of radii is ≈ 0.5.

The bottom row of Figure 17 was obtained using a realistic proton wave function,
in which both scalar and axial vector diquarks are present with the strength determined
by the Faddeev equation in Figure 8. In this realistic case, the d quark profile is not very
different from that of the u quark: relative to the u quark profile, the intensity peak is only
somewhat broader for the d quark; and comparing radii,

r⊥Ad = 0.43 fm, r⊥Au = 0.49 fm, r⊥Ad /r⊥Au ≈ 0.9 . (50)

The CSM predictions for nucleon axial and pseudoscalar form factors discussed in this
section complement those for the large-Q2 behaviour of nucleon electromagnetic elastic
and transition form factors reported, e.g., in References [272,365]. One may now anticipate
that predictions for form factors characterising weak interaction induced N → Δ(1232) and
N → N∗(1535) transitions will soon become available. Each will shed new light on nucleon
structure; and the former, calculated on a domain that stretches from low-to-large-Q2, will
likely prove valuable in developing a more reliable understanding of neutrino scattering
from nucleons and nuclei.
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Figure 17. Transverse density profiles, Equation (48), calculated in Reference [276] from flavour-separated
proton axial form factors. Top row: scalar-diquark-only proton. Panel A: two-dimensional plot of ρ̂d

A(|b̂|)/gd
A;

Panel B: similar plot of ρ̂u
A(|b̂|)/gu

A. Removing the 1/gf
A normalisation, the b = 0 values are ρ̂d

A(0) = −0.009,
ρu

A(0) = 0.097. Bottom row: realistic proton Faddeev amplitude, including axial vector diquarks as
predicted by the Faddeev equation in Figure 8. Panel C: ρ̂d

A(|b̂|)/gd
A; Panel D: ρ̂u

A(|b̂|)/gu
A. Removing

the 1/gf
A normalisation, the b = 0 values of these profiles are ρ̂d

A(0) = −0.038, ρ̂u
A(0) = 0.12. N.B.∫

d2b̂ ρ̂
f
A(|b̂|)/gf

A = 1, f = u, d.

10. Transition Form Factors of Heavy+Light Mesons

Heavy mesons (Bq=c,s,u, Ds, D) are special for many reasons; and their mass budgets and
role in exposing constructive interference between Nature’s two known sources of mass are
of particular interest herein. Consider, therefore, Figure 18 and contrast the images with those
in Figure 1. Evidently, for heavy meson masses: (i) the HB component is largest in each case
and its relative size grows as the current–masses of the valence constituents increase; (ii) all
receive a significant EHM+HB interference component, but its relative strength diminishes with
increasing current–masses; and (iii) for vector heavy mesons, but not pseudoscalar mesons,
there is an EHM component, but its relative strength drops as the HB component grows.

Next consider semileptonic weak-interaction transitions between heavy and light
mesons. Comparing Figures 1 and 18, it is apparent that heavy-pseudoscalar to light-
pseudoscalar transitions serve to probe the relative impacts of the strength of EHM+HB
interference in the initial and final states, whereas heavy-pseudoscalar to light-vector
transitions overlap systems in which HB mass is dominant with those whose mass is
owed almost entirely to EHM. Both classes of transitions, therefore, present excellent
opportunities for exposing the influence of Nature’s two known sources of mass on physical
observables. These cases are of special interest, of course, because the transitions have long
been used to place constraints on the values of the elements of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, which parametrises quark flavour mixing in the SM.
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A unifying analysis of both classes of transitions was recently completed using the
SCI [233,366], yielding results that compare favourably with other reliable experimental or
independent theory analyses. The SCI branching fraction predictions should therefore be a
reasonable guide. This is important because predictions were made for several branching
fraction ratios—R

D(∗)
(s)

, RJ/ψ, Rηc —whose values are direct tests of lepton universality in

weak interactions: the SCI values confirm SM predictions, hence, speak for universality, as
we discuss below. The analyses also used B(s) → D∗

(s) transitions to predict the precursor
functions which evolve into the universal Isgur–Wise function [367], obtaining results in
agreement with empirical inferences—References [368] (Equations (177) and (181)) and [369]
(Belle).

The SCI’s successes in these applications highlight the need for kindred studies using an
interaction with a closer connection to QCD. The impediment has always been the large disparity
in masses that typically exists between initial and final states. That mass imbalance requires, inter
alia, that any approach to the problem be simultaneously able to deal with both chiral and heavy
quark limits in quantum field theory. To date, compared with the SCI, no framework with a
better link to QCD can directly surmount this difficulty. Nevertheless, following Reference [205],
practicable and effective algorithms for continuum studies do now exist. They exploit the
strengths of the statistical SPM as a tool for interpolating data (broadly defined) and therefrom
deliver extrapolations with a rigorously defined and calculable uncertainty [238]. Namely,
results are calculated on domains of current–quark mass for which transition form factors may
straightforwardly be obtained. The SPM is then used to extrapolate those results and arrive at
predictions for the physical processes of interest.

At present, CSM RL truncation predictions are available for the following transi-
tions [206,207]: Bc → J/ψ, ηc; B(s) → π(K); Ds → K; D → π, K; and K → π. The last
process is something of a test for the approach because such K�3 transitions have long been
of experimental and theoretical interest [40] (Section 62). The calculated branching fractions
are gathered in Table 4, from which it will be seen that CSMs deliver sound results.

Table 4. CSM predictions for pseudoscalar meson semileptonic branching fractions [206,207]—each
such fraction is to be multiplied by 10−3. The column labelled “ratio” is the ratio of the preceding two
entries in the row, so no factor of 10−3 is applied in this column. (A 1σ SPM uncertainty is listed for
the CSM predictions.) Reference [40] (PDG) lists the following values for the CKM matrix elements:
|Vus| = 0.2245(8), |Vcd| = 0.221(4), |Vcs| = 0.987(11) |Vub| = 0.00382(24); and the following lifetimes
(in seconds): τK+ = 1.2379(21)× 10−8, τD0 = 4.10 × 10−13, τD±

s
= 5.04 × 10−13, τB̄0 = 1.519 × 10−12,

τB̄0
s
= 1.515 × 10−12, τB±

c
= 0.51 × 10−12.

BI→F(�ν�) References [206,207] PDG [40] or Other, If Indicated

e+νe μ+νμ ratio e+νe μ+νμ ratio
K+ → π0 50.0(9) 33.0(6) 0.665 50.7(6) 33.5(3) 0.661(07)
D0 → π− 2.70(12) 2.66(12) 0.987(02) 2.91(4) 2.67(12) 0.918(40)
D+

s → K0 2.73(12) 2.68(12) 0.982(01) 3.25(36) [370]
D0 → K− 39.0(1.7) 38.1(1.7) 0.977(01) 35.41(34) 34.1(4) 0.963(10)

μ− ν̄μ τ− ν̄τ ratio μ− ν̄μ τ− ν̄τ ratio
B̄0 → π+ 0.162(44) 0.120(35) 0.733(02) 0.150(06)
B̄0

s → K+ 0.186(53) 0.125(37) 0.667(09)
Bc → ηc 8.10 (45) 2.54(10) 0.31(2)

Bc → J/ψ 17.2 (1.9) 4.17(66) 0.24(5)

One of the key results in Reference [206] concerns a ratio of B+
c → J/ψ branching

fractions measured for the first time by the LHCb Collaboration fairly recently [371]:

RJ/ψ :=
BB+

c →J/ψτν

BB+
c →J/ψμν

= 0.71 ± 0.17 (stat)± 0.18 (syst) . (51)
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A BA B

C DC D

Figure 18. Mass budgets: (A): D∗ meson; (B): B∗-meson; (C): D meson; (D): B meson. Each is drawn
using a Poincaré-invariant decomposition and the numerical values listed in Table 1. (Separation at
ζ = 2 GeV, calculated using information from References [35,40]).

This value is plotted in Figure 19 and compared with the CSM prediction and other
Standard Model calculations. Evidently, the LHCb measurement lies approximately 2σ above
the values predicted by reliable SM calculations. If future, precision experiments do not deliver
a markedly lower central value, then one might begin to judge that lepton flavour universality
is violated in Bc → J/ψ semileptonic decays. As yet, however, the experimental precision is
insufficient to support such a claim. Furthermore, a compelling case would need to include
information on Bc → ηc semileptonic decays. The CSM prediction is Rηc = 0.313(22)—see
Table 4; the SCI result is Rηc = 0.25 [233]; and a mean value of 0.31(4) is obtained from modern
continuum analyses [372–377]. An experimental value is lacking.

LHCb SCICSM lQCD
0.2

0.4

0.6

0.8

1.0

R
J/

Figure 19. Ratio RJ/ψ in Equation (51)—red circle, empirical result [371] (LHCb); blue asterisk—
CSM prediction [206]; green star—SCI prediction [366]; grey circle—lQCD result [378,379]; gold
band—unweighted mean of central values from several calculations [372–377].

The array of analyses in Reference [207] yields novel results in other areas. Of particular
interest are the discussions of D0 → K− transition form factors and the value of |Vcs|. Two
independent form factors characterise 0+ → 0+ transitions, viz. vector and scalar, f+,0(t),
respectively, where t is the Mandelstam variable, whose value expresses the momentum
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transferred to the final state. The CSM predictions are plotted in Figure 20 and compared
with available data [380–383]. The CSM result is largely consistent with this collection,
although there may be a hint that it is too high at lower t values. Concerning branching
fractions, form factor contributions from this domain are important. It is therefore notable
that, within mutual uncertainties, the CSM value for f D→K

+ (0) = 0.796(9) agrees with the
Nf = 2 + 1 + 1 lQCD result in Reference [384]: 0.765(31).

0 0.5 1.0 1.5
0.6

1.0

1.4

1.8

t / GeV2

f 0
,(
D

K
=t)

Figure 20. D → K transition form factors. f+—solid blue curve; f0—long-dashed purple curve;
like-coloured shaded bands—associated SPM uncertainty in each case. Data: cyan squares [380];
green diamonds [381]; dark-blue up-triangles [382]; indigo down-triangles [383].

With the form factors in Figure 20, Reference [207] obtained the D0 → K− branching
fractions listed in Table 4 when using the value of |Vcs| listed in the caption: evidently, both
the e+νe and μ+νμ fractions exceed their respective PDG values. On the other hand, the
ratio agrees within 1.4σ; so, a common overall factor can remedy the mismatch. Adopting
this perspective, then the value |Vcs| = 0.937(17) combined with the CSM form factors
delivers branching fractions that match the PDG values, viz. 3.52(18)% and 3.44(18)%,
respectively. Actually, referring to Reference [40] (Section 12.2.4), one sees that the inferred
CSM value is both commensurate with and more precise than one of the two used to arrive
at the PDG average listed in the caption of Table 4. With |Vcs| = 0.937(17) used instead to
compute this average, one finds a slightly more precise central value that is 1σ lower:

|Vcs| = 0.974(10) . (52)

Predictions for semileptonic B̄0 → π+, B̄0
s → K+ transition form factors and branching

fractions were also delivered in Reference [207]. As emphasised above, such processes
present challenges because π, K are Nambu–Goldstone bosons and there is a huge disparity
between the masses of the initial and final states. Consequently, comparisons with data
serve as a stringent test of the new CSM algorithms.

CSM predictions for the B̄0 → π+ transition form factors are depicted in Figure 21A.
Regarding f B̄→π

+ , data have been collected by two collaborations [385–388]: within mutual
uncertainties, the CSM predictions agree with these data. The data support a value

f B̄→π
+ (t = 0) = 0.27(2) , (53)

which is consistent with the CSM prediction [207]: 0.29(5).
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Figure 21. CSM predictions for B(s) semileptonic transition form factors: f+—solid blue curve;
f0—long-dashed purple curve; SPM uncertainty in each—like-coloured shaded bands. Left panel (A):
B̄0 → π+. Data (green stars): reconstructed from the average [368] (Table 81) of data reported in
References [385–388]. Right panel (B): B̄0

s → K+. lQCD results: f+—indigo open up-triangles [389]
and green open boxes [390]; f0—brown open down-triangles [389] and red open circles [390].

Using the form factors in Figure 21A, one obtains the B̄0 → π+ branching fractions in
Table 4. The PDG lists a result for the μ−νμ final state, which matches the CSM prediction
within mutual uncertainties. Precise agreement is obtained using

|Vub| = 0.00374(44) . (54)

This value is commensurate with other analyses of BB̄0→π+μ− ν̄μ
[40] (Section 76.3), thus

increases tension with the higher value inferred from inclusive decays. No data are available
on the τ−ντ final state; so, the τ:μ ratio is empirically unknown. Here, a Nf = 2+ 1-flavour
lQCD study yields 0.69(19) [390], which, within its uncertainty, matches the CSM result:
0.733(2).

Figure 21B displays CSM predictions for the B̄s → K+ form factors. Although the
Bs → K− transition was recently observed [391], with the measurement yielding the
branching fraction:

BB0
s →K−μ+νμ

= [0.106 ± 0.005stat ± 0.008syst]× 10−3 , (55)

no form factor data are yet available. Comparisons are therefore made in Figure 21B
with results obtained using Nf = 2 + 1-flavour lQCD [389,390]. Owing to difficulties
encountered when using lattice methods to calculate form factors of heavy+light mesons,
lQCD results are limited to a few points on the domain t � 17 GeV2—see Figure 21B. Today,
lattice analyses typically employ such results to construct a least-squares fit to the form
factor points, using some practitioner-favoured functional form. That fit is then employed
to define the form factor on the whole kinematically accessible domain: 0 � t � 25 GeV2 in
this case. It is worth noting that, at this time, given the small number of points and their
limited precision, the SPM cannot gainfully be used to develop function–form unbiased
interpolations and extrapolations of the lQCD output.

The CSM form factors in Figure 21B yield the B̄0
s → K+ branching fractions in Ta-

ble 4. Figure 22A compares the μ−ν̄μ value with the measurement in Equation (55) and
also results obtained via various other means. Experiment and theory only agree be-
cause the theory uncertainty is large. The unweighted theory average is 0.141(44)�,
and the uncertainty-weighted mean is 0.139(08)�. These values increase when Entries
V–VI [390,392] are omitted: unweighted 0.159(38)� and uncertainty weighted 0.156(10)�.
The extrapolations employed in V–VI [390,392] lead to values of f B̄s→K

+ (0) that are ∼ 50% of
those obtained in I–IV [389,393–395]: 0.148(53) vs. 0.299(86). This can explain the difference
in branching fractions: V–VI vs. I–IV in Figure 22A. Significantly, a different approach
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to fitting and extrapolating lQCD results, using the LHCb datum, Equation (55), as an
additional constraint, produces [396]: f B̄s→K

+ (0) = 0.211(3).
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Figure 22. Left panel (A): Branching fraction BB̄0
s →K+μ− ν̄μ

computed in Reference [207], “Y”, compared
with the value in Equation (55), “E”, viz. a measurement of BB0

s →K−μ+νμ
[391], and some results

obtained using other approaches: continuum I–III [393–395]; lattice IV–VI [389,390,392]. Right
panel (B): Branching fraction ratio BB̄0

s →K+τ− ν̄τ
/BB̄0

s →K+μ− ν̄μ
computed in Reference [207] compared

with some results obtained using other approaches. The legend matches Panel A, except “P(E)” is the
result from [396], i.e., an estimate constrained by the datum in Reference [391]. Both panels: Grey line:
unweighted mean of theory results. Pink dotted-dashed line: unweighted mean of theory results,
omitting V–VI. Green dashed line: uncertainty-weighted average of theory results. Like-coloured
bands mark associated uncertainties in each case.

Reference [396] also infers f B̄→π
+ (0) = 0.255(5), leading to f B̄s→K

+ (0)/ f B̄→π
+ (0) < 1.

This outcome conflicts with the CSM prediction, which has f B̄s→K
+ (0)/ f B̄→π

+ (0) > 1 at
the 85% confidence level [207] (Equation (9)), and the results in a raft of other studies,
e.g., References [393,394,397–403]. It is probable, therefore, that the value for f B̄s→K

+ (0) in
Reference [396] is too small. It is worth remarking that the SCI is unclear on the value of
this ratio. It produces f B̄s→K

+ (0)/ f B̄→π
+ (0) < 1, but the individual t = 0 values are too large

by a factor of two [233] (Table 3A). On the other hand, the t = 0 value of the kindred ratio
of vector form factors in B̄s → K∗, B̄ → ρ transitions is greater than unity [366] (Table 1A).
Notably, the ratio f B̄s→K

+ (0)/ f B̄→π
+ (0) is a marker for SU(3)-flavour symmetry breaking

and its modulation by EHM; so, it is worth reaching a sound conclusion on the value of the
ratio. It is here relevant to observe that fK/ fπ = 1.2 > 1.

Regarding the τντ final state in B̄s → K transitions, no empirical information is
currently available, hence none on the |Vub|-independent ratio that would test lepton
flavour universality. In Figure 22B, therefore, we compare the CSM prediction for this
ratio, drawn from Table 4, with results obtained via other means. The unweighted average
of theory results is 0.705(87), and the uncertainty weighted mean is 0.678(03). Omitting
Entries V–VI [390,392], these values are: unweighted 0.653(41) and uncertainty weighted
0.677(03). Within sound analyses, many uncertainties cancel in this ratio; so, the results
should be more reliable than any calculation of either fraction alone. Nevertheless, the
values are widely scattered, indicating that there is ample room for improving the precision
of B̄0

s → K theory. Of course, measurements enabling extraction of B0
s → K− form factors

would be very useful, too, for refining both (a) comparisons with theory and between
theory analyses and (b) making progress toward a more accurate value of |Vub|.

Such predictions for heavy-to-light meson electroweak transition form factors are a
new branch of application for CSMs. They are far more sophisticated and robust than the
Schwinger function parametrisation-based analyses in, e.g., References [324,403,404] and
significantly improve upon earlier RL truncation studies of π�3 and K�3 transitions [405,406].
The keys to these advances are an improved understanding of RL truncation and the
capacity to greatly expand its quark mass and mass splitting domains of applicability using
the SPM. Fairly soon, one can expect these advances to be exploited in the study of kindred
baryon transitions.
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11. Distribution Functions

Hadron parton DFs are probability densities: each one describes the light-front fraction,
x, of the hadron’s total momentum carried by a given parton species within the bound
state [407]. They are a much-prized source of hadron structure information; and following
the quark discovery experiments fifty years ago [408–411], measurements interpretable in
terms of hadron DFs have been awarded a high priority. For much of this time, DFs were
inferred from global fits to data, with the results viewed as benchmarks. Such fitting remains
crucial, providing input for the conduct of a huge number of experiments worldwide; but
the past decade has seen the dawn of a new theory era. Continuum and lattice studies of
QCD are beginning to yield robust predictions for the pointwise behaviour of DFs; and
these developments are exposing potential conflicts with the fitting results [35,129,132–136].

Notwithstanding the enormous expense of time and effort, much yet remains to be
learnt before proton and pion structure may be judged as understood in terms of DFs.
For instance and most simply, it is still unclear whether there are differences between the
distributions of partons within the proton (Nature’s most fundamental bound state) and
the pion (Nature’s most fundamental (near) Nambu–Goldstone boson). Plainly, if there
are differences, then they must be explained. As we have stressed above, answering the
question of similarity/difference between proton and pion DFs is particularly important
today as science seeks to expose and explain EHM [32–37].

Regarding DFs measured in processes that do not resolve beam or target polarisation,
practitioners experienced and involved with solving bound state problems in QCD have
learnt that, at the hadron scale, ζH < mp, valence quark DFs in the proton and pion behave
as follows [132–134,412,413]:

d p(x; ζH), u p(x; ζH)
x�1
∝ (1 − x)3 , d̄ π(x; ζH), uπ(x; ζH)

x�1
∝ (1 − x)2 . (56)

It subsequently follows from the DGLAP equations [177,414–416] that the large-x power on
the related gluon DF is approximately one unit larger; and that for sea quark DFs is roughly
two units larger. Moreover, as the resolving scale increases to ζ > ζH, all these exponents
grow logarithmically. However, fuelling controversy and leading some to question the
veracity of QCD [132,133,417], these constraints are typically ignored in fits to the world’s
data on deep inelastic scattering (DIS) and kindred processes [418–422]. Furthermore,
largely because pion data are scarce [35] (Table 9.5), proton and pion data have never
been considered simultaneously. Therefore, the unified body of results in Reference [135],
which uses a single symmetry-preserving framework to predict the pointwise behaviour of
all proton and pion DFs—valence, glue, and four-flavour-separated sea—is a significant
advance.

In order to sketch this progress, it is necessary to recall that the modern approach to
the CSM prediction of hadron DFs7 is based on a single proposition [131–135]:

P1 There is an effective charge, α1�(k2), which, when used to integrate the one-loop
perturbative-QCD DGLAP equations, defines a DF evolution scheme that is all or-
ders exact.

As noted in connection with Figure 3, charges of this sort are discussed in
References [137–139]. They need not be process-independent (PI), hence not unique. More-
over, the results delivered are independent of the explicit form of α1�(k2). Notwithstanding
these things, a suitable PI charge is available, viz. the coupling discussed in Section 4,
which has proven efficacious. In being defined by an observable—in this instance, structure
functions—each such α1�(k2) is [94]: consistent with the renormalisation group and renor-
malisation scheme independent; everywhere analytic and finite; and, crucially, provides an
infrared completion of any standard perturbative running coupling.

7 Contemporary continuum methods for obtaining light-front amplitudes and density distributions from
Euclidean space Schwinger functions are detailed, e.g., in References [134,423]; [35] – Sections 3, 5; [125] –
Section IV; [127] – Sections 2, 5.
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P1 was used in References [126–128,131,136] to deliver meson DFs with a flavour-
symmetric sea. A generalisation, which expresses key quark current–mass effects in the
evolution kernels, was introduced in Reference [135] and used for the proton and pion. It
features a threshold function P ζ

qg ∼ θ(ζ − δf ), which ensures that a given quark flavour
only becomes active in DF evolution when the energy scale exceeds a value determined by
the quark’s mass [35] (Figure 2.5): δu,d ≈ 0, δs ≈ 0.1 GeV, δc ≈ 0.9 GeV. The impact of this
modification is readily anticipated. Supposing that all quark flavours are light, then each
would be emitted with equal probability on ζ > ζH; so, evolution would produce a certain
gluon momentum fraction in the hadron plus a sea quark fraction shared equally between
all quark flavours. Considering mass differences between the quarks, with some flavours
being heavier than the light quark threshold, then evolution on ζ > ζH will generate a
gluon momentum fraction that is practically unchanged from the all-light quark case and a
sea quark fraction divided amongst the quarks in roughly inverse proportion to their mass.

It is worth reiterating here that ζH is the scale at which the valence quasiparticle
degrees-of-freedom carry all properties of a given hadron [124–136]. Moreover, the value
of this scale is a prediction. Using the PI charge discussed in Section 4 to construct bound
state kernels informed by References [68,212], then

ζH = 0.331(2)GeV. (57)

The value in Equation (57) is the same for all hadrons.
Furthermore, combined with evolution according to P1, the character of ζH ensures

that all hadron DFs are intertwined at every scale ζ. Hence, this perspective suggests that
it is incorrect to choose independent, uncorrelated functions to parametrise the DFs of
different parton species when fitting data at any scale ζ > ζH. If one nevertheless chooses
to ignore the innate associations, then DFs with unphysical features may be obtained—see,
e.g., Reference [132] [Figure 6].

CSM predictions for the ζ = ζH proton and pion valence DFs are drawn in Figure 23A.
The following points are significant.

(i) Each DF is consistent with the relevant large-x scaling law in Equation (56). Hence,
from the outset, whilst the ζ = ζH momentum sum rules for each hadron are necessarily
saturated by valence degrees-of-freedom, viz.

〈x〉ζH
up = 0.687 , 〈x〉ζH

dp
= 0.313 , 〈x〉ζH

uπ
= 0.5 , (58)

A B

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

xu
V
,x
d Vp
,x
u Vp

( H)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

xu
V
,x
d Vp
,x
u Vp

( 3)

Figure 23. Left panel (A); Proton and pion hadron scale valence parton DFs: xu p(x; ζH)—solid red
curve; xd p(x; ζH)—dotted-dashed blue curve; xuπ(x; ζH)—dashed green curve. Right panel (B):
Valence DFs in Panel A evolved to ζ3 = mJ/ψ = 3.097 GeV according to P1. The band surrounding
each CSM curve expresses the response to a ±5% variation in ζH.

The proton and pion valence DFs nevertheless have markedly different x-dependence.
(Nature’s approximate G-parity symmetry [424] entails d̄π(x; ζ) = uπ(x; ζ).) (ii) Owing
to DCSB [14,76,279–283], an important corollary of EHM, QCD dynamics simultaneously
produce a dressed light quark mass function, Mu,d(k2), that is large at infrared momenta,
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MD := Mu,d(k2 � 0) ≈ 0.4 GeV, and an almost massless pion, m2
π/M2

D ≈ 0.1—see
Reference [35] (Section 2). As a result, uπ(x; ζH) is Nature’s most dilated hadron-scale
valence DF. This is highlighted by Figure 23A and Refs. [126,127] and implicit in numerous
other symmetry-preserving analyses, e.g., References [201,239,425,426].

Evolving the DFs in Figure 23A according to P1, one obtains the ζ = mJ/ψ =: ζ3
distributions in Figure 23B. Plainly, although the profiles change, the relative dilation of the
DFs is preserved and is therefore a verifiable prediction of the EHM paradigm.

Given that Figure 23B depicts the first CSM predictions for proton valence quark DFs,
one might question their reliability. That issue can partly be addressed through a comparison
with lQCD results. The calculation of individual valence DFs using lQCD is problematic owing
to difficulties in handling so-called disconnected contributions [427]. In the continuum limit,
however, disconnected diagrams do not contribute to the isovector DF [u p(x; ζ)− d p(x; ζ)], so
computations of this difference are available [428,429]. Both analyses use the quasidistribution
approach [430], but the lattice algorithms and configurations are somewhat different. Their com-
parison with CSM predictions is depicted in Figure 24. The level of agreement is encouraging,
especially because refinements of both continuum and lattice calculations may be anticipated.
For instance, the CSM predictions were obtained using a simplified proton Faddeev amplitude,
and the lattice studies must address issues with, inter alia, the pion masses used, lattice artefacts
and systematic errors, and convergence of the boost expansion in the quasidistribution approach.
(The last of these is a particular hindrance to lQCD extractions of DF endpoint behaviour [431].)

0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

x

[u Vp -d
Vp
]()

Figure 24. Isovector distribution [u p(x; ζ)− d p(x; ζ)]. CSM prediction—solid purple curve, ζ = ζ3;
lQCD result from Reference [428]—dashed grey curve, ζ = ζ3; lQCD result from Reference [429]—
dotted-dashed brown curve, ζ = ζ2. Like-coloured band bracketing each curve indicates associated
uncertainty.

In typical evolution kernels, gluon splitting yields quark+antiquark pairs of all flavours
with equal probability. However, it was long ago argued [432] that, because the proton
contains two valence u quarks and one valence d quark, the Pauli exclusion principle
should force gluon splitting to prefer d + d̄ production over u + ū. Consequently, when
implementing evolution of proton singlet and glue DFs, Reference [135] followed Refer-
ence [134] and introduced a small Pauli blocking factor into the gluon splitting function.
This correction preserves the baryon number, but shifts momentum into d + d̄ from u + ū,
otherwise leaving the sum of sea quark momentum fractions unchanged. It vanishes with
increasing ζ, in order to express the declining influence of valence quarks as the proton’s
sea and glue content increases.

The resulting CSM predictions for ζ = ζ3 proton and pion glue DFs are drawn in
Figure 25A. The glue-in-π DF is directly related to the ζ = 2 GeV =: ζ2 result discussed in
Reference [129], which is drawn in Figure 25B: evidently, it agrees with a recent lQCD cal-
culation of the glue-in-π DF [433]. Furthermore, reproducing the pattern seen with valence
quark DFs in Figures 23 and 25A reveals that the glue-in-π DF possesses significantly more
support on the valence domain, x � 0.1, than the glue-in-p DF. Once again, this feature is a
measurable expression of EHM.
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The ζ = ζ3 light quark sea DFs for the proton and pion are depicted in Figure 25C.
The EHM-induced pattern is also apparent here, viz. the sea-in-π DF possesses greater
support on x � 0.1 than the kindred sea-in-p DFs. DFs of the heavier sea quarks are also
generated via evolution, with the results drawn in Figure 25D. Interestingly, the ζ = ζ3 s
and c quark DFs are similar in size to those of the light quark sea DFs; and for these heavier
quarks, as well, the pion DFs have significantly greater support on the valence domain,
x � 0.1, than the related proton DFs.

An analysis of the endpoint exponents of all ζ = ζ3 DFs is also contained in Refer-
ence [135] along with simple interpolations of each DF that can readily be used by any
practitioner—Reference [135] (Table 1). It is worth reiterating the following remarks about
the endpoint exponents.

(i) The power-laws express measurable effective exponents, obtained from separate linear
fits to ln[xp(x)] on the domains 0 < x < 0.005, 0.85 < x < 1. (Here, p(x) denotes a
generic DF.)

(ii) Within mutual uncertainties, proton and pion DFs have the same power-law behaviour
on x � 0:

α
p,π
valence ≈ −0.22 , α

p,π
glue ≈ −1.6 , α

p,π
sea ≈ −1.5 . (59)

(iii) On x � 1, the following relationships exist for and between pion and proton DF
exponents:

βπ
valence ≈ 2.5 , β

p
valence ≈ βπ

valence + 1.6 , (60a)

β
p,π
glue ≈ β

p,π
valence + 1.4 , β

p,π
sea ≈ β

p,π
valence + 2.4 . (60b)

(iv) Given (ii) and (iii), then the CSM predictions are consistent with the QCD expectations
discussed in connection with Equation (56).

(v) Existing phenomenological fits to relevant scattering data typically arrive at DFs which
are inconsistent with (ii) and (iii); hence, fail to meet many QCD-based expectations, e.g.,
References [419,421,422,434,435]. This point is also discussed elsewhere [132,133,436].

Owing to the Pauli blocking factor described above and as evident in Figure 25C, the DFs
calculated in Reference [135] express an in-proton separation between d̄ and ū distributions.
This entails a violation of the Gottfried sum rule [437,438], which has been seen in experi-
ments [439–443]. Using the proton DFs in Figure 25C then, on the domain covered by the
measurements in References [439,440], one obtains∫ 0.8

0.004
dx [d̄ (x; ζ3)− ū(x; ζ3)] = 0.116(12) (61)

for the Gottfried sum rule discrepancy. This value matches that inferred from recent fits to a
large sample of high-precision data (ζ = 2 GeV) [419] (CT18), 0.110(80), and is far more precise.

The result in Equation (61) corresponds to a strength for the Pauli blocking term in
the gluon splitting function that shifts just ≈ 25% of the u quark sea momentum fraction
into the d quark sea at ζ = ζ2. Changing the strength by ±25% leads to the uncertainty
indicated in Equation (61). Data from the most recent experiment focused on the asymmetry
of antimatter in the proton [443] (E906) are presented in Figure 26A. They may be compared
with the CSM result obtained using the proton DFs in Figure 25C. Evidently, a modest Paul
blocking effect in the gluon splitting function is sufficient to explain modern data.
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Figure 25. Left upper panel (A): Glue DFs—x2g , in the proton (solid purple curve) and pion (dashed
green curve) at ζ = ζ3. Right upper panel (B): Comparison between continuum [127] (Cui 2020)
and lattice [433] (Fan 2021) results for the glue-in-pion DF at ζ = 2 GeV. Left lower panel (C): Pro-
ton and pion light quark sea DFs: x2S p

u (x; ζ3)—solid red curve; x2S p
d (x; ζ3)—dashed blue curve;

x2S π
u (x; ζ3)—dotted-dashed green curve. Right lower panel (D): Proton and pion c- and s quark sea

DFs: x2S p
s (x; ζ3)—solid red curve; x2S π

s (x; ζ3)—dashed green curve; x2S p
c (x; ζ3)—dotted-dashed

blue curve; x2S π
c (x; ζ3)—long-dashed orange curve. The band surrounding each CSM curve ex-

presses the response to a ±5% variation in ζH. The uncertainty in the lQCD result is similarly
indicated in Panel B.
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Figure 26. Left panel (A): Ratio of light antiquark DFs. Data: Reference [443] (E906). CSM result
(solid purple curve) obtained from valence quark DFs in Figure 23 after evolution to ζ2 = ζ2

SQ =

30 GeV2 [135]. The shaded band expresses the impact of a ±25% variation in the strength of Pauli
blocking. Right panel (B): Neutron-to-proton structure function ratio. Data: [444] (BoNuS)—open
grey squares; [445] (MARATHON)—gold asterisks. Contemporary CSM results (solid purple curve)
obtained from valence quark DFs in Figure 23 after evolution to ζ = ζM = 2.7 GeV [134,135]. Other
predictions: green star—helicity conservation in the QCD parton model [412,446,447]; red diamond—
large-x estimate based on Faddeev equation solutions [448]; retaining only scalar diquarks in the
proton wave function, which produces a large-x value for this ratio that lies in the neighbourhood
of the filled circle [449,450]. The band surrounding the CSM curve expresses the response to a ±5%
variation in the size of axial vector diquark contributions to the proton charge. It is only noticeable on
the valence quark domain.
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Proton and, in principle, neutron structure functions—Fp,n
2 —can be measured in the

DIS of electrons from nucleons [408–411]. The ratio Fn
2 (x)/Fp

2 (x) is recognised as a sensitive
measure of d p(x)/up(x) on x � 0.4 [407], and the latter ratio is important because it is a keen
discriminator between pictures of proton structure [444,445,448]. The obstacle to an empirical
result for Fn

2 (x)/Fp
2 (x) is the measurement of Fn

2 : since isolated neutrons decay rather quickly, a
suitable, effective “free neutron target” must be found. Following References [451,452], many
experiments have used the deuteron. However, despite this being a weakly bound system, the
representation dependence of proton–neutron interactions leads to large theory uncertainties in
the extracted ratio on x � 0.7 [453].

A more favourable approach is provided by DIS measurements on 3H and 3He. In this
case, nuclear interaction effects cancel to a very large degree when extracting Fn

2 (x)/Fp
2 (x)

from the 3H:3He ratio of scattering rates [454,455]. Of course, 3H is highly radioactive;
so, careful planning and implementation are required to deliver a safe target. Recently,
after years of development, all challenges were overcome, and such an experiment was
completed [445]: the extracted data are drawn in Figure 26B. Importantly, within mutual
uncertainties, the results from Reference [445] match those inferred from an analysis of
nuclear DIS reactions, exploiting targets ranging from the deuteron to lead and accounting
for the effects of short-range correlations in the nuclei [456]. This speaks in support of the
reliability of the analyses in both cases.

As described in Section 7, the Faddeev equation in Figure 8 makes firm statements
about proton structure. In particular, well-constrained studies predict that axial vector
diquark correlations are responsible for approximately 40% of the proton’s charge—see
Reference [267] (Figure 2)—e.g., this strength is confirmed in studies of nucleon axial
vector and pseudoscalar currents—see Section 9. Consequently, this is the size of the axial
vector diquark fraction in the nucleon Faddeev amplitudes used to calculate proton DFs in
References [134,135]. Using the results therein, one may readily predict the neutron–proton
structure function ratio:

Fn
2 (x; ζ)

Fp
2 (x; ζ)

=
U(x; ζ) + 4D(x; ζ) + Σ(x; ζ)

4U(x; ζ) + D(x; ζ) + Σ(x; ζ)
, (62)

where, in terms of quark and antiquark DFs, U(x; ζ) = u p(x; ζ) + ū p(x; ζ), D(x; ζ) =
d p(x; ζ) + d̄ p(x; ζ), and Σ(x; ζ) = s p(x; ζ) + s̄ p(x; ζ) + c p(x; ζ) + c̄ p(x; ζ). Supposing that
valence quarks dominate on x � 1, then the limiting cases d p(x) ≡ 0 and u p(x) ≡ 0 yield
the Nachtmann bounds [457]:

1/4 ≤ Fn
2 (x)/Fp

2 (x) ≤ 4 on x � 1. (63)

The ζ = 2.7 GeV =: ζM CSM prediction for Fn
2 (x)/Fp

2 (x) is drawn in Figure 26B.
Its comparison with modern data [445] (MARATHON) may be quantified by noting that
the central curve yields χ2/ degree-of-freedom = 1.3. It is worth stressing that the x-
dependence of the CSM prediction in Figure 26B was made without reference to any data.
Consequently, the agreement with the results published in Reference [445] (MARATHON)
is meaningful and should serve to allay any concerns that the associated data analysis
omitted some systematic effect deriving from nuclear structure modelling.

Such heightened confidence in the MARATHON data adds impact to the model-
independent SPM analysis of that data described in Reference [458]; so, it is worth reca-
pitulating some of the material therein. The final results are highlighted by Figure 27,
which compares the MARATHON-based SPM prediction for Fn

2 /Fp
2

∣∣∣
x→1

with: the nuclear
DIS value [456]; theory predictions [271,412,446,450]; and the phenomenological fit result
in Reference [434]. The figure also marks the Nachtmann lower bound, Equation (63),
which is saturated if valence d quarks play no significant role at x = 1; namely, when
there are practically no valence d quarks in the proton: d p/u p|x→1 = 0. This outcome
is characteristic of proton wave function models in which the valence d quark is (almost)
always paired with one of the valence u quarks inside a scalar diquark [255,449,459]. Even
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allowing for the quark exchange dynamics in Figure 8, one still finds d p/u p|x→1 ≈ 0 if
only scalar diquarks are retained [450].

CJ15

Helicity conservation

DSE 0+ & 1+

Mean SPM A-DIS

Segarra A-DIS

SPMMARATHON
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1

Figure 27. limx→1 Fn
2 (x)/Fp

2 (x). SPM prediction derived from Reference [445] (MARATHON)
compared with results inferred from: nuclear DIS [456]; large-x estimate from CSM studies [271,450];
quark counting (helicity conservation) [446]; and a phenomenological fit (CJ15) [434]. The red vertical
line indicates the Nachtmann lower limit, Equation (63), which is saturated if valence d quarks play
no material role at x = 1; Row 3 is the average in Equation (64).

The following observations serve as a summary of the analyses in Reference [458]:

Observation A . . . Applied to MARATHON data, the SPM yields Fn
2 /Fp

2

∣∣∣
x→1

= 0.437(85)

⇒ d p/u p|x→1 = 0.227(100).8 The possibility d p/u p|x→1 = 0 is thus excluded with
a 98.7% level of confidence; hence, scalar-diquark-only models of proton structure
are excluded with equal likelihood. On the other hand, with this same 98.7% level of
confidence, the SPM analysis confirms the QCD parton model prediction [412,446]:
d p(x) ∝ u p(x) on x � 1.

Observation B . . . The value of Fn
2 /Fp

2

∣∣∣
x→1

inferred from nuclear DIS [456] agrees with
the SPM prediction; hence, they may be averaged to yield

Fn
2 /Fp

2

∣∣∣SPM & DIS−A

x→1
= 0.454 ± 0.047 . (64)

This result is drawn on Row 3 in Figure 27. It corresponds to

lim
x→1

d p(x)
u p(x)

= 0.230 ± 0.057 (65)

and entails that the probability that scalar-diquark-only models of proton structure
might be consistent with available data is 1/141, 000. In fact, with a high level of
confidence, one may discard any proton structure model that delivers a result for
Fn

2 /Fp
2

∣∣∣
x→1

that differs significantly from Equation (64). (As reviewed in Section

9, the ratio gd
A/gu

A places an even harder exclusion bound on scalar-diquark-only
models.)

Observation C . . . Within uncertainties, the result in Equation (64) agrees with both: (i)
the value obtained by assuming an SU(4)-symmetric spin–flavour wave function for
the proton and helicity conservation in high-Q2 interactions [412,446]; and (ii) the

8 Extrapolations based on [1, 1] Padé fits to MARATHON data, obtained using a one-point jackknife procedure,
yield Fn

2 /Fp
2 = 0.395(3) on x � 1 ⇒ d p/ud = 0.169(3) [182]. Another analysis [460], employing practitioner-

chosen polynomials as the basis for extrapolation, obtains Fn
2 /Fp

2 = 0.37(7) on x � 1 ⇒ d p/ud = 0.13(8). The
latter is less precise, but both results are consistent with the function form unbiased SPM prediction.
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prediction developed from proton Faddeev wave functions that contain both scalar
and axial vector diquarks, with the axial vector contributing approximately 40% of
the proton charge [271,450]. (Recall that this was the axial vector diquark fraction
built into the analyses in References [134,135].)

Following common practice, Reference [135] (Table 2) lists low-order ζ = ζ2, ζ3 Mellin
moments of all proton and pion DFs. Given P1 and the character of the hadron scale,
then comparable momentum fractions in the proton and pion are necessarily identical
and, as anticipated above, the total sea quark momentum fraction is shared between
the quark flavours in roughly inverse proportion to their infrared dressed mass, Mf .
Significantly, given that they are predictions, the calculated values of the proton DF moments
in Reference [135] (Table 2) are in fair agreement with those produced by phenomenological
fits—see e.g., Reference [419] (Table VI): referring to the CT18 column, the CSM results
match at the level of 1.7(1.5) σ. Furthermore, within mutual uncertainties, the pion valence
quark DF moments agree with recent lQCD results [461,462].

It is worth emphasising that the quantitative similarities also extend to the c quark:
Reference [135] predicts 〈x〉ζ2

cp = 1.32(5)%, 〈x〉ζ3
cp = 1.82(6)%, cf. 1.7(4), 2.5(4)% in Refer-

ence [435] (Figure 60). Moreover, the CSM study predicts 〈x〉ζ=1.5 GeV
c = 0.64(3)% in both

the pion and proton. Regarding the pion, nothing is known about this momentum fraction;
and in the proton, phenomenological estimates are inconclusive, ranging from 0-2% [435]
(Figure 59). Plainly, a significant c quark momentum fraction is obtained under P1 evolu-
tion without recourse to “intrinsic charm” [463]. This outcome, which is independent of
the explicit form of α1�(k2), potentially challenges the findings in Reference [464]. Notwith-
standing the size of these calculated fractions, we stress that, as apparent in Figure 25,
S π,p

c (x) have sea quark profiles.
Given these observations, one is led to re-evaluate what is meant by intrinsic charm

in the proton or any other hadron. With ζH being the scale at which valence quasiparticle
degrees-of-freedom carry all measurable properties of a given hadron, then the Fock space
components, which might be interpreted as intrinsic charm or intrinsic strangeness, etc.,
are sublimated into the nonperturbatively computed ζ = ζH Schwinger functions that
completely express the bound state’s structure. In this context, such Fock space components
are interpreted as being members of the set of basis eigenvectors representing a free-field
light-front Hamiltonian. One may exemplify this by noting that any true QCD solution for
the dressed quark Schwinger function (propagator) must contain infinitely many and all
possible contributing Fock space vectors. The putative “intrinsic” components within a
bound state are then revealed by evolving the hadron-scale Schwinger functions to higher
scales, whereat an interpretation of data in terms of a Fock space expansion is relevant and
practicable. In one study or another, the actual expressions of the characters of intrinsic
charm, strangeness, etc., will depend on the sophistication of the kernels used to calculate
the hadron-scale Schwinger functions. Nevertheless, as highlighted by Reference [135],
any reasonable kernels will predict that a measurable fraction of the proton’s light-front
momentum is carried by the charm quark sea at all resolving scales for which data may be
interpreted in terms of DFs.

With a symmetry-preserving framework in hand that has the demonstrated ability
to provide simultaneous predictions for the entire array of proton and pion DFs, one is
potentially in a position to bring a new order to the study of hadron structure functions.
Stringent new tests of the approach, including P1—see page 98—and the general character
of the hadron scale, Equation (57), will be found in, amongst other things, studies of
helicity-dependent DFs. New insights into proton spin structure may then be forthcoming.

12. Conclusions

We sketched some recent advances in the use of continuum Schwinger function
methods (CSMs) to link QCD and hadron observables. The connecting bridge from theory
to observation is supported by the three pillars of emergent hadrons mass (EHM): (i)
dynamical generation of a gluon mass scale, whose size is roughly one half the proton mass;
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(ii) existence of a unique, process-independent effective charge, α̂(k2), which runs to a finite
value at infrared momenta, α̂(0)/π ≈ 1; and (iii) emergence of a running quark mass in the
chiral limit, whose infrared value matches that typically identified as the constituent quark
mass. Our subsequent commentary stressed that the single phenomenon of EHM manifests
itself differently in the diverse array of measurable quantities that define hadron physics.
No single observable is alone sufficient to validate the EHM paradigm for understanding
strong interactions within the Standard Model (SM). Instead, theory should identify a broad
range of empirical consequences of EHM so that the order brought to a collective body of
experimental results—existing and future—can be recognised as the signature of EHM.

Our developing understanding of EHM suggests that QCD is unique amongst known
fundamental theories of natural phenomena. It might be the first well-defined four-
dimensional quantum field theory ever contemplated. If so, then QCD could provide
the archetype for theories that take physics beyond the SM.

Science has delivered theories of many things. The best of them remain a part of
the grander theories developed in response to new observations. The basic question yet
remains unanswered, viz.: Is there a theory of everything? Hadron physics and QCD
might be pointing us toward an answer in exposing the special qualities of strong-coupling
non-Abelian quantum gauge field theories.
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Abbreviations

The following abbreviations are used in this manuscript:

ACM anomalous chromomagnetic moment
AdS/CFT (duality) anti-de Sitter/conformal field theory (duality)
ard mean absolute relative difference
CKM Cabibbo–Kobayashi–Maskawa (matrix)
CSMs continuum Schwinger function methods
DCSB dynamical chiral symmetry breaking
DF (parton) distribution function
DIS deep inelastic scattering
DSE Dyson–Schwinger equation
EHM emergent hadron mass
FF (parton) fragmentation function
JLab Thomas Jefferson National Accelerator Facility
lQCD lattice-regularised quantum chromodynamics
NG (mode/boson) Nambu–Goldstone (mode/boson)
PD (charge) process-dependent (charge)
PDG Particle Data Group and associated publications
PI (charge) process-independent (charge)
QCD quantum chromodynamics
QED quantum electrodynamics
RGI renormalisation-group-invariant
RL rainbow ladder (truncation)
SCI symmetry-preserving treatment of a vector×vector contact interaction
SM Standard Model of particle physics
SPM Schlessinger point method
VMD vector meson dominance
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Reimer, P.E.; et al. Improved measurement of the d̄/ū asymmetry in the nucleon sea. Phys. Rev. D 2001, 64, 052002. [CrossRef]

443. Dove, J.; Kerns, B.; McClellan, R.E.; Miyasaka, S.; Morton, D.H.; Nagai, K.; Prasad, S.; Sanftl, F.; Scott, M.B.C.; Tadepalli, A.S.; et al.
The asymmetry of antimatter in the proton. Nature 2021, 590, 561–565. [CrossRef]

444. Tkachenko, S.; Baillie, N.; Kuhn, S.E.; Zhang, J.; Arrington, J.; Bosted, P.; Bültmann, S.; Christy, M.E.; Dutta, D.; Ent, R.; et al.
Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic 2H(e, e’p)X scattering with
CLAS. Phys. Rev. C 2014, 89, 045206; Addendum: Phys. Rev. C 2014, 90, 059901. [CrossRef]

445. Abrams, D.; Albataineh, H.; Aljawrneh, B.S.; Alsalmi, S.; Aniol, K.; Armstrong, W.; Arrington, J.; Atac, H.; Averett, T.;
Ayerbe Gayoso, C.; et al. Measurement of the Nucleon Fn

2 /Fp
2 Structure Function Ratio by the Jefferson Lab MARATHON

Tritium/Helium-3 Deep Inelastic Scattering Experiment. Phys. Rev. Lett. 2022, 128, 132003. [CrossRef]
446. Farrar, G.R.; Jackson, D.R. Pion and Nucleon Structure Functions Near x = 1. Phys. Rev. Lett. 1975, 35, 1416. [CrossRef]
447. Brodsky, S.J.; Lepage, G.P. Perturbative Quantum Chromodynamics. Prog. Math. Phys. 1979, 4, 255–422.
448. Roberts, C.D.; Holt, R.J.; Schmidt, S.M. Nucleon spin structure at very high x. Phys. Lett. B 2013, 727, 249–254. [CrossRef]
449. Close, F.E.; Thomas, A.W. The Spin and Flavor Dependence of Parton Distribution Functions. Phys. Lett. B 1988, 212, 227.

[CrossRef]
450. Xu, S.S.; Chen, C.; Cloet, I.C.; Roberts, C.D.; Segovia, J.; Zong, H.S. Contact-interaction Faddeev equation and, inter alia, proton

tensor charges. Phys. Rev. D 2015, 92, 114034. [CrossRef]
451. Bodek, A.; Breidenbach, M.; Dubin, D.L.; Elias, J.E.; Friedman, J.I.; Kendall, H.W.; Poucher, J.S.; Riordan, E.M.; Sogard, M.R.;

Coward, D.H. Comparisons of Deep Inelastic ep and en Cross-Sections. Phys. Rev. Lett. 1973, 30, 1087. [CrossRef]
452. Poucher, J.S.; Breidenbach, M.; Ditzler, R.; Friedman, J.I.; Kendall, H.W.; Bloom, E.D.; Taylor, R.E. High-Energy Single-Arm

Inelastic ep and ed Scattering at 6-Degrees and 10-Degrees. Phys. Rev. Lett. 1974, 32, 118. [CrossRef]
453. Whitlow, L.W.; Riordan, E.M.; Dasu, S.; Rock, S.; Bodek, A. Precise measurements of the proton and deuteron structure functions

from a global analysis of the SLAC deep inelastic electron scattering cross-sections. Phys. Lett. B 1992, 282, 475–482. [CrossRef]
454. Afnan, I.R.; Bissey, F.R.P.; Gomez, J.; Katramatou, A.T.; Melnitchouk, W.; Petratos, G.G.; Thomas, A.W. Neutron structure function

and A = 3 mirror nuclei. Phys. Lett. B 2000, 493, 36–42. [CrossRef]
455. Pace, E.; Salme, G.; Scopetta, S.; Kievsky, A. Neutron structure function Fn

2 (x) from deep inelastic electron scattering off few
nucleon systems. Phys. Rev. C 2001, 64, 055203. [CrossRef]

456. Segarra, E.; Schmidt, A.; Kutz, T.; Higinbotham, D.; Piasetzky, E.; Strikman, M.; Weinstein, L.; Hen, O. Neutron Valence Structure
from Nuclear Deep Inelastic Scattering. Phys. Rev. Lett. 2020, 124, 092002. [CrossRef]

457. Nachtmann, O. Positivity constraints for anomalous dimensions. Nucl. Phys. B 1973, 63, 237–247. [CrossRef]
458. Cui, Z.F.; Gao, F.; Binosi, D.; Chang, L.; Roberts, C.D.; Schmidt, S.M. Valence quark ratio in the proton. Chin. Phys. Lett. Express

2022, 39, 041401. [CrossRef]
459. Anselmino, M.; Predazzi, E.; Ekelin, S.; Fredriksson, S.; Lichtenberg, D.B. Diquarks. Rev. Mod. Phys. 1993, 65, 1199–1234.

