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Agricultural Unmanned Systems: Empowering Agriculture
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zhangmengke@qdu.edu.cn
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Automation is crucial for the advancement of modern agriculture. It plays a significant
role in enhancing production efficiency and output, reducing labor costs, addressing
natural disasters, and boosting sustainability. Automation utilizes big data and artificial
intelligence to monitor agricultural production. It introduces new farming models that
adapt to the challenges of scalability and environmental changes, achieving precise and
efficient agricultural development.

In the field of smart agriculture, the emergence of unmanned systems represents a
significant evolutionary breakthrough. Currently, smart agricultural unmanned systems
encompass four spatial dimensions: sky (including navigation, remote sensing, meteo-
rological, and communication satellites) [1,2], air (comprising plant protection drones,
remote sensing mapping drones, long-duration solar drones, airships, and biomimetic
flying robots) [3,4], land (featuring unmanned farming/harvesting machinery, biomass
energy systems, soil improvement biomimetic robots, and unmanned livestock robots) [5,6],
and water (including unmanned underwater vehicles, underwater operation robots, and
unmanned aquaculture systems) [7,8]. These developments promise a bright future. This
Special Issue, titled “Agricultural Unmanned Systems: Empowering Agriculture with
Automation”, focuses on sharing knowledge related to integrated and precise operational
agriculture systems in the sky, air, land, and water. It explores intelligent sensing and
control technologies in smart agricultural unmanned systems to advance the progress of
unmanned agriculture. Establishing global demonstration sites is essential. These sites
support the revolutionary advancement of smart agricultural machinery in automated,
intelligent, unmanned, and cluster operations.

The following five studies explore the application of intelligent algorithms in precision
agriculture. To effectively cover the canopy area of tall spindle-shaped apple trees, Wang
et al. [9] developed an improved lightweight transfer learning model for citrus pest detec-
tion. They utilized networks such as ResNet50, InceptionV3, VGG16, and MobileNetV3, in
conjunction with a pre-trained single-shot multibox detector (SSD). This system can classify
and rapidly detect pests in citrus orchards, and can be integrated into mobile devices for
quick testing and pest counting. It assists farm managers in assessing pest damage and
making informed pesticide decisions in orchard management. Peng et al. [10] proposed
a new method that utilizes an optimized neural network to quickly identify crop water
and nitrogen content. They specifically improved a traditional backpropagation neural
network by incorporating particle swarm optimization (PSO). This improved network, with
a dual hidden layer structure, enhances prediction accuracy. The enhanced PSO-BPNN
model demonstrates a 9.87% increase in accuracy compared to conventional BPNN models.
This advancement establishes a strong foundation for precision irrigation and fertilization
in modern agriculture. It offers the potential to greatly improve resource management
and crop yields. Xiao et al. [11] investigated the present status of target detection and
recognition technologies for fruit- and vegetable-harvesting robots, with a focus on digital
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image processing and traditional machine learning methods. They assessed how these tech-
nologies affect the robots’ accuracy, speed, and robustness, identifying current challenges
and future developments to enhance robotic harvesting through improved computer vision
technologies. Xiao et al. [12] provided a comprehensive overview of the advancements
in fruit detection and automated harvesting using deep learning, particularly through
Convolutional Neural Networks (CNNs), from 2018 to the present. They detailed the
challenges faced, proposed solutions, and future research directions aimed at enhancing
the accuracy, speed, and robustness of visual detection systems for fruit while reducing
overall complexity and costs. This work serves as a reference for future research in the field
of deep learning-based automatic fruit harvesting detection and recognition. Ji et al. [13]
investigated the progress of the “eye-brain-hand” harvesting system in smart agriculture.
This system integrates sensor technology, machine vision algorithms, and intelligent con-
trol to simulate human functions for automated and precise fruit and vegetable picking.
It explores the development of robotic arms, visual recognition, and decision systems,
emphasizing technologies such as image processing and deep learning. The review also
evaluates the system’s application across various crops and environments. It emphasizes
future challenges in algorithm optimization and mechanical device reliability.

In the field of agricultural intelligent robotics technology and applications, Xiong
et al. [14] proposed an optimized design method for an efficient dual-mechanical-arm
harvesting system. For the typical spatial distribution of fruits in dwarf dense plants, a
pair of vertically synchronized, three-degree-range Cartesian coordinate dual mechanical
arms was designed. Through the development of a multi-objective optimization model
and evaluation using the CRITIC-TOPSIS method, simulation analysis determined the
optimal configuration to maximize harvesting efficiency, advancing robotic fruit-picking
technology. Zhang et al. [15] implemented a mechanized picking method in trellised pear
orchards by designing an integrated picker–placer end effector. They utilized the YOLOv5s
object detection algorithm and a depth camera for precise fruit localization. By introduc-
ing a simulated annealing algorithm to optimize the picking order and proposing a task
allocation method, the system was experimentally verified to improve picking efficiency
by 30%. This study provides important references for the further development of robotic
picking technologies. Shang et al. [16] addressed the issue of collisions with obstacles in
unmanned agricultural machinery by proposing an obstacle detection algorithm based on
two-dimensional LiDAR. This method utilizes differences between LiDAR data frames to
determine collision incidents; employs preprocessing, median filtering, and DBSCAN to
detect obstacles; and computes collision timing following the 6σ principle. Utilizing this
algorithm, a pre-collision system was designed, integrated into agricultural navigation
software, and tested on a harvester, achieving high accuracy and recall. This system enables
emergency stops when farm machinery encounters obstacles during automated operation.
It lays the groundwork for unmanned driving in more complex scenarios. Zhang et al. [17]
investigated the application of mobile robots in agriculture, specifically emphasizing full-
coverage path planning for orchard lawnmowers. They proposed a simplified motion
model designed for orchard environments and enhanced the A* algorithm to optimize
the lawnmower’s navigation paths, reducing unnecessary turns during traversal. These
improvements were validated through MATLAB 2020b simulations and field tests, demon-
strating the method’s effectiveness in enhancing navigation efficiency and task allocation
in agricultural settings. Existing methods for controlling drive wheel slip in prototype
machines have limitations, which result in suboptimal cultivation and finishing operations.
To address this issue, Luo et al. [18] proposed a slip rate control method that is adjusted
by both wheel speed and tillage depth. This method was validated using a New Holland
T1404 power shift tractor. This method controls slip within an optimal range while ensuring
maximum operational quality (tillage depth).

Additionally, the following three papers discuss and research improvements in auto-
mated agricultural equipment. Jiang et al. [19] discussed issues related to significant droplet
loss, pesticide wastage, and environmental pollution caused by improper spray parameters.
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They conducted a two-factor, five-level experiment focusing on power gradient and foliar
area volume density (FAVD) to analyze the impact of these factors and the position of
sampling points (considering horizontal distance, forward distance, and height) on droplet
coverage. This research improves sprayer efficiency and establishes a foundation for future
studies on precision spraying. It contributes to more sustainable agricultural practices.
Liu et al. [20] developed an innovative baler feed rate detection model by utilizing power
monitoring of the pickup platform. They utilized advanced signal processing techniques to
mitigate the impact of machine vibration and precisely detect the feed rate of the baler. The
model analyzes the dynamic characteristics of the pickup platform and utilizes frequency
domain filtering to eliminate noise signals. This approach effectively correlates the power
output of the pickup platform with the feed rate. Field experiments have confirmed the
model’s high accuracy and stability. This significantly improves the precision of feed rate
measurements. The model meets the requirements of baler feed rate monitoring in field
operations. Hui et al. [21] addressed low throughput and uneven treatment in plasma
seed equipment. They designed a dielectric barrier discharge vibrating homogeneous
material plasma seed treatment device. They systematically analyzed the structure and
working principles of the vibrating homogeneous material equipment and established
a mathematical model of seed force. Utilizing EDEM 2021 discrete element simulation
software and a three-factor, three-level orthogonal experiment for empirical testing, the
study demonstrated promising improvements in seed vitality, germination, and growth.
This marks a significant advancement in seed treatment technology.

This Special Issue extends its deepest gratitude to all contributors. The papers included
represent a broad range of research in the field of smart agriculture. However, there are
still gaps related to ‘sky’, ‘air’, and ‘water’. In the future, we anticipate more innovative
research in these areas, especially focusing on how technological advancements can address
current challenges and advance the holistic development of smart agriculture.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Smart agricultural harvesting robots’ vision recognition, control decision, and mechanical
hand modules all resemble the human eye, brain, and hand, respectively. To enable automatic
and precise picking of target fruits and vegetables, the system makes use of cutting-edge sensor
technology, machine vision algorithms, and intelligent control and decision methods. This paper
provides a comprehensive review of international research advancements in the “eye–brain–hand”
harvesting systems within the context of smart agriculture, encompassing aspects of mechanical hand
devices, visual recognition systems, and intelligent decision systems. Then, the key technologies
used in the current research are reviewed, including image processing, object detection and tracking,
machine learning, deep learning, etc. In addition, this paper explores the application of the system to
different crops and environmental conditions and analyzes its advantages and challenges. Finally,
the challenges and prospects for the research on picking robots in the future are presented, including
further optimization of the algorithm and improvement of flexibility and reliability of mechanical
devices. To sum up, the “eye–brain–hand” picking system in intelligent agriculture has great potential
to improve the efficiency and quality of crop picking and reduce labor pressure, and it is expected to
be widely used in agricultural production.

Keywords: smart agriculture; visual recognition; decision control; end-effector; harvesting robots;
research review

1. Introduction

In agricultural production, harvest is one of the most important links. It directly
relates to the quality of product harvest. However, traditional manual picking methods
have problems such as high cost, low efficiency, and labor shortage, which seriously restrict
the development of agricultural production. Therefore, it is urgent and necessary to study
the technology of fruit and vegetable-picking robots, which is an important way to solve this
problem. The visual recognition system, decision control system, and end-effector system
are the key contents of the research on harvesting robot technology, and their technological
maturity directly affects the harvesting effect of the robot. Intelligent harvesting system
refers to a system that utilizes modern technology to achieve autonomous harvesting by
the steps of recognition, decision, control, and grasping during the agricultural harvesting
process. The intelligent picking system has the characteristics of efficiency, precision, and
reliability, which can greatly improve agricultural production efficiency, reduce the labor
burden of fruit farmers, and improve the quality and safety of agricultural production [1–8].
The literature distribution of intelligent harvesting systems for different crops is shown in
Figure 1.
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The unmanned agricultural harvesting system mainly consists of three parts: a recog-
nition module; a decision control module; and an end-effector module [9–11]. Therefore,
this review will start from the recognition, decision control, and end-effector gripper of
unmanned agricultural harvesting systems and analyze the current situation of intelligent
harvesting systems. Among them, the recognition module is a key part of the system
to obtain crop information, which mainly uses technologies such as machine vision and
lidar. By using RGB [12,13], depth cameras, various sensors, or other devices, information
about picked objects is obtained based on target features, feature fusion, or deep learn-
ing, including position, shape, size, maturity, surrounding environment, etc. [14–20]. To
enhance the precision and accuracy of image segmentation, various image preprocessing
techniques have been utilized, facilitating superior decision and control in subsequent
stages [21–23]. The decision and control module serves as a crucial component in au-
tonomous decision and control during the harvesting process. During the decision and
control process, a broad range of network models and optimization algorithms [24–26],
including Support Vector Machine (SVM) [27,28], decision trees, deep learning, genetic
algorithms, and particle swarm optimization, are extensively employed [9,29–33]. These
models and algorithms provide intelligent decision control adapted to different harvesting
situations, leading to optimal harvesting outcomes. The end-effector module, a key hard-
ware component responsible for automated fruit picking, influences the harvesting results
directly through its design type, harvesting method, and size dimensions. Researchers
categorize the end-effector grippers into four major types: negative pressure adsorption
end-effectors; shearing-style end-effectors; negative pressure adsorption end-effectors;
cavity retrieval end-effectors; and flexible grasping end-effectors. [10,34–45]. The selection
of an appropriate end-effector gripper is determined by the physical characteristics of the
fruits, such as their types, sizes, and the hardness of their peels. These three modules,
encompassing vision, manipulation, and decision capabilities, work synergistically within
the integrated eye–brain–hand system to accomplish the harvesting task.

In the context of the continuous advancement of artificial intelligence and robotics,
unmanned systems for agricultural harvesting are gaining increasing attention as a novel
method of crop collection. Within these agricultural harvesting robots, the perception
system, decision-control system, and end-effectors play pivotal roles, serving as the es-
sential components for achieving automated harvesting. Harvesting robots equipped
with eye–brain–hand-integrated systems are not only characterized by high precision, ef-
ficiency, and reliability, but they are also adaptable to various harvesting environments,
demonstrating a broad range of prospective applications.
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Studying agricultural harvesting robots is not only an important measure to adapt
to agricultural modernization and market demand but also a crucial step in solving labor
shortages and improving the quality of agricultural products. Through continuous innova-
tion and improvement of technology, agricultural production can be automated, refined,
and intelligent, making positive contributions to the sustainable development of global
agriculture. This article summarizes the important research progress of over 120 agricul-
tural harvesting robots in the past 6 years. This research focuses on the “eye–brain–hand”
of robots and comprehensively analyzes the key role of robots in the agricultural product-
picking process. This article delves into various technological breakthroughs, including
high-precision visual perception technology, intelligent path-planning and decision-making
methods, and advanced end-effector design. By summarizing the research results of these
aspects, this review provides insight into the field of agricultural picking robots and pro-
vides important guidance and enlightenment for future research and application. These
contributions will have a profound impact on promoting the improvement of agricultural
production efficiency, solving labor problems, and ensuring the quality of agricultural prod-
ucts. This article mainly discusses the three main parts of agricultural harvesting robots,
namely “eye, brain, and hand”, based on the “structure–activity relationship method”. In
these three parts, more detailed descriptions are provided according to the “time sequence
method” and the “current situation countermeasure method”. In the fifth part, the chal-
lenges and prospects in the field of harvesting robots are summarized according to the
“current situation countermeasure method”. The outline of this article is shown in Figure 2.
In this paper, Section 2 introduces common target perception hardware systems, perception
methods, and image preprocessing techniques. Hardware systems can be categorized into
active vision, passive vision, and applications combining various sensors. The perception
methods are primarily based on three aspects: target features; feature fusion; and deep
learning. Section 3 primarily elaborates on decision strategies and control methods, en-
compassing regional division and task allocation, active and passive obstacle avoidance
strategies, path planning based on various technologies, and numerous control methods.
Section 4 presents the various end-effector mechanisms and evaluation metrics for harvest-
ing robots. Section 5 presents challenges and prospects for agricultural harvesting robots.
Finally, a summary of this article is provided in Section 6.
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2. Intelligent Harvesting “Eye” System
2.1. Perception Hardware System

Considering the intelligent point of view of unmanned system, it is necessary to see
accurately in order to achieve better expected results. Therefore, the system perception as
the first part of the picking system has been widely paid attention to both at home and
abroad. At present, the perception methods of agricultural picking robots mainly include
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binocular vision, LiDAR, and the combination of monocular cameras and other sensors.
Due to cost constraints, the LiDAR-based perception method is less applied, and the other
two perception methods are mainly described here.

2.1.1. Object Perception Based on Binocular Vision

Binocular vision measurement is similar to the stereo perception of the human eye; it
uses two cameras to image the object to be measured from different angles, based on the
stereoscopic parallax of the corresponding points in the two images, combined with the
principle of triangulation to realize the acquisition of 3D information of the object. Binocular
vision measurement techniques can be divided into two types based on whether the light
source is actively projected during the detection process, active vision and passive vision,
both of which are often used in hand–eye harvesting. The classification, characteristics, and
examples of active and passive visual cameras are shown in Table 1.

(a) Active vision
At present, the active vision technology based on Structured light is popular in the

market for binocular cameras, which has the advantages of strong anti-interference ability,
a wide application environment, and a mature technical scheme. Therefore, active visual
cameras—especially those from the RealSense series from Intel, the Kinect series from
Microsoft, and the OAK-D-Pro from OpenAI—are more frequently employed in the actual
harvesting of fruits and vegetables. The guava harvesting robot designed by Lin et al. [46]
used a Kinect V2 camera as a visual sensor, which consists of an RGB color camera, an
infrared camera, and an IR light source. The IR light source actively projects the near-
infrared spectrum, which forms random reflection spots when illuminated on an object.
These spots will be received by infrared cameras to read the depth information of the
object. Based on this Time of Flight (TOF) principle, it obtains depth images of targets
between 0.5 and 4.5 m. In addition, the camera is inexpensive and stable. Due to its many
advantages, the Kinect-V2 depth camera was also equipped by Ning et al. [47] on a pepper-
picking robot to realize pepper picking in a greenhouse planting environment. In order to
determine the location of the kiwifruit in an RGB image, extract coordinates, and locate it,
Mu et al. [48] also used this camera as their machine vision equipment in the construction of
a kiwifruit harvesting robot. Different from the above research, Zhang et al. [49] equipped
the cherry tomato picking robot with Intel’s RealSense D415 depth camera and installed
it on the side of the base of the mechanical arm to ensure that it is not blocked during
tomato harvesting. Similarly, Yu et al. [50] used the DF810-HD depth camera to provide
visual support to the picking robot during tomato picking. Considering the height of the
greenhouse and the growth of tomato plants, and in order to meet the demand for real-time
control, the camera is placed on a liftable platform and fixed, which effectively increases
the sensing range while reducing the calculation amount of the visual system. For the
harvesting of short, densely planted apples in a greenhouse environment, Li et al. [51] chose
to combine a RealSense D455 depth camera with a multi-Cartesian mechanical arm and
used a task planning algorithm to achieve accurate identification and effective harvesting
of short, densely planted apples. Similarly, Kang et al. [52] used the RealSense D-435 depth
camera as the hardware support of the visual system of the apple-picking robot and applied
the depth neural network DAS-Net to identify the fruit. The experiment showed that the
visual system has high precision in fruit detection and segmentation. However, the setting
of a single camera is difficult to adapt to the complex and changeable working environment.
In order to adapt to an unstructured harvesting environment, Sarabu et al. [53] designed a
double-arm harvesting robot consisting of a grab arm and a search arm for the same apple
harvesting task, and each arm was equipped with an RGB-D depth camera (Hand-Eye). The
camera on the grab arm is used to locate the picking apple in the field of view. The camera
on the search arm can detect the target outside the dead zone of the grab arm camera and
quickly plan a clear and suitable picking path in combination with relevant algorithms.
Moreover, multi-camera and multi-view method can solve the problem of overlapping
and blocking fruit detection to a certain extent. Gong et al. [54] provided us with a new
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idea when designing a greenhouse tomato-picking robot, which is to improve the image
segmentation accuracy in a complex environment through multi-source fusion images.
RGB, depth, and infrared images are acquired by the Kinect v2 camera, fused to obtain
RGB-D-I images, and target segmentation accuracy is improved by 7.6% in combination
with the extended Mask-RCNN network. Although active vision cameras can be used in
a wide range of scenarios, they are, in some cases, influenced by environmental factors.
To achieve better sensing in the night-time environment, Fu et al. [55] equipped four
850 Lumens LED lights on their apple-picking robot platform, and the Kinect V2 camera
was installed in the center of the four LED lights, which provided a bright and stable night-
time working environment for the picking platform. Although the presence of an active
light source can enhance the depth camera’s perception in low-light conditions, it remains
challenging to maintain optimum and consistent perception in situations with strong light
or varying light intensity. To solve this problem, Xiong [56] applied a U-shaped straw-
picking robot to a structured greenhouse-picking environment, with two independent
picking systems on both sides of the arched structure and a real D435 depth camera for the
visual system. The design of a U-shaped full shielding frame structure can greatly reduce
or even eliminate the impact of ambient light changes on the quality of acquired images
and greatly improve the detection and positioning accuracy of the visual system without
any specific correction algorithms.

(b) Passive Vision
Passive vision technology uses a pure RGB camera and binocular parallax principle to

detect and locate the target. Compared with active vision, passive vision is widely used
in scenes with bright vision and wide space due to its simple structure and low power
consumption. Although color is the most intuitive feature to distinguish the target fruit
from the background, color-based methods of identification are susceptible to factors such
as varying light. To this end, we can reduce the impact of light by means of relevant
algorithms. Lv et al. [57] used Sony’s Cyber-shot color camera to provide RGB images
for their apple-picking robot and then corrected the images of apples affected by external
light with an adaptive Gamma algorithm, thus greatly improving the image segmentation
accuracy. In addition, the shape-based recognition method is not easily affected by changing
lighting. Wang et al. [58] reduced the minimum relative error of Apple, ranging up to 0.96%,
by combining a linear fusion detection algorithm and AD-Census matching algorithm based
on CMOS binocular camera. However, the apple-picking robot designed by Yu et al. [59]
is based on a binocular camera combined with color threshold and edge detection for
target identification, and the success rate of apple identification is up to 82.5%. Similarly,
Yang et al. [44] also used an RGB camera to identify the color and texture of the target in
the Hangzhou chrysanthemum-picking robot. After eliminating the noise with the bilateral
filter, the color and texture characteristics of the image were extracted through the RGB
value and the grayscale paragenesis matrix of the image and then input into the Least
Squares Support Vector Machine model (LS-SVM). The segmentation time of the trained
model for the Hangzhou chrysanthemum was as low as 0.7 s. In addition, during tomato
fruit picking, Zhou et al. [60] used a variable baseline USB binocular camera (HNY-CV-002),
combined with the identification method of circular Hough transform and RGB color space,
to achieve efficient picking of the target tomato. In addition, Jin et al. [61] applied depth
learning technology to the binocular camera to identify the target fruit in order to better
realize the perception of tomato fruit and achieved good results. Similar techniques, such as
those discussed above for active vision, are also used for passive binocular vision in order
to optimize the recognition impact. Ye et al. [62] installed the Micro-vision MV-VD120SC
industrial camera on the end-effector of the litchi-picking robot and planned auxiliary target
pickup points for the robot. After the end-effector arrived at the auxiliary target pickup
point from the initial point, it would perform environmental perception again and plan the
motion between the target pickup points. This strategy can avoid interference between the
end-effector and obstacles around the target as much as possible while compensating for
visual errors and improving positioning accuracy.

10



A
gr

on
om

y
20

23
,1

3,
22

37

Ta
bl

e
1.

C
ha

ra
ct

er
is

tic
s

of
A

ct
iv

e
an

d
Pa

ss
iv

e
V

is
io

n
Te

ch
no

lo
gy

an
d

R
ep

re
se

nt
at

iv
e

C
am

er
a

Ex
am

pl
es

.

A
ct

iv
e/

Pa
ss

iv
e

V
is

io
n

Ty
pe

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es
R

ep
re

se
nt

at
iv

e
C

am
er

as

A
ct

iv
e

V
is

io
n

St
ru

ct
ur

ed
-l

ig
ht

M
or

e
m

at
ur

e
an

d
ea

si
er

to
m

in
ia

tu
ri

ze
Lo

w
po

w
er

co
ns

um
pt

io
n

C
an

be
us

ed
at

ni
gh

t
H

ig
h

ac
cu

ra
cy

an
d

re
so

lu
ti

on
w

it
hi

n
a

ce
rt

ai
n

ra
ng

e

Ea
si

ly
di

st
ur

be
d

by
am

bi
en

tl
ig

ht
Th

e
ac

cu
ra

cy
de

te
ri

or
at

es
as

th
e

de
te

ct
io

n
di

st
an

ce
in

cr
ea

se
s

R
ea

lS
en

se
D

43
5i

A
gr

on
om

y 
20

23
, 1

3,
 x

 F
O

R 
PE

ER
 R

EV
IE

W
 

6 
of

 5
1 

  

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 A

ct
iv

e 
an

d 
Pa

ss
iv

e 
V

is
io

n 
Te

ch
no

lo
gy

 a
nd

 R
ep

re
se

nt
at

iv
e 

C
am

er
a 

Ex
am

pl
es

. 

A
ct

iv
e/

Pa
ss

iv
e 

V
is

io
n 

Ty
pe

 
A

dv
an

ta
ge

s 
D

is
ad

va
nt

ag
es

 
R

ep
re

se
nt

at
iv

e 
C

am
er

as
 

A
ct

iv
e 

V
is

io
n 

St
ru

ct
ur

ed
-

lig
ht

 

M
or

e 
m

at
ur

e 
an

d 
ea

si
er

 to
 m

in
ia

tu
r-

iz
e$

$L
ow

 p
ow

er
 c

on
su

m
pt

io
n$

$C
an

 b
e 

us
ed

 a
t n

ig
ht

$$
H

ig
h 

ac
cu

ra
cy

 a
nd

 re
so

lu
-

tio
n 

w
ith

in
 a

 c
er

ta
in

 ra
ng

e 

Ea
si

ly
 d

is
tu

rb
ed

 b
y 

am
bi

en
t 

lig
ht

$$
Th

e 
ac

cu
ra

cy
 d

et
er

io
ra

te
s 

as
 th

e 
de

te
ct

io
n 

di
st

an
ce

 in
cr

ea
se

s 

Re
al

Se
ns

eD
43

5i
 

 

K
in

ec
t v

1 
 

O
A

K
-D

-P
ro

 
 

TO
F 

Lo
ng

 d
et

ec
tio

n 
di

st
an

ce
$$

Le
ss

 in
te

rf
er

-
en

ce
 b

y 
am

bi
en

t l
ig

ht
 

H
ig

h 
re

qu
ir

em
en

ts
 fo

r e
qu

ip
-

m
en

t$
$H

ig
h 

po
w

er
 c

on
su

m
p-

tio
n$

$L
ow

 e
dg

e 
ac

cu
ra

cy
$$

Lo
w

er
 

fr
am

e 
ra

te
 a

nd
 re

so
lu

tio
n 

K
in

ec
t v

2 
 

PM
D

 C
am

C
ub

e 
3.

0 
 

Pa
ss

iv
e 

V
is

io
n 

- 
Lo

w
 h

ar
dw

ar
e 

re
qu

ir
em

en
ts

 a
nd

 lo
w

 
co

st
$$

Su
ita

bl
e 

fo
r b

ot
h 

in
do

or
 a

nd
 o

ut
-

do
or

 u
se

 

Ve
ry

 se
ns

iti
ve

 to
 a

m
bi

en
t 

lig
ht

$$
N

ot
 fo

r m
on

ot
on

ou
s 

sc
en

es
 

th
at

 la
ck

 te
xt

ur
e$

$C
al

cu
la

tio
ns

 a
re

 
m

or
e 

co
m

pl
ex

 

D
ig

ita
l C

am
er

as
 

 

Th
er

m
al

 c
am

er
a 

 

M
ul

tis
pe

ct
ra

l c
am

er
a 

 

K
in

ec
tv

1

A
gr

on
om

y 
20

23
, 1

3,
 x

 F
O

R 
PE

ER
 R

EV
IE

W
 

6 
of

 5
1 

  

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 A

ct
iv

e 
an

d 
Pa

ss
iv

e 
V

is
io

n 
Te

ch
no

lo
gy

 a
nd

 R
ep

re
se

nt
at

iv
e 

C
am

er
a 

Ex
am

pl
es

. 

A
ct

iv
e/

Pa
ss

iv
e 

V
is

io
n 

Ty
pe

 
A

dv
an

ta
ge

s 
D

is
ad

va
nt

ag
es

 
R

ep
re

se
nt

at
iv

e 
C

am
er

as
 

A
ct

iv
e 

V
is

io
n 

St
ru

ct
ur

ed
-

lig
ht

 

M
or

e 
m

at
ur

e 
an

d 
ea

si
er

 to
 m

in
ia

tu
ri

ze
 

Lo
w

 p
ow

er
 c

on
su

m
pt

io
n 

C
an

 b
e 

us
ed

 a
t n

ig
ht

 
H

ig
h 

ac
cu

ra
cy

 a
nd

 re
so

lu
tio

n 
w

ith
in

 a
 

ce
rt

ai
n 

ra
ng

e 

Ea
si

ly
 d

is
tu

rb
ed

 b
y 

am
bi

en
t l

ig
ht

 
Th

e 
ac

cu
ra

cy
 d

et
er

io
ra

te
s a

s 
th

e 
de

te
ct

io
n 

di
st

an
ce

 in
cr

ea
se

s 

Re
al

Se
ns

eD
43

5i
 

 

K
in

ec
t v

1 
 

O
A

K
-D

-P
ro

 
 

TO
F 

Lo
ng

 d
et

ec
tio

n 
di

st
an

ce
 

Le
ss

 in
te

rf
er

en
ce

 b
y 

am
bi

en
t l

ig
ht

 

H
ig

h 
re

qu
ir

em
en

ts
 fo

r e
qu

ip
m

en
t 

H
ig

h 
po

w
er

 c
on

su
m

pt
io

n 
Lo

w
 e

dg
e 

ac
cu

ra
cy

 
Lo

w
er

 fr
am

e 
ra

te
 a

nd
 re

so
lu

tio
n 

K
in

ec
t v

2 
 

PM
D

 C
am

C
ub

e 
3.

0 
 

Pa
ss

iv
e 

V
is

io
n 

- 
Lo

w
 h

ar
dw

ar
e 

re
qu

ir
em

en
ts

 a
nd

 lo
w

 c
os

t 
Su

ita
bl

e 
fo

r b
ot

h 
in

do
or

 a
nd

 o
ut

do
or

 u
se

 

Ve
ry

 se
ns

iti
ve

 to
 a

m
bi

en
t l

ig
ht

 
N

ot
 fo

r m
on

ot
on

ou
s 

sc
en

es
 th

at
 

la
ck

 te
xt

ur
e 

C
al

cu
la

tio
ns

 a
re

 m
or

e 
co

m
pl

ex
 

D
ig

ita
l C

am
er

as
 

 

Th
er

m
al

 c
am

er
a 

 

M
ul

tis
pe

ct
ra

l c
am

er
a 

 

O
A

K
-D

-P
ro

A
gr

on
om

y 
20

23
, 1

3,
 x

 F
O

R 
PE

ER
 R

EV
IE

W
 

6 
of

 5
1 

  

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 A

ct
iv

e 
an

d 
Pa

ss
iv

e 
V

is
io

n 
Te

ch
no

lo
gy

 a
nd

 R
ep

re
se

nt
at

iv
e 

C
am

er
a 

Ex
am

pl
es

. 

A
ct

iv
e/

Pa
ss

iv
e 

V
is

io
n 

Ty
pe

 
A

dv
an

ta
ge

s 
D

is
ad

va
nt

ag
es

 
R

ep
re

se
nt

at
iv

e 
C

am
er

as
 

A
ct

iv
e 

V
is

io
n 

St
ru

ct
ur

ed
-

lig
ht

 

M
or

e 
m

at
ur

e 
an

d 
ea

si
er

 to
 m

in
ia

tu
r-

iz
e$

$L
ow

 p
ow

er
 c

on
su

m
pt

io
n$

$C
an

 b
e 

us
ed

 a
t n

ig
ht

$$
H

ig
h 

ac
cu

ra
cy

 a
nd

 re
so

lu
-

tio
n 

w
ith

in
 a

 c
er

ta
in

 ra
ng

e 

Ea
si

ly
 d

is
tu

rb
ed

 b
y 

am
bi

en
t 

lig
ht

$$
Th

e 
ac

cu
ra

cy
 d

et
er

io
ra

te
s 

as
 th

e 
de

te
ct

io
n 

di
st

an
ce

 in
cr

ea
se

s 

Re
al

Se
ns

eD
43

5i
 

 

K
in

ec
t v

1 
 

O
A

K
-D

-P
ro

 
 

TO
F 

Lo
ng

 d
et

ec
tio

n 
di

st
an

ce
$$

Le
ss

 in
te

rf
er

-
en

ce
 b

y 
am

bi
en

t l
ig

ht
 

H
ig

h 
re

qu
ir

em
en

ts
 fo

r e
qu

ip
-

m
en

t$
$H

ig
h 

po
w

er
 c

on
su

m
p-

tio
n$

$L
ow

 e
dg

e 
ac

cu
ra

cy
$$

Lo
w

er
 

fr
am

e 
ra

te
 a

nd
 re

so
lu

tio
n 

K
in

ec
t v

2 
 

PM
D

 C
am

C
ub

e 
3.

0 
 

Pa
ss

iv
e 

V
is

io
n 

- 
Lo

w
 h

ar
dw

ar
e 

re
qu

ir
em

en
ts

 a
nd

 lo
w

 
co

st
$$

Su
ita

bl
e 

fo
r b

ot
h 

in
do

or
 a

nd
 o

ut
-

do
or

 u
se

 

Ve
ry

 se
ns

iti
ve

 to
 a

m
bi

en
t 

lig
ht

$$
N

ot
 fo

r m
on

ot
on

ou
s 

sc
en

es
 

th
at

 la
ck

 te
xt

ur
e$

$C
al

cu
la

tio
ns

 a
re

 
m

or
e 

co
m

pl
ex

 

D
ig

ita
l C

am
er

as
 

 

Th
er

m
al

 c
am

er
a 

 

M
ul

tis
pe

ct
ra

l c
am

er
a 

 

TO
F

Lo
ng

de
te

ct
io

n
di

st
an

ce
Le

ss
in

te
rf

er
en

ce
by

am
bi

en
tl

ig
ht

H
ig

h
re

qu
ir

em
en

ts
fo

r
eq

ui
pm

en
t

H
ig

h
po

w
er

co
ns

um
pt

io
n

Lo
w

ed
ge

ac
cu

ra
cy

Lo
w

er
fr

am
e

ra
te

an
d

re
so

lu
ti

on

K
in

ec
tv

2

A
gr

on
om

y 
20

23
, 1

3,
 x

 F
O

R 
PE

ER
 R

EV
IE

W
 

6 
of

 5
1 

  

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 A

ct
iv

e 
an

d 
Pa

ss
iv

e 
V

is
io

n 
Te

ch
no

lo
gy

 a
nd

 R
ep

re
se

nt
at

iv
e 

C
am

er
a 

Ex
am

pl
es

. 

A
ct

iv
e/

Pa
ss

iv
e 

V
is

io
n 

Ty
pe

 
A

dv
an

ta
ge

s 
D

is
ad

va
nt

ag
es

 
R

ep
re

se
nt

at
iv

e 
C

am
er

as
 

A
ct

iv
e 

V
is

io
n 

St
ru

ct
ur

ed
-

lig
ht

 

M
or

e 
m

at
ur

e 
an

d 
ea

si
er

 to
 m

in
ia

tu
ri

ze
 

Lo
w

 p
ow

er
 c

on
su

m
pt

io
n 

C
an

 b
e 

us
ed

 a
t n

ig
ht

 
H

ig
h 

ac
cu

ra
cy

 a
nd

 re
so

lu
tio

n 
w

ith
in

 a
 

ce
rt

ai
n 

ra
ng

e 

Ea
si

ly
 d

is
tu

rb
ed

 b
y 

am
bi

en
t l

ig
ht

 
Th

e 
ac

cu
ra

cy
 d

et
er

io
ra

te
s a

s 
th

e 
de

te
ct

io
n 

di
st

an
ce

 in
cr

ea
se

s 

Re
al

Se
ns

eD
43

5i
 

 

K
in

ec
t v

1 
 

O
A

K
-D

-P
ro

 
 

TO
F 

Lo
ng

 d
et

ec
tio

n 
di

st
an

ce
 

Le
ss

 in
te

rf
er

en
ce

 b
y 

am
bi

en
t l

ig
ht

 

H
ig

h 
re

qu
ir

em
en

ts
 fo

r e
qu

ip
m

en
t 

H
ig

h 
po

w
er

 c
on

su
m

pt
io

n 
Lo

w
 e

dg
e 

ac
cu

ra
cy

 
Lo

w
er

 fr
am

e 
ra

te
 a

nd
 re

so
lu

tio
n 

K
in

ec
t v

2 
 

PM
D

 C
am

C
ub

e 
3.

0 
 

Pa
ss

iv
e 

V
is

io
n 

- 
Lo

w
 h

ar
dw

ar
e 

re
qu

ir
em

en
ts

 a
nd

 lo
w

 c
os

t 
Su

ita
bl

e 
fo

r b
ot

h 
in

do
or

 a
nd

 o
ut

do
or

 u
se

 

Ve
ry

 se
ns

iti
ve

 to
 a

m
bi

en
t l

ig
ht

 
N

ot
 fo

r m
on

ot
on

ou
s 

sc
en

es
 th

at
 

la
ck

 te
xt

ur
e 

C
al

cu
la

tio
ns

 a
re

 m
or

e 
co

m
pl

ex
 

D
ig

ita
l C

am
er

as
 

 

Th
er

m
al

 c
am

er
a 

 

M
ul

tis
pe

ct
ra

l c
am

er
a 

 

PM
D

C
am

C
ub

e
3.

0

A
gr

on
om

y 
20

23
, 1

3,
 x

 F
O

R 
PE

ER
 R

EV
IE

W
 

6 
of

 5
1 

  

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 A

ct
iv

e 
an

d 
Pa

ss
iv

e 
V

is
io

n 
Te

ch
no

lo
gy

 a
nd

 R
ep

re
se

nt
at

iv
e 

C
am

er
a 

Ex
am

pl
es

. 

A
ct

iv
e/

Pa
ss

iv
e 

V
is

io
n 

Ty
pe

 
A

dv
an

ta
ge

s 
D

is
ad

va
nt

ag
es

 
R

ep
re

se
nt

at
iv

e 
C

am
er

as
 

A
ct

iv
e 

V
is

io
n 

St
ru

ct
ur

ed
-

lig
ht

 

M
or

e 
m

at
ur

e 
an

d 
ea

si
er

 to
 m

in
ia

tu
r-

iz
e$

$L
ow

 p
ow

er
 c

on
su

m
pt

io
n$

$C
an

 b
e 

us
ed

 a
t n

ig
ht

$$
H

ig
h 

ac
cu

ra
cy

 a
nd

 re
so

lu
-

tio
n 

w
ith

in
 a

 c
er

ta
in

 ra
ng

e 

Ea
si

ly
 d

is
tu

rb
ed

 b
y 

am
bi

en
t 

lig
ht

$$
Th

e 
ac

cu
ra

cy
 d

et
er

io
ra

te
s 

as
 th

e 
de

te
ct

io
n 

di
st

an
ce

 in
cr

ea
se

s 

Re
al

Se
ns

eD
43

5i
 

 

K
in

ec
t v

1 
 

O
A

K
-D

-P
ro

 
 

TO
F 

Lo
ng

 d
et

ec
tio

n 
di

st
an

ce
$$

Le
ss

 in
te

rf
er

-
en

ce
 b

y 
am

bi
en

t l
ig

ht
 

H
ig

h 
re

qu
ir

em
en

ts
 fo

r e
qu

ip
-

m
en

t$
$H

ig
h 

po
w

er
 c

on
su

m
p-

tio
n$

$L
ow

 e
dg

e 
ac

cu
ra

cy
$$

Lo
w

er
 

fr
am

e 
ra

te
 a

nd
 re

so
lu

tio
n 

K
in

ec
t v

2 
 

PM
D

 C
am

C
ub

e 
3.

0 
 

Pa
ss

iv
e 

V
is

io
n 

- 
Lo

w
 h

ar
dw

ar
e 

re
qu

ir
em

en
ts

 a
nd

 lo
w

 
co

st
$$

Su
ita

bl
e 

fo
r b

ot
h 

in
do

or
 a

nd
 o

ut
-

do
or

 u
se

 

Ve
ry

 se
ns

iti
ve

 to
 a

m
bi

en
t 

lig
ht

$$
N

ot
 fo

r m
on

ot
on

ou
s 

sc
en

es
 

th
at

 la
ck

 te
xt

ur
e$

$C
al

cu
la

tio
ns

 a
re

 
m

or
e 

co
m

pl
ex

 

D
ig

ita
l C

am
er

as
 

 

Th
er

m
al

 c
am

er
a 

 

M
ul

tis
pe

ct
ra

l c
am

er
a 

 

Pa
ss

iv
e

V
is

io
n

-
Lo

w
ha

rd
w

ar
e

re
qu

ir
em

en
ts

an
d

lo
w

co
st

Su
it

ab
le

fo
r

bo
th

in
do

or
an

d
ou

td
oo

r
us

e

Ve
ry

se
ns

it
iv

e
to

am
bi

en
tl

ig
ht

N
ot

fo
r

m
on

ot
on

ou
s

sc
en

es
th

at
la

ck
te

xt
ur

e
C

al
cu

la
ti

on
s

ar
e

m
or

e
co

m
pl

ex

D
ig

it
al

C
am

er
as

A
gr

on
om

y 
20

23
, 1

3,
 x

 F
O

R 
PE

ER
 R

EV
IE

W
 

6 
of

 5
1 

  

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 A

ct
iv

e 
an

d 
Pa

ss
iv

e 
V

is
io

n 
Te

ch
no

lo
gy

 a
nd

 R
ep

re
se

nt
at

iv
e 

C
am

er
a 

Ex
am

pl
es

. 

A
ct

iv
e/

Pa
ss

iv
e 

V
is

io
n 

Ty
pe

 
A

dv
an

ta
ge

s 
D

is
ad

va
nt

ag
es

 
R

ep
re

se
nt

at
iv

e 
C

am
er

as
 

A
ct

iv
e 

V
is

io
n 

St
ru

ct
ur

ed
-

lig
ht

 

M
or

e 
m

at
ur

e 
an

d 
ea

si
er

 to
 m

in
ia

tu
r-

iz
e$

$L
ow

 p
ow

er
 c

on
su

m
pt

io
n$

$C
an

 b
e 

us
ed

 a
t n

ig
ht

$$
H

ig
h 

ac
cu

ra
cy

 a
nd

 re
so

lu
-

tio
n 

w
ith

in
 a

 c
er

ta
in

 ra
ng

e 

Ea
si

ly
 d

is
tu

rb
ed

 b
y 

am
bi

en
t 

lig
ht

$$
Th

e 
ac

cu
ra

cy
 d

et
er

io
ra

te
s 

as
 th

e 
de

te
ct

io
n 

di
st

an
ce

 in
cr

ea
se

s 

Re
al

Se
ns

eD
43

5i
 

 

K
in

ec
t v

1 
 

O
A

K
-D

-P
ro

 
 

TO
F 

Lo
ng

 d
et

ec
tio

n 
di

st
an

ce
$$

Le
ss

 in
te

rf
er

-
en

ce
 b

y 
am

bi
en

t l
ig

ht
 

H
ig

h 
re

qu
ir

em
en

ts
 fo

r e
qu

ip
-

m
en

t$
$H

ig
h 

po
w

er
 c

on
su

m
p-

tio
n$

$L
ow

 e
dg

e 
ac

cu
ra

cy
$$

Lo
w

er
 

fr
am

e 
ra

te
 a

nd
 re

so
lu

tio
n 

K
in

ec
t v

2 
 

PM
D

 C
am

C
ub

e 
3.

0 
 

Pa
ss

iv
e 

V
is

io
n 

- 
Lo

w
 h

ar
dw

ar
e 

re
qu

ir
em

en
ts

 a
nd

 lo
w

 
co

st
$$

Su
ita

bl
e 

fo
r b

ot
h 

in
do

or
 a

nd
 o

ut
-

do
or

 u
se

 

Ve
ry

 se
ns

iti
ve

 to
 a

m
bi

en
t 

lig
ht

$$
N

ot
 fo

r m
on

ot
on

ou
s 

sc
en

es
 

th
at

 la
ck

 te
xt

ur
e$

$C
al

cu
la

tio
ns

 a
re

 
m

or
e 

co
m

pl
ex

 

D
ig

ita
l C

am
er

as
 

 

Th
er

m
al

 c
am

er
a 

 

M
ul

tis
pe

ct
ra

l c
am

er
a 

 

Th
er

m
al

ca
m

er
a

A
gr

on
om

y 
20

23
, 1

3,
 x

 F
O

R 
PE

ER
 R

EV
IE

W
 

6 
of

 5
1 

  

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 A

ct
iv

e 
an

d 
Pa

ss
iv

e 
V

is
io

n 
Te

ch
no

lo
gy

 a
nd

 R
ep

re
se

nt
at

iv
e 

C
am

er
a 

Ex
am

pl
es

. 

A
ct

iv
e/

Pa
ss

iv
e 

V
is

io
n 

Ty
pe

 
A

dv
an

ta
ge

s 
D

is
ad

va
nt

ag
es

 
R

ep
re

se
nt

at
iv

e 
C

am
er

as
 

A
ct

iv
e 

V
is

io
n 

St
ru

ct
ur

ed
-

lig
ht

 

M
or

e 
m

at
ur

e 
an

d 
ea

si
er

 to
 m

in
ia

tu
r-

iz
e$

$L
ow

 p
ow

er
 c

on
su

m
pt

io
n$

$C
an

 b
e 

us
ed

 a
t n

ig
ht

$$
H

ig
h 

ac
cu

ra
cy

 a
nd

 re
so

lu
-

tio
n 

w
ith

in
 a

 c
er

ta
in

 ra
ng

e 

Ea
si

ly
 d

is
tu

rb
ed

 b
y 

am
bi

en
t 

lig
ht

$$
Th

e 
ac

cu
ra

cy
 d

et
er

io
ra

te
s 

as
 th

e 
de

te
ct

io
n 

di
st

an
ce

 in
cr

ea
se

s 

Re
al

Se
ns

eD
43

5i
 

 

K
in

ec
t v

1 
 

O
A

K
-D

-P
ro

 
 

TO
F 

Lo
ng

 d
et

ec
tio

n 
di

st
an

ce
$$

Le
ss

 in
te

rf
er

-
en

ce
 b

y 
am

bi
en

t l
ig

ht
 

H
ig

h 
re

qu
ir

em
en

ts
 fo

r e
qu

ip
-

m
en

t$
$H

ig
h 

po
w

er
 c

on
su

m
p-

tio
n$

$L
ow

 e
dg

e 
ac

cu
ra

cy
$$

Lo
w

er
 

fr
am

e 
ra

te
 a

nd
 re

so
lu

tio
n 

K
in

ec
t v

2 
 

PM
D

 C
am

C
ub

e 
3.

0 
 

Pa
ss

iv
e 

V
is

io
n 

- 
Lo

w
 h

ar
dw

ar
e 

re
qu

ir
em

en
ts

 a
nd

 lo
w

 
co

st
$$

Su
ita

bl
e 

fo
r b

ot
h 

in
do

or
 a

nd
 o

ut
-

do
or

 u
se

 

Ve
ry

 se
ns

iti
ve

 to
 a

m
bi

en
t 

lig
ht

$$
N

ot
 fo

r m
on

ot
on

ou
s 

sc
en

es
 

th
at

 la
ck

 te
xt

ur
e$

$C
al

cu
la

tio
ns

 a
re

 
m

or
e 

co
m

pl
ex

 

D
ig

ita
l C

am
er

as
 

 

Th
er

m
al

 c
am

er
a 

 

M
ul

tis
pe

ct
ra

l c
am

er
a 

 
M

ul
ti

sp
ec

tr
al

ca
m

er
a

A
gr

on
om

y 
20

23
, 1

3,
 x

 F
O

R 
PE

ER
 R

EV
IE

W
 

6 
of

 5
1 

  

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 A

ct
iv

e 
an

d 
Pa

ss
iv

e 
V

is
io

n 
Te

ch
no

lo
gy

 a
nd

 R
ep

re
se

nt
at

iv
e 

C
am

er
a 

Ex
am

pl
es

. 

A
ct

iv
e/

Pa
ss

iv
e 

V
is

io
n 

Ty
pe

 
A

dv
an

ta
ge

s 
D

is
ad

va
nt

ag
es

 
R

ep
re

se
nt

at
iv

e 
C

am
er

as
 

A
ct

iv
e 

V
is

io
n 

St
ru

ct
ur

ed
-

lig
ht

 

M
or

e 
m

at
ur

e 
an

d 
ea

si
er

 to
 m

in
ia

tu
r-

iz
e$

$L
ow

 p
ow

er
 c

on
su

m
pt

io
n$

$C
an

 b
e 

us
ed

 a
t n

ig
ht

$$
H

ig
h 

ac
cu

ra
cy

 a
nd

 re
so

lu
-

tio
n 

w
ith

in
 a

 c
er

ta
in

 ra
ng

e 

Ea
si

ly
 d

is
tu

rb
ed

 b
y 

am
bi

en
t 

lig
ht

$$
Th

e 
ac

cu
ra

cy
 d

et
er

io
ra

te
s 

as
 th

e 
de

te
ct

io
n 

di
st

an
ce

 in
cr

ea
se

s 

Re
al

Se
ns

eD
43

5i
 

 

K
in

ec
t v

1 
 

O
A

K
-D

-P
ro

 
 

TO
F 

Lo
ng

 d
et

ec
tio

n 
di

st
an

ce
$$

Le
ss

 in
te

rf
er

-
en

ce
 b

y 
am

bi
en

t l
ig

ht
 

H
ig

h 
re

qu
ir

em
en

ts
 fo

r e
qu

ip
-

m
en

t$
$H

ig
h 

po
w

er
 c

on
su

m
p-

tio
n$

$L
ow

 e
dg

e 
ac

cu
ra

cy
$$

Lo
w

er
 

fr
am

e 
ra

te
 a

nd
 re

so
lu

tio
n 

K
in

ec
t v

2 
 

PM
D

 C
am

C
ub

e 
3.

0 
 

Pa
ss

iv
e 

V
is

io
n 

- 
Lo

w
 h

ar
dw

ar
e 

re
qu

ir
em

en
ts

 a
nd

 lo
w

 
co

st
$$

Su
ita

bl
e 

fo
r b

ot
h 

in
do

or
 a

nd
 o

ut
-

do
or

 u
se

 

Ve
ry

 se
ns

iti
ve

 to
 a

m
bi

en
t 

lig
ht

$$
N

ot
 fo

r m
on

ot
on

ou
s 

sc
en

es
 

th
at

 la
ck

 te
xt

ur
e$

$C
al

cu
la

tio
ns

 a
re

 
m

or
e 

co
m

pl
ex

 

D
ig

ita
l C

am
er

as
 

 

Th
er

m
al

 c
am

er
a 

 

M
ul

tis
pe

ct
ra

l c
am

er
a 

 

11



Agronomy 2023, 13, 2237

2.1.2. Target Perception Based on Multi-Sensor Combination

Due to the low accuracy and poor fault tolerance of a single sensor, the perception
strategy based on multi-source sensor fusion is widely used in the fields of autonomous
driving and industrial robots. Similarly, this technology has also been borrowed by agricul-
tural robot experts for fruit’s 3D perception. At present, there are several combinations of
multi-source sensors used for fruit perception: monocular + ultrasound, monocular + laser,
and monocular + depth camera. The relevant descriptions of different types of multi-sensor
combination perception are shown in Table 2.

Oktarina et al. [63] used a combination of a Pi camera placed on a robotic arm and
an ultrasonic sensor HC-SR04 to achieve recognition and positioning of red and green
tomatoes. Lower-cost network cameras with appropriate resolution offer color image
information of the target, and ultrasonic sensors offer depth information of the target fruits.
A new visual unit was created by Feng et al. [64] for his cherry tomato-picking robot. A
monocular camera and a laser sensor are both mounted on the manipulator arm. The
target tomato is sensed and recognized using an RGB camera, and its distance from the
vision system is calculated using a laser sensor. Using a suitable combination of the two
sensors, corresponding algorithms, and a shear end actuator, harvesting success can be
increased by 83%. In contrast to the examples above, Sepulveda et al. [65] created a dual-
arm eggplant harvesting robot with a visual system made up of two monocular cameras,
specifically, the SR4000 depth measurement capture camera and the Prosilica GC2450C
color camera. The former provides high-resolution color images, while the latter provides
depth information of images. In addition, in order to identify and locate strawberries more
accurately, Feng et al. [66] creatively developed a vision system combining far and near.
After the far-sighted unit acquires a larger field-of-view image, the robotic arm, carrying
the end-effector and the close-range camera, approaches one by one from the left side to
the right side to sense and pick the ripe fruits again.
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2.2. Target Perception Methods
2.2.1. Image Preprocessing Methods

The fruit and vegetable-picking robot must assess the image of the target fruit based on
the target features or the trained neural network model after acquiring the original image
through the system perception hardware. However, in order to eliminate background
noise, recover real information, enhance detectability, and simplify data, the original
image is generally preprocessed first. Commonly used preprocessing methods mainly
include grayscale transformation (contrast enhancement, contrast compression, gamma
correction, etc.), spatial filtering (Gaussian filtering, mean filtering, median filtering, edge
detection, etc.), coordinate transformation (translation, mirroring, rotating), morphological
operations (erosion, dilation, open operations, closed operations), and so on.