[CrossRef]
460. Pace, E.; Rinaldi, M.; Salmè, G.; Scopetta, S. The European Muon Collaboration effect in Light-Front Hamiltonian Dynamics.

arXiv 2022, arXiv:2206.05485.
461. Joó, B.; Karpie, J.; Orginos, K.; Radyushkin, A.V.; Richards, D.G.; Sufian, R.S.; Zafeiropoulos, S. Pion valence structure from

Ioffe-time parton pseudodistribution functions. Phys. Rev. D 2019, 100, 114512. [CrossRef]
462. Alexandrou, C.; Bacchio, S.; Cloet, I.; Constantinou, M.; Hadjiyiannakou, K.; Koutsou, G.; Lauer, C. Pion and kaon 〈x3〉 from

lattice QCD and PDF reconstruction from Mellin moments. Phys. Rev. D 2021, 104, 054504. [CrossRef]
463. Brodsky, S.J.; Hoyer, P.; Peterson, C.; Sakai, N. The Intrinsic Charm of the Proton. Phys. Lett. B 1980, 93, 451–455. [CrossRef]
464. Ball, R.D.; Candido, A.; Cruz-Martinez, J.; Forte, S.; Giani, T.; Hekhorn, F.; Kudashkin, K.; Magni, G.; Rojo, J. Evidence for intrinsic

charm quarks in the proton. Nature 2022, 608, 483–487.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

128



Citation: Ferreira, M.N.;

Papavassiliou, J. Gauge sector

dynamics in QCD. Particles 2023, 6,

312–363. https://doi.org/10.3390/

particles6010017

Academic Editors: Minghui Ding,

Craig Roberts, Sebastian M. Schmidt

and Armen Sedrakian

Received: 7 January 2023

Revised: 3 February 2023

Accepted: 9 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Gauge Sector Dynamics in QCD

Mauricio Narciso Ferreira *,† and Joannis Papavassiliou *,†

Department of Theoretical Physics and IFIC, University of Valencia and CSIC, E-46100 Valencia, Spain
* Correspondence: ansonar@uv.es (M.N.F.); Joannis.Papavassiliou@uv.es (J.P.)
† These authors contributed equally to this work.

Abstract: The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are
crucial for the internal consistency of the theory; most notably, they account for the generation of
a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the
ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex.
In the present work, we review some key advances in the ongoing investigation of this sector within
the framework of the continuum Schwinger function methods, supplemented by results obtained
from lattice simulations.

Keywords: continuum Schwinger function methods; emergence of hadron mass; gluon mass genera-
tion; lattice QCD; non-perturbative quantum field theory; quantum chromodynamics; Schwinger–
Dyson equations; Schwinger mechanism
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1. Introduction

The systematic exploration of Green’s functions (n-point correlation functions) of quan-
tum chromodynamics (QCD) [1] by means of continuous Schwinger function methods [2–9],
such as Schwinger–Dyson equations (SDEs) [10–21] and the functional renormalization
group [22–31], together with a plethora of gauge-fixed lattice simulations [32–88], has
afforded ample access to the dynamical mechanisms responsible for the non-perturbative
properties of this remarkable theory. Particularly prominent in this quest is the notion
of the emergent hadron mass (EHM) [3,8,9,89–93], together with its three supporting
pillars: first, the generation of a gluon mass [18,32,93–126] through the action of the
Schwinger mechanism [127,128]; second, the construction of the process-independent
effective charge [3,16,20,79,96,129–131], which arises as the QCD analog of the Gell-Mann–
Low charge is known from quantum electrodynamics (QED) [132,133], and is associated
with a renormalization-group invariant (RGI) scale of about half of the proton mass [20,79];
and third, the dynamical breaking of chiral symmetry and the generation of constituent
quark masses [10,17,134–158].

The dynamics of the gauge sector of QCD, which encompasses both gluonic and ghost
interactions, is instrumental in the physical picture of the EHM outlined above. In fact,
the basic concepts and pivotal mechanisms sustaining the first two pillars of the EHM
have their original inception and most genuine realization in the realm of pure Yang–
Mills theories [18,93,94,96,109,112,117,159–161]. Therefore, in the present review, we focus
precisely on the rich dynamical content of the gauge sector, especially in relation to the
generation of a gluon mass scale out of the intricate gluon self-interactions.

The formulation of the non-perturbative QCD physics in terms of Green’s func-
tions of the fundamental degrees of freedom, such as gluon and ghost propagators and
vertices, provides an intuitive framework for unraveling a wide array of subtle mecha-
nisms; in fact, certain distinctive features of these functions have been inextricably con-
nected with key phenomena such as gluon mass generation, violation of reflection posi-
tivity, and confinement, to name a few. Thus, the saturation of the gluon propagator in
the deep infrared [37,45–49,52,55–59,63,65–67,77,81] has been interpreted as an unequiv-
ocal signal of a gluon mass [32,96–100,103,105,107–109,112,160–166]; and the existence
of an inflection point in the same function has been argued to lead to a non-positive
gluon spectral density [8], and the ensuing loss of reflection positivity [8,11,13,16,167–171]
for the dressed gluons. Similarly, the masslessness of the ghost induces [172] a maxi-
mum in the gluon propagator, and a zero crossing in the form factors of the three-gluon
vertex [28,50,68,69,71,72,81,84,172–180], followed by an infrared divergence for vanishing
momenta. The dynamic origin of these special traits will be the focal point of the analysis
presented in the main body of this article.

The integral equations that govern the full momentum evolution of Green’s functions,
known as SDEs, constitute the indispensable formal and practical instrument for unrav-
eling the special characteristics mentioned above. In their primordial form, the SDEs are
rigorously derived from the generating functional of the theory [133,181], and encode all
dynamical information on the correlation functions, within the entire range of physical
momenta. In practice, due to the enormous complexity of these equations, truncation
approximations need to be implemented; but, unlike perturbation theory, no expansion
parameter is available in the strongly coupled regime of the theory for carrying out such a
task. Despite this intrinsic shortcoming, in recent years, the SDE predictions have become
particularly robust, in part due to various theoretical advances, and in part thanks to the
intense synergy with gauge-fixed lattice simulations, as will be evidenced in subsequent
sections.

Typically, Green’s QCD function is defined within the quantization scheme obtained by
implementing the linear covariant (Rξ) gauges [182]. The corresponding SDEs are derived
and solved within this same quantization scheme, particularly in the Landau gauge (ξ = 0),
where lattice simulations are almost exclusively performed; for studies away from the
Landau gauge, see e.g., [55,58,66,74,75,110,114,120,183–191]. A great deal may be learned,
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however, by considering Green’s functions and corresponding SDEs formulated within the
“PT-BFM” scheme [109,192], namely the framework that arises from the fusion of the pinch
technique (PT) [14,96,100,193–195] with the background field method (BFM) [196–206]. The
main advantage of the PT-BFM originates from the fact that certain appropriately chosen
Green’s functions satisfy Abelian Slavnov–Taylor identities (STIs), whose tree-level form
does not get modified by quantum corrections. This situation is to be contrasted to the
standard STIs [207,208] obtained in the conventional framework of the linear covariant
gauges, which are deformed by non-trivial contributions stemming from the gauge sector
of the theory. In the present work, we will carry out computations and develop arguments
within both frameworks (Rξ and PT-BFM), and will elaborate on their connection by means
of the so-called background-quantum identities (BQIs) [14,209–211].

The article is organized as follows:

• In Section 2, we introduce some basic notations and review certain prominent features
of Green’s functions within the linear gauges and the PT-BFM formalism [109,192].
We stress, in particular, the properties of the auxiliary function G(q) [16,131,212,213],
which relates the gluon propagators with quantum and background gluons, and is in-
timately connected with the definition of the process-independent and RGI interaction
strength [16], to be discussed in detail in Section 6. In addition, we elucidate (with a
concrete example) the important property of “block-wise” transversality, displayed by
the background gluon self-energy [18,109,112].

• In Section 3, we review the general principles associated with the Schwinger mech-
anism [127,128] that endows gauge bosons with an effective mass, focusing on the
details associated with its realization in the context of Yang–Mills theories. We place
particular emphasis on the pivotal requirement that must be satisfied by the funda-
mental vertices of the theory, namely the appearance of massless poles in their form
factors [18,93,109,111–113,117,159,214].

• In Section 4, we examine the dynamical formation of colored composite excitations
(bound states) of vanishing masses, which provide the required structures in the
vertices in order for the Schwinger mechanism to be activated [18,117,159,214]. The
formation of these states out of a pair of gluons or a ghost–anti-ghost pair is controlled
by a set of coupled Bethe–Salpeter equations (BSEs) [18,117,124,214,215], which are
found to have nontrivial solutions for the corresponding Bethe–Salpeter (BS) ampli-
tudes, to be denoted by C(r) and C(r), respectively.

• In Section 5, we explain in detail how the presence of the massless poles in the dressed
vertices that enter the SDE of the gluon propagator give rise to a gluon mass. The
demonstration is carried out separately for the gμν and qμqν/q2 components of the
gluon self-energy. The former case requires the evasion of the so-called “seagull
identity” [113,166]; this becomes possible by virtue of the crucial Ward identity (WI)
displacement, to be further considered in Section 10.

• In Section 6, we go over the basic notions underpinning the PT [14,96,100,193,194], and
show how their application leads naturally to the definition of a dimensionful process-
independent RGI interaction strength [3,16,20,79,96,129–131], denoted by d̂(q). The
genuine process independence of this quantity is concretely exemplified by demon-
strating its appearance in two processes involving fundamentally different external
fields. Next, d̂(q) is computed by combining lattice data for the gluon propagator and
SDE results for the function G(q). Finally, the dimensionless quantity is derived that
constitutes the physical definition of the one-gluon exchange interaction appearing in
standard bound-state computations [15–17,216–222].

• In Section 7, we focus on the structure of the “transversely projected” three-gluon
vertex [126,174,175,223], and discuss briefly the property of planar degeneracy [86],
satisfied, at a high level of accuracy [86–88,174,175,223], by the vertex form factors.
This special property induces a striking simplification to the structure of this vertex,
captured by a particularly compact expression [86], which will be extensively used in
some of the following sections.
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• In Section 8, we take a close look at the ghost sector of the theory, and solve the coupled
system of SDEs governing the ghost propagator and ghost–gluon vertex [85,224–228];
as is well-known, the ghost remains massless, but its dressing function saturates at
the origin [21,42,47,49,51,56,62,63,73,79,85,112,178,225,227–233], because the infrared-
finite gluon propagator used in the ghost SDE provides an effective infrared cutoff. In
the SDE of the ghost–gluon vertex, we employ as central input the compact expression
for the three-gluon vertex presented in the previous section. The results are in excellent
agreement with the available lattice data for the ghost dressing function [73,85] and
the form factor of the ghost–gluon vertex evaluated in the soft-gluon limit [42,43].

• In Section 9, we discuss two important consequences of the masslessness of the ghost
propagator, which manifest themselves at the level of both the gluon propagator
and the three-gluon vertex. Specifically, the diagrams comprised by a ghost loop
induce “unprotected” logarithms, i.e., of the type ln q2; instead, gluonic loops give
rise to “protected” logarithms, of the type ln(q2 + m2), where m is the effective gluon
mass [172,234]. As q2 → 0, the unprotected contributions diverge, driving the appear-
ance of a maximum in the gluon propagator and a divergence in its first derivative,
as well as a zero-crossing and a corresponding divergence in the form factors of the
three-gluon vertex. As we comment in this section, of particular phenomenological
importance [234–240] is the relative suppression that the above features induce to the
dominant vertex form factors in the intermediate range of momenta.

• In Section 10, we discuss an outstanding feature of the WI satisfied by the pole-free
part of the three-gluon vertex, namely the displacement induced by the presence of the
aforementioned massless poles [93,124]. In this context, we introduce the key quantity
denominated “displacement function”, whose appearance serves as a smoking gun
signal of the action of the Schwinger mechanism in QCD; quite interestingly, it coin-
cides [93,124] with the BS amplitude C(r) for the formation of a massless scalar out of a
pair of gluons, introduced in Section 4. In addition, we derive a crucial relation, which
ultimately permits the indirect determination of C(r) from lattice QCD [93,124,126];
an important ingredient in this relation is a partial derivative [124,241], denoted by
W(r), of the ghost–gluon kernel [228], to be determined in the next section.

• In Section 11, we set up and solve the SDE that governs the evolution of W(r) [124,
126,241,242]; the main component of this SDE is a special projection of the three-
gluon vertex, which is computed by appealing to formulas established in Section 7,
and allows for the accurate determination of W(r) in the entire range of relevant
momenta [126].

• In Section 12, we substitute into the central relation derived in Section 10 the solution
for W(r) found in the previous section, together with the lattice data [84,85] for
the gluon propagator, the ghost dressing function, and the form factor of the three-
gluon vertex associated with the soft-gluon limit, in order to obtain the form of the
displacement function C(r) [124,126]. As we discuss, the results exclude—with near-
absolute certainty—the null hypothesis (absence of Schwinger mechanism, C(r) = 0),
and corroborate the action of the Schwinger mechanism in QCD [126]. In addition,
we show that the form of C(r) found is statistically completely compatible with that
obtained from the BSE-based analysis presented in Section 4.

• In Section 13, we present our conclusions.
• Finally, in Appendix A, we derive the BQIs related to the displacement functions of

the conventional and background vertices, while in Appendix B, we provide details
about the renormalization scheme employed in our computations.
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2. Basic Concepts and General Theoretical Framework

We start by considering the Lagrangian density of an SU(N) Yang–Mills theory, com-
prised of the classical part, Lcl, the contribution from the ghosts, Lgh, and the covariant
gauge-fixing term, Lgf, namely

LYM = Lcl + Lgh + Lgf , (1)

where
Lcl = −1

4
Fa

μνFaμν , Lgh = −ca∂μDab
μ cb , Lgf =

1
2ξ

(∂μ Aa
μ)

2 . (2)

In the above formula, Aa
μ(x) denotes the gauge field, while ca(x) and ca(x) represent the

ghost and anti-ghost fields, respectively, with a = 1, . . . , N2 − 1.
In addition,

Fa
μν = ∂μ Aa

ν − ∂ν Aa
μ + g f abc Ab

μ Ac
ν , (3)

is the antisymmetric field tensor, where f abc stands for the totally antisymmetric structure
constants of the SU(N) gauge group, and g is the gauge coupling, while

Dab
μ = ∂μδac + g f amb Am

μ , (4)

denotes the covariant derivative in the adjoint representation. Finally, ξ represents the
gauge-fixing parameter; ξ = 0 corresponds to the Landau gauge, while ξ = 1 specifies the
Feynman–´t Hooft gauge.

The transition from the pure Yang–Mills theory of Equation (1) to QCD is implemented
by supplementing the corresponding kinetic and interaction terms for the quark fields.
However, since throughout this work we do not consider effects due to dynamical quarks,
the aforementioned terms will be omitted entirely.

The most fundamental correlation function is the gluon propagator, whose non-
perturbative features are inextricably connected with key dynamical properties of the
theory. In the Landau gauge that we will employ throughout, the gluon propagator,
Δab

μν(q) = −iδabΔμν(q), is completely transverse, i.e.,

Δμν(q) = Δ(q)Pμν(q) , Pμν(q) := gμν − qμqν/q2 . (5)

In the continuum, the dynamical properties of the gluon propagator are encoded in
the corresponding SDE, given by

Δ−1(q)Pμν(q) = q2Pμν(q) + iΠμν(q) , (6)

where Πμν(q) is the gluon self-energy, shown diagrammatically in the first row of Figure 1.
The fully-dressed vertices entering the diagrams are determined by their own SDEs, obtain-
ing finally a tower of coupled integral equations, which, for practical purposes, must be
truncated or treated approximately.

Given that, by virtue of the fundamental STI satisfied by the two-point function, the
self-energy Πμν(q) is transverse,

qμΠμν(q) = 0 , (7)

we have that
Πμν(q) = Π(q)Pμν(q) , (8)

and from Equation (6) follows that

Δ−1(q) = q2 + iΠ(q) . (9)

Of particular importance is the exact way that Equation (7) is enforced at the level of the
SDE given in Figure 1 which governs the gluon evolution. In particular, if we were to
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contract the corresponding diagrams by qμ, the entire set of diagrams must be considered
in order for Equation (7) to emerge from the SDE. This pattern manifests itself already at
the one-loop level, where it is known that the ghost loop must be included in order to
guarantee the transversality of the self-energy. The main practical drawback stemming
from this observation is that truncations, in the form of the omission of certain subsets of
graphs, are likely to distort this fundamental property.

+ +Πμν(q) =

(d1) (d2) (d3)

+

(d4)

+

(d5)

ν

q

μ

q

ν

q
ν

q

ν

q

ν

q

μ

q
μ

q

μ

q

μ

q

+Π̃μν(q) =

(a1)

ν

q

μ

q

+

(a3)

ν

q

μ

q

+

(a2)
ν

q

μ

q +

(a4)
μ

q

ν

q

(a5)

+

(a6)

ν

q

ν

q

μ

q

μ

q

Π̃(1)
μν (q) Π̃(2)

μν (q) Π̃(3)
μν (q)

Figure 1. Upper panel: the diagrammatic representation of the conventional gluon self-energy,
Πμν(q). Bottom panel: the diagrammatic representation of the Qa

μ(q)Bb
ν(−q), self-energy δabΠ̃μν(q);

the grey circles at the end of the gluon lines indicate a background gluon. The corresponding Feynman
rules are given in Appendix B of [14].

Quite interestingly, within the PT-BFM framework the transversality property of
Equation (7) is enforced in a very special way, which permits physically meaningful
truncations. In what follows we will predominantly employ the language of the BFM; for
the basic principles of the PT and its connection with the BFM, the reader is referred to the
extended literature on the subject [14,96,100,193,194,211,243], as well as to Section 6 of the
present work.

The BFM is a powerful quantization procedure, where the gauge-fixing is implemented
without compromising explicit gauge invariance. Within this framework, gauge field A
appearing in the classical action is decomposed as A = B + Q, where B and Q are the
background and quantum (fluctuating) fields, respectively. Note that the variable of
integration in the generating functional Z(J) is the quantum field, which couples to the
external sources, as J · Q. The background field does not appear in loops. Instead, it couples
externally to the Feynman diagrams, connecting them with the asymptotic states to form
elements of the S-matrix. Then, if the gauge-fixing term

L̂gf =
1

2ξQ
(D̂ab

μ Qbμ)2 , D̂ab
μ = ∂μδab + g f ambBm

μ , (10)

is used, the resulting gauge-fixed action retains its invariance under gauge transformations
of the background field. As a result of this invariance, when Green’s functions are contracted
by the momentum carried by a background gluon, they satisfy Abelian (ghost-free) STIs,
akin to the Takahashi identities known from QED. In particular, the STIs of the BFM retain
their tree-level forms in all orders, in contradistinction to the STIs of the Rξ gauges, whose
forms are modified by contributions stemming from the ghost sector.

Within the BFM, one may consider three kinds of propagators, by choosing the types
of incoming and outgoing gluons [244]. In particular, we have:

(i) The propagator 〈0| T[Qa
μ(q)Qb

ν(−q)]|0〉 that connects two quantum gluons. Notice that
this propagator coincides with the conventional gluon propagator of the covariant
gauges, defined in Equation (5), under the assumption that the corresponding gauge-
fixing parameters, ξ and ξQ, are identified, i.e., ξ = ξQ.

(ii) The propagator 〈0| T[Qa
μ(q)Bb

ν(−q)]|0〉 that connects a Qa
μ(q) with a Bb

ν(−q), to be
denoted by Δ̃ab

μν(q) = −iδabΔ̃μν(q).
(iii) The propagator 〈0| T[Ba

μ(q)Bb
ν(−q)]|0〉 that connects a Ba

μ(q) with a Bb
ν(−q), to be

denoted by Δ̂ab
μν(q) = −iδabΔ̂μν(q). Note that its full definition requires an addi-
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tional gauge-fixing term, with the associated “classical” gauge-fixing parameter,
ξC [14,202,206].

Given that the relations captured by Equations (5) and (6) apply also in the cases of
Δ̃μν(q) and Δ̂μν(q), one may define the corresponding self-energies Π̃μν(q) and Π̂μν(q), as
well as the functions Δ̃(q) and Δ̂(q).

Quite interestingly, the three propagators defined in (i)-(iii) are related by a set of exact
identities, known as BQIs [14,209–211]. In particular, we have that (see also Table 1)

Δ(q) = [1 + G(q)]Δ̃(q) = [1 + G(q)]2Δ̂(q) , (11)

where the function G(q) is the gμν component of a particular two-point ghost function,
Λμν(q), given by [209,211,213,245]

Λμν(q) := ig2CA

∫
k

Δρ
μ(k)D(k + q)Hνρ(−q, k + q,−k) = gμνG(q) +

qμqν

q2 L(q) , (12)

where CA is the Casimir eigenvalue of the adjoint representation [N for SU(N)], Dab(q) =
iδabD(q) is the ghost propagator, and Hνμ(r, p, q) denotes the ghost–gluon kernel defined
in Figure 2.

Table 1. The different types of gluon propagators of the background field method (BFM), together
with their diagrammatic representations, symbols, corresponding self-energies, and the background
quantum identities (BQIs) that relate them to the conventional propagator.

External Legs
Diagrammatic
Representation

Symbol Self-Energy BQI

Qa
μ(q)Qb

ν(−q)
q

a b

μ ν −iδabΔμν(q) Πμν(q) —

Qa
μ(q)Bb

ν(−q)
q

a b

μ ν −iδabΔ̃μν(q) Π̃μν(q) Δ̃(q) =
Δ(q)

1 + G(q)

Ba
μ(q)Bb

ν(−q)
q

a b

μ ν −iδabΔ̂μν(q) Π̂μν(q) Δ̂(q) =
Δ(q)

[1 + G(q)]2

In the Landau gauge, a special identity relates the form factors of Λμν(q) to the ghost
dressing function, F(q), defined as F(q) = q2D(q), namely [16,131,213]

F−1(q) = 1 + G(q) + L(q) , (13)

which is valid before renormalization. In fact, in this particular gauge, G(q) coincides with
the so-called Kugo–Ojima function [212,245–247].
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= −gfabcHνμ(r, p, q)

ν, bk

p

μ, a

q

r

k + r

c

Figure 2. Diagrammatic definition of the ghost–gluon scattering kernel, Hνμ(r, p, q). At the tree level,
H0

νμ = gνμ.

To determine the renormalized form of Equation (13), we introduce the renormaliza-
tion constants of the conventional Green’s functions

ΔR(q) = Z−1
A Δ(q) , FR(q) = Z−1

c F(q) ,

IΓR
μ(r, p, q) = Z1IΓμ(r, p, q) , IΓR

αμν(q, r, p) = Z3IΓαμν(q, r, p) ,

gR = Z−1
g g ,

[
gμν + ΛR

μν(q)
]
= ZΛ

[
gμν + Λμν(q)

]
, (14)

Z−1
g = Z−1

1 Z1/2
A Zc = Z−1

3 Z3/2
A ,

where we denote by IΓabc
μ (r, p, q) = −g f abcIΓμ(r, p, q) and IΓabc

αμν(q, r, p) = g f abcIΓαμν(q, r, p)
the conventional ghost–gluon [Qa

μ(q)cc(p)c̄b(r)] and three-gluon [Qa
α(q)Qb

μ(r)Qc
ν(p)] ver-

tices, respectively. Note that, by virtue of Taylor’s theorem [207], Z1 is finite in the Landau
gauge; its precise value depends on the renormalization scheme adopted, see Section 8.
Moreover, denoting by ẐA the (wave-function) renormalization constant of Δ̂(q), the
Abelian STIs of the BFM impose the validity of the pivotal relation [14,202,206]

Zg = Ẑ−1/2
A , (15)

which is the non-Abelian analog of the textbook relation Ze = Z−1/2
A [133], relating the

renormalization constants of the electric charge and the photon propagator in QED.
Then, since the BQIs of Equation (11) are direct consequences of the Becchi–Rouet–

Stora–Tyutin (BRST) symmetry [248–250] of the theory [209,211,213,245], the form is pre-
served by renormalization. Hence, by combining Equations (11), (15) and (15), we obtain

ZΛ = Z−1
1 Zc , (16)

which yields (note that in the original and widely used [3,8,16,20,79,131] version of Equation
(17) the renormalization is performed in the so-called Taylor scheme, where Z1 = 1.)

Z−1
1 F−1(q) = 1 + G(q) + L(q) . (17)

As has been shown in [131], the dynamical equation governing L(q) yields L(0) = 0,
provided that the gluon propagator entering it is finite at the origin. Thus, one obtains from
Equation (17) the useful identity [212]

Z−1
1 F−1(0) = 1 + G(0) . (18)

According to numerous lattice simulations and studies in the continuum (see e.g., [21,42,
47,49,51,56,62,63,73,79,85,112,178,225,227–233]), the ghost dressing function reaches a finite
(nonvanishing) value at the origin, which, due to Equation (18), furnishes also the value of
G(0).
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The final upshot of the above considerations is that one may use the BQIs in Equation (11)
to express the SDE given in Equation (6) in terms of the Π̃μν(q) or Π̂μν(q), at the modest
cost of introducing in the dynamics the quantities 1 + G(q) or [1 + G(q)]2. Focusing on the
former possibility, Equation (11) becomes

Δ−1(q)Pμν(q) =
q2Pμν(q) + iΠ̃μν(q)

1 + G(q)
, (19)

where the diagrammatic representation of the self-energy Π̃μν(q) is shown in the lower
panel of Figure 1.

The principal advantage of this formulation is that the self-energy Π̃μν(q) contains
fully-dressed vertices with a background gluon of momentum q exiting from them, which
satisfy Abelian STIs. In particular, denoting by ĨΓμαβ(q, r, p), ĨΓμ(r, p, q), and ĨΓ

mnrs
μαβγ(q, r, p, t)

the BQQ, Bcc, and BQQQ vertices, respectively, we have that [14,100,109]

qμ ĨΓμαβ(q, r, p) = Δ−1
αβ (r)− Δ−1

αβ (p) , (20)

qμ ĨΓμ(r, p, q) = D−1(p)− D−1(r) , (21)

qμ ĨΓ
mnrs
μαβγ(q, r, p, t) = f mse f ernIΓαβγ(r, p, q + t) + f mne f esrIΓβγα(p, t, q + r)

+ f mre f ensIΓγαβ(t, r, q + p) . (22)

In contrast, the conventional three-gluon and ghost–gluon vertices, IΓαμν(q, r, p) and
IΓα(r, p, q), respectively, satisfy the STIs [1,251–255]

qαIΓαμν(q, r, p) = F(q)
[
Δ−1(p)Pσ

ν (p)Hσμ(p, q, r)− Δ−1(r)Pσ
μ (r)Hσν(r, q, p)

]
, (23)

qμF−1(q)IΓμ(r, p, q) + pμF−1(p)IΓμ(r, q, p) = −r2F−1(r)U(r, q, p) , (24)

where U(r, q, p) is an interaction kernel containing only ghost fields; its tree-level value is
U0(r, q, p) = 1. The STI for the conventional four-gluon vertex is given in Equation (C.24)
of [14].

The special STIs listed in Equations (20)–(22) are responsible for the remarkable prop-
erty of “block-wise” transversality [109,192,244], displayed by Π̃μν(q). To appreciate this
point, notice that the diagrams comprising Π̃μν(q) in Figure 1 were separated into three
different subsets (blocks), consisting of (i) one-loop dressed diagrams containing only
gluons, (ii) one-loop dressed diagrams containing a ghost loop, and (iii) two-loop dressed
diagrams containing only gluons. The corresponding contributions of each block to Π̃μν(q)

are denoted by Π̃(i)
μν(q), with i = 1, 2, 3.

The block-wise transversality is a stronger version of the standard transversality
relation qμΠ̃μν(q) = 0; it states that each block of diagrams mentioned above is individually
transverse, namely

qμΠ̃(i)
μν(q) = 0 , i = 1, 2, 3. (25)

In order to appreciate in detail the reason why the STIs in Equations (20)–(22) are
instrumental for the block-wise transversality, we will consider the case of Π̃(2)

μν (q); the
relevant diagrams are enclosed in the blue box of Figure 1.

The diagrams (a3) and (a4) are given by

(a3)μν(q) = g2CA

∫
k
(k + q)μD(k + q)D(k)ĨΓν(−k, k + q,−q) , (26)

(a4)μν(q) = g2CA gμν

∫
k

D(k) , (27)

137



Particles 2023, 6

where a color factor δab is suppressed in both expressions. In addition, for the formal
manipulations of integrals, we employ dimensional regularization [256]; to that end, we
introduce the short-hand notation∫

k
:=

με
0

(2π)d

∫ +∞

−∞
ddk , (28)

where d = 4 − ε is the dimension of the space-time, and μ0 denotes the ’t Hooft mass.
The contraction of graph (a3)μν(q) by qν triggers the STI satisfied by Γ̃ν(−k, k + q,−q)

[given by Equation (21)], and we obtain

qν(a3)μν(q) = g2CA

∫
k
(k + q)μD(k + q)D(k)

[
D−1(k)− D−1(k + q)

]
= g2CA

∫
k
(k + q)μ[D(k + q)− D(k)]

= −g2CA qμ

∫
k

D(k) , (29)

which is precisely the negative of the contraction qν(a4)μν(q). Hence,

qν
[
(a3)μν(q) + (a4)μν(q)

]
= 0 . (30)

3. Schwinger Mechanism in Yang–Mills Theories

The BRST symmetry of the Yang–Mills Lagrangian given in Equation (1) prohibits the
inclusion of a mass term of the form m2 A2

μ. Moreover, a symmetry-preserving regulariza-
tion scheme, such as dimensional regularization, prevents the generation of a mass term at
any finite order in perturbation theory. Nonetheless, as affirmed four decades ago [94–99],
the non-perturbative Yang–Mills dynamics endow the gluons with an effective mass, which
sets the scale for all dimensionful quantities, and tames the instabilities originating from
the infrared divergences of the perturbative expansion ( e.g., Landau pole). In addition,
the presence of this mass causes the effective decoupling (screening) of the gluonic modes
beyond a “maximum gluon wavelength” [257], and leads to the dynamical suppression of
the Gribov copies, see e.g., [16,258,259] and references therein.

The generation of a gluon mass proceeds through the non-perturbative realization
of the Schwinger mechanism [127,128]. Even though the technical details associated with
the implementation of this mechanism in a four-dimensional non-Abelian setting are
particularly elaborate, the general underlying idea is relatively easy to convey.

To that end, consider the dimensionless vacuum polarization Π(q), defined through
Π(q) = q2Π(q), such that

Δ−1(q) = q2[1 + iΠ(q)] . (31)

The Schwinger mechanism is based on the fundamental observation that, if Π(q) develops
a pole at q2 = 0 (to be referred to as “massless pole”) then the vector meson (gluon) picks up
a mass, regardless of any “prohibition” imposed by the gauge symmetry at the level of the
original Lagrangian. Thus, in Euclidean space, the above sequence of ideas leads to

lim
q→0

Π(q) = m2/q2 =⇒ lim
q→0

Δ−1(q) = lim
q→0

(q2 + m2) =⇒ Δ−1(0) = m2 , (32)

and the gauge boson propagator saturates to a non-zero value at the origin. This effect of
infrared saturation of the propagator signifies the generation of a mass, which is identified
with the positive residue of the pole.

At this descriptive level, Schwinger’s argument is completely general, making no
particular reference to the specific dynamics that would lead to the appearance of the
required massless pole inside Π(q). In fact, depending on the particular theory, the field-
theoretic circumstances that trigger the crucial sequence captured by Equation (32) may be
very distinct, see e.g., [260,261]. In the case of Yang–Mills theories, the origin of the massless
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poles is purely non-perturbative [159]: the strong dynamics produce scalar composite
excitations, which carry color and have vanishing masses. These poles are carried by the
fully-dressed vertices of the theory; and since these vertices enter the gluon SDE shown in
Figure 1 (upper (lower) panel for the QQ (QB) propagator), the massless poles find their way
into the gluon self-energy (or, equivalently, the gluon vacuum polarization). The detailed
implementation of this idea has been presented in a series of works [18,93,96,112,116–
118,159–161,166,189,262], and will be summarized in the rest of this section.

Let us focus for now on the conventional three-gluon and ghost–gluon vertices,
IΓαμν(q, r, p) and IΓα(r, p, q), respectively, introduced above Equation (23). When the forma-
tion of massless poles is triggered, these vertices assume the general form (see Figure 3)

IΓαμν(q, r, p) = Γαμν(q, r, p) + Vαμν(q, r, p) ,

IΓα(r, p, q) = Γα(r, p, q) + Vα(r, p, q) , (33)

where Γαμν(q, r, p) and Γα(r, p, q) are their pole-free components, while Vαμν(q, r, p) and
Vα(q, r, p) contain longitudinally coupled poles, whose special tensorial structure is given by

Vαμν(q, r, p) =
qα

q2 Cμν(q, r, p) +
rμ

r2 Aαν(q, r, p) +
pν

p2 Bαμ(q, r, p) ,

Vα(r, p, q) =
qα

q2 C(r, p, q) , (34)

such that
Pα

α′(q)Pμ
μ′(r)Pν

ν′(p)Vαμν(q, r, p) = 0 , Pα
α′(q)Vα(r, p, q) = 0 . (35)

= +

qq

a, α

q

a, α a, α

i/q2

VαμνIΓαμν Γαμν ︸ ︷︷ ︸
Iα(q)

μ, b

ν, c

r

p

μ, b

ν, c

r

p

μ, b

ν, c

r

p

=

q

a, α
+

i/q2qqq

a, α a, α
VαIΓα Γα ︸ ︷︷ ︸

Iα(q)

b

c

r

p

b

c

r

p

b

c

r

p

Figure 3. The diagrammatic representation of the three-gluon and ghost–gluon vertices introduced in
Equation (33): IΓαμν(q, r, p) (first row) and IΓα(r, p, q) (second row). The first term on the r.h.s. indicates
the pole-free part, Γαμν(q, r, p) or Γα(r, p, q), while the second denotes the pole term Vαμν(q, r, p) or
Vα(r, p, q).

We emphasize that the reason why Vαμν(q, r, p) and Vα(q, r, p) are longitudinally
coupled may be directly inferred from their special decomposition, shown in Figure 3.
In particular, let us denote by Iα(q) the transition amplitude that connects a gluon with
a massless composite scalar, depicted as a gray circle in Figure 3. Since Iα(q) depends
solely on the momentum q, and carries a single Lorentz index, α, its general form is given
by Iα(q) = qα I(q), where I(q) is a scalar form factor [117,214]. This observation accounts
directly for the form of Vα(q, r, p) given in Equation (34); to deduce the form of Vαμν(q, r, p),
one must, in addition, appeal to Bose symmetry, which imposes the structures rμ/r2 and
pν/p2 in the remaining two channels.

Returning to the SDE of Figure 1, the component Vαμν(q, r, p) will enter in it through
graphs (d1) and (d4), while the component Vα(q, r, p) through graph (d3). Since Vαμν(q, r, p)
has poles for each one of its three momenta, let us point out that only the pole associated
with the q-channel, i.e., the channel that carries the momentum entering the gluon prop-
agator is relevant for the Schwinger mechanism that will generate mass for Δ(q). In fact,
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in the Landau gauge that we employ, the gluon propagators inside the diagrams (d1) and
(d4) are transverse, leading to a considerable reduction in the number of the form factors of
Vαμν(q, r, p) that participate actively, since

Pμ
μ′(r)Pν

ν′(p)Vαμν(q, r, p) =
qα

q2 Pμ
μ′(r)Pν

ν′(p)Cμν(q, r, p) . (36)

Consequently, for the ensuing analysis, one requires only the tensorial decomposition of
the component Cμν(q, r, p) in Equation (34), which is given by

Cμν(q, r, p) = C1 gμν + C2 rμrν + C3 pμ pν + C4 rμ pν + C5 pμrν , (37)

where Cj := Cj(q, r, p). Then, the substitution of Equation (37) into Equation (36), and use
of the relation q + p + r = 0, reveals that only two form factors survive inside (d1) and (d4),
namely

Pμ
μ′(r)Pν

ν′(p)Vαμν(q, r, p) =
qα

q2 Pμ
μ′(r)Pν

ν′(p)
[
C1 gμν + C5qμqν

]
. (38)

Since the main function of the Schwinger mechanism is to make the gluon propagator
saturate at the origin, it is important to explore the properties of the structures appearing
in Equation (38) near q = 0. To that end, we expand the r.h.s. of Equation (38), keeping
terms at most linear in q. After noticing that the term proportional to C5 in Equation (38) is
of order O(q2), we end up with a single relevant form factor associated with Vαμν(q, r, p),
namely C1(q, r, p), which survives the q → 0 limit of graphs (d1) and (d4). As for Vα(r, p, q),
its unique component, C(q, r, p), enters directly in (d3).

The continuation of this analysis entails the Taylor expansion of C1(q, r, p) and C(r, p, q)
around q = 0. In carrying out this expansion, one employs the following two key relations,

C1(0, r,−r) = 0 , C(r,−r, 0) = 0 . (39)

The first one follows directly from the Bose symmetry of the three-gluon vertex, which
implies that C1(q, r, p) = −C1(q, p, r); as we will see in Section 10, it may also be derived
in a completely independent way from the fundamental STIs satisfied by the three-gluon
vertex. The justification of the second relation in Equation (39) is less straightforward; its
derivation, presented in Appendix A, relies on the BQI [14,211] linking the conventional
ghost–gluon vertex, IΓα(r, p, q), with its background counterpart, ĨΓα(r, p, q).

Thus, after taking Equation (39) into account, the Taylor expansion of C1(q, r, p) and
C(r, p, q) around q = 0 yields

lim
q→0

C1(q, r, p) = 2(q · r)C(r) + · · · , lim
q→0

C(r, p, q) = 2(q · r)C(r) + · · · , (40)

with

C(r) :=
[

∂C1(q, r, p)
∂p2

]
q=0

, C(r) :=
[

∂C(r, p, q)
∂p2

]
q=0

. (41)

The functions C(r) and C(r) are of central importance for the rest of this review. In
particular, there are three key points related to them that will be elucidated in detail in
what follows:

1. C(r) and C(r) are the BS amplitudes describing the formation of gluon–gluon and
ghost–anti-ghost colored composite bound states, respectively, see Section 4.

2. The gluon mass is determined by certain integrals that involve C(r) and C(r), given
explicitly in Section 5.

3. C(r) and C(r) lead to smoking-gun displacements of the WIs. In fact, the displacement
induced by C(r), has been confirmed by lattice QCD, by combining judiciously the
results of several lattice simulations, see Section 5.2.
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We emphasize that the BFM vertices develop poles in exactly the same way as their
conventional counterparts. In particular, the main relations Equations (33), (34), (39) and
(41) remain valid, with the only modification that all quantities carry hats or tildes; these
BFM vertices will be used extensively in Section 5. Note that the conventional and back-
ground vertices, including their pole content, are related through appropriate BQIs, see
e.g., Equations (A3) and (A6).

We end this section by commenting briefly on the implementation of the Schwinger
mechanism away from the Landau gauge, i.e., when the gluon propagator is given by

Δμν(q, ξ) = Δ(q, ξ)Pμν(q) + ξ qμqν/q4 , ξ �= 0 ; (42)

for further details, the reader is referred to [189].
(ı) The massless poles remain longitudinally coupled for every value of ξ, i.e., the

form of Vαμν(q, r, p) and Vα(r, p, q) given in Equation (34) persists, with the only difference
that the form factors comprising Cμν(q, r, p), Aαν(q, r, p), Bαμ(q, r, p), and C(r, p, q) depend
in general on ξ. Indeed, as explained right below Equation (35), the longitudinal nature of
the poles is dictated solely by Lorentz invariance, which forces the transition amplitude
Iα(q, ξ) to assume the form Iα(q) = qα I(q, ξ); clearly, this fundamental argument holds for
every ξ.

(ii) Since the gluon propagators entering the graphs (d1) and (d4) of Figure 1 are now
given by Equation (42), the l.h.s. of Equation (36) becomes Δμ

μ′(r, ξ)Δν
ν′(p, ξ)Vαμν(q, r, p),

and, as a result, the terms in Equation (34) proportional to pν/p2 and rμ/r2 are not fully
annihilated. Note, however, that the presence of poles in p2 → k2 and r2 → (k + q)2 poses
no problem, given that one integrates over the loop momentum k. Similar observations
hold for the BSE discussed in the next section, which acquires a more complicated form,
involving not only the C(r) and C(r), but also additional form factors [189].

(iii) A general property of the massless excitations that trigger the Schwinger mech-
anism is that they do not induce divergences to physical amplitudes; their contributions
are completely vanishing, or, at most, finite [260,261]. As was shown recently in [93], in
Landau gauge QCD this property hinges on the validity of Equations (35) and (39). Away
from the Landau gauge, Equation (39) persists, because its validity relies on Bose symmetry
[189]. However, in Equation (35) the substitution Pμν(q) → Δμν(q, ξ) must be carried
out for all projectors; as a result, the r.h.s. no longer vanishes, but includes ξ-dependent
longitudinal contributions. Even though this issue has not been addressed in the literature,
the longitudinal nature of the additional terms heralds their cancellation through the same
general mechanism that renders physical amplitudes ξ-independent.

4. Dynamical formation of Massless Poles

One crucial aspect of the implementation of the Schwinger mechanism in a Yang–
Mills context is that the poles that comprise the components Vαμν(q, r, p) and Vα(q, r, p)
in Equation (34) are not introduced by hand; rather, they are generated dynamically, as
massless composite excitations that carry color. In fact, this subtle process is controlled
by a system of coupled linear BSEs for the functions C(r) and C(r), which play the role
of the BS amplitudes for generating composite massless scalars out of two gluons and a
ghost–anti-ghost pair, respectively.

The starting points for the derivations of the aforementioned BSEs are the SDEs for
IΓαμν(q, r, p) and IΓα(r, p, q), shown diagrammatically in Figure 4, and given by [124]

IΓαμν = Γαμν
0 − λ

∫
k

IΓαβγΔβρΔγσKμνσρ
11 + 2λ

∫
k

IΓαDDKμν
12 ,

IΓα = Γα
0 − λ

∫
k

IΓαβγΔβρΔγσKσρ
21 − λ

∫
k

IΓαDDK22 , (43)

where
λ := ig2CA/2 , (44)
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and the tree-level expressions for the vertices IΓαμν and IΓα are given by

Γαμν
0 (q, r, p) = (q − r)νgαμ + (r − p)αgμν + (p − q)μgνα , Γα

0 (r, p, q) = rα . (45)

Note that, for compactness, all momentum arguments have been suppressed; they may be
easily restored by appealing to Figure 4.
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Figure 4. The coupled system of Schwinger–Dyson equations (SDEs) for the three-gluon and ghost–
gluon vertices, IΓαμν(q, r, p) and IΓα(r, p, q), respectively. The orange ellipses represent four-point
scattering kernels, denoted by Kij. We omit diagrams containing five-point scattering kernels.

The following steps are subsequently implemented:

1. Substitute into both sides of Equation (43) the expressions for the fully-dressed vertices
given in Equation (33).

2. In order to exploit Equation (38), multiply the first equation by the factor Pμ′μ(r)Pμ′
ν (p).

3. Take the limit of the system as q → 0: this activates Equation (40) and introduces the
functions C(r) and C(r).

4. Isolate the tensor structures proportional to qα, and match the terms on both sides.
5. Employ the “one-particle exchange” approximation for the kernels Kij, to be denoted

by K0
ij, shown in Figure 5.
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Figure 5. The one-particle exchange approximations, K0
ij, of the kernels Kij appearing in Figure 4.

Thus, we arrive at a system of homogeneous equations involving C(r) and C(r),

C(r) = −λ

3

∫
k
C(k)Δ2(k)Pρσ(k)Pμν(r)K̃μνσρ

11 +
2λ

3

∫
k
C(k)D2(k)Pμν(r)K̃μν

12 ,

C(r) = −λ
∫

k
C(k)Δ2(k)Pσρ(k)K̃σρ

21 − λ
∫

k
C(k)D2(k)K̃22 , (46)
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where K̃ij := (r · k/r2)K0
ij(r,−r, k,−k); the system is diagrammatically depicted in Figure 6.
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Figure 6. The diagrammatic representation of the coupled system of Bethe–Salpeter equations (BSEs)
that governs the evolution of the functions C(r2) and C(r2).

Before turning to the numerical analysis, the BSE system must be passed to the
Euclidean space, following standard conversion rules. In doing so, we note that the integral
measure is modified according to d4k → id4kE; this extra factor of i combines with the λ
defined in Equation (44) to give real expressions.

As announced, the system of coupled equations given in Equation (46) represents the
BSEs that govern the formation of massless colored bound states out of two gluons and a
ghost–anti-ghost pair. The functions C(r) and C(r) are the corresponding BS amplitudes;
finding nontrivial solutions for them, i.e., something other than C(r) = C(r) = 0 identically,
is crucial for the implementation of the Schwinger mechanism.

The equations in Equation (46) are linear and homogeneous in the unknown functions.
There are two main consequences arising from this fact. First, the numerical solution of the
system will be reduced to an eigenvalue problem. Second, the overall scale of the solutions
is undetermined, since the multiplication of a given solution by an arbitrary real constant
produces another solution (The ambiguity originates from considering only leading terms
in the expansion around q = 0, and may be resolved if further orders in q are kept, see
e.g., [219,263,264]).

It turns out that the condition for obtaining nontrivial solutions, when expressed
in terms of the strong coupling, αs := g2/4π, states that they exist for αs = 0.63 when
the renormalization point μ = 4.3 GeV. The solutions obtained when αs acquires this
special value are shown in Figure 7; they have undergone scale fixing (The scale was fixed
by requiring the best possible matching with the result obtained for C(r) from the WI
displacement, see Section 12), and are denoted by C�(r) and C�(r). Observe that C�(r) is
significantly larger in magnitude than C�(r), implying that the three-gluon vertex accounts
for the bulk of the gluon mass, as originally claimed in [215].
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Figure 7. The solutions for C�(r) (purple dot-dashed) and C�(r) (red dashed) obtained from the
coupled BSE system of Equation (46).

It is important to compare the value of αs = 0.63, imposed by the BSE eigenvalue, with
the expected value for αs for the renormalization scheme employed: within the asymmetric
momentum subtraction (MOM) scheme (see Appendix B), we have that αs = 0.27 [71]. This
numerical discrepancy in the values of αs is clearly an artifact of the truncation employed,
and concretely of the approximation of the kernels Kij by their one-particle exchange
diagrams, K0

ij. A preliminary analysis reveals that mild modifications of the kernels Kij

lead to considerable variations in the value of αs, but leave the form of the solutions
for C�(r) and C�(r) practically unaltered. This observation suggests that, while a more
complete knowledge of the BSE kernels is required in order to bring αs closer to its MOM
value, the solutions obtained with the present approximations should be considered as
particularly stable.

5. Generation of the Gluon Mass

We next demonstrate in detail how the presence of the massless poles in the vertices
that enter the SDE of the gluon propagator generate a gluon mass.

Since the fundamental STIs of the theory remain intact under the action of the
Schwinger mechanism, Equations (7) and (8) remain valid, and the mass term m2 = Δ−1(0)
will appear in the transverse combination Δ−1(0)Pμν(q). However, the determination of
the mass proportional to gμν exposes an entirely different array of principles compared to
the corresponding computation for the qμqν/q2 component.

The calculation with respect to the qμqν/q2 component is rather direct; since the
massless poles in the vertices are themselves longitudinally coupled, their contribution
to the qμqν/q2 component of Πμν(q) is easily worked out, as will be illustrated in Section
5.1. In contrast, the emergence of a mass proportional to gμν is intimately connected with a
powerful relation, known as seagull identity [113,166], which in the absence of the Schwinger
mechanism would enforce the masslessness of the propagator, as will be discussed in
Section 5.2. In fact, one main conceptual difference between the two approaches is that
in the gμν case, the use of the PT-BFM-based version of the SDE given in Equation (19) is
crucial for the emergence of the correct result.

In order to simplify the technical aspects of the calculation without compromising its
conceptual content, we will determine the contribution to the gluon mass due to the pole
in the ghost–gluon vertex, namely Vα(r, p, q) in the case of IΓα(r, p, q), and Ṽα(r, p, q) in the
case of ĨΓα(r, p, q). To that end, we will focus on the subset of self-energy graphs containing
only ghost loops, i.e., graph (d3) in the case of Πμν(q), and graphs (a3) and (a4) in the case
of Π̃μν(q), shown in the upper and lower row of Figure 1, respectively.
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5.1. Gluon Mass from the qμqν Component

Let us calculate the contribution to the gluon mass stemming from the ghost loop, i.e.,
the diagram (d3) of Figure 1, which, for general values of q, reads

(d3)μν(q) = g2CA

∫
k
(k + q)μD(k + q)D(k)IΓν(−k, k + q,−q) . (47)

To isolate the qμqν/q2 component of Equation (47) at the origin, we first decompose the
full vertex IΓν(−k, k + q,−q) as in Equations (33) and (34), and drop directly the pole-free
part since it does not contribute at q = 0. Then, denoting by (dV

3 )μν(q) the contribution of
Vν(−k, k + q,−q) to (d3)μν(q), we obtain

(dV
3 )μν(q) = −g2CA

qν

q2

∫
k
(k + q)μD(k + q)D(k)C(−k, k + q,−q) . (48)

Next, a Taylor expansion around q = 0, using Equations (39) and (40), yields

(dV
3 )μν(q) = −2g2CA

qνqρ

q2

∫
k

kμkρD2(k)C(k) . (49)

Evidently, the integral above can only be proportional to gμρ, such that

(dV
3 )μν(q) = −2g2CA

d

(
qμqν

q2

) ∫
k

k2D2(k)C(k) , (50)

where the tensor structure qμqν/q2 is already isolated.
Then, let us denote by Δ−1

gh (0) the contribution to the mass originating in the qμqν/q2

of the ghost loop. Noting that the contribution of (dV
3 )μν(q) to the propagator is i times the

negative of its qμqν/q2 form factor, we obtain that

Δ−1
gh (0) =

4λ

d

∫
k

k2D2(k)C(k) . (51)

At this point, we set d = 4 and renormalize Equation (51). This leads to the appearance of
the finite renormalization constant of the ghost–gluon vertex, Z1.

Next, we express the result in terms of the ghost dressing function F, pass to Euclidean
space, and employ hyperspherical coordinates, to obtain the final expression

Δ−1
gh (0) = λ̂ Z1

∫ ∞

0
dy F2(y) C(y) , (52)

where λ̂ := CAαs/8π.
The derivation of the contributions from the diagrams (d1) and (d4) proceeds in a

completely analogous way, but is algebraically more involved, see [166] for details.
It is instructive to consider how the result of Equation (52) emerges in the context of

Equation (19). To this end, we consider the ghost block Π̃(2)
μν (q) of Figure 1, whose diagrams

have the expressions given in Equation (27); clearly, only diagram (a3)μν(q) can contribute

to the qμqν component of Π̃(2)
μν (q).

Then, we decompose ĨΓα(r, p, q) in complete analogy with Equations (33) and (34), i.e.,

ĨΓα(r, p, q) = Γ̃α(r, p, q) +
qα

q2 C̃(r, p, q) , (53)

and expand the (a3)μν(q) of Equation (27) around q = 0, isolating its qμqν/q2 component.
These steps eventually lead to

Δ̃−1
gh (0) =

4λ

d

∫
k

k2D2(k)C̃(k) , (54)
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where C̃(q) is defined in the exact same way as C(q), namely through Equation (41) but
with tildes over all relevant quantities. It is now easy to establish that Equation (54) is
completely equivalent to Equation (51), simply by multiplying both of its sides by Z1F(0),
and then using Equation (A4) on the r.h.s. and Equations (19) and (18) on the l.h.s.

Hence, when the mass is computed through the qμqν/q2 component of the self-energy,
the contributions originating from the ghost diagrams of either the BQ or the QQ propagator
furnish the same result. The same is not true for the calculation through the gμν component,
since the ghost diagram (d3)μν of the QQ propagator is not by itself transverse, and a
meaningful analysis is preferably carried out within the BFM.

5.2. Gluon Mass from the gμν Component: Seagull Identity and Ward Identity Displacement

The fact that the activation of the Schwinger mechanism is crucial for the self-consistent
generation of a gluon mass may be best appreciated in conjunction with the so-called seagull
identity [113,166]. The content of this identity is that∫

k
k2 ∂ f (k)

∂k2 +
d
2

∫
k

f (k) = 0 , (55)

for functions f (k) that satisfy Wilson’s criterion [265]; the cases of physical interest are
f (k) = Δ(k), D(k). The general demonstration of the validity of Equation (55) has been
given in [166]; for a detailed discussion of how Equation (55) prevents the photon from
acquiring a mass in scalar electrodynamics, see [18].