During image recognition, Xiong et al. [67] first converted RGB images into HSV color
saturation images and then judged whether the adaptive color threshold was reached and
determined which strawberries could be picked. Moreover, Feng et al. [64] improved the
image quality and region delineation accuracy by using the R-G color model to enhance
the color features of the images acquired from the camera and then determining the
candidate regions of ripe tomato bunches based on the column pixel grey scale statistics. In
addition, in order to ensure the stability of obtaining basic information about the target,
besides the addition of an external light source, as mentioned earlier, such problems can
also be solved by using lighting balance algorithms to preprocess the original image.
Zhuang et al. [68] proposed an iterative Retinex algorithm based on the weighted intensity
of the fruit region in RGB color images, which can adaptively improve images with poor
light distribution, and more than 97% of pixels within the litchi region were correctly
segmented after light compensation. In order to enhance the segmentation accuracy and
success rate of oil palm fruit under complex backgrounds, different illumination, and
different fruit maturity, Huang et al. [69] transformed RGB color space into Lab color
space and then obtained a region of interest (ROI) containing oil palm fruit by using Otsu
algorithm and morphological operation. After the ROI image in the color space is converted
to a Grayscale and smoothed by a Gaussian filter, the target at the edge of the image can
be clearly detected. These image preprocessing methods are not only commonly used
in traditional image analysis techniques based on target features but also widely used in
deep learning techniques. These methods are generally used to reasonably augment a
limited dataset by stretching, scaling, rotating, panning, and contrast adjustment as a way
to achieve data augmentation and to improve the accuracy and robustness of the neural
network model. In the greenhouse of the Guangdong Academy of Agricultural Sciences,
Ning et al. [47,70] designed a sweet pepper-picking robot that collected 400 images of
9882 sweet peppers from multiple angles in a variety of weather conditions with a depth
camera. In order to provide the YOLO-V4-CBAM model with a sufficient training set
and to improve the model detection accuracy, the training set was augmented with data
using exposure, blurring, mirroring, and rotation, and 1500 images were obtained, totaling
33,780 sweet peppers. In terms of noise reduction, Mao et al. [70], in order to overcome
the interference of complex backgrounds, such as soil, hay, and irrigation pipeline in the
cucumber image, the original image of the cucumber was processed under G component
to filter out the objects with large color difference in the background. The image is then
smoothed using a 3×3 median filter and segmented using the Otsu algorithm to obtain
a preliminary denoised background image. After that, MSER (Maximum Stable Extreme
Region) is used to further eliminate leaf noise, which enables deep learning to extract
cucumber features from complex backgrounds more easily.

2.2.2. Perception Methods Based on Target Features

The traditional techniques for image segmentation based on target features are mainly
color thresholding-based, edge detection-based, region growing-based, and graph theory-
based. Empirical thresholds and adaptive thresholds are the two types of threshold seg-
mentation technologies that are utilized in real applications. Empirical thresholds are more
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frequently used and can be adjusted to meet production needs. In the automation process,
an adaptive threshold is utilized more frequently, and adaptive algorithms typically have to
select an adaptive threshold. To achieve real-time detection of strawberries, Xiong et al. [71]
used a simple color thresholding algorithm based on RGB channels with faster processing
speed to detect strawberries. At the same time, in order to remove the noisy pixels and fill
the holes, morphological opening and closing operations are performed on the original RGB
image based on erosion and expansion of the binary image and objects that are too far or too
close to the robot are removed by depth filtering of the depth image. Feng et al. [64] used
the R-G color model to enhance the difference between the target fruit and the background
by analyzing the color features of the images captured by the RGB camera and selecting
the candidate region of the saint fruit from the R-G image based on the gray statistics
of the column pixels. Finally, the fruits were recognized using the CogPMAlignTool in
the Cognex Vision Pro image processing class library. In litchi picking, the localization
of the picking point has always been an important part of orchard operations by picking
robots, but the localization accuracy of the picking point is easily affected by unstructured
growing environments, such as light intensity variations. In order to eliminate the effect of
illumination variations, Zhuang et al. [68] improved the illuminance distribution of weakly
illuminated images by employing an adaptive iterative Retinex algorithm while keeping
the illuminance distribution of well-illuminated images unchanged. The stem is segmented,
and noise is filtered using the histogram of intensity distribution after the litchi region
has been divided up into RGB color space. Finally, the location of the picking point was
determined based on the connection and positional relationship between the segmented
litchi and the stem. Although the segmentation method based on color thresholding has
been widely used in image segmentation, its shortcomings are also obvious. This method
is only applicable to targets whose colors differ significantly from the image background
and whose ripe fruits have a relatively single color, and it fails in the face of fruits and
vegetables whose ripe fruits are similar in color to the surrounding environment or have
multiple colors. In order to achieve effective segmentation of oil palm fruits with various
shapes and colors, Septiarini et al. [69] used an edge detection method widely used for fruit
segmentation—Canny detection. In order to reduce the noise interference and improve
the image quality, Gaussian smoothing is used to connect the small discontinuities in the
image before Canny detection. Then, morphological extension, filling, and reconstruction
were carried out, and two morphological operations—opening and closing—were used to
correct misclassification. A comparison of image segmentation methods based on different
target features is shown in Table 3.
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2.2.3. Feature Fusion-Based Perception Methods

The previous section summarized some methods for object detection based on single
features, such as color, texture, and shape, and listed some application examples. However,
the above methods often do not perform well enough when encountering complex working
environments, and in order to solve this problem, researchers have proposed a detection
method based on multi-target feature fusion. This method can integrate the sensing
advantages between different features and effectively improve the detection accuracy and
robustness of the target-sensing system under complex working conditions.

Kiwifruit image recognition is a bit difficult because of the interference of occlusion
and overlapping; in order to solve this problem, many scholars use a feature fusion-based
approach for effective perception. Liu et al. [72] also proposed a more complete set of
methods for this purpose. In the image processing stage, after converting the RGB color
space to HSV, frequency domain filtering and homomorphic filtering techniques are used to
eliminate a large amount of noise in the original image and to improve the contrast. Then,
the images of kiwifruit were segmented in three stages by combining the Otsu algorithm,
the regional growth method, and a dynamic fast identification algorithm. Yang et al. [44]
proposed an image segmentation algorithm based on LS-SVM for the visual detection
and location of Hangzhou white chrysanthemum. The color and texture features in the
RGB space are input to the LS-SVM model after being de-noised by a bilateral filter. The
experiment showed that the trained model could effectively separate images of Hangzhou
white chrysanthemums from the front, back, and shadow illumination, with an accuracy of
more than 90% and a segmentation time of only 0.7 s.

Generally, the above method can only identify and detect one kind of fruit, but it
is not applicable to other kinds of fruit and vegetables. Is there any algorithm that can
detect multiple types of fruits and vegetables at the same time? To solve this problem,
Lin et al. [46] proposed a novel detection method. This technique uses an SVM classifier
based on angle, color, and shape characteristics to detect spherical or cylindrical fruit
that is common in natural environments. It integrates a clustering algorithm based on
region growth and a three-dimensional shape detection algorithm based on m-estimated
sample conformance (MSAC). The experiment demonstrates that, for pepper, eggplant,
and guava, the algorithm’s detection accuracy is 0.866, 0.888, and 0.866, respectively, and
that the average detection time for a single fruit is 1.41 s, 4.07 s, and 4.70 s. Similarly,
Sepulveda et al. [65] proposed an image segmentation algorithm composed of support
vector machine (SVM), watershed transformation, and point cloud extraction for eggplant
picking under complex working conditions. The supervised training of the Cubic SVM
support vector machine is carried out according to the color characteristics of different scene
elements. The trained classifier can identify and segment eggplants in most cases, and the
watershed transformation can effectively segment eggplant images in the overlapping state.
The above methods improve the perception of the mature target fruit by means of feature
fusion but do not detect and analyze the quality of the fruit. If inefficient picking can be
prevented by recognizing the rotten and damaged fruits, the picking quality of the picking
robot can be enhanced to some amount. In this respect, Kurpaska et al. [73] conducted
some research and proposed a method to detect and judge the quality of strawberries
based on texture, color, and contour shape analysis. This method uses the analysis of
geological samples based on color and texture analysis to detect and analyze the quality
of strawberries. The experiment showed that the comprehensive detection method can
effectively distinguish different quality strawberries.

2.2.4. Perception Methods Based on Deep Learning

Deep learning is a new research direction in the field of machine learning, first pro-
posed by Hinton et al. in 2006. The neural network in deep learning can be divided into
three layers: the input layer; the hidden layer; and the output layer. After the input layer ob-
tains the input image information, it passes the information to the hidden layer for feature
extraction, and finally, the hidden layer outputs the model results. The working principle
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of the neural network presented in fully connected form is shown in Figure 3. Compared
with the traditional shallow learning structures such as support vector machine (SVM)
and artificial neural network (ANN), deep learning can extract the hidden features in the
image and automatically learn to obtain the hierarchical feature representation (as shown
in Figure 4a), which is more conducive to the classification or feature visualization. As the
amount of training data increases, the advantages of deep learning models become more
and more obvious (as shown in Figure 4b). In addition, deep learning has the flexibility to
choose the number of network layers according to the designer’s needs. Based on the above
advantages, in recent years, deep learning has been widely used in the target detection of
fruits, vegetables, and other crops with good results.
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Unlike traditional manual feature-based detection algorithms (VJ, HOG, DPM), there
are many detection algorithms in deep learning, which can be roughly divided into one-
stage detection algorithms and two-stage detection algorithms according to the detection
stage (as shown in Figure 5). Among them, two-stage detection algorithms mainly include
RCNN, Faster R-CNN, Mask R-CNN, and so on. This type of algorithm performs target
detection by first generating a pre-selected box that may contain the object to be detected
(Proposal box) and then completing the identification and localization of the target after
further detection based on the characteristics of the object. This kind of algorithm was
quickly developed in the early stages of the application of deep learning technology because
it has high detection precision and accuracy, but it also has the drawback of slower detection
speed and is time-consuming. Unlike two-stage detection algorithms, single-stage detection
algorithms, such as YOLO and SSD, do not require a region candidate network (PRN) and
can directly extract features in the network to predict object classification and location,
which is characterized by a one-step process and faster detection speed. The Yolo series of
algorithms can reach 200 fps, much higher than the 5 fps of the two-stage algorithm Mask
R-CNN, which is especially suitable for mobile platforms, but its detection accuracy is a
bit poorer than that of algorithms such as Faster-RCNN. Table 4 compares and analyzes
various network models used by different researchers.
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Figure 4. Comparison of Process and Performance between Traditional Machine Learning and Deep
Learning in Image Processing: (a) Comparison of Image Processing Processes between Traditional
Machine Learning and Deep Learning; (b) The relationship between the performance of traditional
machine learning and deep learning and the amount of data input.

(a) Faster R-CNN
Faster R-CNN is a more classical two-stage target detection network, a detection algo-

rithm that was proposed in 2015 after R-CNN and Fast RCNN. Architecturally, it consists of
two main networks, Fast R-CNN and RPN (Regional Proposal Network). Compared with
the previous two, Faster -RCNN integrates feature extraction, proposal extraction, bound-
ing box, regression, and classification in a single network, which significantly improves
the detection speed and greatly improves the comprehensive performance. Mu et al. [48]
used Faster R-CNN for kiwifruit recognition, where color and depth images acquired from
a Kinectv2 camera were fed into a convolutional neural network, and the neural network
was used to detect and extract the coordinates of kiwifruit. The picking robot applying this
network model showed an extremely high picking success rate of 94.2% in an orchard test
containing 240 samples, with an average picking time of 4–5 s. Similarly, Fu et al. [55] se-
lected two network structures (ZFNet and VGG16) based on Faster-RCNN for apple picking
and used the network of two structures to detect the Original-RGB and Foreground-RGB
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images acquired from Kinectv2. The experimental results showed that the VGG16 network
has the highest average detection accuracy (AP) of 0.893 for Foreground-RGB images.

Agronomy 2023, 13, x FOR PEER REVIEW 17 of 51 
 

 

 
Figure 5. Target detection technology timeline. 

(a) Faster R-CNN 
Faster R-CNN is a more classical two-stage target detection network, a detection al-

gorithm that was proposed in 2015 after R-CNN and Fast RCNN. Architecturally, it con-
sists of two main networks, Fast R-CNN and RPN (Regional Proposal Network). Com-
pared with the previous two, Faster -RCNN integrates feature extraction, proposal extrac-
tion, bounding box, regression, and classification in a single network, which significantly 
improves the detection speed and greatly improves the comprehensive performance. Mu 
et al. [48] used Faster R-CNN for kiwifruit recognition, where color and depth images 
acquired from a Kinectv2 camera were fed into a convolutional neural network, and the 
neural network was used to detect and extract the coordinates of kiwifruit. The picking 
robot applying this network model showed an extremely high picking success rate of 
94.2% in an orchard test containing 240 samples, with an average picking time of 4–5 s. 
Similarly, Fu et al. [55] selected two network structures (ZFNet and VGG16) based on 
Faster-RCNN for apple picking and used the network of two structures to detect the Orig-
inal-RGB and Foreground-RGB images acquired from Kinectv2. The experimental results 
showed that the VGG16 network has the highest average detection accuracy (AP) of 0.893 
for Foreground-RGB images. 

(b) Mask-RCNN 
Mask-RCNN is another classical deep learning network after Faster R-CNN in the 

two-stage network, which is based on Faster R-CNN with a fully convolutional Mask Pre-
diction Branch added to the Head layer. The ROI Pooling is improved, and ROI Align is 
proposed, which solves the problem of twice region mismatch caused by rounding in ROI 
Pooling in Faster R-CNN. Different from Faster R-CNN, which uses VGG as the skeleton 
network, Master R-CNN uses ResNet50 or ResNet101 as the skeleton network. Combined 
with the FCN network structure, four modes can be formed, namely, ResNet50, Res-
Net101, ResNet50 + FPN, and ResNet101 + FPN. The ROI generation method, the selection 
of RPs, and the selection of RPs to be projected onto the feature map will be different for 
different combinations, and the size of the feature maps into the Head layer will also be 
different so that the researchers can choose flexibly according to their needs. Compared 
with Faster R-CNN, Mask-RCNN is able to simultaneously achieve target detection, target 
classification, and pixel-level target segmentation by combining object detection and se-
mantic segmentation. Yu et al. [74] used Mask-RCNN as the detection network of the vi-
sion module in order to improve the target detection performance of a strawberry-picking 

Figure 5. Target detection technology timeline.

(b) Mask-RCNN
Mask-RCNN is another classical deep learning network after Faster R-CNN in the

two-stage network, which is based on Faster R-CNN with a fully convolutional Mask
Prediction Branch added to the Head layer. The ROI Pooling is improved, and ROI Align is
proposed, which solves the problem of twice region mismatch caused by rounding in ROI
Pooling in Faster R-CNN. Different from Faster R-CNN, which uses VGG as the skeleton
network, Master R-CNN uses ResNet50 or ResNet101 as the skeleton network. Combined
with the FCN network structure, four modes can be formed, namely, ResNet50, ResNet101,
ResNet50 + FPN, and ResNet101 + FPN. The ROI generation method, the selection of
RPs, and the selection of RPs to be projected onto the feature map will be different for
different combinations, and the size of the feature maps into the Head layer will also be
different so that the researchers can choose flexibly according to their needs. Compared
with Faster R-CNN, Mask-RCNN is able to simultaneously achieve target detection, tar-
get classification, and pixel-level target segmentation by combining object detection and
semantic segmentation. Yu et al. [74] used Mask-RCNN as the detection network of the
vision module in order to improve the target detection performance of a strawberry-picking
robot and chose Resnet50 as the skeleton network, which was combined with a feature
pyramid network (FPN) architecture for feature acquisition of target strawberries. The
target detection experiments showed that the average detection accuracy (AP) of the trained
model is 95.78%, which is particularly effective for strawberry detection under complex
growth states such as changing light intensity, overlap, and occlusion. Similarly, in order to
better detect tomatoes that are in an overlapping state with smooth texture and uniform
color, Gong et al. [54] used Mask-RCNN, which has a better performance in dealing with
overlapping targets, as the basic network and used RGB-D-I fused images as the training
set. The test results showed that the target segmentation accuracy is improved by 7.6% over
the RGB-based mask R-CNN using the extended Mask R-CNN model trained with fused
images. In addition, in order to solve the problem of fruit recognition and localization
under different occlusion states, Yang et al. [75] purposely proposed a citrus fruit and
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branch recognition model based on Mask R-CNN. While constructing a training dataset
including multiple complex conditions, a segmentation labeling method is proposed for
irregular branches. The experiments showed that the average detection accuracies of the
trained model for fruits and branches were 88.15% and 96.27%, respectively, and the av-
erage measurement errors for citrus transverse, longitudinal, and branch diameters were
2.52 mm, 2.29 mm, and 1.17 mm, respectively.

(c) YOLO
YOLO series networks belong to one-stage representative networks. Unlike Faster

R-CNN and Mask-RCNN, YOLO does not have an RPN network structure and combines
object classification and object localization (bounding box) into a regression problem in
the detection process. Different from R-CNN’s “Look twice” (candidate box extraction
and classification), YOLO only needs to Look Once, so the detection speed of the YOLO
network is much faster than the two-stage network of the R-CNN series.

In view of the advantages of YOLO series networks and in order to detect banana
fruits quickly and accurately in a complex orchard environment, Fu et al. [76] proposed a
banana fruit detection method based on YOLOv4. Experimental results showed that the
detection rate of the algorithm was 99.29%, the average detection time was 0.171 s, and
the AP value was 0.9995. Similarly, in order to meet the identification and positioning
requirements of litchi fruits and stems in the nighttime environment, Liang et al. [77]
proposed a litchi fruit detection method based on YOLOv3. Under high, medium, and low
brightness conditions, the mean Average Precision (mAP) of the model for fruit detection
is 96.43%, and the average detection time is 0.026 s. For the segmentation of stem, the
accuracy is 95.54%, and the average segmentation time is 0.071 s. In order to verify whether
different classification patterns will affect the detection effect of the kiwi detection model,
Suo et al. [78] collected and classified 1160 kiwi images according to picking strategies and
occlusion conditions and input them into two network models of YOLOv4 and YOLOv3 for
training and testing. The experimental results showed that labeling and classifying the
data set as detailed as possible can effectively improve the detection accuracy of the
network model. Ning et al. [47] used YOLO-V4-CBAM based on YOLO-V4 to identify and
locate sweet peppers in dense planting environments so as to improve the recognition
and positioning accuracy of sweet pepper-picking robots for multi-target fruits in complex
planting environments. Experimental results showed that the F1-score of the proposed
method for sweet pepper in a dense planting environment is 91.84%, which is 9.14% higher
than that of YOLO-V4, and the positioning accuracy is 89.55%. On the basis of previous
research, Xiong et al. [56] combined YOLOv4, Deep SORT, and color threshold to develop
a faster and more accurate vision system for strawberry real-time detection, tracking,
and positioning. Field experiments showed that the picking success rate of strawberry
picking robots using the new system is 62.4%, which is 36.8% higher than before. Similarly,
Yu et al. [79] designed a fruit pose estimator called R-YOLO for their new strawberry ridge-
harvesting robot. This model is based on YOLOv3 and uses the lightweight network
Mobilenet-V1 as the backbone network for feature extraction, which improves the running
speed of the model. Tests showed that the model has an average recognition rate of 94.43%,
and the processing speed of a single image is 3.6 times faster than YOLOV3. Xu et al. [80]
proposed a green mango detection model Light-YOLOv3 based on YOLOv3 for picking
green mangoes under different lighting and occlusion environments. This model uses a
lightweight unit based on the green mango’s color, texture, and shape features to replace the
Resnet unit in YOLOv3 and combines the MSCA (Multiscale context aggregation) module
to concatenate and predict multi-layer features, which effectively improves the detection
effect of green mangoes. Similarly, in order to solve the problem of tomato detection in
complex scenes and adapt to embedded devices, Xu et al. [81] proposed a fast detection
method based on YOLOv3-tiny. The new model uses improved depth-wise separable
convolution and residual structure to replace the standard convolutional network, which
increases the depth of the network and greatly reduces the number of Flops. Experiments
showed that the f1-score of the new model is 12% higher than that of YOLOv3-tiny, and the
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detection speed reaches 25 frames per second. In addition, in order to solve the problem of
information loss and insufficient semantic feature extraction of small targets in the process
of network transmission of Yolov3, Chen et al. [82] proposed an improved Yolov3 cherry
tomato detection algorithm YOLOv3-DPN based on DPNs. The improved algorithm can
extract richer semantic features of small targets and reduce the information loss in the
propagation process. It is worth mentioning that many groups have performed a lot of
research on how to better detect objects, but very little attention has been paid to the
problem of phasing objects. To this end, Wang et al. [83] proposed a multi-stage strawberry
fruit detection method based on Detailed Semantic Enhancement (DSE-YOLO) on the basis
of YOLOv3. This model includes the DSE module, EBCE, and DEMSE loss functions, which
solve the problem of foreground class imbalance of the original model and can distinguish
different stages of fruits with higher accuracy while better detecting small fruits. Aiming at
the problems of low accuracy and poor robustness in traditional green pepper detection
methods, Li et al. [84] proposed an improved green pepper object detection algorithm based
on Yolov4_tiny. The algorithm was based on the backbone network in the classical object
detection model and introduced adaptive feature fusion and feature attention mechanism.
It improves the recognition accuracy of green pepper small targets and ensures classification
accuracy. Similarly, according to the characteristics of the small shape and dense growth of
plums, Wang et al. [85] proposed an improved version of YOLOv4 lightweight model based
on YOLOv4. This model uses Darknet53 generation MobilenetV3 on the backbone network
and uses Depthwise Separable Convolution (DSC) to replace the standard convolution so
as to lightweight the model. At the same time, the 152 × 152 feature layer is introduced
to improve the target extraction ability in the dense state. Experiments showed that the
model has a higher Mean Average Precision (mAP) than YOLOv4, YOLOv4-Tiny, and
MobileNet-SSD. The size is 77.85% smaller than YOLOv4, and the detection speed is 112%
faster than YOLOv4. At present, most apple detection algorithms cannot distinguish apples
occluded by branches from apples occluded by other apples, which is highly likely to cause
damage to the target apple, the robotic arm, and the end-effector during the picking process.
In order to solve this problem, Yan et al. [86] proposed an apple detection algorithm based
on improved YOLOv5s. Experimental results showed that the algorithm can effectively
distinguish between pickable and non-pickable apples. Compared with the classical model,
the proposed method effectively improves the mAP while compressing the model size, and
the average detection time of a single image is only 0.015 s, which can meet the needs of
real-time detection.

(d) SSD
SSD is also a one-stage network; unlike the YOLO series, the SSD network has different

scales and aspect ratios of Prior boxes, which allows for the use of different sizes of
feature maps for the detection of targets of various scales. Qian et al. [87] proposed
an SSD-based method for accurate and real-time mushroom detection and location and
optimized the backbone network in the original SSD model to improve the real-time
detection performance in the embedded device. The model performs well in tests, with an
F1 score of 0.951 and an average localization error of 2.43 mm for mushrooms.

(e) FCN
FCN is the pioneering work of deep learning for semantic segmentation. Compared

with CNN, FCN replaces the fully connected layer with a convolutional layer and solves
the problem of smaller image size due to convolution and pooling by using up-sampling
to recover the image size. FCN does not include a full convolution network with a full
connection layer, but it can adapt to target input of any size. Its convolution layer can
refine the output results as much as possible, and FCN combined with the jump structure
of different depth layer results can also ensure robustness and accuracy. In order to achieve
collision-free automatic picking of guava, Lin et al. [12] used a Full Convolutional Network
(FCN) for the segmentation of guava color images, and the experimental results showed
that the average accuracy of the FCN model for the fruit class is 0.893, and the IOU is
0.806, which indicates that the model is able to be able to segment the guava fruits very
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well. Unlike Lin et al., in order to improve the accuracy and increase the efficiency of
the vision system of the picking robot, Liu et al. [88] combined deep learning algorithms
with machine vision and proposed a novel detection algorithm R-FCN combining region-
proposed network (RPN) and full convolutional neural network (FCN). The algorithm
utilizes FCN to convolve the input image to achieve pixel-level feature extraction and
uses RPN to generate multiple candidate frames on the feature map after the convolution
operation to effectively separate the foreground and background of the image. In the
identification test of apples and oranges, the detection accuracy of the algorithm reaches
97.66% and 96.50%, and the identification accuracy of large fruit bananas reaches 82.30%.

In addition to the above common network models, Li et al. [89] proposed a semantic
segmentation method based on Deeplabv3 to segment the fruit, branches, and background
in RGB images in order to adapt to the complex growth environment of litchi and detect
and locate the fruit branches of multiple litchi clusters. The experiment showed that the
extraction accuracy of the test set is 83.33%, and the mean intersection over union (MIOU)
is 79.46%, which has a good segmentation effect. Similarly, during the picking process of
litchi, in order to better detect the branches and avoid them from damaging the picking
robot, Peng et al. [90] used the DeepLabV3+ semantic segmentation model based on the
Xception_65 feature extraction network for target detection of litchi. The experimental
results showed that the model has an MIoU of 0.765, which is an improvement of 0.144 over
the original DeepLabV3+ model, as well as a stronger robustness. Likewise, for fruit
and branch segmentation of apples, Kang et al. [52] used the DASNet network model.
The f1 score and IoU of the model for fruit detection and segmentation accuracy were
0.871 and 0.862, respectively, according to the test results in the lab and in the orchard
setting, indicating that the model was able to precisely and successfully detect and segment
orchard apples.
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3. Intelligent Harvesting “Brain” System

The picking decision and control of fruit and vegetable picking robots are key to
ensuring the normal work and efficient picking of the robots. On the one hand, the design
of the picking strategy needs to carry out a picking feasibility analysis according to the
characteristics of the target fruits, maturity degree, growth environment, and other factors,
and combine the hardware facilities of the picking platform, such as robotic arm, end-
effector, sensor, to formulate a reasonable picking route and picking mode. On the other
hand, picking control needs to realize the accurate positioning of the robot and accurate
control of the motion of the manipulator, avoid damage to fruits and vegetables, ensure
the picking efficiency and speed, and combine the actual scene and picking strategy for
real-time adjustment and optimization. Therefore, reasonable picking strategy and accurate
picking control are necessary conditions to ensure the efficient and stable operation of fruit
and vegetable picking robots and are also one of the key technologies to realize agricultural
production automation.

The decision of picking time and the location of the target fruit are mainly completed
by the visual perception system, which is described in detail in Section 2. This section
mainly focuses on region division and task allocation, obstacle avoidance strategies, path
planning, and control methods.

3.1. Spatial Partitioning and Task Allocation

Based on the number of different robotic arms, we divide the region division and task
allocation strategy into single-arm harvesting and multi-arm harvesting. The different
strategies adopted by the researchers are shown in Table 5.

3.1.1. Single Mechanical Arm Harvesting

Single robotic arm picking is a common picking mode at present. It has high picking
flexibility, strong picking consistency and stability, and can be used with different end-
effectors to complete the picking of various fruits, vegetables, and flowers, which can better
adapt to diverse agricultural picking needs. In terms of the division of the working area of
a single robotic arm, Zhang et al. [49] divided the picking space into several vertical bar
subspaces according to the growth characteristics of tomatoes and screened out invalid
subspaces by calculating whether there was enough space volume between adjacent branch
obstacles to carry the string of tomatoes with claws. This method can effectively solve the
problem of a difficult return journey caused by volume increase after successful harvesting.

3.1.2. Multi-Mechanical Arm Harvesting

Compared with single-arm picking, multi-arm cooperative picking can effectively
shorten the picking time, improve the picking efficiency, and better adapt to the complex
and changing unstructured picking environment, more suitable for different types, differ-
ent shapes, and different sizes of crop picking, with stronger adaptability and flexibility.
Divided by working area, multi-robot cooperative picking can be categorized into two
picking strategies: regional independent and regional shared.

Regional independence: The region-independent strategy means that each robotic
arm is individually responsible for a completely independent picking region, that there
is no cross overlap between the sub-regions, and each robotic arm is only responsible for
picking the target fruits in each sub-region, and this kind of task allocation can avoid the
collision interference between multiple arms, and the requirements for the control system
are also relatively low. Xiong et al. [67] used a low-cost dual Cartesian robotic arm in their
preliminary study of strawberry picking, in which the two robotic arms had completely
independent working partitions during picking, and each sub-area was divided into left
and right half-areas, and the two arms started picking from the left half-area or the right
half-area at the same time according to the density of the target strawberries, which ensured
that there was a sufficient safety distance between the arms and avoided possible collisions.
In the next study, Xiong et al. [91] put a new type of U-shaped arch-picking robot into
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the application; two three-degree-of-freedom robotic arms with non-contact fixtures were
installed on both sides of the arch, which were responsible for picking strawberries in
the left and right regions, respectively, which was a more complete independent region
division, completely solving the problem of collision between multiple arms and at the
same time, could effectively reduce the complexity of the control system.

Table 5. Space planning and task allocation of harvesting robots.

Applied
Crops

Classification
Type

Mechanical
Arm Feature Sketch Map Ref.

Tomato - Single
Sieve out invalid subspace, solve

the problem of difficult return,
improve work efficiency
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Regional sharing: The region-shared strategy means that multiple robotic arms are
jointly responsible for a large picking area, which is divided into several small sub-areas,
with shared overlap between the sub-areas; each robotic arm works independently in the
sub-area it is responsible for, and neighboring robotic arms collaborate with each other in
the shared area. Under this strategy, each robotic arm collaborates with each other, which
can effectively avoid the occurrence of repeated picking and missed picking.

In a dwarfed and densely planted environment, Li et al. [51] used a four-armed robot
for the collaborative picking of target apples and planned work partitions for each robotic
arm. In addition to the exclusive picking area of the four robotic arms, there are four
overlapping picking areas between each neighboring robotic arm. However, to reduce the
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amount of computation and control difficulty, at most one robotic arm is allowed to enter
the overlapping picking area at the same time, and the whole picking task is categorized as
an asynchronous overlapped multiple traveling salesman problem, which can effectively
shorten the traversal time. In contrast, to solve the eggplant picking problem in an occluded
environment, Sepulveda et al. [65] designed a dual-arm cooperative picking robot. This
picking platform can not only simultaneously pick target fruits within the respective
working range of the two arms but also pick occluded targets by cooperative operation in
the shared area of the two arms. Experiments showed that its average harvesting success
rate is as high as 91.67%.

3.2. Obstacle Avoidance Strategies
3.2.1. Passive Obstacle Avoidance Strategies

Passive obstacle avoidance is the most common and widely used obstacle avoidance
strategy. It mainly refers to taking some passive measures to avoid collision or conflict
when planning the path, considering the obstacles that the robot or unmanned aerial vehicle
may encounter when performing the task. It is mainly realized in the path-planning stage
by modeling the surrounding environment and adding real-time obstacle avoidance factors
to obtain a smooth route without collision.

Considering the obstacle avoidance problem after tomato bunch picking, Zhang et al. [49]
proposed a real-time motion path-planning algorithm (OPS) based on spatial segmentation.
This method can plan an effective picking subspace for the robotic arm in advance based
on the position information of the environment and tomato bunches and to avoid exploring
the path in the invalid subspace. In addition, the OPS algorithm can adjust the end attitude
of the robotic arm in real time, according to the relative position between the obstacle and
the robotic arm, to realize obstacle avoidance. Experiments showed that the picking time of
a single bunch of tomatoes by this method is 12.51 s, and the picking success rate is close
to 100%.

3.2.2. Active Obstacle Avoidance Strategies

In the actual picking process, especially in complex unstructured environments, dense
foliage or compact fruit distribution will make the passive obstacle avoidance “bypassing”
strategy fail and then will need some more complex active strategies to solve this problem.
Unlike passive obstacle avoidance, active obstacle avoidance can be used to “push away”
obstacles through a series of complex sequential movements or multi-arm coordination,
which is more suitable for target picking under dense shade. To solve the problem of
eggplant picking in an occluded environment, Sepulveda et al. [65] used a strategy of
pushing away obstacles with one arm and picking with the other arm in their dual-arm
picking robot. Experiments showed that the robot had a high success rate of 81.25% in
pushing away from obstacles, which is an effective active obstacle avoidance strategy. In
addition, regarding obstacle avoidance techniques for strawberry picking in structured
growing environments, Xiong et al. [56,67,91] performed extensive research. In their
previous work, to determine the number and location of obstacles around the target,
Xiong et al. [67] set up a simpler region of interest (ROI) around the target strawberries.
This region divides the obstacles into two layers, top and bottom, with six sub-parts in each
layer, which is combined with a simple linear operation to push away the possible obstacles
at the top and bottom of the target (as shown in Figure 6a). However, for long-stalked
strawberries such as “Murano”, a single linear push would be ineffective when there are
multiple neighboring obstacles around the target, so Xiong et al. [91] added zigzag pushes
in the upward and horizontal directions to the original linear push strategy. In addition,
a handheld drag operation (in-hand drag) that can avoid accidentally swallowing the
upper obstacle is proposed, and a more complex four-layer structure ROI is set around the
target (as shown in Figure 6b), which can better solve the obstacle avoidance problem in
complex environments. However, it is not reasonable to measure the presence and number
of obstacles by the sub-blocks with point cloud information in the region of interest; for this
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reason, the research team redefined the layout of the ROI area [56] and used the push–drag
maneuvers to accurately separate obstacles based on their exact location (as shown in
Figure 6c). In addition, to obtain the information of the obstacles after dragging in time, the
middle and top layers use continuous “look and move” for real-time sensing and determine
a new round of push–drag operation. The experiments showed that under the premise of
constant picking speed, the cluster picking success rate of the improved method reaches
62.4%, which is 36.8% higher than the previous one.
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3.3. Path-Planning Techniques
3.3.1. Classic Path-Planning Algorithms

The task area needs to be modeled before the path is planned out, and the various
obstacle information in the task area is obtained through modeling, and the optimal path
for the whole area is planned on this basis. Classical path-planning algorithms include
global path-planning algorithms and local path-planning algorithms, and common global
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planning algorithms include Dijkstra’s algorithm, A* algorithm, RRT algorithm, and so
on. Since global path planning needs to consider more factors, such as obstacles, work
area size, time, etc., it is time-consuming and not easy to cope with the dynamically
changing environment. So Sarabu et al. [53] adopted an improved RRT-based algorithm,
RRT-Connect, for apple-picking path planning in complex environments. Preliminary
experiments showed that this method achieves good results without complex optimization.
Moreover, in the apple-picking process, Kang et al. [52] used the Octrees algorithm to
preprocess and model the surrounding environment and searched the optimal path through
eight subspaces for picking. Compared with other methods, Octrees is more advantageous
in terms of storage efficiency.

3.3.2. Machine Learning-Based Path-Planning Algorithms

Although dynamic path planning in classical path planning can achieve real-time
adjustment of the picking path according to the surrounding environment, it can only
avoid individual obstacles and cannot achieve global optimization, while machine learning-
based path planning can effectively solve this drawback. The machine learning-based
path-planning method applies shallow neural networks or decision trees and other models
to path planning; this method requires a large amount of data input and training through
the learning of historical data and can be based on the prediction of the results to determine
the next action, for complex environments and tasks can achieve good results.

In order to push away the occluded fruits and reach the specified location to pick
the target strawberry successfully in a dense planting environment, Mghames et al. [92]
proposed a path-planning algorithm known as Interactive Probabilistic Motion Proto-
Principle (I-ProMP) and experimentally verified the starting validity, which is well-suited
to be used for solving the problem of obstacle avoidance and path planning in the three-
dimensional space, and the computation time is very short, which is about 100 ms.

3.3.3. Deep Learning-Based Path-Planning Algorithms

Through deeper neural networks, deep learning-based path planning can learn and
forecast the best routes, which is capable of handling more complex environments and
tasks, as well as being adaptive and efficient compared to machine learning. Common
fruit and vegetable recognition and path-planning methods generally suffer from poor
recognition robustness and difficulty in generating collision-free picking paths in dense and
complex environments; for this reason, Ning et al. [47] proposed an algorithm for sweet
pepper recognition and picking sequence planning—AYDY algorithm, which combines the
improved YOLOV4 detection algorithm, an improved DPC algorithm with an anti-collision
picking sequence method that introduces a winner-takes-all strategy. The experimental
results showed that the AYDY algorithm can effectively shorten the traversal path and
picking time and enhance robustness, and the collision-free harvesting success rate is as
high as 90.04% compared with the traditional sequential and random traversal algorithms.
Similarly, Yang et al. [75] utilized an integrated system developed based on a Masked
Region Convolutional Neural Network (Mask R-CNN) and Branch Segment Merging
algorithm, which can efficiently plan reasonable collision-free harvesting paths for the
harvesting robots while detecting citrus and tree branches.

3.3.4. Optimization Algorithm-Based Path-Planning Strategies

The path-planning method based on an optimization algorithm is a kind of optimiza-
tion algorithm to find an optimal path that satisfies the constraints under the conditions of
a given starting point and end point. This method usually transforms the path-planning
problem into an optimization problem and obtains the optimal path by finding the optimal
solution in multiple aspects, such as time, energy consumption, and pulsation.

Sepulveda et al. [65] adopted a stochastic trajectory optimization algorithm (STOMP)
to deal with the path-planning problem in the picking process in the design of the two-
armed eggplant picking platform, which generates an optimal picking path based on the
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workspace, the position of the fruits, and the configuration of the arms and determines
the sequence of motions required to grasp and separate the eggplants. This algorithm
performs a global search while avoiding the problem that traditional algorithms need to
traverse the entire search space by random sampling, which greatly reduces the computa-
tional complexity. Similarly, to improve the operational efficiency of a multi-mechanical
arm of a collaborative picking robot in a dwarf-dense planting environment, Li et al. [51]
generalized the multi-mechanical arm-picking problem with overlapped domains into an
asynchronous overlapped multiple traveling salesman problem and solved it optimally,
based on genetic algorithm. Experiments showed that the task-planning method based
on a genetic algorithm reduces the job traversal time dramatically relative to the random
traversal method and the sequential planning method and effectively improves the oper-
ational efficiency under the premise of ensuring that each robotic arm does not conflict.
In addition, to address the drawbacks of traditional path-planning algorithms that are
time-consuming, as well as to solve the problem of low picking success rate caused by the
collision between robotic arms and branches in unstructured environments, Ye et al. [62]
obtained collision-free picking poses during litchi picking by an improved adaptive weight
particle swarm optimization (APSO) algorithm and used an optimization algorithm based
on the Bi-RRT algorithm (AtBi-RRT) to quickly determine the appropriate collision-free
picking path. Simulation results showed that the average computation time of the At
Bi-RRT algorithm is 3.71 s shorter than the TRRT algorithm.

In the past decades, many teams have focused on visual perception and path planning
but neglected the research on motion planning; yet, stable motion planning is crucial for the
realization of efficient and lossless picking. In order to achieve stable, efficient, and lossless
harvesting of apples, Cao et al. [93] proposed an improved multi-objective particle swarm
optimization algorithm (GMOPSO). The algorithm combines the methods of variation
operator, annealing factor, and feedback mechanism to optimize the motion trajectory in
terms of time, energy consumption, and pulsation so as to accelerate the convergence speed
while satisfying the stable motion and avoiding the local optimal solution, and finally
realize the optimal trajectory of the robotic arm. Tests showed that the picking platform
optimized by the GMOPSO algorithm can effectively achieve stable, efficient, and lossless
picking, and its average picking time is 25.5 s, with a success rate of 96.67%.

In addition to the above four common path-planning methods, there are some other
path-planning and trajectory optimization methods. For example, in the greenhouse
cucumber picking process, Chen et al. [94] used an improved prediction point Hough
transform to quickly and accurately fit the path of a cucumber picking robot to obtain
a smoother and easier-to-handle path. Aiming at the shortcomings of the traditional
Hough transform in terms of large traversal angle range, wide intersection detection range,
and being time-consuming, this method makes relevant improvements in three aspects:
traversal angle range; intersection detection range; and fitting accuracy. Experiments
showed that this method is more time-saving than the traditional Hough transform while
having higher accuracy and better robustness. For another example, Colucci et al. [95]
proposed a simplified motion planning algorithm based on motion decoupling for precise
agricultural applications, which can simplify the complex motion planning problem into
a series of simple sub-problems, significantly reduce the computational cost and, thus,
improve the efficiency and accuracy of motion planning.

3.4. Control Methods

In this section, we divide control methods into two categories for description: tradi-
tional control methods (classical and modern control); and intelligent control methods. The
comparison of the advantages and disadvantages of specific control strategies is shown in
Table 6.
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Table 6. Comparison of the characteristics of different control methods.

Control Type Control
Method

Applied
Crops

Mechanical
Arm Advantages Disadvantages Ref.

Classic
Control

PID

Strawberry Single

Simple to implement
Easy to adapt

Fast response time
Good stability

Sensitive to noise
Difficult to adjust

parameters
Unable to handle non-linear

systems
Unable to handle

time-varying systems

[71]

Eggplant Double

[65]

Modern
Control

NMPC - Double

Wide applicability
Robustness

Optimizable for multiple
objectives

Can handle constraints

Large calculation volume
Difficult to adjust

parameters
High impact of model error

Poor stability

[96]

Impedance
Control Apple Single

Wide adaptability
High robustness

High control accuracy
Flexible interaction possible

Large calculation volume
Difficult parameter

adjustment
High requirements

for sensors
Not very stable

[97]

SMC Famous Tea Single Robust
Rapid response

High-frequency oscillation
Complexity of

nonlinear design
[56]

Intelligent
Control

Fuzzy
Control Wolfberry -

Robustness
Wide adaptability

Adjustable control effects
Flexible knowledge

representation

Large calculation volume
Difficult parameter

adjustment
Unstable control effect

[33]

Fuzzy PID
Control Wool -

Robust
Flexible fuzzy rules

Easy operation

Computationally complex
Poor interpretability

Difficulty in choosing
parameters

[98]

3.4.1. Classical and Modern Control Methods

Traditional control methods refer to control methods based on mathematical models
and control theories, specifically PID control, state feedback control, optimal control, and so
on. These methods are normally based on accurate mathematical models through modeling
and analysis of the system and designing controllers to achieve stable control of the system.
They are characterized by good stability and controllability.

Among them, PID control is a common classical control method that can calculate
the error of the robot by measuring parameters such as position, speed, and acceleration
of the robot and adjusting the control parameters of the robot according to the error so
that it can better control the motion trajectory and posture. Sepulveda et al. [65] used a
PID controller to receive the trajectory points generated by the STOMP planning algorithm
containing information and provided motion execution commands to the picking robot.
This information includes the positions, velocities, and accelerations of all the joints of both
arms, as well as the start point of the next trajectory path. In addition, Xiong et al. [71]
used PID control in an earlier study of a strawberry-picking robot and combined it with
information obtained from a vision system to move the arm to the optimal cutting position.

In addition, nonlinear model predictive control (NMPC) belongs to a kind of optimal
control in modern control. It is an advanced control strategy that uses a nonlinear model to
describe the system and predict the future behavior of the system and computes a series of
control inputs so that the system achieves optimal control under certain constraints. NMPC
is usually a better choice in some control problems that require higher accuracy. In order
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to better solve the picking problem of a multi-arm robot in an orchard, Flécher et al. [96]
proposed a VPC strategy combining NMPC and IBVS (Image-Based Visual Servoing),
by which different end-effectors are controlled to approach the specified target fruits.
Simulation experiments showed that the control strategy can enable the multi-arm robot to
perform multiple tasks effectively in a shared space.

Impedance control, which also belongs to modern control, is a control method based
on the relationship between force and position, which can realize the control of force and
position of the robots when interacting with the environment. In the apple harvesting
process, to reduce the damage to apples by the picking robots, Ji et al. [97] proposed an
adaptive impedance control method based on impedance control, which can adaptively
adjust the impedance parameters to adapt to different environments and tasks, so that the
end-effector can grasp apples quickly, stably, and with a low overshoot even when the
environmental stiffness and position are not clear.

Sliding mode control (SMC) is a nonlinear control technique; its main idea is to
introduce a specific switching function on a sliding surface so that the system state slides
rapidly on this sliding surface and remains on it, which helps realize the robust control and
anti-disturbance ability of the system. On the automatic picking platform of famous and
high-quality tea, Zhou et al. [56] designed and optimized the control strategy of robotic
arm picking based on sliding mode control, which effectively suppressed the vibration
phenomenon of the sliding mode surface during rapid convergence. In the testing process,
it also showed a high picking success rate and integrity rate.

3.4.2. Intelligent Control Methods

Intelligent control methods are control methods based on artificial intelligence tech-
niques, such as fuzzy control, neural network control, and genetic algorithm control. These
methods are usually based on a data-driven approach, where the controller is designed to
realize the intelligent control of the system by learning and analyzing the data of the system.
Compared with traditional control methods, intelligent control methods are characterized
by high adaptability and good robustness.

Fuzzy control is a control method based on fuzzy logic, which realizes control by
establishing a fuzzy rule base and a fuzzy inference mechanism and is able to deal with
the fuzzy or uncertainty problems of the system with strong adaptability and robustness.
Therefore, to solve the problem of accurate navigation in the unstructured Goji berries
environment, Ma et al. [33] used the fuzzy control method to control the navigation of a
Goji berry-picking robots, and the experimental results showed that this method could
effectively reduce the influence of environmental variables on the picking platform and
improve the robustness of the control system. In order to better study the influence of
various factors on the effect of cotton picking, Wang et al. [98] developed a cotton-picking
measurement and control system, which is a fuzzy PID control system that integrates
classical PID control with fuzzy control. This system can realize the continuous adjustability
of cotton-picking speed, conveyor belt speed, and fan speed, and its research results can
provide support for the optimization of the picking mechanism.

4. Intelligent Picking “Hand” System

Harvesting robots typically employ end-effectors to accomplish the task of harvesting.
The end-effector serves as a crucial component of harvesting robots responsible for execut-
ing specific tasks, for instance, tasks such as picking, transporting, or assembling. In the
context of harvesting robots, the principal function of the end-effectors is to facilitate the
efficacious picking of crops while concurrently preserving the integrity of the plants. In
terms of end-effectors in harvesting robots, commonly employed types include negative-
pressure adsorption, shearing-style, cavity-retrieval, and flexible grasping mechanisms.
This section will provide an in-depth discussion of these diverse types of end-effectors.
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4.1. End-Effector Modes of Operation

The modes of operation for end-effectors in agricultural harvesting robots typically
encompass four methods: negative-pressure adsorption; shearing; cavity retrieval; and
flexible grasping. Negative-pressure adsorption end-effectors, as depicted in Figure 7a,
principally utilize the principle of negative pressure adsorption to adhere the crops onto the
robot’s end-effector, after which they are harvested via the robotic arm or other components.
Shearing end-effectors, as illustrated in Figure 7b, predominantly employ a clamping
method akin to scissors, severing the crops from their branches or stems. Cavity retrieval
end-effectors, as demonstrated in Figure 7c, function by extending the cavity retrieval
device into the crop, using the robotic arm and leveraging the air pressure difference to
secure the crop within the cavity, followed by its extraction. Flexible grasping end-effectors,
as portrayed in Figure 7d, leverage the properties of flexible materials, enabling the robotic
arm to drive the grasper in securing the crop, thereby accomplishing the harvesting task. Its
advantage lies in its suitability for fruits and vegetables of various shapes and sizes, with the
capability of adopting different grasper shapes and sizes for different crops. The following
sections will provide detailed insights into the research developments and applications of
these four distinct types of end-effectors.
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4.1.1. Negative-Pressure Adsorption End-Effectors

Negative-pressure adsorption end-effectors in agricultural harvesting robots represent
a type of end-effector that utilizes negative-pressure adsorption forces during the picking
of fruits and vegetables. This end-effector is typically comprised of a suction cup and a
negative-pressure system. Such technology necessitates varying designs according to dif-
ferent crop shapes and sizes to ensure sufficient contact with the crop surface and generate
ample adsorption force for secure harvesting. Relative to traditional mechanical claws and
arms, this end-effector offers superior flexibility and precision, better accommodating crops
of diverse shapes and sizes while simultaneously minimizing crop damage.

Over the past few years, significant advancements have been realized in the technol-
ogy of negative-pressure adsorption end-effectors. Presently, this technology has found
applicability in the harvesting of fruits and vegetables with relatively regular shapes, such
as apples and tomatoes. A team led by Wang et al. [10] investigated a gripper composed
of a flexible silicone funnel, as illustrated in Table 7 (a), which employs vacuum suction
for apple harvesting. Through multiple prototype testing, the team designed an optimal
funnel shape, considering parameters such as edge thickness, funnel angle, and size while
striking a balance between flexibility and robustness. Experimental outcomes revealed
that even prolonged exposure of the apple to relatively low vacuum levels did not inflict
any damage. Pertaining to the pneumatic harvesting of apples, there are also techniques
such as those exemplified in Table 7 (b), a vacuum mechanism robot for apple picking from
Abundant Robotics (Hayward, CA, USA). It is a single-suction-cup end-effector capable of
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autonomous recognition and location of apples, accomplishing harvesting tasks through
negative pressure adsorption. This robotic system demonstrated low damage rates and
high harvesting precision in experimental trials [99]. As depicted in Table 7 (c), the harvest-
ing gripper design consists of three components: adsorption, clamping, and twisting for the
fruit. Upon the gripper’s movement to the targeted location, it encapsulates the entire fruit
within a sleeve. The rapid inflation of an airbag tightly clamps onto the surface of the fruit.
Subsequently, the rotation of the sleeve enables the disengagement of the tomato fruit from
its stem, thus culminating in the successful harvesting of the fruit. Nevertheless, challenges
still exist for the negative-pressure adsorption end-effectors when it comes to harvesting
crops with irregular shapes and soft textures. Variations in surface texture, size, and shape
of such fruits and vegetables can affect the performance of the adsorption force. Relevant
studies have indicated that negative-pressure adsorption end-effectors can be utilized not
only for the harvesting of firm-textured and relatively regular crops, such as apples and
tomatoes but also for delicate flowers, such as Hangzhou white chrysanthemums. As
demonstrated in Table 7 (d), Yang et al. [44] specifically designed a unique end-effector
with a special structure to avoid damage during the harvesting process of Hangzhou white
chrysanthemums. This end-effector is equipped with an airbag device at its tip, allowing for
the clamping of the chrysanthemum flowers through the inflation of the airbag. The utiliza-
tion of a segmentation algorithm in conjunction with the end-effector featuring the airbag
device effectively ensures the successful harvesting of Hangzhou white chrysanthemums.

In conclusion, considerable progress has been achieved both in research and practical
application of the vacuum adsorption end-effector technology in agricultural harvest-
ing robots. Beyond its application in agricultural harvesting, the vacuum adsorption
end-effector has potential uses in other sectors, such as part handling and assembly in
manufacturing industries. Ultimately, the vacuum adsorption end-effectors in agricultural
harvesting robots will continue to evolve and improve in terms of automation, intelligence,
multifunctionality, sustainability, and industrial promotion, thereby fostering significant
transformation and progress in agricultural production. Therefore, further research and
improvements can lead to broader applications and commercialization.

4.1.2. Shearing-Style End-Effectors

Shear-style end-effectors in agricultural harvesting robots are a prevalent type of
end-effector, primarily utilized to sever the peduncles of fruits, thereby accomplishing the
harvesting task. The following is a detailed overview and current development status of
shear-style end-effectors in agricultural harvesting robots.
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Xiong et al. [71] have dedicated their research to the development of a strawberry
harvesting robot. After years of research and successive iterations, A novel strawberry
harvesting robot has been developed in this study. This robot is comprised of a newly
designed gripper mounted on an industrial arm, which, in turn, is mounted on a mobile
base along with an RGB-D camera. The novel cable-driven gripper can open fingers to
“swallow” a target. Since it is designed to target the fruit and not the stem, it only requires
the fruit location for picking. Moreover, equipped with internal sensors, the gripper can
sense and correct positional errors and is robust to the localization errors introduced by
the vision module. Another important feature of the gripper is the internal container that
is used to collect berries during picking. Since the manipulator does not need to go back
and forth between each berry and a separate box, picking time is reduced significantly. The
vision system uses color thresholding combined with a screening of the object area and the
depth range to select ripe and reachable strawberries, which is fast for processing. These
components are integrated into a complete system whose performance is analyzed, starting
with the four main failure cases of the vision system: undetected, duplicate detections,
inaccurate localization, and segmentation failure. The integration enables the robot to
harvest continuously by moving the platform with a joystick. Field experiments show that
the average cycle time of continuous single strawberry picking is 7.5 s and 10.6 s when
including all procedures. This strawberry-harvesting robot can be considered the most
advanced and intelligent strawberry-harvesting robot currently available in the agricultural
machinery field.

In the context of harvesting cluster fruits, such as litchi, Ye et al. [62] from the South
China Agricultural University developed a harvesting machine consisting primarily of
an end-effector equipped with a terminal gripper and a rotating blade disc. The robot,
during its harvesting operation, uses a collision-free motion planning algorithm, rendering
the harvesting process safer and more convenient. Similarly, for the harvesting of cluster
fruits, such as cherry tomatoes, Feng et al. [64] developed an end-effector akin to a pair of
scissors. As illustrated in Table 8 (c), it is designed based on the mechanical characteristics
of the stem, with dual cutting blades used for severing the stem. The handle, fixed to the
cutting blades, can close or open to grasp or release the stem, allowing for reliable cutting
and handling of the fruit and facilitating its separation from the plant. This design has
enhanced the precision of the harvesting end-effector, providing superior stability during
the harvesting process.

In the case of tomato harvesting, Oktarina et al. [63] from Indonesia have designed a
tomato-harvesting robot, as shown in Table 8 (d). This robot features a simple yet vivid
structure, with a scissor-style end-effector that is sharp and flexible. The harvesting process
is facilitated through the drive of a servo motor. In a similar context to tomato harvesting,
Jin et al. [61] developed an intelligent tomato harvesting robot system based on multimodal
deep feature analysis. The end-effector of this system comprises two mechanical fingers
and a three-degree-of-freedom mechanical cutter, utilizing digital servos for the rotation of
the joints of the mechanical arm and cutter. This setup enhances the precision requirements
of the mechanical arm and cutter, effectively addressing issues of labor shortages and high
costs encountered in the tomato harvesting process.

For grape harvesting, Liu et al. [101] designed a harvesting hand, as shown in
Table 8 (e), which represents a single-degree-of-freedom grasp-and-cut integrated end-
effector. The opening and closing of the two fingers are driven by a helical and symmetrical
oscillating linkage mechanism; one fingertip is composed of a floating clamp and blade.
Upon contact with the pedicel, the compressive force closes the floating clamp around the
pedicel while the blade continues to close, thus completing the cut. This type of end-effector
enables low-vibration and rapid operation to minimize fruit drop.
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For sweet pepper harvesting, Ning et al. [47] developed a shear-style end-effector with
a Robotic 2F-85 gripper as the terminal execution component of the robot harvesting system,
providing a clamping force of 20–235 N and a payload capacity of 5 kg. The harvesting of
sweet peppers is not confined to shear-style techniques; the following sections will also
introduce flexible grabbing-style end-effectors, among others.

In summary, shear-style end-effectors have been extensively implemented in agri-
cultural harvesting robots and have attracted growing attention from researchers. With
continual technological development and innovation, shear-style end-effectors are antici-
pated to play a more significant role in future agricultural harvesting robots, offering more
efficient and reliable solutions for automated agricultural production.

4.1.3. Cavity Retrieval End-Effectors

The cavity retrieval end-effector is another commonly used end-effector in agricultural
harvesting robots. It accomplishes the harvesting task through mechanical clamping and
encasing the crops. Its structure includes an external casing and an internal cavity, wherein
the gas pressure within the cavity is controlled by the casing to either grip or release the
crop. During the harvesting process, the cavity-insertion style end-effector needs to be
adjusted according to the weight and size of the fruit to ensure that it is securely fixed within
the cavity, thus preventing it from falling or being damaged during the harvesting process.

Cavity retrieval end-effectors are generally used for fruits with harder textures and
regular shapes, such as pineapples and apples. To realize automated pineapple harvesting,
Du et al. [45] designed a pineapple-harvesting gripper, as shown in Table 9 (a). It consists
of a gripping mechanism and a cutting mechanism that can sequentially and cleanly sever
the pineapple stem, thus minimizing damage to the stem. For the cavity-insertion style
harvesting of apples, Wei et al. [102] developed a spherical double-finger structure gripper,
as shown in Table 9 (c), which can effectively reduce fruit damage rates. Taking into account
the shape characteristics of apples, Miao et al. [103] designed an end-effector, as shown in
Table 9 (d), the advantage of which is that it does not damage the fruit during harvesting.
The cavity-insertion style is not only used for harvesting pineapples and apples but is also
suitable for harvesting softer fruits such as strawberries. The strawberry-harvesting robot
developed by Xiong et al. [67] opens the cavity during harvesting, then “swallows” the
fruit, and the blade severs the fruit stem, thus completing a cycle of strawberry harvesting.
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4.1.4. Flexible Gripping End-Effectors

Flexible harvesting end-effectors refer to terminal robotic arms that can mimic the
actions of human fingers and palms, characterized by their flexibility, malleability, and ease
of operation. The purpose of these effectors is to simulate human organs, such as fingers
and palms, enabling precise picking and handling operations for objects of various shapes
and sizes. They find wide-ranging applications in fields such as agriculture, manufacturing,
and healthcare.

Apples represent one of the most commonly encountered fruit types within the broad
spectrum of agricultural produce. Substantial scientific research and developmental efforts
have been directed toward enhancing flexible apple-picking methodologies. For instance,
Liu et al. [104] have devised a flexible gripper, as demonstrated in Figure 8a, which consists
of two curved, flexible fingers. This apparatus has been extensively refined and optimized,
enabling the harvesting not only of apples but also other fruits, such as pomegranates and
grapefruits. In order to further minimize apple damage during the harvesting process,
Pi et al. [105] were inspired by the physical properties of octopus tentacles to study and
develop a biomimetic three-fingered flexible gripper, depicted in Figure 8b. Figure 8c illus-
trates the pneumatic pinch structure of an end-effector developed by Hohimer et al. [106].
This tool is capable of performing apple-picking tasks with significant flexibility and
high precision.
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2019, Yung et al.; ref. [110], 2021, Zhang et al.; ref. [111], 2021, Habegger et al.; ref. [112], 2018,
Xiong et al.); (m,n) (https://www.tevel-tech.com/ (accessed on 27 June 2023)).

Furthering the field of flexible robotic technology, Yan et al. [86] developed a flexible
gripper mounted on a six-axis robotic arm for apple harvesting, as shown in Figure 8d,
which exhibits a high degree of flexibility. From an ergonomics perspective and based on
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the structural characteristics of the human body, Yu et al. [59] have engineered a three-
fingered gripper made from flexible materials, as illustrated in Figure 8e. This design
takes advantage of the widely recognized fin effect, where a fin bends toward the direction
of applied pressure and reverts to its original state once the pressure is relieved. Such
a claw-like structure is conducive to protecting apples from damage, thus achieving the
function of damage-free harvesting.

For the flexible harvesting of tomatoes, researchers around the globe have devoted
considerable effort toward the cause. As depicted in Figure 8f, Sepulveda et al. [65] have
developed an end-effector for harvesting that resembles the human hand, capable of swiftly
and accurately picking tomatoes. Vu et al. [107]., on the other hand, have designed a four-
fingered mechanical hand module equipped with an internal vacuum system, as shown
in Figure 8g. This innovative vacuum claw module enhances the reliability and safety of
fruit-picking operations. Yu et al. [50] have developed a flexible claw endowed with a
thin film pressure sensor constructed of rubber via injection molding. This three-fingered
device, driven by 42 stepping motors, delivers precise grip capabilities. As displayed in
Figure 8h, Chen et al. [108] have designed an end-effector for a tomato-harvesting robot
based on pneumatic damage-free clamping. This tool effectively reduces the damage rate
during picking, thus achieving damage-free harvesting. Figure 8i shows an end-effector
designed by Yung et al. [109] for harvesting tomato seedlings. This flexible harvesting tool
boasts rapid collection speeds, further enhancing the efficiency of tomato harvesting.

Flexible grippers have also been employed in the harvesting of other fruits. For in-
stance, as shown in Figure 8j, Zhang et al. [110] have investigated a robotic end-effector
equipped with adaptive grasping and tactile sensors. This end-effector, using flexible
fingers and integrated force and bend sensors, can measure the distribution of contact
forces on the contact surface and the deformation of the fingers, enabling adaptive grasping
of various spherical fruits. In Figure 8k, Habegger et al. [111] have designed a flexible
end-effector specifically for sweet pepper harvesting composed of four fin-ray grippers.
This mechanism ensures that no damage is inflicted upon the peppers during the har-
vesting process. As depicted in Figure 8l, a strawberry-harvesting robot developed by
Preter et al. [112] features an end-effector consisting of two flexible two-fingered struc-
tures resembling a palm, greatly reducing damage to strawberries during the picking
process. Figure 8m illustrates a tomato-harvesting robot whose end-effector is made of
flexible materials, enabling damage-free harvesting. In Figure 8n, the Israel-based company
Tevel Aerobotics has invented a fruit-picking drone that employs a simple and convenient
end-effector structure suitable for picking a variety of fruits, including apples, nectarines,
and plums.

In general, flexible end-effectors for harvesting exhibit high precision, strong flexibility,
and easy operability, serving as vital tools for enhancing the efficiency of mechanized pick-
ing and handling tasks. The literature review above demonstrates that flexible gripper-style
end-effectors have gained extensive application within the realm of agricultural harvesting
robots, showing good adaptability and efficiency across diverse crop harvesting tasks.

End-effectors of agricultural harvesting robots are crucial components of agricultural
robotic systems, with their performance and functionality directly influencing harvesting
efficiency and quality. By leveraging ergonomic principles, these end-effectors can be
optimized in terms of design and control to achieve more efficient, precise, and safe
harvesting operations. The School of Mechanical and Electronic Engineering at Northwest
A&F University has conducted extensive research and experimentation in this area, yielding
a series of experimental conclusions [59,113–116].

Regarding flexible materials, they are essential components of flexible grippers. Com-
mon flexible materials currently used include elastomers, silicone, polyurethane, and
airbags. These materials possess excellent flexibility and adaptability, enabling them to
grasp objects of various shapes and sizes. When designing flexible grippers, it is necessary
to consider the material’s strength, durability, and elasticity to meet the requirements of
harvesting operations.
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Additionally, the grasping angle and gripper size are significant factors influencing the
performance of end-effectors in agricultural harvesting robots. The grasping angle refers
to the angle between the end-effector and the object during grasping. Different fruits and
crops have varying horticultural characteristics, thus requiring different optimal grasping
angles. Hence, it is crucial to determine the optimal grasping angle through research and
analysis of crop characteristics. The gripper size should be designed based on the size
and shape of different crops to ensure the end-effector can adapt to grasping fruits and
crops of varying sizes and shapes. Harvesting modes also play a significant role in the
performance of end-effectors in agricultural harvesting robots. Common harvesting modes
include rotation, stretching, and combined rotation and stretching. Different harvesting
modes are suitable for different fruits and crops. For example, rotational harvesting is
suitable for smaller crops, while stretching is appropriate for larger fruits.

In summary, the design and control of end-effectors in agricultural harvesting robots
necessitate considering multiple factors, including flexible materials, grasping angles,
gripper sizes, and harvesting modes. In the future, advancements in materials, sensors,
and control technologies can further enhance the performance and intelligence level of
end-effectors in agricultural harvesting robots to meet the harvesting requirements of
various fruits and crops, thus promoting the development and application of agricultural
robotics technology.

4.2. Overview of Harvesting Effect Evaluation Indicators

Evaluating the harvesting performance of agricultural robots is of utmost importance
as it directly reflects the efficiency and quality of harvesting, thereby influencing the
profitability of agricultural production. This section provides an overview of common
metrics used for evaluating harvesting performance (as shown in Table 10).

Recognition Rate: The recognition rate refers to the speed at which agricultural robots
can identify fruits or vegetables during harvesting operations. Specifically, it measures the
ratio between the number of images processed and recognized by the robot during visual
recognition and the corresponding processing time. Generally, a higher recognition rate
enables the robot to complete harvesting tasks more quickly, thereby improving harvesting
efficiency. Indicators for the recognition rate include the number of images recognized per
second, the number of items recognized per second, and the amount of data processed
per second.

Harvesting Rate: The harvesting rate is a vital metric for assessing the efficiency of
harvesting robots. It is closely related to the technical parameters of the harvesting robot,
the complexity of the harvesting site, and the growth conditions of the crops.

Harvesting Quality: Harvesting quality is another important metric for evaluating the
harvesting performance of robots. It encompasses indicators such as harvesting accuracy,
damage rate, fruit drop rate, and average harvesting time. Harvesting accuracy refers
to the consistency of the size, shape, color, and ripeness of the harvested fruits with
predetermined standards, while the damage rate reflects the level of fruit damage during
the harvesting process.

Harvesting Cost: Harvesting cost is one of the indicators used to measure the economic
viability of harvesting robots. It includes factors such as equipment acquisition costs,
maintenance and upkeep costs, and energy consumption costs.

Adaptability: Adaptability is a crucial metric for assessing the ability of harvesting
robots to adapt to various crops and different harvesting environments. This includes
aspects such as the flexibility, stability, and safety of the harvesting robot.

In conclusion, the evaluation metrics for harvesting performance serve as key indi-
cators for assessing harvesting robots. In practical applications, it is necessary to select
appropriate evaluation metrics based on specific harvesting tasks and requirements, thereby
enabling a scientific and rational assessment and optimization process.
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Table 10. Comparison of end-effector indicators for different fruits.

Fruit Gripper Category Recognition
Rate

Recognition
Accuracy

Average Picking
Time

Picking
Success Rate Ref. Year

Apples

flexible grasping

- 82.5% 14.6 s 72% [59] 2021
0.012 s - - 100% [105] 2021

- - 25.5 s 96.67% [93] 2021
- - 7.3 s 67% [106] 2019

shearing-style 0.015 s - - - [86] 2021
- 0.181 s 89% - - [55] 2020
- 0.235 s 87.1% 7 s - [52] 2020

Tomatoes

shearing-style
- 92.8% - 73.04% [54] 2021
- - 9.676 s - [63] 2019

0.021 s 94% - 100% [117] 2020

- 0.096 s - - 91.9% [118] 2018
- 91.92% - - [81] 2020

flexible grasping 0.016 s - 8 s - [113] 2021

- - 98% - - [110] 2021
- 89% - - [119] 2020

Strawberries

cavity retrieval 0.136 s - 6.1 s 97.1% [67] 2019
- - 10.6 s 96.8% [71] 2019

flexible grasping
0.086 s 93.1% 4 s - [112] 2018

- - 9.05 s 96.8% [73] 2021
0.049 s - 10.62 s 96.77% [120] 2018

- - 86.58% - - [83] 2022
0.062 s 95.78% - - [74]- 2019

shearing-style - 94.43% - 84.35% [79] 2020
- - 10.7 s 84% [66] 2019

Sweet
papers

shearing-style - 91.84% - 90.04% [47] 2020

- - 96.91% - - [84] 2021
1.41 s 86.4% - - [46] 2020

Litchi fruits
shearing-style 0.154 s 93.5% - - [121] 2021

0.464 s 83.33% - - [89] 2020
- - 96.78% - - [77] 2020

Cherry
tomatoes

flexible grasping - - 6.4 s 84% [41] 2022

shearing-style - - 8 s 83% [64] 2018
- - 12.51 s 99.81% [49] 2021

5. Challenges and Prospects

Agricultural fruit and vegetable-harvesting robots represent one of the rapidly evolv-
ing domains in recent years, offering vast potential and opportunities for agricultural
production. However, with the continuous development of agricultural harvesting robots,
a series of challenges and problems that need to be addressed have also emerged. Following
are the six challenges and six prospects identified in this article concerning agricultural
fruit and vegetable harvesting robots.

5.1. Challenges
5.1.1. Multi-Species, Multi-Form Fruit, and Vegetable Picking Is More Difficult

Due to the wide variety of crops, the size, shape, hardness, and other physical charac-
teristics of different kinds of fruit are often very different, so it is difficult to design a robot
that can adapt to the needs of multiple kinds of fruit picking at the same time. Generally,
one kind of picking robot can only pick one specific kind of fruit, while other types of fruits
and vegetables can only be significantly modified or redesigned, which will waste a lot of
time and resources for researchers.
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5.1.2. Difficulty in Picking in Complex Environment

Even when picking the same variety of fruit, the operating environment of the robot
in different orchards is also complex and changeable. First of all, most picking robots
are designed based on the structured or semi-structured picking environment, and in the
actual operation process, different orchard structures are different, which may have a
certain impact on the working effect of the picking robot. Secondly, weather conditions
can also have an impact on the operation of robots, such as excessive wind power that
may affect the stability, safety, and harvesting efficiency of robots. Therefore, fruit and
vegetable-picking robots need to face the challenges of adapting and operating in different
operating environments.

5.1.3. High Real-Time Requirements

The fruit and vegetable-picking robot operates in a real-time environment, requiring
rapid recognition, positioning, and grasping of targets. At the same time, it needs to
dynamically adjust control parameters during the movement process to maintain a stable
motion trajectory, so its real-time requirements are very high. In different harvesting
environments, robots also need to handle a variety of complex situations in real time,
such as avoiding obstacles and adapting to various light conditions to ensure the efficient
completion of harvesting tasks. Therefore, real-time performance represents a significant
challenge for fruit and vegetable-harvesting robots.

5.1.4. Few Research on Walking Platforms and Navigation

At present, the research on fruit and vegetable-picking robots mainly focuses on
visual systems, mechanical arms, terminal actuators, and picking-path planning, while
the research on walking platforms and their navigation algorithms in the environment is
less frequent. Of course, such studies have limited impact on picking robots operating in
a structured environment, and some of the robots moving through slides rarely require
navigation. However, under a semi-structural or unstructured working environment, the
stability, driving speed, power, and other performances of the picking platform will have
a great impact on the picking accuracy, harvesting efficiency, and even the fruit quality
in the collecting device. The navigation and route planning of the walking platform in
the orchard environment will have a great impact on the working efficiency of long-time
picking. These are the questions we need to consider in the future.

5.1.5. The Working Height of Picking Robot Is Generally Limited

The existing harvesting robots are mainly designed based on ground mobile platforms,
but the structural design of ground harvesting robots is generally fixed, and they usually
have limitations in height and size. These limitations determine that the main target of
ground-picking robots is some low-fruit trees, which are not suitable for picking higher-
fruit trees. Even though some researchers have raised the picking height of the robot to
some extent by using a liftable platform, the lifting is very limited, considering the power
and balance problems. In this case, how to complete the picking of higher fruit trees has
become an urgent problem.

5.1.6. High Costs

Currently, the research, development, and production costs of fruit and vegetable
harvesting robots are high, which restricts their large-scale deployment in agricultural
production. The costs of fruit and vegetable harvesting robots mainly comprise the costs of
robot production research and development, maintenance, and labor, among others. At
present, most fruit and vegetable harvesting robots necessitate substantial research and
development and material costs, along with regular maintenance, which escalates the cost
of robot usage. Hence, ensuring the efficiency and quality of robotic harvesting while
reducing its costs is a significant issue that needs to be addressed in future research and
development of fruit and vegetable harvesting robots.
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5.2. Prospects
5.2.1. Modular Harvesting Robot

In the face of the difficulty of picking fruits and vegetables with multiple varieties and
forms, in addition to using adjustable grippers or flexible end-effectors, modular design
can also be used to solve the problem. By implementing modular design to achieve product
versatility, this has been successfully applied and achieved good results in multiple types of
military or civilian products. In the future field of harvesting robots, in addition to modular
end-effectors, modular walking platforms, and even modular robotic arms and sensing
systems should be widely developed. Through modular design, researchers can not only
flexibly match various components based on the characteristics of the target fruit and the
picking environment but also promote the standardization of picking robots while reducing
costs. This will effectively promote the further promotion and application of intelligent
picking robots.

5.2.2. Sensor Fusion and Algorithm Optimization

In the face of complex and ever-changing operating environments and high real-time
requirements for harvesting, multiple strategies can be adopted to solve the problem. The
sensing ability of picking robots can be improved by adopting the strategy of multi-mode
sensor fusion and multi-algorithm fusion sensing so as to identify and locate the fruit and
vegetable more accurately in a complex environment. In addition, the application of the
neural network model in the picking field can effectively shorten the sensing time, and the
real-time picking robot can be further improved by selecting a better hardware processor
and continuously optimizing the control algorithm. In the future, with the continuous
development of various new technologies, we have every reason to believe that fruit and
vegetable harvesting robots will become more intelligent, efficient, and flexible, bringing
further benefits to agricultural production.

5.2.3. Strengthening Research on Walking Platform and Navigation Algorithm

For the walking platform, first of all, it shall be ensured that the platform has good
terrain adaptability so that it can maintain good stability and reliability in different terrain
environments such as flat ground, slope, and grassland. Second, the walking platform shall
be equipped with the necessary sensors, or the sensing system of the robot shall be invoked
to serve the walking platform when the mechanical arm and the end actuator are idle so
that the platform has basic environmental awareness and obstacle avoidance functions
when moving between the picking areas. In addition, the research on the navigation
algorithm of the walking platform can refer to the path-planning technology of the terminal
actuator and the mechanical arm introduced in Section 3.3 and the obstacle avoidance
strategy mentioned in Section 3.2. Using optimization algorithms to optimize traditional
path-planning algorithms or using deep learning-based path-planning algorithms can
shorten the movement time of robots between different picking areas, thereby effectively
improving the efficiency of picking robots, especially for long-term operations.

5.2.4. The Development of Picking Drones

Due to the limited picking height of common ground picking robots, it is necessary
to explore new picking modes in order to meet the picking needs of higher fruit trees.
Thanks to the great flexibility of multi-rotor drones in three-dimensional space, harvesting
operations based on multi-rotor drone platforms are an ideal way to solve such problems.
At the same time, the tethered power supply mode can greatly extend the operation time
of the picking drones, and theoretically, it can achieve 24 h of uninterrupted operation. In
addition, if multiple harvesting drones work together, it can greatly improve harvesting
efficiency. In terms of drone harvesting, Israel’s Tevel company has achieved good results,
but overall, there is still relatively little research and application of drone harvesting. In the
future, it should improve its sensing ability and balance control ability in a complex environ-
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ment and promote its further development and application in light-weight, miniaturization,
clustering, and non-destructive picking.

5.2.5. Multi-Robot Collaborative Operation

With the expansion of agricultural scale and the increasing complexity of harvesting
tasks, a single harvesting robot may not be able to efficiently complete all tasks. Therefore,
multi-robot collaboration has become a trend that can improve the overall production
efficiency and quality of harvesting. Multi-robot collaboration can be based on a distributed
concept, where different tasks are assigned to multiple robots and executed. These robots
can work collaboratively, share information, and allocate tasks via wireless communication
or LAN. This cooperation is not only limited to the cooperation between different picking
areas but also, each robot can perform different picking operations according to the task
requirements and its own capabilities. For example, one robot is responsible for identifying
and locating the target, and the other robot is responsible for precise grabbing and shearing,
which can avoid the limitation of the picking robot’s own vision. In addition, multi-
robot cooperation can also better realize obstacle avoidance and provide a better picking
environment for the picking robot so as to optimize the picking path and improve the
picking efficiency. Of course, the advantages of the multi-robot cooperative picking mode
are not limited to this; it has a huge development space and prospects, and its development
and application in the future are worthy of expectation.

5.2.6. Reducing Costs

Researchers have adopted various methods to address the high costs of fruit and
vegetable harvesting robots. One approach involves utilizing modular design and manu-
facturing to reduce production costs and increase efficiency. Another method employs new
materials and manufacturing technologies to lower material costs and ease manufacturing
difficulties. Moreover, with continuous technological advancements and market expansion,
the production scale of fruit and vegetable harvesting robots will continue to grow, further
reducing costs. Thus, although high costs constitute a significant issue, it will gradually be
addressed with ongoing technological developments and market expansion.

6. Conclusions

This paper systematically reviewed the research progress of the “eye, brain, and hand”
picking system in the past six years and discussed its potential impact and innovation value
in the field of modern agriculture. Through the gradual analysis of each part of the article,
we can understand the technical realization and application prospects of this intelligent
agricultural picking robot, which brings unprecedented opportunities for the future of
agricultural production.

In the detailed discussion of each section, this review provides insight into the core
elements of the “eye–brain–hand” picking system. From the “eye” part using advanced
sensors and image processing technology to achieve the accurate judgment of crop maturity,
to the “brain” part through advanced algorithms to achieve real-time decision-making and
guidance, and finally to the “hand” part to achieve accurate picking. This intelligent picking
system not only improves agricultural production efficiency but also reduces resource waste
and human investment, playing a positive role in the green and sustainable development
of global agriculture.

The main contribution of this review is a comprehensive analysis of the “eye–brain–
hand” picking system. From hardware modules to technical approaches, from poten-
tial challenges to future trends, this review provides valuable guidance for researchers.
Section 2 provides a detailed introduction to the perception hardware system of the intelli-
gent picking “eye” system. In terms of target sensing methods, we compare a variety of
methods, which provide important guidance for achieving high-precision target detection.
In Section 3, the intelligent picking “brain” system deeply studies the key issues such
as regional division, task allocation, obstacle avoidance strategy, and path planning. In
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this section, the importance of task allocation and obstacle avoidance strategies for robot
agricultural operations is emphasized, providing key support for ensuring the efficient and
safe operation of robots. Section 4 systematically reviews the performance indicators of four
end-effectors, namely, negative pressure adsorption, shear, cavity trapping, and flexible
grasping, for the intelligent harvesting “hand” system. Through analyzing the evaluation
index of picking effect, we provide a valuable reference for the type selection and design
of end-effectors for different kinds of fruit. In Section 5, “Challenges and Prospects”, we
identify the challenges faced by intelligent agricultural picking robots and also provide
some prospects for their future development.

Through the comprehensive explanation of the above conclusions, this paper provides
a deep insight into the agricultural picking robot field and provides important guidance and
enlightenment for future research and application. In a word, the development of agricul-
tural picking robots is not only the embodiment of technological progress but also the key
step in the agricultural field toward sustainable development. We believe that the content
of this review will make a beneficial contribution to the goals of agricultural moderniza-
tion and sustainable development and promote the wide application and development of
intelligent agriculture.
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Abstract: The accuracy, speed, and robustness of object detection and recognition are directly related
to the harvesting efficiency, quality, and speed of fruit and vegetable harvesting robots. In order to
explore the development status of object detection and recognition techniques for fruit and vegetable
harvesting robots based on digital image processing and traditional machine learning, this article
summarizes and analyzes some representative methods. This article also demonstrates the current
challenges and future potential developments. This work aims to provide a reference for future
research on object detection and recognition techniques for fruit and vegetable harvesting robots
based on digital image processing and traditional machine learning.

Keywords: digital image processing; traditional machine learning; harvesting robot; computer vision;
object detection; object recognition; research overview; research review

1. Introduction

Fruit harvesting is an important aspect of farming. It directly affects the yield and
profitability of cultivation. With the increasing scale of global cultivation (e.g., global
annual production of fruits and vegetables such as tomato, citrus, apple, and strawberry,
has reached 182 million tons [1], 89 million tons [2], 86 million tons [3], and 9 million
tons [4], respectively), the contradiction between the large amount of labor used in tradi-
tional production methods and labor shortages has become increasingly prominent. The
labor cost of fruit and vegetable harvesting has reached 30–50% of the total production
cost [5–9]. Fruit and vegetable harvesting robots have attracted broad attention in the agri-
cultural field (as shown in Figure 1) because of their high productivity and low production
cost [10,11]. As shown in Figure 2, taking typical fruits and vegetables such as plums [12],
apples [13–16], sweet peppers [17–19], strawberries [6,7,20], litchis [21], tomatoes [22,23],
and kiwifruits [24] as objects, a series of harvesting robots have been developed and applied
in greenhouses and orchards. Fruit and vegetable harvesting robots have entered a critical
period in the progression from laboratory research to industrial applications.

As an important part of vision systems of fruit and vegetable harvesting robots, the
accuracy, speed, and robustness of object detection and recognition are directly related
to the harvesting efficiency, quality, and speed. Vision systems of harvesting robots vary
for different picking targets. Their characteristics mainly include the imaging sensor
and the specific content of crop visual information. Black/white, RGB, spectral, and
thermal cameras (as shown in Table 1) are widely used in harvesting robots to obtain
color, shape, texture, and size information of fruits in a specific operational area. Different
processes of object detection and recognition of fruits and vegetables are shown in Figure 3.
Many researchers have conducted extensive and in-depth research on object detection and
recognition techniques for fruit and vegetable harvesting robots based on digital image
processing and traditional machine learning. The research can be subdivided into the
following aspects:

Agronomy 2023, 13, 639. https://doi.org/10.3390/agronomy13030639 https://www.mdpi.com/journal/agronomy54



Agronomy 2023, 13, 639

(1) Techniques based on digital image processing, such as color features (RGB (Red,
Green, Blue) [25–28], HSV (Hue, Saturation, Value) [29–31], HSI (Hue, Saturation Inten-
sity) [32–34], Lab (Lightness, Green to Red and Blue to Yellow) [33,35,36], HSB (Hue, Satu-
ration, Brightness), YCbCr)-based methods, shape feature-based methods [37–46], texture
feature-based methods [44,47–52], and multi-feature fusion-based methods [17,28,39,52–67].

(2) Image segmentation and classifiers based on traditional machine learning, such as K-
means clustering algorithm-based methods [68–75], SVM (Support Vector Machine) algorithm-
based methods [54,57,69,73,76–84], KNN (K Nearest Neighbor) clustering algorithm-based
methods [36,85–91], AdaBoost (Adaptive Boosting) algorithm-based methods [62,92–99], deci-
sion tree algorithm-based methods [100–107], and Bayesian algorithm-based methods [108–113].
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Figure 1. Digital farming with agricultural robotics (source: www.AdaptiveAgroTech.com (accessed
on 1 October 2022)).

Table 1. Comparison of frequently used sensors for fruit and vegetable recognition.

Sensors Features Exploited Advantages Disadvantages

Black/white camera Shape and
texture features

A negligible effect on
changing

lighting conditions

Lack of color
information of
target objects

RGB camera Color, shape, and
texture features

Exploits all the basic
features

of target objects

Highly sensitive to
changing

lighting conditions

Spectral camera Color features and
spectral information

Provides more
information

about reflectance

Computationally
expensive for

complete
spectrum analysis

Thermal camera Thermal signatures Color Invariant
Dependency on

minute
thermal difference

This article provides an overview and review of the progress in object detection
and recognition techniques for fruit and vegetable harvesting robots based on digital
image processing and traditional machine learning. Although there have been some
reviews of techniques for object detection and recognition of fruits and vegetables [114–135],
the contributions of this work are to: (1) systematically summarize object detection and
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recognition techniques of fruit and vegetable harvesting robots based on digital image
processing and traditional machine learning in recent years; (2) systematically analyze the
advantages, disadvantages, and applicability of various techniques; and (3) demonstrate
the current challenges and future potential developments. Through this clearer and more
comprehensive overview and review, we aim to provide a reference for future research on
object detection and recognition techniques of fruit and vegetable harvesting robots based
on digital image processing and traditional machine learning.

Agronomy 2023, 13, x FOR PEER REVIEW 3 of 30 
 

 

processing and traditional machine learning in recent years; (2) systematically analyze the 

advantages, disadvantages, and applicability of various techniques; and (3) demonstrate 

the current challenges and future potential developments. Through this clearer and more 

comprehensive overview and review, we aim to provide a reference for future research 

on object detection and recognition techniques of fruit and vegetable harvesting robots 

based on digital image processing and traditional machine learning. 

 

Figure 2. Typical harvesting robots: (a) a plum harvesting robot (Photo: Reprinted with permission 

from Ref. [12]. 2021, Brown, J.); (b,d–f) apple harvesting robots (Photo: Reprinted with permission 

from Ref. [13]. 2021, Yan, B.; Ref. [14]. 2017, He, L.; Ref. [15]. 2012, Ji, W.; Ref. [16]. 2011, Zhao, D.); 

(c,n–p) sweet pepper harvesting robots (Photo: Reprinted with permission from Ref. [17]. 2020, 

Arad, B.; Ref. [18]. 2017, Lehnert, C.; Ref. [19]. 2014, Bac, C.W.); (g–i) strawberry harvesting robots 

(Photo: Reprinted with permission from Ref. [6]. 2020, Xiong, Y.; Ref. [7]. 2019, Xiong, Y.; Ref. [20]. 

2010, Hayashi, S.); (j) a litchi harvesting robot (Photo: Reprinted with permission from Ref. [21]. 

2018, Xiong, J.); (k,m) tomato harvesting robots (Photo: Reprinted with permission from Ref. [22]. 

2018, Feng, Q.; Ref. [23]. 2010, Kondo, N.); (l) a kiwifruit harvesting robot (Photo: Reprinted with 

permission from Ref. [24]. 2019, Williams, H.A.M.). 

The outline of this overview and review is shown in Figure 4. The organization of 

this paper is as follow: in Section 2, we provide an overview and review of the research 

and development in object detection and recognition techniques of fruits and vegetables 

Figure 2. Typical harvesting robots: (a) a plum harvesting robot (Photo: Reprinted with permission
from Ref. [12]. 2021, Brown, J.); (b,d–f) apple harvesting robots (Photo: Reprinted with permission
from Ref. [13]. 2021, Yan, B.; Ref. [14]. 2017, He, L.; Ref. [15]. 2012, Ji, W.; Ref. [16]. 2011, Zhao,
D.); (c,n–p) sweet pepper harvesting robots (Photo: Reprinted with permission from Ref. [17]. 2020,
Arad, B.; Ref. [18]. 2017, Lehnert, C.; Ref. [19]. 2014, Bac, C.W.); (g–i) strawberry harvesting robots
(Photo: Reprinted with permission from Ref. [6]. 2020, Xiong, Y.; Ref. [7]. 2019, Xiong, Y.; Ref. [20].
2010, Hayashi, S.); (j) a litchi harvesting robot (Photo: Reprinted with permission from Ref. [21].
2018, Xiong, J.); (k,m) tomato harvesting robots (Photo: Reprinted with permission from Ref. [22].
2018, Feng, Q.; Ref. [23]. 2010, Kondo, N.); (l) a kiwifruit harvesting robot (Photo: Reprinted with
permission from Ref. [24]. 2019, Williams, H.A.M.).
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The outline of this overview and review is shown in Figure 4. The organization of
this paper is as follow: in Section 2, we provide an overview and review of the research
and development in object detection and recognition techniques of fruits and vegetables
based on digital image processing. We present separate discussions focused on color, shape,
texture features, and multi-feature fusion-based methods.
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In Section 3, we provide an overview and review of the research and development in
object detection and recognition techniques of fruits and vegetables based on traditional
machine learning. We present separate discussions focused on K-means clustering, SVM,
KNN clustering, AdaBoost, decision tree, and Bayesian algorithm-based methods.

Section 4 extends our discussions to the challenges and further research of object
detection and recognition techniques of fruits and vegetables. A summary of findings and
conclusions are presented in Section 5.

2. Techniques Based on Digital Image Processing

Colors, shapes, and textures are important features used by fruit and vegetable harvest-
ing robots for detecting and recognizing target objects. Many researchers have conducted
extensive and in-depth research on object detection and recognition techniques of fruits and
vegetables based on color features (RGB [25–28], HSV [29–31], HIS [32–34], Lab [33,35,36],
HSB, YCbCr), shape features [37–46], texture features [44,47–52], and multi-feature fu-
sion [17,28,39,52–67] (as shown in Figure 5). Table 2 compares the results of different
techniques by different researchers, and presents analysis of the advantages, disadvantages,
and applicability of various techniques.
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2.1. Techniques Based on Color Features

Mature fruits and vegetables usually have significant and stable color features. Color
features provide a set of indicators for the detection and recognition of fruits and vegetables.
Object detection and recognition techniques of fruits and vegetables based on color features,
extract color features through Color Histogram, Color Set, Color Moment, and Color
Coherence Vector. The techniques based on color features are mainly applicable to cases
where the colors of fruits and vegetables are significantly different from the backgrounds
(branches, leaves, trunks), such as tomatoes [28,31], apples [29,35], mangoes [34], bananas,
cherries, citrus, prunes, and strawberries.

Goel and Sehgal [28] detected and recognized several ripening stages of tomatoes
using RGB image information. This research has a positive implication for selecting the
best ripening stage of fruits and vegetables. For example, fruits and vegetables that need to
be transported over long distances can be harvested at an early stage of ripeness.

Zemmour et al. [26] analyzed different color spaces. The research results showed that
evaluating different color spaces is very important, because for different kinds of fruits
and vegetables, a different color space might be superior to the others. In order to improve
the accuracy of the detection and recognition of tomatoes, marigold flowers, and apples,
Malik et al. [31], Sethy et al. [30], Yu et al. [29], respectively, converted RGB images into
HSV color space, and then separated the image luminance channels. Ratprakhon et al. [34]
converted RGB images into HIS color space to detect and recognize the ripeness of mangoes.
Tan et al. [36] and Biffi et al. [35], respectively, converted RGB images into Lab color space
to detect and recognize blueberries and apples. Zemmour et al. [26] suggested that Lab
color space could be used more for low quality images because it is more robust to noise in
images. In challenging color conditions (for example, where fruit and vegetable colors are
similar to the backgrounds), other features could be considered to improve the effectiveness
of object detection and recognition for fruit and vegetable harvesting robots.

The detection and recognition time of fruits and vegetables based on color features
is relatively long. In order to shorten the detection and recognition time, Yang et al. [25]
proposed an Otsu’s thresholding method based on the two times Red minus Green minus
Blue (2R-G-B) color feature to segment images. Lv et al. [27] operated the R-channel and
G-channel images of orchard apple RGB images using the Adaptive Gamma Correction
method. This method not only shortened the detection and recognition time, but also
overcame the influence of changing lighting conditions. Zemmour et al. [26] proposed
an automatic parameter tuning procedure specially developed for the dynamic adaptive
thresholding algorithm for object detection and recognition of fruits and vegetables. The
thresholds were selected by quantifying the required relationship between the true and
false positive rates.

In general, techniques for object detection and recognition of fruits and vegetables
based on color features are less dependent on image size. However, the variability and
uncertainty of fruit and vegetable maturity can affect the accuracy, speed, and robust-
ness of detection and recognition. These techniques are mainly applicable to structured
environments such as greenhouses.

2.2. Techniques Based on Shape Features

Mature fruits and vegetables usually have significant and stable shape features. Geo-
metric shape features provide another set of indicators for the detection and recognition of
fruits and vegetables. Techniques for object detection and recognition of fruits and vegeta-
bles based on shape features, extract shape features using the Boundary Feature Method,
Fourier Shape Descriptor, Shape Factor, and Shape Moment Invariant. These techniques are
mainly applied to cases where the shapes of fruits and vegetables are significantly different
from the backgrounds. For example, the shapes of apples and citrus are usually rounded
compared to the branches and leaves, and a cucumber shows an elongated fruit shape (as
shown in Figure 6).
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For round fruits, Hannan et al. [45] detected and recognized fruits in clusters by
shape analysis. This method can better detect and recognize target objects in changing
lighting conditions. Jana and Parekh [42] proposed a shape-based fruit detection and
recognition method. It involves a pre-processing step to normalize a fruit image with
respect to variations in translation, rotation, and scaling, and utilizes features that do not
change due to varying distances, growth stages, or surface appearances of fruits. The
method was applied to 210 images of 7 fruit classes. The overall recognition accuracy
ranged from 88 to 95%. Lu et al. [39] proposed a new shape analysis method called
Hierarchical Contour Analysis (HCA). The hierarchical contour maps around each local
maximum were extracted and fitted with Circular Hough Transform, and the fitted circles
were predicted as fruit targets if their radii were in a predetermined range. The HCA can
effectively utilize shape information, and does not need to extract and analyze the edge
in an image. Therefore, it is efficient and robust under various lighting conditions and
occlusions in natural environments. Lin et al. [37] also proposed a method for the detection
and recognition of fruits and vegetables based on shape features. The research results
showed that the method is competitive for detecting most kinds (such as green, orange,
circular, and non-circular) of fruits and vegetables in natural environments.

Since the shapes of fruits and vegetables are usually not affected by the colors, object
detection and recognition techniques of fruits and vegetables based on shape features
are more effective for cases where the colors of fruits and vegetables are similar to the
backgrounds, while the shapes of fruits and vegetables are significantly different from the
backgrounds, such as green citrus [37,40,44], green apples [38,43,46], cucumbers, green
peppers, and watermelons.

In general, techniques for object detection and recognition of fruits and vegetables
based on shape features are less dependent on lighting conditions. However, in unstruc-
tured environments, the randomness of fruit and vegetable growth can affect the accuracy,
speed, and robustness of detection and recognition of fruits and vegetables. These tech-
niques are mainly applicable to natural orchards with certain agricultural operations.

2.3. Techniques Based on Texture Features

Mature fruits and vegetables usually have significant and stable texture features, and
the surface textures of fruits and vegetables are usually smoother than the backgrounds.
Texture features provide another set of indicators for the detection and recognition of fruits
and vegetables. Techniques for object detection and recognition of fruits and vegetables
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based on texture features, extract texture features through the GLCM (Grey Level Co-
Occurrence Matrix), Tamura texture features, SAR (Simultaneous Auto-Regression), Gabro
transform, and Wavelet transform. These techniques are mainly applicable to cases where
the textures of fruits and vegetables are significantly different from the backgrounds, such
as apples [52], bitter melons [51], citrus [44], papayas [110], and pineapples [51].

Trey et al. [49] used leaf texture features as parameters for plant family detection and
recognition. The research results showed that the method gives a perfect classification
of three plant families of the Ivorian flora. Rahman et al. [47] detected and recognized
tomato leaf diseases through 13 different statistical features calculated from tomato leaves
using the GLCM algorithm. The method was implemented in the form of a cell phone
application. The research results showed that the method provides excellent annotation
with an accuracy of 100% for healthy leaf, 95% for early blight, 90% for Septoria leaf spot,
and 85% for late blight.

Since the surface textures of fruits and vegetables are usually not affected by the
colors and shapes, techniques for object detection and recognition of fruits and vegetables
based on texture features are more effective for cases where the colors and shapes of
fruits and vegetables are similar to the backgrounds, while the textures of fruits and
vegetables are significantly different from the backgrounds. Kurtulmus et al. [44] used
circular Gabor texture analysis for the detection and recognition of green citrus. The
method detected and recognized target fruits by scanning the whole image, but the correct
rate was only 75.3%. To improve the accuracy of detection and recognition of fruits and
vegetables, Chaivivatrakul and Dailey [51] proposed a texture-based feature detection and
recognition method for green fruits. The method involves interest point feature extraction
and descriptor computation, interest point classification using support vector machines,
candidate fruit point mapping, and morphological closing and fruit region extraction. This
approach can effectively improve the correct rate of detection and recognition of green fruits
(more than 85%). In addition, Hameed et al. [48] proposed a texture-based latent space
disentanglement method to enhance the learning of representations for novel data samples.

In general, the main problem of techniques for object detection and recognition of
fruits and vegetables based on texture features is that changing lighting conditions and
complex backgrounds can affect the accuracy, speed, and robustness of detection and
recognition. These techniques are mainly applicable to greenhouse environments.

2.4. Techniques Based on Multi-Feature Fusion

Techniques for object detection and recognition of fruits and vegetables based on a
kind of feature can recognize fruits from natural environments, but they usually have
certain limitations. Techniques for object detection and recognition of fruits and vegetables
that integrate two or more features to form multi-feature fusion can effectively improve the
accuracy, speed, and robustness of detection and recognition [59,92,95,136–139].

In terms of color and shape features, Liu et al. [60] proposed a method for the detection
and recognition of incomplete red apples (as shown in Figure 7). The research results are
shown in Figure 8. The method can be used to detect not only apples, but can also be used
to detect other fruits that have different colors from the backgrounds, such as oranges,
kiwifruits, and tomatoes. However, the method only detects fruits using rectangular boxes.
Pixel-wise segmentation is more accurate than detection boxes. Recognizing fruits at the
pixel level could be the focus of further work. Arad et al. [17], and Liu et al. [58] extracted
color features from RGB color channels of fruit and vegetable images, and morphological
features were extracted from the images with detected fruit and vegetable borders using
morphological operations. Then, they detected and recognized bell peppers, grapefruits,
and peaches.

In terms of color and texture features, to solve segmentation problems, Lin and
Zou [62] proposed a new segmentation method using color and texture features. This
method incorporates HSV color features and Leung–Malik texture features to detect citrus
using fixed-size sub-windows. Madgi and Danti [63] classified fruits and vegetables
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based on color features and GLCM texture features. The research results showed that the
combination of color with GLCM texture features is more effective than combined color
and LBP texture features.
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Figure 8. Detection results of different images: (a1–a4) images taken under front light; (b1–b4) images
taken under backlight; (c1–c4) images taken under side light; (d1–d4) images taken under artificial
light (Photo: Reprinted with permission from Ref. [60]. 2019, Liu X.).

In terms of shape and texture features, Lu et al. [39], Mustaffa et al. [61], and Bhargava
and Bansal [54] recognized fruits and vegetables by shape features including area, perimeter,
and roundness, and constructed fruit and vegetable textures based on local binary patterns.
Finally, they classified green citrus, multi-species durians, and multi-species apples.

In terms of color, shape, and texture features, Rakun et al. [52] achieved apple detection
and recognition under uneven lighting conditions, partial fruit shading, and a similar
background by combining color, shape, and texture features. Basavaiah and Anthony [56]
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proposed a detection and recognition method based on color, shape, and texture features
for a variety of tomato diseases. Azarmdel et al. [57] and Septiarini et al. [53], respectively,
achieved the detection and recognition of mulberries and oil palms based on multiple
features such as color, shape, and texture features.

Currently, digital image processing techniques used by researchers for the detection
and recognition of fruits and vegetables always require setting thresholds such as color,
shape, and texture features, but the optimal thresholds often vary with images. In order to
address this problem, Payne et al. [66] proposed using RGB and YCbCr color segmentation
and texture segmentation based on the variability of neighboring pixels to divide pixels into
target fruit and background pixels for high-accuracy detection and recognition. However,
this method relies too much on the color features of images, and the recognition accuracy is
low when the color features are not obvious. For this reason, Payne et al. [65], based on
the previously proposed algorithm, reduced the reliance on color features by setting the
boundary-constrained mean and edge detection filters, and increased the use of texture fil-
tering. The research results showed that the recognition accuracy is significantly improved
compared with before the improvement. Yamamoto et al. [64] used a multi-feature fusion
method to simplify the tedious steps of setting thresholds for each image and improve the
accuracy of detection and recognition.

3. Image Segmentation and Classifiers Based on Machine Learning

Since machine learning can derive laws from sample data that can hardly be summa-
rized by theoretical analysis, many researchers have conducted extensive and in-depth
research on techniques for object detection and recognition of fruits and vegetables based on
the K-means clustering algorithm [68–75], SVM algorithm [54,57,69,73,76–84], KNN cluster-
ing algorithm [36,85–91], AdaBoost algorithm [62,92–99], decision tree algorithm [100–107],
and Bayesian algorithm [108–113] (as shown in Figures 9 and 10). Table 3 compares the re-
sults of different techniques of different researchers, and presents analysis of the advantages,
disadvantages, and applicability of various techniques.
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In general, compared to techniques based on digital image processing, techniques
based on traditional machine learning have improved the speed, accuracy, and robustness
of the detection and recognition of fruits and vegetables to different degrees. However, tech-
niques based on traditional machine learning are sensitive to the inputs of abnormal data.
Various parameters need to be set in advance before training, and the final classification
effect is related to the setting of various parameters. Some parameters are also affected by
changing lighting conditions, which make the tuning processes more complicated. At the
same time, the current mainstream image segmentation and classifiers based on traditional
machine learning are often solutions for specific scenes, so they usually lack generality.
They are less effective for multiple classification problems, and are mainly applicable to the
detection and recognition of a single species in greenhouse environments.

3.1. Techniques Based on K-Means Clustering Algorithm

The K-means clustering algorithm is a widely used unsupervised learning method. It
can automatically classify input data into identical and different classes based on their fixed
distances from each other. Techniques for object detection and recognition of fruits and
vegetables based on the K-means clustering algorithm are widely used. Wang et al. [75]
proposed a litchi detection and recognition algorithm based on K-means clustering. The
research results showed that the method can be robust against the influence of changing
lighting conditions. The highest average recognition rates of un-occluded and partially
occluded litchi were 98.8% and 97.5%, respectively. Luo et al. [72] proposed a K-means
clustering algorithm-based detection and recognition method for cutting points of double-
overlapping grape clusters for harvesting robots in a complex vineyard environment. The
recognition accuracy of the overlapping grape clusters was 88.33%. The success detection
rate of the cutting points on the peduncles of double-overlapping grape clusters was 81.66%.
Jiao et al. [70] also proposed a fast detection and localization method for overlapping apples
based on K-means clustering and a local maximum algorithm.

In order to further resist the effect of changing lighting conditions, Wang et al. [74]
improved the wavelet transform and used the K-means clustering algorithm to segment
target images. The method not only accurately segments fruits with different colors, but
also maintains high accuracy for the detection and recognition of fruits under changing
lighting conditions.

In order to exclude the interference information in images as much as possible,
Luo et al. [72] used the K-means clustering algorithm to obtain a complete closed tar-
get image region after segmentation, denoising, and filling operations on the captured
image. To obtain more feature information of target fruits, Moallem et al. [73] applied the
K-means clustering algorithm to the Cb component in YCbCr color space, and the defect
segmentation was achieved using a Multi-Layer Perceptron (MLP) neural network. Then,
statistical, textural, and geometric features from refined defected regions were extracted.
Although the classification accuracy of this method is high, the weaknesses are obvious.
First, the K-value must be given in advance, but it is difficult to do so. Second, the randomly
selected K-centroids will have a large impact on the classification results.

In general, these techniques do not need to give labels, and can automatically classify
target objects and backgrounds according to the fixed values between input data. Therefore,
the advantages of techniques for object detection and recognition of fruits and vegetables
based on the K-means clustering algorithm are short computation time, fast response time,
and good clustering effect (especially when the clusters are dense and the differences are
obvious). The disadvantages are that they are sensitive to abnormal data, and the randomly
selected K-values have a large impact on the classification results.

3.2. Techniques Based on SVM Algorithm

The SVM algorithm is a widely used supervised learning method. It is commonly used
in linear/nonlinear regression analysis and pattern classification. It achieves classification
by solving the separated hyperplane that correctly partitions the training set and has the
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largest geometric separation. Techniques for object detection and recognition of fruits
and vegetables based on the SVM algorithm are widely used. Bhargava1 and Bansal [54],
Patel and Chaudhari [78], Singh and Singh [82], and Moallem et al. [73] compared the
performance of different classifiers (SVM, KNN, etc.) for the detection and recognition of
different fruits and vegetables. The research results showed that, in their studies, the SVM
classifier performs better than the other classifiers.

To improve the cooperative capability of fruit and vegetable harvesting robots,
Sepúlveda et al. [77] implemented a cooperative operation between the arms of a two-
armed eggplant harvesting robot based on the SVM algorithm. To address the problems
of local occlusions, irregular shapes, and high similarity to backgrounds, Ji et al. [81]
proposed a green pepper recognition method based on a least-squares support vector
machine optimized by the improved particle swarm optimization (IPSO-LSSVM). The
research results showed that the recognition rate of green peppers was 89.04%, and the
average recognition time was 320 ms. This approach meets the requirements of accuracy
and time of greenhouse green pepper harvesting robots.

To further improve the accuracy, speed, and robustness of detection and recognition
of fruits and vegetables, Yang et al. [80] also proposed an image segmentation method for
Hangzhou white chrysanthemum based on the least-square support vector machine (LS-
SVM). The research results showed that the trained LS-SVM model and SVM model could
effectively segment the images of Hangzhou white chrysanthemum from complicated
backgrounds under three lighting conditions, namely, front lighting, back lighting, and
overshadowing, with an accuracy of above 90%. When segmenting an image, the SVM
algorithm required 1.3 s, while the proposed LS-SVM algorithm needed just 0.7 s. In
addition, the implementation of the proposed segmentation algorithm on the harvesting
robot achieved an 81% harvesting success rate.

In general, the advantages of techniques for object detection and recognition of fruits
and vegetables based on SVM algorithm are that they simplify classification and regression
problems, and can achieve good classification for the data outside the training set. At
the same time, they can solve the problem of small samples of target fruits in natural
environments, and do not increase the computational complexity when mapping to high-
dimensional space. Therefore, the segmentation of fruit and vegetable images containing
many high light points can be effectively realized by these techniques. The disadvantages
are that they are too sensitive to the adjustment of the algorithm parameters and the
selection of the kernel function. The kernel function and its parameters must be reselected
for a new dataset. In addition, the accuracy is only high for binary classification tasks, but
less effective for multi-classification problems.

3.3. Technique Based on KNN Clustering Algorithm

The KNN clustering algorithm is a widely used supervised learning method. It
is commonly used in classification and regression models. It achieves classification by
classifying unknown feature vectors into classes of the most common attributes of the K
nearest neighbors using the training set. Techniques for object detection and recognition of
fruits and vegetables based on the KNN clustering algorithm are more widely used. Based
on the KNN clustering algorithm, Tan et al. [36], Astuti et al. [90], Suban et al. [89], Sarimole
and Rosiana [85], and Sarimole and Fadillah [86] detected and recognized the ripeness of
blueberries, oil palms, papayas, betel nuts, and pomegranates, respectively.