What is so special about Equation (55) is that, within the PT-BFM formalism, the l.h.s.
of Equation (55) coincides with the contributions of loop diagrams to the gμν component of
the gluon mass. Therefore, Equation (55) enforces the non-perturbative masslessness of
the gluon in the absence of the Schwinger mechanism: even if a massive gluon propagator
(made “massive” through a procedure other than the Schwinger mechanism) were to be
substituted inside Equation (55), one would obtain zero as a contribution to the gluon
mass! For example, the simple choice f = (k2 − m2)−1, reduces the l.h.s of Equation (55) to
(dimensionally regularized) textbook integrals, which add up to give precisely zero [18].

In order to appreciate in some detail how the seagull identity prevents the gμν compo-
nent of the propagator from acquiring a mass in the absence of the Schwinger mechanism,
let us consider once again the ghost block Π̃(2)

μν (q) of Figure 1; now both graphs, (a3) and
(a4), contribute to the gμν component.

Let us assume that the Schwinger mechanism is turned off; at the level of the Bcc vertex
this means that V̂α(r, p, q) vanishes identically, and ĨΓα(r, p, q) = Γ̃α(r, p, q). Consequently,
Γ̃α(r, p, q) saturates the STI of Equation (21),

qαΓ̃α(r, p, q) = D−1(p)− D−1(r) . (56)

Since the form factors of the vertex Γ̃α(r, p, q) do not contain any poles, the derivation from
Equation (56) of the corresponding WI proceeds in the standard textbook way: both sides
of Equation (56) undergo a Taylor expansion around q = 0, and terms at most linear in q
are retained. Thus, one arrives at the simple QED-like WI

Γ̃α(r,−r, 0) =
∂D−1(r)

∂rα
=⇒ D2(r)Γ̃α(r,−r, 0) = −2rα

∂D(r)
∂r2 . (57)

We now compute the gμν component of Π̃(2)
μν (q) at q = 0, or, equivalently, Δ̃−1

gh (0).
From Equation (27), we see that (a4)μν is proportional to gμν in its entirety. On the other
hand, (a3)μν(q) contains both gμν and qμqν components; however, the latter vanishes in the
limit q → 0 if the vertex is pole-free. Then, it is straightforward to show that, as q → 0,

Δ̃−1
gh (0) =

2λ

d

[∫
k

kμD2(k)Γ̃μ(−k, k, 0) + d
∫

k
D(k)

]
. (58)
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At this point, employing the WI of Equation (57) (with r → −k), we get

Δ̃−1
gh (0) =

4λ

d

[∫
k

k2 ∂D−1(k)
∂k2 +

d
2

∫
k

D(k)
]

︸ ︷︷ ︸
seagull identity

= 0 . (59)

Hence, the WI satisfied by the vertex in the absence of the Schwinger mechanism triggers
the seagull identity, which, in turn, enforces the masslessness of the propagator.

When the Schwinger mechanism is activated, the STIs that are satisfied by the vertices
of the theory retain their original forms but are resolved through the nontrivial participation
of the terms containing the massless poles [96,112,159–161,166,262,266]. In particular, the
full vertex ĨΓα(r, p, q) precisely satisfies Equation (21), namely

qα ĨΓα(r, p, q) = qαΓ̃α(r, p, q) + C̃(r, p, q)

= D−1(p)− D−1(r) . (60)

Notice in particular that the contraction of ĨΓα(r, p, q) by qα cancels the massless pole in q2,
leading to a completely pole-free result. Therefore, the WI obeyed by Γ̃α(r, p, q) may be
derived as before, through a standard Taylor expansion, leading to

qαΓ̃α(r,−r, 0) = −C̃(r,−r, 0) + qα

⎧⎨⎩∂D−1(r)
∂rα

−
[

∂C̃(r, p, q)
∂qα

]
q=0

⎫⎬⎭ . (61)

Evidently, the unique zeroth-order contribution appearing in Equation (61), namely C̃(r,−r, 0),
must vanish,

C̃(r,−r, 0) = 0 . (62)

Note that this particular property may be independently derived from the antisymmetry
of C̃(r, p, q) under r ↔ p, C̃(r, p, q) = −C̃(p, r, q), which is a consequence imposed by the
ghost–anti-ghost symmetry of the B(q)c̄(r)c(p) vertex. The above result, together with
Equation (A3), is used to prove Equation (39) in Appendix A.

Thus, Equation (61) becomes

qαΓ̃α(r,−r, 0) = qα

{
∂D−1(r)

∂rα
− 2rαC̃(r)

}
, C̃(r) :=

[
∂C̃(r, p, q)

∂p2

]
q=0

, (63)

and the matching of the terms linear in q yields the WI

Γ̃α(r,−r, 0) =
∂D−1(r)

∂rα
− 2rα C̃(r)︸ ︷︷ ︸

WI displacement

. (64)

Comparing Equations (57) and (64), it becomes clear that the Schwinger mechanism induces
a characteristic displacement to the WIs that are satisfied by the pole-free parts of the
vertices [166].

Returning to Equation (58), but now substituting in it the displaced version of
Equation (57), namely

D2(k)Γ̃μ(−k, k, 0) = 2kμ

[
∂D(k)

∂k2 + D2(k)C̃(k)
]

. (65)

When Equation (65) is substituted into Equation (58), the first term of its r.h.s. triggers
the seagull identity and vanishes, exactly as before; however, the second term survives,
precisely furnishing the result given in Equation (54).
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Completely analogous procedures may be applied to the remaining two blocks, Π̃(1)
μν (q)

and Π̃(3)
μν (q), by exploiting the Abelian STIs of Equations (20) and (22), respectively [161].

6. Renormalization Group Invariant Interaction Strength

The PT-BFM formalism provides the natural framework for the construction of the
RGI version of the naive one-gluon exchange interaction.

To fix the ideas, recall that in QED, the one-photon exchange interaction, defined as
αΔA(q), where α := e2/4π is the hyper-fine structure constant and ΔA(q) the photon propa-
gator, is an RGI combination, by virtue of the relation Ze = Z−1/2

A ; see comments following
Equation (15). Moreover, this particular combination is universal (process-independent)
because it may be identified within any two-to-two scattering process, regardless of the
nature of the initial and final states (electrons, muons, taus, etc). Instead, in QCD, the
corresponding combination αsΔ(q) is (trivially) universal but not RGI. When the vertices
that connect the gluon to the external particles are “dressed” (Γ0 → Γ), the combination
Γ αsΔ Γ becomes RGI; however, it is no longer process-independent, because the vertices
Γ contain information on the characteristics of the external particles, e.g., the Γ is not the
same if the external particles are quarks or gluons. This apparent conundrum may be
resolved by resorting to the PT, which reconciles harmoniously the notions of RGI and
process independence.

Within the PT framework, the starting point of the construction involves “on-shell”
processes [14,96,100,193,194], such as those depicted in Figure 8. The fundamental obser-
vation is that the dressed vertices appearing there contain propagator-like contributions,
which may be unambiguously identified by means of a well-defined diagrammatic pro-
cedure. After discarding terms that vanish on the shell, the contributions extracted from
a vertex have a two-fold effect: (i) the genuine vertex contributions left behind form a
new vertex, Γ̃, which satisfies Abelian STIs, and (ii) when the propagator-like pieces from
both vertices are allotted to the conventional propagator, Δμν(q), the resulting effective
propagator, Δ̂μν(q), captures all RG logarithms associated with the running of the coupling;
for example, at one loop and for large q2, one has

Δ̂−1(q) ≈ q2
[
1 + bg2 ln(q2/μ2)

]
, (66)

where b = 11CA/48π2 is the first coefficient of the Yang–Mills β function. We emphasize
that the PT construction goes through all orders in perturbation theory, as well as non-
perturbatively, and all key properties of the PT Green’s function persist unaltered [194,195].

The correspondence between the PT and the BFM may be summarized by stating
that the PT rearrangement outlined above amounts effectively to replacing the Q-type
gluon that is being exchanged (carrying momentum q) by a B-type gluon [193,267–269];
external (on-shell) fields are always of the Q-type. Thus, the notation used above for
the PT effective Green’s functions (“tildes” and “hats”) corresponds precisely to the BFM
notation introduced in Section 2. Note that the formal expression of all PT rearrangements
implemented diagrammatically are the BQIs that relate conventional Green’s functions to
their BFM counterparts [14]. For example, in the case of the quark–gluon vertex, we have
that the vertices Γμ(q, k1,−k2) [with external fields Qa

μ(q)qb(k1)q̄c(−k2)] and Γ̃μ(q, k1,−k2)

[Ba
μ(q)qb(k1)q̄c(−k2)] are related by the BQI [270]

Γ̃μ(q, k1,−k2) = [1 + G(q)]Γμ(q, k1,−k2) + · · · , (67)

where the ellipsis denotes terms that vanish on the shell. Similarly, the BQI of Equation
(A5), when evaluated on-shell, yields a completely analogous result, to wit,

ĨΓμαρ(q, k1,−k2) = [1 + G(q)]IΓμαρ(q, k1,−k2) + · · · . (68)
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It is now clear how the PT gives rise to a process-independent propagator-like component:
regardless of the process ( i.e., the type of vertex connecting the internal gluon to the
external states), each vertex contributes to the conventional Δ(q) a factor of [1 + G(q)]−1,
finally leading to the BQI of Equation (11) [16].

The culmination of the above sequence of ideas is reached by noting that, by virtue of
Equation (15), the combination

d̂(q) := αsΔ̂(q) =
αsΔ(q)

[1 + G(q)]2
, (69)

is RGI: it retains exactly the same form before and after renormalization, and, consequently,
does not depend on the renormalization point μ [96]. The quantity d̂(q) has a mass dimen-
sion of −2, and is known in the literature as the “RGI running interaction strength” [16].

PT
==⇒Δ g2Δ̂

gΓν Γ̃ν

Γ̃μgΓμ

μ

ν

μ

ν

q

k1 k2

k3k4

q

k1 k2

k3k4

PT
==⇒Δ g2Δ̂

Γ̃βνσ

Γ̃αμρ

gΓβνσ

gΓαμρ

μ

ν

q

k1 k2

k3k4

q

k1 k2

k3k4

β σ

ρα

β σ

ρα
μ

ν

Figure 8. Diagrammatic representation of the basic PT rearrangement in the case of quark–antiquark
scattering, corresponding to the S-matrix element Tqq̄→qq̄ of Equation (70) (left), and gluon–gluon
scattering, corresponding to Tgg→gg of Equation (71) (right).

The steps leading to the natural appearance of d̂(q) within any given process may be
summarized in the case of quark–antiquark, or gluon–gluon scattering.

Consider the S-matrix elements Tqq̄→qq̄, for the scattering of a quark and an antiquark,
and Tgg→gg, for the scattering of two gluons. The quark–antiquark scattering is depicted in
the left panel of Figure 8. Using the BQI of Equation (11) we obtain

Tqq̄→qq̄ =
[
gΓμ(q, k1,−k2)

]
Δ(q)Pμν(q)[gΓν(−q, k3,−k4)]

PT
=

{
g[1 + G(q)]−1Γ̃μ(q, k1,−k2)

}
Δ(q)Pμν(q)

{
g[1 + G(q)]−1Γ̃ν(−q, k3,−k4)

}
PT
= Γ̃μ(q, k1,−k2)

{
g2[1 + G(q)]−2Δ(q)

}
Pμν(q)Γ̃ν(−q, k3,−k4)

PT
= Γ̃μ(q, k1,−k2)

[
g2Δ̂(q)

]
︸ ︷︷ ︸

4πd̂(q)

Pμν(q)Γ̃ν(−q, k3,−k4) , (70)

where we omit color structures.
Similarly, the scattering of two gluons depicted in the right panel of Figure 8, yields

Tgg→gg =
[
gΓαμρ(k1, q,−k2)

]
Δ(q)Pμν(q)

[
gΓβνσ(k3,−q,−k4)

]
PT
=

{
g[1 + G(q)]−1Γ̃αμρ(k1, q,−k2)

}
Δ(q)Pμν(q)

{
g[1 + G(q)]−1Γ̃βνσ(k3,−q,−k4)

}
PT
= Γ̃αμρ(k1, q,−k2)

{
g2[1 + G(q)]−2Δ(q)

}
Pμν(q)Γ̃βνσ(k3,−q,−k4)

PT
= Γ̃αμρ(k1, q,−k2)

[
g2Δ̂(q)

]
︸ ︷︷ ︸

4πd̂(k)

Pμν(q)Γ̃βνσ(k3,−q,−k4) . (71)
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Evidently, the same d̂(q), defined in Equation (69), appears naturally in both Equations (70)
and (71): it is, in that sense, a process-independent RGI interaction capturing faithfully the
one-gluon exchange dynamics [3,16,20,79,96,129–131].

The actual determination of d̂(q) proceeds by means of the second equality in
Equation (69), i.e., by combining the standard gluon propagator, Δ(q), together with
the function 1 + G(q). In the top left panel of Figure 9 we show lattice data for the conven-
tional gluon propagator from [85] (points) and a physically motivated fit (blue continuous),
given by Equation (C11) of [124]. In the top right panel of the same figure, we show the
1 + G(q) auxiliary function, which can be computed by contracting Equation (12) with
Pμν(q)/3 (see e.g., [131]), using the results of [228] for the ghost–gluon kernel, Hνμ(r, p, q).
Then, in the bottom left panel of Figure 9 we show the d̂(q) that results from combining
the fit for Δ(q) and the 1 + G(q) shown in the top panels of the same figure and using
αs = 0.27 [71] and Z1 = 0.9333 [see Section 8].
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Figure 9. Top left: Gluon propagator, Δ(q), from lattice simulations of Reference [85] (points) and a
fit given by Equation (C11) of [124] (blue continuous). Top right: The auxiliary function 1 + G(q),
defined in Equation (12). Bottom left: The renormalization group invariant (RGI) running interaction
strength d̂(q) defined in Equation (69), computed using the Δ(q) and 1 + G(q) shown in the top
panels, with αs = 0.27 [71] and Z1 = 0.9333 [see Section 8]. Bottom right: The corresponding
dimensionless RGI interaction I(q), defined in Equation (72).

From the d̂(q) of Equation (69) one may define the dimensionless RGI interaction [16],
I(q),

I(q) := q2d̂(q) . (72)

As explained in [16], this quantity provides the strength required in order to describe
ground-state hadron observables using SDEs in the matter sector of the theory. In that sense,
I(q) bridges a longstanding gap that has existed between non-perturbative continuum
QCD and ab initio predictions of basic hadron properties.
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7. Three-Gluon Vertex and Its Planar Degeneracy

The three-gluon vertex, IΓαμν(q, r, p), plays a pivotal role in the dynamics of QCD [234],
manifesting its non-Abelian nature through the gluon self-interaction. In fact, the most cel-
ebrated perturbative feature of QCD, namely asymptotic freedom, hinges on the properties
of this particular interaction vertex. Its importance in the non-perturbative domain has led
to an intense effort for unveiling its elaborate features [21,28,33–36,41,50,68,69,71,78,81,86,
87,122,172–180,271]. Indeed, as we have seen in Sections 3 and 4, the pole structure of the
three-gluon vertex is crucial for the onset of the Schwinger mechanism and the dynam-
ical generation of a gluon mass. Moreover, its pole-free part provides highly nontrivial
contributions to the SDEs of several Green’s functions, most notably the gluon propagator
(cf. Figure 1), as well as in the Bethe–Salpeter and Faddeev equations that determine the
properties of glue balls [235,236,238–240] and hybrid mesons [237], respectively.

For general momenta, IΓαμν(q, r, p) is a particularly complicated function, comprised
by 14 tensor structures and their associated form factors [251]. Fortunately, in the Landau
gauge, considerable simplifications take place, making the treatment of the three-gluon
vertex less cumbersome. Indeed, in the latter gauge, quantities of interest require only the
knowledge of the transversely projected three-gluon vertex [126,174,175,223], Γαμν(q, r, p),
defined as

Γαμν(q, r, p) = IΓα′μ′ν′(q, r, p)Pα′α(q)Pμ′μ(r)Pν′ν(p)

= Γα′μ′ν′(q, r, p)Pα′α(q)Pμ′μ(r)Pν′ν(p) . (73)

Note that Γαμν(q, r, p) does not contain massless poles, by virtue of Equation (35). Further-
more, Γαμν(q, r, p) can be parameterized in terms of only 4 independent tensor structures,
i.e.,

Γαμν(q, r, p) =
4

∑
i=1

Γ̃i(q2, r2, p2)λ̃
αμν
i (q, r, p) . (74)

Due to the Bose symmetry of Γαμν(q, r, p), the λ̃
αμν
i (q, r, p) can be chosen to be individually

Bose symmetric, such that its form factors Γ̃i(q2, r2, p2) are symmetric under the exchange
of any two arguments [86]. In fact, they can only depend on three totally symmetric
combinations of momenta.

Quite remarkably, lattice [86–88] and continuum [174,175,223] studies alike, have
demonstrated that, to a very good level of accuracy, the Γ̃i depend exclusively on a single
judiciously chosen variable. Specifically, the Γ̃i computed on the lattice in [86–88] can be
parameterized in terms of the special Bose symmetry combination

s2 =
1
2

(
q2 + r2 + p2

)
. (75)

Thus, the Γ̃i are the same for any combination of q2, r2, and p2 that fulfils Equation (75)
for a given value of s2. This property has been denominated planar degeneracy, because
Equation (75) with fixed s defines a plane, normal to the vector (1, 1, 1), in the first octant of
the coordinate system (q2, r2, p2).

In particular, the form factor Γ̃1(q2, r2, p2) of the classical tensor structure is rather
accurately approximated by

Γ̃1(q2, r2, p2) ≈ Γ̃1(s2, s2, 0) ≈ Lsg(s) . (76)
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In the above equation, Lsg is the single transverse form factor of the three-gluon vertex in
the soft gluon limit [124], and is obtained in lattice simulations as the q = 0 limit of the
following totally transverse projection [84]

Lsg(r) =
Γαμν

0 (q, r, p)Pαα′(q)Pμμ′(r)Pνν′(p)IΓα′μ′ν′(q, r, p)

Γαμν
0 (q, r, p)Pαα′(q)Pμμ′(r)Pνν′(p)Γα′μ′ν′

0 (q, r, p)

∣∣∣∣∣∣
q→0

. (77)

A particular realization of the planar degeneracy property is shown in Figure 10,
where we show the classical form factor Γ̃1(q2, r2, p2), obtained from the lattice simulation
of [86]; we consider three different kinematic configurations, characterized by a single
momentum. Specifically, the orange stars correspond to the soft-gluon limit, q = 0, which
implies p2 = r2; the green diamonds denote the symmetric limit, where all of the momenta
have the same magnitude, q2 = p2 = r2; and the purple circles represent points with
p2 = r2 and q2 = 2r2. When plotted against the momentum r, the three configurations
of Γ̃1(q2, r2, p2) produce three clearly distinct curves; however, when plotted in terms of
the Bose symmetry variable s of Equation (75), they become statistically indistinguishable,
manifesting the validity of Equation (76).
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Figure 10. Lattice data from Reference [86] for the classical form factor, Γ̃1(q2, r2, p2), of the trans-
versely projected three-gluon vertex in three different kinematic configurations: the soft-gluon (q = 0,
p2 = r2, orange stars), the symmetric limit (q2 = p2 = r2, green diamonds), and the case p2 = r2 with
q2 = 2r2 (purple circles). In the left panel Γ̃1(q2, r2, p2) is plotted as a function of r, while in the right
it is plotted as a function of the Bose symmetry variable s defined in Equation (75).

In addition to the planar degeneracy property, lattice [84,86–88] and continuum
[174,175,179,223] results show a clear dominance of the classical form factor Γ̃1 over the
remaining ones. Based on these considerations, the special approximation

Γαμν(q, r, p) ≈ Lsg(s)Γ
αμν
0 (q, r, p) , (78)

has been put forth, where Γαμν
0 (q, r, p) is the tree-level value of Γαμν(q, r, p), i.e., Equation (73)

with Γα′μ′ν′(q, r, p) → Γα′μ′ν′
0 (q, r, p), and the form factor Lsg(s) has been defined in Equation

(77). We emphasize that the shape of Lsg(r) has been very precisely determined through
dedicated lattice studies with large-volume simulations [68,71,84,85]. The outcome of this
exploration is shown in Figure 11, where we plot the lattice data of [84] for Lsg(r), together
with a physically motivated fit given by Equation (C12) of [124] (blue continuous curve).
The corresponding fitting formula is rather complicated and will not be reported here;
note, however, that the simple expression given in Equation (102) captures rather well the
qualitative behavior of Lsg(s).

Equation (78) provides an accurate and exceptionally compact approximation for
Γαμν(q, r, p) in general kinematics. This approximation, with the fit for Lsg shown in
Figure 11, will be used explicitly in Sections 8 and 11, where the Γαμν(q, r, p) in general
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kinematics will be needed as input for the determination of other physically important
quantities.

Figure 11. Lattice data from Reference [84] for Lsg(q), compared to the fit for it given by Equation
(C12) of [124] (blue continuous curve).

8. Ghost Dynamics from Schwinger–Dyson Equations

We next turn our attention to the ghost sector of the theory, whose scrutiny is im-
portant for several reasons. First, it has been connected to particular scenarios of color
confinement [272,273]. Second, Green’s functions associated with the ghost sector appear
as ingredients in the SDEs of several key functions, such as the gluon propagator and
the three-gluon vertex [41,50,68,69,71,81,122,172–179,274], affecting their non-perturbative
behavior in nontrivial ways, as will be discussed in Section 9. Third, the SDEs governing
the ghost sector are simpler than their gluonic counterparts because they are comprised
by fewer diagrams; in fact, the SDE of the ghost propagator contains a single diagram, see
Figure 12. Fourth, in the Landau gauge, the validity of Taylor’s theorem [207] facilitates
considerably the task of renormalization.

Consequently, the SDEs of the ghost sector are an excellent testing ground for (a)
probing the impact of the gluonic Green’s functions that contribute to them [85]; (b)
assessing the reliability of truncation schemes [275,276]; and (c) testing the agreement
between lattice and continuum approaches.

One of the central results of numerous studies in the continuum [21,62,85,112,178,
225,227–233] as well as a variety of lattice simulations [42,47,49,51,56,63,73,79] may be
summarized by stating that the ghost propagator, D(q), remains massless, while the
corresponding dressing function, F(q), saturates at the origin. As we will discuss in
Section 9, the non-perturbative masslessness of the ghost has important implications for
the infrared behavior of the gluon propagator and the three-gluon vertex.

In what follows we provide a concrete example of the state-of-the-art SDE analysis of
the ghost sector, by solving the coupled system of equations that governs the ghost-dressing
function and the ghost–gluon vertex. In order to obtain a closed system of equations, we
use lattice results for the gluon propagator, the three-gluon vertex, and the value of the
coupling constant in the particular renormalization scheme employed.

The main points of this analysis may be summarized as follows.
(i) We begin by considering the coupled system of SDEs given in Figure 12, which

determines the ghost propagator and ghost–gluon vertex. The treatment will be simplified
by neglecting the diagram (dν

3) of Figure 12, thus eliminating the dependence on the
ghost–ghost–gluon–gluon vertex, Γμσ. This is a particularly robust truncation, because the
impact of the neglected diagram on the ghost–gluon vertex has been shown to be less than
2% [275].

(ii) Note that due to the fully transverse nature of the gluon propagators in the Landau
gauge, in conjunction with the fact that various projections need to be implemented during
the treatment of this system, the pole parts V of all fully dressed vertices appearing in
Figure 12 will be annihilated; thus, we will have throughout the replacement IΓ → Γ.
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(iii) We proceed by decomposing the pole-free part, Γν(r, q, p), of the ghost–gluon
vertex into its most general Lorentz structure, namely

Γν(r, q, p) = rνB1(r, q, p) + pνB2(r, q, p) , (79)

whose scalar form factors reduce to B0
1 = 1 and B0

2 = 0 at the tree level. Evidently, due to
the transversality of the gluon propagator, only the classical tensor rν, accompanied by the
form factor B1, will survive in all SDE diagrams of Figure 12.

+

k

rr
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Figure 12. Top: SDE governing the momentum evolution of the ghost propagator. Bottom: SDE for
the ghost–gluon vertex, IΓν(r, q, p).

(iv) The SDE of Figure 12 is given by

F−1(r) = 1 + 2λ
∫

k
f (k, r)B1(−r, k + r,−k)Δ(k)D(k + r) , (80)

where λ is given by Equation (44), and we define

f (k, r) := 1 − (r · k)2

r2k2 . (81)

(v) Next, we note that the form factor B1(r, q, p) can be extracted from Γν(r, q, p)
through the projection

B1(r, q, p) = ενΓν(r, q, p) , εν :=
p2rν − (r · p)pν

r2 p2 − (r · p)2 . (82)

Hence, acting with εν on the diagrams in the second line of Figure 12, we obtain

B1(r, q, p) = 1 − λ[a(r, q, p)− b(r, q, p)] , (83)

where

a(r, q, p) = qαrμεν
∫

k
D(k)D(k − p)Δ(k + r)B1(p − k, q, k + r)B1(−k, k − p, p)Pαμ(k + r)kν ,

b(r, q, p) = qαrμεν
∫

k
Δ(k)Δ(k − p)D(k + r)B1(k + r, q, p − k)Γνμα(p,−k, k − p) . (84)
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(vi) At this point, we invoke the property of the planar degeneracy of Γαμν(q, r, p),
discussed in Section 7. Employing Equation (78) into the SDE for B1, the term b(r, q, p) of
Equation (84) becomes

b(r, q, p) = qαrμεν
∫

k
Δ(k)Δ(k − p)D(k + r)B1(k + r, q, p − k)Γ0

νμα(p,−k, k − p)Lsg(s̄) , (85)

with s̄2 = p2 + k2 − 2(k · p).
We emphasize that although Equation (78) constitutes in general an approximation,

there is one particular kinematic limit in which the expression for b(r, q, p) given in Equation
(85) becomes exact. Specifically, in the soft gluon limit (p = 0), it can be shown exactly
that [85]

Pμ′
μ (k)Pν′

ν (k)Γαμ′ν′(0, k,−k) = 2Lsg(k)kαPμν(k) . (86)

Then, starting from either the general expression for b(r, q, p) of Equation (84) and using
Equation (86), or the approximate version given by Equation (85), it can easily be shown
that the p = 0 limit is the same. As such, the use of Equation (78) yields not only an
excellent approximation in general kinematics, but also the exact soft gluon limit for the
contribution of the three-gluon vertex to the form factor B1.

(vii) Now we consider the renormalization of the coupled system of equations. Since
the ghost–gluon vertex is finite in the Landau gauge [207], most SDE treatments [85,
224–228] of the ghost sector employ the so-called Taylor renormalization scheme (see
Appendix B), defined in such a way that the finite renormalization constant of the ghost–
gluon vertex has the exact value Z1 = 1 [54,60,80,85,207].

However, in order to employ Equation (78) most expeditiously, it is more convenient
to renormalize in the so-called asymmetric MOM scheme, defined in Appendix B, because
this is precisely the scheme employed in the lattice calculations of Lsg [68,71,84,85]. Past
this point, we denote by Z̃1 the finite value of the ghost–gluon renormalization constant in
the asymmetric MOM scheme. Evidently, Equations (15) and (79) imply that BR

1 = Z̃1B1.
The renormalization of Equations (80) and (83) proceeds by substitution of the un-

renormalized quantities by their renormalized counterparts, following Equation (15), and
imposing Equation (A8) for F(μ2).

Note that, in principle, Z̃1, may be determined from the relation Z̃1 = Z3ZcZ−1
A ,

imposed by the corresponding STI [277]; however, these renormalization constants are not
available to us, given that Green’s functions have been obtained from the lattice. Therefore,
Z̃1 is treated as an adjustable parameter, whose value is determined by requiring that the
solution of the SDE for F(q) reproduces the corresponding lattice data of [73,85] as well as
possible.

(viii) Finally, we transform Equations (80) and (83) from Minkowski to the Euclidean
space, using standard conversion rules. Note that, once in Euclidean space, we will express
the functional dependence of B1(r, q, p) in terms of the squared momenta of the anti-ghost
and gluon legs, r2 and p2, and the angle, θ, between them, i.e., B1(r, q, p) ≡ B1(r2, p2, θ).

The result of these manipulations is that Equations (80) and (83) become

F−1(r) = 1 − αsCAZ̃1

2π2

∫ ∞

0
dk2k2Δ(k)

∫ π

0
dφ s4

φ

×
[

B1(r2, k2, φ)
F(
√

z)
z

− B1(μ
2, k2, φ)

F(
√

u)
u

]
, (87)

and

B1(r2, p2, θ) = Z̃1 −
αsCAZ̃1

8π2

[
a + 2b

]
, (88)
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respectively, with

a =
1
sθ

∫ ∞

0
dk2k2F(k)

∫ π

0
dφs3

φ
Δ(

√
z)

z

∫ π

0
dωsω

F(
√

v)
v

B1(k2, p2, α)B1(v, z, β)Ka , (89)

b =
1
sθ

∫ ∞

0
dk2k2Δ(k)

∫ π

0
dφs3

φ
F(
√

z)
z

∫ π

0
dωsω

Δ(
√

v)
v

B1(z, v, β)Lsg(s)Kb .

In the above equations, we employ the notation cx := cos x and sx := sin x, and define the
following variables

r · k := rkcφ , p · k := pk(cθcφ + sθsφcω) ,

z := r2 + k2 + 2rkcφ , u := μ2 + k2 + 2μkcφ ,

s2 := (p2 + k2 + v)/2 , v := p2 + k2 − 2pk(cθcφ + sθsφcω) ,

α := π − cos−1[cθcφ + sθsφcω

]
, β := cos−1

[
k(pcθcφ + psθsφcω − rcφ) + prcθ − k2

√
vz

]
.

Finally, the kernels Ka and Kb are given by

Ka =(cθcωsφ − cφsθ)
[
ksφ(pcθ + r)− pcθcω(kcφ + r)

]
,

Kb =cω

{
k2 pcφ

[
cθ p

(
s2

θ(s
2
φs2

ω − 4s2
φ + 1) + s2

φ

)
+ r

(
s2

φ − s2
θ(2s2

φ + 1)
)]

− k3
[
s2

φ

(
rcθ − 2ps2

θ + p
)
+ ps2

θ

]
+ kp2

[
s2

φ

(
2s2

θ(p − rcθ)− rcθ − p
)
+ s2

θ(rcθ − p)
]

−cφ p3rs2
θ

}
+ sθsφ

{
cθ p

[
r
(

p2 − k2(s2
ω + s2

φs2
ω − 2s2

φ)
)
− cφk(s2

ω − 2)(k2 + p2)
]

+ k
[
cφk2r − cφ p2r

(
s2

θ(s
2
ω − 2) + s2

ω

)
+ kp2

(
3s2

θs2
φs2

ω − 2s2
θs2

ω − 4s2
θs2

φ + 3s2
θ

+(3 − 2s2
ω)s

2
φ − 2

)]}
.

We are now in a position to solve Equations (87) and (88) numerically. We choose the
renormalization point at μ = 4.3 GeV and employ for Δ(q) and Lsg(q) the fits to the lattice
data shown in Figures 9 and 11, respectively. Note that for large momenta these fits recover
the behaviors dictated by the corresponding anomalous dimensions [124]. For the strong
coupling, we use the value αs(4.3 GeV) = 0.27, determined from the lattice simulations
of [71].

Below, we discuss the main results of this analysis:
The value of Z̃1 was obtained by solving the SDE system for various values of this

constant until the χ2 of the comparison between the solution for F(q) and the lattice data
of [73,85] was minimized. This procedure yields Z̃1 = 0.9333 ± 0.0075.

In the left panel of Figure 13, we show as a blue continuous line the SDE result for
F(q), with the above value of Z̃1. The result is compared to the lattice data of [73,85], which
have been cured from discretization artifacts. As it turns out, the SDE and lattice results for
F agree within 1%.

We next consider the form factor B1. In the right panel of Figure 13 we show
B1(r2, p2, θ) as a surface, for arbitrary values of the magnitudes of the momenta r and
p, and for the angle θ formed between them at θ = 2π/3. In the same panel, we highlight
as a red dot-dashed curve the soft gluon limit B1(r2, 0, 2π/3) of the general kinematics
B1(r2, p2, 2π/3) (The soft gluon limit is approached by taking p → 0 in B1(r2, p2, θ); in the
non-perturbative case, this limit is independent of the value of θ).
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Figure 13. (Left): ghost dressing function F(q) obtained from the coupled system of SDEs of
Equations (80) and (83) (blue continuous line) compared to the lattice data of Reference [73,85].
(Right): The corresponding result for B1(r2, p2, θ) for arbitrary magnitudes of the anti-ghost and
gluon momenta, r and p, respectively, and a representative value of θ = 2π/3 for the angle between
them. The red dot-dashed curve highlights the soft gluon limit (p = 0).

The only available SU(3) lattice data for B1 were obtained in the soft gluon limit [42,43],
and have sizable error bars. Furthermore, they have been computed within the Taylor
scheme, while in the present work, we used the asymmetric MOM scheme. Nevertheless,
we can meaningfully compare our SDE results with those of the lattice, and perform a
statistical analysis to assess their agreement.

Specifically, denoting by BT
1 the Taylor scheme value of the form factor B1, it can easily

be shown that
B1(r2, p2, θ) = Z̃1BT

1(r
2, p2, θ) , (90)

which allows us to carry out the desired comparison.
Then, we use Equation (90) to compute BT

1(r
2, 0, θ) from the B1(r2, 0, 2π/3) slice (red

dot-dashed curve) in the right panel of Figure 13, and compare the result to the lattice data
of [42,43] (points) in Figure 14. Evidently, the SDE determination agrees with the lattice
results.

0 1 2 3 4 5
1.0

1.1

1.2

1.3

Figure 14. Soft gluon limit, BT
1(r

2, 0, θ), of the classical form factor of the ghost–gluon vertex in the
Taylor scheme. The points correspond to the lattice data of Reference [42,43]. The red dot-dashed line
shows the SDE solution with the three-gluon vertex dressed according to Equation (78), while the
green dashed represents the SDE solution with tree-level three-gluon vertex.

In order to quantify this agreement, we next conduct a χ2 analysis. To this end, we
consider only the 22 lattice points ri in the interval ri ∈ [0.3, 2.5] GeV, where the signal is
most pronounced. Then, we compute the χ2 of the data through

χ2
j = ∑

i

[Blat
1 (r2

i , 0, θ)− gj(ri)]
2

εB1(r
2
i , 0, θ)

, (91)
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where Blat
1 (r2

i , 0, θ) are the lattice points shown in Figure 14, εB1(r
2
i , 0, θ) are their respec-

tive errors, and gj(ri) are the three hypotheses that we will compare to the lattice data.
Specifically, for the gj we consider the three cases

gj(ri) =

⎧⎪⎨⎪⎩
1 if j = 1 ,
SDE with Γαμν = Γαμν

0 Lsg(s) if j = 2 ,
SDE with Γαμν = Γαμν

0 if j = 3 ,

(92)

i.e., g1 is the tree-level value of B1, g2 is the solution of the SDE using Equation (78) for
dressing the three-gluon vertex, corresponding to the red dot-dashed curve of Figure 14,
and g3 is the solution of the SDE obtained by setting the three-gluon vertex to the tree level,
which amounts to the substitution Lsg → 1 in Equation (88), and is represented by a green
dashed curve in Figure 14.

Then, for each χ2
j we compute the probability Pj that normally distributed errors

would yield a χ2 at least as large as χ2
j , through

Pj =
∫ ∞

χ2
j

χ2
PDF(22, x)dx =

Γ(nr/2, χ2/2)
Γ(nr/2)

∣∣∣∣χ2=χ2
j

nr=22
. (93)

In the above equation, χ2
PDF(n, x) = xn/2−1e−x/2/[2n/2Γ(n/2)] denotes the χ2 probability

distribution function with n degrees of freedom, while Γ(z, x) is the incomplete Γ function.
The results of the above analyses are collected in Table 2. We note that the case g1,

i.e., the tree-level value of B1, is discarded at the 5.1σ confidence level. As for case g3, it
is discarded at the 3.4σ level. On the other hand, the SDE result with dressed three-gluon
vertex, g2, is statistically indistinguishable from the lattice data.

Table 2. Statistical results of the χ2 analysis for the three hypotheses given in Equation (92) for the
form factor B1. For each case (first column), we give the corresponding χ2

j computed from Equation
(91) (second column), probability Pj computed from Equation (93) (third row), and the same Pj

expressed in terms of confidence levels σ (fourth row).

Case (j) χ2
j Pj Confidence Level in σ

1 71.37 4.0 × 10−7 5.1

2 3.399 1 − 1.8 × 10−6 2.2 × 10−6

3 50.03 5.8 × 10−4 3.4

Lastly, we point out that for both F and B1, we find a good qualitative agreement with
various related studies [21,29,178,179,224,226–228,278,279], including kinematics other than
the soft gluon limit considered in Figure 14.

9. Divergent Ghost Loops and Their Impact on the QCD Green’s Functions

The masslessness of the ghost propagator, discussed in Section 8, has important
implications for the infrared behavior of Green’s functions. Specifically, while the saturation
of the gluon propagator renders gluon loops infrared finite, ghost loops furnish infrared
divergent contributions [172], akin to those encountered in perturbation theory. In this
section, we highlight (with two characteristic examples) how the effects of ghost loops
manifest themselves at the level of the two- and three-point functions. Specifically, the
ghost loops induce the appearance of a moderate maximum in the gluon propagator and
are responsible for the zero-crossing and the logarithmic divergence at the origin displayed
by the dominant form factors of the three-gluon vertex.

The basic observation at the level of the gluon SDE shown in Figure 1 is that, the
ghost loop of (d3), due to the masslessness of its ingredients, furnishes “unprotected”
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logarithms, i.e., terms of the type ln q2, which diverge as q2 → 0. Instead, gluonic loops
contain infrared finite gluon propagators and, therefore, give rise to contributions that
remain finite as q2 → 0, i.e., they may be described in terms of “protected” logarithms of
the type ln(q2 + m2).

The circumstances described above may be modeled by

Δ−1(q) = q2 + m2 + c1q2 ln
(

q2 + ρm2

Λ2

)
︸ ︷︷ ︸

f (q)

+c2q2 ln
(

q2

Λ2

)
, (94)

where m is the gluon mass, Λ the mass scale of QCD, and c1, c2, and ρ are constants; note
that Δ−1(0) = f (0) = m2

Differentiating Equation (94) with respect to q2, we obtain

dΔ−1(q)
dq2 =

d f (q)
dq2 + c2

[
1 + ln

(
q2

Λ2

)]
. (95)

The second term on the r.h.s. of Equation (95) is infrared divergent, and necessarily
dominates the behavior of the derivative of the propagator for sufficiently small q. More-
over, the value of the coefficient c2 can be computed explicitly by expanding the ghost
block Π̃(2)

μν (q) of Figure 1 around q = 0 and using Equation (19), which yields

c2 =
αsCAZ̃2

1 F2(0)
48π

. (96)

Therefore, dΔ−1(q)/dq2 has the asymptotic behavior

lim
q→0

dΔ−1(q)
dq2 =

[
αsCAZ̃2

1 F2(0)
48π

]
ln

(
q2

Λ2

)
, (97)

which diverges to −∞ as q → 0. Now, since the gluon propagator is a decreasing function
in the ultraviolet, we have that dΔ−1(q)/dq2 is positive for large momenta. Therefore, there
must exist a special momentum, denoted by q�, such that [dΔ(q)/dq2]q=q� = 0, which
corresponds to a maximum of Δ(q) (Note that dΔ−1(q)/dq2 is an increasing function since
it is negative in the infrared and positive in the ultraviolet, i.e., d2Δ−1(q)/d(q2)2 > 0.
Therefore, assuming that dΔ−1(q)/dq2 only crosses zero once, q = q� must be a maximum
of Δ(q)).

The maximum of Δ(q), predicted by means of the simple arguments presented above,
is observed in lattice simulations of the gluon propagator [49,56,85]. In particular, it is
clearly visible in Figure 15, where the data from the two largest volume lattice setups of [49]
are shown. The red dashed lines represent smooth functions, fitted to each of the data sets,
in the window q ∈ [0, 0.5] GeV. For each of the volumes considered, V = 724 (left panel)
and V = 804 (right panel), the estimate obtained for q� is q� = 140 MeV.
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Figure 15. Lattice data for the gluon propagator in the deep infrared. The data displayed correspond
to the two lattice setups with the largest volumes of [49], namely, V = 724 (left) and V = 804 (right).
The red dashed lines are smooth fits from which the position of the maximum can be estimated.

It is interesting to observe in passing that the existence of a maximum of Δ(q) has an in-
teresting implication on the form of the spectral function of the gluon propagator [280–285].
In particular, the standard Källén-Lehmann representation [286,287] states that

Δ(q) =
∫ ∞

0
dλ2 ρ(λ2)

q2 + λ2 , (98)

where ρ(λ2) is the gluon spectral function (with a factor 1/π absorbed in it). Thus, the
differentiation of both sides of Equation (98) with respect to q2 yields

dΔ(q)
dq2 = −

∫ ∞

0
dλ2 ρ(λ2)

(q2 + λ2)2 . (99)

Then, from Equation (99) follows that the existence of a maximum for Δ(q) at q = q� leads
necessarily to the violation of reflection positivity [11,167,168,171], because the condition

∫ ∞

0
dλ2 ρ(λ2)

(q2
� + λ2)2 = 0 , (100)

may be fulfilled only if ρ(λ2) reverses its sign. Note that an analogous argument based on
the existence of an inflection point has been presented recently in [8].

Turning to the three-gluon vertex, it is well-known that the corresponding ghost loops
induce characteristic features to the form factors associated with its classical (tree-level)
tensors. There are two complementary continuum descriptions of the dynamics that deter-
mine the behavior of these form factors: (i) the SDE of the three-gluon vertex [174–176,226],
depicted diagrammatically in Figure 16, and (ii) the STI of Equation (23) [172], which, in
the limit of vanishing gluon momentum, and when the displacement function and the
ghost sector are neglected, yields the approximate WI

IΓαμν(0, r,−r) ≈
∂Δ−1

μν (r)
∂rα

, (101)

which transmits the properties of the propagator derivative to the vertex form factors, as
shown schematically in Figure 17.

In the simplified kinematic circumstances where only a single representative momen-
tum is considered, to be denoted by r, the conclusions drawn by either method may be
qualitatively described in terms of a simple model, namely

L(r) = b0 + bgl ln
(

r2 + m2

Λ2

)
+ bgh ln

(
r2

Λ2

)
, (102)
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where L(r) denotes the particular combination of form factors, such that, at tree level,
L0(r) = 1, and b0, bgl, and bgh are positive constants. The model in Equation (102) encom-
passes two important cases studied on the lattice [68,69,71,81], namely (i) the soft gluon limit,
L(r) → Lsg(r), corresponding to the kinematic choice q → 0 , p = −r , θ := p̂r = π,
defined in Equation (77), and (ii) totally symmetric limit, L(r) → Lsym(r), corresponding to
q2 = p2 = r2 , θ := q̂r = q̂p = r̂p = 2π/3.

+ + · · ·

(e1) (e2)

μ, b

α, a

p
= +

α, a

ν, c

q

p r

ν, c μ, b

q

r

Figure 16. The SDE of the three-gluon vertex at the one-loop dressed level. Diagrams (e1) and (e2)

are the gluon and the ghost triangle contributions entering the skeleton expansion of the three-gluon
vertex.

Upon inspection of Equation (102) we note that, as r → 0, the term with the unpro-
tected logarithm will eventually dominate, forcing L(r) to reverse its sign (zero crossing),
and finally display a logarithmic divergence, L(0) → −∞. Given that, in practice, bgl is
considerably larger than bgh, the unprotected logarithm overtakes the protected one rather
deep in the infrared: the location of the zero-crossing is at about 160 MeV [71]. Conse-
quently, in the intermediate region of momenta, which is considered relevant for the onset
of non-perturbative dynamics, we have L(r) < 1; this effect is known in the literature as
the infrared suppression of the three-gluon vertex.

⊃

⊃

STI

Figure 17. The ghost triangle present in the three-gluon vertex SDE (top) and the ghost loop con-
tributing to the gluon propagator in the corresponding equation (middle). The infrared divergences
arising from these diagrams are connected through the Slavnov–Taylor identity (STI) of Equation
(23), as shown schematically in the bottom panel.

Most importantly, the special features of infrared suppression, zero-crossing, and
logarithmic divergence at the origin have been corroborated through a variety of lattice
results [50,68,69,71,72,81,84], as shown, e.g., in Figure 11. The central curve of this figure is
presented as the blue line in Figure 18, where the aforementioned characteristics have been
explicitly marked for the benefit of the reader. Note the close proximity of the blue curve to
the dΔ−1(r)/dr2 (red dashed line), especially below 1 GeV.
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Figure 18. Comparison of Lsg(r) (blue continuous) from Figure 11 and dΔ−1(r)/dr2 (red dashed)
resulting from the fit for Δ(r) of Figure 9. Note that both display the characteristic features of infrared
suppression with respect to their tree-level values (which is 1 for both quantities), zero-crossing, and
logarithmic divergence at the origin.

We end this section by pointing out that, in the case of Yang–Mills in d = 3 [28,
172,223,288–302], the situation is qualitatively similar to the one described above, but the
divergences induced due to the masslessness of the ghost are stronger. Specifically, as may
be already established at the level of a simple one-loop calculation [302], the first derivative
of the gluon propagator diverges at the origin as 1/q rather than ln q2. Consequently, the
corresponding effects are significantly enhanced; in particular, the maximum of the gluon
propagator is considerably more pronounced, becoming plainly visible on the lattice [53].
Similarly, an abrupt negative divergence is observed in the corresponding vertex form
factors [41,82].

10. Ward Identity Displacement of the Three-Gluon Vertex

In complete analogy to the case of the ghost–gluon vertex discussed in Section 5.2, the
WI satisfied by the pole-free part of the three-gluon vertex is also displaced in the presence
of longitudinally coupled massless poles. Quite importantly, the associated displacement
function, C(r), coincides with the BS amplitude that controls the formation of a (colored)
scalar bound state with vanishing mass out of a gluon pair. The displacement of the WI
circumvents the seagull cancellation involving the gluon propagator [ i.e., f = Δ in Equation
(55)], furnishing to the gμν component the mass originating from graphs (d1) and (d4) in
Figure 1. In addition, it permits the indirect determination of the displacement function
C(r) from the lattice; this is particularly important, given that, by virtue of Equation (35),
the lattice “observables” do not perceive directly the presence of the massless poles.

The starting point of the analysis is the STI satisfied by the three-gluon vertex,
IΓαμν(q, r, p), given by Equation (23). In order to eliminate the poles in r and p, thus
isolating the displacement of the WI originating from the pole in the channel q, we contract
that equation with Pμ

μ′(r)Pν
ν′(p). Note that this procedure also eliminates any longitudinal

pole terms in the ghost kernels Hσμ(p, q, r) and Hσν(r, q, p); for the diagrammatic definition
of the ghost–gluon kernel, see Figure 2.

Then, we decompose IΓαμν(q, r, p) into pole-free and longitudinally coupled massless
pole parts, as in Equation (33), and use Equation (38), to obtain

Pμ
μ′(r)Pν

ν′(p)
[
qαΓαμν(q, r, p) + gμνC1(q, r, p) + qμqνC5(q, r, p)

]
= Pμ

μ′(r)Pν
ν′(p)Rνμ(p, q, r) , (103)

where

Rνμ(p, q, r) := F(q)
[
Δ−1(p)Pσ

ν (p)Hσμ(p, q, r)− Δ−1(r)Pσ
μ (r)Hσν(r, q, p)

]
. (104)
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At this point, we expand Equation (103) around q = 0 and match coefficients of equal
orders. At the zeroth order in this expansion, we immediately obtain that

C1(0, r,−r) = 0 , (105)

in exact analogy to Equation (62). Note that we have arrived once again at the result of
Equation (39), but through an entirely different path: while Equation (39) is enforced by the
Bose symmetry of the three-gluon vertex, Equation (105) is a direct consequence of the STI
that this vertex satisfies.

We next gather the terms in the expansion of Equation (103) that are of first order in q.
Evidently, the term C5 does not contribute to this order. Then, the expansion leads to the
appearance of derivatives of the gluon propagator, in analogy to Equation (64), but also of
the ghost–gluon kernel. Specifically, we obtain for the WI of the three-gluon vertex and its
displacement the expression

Lsg(r) = F(0)
{

Z̃1
dΔ−1(r)

dr2 +
W(r)

r2 Δ−1(r)
}
−C(r) . (106)

In the above equation, Lsg(r) is the form factor of the three-gluon vertex defined in Equation
(77) and with lattice results shown in Figure 11, while W(r) is a particular derivative of the
ghost–gluon kernel, namely [124,241]

W(r) = − 1
3r2 Pμν(r)

[
∂Hνμ(p, q, r)

∂qα

]
q=0

. (107)

For the detailed derivation of Equation (106), we refer to [93,124].
In the following section, we will use Equation (106) to determine the displacement

amplitude C(r) from lattice inputs. To this end, we must first pass to Euclidean space,
where we note that

CE(r2
E) = −C(r)|r2=−r2

E
, (108)

with the extra sign originating from the fact that C is a derivative [see Equation (41)]. Then,
suppressing the indices “E” and solving for C(r2), we obtain the central relation

C(r) = Lsg(r)− F(0)
{W(r)

r2 Δ−1(r) + Z̃1
dΔ−1(r)

dr2

}
. (109)

For the determination of C(r), we use lattice inputs for all the quantities that appear
on the r.h.s. of Equation (109), with the exception of the function W(r), which will be
computed from the SDE satisfied by the ghost–gluon kernel derived and analyzed in the
next section.

11. The Ghost-Gluon Kernel Contribution to the Ward Identity

In this section, we derive the SDE that determines the key function W(r); the resulting
SDE will be solved using lattice inputs for the various quantities entering it. In addition,
the infrared behavior of W(r) will be analyzed in detail, following an analytic procedure.

Our discussion starts with the SDE of the ghost–gluon kernel, Hμν(r, q, p), shown
diagrammatically in Figure 19, from which W(r) can be obtained using Equation (107).

Note that the similarity between the diagrams shown in Figure 19 and those in the
bottom panel of Figure 12, depicting the SDE of the ghost–gluon vertex, is a simple reflection
of the fundamental STI relating the ghost–gluon kernel with the ghost–gluon vertex,

Γν(r, q, p) = rμHμν(r, q, p) . (110)

Specifically, Equation (110) is preserved by the SDEs of Γν(r, q, p) and Hμν(r, q, p); indeed,
contraction of each diagram (hμν

i ) of Figure 19 by rμ yields the corresponding diagram
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(gν
i ) of Figure 12 (up to a shift of k → −k − r for i = 1, introduced to simplify certain

expressions). Note that, in Figure 19, the diagram corresponding to the (g3) of Figure 12
has been omitted, for the reason explained in item (i) of Section 8.

= gμν + +

k − q

q

p

k + r

r

k

ν, a

μ, b

(hμν
1 )

k + r

k − p

p

k

r

ν, a

q
μ, b

(hμν
2 )

c c

μ, bk

q

ν, a

p

r

k + r

c

Figure 19. SDE for the ghost–gluon scattering kernel, Hμν(r, q, p). We omit a diagram containing a
1PI four-point function.

It is well-known that, in the Landau gauge, the momentum q of the ghost field in
Hμν(r, q, p) factors out of its quantum corrections [1], allowing us to write [124,228,241]

Hμν(r, q, p) = gμν + qαKμνα(r, q, p) , (111)

where no particular assumptions are made about the structure of the function Kμνα(r, q, p).
Following Equation (107), we differentiate the r.h.s. of Equation (111) with respect to q and
subsequently set q = 0, to obtain

W(r) = −1
3

rαPμν(r)Kμνα(r, 0,−r) . (112)

Lastly, the finite renormalization of W in the asymmetric MOM scheme proceeds
through the use of Equation (15), which leads to the appearance of an overall factor of Z̃1
in the equations.