Tanco et al. [91] studied the detection and recognition of fruits and vegetables using
three types of classifiers (SVM, KNN, and decision tree). The research results showed
that the KNN clustering algorithm produced the best detection and recognition results.
Ghazal et al. [88] trained and tested six supervised machine learning methods (SVM, KNN,
decision tree, Bayesian, Linear Discriminant Analysis, and feed-forward back propagation
neural network) on a publicly available Fruits 360 dataset. The research results showed that the
methods based on the KNN clustering algorithm achieve relatively high classification accuracy.
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In general, techniques based on the KNN clustering algorithm are able to classify the
K nearest neighbors using functions to measure the distance between different eigenvalues.
The advantages of techniques based on the KNN clustering algorithm are high classification
accuracy, relative insensitivity to abnormal data, and no assumptions about input data.
However, it is tedious to set a reasonable scaling factor of K in these methods. With a
small value of K, the model complexity is high, overfitting is likely to occur, the estimation
error of learning increases, and the prediction results are very sensitive to the instance
points of the nearest neighbors. With a larger value of K, the complexity of the model and
the estimation error of learning decreases, which is suitable for classification of a small
dataset, but the approximation error of learning increases. The disadvantages are large
computational effort, and high time and space complexity. Moreover, the detection and
recognition accuracy of fruits and vegetables are easily affected by the growth environments
and lighting conditions.

3.4. Techniques Based on AdaBoost Algorithm

The AdaBoost algorithm is a widely used supervised learning method. It is commonly
used in two-class problems, multi-class single-label problems, multi-class multi-label
problems, large-class single-label problems, and regression problems. Different classifiers
(weak classifiers) are trained using the same training set, and then these weak classifiers are
pooled to form a stronger final classifier (strong classifier). Techniques for object detection
and recognition of fruits and vegetables based on the AdaBoost algorithm are widely
used. Kumar et al. [93] introduced a novel plant species classifier based on the extraction
of morphological features using a Multilayer Perceptron with the AdaBoost algorithm.
In addition, they tested the classification accuracy of different classifiers, such as KNN,
decision tree, and the Multilayer Perceptron. The research results showed that a precision
rate of 95.42% was achieved using the proposed machine learning classifier, which is one of
the state-of-the-art algorithms.

Ling et al. [94] proposed a tomato detection method combining an AdaBoost classifier
and color analysis, and applied them to the harvesting robot. The research results showed
that the ripe tomato detection success rate was about 95%., and 5% of the ripe tomatoes
missed detection because of the occluding leaves. When the leaf occlusion area is more
than 50% of the tomato area, the target tomato might not be detected. The method also has
good robustness, and can meet the challenges of environmental factors such as changing
lighting conditions and partial occlusions and overlaps. The speed of the method is about
10 fps, which is enough for the harvesting robot to operate in real time.

To further cope with challenges such as changing lighting conditions, cluttered back-
grounds, and cluster occlusions, Lin and Zou [62] also proposed a novel segmentation
method using the AdaBoost classifier and texture–color features. The research results
showed that the method achieved a precision of 0.867 and recall of 0.768. However, the
method may over-segment images because the LM filter bank tends to be influenced by
illumination changes. A possible solution is to investigate an illumination invariant version
of an LM filter bank.

In general, the advantages of techniques for object detection and recognition of fruits
and vegetables based on the AdaBoost algorithm are that they can use different classification
algorithms as weak classifiers and make good use of weak classifiers for cascading, with
high detection and recognition accuracy. The disadvantages are that during the training
process, the AdaBoost algorithm will cause the weight of difficult samples to exponentially
increase, and the training will be biased towards such difficult samples, which makes the
AdaBoost algorithm vulnerable to noise interference. In addition, the AdaBoost algorithm
relies on weak classifiers, which often have a long training time.

3.5. Techniques Based on Decision Tree Algorithm

The decision tree algorithm is a widely used supervised learning method. It is com-
monly used in decision-making problems. It starts from the root node. Then, the corre-

72



Agronomy 2023, 13, 639

sponding features in the item to be classified are tested and the output branches are selected
according to their values until the leaf node is reached. Finally, the category stored in the
leaf node is used as the decision result. Wajid et al. [105] investigated the applicability
and performance of various classification algorithms including Naïve Bayes, Artificial
Neural Networks, and decision trees. The research results showed that the decision tree
classification method performs better than the other methods for orange detection. The
results recorded for the accuracy, precision, and sensitivity using this method were 93.13%,
93.45%, and 93.24%, respectively. In addition, in order to investigate the cost of imple-
mentation relative to the classification performance, Kuang, et al. [103] compared two
types of machine learning algorithms (the multivariate alternating decision tree and the
deep-learning-based kiwifruit classifiers). The research results showed that traditional
decision tree classifiers can achieve comparable classification performance at a fraction of
the cost.

Ma et al. [104] proposed a segmentation method based on a decision tree which is
constructed by a two-step coarse-to-fine procedure. Firstly, a coarse decision tree is built
by the CART (Classification and Regression Tree) algorithm with a feature subset. The
feature subset consists of color features that are selected by Pearson’s Rank correlations.
Then, the coarse decision tree is optimized by pruning. Using the optimized decision tree,
segmentation of images is achieved by conducting pixel-wise classification. Abd al karim
and Karim [100] also proposed a decision tree classifier to classify fruit types. The Fruits
360 dataset was used, where 70% of the dataset was used in the training phase and 30%
was used in the testing phase. Chen et al. [102] proposed a classification method for kernel
and impurity particles using the decision tree algorithm.

In general, the advantages of techniques for object detection and recognition of fruits
and vegetables based on the decision tree algorithm are that they enumerate the full range
of feasible solutions to the decision problem, and the expected values of each feasible
solution in various states. They can visually show the decision process of the whole
decision problem at different stages in time and in the decision sequence. When applied to
a complex multi-stage decision-making problem, the stages are obvious and the hierarchy is
clear, so that various factors can be thoughtfully considered, which is conducive to making
the right decision. The disadvantages are that they are easy to overfit and do not perform
well when dealing with data that has relatively strong feature correlations. In addition,
for data with an inconsistent number of samples in each category, the result gained in the
decision tree is biased towards those features with more values.

3.6. Techniques Based on Bayesian Algorithm

The Bayesian algorithm is a widely used supervised learning method. It classifies
based on minimizing Bayesian risk, minimizing probability of error, or maximizing poste-
rior probability. It is commonly used in large-scale databases. The Bayesian algorithm was
proposed because it has high accuracy and computational speed when applied to a large
number of databases, is robust to isolated noise points, and only requires a small training
set to estimate the parameters needed for classification.

Kusuma and Setiadi [113] proposed a classification method using feature histogram
extraction and a Naïve Bayes Classifier for tomato recognition. In addition, Sari, et al. [110]
proposed a classification method for papaya types based on leaf images using a Naive
Bayes classifier and LBP feature extraction. In the research of Reyes et al. [108], the method
based on the Bayesian algorithm, along with the off-the-shelf hardware, made it possible
to perform an optimal classification of cherries in real time to meet international fruit
quality standards.

In general, the advantages of techniques for object detection and recognition of fruits
and vegetables based on Bayesian algorithms are the simplicity of recognition and classifi-
cation processes, the fast response time, the better performance for small-scale data, the
ability to handle multiple classification tasks, and the suitability for incremental training.
The disadvantage is that the prior probabilities need to be calculated. Furthermore, the
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recognition performance is affected by the fact that the prior probabilities depend on the
target image features. In addition, the recognition function may fail for data (variable
features) that do not appear in the training set.

4. Challenges and Further Research

As summarized and reviewed in this article, various techniques for object detection
and recognition of fruits and vegetables, each with their own pros and cons, have been
investigated in the past. However, it is difficult to find studies reporting the absolute
accuracy of each technique and comparisons of performance between those techniques in
the same environment.

Therefore, open publishing of all reference datasets and all code is necessary. Some
frequently used image databases of fruits and vegetables are shown in Table 4. As much
as possible, further research should be carried out based on these open datasets to help
compare different techniques. Moreover, the international community might consider
continually providing and updating quality reference datasets.

Table 4. Some frequently used image databases of crops: fruits and vegetables.

Datasets
Samples Species Web-Link YearTotal Training Sets Testing Sets

Fruits-360 90,380 67,692 22,688 131 (100 ×
100 pixels)

https://www.kaggle.com/datasets/moltean/fruits
(accessed on 16 February 2023) 2020

Fruit-A 22,495 16,854 5641 33 (100 ×
100 pixels)

https://www.kaggle.com/datasets/
sshikamaru/fruit-recognition (accessed on

16 February 2023)
2022

Fruit-B 21,000 15,000 vail: 3000
text: 3000

15 (224 ×
224 pixels)

https://www.kaggle.com/datasets/
misrakahmed/vegetable-image-dataset

(accessed on 16 February 2023)
2021

Fruit quality
classification 19,526 - - 18 (256 ×

256/192 pixels)

https://www.kaggle.com/datasets/ryandpark/
fruit-quality-classification

(accessed on 16 February 2023)
2022

Fresh and
rotten fruits 13,599 10,901 2698 6

https://www.kaggle.com/datasets/sriramr/
fruits-fresh-and-rotten-for-classification

(accessed on 16 February 2023)
2019

Lemon
quality
control
dataset

2533 - - 3 (256 ×
256 pixels)

https://github.com/robotduinom/lemon_dataset
(accessed on 16 February 2023) 2022

Pistachio 2148 - - 2
https://www.muratkoklu.com/datasets/

(accessed on 16 February 2023)

2022

Grapevine
leaves dataset 500 - - 5 2022

Apple 1300 1000 300 2 https://data.nal.usda.gov/search/type/dataset
(accessed on 16 February 2023) 2020

Cauliflower 656 - - 4
https://www.kaggle.com/datasets/

noamaanabdulazeem/cauliflower-dataset
(accessed on 16 February 2023)

2022

Sweet pepper
and peduncle
segmentation

620 - - 8 https://www.kaggle.com/datasets/lemontyc/
sweet-pepper (accessed on 16 February 2023) 2021

In addition, there are many factors leading to the low accuracy, slow speed, and
poor robustness of object detection and recognition of fruit and vegetable harvesting
robots. They can be summarized into the following aspects: (1) similar backgrounds;
(2) clustered/partially occluded/swaying fruits; (3) sensitivity to changing lighting condi-
tions; (4) night image recognition; (5) blur and noise in images; (6) high computation time
and real-time limitations; and (7) generalization ability. To be more specific:

(1) Object detection and recognition of fruits and vegetables require fast response
capability to improve the harvesting efficiency. The current mainstream object detection
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and recognition techniques based on digital image processing and traditional machine
learning have certain limitations, although they may have good accuracy performance. In
complex environments, influenced by many factors such as changing lighting conditions
and growth states of fruits, the more factors the method considers, the more complex the
method, and the longer the running computation time. This will lead to low real-time
performance for vision systems.

(2) When fruit and vegetable harvesting robots work, they can only detect and recog-
nize the target objects according to the pre-trained model. In the actual harvesting process,
there is often more than one kind of target object that needs to be harvested. In addition, the
harvesting robots are only used during the harvesting season of the year, and are idle for the
rest of the year, due to the obvious seasonality and timeliness of fruit harvesting, thus lead-
ing to the relatively poorer economics of harvesting robots. Therefore, the generalization
ability of the algorithms still needs to be enhanced to achieve the detection and recognition
of multiple kinds of fruits and vegetables. Future research could make the algorithms
generalizable (i.e., derive the ability to recognize fruits with similar characteristics based
on a kind of target object). In addition, the night image recognition algorithm could be
required for vision systems, where the harvesting robots can work during the day, and then
continue at night.

(3) Object detection and recognition of fruits and vegetables require the detection
and recognition of clustered/partially occluded/swaying fruits. However, the presence
of clustered/partially occluded/swaying parts may cause confusion in images, which is
currently a greater challenge for detection and recognition in unstructured environments.
A popular method is the Circular Hough Transform, which is more effective for round
objects such as apples, oranges, and tomatoes. However, research results showed that
this method is not only prone to false positives generated by the contours of other objects,
such as leaves, but also has a long computation time. Another popular method is to use a
blowing device to avoid leaf occlusions and to move adjacent fruits to one side. However,
this method will increase the weight of end-effectors of harvesting robots, and may not
be applicable to all kinds of crops. Future research could focus on agricultural operations,
including tree pruning and pollination methods, to improve the visibility of target fruits,
which may help to improve detection and recognition accuracy.

As summarized and reviewed in this article, methods based on multi-feature fusion
and the SVM algorithm achieve a better accuracy rate in addressing these challenges.
Furthermore, methods based on multi-algorithm fusion should be paid more attention.
In addition, further research should focus on solving these challenges and improving
the accuracy, speed, robustness, and generalization of vision systems, while reducing the
overall complexity and cost. The optimization of network models, the accuracy of sensing
systems, multi-sensor data fusion, fault-tolerant computing of machine vision, and decision
making using a big data cloud platform may be key breakthroughs for further techniques
for object detection and recognition of fruits and vegetables.

5. Conclusions

The intelligent harvesting robot is one of the most important artificial intelligence
(AI) robots used for fruit and vegetable harvesting in modern agriculture. The excellent
vision system can greatly promote the environmental perception ability of the harvesting
robot. However, current visual systems of harvesting robots still cannot fully meet the
requirements of commercialization. This article summarizes and reviews the progress in
developing techniques for object detection and recognition of fruit and vegetable harvesting
robots based on digital image processing and traditional machine learning. Although there
previous reviews of techniques for object detection and recognition of fruits and vegetables
have been published, the contributions of this work are: (1) systematic summary of the
techniques developed in recent years for object detection and recognition of fruit and
vegetable harvesting robots based on digital image processing and traditional machine
learning; (2) systematic analysis of the advantages, disadvantages, and applicability of
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various techniques; and (3) demonstration of the current challenges and future potential
developments. Through this clearer and more comprehensive overview and review, we aim
to provide a reference for future research on techniques for object detection and recognition
of fruit and vegetable harvesting robots based on digital image processing and traditional
machine learning.

The current challenges of techniques for object detection and recognition of fruits
and vegetables are mainly the similar backgrounds, clustered/partially occluded/swaying
fruits, sensitivity to changing lighting conditions, night image recognition, blur and noise
in images, high computation time and real-time limitations, and generalization ability.

Techniques for object detection and recognition of fruit and vegetable harvesting
robots based on digital image processing can be subdivided into color feature (RGB, HSV,
HSI, Lab, HSB, YCbCr)-based methods, shape feature-based methods, texture feature-based
methods, and multi-feature fusion-based methods.

As summarized and reviewed in this article, techniques based on digital image pro-
cessing require precise information about the target fruit features, which are usually used
for object detection and recognition of fruits and vegetables based on features such as
colors, shapes, and textures. However, in complex environments, these features of the
target objects are affected by non-controllable factors, resulting in low accuracy, slow speed,
and poor robustness of object detection and recognition of fruits and vegetables. Methods
based on multi-feature fusion can improve the accuracy and robustness of object detection
and recognition of fruits and vegetables. However, it is important to determine which
features to integrate; for example, Lab color space could be used more for low-quality
images because it is more robust to noise in images. In addition, the combination of color
with GLCM texture features has proven to be more effective than combined color and LBP
texture features.

Object detection and recognition techniques of fruit and vegetable harvesting robots
based on traditional machine learning can be subdivided into K-means clustering algorithm-
based methods, SVM algorithm-based methods, KNN clustering algorithm-based methods,
AdaBoost algorithm-based methods, decision tree algorithm-based methods, and Bayesian
algorithm-based methods.

In general, techniques based on traditional machine learning have good performance,
but they require various parameters to be set in advance, where the parameters set in
advance have a large impact on recognition accuracy. For classifiers, prior probabilities
from the training set need to be obtained in advance, and the classification accuracy is
affected by the weights of difficult to classify samples. As summarized and reviewed in
this article, methods based on the SVM algorithm achieve a better accuracy rate. However,
the current mainstream image segmentation approaches and classifiers based on traditional
machine learning are often solutions for specific scenes. They usually lack generality and
are less effective for multiple classification problems. They are mainly applicable to the
detection and recognition of a single species in greenhouse environments. Methods based
on multi-algorithm fusion should be paid more attention. This may be a breakthrough for
future techniques for object detection and recognition of fruits and vegetables.

Further research into and development of techniques for object detection and recog-
nition for fruit and vegetable harvesting robots are necessary. Commercial applications
of harvesting robots need to be further addressed through integrated horticultural and
engineering approaches for improved image segmentation, and for increased overall per-
formance of crop detection and recognition.
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Abstract: Continuing progress in machine learning (ML) has led to significant advancements in
agricultural tasks. Due to its strong ability to extract high-dimensional features from fruit images,
deep learning (DL) is widely used in fruit detection and automatic harvesting. Convolutional neural
networks (CNN) in particular have demonstrated the ability to attain accuracy and speed levels
comparable to those of humans in some fruit detection and automatic harvesting fields. This paper
presents a comprehensive overview and review of fruit detection and recognition based on DL
for automatic harvesting from 2018 up to now. We focus on the current challenges affecting fruit
detection performance for automatic harvesting: the scarcity of high-quality fruit datasets, fruit
detection of small targets, fruit detection in occluded and dense scenarios, fruit detection of multiple
scales and multiple species, and lightweight fruit detection models. In response to these challenges,
we propose feasible solutions and prospective future development trends. Future research should
prioritize addressing these current challenges and improving the accuracy, speed, robustness, and
generalization of fruit vision detection systems, while reducing the overall complexity and cost.
This paper hopes to provide a reference for follow-up research in the field of fruit detection and
recognition based on DL for automatic harvesting.

Keywords: computer vision; deep learning; fruit detection; fruit recognition; automatic harvesting;
current challenge; development trend; research review

1. Introduction

In recent years, the application of artificial intelligence (AI) techniques and robotic
systems to automate agricultural processes has garnered significant interest (as shown in
Figure 1). Fruits usually grow in complex environments with many uncertainties. Powerful
fruit vision detection systems are necessary for intelligent agriculture and automatic harvesting.
Fruit vision detection systems’ characteristics mainly include imaging sensors and visual
information about fruits. Fruit vision detection systems generally operate through the five
stages (as shown in Figure 2): fruit image acquisition, fruit image preprocessing, fruit feature
extraction, fruit image segmentation, and fruit image recognition. Black and white cameras,
red–green–blue (RGB) cameras, spectral cameras, thermal cameras, and RGB-depth map
(RGB-D) cameras (as shown in Figure 3) are commonly used for fruit vision detection systems
to obtain color, shape, texture, and size information of fruits in specific operational areas.
A comparison of different types of imaging sensors is shown in Table 1. Fruit images acquired
through different imaging methods are shown in Figure 4. The main research processes of
fruit detection and recognition methods are shown in Figure 5. Since DL has a strong ability
to extract high-dimensional features from fruit images, researchers have proposed many
fruit detection and recognition methods based on DL (you only look once (YOLO), single
shot multibox detector (SSD), Alex Krizhevsky networks (AlexNet), visual geometry group
networks (VGGNet), residual networks (ResNet), faster region-convolutional neural networks
(Faster R-CNN), fully convolutional networks (FCN), SegNet, and mask region-convolutional
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neural networks (Mask R-CNN)) for automatic harvesting (as shown in Table 2). Despite much
research, many challenges need to be overcome to build an effective fruit vision detection and
harvesting system.
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pepper-harvesting robots (photo reprinted with permission from ref. [6]. 2020, Arad, B.; ref. [7].
2017, Lehnert, C.; ref. [8]. 2014, Bac, C.W.); (g–i) Strawberry-harvesting robots (photo reprinted
with permission from ref. [9]. 2020, Xiong, Y.; ref. [10]. 2019, Xiong, Y.; ref. [11]. 2010, Hayashi,
S.); (j) A lychee-harvesting robot (photo reprinted with permission from ref. [12]. 2018, Xiong, J.);
(k,m) Tomato-harvesting robots (photo reprinted with permission from ref. [13]. 2018, Feng, Q.;
ref. [14]. 2010, Kondo, N.); (l) A kiwifruit-harvesting robot (photo reprinted with permission from
ref. [15]. 2019, Williams, H.A.M.).
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Figure 2. Different processes of fruit detection and recognition based on DL (image reprinted with
permission from ref. [16]. 2023, Xiao F.).
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Figure 4. Fruit images acquired using different imaging methods. (a) Black and white image; (b) RGB,
depth, and infrared images (photos reprinted with permission from ref. [17]. 2020, Fu L.); (c) spectral
image (photo reprinted with permission from ref. [18]. 2009, Okamoto H.); (d) color and thermal-
registered image (photo reprinted with permission from ref. [19]. 2010, Wachs J.P.).

Some review articles have been published encompassing diverse agricultural appli-
cations, such as crop recognition, fruit counting, weed discrimination, and plant disease
detection, with or without a robotic system, by considering AI/computer vision (CV)/other
advanced vision control techniques. For example, Rehman, T.U. et al., (including re-
searchers based in America and Canada) (2019) [20] provided a comprehensive summary
of ML algorithms that have been utilized in diverse agricultural operations. Brazilian
researchers Patrício, D.I. and Rieder, R. (2018) [21] investigated potential applications of
machine vision (MV) for diverse agricultural tasks, such as crop disease/pest detection,
grain quality evaluation, and automatic plant phenotyping. Narvaez, F.Y. et al., (including
researchers based in Chile, Italy, and America) (2017) [22] summarized various sensing
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techniques, along with their limitations, to categorize fruits/plants. Indian researchers Jha,
K. et al., (2019) [23] outlined the latest smart methodologies, such as the Internet of Things
(IoT), for agricultural purposes. Dutch researchers Wolfert, S. et al., (2017) [24] reviewed the
application of big data in agriculture. There are also some review articles that have been
published incorporating only a particular type of agricultural application or scenario. For
example, we reviewed fruit detection and recognition techniques based on digital image
processing and traditional ML for fruit harvesters in [16]. New Zealand researchers Saleem,
M.H. et al., (2019) [25] summarized and explained DL models for the identification and
classification of plant diseases, along with the application of DL with advanced imaging
techniques, including hyperspectral/multispectral imaging. Wang, D. et al., (including
American researchers and a researcher based in Israel) (2019) [26] and Chinese researchers
Wang, A. et al., (2019) [27] reviewed procedures for weed detection using various classifica-
tion methods, including ML and DL. The review literature on AI/ML/DL/MV/CV/other
advanced vision control techniques for intelligent agriculture and automatic harvesting
also includes [28–41]. However, unlike the articles mentioned above, our work focuses
on providing an overview and review of the use of DL applied to fruit image recognition
(mainly in the areas of detection and classification) for automatic harvesting. In order to
further define the study areas of our paper, we identify fruit detection and classification
tasks such as the determination of classes based on their specific types.

Methods based
on YOLO-v6
and YOLO-v7 

Methods based
on YOLOX

Methods based
on YOLO-v3

Methods based
on VGG and 

R-CNN

2008 201520142012 2016 2017

2018202020212023 2022

Methods based
on AlexNet

Methods based
on CNN

Methods based
on ResNet, Fast
R-CNN, FCN,
and YOLO-v1

Methods based
on Faster R-

CNN and SSD

Methods based
on YOLO-v8 

Methods based
on YOLO-v4
and YOLO-v5 

Methods based
on YOLO-v2,
SegNet, and

Mask R-CNN 

Figure 5. Main research processes of fruit detection and recognition methods based on DL.

Table 1. Comparison of different types of imaging sensors commonly used in fruit vision detec-
tion systems.

Fruit Imaging Sensors Types Information Advantages Limitations

RGB-D camera and LSS
(Lift, Splat, Shoot) Active RGB and depth images Complete fruit scene

characteristics Lack of feature descriptors

Black and white camera

Passive

Shape and texture
features

Little effect of changes in
lighting conditions Lack of color information

RGB camera Color, shape, and
texture features

Exploiting all the basic
features of target fruits

Highly sensitive to changing
lighting conditions

Spectral camera Color features and
spectral information

Providing more information
about reflectance

Computationally expensive for
complete spectrum analysis

Thermal camera Thermal signatures Color-invariant Dependency on minute
thermal difference
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Table 2. Fruit detection and recognition methods based on DL.

Types Accuracy Applied Crops Advantages Disadvantages

YOLO 84–98% cabbage, citrus, lychee,
mango, tomato

High fruit detection speed; it can meet
real-time requirements well for

automatic harvesting

Fruit detection accuracy under severe
occlusion, low resolution, and

changing lighting conditions is low

SSD 75–92% apple, mango, pear, sour
lemon

High detection accuracy and speed;
good robustness and generalization

Fruit images need to be preprocessed;
detection accuracy for small targets is

low

AlexNet 86–96% apple, strawberry, sugar
beet, tomato

Using dropout to avoid overfitting;
good generalization ability

Network convergence takes a
little longer

VGGNet 92–99% jujube, potato, sugar beet,
tomato

Simple structure of fruit vision
detection models

Network convergence takes a little
longer; using more

network parameters

ResNet 90–95% apple, banana
Using residual blocks to deepen

network layers and reduce network
parameters

Too deep network layers may result in
vanishing gradients, poor training

effectiveness, and low detection
accuracy

Faster R-CNN 90–99% apple, mango, orange High detection accuracy
Fruit detection speed is slow, and it
cannot meet real-time requirements

well

FCN 89–98% cotton, grape, guava,
kiwifruit

Accepting fruit image inputs with
arbitrary sizes; high efficiency and

low computational effort

Insensitive to the details of fruits in
fruit images; fruit classification does
not consider inter-pixel relationships

SegNet 83–95% apple, tomato

Obtaining edge contours and
maintaining the integrity of

high-frequency details
in segmentation

Neighboring information may be
ignored when fruit feature maps with

low resolution are unpooled

Mask R-CNN 80–94% apple, strawberry, tomato
Combining semantic segmentation
with fruit detection by outputting

mask images

Fruit detection speed is slow, and it
cannot meet real-time requirements

well

The contributions of this work are as follows: (1) systematically summarizes and
explains all kinds of fruit detection and recognition methods based on DL for automatic
harvesting from 2018 up to now; (2) systematically compares and analyzes the advantages,
disadvantages, and applicability of various fruit detection and recognition methods based
on DL for automatic harvesting; (3) systematically demonstrates the current challenges
affecting fruit detection performance for automatic harvesting and proposes feasible so-
lutions and prospective future potential developments. Through this clearer and more
comprehensive overview and review, we aim to provide a reference for follow-up research
in the field of fruit detection and recognition based on DL for automatic harvesting.

According to Martín-Martín, A. et al., (including Spanish researchers and a researcher
based in the UK) (2018) [42], Google Scholar citation data encompass a larger set of publications
than Web of Science and Scopus. In order to comprehensively survey the literature relevant
to the scope of this article, the Google Scholar database has been selected as the source. In
the first step, combinations of keywords such as “fruit detection”, “fruit recognition”, “deep
learning”, “computer vision”, and “fruit harvesting” were utilized in the initial search process.
All retrieved papers were subsequently evaluated for their relevance to the subject matter.
The second step included the examination of the references from step one for a more thorough
review. In the final step, to ensure that our study focuses on the most current research, all
papers published before 2018 were excluded. Only the recent literature from 2018 to the
present was considered. The final set of papers regarding fruit detection and recognition
based on DL for automatic harvesting included 53 research articles. Figure 6 displays the
distribution of articles per year, network models used, and crops detected.
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As shown in Figure 6, in recent years, the application of DL techniques and robotic
systems to automate agricultural processes has garnered significant interest. Improvement
and application research based on Faster R-CNN (21%) is currently a hotspot. The recogni-
tion accuracy of fruit detection methods based on Faster R-CNN is high, but recognition
speed is limited by complex anchor frame mechanisms. When there are mobile deployment
and high recognition speed requirements, fruit detection methods based on YOLO (17%)
are used most frequently. Their recognition speed is fast, but the recognition effect for small
target fruits is not very good. In addition, ResNet (11%) is the most popular backbone
network, followed by AlexNet (7%).

Most of the research focuses on apples (32.14%), followed by tomatoes (8.93%), and
citrus (7.14%). These three kinds of fruits are in high demand and yield globally. There
are some reasons that make them ideal candidates for automatic harvesting. Firstly, they
individually hang from plants, making them easily detectable based on their distinctive
features. Secondly, they have no extreme variations in size or weight. Lastly, they are
relatively hard and not easily damaged in mechanical operations. However, in terms of fruit
dimensions and peduncle length, different cultivars may exhibit different characteristics,
which can affect fruit detection and recognition performance. This poses challenges for
adapting fruit detection and recognition methods for different cultivars. Future work could
aim to identify cultivars that are more suitable for automatic harvesting.

The outline of this article is shown in Figure 7. The organization of the rest of the
paper is as follows: Section 2 summarizes and explains previous research articles about
DL applied to fruit detection and recognition for automatic harvesting. We compare and
analyze the advantages, disadvantages, and applicability of various fruit detection and
recognition methods based on DL (YOLO, SSD, AlexNet, VGGNet, ResNet, Faster R-CNN,
FCN, SegNet, and Mask R-CNN) for automatic harvesting; Section 3 discusses the current
challenges affecting fruit detection and recognition performance for automatic harvesting
(scarcity of high-quality fruit datasets, fruit detection of small targets, fruit detection in
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occluded and dense scenarios, fruit detection of multiple scales and multiple species, and
lightweight fruit detection models) and proposes feasible solutions and prospective future
development trends; Section 4 concludes this article.
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Figure 7. Outline of the article.

2. Fruit Detection and Recognition Based on DL

The concept of DL originated from research on artificial neural networks (ANN), pro-
posed by Canadian researchers Hinton, G.E. and Salakhutdinov, R.R. in 2006 [43]. Since DL
has a strong ability to extract high-dimensional features from fruit images, many researchers
have conducted extensive and in-depth research on fruit detection and recognition based
on DL for automatic harvesting. The basic architecture of DL-based ANN for fruit detection
and recognition is shown in Figure 8.
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Fruit image acquisitionStart Fruit dataset preprocessing Training a fruit detection model

Convolutional
layer

Maxpool
layer

Dropout
layer

Fully connected layer Softmax classifier Output accuracy accepted ?

Evaluating the performance of
the fruit detection model

Stop Testing the fruit detection model

No

Yes

Figure 8. Basic architecture of DL-based ANN for fruit detection and recognition.

CNNs were proposed by American researchers LeCun, Y. et al. in the 1980s [44,45].
They can efficiently capture patterns in multidimensional space. A typical CNN framework
for fruit detection and recognition is shown in Figure 9. It includes the convolutional layer
(Conv), pooling layer (Pool), nonlinear activation function, and fully connected layer (FC).
The convolutional layer is the core of the CNN for fruit feature extraction. Depending
on the designed convolution kernel, convolution operations capture fruit image contours
and generate corresponding fruit feature maps. In order to reduce the spatial size of the
fruit feature maps, the pooling layer performs down-sampling operations by sampling the
maximum or average value in a neighborhood range. The nonlinear activation function
uses activation functions to process the input data. Neurons in the fully connected layer are
connected to all activated neurons in the layer above it. When training the CNN, the model
scores categories of predicted images, calculates training loss using selected loss functions,
and updates weights through backpropagation functions and gradient descent. The cross-
entropy loss function is one of the most widely used loss functions, and the stochastic
gradient descent method is the most popular method to address gradient descent.

Input Conv 1 Pool 1 Conv 2 Pool 2 FC 1 FC 2 Output

Figure 9. Typical CNN framework for fruit detection and recognition.

Compared with digital image processing and traditional ML techniques, fruit detection
and recognition methods based on CNN have great advantages in terms of accuracy.
Jahanbakhshi, A. et al., (including Iranian researchers and a researcher based in the UK)
(2020) [46] proposed an improved CNN (15, 16, and 18 layers) to detect apparent defects
in sour lemons. In comparison to traditional fruit feature extraction methods, such as
histogram of oriented gradient (HOG), local binary pattern (LBP), support vector machine
(SVM), k-nearest neighbor (KNN), decision tree, and fuzzy classification, the improved
CNN was found to outperform these methods, achieving an accuracy of 100%. Bangladeshi
researchers Sakib, S. et al., (2019) [47] proposed a fruit detection system using CNN. The
Fruits-360 dataset was utilized to evaluate the proposed system. The training accuracy
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and testing accuracy are 99.79% and 100%, respectively. In general, fruit detection and
recognition methods based on CNN can achieve state-of-the-art (SOTA) accuracy for
detecting and recognizing any type of fruit on any background.

Current fruit detection and recognition methods based on DL for automatic harvesting
can be classified into two categories: single-stage fruit detection and recognition methods
(such as YOLO and SSD) based on regression, and two-stage fruit detection and recognition
methods (AlexNet, VGGNet, ResNet, Faster R-CNN, FCN, SegNet, and Mask R-CNN)
based on candidate regions. Single-stage methods define fruit detection tasks as regression
problems of class confidence and bounding box locations (as shown in Figure 10). They
divide input fruit images into a grid of cells, extract fruit feature information through the
convolutional layer, and predict object class probabilities and bounding box coordinates
for each cell. In contrast, as shown in Figure 11, for two-stage methods, in the first stage,
a set of target fruit proposals is generated by the RPN on fruit feature maps produced
by the convolutional layer. The RPN generates region of interest (RoI) proposals for each
location on the fruit feature maps. Each proposal consists of a fixed-size bounding box
and a probability score of containing a target fruit. Based on the scores assigned to these
proposals, the top N highest-scoring regions are selected as final RoI proposals. To generate
RoI proposals, the RPN applies sliding windows of different scales and aspect ratios to
fruit feature maps. In the second stage, each final RoI proposal is cropped into a fixed-size
feature map using RoI pooling. The maps are then fed into a separate CNN for fruit
classification and bounding box regression.
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Input fruit
image 

Convolutional 
layer

Fruit feature
extraction
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Feature map Region proposal
network

RoI proposal RoI pooling

Figure 11. Comparison of one-stage and two-stage fruit detection and recognition methods.

Table 3 compares and analyzes different fruit detection and recognition methods used
by various researchers. In the section on “crop, description, and merit”, we explain the
innovation. In the section on “improvement”, we identify the weaknesses and potential
improvements. In general, two-stage fruit detection and recognition methods have been
shown to achieve higher accuracy than single-stage fruit detection and recognition methods
due to their ability to propose more accurate fruit locations. However, they are slower and
computationally more intensive than single-stage fruit detection and recognition methods.
On the other hand, while single-stage fruit detection and recognition methods are faster
and simpler than two-stage fruit detection and recognition methods, they may be less
accurate, especially for small target fruits.
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2.1. Single-Stage Fruit Detection and Recognition Methods Based on Regression
2.1.1. Fruit Detection and Recognition Methods Based on YOLO

YOLO is one of the most classic and advanced fruit detection algorithms. It can detect
and classify target fruits simultaneously in a single image. As shown in Figure 12, YOLO-v1
was the beginning. YOLO-v1 was proposed by American researchers Redmon, J. et al. in
2015 [66]. YOLO-v2 was proposed by American researchers Redmon, J. and Farhadi, A. in
2017 [67]. It included improvements to the structure of YOLO-v1. The K-means clustering
algorithm was used to determine the optimal number of anchor boxes and to analyze the
relationship between recognition accuracy and speed. Then, they also proposed YOLO-
v3 [68], which featured improvements such as the Darknet-53 backbone network and
multi-scale prediction. Bochkovskiy, A. et al., (2020) [69] systematically analyzed the
processes of data preprocessing and the design of detection and prediction networks. Based
on the analysis, they designed an efficient target detector (YOLO-v4) suitable for a single
graphics card. YOLO-v5 [70] provided four different sizes of target detectors to meet the
needs of different applications. YOLOR [71], YOLOX [72], YOLO-v6 [73], YOLO-v7 [74],
and YOLO-v8 [75] also appeared one after another. YOLO-v8 is a SOTA model. It was open-
sourced on January 10, 2023. The framework is shown in Figure 13. Specific innovations
include a new backbone network, a new anchor-free detection head, and a new loss function
that can run on various hardware platforms from CPU to GPU.

YOLO-v1

YOLO-v2 YOLO-v3

PP-YOLO-v2

YOLO-v4

PP-YOLO

YOLO-v5

YOLOX

YOLO-v8

YOLOR

PP-YOLOE

YOLO-v6

YOLO-v7

Figure 12. Main research processes of YOLO.

Fruit detection and recognition methods based on YOLO are widely used, by virtue of
their advantages. Chinese researchers Xiong, J. et al., (2020) [76] proposed a method based
on YOLO-v2 to detect and count mangoes in fruit images taken by an UAV. The processing
time is 80ms, and the average detection accuracy is 96.1%. British researchers Birrell,
S. et al., (2020) [77] proposed a method based on YOLO-v3 to detect and classify cabbages
in four growth stages, achieving a total detection accuracy of 91% and a classification
accuracy of 82%. In order to create an even more lightweight fruit detection model, Chinese
researchers Li, C. et al., (2022) [58] proposed an improved YOLO-v3-tiny fruit detection
model based on K-means 3D clustering partitioning for small and densely packed lychee
fruits, and compared it with other fruit detection networks (YOLO-v3-tiny, YOLO-v4,
YOLO-v5, and Faster R-CNN). The improved YOLOv3-tiny can recognize lychee fruits
more accurately. The check-all rate, check-accuracy rate, and F1 score are 78.99%, 87.43%,
and 0.83, respectively. However, fruit detection and recognition methods based on YOLO
do not use prior information when predicting fruit positions. This results in a loss of fruit
location accuracy. In addition, when YOLO predicts detection results corresponding to
each bounding box, it requires that the target fruit’s center point must be located inside
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the bounding box. This imposes a strong spatial constraint on the prediction process of
YOLO and makes fruit detection and recognition methods based on YOLO less effective
at detecting small target fruits that appear in groups. In the future, we can input and
fuse semantic information (such as fruit scene and context-related information) into fruit
detection algorithms to greatly improve fruit detection accuracy. For example, Chinese
researchers Miao, Z. et al., (2022) [59] integrated classic image processing methods with
YOLO-v5 to increase fruit detection accuracy and robustness. A tomato-harvesting robot
can be guided to efficiently harvest truss tomatoes, with an average operating time of 9 s
per cluster.

Input CBS CBS C2f×3 CBS C2f×6 CBS C2f×6 CBS C2f×3 SPPF

C2f×3 CBS Concat C2f×3 CBS Concat C2f×3

Concat Upsample C2f×3 Concat UpsampleOutput

CBS Conv BN SiLu CBS Maxpool2d Maxpool2d Maxpool2d Concat CBS

SPPF

Backbone

Neck

Figure 13. YOLO-v8 framework (image reprinted with permission from ref. [78]. 2023, Lou, H.).

2.1.2. Fruit Detection and Recognition Methods Based on SSD

SSD was proposed by American researchers Liu, W. et al. in 2016 [79]. A typical
SSD framework for fruit detection and recognition is shown in Figure 14. It consists of a
base network (such as VGG-16) and an additional set of convolutional and pooling layers
for fruit feature extraction and detection. It also includes an NMS layer for filtering and
selecting the detection results. It borrows the idea of multi-scale fruit detection. Fruit
detection tasks are accomplished by generating multiple fruit feature maps of different
scales during the fruit detection process. The network model calculates confidence scores
for each category in predicted boxes and ground truth boxes, respectively. Then, an NMS
operation is performed on the calculated scores of each prediction boxes. Finally, top-ranked
prediction boxes are outputted as the final result of fruit detection.
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Figure 14. Typical SSD framework for fruit detection and recognition.

Validated on multiple fruit datasets, fruit detection and recognition methods based
on SSD have high accuracy and speed. Vasconez, J.P. et al. (including Chilean researchers
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and a researcher based in America) (2020) [60] evaluated two of the most widely used
architectures (Faster R-CNN with Inception V2 and SSD with MobileNet) for fruit detection.
The former achieves 4.55 FPS, whereas the latter achieves a significantly higher perfor-
mance of approximately 16.67 FPS. However, it is worth noting that fruit detection and
recognition methods based on SSD preprocess input fruit images, which may lead to lower
fruit detection accuracy for relatively small target fruits when passing through deeper
convolutional layers. Chinese researchers Liang, Q. et al., (2018) [80] proposed a real-time
detection method for on-tree mangoes based on SSD. New sampling strategies were de-
signed to optimize data augmentation techniques. With optimized data augmentation
techniques and default box proposals, SSD outperforms Faster R-CNN in mango detection.
Detection results for an almond dataset further confirm the effectiveness of the proposed
method. However, it is important to note that the proposed method has deeper layers
and a larger number of parameters. This results in slower operation speed and longer
computation time.

In general, fruit detection and recognition methods based on SSD also have certain
disadvantages. They independently input fruit image features, extracted by different
convolutional layers, into corresponding network detection branches. This means that
the same fruits in detected images may be identified by bounding boxes of different sizes
simultaneously, which can easily lead to the problem of repeated detection. Additionally,
each detection branch only operates on target fruits in its respective field, making it difficult
to consider the relationship between target fruits of different layers and scales. Therefore,
the detection effect of fruit detection and recognition methods based on SSD on small target
fruits is not good. Further research could improve SSD in detector frameworks, prediction
mechanisms, matching mechanisms, and loss functions.

2.2. Two-Stage Fruit Detection and Recognition Methods Based on Candidate Regions
2.2.1. Fruit Detection and Recognition Methods Based on AlexNet, VGGNet, and ResNet

Typical AlexNet, VGGNet, and ResNet frameworks for fruit detection and recogni-
tion are shown in Figure 15. AlexNet was proposed by American researchers Krizhevsky,
A. et al. in 2012 [81]. It is the first DL framework that extends CNN to the field of CV.
Compared with techniques based on digital image processing and traditional ML, fruit
detection and recognition methods based on AlexNet have great advantages in terms of
accuracy. Chinese researchers Zhu, L. et al., (2018) [82] proposed a highly effective method
for vegetable classification based on AlexNet. The accuracy achieved in the testing set
was significantly improved compared to the BP neural network (78%) and SVM classifier
method (80.5%), with a remarkable accuracy of 92.1%. Indian researchers Rangarajan,
A.K. et al., (2018) [83] demonstrated that the classification accuracy of 13,262 fruit images
was 97.49% for AlexNet. Fruit detection and recognition methods based on AlexNet have
gained widespread acceptance due to their advantages. By modifying the size of the convo-
lutional kernel and convolutional layer, fruit detection accuracy can be effectively improved.
For example, Chinese researchers Ni, J. et al., (2021) [52] improved AlexNet by proposing
a new architecture—E-AlexNet. The new architecture enhanced the convolutional layer,
reduced kernel size, and used L2 regularization and a BN layer instead of LRN layer.
E-AlexNet was compared with the original AlexNet by classifying five strawberry varieties
with different qualities. The average recognition accuracy of E-AlexNet was 90.70%, while
that of the original AlexNet was 84.50%.
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AlexNet
Input 227×227×3

Conv 96 Fliters 
11x11 Stride 4 ReLU

Maxpool 3×3 Stride 2

Conv 256 Fliters 
5x5 Stride 1 ReLU

Maxpool 3×3 Stride 2

Conv 384 Fliters 
3x3 Stride 1 ReLU

Conv 384 Filters 
3×3 Stride 1 ReLU

Conv 256 Fliters 
3×3 Stride 1 ReLU

Maxpool 3×3 Stride 2

Fully Connected 4096

Fully Connected 4096

Fully Connected 1000

Softmax

VGG-16
Input 224×224×3

Conv 64 Fliters 
3x3 Stride 1 ReLU

Conv 64 Fliters 
3x3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Conv 128 Fliters 
3x3 Stride 1 ReLU

Conv 128 Fliters 
3x3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Conv 256 Fliters 
3x3 Stride 1 ReLU

Conv 256 Fliters 
3x3 Stride 1 ReLU

Conv 256 Fliters 
3x3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Conv 512 Fliters 
3x3 Stride 1 ReLU

Conv 512 Fliters 
3x3 Stride 1 ReLU

Conv 512 Fliters 
3x3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Fully Connected 4096

Fully Connected 1000

Fully Connected 4096

Softmax

VGG-19
Input 224×224×3

Conv 64 Filters 
3×3 Stride 1 ReLU

Conv 64 Filters 
3×3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Conv 128 Filters 
3×3 Stride 1 ReLU

Conv 128 Filters 
3×3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Conv 256 Filters 
3×3 Stride 1 ReLU

Conv 256 Filters 
3×3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Maxpool 2×2 Stride 2

Fully Connected 4096

Fully Connected 4096

Fully Connected 1000

Softmax

ResNet-18
Input 224×224×3

Conv 64 Filters 
7×7 Stride 2 ReLU /2

Maxpool 3×3 Stride 2 /2

Conv 64 Filters 
3×3 Stride 1 ReLU

Conv 64 Filters 
3×3 Stride 1 ReLU

Conv 64 Filters 
3×3 Stride 1 ReLU

Conv 64 Filters 
3×3 Stride 1 ReLU

Conv 128 Fliters 
3x3 Stride 2 ReLU /2

Conv 128 Fliters 
3x3 Stride 1 ReLU 

Conv 128 Filters 
3×3 Stride 1 ReLU 

Conv 128 Filters 
3×3 Stride 1 ReLU 

Conv 256 Filters 
3×3 Stride 2 ReLU /2 

Conv 256 Filters 
3×3 Stride 1 ReLU 

Conv 256 Filters 
3×3 Stride 1 ReLU 

Conv 256 Filters 
3×3 Stride 1 ReLU 

Conv 512 Filters 
3×3 Stride 2 ReLU /2

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU 

Average Pooling

Fully Connected 1000

Conv 96 Fliters 
11x11 Stride 4 ReLU

Conv 256 Fliters 
5x5 Stride 1 ReLU

Conv 384 Fliters 
3x3 Stride 1 ReLU

Conv 96 Filters 
11×11 Stride 4 ReLU

Conv 256 Filters 
5×5 Stride 1 ReLU

Conv 384 Filters 
3×3 Stride 1 ReLU

Conv 64 Filters 
3×3 Stride 1 ReLU

Conv 64 Filters 
3×3 Stride 1 ReLU

Conv 128 Filters 
3×3 Stride 1 ReLU

Conv 128 Filters 
3×3 Stride 1 ReLU

Conv 256 Filters 
3×3 Stride 1 ReLU

Conv 256 Filters 
3×3 Stride 1 ReLU

Conv 256 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 512 Filters 
3×3 Stride 1 ReLU

Conv 128 Filters 
3×3 Stride 2 ReLU /2

Conv 128 Filters 
3×3 Stride 1 ReLU 

Figure 15. Typical AlexNet, VGGNet, and ResNet frameworks for fruit detection and recognition.

VGGNet was proposed by American researchers Simonyan, K. and Zisserman, A. in
2014 [84]. It has high accuracy in fruit detection and recognition. The biggest improve-
ment of VGGNet is the depth of the network, which has been increased from 8 layers to
16 or 19 layers. Additionally, VGGNet uses a 3 × 3 convolution kernel to replace the large
convolution kernels (11 × 11, 7 × 7, 5 × 5) in AlexNet. In the case of the same receptive
field, the accumulation effect of the small convolution kernel is better than that of the large
convolution kernel. For example, Indian researchers Mahmood, A. et al., (2022) [85] as-
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sessed the effectiveness of two CNN paradigms (AlexNet and VGG-16) in classifying jujube
fruits based on their maturity level (unripe, ripe, and overripe). The best accuracy achieved
by VGG-16 was 97.65%. Indian researchers Begum, N. and Hazarika, M.K. (2022) [86] used
several fruit detection models (VGG-16, VGG-19, Inception V3, ResNet-101, and ResNet-
152) to classify three tomato classes (immature, partially mature, and mature). VGG-19 had
the best classification accuracy of 97.37% at epoch 50 and batch size 32. Chinese researchers
Pérez-Pérez, B.D. et al., (2021) [87] pre-trained seven CNN architectures (AlexNet, VGG-16,
VGG-19, ResNet-50, ResNet-101, ResNet-152, and Inception V3) using the ImageNet dataset.
VGG-19, with the Adam optimizer, is the one that reported the best accuracy (99.32%).

In order to further improve the accuracy and speed of fruit detection and recognition,
Chinese researchers Li, Z. et al., (2020) [88] proposed a fruit recognition and classification
method based on VGG-M and VGG-M-BN. On the basis of the original VGG, VGG-M
combined the output features of the first two fully connected layers. VGG-M-BN had
the BN layer added. The convergence rate of VGG-M-BN is nearly three times faster.
The quality of datasets, batch size, and different activation functions also influence fruit
recognition and classification accuracy. Firstly, they used VGG-M-BN to train different
numbers of vegetable datasets. Recognition accuracy decreases as the quality of datasets
decreases. Secondly, by contrasting activation functions, they verified that the rectified
linear unit (ReLU) activation function is better than the traditional Sigmoid and Tanh
functions in VGG-M-BN. Finally, they verified that the fruit recognition and classification
accuracy of VGG-M-BN increases as the batch size increases.

ResNet was proposed by American researchers He, K. et al. in 2015 [89]. It has a
high pattern recognition capability. According to the number of backbone layers, ResNet
can be further subdivided into ResNet-18, ResNet-50, ResNet-101, and ResNet-152. Fruit
detection and recognition methods based on ResNet are widely used, by virtue of their
advantages. Helwan, A. et al., (including Lebanese researchers and researchers based in
Turkey) (2019) [90] performed automatic segmentation of bananas based on ResNet. Wang,
D. et al., (including Chinese researchers and a researcher based in America) (2020) [55]
developed a remote apple horizontal diameter detection system based on ResNet to achieve
automatic measurement of apples throughout the entire growth period.

Capturing fruit feature information on multiple scales is one way to address the prob-
lem that target fruits are overlapped and occluded by branches and leaves. American
researchers Rahnemoonfar, M. and Sheppard, C. (2017) [91] optimized the structure of
Inception-ResNet. The Improved-Inception-ResNet can count efficiently, even if fruits are
under shadow, overlapped, and occluded by leaves. However, although the above fruit
detection and recognition methods have high accuracy, they are slow. To address this prob-
lem, Australian researchers Kang, H. and Chen, C. (2020) [92] introduced an enhanced deep
neural network DaSNet-v2 with ResNet. It has the ability to carry out both detection and
instance segmentation of fruits, alongside semantic segmentation of branches. To further
improve the speed of fruit detection and meet the real-time requirements of harvesters,
Australian researchers Kang, H. and Chen, C. (2019) [93] constructed a multifunctional
network for the real-time detection and semantic segmentation of apples and branches.
They combined it with the lightweight backbone of ResNet-101 to improve the real-time
computational performance of the fruit detection model.

2.2.2. Fruit Detection and Recognition Methods Based on R-CNN, Fast R-CNN, and
Faster R-CNN

Typical R-CNN, Fast R-CNN, and Faster R-CNN frameworks for fruit detection and
recognition are shown in Figure 16. R-CNN was proposed by American researchers
Girshick, R. et al. in 2014 [94]. It is the first algorithm to successfully apply DL to object
detection and recognition. Fast R-CNN was proposed by American researcher Girshick,
R, one of the creators of R-CNN, in 2015 [95]. It solves some problems of its predecessor,
such as slow speed and a large overlap of proposal boxes. One of the key innovations of
Fast R-CNN is the “RoI pooling layer”, which operates by taking CNN feature maps and
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regions of interest as inputs and providing the corresponding features for each region. This
allows Fast R-CNN to extract fruit features from all regions of interest in fruit images in a
single pass, instead of R-CNN processing each region separately. It significantly improves
the speed of fruit detection and recognition. However, Fast R-CNN still requires regions of
fruit images to be extracted and provided as inputs to fruit detection models.
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Figure 16. Typical R-CNN, Fast R-CNN, and Faster R-CNN frameworks for fruit detection and
recognition.

Faster R-CNN was proposed by American researchers Ren, S. et al. in 2016 [96]. It takes
images of fruits as inputs and returns a list of fruit classes, along with their corresponding
bounding boxes. Its main innovation is the “RPN”. By integrating region detection into the
main neural network structure, Faster R-CNN achieves near real-time detection speed with
high accuracy and generalization capability.

The fruit detection performance obtained by Faster R-CNN may outperform other
networks (YOLOv3, SSD, and ReFCN) [97]. Therefore, fruit detection and recognition
methods based on Faster R-CNN are widely used. Chinese researcher Wan, S. and Greek
researcher Goudos, S. (2020) [98] proposed a multi-class fruit (apple, mango, and orange)
detection method based on Faster R-CNN. The average detection accuracy was 90.72%,
and the image processing time was 58ms. Fu, L. et al., (including Chinese researchers and
researchers based in America) (2018) [99] proposed a kiwifruit detection method based on
Faster R-CNN and evaluated it on kiwifruit images collected in field environments. Zhang,
J. et al., (including Chinese researchers and researchers based in America) (2020) [100] used
Faster R-CNN to improve a multi-class fruit detection method. They aimed to automatically
detect apples, branches, and tree trunks in natural environments and estimate the bobbing
locations of collected and captured apples.