The outcome of the above steps is that W(r) can be written as

W(r) = W1(r) +W2(r) , (113)

where the Wi(r) are the contributions originating from the diagrams (hμν
i ) in Figure 19,

respectively, and read

W1(r) =
λZ̃1

3

∫
k

Δ(k)D(k)D(k + r)(r · k) f (k, r)B1(k + r,−k,−r)B1(k, 0,−k) ,

W2(r) =
λZ̃1

3

∫
k

Δ(k)Δ(k + r)D(k + r)B1(k + r, 0,−k − r)IW (−r,−k, k + r) , (114)

where f (k, r) is given by Equation (81), and we define the specific contribution of the
three-gluon vertex to the kernel of W(r2) as

IW (q, r, p) :=
1
2
(q − r)νΓα

αν(q, r, p) . (115)

Note that, from Equation (115) and the Bose symmetry of the Γαμν(q, r, p) under the ex-
change {q, α} ↔ {r, μ}, it follows that

IW (q, r, p) = IW (r, q, p) . (116)
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At this point, by capitalizing on the planar degeneracy of Γαμν(q, r, p) discussed in
Section 7, we obtain a compact, and yet accurate, approximation for IW . Specifically, using
Equation (78), we find

IW (q, r, p) ≈ I0
W (q, r, p)Lsg(s) , (117)

where I0
W (q, r, p) is the tree-level value of IW , given by

I0
W (q, r, p) :=

2 f (q, r)
p2

[
2q2r2 − (q2 + r2)(q · r)− (q · r)2

]
. (118)

We remark that the approximation given by Equation (117) becomes exact in the limit p = 0.
Using the above approximation for IW , the contribution W2(r) reads

W2(r) =
2λZ̃1

3

∫
k

Δ(k)
Δ(k + r)D(k + r)

(k + r)2 B1(k + r, 0,−k − r) f (k, r)

×
[
2r2k2 − (r2 + k2)(r · k)− (r · k)2

]
Lsg(ŝ) , (119)

where we now have ŝ2 = r2 + k2 + (r · k).
Lastly, we transform W1 of Equation (114) and W2 of Equation (119) to Euclidean

space to obtain the final expression to be used for the numerical determination of W ,

W1(r) = − rαsCAZ̃1

12π2

∫ ∞

0
dk2kΔ(k)F(k)B1(k2, k2, π)

∫ π

0
dφs4

φcφ
F(
√

z)
z

B1(z, r2, χ) ,

W2(r) = − rαsCAZ̃1

6π2

∫ ∞

0
dk2 k3Δ(k)

∫ π

0
dφ s4

φΔ(
√

z)B1(z, z, π)
F(
√

z)
z2

[
kr(2 + c2

φ)− zcφ

]
× Lsg

(
r2 + k2 + rkcφ

)
, (120)

where z has been defined below Equation (89) and

χ := cos−1
[
− (r + kcφ)√

z

]
. (121)

We emphasize that for the SDEs of both B1 and W , given by
Equations (88) and (120), respectively, we used the same approximation for the three-
gluon vertex, namely Equation (78). Therefore, our analyses of B1 and W are self-consistent,
in the sense that the STI in Equation (110) is strictly preserved.

Before embarking on the numerical determination of W(r) for the entire range of
Euclidean momenta, we discuss the infrared behavior of this function and demonstrate an
important self-consistency proof involving C(r).

Specifically, as discussed in Section 9, the Lsg(r) and dΔ−1(r)/dr2 that appear in
Equation (109) are infrared divergent, due to the massless ghost loops present in their SDEs.
Nevertheless, the BSE solutions for the amplitude C(r) are all found to be finite at r = 0,
(cf. Figure 7) [117,121,124,215]. Therefore, in order for the WI displacement of Equation (109)
to be consistent with the finite C(0) obtained from BSE solutions, the infrared divergences
of the ingredients appearing in Equation (109) must cancel against each other.

Indeed, a careful analysis of diagram (e2) of Figure 16 yields

lim
r→0

Lsg(r) =

[
αsCAZ̃3

1 F3(0)
96π

]
ln

(
r2

μ2

)
, (122)

up to infrared finite terms (We note that the results identical to Equations (97) and (122) for
the infrared divergences of dΔ−1(r)/dr2 and Lsg(r), respectively, have been previously de-
rived within the Curci–Ferrari model [180]). Then, assuming that only Lsg(r) and dΔ−1/dr2
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diverge, and using the asymptotic form of dΔ(r)/dr2 given in Equation (97) to Equation
(109), we find that the divergences do not fully cancel. Therefore, the finiteness of C(0)
demands that the term W(r)/r2 appearing in the WI must be infrared divergent.

Now, it is evident from Equation (120) that W(r) vanishes as r → 0. Nevertheless,
the ratio W(r)/r2 is found to diverge at the origin. Specifically, expanding Equation (120)
around r = 0, it can be shown that W(r)/r2 has the asymptotic behavior

lim
r→0

W(r)
r2 = −

[
αsCAZ̃3

1Δ(0)F2(0)
96π

]
ln

(
r2

μ2

)
. (123)

Then, combining Equations (97), (122) and (123) we find that the infrared divergences in
Equation (109) cancel out exactly, leaving a finite C(0), in full agreement with the BSE
results.

We finish the discussion of the infrared finiteness of C(0) with a remark. In the absence
of the Schwinger mechanism, i.e., for an identically zero C(r), the infrared divergences
of Lsg(r), W(r)/r2, and dΔ−1(r)/dr2 must also cancel in Equation (109). For instance, this
cancellation can be explicitly verified at the one-loop level (in the perturbative realization
of Equation (109) F(0) also diverges, participating in the overall cancellation of infrared
divergences), where, evidently, C(r) = 0. In that case, however, the gluon propagator is also
massless, causing the gluonic loops that contribute to the functions that enter Equation (109)
to also diverge, such that the cancellation occurs among all radiative diagrams. In contrast,
in the presence of a gluon mass, the cancellation of the remaining infrared divergences
takes place at the level of the ghost loops only, as illustrated diagrammatically in Figure 20.

r

r

0

μ

νρ

−F (0)Z̃1
d
dr2

r

r

0

μ

νρ

− F (0)

Δ(0)
lim
r2→0

= IR finite

r

μ ν

︸ ︷︷ ︸
Kμνρ(r, 0,−r)

Figure 20. Diagrammatic representation of the cancellation of the infrared divergences originating
from massless ghost loops in Equation (109) to yield a finite C(0). The red cross indicates that the
overall ghost momentum is factored out before being set to zero.

We now return to the numerical determination of W(r) from Equation (120). To this end,
we employ the fits to the lattice data of [84] for Δ(q) and Lsg(q), shown in Figures 9 and 11,
respectively, and the SDE solution for F(q) is shown in the left panel of Figure 13. All of
the fits employed are constructed so as to reproduce the correct ultraviolet behavior of
Green’s functions. For the value of the coupling in the asymmetric MOM scheme, defined
in Appendix B, we employ g2 = 4παs, with αs(4.3 GeV) = 0.27, as determined in the lattice
study of [71]. Lastly, for B1 we use the SDE result of Section 8, shown in the right panel
of Figure 13, which reproduces accurately the available lattice data for the ghost–gluon
vertex.

Using the above ingredients in Equation (120) we obtain the W(r) shown as the blue
solid curve in Figure 21. The blue band in Figure 21 represents the error estimate on our
results; the procedures followed to obtain it are described in detail in [126].
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Figure 21. W(r) obtained using the approximation Equation (117) based on the observed planar
degeneracy of the three-gluon vertex in its kernel (blue solid curve) together with uncertainty estimate
(blue band).

12. Displacement Function from Lattice Inputs

In this section, we determine C(r) from the main relation given in Equation (109).
For W(r) we use the result shown in Figure 21, together with the curves for Lsg(r)

from Figure 11, Δ(r) and dΔ−1(r)/dr2 from Figures 9 and 18, respectively, and the F(r) of
Figure 13. The C(r) obtained is shown as a black solid curve in the left panel of Figure 22.
In the same panel, we show as points the estimates of C(r) obtained by using into Equation
(109) the lattice data points of [84] directly, rather than a fit. Note that these data points,
as well as those used for the propagators [85], have been carefully extrapolated to the
continuum, through the methods explained in [73,85]. These methods exploit the H4
symmetry of the hypercubic lattice, and are quite effective at minimizing discretization
artifacts [54,60,62,63,70,71,73,76,80,85]. As a result of this treatment, the systematic errors
are expected to be small. To estimate the uncertainty in the resulting C(r), we combine the
error estimate of W(r), represented by the blue band in Figure 21, with the statistical error
of the lattice data points for Lsg(r) of [84], and neglect the error in the gluon propagator,
which is much smaller than the errors in Lsg and W . Then, a conservative error propagation
analysis was carried out in [126], which takes into account an observed correlation between
the errors in W(r) and Lsg(r); the results of the analysis are the error bars shown in
Figure 22.

C
(r
)

C(r)

C
(r
)

C(r)
C�(r)

Figure 22. Left: Result for C(r) (black continuous line) obtained from Equation (109) using the
W(r) shown in Figure 21, the fits to lattice data for Δ(r) and Lsg(r) are shown in Figures 9 and 18,
respectively, and the SDE solution for F(r) shown in Figure 13. The points are obtained using for
Lsg(r) the data in Reference [84], with error bars denoting the error propagated from Lsg and W . The
green band is obtained by fitting the upper and lower bounds of the points and guiding the eye to the
typical error associated with C(r). Right: The C(r) of the left panel is compared to the BSE prediction
C�(r) (purple dot-dashed and error band) of Figure 7.
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At this point, we quantify the significance of the C(r) obtained above, in comparison
to the null hypothesis result; evidently, in the absence of the Schwinger mechanism, this
latter quantity, to be denoted by C0 in what follows, vanishes identically, namely C0 = 0.
To this end, we first compute the χ2 of our points as

χ2 = ∑
i

[C(ri)−C0(ri)]
2

ε2
C(ri)

, (124)

i.e., the null hypothesis is taken as the estimator for our data. The sum runs over the
nr = 515 indices i such that ri ∈ [0.3, 4.3] GeV, the interval of momenta for which the
systematic error in our calculation of W(r) is best known, and εC(ri) denotes the error
estimate of C(ri). Then we obtain χ2 = 2 630, corresponding to χ2

d.o.f. = 5.11. The
probability PC0 that our result for C is consistent with the null hypothesis s vanishingly
small, given by the formula

PC0 =
∫ ∞

χ2=2 630
χ2

PDF(515, x)dx =
Γ(nr/2, χ2/2)

Γ(nr/2)

∣∣∣∣χ2=2 630

nr=515
= 7.3 × 10−280 . (125)

Naturally, further correlations in the input data, as well as residual systematic errors,
may have escaped the analysis leading to the error estimates shown in Figure 7 for C(r).
Since PC0 changes rapidly with χ2, these unknown errors can substantially alter its value.
As such, Equation (125) is to be understood as meaning that in the absence of additional
uncertainties, the null hypothesis C0 is excluded. Moreover, it is apparent in Figure 22 that
even if the errors had been significantly underestimated, the null hypothesis C0 would still
be unlikely. In fact, even if the errors in all data points for C(r) were 95% larger, i.e., nearly
doubled, we could still discard C0 at the 5σ confidence level.

In the right panel of Figure 22, we compare C(r) to the BSE prediction, C�(r), of
Figure 7, shown as a purple dot-dashed curve and corresponding error band. In that
panel, we observe an excellent qualitative agreement between the two results. The most
noticeable quantitative difference is in the position of the minimum. Specifically, C reaches
the minimum value of −0.36 ± 0.11 at r = 1.93+0.09

−0.06 GeV, while the minimum of C� is
−0.341 ± 0.003 at r = 1.5 ± 0.1.

Nevertheless, it is clear in the right panel of Figure 22 that the BSE prediction lies
within the error estimate of the lattice-derived C(r). In fact, defining a χ2 measure for the
discrepancy between C and C� as

χ2
� = ∑

i

[C(ri)−C�(ri)]
2

ε2
C(ri)

, (126)

we obtain χ2
� = 258.5, which is smaller than the number of degrees of freedom. Then, this

value of χ2
� amounts to a probability of

PC�
=

Γ(nr/2, χ2
�/2)

Γ(nr/2)

∣∣∣∣χ2
�=258.5

nr=515
= 1 − 2.0 × 10−23 , (127)

showing that C� is statistically compatible with the lattice-derived C, with probability
extremely near the unit.

13. Conclusions

The gauge sector of QCD is host to a wide array of subtle mechanisms that are of vital
importance for the self-consistency and infrared stability of the theory. In the present work,
we offered a comprehensive review of the intricate dynamics that account for some of the
most prominent infrared phenomena, such as the generation of a gluon mass through the
action of the Schwinger mechanism, the non-perturbative masslessness of the ghost, and
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the characteristic features induced by this particular mass pattern to the form factors of the
three-gluon vertex.

The SDEs, supplemented by the judicious use of certain key results from lattice QCD,
provide a robust continuum framework for carrying out such a demanding investigation.
In fact, the results obtained from the SDEs are increasingly reliable, passing successfully all
sorts of tests imposed on them. A particularly impressive, and certainly not isolated, case
of such a success has been outlined in detail in Section 6.

Symmetry and dynamics are tightly interwoven; therefore, the information encoded
in the STIs and WIs of the theory is particularly decisive for unraveling basic dynamical
patterns. A striking manifestation of the profound connection between symmetry and
dynamics is provided by the dual role played by the function C(r), i.e., the BS amplitudes
of the massless states composed by a pair of gluons, and the quantity that embodies the
displacement induced to the WIs by the presence of these states.

In our opinion, the determination of C(r) described in Section 12 represents a major
success of the entire set of concepts and techniques surrounding the generation of a gluon
mass through the action of the Schwinger mechanism. Thus, fifty years after the genesis
of QCD, we seem to be closing in on the mechanism that the theory uses for curing the
infrared instabilities endemic to perturbation theory. We hope to be able to report further
progress in this direction in the near future.
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Abbreviations

The following abbreviations are used in this work:

BFM background field method
BQI background-quantum identity
BRST Becchi–Rouet–Stora–Tyutin
BS Bethe–Salpeter
BSE Bethe–Salpeter equation
EHM emergent hadron mass
MOM momentum subtraction (renormalization scheme)
PT pinch technique
QCD quantum chromodynamics
QED quantum electrodynamics
RGI renormalization group invariant
SDE Schwinger–Dyson equation
STI Slavnov–Taylor identity
WI Ward identity

Appendix A. BQIs for the BSE Amplitudes

In this appendix, we use two BQIs in order to relate the displacement functions (C and
C) with their BFM counterparts, i.e., C̃ and C̃, respectively.
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The ghost–gluon vertices IΓμ(r, p, q) and ĨΓμ(r, p, q) are related via a BQI [14], which
reads

ĨΓμ(r, p, q) =

{
[1 + G(q)]gν

μ + L(q)
qμqν

q2

}
IΓν(r, p, q)

+F−1(p)pνKμν(r, q, p) + r2F−1(r)Kμ(r, q, p) , (A1)

where Kμ and Kμν are two auxiliary functions, shown diagrammatically in Figure A1, while
G(q) and L(q) are the form factors of Λμν(q), defined in Equation (12).

−gfamnKμ(r, q, p) =

nμ, a

pm

q r

−gfanmKμν(r, q, p) = gfamngμν +

pν,m

n

μ, a

q

r

Figure A1. The auxiliary functions Kμ(q, r, p) and Kμν(q, r, p) in the BQI of Equation (A1).

Next, we decompose the ĨΓμ(r, p, q) and IΓμ(r, p, q) in Equation (A1) into their regular
and pole parts, using Equations (33) and (53), respectively. Note that the second and third
terms in Equation (A1) do not contain poles in q2; this is so because Kμν(r, q, p) can contain
(longitudinally coupled) poles only in the pν channel, whereas Kμ(r, q, p) has no external
gluon legs (and, hence, no poles).

Then, multiplying Equation (A1) by q2 we obtain

qμC̃(r, p, q) = qμ[1 + G(q) + L(q)]C(r, p, q) +O(q2) . (A2)

Setting q = 0 in Equation (A2) and using Equation (18), we find

C(r,−r, 0) = Z1F(0)C̃(r,−r, 0) . (A3)

Hence, using Equation (62), we obtain the result in Equation (39).
Then, expanding Equation (A2) to first order in q, using Equation (41) for C(r, p, q)

and Equation (63) for C̃(r, p, q), entails

C(r) = Z1F(0)C̃(r) , (A4)

which is one of the main results of this appendix.
A relation identical to Equation (A4) can be obtained for C(r) and its BFM analog,

C̃(r). The starting point of the derivation is the BQI [14]

ĨΓαμν(q, r, p) =

{
[1 + G(q)]gρ

α + L(q)
qαqρ

q2

}
IΓρμν(q, r, p) (A5)

+Kρνα(r, q, p)Pρ
μ(r)Δ−1(r)− Kρμα(p, q, r)Pρ

ν (p)Δ−1(p) ,

where Kμνα(r, q, p) is the function defined in Equation (111).
Then, we note that the only longitudinal poles at q = 0 present in Equation (A5) are

those contained in the IΓαμν(q, r, p) and ĨΓαμν(q, r, p) vertices, with the auxiliary functions
Kανρ(q, p, r) having poles only in the rμ and pν channels. As such, isolating the qαgμν/q2

pole and expanding around q = 0, one eventually finds

C̃1(0, r,−r) = Z−1
1 F−1(0)C1(0, r,−r) = 0 , (A6)

and
C(r) = Z1F(0)C̃(r) , (A7)

where C̃1(q, r, p) and C̃(r2) are defined in analogy to Equations (37) and (41), and we used
Equation (39).
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Appendix B. The Asymmetric MOM Scheme

In this appendix, we provide a brief overview of the asymmetric MOM scheme
[68,71,84,85,241] that we employ throughout this work.

The set of boundary conditions imposed on the renormalized quantities defines the
renormalization scheme employed. Within the MOM schemes [277], propagators assume
their tree-level values at the subtraction point μ, namely

Δ−1
R (μ) = μ2 , FR(μ) = 1 . (A8)

Past this point, the various MOM schemes are differentiated according to the way the
three-point functions are renormalized.

In Landau gauge, a common choice of renormalization prescription is the so-called
“Taylor scheme” [54,60,80,85,207]. This scheme capitalizes on the Taylor theorem [207], i.e.,
the observation that the unrenormalized ghost–gluon vertex in the Landau gauge reduces
to its tree-level form in the soft-ghost configuration,

IΓν(r, 0,−r) = rν . (A9)

The Taylor scheme is defined by requiring Equation (A9) to hold after renormalization
[54,60,80,85,207]. Using Equation (15), this requirement yields Z1 = 1.

Alternatively, in lattice simulations of the three-gluon vertex, it is convenient to
impose a renormalization prescription for its classical tensor structure. For example,
one may choose the classical form factor to reduce to tree-level in the symmetric point,
q2 = r2 = p2 = μ2. This condition defines the “symmetric scheme” [68,71,84].

In the present work, the classical form factor of the three-gluon vertex in the soft-gluon
limit, which is denoted by Lsg(r) and defined in Equation (77), plays a key role. Indeed, it is
the central ingredient in the approximation of the three-gluon vertex given by Equation (78),
which is used in the SDE analysis of the ghost–gluon vertex and kernel in Sections 8 and 11,
respectively. Moreover, Lsg(r) is one of the inputs necessary for the determination of the
displacement amplitude C(r) in Section 12, which signals the activation of the Schwinger
mechanism. As such, it is convenient to employ throughout the scheme where Lsg(r)
is most readily renormalized in lattice simulations, which is the so-called “asymmetric
scheme” [68,71,84,85,241].

The asymmetric MOM scheme is defined by imposing that Lsg(r) reduces to the
tree-level at q2 = μ2, i.e.,

Lsg(μ) = 1 . (A10)

Note that in this scheme the finite renormalization constant of the ghost–gluon vertex is
no longer equal to 1 [85,241]. Instead, the special value of Z1 in the asymmetric scheme is
denoted by Z̃1, and is determined to be Z̃1 = 0.9333± 0.0075 [126], at μ = 4.3 GeV, through
the SDE analysis discussed in Section 8.
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Abstract: In this study, we discuss how iterative solutions of QCD-inspired gap-equations at
the finite chemical potential demonstrate domains of chaotic behavior as well as non-chaotic
domains, which represent one or the other of the only two—usually distinct—positive mass gap
solutions with broken or restored chiral symmetry, respectively. In the iterative approach, gap
solutions exist which exhibit restored chiral symmetry beyond a certain dynamical cut-off energy.
A chirally broken, non-chaotic domain with no emergent mass poles and hence with no quasi-
particle excitations exists below this energy cut-off. The transition domain between these two
energy-separated domains is chaotic. As a result, the dispersion relation is that of quarks with
restored chiral symmetry, cut at a dynamical energy scale, and determined by fractal structures. We
argue that the chaotic origin of the infrared cut-off could hint at a chaotic nature of confinement
and the deconfinement phase transition.

Keywords: confinement; dynamical chiral symmetry breaking; quantum chaos; quantum chromodynamics;
QCD phase transitions

1. Introduction

In the early 1980s, Benoit Mandelbrot pioneered the methodical study and compu-
tational visualization of the iteration of quadratic functions and began to cartograph the
emerging fractal landscape [1], which, subsequently, has been named in his honor as the
Mandelbrot set. With the advance of personal computers during the mid 1980s, fractals
gained broad attention scientifically, as well as in popular science.

In 1986, Leo Kadanoff, in an article with the title “Fractals: Where’s the physics?” [2],
expressed concerned curiosity about an understanding of fractal properties in physics which
goes beyond the identification of fractal dimensions for certain problems. Kadanoff stated
that without a better understanding of how physical mechanisms result in a geometrical
form, it is difficult to trace types of questions with interesting answers. We wish to add that
even with a lack of such a deep understanding, it is, of course, possible to find these kinds
of questions; as mentioned by Mandelbrot: “I was asking questions which nobody else had asked
before, because nobody else had actually looked at certain structures.” [3].

An example for this explorative approach is Hofstadter’s butterfly, which is less pub-
licly known. In 1976, ten years before Kadanoff asked his curious question and four years
before Mandelbrot’s famous work on the quadratic map, Douglas Hofstadter observed
what he called a recursive structure in the computed spectrum of electrons in electromagnetic
fields [4], which was named after the visual appearance as Hofstadter’s butterfly. A first
experimental confirmation of this theoretical prediction was reported nearly twenty years
later in 1997 [5].

There is no strict definition of what a fractal is; however, most people would know
one when they see it. Common descriptors of fractals refer to their non-analycity, self-
similarity, non-linearity, iterative origin, chaotic behavior, and non-integer (Hausdorff and
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other) dimension, to name a few. This paper was motivated by the fact that QCD’s gap
equations are, by definition, highly non-linear and self-consistent. Self-consistency equates
the quantity of interest, or gaps, to a functional which depends on these gaps themselves.
QCD’s gap equations are organized in a hierarchy of inter-dependencies of an infinite
number of n-point Green-functions and it is at the heart of contemporary approaches in
this field to identify methods which reduce this infinite number in a manageable way
while preserving key features of QCD like dynamical mass generation and confinement.
While one can argue how to obtain physically meaningful gap equations, viz. which set
of approximations, truncations, etc., is the most reasonable, the self-consistent nature of
these equations is not debated. Already at the seemingly simple level of two-point Green
functions for a single quark flavor, appropriate truncation schemes allow to one compute
the mass spectrum of confined and deconfined quarks. The same methods allow for the
computation of meson and baryon spectra. Nothing of this is new and, although neither
trivial nor brought to a final solution, it is in a structural sense reasonably well understood
and dealt with in Dyson and Schwinger’s functional approach, which proved to be a
powerful tool to investigate the theories of QCD and QED. We refer to recent reviews for
examples and more detailed information [6–13].

Practitioners in the field of Dyson–Schwinger equations frequently deal with problems
that can arise from their self-consistent nature. As an example, one technique to solve gap
equations is by means of iteration starting from an initial guess. There is no guarantee for
the convergence of such an iteration in general nor that the obtained solution is physical.
In order to cover ’all possible’ solutions in this approach, one would scan over different
initial guesses. Typically, one can ’tame’ diverging iterations by damping the impact of the
iteration itself. Instead of

g = F[g] (1)

one can write
g = αg + (1 − α)F[g] (2)

where g is the gap, F a is functional of the gap, and α a is damping parameter close to but
less than one, thus avoiding strong responses of g to the iteration. One can wonder—we
claim one should—whether it is justified to apply such an algorithm. It looks innocent
in the sense that technically any solution of the original gap equation is a solution of the
damped iteration equation. Nevertheless, at identical initial values, both may provide
different answers and thus one can claim that the damping parameter might bear unwanted
physical significance, as it has been introduced ad hoc. We shall discuss this further in
Section 4. What happens if the gap equation is allowed to iterate itself freely? We found
only one, recently published, paper which asks exactly this question and comes to a clear
conclusion: if the system is strongly coupled, chaos emerges and one can observe an infinite
spectrum of ‘unexpected’ gap solutions with increasing coupling strength [14]. In the paper
we present, we provide a brief explanation why these unexpected solutions actually should
be expected. Further, we employ a model with momentum-dependent gap solutions. In an
iterative and inherently fractal context, this led us on a surprising journey, which answered
not all but plenty of the questions we asked and at the end of which we are left to wonder
whether looking at QCD as a fractal theory might be a key to understand confinement as an
emergent fractal phenomenon. The precise physical significance of our results, if any, are
uncertain at this time, but we hope they are hints at future avenues of study. Rather than
an attempt to offer new quantitative insights, we consider this work as a first qualitative
study to explore features of a QCD-inspired model in a fractal context.

Section 2 briefly motivates how iterative mapping generates new solutions of an equa-
tion while preserving the solutions of the non-iterated ‘seed’ equation; Section 3 reviews
the quark matter model by Munczek and Nemirovski (MN) in an extension for dense quark
matter. We chose it for our exploration as it exhibits confinement and dynamical chiral
symmetry-breaking, while being sufficiently simple to make it well suited for iterative
mapping and analytic treatment. The following Section 4 illustrates and cartographs chaotic
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features which emerge upon iteration of the gap equation. Seeking physical meaning in
such iterative chaos must be performed with caution, as chaos is generally a result of
the iterative solution method rather than directly a result of the equations, but different
solution methods, such as perturbation and lattice approaches, are known to highlight
different aspects of the as yet unknown full solution. Thus, Section 5 is a cautious attempt
to interpret physical meaning into the interplay of the chaotic and non-chaotic structures
we observe. Our study focuses on the structure of the mass pole. The appearance and
disappearance of the mass pole are highly driven by chaotic behavior. Further, the mass
gap itself is allowed to switch between different, usually distinct solutions. To our surprise,
the physical properties of the iterative solutions provide a reasonable picture of how de-
confinement could present itself in a model which possesses a gap equation with a single
solution only. Finally, we estimate how a finite width gluon interaction could affect the
observed behavior of the quark dispersion relation under iteration in Section 6 before we
conclude in Section 7.

2. Self-Consistency and the Emergence of New Roots amongst the Old

We investigate the possible consequences of chaos that appears in iterative solutions
of non-linear and self-consistent equations in the complex domain. For clarity of what we
consider physics and math, we start with the latter and briefly review Mandelbrot’s fractal,

which is obtained by the iteration z
z0=0;n→∞←−−−−−− f (z) with the explicit choice f (z) = z2 + c to

obtain the Mandelbrot set. We chose to use the symbol
z0;n←−− to have a distinguished notation

for the iterative mapping process—specifying the number of iterations n and the initial
value z0—over the equal sign =, which appears in the analytic equation z = z2 + c. It is
worthwile to look at the differences between these two. First, the polynomial equation has
exactly two solutions z1,2 for any given c, which are defined by the roots of the polynomial
P(z) = f (z)− z = z2 + c − z. It is further easily observed that one can determine c for a
desired root z0. For example, P(z0 = 0) = 0 if c = 0.

In the iterative approach, each iteration generates a new polynomial,

f1(z, c) =
(

z z,1←− z2 + c
)
= f (z) = z2 + c,

f2(z, c) =
(

z z,2←− z2 + c
)
= f ( f (z)) =

(
z2 + c

)2
+ c,

...

fm(z, c) =
(

z z,m←−− z2 + c
)
= f ( f (.. f (z)))

= f 2
m−1(z, c) + c, (3)

etc., ad infinitum. There is one trivial but fascinating property of this infinite set of equations
which essentially inspired the presented work. The left-hand side of each of the previous
equations was set to fi(z, c) = z in order to obtain the next iteration fi+1(z, c) = z. It
is thus safe to state that the roots of P1(z, c) = f1(z, c)− z are guaranteed to be roots of
P2(z, c) = f2(z, c)− z = f ( f1(z, c)) + c. As P2(z, c) is a 4th order polynomial, there are two
more roots which, of course, did not appear for P1(z, c), a second order polynomial. The
important lesson to be learned is that for a self-consistent non-linear equation z = f (z),
the iteration z z;n←− f (z) generates a new self-consistent equation. While the solutions of the
non-iterated equation remain a subset of solutions of the iterated equation, the iterated equations
can develop additional solutions.

This is a peculiar, almost awkward situation, if one wishes to assign physical meaning
to the original solutions of the equation f (z) = z. What makes these roots superior with
respect to any of the iterative clones if all, the original and clones, share these very same
original solutions? Evidently, there is an infinite number of (iterated) functions which
share the original roots. Is the original function with only these roots a superior or inferior
function? Is it worth pondering the meaning of the additional roots of iterated clones? Can
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we safely omit them? Do we miss important information when we ignore the duality of the
gap equation as the root-defining equation and mapping rule? We decided to explore and
ponder the possible meaning.

3. The Munczek–Nemirovsky Model

One approach to move towards an understanding of QCD is based on evaluating
QCD’s partition function by testing its response to external sources. This is the Dyson–
Schwinger formalism which results in sets of coupled n-point Green functions. Out of
these, we are interested in the quark propagator, which is obtained from the gap equation

S(p; μ)−1 = i�γ · �p + iγ4(p4 + iμ) + m + Σ(p; μ), (4)

with the self-energy

Σ(p; μ) =
∫ d4q

(2π)4 g2(μ)Dρσ(p − q; μ)

×λa

2
γρS(q; μ)Γa

σ(q, p; μ). (5)

Here, m is the quark bare mass, μ is the quark chemical potential, Dρσ(p − q; μ) is the
dressed gluon propagator and Γa

σ(q, p; μ) is the dressed quark–gluon vertex. This is the
first of an infinite tower of gap equations which, without further approximations, couple
back to this one. Further, there are similar equations for the dressed gluon–propagator and
the quark–gluon vertex. Note that the gap equation is a self-consistent non-linear (in most
cases integral) equation: S−1 = F[S].

Within the Munczek–Nemirovsky model [15], the dressed quark–gluon vertex is
approximated by the free quark–gluon vertex, Γa

σ(q, p; μ) = λa

2 γσ. Gap equations applying
this approximation are referred to as rainbow gap equations. For the dressed gluon
propagator, the model is specified by the choice

g2(μ)Dρσ(k; μ) =

(
δρσ −

kρkσ

k2

)
4π4η2δ4(k). (6)

Due to the δ-function, which in a configuration space corresponds to a constant, this is a
very simplified approximation of the gluon–propagator, specified by the coupling strength
we set to η = 1.09 GeV in accordance with [15]. For non-zero relative momentum k,
the interaction strength in this model vanishes, thus making it super-asymptotically free.
Furthermore, the infrared enhanced δ-function is sufficient to provide for the dynamical
chiral symmetry breaking and confinement, both features of QCD which we wish to address.
Finally, the δ-function effectively turns the integral gap equation into an algebraic equation
which can be solved analytically.

In order to obtain these solutions for the in-medium dressed-quark propagator, one
employs the general solution

S(p; μ)−1 = i�γ · �pA(�p2, p4)

+iγ4(p4 + iμ)C(�p2, p4) + B(�p2, p4). (7)

Here, spatial momentum �p and energy component p4 of the 4-vector p appear as explicitly
distinct degrees of freedom due to the presence of the chemical potential μ. Substitution
into the dressed-quark gap-equation and appropriate tracing over the Dirac γ-matrices
results in three-coupled gap equations, of which two (for A and C) are identical:

A(p, μ) = 1 +
η2

2
A(p, μ)

p̃2 A2(p, μ) + B2(p, μ)
(8)

B(p, μ) = m + η2 B(p, μ)

p̃2 A2(p, μ) + B2(p, μ)
. (9)
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We introduced p̃2 = �p2 + (p4 + iμ)2. In the chiral limit (m = 0), one finds two distinct sets
of solutions; one of them is chirally symmetric and referred to as the Nambu phase,

A(p, μ) =
1
2

(
1 ±

√
1 +

2η2

p̃2

)
(10)

B(p.μ) = 0 (11)

whereas for the other solution, the Wigner phase, the chiral symmetry is broken for
R( p̃2) < η2/4,

A(p, μ) = 2 (12)

B(p, μ) =
√

η2 − 4p̃2. (13)

If the real part R( p̃2) > η2/4, the gap solution of the Wigner phase coincides with the
Nambu solution. Note that these solutions are obtained in the Euclidean metric, but hold in
the Minkowski metric after a simple transformation, p̃2

E → p̃2
M, with p̃2

E = �p2 + (p4 + iμ)2

and p̃2
M = �p2 − (p4 + iμ)2. Due to our interest in particle mass poles, our investigation of

the model is performed in the Minkowski metric. For the next section, however, the specific
metric is not relevant; we will only work with the fact that p̃2 is complex-valued and thus
can be decomposed into a real and imaginary part, viz. p̃2 = z2

R + iz2
I . We chose to label

the real and imaginary part with squared quantities as a reminder that they come in units
of the energy square.

4. Iterative Chaos

Gap Equations (8) and (9) lead to fourth -order polynomial equations with up to four
distinct and complex valued solutions at a given p̃2 for each gap.

Generally, this is the whole solution space one would consider; the only task left is
to identify the one physical solution. However, the self-consistent nature of (8) and (9) is
evident and, according to our reasoning in the previous section, there is a possibility for
iterated functions with the same four and additional solutions.

Before we discuss our analysis, a few comments should be made. Defined by the
contact interaction in a momentum space, we chose a very simple model for the effective
gluon propogator. For dressed-gluon propagators with finite width in momentum space,
the corresponding gap equations turn into integral equations. Thus, the momenta couple
and the simplicity of the MN model, which we take advantage of for this exploration, is
lost. We address this issue in more detail in the last section of this paper.

As sketched in the introduction, for models with a sophisticated non-trivial interaction-
kernel, the iteration is a practical path to find gap solutions. We outlined before that this
leaves us with the possibility that the iteration generates new functions which possess roots
that correspond to solutions of the original gap equation and potentially an infinite number
of additional roots.

We start our iteration from the non-interacting solution (B0 = m, A0 = 1) and treat
p̃2 = z2

R + iz2
I , as one would consider the constant c for the Mandelbrot set z ←− z2 + c. For

the moment, this reduces the number of independent variables from three (�p2, p4, μ) to two.
The result of such an iteration is shown in Figure 1 for the real part of the scalar gap B at
two different bare-quark masses of 10 MeV and 100 MeV, respectively.
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Figure 1. Real part of the scalar gap B after 300 iterations starting from A0 = 1 (top, bottom), and
B0 = m = (10 MeV (top), 100 MeV (bottom)).

Unlike the Mandelbrot fractal, this fractal does not diverge; chaos exhibits in domains
in which the gaps for infinitesimal changes of energy and momentum take vastly different
but finite values in a seemingly random pattern. This fractal region is contained within an
almost perfectly shaped ellipsoid, which we fit accordingly with(

z2
R + z2

R,0

R2
R

)2

+

(
z2

I
R2

I

)2

= 1. (14)

(z2
R,0, R2

R, R2
I ) differs slightly for m = 10 MeV (0.98, 1.26, 0.77) MeV2 and for m = 100 MeV

(0.99, 1.28, 0.80) MeV2. The inner almond shape with the less obvious chaotic behavior is
well approximated by the same function with (1.115, 1.085, 0.310) MeV2 for m = 10 MeV,
and (1.150, 1.100, 0.340) MeV2 for m = 100 MeV. As for the Mandelbrot set, one would be ill
advised to understand these figures as a valid representation of the fractal; the appearance
of the fractal changes with each new iteration. We identify regions with identical periodicity,
ranging from a stable, period one solution in the region outside of the covering ellipse
over a period two region within the almond shape, up to higher and higher periodicity in
between these two regions. This is illustrated in Figure 2 for m = 100 MeV for a periodicity
of up to ten.
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Figure 2. Periodicity of the iterative mass gap solution at m = 100 MeV. The outer, indigo region of
the plot are absolutely stable under iteration, the inner almond shape has periodicity two, and the
area in between exhibits chaos with increasing periodicity. For this plot, areas with periodicity larger
than ten are plotted in black.

Keeping in mind that the analytic gap equations possess four distinct solutions, it
seems interesting that there is an extended stable domain (periodicity one) which favors
one, and only one solution. We follow the gap solution along a vertical path at fixed z2

R and
vary z2

I . For reasons which become more clear at a later stage, we chose z2
R = 0.1 MeV2.

Along this line, one notices that one passes from an outer stable region into an inner stable
region by traversing a small chaotic domain. This is illustrated in Figure 3. As within this
chaotic domain the value of the gap function can change with each iteration, we plot all
obtained values of R(B) over 300 iterations in gray scale according to how frequently a
particular solution has been obtained. Evidently, there is a transition between two distinct
analytic solutions of the non-iterated fourth-order polynomial gap equations. This result
seems remarkable if one recalls how one would usually deal with different gap solutions
for a given model: each solution is understood as a distinct phase, then one examines
the stability of each individual solution and picks the energetically favored solution as
the physical one. Upon iteration, we are lead to a different conclusion. Although each
of the analytic solutions indeed is a solution of the gap equations, only one of them can
be stable upon iteration at a given energy and momentum. However, the stable iterative
solution over a finite range of energies can switch between distinct analytic solutions. It
is further remarkable that the iteratively stable solution is massive (similar to the Wigner
solution) when low and massless (similar to the Nambu solution) at high energy. Amongst
all the possibilities chaos seems to offer, this seems a very reasonable one. While the exact
meaning is unclear, it seems unlikely to be coincidence that iteration favors massive and
massless solutions in precisely the energy regimes where confinement and asymptotic
freedom are required.

The notion of analytic solutions describing different phases, however, is not sup-
ported from an iterative perspective; there is one, and only one, iterative solution to the
gap equation.
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Figure 3. Real part of the mass gap B at z2
R = 0.1 MeV2. The color coding indicates how frequently a

solution has been found over 300 iterations after the first 100 iterations which are sufficient to shape
the fractal as seen. For reference, all analytic solutions to the polynomial gap equations are plotted in
color. Iteration switches from massive solutions (blue) at small I(z2) to bare-mass solutions (green) at
larger values. Except for the chaotic transition domain, the iterative approach picks positive mass-gap
solutions, only. Note, that the chaotic domain has solutions of periodicity of two and higher; it is
truly unstable. Hence, we add a gray scale to measure the frequency of a particular solution over the
final 300 iterations.

Before we go into a further interpretation of what this result implies, we wish to
address a question related to the previous paragraph. Initially, we remarked that our
iteration starts from the non-interacting solution A = 1, B = m. As we try to proceed
as carefully as possible, let us investigate the iterative stability of the four analytic gap
solutions as plotted in the upper panels of Figure 4, where we demonstrate again the real
part of the mass gap. The lower panel of Figure 4 shows the result after 300 iterations of
these algebraic solutions as an initial value. It is safe to say that none of them is stable
under iteration. Further, there is a visibly favored solution at large values of z2

R, which
does not depend on the initial gap that seeded the iteration. From a global perspective, the
fractal keeps the general shape but shows differences for each different seed solution. This
is to be expected and would happen in a similar fashion to the Mandelbrot set if the initial
value was arbitrarily changed.

Figure 4. Upper panel: Solutions of the polynomial gap equations for m = 100 MeV . Each is
plotted on a scale that most accentuates its structure. Solution 1 and 3 (from the left) are stable in
some, mutually exclusive domains under iteration, as illustrated in Figure 3. Lower panel: After
300 iterations, using the corresponding solution of the polynomial gap equations from the upper
panel as initial seed for the iteration. In the outer, non-chaotic domain, all four cases produce nearly
identical results with positive mass gap only.
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Comparing the iterations to the algebraic solutions of the gap equations in the upper
panel of Figure 4, one can graphically identify which of them is stable under the iteration
and in which domain. As observed, this is the case only for the positive mass-gap solutions
1 and 3 from Figure 4, as illustrated in Figure 5. In other words, although the chaotic domain
will vary, the described features of Figure 3, with respect to the analytic gap solutions, do
not critically depend on the chosen initial gap.

Figure 5. Difference between gap solution 1 and 3 (from the left) in the top panel of Figure 4 and
iterative solutions seeded with the non-interacting solution (A = 1, B = m) after 500 iterations. White
domains show no difference between iterative solutions seeded with an analytical model solution
or seeded with the non-interacting solution. Solution 2 and 4 show no agreement anywhere in the
stable domain of periodicity one (not shown).

This iterative preference for one solution over the others seems to illustrate a case
where Equation (1) favors a particular solution, while Equation (2) can be tuned to converge
to any of the four analytic solutions. We take a moment, therefore, to discuss this further.

Precisely at an analytic solution, Equation (1) should be an identity so that with infinite
precision, all of the solutions should stay precisely at their analytical value. However, any
real solution will have at least some error, so that our numerical approximation is only in
the neighborhood of the analytical solution. That is

gn = ga + ε (15)

where ga and gn represent the analytical solution and its numerical approximation, respec-
tively. If we input gn into Equation (1), we obtain

gn = F[gn]

= F[ga] +
δF[g]

δg
|g=ga ε

= ga + F′[ga]ε (16)

Hence, the solution will be stable if and only if the functional’s derivative has a magnitude
of less than 1.

|F′[ga]| < 1 (17)

Equation (2) resolves this so that if α = 1 − Δ then after iteration

gn = ga + (1 − Δ + ΔF′[ga])ε. (18)

In this situation, we can always choose the sign (or phase) of Δ such that 1−Δ+ΔF′[ga] < 1
near a specific analytical solution. Hence, we can make any of the analytical solutions
stable by using Equation (2), but at most one such solution is stable under Equation (1),
and that solution changes abruptly between very massive and nearly massless behavior in
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just the locations where we expect massive and massless behavior of the quarks. Whether
this is a lucky coincidence, an actual effect of chaos, or a hint at something else in the true
and final solution, is yet to be determined.

5. Mass Poles

Up to this point, we refrained from searching for meaning in our study. In spite of the
fact that iterative mass gap solutions result in a large domain of chaotic behavior, which
may or may not hide future surprises, we cannot help but wonder whether the switching
between massive and mass-less gap solutions in the stable domains offers meaning. Before
we go further, we want to recall that MN is considered to be a confining model. This
is observed by the fact that the inverse propagator has no roots in the chirally broken
phase and, therefore, the integration over the four-momentum does not pick up weight
to generate a finite particle number. Hence, although confined quarks generate mass via
chiral symmetry breaking, the absence of a mass pole results in the absence of a dispersion,
viz., there is no explicit relation between specific momenta and energy. For the vacuum
MN model, this is easily understood by the realization that in the Minkowski metric,
p2 + M2(p2) has no real root if at any p2, M2 > −p2 = p2

4 − �p2. This running away of the
mass in the chirally broken phase is exactly what happens in the MN model. However,
as we have demonstrated in the previous section, the iteration erases the distinction
between chirally broken and restored phases and suggests that instead there might be
a discontinuous gap solution, which is confinement-like affected by dynamical chiral
symmetry at small momenta, and at large momenta chirally unconfined-like and chirally
restored. The transition between these domains is characterized by chaotic and unstable
solutions (see Figure 3).

At finite chemical potential, the real poles of the propagator A2(�p2 − (p4 + iμ)2) + B2

are represented by �p2 − p2
4 + μ2 + �(M2) = 0, with M = B/A. We note that the shift of

the pole due to the chemical potential should not be confused with the physical mass pole
of the particle. This becomes evident if one considers an ideal non-interacting gas, with M
being constant and real-valued. For the purpose of this study, we refer to the physical mass
pole, defined by �p2 − p2

4 +�(M2) = 0. From the definition p̃2 = z2
R + iz2

I , we identify the
pole position in our contour plots as z2

R = μ2 and z2
I = −2p4μ for an ideal particle with

constant and real M. This represents a vertical line in our plots, which does not depend on
momentum and measures energy with increasing distance from the real axis. It shifts to
higher z2

R with an increasing chemical potential.
In Figure 6, we trace the physical mass pole in the Minkowski metric by plotting the

logarithm of the quantity
(

p2
3 + M2 − p2

4
)2, which gives zero and hence a large negative

logarithm at the physical mass pole. As the vertical axis does not depend on the mass
(z2

I = 2p4μ), a vertical pole line indicates constant dressed quark masses. We observe the
absence of such a well ordered pole structure within the chaotic domain. Since the vertical
axis is a measure of the particle energy at a fixed chemical potential, one can conclude
that the transition to the massive solution (Figure 3) suppresses quasi-particle behavior in
the infrared domain of the model. Again, we can trace the physical pole indicated by the
vertical line and find z2

R = μ2 − M2, since the pole is found at p2
4 = p2

3 + M2. Following
our elliptic fit of the outer boundary of the fractal domain, this allows one to determine the
critical chemical potential where the infrared energy gap entirely disappears

μC,IR =
√

m2 + R2
R − z2

R,0 . (19)

We find μC,IR ≈ 625 MeV for m = 100 MeV and μC,IR ≈ 540 MeV for m = 10 MeV. At these
chemical potentials and beyond, quarks can be considered as completely chirally restored.
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Figure 6. Natural logarithm of
(

p2
3 + M2 − p2

4
)2 for the iterative solution for μ = (100, 350, 600) MeV

(top down) at quark-bare mass m = 100 MeV. The vertical line shaped by minimal negative values
indicate a physical mass pole, viz. a quasi-particle. In the chaotic domain, this pole structure is
absent, viz. the vertical line (or any distinct pole) pattern is absent. This implies an infrared energy
gap, below which quarks show no quasi-particle properties. As the chemical potential increases, the
quasi-particle pole line moves to the right and simultaneously decreases the gap, viz., the gap region
without a pole traces the outer shape of the fractal. Once the chemical potential is sufficiently large,
the gap closes entirely. Note that the absence of a mass pole does not imply that there is no mass gap
solution, as illustrated in Figure 3.

In order to estimate when mass-pole states can be occupied, we determine at which
chemical potential the energy p4 and the Fermi energy or chemical potential μ turn equal,
that is, when z2

I = μ2 on the elliptic boundary of the fractal at the position of the physical
mass pole with M = m. We choose this scenario, as this is the critical potential starting
from where the particle energy is larger than the chemical potential and thus large enough
to populate quasi-particle states. This is the case when(

μ2 − m2 + z2
R,0

R2
R

)2

+

(
μ2

R2
I

)2

= 1 , (20)

and holds for the light quark with m = 10 MeV at μm ≈ 359 MeV, for the heavy quark with
m = 100 MeV at μm ≈ 432 MeV.

Although this is not a rigorous statement, one can roughly relate the critical chemical
potential for the transition from a chirally broken mass into the restored phase to the
in-vacuum dressed-quark mass. In our case, the situation is a bit different. We estimate
a hypothetical chirally broken quark vacuum mass based on the previous estimate of
the critical potential for the complete disappearance of the infrared gap by setting them
approximately equal. Relating μm as the onset of a deconfined chirally restored quark
phase with an estimate of the constituent quark mass seems to provide rather reasonable
results in comparison to other model calculations. This is interesting, considering that in
the MN model, the vacuum mass at zero 4-momentum is defined by the coupling strength
η, which is of the order of 1 GeV.

It is noteworthy that our simple approach reproduces quantities related to the effective
constituent masses at reasonable values. We state explicitly that in this model, constituent
masses are nowhere realized for a physical particle, viz. an entity with a mass pole of that
magnitude. We can compare the light quark critical chemical potential μm ≈ 359 MeV with
the deconfinement critical potential obtained within the MN model in a Euclidean metric
with a value of 300 MeV [16] or with subsequent work based on a widened version of the
effective gluon propagator [17], which predicts deconfinement at a chemical potential of
380 MeV. There is a satisfying agreement of these values with ours. We point out though,
that both of these models are defined within a different metric, as slightly different bare
quark masses and, most importantly, are based on entirely different assumptions. While
the two previous papers employed distinct gap solutions and compare the pressure of
the corresponding mass-less Wigner and massive Nambu phase, our approach results in
only one gap solution which exhibits a transition from the Nambu to the Wigner phase
through a chaotic domain, as depicted in Figure 3. Our quarks are either bare-mass quarks
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with poles or entities with a chaotic mass function, or a dressed quark mass different from
the bare mass with no associated pole. In the latter case, there is a chaotic transition from
dressed quark masses to bare quark masses with increasing energy.

6. Finite Interaction Width

We begin the final section of this paper with a plot of the particle pole in an energy
momentum space which we obtain by transforming (z2

R, z2
I ) to (p3 = |�p|, p4) coordinates

under explicit choices of the chemical potential, as noted in Figure 7. Although this switch
in representation does not provide additional information, we find it instructive to provide
an actual dispersion relation obtained from the iterative approach. In this example, at a
chemical potential of 700 MeV, no chaotic behavior is visible and the dispersion is exactly
that of a free quark at bare-mass 100 MeV. With the decreasing chemical potential chaos,
there emerges, at energies higher than that of the expected (now absent), the free particle
dispersion. The actual dispersion branch is cut clean at some critical value (as we discussed
in the previous section), thus illustrating our interpretation of the fractal boundary as the
cause for a dynamical infrared cutoff, below which quarks are mass-pole-free.

Figure 7. Plotted is the logarithm of the mass-pole condition log(|�p2 − p2
4 + μ2 + �(M2)|), which

shows a dispersion relation with distinct, chaos-induced infrared cut-off. With increasing chemical
potential (m = 0.1η; μ = (0.2, 0.4, 0.7)η from left to right), the infrared cut-off decreases and
eventually disappears. With increasing widening (σ = (0.00, 0.01, 0.02)η from top to bottom), chaotic
domains blur but the observed IR cut-off remains.

Presently, we address a last question which relates to the fact that the MN model is
based on the very particular choice of the effective gluon propagator as a δ-function in
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the four-momentum space. This is the reason that we could easily perform the presented
study based on this Ansatz and the subsequent decoupling of momenta, which allows one
to iterate point-wise for any given four-momentum without coupling to other momenta.
This might raise the suspicion that momentum coupling could destroy the fractal structure
we observed. In order to keep the simplicity of the gap equations but still obtain an idea
about the stability of the emergent fractal, we averaged each point in our plane after each
iteration step and thus mimicked some kind of momentum coupling. The averaging is
based on Gaussian weights around a given point according to

g2Dμν(k) = 3π4η2δμν exp(k2/w2)∫
exp(k2/w2)d4k

, (21)

where w is the width of the Gaussian. To further simplify, we assumed that the widen-
ing only happens in the direction of momentum and energy, i.e., there is no widening
perpendicular to the momentum.

As observed in Figure 7, the separation into the chaotic pole-free and non-chaotic
mass-pole domains remains, even when we change the momentum dependence of the
gluon from a delta function to a Gaussian with a half width as much as 0.02 times the
gluon mass. We find numerical evidence that this feature remains even with a width
as much as 2% of the gluon mass, ≈ 20 MeV. This corresponds to a spatial width of
about 10 fm, which is roughly one order of magnitude larger than the size of a proton.
Based on this—certainly simplified—treatment of momentum coupling, we conclude that
the statements we make in this paper may indeed survive a more complete treatment
involving self-interactions with globally coupled momenta—which has been our main
concern, prompting this final analysis.

7. Conclusions

As we have demonstrated, a strictly iterative solution of the MN gap equations results
in fractal gap structures which can be characterized by the existence of three qualitatively
very different, yet co-existing domains of a single and unique gap solution: a bare-mass
quark quasi-particle domain with physical mass poles extending infinitely into the ul-
traviolet, a dressed-mass quark domain without mass poles and hence no quasi-particle
interpretation in the infrared, and a chaotic domain of transition between the first two
phases. Remarkably, the two non-chaotic domains correspond to distinct analytic solutions
which would usually represent individual phases with either dynamically broken or re-
stored chiral symmetry. The fractal approach offers an alternative to this separation which
is rooted in the iterative nature of the gap equation.

Further, it is noteworthy that the iterative mass gap solution is always positive in the
smooth, viz. non-chaotic domain of the fractal. The appearance of a chaotic boundary
between two qualitatively different domains results in interesting properties:

(I) The iterative approach provides an ultraviolet cut-off for the massive and mass-pole-
free Nambu solution, as this solution appears only within the elliptic region of the
(z2

R, z2
I )) plane. Thus, the approach avoids the appearance of an infinitely increasing

dressed-quark mass with increasing momentum and energy. In the MN model, this
running mass results in the absence of mass poles for the massive gap solution and
thus relates to confinement.

(II) It provides an infrared cut-off for the bare-quark mass Nambu solution and thus
ensures that quasi-particle states are not populated at a small chemical potential,
although the quark can virtually exist as a quasi-particle with well defined dispersion.

(III) Both cutoffs more or less coincide (as observed in Figure 5), although there is a transi-
tion region which is chaotic in nature. The resulting effective Nambu-UV/Wigner-IR
cutoff depends dynamically on energy, momentum, bare mass, and chemical potential.
As a side note, we add that plotting gap solutions in the (z2

R, z2
I ) plane removes much

of the dynamical arbitrariness and leaves the ratio of the bare mass m and coupling
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constant η as the only ’true’ degree of freedom; viz., a change of the chemical poten-
tial μ would rescale the plot but cause no qualitative change, whereas plots such as
Figure 1 indeed demonstrate ’the’ gap solution at an arbitrary chemical potential.

(IV) Sufficiently large chemical potential bare-quark mass-pole states will form at energies
which can be populated; thus, physical quarks can exist as quasi-particle excitations.

A mechanism with these properties can be interpreted as a deconfinement mechanism.
The appearance of one, and only one, iterative solution of the MN gap equations bears a
certain elegance. First, it is by the very fact that there is only one gap solution with expected
properties, being the existence of only a positive mass gap, asymptotically restored chiral
symmetry, and the absence or appearance of physical mass poles. Next, it builds on
distinct solutions which one would obtain in the non-iterative approach but provides a new
meaning by slicing them into a single new solution with the aforementioned properties.

A simple treatment of a widened, δ-like gluon interaction indicates that momentum
coupling blurs chaotic domains but does not necessarily change the qualitative results
we describe if the widening is moderate. As this study is an exploration and qualitative
in nature, we look forward to further analyses of this perspective on understanding the
confinement and the deconfinement transition as highly non-linear and, to a certain extent,
with possibly chaotic phenomena.
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Abstract: This paper review the modelling efforts regarding Generalised Parton Distributions (GPDs)
using continuum techniques relying on Dyson–Schwinger and Bethe–Salpeter equations. The defini-
tion and main properties of the GPDs are first recalled. Then, we detail the strategies developed in
the last decade in the meson sector, highlighting that observables connected to the pion GPDs may be
measured at future colliders. We also highlight the challenges one will face when targeting baryons
in the future.

Keywords: generalised partons distributions; continuum Schwinger methods; lightfront wave functions

1. Introduction

Since the early days of QCD and the major result of Bjorken scaling [1] followed
by scaling violations [2–4], hadron structure has been one of the main topics of study
regarding the strong interaction. In the 1990s, the family of matrix elements connected to
the structure of hadron went from uni-dimensional, Parton Distribution Functions (PDFs)
and Electromagnetic Form Factors (EFF), to multi-dimensional with the introduction of
Generalised Parton Distributions (GPDs) [5–7] and Transverse Momentum Dependent
PDFs (TMDs) [8,9]. The former are connected to the 2D+1D picture of the nucleon [10,11]
while the TMDs provide a 3D picture of momentum space. Both are defined from a matrix
element of the type

〈pout|O
(−z

2
,

z
2

)
|pin〉, (1)

where, in the case of GPDs, the distance z is lightlike (z2 = 0) and the momentum transfer
Δ = pout − pin is finite. For TMDs, the distance z is off the lightcone (z2 �= 0) but no
momentum transfer is allowed (Δ = 0). They both generalise PDFs for which z2 = 0
and Δ = 0. Similarly, TMDs and GPDs were latter unified as two distinct limits of
Generalised Transverse Momentum Dependent PDFs (GTMDs), for which both z2 �= 0 and
Δ �= 0 [12–17]. GTMDs are thought to provide a 5D picture of hadrons as illustrated in
Figure 1.

A wealth of theoretical studies has been dedicated in the last decade to GPDs, TMDs
and GTMDs. Since it remains unclear whether some processes could be sensitive to GTMDs
(despite some pioneering studies [18]), TMDs and GPDs stand at the core of experimental
studies of current and future facilities. The 12 GeV upgrade of the electron beam of the
Jefferson Laboratory facility (JLab 12) has been completed. JLab 12 is thus expected to
deliver a wealth of very precise data that can be connected to GPDs and TMDs in the
forthcoming years (and in fact data release has already started, see, e.g., [19,20]), mostly in
the so-called valence region. In the next decade, the experimental community is expected
to move from fixed target to collider experiments, with the planned electron-ion colliders
both in the US (EIC) and China (EicC).
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GTMD (x, k⊥,Δ⊥)

TMDs (x, k⊥)

PDF (x)

GPDs (x, ξ = 0,Δ⊥)

5D

3D

1D

Δ⊥ → 0
∫

d(2)k⊥

∫
d(2)k⊥ Δ⊥ → 0

Figure 1. Family of distributions encoding hadron structure, where x is the momentum fraction along
the lightcone carried by the active parton, k⊥ its transverse momentum (the Fourier conjugate of z⊥).
Δ⊥ is the transverse momentum transferred between the initial and final hadron state. At this stage,
the integrals over k⊥ should be understood as formal only, and need to be regularised, both from
TMDs to PDFs [8,21,22] and from GTMDs to GPDs [23]. This picture is valid for vanishing skewness
ξ, i.e., no momentum transfer along the lightcone is allowed.

In parallel with experimental facilities, ab initio computational methods have made
major progress in the last decade. Lattice-QCD is now able to compute data related
directly to the x-dependence of distributions [24–26] instead of solely the first few Mellin
moments. This breakthrough has triggered many computing efforts, attempting to perform
computations of Distribution Amplitudes (DA), PDFs and GPDs (see, e.g., [27–29]). These
steps are very promising but many more remain to be taken before precision studies can be
performed on the lattice.

In parallel, non-perturbative studies using continuum techniques such as Bethe–
Salpeter equations have also been developed in the past decade, targeting the x-dependence
of hadron structure, after the computations of local operators (mostly the EFFs). The main
developments came from the use of spectral representations (or Nakanishi representa-
tions [30,31]) and analysis of the singularities in the complex plane (see the recent exam-
ple [32,33]). The breakthrough in the computation of QCD three-point functions [34–36]
is also very promising in terms of the ability to reach realistic computations of hadron
structure and there interpretation (see, for instance, the case of the gluon mass genera-
tion through the Schwinger mechanism [37]). Indeed, continuum techniques based on
Dyson–Schwinger and Bethe–Salpeter equations offer a unique window to understand
the emergent phenomena in QCD through their ability to select subsets of QCD effects
in systematic ways which carefully guarantee that underlying QCD symmetries remain
fulfilled.

In this review article, we will focus on GPDs. The latter have already been the main
topic of several theoretically oriented [38,39] and phenomenologically oriented [40] review
papers and lectures (see, for instance, [41]). Here, we will highlight the efforts in the
last decade regarding their computations using continuum formalisms, and thus partly
updating them [42]. In Section 2, we will remind the readers the formal definition of GPDs,
the properties they should obey from QCD, and explain why phenomenological extractions
are challenging. In Section 3, we will discuss the efforts which have been undertaken to
compute these GPDs in the meson sector, highlighting the successes and challenges. Then,
in Section 4, we will review the pioneering work in the baryon sector, and highlight the
future possibilities offered by the continuum formalism.
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2. Generalised Parton Distributions

2.1. Formal Definitions and First Properties

Introduced in the 1990s in three distinct series of papers [5–7,43,44], GPDs can be
formally defined as off-diagonal matrix elements of a non-local operator in momentum
space. The operator is evaluated at light-like distances such that, in the case of the pion,
GPDs are defined as:

Hq
π(x, ξ, t) =

1
2

∫ dz−

2π
eixP+z−〈p2|ψ̄q

(
− z−

2

)
W

(
− z−

2
,

z−

2

)
γ+ψq

(
z−

2

)
|p1〉, (2)

Hg
π(x, ξ, t) =

1
P+

∫ dz−

2π
eixP+z−〈p2|G+μ

(
− z−

2

)
W

(
− z−

2
,

z−

2

)
G+

μ

(
z−

2

)
|p1〉, (3)

where ψq is a quark field of flavour q and Gμν is the gluon field strength. The + component
indicates the lightcone direction following the standard conventions of:

z± =
1√
2
(z0 ± z3), z⊥ = (z1, z2), (4)

z2 = 2z+z− − z2
⊥. (5)

The average momentum of the hadron P and the momentum transfer Δ are conveniently
defined as:

P =
p1 + p2

2
, Δ = p2 − p1. (6)

This allows us to simply express the variables (ξ, t) whose definition is not manifest
in Equations (2) and (3) through:

ξ = − Δ+

2P+
, t = Δ2. (7)

The definition domain of GPDs in x and ξ is illustrated in Figure 2. Finally, let us mention
that W is the Wilson line defined as:

W
(
− z−

2
,

z−

2

)
= P exp

[
ig

∫ z−
2

− z−
2

dζ−A+(ζ−)

]
(8)

where P is the path ordering between −z−/2 and z−/2 and g is the QCD coupling.
Because of its richer spin structure, more GPDs are necessary in order to parametrise

the off-forward matrix element of the nucleon:

1
2

∫ dz−

2π
eixP+z−〈p2|ψ̄q

(
− z−

2

)
γ+W

(
− z−

2
,

z−

2

)
ψq

(
z−

2

)
|p1〉

=
1

2P+

(
Hq(x, ξ, t)ū(p2)γ

+u(p1) + Eq(x, ξ, t)u(p2)
iσ+νΔν

2M
u(p1)

)
, (9)

for quarks and

1
P+

∫ dz−

2π
eixP+z−〈p2|G+μ

(
− z−

2

)
W

(
− z−

2
,

z−

2

)
G+

μ

(
z−

2

)
|p1〉

=
1

2P+

(
Hg(x, ξ, t)ū(p2)γ

+u(p1) + Eg(x, ξ, t)u(p2)
iσ+νΔν

2M
u(p1)

)
, (10)

for gluons. Quark and gluon polarised distributions can also be defined for the nucleon
(see, e.g., [38]). However, since we do not use them in the following, we do not introduce
them here. Similarly, transversity GPDs are not introduced in this review paper.
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-1
x

DGLAP

DGLAP

ERBL

ERBL

GDA

GDA

Figure 2. The GPD definition domain in x and ξ. The so-called DGLAP (or outer) region for which
|x| ≥ |ξ| is shaded in pink, while the ERBL (or inner) region for which |x| ≤ |ξ| is shaded in green.
The ERBL region can be extended for |ξ| ≥ 1 (lighter green) where GPDs can be related to Generalised
Distribution Amplitude [45–48] through analytic continuations thanks to the crossing symmetry.

The off-forward nature of GPDs triggers interesting consequences, as the incoming
and outgoing partons carry a momentum fraction expressed as x ± ξ. Several cases can
be drawn, as illustrated in Figure 2. The complete GPD support draws a square such that
(x, ξ) ∈ [−1, 1]2 (see ref. [49] for the derivation of the GPD definition domain). Within
this domain, two types of regions can be highlighted: the outer one for which |x| ≥ |ξ|,
and the inner one where |ξ| ≥ |x|. The former is called the DGLAP region (Dokshitzer,
Gribov, Lipatov, Altarelli, Parisi) while the latter is labelled the ERBL region (Efremov–
Radyushkin–Brodsky–Lepage). This distinction comes from the fact that the two regions
present different physical interpretations when considering probed partons. Indeed, the
incoming and outgoing partons momentum fraction can be expressed as x ± ξ. Thus, in the
quark sector, depending of the sign of this combination, one probes a quark or an antiquark.
Figure 3 illustrates the different possibilities highlighting the specificity of the inner region
with respect to the outer ones. There, the interpretation yields an exchange of a pair of
quark and anti-quark in the t channel. On the other hand, the outer region can be seen
as probing an active quark by taking it out and putting it back within the nucleon. These
different interpretations have a major impact as the evolution equations will significantly
vary between the two regions, hence the two names from famous evolution equations,
DGLAP [2–4] and ERBL [50–53].

The discussion of evolution properties leads us to mention the symmetry of GPDs
regarding the lightcone momentum fractions. Pion and nucleon GPDs present interesting
symmetry properties: they are even in ξ because of time reversal invariance (see, e.g., [39]
for a proof and list of exceptions for higher spin hadrons). In addition, gluon GPDs are
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even in x within our definition, while quark GPDs have no specific x-parity. Nevertheless,
x-even and x-odd combinations are often introduced as:

H−
q = Hq(x, ξ, t) + Hq(−x, ξ, t), (11)

H+
q = Hq(x, ξ, t)− Hq(−x, ξ, t), (12)

where + and −, respectively, mean singlet and non-singlet combinations. Note that in case
of multiple quark flavour, the real singlet component has to be summed over the flavours.
These combinations are often introduced as the singlet combination mixes with gluons
under evolution, while the non-singlet one does not.

x x

1 x

x + x

x  

x+ x

x 1
Figure 3. The DGLAP or ERBL regions and their different interpretations in terms of partons. From
left to right, one goes through the antiquark interpretation of the probed parton. Then, in the inner
region −ξ < x < ξ, one recovers the ERBL region and its interpretation as the “extraction” of a
quark–antiquark pair from the hadron. Finally, on the right-hand side, ξ < x < 1 and we recover the
quark interpretation of the DGLAP region.

2.2. Reduction to Unidimensional Distributions

When taking the forward limit of the matrix elements defined in (2) and (3), i.e., when
no momentum transfer is allowed, one recovers the standard PDFs as:

Hq(x, 0, 0) = q(x)θ(x)− q̄(−x)θ(−x), (13)

Hg(x, 0, 0) = xg(x)θ(x)− xg(−x)θ(−x), (14)

where θ is the Heaviside function. Through the forward limit, PDFs have been a key
ingredient in GPD modelling strategies since they were introduced [54–59].

GPDs are also connected with EFFs through integration over the x variable. The
quark flavour q contribution to the Dirac form factor F1 and the Pauli form factor F2 can be
obtained from GPDs as: ∫

dx Hq(x, ξ, t) = Fq
1 (t) (15)∫

dx Eq(x, ξ, t) = Fq
2 (t) (16)

Until now, the EFFs sum rules presented here have been one of the main constraints applied
to model the t-dependence of GPDs.

In the pion case, one can highlight an additional property. In the chiral limit, the pion
quark GPD can be related to the pion distribution amplitude [46,60]:

H−
q (x, 1, 0) = ϕ

(
1 + x

2

)
, (17)

H+
q (x, 1, 0) = 0. (18)

This property is usually labelled “soft pion theorem” in the literature. As we mention
above, since the singlet and gluon GPDs mix under evolution, Equation (18) implies that
the gluon GPD should also vanish in the chiral limit for (ξ, t) → (1, 0).
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2.3. Interpretation in Coordinate Space

GPDs are naturally defined in momentum space, as the momentum transfer Δ is the
relevant experimental variable to be measured. Nevertheless, one can also define GPDs
in the so-called impact parameter space (see, e.g., refs. [10,11]), by introducing the impact
parameter b⊥. The latter measures the distance from the centre of +-momentum within the
nucleon and is connected to the momentum variable as being the Fourier conjugate of the
vector D[11]:

D =
p2

1 − ξ
− p1

1 + ξ
. (19)

One can then show that a 1+2D probability density ρ(x, b⊥) can be recovered through the
so-called Hankel transform of the GPDs for ξ = 0. In this limit, D⊥ = Δ⊥ and

ρ(x, 0, |b⊥|) =
1

4π

∫ ∞

0
d
(

Δ2
⊥

)
J0(|Δ⊥||b⊥|)H(x, 0, t), (20)

where J0 is the standard Bessel function of the first kind of order 0. Note that the impact
parameter b⊥ should not be confused with the Fourier conjugate of k⊥ also labelled b by
the TMD community.

An illustration of this probabilistic interpretation is given in Figure 4 and comes from
model computations (see ref. [60] for details). In principle, it is also possible to extract these
3D distributions from experimental data (see, for instance, [61] for a recent example on the
nucleon). However, three main difficulties arise:

• Collinear factorisation allows one to interpret exclusive processes in terms of GPDs
for values of t much smaller than the typical hard scale of the system;

• Yet, performing the Fourier transform requires to integrate over t up to infinity, intro-
ducing model-dependent extrapolations;

• Furthermore, no experimental data is available for vanishing values of ξ, meaning
that additional extrapolations generating more model biases are required.

These difficulties hardly alter the appealing possibilities offered by GPDs to map in 3D
the average position of quarks and gluons within hadrons. This explains the enthusiasm
in the field towards placing GPDs at the core of the physics cases of running or planned
experimental facilities, such as the US [62] and Chinese [63] electron ion colliders.

0.
0.5
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�0.5
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0.5
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�
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0.5

1.
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q �x, b
�
�

M2

x

Figure 4. 3D picture of a model computation of the pion quark GPD in the impact parameter space.
Figure from [60].
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2.4. Connection with the Energy-Momentum Tensor

The ability to perform the 1+2D tomography of the nucleon is not the only exciting
feature of GPDs. Indeed, they also allow a unique access to the hadrons’ Energy-Momentum
Tensor (EMT). Labelling the EMT operator T, one can parametrise the associated matrix
element for the pion as [64]:

〈p2|Tμν
a |p1〉 = 2PμPν Aa(t) +

1
2

(
ΔμΔν − ημνΔ2

)
Ca(t) + 2M2ημνC̄a(t). (21)

where a is a generic label for quark flavour and gluon contributions, and M is the hadron
mass. In the literature, the form factors A, C and C̄ may be designated as gravitational
form factors. Additional form factors are required for describing the nucleon EMT matrix
element [65,66]:

〈p2|Tμν
a (0)|p1〉 = ū(p2)

{
PμPν

M
Aa(t) +

ΔμΔν − ημνΔ2

M
Ca(t) + MημνC̄a(t)

+
i(Pμσνρ + Pνσμρ)Δρ

4M
[Aa(t) + Ba(t)] +

P[μiσν]ρΔρ

4M
Da(t)

}
u(p1) , (22)

where we define the anti-symmetric combination a[μbν] = aμbν − aνbμ. These form factors
of the EMT have to obey specific constraints, originating from conservation laws [5,67–69]:

∑
f

Aq f (0) + Ag(0) = 1 (23)

∑
f

Bq f (0) + Bg(0) = 0 (24)

∑
f

C̄q f (t) + C̄g(t) = 0 (25)

where ∑ f is the sum over the considered quark flavours. Some of the EFF can be related to
GPDs through the computation of the first-order Mellin moments:∫ 1

−1
dx xHq(x, ξ, t) = Aq(t) + 4ξ2Cq(t), (26)∫ 1

−1
dx xEq(x, ξ, t) = Bq(t)− 4ξ2Cq(t). (27)

Consequently, two out of three EMT form factors are connected to GPDs in the pion case,
while three out of five are in the nucleon one. The form factor C̄ remains out of reach for
leading twist distributions. In the nucleon case, the form factor D can be related to the
nucleon axial form factor and thus to the polarised GPDs [70,71].

Within our conventions, the gluon EMT form factors are related to the gluon GPDs in
a very similar way, with a modification of the power of the Mellin moment (consistently
with the forward limit of our gluon GPDs):∫ 1

−1
dx Hg(x, ξ, t) = Ag(t) + 4ξ2Cg(t), (28)∫ 1

−1
dx Eg(x, ξ, t) = Bg(t)− 4ξ2Cg(t). (29)
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From these connections between GPDs and the EMT, one can derive the famous Ji
sum rule [5], allowing one to decompose the total angular momentum of the nucleon into
contributions carried by each quark flavour Jq and gluons Jg:

2Jq = Aq(0) + Bq(0) =
∫ 1

−1
dx x(Hq(x, ξ, 0) + Eq(x, ξ, 0)), (30)

2Jg = Ag(0) + Bg(0) =
∫ 1

−1
dx (Hg(x, ξ, 0) + Eg(x, ξ, 0)). (31)

The A and B form factors are not the only ones providing an interesting interpretation.
The C and C̄ ones can be interpreted in terms of pressure and shear forces distributions
within the hadrons [64,71–73]. For simplicity, we will only discuss here the quark and
gluon contributions to the isotropic pressure pq and pg and the pressure anisotropy sq and
sg. They depend on the form factors C and C̄ in the Breit frame through [71]:

pa(�r) = M
∫ d3�Δ

(2π)3 e−i�r�Δ
[

2t
3M

Ci(t)− C̄i(t)
]

, (32)

sa(�r) =
4M
r2

∫ d3�Δ
(2π)3 e−i�r�Δ t−1/2

M2
d2

dt2

[
t5/2Ci(t)

]
. (33)

We highlight that the index a stands again for quark flavour and gluon contributions
and�r is a 3D spatial vector. One can readily note from Equation (33) that the pressure
anisotropy is independent of C̄ and thus can be fully extracted from GPDs. In addition,
from Equation (32), one can realise that the total isotropic pressure is also independent of
C̄ thanks to Equation (25), and thus, one can in principle also extract it from GPDs. Finally,
let us mention that this discussion is valid both for the pion and the nucleon.

Before concluding this section, we would like to highlight that in the case of the pion,
there is an additional constraint on the EMT form factors, thanks to the soft pion theorem
of Equation (18). Indeed, at vanishing t in the chiral limit, one has:

0 =
∫ 1

−1
dx xHq

S(x, 1, 0) = Aq(0) + 4Cq(0), (34)

connecting the normalisation of Cq and Aq.
Finally, let us stress that Hq

S vanishes only if the gluon GPD also vanishes due to mixing
of the two under evolution. Since the soft pion theorem is expected to be scale-independent,
then Equation (34) can also be written for gluons.

2.5. Double Distribution Representation

The sum rules already encountered previously and connecting GPDs to the EFF and
EMT Form Factors can in fact be generalised to higher-order Mellin moments by looking at
the tensorial structure of local off-forward operators.

2.5.1. Local Operators Analysis

We define the m-th Mellin moment Mm of the GPD as:

Mm(ξ, t) =
∫ 1

−1
dx xmH(x, ξ, t). (35)

Through straightforward computations (see, e.g., [41]), one can connect these Mellin mo-
ments to local twist-two operators (we remain with the lightcone gauge and the pion
case here):

Mm(ξ, t) =
1

2(P+)m+1 〈p2|ψ̄q(0)γ+
(

i
←→
∂ +

)m
ψq(0)|p1〉,
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where we use ←→
∂ μ =

1
2

(−→
∂ μ −←−

∂ μ
)

. (36)

The Lorentz structure of the twist-two local operators Oμμ1...μm is given as:

Oμμ1...μm = ψ̄q(0)γ{μi
←→
∂ μ1 . . . i

←→
∂ μm}ψq(0), (37)

where {. . . } indicates that the Lorentz indices are symmetrised and traceless. The parametri-
sation of the associated matrix elements is thus given as:

〈p2|ψ̄q(0)γ{μi
←→
∂ μ1 . . . i

←→
∂ μm}ψq(0)|p1〉

= P{μ
m+1

∑
i=1

Pμ1 . . . Pμi−1 Δμi . . . Δμm}Aq
i,m(t) + Δ{μΔμ1 . . . Δμm}Cq

m+1(t), (38)

in the pion case. Ai,m and Cm+1 are called generalised form factors, and only depend on t
and μ2. Moreover, due to discrete symmetries, only even powers of ξ contribute, and the
Mellin moments of the pion GPD can be written as:

Mm(ξ, t) =
[ m

2 ]

∑
i=0

(2ξ)2i Aq
i,m(t) + mod(m, 2)(2ξ)m+1Cm+1(t), (39)

where [. . . ] designates the floor function and mod(2, m) vanishes if m is even, and is 1
otherwise. Equation (39) is commonly labelled the polynomiality property of GPDs [74,75].
It generalises the sum rules between GPDs, EFFs and EMT form factors, already highlighted
in Equations (15) and (26) in the case of the pion. For the nucleon, additional tensorial
structures allow one to generalise Equations (15) and (27).

2.5.2. The Radon Transform and the Specific Role of the D-Term

The Cm+1 generalised form factors play a specific role in the decomposition of the
GPD matrix element. They are the moment of an x-odd generating function called the
D-term (we highlight that the D-term D(y, t) is connected to the EMT FF C(t) and not D(t);
this notation discrepancy is unfortunate but standard in the contemporary literature) and
defined through: ∫ 1

−1
dy ymD(y, t) = (2)m+1Cm+1(t). (40)

The proof of existence of the function D is not simple and related to the Hausdorff moment
problem [76,77]. In the following, we assume that D exists and is unique. The polynomiality
property becomes:

[ m
2 ]

∑
i=0

(2ξ)2i Aq
i,m(t) =

∫ 1

−1
dx xmH(x, ξ, t)− ξm+1

∫ 1

−1
dy ymD(y, t). (41)

By rescaling the variable y → x/ξ for ξ > 0, one obtains:

[ m
2 ]

∑
i=0

(2ξ)2i Aq
i,m(t) =

∫ 1

−1
dx xm

[
H(x, ξ, t)−D

(
x
ξ

, t
)
I−ξ≤x≤ξ

]
, (42)

where I−ξ≤x≤ξ is 1 for x ∈ [−ξ; ξ] and 0 otherwise. On top of telling us that the D-term is
a function of the ratio x/ξ, Equation (42) highlights that the D-term has support only in
the ERBL region. Moreover, the typical polynomial structure of degree n of the nth Mellin
moments of H − D is known in mathematics as the the Lugwig–Hegalson consistency
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condition. As shown by Hertle [78], this indicates that H − D is in the range of the Radon
transform R [79,80]. As a consequence, one can define F such that:

H(x, ξ, t)− I−ξ≤x≤ξ D
(

x
ξ

, t
)
=

∫
Ω

dβdα δ(x − β − αξ)F(β, α, t) (43)

where Ω = {(β, α) | |α|+ |β| ≤ 1}. Originally, F was introduced as a Double Distribution,
independently by D. Mueller [6] and A. Radyushkin [7], while the D-term was originally
introduced as a possible complementary tensorial structure to the DD F [81]. F was later
identified as the Radon amplitude of the GPDs in ref. [82], and the formalism was further
developed in ref. [83]. Finally, Equation (43) can be straightforwardly manipulated to
obtain the well-known relation between GPDs and DDs:

H(x, ξ, t) =
∫

Ω
dβdα δ(x − β − αξ)[F(β, α, t) + ξδ(β)D(α, t)]. (44)

This result can be generalised to gluons, up to small modifications. In the nucleon case, the
additional spin structure requires the introduction of an additional DD to describe the GPD
E, but the D-term is the same between H and E up to a minus sign.

Finally, let us mention that the way to decompose the GPD between a Double Distri-
bution and a D-term is not unique. This is a technical point and it has been discussed in
the literature in detail (see [39,41,82,83]).

2.6. Positivity and Lightfront Wave Function Picture
2.6.1. The Lightfront Wave Function Picture

On top of polynomiality, another major property is associated with GPDs, called
positivity. In order to properly understand such constraint discussed in several papers, we
will introduce it though the Lightfront Wave Function formalism developed in [84].

To do so, we start decomposing the considered hadron states (here—the pion) in terms
of LFWFs, labelled here Φi...j

β such that:

|π〉 ∝ ∑
β

Φqq̄
β |qq̄〉+ ∑

β

Φqq̄,qq̄
β |qq̄, qq̄〉+ . . . (45)

where the relevant quantum numbers are labelled with β and i...j stands for the partonic
content of the considered state. When a N partons state is considered, then the associated
LFWFs depend on N lightfront momentum fractions xi and N 2D transverse momenta ki

⊥.
The momentum conservation is guaranteed by three Dirac distributions.

Following the derivation given in great detail in ref. [84], one can express the matrix
elements defining GPDs in Equations (2), (3), (9) and (10) in terms of an overlap of LFWFs.
The interested reader can also look at examples of explicit computations in at leading Fock
states (see, for instance, refs. [42,85]).

We will not reproduce these derivations here, and instead focus on the lightcone inter-
pretation associated with considered kinematic area (see Figure 3), and its consequences
on the overlap description. First, looking at the outer or DGLAP region, one obtains an
overlap of LFWFs diagonal in terms of parton number N:

Hq(x, ξ)|x≥ξ ∝ ∑
N

√
1 − ξ2

1−N

∑
j

δsj ,q

∫ [
dxid

2ki
⊥

]
N

(
ΦN(r̂N)

)∗
ΦN(r̃N)δ(x − xj), (46)

where the measure is given as

[
dxid

2ki
⊥

]
N
=

1
(16π3)N−1

[
N

∏
i=1

dxid
2ki

⊥

]
δ

(
1 − ∑

j
xj

)
δ(2)

(
∑

j
kj
⊥

)
(47)
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in the N → N parton case [84]. The label j stands for the active partons, i.e., the one probed
by the operator, while sj is its flavour. The incoming and outgoing momenta degrees of
freedom, boosted in the GPDs symmetric frame, are generically labelled with r̃N and r̂N ,
respectively. More details are provided in ref. [84].

From Equation (46), one realises that the overlap in the DGLAP region only includes
convolution of LFWFs with the same number of partons. This is illustrated in Figure 5.

Figure 5. LFWFs decomposition of GPDs. Left panel, DGLAP region interpretation conserving
parton number between incoming and outgoing states; right panel, ERBL region interpretation not
conserving parton number as the incoming state emits a pair of quark–antiquark.

This contrasts with the ERBL region. There, a pair of quark–antiquark is extracted
from the initial state and and contracted with the operator (see Figure 5). The overlap is
off-diagonal in the Fock space and one obtains:

Hq(x, ξ)|x≤|ξ| ∝ ∑
N

√
1 − ξ

2−N√
1 + ξ

−N
∑
j,j′

δs̄′jsj
δsjq

√njnj′

∫ [
dxid

2ki
⊥

]N+1

N−1
δ(x − xj)

×
(

ΦN−1(r̂N−1)
)∗

ΦN+1(r̃N+1). (48)

Similarly, the measure
[
dxid

2ki
⊥

]N+1

N−1
corresponds to the N + 1 → N − 1 transition:

[
dxid

2ki
⊥

]N+1

N−1
= dxj

N+1

∏
i �=j,j′

dxiδ

⎛⎝1 − ξ −
N+1

∑
i �=j,j′

xi

⎞⎠ d2kj
⊥

(16π3)N−1

N+1

∏
i �=j,j′

dki
⊥δ

⎛⎝Δ⊥
2

− ∑
i �=j,j′

ki
⊥

⎞⎠. (49)

The discrepancy in terms of parton number between the initial and final state triggers am-
biguity in the attempt to compute GPDs in the entire kinematic range at a given truncation
of the Fock space. Thus, most of the time, only the DGLAP region is computed within
models [42,86,87]. Nevertheless, modern solutions allow us to bypass this difficulty as we
will discuss later on.

2.6.2. The Positivity Property

The LFWF picture in the DGLAP region allow us to derive an important property of
GPDs called positivity. Focusing first on the forward case, when Δ → 0, one obtains:

q(x) ∝ ∑
N

∑
j

δsj ,q

∫ [
dxid

2ki
⊥

]
N

∣∣∣ΦN(xi, ki
⊥)

∣∣∣2
δ(x − xj). (50)

The PDF q is expressed as the sum over momenta, partons content and quantum
numbers of modulus square of the LFWFs. This is consistent with the probabilistic aspect
of the PDF (number density) and a formal interpretation yielding PDF as the norm of a
formal vector.
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This structure can be generalised beyond the forward limit, to the entire DGLAP region.
One formally recovers a scalar product in this parton number conserving kinematic area:

H(x, ξ)|x≥ξ = 〈Φout|Φin〉. (51)

A simple Cauchy–Schwartz inequality yields:

|H(x, ξ)|x≥ξ | ≤ |||Φin〉|| × |||Φout〉||, (52)

Plugging in the forward limit to describe the incoming and outgoing states, one obtains the
positivity condition [84,88–91]:

|Hq(x, ξ)|x≥ξ | ≤
√

q
(

x − ξ

1 − ξ

)
q
(

x + ξ

1 + ξ

)
, (53)

again, in the case of the pion. Small modifications appear in the nucleon case. The positivity
property yields an upper and lower bounds on the GPD in the DGLAP region.

2.7. Scale Dependence and Evolution
2.7.1. Discussion in Momentum Space

As we have mentioned several times already, GPDs obey evolution equations, as
the operators they are defined from need to be renormalised. Following ref. [92], the
renormalisation of GPDs can be written as follows:

Ha(x, ξ, t, μ2) = lim
ε→0

∫ 1

−1

dy
|y|Zab

(
x
y

,
ξ

x
, αs(μ

2), ε

)
Ĥb(y, ξ, t, ε), (54)

where a, b stand for quark flavours q or gluon contributions. μ is the renormalisation scale,
while ε is the regulator, ensuring that the bare operator remains finite. Since we use pertur-
bation theory to describe the renormalisation properties of GPDs, our regularisation will be
dimensional, such that d = 4 − 2ε. From Equation (54), one can apply a renormalisation
group strategy to obtain:

dHa

d ln μ2 (x, ξ, t, μ2) = lim
ε→0

∫ 1

−1

dy
|y|

dZab

d ln μ2

(
x
y

,
ξ

x
, αs(μ

2), ε

)
×

∫ 1

−1

dz
|z| (Zbc)−1

(
y
z

,
ξ

y
, αs(μ

2), ε

)
Hc(z, ξ, t, μ2), (55)

i.e., the evolution equation of GPDs with respect to the scale μ. For the sake of completeness,
let us highlight that Z−1 is defined such that:

δijδ
(

1 − z
x

)
= lim

ε→0

∫ 1

−1

dy
|y| (Zil)−1

(
z
y

,
ξ

z
, αs(μ

2), ε

)
Zlj

(
y
x

,
ξ

y
, αs(μ

2), ε

)
. (56)

The combination dZ
d ln μ2 Z−1 can be seen as the momentum-dependent generalisation of the

anomalous dimensions. Thus, we introduce the functions P such that:

P ac
(

x
z

,
ξ

x
, αs(μ

2)

)
= lim

ε→0

∫ 1

−1

dy
|y|

dZab

d ln μ2

(
x
y

,
ξ

x
, αs(μ

2), ε

)
(Zbc)−1

(
y
z

,
ξ

y
, αs(μ

2), ε

)
. (57)

Note that the function P is independent of ε, as the singularities are expected to cancel in
the product dZ

d ln μ2 Z−1, as we will explicitly see in the following in a one-loop expansion.
Provided that Z can be computed non-perturbatively, one could obtain a description of
the scale evolution. However, this has not been achieved yet, and the scale dependence of
GPDs is computed perturbatively through the renormalisation group Equation (55). In the
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MS scheme, letting implicit the factor Sε =
(4π)ε

Γ(1−ε)
accompanying the polesin order to keep

the notation simple, one can write:

Zij
(

x
y

,
ξ

x
, αs(μ

2), ε

)
= δijδ

(
1 − x

y

)
+

∞

∑
n=1

an
s (μ

2)
n

∑
p=1

1
εp Z[n,p]

(
x
y

,
ξ

x
,
)

, (58)

where as = αs/4π. The derivative with respect to ln μ2 is then given by:

dZ
d ln μ2

(
x
y

,
ξ

x
, αs(μ

2), ε

)
=

das

d ln μ2 (μ
2)

dZ
das

(
x
y

,
ξ

x
, αs(μ

2), ε

)
=

(
−εas(μ

2) + β(as(μ
2))

)(
∞

∑
n=1

nan−1
s (μ2)

n

∑
p=1

1
εp Z[n,p]

(
x
y

,
ξ

x
,
))

, (59)

where we used the Renormalisation Group Equation (RGE) in d = 4 − 2ε dimension for
the strong running coupling. Consequently, at leading order in as, P is given as:

P ac
(

x
z

,
ξ

x
, as(μ

2)

)
= −as(μ

2)Z[1,1]
ac

(
x
z

,
ξ

x

)
. (60)

The one-loop result for P is thus finite, and can be computed in the MS scheme only from
the pole contribution of the associated Feynman diagrams. Moreover, since P is only
sensitive the UV-diverging part of the GPDs in MS, it does not depend on the nature of the
particle chosen at the level of the matrix element. Thus, one can perform the computations
in a “partons-in-partons” approach, as it is performed in ref. [92]. In that case, some of the
relevant Feynman diagrams at one loop in the lightcone gauge are shown on Figure 6.

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

(1 + ξ)P (1− ξ)P

−z−
2

z−
2

Figure 6. Feynman diagrams used to compute the one-loop anomalous dimension in the lightcone
gauge. On the first and second lines, we display non-mixing terms, while the third line display
diagrams mixing quark and gluon GPDs. On top of these connected diagrams, disconnected self-
energy diagrams need to be added. In covariant gauges, additional contributions come from gluon
exchanges with the Wilson line.

2.7.2. Properties of the Momentum-Dependent Anomalous Dimensions

The computation of the one-loop diagram leading to the one loop splitting function
can be found in several papers [6,7,43,92]. We will adopt here the presentation of ref. [92]
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to feed our discussion. Thus, for convenience, we assume in this section that x > 0 and we
rewrite the evolution equation as:

dH
d ln μ2 (x, ξ, μ2) =

αs(μ)

4π

∫ ∞

x

dy
y
P±H±

(
x
y

, ξ, μ

)
. (61)

Here, the ± index correspond to the singlet and non-singlet combinations, already in-
troduced in Equations (11) and (12), with the difference that the singlet is now a vector
encompassing gluons:

H+(x, ξ, μ2) =

(
∑q H+

q (x, ξ, μ2)

Hg(x, ξ, μ2)

)
, (62)

and consequently, P+ is a matrix mixing quarks and gluons contributions:

P+(y, κ) =

(
P+

q←q(y, κ) P+
q←g(y, κ)

P+
g←q(y, κ) P+

g←g(y, κ)

)
, (63)

where we have introduced κ = ξ/x. One can then decompose P± depending on the
kinematics support of the contributions:

P±(y, κ) = P±
1 (y, κ)θ(1 − y) + θ(κ − 1)P±

2 (y, κ). (64)

The explicit expressions of P±
1 and P±

2 are given in ref. [92]. Here we see that the P±
2

contributes only for ξ > x. Thus, when ξ = 0, only P±
1 contributes in the entire y range,

and reduces to the DGLAP splitting functions. Hence, the name of the ξ < x kinematic
region. In the kinematics region where x < ξ both P±

1 and P±
2 contribute. The transition

between the two regions is continuous as limκ→1 P±
2 (y, κ) = 0, but due to the presence of

the θ function, it is not smooth. In fact, the evolution kernel will generate a cusp at x = ±ξ
when evolving smooth GPDs functions. This contrasts with the claim sometimes made in
the literature that evolution smoothens the behaviour of GPD models on the |x| = |ξ| lines
(by rendering a discontinuous GPDs model at low scale continuous at higher scales for
instance).

Finally, let us mention that in momentum space, only two evolution codes at leading
order are publicly available, the Vinnikov code [93], which is not maintained anymore, and
Apfel++ [94–96]. Both of them are integrated through the PARTONS framework [97].

2.7.3. Evolution in Conformal Space

An alternative picture to momentum space evolution is provided by moments, or
conformal space evolution. The idea originated from the expansion of a non-local operator
into a set of local ones through operator product expansion (OPE). The local operators
involved in the expansion need to be renormalised and thus, all of them obtain an “a priori”
different renormalisation scale dependence. The original non-local operator and its scale
dependence can then be recover by resumming the renormalised local operators.

In the PDF field, this is typically what is done when one performs the evolution
through the Mellin moments before applying the inverse Mellin transform. In the GPD
case, as the splitting functions are more complicated, the situation is not as simple. The
Mellin moments mix under GPD renormalisation, making their evolution and resummation
more involved. However, it is possible to diagonalise the basis of local operator for a given
order of perturbative evolution. At order αs, the evolution operator commutes with the
conformal symmetry operators, which tells us that both operators can be diagonalised on
the same basis [98]. From that, one deduces that the conformal moments, defined in the
non-singlet sector as

C−
n (ξ, t, μ2) = ξn

∫ 1

−1
dxC3/2

n

(
x
ξ

)
H−(x, ξ, t, μ2), (65)
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where C3/2
n are the 3/2-Gegenbauer polynomials of order n, do not mix among each other.

In the limit when ξ → 0, the conformal moments reduce to the Mellin one, consistently with
the evolution kernel going to the DGLAP one. In the case when ξ → 1, the Gegenbauer
polynomial formed a base in x of the GPD support, and one recovers the diagonalisation of
the evolution kernel à la “Efremov-Radyushkin-Brodsky-Lepage”. The conformal moments
obey an evolution equation of the type of:

dC−
n

d ln μ2 (ξ, t, μ2) =
αs(μ)

4π
VnC−

n (ξ, t, μ2), (66)

where

Vn = 2CF

(
3
2
+

1
(n + 1)(n + 2)

− 2
n+1

∑
k=1

1
k

)
(67)

with CF = 4/3. The solution of this equation is given as:

C−
n (ξ, t, μ2) =

(
αs(μ2)

αs(μ2
0

)−Vn
β0

C−
n (ξ, t, μ2

0) (68)

where β0 is the leading order term of the QCD β function given as β0 = 11− 2/3 ∗ n f , where
n f is the number of active quark flavours. From Equation (68), one can note the advantage
of moments evolution, which is purely multiplicative, and not convoluted as in momentum
space. However, the difficulties lie in the reconstruction of the x-dependent function.
Indeed, the Gegenbauer polynomials introduced in (65) do not form an orthogonal basis
for x ∈ [−1, 1] but x ∈ [−ξ, ξ], complicating the evolution of a polynomial expansion
of GPDs. Moreover, such an expansion is expected to converge very slowly and thus,
resumming techniques have been introduced relying on Mellin–Barnes integrals [99]. The
Mellin–Barnes integral transform requires knowledge of the conformal moments for n ∈ C

and not just integer values. Thus, an analytic continuation of the moments within the
complex plane is required, and if the moments are not given by an algebraic formula, this
continuation can be challenging. Moreover, its uniqueness is not guaranteed. Nevertheless,
models in conformal space have been developed [100,101] and are today among the most
successful ones.

In the singlet sector, mixing between quarks and gluons is unavoidable for a given
order n of the conformal moments. Gluon conformal moment distribution follows the
same definition as in (65), but is computed from 5/2-Gegenbauer polynomials C5/2

n . An
additional diagonalisation of the 2 × 2 matrix is necessary. An example is given in the
specific case of the D-term in ref. [71].

Finally, let us briefly discuss what happens beyond leading order. Evolution kernels
have been derived at two loops (and at three loops in the non-singlet case) [102–107]. In the
MS scheme, the conformal moments Cn start mixing among each other in such a way that:

Cn(μ
2) =

n

∑
j=0

bnj(μ
2, μ2

0)Cj(μ
2
0), (69)

yielding a triangular matrix at a given order n (see [108]).This complicates the evolution
and reconstruction in x-space of NLO evolved GPDs in conformal space. Consequently,
in MS, the strategy is rather to evolve Wilson coefficients in the computation of a process
rather then the GPD itself (see, e.g., [100]). An alternative solution is to work in a specific
scheme in which the off-diagonal coefficients vanish. This scheme is labelled conformal
scheme (or CS), and is defined so that in the forward limit, one recovers the MS scheme
results (this is possible as PDFs Mellin moments do not mix under evolution). This specific
scheme has allowed early descriptions of DVCS at NNLO accuracy [100], before modern
computations in MS scheme [109]. From the first studies on scheme dependence [100],
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the difference between CS and MS is mild for the quarks, and somehow more sizeable for
gluons, while NLO and NNLO quark GPDs are indistinguishable.

3. Continuum Results for Mesons

3.1. Impulse Approximation and Its Limitations

In the meson sector, one of the first attempts to compute GPDs (see, e.g., [110–112])
relied on the so-called impulse approximation, graphically represented in Figure 7.

k −Δ/2 k +Δ/2

k − P

P +Δ/2P −Δ/2

Δ

k −Δ/2 k + Δ/2

Δ

k + P

P −Δ/2 P +Δ/2

Figure 7. Triangle diagrams used in early computations of meson EFF, PDFs and GPDs.

In this framework, a pion is split into a quark–antiquark pair and is later reformed. In
between, one computes the impact of local twist-two operators defined in Equation (37)
inserted within a quark line. Using this technique, one gains access to the Mellin moments
of the GPDs (including the D-term contribution), and thus, a reconstruction technique is
necessary to gain access to the x-dependence of the distribution. If polynomials reconstruc-
tions have been tried (see, e.g., refs. [42,113]), direct identifications of Double Distributions
has been favoured in the literature [60,112,114].

Such computations rely on two main points:

• The computation (or modelling) of non-perturbative QCD correlation functions such
as the Bethe–Salpeter wave function, the quark propagator and the local operator;

• The validity of the impulse approximation.

We will not enter here the discussion about the consistent computation of the non-
perturbative QCD correlation function, and instead, we redirect the reader toward a pre-
vious review paper [42] and refined studies of the pion Bethe–Salpeter wave function
performed since then [115,116]. Rather, we will discuss the limitations of the impulse
approximation.

When one chooses an approximation set such that the Bethe–Salpeter amplitude is
independent of the relative momentum (k in Figure 7) the forward limit of the GPD, i.e.,
the PDF, ends up being symmetric with respect to x → 1 − x, as expected from momentum
conservation in the two-body case. However, as soon as the Bethe–Salpeter amplitude
becomes k dependent, the momentum conservation and the two-body symmetry are lost
(see for instance [117]). This is a consequence of missing contributions in the computation
of matrix element of local twist-2 operators. Loosely speaking, as the relative momentum
dependence kicks in, the Bethe–Salpeter amplitude gains a spatial extension. Thus, the
operator can be inserted “within” the amplitude. This idea yields additional contributions
as illustrated in Figure 8.

211



Particles 2023, 6

≈ + +

Figure 8. Decomposition of contributions to the local operators when the Bethe–Salpeter amplitude
is momentum-dependent. The red circles correspond the standard Bethe–Salpeter amplitudes, while
the squares include modifications allowing the insertion of the local operators.

As shown in [42,113,114], in the Rainbow ladder approximation, the new contributions
can be written in terms of the Bethe–Salpeter amplitude Γπ as:

= −1
2
(k · n)mnν ∂Γπ

∂kμ (k, P), (70)

where n is a lightlike vector so that k · n = k+ and m is the order of the Mellin moment
considered.

The impact of the additional terms is shown in Figure 9 in the case of simple algebraic
models for the Bethe–Salpeter amplitudes and the quark propagators (see [42,113,114]).
Being anti-symmetric with respect to x → 1 − x, it does not contribute to the PDF normali-
sation. It exactly compensates the antisymmetric component of the triangle contribution
alone, restoring the symmetry of the complete result. The most advanced computations
using this technique can be found in [118].

0 0.2 0.4 0.6 0.8 1

x
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0.5

1

1.5

2

q π
(x

)

Triangle
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Total 
Overlap

Figure 9. Results for the forward limit after reconstruction of the x-dependence in the case of a
simple, algebraic model (see [42,113,114]). The total PDF (solid black) is symmetric under x → 1 − x
transformation, but the sole triangle diagram contribution (solid red) is not. The additional terms
coming from the square vertices in Equation (70) provide the adequate correction (solid blue).

If this contribution allows one to recover the expected symmetry properties in the
forward limit, it remains insufficient for tackling GPD computations in the entire kinematic
domain. More precisely, at non-vanishing skewness, the additional vertices in Equation (70)
are not able to restore the positivity property. As the forward limit yields a symmetric
and thus vanishing contribution at small-x, the positivity property imposes that the GPD
is also vanishing at |x| = |ξ|. Models employing momentum-dependent Bethe–Salpeter
have thus been limited to the vanishing ξ kinematic region [60]. Note that models based
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on the Nambu–Jona–Lasinio (NJL) approximation are not impacted, since the amplitude
is momentum-independent [119–121]. However, in the NJL approximation, the triangle
diagram is not sufficient in off-forward kinematics as the meson resonances appear in the
t-channel, contributing to the D-term [119,122,123]. Thus, omitting the resonances leads to
a breaking of the soft pion theorem in the chiral limit. To go beyond vanishing skewness,
techniques based on LFWFs have been developed.

3.2. From Bethe–Salpeter Wave Funtions to Lightfront Wave Functions

As we highlighted previously, the most natural way to fulfil the positivity property
is to start modelling GPDs as overlaps of LFWFs. Different techniques exist to compute
the LFWFs, from Lightfront Hamiltonian (see, for instance, [124]) to ADS/QCD (e.g.,
refs. [86,125]). We will focus here on the connection between the Bethe–Salpeter and
Lightfront wave functions, in the case of the pion.

The N-body Bethe–Salpeter wave function can be projected out to obtain all the
independent N-body LFWFs carrying the quantum numbers of interest (mostly the helicity
projection of the quark, and thus the orbital angular momentum projection of the pion).
If nothing forbids the computation of N-body Bethe–Salpeter wave function, in practice,
today, only the two-body one is computed as it involves only four-point functions. Thus,
we will further restrain ourselves to the lowest Fock state of the pion.

The two-body LFWFs Φ for the pion are given as projection of the Bethe–Salpeter wave
function χπ . The latter is defined by “attaching” quark propagators to the Bethe–Salpeter
amplitude: χπ = SΓπS). The connection the the LFWFs is then given through (see, for
instance, [126]):

P+Φ↑↓(x, k⊥) =
∫ dk−

2π
Tr

[
γ+γ5χπ(k, P)

]
, (71)

2ikiP+Φ↑↑(x, k⊥) =
∫ dk−

2π
Tr

[
σ+iγ5χπ(k, P)

]
, (72)

where ↑↓ and ↑↑ indicate the helicity projection of the quarks. If the projection looks simple,
it is in fact made complicated by the lightcone integration over k−, as the Bethe–Salpeter
wave function is typically computed in Euclidean space, using standard euclidean variable.
This difficulty is usually bypassed by using spectral, or Nakanishi representation [30,31]
for the Bethe–Salpeter amplitude Γπ in Euclidean space:

Γπ(k, P) =
∫ ∞

0
dω

∫ 1

−1
dz

ρ(z, ω)

ω +
(
k + z

2 P
)2 . (73)

The advantage of this representation is that the momenta degrees of freedom can be al-
gebraically manipulated, while the non-perturbative information is shifted toward the
Nakanishi weight ρ. Different modelling strategies have been performed in the literature,
from simple algebraic Ansätze [60,127] to parametric fit [128,129] or even direct computa-
tions in the specific case of QED N-point functions [130]. The results obtained in the forward
limit are similar to those obtained through the diagrammatic computation, as shown by the
dotted line on Figure 9 in the case of the simple algebraic model of [42]. Concerning GPDs
computations, only algebraic Ansätze and parametric fits have been used.