Under changing lighting conditions, with low resolution, and with severe occlusion
by adjacent fruits and leaves, fruit detection and recognition are very challenging tasks. To
solve the problem, Chinese researchers Wang, P. et al., (2021) [57] proposed an improved
Faster R-CNN with an attention mechanism based on a near-color background for young
tomato detection and recognition. Small target fruit detection and recognition are also very
challenging tasks. To solve this problem, in the localization phase, Chinese researchers Cao,
C. et al., (2019) [101] proposed an improved loss function based on intersection and ratio for
bounding box regression. Additionally, in the recognition phase, the bilinear interpolation
method is used to improve the pooling operation of interest regions.
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2.2.3. Fruit Detection and Recognition Methods Based on FCN, SegNet, and Mask R-CNN

FCN was proposed by American researchers Long, J. et al. in 2015 [102]. A typical
FCN framework for fruit detection and recognition is shown in Figure 17. FCN classifies
fruit images at the pixel level and solves the problem of semantic image segmentation.
FCN replaces the fully connected layer of the original CNN with the convolutional layer so
that the output will be a heatmap instead of a category. Meanwhile, to solve the problem of
smaller image size due to convolution and pooling, up-sampling is used to recover image
size. Chinese researchers Lin, G. et al., (2019) [61], German researchers Zabawa, L. et al.,
(2019) [103], and Li, Y. et al., (including Chinese researchers and a researcher based in
Germany) (2017) [104] used FCN for the semantic segmentation of guava, grape, and
cotton, respectively. Although guava can be segmented easily, the branch is a little difficult
to segment. They also compared FCN with SegNet and classification and regression tree
classifier (CART). FCN outperforms the other two methods. However, FCN makes some
false predictions due to the effects of overlaps and changing lighting conditions. American
researchers Chen, S.W. et al., (2017) [105] proposed a method based on FCN for accurate
fruit counting in complex natural environments. The method works well even under highly
shaded conditions. Furthermore, American researchers Liu, X. et al., (2018) [106] combined
deep convolutional segmentation to accurately count sequential images of visible fruits.

Figure 17. Typical FCN framework for fruit detection and recognition (Source: https://github.com/
Alpharouk (accessed on 5 January 2023).

In general, fruit detection and recognition methods based on FCN can accept fruit
image inputs of arbitrary size, and the recognition efficiency is higher. They avoid the prob-
lem of repeated storage and computational convolution caused by the use of pixel blocks.
They reduce the computational effort of the whole fruit detection operation. However, the
recognition accuracy is not high because they are insensitive to the details in fruit images,
and the classification does not consider inter-pixel relationships.

SegNet was proposed by British researchers Badrinarayanan, V. et al. in 2017 [107].
A typical SegNet framework for fruit detection and recognition is shown in Figure 18. It
follows the segmentation idea of FCN and is a symmetric network model with a supervised
coding and decoding structure. SegNet can handle fruit image inputs of arbitrary sizes.
The coding part reduces the size of input fruit images and the number of parameters
stage by stage through maximum pooling, and records the pooling index positions in
the fruit images. In order to ensure consistency in resolution between input and output
fruit images, decoding processes recover fruit image information through up-sampling.
Finally, it outputs semantic segmentation results through the SoftMax classifier. The major
difference between SegNet and FCN is the method used for up-sampling low-resolution
feature maps to high-resolution feature maps.

103



Agronomy 2023, 13, 1625

Figure 18. Typical SegNet framework for fruit detection and recognition (image reprinted with
permission from ref. [108]. 2020, Peng, H.).

Harvesting robots usually operate in complex natural environments, and the random
growth of trunks and branches poses a challenge for fruit detection and recognition. Majeed,
Y. et al., (including American researchers and a researcher based in China) (2018) [109]
developed a trunk and branch segmentation method using a Kinect V2 sensor. Harvesting
robots need to optimize the position of the end effector based on the position and angle
between fruits and robot components before approaching, grasping, and cutting target
fruits. For this purpose, Dutch researchers Barth, R. et al., (2019) [110] proposed inferring
the position of fruits and stems through sparse semantic segmentation in the image plane.
In addition, to improve the efficiency of fruit detection and enhance real-time performance,
Australian researchers Kang, H. and Chen, C. (2019) [93] used a semantic segmentation
network to detect and segment apples and branches in an orchard in real-time. Meanwhile,
in order to enable harvesting robots to simultaneously recognize and locate multiple target
fruit clusters, Chinese researchers Li, J. et al., (2020) [62] proposed a semantic segmentation
method to segment fruit RGB images into three categories: background, fruit, and branch.
The method achieved accurate and automatic detection of fruits and branches of multiple
lychee clusters in complex natural environments and guided robots to complete continuous
harvesting tasks.

Mask R-CNN was proposed by American researchers He, K. et al. in 2017 [111]. A
typical Mask R-CNN framework for fruit detection and recognition is shown in Figure 19.
It consists of three parts. Firstly, the backbone network extracts fruit feature maps from
input fruit images. Secondly, the fruit feature maps outputted by the backbone network
are sent to the RPN to generate proposals. Finally, the proposals outputted by the RPN are
mapped, and the corresponding target fruit features are extracted from the shared feature
maps. These features are outputted to the FC and FCN for fruit classification and instance
segmentation, respectively. The process generates classification confidence, bounding
boxes, and mask images.

Mask R-CNN combines semantic segmentation with object detection by outputting
mask images. This improves the localization accuracy of small target fruits, as well as the
prediction accuracy of mask images. Fruit detection and recognition methods based on
Mask R-CNN have better robustness and generality for fruit detection and recognition, es-
pecially in situations of clustered fruit growth. Chinese researchers Yu, Y. et al., (2019) [65]
and Jia, W. et al., (2020) [112] used a Mask R-CNN instance segmentation network model
to recognize overlapping strawberries and apples, respectively. They can determine not
only categories but also individuals. Since some ripe green tomatoes are similar in color
to branches and leaves, shaded by branches and leaves, or overlapped by other tomatoes,
accurate detection and localization of these tomatoes is difficult. Chinese researchers
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Zu, L. et al., (2021) [113] proposed using Mask R-CNN for the detection and segmentation
of ripe green tomatoes. The research results showed the effectiveness of the method. The
best model performance was achieved when the IoU was 0.5, and the F1-score of both
the testing set bounding box and the masked region reached 92%. Chinese researchers
Xu, P. et al., (2022) [64] proposed an improved Mask R-CNN network model for the
recognition of cherry tomatoes, considering the prior neighborhood constraint between
fruits and stalks.

Agronomy 2023, 13, x FOR PEER REVIEW 22 of 32 
 

 

segmentation of ripe green tomatoes. The research results showed the effectiveness of the 
method. The best model performance was achieved when the IoU was 0.5, and the F1-
score of both the testing set bounding box and the masked region reached 92%. Chinese 
researchers Xu, P. et al. (2022) [64] proposed an improved Mask R-CNN network model 
for the recognition of cherry tomatoes, considering the prior neighborhood constraint be-
tween fruits and stalks. 

 
Figure 19. Typical Mask R-CNN framework for fruit detection and recognition (image reprinted 
with permission from ref. [114]. 2020, Ni X.). 

In the future, improvements in fruit detection and recognition methods based on 
Mask R-CNN should focus on integrating more convolutions to improve performance, 
and reducing the computational complexity of multi-head attention in the transformer. In 
addition, multimodal fruit detection methods could be adopted to design Mask R-CNN 
fruit detection models based on vision, LiDAR, millimeter-wave radar, and other multi-
sensor fusion technologies. 

3. Discussion 
Currently, there are many factors leading to low accuracy, slow speed, and poor ro-

bustness of fruit detection and recognition. They can be summarized in the following as-
pects: scarcity of high-quality fruit datasets, detection of small target fruits, fruit detection 
in occluded and dense scenarios, detection of multi-scale and multi-species fruits, and 
lightweight fruit detection models. 

(1) Scarcity of high-quality fruit datasets. Fruit datasets, as signal sources to guide 
fruit detection algorithms based on DL for information understanding [41], largely deter-
mine the final performance of trained fruit detection models. Fruit detection and recogni-
tion methods based on DL have two requirements for datasets. One is the sufficiency of 
data, and the other is the richness of data categories. Fruit datasets are mainly collected in 
real field environments and through internet channels. A comparison of the advantages 
and shortcomings of the two collection methods is shown in Table 4. In order to objec-
tively compare the performance of fruit detection and recognition methods, as shown in 
Table 5, international communities provide some public benchmark datasets. Different 
fruit datasets have significant differences in the number, quality, and category of images. 
Researchers can choose compatible fruit datasets for experiments according to their needs. 
The Fruits-360 dataset is the most commonly used public benchmark dataset. The total 
number of categories in this dataset is as high as 131, and the total amount of images is 

Figure 19. Typical Mask R-CNN framework for fruit detection and recognition (image reprinted with
permission from ref. [114]. 2020, Ni X.).

In the future, improvements in fruit detection and recognition methods based on
Mask R-CNN should focus on integrating more convolutions to improve performance,
and reducing the computational complexity of multi-head attention in the transformer.
In addition, multimodal fruit detection methods could be adopted to design Mask R-
CNN fruit detection models based on vision, LiDAR, millimeter-wave radar, and other
multisensor fusion technologies.

3. Discussion

Currently, there are many factors leading to low accuracy, slow speed, and poor
robustness of fruit detection and recognition. They can be summarized in the following
aspects: scarcity of high-quality fruit datasets, detection of small target fruits, fruit detection
in occluded and dense scenarios, detection of multi-scale and multi-species fruits, and
lightweight fruit detection models.

(1) Scarcity of high-quality fruit datasets. Fruit datasets, as signal sources to guide fruit
detection algorithms based on DL for information understanding [41], largely determine
the final performance of trained fruit detection models. Fruit detection and recognition
methods based on DL have two requirements for datasets. One is the sufficiency of data,
and the other is the richness of data categories. Fruit datasets are mainly collected in real
field environments and through internet channels. A comparison of the advantages and
shortcomings of the two collection methods is shown in Table 4. In order to objectively
compare the performance of fruit detection and recognition methods, as shown in Table 5,
international communities provide some public benchmark datasets. Different fruit datasets
have significant differences in the number, quality, and category of images. Researchers
can choose compatible fruit datasets for experiments according to their needs. The Fruits-
360 dataset is the most commonly used public benchmark dataset. The total number of
categories in this dataset is as high as 131, and the total amount of images is considerable.
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However, it suffers from the problems of single-image backgrounds, insufficient data
diversity, and category imbalance.

Table 4. Comparison of fruit image collection methods.

Types Methods Advantages Shortcomings

Real fruit detection
environment

Hand-held camera
High image quality of fruits;

close to real scenes

The process of shooting is
time-consuming and laborious; fruit
image quality is unstable; fruit image
quantization and contrast are difficult

UGV

UAV

Internet channel -- No need for a camera; easy
and fast collection

There are situations such as blurred
images and incorrect labels; data cleaning

and inspection are required

Table 5. Some frequently used fruit image databases.

Datasets
Samples

Species Web-Link Year
Total Training Set Testing Set

Fruit images of
MS COCO - - - - https://cocodataset.org/#download

(accessed on 6 March 2023) 2017

Fruit images of
ImageNet - - - -

https://image-net.org/challenges/LSVRC/
index.php

(accessed on 6 March 2023)
2012

Fruits-360 90,380 67,692 22,688 131
(100 × 100 pixels)

www.kaggle.com/datasets/moltean/fruits
(accessed on 16 February 2023) 2020

Fruit-A 22,495 16,854 5641 33
(100 × 100 pixels)

www.kaggle.com/datasets/sshikamaru/fruit-
recognition

(accessed on 16 February 2023)
2022

Fruit-B 21,000 15,000 vail: 3000
text: 3000

15
(224 × 224 pixels)

www.kaggle.com/datasets/misrakahmed/
vegetable-image-dataset

(accessed on 16 February 2023)
2021

Fruit quality
classification 19,526 - - 18 (256 × 256/

192 pixels)

www.kaggle.com/datasets/ryandpark/fruit-
quality-classification

(accessed on 16 February 2023)
2022

Fresh and rotten
fruits 13,599 10,901 2698 6

www.kaggle.com/datasets/sriramr/fruits-
fresh-and-rotten-for-classification

(accessed on 16 February 2023)
2019

When public benchmark fruit detection datasets cannot meet practical needs, some
scholars have created individual fruit datasets to train a fruit detection model for fruit
detection and recognition in specific environments. In particular, most of the existing public
benchmark fruit detection datasets, such as fruit images of MS COCO and ImageNet, are
collected through internet channels. Many of these images differ greatly from actual fruit
recognition and harvesting situations. They consist of data from simple scenes, mainly for
large and medium-sized fruits. Additionally, datasets for small target fruit detection in
complex scenes are especially scarce. International communities might consider continually
providing and updating quality public benchmark fruit detection datasets, for example,
establishing a unified standard fruit data-sharing platform. The public can upload their fruit
images to the platform, and the platform organizes personnel to identify and annotate them.

Due to the scarcity of high-quality fruit datasets, there are potential directions for
development in the future: (1) Fruit detection and recognition methods based on small-
sample learning may be a key breakthrough. For certain fruit categories for which it is
difficult to obtain a large number of samples, this method allows a small number of fruit
samples to be selected as representative of new fruit categories. Then, the inherent internal
connection between the base fruit class and the new fruit class is used to realize effective
knowledge transfer. (2) Fruit detection and recognition methods based on unsupervised
learning/semi-supervised learning may be another key breakthrough. Current methods
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are mainly based on supervised learning, in which performance relies on a large amount of
labeled fruit data. In unsupervised/semi-supervised learning, the model is pre-trained on
the data with no or little labeled information.

(2) Detection of small target fruits. Fruits always grow in complex environments
with many uncertainties (as shown in Figure 20). We usually define a small target fruit
as being smaller than 32 × 32 pixels relative to the absolute size of the image it is in. The
difficulties of small target fruit detection are as follows: (1) Limited features that can be
extracted. Small target fruits have a small area share and low resolution in images, and they
contain limited features themselves. (2) Convolution operations can cause loss of small
target features. Fruit detection and recognition methods based on DL extract information
of interest about fruits by performing convolution operations on fruit images containing
a large amount of redundant information [50]. Fruit feature maps keep shrinking as the
number of convolutions increases. If the down-sampling rate is too high, a lot of detailed
information for small target fruit detection will be lost. (3) Requirements for the positioning
accuracy of the small target fruit bounding boxes are higher. Compared with large target
fruits, small target fruits are more sensitive to the offset of prediction boxes and less tolerant
of errors. (4) The scale of anchor boxes has not been designed properly. When the scale of
anchor boxes is too large, the area of small target fruits is reduced. Therefore, even if small
target fruits are within anchor frames, the IoU may not reach the threshold value, resulting
in missed detection. In addition, when the receptive field is too large, the fruit detection
results are easily disturbed by a large number of other features. When the preset scale of
anchor boxes is too close, the spatial difference after down-sampling cannot be guaranteed,
resulting in small target fruits being ignored. (5) Sample imbalance. The IoU-based positive
and negative samples are considered negative if the IoU is smaller than the threshold. This
may lead to small target fruits being ignored in the process of model learning due to the
small number of positive samples. Small target fruits usually grow in clusters, which may
further cause occlusion and dense detection problems. When small target fruits appear
together with other scaled fruits, this gives rise to multi-scale detection problems.
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Figure 20. Examples of fruit images acquired under different conditions (photos reprinted with
permission from ref. [48]. 2022, Chen J.).

Current solutions for small target fruit detection mainly include: (1) Increasing the
number of small target fruit samples through data preprocessing and enhancement, such
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as in the research presented in [46,49,55,56,60,62–64]; (2) Generating higher-quality small
target fruit candidate regions by improving the RPN, such as in the research presented
in [56,57,65]; (3) Ensuring the sensory field and small target fruit matching by optimizing
anchor boxes, such as in the research presented in [58,61,62]. Combining traditional
methods for small target fruit image detection may be a trend for future development.
Some small target fruit images contain little information, and they lack the necessary
semantic information. Fruit detection and recognition methods based on DL have limited
feature extraction ability for small target fruits at the pixel level. Therefore, traditional
feature extractors can be introduced to make them more capable of representing features of
fruit images. In addition, depth features extracted using CNN can also be combined with
traditional methods, such as saliency detection and superpixel segmentation, to obtain a
more effective fruit feature representation.

(3) Fruit detection in occluded and dense scenarios. Fruit growth environments
are usually complex. There are cases of inter-fruit occlusion and occlusion by shadows
or other distractions, such as branches and leaves. The difficulty of detecting fruits in
occluded and dense scenarios lies in improving the recall rate of the occluded target
fruits [29]. In overlapping cases, the main reasons for missing the detection of obscured
target fruits are: (1) Fruits are incomplete, and extractable fruit features are sharply reduced.
(2) Overlapping target fruits usually have highly similar features, and it is difficult for fruit
detection models to determine whether they belong to different individuals. (3) The NMS
post-processing method directly discards objects with lower scores in overlapping regions.
For fruit detection in occluded and dense scenarios, the main method of improvement is to
enhance fruit feature extraction.

Commonly used methods to enhance the feature extraction capability of fruits are: (1) in-
creasing the width or depth of networks, such as in the research presented in [52,53,57,59].
However, this method will increase the computational load of models. This requires us
to strike a balance between performance improvement and computational cost increase.
(2) Adding attention mechanisms, such as in the research presented in [55–57]. The in-
troduction of attention mechanisms can help fruit detection models fully consider the
connection between each position of target fruits, effectively enhancing the ability of fruit
detection models to learn fruit features. Current scholars divide them into the channel
attention mechanism and spatial attention mechanism, according to the way the attention
acts on feature maps. In fruit detection models, common implementations of attention
mechanisms include squeeze-and-excitation networks (SENet) and the convolutional block
attention module (CBAM). However, adding an attention mechanism will make fruit de-
tection models more complex and increase convergence time. At the same time, adding
an attention mechanism requires careful consideration of whether the design principle of
attention, as well as the position and method of action, are suitable for current tasks. Other-
wise, it may have a negative impact on fruit detection models. How to reasonably design
and implement attention mechanisms, and efficiently use a wide range of environmental
features, are important research directions for the future.

(4) Detection of multi-scale and multi-species fruit. Most current fruit detection models
are solutions for specific crops. When the detected fruits appear on multiple scales or in
multiple types, it is difficult to guarantee the model’s generalization ability. For the multi-
scale fruit detection problem, the multi-scale training method may be a key breakthrough.
It can enable fruit detection models to process fruit information at different scales and
improve their ability to capture cross-scale fruit information. Overall, the use of multi-
scale fruit prediction networks can make full use of receptive fields, which can effectively
alleviate the lack of scale invariance in convolutional neural networks. However, this also
increases the number of calculations, resulting in higher demand for hardware facilities.
For multi-category fruit detection problems, a common solution is to use transfer learning
technology to fine-tune existing models. However, this may result in a loss of detection
accuracy for the original fruit categories. Adding a large amount of new category data to
the original dataset and retraining a new model can ensure the detection effectiveness of
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the original fruit categories. However, every time a new category appears, it needs to be
trained from scratch. This not only consumes time and resources, but also cannot satisfy
complex, dynamic environments such as farmland orchards. For this problem, we believe
that introducing the idea of incremental learning can improve the generalization ability
and adaptive learning ability of fruit detection models.

(5) Lightweight fruit detection models. With the continuous development of the
field of fruit detection and recognition, researchers are also committed to improving the
accuracy of fruit detection models, and the fruit detection models are gradually becoming
more complex. For example, some researchers add a super-resolution module to the
localization part of fruit detection networks. This may increase the computational load,
which, in turn, makes the fruit detection model more dependent on high-performance
computing resources. How to further optimize network structures, reduce the number of
model parameters, decrease computational complexity, improve running speed, and deploy
them on mobile devices are currently hot research topics. Model pruning, quantization,
knowledge distillation, and matrix decomposition are effective ways to achieve lightweight
and high efficiency. For example, the lightweight MobileNet [11] or ResNet-101 [23] are
used to replace the original backbone feature extraction network for fruit feature extraction.
At the same time, optimizing operators within frameworks and using AI chips in hardware
can greatly accelerate the running speed and parallelism of fruit detection models.

4. Conclusions

Fruit detection and recognition methods based on DL are the mainstream methods
for accurate, fast, and robust fruit detection and recognition. These methods are also an
important development trend. They are relatively less affected by environments. Our work
focuses on providing an overview and review of DL applied to fruit image recognition,
mainly in the areas of detection and classification. In order to further define the study
areas of this paper, we identify fruit detection and classification tasks as the determination
of the class based on their specific types. In general, current fruit detection and recogni-
tion methods based on DL can be divided into the following areas: methods based on
YOLO, SSD, AlexNet, VGGNet, ResNet, Faster R-CNN, FCN, SegNet, and Mask R-CNN.
These methods can also be classified into two categories: single-stage fruit detection and
recognition methods (YOLO, SSD) based on regression, and two-stage fruit detection and
recognition methods (AlexNet, VGGNet, ResNet, Faster R-CNN, FCN, SegNet, and Mask
R-CNN) based on candidate regions.

Most of the current research work is based on two-stage fruit detection and recognition
methods. Improvement and application research based on Faster R-CNN (21%) is currently
a hotspot. The recognition accuracy of fruit detection and recognition methods based
on Faster R-CNN is high, but the recognition speed is limited by complex anchor frame
mechanisms. When there are mobile deployment and high recognition speed requirements,
fruit detection and recognition methods based on YOLO (17%) are used most frequently.
Their recognition speed is fast, but the recognition effect on small target fruits is not very
good. In addition, ResNet (11%) is the most popular backbone network, followed by
AlexNet (7%). Most of the research focuses on apples (32.14%), followed by tomatoes
(8.93%), and citrus (7.14%). These three kinds of fruits are in high demand and yield
globally. There are some reasons that make them ideal candidates for automatic harvesting.
Firstly, they hang from plants individually, making them easily detectable based on their
distinctive features. Secondly, they have no extreme variations in size or weight. Lastly,
they are relatively hard and not easily damaged in mechanical operations. However, in
terms of fruit dimensions and peduncle length, different cultivars may exhibit different
characteristics that can affect fruit detection and recognition performance. This poses
challenges for adapting fruit detection and recognition methods for different cultivars.
Future work could aim to identify cultivars that are more suitable for automatic harvesting.

The scarcity of high-quality fruit datasets, detection of small target fruits, fruit detec-
tion in occluded and dense scenarios, detection of multiple scales and multiple species
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of fruits, and lightweight fruit detection models are the current challenges of fruit de-
tection and recognition based on DL for automatic harvesting. The quality and scale of
fruit datasets, appropriate improvement strategies, and underlying model architectures
all have a significant impact on the detection and recognition performance. For example,
fruit data preprocessing can standardize data by cleaning and adjusting them. Fruit data
augmentation can effectively expand data and increase data diversity, thereby reducing the
dependence on specific factors and improving model robustness. Fruit feature fusion is
conducive to alleviating the problem of fruit feature disappearance and improving the detec-
tion effect of small target fruits and multi-scale fruits. Building a multi-task learning model,
the original fruit detection framework is beneficial for obtaining more fruit information by
combining other learning tasks. Moreover, establishing a parameter-sharing mechanism
through multi-task learning can significantly improve the performance of fruit detection
and recognition. Two-stage fruit detection and recognition methods pursue faster speeds
and lighter weights while ensuring fruit detection accuracy. Single-stage fruit detection and
recognition methods improve fruit detection accuracy while maintaining the advantages
of detection speed and model size. Achieving higher fruit detection performance and a
balance between fruit detection precision and speed are current development trends.

Future research should prioritize addressing these current challenges and improv-
ing the accuracy, speed, robustness, and generalization of fruit vision detection systems,
while reducing the overall complexity and cost. This paper hopes to provide a reference
for follow-up research in the field of fruit detection and recognition based on DL for
automatic harvesting.
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Abstract: The application of intelligent mobile robots in agriculture has emerged as a new research
frontier, with the integration of autonomous navigation technology and intelligent agricultural robots
being the key to the widespread adoption of smart agricultural machinery. This paper investigates
comprehensive coverage path planning for tracked lawnmowers within orchard environments and
addresses challenges related to task allocation and battery life. Firstly, in this study, the motion
model of the tracked lawnmower was initially simplified based on assumptions about the orchard
environment. Force analyses were conducted on each of its motion mechanisms. For the known
orchard environment, a grid-based mapping technique was employed to model the orchard envi-
ronment. Then, in order to improve the algorithm speed and reduce the number of turns during
the lawnmower’s traversal, the A* search algorithm was enhanced by combining the method of
robot cluster traversal in the orchard environment. Finally, the improved method was simulated
and verified in the MATLAB platform to investigate the influence of the number of lawnmower
clusters on the path planning in the connected and non-connected orchards. Furthermore, two sets of
on-site field trials were meticulously designed to validate the reliability, practicality, and efficacy of
the simulation experiments.

Keywords: clustered lawnmowers; grid-based method; task allocation; comprehensive coverage
path planning

1. Introduction

Traditional manual weeding is plagued by issues such as low labor efficiency, high
production costs, and heavy workloads [1,2]. Therefore, mechanized weeding, particularly
in conjunction with the emerging technology of robotic lawnmowers [3], is poised to become
a primary solution. Robotic lawnmowers have the potential to alleviate labor burdens,
reduce pesticide usage, protect orchard ecosystems, and enhance orchard productivity [4–6].
In the application of lawnmowers, the focal point of research lies in how to plan the travel
paths of robotic lawnmowers. Commonly used path planning methods are categorized
into traditional and intelligent approaches. Traditional path planning methods include
free space methods [7], graph search methods, grid methods, and artificial potential field
methods [8], whereas intelligent path planning methods are built upon theories such as
genetic algorithms [9,10] and neural networks [11].

The problem of orchard traversal and coverage by robotic lawnmowers is an extension
of path planning, falling under the umbrella of full-coverage path planning. Scholars have
explored various methods for full-coverage path planning, with the A* algorithm having
first been introduced by P. Hart, N. Nilsson, and B. Raphael in 1968 [12]. This algorithm,
an enhancement of Dijkstra’s algorithm, incorporates a heuristic function, estimating the
cost function value, to effectively search for the optimal path. However, it suffers from
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an abundance of expanded nodes and large turning angles during path search. T. Tsuji
et al. proposed the artificial potential field method (APF) [13], treating the movement of
robots in the environment as particles in a potential field to achieve obstacle avoidance and
navigation. Nevertheless, in complex environments, the robot may fail to find a globally
optimal path, and obstacle avoidance is less effective in densely populated obstacle layouts.

Moreover, integrating full-coverage path planning technology with a robotic swarm
system [6] not only addresses issues of insufficient work capacity and poor fault tolerance
in single-robot coverage but also adds flexibility to the task execution process, greatly
improving work efficiency. In this context, ref. [14] combined a single-robot path planning
algorithm with unit decomposition and heuristic search algorithms, proposing a multi-robot
coverage planning method for floor-cleaning robots. Although this algorithm segmented
the target area, it did not further investigate multi-robot task allocation. Refs. [15,16] intro-
duced a heuristic function into the spanning tree algorithm and introduced a backtracking
mechanism. This method was applied to multi-robot coverage path planning, enhancing
robot coverage efficiency and algorithm robustness. However, it exhibits lower coverage
efficiency when the starting points of the robots are unevenly distributed.

In the working scenario of a lawnmower cluster system, the problem of multi-robot
collaborative task allocation is also a research hotspot [17]. Currently, multi-robot task
allocation methods are mainly centralized, distributed [18], and hybrid, with corresponding
algorithms including market mechanism-based allocation, linear programming-based task
allocation, and swarm intelligence-based task allocation [19]. The market mechanism-
based task allocation method proposed in [20] effectively addresses task allocation issues in
dynamic or uncertain environments where a robot swarm works. However, it is not suitable
for complex task scenarios in the system. The combinatorial auction-based task allocation
method suggested in [21] resolves insoluble problems in task allocation and approximates
the optimal solution. Still, this method typically involves a large number of combinatorial
and auction processes, leading to high computational complexity, especially when the
number of tasks and robots is large, impacting the real-time efficiency of the algorithm. The
hybrid integer linear programming allocation method proposed in [21] can search for the
optimal solution but exhibits lower allocation efficiency. Task allocation methods based
on [22,23] address the issues of low task allocation efficiency and poor system scalability.
When tackling the problem of multi-robot task allocation, swarm intelligence algorithms
such as ant colony algorithms [24,25] or neural networks [26,27] exhibit high allocation
efficiency, strong applicability, and ease of implementation, garnering significant attention
from researchers [28].

Currently, there is relatively limited research by scholars on the path planning of
orchard lawnmower robots, mainly focusing on flat areas and trimming fields of lawns.
Furthermore, due to the overall large structure and high cost of lawnmower robots, their
widespread application is constrained. This paper, set against the backdrop of cluster
lawnmower operation, focuses on the traversal and coverage technology of cluster lawn-
mower robots in known orchard environments. It considers area decomposition and path
planning under different constraints, analyzes the impact of different cluster lawnmower
quantities on path planning, and identifies the optimal number of cluster lawnmowers for
full-coverage path planning in the target area. The research objectives of this project are
as follows:

(1) To investigate the motion dynamics of a tracked lawnmower, this study simplifies
its motion model based on specific assumptions regarding the orchard environment.
Subsequently, a detailed force analysis is conducted on each individual motion mech-
anism. Employing a grid-based mapping technique, the known orchard environment
is accurately modeled.

(2) An improved A* algorithm is proposed to address existing issues in current lawn-
mower robot full-coverage path planning, thereby ensuring better traversal and
coverage of the target area, with the lawnmower robot completely avoiding fruit
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trees and other obstacles during traversal. This paper validates the practicality of the
improved algorithm through simulation experiments and field tests.

(3) A comprehensive investigation is undertaken concerning the clustering of lawn-
mowers, involving an in-depth analysis of the influence of cluster quantity on path
planning within both connected and non-connected orchards. The validation of simu-
lation experiments is accomplished through meticulous field trials, ensuring the rigor
of the research findings.

The remaining sections of this paper are organized as follows. Section 2 simplifies the
motion model of the tracked lawnmower and conducts force analysis. The grid diagram
method is used to model the known orchard environment. Section 3 introduces the task
allocation method, which evenly distributes the workload based on the lawnmower robot’s
energy capacity, and presents the improved A* path planning approach. In Section 4, simu-
lations and on-site experiments are conducted to validate the improved A* path planning
algorithm for varying numbers of lawnmower robots in the cluster. The performance of the
proposed algorithm is assessed and analyzed. Finally, Section 5 summarizes and provides
an outlook on the presented work.

2. Orchard Environmental Information Processing and Motion Analysis of
Tracked Lawnmower
2.1. Orchard Environmental Information Rasterization

To ensure the accuracy of path planning, this paper employs a grid model to describe
the two-dimensional workspace of the lawnmower robot, using binary information to
represent orchard layout information. Initially, the grid size is determined, dividing the
actual working environment into equally sized grid cells based on the cutting width of the
lawnmower’s blade. Grid cells without obstacles are designated as white grids, indicating
areas where the lawnmower can navigate. Grid cells with obstacles are represented as black
grids, indicating areas the lawnmower must avoid and cannot traverse. The following
assumptions are made:

(1) As fruit trees within the orchard constitute the primary impediments in grid-based
environmental modeling, requiring the lawnmower to navigate around them during
operation, it is essential to represent obstacle dimensions in the grid map as larger
than their real-world counterparts (employing fuzzy processing for modeling fruit
trees). This entails incorporating a designated safety margin into the actual dimen-
sions of obstacles within the environment (illustrated in Figure 1). Consequently,
safety considerations are not imperative during operation of the lawnmower, and the
lawnmower robot can be treated as a point mass while in motion.

(2) Additional impediments within the orchard, such as large rocks and wells, similarly
undergo fuzzy processing. In essence, obstacle dimensions in the grid map are
magnified compared to their actual dimensions (as depicted in Figure 1).

(3) In this study, the lawnmower robot operates solely within a two-dimensional
workspace, and the impact of the lawnmower robot’s height is not considered.

(4) The positions of fruit trees in the orchard are static, so the locations of obstacles on the
grid map remain constant throughout the lawnmower robot’s movement.

On a two-dimensional plane, the orchard environment map where the lawnmower
operates is divided into numerous equally sized grid cells. Each grid is annotated as 0
or 1 based on the presence of obstacles within the grid. In the grid map, the coordinates
in the grid coordinate system can be correlated with latitude and longitude coordinates,
resulting in more precise localization and thus enabling more accurate path planning. To
objectively represent the grid-based environmental modeling, the following definitions
are established:

Definition 1. Target Workspace:

M = {(x, y)|x, y are points within the mowing range of the lawnmower}
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Definition 2. Traversable Area:

M∅ = {x, y|obs(x, y) = 0} ⊆ M;

where obs(x, y) is the occupancy function:

obs(x, y) =
{

0, No obstacles
1, With obstacles

}

The no-obstacles area can be further divided into the normal driving area, uphill area,
downhill area, and overgrown grass area.
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Definition 3. Non-traversable Area:

M∆ = {x, y|obs(x, y) = 1} ⊆ M;

Definition 4. After the lawnmower starts working, grids that have been traversed and do not
contain obstacles are labeled obs(x, y) = 2.

Definition 5. The maximum length of the environmental map is denoted as Llong, the maximum
width is denoted as Wwide, and the dimensions (length and width) of each unit grid, denoted as Ds,
are equal to the mowing width Wmower of the lawnmower.

The grass-cutting robot requires effective paths to navigate in the simulated grid map.
Therefore, it is necessary to define valid paths to enable the robot to move properly. During
the journey from the starting point to the destination point, the point robot can move in
eight directions: up, down, left, right, upper left, upper right, lower left, and lower right.
The point robot is not allowed to cross over obstacles; any attempt to traverse through the
center of an obstacle is considered an invalid path. Instead, the point robot must follow
valid paths by maneuvering around obstacles and moving into adjacent grid cells.

2.2. Motion Analysis of Tracked Lawnower

When establishing the motion model of the tracked lawnmower, the ground envi-
ronment of the orchard should be considered first, taking into account the area of contact
between the tracks and the ground. Simultaneously, it is necessary to confirm the opera-
tional state of the tracked lawnmower. In this study, the focus is primarily on establishing
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a motion model for the steady-state movement of the tracked lawnmower in orchards
located in hilly and mountainous areas. Therefore, the following conditional assumptions
are made:

(1) Orchards in hilly regions mainly refer to those planted on undulating, continuous low
hills. These orchards have an absolute height of 500 m, and the relative height does not
exceed 200 m. Among them, orchard terrains with slopes of less than 15 degrees, such
as flat or gently sloping areas, are suitable for mechanized cultivation and planting.
However, when the slope of the orchard terrain exceeds 25 degrees, mechanized
operations in the orchard become challenging. Therefore, it is assumed that the
tracked lawnmower operates on slopes between 0 and 15 degrees, and the unevenness
of the orchard ground is not considered.

(2) The assumption is made that the tracked lawnmower behaves as a rigid body during
its motion.

(3) Deformation of the rubber tracks during motion and changes in track tension are not
considered.

In this study, the walking model of the tracked lawnmower adopts a crawler walking
mechanism. The main components constituting the crawler walking mechanism are the
bogies on both sides of the tracked lawnmower. These bogies consist of a bogie frame and
a “four-wheel and one-belt” arrangement (as shown in Figure 2). During operation of the
lawnmower, the tracks come into direct contact with the soil. At this point, the weight
of the tracked lawnmower is primarily supported by the supporting wheels. When the
driving wheel operates, the tracks undergo a winding motion relative to the bogie frame.
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Figure 2. Tracked lawnmower bogie mechanism.

The overall structure of the tracked lawnmower is primarily composed of two systems:
the chassis and the track, forming a complex multibody system. When the lawnmower
travels on a certain slope without undergoing steering or pitching motion, both the frame
and the tracks undergo translational motion, while the wheels undergo rotational motion.
Therefore, when calculating the energy of the lawnmower, it needs to be simplified into a
multibody model. When the lawnmower is working in an orchard and does not undergo
steering motion, in order to ensure that the lawnmower continues to travel in the given
direction along a specified path, coordinate s(x) = x is created for the given path. Thus, the
motion of the lawnmower is subject to the following constraints:

(1− s)r1θ1 = x (1)

where s represents the relative sliding rate between the lawnmower’s track and the ground,
r1 denotes the radius of the drive wheel, and θ1 represents the angular velocity of the
drive wheel.

The resistance encountered by the lawnmower during motion includes acceleration
resistance Fa, air resistance Fw, rolling resistance FR, and slope resistance FG. Due to the
relatively low speed of the lawnmower during movement in the orchard, the impact of air
resistance is not considered in this study. Assuming that the road conditions and forces
acting on the lawnmower are symmetrical during travel, the forces on the tracks and the
motion of the tracks are also symmetrical. For force analysis, one track is selected (as shown
in Figure 3).
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In Figure 3, N is the vertical reaction force from the ground to the lawnmower, G is the
weight of the lawnmower itself, and m is the mass of the lawnmower. Assuming that the
motor of the lawnmower imparts a driving torque M to the drive wheel, the rated power of
the motor is P, and the transmission efficiency of the motor is η, then the driving force of
the lawnmower is given by:

F =
ηP

.
x

(2)

where
.
x represents the coefficient for the conversion of motor power output to mechanical

force.
During the driving process, the lawnmower undergoes translational motion due to its

own mass, resulting in a translational component Fa,x = max. The rotational component
generated by the acceleration and deceleration of rotating components in the lawnmower
is given by:

Fa,r = −
Ma

r1
=

I
..
θ1

r1
(3)

where
..
θ1 =

..
x
r1

, Fa,x, and Fa,r constitute the acceleration resistance Fa of the lawnmower
during travel, where ax =

..
x represents the acceleration of the lawnmower along the x-

direction. Ma represents the inertia torque generated by the non-uniform motion of rotating
components, and I is the total equivalent rotational inertia generated by all non-uniformly
moving rotating components of the lawnmower.

To simplify the analysis process, considering equal masses for the tracks borne by each
wheel, then:

I =
1
2

n

∑
i=1

λ2
i (mi +

m′

n
)r2

i (4)

where mi is the radius of each wheel, ri is the radius of each wheel, m′ is the mass of the
track, n is the number of wheels, and the transmission coefficient ratio is λi. The rotational
component is then given by:

Fa,r =

..
x

2r2
1

n

∑
i=1

λ2
i (mi +

m′

n
)r2

i (5)

The total resistance during mowing operation is:

FD = G sin α + f G cos α + m
..
x +

..
x

2r2
1

n

∑
i=1

λ2
i (mi +

m′

n
)r2

i (6)

Under rated conditions, the motor will experience a certain torque loss ML = (1− η) P
2πn0

,
where n0 is the rated speed of the motor. The magnitude of the torque loss is related to
the speed. Assuming δ is a constant and s is the slip ratio, the transmission efficiency is
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given by η = 1− δr1
.
θ1 = 1− δ 1

1−s
.
x. When the slip ratio s = 0, the loss force during the

lawnmower’s travel is:
FΦ = δ

p
2πn0r1

.
x (7)

For a given path, the lawnmower is studied as a whole during the travel process
since the system has only one degree of freedom. As the system only has one degree of
freedom, the velocity v = x. While the lawnmower is traveling in the orchard, apart from
the tracks and wheels, the other components undergo translational motion. Therefore, the
velocities of these components are the same, i.e., v = r1θ1(1− s). The total energy of the

system includes the translational kinetic energy 1
2 mv2, rotational kinetic energy 1

2

n
∑

i=1
Ji

.
θ

2
i ,

gravitational potential energy Gx sin α, and torsion spring elastic potential energy 1
2 kγ2.

The total energy of the lawnmower system is expressed as:

L =
1
2

mv2 +
1
2

n

∑
i=1

Ji
.
θ

2
i − Gx sin α− 1

2
kγ2 (8)

where Ji is the rotational inertia of the wheel and track system, and γ is the torsion angle of
the spring.

The Lagrange equation for the system is given by:

d
dt
(

∂L
∂q

)− ∂L
∂q

= Q + FΦ (9)

where FΦ is the loss force, Q = F− FD is the active generalized force, and L, Q, and FΦ are
substituted into the Lagrange equation to obtain the motion differential equation:

w
..
x + a

.
x + c = 0 (10)

where w = 2m +
n
∑

i=1
(mi+

m′
n ), a = δM0

r1
, c = 2G sin α + µG cos α− Mo

r1
, and MO = P

2πno
.

Integrating the above equations, the kinematic equation for the tracked lawnmower in
orchard travel is obtained as:

{
x = −c1

w
a e−

a
w t − c

a t + c2

v = c1
w
a e−

a
w t − c

a
(11)

where c1 and c2 are constants. Assuming the initial travel conditions for the lawnmower are
t = 0, x = 0, and v = v0 and substituting them into the equation, the results are: c1 = v0 +

c
a ,

c2 = w
a (v0 +

c
a ).

Therefore, the velocity of the tracked lawnmower in orchard travel is given by:

v = (v0 +
c
a
)e−

a
w t − c

a
(12)

3. Clustered Lawnmower Task Allocation and Path Planning Methods
3.1. Problem Description and System Framework

For the path planning of multiple lawnmowers in the orchard, a global path planning
approach is employed based on the known external working environment. This paper fo-
cuses on planning the movement paths of tracked lawnmowers in a two-dimensional plane
and employs a grid-based mapping method to create a simulated working environment for
the lawnmowers (as shown in Figure 4), comprising M*N grid cells.

In Figure 4, white grids represent grids where the lawnmower can travel, gray grids
indicate obstacle grids (i.e., impassable grids), pink grids represent uphill areas, blue
grids denote downhill areas, red grids represent overgrown grass areas, and yellow grids
represent areas with sparse weeds. The positions of obstacles on the grid map are fixed.
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In this section, the working area is divided into subareas, and each subarea is assigned
to individual lawnmowers based on specific constraints. This allocation strategy ensures
efficient obstacle avoidance as the lawnmowers execute their tasks.
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In this section, the research on lawnmowers and orchard environment is characterized
by the following two points:

(1) The lawnmowers in the cluster are homogeneous robots, meaning each lawnmower
carries the same amount of energy.

(2) The environmental information of the orchard is known. The positions of the trees
and other obstacles in the orchard are fixed and unchanging, and there are no dynamic
obstacles in the orchard.

The problem of orchard traversal coverage for the cluster of lawnmowers can be
summarized as a multi-robot task allocation problem in obstacle environments. This
includes constructing the environmental map, decomposing and assigning target areas,
and planning subregion paths.

Subsequently, a mathematical description of the complete coverage path planning is
presented. The lawnmower operates within a two-dimensional bounded environment. The
lawnmower’s specific location in the real environment can be represented using coordinates
(x, y) in a two-dimensional coordinate system, denoted as follows:

M = {(x, y)|“x, y” represent the lateral and longitudinal coordinates in the actual space}

To indicate the specific status of each grid in the simulated environmental map, the
function obs(x, y) is defined. When obs(x, y) = 0, it indicates that the area is a grass-covered
region in the orchard, which means it is the area that the lawnmower robot needs to traverse
(the traversable area), and it can be represented as: M1 = {(x, y)|obs(x, y) = 0} ⊆ M. When
obs(x, y) = 1, it indicates that this grid is either an obstacle area or an area where fruit trees
are planted, which means it is an area that the lawnmower robot does not need to traverse
(non-traversable area), and it can be represented as: M2 = {(x, y)|obs(x, y) = 1} ⊆ M.
The geometric relationship among the environmental map region M, the area that the
lawnmower robot needs to traverse M1, and the area that the lawnmower robot does not
need to traverse M2 can be described as follows: M1 ∩M2 = ∅, M1 ∪M2 = M.
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In this way, the travel path of the lawnmower robot in the orchard environment is
composed of the trajectories of each point traversed by the lawnmower robot in the covered
area li, represented by the set L:

L =
{

li(x, y, xs, ys, xg, yg)
∣∣i = 1, 2, . . . , n

}

where li represents the path traveled by each lawnmower robot to completely traverse
a subregion of the covered area, the coordinates (xs, ys) are the starting positions of the
lawnmower, and the coordinates (xg, yg) are the endpoints for each lawnmower’s travel,
so each lawnmower’s travel path is a sub-path of L.

3.2. Target Area Decomposition

In this section, the optimal travel direction for the lawnmower is determined. One of
the factors that must be considered in the full-coverage path planning problem is the turning
situation of the lawnmower while traveling. To reduce the lawnmower’s working time and
its energy consumption, it is necessary to minimize the number of turns the lawnmower
makes. Therefore, determining the direction in which the lawnmower traverses is aimed at
reducing the total working time and conserving the overall energy of the lawnmower.

The optimization objective is to reduce the total working time and energy consumption
of the lawnmower. Therefore, the direction with the minimum number of turns for the
lawnmower is chosen as the optimal travel direction. To determine the lawnmower’s travel
direction, a common approach is to traverse and identify the minimum width direction of
the area of the orchard to be covered. Subsequently, the vertical direction of the orchard’s
minimum width direction is chosen as the lawnmower’s optimal travel direction. The
specific steps are as follows:

(1) Place the lowest point of the convex polygon representing the area to be covered at
the x-axis of the two-dimensional coordinate system, ensuring that the y-coordinate
of this lowest point is 0.

(2) Rotate the polygon while maintaining its lowest point on the x-axis. Simultaneously,
measure the height of the polygon in real time, i.e., the y-coordinate value of the
highest point of the polygon.

(3) Select the direction with the smallest y-coordinate value for the highest point of the
polygon, which corresponds to the minimum width direction of the convex polygon.
This direction determines the optimal travel direction for the lawnmower, which is
the angle in the vertical direction from the x-axis to the minimum width direction of
the convex polygon, as illustrated in Figure 5, which represents the search process.
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Partitioning the target area into multiple subareas is a prerequisite for task allocation.
Rationally dividing the target area into subareas can reduce the problem of unsolvable
task allocation and enhance the efficiency of robot task completion, improving system
robustness. For the case of grass-cutting robots traversing the orchard for weed control,
how to partition the area of the orchard waiting to be covered into corresponding subareas
based on the robot’s available energy is critical for solving the allocation problem. In
this study, the proposed models for estimated energy consumption Py and actual energy
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consumption Pz are introduced to constrain the subdivision of subareas. Estimating energy
consumption calculates the total energy consumed by the lawnmower while traversing
each row of the grid map. During the traversal process, the lawnmower may revisit certain
grid cells, and actual energy consumption includes the cost of revisiting these cells in
addition to the estimated energy consumption. The specific steps are as follows:

(1) Calculate the energy consumption to traverse each row in the grid map and iteratively
determine the estimated energy consumption Py to cover the entire grid map.

(2) Begin by partitioning the area based on the estimated energy consumption, making
sure it is below the energy capacity of each lawnmower P, and perform initial path
planning for the segmented areas.

(3) By traversing the initially partitioned regions, the actual walking path is determined,
which is used to calculate the actual energy consumption, denoted as Pz, required to
traverse the target area.

(4) Divide the areas based on actual energy consumption, ensuring it stays below the
energy capacity of each lawnmower, to determine the final subdivision of the area.

The specific process of regional division is illustrated in Figure 6.
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3.3. Task Assignment under Multiple Constraints

Multi-Robot Task Allocation (MRTA) for Multiple Robots is a critical issue for the
functionality of multi-robot systems. It involves assigning tasks to each robot in a way that
improves system efficiency. In the face of complex orchard terrain, individual lawnmowers
may experience insufficient coverage due to their own carried energy limitations and the
influence of intricate topography. This issue is addressed by creating logically constrained
work zones and allocating segmented sub-regions to each lawnmower to ensure complete
coverage of the target area. In a multi-robot system, the shortest working time is determined
by the longest working time of a single robot. This section focuses on optimizing objectives
such as reducing the working time of the cluster of lawnmowers and lowering the total
cost. It considers the energy carried by each lawnmower and the energy consumption
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required for the work. The goal is to balance the working time of each lawnmower, aiming
to enhance the overall efficiency of the lawnmower cluster while minimizing costs. This
section discusses the task allocation problem for the lawnmower robot cluster from two
perspectives: task allocation objectives and mathematical models for task allocation. When
assigning tasks to the lawnmower robot cluster, the following principles are followed:

(1) Rationality: This ensures that all the pending areas in the orchard are allocated to the
corresponding lawnmower robots, guaranteeing the complete coverage of all pending
areas in the orchard.

(2) Minimization of travel distance: The goal is to minimize the travel distance for each
lawnmower robot to reduce their energy consumption.

(3) Fairness: Task allocation should be fair, ensuring that each lawnmower robot has
an equal opportunity to perform tasks. (The principle of fairness employed in this
study is instead integral as a strategic element for enhancing system efficiency. In
this context, fairness refers to the equitable distribution of workloads among the
robots, thereby optimizing the overall longevity and maintenance of the system.
This approach ensures that no individual robot is subjected to continuous overload,
which in turn mitigates the rate of wear and tear on each unit. Consequently, this
strategy extends the operational lifespan of the entire fleet and maintains uniform
performance levels across all units. Additionally, this principle enhances the system’s
adaptability in dynamic operational environments. By ensuring a balanced task
allocation, the system is better equipped to manage unforeseen changes, such as
varying terrain challenges or individual robot malfunctions, thereby maintaining
operational resilience and efficiency.)

The mathematical description of the cluster lawnmower task allocation problem is as
follows: The simulated grid map of the orchard is divided into n pending areas based on
the energy of the lawnmower robot itself. In the cluster lawnmower system, which consists
of m lawnmower robots and n pending areas, the m lawnmower robots are represented
by the set R = {Ri | i = 1, 2, 3 . . . m}, and the n pending areas are represented by the set
T = {Ti | i = 1, 2, 3 . . . n}. Each pending area in the system only requires the allocation of
one lawnmower robot to complete the task. A single lawnmower robot can only complete
one task within a certain time period. However, after completing a task and receiving
energy replenishment, the lawnmower robot can traverse and cover another area. The
system’s objective is to allocate the n pending areas to the m lawnmower robots in a rational
manner to improve work efficiency and minimize overall energy consumption.

Mathematical description of lawnmower task execution capability: The lawnmower’s
ability to execute tasks refers to whether the lawnmower has the energy to perform a
specific task. Let Pij = 1 represent that lawnmower i can execute a task in target area j;
likewise, Pij = 0 indicates that lawnmower i cannot execute a task in target area j.

Energy consumption for individual lawnmower tasks: During the execution of
a specific task, a lawnmower consumes a certain amount of energy, where the cost
of an individual task is represented by a two-dimensional matrix D with dimensions
(m+ n) ∗ (m+ n). When a lawnmower moves from point a to point b, the distance between
points a and b is Lab. Therefore, the energy consumption for an individual task is Dab = Lab.

Total energy cost incurred by the system (cost): Define a binary variable xij

{
1
0

}
,

where xij indicates whether the jth target coverage area Tj has been assigned to the ith
lawnmower Ri. In this case, xij = 0 denotes that the jth target coverage area Tj has not
been assigned to the ith lawnmower Ri. Given the task set Qi for the ith lawnmower Ri,
which is Qi =

{
qi1, qi2, qig

}
, it represents that the ith lawnmower Ri has been assigned to g

target coverage areas, and the tasks are executed sequentially from q1 to q2 all the way to
qg. Therefore, the energy cost incurred by the ith lawnmower Ri in executing tasks in the
assigned subareas is:

Ci = Di,qi1 +
g−1

∑
k=1

Dqik ,qik+1 (13)
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In a cluster lawnmower system comprising m lawnmowers and n target coverage
areas, the total energy expenditure of the system is as follows:

Cost =
m

∑
i=1

C(i) (14)

From the above analysis, it is evident that the cluster lawnmower task allocation
problem can be transformed into finding a suitable task allocation strategy xij and providing
a set of target coverage areas Qi =

{
qi1, qi2, qig

}
for each lawnmower to minimize the total

energy expenditure cost within the system. Additionally, the system must adhere to
several constraint conditions to refine the specific task allocation. These specific constraint
conditions include:

Constraint 1. The constraint condition in Formula (15) signifies that each lawnmower can only
traverse and cover a single subregion at a time, meaning that an individual lawnmower can only
operate within its assigned task area.

i=m

∑
i=1

xij = 1, j = 1, 2 . . . n (15)

Constraint 2. The constraint condition in Formula (16) ensures that each pending coverage area is
allocated a lawnmower to guarantee the coverage of all pending subregions.

i=m

∑
i=1

j=n

∑
j=1

xij = n (16)

Constraint 3. The constraint condition in Formula (17) implies that the ith lawnmower is assigned
to g pending subregions (in this study, each lawnmower corresponds to one pending coverage area,
i.e., g = 1).

j=n

∑
j=1

xij = g, i = 1, 2 . . . m (17)

Constraint 4. The constraint condition in Formula (18) implies that the lawnmower with the ith
identifier has the capability to execute g pending subregions (g = 1) with the energy it carries.

g

∑
k=1

Pij = g, i = 1, 2 . . . m (18)

3.4. Improved A* Algorithm and Experimental Verification
3.4.1. Improved A* Algorithm

Common path planning algorithms, such as Dijkstra’s algorithm, ensure the discovery
of the shortest path from the starting point to the destination. However, it employs a greedy
strategy, which makes it incapable of handling graphs with negative-weight edges, as these
edges can result in incorrect shortest paths. Furthermore, the search speed is relatively
slow due to the large number of explored nodes. Although the traditional A* algorithm
is effective in path planning, it often expands numerous nodes during the search process,
leading to a significant accumulation of turning angles. Therefore, this paper proposes an
improved A* algorithm by weighting the heuristic cost function and introducing a turning
cost into the total cost function. An eight-neighbor expansion method for pathfinding is
employed based on the actual working conditions of the lawnmower. This improvement
aims to enhance the search speed of the algorithm, increase the optimality of the global path,
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and reduce the number of turns made by the robot during traversal, thereby shortening the
overall travel time.

Firstly, this study employs the Manhattan distance as the heuristic function, which
calculates the sum of the distances along the x-axis and the y-axis between the current point
and the target point as the heuristic cost function’s value.

h(n) = |xd − xn|+ |yd − yn| (19)

where (xd, yd) refers to the coordinates of the target point, whereas (xn, yn) corresponds to
the coordinates of the current point.

In the actual search process, as the estimated cost function h(n) cannot be known in
advance, it is assumed that the estimated distance from the current node n to the goal
node is represented by H(n). When replacing h(n) with H(n) in the A* algorithm, the
actual shortest path in the A* algorithm must always be greater than or equal to the value
of the heuristic function h(n), i.e., h(n) ≥ H(n). If h(n) > H(n), the efficiency of the A*
algorithm is slightly reduced and it cannot guarantee the optimal path will be found, but it
does maintain high accuracy. If h(n) = H(n), the A* algorithm strictly follows the shortest
path during the search, ensuring the optimal path while reducing the expansion of nodes,
significantly improving efficiency. However, this scenario is not suitable when obstacles
are present in the environment. If h(n) < H(n), the A* algorithm expands more nodes in the
search, but it ensures the optimal path will be found. Since the orchard environment has
certain obstacles, when the Manhattan distance is applied in environments with obstacles,
its estimated cost function h(n) is often less than the estimated distance H(n) from the
current point to the target point. To address this issue, this paper introduces a weighting
mechanism to the A* algorithm’s estimated cost function h(n). This involves multiplying
h(n) by a coefficient k (k > 1), resulting in the modified overall cost function expression:

f (n) = g(n) + k× h(n) (20)

where g(n) represents the current cost from the starting point to the current node.
The choice of the constant k is based on balancing two distance estimates to ensure

that the influence of the Manhattan distance is not overly significant when considering
obstacles. Selecting an appropriate value for k requires experimentation and testing. In
the MATLAB platform, a grid map size of 20 × 20 is set with an arbitrary distance l of 2
between any two adjacent grid cells. Through calculations, the weighted value k in the
heuristic cost function is chosen as 1.3 to achieve a balanced point for obtaining the optimal
path. At this point, the value of the weighted heuristic cost function k × h(n) from the
current node to the target node tends to infinity, approaching the estimated distance H(n)
from the current node to the target node. This modification aims to reduce the expansion
of nodes in the A* algorithm, thereby improving search speed and yielding an improved
A* path.

Secondly, to reduce the issue of the lawnmower making frequent turns during actual
movement, this paper introduces a turning cost to the current cost function g(n). Addi-
tionally, on top of the weighted heuristic cost function h(n), a turning cost is also added to
the term k× h(n). Therefore, when calculating the current cost g(n), the following steps
should be followed (here, g(n) refers to the cost from the current node n to the node to be
expanded ri, i = 1, 2 . . . 7):

(1) Check if the current node n is the initial node, i.e., if there is a parent node m that
precedes the current node.

(2) If the current node n is the initial node, meaning there is no parent node m for
the current node n, then use the coordinates (xn, yn) of the current node n and the
coordinates (xr, yr) of the node to be expanded, denoted as r, to calculate the turning
cost. When (xn − xr)× (yn − yr) 6= 0, indicating that the current node n and the node
to be expanded r are not on a horizontal or vertical line, and the node r is in the left-up,
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left-down, right-up, or right-down direction from the current node, the current cost
function g(r) from the current node n to the node to be expanded r is expressed as:

g(r) = g(n) +
√

2l (21)

where l represents the distance between two adjacent nodes g(n) in the horizontal or
vertical direction. When (xn − xr)× (yn − yr) = 0, indicating that the current node
n and the node to be expanded r are aligned in the horizontal or vertical direction,
the current cost function g(r) from the current node n to the node to be expanded r is
expressed as:

g(r) = g(n) + l (22)

(3) If the current node n is not the initial node, meaning that the current node n has a parent
node m, then the cost of turning is determined using the coordinates of the current node
n (xn, yn) and its parent node m (xm, ym). When (xn− xm)× (yn− ym) 6= 0, indicating
that the current node n and the parent node m are not collinear in the horizontal or
vertical direction, the current cost function g(n) from the parent node m to the current
node n is expressed as g(r) = g(n) +

√
2l; when (xn − xm)× (yn − ym) = 0, meaning

that the parent node m and the current node n are collinear in the horizontal or vertical
direction, the current cost function g(n) is expressed as g(r) = g(n) + l. After these
improvements, the overall cost function is f (n) = g(n) + k × h(n), where g(n) is
calculated using the formula g(r) = g(n) + l or g(r) = g(n) +

√
2l depending on

different situations.

3.4.2. Experiments and Conclusions

In this section, the improved A* algorithm was simulated and experimentally validated
on a platform with 8 GB of computer memory, a processor frequency of 3.2 GHz, and based
on MATLAB 2020b. Comparative analyses were conducted among the traditional A*
algorithm, Dijkstra’s algorithm, and the improved A* algorithm proposed in this section in
different application scenarios. The grid map was set to a size of 20 × 20, with the distance
between any adjacent two grid cells defined as l = 2. After calculation, the weighted factor
k in the heuristic cost function was selected as 1.3. The algorithm’s iteration count was set
to 400 times. Twenty-five percent of the grid cells in the map were designated as obstacle
cells, and the positions of these obstacles were randomly distributed on the grid map. The
starting point of the lawnmower robot was set to [1,1], and the target endpoint was set to
[20,20]. The simulation results are shown in Figure 7. The comparison of path length, turn
counts, and search time of the three algorithms is shown in Table 1.
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Table 1. Comparison of path length, turn counts, and search time.

Algorithm Path Length (m) Turn Counts
(Times) Search Time (s)

A* algorithm 71.79 13 0.34
Dijkstra’s algorithm 74.63 16 0.42

Improved A* algorithm 62.97 8 0.30

From Table 1, it can be concluded that the improved A* algorithm had fewer turns, a
shorter path for robot travel, and a more superior planned path compared to the first two
algorithms. This advantage was more pronounced in areas with many obstacles.

The three algorithms were subjected to 60 simulation experiments on different grid
maps. The experimental results are shown in Figures 8 and 9. Through multiple ex-
periments, the improved A* algorithm proposed in this study demonstrated superior
performance in terms of the number of turns and the length of the path compared to the
other two algorithms.
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The average path length and turn counts for the three algorithms in these 60 simulation
experiments are shown in Table 2.

Table 2. Comparison of average path length, turn counts, and search time.

Algorithm Average Path Length
(m)

Average Turn Counts
(Times)

Average Search
Time (s)

A* algorithm 66.53 14.22 0.38
Dijkstra’s algorithm 70.34 16.57 0.35

Improved A* algorithm 57.61 12.36 0.32
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From Table 2, it can be observed that in terms of the average path length, the A*
algorithm was close to the Dijkstra algorithm. The average path length for the improved
A* algorithm was 57.61, whereas for the traditional A* algorithm, it was 66.53, representing
a reduction of approximately 13.4%. In terms of average turning times, the traditional A*
algorithm had 14.22 turns, whereas the improved A* algorithm had 12.36 turns, a reduction
of approximately 13.1%. Additionally, the average search time for the improved A* algo-
rithm was reduced by 14.19%. The data indicate that the improved A* algorithm exhibited
superior performance relative to its predecessor due to its enhanced heuristic approach
and the incorporation of turning cost analysis into its cost function. The algorithm’s heuris-
tic functions are weighted to prioritize paths that seem more efficient, thereby reducing
the search for suboptimal paths. This approach speeds up the pathfinding process and
leads to shorter path lengths. Concurrently, incorporating turning cost considerations into
the algorithm’s cost function promotes the identification of more linear and direct routes,
reduces the number of turn counts, and optimizes both path length and computational
efficiency. The experimental results strongly suggest that the benefits of these algorithmic
improvements in terms of path length and number of turn counts clearly outweigh the
potential limitations of the algorithm, such as increased computational complexity and
reduced applicability.

4. Path Planning Simulation and Field Experiment Verification with Different
Numbers of Clustered Lawnmowers
4.1. Evaluation Metrics for Lawnmower Full-Coverage Path Planning

In the process of traversing the orchard, the lawnmower needs to cover the entire or-
chard at the smallest possible cost. Therefore, this section proposes quantitative evaluation
metrics to assess the performance of the algorithm. In this study, the full-coverage path
planning algorithm is based on a grid map, and it is assumed that the total number of grid
cells in the simulated environment map is m× n, where O represents the number of grid
cells occupied by obstacles, Sl represents the number of grid cells missed by the lawnmower,
Sr represents the number of grid cells revisited by the lawnmower, Psum represents the total
energy consumption of the lawnmower while traversing the orchard, C represents the total
number of lawnmowers, and Csum represents the total cost of the lawnmowers traversing
the orchard.

(1) Repetition rate: Upon completing the orchard traversal, the percentage of all re-
peated grid cell occurrences to the total number of grid cells, excluding obstacles, is
determined.

Rre =
Sr

m× n−O
(23)

(2) Omission rate: Upon completing the orchard traversal, the percentage of all missed
grid cell occurrences to the total number of grid cells, excluding obstacles, is deter-
mined.

Rlg =
Sl

m× n−O
(24)

In this study, the omission rate of the lawnmower during its travel process mainly
includes two types: The first type is the missed coverage during right-angle turns, and the
second type is the missed coverage when the lawnmower circumvents fruit trees. These
two types of missed mowing areas are shown in Figure 10.

S1 = S3 =

(
L2 − π × R2)

8
+

(√
2

2 × L− R
)2

2
(25)
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√
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1
4
× L2 (26)
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S4 =
L2 − πR2

2
(27)
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Figure 10. The area of missed mowing. (a) The missed mowing areas during right-angle turns.
(b) The missed mowing areas when circumventing fruit trees. (S1, S2, S3, S4 are missing cut regions).

(3) Total cost: This refers to the sum of the fuel consumption of the lawnmower and
the cost of the lawnmower itself after the lawnmower completes its traversal of the
orchard.

Csum = 6000× C + Psum × 8 (28)

4.2. Connected Orchard Coverage Path Planning

The grid map was set to a size of 40 × 40, and the distance between any two adjacent
grid cells was denoted as l = 0.6 m. The obstacle occupancy rate (the ratio of the number of
grid cells occupied by obstacles to the total number of grid cells) was o = 6%, with fruit trees
denoted as fixed obstacles on the grid map. The grid map was divided into the following
regions: White cells represent areas accessible by the lawnmower, indicating regions where
the lawnmower can achieve the highest travel speed during operation, with a total of g
cells. Black cells represent obstacles, i.e., impassable cells. Pink cells represent uphill areas,
with a total of g1 cells. Blue cells represent downhill areas, with a total of g2 cells. Red cells
represent areas with dense weeds, with a total of g3 cells. Yellow cells represent areas with
sparse weeds, which have a negligible impact on the operation of the lawnmowers. The
simulated grid map created based on Section 2 is shown in Figure 11.

The improved A* algorithm was defined with the following parameters: The weighted
value in the heuristic function was chosen as k = 1.3, and the maximum number of iterations
was set to 500. The coordinates of the initial position of the lawnmower robot were set
at [1,1], and the endpoint was determined by the optimization goal. Each lawnmower
carried an energy capacity of p = 28,800 kJ. The normal speed of the lawnmower when
traveling in each white grid cell was v = 1.5 m/s, with an energy consumption rate of
pcon = 25, 228.8kJ/h. In the uphill region (pink grids), the speed constraint coefficient was
set to f1 = 0.75. For downhill regions (blue grids), the constraint coefficient was f2 = 1.05.
In areas with dense weeds (red grids), the constraint coefficient was f3 = 0.6. As shown in
Figure 12, different colors represent the paths of different lawnmowers. When the number
of lawnmowers significantly exceeds the minimum required for complete coverage of the
grid map, it is essential to determine the initial minimum number of lawnmowers. This
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is accomplished by using a formula to estimate the minimum number of lawnmowers
required for the grid map.





Psum =
i=N
∑

i=1
( g1×l

f1×ν + g2×l
f2×ν + g3×l

f3×ν )× pcon +
g×l

ν

C = Psum/p
(29)
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To evaluate the impact of different numbers of lawnmowers on path planning, four 
sets of experiments were conducted for path planning in the connected orchard. In the 
first set of experiments, the number of lawnmowers was set to three; in the second set, it 
was set to four; in the third set, it was set to five, and in the fourth set, it was set to six. 
This simulation experiment evaluated the influence of different numbers of lawnmowers 
on path planning under identical grid map conditions. The simulation was performed on 
a computer with 8 GB of memory and an AMD R7-5800 CPU, using MATLAB 2020b as 
the simulation software. 

Therefore, this simulation experiment compared cases where the number of 
lawnmowers was set to three, four, five, and six, analyzing the repetition rate, omission 
rate, energy consumption, and cost of the lawnmowers. The improved A* path for each 
lawnmower in scenarios with different numbers of lawnmowers is shown in Figure 12 
below. 

Figure 11. Grid map of the connected orchard. (White grids represent grids where the lawnmower
can travel, gray grids indicate obstacle grids (i.e., impassable grids), pink grids represent uphill
areas, blue grids denote down-hill areas, red grids represent overgrown grass areas, and yellow grids
represent areas with sparse weeds).
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Figure 12. The travel route maps for 3, 4, 5, and 6 lawnmowers in the connected orchard. (White grids
represent grids where the lawnmower can travel, gray grids indicate obstacle grids (i.e., impassable
grids), pink grids represent uphill areas, blue grids denote down-hill areas, red grids represent
overgrown grass areas, and yellow grids represent areas with sparse weeds. The lines in the picture
show the routes of the robots).

To evaluate the impact of different numbers of lawnmowers on path planning, four
sets of experiments were conducted for path planning in the connected orchard. In the first
set of experiments, the number of lawnmowers was set to three; in the second set, it was
set to four; in the third set, it was set to five, and in the fourth set, it was set to six. This
simulation experiment evaluated the influence of different numbers of lawnmowers on
path planning under identical grid map conditions. The simulation was performed on a
computer with 8 GB of memory and an AMD R7-5800 CPU, using MATLAB 2020b as the
simulation software.

Therefore, this simulation experiment compared cases where the number of lawnmow-
ers was set to three, four, five, and six, analyzing the repetition rate, omission rate, energy
consumption, and cost of the lawnmowers. The improved A* path for each lawnmower in
scenarios with different numbers of lawnmowers is shown in Figure 12 below.

In this simulation experiment, lawnmower travel directions were determined based
on Figure 5. The total operation time, individual lawnmower working time, total energy
consumption, and energy consumption per lawnmower for configurations with three, four,
five, and six lawnmowers are summarized in Table 3.
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Table 3. Comparison of lawnmower working time, energy consumption, and cost in the connected
orchard.

Number of
Lawnmowers

Time Consumption
per Lawnmower (s)

Minimum Time
Consumption (s)

Energy Consumption
per Lawnmower (kJ)

Total Energy
Consumption (kJ)

Total Cost
(USD)

3
t1 = 461.15;
t2 = 499.57;
t3 = 465.49

499.57
p1 = 2459.52;
p2 = 2664.48;
p3 = 2482.56

7606.56 2880.41

4

t1 = 352.89;
t2 = 357.68;
t3 = 359.22;
t4 = 356.33

359.22

p1 = 1882.056;
p2 = 1908.72;

p3 = 1915.824;
p4 = 1899.84

7606.44 3840.55

5

t1 = 283.38;
t2 = 286.04;
t3 = 282.13;
t4 = 288.24;
t5 = 286.71

288.24

p1 = 1511.328;
p2 = 1525.512;
p3 = 1504.224;
p4 = 1536.216;
p5 = 1529.112

7606.392 4800.42

6

t1 = 246.95;
t2 = 214.20;
t3 = 249.62;
t4 = 247.92;
t5 = 215.86;
t6 = 250.62

250.62

p1 = 1317.096;
p2 = 1142.4;

p3 = 1331.304;
p4 = 1333.08;

p5 = 1145.952;
p6 = 1336.632

7406.464 5760.41

For this simulation experiment, the repetition rate and omission rate of the grid map
traversal for three, four, five, and six lawnmowers are summarized in the Table 4.

Table 4. The experimental results for the lawnmower robot omission rate and repetition rate in the
connected orchard.

Number of Lawnmowers Repetition Rate Omission Rate

3 6.17% 0.2131%
4 6.10% 0.2131%
5 6.00% 0.2129%
6 6.30% 0.2128%

From Tables 3 and 4, it can be observed that, with a constant grid map, as the number
of lawnmower clusters increased, the minimum working time of lawnmowers in this grid
map gradually decreased. However, the decreasing trend of the minimum working time
diminished with the increasing number of lawnmowers. In terms of omission rate, as the
number of lawnmower clusters increased from three to six, the omission rate gradually
decreased. Similarly, the decreasing trend continued with the increasing number of lawn-
mower clusters. Regarding the repetition rate, when the number of lawnmowers increased
from three to five, the repetition rate decreased. However, when the number of lawn-
mowers increased from five to six, the repetition rate increased by 0.30%. Simultaneously,
with an increase in the number of lawnmowers, the total working cost of the lawnmowers
increased. Therefore, in this simulation experiment, when the lowest repetition rate and
omission rate of lawnmowers were considered as evaluation indicators, the optimal number
of lawnmower clusters was five.

4.3. Covering Path Planning in Non-Connected Orchards

For the non-connected orchards, the following definitions were established. The
orchards were denoted as two independent entities (labeled a and b). The size of the grid
map for orchard a was set to 100 × 60, and for orchard b, it was set to 80 × 74. The obstacle
occupancy rate in the grid map for orchard a (the ratio of the number of grid cells occupied
by tree obstacles to the total number of grid cells) was o = 6.55%, and for orchard b, it was
6.93%. The distance between any two adjacent grid cells was denoted as l = 50. The grid
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map was categorized into the following regions: White cells represent areas where the
lawnmower can move, achieving its maximum speed in operational conditions; black cells
represent obstacles, indicating impassable areas; pink cells represent uphill regions, with
the total number of uphill cells being ga1 for orchard a and gb1 for orchard b; blue cells
represent downhill regions, with ga2 cells for orchard a and gb2 cells for orchard b; and red
cells represent areas with dense grass, with ga3 cells for orchard a and gb3 cells for orchard
b. The grid maps for the non-connected orchards are illustrated in Figure 13.
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Figure 13. The grid map of the non-connected orchards. (White grids represent grids where the
lawnmower can travel, gray grids indicate obstacle grids (i.e., impassable grids), pink grids represent
uphill areas, blue grids denote down-hill areas, red grids represent overgrown grass areas).

To validate the impact of different numbers of lawnmowers on path planning, exper-
iments were conducted on the non-connected orchards. Prior to these experiments, the
minimum number of lawnmowers required to traverse and cover orchard a was determined
to be two, and for orchard b, it was also determined to be two. Therefore, for this simulation
experiment, four and five lawnmowers were set up, and four sets of experiments were
conducted.

In the first set of experiments, the four lawnmowers were divided into two clusters,
each containing two lawnmowers. Both clusters of lawnmowers simultaneously traversed
orchards a and b. The experiment recorded the lawnmowers’ shortest working time,
repetition rate, omission rate, and cost during the traversal process. The improved A* paths
for each lawnmower are shown in Figure 14.
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Figure 14. Travel route maps for the lawnmowers in Experiment 1. (White grids represent grids
where the lawnmower can travel, gray grids indicate obstacle grids (i.e., impassable grids), pink grids
represent uphill areas, blue grids denote down-hill areas, red grids represent overgrown grass areas.
The lines in the picture show the routes of the robots).

The data for the lawnmowers in Experiment 1 during the traversal of orchards a and b
in terms of time, energy consumption, and cost are recorded in Table 5.

Table 5. The data for time, energy consumption, and cost in Experiment 1.

Time Consumption
per Lawnmower (s)

Minimum Time
Consumption (s)

Energy Consumption
per Lawnmower (kJ)

Total Energy
Consumption (kJ)

Total Cost
(USD)

Orchard a t1 = 2098.21;
t2 = 2068.07; 2098.21 p1 = 11,190.48;

p2 = 11,029.68; 22,220.16 1877.55

Orchard b t1 = 2060.47;
t2 = 2042.82; 2060.47 p1 = 10,989.12;

p2 = 10,895.04; 21,884.16 1877.38

Whole orchard 4158.68 4158.68 44,104.32 44,104.32 3754.93

The data for the repetition rate and the omission rate of the lawnmower during the
traversal of grid maps for orchards a and b in the first set of simulation experiments are
recorded in Table 6.

Table 6. Experimental results for repetition rate and omission rate in Experiment 1.

Repetition Rate Omission Rate

Orchard a 4.12% 0.24%
Orchard b 4.25% 0.19%

From Tables 5 and 6, it can be observed that in the first set of simulation experiments,
the shortest working time for traversing and covering orchard a was 2098.21 s, and for
orchard b, it was 2060.47 s. Since the two groups of lawnmowers simultaneously traversed
and covered orchards a and b, the shortest time for traversing and covering the non-
connected orchards was 2098.21 s. As shown in the table, the repetition rate of lawnmower
traversal and coverage for orchard a was 4.12%, and for orchard b, it was 4.25%. The total
repetition rate for non-connected orchards was calculated using the following formula:
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Repetition rate for orchard a ∗ Area of orchard a + Repetition rate for orchard b ∗Area of orchard a
Area of orchard a + Area of orchard b

(30)

The repetition rate for the non-connected orchard was 4.18%. The mowing machine’s
traversal coverage omission rate for orchard a was 0.24%, and for orchard b, it was
0.19%. The total omission rate for non-connected orchards was calculated using the
following formula:

Omission rate for Orchard a ∗Area of orchard a + Omission rate for Orchard b ∗Area of orchard a
Area of orchard a + Area of orchard b

(31)

The total omission rate for the non-connected orchards was 0.21%.
Experiment 2 involved grouping the four lawnmowers together, resulting in a cluster

count of four. The lawnmowers in this group sequentially traversed orchards a and b. After
completing the first orchard, they required an energy refill, with the assumed refueling
time being 300 s. The recorded data include the lawnmowers’ minimum working time,
repetition rate, omission rate, and cost during the traversal process. The improved A* paths
for each lawnmower are depicted in Figure 15.
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The data for the lawnmowers in Experiment 2 during the traversal of orchards a and b
in terms of time, energy consumption, and cost are recorded in Table 7.

The data for the lawnmowers in Experiment 2 during the traversal of orchards a and b
in terms of repetition rate and omission rate are recorded in Table 8.

From Tables 7 and 8, it can be observed that in the second set of simulation experiments,
the shortest working time for traversing and covering orchard a was 1058.30 s, and for
orchard b, it was 1039.78 s. Since the two groups of lawnmowers traversed and covered
orchards a and b sequentially, and energy replenishment was required after completing
the traversal and coverage of the first orchard, the shortest time for the lawnmowers to
traverse and cover the non-connected orchards in Experiment 2 was 2098.07 s. According
to Table 7, the repetition rate of the lawnmowers for orchard a was 4.16% and for orchard b
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it was 4.27%, and the total repetition rate for non-connected orchards was calculated using
Formula (30) to be 4.21%. The omission rate of the lawnmowers for orchard a was 0.24%
and for orchard b it was 0.19%, and the total omission rate for non-connected orchards was
calculated using Formula (31) to be 0.21%.

Table 7. The data for time, energy consumption, and cost in Experiment 2.

Time Consumption
per Lawnmower (s)

Minimum Time
Consumption (s)

Energy Consumption
per Lawnmower (kJ)

Total Energy
Consumption (kJ)

Total Cost
(USD)

Orchard a

t1 = 1039.92;
t2 = 1058.30;
t3 = 1044.33;
t4 = 1023.74

1058.30

p1 = 5565.12;
p2 = 5644.32;
p3 = 5571.6;
p4 = 5460

22,241.04 3755.17

Orchard b

t1 = 1021.43;
t2 = 1039.04;
t3 = 1003.05;
t4 = 1039.78

1039.78

p1 = 5447.52;
p2 = 5561.04;
p3 = 5349.6;
p4 = 5545.44

21,903.6 3754.99

Whole orchard 2098.07 2098.07 44,144.64 44,144.64 7510.16

Table 8. Experimental results for repetition rate and omission rate in Experiment 2.

Repetition Rate Omission Rate

Orchard a 4.16% 0.24%
Orchard b 4.27% 0.19%

Comparing the data from the first and second sets of experiments, for non-connected
orchards, when the number of lawnmowers was constant, dividing the lawnmowers into
two groups resulted in a shorter shortest working time of 2060.47 s compared to 2098.07 s
when the lawnmowers were in one group. Furthermore, dividing the lawnmowers into two
groups led to a lower repetition rate than having them in one group, whereas the omission
rate shows little variation.

Experiment 3 involved dividing the four lawnmowers into two groups, with one
lawnmower in one group and three lawnmowers in the other. The lawnmower cluster
with a size of three traversed the larger area of orchard a, whereas the cluster with a size of
one covered the smaller area of orchard b. Both groups of lawnmowers simultaneously
traversed orchards a and b, and the experiment recorded the lawnmowers’ shortest working
time, repetition rate, omission rate, and cost during the traversal process. The improved A*
paths for each lawnmower are illustrated in Figure 16.

The data for the lawnmowers in experiment 3 during the traversal of orchards a and b
in terms of time, energy consumption, and cost are recorded in Table 9.

Table 9. The data for time, energy consumption, and cost in experiment 3.

Time
Consumption per
Lawnmower (s)

Minimum Time
Consumption (s)

Energy
Consumption per
Lawnmower (kJ)

Total Energy
Consumption (kJ) Total Cost (USD)

Orchard a
t1 = 1392.68;
t2 = 1399.76;
t3 = 1374.30;

1399.76
p1 = 7427.52;
p2 = 7463.04;
p3 = 7329.6;

22,220.16 2813.49

Orchard b t1 = 4103.29 4103.29 p1 = 21,884.16 21,883.2 937.11
Whole orchard 5503.05 5503.05 44,103.36 44,103.36 3750.6
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The data for the lawnmowers in experiment 3 during the traversal of orchards a and b
in terms of repetition rate and omission rate are recorded in Table 10.

Table 10. Experimental results for repetition rate and omission rate in experiment 3.

Repetition Rate Omission Rate

Orchard a 4.12% 0.24%
Orchard b 4.23% 0.19%

From Tables 9 and 10, it can be observed that in the third set of simulation experiments,
the shortest working time for traversing and covering orchard a was 1399.76 s and for
orchard b it was 4103.29 s. Since the two groups of lawnmowers simultaneously traversed
and covered orchards a and b, the shortest traversal time for the non-connected orchards
was 4103.29 s. According to Table 9, the repetition rate of lawnmower traversal coverage
for orchard a was 4.12% and for orchard b it was 4.23%. Using Formula (30), the total
repetition rate for non-connected orchards was determined to be 4.17%. The omission rate
of lawnmower traversal coverage for orchard a was 0.24% and for orchard b it was 0.19%.
Using Formula (31), the total omission rate for non-connected orchards was determined to
be 0.21%.

Comparing the results of the experiments in groups 1, 2, and 3, it was observed
that dividing the lawnmower cluster into smaller clusters, especially when the cluster
number could be evenly distributed, yielded better performance in terms of the shortest
working time, repetition rate, and omission rate compared to treating the lawnmowers as
a single collective cluster. This improvement was particularly evident in the case of the
shortest working time. However, when the cluster number could not be evenly distributed,
the performance in terms of the shortest working time, repetition rate, and omission
rate was worse compared to treating the lawnmowers as a single collective cluster, with
significant differences in the shortest working time. To validate this conclusion, 10 sets of
simulation experiments were conducted on different non-connected orchards. For each
non-connected orchard, four and five lawnmowers were selected for verification. The
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simulation experiments were conducted with four lawnmowers grouped according to the
grouping in the first and second experiments and five lawnmowers grouped according to
the grouping in the second and third experiments. The simulation results are shown in
Figure 17.
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Therefore, for non-connected orchards, when the number of lawnmowers was fixed,
the most optimal working effect was achieved by evenly distributing the number of lawn-
mowers in a cluster according to the number of components in the non-connected orchard.
When the number of lawnmowers in a cluster could not be evenly distributed according to
the number of components in the non-connected orchard, the optimal working effect was
achieved by treating the lawnmowers as a single group.

4.4. On-Site Experiment Validation

In the actual orchard environment, due to the differences between the real operating
conditions of the lawnmower and the simulated operating conditions of the lawnmower,
there were discrepancies between the results of the simulation experiments and the actual
experiments. Therefore, to validate the rationality of the path planning algorithm, field
experiments were designed for research and analysis.

4.4.1. Selection of Experimental Site and Equipment

To better align the simulation conditions of the lawnmower with its actual working
environment, the selected orchard had a terrain slope ranging from 0 to 10 degrees, meeting
the experimental requirements. The satellite image of the orchard is shown in Figure 18a,
and the prescription map of the orchard based on Section 2 is shown in Figure 18b. The
basic data of the experimental site are presented in Table 11.

The basic data of the experimental site are presented in Table 11.

Table 11. The basic data of the experimental site.

Coordinate Positions (40.18◦ N, 116.97◦ E)

Orchard area (hectares) 80.937
Tree row spacing (m) 3

Tree vertical spacing (m) 1.5

The robotic lawnmower used in the experiment was designed and assembled by our
team. Its main operating principle is as follows: The locomotion system is independently
powered by a 48 V DC power supply. It employs a tracked dual-motor driving mechanism,
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providing stable movement and obstacle-crossing capabilities in hilly orchard terrains. The
differential rotation of the dual motors enables the lawnmower to achieve minimum radius
turns. The cutting system is powered by a gasoline engine with a rated speed of 3600 rpm.
The power is transmitted from the engine’s output shaft, passing through a first-stage gear
reducer for appropriate speed reduction before being transmitted to the blade disc output
shaft. This, in turn, drives the rapid rotational cutting motion of the blade disc and the
blades. The lifting mechanism primarily consists of a parallelogram mechanism and an
electric push rod. The platform, linkages, and linkages with the frame adopt articulated
connections to ensure relative motion space. The telescopic movement of the electric push
rod is converted into the platform’s upward and downward motion, facilitating weed
removal for different ground conditions and cutting heights. Additionally, the engine
employed in the lawnmower robot for the experiments is a dedicated power source for the
cutting system. It utilizes a vertical-axis gasoline engine, chosen for its cost-effectiveness
and low energy consumption. If an alternative type of engine were used, issues such as
the need for additional devices to alter the power direction during the transmission to
the cutting system could arise. This process would entail a certain power loss, occupy
internal space within the machine, and be detrimental to the design and operation of
the lawnmower.
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The Beidou Navigation Autonomous Driving System integrates the Beidou Naviga-
tion Satellite System, inertial navigation technology, and a variety of sensors, including
laser radar and cameras, to enable global positioning and environmental perception for the
lawnmower. During operation, the positioning of our autonomous lawnmowers combines
GPS data with onboard sensors. Whereas the GPS system provides initial location and a
navigational framework, onboard sensors offer real-time adjustments, ensuring accurate
navigation through varied terrains and around obstacles. The challenging aspects of navi-
gating uneven terrains and negotiating weed-infested orchards are effectively addressed
through the deployment of advanced sensor systems. In terms of control mechanisms,
each lawnmower is centrally operated through a wireless control system. This central-
ized system communicates seamlessly with individual units, issuing precise navigational
commands based on our proprietary path planning algorithm. This integrated approach
ensures synchronized and efficient operations, contributing to the overall effectiveness of
our autonomous lawnmower fleet.

The parameters of the tracked small lawnmower used for the experiment are shown in
Table 12 (a total of three units, as shown in Figure 19a), and the DJI Phantom 4 was chosen
as the aerial photography equipment for this experiment.

In the experiment, the measuring equipment included two 50 m-long tape measures,
two 5 m-long steel tape measures, a timer for recording the working time of the lawnmower,
three sets of pens and notebooks for recording experimental data, a fuel tank (10 L) filled
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with fuel, a mobile power supply, a DJI waypoint marker, and a 500 mL measuring cup,
along with several meters of nylon line.

Table 12. The basic parameters of the tracked small orchard lawnmower.

Name Value

Dimensions (mm) 900 × 830 × 520
Total weight (kg) 110

Maximum travel speed (m/s) 1.5
Cutting width (m) 0.5

Climbing ability (◦) 25
Fuel tank capacity (L) 1.2

Working efficiency 1.01175 hectares/h

Agronomy 2024, 14, x FOR PEER REVIEW 28 of 38 
 

 

blade disc output shaft. This, in turn, drives the rapid rotational cutting motion of the 
blade disc and the blades. The lifting mechanism primarily consists of a parallelogram 
mechanism and an electric push rod. The platform, linkages, and linkages with the frame 
adopt articulated connections to ensure relative motion space. The telescopic movement 
of the electric push rod is converted into the platform’s upward and downward motion, 
facilitating weed removal for different ground conditions and cutting heights. Addition-
ally, the engine employed in the lawnmower robot for the experiments is a dedicated 
power source for the cutting system. It utilizes a vertical-axis gasoline engine, chosen for 
its cost-effectiveness and low energy consumption. If an alternative type of engine were 
used, issues such as the need for additional devices to alter the power direction during 
the transmission to the cutting system could arise. This process would entail a certain 
power loss, occupy internal space within the machine, and be detrimental to the design 
and operation of the lawnmower. 

The Beidou Navigation Autonomous Driving System integrates the Beidou Naviga-
tion Satellite System, inertial navigation technology, and a variety of sensors, including 
laser radar and cameras, to enable global positioning and environmental perception for 
the lawnmower. During operation, the positioning of our autonomous lawnmowers com-
bines GPS data with onboard sensors. Whereas the GPS system provides initial location 
and a navigational framework, onboard sensors offer real-time adjustments, ensuring ac-
curate navigation through varied terrains and around obstacles. The challenging aspects 
of navigating uneven terrains and negotiating weed-infested orchards are effectively ad-
dressed through the deployment of advanced sensor systems. In terms of control mecha-
nisms, each lawnmower is centrally operated through a wireless control system. This cen-
tralized system communicates seamlessly with individual units, issuing precise naviga-
tional commands based on our proprietary path planning algorithm. This integrated ap-
proach ensures synchronized and efficient operations, contributing to the overall effec-
tiveness of our autonomous lawnmower fleet. 

The parameters of the tracked small lawnmower used for the experiment are shown 
in Table 12 (a total of three units, as shown in Figure 19a), and the DJI Phantom 4 was 
chosen as the aerial photography equipment for this experiment. 

  

(a) Lawnmower. (b) BeiDou Navigation Automatic Driving System. 

Figure 19. Experimental equipment. 

In the experiment, the measuring equipment included two 50 m-long tape measures, 
two 5 m-long steel tape measures, a timer for recording the working time of the 
lawnmower, three sets of pens and notebooks for recording experimental data, a fuel tank 
(10 L) filled with fuel, a mobile power supply, a DJI waypoint marker, and a 500 mL meas-
uring cup, along with several meters of nylon line. 

  

Figure 19. Experimental equipment.

4.4.2. Experimental Plan

This experiment was designed with two groups to validate the accuracy of the optimal
number of lawnmowers for covering orchards in both connected and non-connected
orchards. The field test plan was as follows:

Step 1: Prepare the experimental equipment and select the experimental site.
Step 2: Collect experimental site data and set simulation parameters. Use a drone

for aerial photography of the orchard terrain, obtaining information on the orchard and
obstacle locations. Process the obtained data, including prescription maps, and create
a simulated grid map. Test the fuel consumption of the lawnmowers in the orchard
environment and their actual driving speeds. Set simulation experiment parameters based
on this information.

Step 3: Conduct simulation experiments and obtain simulation data. Allocate the
designated areas to lawnmowers based on the created simulated grid map. Use the
improved A* algorithm to plan the lawnmowers’ optimal driving paths. Simultaneously,
collect experimental data on the lawnmowers’ shortest working time, repetition rate, and
omission rate during orchard traversal.

Step 4: Conduct on-site experiments and obtain actual experimental data. Input the
paths planned during the simulation experiment into the control console, which sends
signals to the lawnmowers to follow the planned paths. Record experimental data during
the actual operation of the lawnmowers and any issues encountered.

Step 5: Analyze and compare the experimental results. Compare and analyze the
repetition rate, omission rate, and shortest working time data of the lawnmowers between
the simulation and the actual experiments to validate the feasibility of the plan.

4.4.3. Analysis of Simulation and Field Test Results

Three lawnmowers were used for field tests, and each lawnmower, when fully fueled,
could work for approximately 1.5 h in the actual orchard environment, covering an area of
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around 0.6035 hectares. Through field testing, the average driving speed of the lawnmower
in relatively flat orchard areas was determined to be v = 0.74 m/s. Since the slope of the
orchard in the test area was mostly around 5 degrees, it had almost no impact on the
lawnmower’s speed, so the slope of the orchard was not considered in this experiment
regarding its effect on the lawnmower’s speed. However, in areas with dense weeds, the
speed of the lawnmower would significantly decrease. After multiple measurements and
averaging, the lawnmower’s speed in such areas was determined to be v = 0.48 m/s. The
fuel consumption of the lawnmower in the working condition was:

Pcon = 25,228.8 kJ/h.

Experiment 1. A connected region of the orchard was selected as the experimental area (as shown
in Figure 20a). The total area of the experimental region was 1645.34 square meters, with obstacles
primarily concentrated in the boundary areas of the orchard. Dense weed areas in this region were
mostly located in the middle of the tree rows. A grid map was established based on the prescription
map (Figure 20c). The size of grid map of experimental area 1 was set to 100 × 66.
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Experiment 2. Two non-connected regions of the orchard were selected as experimental areas. The
first experimental area was the same as that in Experiment 1. The second experimental area had
an area of 1289.84 square units, with obstacles mainly concentrated in the boundary areas of the
orchard. A grid map was established based on the prescription map (Figure 21b). The size of grid
map of experimental area 2 was set to 120 × 45.
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denote down-hill areas, red grids represent overgrown grass areas).

(1) Simulation Experiment Results

Using the grid map created for the first experimental orchard environment as input,
the improved A* path was planned through MATLAB simulation software, as shown in
Figure 20.

The data on the omission rate, repetition rate, energy consumption, and minimum
working time of one, two, and three lawnmowers during the traversal of the orchard
obtained from the simulation software are presented in Table 13.

Table 13. Simulation test data for Experiment 1.

Number of Lawnmowers 1 2 3

Duration of operation for each lawnmower (s) 4214.86 t1 = 2060.81;
t2 = 2154.05

t1 = 1351.35;
t2 = 1452.70;
t3 = 1410.82

Minimum working time for each lawnmower (s) 4214.86 2154.05 1452.72

Energy consumption per lawnmower (kJ) 22,588.8 p1 = 11,239.2;
p2 = 11,304

p1 = 7884;
p2 = 7634.4;
p3 = 7502.4

Total energy consumption (kJ) 22,588.8 22,543.2 23,020.8
Total cost (USD) 937.45 1874.29 2811.68
Omission rate 0.155% 0.154% 0.153%
Repetition rate 4.013% 4.029% 4.012%

The conclusion that can be drawn from Table 13 is that in this experimental area, when
using a different number of lawnmowers to traverse and cover the orchard, using three
lawnmowers compared to one lawnmower resulted in a decrease in the omission rate of
0.002%, a decrease in the repetition rate of 0.001%, and a reduction in the shortest working
time of 2762.14 s. Compared to using two lawnmowers, the omission rate decreased by
0.001%, the repetition rate decreased by 0.017%, and the shortest working time decreased
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by 701.33 s. However, the overall fuel consumption was slightly higher than when using
one or two lawnmowers, resulting in the highest total cost. Therefore, in this simulation
experiment, using three lawnmowers corresponds to the shortest working time, the lowest
omission rate, and the lowest repetition rate in the planned path, whereas one lawnmower
corresponded to the path with the lowest cost.

For Experiment 2, based on the grid map created according to the non-connected
orchard environment as input, as mentioned in Section 4.3, three lawnmowers were used
as a cluster to cover the orchard, with the omission rate, repetition rate, lawnmower energy
consumption, and shortest working time recorded for each lawnmower. The improved A*
path of the lawnmower was planned using MATLAB simulation software, as shown in
Figure 22.
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Figure 22. Lawnmower trajectory map for the second experimental area 2 in Experiment 2. (White
grids represent grids where the lawnmower can travel, gray grids indicate obstacle grids (i.e.,
impassable grids), pink grids represent uphill areas, blue grids denote down-hill areas, red grids
represent overgrown grass areas, and yellow grids represent areas with sparse weeds. The lines in
the picture show the routes of the robots).

The data for the lawnmower’s traversal in experimental area 2, including the omission
rate, repetition rate, energy consumption for each lawnmower, and the minimum working
time, are presented in Table 14.

Table 14. Simulation experimental data for experimental area 2 in Experiment 2.

Number of Lawnmowers 3

Duration of operation for each lawnmower (s)
t1 = 1209.73
t2 = 1221.53
t3 = 1175.25

Minimum working time for each lawnmower (s) 1221.53

Energy consumption per lawnmower (kJ)
p1 = 6451.92;
p2 = 6514.8;
p3 = 6268.08

Total energy consumption (kJ) 19,234.8
Total cost (USD) 2811.20
Omission rate 0.36%
Repetition rate 4.15%

From Tables 13 and 14, it can be observed that the lawnmower’s minimum working
time for traversing experimental area 1 of the orchard was 1452.72 s, and for experimen-
tal area 2, it was 1221.53 s. After completing the traversal of experimental area 1, the
lawnmower required energy replenishment, with a duration of 300 s. Therefore, the total
minimum working time for the lawnmower in this non-connected orchard was 2974.25 s.
Calculations based on Formulas (18) and (19) yielded a total repetition rate of 4.07% and a
total omission rate of 0.24%.
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(2) Field Experiment

Experiment 1 was conducted in orchard test area 1. The process of Experiment 1 is
illustrated in Figure 23.
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Experiment 1).

The resulting data of the coverage and traversal of experimental area 1 in the connected
orchard by three lawnmowers are shown in Table 15.

Table 15. Field experiment data for Experiment 1.

Number of Lawnmowers 3

Duration of operation for each lawnmower (s)
t1 = 1642.76
t2 = 1721.43
t3 = 1667.28

Minimum working time for each lawnmower (s) 1721.43

Energy consumption per lawnmower (kJ)
p1 = 9866.4;

p2 = 10,065.6
p3 = 9422.4

Total energy consumption (kJ) 29,354.4
Total cost (USD) 2812.22
Omission rate 0.30%
Repetition rate 5.63%

In experimental area 2 of the orchard, Experiment 2 was conducted, as illustrated
in Figure 24. The energy replenishment time for the lawnmowers after completing the
traversal of experimental area 1 was 258 s.

The resulting data of the coverage and traversal of experimental area 2 in the non-
connected orchard by three lawnmowers in Experiment 2 are shown in Table 16.

The results from Tables 15 and 16 show that the lawnmower’s shortest working time
to traverse experimental area 1 in the orchard was 1721.43 s, and for experimental area 2, it
was 1486.67 s. After traversing experimental area 1, the lawnmower required an energy
replenishment time of 258 s. Therefore, the lawnmower’s total shortest working time for
this non-connected orchard was 3466.1 s. Calculations using Formulas (18) and (19) yielded
a total repetition rate of 5.71% and a total omission rate of 0.40%.
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Figure 24. Field test work of lawnmowers in area 2 in Experiment 2. (Figures (a–f) show part of the
field test process in Experiment 2).

Table 16. Field test data for area 2 in Experiment 2.

Number of Lawnmowers 3

Duration of operation for each lawnmower (s)
t1 = 1463.58
t2 = 1486.67
t3 = 1422.95

Minimum working time for each lawnmower (s) 1486.67

Energy consumption per lawnmower (kJ)
p1 = 7286.4;
p2 = 7567.2
p3 = 7161.6

Total energy consumption (kJ) 22,015.2
Total cost (USD) 2811.43
Omission rate 0.53%
Repetition rate 5.81%

During the field test process, the following issues were recorded:

(1) The unevenness of the orchard soil caused the lawnmower to experience fluctuations
in its path during traversal.

(2) The lawnmower’s traversal in the orchard compacted the weeds, leading to an increase
in the lawnmower’s omission rate.

(3) When turning, the lawnmower was affected by weeds, resulting in an increase in
turning time.

(4) Measurement errors: The inherent error in the positioning system caused the lawn-
mower to deviate from the planned path. There were also errors in measuring the
lawnmower’s speed using a tape measure and a stopwatch.

Considering the actual conditions of the lawnmower’s traversal in the orchard, and
taking into account that the area of the connected orchard experimental zone was 1645.34
square meters, a deviation of up to 5 min in the shortest working time was considered
reasonable, an omission rate deviation of up to 1% was considered reasonable, and a
repetition rate deviation of up to 2% was considered reasonable. For the non-connected
orchard area with a total area of 2935.18 square meters, a deviation of up to 10 min in the
shortest working time was considered reasonable, an omission rate deviation of up to 1%
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was considered reasonable, and a repetition rate deviation of up to 3% was considered
reasonable.

(3) Analysis of Experimental Results

A comparison between the actual data and simulation data for the lawnmower’s
coverage path in the connected orchard experimental area is presented in Table 17 and
was derived from Tables 13 and 15. It constitutes a comparative analysis of the actual and
simulated data from Experiment 1.

Table 17. Comparative analysis of actual and simulated data from Experiment 1.

Simulated Data Actual Data

Minimum working time for
each lawnmower (s) 1452.72 1865.43

Total energy consumption (kJ) 23,020.8 29,354.4
Omission rate 0.15% 0.30%
Repetition rate 4.01% 5.63%

As can be seen in Table 17, the lawnmower’s actual data for traversing and covering
the orchard show some discrepancies with the simulation data. There was a slight increase
in the actual shortest working time compared to the simulated shortest working time of
412.71 s. The total energy consumption increased by 6333.6 kJ, the omission rate increased
by 0.15%, and the repetition rate increased by 1.62%.

Tables 14 and 16 provide the actual and simulated data for the lawnmower’s coverage
path planning in the non-connected orchard experimental area, and a comparative analysis
is presented in Table 18.

Table 18. Comparative analysis of actual and simulated data for Experiment 2.

Simulated Data Actual Data

Minimum working time for each
lawnmower (s) 2974.25 3466.1

Total energy Consumption (kJ) 42,255.6 51,369.6
Omission rate 0.24% 0.40%
Repetition rate 4.07% 5.71%

As can be seen in Table 18, the lawnmower’s actual data for traversing and covering
the non-connected orchard exhibit some discrepancies with the simulation data. The actual
shortest working time increased by 491.84 s. The total energy consumption increased by
9114 kJ, the omission rate increased by 0.15%, and the repetition rate increased by 1.62%.

Based on the above analysis, the main reasons for the discrepancies between the
simulation data and actual experimental data are as follows:

(1) The orchard’s uneven terrain caused fluctuations in the lawnmower’s path during
traversal.

(2) The lawnmower’s movement in the orchard compressed the weeds, leading to an
increase in the omission rate.

(3) While turning, the lawnmower was affected by weeds, resulting in increased turning
time.

(4) Measurement errors in the positioning system contributed to deviations from the
planned path. Measurement of the lawnmower’s speed using a tape measure and
stopwatch introduced errors.

In summary, the analysis indicates that the errors between the simulation and actual
experimental data in both connected and non-connected orchards were relatively small,
validating the rationality of orchard coverage path planning.
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This section validates the practicality and reliability of orchard traversal path planning
by conducting field experiments and comparing the data from field experiments with
simulation test data. The section began by introducing the preparatory work for field exper-
iments, describing the experimental site, equipment, methods, and objectives. Connected
and non-connected areas within the orchard were selected to establish simulated grid
maps. Subsequently, the selected orchard terrain underwent both simulation experiments
and field experiments to collect data on the lawnmower’s omission rate, repetition rate,
shortest working time, and energy consumption during orchard traversal. A comparative
analysis was then conducted to identify the reasons for the discrepancies between the
actual and simulated data. Through the comparative analysis of the simulation and actual
experimental data, the errors in the lawnmower’s shortest working time, repetition rate,
and omission rate during coverage in both connected and non-connected orchard areas
were found to be within a reasonable range. Therefore, the path planning for this orchard
was deemed rational.

5. Conclusions

This paper investigates the comprehensive coverage path planning method for tracked
lawnmowers in orchards, exploring task allocation methods for lawnmower clusters. An
improved A* algorithm is proposed, and the impact of lawnmower cluster quantity on path
planning in different orchard scenarios is studied. Simulation verification of connected and
non-connected areas, along with field experiments, demonstrates the practicality of the A*
algorithm. However, future research requires further exploration and improvement. Firstly,
extending path planning to three-dimensional space is necessary to consider the height
of obstacles in the environment and the lawnmower’s height on path planning. Secondly,
in complex agricultural systems, path planning algorithms need further refinement and
optimization to fully leverage the potential of comprehensive coverage path planning
technology in agriculture. Therefore, future research is expected to expand in these areas to
achieve a more comprehensive application of path planning technology in agriculture.
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Abstract: In order to meet the needs of intensive mechanized picking in trellised pear orchards, this
paper designed a pick-place integrated end-picker based on the analysis of agronomic characteristics
of trellised pear gardens and fruit. In order to realize the accurate positioning of pears in picking,
based on the kinematic analysis of robot arms and the construction of a private dataset, the YOLOv5s
object detection algorithm was used in conjunction with a depth camera to achieve fruit positioning.
The hand–eye system calibration was carried out. Aiming at solving the problems of redundancy,
inefficiency, and uneven distribution of task volume in the conventional multiple robot arms algo-
rithm, a simulated annealing algorithm was introduced to optimize the picking sequence, and a
task allocation method was proposed. On the basis of studying several key parameters affecting the
performance of the algorithm, the picking efficiency was greatly optimized. And the effectiveness
of the proposed multi-robot collaborative picking method in a trellised pear orchard environment
was demonstrated through experiments and simulation verification. The experiments showed that
the picking efficiency of the integrated end-picker was increased by about 30%, and the success rate
was significantly higher than that of the flexible grippers. The results of this study can be utilized to
advance robotic pear-picking research and development.

Keywords: fruit picking; multiple robotic arms; end-picker; target detection; task planning

1. Introduction

The trellised pear orchard, which originated in Japan, was introduced to China in
the 1990s and was popularized rapidly. The trellised pear orchard has the following five
advantages: good fruit quality; convenient operation and management; easy to implement
standardized cultivation; being convenient for mechanized operation; and preventing wind
and bird damage. The harvest time of pear, the target crop in the trellised orchard in
this study, is affected by a variety of characteristics and climatic conditions, so it is very
important to harvest fruits at the right time according to specific requirements. Since the
efficiency of a single robot arm is low, it is not enough to meet the demand of fruit harvest,
and thus this study used multiple-robot-arm cooperative picking to improve efficiency
and avoid the problems of quality degradation and low picking efficiency caused by not
picking in time.