As the reader may have noted, the fact that only the two-body LFWFs are available
from the two-body Bethe-Salpeter wave function make the computation of the GPDs
possible only in the DGLAP region, as the first term in the ERBL one would require the
four-body LFWFs. Thus, a priori, if positivity is well fulfilled, it is not possible to complete
polynomiality, as DGLAP and ERBL contributions are intertwined to yield polynomials
Mellin moments. Such a hole in the kinematic domain has to be filled and we will see how in
the next section. Nevertheless, accessing the DGLAP region alone remains highly valuable.
Indeed, it gives access to the PDF when Δ → 0, while EFF can be recovered after integrating
over x at ξ = 0. Furthermore, the 3D density interpretation is also accessible from the
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DGLAP region only. The major missing part is the EMT for factor C of Equation (21), and
more generally, the D-term of Equation (40).

As highlighted in [59], under specific assumption on the Bethe–Salpeter wave function,
the associated LFWFs ends up being separable between x and k⊥ variable so that:

Φ(x, k⊥) = ϕ(x)ψ(k⊥). (74)

This separability property triggers interesting simplifications. First, ϕ yields the pion
distribution amplitudes, up to a normalisation constant. Then, the PDF computed as
an overlap of LFWFs in Equation (50) becomes proportional to the square of the pion
distribution amplitude. Regarding GPDs, this factorisation yields the following functional
form [58,85]:

Hπ(x, ξ, t) =

√
qπ

(
x − ξ

1 − ξ

)
qπ

(
x + ξ

1 + ξ

)
Ψπ(x, ξ, t), (75)

where Ψ < 1. The positivity property is thus manifestly fulfilled, as expected starting
from a LFWF description of the nucleon. This formula is used in ref. [58] to introduce
new kinds of models, exploiting PDFs computed in the covariant approach, but beyond
the impulse approximation [118]. The Ψ can be then modelled or computed following
the simple Anzätze or parametric fits available. Under two assumptions regarding the
Nakanishi parametrisation: (i) the hadron mass can be neglected and (ii) the ω dependence
of the weight ρ can be approximated by a Dirac delta, Ψ can be written as:

Ψ(x, ξ, t) = Ψ(z), with z = −t
(1 − x)2

1 − ξ2 . (76)

Introduced in ref. [85], this simplification has been exploited in refs. [59,129].
The computations in the DGLAP region allow one already to extract valuable infor-

mation, and in particular, the impact parameter space density ρ(x, b⊥). Regarding that
point, realistic computations start emerging in the literature based one the Nakanishi
representation (see refs. [59,87]). Consequently, computations of the 1+2D densities, both
for the pion and kaon, have been obtained using different modelling techniques for the
Nakanishi weight, or for the LFWFs themselves. The results presented in Figure 11 of
ref. [59] highlight the differences that can be expected from different modelling strategies
of the LFWFs. They are sizeable, especially in the kaon case.

3.3. The Covariant Extension

Even if the modelling of GPD in the DGLAP region only provides interesting out-
comes, it precludes any comparison with potential future experimental data, as part of the
kinematic range, the ERBL region, is missing. Since the two-body Bethe–Salpeter wave
function allows us only to recover the two-body LFWFs, the standard overlap representa-
tion in the ERBL region is out of reach, and would anyway lead to a GPD model violating
the polynomiality property. Consequently, another strategy should be sought.

The answer was provided few years ago, exploiting the Radon transform property
existing between GPDs and DDs (see Equation (43) and ref. [83]). This technique, labelled
covariant extension, allows one to exploit both the LFWFs formalism, and the DDs one,
guaranteeing by construction that all GPDs theoretical properties are fulfilled. This work
followed a pioneering example given in [131], and can be connected with the Laplace
transform [132]. The key point of the covariant extension is to exploit the properties of the
inverse Radon transform. More precisely, Boman and Todd–Quinto showed that compactly
supported distributions can be reconstructed from a partial knowledge of their Radon
transform [133]. In the case of GPDs, this can be translated as such: the knowledge of the
GPD in the DGLAP region is sufficient to reconstruct uniquely the Double Distribution
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F introduced in Equation (43) [83] (in fact, even an incomplete knowledge of the DGLAP
region is enough [134]).

Since the proof presented in refs. [83,133] is rather technical, we will not enter the de-
tails here. Rather, we will provide the reader with an intuitive picture relying on tessellation
and finite element methods. As illustrated in Equation (43), the Radon transform consists
in integrating a function along lines. As illustrated on the left-hand side of Figure 10, the
DGLAP and ERBL lines are different to the former cross the β = 0 axis outside of the
definition domain, while the ERBL one hit this line within the the DD support. Looking at
the right-hand side of Figure 10, one can discretise the support of the DD (only the upper
right corner is shown because of symmetry properties in α and β). A DGLAP-type line is
shown, probing a given number of cells. It is easy to realise that each cell can be probed by
infinitely many DGLAP lines, and that reducing the size of the cell does not modify this
statement. Thus, every point on the DD support, expect the one such that β = 0, is probed
by infinitely many DGLAP lines. This provides the level-arm to recover the DD F from the
DGLAP region only. However, it does not allow recovering the D-term, which remains
inaccessible (some specific Double Distribution schemes allow one to extract a D-term, but
the latter remains ambiguous [83,135]).

0.0 0.25 0.5 0.75 1.0

0.0

0.25

0.5

0.75

1.0

Figure 10. Left: Support of the DD and example of a DGLAP line (red) and ERBL line (green). Right:
Support of the DD F after tessellation using a Delaunay mesh. An example of a DGLAP line is given.
If numerous enough, those lines can probe every cell of the DD support. Figure from [58].

Figure 10 also highlights another difficulty in any attempt to recover the DD from
the GPD in the DGLAP region only. Indeed, if one wants to probe the region close to the
point (0, 0) in the (β, α) space, the associated DGLAP lines become almost parallel, and
yields a badly conditioned inverse problem. In fact, the Radon inverse problem is known
to be ill-defined in the sense of Hadammard [136–138], since, even before discretisation,
the Radon transform is not continuous. The discretisation makes the problem worse, as the
existence and uniqueness of a solution is not guaranteed anymore, requiring regularisation
techniques to ensure the convergence of reconstruction algorithms. In the following, we
will discuss the strategy applied in ref. [58].

The discretised problem can be expressed as looking for a DD vector F such that:⎛⎝Hi

⎞⎠ =

⎛⎝ Rij

⎞⎠⎛⎝Fj

⎞⎠, (77)

where R is the matrix of the discretised Radon transform and Hi—a given sample of
the GPD in the DGLAP region. The size of the vector F is a function of the number of
cells introduced for the discretisation, but also the degree of the polynomials used to
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approximate locally the Double Distribution. The elements Fj are taken at a position (β j, αj),
which depends on the polynomial order and is called a node. For instance, a zero-order
polynomial interpolation requires a node at the barycentre of each cell, while a degree-one
interpolation requires a node at every vertex of the mesh. On the left-hand side, the size of
H depends of the available sampling of the GPD in the DGLAP region. At minimum, the
size of Hi should be as large as Fj, allowing the rank of the matrix R to be maximal, and
thus, the problem invertible.

However, the solution of Equation (77) might be rather sensitive to the initial condi-
tions such as the shape and size of the grid, or the sampling of the GPD. To overcome this
difficulty, one can overconstrain the system by having R have more lines that columns,
and look for a solution through a least-squares strategy. To do so, an adequate strategy
is to use the so-called normal equations, although direct least-squares algorithms such
as LSMR [139] can be used [83]. Rather than using iterative algorithms to minimise the
associated χ2, the normal equations provide directly the minimal solution Fj. The normal
equations transform our linear system (77) into

F =
(
RTR

)−1
RT H. (78)

In addition, it allows to simply propagate uncertainties on the values of H in that DGLAP
region onto the ERBL one after the reconstruction through the DD. This is based on
computations of the covariant matrix (see [58,140] for details).

In practice, for a simple functional form of DD F from ref. [85]:

F(β, α) =
15
2

θ(β)
(

1 − 3(α2 − β2)− 2β
)

, (79)

an excellent agreement can be obtained through the reconstruction procedure for 780 cells
and furst-order Lagrange polynomials. The results are illustrated in Figure 11, highlighting
the good control on the uncertainties in the ERBL region through the reconstruction. Note
however that even if the functional form is simple, the model is made more complicated by
the specific DD scheme labelled Pobylitsa (or P) scheme, in which it is defined.

Figure 11. Left: results of the reconstuction of the DD of Equation (79). Black, exact GPD computed
from the algebraic DD (79). Blue, reconstructed GPDs with a sample of Hi roughly four times the
number of cells. Orange, same but with a sample of 12 times the number of cells. Right: zoom on the
central region to highlight the uncertainty bands.

This technique, together with the simplified assumption of Equation (75), has been
used to build “theoretically complete” models of the pion GPDs, ensuring that both poly-
nomiality and positivity were fulfilled by construction, and based on state-of-the-art com-
putations of the pion PDF using continuum techniques. The next step is to assess whether
these sophisticated models of GPDs could one day be compared to experimental data.

3.4. The Sullivan Process

As we mentioned earlier, GPDs can be probed in deep exclusive processes. These
processes require a high luminosity of the experimental set up. However, there is no facility

216



Particles 2023, 6

today with a high enough luminosity allowing to make exclusive experiments through real
pion targets. One thus has to find another solution.

3.4.1. Introduction to the Sullivan Process

Since the 1970s, one of the main ideas for studying the internal structure of the pion
is to rely on the so-called Sullivan process [141], i.e., to hit a virtual pion within the me-
son cloud of the nucleon. It has been used to probe the pion EFF [142–144] and also the
pion PDFs [145,146]. In order to probe GPDs, one focuses on the best-understood process,
namely, Deep Virtual Compton Scattering (DVCS). The latter describes the exclusive elec-
troproduction of a photon out of a pion, the latter remaining intact. This is illustrated on
the left-hand side of Figure 12.

Figure 12. Left: Sullivan DVCS ep → enγπ+. At small t, one expects the pion pole contribution to be
the leading one in such a process. Right: Sullivan Bethe–Heitler, interfering with the DVCS.

The differential cross section of the complete process dσSul depends on multiple
kinematic variables [147]. Among the lists are the photon virtuality Q2 = −q2, the fraction
of energy carried by the virtual pion xπ = pπ · l/(p · l) and the inelasticity of the process y =
p · q/p · l. Three angles are also necessary to characterise the kinematics in the laboratory
frame. The first is φ, the angle between the leptonic plane (formed by the incoming and
outgoing electrons), and the hadronic plane (formed by the virtual photon and the outgoing
pion). The two others are the azimutal angle of the outgoing electron φe and of the outgoing
neutron φn. The subprocess eπ → eπγ is characterised by related subkinematic variables
such as the inelasticity of the subprocess yπ = pπ · q/pπ · l or the Bjorken variable of the
subprocess xπ

B = Q2/(2pπ · q). Then, one can write the differential cross section of the
Sullivan process in terms of the subprocess differential cross section [147,148] as:

d8σ(λ,±e)
dydQ2dtπdφdφedxπdtdφn

= xπ
g2

NNπ

16π3 F(t, Λ2)2 −t
(m2

π − t)2
|JQ2

xπ
B
|d

5σeπ→eπγ(λ,±e)
dyπdxπ

B dtπdφdφe
, (80)

where λ is the longitudinal polarisation of the electron beam, e—the electron charge, gNNπ—
the pion-nucleon coupling, and F(t, Λ)—the associated form factor. Following ref. [147], a
single-parameter functional form is chosen:

F(t, Λ) =
Λ2 − m2

π

Λ2 − t
(81)

with Λ = 800 MeV. |JQ2

xπ
B
| is the Jacobian between Q2 and xπ

B . To be valid, the Sullivan
process requires that the pion pole contribution dominates, and thus, that t remains small
enough. Additionally, the Bjorken regime is achieved at the level of the subprocess for both
Q2 and sπ = (pπ + q)2 large in front of other scales involved.
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However, DVCS on a virtual pion is not the only process contributing to the ep →
enγπ+ cross section. Additional N∗ resonances decaying in the nπ channel can interfere
with the Sullivan process. Their impact is reduced by ensuring that the invariant mass
between the neutron and pion is large enough, typically larger than 2 GeV. However, one
process always interfere with the DVCS one, the Bethe-Heitler process, shown on the
right-hand side of Figure 12. Being a QED process and depending only of the pion EFF, the
Bethe–Heitler contribution is computable, usually larger than the DVCS one and through
the interference term, it magnifies the impact of GPDs. The subprocess cross section is thus
decomposed in terms of amplitudes T as:

d5σeπ→eπγ(λ,±e)
dyπdxπ

B dtπdφdφe
=

α3
QEDxπ

B yπ

16π2Q2
√

1 + ε2

|T BH |2 + |T DVCS|2 ∓ I
e6 , (82)

where the interference term is further decomposed in I = Iunpol + λIpol , αQED is the
electromagnetic coupling and ε = (2mπxπ

B )
2/Q2.

3.4.2. From the Sullivan Process to GPDs

The amplitude T DVCS and interference term I are not directly parametrised in terms
of GPDs, but rather in terms of Compton Form Factors (CFFs) H which are connected to
GPDs through:

H(ξ, t, Q2) =
∫ 1

−1

dx
ξ

C
(

x
ξ

,
Q2

μ2 , αs(μ
2)

)
H(x, ξ, t, μ2), (83)

where C is a coefficient function, computed in perturbation theory. The decomposition of
the DVCS amplitude and the interference term as a function of the CFFs can be found in
ref. [149]. Rather than looking at the exact expression, we will assume for a moment that
experimental data allow us to extract with a great accuracy H and ask whether it is possible
to inverse the convolution of Equation (83) to regain the GPD H.

The answer to this question has been known for a long time if C is computed and
the leading order of αS only, and it is ”no”. In fact, at leading order, any GPD such that
H(ξ, ξ, t, μ2) = 0 yields a vanishing CFF, and is thus invisible in experimental data. It was
thought that this problem would vanish a once higher order of perturbation theory or
evolution equations would be turned on [150]. This has been proven wrong in [151], where
the concept of shadow GPDs is introduced. Briefly shadow GPDs are constructed so that
below an given order of perturbation theory n, the associated CFFs vanish, and that their
forward limits also vanish. Consequently, they are invisible both in DVCS and DIS. Of
course, the exact cancellation is valid only at a fixed scale μshadow, but it was also shown
that evolution has little effect on improving the situation [151].

In the case of the nucleon, the way out is to go through multichannel analysis of GPDs,
as shadow GPDs are process dependent, i.e., a shadow GPD for DVCS can be visible in
another process. In fact, some processes are expected to be free of shadow GPDs, such
as Double DVCS [152]. However, these processes are much harder to measure already
in the nucleon case, and are thus out of reach for the pion through the Sullivan process.
In the case of the pion, rather than extracting GPDs from experimental data, the aim is
to challenge existing models through comparison of predictions of the Sullivan process
observables, with potential future measurements.

The first step in that direction is to figure out whether or not present and future facilities
will be able to measure enough events connected to the Sullivan process. To assess that, we
used a theoretically complete model of GPDs, fulfilling all required theoretical properties,
and computed the CFFs associated with that model in ref. [58], using the PARTONS
software [97] using a next-to-leading order description of the coefficient function, and
computed separately quarks and gluon contributions. The result is illustrated in Figure 13,
where the theoretically complete model corresponds to the brown curve. One can note an
interesting characteristic, the sign of the real and imaginary part of the CFF changes with
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the inclusion of gluons. This is understood as the quark and gluon contributions to the CFF
comes with a relative minus sign. This behaviour is confirmed, and even strengthened at
next-to-next-to-leading order (N2LO) [153]. Thus, generally speaking, the sign of the CFF
indicates the relative strength between quark and gluon contribution. Accessing such a
sign would already favour or disfavour different pion GPD models.

Figure 13. Real (left) and imaginary (right) parts of DVCS Compton Form Factors computed with
theoretically complete model developed in ref. [58] (brown curves). Dotted lines correspond to LO
computation, dashed lines—to NLO without gluon contributions and the solid lines to the full NLO
computation. The light blue curves are built from standard phenomenological Anzätze in the GPD
framework [55], and a phenomenological forward limit [58,154] for details).

3.4.3. A Smoking Gun for Gluons at the EIC and EicC

To access this sign, one needs to look at the interference term introduced in Equation (82)
which depends linearly on the CFF [149]. Even better, one can look at the beam spin asym-
metry, selecting on the polarised part of the interference and defined as:

ALU =
dσ↑ − dσ↓

dσ↑ + dσ↓ . (84)

At leading-twist, the latter is proportional to the imaginary part of the CFF H. If gluons are
strong enough to flip the sign of the polarised interference, it would trigger a flip in the
sign of the asymmetry.

Two models were used to assess whether DVCS on a virtual pion would be possible,
and if one would see a sign change in the beam spin asymmetry. The results are shown
on Figure 14. The first model is a theoretically complete model built in ref. [58] and
exploiting the state-of-th-art results on the pion PDF from Continuum Schwinger method
techniques [118]. The second one is a phenomenological model, based on the Radyushkin
Ansatz [55] and the GRS PDF [155]. The necessary evolution was performed by the Apfel++
software [92,94–96] interfaced with PARTONS [97]. The conclusions are clearly different
from the contributions of the sole Bethe–Heitler process at typical EIC kinematics, allowing
us to hope that DVCS on virtual pion will be measurable at this future facility. Moreover,
the sign of the asymmetry is flipped, highlighting the strength of gluons, and this in both
models. Thus, even if pion GPDs will not be extracted from experimental data, the latter
will be able to assess the strength of gluons, and scan it with respect to Q2, making an
excellent physics case for the measurement of the Sullivan process at EIC.

In the case of EicC, since the kinematics probe the valence region, one is less sensi-
tive to gluons. Nevertheless, the destructive interferences of quark and gluon trigger a
sizeable reduction of the amplitude of the asymmetry, and make it sensitive to the Q2

value probed [148]. This is also a valuable piece of experimental information that could be
delivered in the future regarding pion GPDs.
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Figure 14. Upper band: number of events assessed as a function of φ for different bin in Q2. The blue
crosses correspond to the Bethe–Heitler signal only, the black square—to the theoretically complete
model of ref. [58] with a CSM-based forward limit. The open square correspond to the same model
but with gluons set to zero in the CFF. The red circles correspond to a phenomenological model with
the GRS PDF [155] as an input for the forward limit. The grey band corresponds to the uncertainty of
the CSM model associated with the choice of the initial evolution scale. Lower band: associated beam
spin asymmetries. The sign flip is visible with the model from ref. [58]. Figure from ref. [148].

3.5. Challenges

The procedure described above and the very encouraging results which have been
obtained might make one thing that the problem of computing GPDs for mesons is solved.
However, some challenges remain that we will highlight in this section.

3.5.1. The Wilson Line

The first difficulty comes with the Wilson line W introduced in Equation (8). When we
discussed the properties of the GPDs, we assumed that we were working in the lightcone
gauge, where W is reduced to 1. However, in practice, the Bethe–Salpeter equation is
mostly solved in the Landau gauge. There are two main reasons for this: the Landau gauge
is the one used for fixed-gauge lattice QCD computation, allowing to compare N-point
functions computed from lattice and continuum methods, and because the Landau gauge
is a fixed point of the renormalisation group equation, and thus the gauge parameter does
not run. Therefore, a fully consistent computation of the GPDs would require computing
also the contribution of the Wilson line.

One of the possibility to bypass this problem would be to solve the Bethe–Salpeter and
Dyson–Schwinger equations in the lightcone gauge. It is one of the clearest ways to provide
a fully consistent description of GPDs through the overlap of LFWFs, avoiding gauge-
related difficulties. As we mentioned before, this would trigger additional complications
when solving the Dyson–Schwinger and Bethe–Salpeter equations, but remain feasible [156].
However, it would require a significant amount of work as all modern computations would
need to be re-adapted for this specific gauge, without any lattice-QCD guidance.

In the case of the impulse approximation, attempts to describe the Wilson line pertur-
batively have been pursued (see [157]). However, because of the limitations of the impulse
approximation already mentioned before, it is unclear that such a procedure could be
generalised beyond the NJL model employed there.

3.5.2. Non-Perturbative Renormalisation

Another difficulty lies in the renormalisation properties of the operator already dis-
cussed before. One would expect that a two-body description would be valid only at low
scale of QCD, a region which cannot be described using standard perturbative QCD. Yet,
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the renormalisation properties of the twist-two operators are known only perturbatively,
generating questions on whether one could use perturbative evolution equations at low
scales. Models and prescriptions have been introduced, relying on a saturating coupling
in the infrared (see, e.g., [158,159]). However, it is in principle possible to really derive
non-perturbative renormalisation group equations for the twist two operators, consistently
with the way the Dyson–Schwinger and Bethe–Salpeter equation are renormalised. A
way to proceed here would be to look at the local twist-two operators and compute their
associated renormalisation constants. However, one would expect that such a procedure
would be feasible only for the lowest ones, as in the Landau gauge, the number of gluon
fields entering the definition of the operator increases linearly with the order of the operator
itself. Nevertheless, renormalising non-perturbatively the lowest-order twist-two operators
would already provide insights on the size of the uncertainties associated with perturbative
evolution at low scale.

Finally, let us add that for phenomenology purposes, one would need to manipulate
objects renormalised in a consistent way, i.e., using the same renormalisation scheme. As
most coefficient functions are computed in the MS scheme, it is, in principle, necessary to
match the non-perturbative scheme to MS, at a given order of perturbation theory. Since,
for the moment, only perturbative evolution is used (though in an improved for with a
saturating coupling), this question has not been treated in the continuum literature but will
be brought to light once a non-perturbative renormalisation strategy is put in place.

3.5.3. The D-Term

Through the modelling procedure, we have also highlighted a difficulty regarding our
ability to extract the so-called D-term when extending GPDs from the DGLAP to ERBL
regions. Indeed, the D-term appears as a singularity on the β = 0 line (see Equation (44)),
which remains ambiguous through the covariant extension technique presented here. The
soft pion theorem of Equations (17) and (18) provides an anchor for vanishing t in the chiral
limit. Moreover, the large t behaviour is known in perturbative QCD [160]. Yet in between,
one is left with a hole to fill through modelling, in the absence of better treatment of this
specific contribution. It was shown in ref. [135] that the question of the determination of
the D-term was equivalent to the assumption of the J = 0 fixed pole in the Regge theory
of Compton Scattering and that, for the moment, there is no other way than measuring
specific sum rules connected to the D-term in order to tame the ambiguity on the latter.

4. From Mesons to Baryons

Having discussed in detail the results obtained regarding meson GPDs, we provide
here some hints at how this can be generalised to baryons, as pioneering studies are still
ongoing [161].

4.1. Nucleon LFWFs

The first complication between the pion and the nucleon, is that the lower Fock state
of the latter is made of three quarks instead of two. This obviously increases the number of
degrees of freedom and thus complicates the computation of three-body Bethe–Salpeter
equation (also called the Faddeev equation). Techniques to compute the latter relying either
on a quark–diquark picture (see, e.g., [162–164]) or using a three-quark picture [165–167]
have been developed. Consequently, it is in principle possible to follow the mesons’ path
and project the solution of these covariant equations onto the lightfront. The expected
result is composed of six independent lightfront wave functions (see [168]) characterising
the possible three quarks fluctuations of the nucleon and carrying a given amount of orbital
angular momentum.

A first attempt of computing the LFWFs in such a formalism has been pursued
in the quark-diquark picture and led to computation of the leading-twist distribution
amplitude [169,170]. The computations have highlighted several interesting points. First, it
validated the extension of the meson framework toward the baryon ones. Then, it showed
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that the quark–diquark computations yield very similar results with respect to the lattice
QCD simulations of the first Mellin moments, highlighting that this kind of approximation
is indeed valuable, as explained in great details in ref. [171]. Finally, a third point of interest
is the noticeable difference between the Distribution Amplitude of the nucleon and the
Roper resonance highlighted in ref. [169]. Indeed, while the distribution amplitude of
the nucleon is positive definite, the one of the Roper resonance changes sign, meaning
there is a kinematic area which is forbidden. This behaviour is similar to what one expects
in non-relativistic quantum mechanics regarding higher excited states. One may thus
expect significant differences between the nucleon GPDs and resonances GPD from such a
comparison of Distribution amplitude. We expect that these differences also impact the
1+2D probability densities to find quarks and gluons at a given position of the transverse
plane, reinforcing the interest in the computation of excited states GPDs.

4.2. Nucleon GPDs

Once the nucleon LFWFs are at hand, the formalism of overlap of LFWFs can be
applied in the same way as for the pion, with some small differences. The first one is
that because nucleons are spin 1/2 particles, one needs several GPDs to parametrise
the considered leading twist matrix element (see Equation (9)). As a result, the overlap
representation will naively yield combinations of GPDs. The latter can be disentangled by
playing with the incoming and outgoing nucleon helicity projections (see, for instance, [84]).
Multiple GPDs, means multiple DDs to extract as, in the case of the nucleon, Equation (44)
is modified to:

H(x, ξ, t) =
∫

Ω
dβdα δ(x − β − αξ)[F(β, α, t) + ξδ(β)D(α, t)], (85)

E(x, ξ, t) =
∫

Ω
dβdα δ(x − β − αξ)[K(β, α, t)− ξδ(β)D(α, t)]. (86)

Consequently, two DDs, F and K, need to be extracted following the covariant extension
procedure. Rather than extracting them independently, it may be better to focus on H + E,
which is directly a “true” Radon transform, without an additional D-term, and −E, as
it was suggested in ref. [39,172] and put in practice in phenomenological extractions in
ref. [57]. The stability of the incomplete inverse Radon transform remains to be assessed in
the case of the nucleon.

This decomposition allows us to highlight that the issue of the D-term is more difficult
to handle in the case of the nucleon, with respect to the pion. Indeed, to the best of our
knowledge, there is no equivalent in the nucleon case of the soft pion theorem, and thus,
a theoretical constrain providing us with information on the D-term is lost. If the large-
t expansion in perturbative QCD has been computed (see ref. [160]), at experimentally
achievable values of t (and small enough so that collinear factorisation works), there is for
the moment no theoretical guidance on the value of this function. It is noticeable though
that, at the time of writing, phenomenological extractions of the nucleon D-term based
on the DVCS dispersion relations (see [173,174]) provide results which remain compatible
with zero [71,175]. This situation might change with the more precise DVCS data provided
by the upgraded facilities of the Jefferson Laboratory [19,20].

With the expected wealth of new experimental data coming from Jefferson Laboratory
in the following years, the question of a consistent description of experimental data using
GPDs computed with continuum technique has never been more relevant. The impact of
the Wilson line together with that of non-perturbative renormalisation are expected to be
at the core of future theoretical developments. Finally, let us highlight that the overlap of
LFWFs will also allow us to compute using continuum techniques the standard nucleon
PDFs and the standard nucleon EFFs.
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4.3. Transition GPDs

Beyond the nucleon GPDs, we would like to highlight that our formalism is able to
handle all spin 1/2 baryons GPDs (providing that computations of the associated Faddeev
wave function are available), but also transition GPDs, between two different baryons.
Among all possible transitions, the better experimentally accessible one is certainly the
nucleon-to-delta transition [176,177]. One can indeed define a transition DVCS process,
such that ep → eΔ+γ, which factorises between the standard DVCS hard coefficient
function and nucleon-to-delta transition GPDs. Such a complementary channel provides
an indirect way to probe the internal structure of the delta particle, as in the continuum
framework, one would need to compute the transition GPDs as an overlap between the
nucleon and delta LFWFs. This will allow to shed light on the delta LFWFs, and thus
provide feedback on the solution of the Faddeev equations for baryons other than the
nucleon. We expect that it provides guidance in our understanding of the three-body
interaction and its consequences in QCD.

5. Conclusions

Concluding this review paper, we would like to highlight again that GPDs provide
a unique way to map hadrons in 3D and gain experimental insights into their energy-
momentum tensor. However, the path toward reliable models and computations of GPDs
remains difficult. We have highlighted how using continuum techniques, one could manage
to compute GPDs who fulfil all required theoretical constrains, and more specifically, both
positivity and polynomiality. It relies on the projection of the solutions of the Bethe–Salpeter
equations (or Faddeev equation for baryons) onto the lightfront, so that one obtains the
so-called lightfront wave functions. GPDs can then be expressed as an overlap of lightfront
wave functions in the so-called DGLAP region, ensuring the positivity is fulfilled. Then,
they are extended to the ERBL region using the covariant extension, which guarantees the
polynomiality property.

This technique has been successfully applied to mesons, and it has provided estimates
of counting rates for DVCS on virtual pion through the Sullivan process, showing that one
can expect such a process to be measurable. Regarding the nucleon, part of the path toward
the building of a GPD model has been performed, but some of the work remain to be
completed. Today, the baryon sector appears as the target to reach in the forthcoming years.
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Abbreviations

The following abbreviations are used in this manuscript:

DDs Double Distributions
DGLAP Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
DVCS Deep Virtual Compton Scattering
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EFFs Electromagnetic Form Factors
EIC Electron Ion Collider
EicC Electron Ion collider in China
EMT Energy Momentum Tensor
ERBL Efremov–Radyushkin–Brodsky–Lepage
GPDs Generalised Parton Distribution
GTMDs Generalised Transverse Momentum dependent Distributions
JLab Jefferson Laboratory
LFWFs Lightfront Wave Functions
NJL Nambu–Jona-Lasinio
PDFs Parton Distribution Functions
QCD Quantum Chromodynamics
RGE Renormalisation Group Equation
TMDs Transverse Momentum dependent Distributions
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175. Kumerički, K. Measurability of pressure inside the proton. Nature 2019, 570, E1–E2. [CrossRef]

229



Particles 2023, 6

176. Guichon, P.A.M.; Mossé, L.; Vanderhaeghen, M. Pion production in deeply virtual Compton scattering. Phys. Rev. D 2003,
68, 034018. [CrossRef]

177. Guidal, M.; Bouchigny, S.; Didelez, J.P.; Hadjidakis, C.; Hourany, E.; Vanderhaeghen, M. Generalized parton distributions and
nucleon resonances. Nucl. Phys. A 2003, 721, 327–332. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

230



Citation: Sedrakian, A. Impact of

Multiple Phase Transitions in Dense

QCD on Compact Stars. Particles

2023, 6, 713–730. https://doi.org/

10.3390/particles6030044

Academic Editors: Sebastian M.

Schmidt, Minghui Ding and

Craig Roberts

Received: 25 March 2023

Revised: 9 June 2023

Accepted: 11 July 2023

Published: 14 July 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Impact of Multiple Phase Transitions in Dense QCD on
Compact Stars

Armen Sedrakian 1,2

1 Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany;
sedrakian@fias.uni-frankfurt.de or armen.sedrakian@uwr.edu.pl

2 Institute of Theoretical Physics, University of Wrocław, 50-204 Wrocław, Poland

Abstract: This review covers several recent developments in the physics of dense QCD with an
emphasis on the impact of multiple phase transitions on astrophysical manifestations of compact
stars. To motivate the multi-phase modeling of dense QCD and delineate the perspectives, we
start with a discussion of the structure of its phase diagram and the arrangement of possible color-
superconducting and other phases. It is conjectured that pair-correlated quark matter in β-equilibrium
is within the same universality class as spin-imbalanced cold atoms and the isospin asymmetrical
nucleonic matter. This then implies the emergence of phases with broken space symmetries and tri-
critical (Lifshitz) points. The beyond-mean-field structure of the quark propagator and its non-trivial
implications are discussed in the cases of two- and three-flavor quark matter within the Eliashberg
theory, which takes into account the frequency dependence (retardation) of the gap function. We
then construct an equation of state (EoS) that extends the two-phase EoS of dense quark matter
within the constant speed of sound parameterization by adding a conformal fluid with a speed of
sound cconf. = 1/

√
3 at densities ≥ 10 nsat, where nsat is the saturation density. With this input, we

construct static, spherically symmetrical compact hybrid stars in the mass–radius diagram, recover
such features as the twins and triplets, and show that the transition to conformal fluid leads to
the spiraling-in of the tracks in this diagram. Stars on the spirals are classically unstable with
respect to the radial oscillations but can be stabilized if the conversion timescale between quark and
nucleonic phases at their interface is larger than the oscillation period. Finally, we review the impact
of a transition from high-temperature gapped to low-temperature gapless two-flavor phase on the
thermal evolution of hybrid stars.

Keywords: QCD matter; phase diagram; compact stars

1. Introduction

The astrophysics of compact stars entered the era of multimessenger astronomy in
2017 with the discovery of the neutron star binary merger event GW170817 [1]. Combined
with radio observations of massive pulsars in binaries with white dwarfs [2] and X-ray
observations of nearby solitary neutron stars [3,4], compact star astrophysics nowadays
offers important insights into their global properties and potentially into the phase struc-
ture of dense matter [5–13]. Studies of matter at high densities are fundamental to our
understanding of the strong force of the Standard Model and underlying concepts such as
confinement, spontaneous chiral symmetry breaking, and dynamical mass generation [14].

This work studies the impact of multiple phase transitions in dense QCD matter on the
physics of compact stars. We partially review the relevant physics but also provide a novel
discussion of the mass–radius diagram of compact stars in the case where a conformal
fluid is added to the two-phase, constant speed of sound parametrization of the EoS of
quark matter [15]. This is motivated by the recent work that showed that even though
the high-central-density stars are typically unstable toward radial oscillation (see Ref. [16],
hereafter BTM), i.e., when dM/dρc < 0, where M is the star’s gravitational mass and ρc is
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the central density, they can be stabilized if the conversion between nucleonic and quark
phases is slow compared to the characteristic period of radial oscillations [17–20].

To motivate the modeling, Section 2 provides a brief overview of the phase diagram
of dense QCD matter as we understand it from the studies of the thermodynamics of
various high-density phases, such as the color-superconducting phases [6–10] or quarkionic
phases [21–25]. Utilizing the knowledge gained from the studies of imbalanced cold
atoms [26] and isospin asymmetrical nuclear matter [27,28], the possible phase structure of
pair-correlated quark matter is conjectured based on the universal features of imbalanced
pair-correlated fermionic systems. Section 3 discusses the computations of Green’s functions
in the two- and three-flavor phases [29,30] and potential new effects arising beyond the
adiabatic (frequency-independent) approximation of the gap. In Section 4, the constant
speed-of-sound parameterization of the EoS of quark matter phases [31,32] is used to
explore the mass–radius (M-R) diagram of compact stars with deconfinement and multiple
phase transitions. For two-phase transitions, one from nucleonic to two-flavor quark matter
and another from two-flavor to three-flavor phase of quark matter, we recover the fourth
family of compact stars, which is separated from the third family by the instability region [15].
Here we show that a high-density phase of conformal fluid at densities ≥ 10 nsat, where
nsat = 0.16 fm−3 is the saturation density, modifies the classically unstable tracks in the M-R
diagram compared to the case when such transition does not occur [33]. Such modification
is phenomenologically important because of the possible stabilization mechanism of radial
oscillation modes of hybrid stars [17–20], which is discussed in Section 6. In Section 5,
we discuss the cooling of compact stars with quark cores. We then simulate the thermal
evolution of these stars on a time scale on the order of million years with a focus on the
impact of the phase transition from the gapped to the gapless phase of 2SC matter in the
core of the star. Our conclusions are given in Section 7.

2. A Brief Review of the Phase Diagram of Dense QCD

Matter in compact stars covers the large number density (n ≥ nsat), large isospin,
and relatively low-temperature (0 ≤ T ≤ 100 MeV) portion of the phase diagram of
strongly interacting matter. The extremely low temperature (T ≤ 0.1) The MeV regime
is relevant for mature compact stars, whereas the higher temperature domain is relevant
for supernovas and binary neutron star mergers. The complexity of the phase diagram
arises due to the multiple order parameters describing (interrelated) phenomena, which
include deconfinement phase transition (with the Polyakov loop as the order parameter of
the center symmetry), chiral phase transition (and its condensate as the order parameter),
the color-superconducting phases (with the anomalous correlator as the order parameter).
Depending on the non-zero value of one or several order parameters, distinct phases may
arise: an extensively studied case is color-superconducting phases with various pairing
patterns [6–10]. A more recent suggestion is a confined but chirally symmetric quarkyonic
phase at compact star densities [21,23,24]. A crude sketch of the phase diagram of strongly
interacting matter is shown Figure 1, along with the regions that are covered by current
and future facilities (RHIC, NICA, and FAIR). The low-density and low-temperature region
of the phase diagram contains nuclei embedded into a sea of charge-neutralizing electrons
and neutrons at higher densities. As the density increases, a first-order phase transition to
bulk nuclear matter occurs at around 0.5 nsat. A further increase in density can lead to the
deconfinement of nucleons to form quark matter for n ≥ (2 − 3)× nsat.

The transition from nuclear matter to deconfined quark matter could be of the first
or second order, or a crossover [6–10]. The first-order phase transition leaves a marked
imprint on the macroscopic properties of compact stars because the EoS contains a density
jump, which may give rise to new stable branches of compact stars (i.e., their third family)
separated from nucleonic stars by a region of instability [34–37]. Smooth crossover without
changes in the values of the order parameter or the wave function of the three-quark states
would be a less dramatic change in the slope of the EoS, best visualized in terms of the
speed of sound [10,22,38]. As mentioned above, two sequential first-order phase transitions
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can lead to the appearance of a new branch of compact stars—fourth family—separated
from the third family by an instability region [15,33,39,40], assuming the classical stability
criterion dM/dρc > 0 is valid. In the case of slow phase transition between the nuclear
and quark matter phases, the two families are not separated by an instability region; i.e.,
they form a continuous branch where the regions with dM/dρc < 0 are stabilized [20] (see
Section 6).

Figure 1. Sketch of the phase diagram of strongly interacting matter in the temperature and baryonic
density plain. Compact stars cover the low-temperature and high-density regimes of this phase
diagram. The parameter ranges covered by the FAIR, NICA, and RHIC facilities are also indicated.

Deconfined quark matter at low temperature and high density is expected to have
characteristic features of degenerate Fermi systems, which are familiar from condensed
matter physics. Therefore, emergent phenomena such as (color) superconductivity are ex-
pected in channels where gluon exchange is attractive [6–8]. Various color superconducting
phases may arise, depending on the number of flavors and colors involved in the pairing,
the ratio of Δ/δμ, where Δ is the gap in the quasiparticle spectrum, δμ = (μd − μd)/2
is the difference in the chemical potentials of down (d) and up (u) quarks, and the mass
of strange quark ms in the three-flavor quark matter. The two-flavor candidate phases
classified according to these parameters are as follows:

(a) The “2SC” phase (where the abbreviation refers to two-superconducting-colors) [6]

Δ2SC ∝ 〈ψT(x)Cγ5τ2λ2ψ(x)〉 �= 0, 0 ≤ δμ < Δ/
√

2, (1)

where C = iγ2γ0 is the charge conjugation operator, τ2 is the second component of the
Pauli matrix acting in the SU(2) f flavor space, and λA is the antisymmetric Gell–Mann
matrix acting in the SU(3)c color space. The properties of the 2SC phase resemble
that of the ordinary BCS theory, including vanishing resistivity and vanishing heat
capacity because the quarks near the Fermi surface remain gapped.

(b) Phases with broken space symmetries, which are associated with a finite momentum
of the condensate [6,8] (hereafter FF phase) or deformation of the Fermi surface [41]
(hereafter DFS phase):

Δ2SC �= 0, δμ > Δ/
√

2, �P �= 0 (FF) (2)

Δ2SC �= 0, δμ > Δ/
√

2, δε �= 0 (DFS) (3)

where �P is the center of mass momentum of a Cooper pair and δε quantifies the
quadrupole deformation of the Fermi surfaces of u and d quarks.
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(c) Mixed phase(s) [42]

Δ2SC ∝ 〈ψT(x)Cγ5τ2λ2ψ(x)〉 �= 0, δμ = 0, 0 ≤ xs ≤ 1, (4)

which corresponds to a mixture between a perfectly symmetrical “2SC” superconduc-
tor and a normal system accommodating the excess number of d quarks. Here, xs is
the filling factor defined as the ratio of the superconducting and total volumes. (We
assume that there is an excess of d over u quarks, as is expected in quark matter in
compact stars under β-equilibrium.)

The color-flavor-locked (CFL) phase [43] is expected to be the ground state of three-
flavor quark matter at asymptotically large densities where the strange quark is massless,
Fermi surfaces of quarks coincide, and, therefore, the pairing among quarks occurs in
a particularly symmetrical manner. At densities relevant for neutron stars, the perfect
CFL phase is unlikely to be realized; rather, some of its variants have ms �= 0 and/or
δμ �= 0—chemical potential shifts between various flavors of quarks [44]. Therefore, the
phases listed above can be replicated with an allowance of additional non-zero us and
ds pairings

Δud �= 0, Δsd �= 0, Δsu �= 0, (ms �= 0; δμ �= 0). (5)

A complete phase diagram of quark matter that includes most, if not all, of the phases
mentioned above, is not available to date. However, various imbalanced superfluids, such
as cold atoms, isospin asymmetrical nuclear matter, and flavor-imbalanced quark matter
show a high degree of universality. Thus, possible structures of the phase diagram of quark
matter can be conjectured by extrapolating from the detailed studies of the phase diagrams
of cold atomic gases [26] and isospin asymmetrical nuclear matter [27]. These are, clearly,
speculative and need to be confirmed using explicit computations of relevant quark phases.

Figure 2 shows two schematic phase diagrams of color-superconducting matter in the
density–temperature plane. For sufficiently large temperatures, the unpaired normal phase
is the preferred state of matter, ignoring any other correlation beyond the pairing. The
phases with broken symmetries, the FF and the DFS phases, are preferable in temperature–
density strips at low temperatures and high densities. At lower temperatures, the PS phase
is the preferred one. At higher temperatures, the spatially symmetric 2SC phase dominates.
It is seen that the phase diagram contains two tri-critical points, i.e., the points where three
different phases coexist. The critical point, which has the FF state at the intersection, is
a Lifshitz point as, per construction, it is a meeting point of the modulated (FF), ordered
(PS/2SC), and disordered (unpaired) states. Of course, this is the case if the transition
temperature to the CFL phase is below the tri-critical temperature; otherwise, the unpaired
state should be replaced by a variant of the CFL phase. Note that depending on the
parameters of the model, two or one tricritical points may be located on the unpairing line
or the line of transition to the CFL phase, as illustrated in Figure 2, left and right panels,
respectively. The model can be tuned to produce a four-critical point if both points coincide.
We also note that the low-density limit corresponds to the strong coupling regime where the
pairs are tightly bound, whereas the high-density limit corresponds to the weak-coupling
regime. Therefore, one can anticipate signatures of BCS–BEC crossover. These can be seen
by examining several characteristic quantities, for example, the ratio of the coherence length
to the interparticle distance ξ/d, where ξ/d � 1 corresponds to the BCS and ξ/d � 1
corresponds to the BEC limit, or the ratio of the gap to the (average) chemical potential
Δ/μ, where Δ/μ � 1 corresponds to the BCS and Δ/μ � 1 corresponds to the BEC limit.
For discussions of BCS=-BEC crossover in dense quark matter, see Refs. [45–48]. This
phenomenon shows a high degree of universality as well; see for example, the studies of
nuclear matter [49–51] and cold atoms [26,52].
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Figure 2. Sketch of the phase diagram of strongly interacting matter in the temperature and baryonic
density plain, including (collectively indicated) modulated FF-phase and deformed Fermi surface
DFS phase. The tri-critical points are shown with dots; the Lifshitz point is adjacent to the FF,
unpaired/CFL phases, and homogenous (PS) phases. In the left panel, it is located on the unpairing
or CFL-transition (solid line). The dashed lines correspond to the phase-separation lines among
various phases. Signatures of BCS–BEC crossover/transition may emerge when moving from high to
low densities.

3. Structure of Green Functions in Two-Flavor Quark Matter

Order-by-order computations of the magnitude of the gaps in the superconducting
phases can be carried out in the weak-coupling (extreme high-density) regime, where
the one-gluon exchange is the dominant interaction. Approximate Eliashberg-type equa-
tions for the flavor-symmetric 2SC phase were solved within one-gluon exchange ap-
proximation in Refs. [53,54], showing that the pairing gap scales with the coupling g as
Δ ∼ μg−5 exp(−1/g). Such a scaling also applies to the high-density CFL phase, where
the perturbative approach is more reliable than at densities relevant to the 2SC phase.
More recently, Eliashberg-type equations were solved for two-flavor [29] and three-flavor
superconductors [30]. The first study used the quark–meson coupling model, keeping
only the frequency dependence of the gap, whereas the second study kept frequency and
momentum dependences but ignored the imaginary part of the pairing gap. These theories
not only improve the description of quark matter but also lead to phenomenologically
important implications, such as the presence of electrons in the CFL phase [30], which are
not allowed when the gap is constant [55].

We now briefly outline these approaches following Ref. [29]. The inverse Nambu–Gorkov
quark propagator is given by

S−1(q) =
(

/q + μγ0 − m Δ̄
Δ (/q − μγ0 + m)T

)
, (6)

where q is the four-momentum and Δ is the gap with Δ̄ ≡ γ0Δ†γ0. Equation (6) is written
for the case of equal number densities of up and down quarks with a common chemical
potential μ and mass m. The bare quark–meson vertices Γi

π(q) and Γσ(q) are given by

Γi
π(q) =

(
τi

2 γ5 0
0 −( τi

2 γ5)
T

)
, Γσ(q) =

(
I 0
0 −I

)
, (7)

where pions couple to quarks using a pseudo-scalar coupling, whereas σs couple via a scalar
coupling, with I being a unit matrix in the Dirac and isospin spaces. Their propagators are
given by

Dπ(q) =
1

q2
0 − q2 − m2

π
, Dσ(q) =

1
q2

0 − q2 − m2
σ

, (8)

where mπ/σ values are the meson masses. The equation for the gap in the Fock approxima-
tion is given via
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Δ(k) = ig2
π

∫ d4q
(2π)4

(
−τi

2
γ5

)T

S21(q)
τ j

2
γ5δijDπ(q − k)

+ ig2
σ

∫ d4q
(2π)4 (−I)TS21(q)IDσ(q − k), (9)

where gπ and gσ are the coupling constants. Adopting the color–flavor structure of the gap
function corresponding to a 2SC superconductor, one then finds

Δab
ij (k) = (λ2)

ab(τ2)ijCγ5[Δ+(k)Λ+(k) + Δ−(k)Λ−(k)], (10)

where a, b . . . refer to the color space, i, j, . . . refer to the flavor space, and the projectors onto
the positive and negative states are defined in the standard fashion as Λ±(k) = (E±

k + α · k+

mγ0)/2E±
k , where E±

k = ±
√

k2 + m2 and α = γ0γ. The coupled Equations (6)–(10) must
be solved for the gap function, which is a function of three-momentum and the frequency.
In the low-temperature limit, the relevant momenta are close to the Fermi momentum and
the dependence on the magnitude of the three-momentum can be eliminated by fixing it
at the Fermi momentum. The gap Equation (9) then depends only on the energy, which
reflects the fact that the pairing interaction is not instantaneous—a common feature of
the Fock self-energies in ordinary many-body perturbation theory. The solutions for the
positive energy projection of the gap function are shown in Figure 3 as a function of
frequency. The structure of the real and imaginary components of the gap function shows
a maximum around frequencies at which the meson spectral functions are peaked. Thus, it
is important to include the retardation effect when the color superconductor is probed at
such frequencies. In the low-frequency limit, it is sufficient to use the BCS approximation
where the interaction is instantaneous so that the imaginary part vanishes Im Δ(ω) = 0
and the real part is a constant Re Δ = Δ(ω = 0).

-

Figure 3. Dependence of the real (solid) and imaginary (dashed) components of the positive energy
projection of the gap function on frequency for two different values of the coupling shown by blue
and red lines [29]. The BCS theory predicts a constant on-shell value Re Δ = Const. and a vanishing
Im Δ(ω).

Ref. [30] considered the full momentum and energy dependence of the gap in the
Fock approximation within the Yukawa model but neglected the imaginary part of the
anomalous self-energy. Their work shows that the retardation implies a CFL phase that
is not a perfect insulator, as charge neutrality requires some electrons to be present in
matter. This is not the case in the treatment based on the BCS model [55]. Thus, the
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phenomenology of the CFL phase is modified: its specific heat, thermal conductivity, and
magnetic response will change due to the contribution of electrons. This example, in
which the simple BCS ansatz for the gap is replaced by a more complete gap function,
demonstrates some unexpected features of color superconductors, which may be important
for their transport and dynamic response to various probes.

4. Equation of State and Mass–Radius Diagram

We have seen in the previous section that the phase diagram of quark matter may have
a complicated structure. At minimum, there are two robust phases of color superconducting
matter: the low-density two-flavor 2SC phase and the high-density three-flavor CFL phase.
See, for example, Ref. [56] for a Nambu–Jona-Lasinio study and compact stars with two
phase transitions in this model. However, additional phases are very likely because it is
energetically favorable to break the rotational and translational symmetries due to the
stress on the paired state induced by the finite mass of the strange quark and β-equilibrium,
which induces disparity in the chemical potentials of u and d quarks. In addition, or
alternatively, quarkyonic phases may interfere.

For the specific computation below, we adopt a covariant density functional EoS of
nuclear matter in the nucleonic phase [39,40,57]. This EoS, in the absence of the phase transi-
tion to quark matter, produces nucleonic compact stars with a maximum m ≡ M/M� � 2.6,
where M is the gravitational mass of the star and M� is the solar mass. Allowing for phase
transition to quark matter, we consider a straightforward extension of the constant speed of
sound EoS of Ref. [15] that allows for a conformal phase of quark matter at high densities
with a constant speed of sound, i.e.,

p(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1, ε1 < ε < ε1+Δε1

p1 + s1
[
ε − (ε1+Δε1)

]
, ε1+Δε1 < ε < ε2

p2, ε2 < ε < ε2+Δε2

p2 + s2
[
ε − (ε2+Δε2)

]
, ε2+Δε2 < ε < ε3

p3, ε3 < ε < ε3+Δε3

p3 + s3
[
ε − (ε3+Δε3)

]
, ε > ε3

(11)

where the three pairs of the pressure and energy density p1,2,3 and ε1,2,3 correspond, re-
spectively, to the transition from hadronic to quark matter, from a low-density (2SC) quark
phase to a high-density (CFL) quark phase, and from the high-density quark phase to the
conformal fluid. The squared sound speeds in the quark phases are denoted by s1, s2, and
s3 = c2

conf.. Note that we assume that the 2SC and CFL quark phases are separated by
a jump at the phase boundary, as it follows from the study of Ref. [56]. At high densities,
the CFL phase reaches the “conformal limit” where the interactions are dominated by
the underlying conformal symmetry of QCD. In this limit, the speed of sound squared is
s3 = 1/3 (in units of speed of light), whereas the effects of the pairing gap of the CFL phase
can be neglected in a first approximation. Note that we allow for a small jump between
proper CFL and conformal zero-gap fluid, but its effect on the observables is marginal, i.e.,
a smooth interpolation would not change the results.

According to Equation (11), the modeling of the EoS of quark phases involves the
following parameters:

• The three (energy) densities at which the sequential transitions between the nucleonic
phase, 2SC phase, CFL phase, and conformal fluid take place.

• The magnitudes of the jumps in the energy density at the points of the transition from
nuclear to the 2SC phase, Δε1, from the 2SC to the CFL phase, Δε2, and from the CFL
to the conformal fluid phase Δε3.