In general, picking work is divided into three aspects: perception, decision making,
and control execution. The environment and fruit information are perceived by sensors. The
decision system judges the picking target, and the execution system is driven to complete
the picking action. The whole system is known as the “hand–eye–brain” picking system.
This research direction has had wide concern worldwide in recent years.
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Visual perception target detection in fruit and vegetable picking research is mainly
divided into one-stage detection algorithms and two-stage detection algorithms. One
stage detection algorithms, such as YOLO, SSD, SqueezeDet, and DetectNet, can directly
extract features from the network to predict the classification and position of objects, thus
eliminating the need for regional candidate networks (PRNs). The outstanding feature
is that the detection speed is fast and only requires one step. On the contrary, two-stage
detection algorithms, such as RCNN, FasterR-CNN, and MaskR-CNN, need to first create a
proposal box that may contain the object to be detected and then perform further detection
based on the object characteristics to complete the recognition and positioning of the target,
which is more accurate. Mu et al. [1] used FasterR-CNN to identify kiwifruit, wherein they
input the image and depth image obtained by a Kinectv2 camera (Microsoft, Redmond,
WA, USA) into the convolution neural network to detect and locate the kiwifruit in the
picture. Yang et al. [2] proposed a citrus fruit and branch recognition model based on
MaskRCNN for fruit recognition and location under different occlusion conditions, and
they constructed training datasets under a variety of complex conditions, including single
fruit, multiple fruits, covered fruits, branches, and trunks. Qian et al. [3] proposed a method
for mushroom detection and location based on SSD that optimizes the backbone network
of the original SSD model to improve the real-time detection performance in embedded
devices. The model has good detection performance for Pleurotus ostreatus. For apple
fruit and branch segmentation, Kang et al. [4] adopted the Dasnet network model. Peng
et al. [5] used the DeepLabV3+ semantic segmentation model based on the Xception_65
feature extraction network to detect litchi fruit. The experimental results showed that the
model had 0.765 MIoU, which is 0.144 higher than the original DeepLabV3+ model. In
order to adapt to the complex growth environment of litchi and simultaneously detect
and locate the fruit branches of multiple litchi clusters, Li et al. [6] proposed a semantic
segmentation method based on Deeplabv3 to segment the fruit, branches, and background
in RGB images. However, due to the large differences in agronomic characteristics between
fruits, we need to develop semantic segmentation and a target detection algorithm for the
trellised pear orchard scene on the basis of the above fruit recognition algorithm.

In order to meet the needs of recognition and location of litchi fruit and stem at night,
Liang et al. [7] proposed a litchi fruit detection method based on YOLOv3. In order to
verify whether different classification modes will affect the detection effect of the kiwifruit
detection model, Suo et al. [8] collected and classified 1160 kiwifruit images according
to picking strategy and occlusion conditions, and they inputted them into YOLOv4 and
YOLOv3 network models for training and testing. The experimental results showed that the
tagging and classification of datasets in a way that is as detailed as possible can effectively
improve the detection accuracy of the network model. Xiong et al. [9] developed a faster
and more accurate system for the real-time vision detection, tracking, and locating of
strawberries by combining YOLOv4, DeepSORT, and color threshold. In view of the
low accuracy and poor robustness of the traditional green pepper detection methods,
Li et al. [10] proposed an improved green pepper target detection algorithm based on
Yolov4_tiny. Based on the backbone network of the classical target detection model, the
algorithm introduces adaptive feature fusion and feature attention mechanism to improve
the accuracy of the small-target recognition of green pepper while ensuring the accuracy of
classification. Aiming at the characteristics of the small size and dense growth of plums,
Wang [11] proposed a lightweight model named improved YOLOv4, based on YOLOv4.
The experiments showed that the improved YOLOv4 model had higher average accuracy
(mAP); in addition, compared with YOLOv4, the size was compressed by 77.85%, and
the detection speed was accelerated by 112%. Yan et al. [12] proposed an apple detection
algorithm based on improved YOLOv5s that can effectively identify graspable apples and
ungraspable apples, and the average detection time for a single image was found to be
only 0.015 s. In order to meet the requirements of accuracy, lightweight model, and fast
response during picking in a trellised pear orchard, on the basis of optimizing the YOLO
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fruit detection algorithm, a pear detection algorithm based on improved YOLOv5s was
developed, combined with a depth camera.

The terminal execution modes of agricultural picking robots usually include negative
pressure adsorption, shear, mold cavity-sleeve, and flexible grasping. The Xiong team [13,14]
of the Norwegian University of Life Sciences is devoted to the research of strawberry picking
robots. The end-effector of the picking robot developed is a new cable-driven non-contact
picking fixture with sensing function, which is composed of three active fingers, three passive
covering fingers, and a cutter mechanism. The robot uses a collision-free motion planning
algorithm to make picking safer and more convenient. For the picking of the cluster-shaped fruit
of litchi, the Zhou team [15] of South China Agricultural University developed a picking robot
whose end effector is mainly composed of an end-holder and a rotating cutter head. The robot
uses a collision-free motion planning algorithm to make picking safer and more convenient. For
the picking of cherry tomato, which is also a cluster fruit, Feng et al. [16] developed a scissor-like
end-effector, with two cutters used to cut the stalk. By closing or opening the grip fixed to the
cutter, the fruit can be cut and processed reliably.

For tomato picking, Yurni Oktarina et al. [17] in Indonesia designed a tomato picking
robot. The end effector is a pair of scissors, sharp and flexible, which is driven by a servo
motor. The strawberry-picking robot developed by Xiong’s team [14] opens its mold cavity
to “swallow” the fruit when picking, and it cuts the fruit stem with a blade to complete
strawberry picking. For apple mold cavity-sleeve picking, the team designed a spherical
two-finger structure gripper that can effectively reduce the fruit damage rate [18]. The
team also developed a flexible gripper composed of two curved flexible fingers, and they
improved and optimized it so that it could not only pick apples, but also pick pomegranates,
grapefruits, and other fruits [19]. In order to further reduce the damage rate of apple picking,
the team studied a bionic three-finger flexible gripper inspired by the octopus tentacle [20].
The end-effector of the pneumatic finger clip structure developed by Hohimer et al. [21] can
pick apples flexibly and with high precision. Yu et al. [22] designed three-finger grippers
made of flexible materials from an ergonomic point of view, being beneficial to protect
apples from damage and achieve non-destructive picking. Due to the large difference
in agronomic characteristics between fruits, the use outside the scope of the application
scenario will greatly affect the integrity and picking efficiency of the fruit. Therefore, based
on the above fruit pickers such as strawberry and tomato, an integrated end-picker for the
trellised pear garden scene was developed.

The development of multiple robotic arms provides new ideas for picking research.
The cherry-picking robot based on multi-joint robot arms developed by the ArimaS team
utilizes a visual system to identify obstacles in the environment and perform path planning
for a single robot arm [23,24]. Wageningen University developed a six-degree-of-freedom
cucumber-picking robot that uses an identification device on the end effector to identify
fruit stems and picks cucumbers by clamping the fruit stems and cutting them at high
temperatures [25]. DanSteere developed an apple-picking robot in 2015 that is fast, efficient,
and has a wide working range. It uses a four-degree-of-freedom robot arm and an air-
suction end-effector [26]. Due to the limitation of picking efficiency of a single robot arm,
the advantages of collaborative picking by multiple robotic arms are particularly prominent.

In order to improve the efficiency of apple picking, FFRobotics developed a parallel
multiple robot arm apple-picking platform that adopts the way of grouping and dividing
the working area [27]. In order to improve the efficiency of apple picking, FFRobotics
developed an apple-picking platform based on a parallel multiple robot arm, which adopts
the working mode of grouping and work area division [27]. This method can improve the
picking efficiency and avoid the interference and collision between robot arms. Williams
et al. [28] explored a kiwifruit-picking robot with four three-degree-of-freedom serial robot
arms. The robot can collaboratively pick while effectively avoiding collisions between
the robot arms. On the other hand, Fu et al. [29] developed a system containing four
three-degree-of-freedom rectangular coordinate robots and applied it to the collaborative
picking of kiwifruit. For strawberries, a fruit that is difficult to harvest, Harvest CROO
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developed a strawberry-harvesting robot for high-ridge cultivation that uses four parallel
picking units. Each ridge of strawberries is equipped with an independent picking unit,
thus improving work efficiency [30]. AGROBOT Robotics developed a robot suitable for
elevated cultivation, using a solution of 24 parallel robot arms. The linear module utilizes
mechanical isolation in the forward direction to avoid interference between robot arms,
while robot arms on the same unit adopt a control strategy to achieve isolation [31].

As the process of population aging intensifies, a labor-intensive industry like picking
urgently needs to be replaced by more efficient multiple robot arm systems. This paper
focuses on the collaborative picking of multiple robotic arms in a trellised pear orchard.
Taking the trellised pear garden as the object of research, the environment, agronomy,
and physical characteristics of the fruit and the identification and positioning method of
the pear were investigated. Based on the physical characteristics of pears, a pick-place
integrated end-picker was designed. Based on kinematic analysis of robot arms and the
construction of a private dataset, the YOLOv5s object detection algorithm was utilized in
conjunction with a depth camera to achieve fruit positioning, and the hand–eye system
calibration was carried out. It meets the research and development needs of an efficient
picking robot in a pear orchard. In order to solve the optimal picking sequence, as well
as reduce the scheduling time and the energy consumption, a task allocation method for
a multiple robotic arms system was proposed, and the picking sequence was optimized
through the simulated annealing algorithm, and finally, the experimental environment
was set up for the robot arm picking experiment. The comparison experiment between
different end-pickers and the comparison experiment before and after picking sequence
optimization were conducted to test the efficiency of different end-pickers. On this basis, the
task allocation method and optimal configuration were analyzed and verified by simulation
experiments. This research can be utilized to advance robotic pear-picking research and
development.

2. Pick-Place Integrated End-Picker

Kinematic analysis of the picking robot arm is the basis for trajectory planning and
motion control in picking actions. Picking kinematics analysis mainly includes forward
kinematics analysis and inverse kinematics analysis. Kinematics analysis describes the
mapping relationship between the robot arm joint coordinate system and Cartesian space.
Forward kinematics analysis is based on the rotation angle of each joint of a robot arm
combined with the adjacent connecting rod coordinate system transformation matrix to
obtain the mapping relationship between the robot arm picking end and base coordinate
system. Inverse kinematics analysis is used to calculate the angle of each joint of a robot
arm based on the mapping relationship between the picking end of the robot arm and the
base coordinate system, and this solution often has several groups. At the same time, for
the trellised pear garden, a pick-collect integrated end-picker was designed, the 3D model
was established, and the physical processing was completed by 3D printing technology.

2.1. Kinematics of Robot Arm
2.1.1. Kinematic Analysis of the Robot Arm

In this paper, the improved D-H modeling method was utilized in kinematic modeling.
The implementation steps are as follows:

To determine the coordinate system position between the connecting rods of a robot
arm, the coordinate system was established according to the following criteria:

1. The Zi axis coincides with the axis of the joint i; if the Zi axis and Zi+1 axis intersect,
the intersection point of the two axes is the origin of coordinate system, and if not, the
origin is the intersection of the common perpendicular of the two axes and Zi axis.
The Xi axis is perpendicular to the Zi axis and Zi+1 axis. If the Zi axis and Zi+1 axis
do not intersect, Xi axis points from the Zi axis to the Zi+1 axis. After the Zi axis and
Xi axis are determined, the Yi axis can be determined according to the right-hand rule.
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The connecting rod coordinate systems of a robot arm can be determined through the
above steps. To simplify the transformation of a coordinate system, the third and fourth
coordinate systems are offset (Figure 1).
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2. Transforming the coordinate system of two adjacent connecting rods by translation
and rotation. The implementation steps in the improved D-H modeling method are
as follows: (1) Rotating the coordinate system (Xi−1, Yi−1, Zi−1) around the Xi−1 axis
so that the Zi−1 axis is parallel to the Zi axis. (2) Translating the coordinate system
(Xi−1, Yi−1, Zi−1) along the direction of the Xi−1 axis until the Zi−1 axis coincides with
the Zi axis. (3) Rotating the coordinate system (Xi−1, Yi−1, Zi−1) around the Zi axis
so that the Xi−1 axis is parallel to the Xi axis. (4) Translating the coordinate system
(Xi−1, Yi−1, Zi−1) di along the Zi axis so that the Xi−1 axis coincides with the Xi axis.
After the coordinate systems coincide, we determined the D-H parameters (Table 1).

Table 1. D-H parameter table.

Connecting Rod
Number Torsion Angle (◦) Length of

Connecting Rod (m) Joint Angle (◦) Setover of
Connecting Rod (m)

1 0 0 180 0.122
2 −90 0 90 0.1215
3 180 0.408 0 0
4 180 0.376 −90 0
5 −90 0 0 0.1025
6 90 0 0 0.094

The calculating formula for the transformation matrix between the adjacent connecting
rod coordinate systems is expressed in Equation (1):

i−1
i T = R(Xi−1, αi−1)T(Xi−1, αi−1)R(Zi, θi)T(Zi, di)

=




cos(θi) − sin(θi) 0 ai−1
cos(ai−1) sin(θi) cos(ai−1) cos(θi) − sin(ai−1) −di sin(ai−1)
sin(ai−1) sin(θi) cos(θi) sin(ai−1) cos(ai−1) di cos(ai−1)
0 0 0 1




(1)
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3. Obtaining the transformation matrix 0
1T,12 T,23 T,34 T,45 T,56 T between the connecting rods

from the D-H parameter table.
4. Obtaining the transformation matrix between any two connecting rods by continuous

multiplication from the transformation matrix between the adjacent connecting rods.

n
mT = n

n+1Tn+1
n+2Tn+2

n+3T . . . m−1
m T , where n < m.

2.1.2. Analysis of forward and Inverse Kinematics

The forward kinematics of a robot arm can calculate the position and attitude of the
end-picker relative to the base coordinate system through the known angle information of
each joint. The process is obtained by successive multiplication the transformation matrices
of adjacent connecting rod coordinate systems:

0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T =




r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1


 (2)

The inverse kinematics of a robot arm means obtaining the rotation angle of each robot
arm joint based on the given transformation matrix of the end-picker relative to the base
coordinate system. That is to say, on the premise of known 0

6T, seeking the solution of
angles θ1 − θ2. In order to solve the six angles, we multiply the above equations on the left
by 0

1T−1:

1
6T = 0

1T−10
6T =




cos(θ1) sin(θ1) 0 0
− sin(θ1) cos(θ1) 0 0

0 0 1 −d1
0 0 0 1







r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1


 =




R11
′ R12

′ R13
′ Px

′

R21
′ R22

′ R23
′ Py

′

R31
′ R32

′ R33
′ Pz

′

0 0 0 1


 (3)

Among them, each parameter can be calculated as

R11
′ = r11 cos(θ1)− r21 sin(θ1)

R21
′ = r21 cos(θ1)− r11 sin(θ1)

R31
′ = r31

R12
′ = r12 cos(θ1) + r22 sin(θ1)

R22
′ = r22 cos(θ1)− r12 sin(θ1)

R32
′ = r32

R13
′ = r13 cos(θ1) + r23 sin(θ1)

R23
′ = r23 cos(θ1)− r13 sin(θ1)

R33
′ = r33

Px
′ = px cos(θ1) + py sin(θ1)

Py
′ = py cos(θ1)− px sin(θ1)

Pz
′ = pz − d1

(4)

In addition, it can be obtained by direct successive multiplication of the transformation
matrices of the adjacent connecting rod coordinate systems:

1
6T = 1

2T2
3T3

4T4
5T5

6T =




R11 R12 R13 Px
R21 R22 R23 Py
R31 R32 R33 Pz
0 0 0 1


 (5)

According to the principle that corresponding elements of the matrix are equal, six
angle values can be calculated:

Solving θ1:
Let matrix elements R23

′ and R23 be equal, and elements R24
′ and R24 be equal, as

follows:
r23 cos(θ1)− r13 sin(θ1) = cos(θ5)
py cos(θ1)− px sin(θ1) = d2 + d6 cos(θ5)

(6)

The above results imply that

(py − d6r23)× cos(θ1) + (d6r13 − px)× sin(θ1) = d2 (7)
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Let py − d6r23 = r sin(ϕ) = B, d6r13 − px = r cos(ϕ) = A, r =
√

A2 + B2, and then
we have from a triangular replacement:

sin(θ1 + ϕ) = d2/r
cos(θ1 + ϕ) = ±

√
1− d2/r2 (8)

When 1− d2/r2 ≥ 0, θ1 has a solution, which is

θ1 = a tan 2(d2,±
√

r2 + d22)− a tan 2(B, A) (9)

Solving θ5:
After θ1 is calculated, we obtain the following according to Formula (6):

sin(θ5) = ±
√

1− (r23 cos(θ1)− r13 sin(θ1))
2

θ5 = a tan 2
(
±
√

1− (r23 cos(θ1)− r13 sin(θ1))
2, r23 cos(θ1)− r13 sin(θ1)

) (10)

Solving angle θ6:
Let matrix elements R21

′ and R21 be equal, and elements R22
′ and R22 be equal, as

follows:
r21 cos(θ1)− r11 sin(θ1) = − sin(θ5)× cos(θ6)
r22 cos(θ1)− r12 sin(θ1) = sin(θ5)× sin(θ6)

(11)

The above results imply that

cos(θ6) =
r11 sin(θ1)−r21 cos(θ1)

sin(θ5)

sin(θ6) =
r22 cos(θ1)−r12 sin(θ1)

sin(θ5)

(12)

When sin(θ5) 6= 0, θ6 has a solution, which is

θ6 = a tan 2
(

r22 cos(θ1)− r12 sin(θ1)

sin(θ5)
,

r11 sin(θ1)− r21 cos(θ1)

sin(θ5)

)
(13)

Solving θ2:
Let matrix elements R13

′ and R13 be equal, and elements R33
′ and R33 be equal, as

follows:
r13 cos(θ1) + r23 sin(θ1) = cos(θ2 − θ3 + θ4)× sin(θ5)
r33 = − sin(θ2 − θ3 + θ4)× sin(θ5)

(14)

The above results imply that

cos(θ2 − θ3 + θ4) =
r13 cos(θ1)−r23 sin(θ1)

sin(θ5)

sin(θ2 − θ3 + θ4) =
−r33

sin(θ5)

θ2 − θ3 + θ4 = a tan 2
(
−r33

sin(θ5)
, r13 cos(θ1)−r23 sin(θ1)

sin(θ5)

) (15)

Let matrix elements Px
′ and Px be equal, and elements Pz

′ and Pz be equal, as follows:

px cos(θ1) + py sin(θ1) = a2 cos(θ2)− d5 sin(θ2 − θ3 + θ4) + a3 cos(θ2 − θ3) + d6 sin(θ5) cos(θ2 − θ3 + θ4)
pz − d1 = −a2 sin(θ2)− d5 cos(θ2 − θ3 + θ4)− a3 sin(θ2 − θ3)− d6 sin(θ5) sin(θ2 − θ3 + θ4)

(16)

By transposition, it follows that

a2 cos(θ2) + a3 sin(θ2 − θ3) = px cos(θ1) + py sin(θ1) + d5 sin(θ2 − θ3 + θ4)− d6 sin(θ5) cos(θ2 − θ3 + θ4)
a2 sin(θ2) + a3 sin(θ2 − θ3) = d1 − d6 sin(θ5) sin(θ2 − θ3 + θ4)− d5 cos(θ2 − θ3 + θ4)− pz

(17)

Given
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px cos(θ1) + py sin(θ1) + d5 sin(θ2 − θ3 + θ4)− d6 sin(θ5) cos(θ2 − θ3 + θ4) = C
d1 − d6 sin(θ5) sin(θ2 − θ3 + θ4)− d5 cos(θ2 − θ3 + θ4)− pz = D

(18)

we obtain

C cos(θ2) + D sin(θ2) =
C2 + D2 + a2

2 − a3
2

2a2
= E (19)

Let
sinβ =

C√
C2 + D2

, cosβ =
D√

C2 + D2
, (20)

and then we have from triangular replacement the following:

sin(β+ θ2) =
E√

C2+D2

cos(β+ θ2) = ±
√

1− E2/(C2 + D2)

θ2 = a tan 2(E,±
√

C2 + D2 − E2)− a tan 2(C, D)

(21)

When C2 + D2 − E2 ≥ 0, θ2 has a solution.
Compute θ3:
After solving θ3, compute θ2 − θ3:

θ2 − θ3 = a tan 2(D−a2 sin(θ2)
a3

, C−a2 cos(θ2)
a3

)

θ3 = θ2 − (θ2 − θ3)
(22)

Solving θ4:
θ4 = (θ2 − θ3 + θ4)− (θ2 − θ3) (23)

All joint angles have been solved. A total of eight groups of inverse solutions can be
solved, and a group of the most suitable solutions can be selected according to the size of
the angle spinor.

2.2. The Design of the Executive Mechanism

In this study, the mold cavity-sleeve structure was used for pear picking. The active
cutting mode will greatly increase the structural complexity of the end actuator, and the
mold cavity sleeve itself will occupy a larger volume. If the cutting device is added, the
volume and weight of the actuator will be increased. Therefore, a passive cutting mode
for which the end actuator cooperates with the robot arm to complete the picking action
was adopted to realize the miniaturization of the end-picker. By rational design of the
opening and closing mechanism above the end-picker and cooperating with the robot arm,
the crown pear stems can be cut. Figure 2 shows the overall assembly diagram of the
end-picker.

Figure 3a shows the three-dimensional structure of the blade. The cutting mechanism
of the end-picker designed for mold cavity picking is the key to separating pears from
stems. There are two connecting holes on both sides of the structure that are connected to
main body of the mold cavity. Two blades are arranged symmetrically, wherein opening
and closing are controlled by the steering engine. After the fruit enters the mold cavity, the
steering engine drives blades to clamp the stem and reset after picking is completed.
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Figure 3. End-picker assembly diagram: (a) blade; (b) mold cavity; (c) connecting mechanism;
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Figure 3b shows the mold cavity of the picker. The main body is cylindrical. The fruit
entrance and exit of the mold cavity is a connecting tube with an inner diameter of 100 mm.
After fruit enters from the inlet, it will directly enter the fruit-collecting tube from the outlet.
As long as the fruit enters the mold cavity, there will be no damage to the fruit due to the
robot arm not grasping it firmly. The bottom of the cavity of the picker is closed and exists
as a buffer structure in the internal structure. A slope channel is formed in the cavity with
foam and other buffering materials so that the fruit can be buffered and enter the collection
tube along the ramp. Therefore, the mold cavity-sleeve method can protect the fruit well
and avoid damage to the fruit during the picking process.
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Figure 3c shows the connection mechanism, which is used to connect the end-picker
and the end flange of the robot arm. The four mounting holes correspond to the four
threaded holes of the end flange of the robot arm.

Figure 3d shows the collecting mechanism. The diameter of the collecting tube is
100 mm. And the tube is made of rubber to prevent pears from being damaged by friction
with the tube inner wall during the collecting process. The deceleration mechanism is set
in the middle of the collecting tube. When the fruit passes through, its kinetic energy will
be reduced, thereby reducing the speed in the tube and the loss of fruit.

Figure 3e shows the transmission mechanism and photos illustrating the installation of
each element. The transmission mechanism mainly has three gears, for which the module
is 1, the number of teeth is 20, and the inner diameter of the hole is 6 mm. Two metal gears
are fixed at the two blade mounting holes and mesh with each other. The driving mode of
the steering gear is PWM control, which can accurately control the predetermined rotation
angle. It is mainly used to drive the meshing gear fixed on the blade and then drive the
opening and closing of the two blades for picking.

3. Target Detection and 3D Location
3.1. Dataset Construction

At present, there are few open-source pear datasets in the field of agricultural picking,
and especially the data of the natural unpicked state and fruit under a trellised orchard are
very scarce. The experimental dataset was collected by the orchard and the trellised pear
orchard environment built in the laboratory. The image format was JPEG with a resolution
of 3024 × 4032, and the video format was MP4 with a resolution of 4K. And the diversity
of the dataset was improved by collecting datasets in two scenes of natural light during the
day and filling light at night.

The visual equipment used for target detection and calibration in this paper was
an Intel RealSense D435i depth camera, which was composed of an rgb camera, infrared
camera, infrared transmitter, and IMU (depth resolution: 1280× 720; RGB sensor resolution:
1920 × 1080).

The performance of deep learning models strongly depends on the quantity and
quality of input data. Many deep learning projects fail to obtain enough data in practical
applications, resulting in the underfitting of the model. In order to improve the model
generalization ability, that is, the ability to predict new data, data augmentation techniques
are widely used. Currently, supervised data augmentation schemes are commonly used,
which operate the dataset through known image transformation rules to make the model
learn more features and increase the richness of the dataset, thereby improving the per-
formance and stability of the model. The data augmentation methods used in this article
include (1) random cropping; (2) mirror image; (3) Gaussian noise; (4) grayscale image; and
(5) rotating 90◦.

Each image collected was manually screened and classificatorily annotated by a label
using LabelImg software (v1.8.1) as shown in Figure 4. In the annotation process, a rectangle
annotation method is used to draw the minimum bounding rectangle of the pear object in
the image, and the categorical attribute of the rectangle frame is set to “pear”. After the
annotation is completed, the generated xml format label file is automatically saved, and the
xml format text contains the height, width, and categorical information of the rectangular
box. According to the VOC2007 dataset format, the trellised pear orchard dataset was
made, wherein the dataset has a total of 2574 images, and the ratio of the training set to
validation set was set to 7:3.
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3.2. Yolo-v5s Detection Model

Experimental running environment: CPU: i7-12700H, 16GB running memory; GPU:
GTX 3060, 6 GB graphic memory; running system: Windows11; depth framework: PyTorch,
GPU1.10.1, with CUDA11.6 and cudnn7.6.5. Running software: Pycharm2021.3 community
edition, Python3.8.16.

Considering the experimental hardware platform conditions and model detection
accuracy, the choice of network depth and width is very important. Under the condition of
the minimum depth and width of the model, the YOLOv5s model is a very excellent object
detection model that can achieve high-precision object detection with a smaller memory
footprint and computing resources. The input layer of the YOLOv5s model is used to
receive the original image data, and the Backbone layer can extract feature information
from the original image, with the Neck layer being able to further compress the feature
information. Finally, object detection and classification are performed in the Detect layer.
The structure of the Yolov5s model used in this project is shown in Figure 5.
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Based on the collected dataset above and the model, the results of network training by
setting parameters are shown in the figure. Figure 6a shows the confusion matrix, which
is a commonly used method to evaluate the performance of classification models and is
usually used to calculate precision, recall, F1 score, and other indicators of classification
algorithms. The horizontal axis of the confusion matrix represents the real label, the vertical
axis represents the predicted label, and the value of each cell represents the number of
samples that the real label matches to the predicted label. The probability of the pears in
Figure 6a being correctly classified is 0.99. In Figure 6b, there is shown a certain relationship
between F1 score and confidence thresholds. F1 score can help to comprehensively consider
the performance of the model in the classification task, with neither too much emphasis
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on precision, nor too much emphasis on recall, so that the detection results of models are
more balanced and reliable. Typically, the top of the curve is close to 1, indicating that the
model performs well on the training dataset. Figure 6c shows the precision–confidence
threshold curve. The higher confidence is, the higher the precision of the classification
detection is. But, it is possible to miss some real samples with low probability of judgment.
Figure 6d shows the precision–recall curve (PR curve), which is also a commonly used
performance evaluation tool for evaluating the classification performance of the model in
multiple categories. As can be seen from the figure, the higher precision is, the lower recall
is. It is hoped that all categories can be detected as far as possible under the premise of
high precision. Therefore, the area of the mAP curve should be as close to 1 as possible.
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3.3. Hand–Eye System Calibration

In the process of camera calibration and hand–eye calibration, the transformation
relationship of four coordinate systems is involved, which are the pixel coordinate system,
image coordinate system, camera coordinate system, and world coordinate system, as
shown in Figure 7. For this study, the world coordinate system was the robot arm base
coordinate system.
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Figure 7. Coordinate transformation.

Hand–eye calibration mainly finds the relationship between the camera coordinate
system and the robot arm base coordinate system. By deriving the transformation matrix
between these two coordinate systems, the 3D coordinates of the detected target in the
camera coordinate system can be converted to the robot arm base coordinate system. There
are mainly two hand–eye calibration methods, as shown in Figure 8, which can be divided
into “eyes in hand” and “eye to hand”, depending on the setting position of the camera.
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Figure 8. Setting position of the camera. (a) Eyes in hand; (b) eye to hand.

For the “eyes to hand” method of hand-eye calibration, during the movement of
the robot arm, the camera coordinate system and the robot arm base coordinate system
are fixed, and the transformation matrix between them is also unchanged. Hand–eye
calibration is used to solve the transformation relationship between these two coordinate
systems, as shown in Figure 9.
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Figure 9. Calibration diagram.

We set the robot arm base coordinate system to {Base} and the camera coordinate
system to {Camera}. If the coordinates of several fixed points Pi under these two coordinate
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systems are known, the corresponding transformation matrix of these two coordinate
systems can be derived according to the coordinate transformation formula. The imple-
mentation steps are as follows:

(1) We set the coordinate of a spatial point Pi under {Base} to Pi(x′i , y′i, z′i) and the coordi-
nate under {Camera} to Pi(x′i , y′i, z′i). On the basis of the relationship between these
two coordinates and the homogeneous matrix form, the following formula can be
derived: 




r11xi + r12yi + r13zi + a = x′i
r21xi + r22yi + r33zi + b = y′i
r31xi + r32yi + r33zi + c = z′i

1 = 1

(24)

(2) We derive the pixel coordinates of the spatial point Pi by the object detection algorithm,
and the specific coordinates of the point in the camera coordinate system by combining
the camera internal parameters and the depth information of the depth camera. The
coordinates in the robot arm base coordinate system could be read out directly by the
robot arm teach pendant.

(3) We select twenty different points to fit the optimal results, solving the following param-
eters: r11, r12, r13, r21, r22, r23, r31, r32, r33, a, b, c, as well as listing the overdetermined
linear equations of these points in the camera coordinate system.

(4) We solve the overdetermined equations by the least squares method. We obtain the
rotation matrix and translation vector between the camera coordinate system and the
robot arm base coordinate system.

4. The Picking Task Planning of Multiple Robot Arms
4.1. The Task Allocation Method of Multiple Robot Arms

In this paper, the Monte Carlo method based on random probability was utilized to
solve the working space of a robot arm. Figure 10 shows the working space of a single
AUBO-i5 robot arm and the projection of the working space on xoz. The working space is
approximately a sphere, and the picking area is divided based on this.
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Figure 10. The working space of AUBO-i5.

It can be seen from Figure 11 that when the picking plane was 0.4009 m away from the
unmanned vehicle plane, the radius of the picking plane was 0.8703 m; when the picking
plane was 0.923 m away from the unmanned vehicle plane, the radius of the picking plane
was 0.4696 m. As picking height increases, the picking range will decrease. The projection
of the workspace on xoy, the circular area, decreased as the Z-axis absolute value increased.
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The distance between robot arms was set to 1 m. The projection of a multiple robot 
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Figure 12. The analysis diagram of a picking range with multiple robot arms (Different colors 

represent different work areas). (a) the projection of a two-robot-arm workspace; (b) the projection 

Figure 11. The analysis diagram of a picking area with a single robot arm. (a) z = 0.4 m, x = 0.87 m;
(b) z = 0.55 m, x = 0.81 m; (c) z = 0.60 m, x = 0.80 m; (d) z = 0.71 m, x = 0.70 m; (e) z = 0.80 m, x = 0.61
m; (f) z = 0.92 m, x = 0.47 m.

The distance between robot arms was set to 1 m. The projection of a multiple robot
arm workspace on xoy can be obtained using the Monte Carlo method (Figure 12).
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Figure 12. The analysis diagram of a picking range with multiple robot arms (Different colors
represent different work areas). (a) the projection of a two-robot-arm workspace; (b) the projection of
a three-robot-arm workspace; (c) the projection of a four-robot-arm workspace; (d) the projection of a
six-robot-arm workspace.
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It can be seen from Figure 12 that for the trellised pear orchard environment, at
different heights from the unmanned vehicle plane, the picking area of each robot arm
was approximately a circle. As picking height increased, the overlap of the picking area
between adjacent robot arms was approximately an ellipse, wherein the area decreased as
picking height increased.

The height of an unmanned vehicle is 1.1 m. The robot arm performs picking oper-
ations on a picking plane 0.6 m away from the unmanned vehicle plane. The operating
area of the robotic arm is approximately a circle with a radius of 0.8 m. On the basis of
the solution of multiple robot arm workspace in the previous section, the picking area of a
robot arm was divided (Figure 13). Collaborative picking task allocation of multiple robotic
arms can be described as the problem of multiple robotic arms cooperating to complete
the picking task. The ultimate goal is to increase picking efficiency, and at the same time,
tending to divide the task volume of each robot arm evenly and improve the utilization
rate of each robot arm.
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Figure 13. The diagram of a picking area with multiple robot arms. (a) The picking area of a two-
robot-arm workspace; (b) the picking area of a three-robot-arm workspace; (c) the picking area of a
four-robot-arm workspace; (d) the picking area of a six-robot-arm workspace.

The collaborative picking task allocation model of multiple robotic arms is specifically
described as follows:

(1) A set of multiple robotic arms is represented by R = {R1, R2, R3, R4, . . . , Ra}, where
a represents the number of robot arms and Ri represents the robot arm, 1 ≤ i ≤ a. (2) The
picking area is represented by P = {P1, P2, P3, P4, . . . , Pb}, where b represents the number
of picking areas and Pj represents the picking sub-regions, 1 ≤ j ≤ b. (3) The task volume
in each sub-regions is represented by G = {G1, G2, G3, G4, . . . , Gb}, where Gk represents
the picking task volume in a sub-picking area k, 1 ≤ k ≤ b. (4) Each robot arm is set in
different positions, and the picking sub-regions are also different. The set of tasks that the
robot arm can pick is TRi = {TR1, TR2, TR3, TR4, . . . , TRa}, where i represents the i-th robot
arm, TRi ∈ G. The task process is shown in Figure 14.
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Firstly, the number of robot arms, the spacing between the robot arms, and the height
of the picking plane are determined. Then, the Monte Carlo method is utilized to analyze
the workspace of multiple robot arms and divide the picking area.

After the picking area is divided, the picking area that can only be picked by the only
robot arm is first matched with its corresponding one. Then, for other areas that can be
picked by two or more robot arms, first, we arrange them from small to large according to
the number of robot arms that can pick in this area. Then, we take them out in the order
from small to large and select the robot arm with the least task volume until all the areas
are allocated. This allocation strategy is mainly to distribute tasks evenly while avoiding
collision interference between multiple robotic arms. The purpose of the picking robot arms
in this area being taken out in order from small to large is to better balance the task volume
of robot arms. This is because as the allocation process gradually proceeds, the number
of robot arms corresponding to the picking area increases, and the algorithm can further
balance the robot arms with a large difference of task volume assigned at the last time. At
the same time, the picking area becomes smaller, and the probability of few fruits in the
area becomes greater. So, it will not cause the task volume of robot arm with the fewest
tasks to become much higher than that of other robot arms after the allocation. Taking
two robot arms as an example, due to uneven fruit distribution in most cases, when the
difference of the fruit number between P1 and P2 is large, according to the task allocation
strategy, the public picking area P3 will be assigned to the robot arm with a smaller task
volume, so that task volume of the two robot arms tends to be evenly allocated, with little
difference. The same method will be utilized in the common picking area of three, four,
and six robot arms.

4.2. Picking Sequence Optimization

In this paper, in a trellised pear orchard environment, the heights of pears were
basically the same. The Z-axis coordinate was ignored, and the multi-fruit picking path
optimization problem was converted into a two-dimensional traveling salesman problem.
The coordinates of each pear can be given by the depth camera, and then the distance
between each two pears can be obtained. The picking path optimization problem is to find
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the shortest path that can traverse all the fruits and does not repeat [32]. The TSP model of
picking path optimization can be expressed by a mathematical model.

The requirement of the picker design is to complete the most picking in the shortest
path. If the simple algorithm is used to pick across the region, the picking path will have
great redundancy, and it is more time-consuming to schedule the manipulator back and
forth. Therefore, we used the simulated annealing algorithm for optimization, to solve the
optimal picking sequence, to reduce the scheduling time of the robot arm, and to reduce
energy consumption at the same time.

We set the weighted graph as G = (V, E), and all pear coordinate-sets as V =
{1, 2, 3, . . . , n− 1, n}. E is a set of path weights or lengths, and Dij represents the distance
between each pear, where Dij > 0, i, j ∈ V.

xij =

{
1, (i, j) ∈ L
0, (i, j) /∈ L

(25)

L is the solution sequence. The TSP mathematical model can be expressed in the
following form:

mins =
n
∑

i=1

n
∑

j=1
dijxij

s.t.





n
∑

i=1
xij = 1, j ∈ V

n
∑

j=1
xij = 1, i ∈ V

n
∑

i,j∈S
xij ≤ |S| − 1, ∀S ⊆ V, 1 < |S| < n

(26)

The distance between adjacent fruits is set as dij. S is a non-empty subset of the vertex
set V, and |S| is the number of vertices of the set S in the weighted graph G.

This project utilized a simulated annealing algorithm that can avoid falling into local
optimality to a certain extent, in order to optimize the picking sequence. The algorithm
mainly consists of two parts: one is the Metropolis algorithm, and the other is the annealing
cooling process, which corresponds to the internal cycle and the external cycle, respectively.

The algorithm steps are as follows (Figure 15):
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(1) Initialize the temperature, and set the current temperature T = TS, the termination
temperature Tf, and the maximum number of iterations M. Randomly generate an initial

solution x and then calculate the objective function value f (x) =
n
∑

i=1

n
∑

j=1
dij. (2) At a certain

temperature, the current solution is perturbed by insertion, exchange, reversal, and other
ways to generate a new solution. (3) Solve the objective function value f (x′), and calculate
∆ f = f (x′)− f (x); if ∆ f < 0, then the new solution x′ is accepted. If not, the new solution
x′ is accepted according to the probability. (4) At a certain temperature T, the perturbation
and acceptance process is repeated for a certain number of times, that is, steps 2 and 3 are
repeated. (5) Lower the temperature T. (6) Repeat steps 2–5 until convergence conditions
are met.

The simulated annealing algorithm has three important parameters: initial temper-
ature Ts, internal loop iteration number M, and cooling coefficient α, which determine
the optimization capacity and comprehensive performance of the simulated annealing
algorithm, that is, finding a better solution quickly and accurately with less time cost. (The
above initial temperature does not represent the physical temperature in the real envi-
ronment, but instead a parameter that needs to be optimized in the simulated annealing
algorithm, which represents the base temperature in the optimization algorithm.)

In theory, the larger the initial temperature, the better. A low temperature causes the
problem of the algorithm not searching enough in the solution space, resulting in missing
the optimal solution in the optimizing process. But if the temperature is too high, it will
take a lot of time. The number of inner loop iterations also affects the search ability of
the algorithm in the solution space. The greater the number of iterations at the same
temperature, the greater the chance of finding the optimal solution, but the time cost is
often greatly increased. Then, a too large cooling coefficient easily leads to the loss of the
optimal solution, while a too small cooling coefficient greatly increases the algorithm’s
time cost. The termination temperature determines when the algorithm ends. Setting the
termination temperature too high will result in an insufficient search, so the termination
temperature is generally set to a smaller value.

(1) The adjustment of initial temperature Ts

Only the initial temperature was changed, and other parameters were kept constant
and assigned values. The number of iterations was set to 100, the cooling coefficient was 0.9,
and the end temperature was 0.02. Twelve groups of temperatures were selected, and the
simulated annealing program was run 10 times at each temperature to reduce the accidental
error. Table 2 shows the data of the optimization process.

Table 2. Program optimization at 1000 degrees centigrade.

Ts = 1000 Traversal Distance
Optimized (m) Running Time (s) Cooling Iteration Times

1 18.7174 4.1342 32.0000
2 20.6193 3.8558 21.0000
3 20.9443 3.4763 9.0000
4 19.1814 4.1061 29.0000
5 19.9797 3.9653 23.0000
6 20.3760 4.2626 32.0000
7 20.4530 4.3658 36.0000
8 21.6306 3.8912 21.0000
9 20.0824 3.9527 23.0000
10 19.6808 4.2147 31.0000

MIN 18.7174 3.4763 9.0000
AVG 20.1665 4.0225 25.7000

Standard deviation 0.8451 0.2546 7.9029

The average traversal distance and the minimum value at each temperature, as well
as the standard deviation, were counted to generate the line chart (Figure 16). The blue
line is the average traversal distance at each temperature, which was utilized to evaluate
the overall optimization performance of the algorithm. The smaller the average traversal
distance, the better the performance of the algorithm at that temperature. The yellow
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line represents the optimized minimum value at each temperature, which represents the
ability to find the optimal solution at each set of temperatures. The smaller the minimum
value, the stronger mining ability of the algorithm at that temperature. The green line
represents the standard deviation of each set of data, which was utilized to judge the
degree of discreteness of a set of data. If the standard deviation was larger, it means that
the set of data fluctuated greatly, and the performance of the algorithm was unstable.
The abscissa represents the temperature of each group, and the ordinate represents the
corresponding distance at a certain temperature. According to Figure 16, when the initial
temperature was 100 ◦C, the average traversal distance and the minimum distance were
the largest, indicating that the performance of the algorithm was poor. As the temperature
increased, the average traversal distance and the minimum distance decreased. After
the initial temperature reached 1500 ◦C, the decrease in amplitude of both slowed down
as the initial temperature increased. After the initial temperature reached 3000 ◦C, the
average traversal distance and minimum distance remained basically unchanged, and
the algorithm performance tended to be stable. At the same time, it can be seen that the
standard deviation fluctuated up and down at the beginning and then decreased to zero at
the end, indicating that the algorithm optimization performance became more stable. In
summary, 3000 ◦C was selected as the initial temperature of the algorithm to ensure the
performance and reduce the waste of time.
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(2) The adjustment of the number of inner loop iteration M

Only the iteration number of inner loop was changed, and other parameters were
kept constant and assigned. The initial temperature was set to 3000, the cooling coefficient
was 0.9, and the end temperature was 0.02. Twelve groups of iteration numbers were
selected, and the simulated annealing program was run 10 times at each iteration number
to reduce the accidental error (Table 3).

Table 3. Program optimization under 100 loop times.

M = 100 Traversal Distance
Optimized (m) Running Time (s) Cooling Iteration Times

1 16.3104 5.8098 83
2 17.5659 7.2418 119
3 16.2374 4.2802 32
4 16.3471 5.5327 60
5 16.8163 7.1329 122
6 16.5062 8.8083 171
7 16.334 6.6753 108
8 17.3419 7.0707 122
9 16.7095 8.8845 178
10 16.8789 8.5171 166

MIN 16.2374 4.2802 32
AVG 16.70476 6.99533 116.1

Standard deviation 0.4557 1.5009 48.0681
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The average traversal distance, minimum value, and standard deviation under each
internal iteration number were counted, and the trend line chart was drawn. When the number
of internal iterations was too small, the optimization ability of the algorithm was limited, and
the optimization effect of the average traversal distance was not obvious (Figure 17). With the
increase in the number of internal iterations, the average traversal distance and the optimized
minimum distance both decreased, indicating that the optimization ability of the algorithm
was enhanced with the increase in the number of internal iterations. As the number of internal
iterations increased, both the average traversal distance and the optimal minimum distance
decreased, indicating that the optimization ability of the algorithm increased as the number of
internal iterations increased. When the number of iterations reached 150, the performance of
the algorithm almost did not improve with the increase in the iteration numbers. Therefore,
the algorithm was already at a relatively optimal level at this time, and further increasing the
number of internal iterations would only increase the time cost. In summary, the number of
inner iterations was chosen to be 150.
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(3) The adjustment of cooling coefficient α

Only the cooling coefficient was changed, and other parameters were kept constant and
assigned. The initial temperature was set to 3000, the iteration number of each temperature
was 150, and the end temperature was 0.02. Twelve groups of cooling coefficient were
selected, and the simulated annealing program was run 10 times at each cooling coefficient
to reduce the accidental error (Table 4).

Table 4. Program optimization under 0.99 cooling coefficient.

α = 0.99 Traversal Distance
Optimized (m) Running Time (s) Cooling Iteration

Times

1 16.2242 8.1109 107
2 16.2374 5.6527 55
3 16.2242 5.0363 43
4 16.3104 9.1028 133
5 16.2910 8.3292 113
6 16.2242 6.4719 71
7 16.2374 5.3622 51
8 16.2374 4.8088 37
9 16.2374 3.575 10
10 16.4018 7.1986 89

MIN 16.2242 3.575 10
AVG 16.26254 6.36484 70.9

Standard deviation 0.0571 1.7823 38.7941
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The average traversal distance and the minimum value, as well as the standard devia-
tion, at each iteration number were counted to generate the trend line chart (Figure 18). The
blue line is the average traversal distance at each temperature. The yellow line represents
the optimized minimum value at each temperature. The green line represents the standard
deviation of each set of data. The abscissa represents the cooling coefficient of each group,
and the ordinate represents the corresponding distance at a certain cooling coefficient.
According to Figure 18, with the increase in the cooling coefficient, the optimization ability
of the algorithm became better. When the cooling coefficient reached 0.99, with the increase
in the cooling coefficient, the optimized effect of the simulated annealing algorithm was
not obvious, and the optimized average traversal distance and the optimized minimum
value of each group tended to be consistent. Therefore, 0.99 was an appropriate parameter
value for this algorithm. In summary, the cooling coefficient of the algorithm was 0.99.
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Taking an area as an example, 20 points were randomly generated within the picking
range of a robot arm to simulate the distribution of pears on a trellis. Since the impact
in the vertical direction is small, only the coordinate information in X and Y directions
was considered. Figure 19 separately shows that the randomly traversed path before
optimization was disorderly and the picking path after optimization formed a neat loop,
for which the optimization effect was obvious (Figure 19).
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Figure 19. Comparison before and after the optimization of the simulated annealing algorithm.

The total number of iterations was 300. As the number of iterations increased, the total
path length gradually decreased. In the range of 0–50 times, the curve was steeper, and the
convergence speed was faster. At this time, the optimization effect was better. In the range
of 50–120 times, the curve was a straight line, and the algorithm fell into a local optimum.
As the number of iterations increased, the perturbation caused the solution to jump out of
the current local optimum. After the number of iterations reached 240, a better result was
achieved (Figure 20).
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5. Picking Experiment
5.1. Picking Experiment with Different End-Pickers

In this experiment, different numbers of fruits were set to test the picking effect of
different end-pickers. Each set of fruits had the same arrangement position, the same
picking sequence, and the same number. The picking experiment was carried out using
the gripper and the pick-place integrated end-picker. In addition, all the fruits in this
experiment were models, so all the cutting action of fruit stems was a simulation. The
picking pose of the end-picker was vertically up (Figure 21b).
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Figure 21. Picking diagram. (a) Initial pose; (b) target pose.

The binocular camera at the bottom of the robot arm obtained the three-dimensional
spatial coordinates of the fruit. After the coordinate transformation, the recognized fruit
coordinates were transmitted to the robot arm. The flexible gripper picking process is
shown in Figure 22. The pick-place integrated end-picker moved from the initial pose
(Figure 23a) to the lower part of target position (Figure 23b), and it continued to move to
the target position (Figure 23c). The mechanical arm carried the end-picker close to the
fruit, setting the fruit into the cavity. At this time, the steering engine drove the cutting
mechanism to close through the reduction gear and clamp the pear stem (Figure 23d).
Then, the robot arm drove the cutting mechanism to move down and cut off the pear stem,
and the fruit from the cavity fell into the collection tube in the direction of the arrow, and
through the collection tube entered the storage basket, which completed the picking and
collection (Figure 23e). Finally, after completing a picking task, the cutting mechanism was
driven to open by the steering engine (Figure 23f).

173



Agronomy 2024, 14, 80

Agronomy 2024, 14, x FOR PEER REVIEW 25 of 31 
 

 

  
(a) (b) 

Figure 21. Picking diagram. (a) Initial pose; (b) target pose. 

The binocular camera at the bottom of the robot arm obtained the three-dimensional 

spatial coordinates of the fruit. After the coordinate transformation, the recognized fruit 

coordinates were transmitted to the robot arm. The flexible gripper picking process is 

shown in Figure 22. The pick-place integrated end-picker moved from the initial pose 

(Figure 23a) to the lower part of target position (Figure 23b), and it continued to move to 

the target position (Figure 23c). The mechanical arm carried the end-picker close to the 

fruit, setting the fruit into the cavity. At this time, the steering engine drove the cutting 

mechanism to close through the reduction gear and clamp the pear stem (Figure 23d). 

Then, the robot arm drove the cutting mechanism to move down and cut off the pear stem, 

and the fruit from the cavity fell into the collection tube in the direction of the arrow, and 

through the collection tube entered the storage basket, which completed the picking and 

collection (Figure 23e). Finally, after completing a picking task, the cutting mechanism 

was driven to open by the steering engine (Figure 23f). 

   
(a) (b) (c) 

  
(d) (e) 

Figure 22. The process of flexible grippers from picking fruits to placing them in the basket. (a) 

Reaching below the target position; (b) gripper open; (c) reaching the target location; (d) gripper 

closed; (e) putting the pear in the basket. 

Figure 22. The process of flexible grippers from picking fruits to placing them in the basket. (a) Reach-
ing below the target position; (b) gripper open; (c) reaching the target location; (d) gripper closed;
(e) putting the pear in the basket.
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location; (d) cutting mechanism closed; (e) cutting completed; (f) cutting mechanism open.

Different numbers of pears were randomly placed within the picking range of the
robot arm. The picking experiments of two different end-pickers are shown in Table 5
below:
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Table 5. Picking experimental data statistics.

Fruit Number
Picking Time (s)

Percent (%)
Picking Failure Number

Grippers Pick-Place
Integrated Grippers Pick-Place

Integrated

2 35.32 21.96 37.83 0 0
4 69.65 45.59 34.54 1 1
6 97.65 61.28 37.24 2 1
8 138.35 81.09 41.39 2 0
10 165.94 111.63 32.73 3 2

It can be seen from the table that when picking with flexible claws, the picking time
of each fruit was about 16 s, while the pick-place integrated end-picker took about 10 s
to pick one fruit. The efficiency of the pick-place integrated end-picker was increased by
approximately 37%. At the same time, the probability of picking failure using a flexible
gripper was higher than that of the pick-place integrated end-picker. When the number
of fruits was ten, the number of failed gripper pickings was three, for which the failure
probability was 30%. Conversely, the failure probability of the integrated end-picker was
only 20%. In several sets of experiments, the overall success probability of the integrated
end-picker was about 86.67%, while that of the gripper was only 73.33%.

5.2. Comparison before and after Picking Sequence Optimization

In this experiment, different numbers of fruits were set to test the picking effect of
the single robot arm system, and the picking sequence was optimized by the simulated
annealing algorithm. The experiment used the integrated end-picker, for which each set of
fruits was randomly distributed within the picking range of the robot arm, and the fruit
distribution position was consistent before and after optimization. The picking experiment
result was as shown in Table 6 below:

Table 6. Experiment result before and after optimization.

Fruit
Number

Picking Time (s)
Percent (%)

Picking Failure Number

Random
Traversal

Simulated
Annealing

Random
Traversal

Simulated
Annealing

2 11.94 12.14 −1.68 0 0
4 28.65 23.51 17.94 0 1
6 41.59 31.24 24.89 1 0
8 50.98 39.61 22.30 2 2
10 63.43 46.58 26.56 2 1

It can be seen from the table that picking efficiency was improved by about 20% after
the optimization of the simulated annealing algorithm, for which the improvement effi-
ciency also increased with the number of fruits. The picking route was messy and lengthy
before optimization, and the traversal distance was greatly reduced after optimization by
the simulated annealing algorithm (Figure 24).
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5.3. Simulation of Task Allocation for Multiple Robotic Arms

We randomly generated 5, 10, 20, 30, 40, and 50 points in the picking plane area of the
two robot arms to simulate the growth distribution position of pears, and we counted the
number of fruits falling into the three areas and then followed the proposed task allocation
method of multi robotic arms allocating picking tasks to corresponding robot arms. Finally,
we counted the task volume of each robot arm. From Table 7, it can be seen from the six
sets of data that the task allocation method proposed in this paper was able to effectively
improve the utilization rate of a robot arm and make the task volume of the multi-machine
system tend to be evenly distributed.

Table 7. Task allocation for two robot arms.

Group
Fruits Number in Region Task Volume of the Robotic Arm

P1 P2 P3 R1 R2

5 2 0 3 2 3
10 5 3 2 5 5
20 5 12 3 8 12
30 17 9 4 17 13
40 21 14 5 21 19
50 26 16 8 26 24

We randomly generated 10, 20, 30, 40, 50, and 60 points in the working area of three
robot arms to simulate the growth distribution position of pears, and then we counted the
number of fruits falling into the seven areas, and finally, we allocated tasks. It can be seen
from Table 8 that for the three-robot-arm system, taking the number of fruits as 40 as an
example, after using the task allocation method proposed in this article, the task volume of
the three robot arms were 12, 14, and 14 each. The minimum and maximum of robot arm
task volume differed by two fruits.

Table 8. Task allocation for three robot arms.

Group
Fruit Number in the Region Task Volume of the Robotic

Arm

P1 P2 P3 P4 P5 P6 P7 R1 R2 R3

10 3 1 0 1 2 1 2 3 4 3
20 4 3 5 1 2 2 3 6 6 8
30 4 6 7 4 3 2 4 12 9 9
40 8 9 7 4 3 4 5 12 14 14
50 9 7 11 8 5 7 3 16 18 16
60 11 13 10 6 6 7 7 17 20 23

In summary, the task allocation method for the multiple robotic arm system proposed
in this paper is effective and avoids the unreasonable task allocation that causes some of
the robot arms to have a particularly large task volume and work all the time, while other
robot arms have a particularly small task volume and a short working time, improving the
utilization rate of each robot arm and the overall picking efficiency.