• The speeds of sound in the 2SC and CFL phases s1 and s2. The speed of sound of the
conformal fluid is held fixed at s3 = 1/3. Note that for any phase, s ≤ 1 by causality.
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Our model EoS is constructed using the following parameters. The transition pressure
and energy density from nuclear and quark matter are p1 = 1.7 × 1035 dyn/cm2 and
ε1 = 8.4 × 1014 g cm−3, respectively. The magnitude of the first jump Δε1 = 0.6 ε1. The
upper range of the energy density of the 2SC phase is determined as εmax

1 = δ2SC(ε1 +
Δε1), where δ2SC is a dimensionless parameter measuring the width of the 2SC phase.
The magnitude of the second jump is parametrized in terms of the ratio parameter
r = Δε2/Δε1. The extent of the CFL phase is determined by limiting its energy density
range to εmax

2 = δCFL(ε2 + Δε2). The transition to the conformal fluid is assumed to be of
the first order with a small (compared to other scales) energy-density jump equal to 0.1r.
The transition to the conformal fluid phase occurs at densities ε3 = 2.25–2.57× 1015 g cm−3,
i.e., by about a factor of 10 larger than the saturation density. The speeds of sound squared
are fixed as

s1 = 0.7, s2 = 1, s3 =
1
3

. (12)

The values of s1 and s2 are chosen to obtain triplet configurations with large enough
masses of hybrid stars. The magnitudes of jumps between the nuclear, 2SC, and CFL phases
were chosen suitably to produce twin and triplet configuations [15].

Figure 4 shows a collection of EoS constructed based on Equation (11), which shares
the same low-density nuclear EoS. In this collection, we vary the parameter r (as indicated
in the plot) for fixed values δ2SC = δCFL = 0.27. The corresponding M–R relations for static,
spherically symmetrical stars obtained from solutions to Tolman–Oppenheimer–Volkoff
equations are shown in Figure 5.

Figure 4. The pressure vs. energy density (EoS) for nucleonic matter (long-dash-dotted curve) and a
series of EoSs that contain two sequential phase transitions via Maxwell construction manifest in the
jumps of the energy density. The models differ by the magnitude of the second jump measured in
terms of the ratio r = Δε2/Δε1.

For the chosen magnitude of the first jump Δε1, the M–R curves show the phenomenon
of twins—two stars of the same mass but different radii. The radii of twins differ by about
1 km. The more compact configuration is a hybrid star, i.e., a star with a quark core and
nuclear envelope, whereas the less compact counterpart is a purely nucleonic star. The
second phase transition may or may not result in a classically stable sequence depending
on the value of the parameter r parameterizing the magnitude of the second jump. For
small jumps r = 0.1 and 0.23, new stable branches arise, which are continuously connecting

238



Particles 2023, 6

to the stable 2SC branch (r = 0.1) or are separated by a region where the stars are unstable
(r = 0.23). It is seen that, in this case, triplets of stars with different radii but the same
masses appear. The densest stars contain, in addition to the 2SC phase, a layer of the CFL
phase, whereby the central density on the stable branch can exceed the onset density of
the conformal fluid. This implies that the densest member of a triplet will contain in its
center conformal fluid with cconf. = 1/

√
3. For each M-R curve in Figure 5, the star with

a central density at which the conformal fluid first appears is shown by a dot (this density
is fixed at 10 nsat). The stable branch of conformal fluid containing stars is followed by
a classically unusable branch with dM/dρc < 0. For asymptotically large central densities,
the masses and radii increase again. The family of the EoSs that differ only in the value
of the parameter r cross at a “special point”. This type of crossing has been observed for
twin star configurations with a variation in a particular parameter of the EoS [58]; however,
the EoS excluded two sequential phase transitions. The behavior of M–R curves at very
high central densities differs from the ones that were found in Ref. [33], where a branch of
ultracompact twin stars with masses of the order of 1 M� and radii in the range of 6–7 km
were found for a single phase transition from the nuclear matter to the quark phase. Thus,
we conclude that the high-density asymptotics of the EoS modifies the behavior of the M–R
curves if the conformal limit is achieved at densities of the order of 10 nsat.

Figure 5. The M–R relations corresponding to the EoS shown in Figure 4 for several ratios of the
second jump. The right panel enhances the high-mass range to demonstrate the emergence of
the triplets and the fourth family of compact stars. Note that the different MR curves cross each
other at the special point located in the low-mass and low-radius region, in analogy to the single-
phase transition case; see Ref. [58]. The blue circles indicate the stars in which the central density
corresponds to 10 nsat at which the conformal fluid sets in.

The observation above may have phenomenological implications for the following
reason. The stability of stellar configurations is commonly determined by the requirement
that the star’s mass must increase with increasing central density (or central pressure),
i.e., ∂M/∂ρc > 0. An alternative and physically more transparent method is to compute
the radial modes of oscillation of a star and determine the stable configurations from the
requirement that their frequencies are real. Ref. [17] showed that the classical stability
conditions fail if the conversion rate is slow, i.e., if its characteristic timescale is longer
than the period of oscillations. In that case, the fundamental modes are stable even when
∂M/∂ρc < 0; i.e., stars with central densities larger than the one corresponding to the
maximum-mass star (which lie to the left from the maximum on the M–R diagram in
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Figure 5) will be stable. This observation also applies to configurations with two-phase
transitions, as shown in Refs. [19,20]. Furthermore, Ref. [20] shows that, in this case, the
classically unstable stars contribute to the count of same-mass stars, which leads to the
appearance of higher-order multiplets such as quadruplets, quintuplets, and sextuplets.
We will return to the stability of hybrid stars in Section 6.

5. Cooling of Compact Stars with Quark Matter Cores

The cooling of compact stars may provide indirect information about quark phases in
hybrid stars. The properties of phases of dense quark matter affect both neutrino emission
and the specific heat content that determine the cooling rate of a compact object in general;
see Refs. [59–75].

Non-superconducting relativistic quark matter cools predominantly via the direct
Urca processes involving d, u, and s quarks [76]

d → u + e + ν̄e,

u + e → d + νe,

s → u + e + ν̄e,

u + e → s + νe,

(13)

where νe and ν̄e are the electon neutrino and antineutrions. The neutrino emissivity through
the direct Urca process for non-strange quarks is given via [77]

εβ = 8.8 × 1026αs

(
n

nsat

)
Y1/3

e T6
9 ergs cm−3 s−1, (14)

where n is the baryon density, Ye is the electron fraction, T9 is the temperature in units of
109 K, and αs is the running strong coupling constant. The emissivity given by Equation (14)
implies that the stars containing unpaired quark matter would cool quickly via this direct
Urca process. The cooling would be slower if the quark spectrum contains a gap. In the case
of the phenomenologically relevant 2SC phase, two alternatives are possible, depending
on whether the Fermi surfaces of quarks are a full gap or they contain zero-gap segments
(nodes). The latter feature arises in the case of pairing between fermions on different Fermi
surfaces, as discussed in Section 2.

Ref. [78] studied a generic case where the quark spectrum is gapped if the parameter
ζ = Δ0/δμ associated with the new scale δμ = (μd − μu)/2, where μu,d are the chemical
potentials of light quarks and Δ0 is the gap for δμ = 0. The suppression of emissivity by
pairing is qualitatively different in the cases in which ζ > 1 and ζ < 1. The novelty arises in
the second case, where Fermi surfaces have nodes and particles can be excited around these
nodes without any energy cost (which is not the case for gapped Fermi surfaces). Note that
in the case of the FF phase, the shift in the chemical potential is replaced by a more general
function—the anti-symmetric in the flavor part of the single particle spectrum of up and
down quarks. This new physics can be captured by adopting a generic parameterization of
the suppression factor of the quark Urca process with pairing suggested in Ref. [78]. The
neutrino emissivity of the 2SC phase ε

rg
2SC can be related to the Urca rate in the normal

phase (14) as

ε
rg
2SC(ζ; T ≤ Tc) = 2 f (ζ)εβ, f (ζ) =

1

exp
[
(ζ − 1) δμ

T − 1
]
+ 1

, (15)

where the parameters ζ and δμ were introduced above, T is the temperature, and Tc is the
critical temperature of the phase transition from normal to the 2SC phase. Furthermore, the
parameter ζ(T) is temperature-dependent and we adopt the parametrization

ζ(T) = ζi − Δζg(T), (16)
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where ζi is the initial value, Δζ is the constant change in this function, and the function g(T)
describes the transition from the initial value ζi to the asymptotic final value ζ f = ζi − Δζ.
The transition is conveniently modeled by the following function

g(T) =
1

exp
(

T−T∗
w

)
+ 1

, (17)

which allows one to control the temperature of transition by adjusting the parameter T∗

and the smoothness of the transition via the width parameter w. An additional issue to
address is the role of the blue quarks that do not participate in the 2SC pairing. Blue quarks
may pair among themselves due to the attractive component of the strong force as in the
ordinary BCS case (as both members of the Cooper pair are on the same Fermi surface).
Then, the emissivity of blue quarks in the superfluid state is given by

εb
BCS(T ≤ Tcb) � εb

β(T > Tcb) exp
(
−Δb

T

)
, (18)

where Δb is the gap in the blue quark spectrum, Tcb is the corresponding critical temperature,
and εb

β is the neutrino emissivity of blue quarks in the normal state. As discussed in
Section 4, the densest members of the triplets contain cores of CFL matter that is fully
gapped. In this case, the excitations are the Goldstone modes of the CFL phase. Their
emissivity, as well as the specific heat, is rather small compared to other phases due to
their very small number density [79]. In the following discussion, we will ignore the role
of the CFL phase in the cooling of hybrid stars. In the conformal fluid phase, we expect
three-flavor pairing gap Δ ∼ μg−5 exp(−1/g), g =

√
4παs, with a spin–flavor structure of

the CFL phase.
Let us turn to the cooling simulations of hybrid stars with a gapless 2SC superconduc-

tor. The cooling tracks are shown in Figure 6, and the input physics beyond the emissivities
is discussed elsewhere [61,62,67,68]. The key parameter regulating the behavior of the cool-
ing curves in Figure 6 is the temperature T∗, which controls the transition from the gapped
to ungapped 2SC phase. Similar results were obtained in the context of rapid cooling of
the compact star in Cassiopeia (Cas) A remnant in Ref. [61,62,68]. The model has a second
parameter, the gap for blue-colored quarks Δb, which prohibits rapid cooling via the Urca
process involving only blue quarks. The third parameter w in Equation (17) accounts for
the finite time scale of the phase transition—see Refs. [62,68]—but it is important only for
the fine-tuning of the cooling curves close to the age of the Cas A. The various cooling
tracks shown in Figure 6 correspond to various values of T∗ for fixed values of w and Δb
and stellar configuration of mass 1.93 M�. It is seen that if T∗ is small, then the quark core
does not influence the cooling, because during the entire evolution T > T∗; therefore the
neutrino emission is suppressed by the fully gapped Fermi surfaces of red-green quarks.
For large T∗, early transition to the gapless phase occurs, and the star cools fast via the
direct Urca process. Note that the value of T∗ can be fine-tuned to reproduce not only the
current temperature of Cas A but also the fast decline claimed to be observed during the
last decade or so; see Ref. [80] and references therein. From the brief discussion above, one
may conclude that the phase transitions within the cold QCD phase diagram may induce
interesting and phenomenologically relevant changes in the cooling behavior of compact
stars. Although we will not discuss in any depth the dependence of cooling tracks on
the stellar mass, it should be pointed out that the onset of new phases in the interiors of
compact stars, for example, hyperonization, meson condensation, and phase transition to
quark matter, lead to mass hierarchy in the cooling curves [81–84]. Typically, one finds that
heavier stars that have central densities beyond the threshold for the onset of the new phase
cool faster than the light stars containing only nucleonic degrees of freedom. This is also
the case for models of stars studied here. For example, stars with masses M ∼ 1.1–1.6 M�
remain warm over longer time scales and are thus hotter than their heavy analogs, which
develop large quark cores.
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Figure 6. Cooling tracks of compact stars with quark cores in the surface-temperature–age diagram.
The masses of the stars are the same, M = 1.93 M�, and the different curves correspond to different
values of the parameter T∗ in units of keV, except the dotted line, which corresponds to 1 M� mass
nucleonic compact star without a quark core. The observational points with error bars are shown by
green circles; the arrows show the upper limits on surface temperatures of known objects.

6. Stability Criteria for Hybrid Stars

The oscillation modes of a compact star are important probes of their internal structure,
as has been shown in the case of g modes, which are sensitive to the size of the density
jumps at a first-order phase transition between hadronic and quark matter [85–87]. They
are expected to leave an imprint on the emitted gravitational wave signal during the binary
inspiral of a neutron star, as well as in the post-merger phase [88–91].

As discussed briefly in Section 4, high-central density stars on the descending branch
of M–R diagram can have phenomenological implications if they are stabilized by some
mechanism, which we discuss in this section. The main mode of instability for non-rotating,
spherically symmetrical fluid stars in general relativity is the instability against the radial
f -mode of oscillations [92]. If the f -mode frequency ω2

f > 0, the stellar configuration is

dynamically stable, and it is unstable if ω2
f < 0. The location of this instability point on

the M–R diagram agrees well with the turning point of the mass–central-density (M − ρc)
curve. The stars on the ascending branch are stable, whereas those on the descending
branch are unusable. The maximum mass is the point of marginal stability. Numerical
simulations found some violations of this criterion [93,94], but quantitative deviations are
insignificant. However, recent work found that the agreement between these criteria is
strongly violated for stars with first-order phase transition, as we review below.

Early work on stellar oscillations with phase transitions inside the star was carried
out in the Newtonian theory assuming uniform phases [95,96]. Two possibilities arise
depending on the interplay between the scales in the problem: (a) when the conversion
rate from one phase to another is fast, the interface between phases oscillates as a whole
when perturbed; (b) if, however, conversion is slow, then the interface is fixed over the
period of characteristic oscillations. The second case is interesting because, as shown in
Ref. [17], the sign of ω2

f does not change at the maximum mass Mmax but stays positive over
a segment where ∂M/∂ρc < 0. This implies that the classically unstable branch becomes
stable against f -mode oscillations. Several subsequent studies confirmed this feature in the
case of single- [18] and two-phase transitions [19,20]. The case of two-phase transition was
extended in several directions in Ref. [20] by focusing on EoS, which supported classical
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twin and triplet star configurations, as discussed in Section 2. It was shown that in the
case of slow conversion, higher-order multiplet stars arise, since now the stars on the
∂M/∂ρc < 0 segments of the mass–central-density curve are located on the stable branch.
Also, the properties of the reaction mode of a compact star [96], which arises in case (a)
with one or more rapid phase transitions, were studied.

The fundamental modes of hybrid stars are obtained from the set of equations [97,98]

dξ

dr
=

(
dν

dr
− 3

r

)
ξ − ΔP

rΓP
, (19)

dΔP
dr

=

[
e2λ

(
ω2e−2ν − 8πP

)
+

dν

dr

(
4
r
+

dν

dr

)]
(ρ + P)rξ

−
[

dν

dr
+ 4π(ρ + P)re2λ

]
ΔP, (20)

where ξ = ξdim/r, with ξdim being the Lagrangian displacement, r the radial coordinate,
ΔP the Lagrangian perturbation of pressure, ρ the mass–energy-density, ω the angular
frequency, Γ the adiabatic index, and e2ν and e2λ the metric coefficients entering the
Tomann–Oppenheimer–Volkoff equations. In a first approximation, the adiabatic index for
a chemically equilibrated relativistic fluid can be taken as that of the matter in β-equilibrium
Γ = [(ρ + P)/P](dP/dρ). The set of Equations (19) and (20) can be solved provided the
boundary conditions are known. These are specified by assuming that the displacement
field is divergence-free at the center and that the Lagrangian variation of the pressure
vanishes at the surface of the star:

ΔP(r = 0) = −3ΓPξ(r = 0), ΔP(r = R) = 0. (21)

The ω2 values obtained in this manner are usually labeled according to the number of
radial nodes in ξ and the f mode corresponds to the nodeless mode.

In the case of multiple phase transitions in the QCD phase diagram, one needs junction
conditions that relate the values of Lagrangian perturbations on both sides of the interface
between phases. Such junction conditions already appear in the work of Ref. [96] in the
Newtonian cases, whereas the the general relativistic case is treated in Ref. [99]. For the
slow conversion rate one has the junction condition

[ΔP]+− = 0, [ξ]+− = 0; (22)

for rapid conversion rate, one has

[ΔP]+− = 0,

[
ξ − ΔP

r

(
dP
dr

)−1
]+

−
= 0, (23)

where +/− refer to the high- and low-density sides of the transition, respectively. At
present, it is not possible to state with confidence which limit is realized in quark matter,
as the conversion rate varies significantly over the parameter space; see Ref. [100] for
a discussion and earlier references. Ref. [20] considered modified junction conditions that
smoothly interpolate between the two limiting cases.

Phenomenologically, the most interesting implication of the modified stability criteria
is the existence of new stable configurations beyond those that are classically stable. In
particular, in the case where twins and triplets exist according to classical criteria of stability,
additional configurations will arise when conversion between phases at the interface is slow.
These can form quadruplets (the maximum number in the case of twins) and quintuplets
and sextuplets in the case of triplets. A particular case that allows for classical triplet
stars is illustrated in Figure 7, adapted from Ref. [20]. The fundamental mode frequency
ω f is shown as a function of the central pressure of the stars in two cases when both
interfaces (i.e., nucleonic to 2SC and 2SC-CFL) feature rapid or slow conversion. (The case
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of rapid–slow and slow–rapid conversions are intermediate cases, and we omitted them.)
To recover the classical case, one needs to assume that the conversion at each interface is
rapid: in this case, the instability region is characterized by the vanishing of the real part
of ω f , as seen in Figure 7. In the case of slow conversions at both interfaces, one finds
a continuous positive solution across the values of central densities of the stellar sequences,
thus indicating that the stars are always stable, even on the descending branch of the
mass–central-pressure curve.

100 1000
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3
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z]

rapid-rapid conversion f
0
-mode
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2SC+CFL stars2SC stars

nucleonic stars

Figure 7. The fundamental mode of triplet stars as a function of the central pressure of the config-
uration in the cases when both nucleonic-2SC and 2SC-CFL interfaces feature slow (solid line) or
rapid conversion (dotted line). In the case of rapid conversion, the classical stability criteria apply;
i.e., there are no real f0 solutions in the region where stars are unstable. The corresponding curves
are not shown. For more details, see Ref. [20].

To summarize the recent findings regarding the stability of the hybrid stars, we have
seen that their stability against the fundamental oscillation modes strongly depends on
the junction conditions at the interfaces between the phases. These are determined by
the rate of conversion between phases at the phase boundary. In the case of slow phase
transitions (i.e., when the conversion time scale is larger than the characteristic period of the
oscillations), the usual stability criteria are modified and new stable segments appear that
were previously unstable. Alternative variants of junction conditions that are intermediate
between slow and rapid conversion were also considered, but the resulting radial modes
do not differ significantly from the slow conversion case, with corresponding implications
for the stability of the stars [20].

7. Conclusions

The investigation of dense QCD through the astrophysics of compact stars is
an actively pursued subject. This is due to the substantial observational progress, which
includes measurements of the masses and radii of pulsars and gravitational wave signals
from mergers of two neutron stars and neutron-star–black-hole binaries. A more thorough
comprehension of the thermodynamics of dense QCD, weak interactions, and the dynamics
of phase transitions would greatly enhance our ability to model astrophysical phenomena
relevant to current observational programs.

This work gave an overview of the phase diagram of cold and dense QCD appropriate
for compact stars. We stressed that the universality of the phase diagram of imbalanced
fermionic superfluids, such as cold atomic gases and nuclear matter, provides a valuable
guide to the possible arrangement of the color-superconducting phases in neutron stars,
the presence of tri-critical points, and BCS–BEC crossovers. The universality allows one to
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conjecture the possible structures of the phase diagram in the density–temperature plane
including such phases, such as the Fulde–Ferrel phase, deformed Fermi surface phase, and
the phase separation.

As a novel contribution, the previously proposed parametrization of the EoS of dense
quark matter with sequential phase transitions was extended to include a conformal fluid
at large densities (n ≥ 10 nsat) with the speed of sound cconf. = 1/

√
3. The part of the M-R

diagram that contains twins and triplets remains intact because the transition to conformal
fluid occurs at larger central densities than those achieved in these objects. Nevertheless, for
large central densities, we find behavior that is qualitatively different from earlier studies
of this regime: the M–R curves spiral in; i.e., after reaching a minimum, they turn to the
right (larger radius region), thus avoiding the region of ultra-compact stars. Therefore, if
the conformal limit is reached for densities much larger than those considered here, the
ultracompact region with radii 6–7 km can be populated [33]. In the opposite case of the
early onset of the conformal limit (as discussed in Section 4), the radii will remain large,
but small-mass regions can be populated if the stability criteria are modified by the slow
conversion at the interface(s) between the phases. Another interesting new observation
is that the change in the magnitude of the jump from 2SC to the CFL phase induces
a special point on the M–R diagram at which all the curves meet in analogy to the case of
single-phase transition; see Ref. [58]. The importance of studying this asymptotically large
central density regime is phenomenologically relevant if the conversion between various
quark and nuclear phases is slow compared to the characteristic timescale of oscillations,
as discussed in Section 6. In this case, the stars on the descending branch of mass–central-
density (and its counterpart on the M-R diagram) may be stable [17–20], contrary to the
classical requirement dM/dρc > 0 for the branch to be stable, which in turn leads to higher
multipole (beyond triplets) stars on the M–R diagram.
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Abstract: Electric Dipole Moments (EDM) of particles (leptons, nucleons, and light nuclei) are
currently deemed one of the best indicators for new physics, i.e., phenomena which lie outside
the Standard Model (SM) of elementary particle physics—so-called physics “Beyond-the-Standard-
Model” (BSM). Since EDMs of the SM are vanishingly small, a finite permanent EDM would indicate
charge-parity (CP) symmetry violation in addition to the well-known sources of the SM, and could
explain the baryon asymmetry of the Universe, while an oscillating EDM would hint at a possible
Dark Matter (DM) field comprising axions or axion-like particles (ALPs). A new approach exploiting
polarized charged particles (proton, deuteron, 3He) in precision storage rings offers the prospect
to push current experimental EDM upper limits significantly further, including the possibility of
an EDM discovery. In this paper, we describe the scientific background and the steps towards the
realization of a precision storage ring, which will make such measurements possible.

Keywords: Baryon asymmetry; dark matter; electric dipole moments; storage rings; polarized beams

1. Introduction

1.1. Scientific Background

During the past century mankind has made mind-blowing progress in the understand-
ing of nature, which continues to this day and age with spectacular new discoveries, such
as the observation of the Higgs-boson or the detection of gravitational waves. Nevertheless,
there is a plethora of fundamental questions which wait to be answered [1]. As will be
illustrated below, some of them relate the largest scales (i.e., cosmology) to the smallest
ones (elementary particle physics), and answers to them will point towards physics not
contained in the celebrated respective Standard Model.

Electric Dipole Moments (EDM) of elementary particles—the permanent separation
of positive and negative electric charge centroids—have a very strong science case [2] as
they aim to solve two of the most pressing problems in contemporary cosmology and
particle physics:

1. Reason for the Baryon-asymmetric Universe (BAU) (Why is there matter and no
antimatter?) [3]

2. Composition of Dark Matter (DM) in the Universe (What is Dark Matter made of?) [4,5].

EDMs do not conserve discrete symmetries [6]; they violate time-reversal invari-
ance (T), parity (P), and—if the combined charge-parity-time reversal (CPT) symmetry
holds—in addition, charge-parity (CP) is “broken”. These symmetries and conserva-
tion laws play a very important role in modern physics; via Noether´s theorem [7], the
invariance of a system subject to a continuous symmetry transformation (e.g., a time-
translation, a spacial translation or a rotation) leads to a conservation law (energy, mo-
mentum and, angular momentum, respectively). In addition to continuous symmetries,
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there are discrete symmetries—parity (P) (reflection of space coordinates at the origin:
(x, y, z) → (−x, −y, −z)), charge conjugation (C) (replacing a particle by its antiparticle,
thus changing the sign of the electric charge: (+) → (−)), and time reversal (T) (change of
the direction of the time coordinate: (t) → (−t))—as well as combinations thereof: charge-
parity (CP) and charge-parity-time (CPT). Until around the middle of the 20th century, it
was taken for granted that all discrete symmetry transformations are good ones—that is
these operations do not make a difference in the experimental outcome—but then parity-
violation and later CP-violation were discovered experimentally, implying that nature does
distinguish between left and right, and between matter and antimatter. Today, only the
combined CPT-symmetry is assumed to be exact (the so-called CPT theorem [8]). As a
consequence, this means that CP-violation implicates T-reversal violation and vice versa to
preserve CPT. CP-violation is one prerequisite to explain the observed matter–antimatter
asymmetry in the Universe. The size of CP-violation, which has been found up to now and
is implemented in the Standard Model (SM) of particle physics, falls short of explaining
this asymmetry by many orders of magnitude.

No particle EDM has been found so far—only impressive experimental upper limits
exist, e.g., for the electron [9] (indirectly deduced in atomic measurements) and for the
neutron [10]. It turns out that the well-established CP-violation of the Standard Model of
particle physics leads only to very tiny EDMs, below the sensitivity of current experiments.
The discovery of a finite EDM value would signal the presence of additional CP-violation,
which is required for an understanding of the apparent matter–antimatter asymmetry of
our Universe. Observation of a finite EDM could thus solve this puzzle.

A new symmetry (called “Peccei–Quinn”(PQ) after its inventors) has originally been
suggested to account for the smallness of CP-violation in the strong interaction (dubbed
the “strong CP-problem”) [11]. One consequence of PQ symmetry breaking is the existence
of a new spin-0 (“scalar”) particle called an “axion”. These particles (or its generalization,
axion-like particles (ALP)) [12] are considered promising candidates for Dark Matter (DM),
which represents a large fraction (about 25%) of the energy content of the Universe, but its
nature is still unknown. No experimental indications for axions/ALPs have been found yet.
Axions/ALPs will couple to gluons (the exchange particles that bind quarks inside hadrons)
and induce oscillating EDMs, e.g., of nucleons (protons and neutrons) [13]. Observation of
such an oscillating EDM could thus clarify the nature of DM.

A discovery of static (not changing with time) EDMs and/or time-dependent (os-
cillating) EDMs (oEDM) would provide a breakthrough in the quest to understand the
set-up and evolution of the Universe on a deeper, more fundamental level. The current
model of elementary particle physics—the Standard Model (SM), which is spectacularly
successful in many other areas of fundamental particle physics—is not able to explain both
the Baryon-asymmetric Universe (BAU) and Dark Matter. Finding an EDM experimentally
will therefore inevitably also imply an extension to physics beyond the SM (BSM).

Recently, it has been realized that charged particles, in particular the proton and
the deuteron can be used to search for EDMs with unprecedented sensitivity, improving
current limits by orders of magnitude [14]. For these experiments, a dedicated—not yet
existing—new type of precision storage ring is required, which will allow the measurement
of the corresponding observable, the time-development of the polarization in a stored
polarized particle beam under investigation.

In the following two chapters the science case is outlined in more detail.

1.1.1. The Ambition to Solve the Matter–Antimatter Asymmetry

We live in a Universe that apparently contains an overwhelming amount of matter
compared to antimatter.

Our Universe was created 13.8 billion years ago in a singular event known as the
Big Bang. According to our current understanding, it created matter and antimatter in
equal amounts. However, in the Universe we live in and investigate today, we only find
matter (except for tiny amounts created in violent particle interactions), from our immediate
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neighbourhood to the largest distances. During the past decades, cosmology, assisted by
nuclear and particle physics, advanced our understanding of the evolution of the Universe
tremendously. The fate of the antimatter in this evolution is one of the biggest remaining
mysteries. During the early evolution of the Universe, antimatter particles annihilated
with corresponding matter particles into photons, leaving behind only a tiny fraction of
matter—for reasons yet unknown. This tiny fraction constitutes the material foundation
of today’s Universe and of our very existence. Diverse research is ongoing in the quest to
understand the formation of a matter-dominated Universe.

In the 1960s, the work of Andrei Sakharov [15] provided the following conditions for
matter to escape the annihilation:

• Baryon number violation—a change in the difference between the number of baryons
and antibaryons at the particle level,

• Charge conjugation (C) and charge-parity (CP) violation—a different behaviour of
matter and antimatter—and

• Thermal non-equilibrium (i.e., effective during a phase transition of the Universe)—to
prevent a subsequent compensation of the asymmetry between matter and antimatter.

The Standard Models of cosmology and particle physics meet these conditions qualita-
tively, but fail by 8 to 9 orders of magnitude at a quantitative description (see below). The
models predict an insufficient amount of matter that survived the annihilation phase in the
early Universe. It is frequently believed that the failure may arise from the second condi-
tion, i.e., from yet undiscovered violations of fundamental symmetries between matter and
antimatter (particles and antiparticles), in particular additional CP-violation not yet found.

Here, EDMs enter the stage. Subatomic particles with nonzero spin (regardless of either
elementary or composite nature) can only support a nonzero permanent EDM if both time-
reversal (T) and parity (P) symmetries are violated explicitly, while the charge symmetry
(C) can be maintained. Assuming the conservation of the combined CPT symmetry, T-
violation also implies CP-violation. The CP-violation generated by the Kobayashi–Maskawa
mechanism of weak interactions contributes a very small EDM that is several orders of
magnitude below current experimental limits [16]. However, many models for physics
beyond the Standard Model (BSM) predict EDM values near the current experimental limits
(see, e.g., [17]).

Finding a non-zero EDM value of any subatomic particle would be a signal that there
exists a new source of CP-violation, either induced by the strong CP-violation via the
so-called “θQCD angle” or by a genuine BSM effect. In fact, the best upper limit on θQCD
follows from the experimental bound on the EDM of the neutron. As indicated above,
CP-violation beyond the SM is also essential for explaining the mystery of the observed
baryon-antibaryon asymmetry of our Universe (BAU). A measurement of a single EDM
will not be sufficient to establish the sources of any new CP-violation. Complementary
observations of EDMs in multiple systems will thus prove essential.

Up to now, measurements have focused on neutral systems (neutron, atoms, molecules);
Figure 1 gives a summary of the EDM upper limits (for a recent summary, see [18]). Note
that the limit for the proton has been deduced from a 199Hg measurement and no limit for
the deuteron exists.

In order to directly measure the EDM of charged particles, the design of a dedicated
precision storage ring needs to be developed [21]. The goal is to provide optimal experi-
mental conditions to investigate the time evolution of the polarization of stored polarized
beams of protons and/or deuterons.

The advantages of the storage ring method are:

• Direct observation of the EDM effect of the system (proton, deuteron, and possibly
other light ions such as 3He) under investigation, i.e., no need to extract particle EDM
from measurement in a complex system;

• Virtually no limit to the number of particles used in the investigation, i.e., no limitation
in the achievable statistical accuracy;
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• There are theoretical relations between EDMs for protons and deuterons (see, e.g., [21]),
which will serve as consistency checks for theory.

On a more general level, there will be different systematic errors and fake effects
compared to neutral systems, and in the end—once EDMs for all of them have been
obtained—they must all be internally consistent within the theoretical interpretation.

Due to the smallness of the effect, the measurements will need an excessive sensitivity,
and this poses technological and metrological challenges, which will be discussed below in
the section “methodology”.

 

Figure 1. Current status of EDM searches (95% upper limits) of molecules, atoms, and particles: the
full-colour bars represent direct measurements, while the shaded bars are deduced results for these
systems. In particular, the proton result has been obtained indirectly from the experimental EDM
limit for 199Hg; this is indicated by the black arrows. Impressive EDM limits for the electron come
from Thorium-oxide (ThO) and HfF+ measurements [9]—still many orders of magnitude larger than
the SM-prediction. It generally holds that the contribution from the SM is negligible at the sensitivity
level accessible with current experimental techniques. For the deuteron (d), for which neither a direct
nor an indirect limit is known, an EDM limit from the measurement at the Cooler Synchrotron (COSY)
of Forschungszentrum Jülich (Germany) will soon be available (see below). The expected sensitivity
is comparable to the muon (μ) [19] and tau (τ) limits [20]. The goal of the proton EDM (p) of the
final ring is to reach a sensitivity of 10−29 e·cm, and the goal for the intermediate step—a prototype
storage ring (called PRESTO in the figure)—is to reach 10−26 e·cm.

1.1.2. The Intent to Understand the Nature of Dark Matter

Since the earliest times of mankind, people have looked at the night sky with awe,
wondering what these tiny luminous objects in heaven might be. Today, though few of us
have had a chance to see even our own galaxy (Milky Way) in full glory, it is known to most
people that we are only able to see a small fraction of the Milky Way and an even tinier part
of the vast visible Universe—as, e.g., observed through electromagnetic radiation, ranging
from radio waves to visible light and beyond. It may come as no surprise that astronomical
observations over the past almost 100 years have accumulated more and more evidence
that this luminous part (stars, galaxies, and clusters) only constitutes a portion of the mass
in our Universe. In fact only about one fifth of the matter is made of fundamental particles
that we know and understand; the majority of the matter is not visible and thus dubbed
“Dark Matter” (DM) [22].

DM has been postulated by the need for much more mass than actually seen in rotating
galaxies in order to bind them by the gravitational force, compensating the centrifugal
force. This is shown schematically in Figure 2.
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Figure 2. Rotational speed for a rigid body (top left) and for Keplerian motion, e.g., our solar system,
with most of the mass centred at zero (top right). Below, the result (red dots) for a typical spiral
galaxy is shown. The disagreement of the rotational speed of galaxies from the Keplerian prediction
for R > 10 kpc (i.e., the constant speed) was first observed by F. Zwicky [23,24] in the 1930s in the
Coma Cluster, and indicates that more mass than visible must be present.

There are further compelling observations indicating the existence of DM [25], e.g., via
gravitational lensing and its role in the evolution of structure in the Universe. However,
what DM actually is remains a mystery. It is important to note that none of the known
building blocks of the (otherwise remarkably successful) Standard Model (SM) of elemen-
tary particle physics can serve as DM. This implies that the SM is incomplete and that a
discovery of DM particles would be conclusive evidence for physics beyond the SM (BSM).
There is mounting evidence for the need of DM, and the search is ongoing by a suite of
dedicated experiments, but no DM particle(s) has(have) been observed to date, although
there have been claims. The allowed DM-parameters of mass and coupling to SM particles
spans a huge range, which requires very different techniques for discovery (see, e.g., [26]).

The following principal search strategies for Dark Matter are currently exploited:

• Direct production of DM particles at accelerators;
• Detection of galactic DM particles through interactions with SM matter; and
• Detection of DM as coherently oscillating waves.

EDMs will exploit the third option, assuming a high occupation number per unit
volume, i.e., a field rather than individual particles. The effect of DM on the spin motion of
an ensemble of particles (a beam) in a storage ring would then be observed as oscillating
Electric Dipole Moments (oEDM) in nucleons and nuclei [13].

To conclude a discussion of motivations, the science case is summarized in Figure 3.

1.2. State-of-the-Art Knowledge

EDMs can be searched for in elementary particles such as leptons (electrons, muons,
taus), composite particles (e.g., neutrons and protons), and—indirectly—in complex sys-
tems, for example atoms and molecules.

At first, two important remarks seem to be indicated:

1. The connection between any finite experimental EDM result and its sources is less
complex for simpler systems—this is schematically shown in Figure 4. A more detailed
picture of such connections is given, e.g., in [27].
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Figure 3. Summary of the scientific background: discrete symmetries (C, P, T, and combinations
thereof) and the presumed Peccei–Quinn symmetry (PQ) together with their breaking (CP and PQ
symmetry violation) can be related to static and oscillating EDMs. Static EDMs may be responsible
for the Baryon-asymmetric Universe (BAU), while oscillating EDMs could be due to the axion and/or
axion-like particles (ALP) as Dark Matter candidates. Experimentally, both can be investigated by a
measurement of the time development of the spins of a beam of charged particles circulating in a
storage ring.

Figure 4. Schematic connection between experiment and a fundamental theory as the ultimate
goal of EDM investigations. There are two major paths to experimentally search for EDMs: direct
measurements, which study a sole particle species, and indirect measurements, which use atoms or
molecules (or even bulk matter). Although indirect experiments have resulted in impressive upper
limits, direct investigations are clearly preferable, since they will be much easier to interpret.

While results from indirect searches—i.e., experiments with systems which contain
the respective particle—are available for the electron and the proton (see Figure 1), in the
end, one has to strive for the observation of the pure (naked) object under investigation.
For charged particles, this will imply the use of stored beams to extend the observation
times to such a level that the miniscule expected effects of an EDM can be observed with
available experimental techniques.

2. EDM results from different systems will be needed to pin down the (set of) EDM sources.

Experimental results—EDM upper limits of the order of 10−26 e·cm—are available for
the free neutron [10] (see Figure 1), and it can be expected that they will be further improved
by ongoing and upcoming new experiments, although the limitations for the provision
of ultracold neutrons (and the finite neutron lifetime) will finally limit the achievable
sensitivity. In order to complement these results, experimental EDM searches for free
protons must be conducted, and this is now in reach with a new class of measurements
of the spin motion of polarized protons, which are circulating in a precision trap called a

254



Particles 2023, 6

storage ring. In such experiments, the number of stored protons is hardly limited, which
implies that the statistical uncertainty (relating to the achievable sensitivity) can be higher
than for the neutron. The challenge will be, as outlined below, to reduce the systematic
uncertainties to a comparable level.

2. Methodology of Charged-Particle EDM Searches

The basis for observing an EDM is its interaction with an external electric field. The
possible observables are given by the fact that the EDM vector (which can be thought of
as connecting the negative and the positive electric charge that forms the EDM) and the
intrinsic angular momentum (“spin”) vector are parallel to each other. Thus, one way to
detect an EDM is to observe the impact it has on the spin of a particle (in practice: an
ensemble of particles with spins oriented in a preferred direction, a polarized beam). In the
following, we focus on charged particles (proton, deuteron), which need to be confined in a
trap—in this case a storage ring—since otherwise they would be accelerated out-of-sight
by the electric field. While a full description of the spin-motion of particles in the electric
and magnetic fields of the ring requires the use of the Thomas–BMT equation [28,29], the
following discussion focuses on a generic description of the method.

In order to introduce the basic principle of an EDM measurement of polarized charged
particles in a storage ring, it is reasonable to start by describing what is happening to them
as they go around the ring, when no EDM of the particles would exist. To simplify the
situation further, it is assumed that at the beginning the spins are pointing in the direction
of motion (i.e., parallel to the particle´s momentum vector):

• Since the spin s of a particle is linked to a magnetic moment μ = (G + 1) (q/m) s, where
G is the magnetic anomaly, q the charge, and m the mass, the particles will precess
in the electric and/or magnetic field of the storage ring, which are necessary to keep
them on a closed orbit. The total angular precession frequency of the spin is given by
ds/dt = Ωs × s, where Ωs has components due to the magnetic and electric dipole
moments of the particle.

• For any particle and energy, the electric and magnetic fields bending the beam can be
chosen such that the angular rotation of the spin vector s from turn to turn vanishes,
the spin is then said to “be frozen”, and, e.g., an initial longitudinal polarization of the
particle beam is maintained.

• For particles with G > 0, such as protons, the above frozen-spin condition can be
fulfilled with electric fields only by operating the ring at a specific energy, the so-called
“magic” energy.

Now consider that the particles possess also an EDM d = ds (parallel to the spin s) and
are exposed to a radial electric field E:

• The interaction between electric field and EDM will produce a torque d × E that rotates
the spin out of the ring plane, as schematically shown in Figure 5.

As a result, the principle for searching/observing EDMs of charged particles is
as follows:

1. Inject a polarized charged particle beam with its spin vectors pointing in the direction
of the momentum vector into a storage ring fulfilling the “frozen spin” condition.
Thus, when the particles possess only a magnetic dipole moment (MDM), the beam
will remain polarized in longitudinal direction.

2. Let the particles interact with an electric field that couples to the possible EDM.
3. Observe the rotation of the beam polarization out of the storage ring plane due to a

non-zero EDM as a function of time. This can be observed with a dedicated detector
system inside the ring, called a polarimeter.

At this point, it is important to note that the MDM of the particle completely dominates
the spin motion if no special provisions are taken. In order to maximise the sensitivity to
EDM, the MDM contributions must vanish.

This can be achieved by the following measures:
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• Switch off the external magnetic field: B = 0 (i.e., use an all-electric storage ring and
shield all external magnetic fields);

• Arrange that bunches are polarized in the longitudinal direction during the duration
of the measurement by choosing a “magic momentum”; this is possible for particles
with a positive magnetic anomaly (G > 0), e.g., for the proton for a momentum of
p = 700.7 MeV/c (corresponding to a kinetic energy of 232.8 MeV).

 

Figure 5. Basic principle of an EDM measurement. For clarity, only a single particle is shown and the
magnetic moment precession is neglected. The particle is kept on its orbit by the transverse electric
field E, generated by the electrostatic deflector plates that are depicted in green. Initially, all particle
spins s in the beam point along the direction of motion. An electric dipole moment d= ds tilts the
spin s out of the horizontal plane due to the torque d × E. This effect is experimentally observable,
because the vertical polarization component of the beam can be detected in the polarimeter.

For particles with G < 0 (such as the deuteron), an all-electric solution is not possible
and one needs to use a combination of radial electric and vertical magnetic fields to make the
spin “frozen” along the particle momentum. Though this measurement procedure sounds
straightforward and simple, a closer look indicates substantial intricacy. As mentioned
earlier, this can be investigated using the Thomas–BMT equation, which describes the
temporal behaviour of the spin of a particle with a magnetic dipole moment (MDM) and
an electric dipole moment (EDM) in the presence of electric (E) and magnetic (B) fields.

In the remainder of this chapter, challenges will be discussed which come along with
the vastly different magnitude of response of a particle’s spin to electric (via an EDM) and
magnetic (via its MDM) fields. In order to set a benchmark, it may suffice to mention that
the minuscule (radial) magnetic field of ≈10−17 T (10 aT (atto-Tesla)) mimics the effect of
an EDM of 10−29 e·cm—the sensitivity goal for the final EDM ring. It has been shown [21]
that with reasonable assumptions for beam intensity, beam polarization, measurement
time, applied electric field, and polarimetry, a statistical accuracy of d = 10−29 e·cm can be
achieved in one year of measurement time; the task, therefore. is to conceive and realise a
research infrastructure which allows to bring the systematic uncertainty to a similar level.
This implies to identify all sources of false effects to be able to remove all of them or to
mitigate their effects to the highest possible level.

The research infrastructure—an all-electric precision storage ring for polarized proton
beams of 232.8 MeV—is in many fundamental aspects a blank area; many questions will
have to be answered and technological solutions will need to be scrutinised before one can
start to realise the facility.

This comprises the following list of items:

• Beam characteristics: storage time of the intensive beams, spin coherence time of the
beam polarization and beam emittance; need of phase space cooling;
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• Hardware: electric bends, storage ring vacuum; need of cryogenics, instrumentation
for beam and spin manipulation, monitoring and control, polarimetry/polarimeter,
injection scheme into the storage ring, and stability of power supplies;

• Other: alignment and metrology of ring elements, systematics investigations, and
beam and spin tracking simulations.

3. Strategy towards Realization

Research and development towards a precision storage ring has been vigorously
advanced at the storage ring COSY, which currently is the only facility worldwide where
corresponding tests and measurements can be conducted. A schematic layout of the COSY
facility is given in Figure 6.

Figure 6. Layout of the Cooler Synchrotron (COSY) storage ring at Forschungszentrum Jülich
(Germany) together with an early photograph: the ring has a circumference of 184 m and can
accelerate and store unpolarized and polarized beams of protons and deuterons from the injector
cyclotron with momenta up to 3.7 GeV/c. The equipment comprises electron and stochastic cooling
apparatuses, as well as spin manipulation and detection devices. The unique capabilities of COSY
have been used by the JEDI collaboration to investigate manipulations of polarized particle beams
and its response to external electric and magnetic fields as preparation for EDM measurements—both
at COSY and future dedicated storage rings.

COSY [30] was conceived and built in the late 1980s, and originally used for hadron
physics experiments with both unpolarized and polarized proton and deuteron beams
at different internal and external target stations until about 2015. Starting from 2010, the
JEDI collaboration used COSY beams for the development of hardware (e.g., a new beam
polarimeter, beam-position monitors, and a radio-frequency Wien-filter), measurement
techniques (e.g., optimization of the so-called “spin-coherence time”, the “pilot-bunch
method”, and feedback loops) and—last, but not the least—first experiments with polarized
deuteron beams.

3.1. Stage 1: R&D and Measurements at COSY as “Proof-of-Capability”

Over the years, the following achievements have been accomplished at COSY [31–34]:

• Development and implementation of techniques to preserve, manipulate, and observe
the polarization of polarized beam bunches in a storage ring (optimization of the spin
coherence time, use of a radio-frequency Wien filter, including the pilot-bunch method,
design and set-up of an in-beam polarimeter), since they are essential prerequisites for
a successful measurement of electric dipole moments of charged particles.

257



Particles 2023, 6

• A Rogowski beam-position monitor has been developed, optimized, installed into
COSY, and used in the deuteron EDM (dEDM) measurements.

• A new polarimeter to determine the polarization direction of a circulating polar-
ized beam, based on LYSO scintillators with a silicon photosensor readout, has been
developed, optimized, installed into COSY, and used in the dEDM measurements [35].

• A radio-frequency Wien filter has been designed, built, and installed in COSY [36]. In
a magnetic (B-field) storage ring such as COSY, the effect of a possible EDM on the
particle spin (i.e., on the polarization of an ensemble of polarized particles) will exactly
cancel, since the torque due to EDM changes sign—this is why the final EDM storage
ring will be an all-electric ring with E-fields only. However, with the concept of such a
Wien filter, it is possible in principle to observe the EDM effect (at reduced sensitivity).
This device has been exploited for the so-called “precursor experiments” [37] with a
polarized deuteron beam.

• In order to study the influence of the RF WF on the polarization (and possibly the
orbit), two beam-bunches were injected into the COSY ring, and the RF WF was
upgraded such that it could be switched on/off when one of the two bunches passes
through the device. After successful tests, this so-called “pilot bunch” method was
exploited in the second dEDM precursor experiment.

Scientific Results

• A successful measurement of an oscillating electric dipole moment (limit) for a polar-
ized deuteron beam has been performed in COSY—this was not anticipated originally,
but it demonstrates that small changes of the beam polarization can be observed
reliably [38]. A preliminary exclusion plot for the size of the oscillating EDM is given
in Figure 7.

Figure 7. Preliminary result for the 90% confidence level sensitivity for excluding an ALP’s induced
oscillating EDM (oEDM) in the frequency range 120.0–121.4 kHz (corresponding to a mass range
ma = 0.496–0.502 neV/c2). A dedicated paper has been submitted [38].

• A proof-of-capability of measuring a limit for a deuteron electric dipole moment
in a magnetic storage ring (COSY) has also been achieved; the EDM result has not
been finalized up to now due to very complex investigations required to quantify the
systematic uncertainty.
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COSY has been an indispensable development tool and test device for the storage
ring EDM venture. The efforts have been supported by a grant of the European Research
Council (ERC AdG srEDM with Principal Investigator H.S., with additional beneficiaries
from RWTH Aachen University (Germany), J.P., and the University of Ferrara (Italy), P.L.)
from 2016 to 2022. Unfortunately, the operation of COSY will be terminated by the end
of 2024 within the context of the transfer of the Institute for Nuclear Physics (IKP) of
Forschungszentrum Jülich to the GSI Helmholtz Center Darmstadt, which forfeits the
community its current centre-of-gravity.

3.2. Stage 2: A Prototype Storage Ring (PSR) for EDM Searches

COSY is a magnetic storage ring, thus many issues listed above cannot be investigated
there. Before starting the construction of the final ring, which is supposed to be one with a
circumference of the order of 500 m for a purely electric ring [14], or even larger for a hybrid
machine [39,40], and thus constitutes a major investment, members of the JEDI and the
CPEDM (Charged Particle EDM) collaboration have concluded that the next step must be
the design and construction of a prototype storage ring (PSR) [21]. Because COSY will no
longer be available, the PSR cannot rely on the facility, e.g., as a tool for beam preparation
and injector.

The PSR should operate at a beam kinetic energy between 30 and 45 MeV in two modes:

1. as an all-electric ring for CW/CCW operation, but not at the magic momentum; and
2. in the “frozen spin” mode after complementing the ring with B-fields; this will allow

to perform a first competitive proton (pEDM) experiment with a sensitivity similar to
the neutron EDM, i.e., about 10−26 e·cm.

Activities have started for a design study of the PSR, including discussions of the host
institution as well as its financing and timeline.

3.3. Stage 3: Design and Implementation of the Final Precision Storage Ring

There are suggestions to build a precision storage ring to search for charged-particle
EDMs with a sensitivity of the order of 10−29 e·cm with the knowledge acquired by now—
mainly based on paper work [39,40]. If there is a lesson that we have learned over the past
10 years or so in our experimental investigations of production, preservation, manipulation
and detection of polarized beams in a storage ring, it is that one is always facing unexpected
challenges. Thus, a final ring which should yield an unprecedented sensitivity must be
very carefully approached—also having in mind that the construction cost is significant.
The JEDI/CPEDM collaborations are convinced that starting to construct this ring now is
premature, and consequently are suggesting to design and build a PSR first. Only after the
experience gained in operating the PSR, including a first competitive EDM measurement,
the holy grail EDM ring should be approached.

4. Summary and Outlook

According to our present understanding, the early Universe contained the same
amount of matter and antimatter and, if the Universe had behaved symmetrically as it
developed, every particle would have been annihilated by one of its antiparticles. One of the
great mysteries is therefore why matter dominates over antimatter in the visible Universe.
Furthermore, among the deepest mysteries in natural sciences stands the question of what
the Universe is made of. Visible matter, comprising Standard Model particles, accounts
only for a small fraction. As inferred from cosmological observations, about 5 times more
matter is invisible and is called Dark Matter (DM).

Electric Dipole Moments of particles offer the possibility of providing answers to both
enigmas: static EDMs would imply new sources of CP-violation, required for the baryon
asymmetry, and oscillating EDMs could be due to axions/ALPs, a prime candidate for DM.

EDM searches with charged particles in storage rings are a new approach, which may
be a game-changer due to its projected sensitivity of 10−29 e·cm. However, technological

259



Particles 2023, 6

and metrological challenges abound and require a staged approach, i.e., a PSR as next step
before embarking on the final ring—as outlined in Figure 8.

Figure 8. Stages of the strategy for charged particle EDM searches as outlined by the CPEDM
collaboration. The EDM sensitivity goals are given for each step. Stage 1 is currently ongoing, while
the timeline for stages 2 and 3 is of the order of 5 and 10 years, respectively.

The storage ring EDM enterprise is a long-term project. For further information,
we refer the reader to a “CERN Yellow Report” [21], in which the current status of the
accumulated knowledge for searches of charge-particle EDMs in storage rings has been
summarized. An additional source of detailed information is the web-site given in Supple-
mentary Materials below.

Supplementary Materials: Additional information can be downloaded at: http://collaborations.fz-
juelich.de/ikp/jedi/.
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First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam. arXiv 2022, arXiv:2208.07293v2.
[CrossRef]
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Abstract: In this paper, the impact of core mass on the compact/neutron-star mass-radius relation
is studied. Besides the mass, the core is parameterized by its radius and surface pressure, which
supports the outside one-component Standard Model (SM) matter. The core may accommodate SM
matter with unspecified (or poorly known) equation-of-state or several components, e.g., consisting
of admixtures of Dark Matter and/or Mirror World matter etc. beyond the SM. Thus, the admissible
range of masses and radii of compact stars can be considerably extended.

Keywords: compact stars; core-corona decomposition; impact of core mass; Dark-Matter admixture

1. Introduction

Strong interaction rules a variety of systems, ranging from hadrons to nuclei up
to neutron stars. The related mass scales are typically ≥mπ = 0.13 GeV for mesons,
≥mp = 0.938 GeV for baryons, (1 · · · 250)mp for nuclei, and O(1057)mp for neutron stars.
(mπ,p stand for pion and proton masses.) Further systems awaiting their confirmation are
glueballs (O(GeV)) and non-baryon stars, such as pion stars [1]. Besides weak interaction,
it is the long-range Coulomb interaction that limits the size (or baryon number) of nuclei,
and gravity is the binding force of matter in neutron stars. The phenomenon of hadron
mass emergence is a fundamental issue tightly related to non-perturbative effects in the
realm of QCD, cf., Refs. [2,3] and citations therein. Once the masses and interactions among
hadrons are understood, one can make the journey to address the masses and binding
energies of nuclei and then jump to constituents of neutron stars. Despite the notion,
cool neutron stars accommodate, in the crust, various nuclei immersed in a degenerate
electron-muon environment (maybe as “pasta” or “spaghetti” or crystalline medium).
In the deeper interior, above the neutron drip density, neutrons and light clusters begin
to dominate the matter composition. These constituents and their interactions govern the
mass (or energy density) of the medium. At nuclear saturation density, n0 ≈ 0.15 fm−3,
one meets conditions similar to the interior of heavy nuclei but with crucial impact of the
symmetry energy when extrapolating from nuclear matter with comparable proton and
neutron numbers to a very asymmetric proton-neutron mixture. Above saturation den-
sity, various effects hamper a reliable computation of properties of the strong-interaction
medium: three-body interactions may become even more important than at n0, and fur-
ther baryon species become excited, e.g., strangeness is lifted from vacuum into baryons
forming hyperons whose interaction could be a miracle w.r.t. the hyperon puzzle [4], and
the relevant degrees of freedom become relativistic. Eventually, at asymptotically high
density, the strong-interaction medium is converted into quarks and gluons; color-flavor
locking and color superconductivity can essentially determine the medium’s properties.
The turn of massive hadronic degrees of freedom into quark-gluon excitations is thereby
particularly challenging.

While lattice QCD represents, in principle, an ab initio approach to strong-interaction
systems in all their facets, the “sign problem” prevents the access to non-zero baryon
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number systems. Thus, the exploration of compact/neutron stars, in particular their
possible mass range, by stand-alone theory is presently not feasible. Instead, an intimate
connection of astrophysical data and compact-star modeling is required.

The advent of detecting gravitational waves from merging neutron stars, the related
multimessenger astrophysics [5–12] and the improving mass-radius determinations of
neutron stars, in particular by NICER data [13–17], stimulated a wealth of activities. Be-
sides masses and radii, moments of inertia and tidal deformabilities become experimentally
accessible and can be confronted with theoretical models [18–24]. The baseline of the latter
ones is provided by non-rotating, spherically symmetric cold dense matter configurations.
The sequence of white dwarfs (first island of stability) and neutron stars (second island
of stability) and possibly [25] a third island of stability [26–30] shows up when going to
more compact objects, with details depending sensitively on the actual equation of state
(EoS). The quest for a fourth island has been addressed as well [31,32]. “Stability” means
here the damping of radial disturbances, at least. Since the radii of configurations of the
second (neutron stars) and third (hypothetical quark/hybrid stars [33–40]) islands are very
similar, the notion of twin stars [31–33,41,42] has been coined for equal-mass configurations;
“masquerade” was another related term [43].

We emphasize the relation of ultra-relativistic heavy-ion collision physics, probing the
EoS p(T, μB ≈ 0), and compact star physics, probing p(T ≈ 0, μB) when focusing on static
compact-star properties [44,45]. Of course, in binary or ternary compact-star merging-
events, also finite temperatures T and a large range of baryon-chemical potential μB are
probed, which are accessible in medium-energy heavy-ion collisions [46]. Implications
of the conjecture of a first-order phase transition at small temperatures and large baryo-
chemical potentials or densities [47–50] can also be studied by neutron-hybrid-quark
stars [51–54]. It is known since some time [26–28,55,56] that a cold EoS with special pressure-
energy density relation p(e), e.g., a strong local softening up to first-order phase transition
with a density jump, can give rise to a “third family” of compact stars, beyond white
dwarfs and neutron stars. In special cases, the third-family stars appear as twins of neutron
stars [43,57,58]. Various scenarios of the transition dynamics to the denser configuration as
mini-supernova have also been discussed quite early [59,60].

While the Standard Model (SM) of particle physics seems to accommodate nearly
all of the observed phenomena of the micro-world, severe issues remain. Among them
is the (g − 2)μ puzzle or the proton’s charge radius. Another fundamental problem is
the very nature of Dark Matter (DM): Astrophysical and cosmological observations seem
to require inevitably its existence, but details remain elusive despite many concerted
attempts, e.g., Refs. [61–64]. Supposing that DM behaves like massive particles, it could be
captured gravitationally in the centers of compact stars [65–67], thus providing a non-SM
component there. This would be an uncertainty on top of the less reliably known SM-
matter state. Beyond the SM, other feebly interacting particles could also populate compact
stars. A candidate scenario is provided, for instance, by Mirror World (MW) [68–72], i.e., a
parity-symmetric complement to our SM-world with very tiny non-gravity interaction. There
are many proposals of portals from our SM-world to such beyond-SM scenarios, cf., Ref. [73].

Guided by these remarks we follow here an access to static cold compact stars already
launched in [74]: We describe the core by a minimum of parameters and determine the
resulting compact-star masses and radii by assuming the knowledge of the equation of state
of the SM-matter enveloping the core. A motivation is the quest of a mass gap between
compact stars and black holes.

Our paper is organized as follows. In Section 2 we recall the Tolman–Oppenheimer–
Volkoff equations, their scaling property, and introduce our core-corona decomposition.
Small cores with and without MW/DM admixtures are considered in Section 3. Section 4 is
devoted to the core-corona decomposition, where a specific EoS is deployed for the explicit
construction. We summarize in Section 5. We supplement our paper in Appendix A by a
brief retreat to the emergence of hadron masses as a key issue in understanding the typical
scales of compact (neutron) star masses. Appendix B sketches a complementary approach:
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the construction of an EoS by holographic means, thus transporting information of a hot
(quark-gluon) QCD EoS to a cool EoS and connecting heavy-ion collisions and compact star
physics. These appendices survey (Appendix A) and exemplify (Appendix B) symmetry
and the governing principles where the access to astrophysical objects is based upon.

2. One-Component Static Cool Compact Stars: TOV Equations

The standard modeling of compact star configurations is based on the Tolman–
Oppenheimer–Volkoff (TOV) equations

dp
dr

= −GN
[e(r) + p(r)][m(r) + 4πr3 p(r)]

r2[1 − 2GN m(r)
r ]

, (1)

dm
dr

= 4πr2e(r), (2)

resulting from the energy-momentum tensor of a one-component static isotropic fluid
(described locally by pressure p and energy density e as only quantities relevant for the
medium) and spherical symmetry of both space-time and matter, within the framework
of Einstein gravity without cosmological term [75]. Newton’s constant is denoted by GN ,
and natural units with c = 1 are used, unless when relating mass and length and energy
density, where h̄c is needed.

2.1. Scaling of TOV Equations and Compact/Neutron Star Masses and Radii

The TOV equations become free of any dimension by the scalings

e = sē, p = sp̄, r = (GNs)−1/2r̄, m = (G3
Ns)−1/2m̄, (3)

where s is a mass dimension-four quantity or has dimension of energy density. It may be
a critical pressure of a phase transition or a limiting energy density, e.g., at the boundary
matter-vacuum [76]. Splitting up s = nmp into a number density n and the energy scale mp,
one gets (GNs)−1/2 = 7 km/

√
10−2n/n0 and (G3

Ns)−1/2 = 4.8M�/
√

10−2n/n0, where
the nuclear saturation density n0 = 0.15 fm−3 is used as reference density. The scales mπ,p
facilitate the densities n = m3

π → 2.3n0 and n = m3
p → 833n0. That is, the scale solely set by

the nucleon mass, i.e., s = m4
p [77], yields (GNs)−1/2 = 2.74 km and (G3

Ns)−1/2 = 1.86M�,
suggesting that the nucleon mass (see Appendix A on its emergence in QCD) determines
the gross properties of neutron stars, such as mass and radius (modulus factor 2π) in an
order-of magnitude estimate. In contrast, the density estimate via M = 4π

3 〈n〉mpR3 yields,

independently of GN , 〈n〉 = 2n0
M

M�
103

(R/km)3 ≈ 4n0 for M = 2M� and R = 10 km, thus

pointing to the importance of the actual numerical values of r̄ and m̄.
In fact, recent measurements and supplementary work report averaged mean and individ-

ual heavy compact/neutron stars masses and radii (often on 67% credible level) as follows

PSR M [M�] R [km]

1.4 11.94+0.76
−0.87

(1) [12], 12.45 ± 0.65 [13], 12.33+0.76
−0.81 [15]

J0030+0451 1.34+0.15
−0.16 12.71+1.14

−1.19 [16]
1.44+0.15

−0.14 13.02+1.24
−1.06 [14], 12.18+0.56

−0.79 [17]
J1614–2230 1.908 ± 0.016 [78]
J0348+0432 2.01 ± 0.04 [79]
J0740+6620 2.072+0.067

−0.066 12.39+1.30
−0.98 [15]

2.08 ± 0.07 [80] 13.7+2.6
−1.5

(2) [13], 11.96+0.86
−0.81 [12]

0952-0607 (3) 2.35 ± 0.17 [81]
(1) 90% confidence. (2) With nuclear physics constraints at low density and gravitational radiation data from
GW170817 added in, the inferred radius drops to (12.35 ± 0.75) km [13]. (3) Black-widow binary pulsar
PSR 0952-0607.
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One has to add GW190814: gravitational waves from the coalescence of a 23 solar mass
black hole with a 2.6M� compact object [82]. An intriguing question concerns a possible
mass gap between compact-star maximum-mass [83] and light black holes, cf., [84,85].

2.2. Solving TOV Equations

Given a unique relationship of pressure p and energy density e as EoS e(p), in particu-
lar at zero temperature, the TOV equations are integrated customarily with boundary condi-
tions p(r = 0) = pc and m(r = 0) = 0 (implying p(r) = pc −O(r2) and m(r) = 0 +O(r3)
at small radii r), and p(R) = 0 and m(R) = M with R as circumferential radius and M as
gravitational mass (acting as parameter in the external (vacuum) Schwarzschild solution at
r > R). The quantity pc is the central pressure. The solutions R(pc) and M(pc) provide the
mass-radius relation M(R) in parametric form.

A great deal of effort is presently concerned about the EoS at supra-nuclear densi-
ties [86]. For instance, Figure 1 in Ref. [87] exhibits the currently admitted uncertainty:
up to a factor of 10 in pressure as a function of energy density. At asymptotically large
energy density, perturbative QCD constrains the EoS, though it is just the non-asymptotic
supra-nuclear density region that crucially determines the maximum mass and whether
twin stars may exist or quark-matter cores appear in neutron stars. Accordingly, one can
fill this gap by a big number (e.g., millions [88]) of test EoSs to scan through the possibly
resulting manifold of mass-radius curves, see Refs. [89–92]. However, the possibility that
neutron stars may accommodate other components than Standard Model matter, e.g., exotic
material as Dark Matter [93–96], can be an obstacle for the safe theoretical modeling of a
concise mass-radius relation in such a manner. Of course, inverting the posed problem with
sufficiently precise data of masses and radii as input offers a promising avenue towards
determining the EoS [17,89,97–101].

Here, we pursue another perspective. We parameterize the supra-nuclear core by a
radius rx and the included mass mx and integrate the above TOV equations only within the
corona (our notion “corona” is a synonym for “mantel” or “crust” or “envelope” or “shell”,
it refers to the complete part of the compact star outside the core, rx ≤ r ≤ R), i.e., from
pressure px to the surface, where p = 0. This yields the total mass M(rx, mx; px) and the
total radius R(rx, mx; px) by assuming that the corona EoS e(p) is reliably known at p ≤ px
and that only SM matter occupies that region. Clearly, without knowledge of the matter
composition at p > px (may it be SM matter with an uncertainly known EoS or may it
contain a Dark-Matter admixture, for instance, or monopoles or some other type of “exotic”
matter) one does not get a simple mass-radius relation by such a procedure, but admissible
area(s) over the mass-radius plane, depending on the core parameters rx and mx and the
matching pressure px and related energy density ex. This is the price of avoiding a special
model of the core matter composition.

If the core is occupied by a one-component SM medium, the region p > px and e > ex
can be mapped out by many test EoSs which locally obey the constraint v2

s ∈ [0, 1] to obtain
the corresponding region in the mass-radius plane, cf., Figure 2 in Ref. [102] for an example
processed by Bayesian inference. This is equivalent, to some extent, to our core-corona
decomposition for SM matter-only.

3. Small-Core Approximation and Beyond

3.1. One-Component Core

For small one-component distinguished cores one can utilize the EoS parameterization
from a truncated Taylor expansion of p(e) ≥ px at λex, p(e) = p(λex) +

∂p
∂e |λex (e − λex) + · · · ,

p(e) = px + v2
s (e − λex), (4)
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where λ > 1 is a density jump at the core boundary and λ = 1 continuously continues (but
may be kinky) the corona EoS at p ≥ px; px and ex mark the “end point” of the corona EoS.
A Taylor expansion for small cores,

p(r) =
∞

∑
i=0

p2ir2i, (5)

m(r) =
∞

∑
i=0

m2i+1r2i+1, (6)

gives by means of Equations (1) and (2) with (4) ( that is e = λex − v−2
s px + v−2

s ∑∞
i=0 p2ir2i)

and p2i+1 = 0 and m2i = 0 for all i ∈ N0

m1 = 0, m3 =
4π

3
ec, m2i+1 =

4πv−2
s

2i + 1
p2i−2 for i ≥ 2, (7)

where ec ≡ e(pc) = λex + v−2
s (pc − px), and the recurrence

p0 = pc, p2 = −2π

3
GN(ec + pc)(ec + 3pc), (8)

p2i =
GN
2i

(
2Ai − [λex − v−2

s px](m2i+1 + 4πp2i−2)− (1 + v−2
s )Bi−1

)
for i ≥ 1, (9)

Ai =
i

∑
j=0

2(i − j)m2j p2i−2j, (9a)

Bi =
i

∑
j=0

(m2j+3 + 4πp2j) p2i−2j. (9b)

In leading order one obtains

rx ≈ δ1/2(1 −O(δ))√
2π
3 GN pxW

≈ 60.1 km√
W

√
δ

100 MeV/fm3

px
, (10)

mx ≈ 2λ
ex

px

δ3/2(1 −O(δ))√
2π
3 G3

N pxW3
≈ 81.2M�

W3/2 λ
ex

100 MeV/fm3 ×
(

δ
100 MeV/fm3

px

)3/2

, (11)

where δ := pc/px − 1 and W := 3+ 4λ ex
px

+ λ2
(

ex
px

)2
. The scale setting is by px and λex/px.

The core-mass–core-radius relation is mx(δ) ≈ 4π
3 pxλ

(
ex
px

)
rx(δ)3(1 +O(δ)).

To control and extend the above approximations we numerically solve the scaled
TOV equations by assuming that Equation (4) holds true in the core. (Of course, this is
an ad hoc assumption aimed at providing an explicit example of mass-radius relations of
the core.) The core-corona matching is at px, i.e., the maximum (minimum) pressure of
the corona (core) EoS. The related energy density is ex = 3px/(1 − 3Δcorona), where Δcorona

denotes the trace anomaly measure discussed below in Equation (12). It is used here for
a suitable parameterization of the double (ex, px) by means of the corona EoS. The core
EoS Equation (4), e(p) = λex + v−2

s (p − px), enters, after scaling according to Equation (3),
the dimensionless TOV equations

dp̄
dr̄

= − [ē(r̄) + p̄(r̄)][m̄(r̄) + 4πr̄3 p̄(r̄)]

r̄2[1 − 2m̄(r̄)
r̄ ]

, (11a)

dm̄
dr̄

= 4πr̄2 ē(r̄), (11b)
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for p̄ ∈ [ p̄c, p̄x] to get r̄x( p̄c) and m̄x( p̄c). The corresponding scaled core mass vs. core
radius relations are exhibited in Figure 1, where the scaling quantity s = px is employed,
i.e., p̄x = 1. The figure offers a glimpse on the systematic of the parameter dependence.
Note that it applies to all values of px > 0. The finite pressure and energy density at the
core boundary facilitates a pattern of mass-relations and dependence on sound velocity as
known from bag model EoS, cf., Figure 7 in Ref. [76]. λ > 1 causes an overall shrinking of
the pattern plus a slight up-shift; see the right panel for λ = 1.5. Considering, e.g., ex ∈
[150, 1500] MeV/fm3 and the scaling ∝ 1/

√
ex, cf., (3), the core masses and radii change by

a factor up to three, depending on the actual value of ex.

Figure 1. Scaled core masses m̄x as a function of the scaled core radii r̄x for various values of
Δcorona = Δ and v2

s for a one-component medium with EoS (4). The left (right) panel is for λ = 1
(1.5). The scaling quantity is s = px. For central pressures p̄c = 1.1n, n = 1 · · · 55. The displayed
curves are limited by m̄x < r̄x/2 (black hole limit) and m̄x > 4π

3 λ 3
1−3Δcorona r̄3

x. The latter expression
is for the respective asymptotic curve in the small-r̄x region. To convert to usual dimensions, one
employs rx = r̄x

86.9 km√
px/100 [MeV/fm3

]
and mx = m̄x

58.8 M�√
px/100 [MeV/fm3

]
, where “px/100 [MeV/fm3]”

denotes the scaling pressure px in units of 100 MeV/fm3. The approximations (10) and (11) apply
only in the small-m̄x and small-r̄x regions.

3.2. Multi-Component Cores

In a multi-component medium ( note that our considerations apply to components
which do not mutually interact in a direct microscopical manner, but are coupled solely by
the common gravity field) with known EoSs one has to add the contributions by [m(r) +

4πr3 p(r)] → ∑i[m(i)(r) + 4πr3 p(i)(r)] and [1 − 2GN m(r)
r ] → [1 − 2GN ∑i m(i)(r)

r ] and solve in
parallel the multitude of TOV equations for the components i. A particular minimum-
parameter model is Mirror World matter (component i = 2) which is completely symmetric
to SM matter (component i = 1), i.e., p(1)(r) = p(2)(r) etc., turning ∑(i) → 2. The results
are exhibited in Figure 2, left. The increased energy density by the two superimposed
fluids cause a shrinking of the core-mass–core-radius curves similar to the increase of λ in
Figure 1. The extension to three components is exhibited in Figure 2, right. Here, ∑(i) → 3
applies. Due to further increased energy density and pressure, the configurations become
even more “compact”, i.e., core masses and core radii shrink further on.

One may quantify the core compactness by C̄x := 2m̄max
x /r̄x|m̄max

x and note that, within
the scanned parameter patch, it (i) is independent of the number of fluids, (ii) increases
slightly with Δcorona at v2

s = const and (iii) decreases with decreasing v2
s = const at

Δcorona = const, see Table 1. Note that the usual definition of compactness is without
the factor of two.
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Figure 2. Left panel: As the left panel of Figure 1, but for a two-component medium of SM + MW
matter with p(1)(r) = p(2)(r) and EoS (4) for both components. Note the difference to the two-fluid
core-shell construction in Ref. [103]. Right panel: As a left panel but for a three-component medium.

Table 1. Core compactness C̄x = 2m̄max
x /r̄x|m̄max

x for various values of v2
s (sound velocity squared in

the core) and Δcorona = Δ. For λ = 1.

v2
s

Δ
0.1 0.2 0.3

1 0.64 0.67 0.70
1/3 0.49 0.51 0.53
1/6 0.37 0.38 0.40

Of course, more general is an asymmetric Mirror World component facilitating
p(1)(r) �= p(2)(r), especially p(1)(r = 0) �= p(2)(r = 0), even for the common EoS (4),
dealt with in Appendix A in Ref. [74]. We do not dive into various conceivable scenarios
here and refer the interested reader to Refs. [103,104].

4. Core-Corona Decomposition with NYΔ DD-EM2 EoS

4.1. Trace Anomaly

An example of an EoS largely compatible with neutron star data is NYΔ based on
the DD-ME2 density functional [31]. Despite some peculiarities (see the left panel in
Figure 3), it shares features recently advocated as essential w.r.t. QCD tracy anomaly and
conformality [105,106]. A suitable measure of the trace anomaly is

Δ :=
1
3
− p

e
(12)

which is related to the sound velocity squared

v2
s :=

∂p
∂e

=
nB

μbχB
=

1
3
− Δ − e

∂Δ
∂e

, (13)

where nB stands for the baryon density, μB the baryo-chemical potential, and χB =
∂2 p/∂μB = ∂nB/∂μB is the second-order cumulant of the net-baryon number density.
Thermodynamic stability and causality constrain Δ ∈ [−2/3, 1/3]. Restoration of scale
invariance means Δ → 0 and v2

s → 1/3. Although Δ approaches monotonically to zero, v2
s

can develop a peak at lower energy densities. In fact, v2
s as a function of η ≡ ln e/(n0mp)

displays such a peak at η ≈ 1.3 (see Figure 2 in Ref. [105] or Figure 1 in Ref. [88] and
discussion in Ref. [107]), which should be considered a signature of conformality even
at strong coupling. Continuing with the adjustment of Δ beyond the values tabulated in
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Ref. [31] (see the symbols in Figure 3, left), v2
s drops first slightly below 1/3 and approaches

then slowly 1/3 from below, in agreement with QCD asymptotic.

Figure 3. Left panel: Trace anomaly measure Δ = 1/3 − p/e as a function of η ≡ ln e/(n0mp) for
the NYΔ DD-EM2 EoS of [31] (black curve with symbols) and the adjusted parameterization by
Equation (7) in Ref. [105] (red curve; ηc = 1.1, other parameters as in Ref. [105], see Equation (14)
below). NYΔ DD-EM2 shows a softening at p ≈ 10 MeV/fm3, η ≈ 0.5, caused by the onset of
Δ proliferation, similar to Ref. [108]. Right panel: Mass-radius relation for NYΔ DD-EM2 EoS of
Ref. [31] (solid black curve) in comparison with the parameterization by Equation (7) in Ref. [105]
(see Equation (14) below for three values of the parameter ηc (read dashed/solid/dotted curves for
ηc = 1.2, 1.1 and 1.0).

The comparison of the resulting mass-radius relations is exhibited in Figure 3, right.
We follow the parameterization [105]

Δ =
1
3
− 1

3

(
1 − A

B + η2

)
1

1 + e−κ(η−ηc)
, (14)

however, with parameters adjusted to [31]: κ = 3.45, ηc = 1.1, A = 2 and B = 20, see
Figure 3. Despite the tiny differences of the red curve (for adjusted Δ) and the solid black
curve with markers (for NYΔ DD-EM2 EoS of [31]), the overall shapes of M(R) differ in
detail, see Figure 3, right. While the maximum masses agree, the radii for NYΔ DD-EM2
EoS of [31] are greater by about 1 km at M ≈ 1.4 M�. A small dropping of the parameter
ηc from 1.2 to 1.0 in the Δ EoS lets us increase the radius by 1 km. All these differences can
be traced back essentially to differences in the low-density part of the employed EoSs.

4.2. Distinguished Cores with NYΔ Envelope

Focusing now on NYΔ DD-EM2 EoS of Ref. [31] and the core-corona decomposition,
one obtains the resulting mass-radius radius relation exhibited in Figure 4. We find it
convenient to keep the respective core radius constant and vary the core masses as mx =
10−41.5n M�, n = 1, 2, 3 · · · . The very small core masses (of course, a large core with
several-km radius and small included mass is a very exotic thing; it may be referred to
as bubble or void with surface pressure px and the stable interface to SM matter) occupy
the right end of the solid blue curves, where the dots refer to the increasing values of n.
Heavy core masses occupy the left sections of the blue curves, i.e., larger values of n. For
considerably smaller values of the core radii (not displayed), the blue curves approach the
conventional mass-radius curve of the NYΔ DD-EM2 EoS of Ref. [31] (fat black curve).
The limit rx → 0 and mx → 0 of the core-corona decomposition curve is depicted by the
asterisk, which also agrees with the mass and radius of NYΔ DD-EM2 EoS of Ref. [31] with
pc = px. Increasing values of px make an up-shift of the core-corona mass-radius curves
for a constant value of the core radius rx, and a larger range of masses is occupied.
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Figure 4. Mass-radius plane and its occupancy by compact stars with given core radii rx (blue curves
with dots at core masses mx = 10−4 1.5n M�, n = 1, 2, 3 · · · from right to left; the open circles depict
points for n = 15, and the right-most endpoints are for n = 1). The values of px are 50 (left panel),
100 (middle panel), and 150 MeV/fm3 (right panel). The fat solid curve is obtained by standard
integration of the TOV equations using the NYΔ EoS tabulated in Ref. [31] with linear interpolation
both in between the mesh and from the tabulated minimum energy density to the p = 0 point at
e0 = 1 MeV/fm3. The asterisks display the mass-radius values for pc = px. That is, the sections
above the asterisks (dotted curves) are for a particular continuation of NYΔ at p > px, which is,
(trivially) in this case, NYΔ itself. One could instead employ the parameterization Equation (4) which
would deliver another dotted curve. For other examples, in particular the small-R region near black
hole and Buchdahl limits, the interested reader is referred to Ref. [74].

All the features discussed in Section 2 in Ref. [74] are recovered, e.g., the convex
shape of the curves rx = const, which however becomes visible only by extending the
plot towards smaller values of R (not shown). The right end points of the core-corona
curves refer to very small values of mx, while the not displayed left end points are on the
limiting black hole curve 2GN M = R. However, the core-corona decomposition shows that
the maximum-mass region of NYΔ-DD-ME2 (see fat solid curves) is easily uncovered too,
interestingly with sizeable core radii and noticeably smaller up to larger total radii.

We refrain from displaying the core-corona mass-radius curves for mx = const. They
can be easily inferred by connecting the points n = const in each of the panels in Figure 4.

To stress the relation to the usual mass-radius relation M(R) obtained from the para-
metric representations M(pc) and R(pc), let us mention that the respective dotted curve
sections above the asterisk on the fat solid curves are just an example—here simply NYΔ
DD-EM2 EoS of Ref. [31] for p > px. Other continuations of the EoS at p > px are within
the region filled by the blue core-corona curves, which however may not be completely
mapped out by many conceivable EoSs: The core can contain more than just SM matter,
such as Dark Matter or Mirror Matter or other exotic material. In the simplest case, a multi-
component composition with hypothesized EoS for each component can be used for the
explicit construction. All that counts in our core-corona decomposition is that a core with
radius rx and included mass mx is present and supports the pressure px at its boundary.
By definition, outside the core, only SM matter with known EoS is there. (For a dedicated
study of crust properties, cf., Ref. [109].)

4.3. Example of Radial Pressure and Mass Profiles

To illustrate that feature in some detail let us consider an example and select
px = 100 MeV/fm3. Assuming that the continuation of the EoS above this px is, hy-
pothetically, by NYΔ itself, one obtains the pressure and mass profiles as displayed by
black solid curves in Figure 5 for pc = 200 MeV/fm3. Clearly, taking rx, mx and px as
start values and integrating in the corona up to the surface at p = 0, one obtains the same
values of M and R as for the standard integration from p(r = 0) = pc to p(R) = 0 (see the
blue circles on top of the black solid curve sections). However, keeping rx but using other
core masses mx, e.g., m(1)

x = 0.5mx or m(2)
x = 2mx, one obtains different pressure and mass

profiles and, consequently, also different values of M and R, see Figure 5. This is the very
construction of the core-corona decomposition leading to the results exhibited in Figure 4.
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Figure 5. Pressure p(r) (left panel) and mass m(r) (right panel) as a function of the radius r for
the special value px = 100 MeV/fm3, selected here as the end point of the “reliable EoS” NYΔ at
p ≤ px. Assuming a possible continuation at p > px by NYΔ itself as a particular example, it yields
the fat solid curves for the (ad hoc) choice pc = 200 MeV/fm3. Keeping the resulting value rx from

p(rx) = px and integrating the TOV equations in the corona, r ≥ rx with px and m(1,2)
x as initial

values, one gets the dashed blue (m(1)
x = 0.5mx) and dotted blue (m(2)

x = 2mx) curves, where the
respective values of R and M can be read off. Using mx as core mass, the blue circles (on top of the fat

black curve at r ≥ rx) are obtained. Using a multitude of values m(n)
x would generates one additional

blue curve in Figure 4. In the present example, for rx = 6 km.

5. Summary

The core-corona decomposition relies on the assumption that the EoS of compact/
neutron star matter (i) is reliably known up to energy density ex and pressure px and
(ii) occupies the star as the only component at radii r ≥ rx. The base line for static,
spherically symmetric configurations is then provided by the TOV equations, which are
integrated, for r ∈ [rx, R], to find the circumferential radius R (where p(R) = 0) and the
gravitational mass M = m(R). We call that region r ∈ [rx, R] “corona”, but “crust” or
“mantle” or “envelope” or “shell” are also suitable synonyms. The region r ∈ [0, rx] is the
“core”, which is parameterized by the included mass mx. The core must support the corona
pressure at the interface, i.e., p(r−x ) = p(r+x ). The core can contain any material compatible
with the symmetry requirements. In particular, it could be modeled by a multi-component
fluid with SM matter plus Dark Matter and/or Mirror World matter or anything beyond
the SM. The TOV equations then deliver R(rx, mx, px) and M(rx, mx, px).

It helps our intuition to think of a SM matter material in the core with assumed fiducial
EoS, which determines, for given value of px, rx(pc) and mx(pc), thus R(pc) and M(pc)
resulting in M(R), as conventionally done. Using many fiducial test EoSs at p > px, one
maps out a certain region in the M-R plane accessible by SM matter. Our core-corona
decomposition extends this region, since the core can contain much more than SM matter
only. With reference to a special EoS, applied tentatively in core and corona, the accessible
masses and radii become smaller (larger) for heavy (light) cores. That effect is noticeable
for large (km size) and heavy (fraction of solar mass) cores. Small and light cores hardly
have an impact.

This analysis should be refined in follow-up work by employing improved EoSs in
the low-density region and by taking care of mass-radius values for the heaviest neutron
star(s), still keeping precise radius values for the 1.4M� neutron stars. In addition, the
holographic model in Appendix B, which is aimed at mapping hot QCD thermodynamics
to a cool EoS, deserves further investigations, before arriving quantitatively at an EoS
suitable for compact star properties and (merging) dynamics. The emphasis in Appendix B
is the illustration of the extrapolation scheme beyond a patch of QCD thermodynamic
state space.
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Taking up the suggestion in Ref. [77] that the scaling property of the TOV equations
with a mass dimension-4 quantity, e.g., by m4

p, where mp is the proton mass, essentially
determines the gross parameters of compact/neutron stars, we supply in Appendix A a
brief contemplation on the emergence of hadron masses within QCD-related approaches,
thus bridging from micro to macro physics: MPSR J0740+6620 ≈ 2M� ≈ 2.38 × 1057mp,
RPSR J0740+6620 ≈ 12.3 km ≈ 1.5 × 1019rp with proton charge radius rp ≈ 0.88 fm ≈ 4.2m−1

p
which is somewhat larger than its “natural” scale h̄c/mp. Our focus, however, is here
on the emergence of the gravitational mass (the gravitational mass in our core-corona
decomposition is M = mx + 4π

∫ R
rx

drr2e(r) which, due to gravitational binding, is different
from the total mass

∫
d3Ve(r) where the integral measure d3V accounts for the gravitational

spatial deformation, cf., Ref. [110]) determining the trajectories of light rays and test
particles outside of compact astrophysical objects.
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Appendix A. Emergence of Hadron Masses

Astronomical observations of neutron stars have provided us with a way to understand
these mysterious objects. The literature suggests that the outer and inner core of neutron
stars may consist of nucleons or cold, dense quark matter. The question one can ask is how
almost massless light quarks could combine and produce such massive nucleons to give
rise to neutron star mass, as emphasized in Section 2.1. A widely recognized mechanism
is the Higgs mechanism, which gives rise to the current quark masses. However, as was
immediately realized, the current quark mass contributes only a few MeV, while the mass of
a proton or neutron is much larger. The mystery of the missing masses lies in the emergence
of hadron mass (EHM).

Appendix A.1. Three Pillars of EHM

Contemporary studies of continuum Schwinger methods (CSMs) have shown that
the emergence of hadron mass rests on three pillars: (a) the running quark mass, (b) the
running gluon mass, and (c) the process-independent effective charge. These three pillars
provide the basis for giving observable results of hadron properties [111].

Appendix A.1.1. Running Quark Mass

The first pillar is the most familiar, namely the running quark mass. The dressed-
quark propagator can be represented by a special quantity, the dressed-quark mass function.
Modern CSMs calculations of the quark gap equation show that the dressed-quark mass
function is a finite value of M0(k2 = 0) = 0.41 GeV in the far infrared, even in the chiral
limit. This is an explicit expression of the dynamical chiral symmetry breaking (DCSB),
and the infrared scale is responsible for the masses of all hadrons, and the running quark
mass is therefore regarded as an expression of the EHM. In a sense, the quark in the far
infrared can be seen as a quasiparticle, produced by the interaction of the high-energy
quark parton with the gluon. The scale of the dressed-quark mass function in the far
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infrared is comparable to the scale in the constituent quark model. The difference is
that the dressed-quark mass function is momentum-dependent, and it runs from the far
infrared to the ultraviolet, where it matches the current quark mass in perturbation theory.
The dressed-quark mass function is also flavor-dependent, with the Higgs mechanism
gradually dominating in describing it from light to heavy quarks, while the dressed-quark
mass function decreases at a slower rate. It is worth emphasizing that the ultraviolet
behavior of the dressed-quark mass function in the chiral limit is related to the well known
chiral condensates.

Appendix A.1.2. Running Gluon Mass

The second pillar is the running gluon mass. Gauge invariance requires that the gluon
parton be massless. However, in the Schwinger mechanism of QCD, it was conjectured
long ago that the two-point gluon Schwinger function might give rise to a massive dressed
gluon. Thus, the dressed gluon gains mass and the gluon parton is transformed into
the gluon quasiparticle by interaction with themselves. Consequently, gluons can have
a momentum-dependent mass function, and this non-zero function has been confirmed
by both the continuum and lattice QCD. The dressed gluon mass function is power-law
suppressed in the ultraviolet, so it is invisible in perturbation theory. However, it is non-zero
in the infrared momentum range, and in the far infrared it yields a value of mg = 0.43 GeV.
This is purely a manifestation of “mass from nothing” and is responsible for all hadron
masses. It is worth emphasizing that the running gluon mass may also be associated with
confinement. The gluon two-point Schwinger function has an inflection point, so it has
no Källén-Lehmann representation, and therefore the relevant states cannot appear in the
Hilbert space of physical states.

Appendix A.1.3. Process-Independent Effective Charge

The third pillar is the process-independent effective charge. QCD has a running
coupling which expresses the feature of asymptotic freedom in the ultraviolet at one-
loop order, but it also shows a Landau pole in the infrared, where the coupling becomes
divergent when k2 = Λ2

QCD. However, recent advances in CSMs based on pinch techniques
and background field methods show that QCD has a unique, nonperturbatively well-
defined, computable, process-independent effective charge. Its large-momentum behavior
is smoothly connected to the QCD running coupling at one-loop order, while it is convergent
at small momentum. The Landau pole is eliminated due to the appearance of the gluon
mass scale in the infrared. It is noteworthy that, at small momentum, the effective charge
run ceases and it enters a domain that can be regarded as an effective conformal. In this
domain, the gluons are screened so that the valence quasiparticle can be seen as carrying all
the properties of a hadron. Furthermore, the process-independent effective charge matches
the Bjorken process-dependent charge, and in practical use they can be considered to be
indistinguishable. Additionally, the process-independent effective charge is a well-defined
smoothing function at all available momenta, from the far infrared to the ultraviolet, so
it can be a good candidate for applications, for example, in evolving parton distribution
functions to different scales.

Appendix A.2. Hadrons in Vacuum

A direct correlation with the running quark mass is its effect on pseudoscalar mesons,
especially the lightest meson, the pion [112,113]. As a chiral symmetry breaking Nambu–
Goldstone boson, the well-known Goldberger–Treiman relation relates the dressed-quark
mass function to pion’s Bethe–Salpeter amplitude, so that, to some extent, it can be seen that,
once the one-body problem is solved, the two-body problem is also solved. Furthermore,
because of its direct connection to the dressed quark mass function, the properties of the
pion can be seen as the cleanest window to glimpse the emergence of hadron mass. In the
quark model, the vector meson is a spin-flip state of the pseudoscalar meson, and thus
the ρ meson is the closest relative to pions. However, the properties of ρ mesons are
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significantly different from those of pion. Compared to the surprisingly light pion, the ρ is
much heavier. Therefore, one can ask a straightforward question: how does the spin flip
produce such different masses for the two mesons? Since QCD is a well-defined theory of
strong interactions, it must answer such a fundamental question.

The meson spectrum includes not only ground states, but also excited states with
high orbital angular momenta between the quark and antiquark constituents of the meson.
The study of excited mesons is more difficult in both lattice QCD and CSMs. Experience
tells us that the well-known rainbow ladder approximation does not provide the correct
ordering of the meson masses between ground and excited states when using CSMs [114].
Recent improvements to the Bethe-Salpeter kernel have made it possible for practitioners
of CSMs to reproduce the empirical results. The new feature of modern Bethe-Salpeter
kernel is the inclusion of a term closely related to the anomalous chromomagnetic moment,
which reflects the influence of the EHM on the quark gluon vertex and which can be used
to effectively describe the excited meson state very well.

In addition to studying mesons made up of light quarks, it is also worth exploring
how the properties of mesons vary with meson mass. In the quark model view, if a valence
light quark in pion is replaced by a strange quark, a kaon is formed. A kaon is also
a Nambu–Goldstone boson in the chiral limit, however, in the real world, the strange
quark, produced through the Higgs mechanism, is 27 times more massive than the current
light quarks. Thus, the properties of the kaon are the result of the combined effect of the
Higgs mechanism and the emergence of hadron mass. This has been revealed from the
study of the parton distribution functions of kaons. The skewness of the distribution is
caused by the heavier strange quark, while the overall broadening of the distribution is
caused by the EHM. If mesons consisted of heavier quarks, charm, and bottom quarks,
the Higgs mechanism would dominate and be the largest source of heavy meson properties.
In particular, pseudoscalar mesons and heavy vector mesons are of particular interest
as mesons with zero orbital angular momentum in the quark model [115,116]. Their
distributions are usually narrower than those of light mesons, since it has been pointed
out that the distribution in the heavy-quark limit is a Dirac delta function. The difference
in distributions provides a clear picture of how the properties of mesons evolve with
increasing meson mass, and the CSMs is a unified framework for describing all mesons,
from pion to Upsilon.

It is worth mentioning that progress in mesons has also been extended to baryons.
The properties of baryons are calculated using the Faddeev equation describing the three-
quark scattering problem. Since the complete three-body problem in nature is much
more complicated, the quark dynamical-diquark method is usually introduced, which is
useful as a means of elucidating many qualitative features. Central to this approach is
the incorporation of five different diquark correlations, of which the axial-vector diquark
is of outstanding importance, to produce the correct baryon spectrum as well as baryon
structure functions such as distribution functions, electromagnetic, axial, and pseudoscalar
form factors.

In addition to the existing traditional hadrons, mesons, and baryons, many other new
hadron states have been proposed experimentally and theoretically, such as exotic states,
pentaquark, tetraquark, hybrid states, and glueballs. In the field of research on mesons
consisting of heavy quarks, a comprehensive study of the charm family has been carried
out thanks to a large amount of experimental data from the B-factory. As a result, states
such as XYZ states, pentaquark, and tetraquark have extensively extended our knowledge
of QCD bound states. In the field of research on mesons consisting of light quarks, there is
a tendency to think that gluon degrees of freedom may also play a role in the formation
of bound states, and thus there is speculation about the existence of states such as hybrid
states and even glueballs [117]. This has been found from calculations of lattice QCD and
CSMs, and future experiments, such as the 12 GeV upgrade experiment at Jefferson Lab,
which will provide an opportunity to test these theoretical predictions.
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Appendix A.3. Hadrons in Cold Dense Medium

In a cold and dense medium, i.e., for non-zero baryo-chemical potentials, quarks and
emergent hadrons suffer the impact of the ambient matter. From low to high chemical
potential domains, QCD will go through a phase of confinement and dynamical chiral
symmetry breaking to a phase of deconfinement and chiral symmetry restoration. The key
to the study is to determine the critical point/region at which the transition occurs and to
which category the “phase transition” belongs.

Since the full domain of the finite chemical potential is currently not fully available in
lattice QCD simulations, a complementary approach is CSMs [118–120], which expresses
the dynamical chiral symmetry breaking and confinement in QCD, so that it can therefore
be used as a tool to explore the properties of quark and hadron matter in cold dense
medium, thus revealing relevant features of objects such as neutron stars. In the CSMs,
the medium-induced dressed-quark propagator can be obtained by solving the quark gap
equation in the medium, and the quark condensates are proportional to the matrix trace of
the dressed quark propagator in the chiral limit. The quark condensate is crucial because it
is commonly seen as the order parameter of the deconfinement (phase) transition. In some
studies it has been shown that the chiral quark condensate is discontinuous with chemical
potential, so that in the chiral limit the phase transition is of first order. Furthermore,
it has been suggested that the QCD quark condensate may be completely contained in
hadrons [121]. In addition to quarks, hadrons are also affected by the ambient medium at a
non-zero chemical potential and, consequently, their masses change, showing noticeable
deviations from the masses in vacuum. The appearance of a turning point in the chemical
potential dependence of the hadron mass can also characterize the occurrence of chiral
symmetry transition. It has also been proposed that increasing the chemical potential
promotes the possibility of quark-quark Cooper pairing, i.e., diquark condensation. Quark-
quark Cooper pairs are composite bosons with both electric and color charge, and thus
superfluidity in quark matter entails superconductivity and color superconductivity.

These hadronic in-medium information is important not only for imaging the QCD
phase diagram, but also for constructing a unified EoS from low-density nucleonic matter
to high-density quark matter, and thus becomes crucial for determining the properties of
neutron stars. Analog reasoning applies to other forms of strong-interaction matter which
could govern new classes of compact stars, e.g., pion stars [1].

Appendix A.4. Supplementary Remarks

Before supplementing the above reflections by another approach to EHM w.r.t. con-
densates as fundamental QCD quantities, let us mention that the ab initio access to hadron
vacuum masses is directly based on QCD as the theoretical basis of strong interaction. The
current status is reviewed in Ref. [122]: a compelling description of the mass spectrum and
various other hadron parameters is achieved by lattice QCD.

The operator product expansion relates parameters of a hadron model of the spec-
tral function to a series of QCD condensates, most notably the above mentioned chiral
quark condensate 〈q̄q〉, the gluon condensate 〈 αs

π G2〉, the mixed quark-gluon condensate
〈q̄gsσGq〉, the triple gluon condensate 〈g3

s G3〉, the four-quark condensates 〈q̄Γqq̄Γq〉 (Γ
denotes all possible structures formed by Dirac and Gell–Mann matrices) [123] and the
poorly known condensates with higher mass-dimension. Further ingredients are the Wil-
son coefficients, which are accessible by perturbation theory [124]. In a strong-interaction
medium, the condensates change: 〈· · · 〉0 → 〈· · · 〉T,μB ; one could say that they are ex-
pelled from vacuum (label “0”) by a higher spatial occupancy due to non-zero temperature
and density (parametrized by μB) ( similar to concerns as on the Higgs field condensate
challenge such a picture of the vacuum, cf., [125] and follow-up citations). The induced
dropping of condensates facilitates in-medium modifications of hadrons, in particular due
the coupling to the chiral condensate, which is often considered as an order parameter of
chiral symmetry. A recent review is Ref. [126].
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In the baryon sector, the impact of the four-quark condensates and other in-medium-
only condensates make unambiguous analyses of QCD sum rules somewhat vague. Previ-
ous factorizations relate the many four-quark condensates to the chiral condensate modulo
some uncertain factor. For a comprehensive discussion, see Ref. [127], which focuses on the
emergence of the nucleon mass, most notably mp, from various quark and gluon condensates.

This brief journey should supplement our perspective of how the hadronic constituents
of matter in compact stars acquire their masses and that the ambient medium modifies
them. The very first step of gaining the above mentioned bare input masses by the Higgs
mechanism is therefore left out, see Figure A1. The various bare quark masses appear in
several QCD approaches as parameters adjusted to data. This is evidenced, e.g., in the
approach [114]: A formula of two-quark meson masses is developed, m(m1, m2), where
m1,2 refer to the bare quark masses. As shown in Figure 3 in Ref. [114], inspection of the
contour lines m(m1, m2) = const. can be used to pin down numerical values of bare masses
m1,2 which reproduce empirical values of ground states in the pseudo-scalar and vector
channels including light u, d, strange and charm quarks at once; redundancy is used for
cross checking. In addition, Regge trajectories become accessible to some extent [114,128].

Figure A1. Masses within the SM. Mysterious concentration of bare SM masses (quarks [u, d, s, c, t, b],
leptons [e, μ, τ], gauge bosons [W±, Z0], Higgs [H]) and separation of neutrinos (ν′s = [νe,μ,τ ]) on a
large energy scale ranging from present-day cosmic background radiation ωCBR

2.7 K ≈ 0.233 × 10−3 eV
to Planck mass mPl =

√
h̄c/GN ≈ 1.22 × 1019 GeV. Only the QED and QCD gauge Bosons [γ, g]

remain massless.

Appendix B. Holographic Approach to the EoS

Here we present a particular model of strong-interaction matter that is based on the
famous AdS/CFT correspondence. In line with Refs. [129–131] we employ the action in a
fiducial five-dimensional space-time with asymptotic AdS symmetry:

SEdM =
1

2κ2
5

∫
d4x dz

√
−g5

(
R − 1

2
∂Mφ ∂Mφ − V(φ)− 1

4
G(φ)F2

B

)
, (A1)

where R is the Einstein–Hilbert gravity part, FMN
B = ∂MBN − ∂NBM stands for the field

strength tensor of an Abelian gauge field B à la Maxwell with BMdxM = Φ(z)dt defining
the electro-static potential. An embedded black hole facilitates the description of a hot and
dense medium, since the black hole has a Hawking surface temperature and sources an
electric field, thus encoding holographically a temperature and a density of the system.
Dynamical objects are a dilatonic (scalar) field φ and a Maxwell-type field Φ that are
governed by a dilaton potential V(φ) and a dynamical coupling G(φ) and geometry-related
quantities. For a more general holographic approach to compact star physics, cf., Ref. [132].
Space-time is required to be described by the line element squared

ds2 = gMNdxMdxN := exp{A(z, zH)}
[

f (z, zH)dt2 − d�x2 − dz2

f (z, zH)

]
, (A2)
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where zH is the horizon position, z ∈ [zH , ∞] is the radial coordinate, A is the warp factor,
and f the blackness function.

The resulting Einstein equations are a set of coupled second-order ODEs to be solved
with appropriate boundary conditions. The quantities V and G are tuned ( in contrast
to former work, we here put emphasis on side conditions which ensure that, at μB = 0,
no phase transition is facilitated outside the temperature range uncovered by the lattice
data) to quantitatively describe the lattice QCD results [133]: Meanwhile, at μB = 0,
the datasets [134,135] are consistent, special combinations of quantities, e.g., e/p, enhance
the small differences. This is, in particular, is striking at T ∈ [130, 140] MeV, where a +4%
(−10%) deviation in energy density (pressure) even changes the shape of the e/p curve
when ignoring the error bars

∂φ ln V(φ) = (p1φ + p2φ2 + p3φ3) exp{−γφ}, (A3)

G(φ) = 1
1 + c5

(
1

cosh(c1φ + c2φ2)
+

c3

cosh c4φ

)
(A4)

with parameters {p1,2,3, γ} = {0.165919, 0.269459, −0.017133, 0.471384} and {c1,2,3,4,5} =
{−0.276851, 0.394100, 0.651725, 101.6378, −0.939473}. These parameters and the scales im-
plicitly refer to the QCD input, see Figure A2. The trace anomaly measure Δ, Equation (12),
is exhibited in Figure A2, left, for various temperatures T and at baryon-chemical potential
μB = 0; the middle panel is for the ratio e/p. As argued in Ref. [105], the high-temperature,
small-density and low-temperature, high-density behavior is strikingly different. A further
crucial input quantity is the susceptibility χ2 = ∂μB nB|μB=0, see the right panel in Figure A2.
The length scale of the z coordinate is set by L−1 = 1465 MeV, which relates the horizon
position zH and temperature via T = −1/(4π∂z f (z, zH))|z=zH , and by κ2

5 = 8.841 fm−3,
which determines entropy density s(T, μB) = 2π

κ2
5

exp{ 3
2 A(zH , zH)} and baryon density

nB(T, μB) = −πL2

κ2
5

∂2
zΦ(z, zH)|z=0.

Figure A2. Trace anomaly measure Δ (left panel) and ratio e/p (middle panel) for the holographic
model with tuned parameters to describe the lattice QCD data [133] (small crosses) at μB = 0. Errors
are constructed either from combining the respective maximum and minimum values (vertical error
bars) or by error propagation in quadrature (blueish error bars). The scaled susceptibility χ2/T2 is
displayed in the right panel; data (symbols) from [136].

The comparison of the scaled pressure p/T4, ratio e/p, and scaled baryon density
nB/T3 with the data [133] at μB/T = 1 and 2 in Figure A3 exhibits good agreement in the
small-μB region. That is, the model successfully maps QCD thermodynamics from the T axis
into the T-μB plane, in particular towards the μB axis: p(T)  → p(μB) = p(T(μB)). Curves
of constant pressure, T(μB)|p=const, are determined by dT/dμB = −nB(T, μB)/s(T, μB),
(from p(T(x), μB(x)) = const and assuming a parametric representation T(x) and μB(x)
with x being the arc length. dp/dx = (∂p/∂T)(dT/dx) + (∂p/∂μB)(dμB/dx) = 0 then
uses s = ∂p/∂T and nB = ∂p/∂μB. The technicalities of holographically determining these
quantities and the properties of the resulting EoS are relegated to a separate paper.) The left
panel in Figure A4 is for a toy model demonstrating how the EoS given on the temperature
axis is mapped to the chemical potential axis exhibited in Figure A4. The lattice data [133]
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are for T ∈ [125, 240] MeV at small values of μB (see the right panel). The “transport” into
the restricted region of the T-μB plane by the holographic model is already an extrapolation,
which requires a smooth pattern of T(μB)|p=const curves without junctions, branchings,
crossings, etc. The extrapolation of the data to T < 125 MeV and T > 240 MeV at μB = 0
by the parameterizations (A3) and (A4) is another type of extrapolation. Thu,s the region
beyond the displayed p = const curves could be hampered by both types of uncertainties,
but nevertheless may serve as educated guess of the cool EoS in the high-density realm.
The benefit of such an approach is the direct coupling of the hot EoS, being an essential
input in describing ultra-relativistic heavy-ion collisions by fluid dynamics, and the cool
EoS, being the input for compact (neutron) star structure and (merger) dynamics.

Figure A3. Scaled pressure p/T4 (left panel), ratio e/p (middle panel), and scaled baryon density
nB/T3 (right panel) as a function of temperature for μB/T = 1 (blue) and 2 (red) in comparison with
the data [133] (symbols with error bars).

Figure A4. Curves of constant pressure over the T-μB plane. In such a way, the pressure data on the T axis

are directly “transported” towards the μB axis, in particular p(T = 0, μ
(0)
B ) = p0 := p(T0, μB = 0) along

the constant-pressure curve T(μB)|p=p0 starting at T(μB = 0) = T0 and terminating at T(μ(0)
B ) = 0.

The energy density, with s(T, μB) and nB(T, μB) given, then follows from e = −p + Ts + μBnB

(Gibbs–Duhem). Left panel: A simple toy model is employed here for the purpose of demonstration
(s = 4aT3 + 2bTμ2

B, nB = 4cμ3
B + 2bT2μB, and numerical values b/a = 0.027384, c/a = 0.000154

referring to a two-flavor ideal quark-gluon plasma). Right panel: For the holographic model (A1),
(A3) and (A4) in a region (grey hatched) controlled by lattice QCD data [133] on the dark-grey beam
sections.

Instead of explicitly using hadronic degrees of freedom to devise the holographic
EoS, here the EoS as relation of energy density and pressure is solely deployed. Of course,
the underlying hot QCD EoS is anchored in the common quark-gluon dynamics with
intimate contact to the hadron observables.
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