5.4. Simulation of Two Robot Arms

We exported the URDF file of the robot arm and the STL model in SOLIDWORKS,
and we imported the file into Simulink. The two robot arms were 100 cm apart, and the
visualization is shown in Figure 25a.
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A total of 4, 6, 8, and 10 points were randomly generated in the picking range of
the two robot arms to simulate the position of the pear, and the proposed task allocation
method was used to allocate the tasks of the two robot arms. The manipulator directly
moved to the next target point after reaching a target point from the initial pose, so only the
movement process time of the manipulator was recorded. The movement time was read
from the oscilloscope as shown in Figure 25b,c, and the time data are shown in Table 9.

Table 9. Traverse time of two robot arms.

Group
Random Traversal (s) Simulated Annealing (s)

R1 R2
Overall
System R1 R2

Overall
System

4 13.854 11.651 13.854 10.533 9.032 10.533
6 15.217 18.965 18.965 10.657 14.367 14.367
8 21.717 25.361 25.361 16.014 18.549 18.549
10 30.941 25.758 30.941 23.187 19.552 23.187

As can be seen from Table 9, there was little difference in picking time between the
two robot arms in each group after task assignment, and the picking time of the overall
system was determined by the robot arm that spent the longest time. The time of traversing
all points was reduced by about 20% by simulated annealing.

6. Conclusions

In view of the current inefficient work of picking robots, this paper studied the
collaborative picking of multiple robotic arms in a trellised pear orchard environment to
improve the picking efficiency of the system. The physical characteristics of pears were
studied through experiments, and the structural design of the end-picker was carried out
based on this. We constructed the private dataset of pears, and finally, we output the
three-dimensional coordinates of the target fruit through the Yolo-v5s detection model
combined with the depth camera and carried out the object detection through the trained
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weight, and following this, we completed the object detection task accurately. The camera
calibration and hand–eye calibration were completed, and the images of the calibration
plate at different angles and distances were collected with the camera. After inputting into
the Matlab calibration toolbox, the camera’s distortion coefficient and internal parameter
matrix were obtained, for which the camera calibration was completed. Through the
relationship between two fixed coordinate systems, twenty points were selected to form a
hyperparameter equation, and finally, the hand–eye calibration matrix was obtained by
fitting the results using the least squares method. The conversion from the pixel coordinate
system to the robot arm base coordinate system was completed with good accuracy.

A task allocation method for a multiple robotic arm system was proposed, and the
picking sequence was optimized through the simulated annealing algorithm. The several
key parameters of the simulated annealing algorithm on the algorithm performance were
studied, and the optimal parameter values were selected. After optimization, the picking
efficiency was clearly improved. The final result was as follows: initial temperature
Ts = 3000 ◦C, internal loop iteration number M = 150, and cooling coefficient α = 0.99.

The experimental results showed that the picking efficiency of the designed pick-place
integrated end-picker is higher than that of the traditional gripper. The success rate of
the picking mechanism designed in this paper was 86.67%, which is about 30% higher
than that of the claw-gripper. The task allocation method proposed in this paper can
make the task volume of a multiple-robotic-arm system tend to be evenly divided, and it
obviously improved the utilization rate of each robot arm. Through the simulated annealing
algorithm, compared with random traversal, the efficiency of the optimized picking path
was increased by about 20%. Moreover, with the increase in fruit number, the efficiency
showed an increasing trend.

However, this paper only focused on the structural design of the end-picker, and it did
not conduct real experiments under different lighting conditions. In the next step, we will
further develop the vision system suitable for a wider range of application scenarios and
develop supporting devices that can reduce recognition interference such as light source
occlusion, so as to further improve the accuracy rate of the target detection system and
the success rate of the picking system. In addition, on the basis of studying the agronomic
characteristics and the damage mechanism of fruits, we will further improve the mechanical
structure and matching algorithm of the picker to achieve a better picking effect, which is
also the next goal of our research.
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Abstract: Accurate positioning at the inter-row canopy can provide data support for precision
variable-rate spraying. Therefore, there is an urgent need to design a reliable positioning method
for the inter-row canopy of closed orchards (planted forests). In the study, the Extended Kalman
Filter (EKF) fusion positioning method (method C) was first constructed by calibrating the IMU
and encoder with errors. Meanwhile, 3D Light Detection and Ranging (LiDAR) observations were
introduced to be fused into Method C. An EKF fusion positioning method (method D) based on 3D
LiDAR corrected detection was designed. The method starts or closes method C by the presence or
absence of the canopy. The vertically installed 3D LiDAR detected the canopy body center, providing
the vehicle with inter-row vertical distance and heading. They were obtained through the distance
between the center of the body and fixed row spacing. This can provide an accurate initial position
for method C and correct the positioning trajectory. Finally, the positioning and canopy length
measurement experiments were designed using a GPS positioning system. The results show that the
method proposed in this study can significantly improve the accuracy of length measurement and
positioning at the inter-row canopy, which does not significantly change with the distance traveled. In
the orchard experiment, the average positioning deviations of the lateral and vertical distances at the
inter-row canopy are 0.1 m and 0.2 m, respectively, with an average heading deviation of 6.75◦, and
the average relative error of canopy length measurement was 4.35%. The method can provide a simple
and reliable inter-row positioning method for current remote-controlled and manned agricultural
machinery when working in standardized 3D crops. This can modify the above-mentioned machinery
to improve its automation level.

Keywords: 3D LiDAR; orchard; positioning; canopy length measurement

1. Introduction

Orchards and planted forests are widely distributed worldwide [1]. Recently, precision
variable-rate spraying has received much study in orchards and planted forests [2–4]. It
requires precise canopy characteristics to provide data [5,6]. The geometric characteristics of
plants are directly related to their growth and productivity. They can be used as indicators
for estimating plant biomass and growth, yield, water consumption, health assessment, and
long-term productivity testing [7,8]. Among them, canopy volume is the most commonly
used canopy characteristic [9]. The canopy volume requires sensors to provide length,
width and height [10]. The width and height are provided by distance sensors, and accurate
canopy length requires highly accurate positioning sensors and methods [11].

At present, there are three main positioning methods: absolute, relative and fusion
positioning [12]. The absolute positioning method actively or passively senses the sur-
rounding information through its sensors, thereby achieving absolute positioning based
on the external environment [13]. This is mainly the Global Navigation Satellite System

Agronomy 2024, 14, 1279. https://doi.org/10.3390/agronomy14061279 https://www.mdpi.com/journal/agronomy181



Agronomy 2024, 14, 1279

(GNSS) positioning method. Because of its high positioning accuracy, it has been widely
used in agriculture [14]. Many studies have shown that the positioning accuracy of GNSS in
field crops is more than 95% [15]. However, it is susceptible to weather and cannot be used
in rainy, snowy or foggy weather [13]. Due to tree occlusion, the GNSS signal in orchards
and planted forests is weak even with no signal [16]. Hence, the mounted position of the
GNSS antenna is raised to receive GNSS signals [13]. Nevertheless, its installation is too
high, and is highly susceptible to vibration and terrain changes. This will greatly affect the
positioning accuracy of GNSS. The relative positioning method mainly uses sensors such
as the Inertial Measurement Unit (IMU) and encoder [12]. It requires an accurate initial
position and motion estimation method, and the obtained position is relative. It does not
need to perceive the external environment, but only its own motion state [17]. Therefore, it
is not easily affected by the weather and the surroundings. It has been widely used in fields.
There are inherent errors in each sensor so they cannot be eliminated and accumulate with
time [13]. It has high positioning accuracy for a short time, but is not suitable for long time
precise positioning [17–19].

The fusion positioning method combines the advantages of the absolute positioning
method, which has high accuracy in perceiving the surroundings, and the relative posi-
tioning method, which does not rely on the external environment. [12,20,21]. Therefore,
it has been widely used in recent years [22]. Among them, the most typical method is
the Simultaneous Localization and Mapping (SLAM) [23]. The method obtains high posi-
tioning accuracy, but the algorithm is complex and requires high computing [24,25]. The
sensors of the method to perceive the surroundings are mainly visual sensors and Light
Detection and Ranging (LiDAR) [25–27]. The LiDAR has the advantages of high positioning
accuracy, large data, and less susceptibility to weather [28]. This makes LiDAR widely used
in crop detection and navigation [21,29,30]. Among them, horizontally mounted LiDAR
is used for navigation and vertically mounted for crop detection [31,32]. The horizontal
installation of 3D LiDAR has a narrow vertical field of view so that the entire plant canopy
can be measured far away from the canopy [33]. While the vertical installation can obtain
abundant plant information on both sides, providing massive data support for variable-rate
spraying, the narrow horizontal view cannot be used for navigation.

In summary, absolute positioning methods are highly susceptible to surroundings.
Relative positioning methods have high positioning accuracy in a short time and low
positioning accuracy in a long time. The fusion positioning methods are complex, with
high computing demand, and the LiDAR needs to be installed horizontally. To address the
above issues, we use a single vertically installed 3D LiDAR and relative positioning sensors
(encoder and IMU) to achieve high-precision positioning and canopy length measurement
at the inter-row canopy. Thus, 3D LiDAR is used to detect the presence or absence of the
canopy and determine the absolute inter-row positioning (heading and inter-row vertical
coordinates) of the vehicle. This can correct the data acquired by the positioning method
(method C) based on the Extended Kalman Filter (EKF) at the canopy. The method C
and the sensor starts or closes according to the presence or absence of the canopy. When
restarting, the inter-row lateral coordinates (0) between rows are acquired. Meanwhile, the
advantages of the relative positioning method with high positioning accuracy for a short
time are utilized. When the method C is restarted, it can provide high-precision positioning
and canopy length measurement at the inter-row canopy. The above is the EKF fusion
positioning method (method D) based on 3D LiDAR corrected detection. In this study, we
make the following hypotheses:

(1) Mechanical vibration has no effect on sensor accuracy.
(2) There is no significant magnetic field change in the surroundings.
(3) Temperature changes have no effect on the sensor.

It is limited because the method is mainly for modern orchards (planted forests) with
fixed row spacing. Yet, it provides new methods and new ideas for the inter-row canopy
positioning in modern orchards (planted forests) and can be extended to other 3D crops
that are planted in a standardized manner. The method has a wide range of uses in 3D
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crops grown in fixed row spacing with weak and no GNSS signals. It is simple and reliable,
and can be used to modify existing agricultural machinery into intelligent machinery.

2. Materials and Methods
2.1. Composition and Electronic Hardware System of Information Collection Vehicle

The hereby designed information collection vehicle (ICV), with dimensions of
1.2 m × 0.45 m × 1.5 m in length, width and height, respectively, and a maximum load
of 200 kg, is shown in Figure 1a. The ICV mainly consists of an electronic hardware
system, a chassis walking system, and a positioning system. The electronic hardware
system is integrated, which can sense the surroundings in real-time, and obtain in-
formation about the ICV (Figure 1b). It is divided into a sensor module, processing
module and power module in accordance with the functions. The chassis walking
system is the vehicle shown in Figure 1a, which provides support for other systems.
Meanwhile, the positioning system is the GPS shown in Figure 1b and can obtain the
ICV trajectory.

1 

 

 

 

 
(a) (b) 

Figure 1. 

 

 

Figure 2. 

 

Figure 1. Composition and electronic hardware system of ICV. (a) ICV, and (b) Electronic hardware
system design. 1. 3D LiDAR, 2. GPS, 3. Notebook PC, 4. Battery, 5. Chassis walking system. The
green line in (b) indicates the power supply, while the others represent the information transmission.

2.1.1. Chassis Walking System

The chassis walking system is a Bunker chassis produced by AgileX Robotics Co., Ltd.
(Shenzhen, China), with dimensions of 1.2 m × 0.4 m × 0.45 m in length, width and height,
respectively, powered by 48 V. The active wheels drive the rubber tracks that move the
ICV forward, the eight loading wheels support the body weight, and four guiding wheels
are used to guide and support the tracks and adjust the tightness of the tracks. The ICV
achieves differential steering and 360◦ in-situ steering by means of different speeds of the
left and right active wheels. The spring suspension was designed to give the ICV high
ground clearance and good ground adaptation. When walking, the maximum moving
speed of ICV is 3.0 m/s, the maximum climbing angle is 30◦, and the minimum distance
between the frame and the ground is 20 cm, which allows it to move flexibly in the orchard.
We added a controller to its interior to realize the function of traveling at a certain speed. In
this study, the ICV is implemented at a speed of 1 m/s. Operators only need to control the
left and right directions of the ICV and prevent collisions and bumps.

2.1.2. Sensor Module

The sensor module mainly consists of 3D LiDAR, an encoder, an IMU, etc. LiDAR
senses the surroundings of the ICV and provides data support for auxiliary positioning.
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The 16-wire mechanical LiDAR produced by RoboSense Technology Co., Ltd. in Shen-
zhen, China, can uninterruptedly scan the surrounding trees at 360◦ horizontally and 30◦

vertically (15◦ above and below the LiDAR level), and provide up to 300,000 points per
second, with a maximum detection distance of 150 m, a detection accuracy of ±2 cm, and
a vertical angle resolution of 2◦. The horizontal angle resolution is 0.09◦, 0.18◦ and 0.38◦

while working at 5 Hz, 10 Hz and 20 Hz, respectively (10 Hz is hereby adopted), with DC
12 V power supply and 100 M Ethernet communication with the notebook PC.

The encoder and IMU acquire the vehicle speed, heading angle and position informa-
tion. The encoder is an E6B2-CWZ6C encoder (Omron, Osaka, Japan) with a resolution
of 1000 P/R (pulse/ring), and is co-axially connected to the active wheel (diameter 22 cm)
of the ICV via a connecting shaft. The IMU is a WT61C-RS485 IMU manufactured by
Dongguan Weite Intelligent Technology Co., Ltd., Guangzhou, China, with a Kalman filter
program, and provides stable and accurate data. The static accuracy is 0.05◦/s; the dynamic
accuracy is 0.2◦/s in X and Y directions; the Z-axis accuracy is 1◦/s without magnetic field
interference; the acceleration accuracy is 0.0005 g; the gyroscope accuracy is 0.061◦/s; and
the maximum data output frequency is 200 Hz (100 Hz is hereby adopted).

2.1.3. Processing Module

With a data volume of 300,000 point clouds per second, the central processing unit
(CPU) must be extremely powerful. For this reason, we chose a notebook PC equipped
with an i7 8750H processor, 16 G of RAM, 128 G of SSD, NVIDIA GeForceGTX1050Ti
GPU, 1 T of Mechanical hard drive, Windows 10 pre-installed, RS232, Ethernet, USB, and
RS485 communication interfaces. This study requires MCU to take the encoder information
and upload it to the notebook PC. In this paper, the M3S type STM32 MCU produced
by QiXingChong Company in Dongguan, China is hereby selected, which has a chip of
stm32f103zet6, cortex-M3 protocol, 144 pins, 512k flash memory, 72 MHz main frequency,
and multiple communication interfaces such as CAN, USB, RS232 and RS485. The GPS
module, MCU, and IMU are connected to the notebook PC through USB, RS232, and RS485
communication interfaces, respectively.

2.1.4. Power Module

In addition to the functional modules mentioned above, a power module is required
to provide the power supply for each module. In this case, a 12 V ternary lithium battery
(6S-12000mAh, Shenzhen, China) with a battery capacity of 12,000 mAh and a full charge
voltage of about 22.2 V is selected. A voltage regulation module and a power display
module are built-in, which can continuously supply power for 2–4.5 h under normal
conditions and make automatic alarms when the voltage is lower than 11.5 V using a buzzer.
It takes about 1.5 h to be fully charged. Meanwhile, there are voltage regulators installed to
provide stable voltage for different functional modules (5 and 12 V power supply).

2.1.5. Positioning System

To verify the positioning performance of the ICV, the mobile trajectory measurement
system needs to have a high accuracy so that it can be directly used as the reference
true value. The “QFQ3” RTK GNSS positioning system produced by China Quanfang
Navigation Company (Shenzhen, China), which is compatible with GLONASS, Galileo,
QZSS, SBAS, BDS, and GPS, is hereby adopted. The positioning system incorporates real-
time differential algorithms to provide centimeter positioning accuracy, ±1 cm horizontal
positioning accuracy, initialization time < 5 s, data output frequency up to 20 Hz (20 Hz is
used), and a power supply range of 5 to 24 V DC. The RTK GNSS mobile station (±2.5 cm
movement accuracy) on the robot has a linear distance of 0.5 m from the center of the body
and a vertical distance of 0.2 m.
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2.2. The Fusion Positioning Method Based on EFK

There are inherent measurement errors in the encoder and IMU due to factors such as
manufacturing and installation. The measurement error of the encoder was corrected by
STM32 MCU encoder mode, whereas the IMU was corrected by the ellipsoid correction
method (Appendix A).

2.2.1. Kinematic Model

The ICV kinematic model was constructed from kinematic and relative positioning
sensor (encoder and IMU) data (Figure 2).
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Figure 2. Kinematic model. Two coordinate systems are included in the figure, one is the world
coordinate system and the other is the body coordinate system. The heading angle (θ), wheelbase
(2L), and body center (OR) of the vehicle are also labeled in the figure.

The kinematic model of the relative positioning method is constructed from the initial
position and the data provided by the sensors (Equation (1)).

Tt = T(t−1) + ∆T =




x(t−1) + ∆x
y(t−1) + ∆y

θ(t−1) + ω(t)∆t
vx(t−1) + ax∆t
vy(t−1) + ay∆t




(1)

where, Tt is the current motion state of the ICV; T(t−1) is the previous motion state of the
ICV; ∆T is the change of the motion state of the ICV within the moment; x(t−1), y(t−1),
θ(t−1), vx(t−1), and vy(t−1) are the X-axis displacement, Y-axis displacement, heading angle,
X-axis velocity and Y-axis velocity of the ICV at the previous moment, respectively; ∆x, ∆y,
ω(t)∆t, ax∆t and ay∆t are the change of X-axis displacement, Y-axis displacement, heading
angle, X-axis velocity and Y-axis velocity of the ICV within the moment, respectively; ω(t),
ax and ay are the current angular velocity, X-axis acceleration and Y-axis acceleration of the
ICV, respectively.

Meanwhile, the expression form of ∆x and ∆y is as follows:

∆x = vx(t−1)∆tcosθ(t−1) + vy(t−1)∆tsinθ(t−1) + 0.5ax∆t2cosθ(t−1) + 0.5ay∆t2sinθ(t−1)
∆y = vx(t−1)∆tsinθ(t−1) − vy(t−1)∆tcosθ(t−1) + 0.5ax∆t2sinθ(t−1) − 0.5ay∆t2cosθ(t−1)

(2)
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2.2.2. Measurement Model

After the ICV kinematic model is determined, its measurement model needs to be
constructed. The model should clearly represent the process of and the change of ICV
motion through the encoder (Figure 3).
 

2 

 

Figure 3 

 

 

Figure 3. Encoder measurement model based on the sine theorem. The ICV heading, trajectory,
displacement (LP), displacement change (∆x and ∆y) and heading deviation (2αc) are clearly shown.
α is the chord tangent angle, so α = αc, which is half of the heading deviation.

According to the geometric relationship and the sine theorem (Figure 3), the dis-
placement increment of the ICV in the world coordinate can be obtained. Therefore, the
increment (∆x) of the X-axis in world coordinates is:

∆x = Lpcos(β(t−1) + 2αc) =
2(NL+NR)Lsin

(
π(NL−NR)∆t

2nL

)

NL−NR
×

(cos(β(t−1))cos(π(NL−NR)∆t
2nL )− sin(β(t−1))sin(π(NL−NR)∆t

2nL ))

(3)

where, Lp is the ICV displacement; β(t−1) is the initial heading angle; 2αc is the heading
deviation; NL is the encoder pulses number for the left side of the ICV’s active wheel; NR is
the encoder pulse number for the right side of the ICV’s active wheel; L is half of the active
wheel distance on both sides; and n is the pulse in one rotation.

So, the increment (∆y) of the Y-axis in world coordinates is:

∆y = Lpsin(β(t−1) + 2αc) =
2(NL+NR)Lsin

(
π(NL−NR)∆t

2nL

)

NL−NR
×

(sin(β(t−1))cos(π(NL−NR)∆t
2nL ) + cos(β(t−1))sin(π(NL−NR)∆t

2nL ))

(4)

From this, the position and attitude of the ICV at any moment (t) is obtained as:

Tt = T(t−1)=




x(t−1)
y(t−1)
β(t−1)


+




∆x
∆y

ωt∆t


=




x(t−1) + ∆x
y(t−1) + ∆y

β(t−1) +
π(NL−NR)∆t

2nL


 (5)
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It is incomplete to construct the measurement model only by the encoder, and the
measurement model constructed by the IMU is also required. When the ICV is moving, the
measurement model of the ICV at the moment obtained by the IMU is:

Tt =
(

Sx,t, Sy,t, θya,t, vx,t, vy,t, ωxa,t, ωya,t, ax, ay

)
(6)

where, Sx,t and Sy,t are the X-axis and Y-axis displacements at the moment t, respectively,
and obtained by integrating the acceleration twice; θya,t is the heading angle; vx,t and vy,t are
the X-axis and Y-axis velocities at the moment t, respectively, and obtained by integrating
the acceleration; ωxa,t and ωya,t are the X-axis and Y-axis angular velocities at the moment
t, respectively, and obtained by integrating the acceleration, respectively; ax and ay are the
X-axis and Y-axis accelerations at the moment t, respectively.

2.2.3. EKF Fusion Positioning Method Based on Encoder and IMU Data

Multi-sensor fusion positioning needs to minimize the effect of sensor noise. The
data from the encoder and IMU are fused, which are used to reduce errors and improve
positioning accuracy. The encoder has high accuracy in measuring speed and determining
displacement, whereas the IMU has high accuracy in angular velocity and acceleration
measurement. Therefore, the measured data between the encoder and IMU can be com-
plementary. In this study, the EKF algorithm is used to fuse the two measured data to
realize the estimation, prediction and measurement of the real-time position of the ICV
(Appendix B) [34]. The flowchart of the method C is shown in Figure 4.
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Figure 4. Flowchart of method C.

2.3. Methods for Obtaining the Vertical Position of the Canopy Body Center

The tree canopy is normally distributed and its body center is a stump. Because the
LiDAR in this study is installed vertically, only part of the canopy can be detected. The
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canopy body centers cannot be obtained in real time through the whole tree point cloud. In
this study, a threshold (0.75 times the row spacing) was used to determine whether there
was a canopy on both sides of the ICV. If not, the point cloud was removed. If there is,
the point cloud within one frame (0.1 s) was sparsely processed to reduce computational
difficulty. Then, the point cloud was transformed into a voxel point with a length of 2 cm.
And the mean of the point cloud is obtained by Singular Value Decomposition (SVD). At
the mean position, the plane was constructed perpendicular to the tree rows. The point
cloud on the plane is fitted to a circle by the Least Squares method. The circle center is the
canopy body center of the point cloud for that frame. The vertical coordinate of the circle
center is the vertical distance of the body center.

2.4. Principle of Accurate Positioning at the Inter-Row Canopy

The relative positioning method has high positioning accuracy in a short time. There
are gaps between canopies in some orchards and planted forests. According to the above
characteristics, method D is designed (Figure 5). After the electronic hardware system
is powered on, 3D LiDAR senses the surrounding information and processes it. It first
determines whether the point cloud is a gap or not. If there is a gap, the IMU, encoder
and the method C will stop. If there is a canopy, start. When restarting, the heading and
inter-row vertical coordinates of the initial position are obtained (Figure 6). Additionally,
the inter-row lateral coordinates of the initial position are 0. At the inter-row canopy, the
heading and vertical coordinates are obtained by 3D LiDAR in real time. It can be corrected
for the heading and vertical coordinates of the method C.
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Figure 5. Flowchart of method D.

When the ICV is driving in orchards (planted forests) with fixed row spacing, the gaps
and canopies on both sides can be detected by 3D LiDAR (Figure 6). When the ICV travels
to any position, its heading (Equation (7)) and the vertical coordinates (Equation (8)) at the
inter-row canopy can be obtained. They are calculated by the distance of inter-row canopy
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body-centered vertical coordinates on both sides and the row spacing. The above is the
method D designed in this study. As a result, the purpose of high-precision positioning of
the ICV can be obtained at the inter-row canopy.
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Figure 6. 

  

Figure 6. Principle diagram of method D. The laser beam detects tree canopies or gaps on both sides
when the ICV is traveling between rows.

From the geometric relationship in Figure 6, we can get:

αL = atccos
(

Dtree

Llidar

)
(7)

where, αL is the heading angle; Dtree is the row spacing; Llidar is the vertical distance of the
canopy body centers on both sides detected by 3D LiDAR.

Based on the heading angle, row spacing and the vertical distance detected by 3D
LiDAR, the inter-row vertical coordinate (Equation (8)) is obtained.

Yw =

(
Llidarl

2
+ dL

)
cosαL −

Dtree

2
(8)

where, Yw is the inter-row vertical coordinate; Llidarl is the vertical distance detected by
LiDAR from the body center to the left canopy; dL is the vertical installation distance
between LiDAR and ICV axis.

2.5. Experimental Design

To verify the positioning and canopy length measurement accuracy of method D at
the inter-row canopy, campus and orchard comparison experiments were designed. The
encoder positioning method (method A), the weighted average fusion positioning method
(method B) of the encoder and IMU data (the weighted proportion of encoder is 0.4, and
IMU is 0.6), and method C are compared with method D. In this case, the method D uses
GPS positioning at the gap to ensure the positioning integrity. On 12 October 2021, ginkgo
trees on both sides of the road (Figure 7a) were selected for the experiment on the sidewalk
of China Agricultural University (116.2915◦ E, 40.0357◦ N) with good GPS signals. The
average tree height of the trees is 10.56 m, with a plant spacing of 7.5 m, a row spacing of
15 m, and an average maximum length of 3.58 m. The length of the test area is 40 m, with a
total of 8 ginkgo trees on both sides, which are divided into 4 tree groups.

After each experiment, a digital inclinometer (PT180, produced by R&D Instruments,
Shenzhen, China, with a measurement range of −90◦~90◦ and an accuracy of 0.01◦) is used
to correct the 3D LiDAR installation angle (Figure 7b).
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Figure 7. Situation of the experimental campus and orchard. (a) Ginkgo trees on both sides of the
sidewalk; (b) 3D LiDAR installation angle correction; (c) experimental orchard situation; (d) exper-
imental site. The figures include both campus and orchard experimental site conditions. The two
topographies are obviously different.

2.5.1. Positioning Accuracy

The GPS base station is placed in the middle of the tree row. Moreover, the GPS
module is used to determine the latitude and longitude of the stumps and the boundary of
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the test area. The GPS mobile station is installed on the ICV to record its real-time trajectory.
The ICV is controlled to move forward using a remote control. When it reaches the end
point, the positioning algorithm program is stopped. The experiment is repeated 5 times.

The heading angle of the ICV is obtained by real-time GPS trajectory and the center
line of the tree row (Figure 8b), and the equation for the center line of the tree row can be
obtained as follows:

2x− xe1 − xe2

xe3 + xe4 − xe1 − xe2
=

2y− ye1 − ye2
ye3 + ye4 − ye1 − ye2

(9)

where, e1(xe1, ye1), e2(xe2, ye2) are the initial coordinates of the boundaries of the boundary
of the experimental area on both sides, respectively; e3(xe3, ye3), e4(xe4, ye4) are the end
coordinates, respectively.
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Figure 8. Schematic diagram of positioning and heading angle measurement methods. (a) Schematic
diagram of the positioning test. (b) Calculation method of heading angle.

Further simplification can be obtained:

Ax + By + C = 0 (10)

From this, it can be seen that the slope of the center line of the tree row (K1 = B/A). We
assume the current coordinates of the ICV are (x0, y0) and the coordinates of the next moment
are (x0n, y0n). Consequently, the slope obtained from the two points should be K2 = (y0n −
y0)/(x0n − x0), and it can be seen that the heading angle (αhg) of the current ICV is:

αhg = |arctan(
K2 − K1

1 + K1 ∗ K2
)| (11)

2.5.2. Vertical Coordinates of Canopy Body Centers

To verify the accuracy of obtaining the vertical coordinates of the canopy body center,
the vertical position of the canopy body center was compared with the value (stump
positions) obtained by GPS. The experiment is repeated 5 times.

2.5.3. Canopy Length

A meter ruler with an accuracy of ±1 cm was used to measure the maximum length of
the canopy of each tree on both sides of the test area. The data were measured 5 times and
recorded in a notebook. The maximum length of the canopy was obtained by 4 positioning
methods and 3D LiDAR calculations. The acquired lengths were compared with the lengths
obtained from manual measurements to obtain the relative error of the canopy maximum
length measurements. The experiment was repeated 5 times. And the canopy point cloud
of group 4 with significant errors was selected for analysis.
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2.5.4. Orchard Validation

To verify the high-precision positioning of method D at the inter-row canopy, the ex-
periment was carried out in a 4-year-old cherry orchard (Figure 7c, 0.91 ha) at Shangzhuang
Experimental Station of China Agricultural University (116.1923◦ E, 40.1478◦ N) in Haidian
District, Beijing, with good GPS signal. The height of cherry trees is 2.95 m, with an average
canopy length of 1.12 m, a plant spacing of 1.5 m, an average canopy length of 1.16 m, and
a row spacing of 4 m. The selected test area is 30 m and contains 40 cherry trees. Six cherry
trees at the end point are selected for the data analysis. The positioning and canopy length
measurement accuracy of the 4 positioning methods at the inter-row canopy is obtained,
and the experiment is repeated 5 times. The experiment was conducted on 25 October 2021.
During the experiment, the weather was continuously rainless, the daytime temperature
was kept at 20.6–30.4 ◦C, and the wind speed was lower than 1.2 m/s.

2.6. Data Processing

To facilitate the processing of the positioning data, the positioning errors of method D
are compared directly using combined positioning (GPS positioning and self-positioning)
and GPS positioning. Therefore, the maximum lateral positioning deviation at the inter-row
single canopy for method D is roughly defined:

Etree =
2Epr

ntree
(12)

where, Etree is the maximum positioning deviation at the inter-row single canopy; Epr is
maximum lateral positioning deviation between rows; and ntree is the number of trees in
the experimental area.

In the study, the deviation between measured data and actual data is represented by
error (Equation (13)). In this case, both positioning deviation and heading deviation are
obtained through the Equation.

Err =
∑n

i=1(Mev −Acv)

n
(13)

where, Err is the error; Mev is the measured value; Acv is the actual value; n is the number
of calculations, which is taken as 25.

Given the variation of the measured positioning, the relative error (Equation (14)) can
better represent the accuracy of the measured results.

Ree =
∑n

i=1
(Mev−Acv)

Acv

n
× 100% (14)

where, Ree is the relative error, %.
The canopy point clouds are displayed using Open3D 0.11.0 (Intel Inc., Santa Clara,

CA, USA) by Python 3.8. The collected data were analyzed using SPSS Statistics Version 20
(IBM Inc., Armonk, NY, USA) for Windows, and plotted using OriginPro Version 2020
(OriginLab Inc., Northampton, MA, USA). All the test results were tested for normal
distribution using SPSS and conformed to normal distribution.

Duncan’s post-hoc test was performed on the measured results using SPSS one-way
analysis of variance (ANOVA) with a significance level of 0.05. In all cases, Duncan‘s
post-hoc test was used to compare the positioning deviation, positioning relative error and
the average value of the maximum canopy length of the 4 positioning methods at the 0.05
significance level.
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3. Results
3.1. Motion Trajectories Obtained by the Four Positioning Methods

There are differences between the motion trajectories obtained by the four methods
and the actual trajectory of the ICV obtained by GPS (Figure 9). The actual motion tra-
jectory of the ICV is not a straight line due to the level of the operator and the ground
conditions. The motion trajectories obtained by the four positioning methods are inferred
relative positioning trajectories. Among them, method A only uses an encoder for position
estimation of the motion trajectory, resulting in significant errors. This makes its trajectory
differ from the actual trajectory. Methods B and C fuse the data from IMU and encoder
for position estimation of motion trajectory, with relatively small errors. This makes its
trajectory similar to the actual trajectory. Method D only performs position estimation and
pose correction at the inter-row canopy, so its trajectory has a high similarity to the actual
trajectory. There were significant differences between the actual trajectories of the ICV and
methods A, B and C, but the differences with the method D were not significant. The actual
trajectory of the ICV within the inter-row lateral distance (X-axis) of 2 m is almost the same
as its motion trajectory obtained by the four positioning methods. It indicates that the
positioning accuracy of the relative positioning sensor is high in a short time. As the inter-
row lateral distance further increases, methods A, B, and C exhibit significant positioning
deviations compared to the actual trajectory. Among them, method A showed significant
positioning deviation in both inter-row lateral and vertical positioning (Y-axis). It has the
largest positioning deviation. In addition, method C has a high positioning accuracy. It
indicates that the EKF fusion positioning algorithm can maintain high positioning accuracy
for a long time. Method D has the smallest positioning error. It indicates that method D
has the highest positioning accuracy.
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Figure 9. Trajectories of the ICV obtained by the four methods. The figure clearly illustrates the actual
trajectory of the ICV and the measured trajectories of the four methods. The X-axis represents the
inter-row lateral distance and the Y-axis represents the inter-row vertical distance.

3.2. Deviation and Relative Error of Positioning

Although the ICV-measured trajectories of the four methods can be clearly obtained
in Figure 9, the positioning deviations and relative errors between them and the actual
trajectories cannot be quantitatively described. As far as the deviation and relative error
of lateral distance positioning are concerned, there were significant differences among
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the four methods (Figure 10a,c). The mean positioning deviation and relative positioning
error of method A (2.19 m, 10.58%), B (0.91 m, 4.80%), C (0.44 m, 2.32%), and D (0.15 m,
0.68%) decreased sequentially (Figure 10a,c). The maximum positioning deviation and
relative error of methods A (6.65 m, 18.12%), B (3.04 m, 9.39%), C (1.64 m, 5.39%), and D
(0.88 m, 5.02%) also decrease sequentially (Figure 10a,c). The maximum lateral positioning
deviation at the inter-row canopy was calculated to be 0.22 m for method D ((Equation (12)).
In terms of inter-row vertical positioning deviation, there is a significant difference between
method D and the other three methods (Figure 10b). The average positioning deviation
of method D is the smallest (0.05 m), with lower significance than methods A (0.66 m), B
(0.29 m), and C (0.14 m). In terms of the relative error of inter-row vertical positioning, there
is a significant difference between method A and the other three methods (Figure 10d).
The average relative error of method A (298.35%) was the largest, which was significantly
higher than that of method B (47.69%), C (39.27%) and D (−2.08%). After removing outliers,
the average relative errors of methods A, B, C, and D were 40.37%, 24.45%, 16.86%, and
−1.82%, respectively.
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Figure 10. Plots of the ICV positioning errors obtained by the four methods. (a) Inter-row lateral
positioning deviation; (b) Inter-row vertical positioning deviation; (c) Relative error of inter-row
lateral positioning; (d) Relative error of inter-row vertical positioning. For convenience of drawing,
the values of method D in (d) were enlarged by 400 times. If the absolute relative error of methods A,
B, and C is greater than 2000%, it should be equal to ±2000%. Different letters indicate significant
differences (Duncan test, α = 0.05).
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3.3. Heading Deviation

The maximum heading deviation for methods A, B, C and D were 25.4◦, 66.4◦, 32.75◦

and 4.35◦, respectively. Among them, method D has the smallest heading deviation and
the standard deviation (Table 1). It indicates that the method D has a significant correction
for heading deviation.

Table 1. Statistical data of heading deviation of the four positioning methods/◦.

Positioning
Method

Maximum
Deviation

Minimum
Deviation Average Upper

Deviation
Lower

Deviation

Method A 25.46 −12.87 14.78 10.45 −22.65
Method B 16.43 −7.98 9.86 6.42 −14.84
Method C 12.75 −6.23 7.42 5.31 −9.65
Method D 4.35 −3.08 2.94 1.41 −4.02

3.4. Body Center Vertical Coordinates

As shown in Figure 11, the canopy body centers (red points) of a certain plant were
obtained, whereas green points represent the canopy point cloud. From the figure, it can
be seen that the obtained partition canopy body centers are basically on the same plane
and distributed relatively evenly. The relative error of the measured body center vertical
distance is 2.36 ± 0.57%, indicating that this algorithm has high accuracy.
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Figure 11. Acquisition of body center locations. Green points in the figure represent the canopy and
red points indicate the partitioned canopy body centers.

3.5. Relative Error of Maximum Canopy Length Measurement
3.5.1. Relative Error of Maximum Canopy Length Measurements for the Four
Positioning Methods

The relative measurement error of canopy length for methods A, B, and C increases
with the increase of inter-row lateral distance, whereas the change was not significant for
method D (Figure 12). In canopy group 1, the mean relative error of maximum canopy
length measured by method A (4.63%) was significantly higher than that of methods B
(2.57%), C (2.10%) and D (2.08%). The maximum relative measurement errors for methods
A, B, C, and D were 6.24%, 4.42%, 4.89%, and 4.59%, respectively, and the difference was
small. At canopy groups 2, 3, and 4, the relative errors (2.23, 2.15, and 2.36%) of canopy
length measured by method D were significantly lower than those of methods A (8.37,
13.40, and 17.36%), B (5.30, 7.95, and 10.67%), and C (3.85, 5.76, and 7.57%) (Figure 12b–d).
In canopy group 2, the maximum relative measurement errors of the four methods were
9.85%, 6.21%, 5.59%, and 4.26%, respectively. At this time, the relative measurement errors
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of method A are relatively large, while the relative measurement errors of methods B and
C increase compared to method D (Figure 12b). With the further increase in traveling
distance, when the ICV traveled to canopy group 3, their maximum measurement errors
were 15.39%, 11.13%, 8.89% and 4.36%, respectively. At this time, the four methods are
significantly different (Figure 12c). In canopy group 4, the maximum relative measurement
errors were 19.54%, 12.49%, 8.84%, and 5.68%, respectively (Figure 12d).
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Figure 12. Relative measurement errors of canopy length obtained by the four methods. (a) Group 1;
(b) Group 2; (c) Group 3; (d) Group 4. The nearest distance from the initial point is the group 1, and
the nearest distance from the end point is the group 4. Different letters indicate significant differences
(Duncan test, α = 0.05).

3.5.2. Relative Errors of Maximum Canopy Length Measurements for the Four
Positioning Methods

The maximum canopy lengths measured by the four positioning methods were not
consistent (Figure 13). Among them, the maximum (Figure 13a, 4.37 m) was obtained by
method A and the minimum (Figure 13d, 3.79 m) by method D. The maximum lengths of
the canopy obtained by methods B and C were 4.11 m (Figure 13c) and 3.98 m (Figure 13d),
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respectively. The relative errors of the maximum length of the canopy measured by
methods A, B, C and D were calculated to be 18.75%, 11.68%, 8.15% and 2.99%, respectively.
It indicates that method D does not increase with increasing distance traveled in terms of
measuring canopy length.
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Figure 13. Point clouds of group four ginkgo tree canopy obtained by the four methods. (a) Method
A; (b) Method B; (c) Method C; (d) Method D. The X-axis represents the direction of the ICV, and the
Z-axis represents vertical ground upward. The actual measured maximum canopy of the ginkgo tree
was 3.69 m.

3.6. Orchard Experiment

The relative error of the positioning and the canopy measurement were calculated
by removing outliers (Table 2). The positioning and maximum length of the canopy
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measured by the four methods were significantly different. The inter-row lateral and
vertical positioning deviations (8.73 ± 2.53 m, 2.45 ± 0.91 m) and relative positioning
errors (32.55 ± 9.43%, 52.35 ± 19.55%) were significantly higher in method A than those in
methods B, C, and D. Among them, the inter-row lateral and vertical distances positioning
deviations (0.31 ± 0.11 m, 0.15 ± 0.08 m) and relative positioning errors (4.07 ± 1.81%,
3.27 ± 1.27%) of method D were the lowest. Accordingly, method A has the worst position-
ing effect, whereas method D has the best positioning effect. The lateral positioning relative
error of method D is lower than the vertical positioning relative error, which is different
from other methods. Besides, the heading deviation (6.75 ± 1.89◦) and the relative error
(4.35 ± 1.09%) of canopy length measurement of method D were significantly lower than
those of methods A, B and C.

Table 2. Positioning statistics of the four positioning methods. The table includes the relative errors
of the ICV’s positioning, heading and canopy measurements in the orchard.

Positioning
Method

X-axis
Positioning

Error/m

X-axis Relative
Positioning

Error/%

Y-axis
Positioning

Error/m

Y-axis Relative
Positioning

Error/%

Heading
Deviation/◦

Canopy
Length Error/%

Method A 8.73 ± 2.53 a 32.55 ± 9.43 a 2.45 ± 0.91 a 52.35 ± 19.55 a 30.54 ± 12.31 a 37.34 ± 12.01 a
Method B 4.52 ± 1.35 b 21.32 ± 5.77 b 1.52 ± 0.63 b 32.43 ± 13.45 b 21.65 ± 7.54 b 23.77 ± 8.32 b
Method C 3.56 ± 0.82 c 16.03 ± 3.06 c 0.99 ± 0.37 c 21.05 ± 7.76 c 14.38 ± 3.18 c 18.68 ± 5.05 c
Method D 0.31 ± 0.11 d 4.07 ± 1.81 d 0.15 ± 0.05 d 3.27 ± 1.27 d 6.75 ± 1.89 d 4.35 ± 1.09 d

Note: Different letters indicate significant differences (Duncan test, α = 0.05).

4. Discussion

In this study, an EKF fusion positioning method (method D) based on 3D LiDAR
detection correction is presented. The vertically installed 3D LiDAR (Figure 7b,d) was used
to detect the presence or absence of the canopy. Based on this, it (method D) starts or closes
the EKF fusion positioning method (method C) and relative positioning sensors (encoder
and IMU). The inter-row initial heading and vertical position of method D were obtained
through fixed row spacing and body canopy center (Figures 5 and 6). The restarted
method C provides the value of 0 for the initial lateral coordinates (Figures 5 and 6).
Consequently, the initial position of the method D is provided. It can take advantage of the
short time positioning accuracy of relative positioning methods and sensors [12,35,36]. This
characteristic was also demonstrated in this study (Figure 9). Furthermore, the lateral
distance is corrected by the inter-row heading and vertical position acquired by 3D LiDAR.
Hence, method D can accurately obtain the positioning at the inter-row canopy and the
maximum length of the canopy (Figures 10, 12 and 13).

Since the IMU and encoder have inherent errors, the error of positioning methods
cannot be eliminated and accumulates with time (driving distance) [36,37]. This is the
reason why the deviations of positioning methods A, B, C and D gradually increase with
time (Figure 9). Methods C and D utilize the advantageous information of encoders and
IMU, which have high positioning accuracy for a longer time (Figures 9 and 10) [34]. This
is consistent with the findings of Cui et al. [38]. Although the sensor signals of the relative
positioning method are less susceptible to receiving interference, they cannot sense the
surroundings to correct the ICV position and pose [39]. The method requires a precise initial
position, and usually only one [12,37]. With the increase in driving time, the error gradually
accumulates, which will cause significant positioning errors [12]. Therefore, researchers
have integrated positioning sensors such as machine vision, ultrasonic and sensors LiDAR
into relative positioning methods [12,40,41]. It will provide fusion positioning for relative
positioning methods, thereby improving positioning accuracy. However, such methods
require large computational power [22].

On the basis of vertically installing 3D LiDAR to detect plant information, we also use
the single 3D LiDAR to assist in positioning. It not only requires determining gaps, but
also obtaining canopy information. The heading and vertical positioning at the inter-row
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canopy are obtained. As a result, the accuracy of inter-row heading and vertical positioning
can be significantly improved (Table 1, Figure 10b). The acquisition of accurate inter-row
vertical distance is a prerequisite for correcting the above parameters. The real-time canopy
body center acquisition method proposed in this study has high accuracy (Figure 11). The
inter-row vertical distance obtained by 3D LiDAR and lateral distance obtained by method
C are both implemented on a plane. The ICV tilts or vibrates when the terrain is rough
and bumpy. This can cause large errors in the calibration of method D and the lateral
positioning of method C. This is the reason why the relative error of inter-row vertical
positioning is negative for method D and positive for the others (Figure 10d). It is also the
reason why the relative positioning error of the X-axis and Y-axis in the orchard experiment
is larger than that of the sidewalk (Table 2, the length of the experimental area is consistent).
Even so, method D had high positioning accuracy and canopy measurement accuracy in
the orchard experiments.

Method D can provide multiple accurate initial positions within the experimental
area. As a consequence, the canopy length measurements relative errors for the four
groups’ canopy of method D are not significantly different, whereas those of methods
A, B, and C increased with increasing inter-row lateral distance (Figures 12 and 13). The
maximum lateral positioning deviation at the inter-row canopy of a single tree calculated
by Equation (12) is 0.22 m. The maximum canopy length obtained by method D is 0.1 m
larger than the actual crown length (Figure 13d). It indicates that the calculation method
for the maximum inter-row lateral positioning deviation at the canopy of a single tree is
feasible. In addition, the maximum canopy lengths of the ginkgo trees (average maximum
canopy length of 3.52 m) and the three cherry trees (average maximum canopy length
of 1.16 m) on campus were essentially the same. But the lateral positioning error at the
inter-row canopy of the ginkgo trees on campus was smaller than cherry trees. It indicates
that the topography of the orchard has a significant impact on both positioning and canopy
measurement accuracy.

In summary, it can be seen that high-precision positioning at the inter-row canopy
is a prerequisite to ensure the accuracy of canopy length measurement. Yet, method D
has significant limitations. It can only be used in orchards (planted forests) with fixed
row spacing and large gaps and young or sparse orchards (planted forests). In the future,
the gap above a standardized planted 3D crop could be utilized to close or start method
C. Fixed row spacing is utilized through method D to provide inter-row heading and
vertical positioning to extend the method use. Meanwhile, it is necessary to introduce
the ICV roll angle to correct the point cloud and further improve positioning accuracy.
Where the GNSS signal is good, its signal is incorporated into the method to provide
accomplished positioning information. Moreover, the method is used to modify the existing
manned and remote-controlled sprayers into precision variable-rate sprayers, providing
new vitality for the old machines. Although it has achieved good positioning and canopy
length measurement accuracy, it can only be used as an auxiliary positioning rather than a
conventional positioning method. It can provide new ideas for inter-row vehicle positioning
and canopy length measurement methods at the canopy for variable-rate spraying in
planted forests and orchards. Additionally, the method is drawn upon to solve the problem
of low positioning and canopy length measurement accuracy in agricultural surroundings
with poor GPS signals.

5. Conclusions

The kinematics and measurement models of the ICV were constructed by IMU and
encoder. The EKF fusion positioning method (method C) is designed by fusing the sensor
data using the EKF filtering algorithm. The 3D LiDAR is fused into method C to achieve
the EKF fusion positioning method (method D) based on 3D LiDAR detected correction.
Method D eliminates the cumulative errors of the IMU and the encoder by closing gaps or
starting method C at inter-row canopies. Furthermore, 3D LiDAR provides initial heading
and inter-row vertical through body center and fixed row spacing and assists in positioning.
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As a result, the accuracy of inter-row positioning and canopy length measurement can be
greatly improved. From the campus and orchard experiments and discussions, it can be
concluded that:

(1) In the campus test area, the positioning at the inter-row canopy for method D is
relatively small and does not increase with inter-row travel distance. The lateral
positioning at the individual tree canopies increased with the increase in driving
distance. Among them, the deviation of inter-row lateral and vertical positioning at
the canopy was less than 0.22 m and 0.15 m, respectively, the heading deviation was
less than 4.35◦, and the relative error of canopy length measurement was less than
5.68%. It indicates that the method has high positioning accuracy on flat terrain.

(2) The orchard experiments showed that the positioning deviations were larger than
those on the campus due to the influence of orchard terrain or mechanical vibration.
Hence, the average inter-row lateral and vertical positioning deviations at the canopy
were 0.1 m and 0.2 m, the average heading deviation was 6.75◦, and the average rela-
tive error of canopy length measurement was 4.35%. It indicates that the positioning
accuracy of the method is still very high on rugged terrain.

(3) The method is suitable for 3D crops with standardized planting and gaps between
canopies, which has significant limitations. The method can solve the problem of low
accuracy of positioning and canopy length measurement in 3D crops with poor GPS
signals. It has great potential for application.

Although the method proposed in this study solves the problem of inter-row canopy
positioning and canopy measurement, there are still many problems. We will use IMU to
acquire the rolling angle of the vehicle and improve the accuracy of 3D LiDAR to acquire
the vertical coordinates of the body center. Moreover, the accuracy of method C in different
terrains will be improved based on the acquired rolling angle. In addition, method D is
extended from 2D to 3D to address many problems in actual operations. Furthermore, the
method is applied to other crops with fixed row spacing, and gaps in the upper canopy,
such as tomatoes in greenhouses.
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Appendix A

Appendix A.1 Error Sources and Calibration of Encoder

A rotary encoder is a sensor used to measure rotation angle, speed, and direction,
which converts angular displacement or angular velocity into a series of electrical digital
pulses. The incremental encoder is used in this study. Although incremental rotary encoders
have many advantages, they are driven by mechanical transmission to rotate the encoder
disk. It makes the encoder highly susceptible to mechanical vibration, resulting in the
generation of burrs that affect the number of pulses generated. This ultimately leads to
significant measurement errors. To ensure the computing power of the microcontroller,
the use of software methods to improve the measurement accuracy of the encoder is
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abandoned. On the contrary, we used the encoder mode designed by ST company for
the STM32 microcontroller. The method utilizes hardware to improve the measurement
accuracy of the encoder used in this study.

The counting methods of the encoder mode are shown in Table A1, which are divided
into three modes: counting only at TI1 (mode 1), counting only at TI2 (mode 2), and
counting both at TI1 and TI2 (mode 3). When the encoder rotates forward, regardless of the
mode, the count value increases. Similarly, when reversing, the count values are decreasing.

Table A1. Relationship between counting direction and signal.

Active Edge Level of Opposite
Signals *

TI1FP1 Signal TI2FP2 Signal

Increase Decrease Increase Decrease

Count only at
TI1

High — + \ \
Lower + — \ \

Count only at
TI2

High \ \ + —
Lower \ \ — +

Count at both
TI1 and TI2

High — + + —
Lower + — — +

Note: * TI1FP1 corresponds to TI2, and TI2FP2 corresponds to TI1. “+” Indicates an increasing count; “—”
Indicates a decrease in count; “\” Indicates no counting.

From the three counting modes mentioned above, it can be seen that mode 1 and
mode 2 are counting at 2 times the frequency, while mode 3 is counting at 4 times the
frequency. As shown in Figure A1, the encoder generates four counts for every pulse
counter generated, while effectively removing the impact caused by dithering. Compared
to the other modes, mode 3 can better remove burrs and interference. Therefore this study
chooses mode 3.
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Figure A1. Counter schematic for encoder mode 3.

A comparison test was conducted using the number of pulses captured by A-phase and
microcontroller external interrupts alone (method 1), and the number of pulses captured by
the encoder software 4× technique (method 2) with the present method (method 3). This
experiment was conducted five times, with eight measurements taken each time. One-way
ANOVA analysis (Wall Duncan’s test) was performed using SPSS 26.0, and the results are
shown in Table A2. The relative errors of the three methods were significantly differences,
with method 1 having a relative error of approximately 4 times that of method 2. Compared
to method 2, method 3 has a smaller relative error, indicating that encoder mode 3 has a
good burr removal effect.
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Table A2. Relative Error of Three Measurement Methods.

Measuring Method Method 1 Method 2 Method 3

Data 8.56 ± 0.73 a 2.23 ± 0.21 b 0.19 ± 0.03 c
Note: The data in the table are described using mean and standard deviation, with different letters indicating
significant differences at the 0.05 level.

Appendix A.2 Error Sources and Calibration of IMU

Due to production and processing reasons, IMUs are highly susceptible to factors
such as installation, zero drift, and random noise. In addition to the aforementioned
sources of error, scaling errors may also occur due to inconsistent physical parameters
of components on magnetometers, accelerometers, and gyroscopes. In addition, sensors
may experience certain drift and accumulate errors during long-term use. To improve
measurement accuracy, it is necessary to calibrate the parameters of the geomagnetic pole
and gyroscope before using them.

The accelerometer is in a stationary state, and each attitude is only affected by gravity.
In three-dimensional space, the gravity points are all on a spherical surface. However,
there may be deviations in the measurement units between the axes, and the gravity
points of each attitude fall on an ellipsoid. The center of the ellipsoid is the offset of the
acceleration, which is the calibration value. The magnetometer senses the same magnetic
field intensity for each attitude in a constant environment, so there is no need to measure
the magnetic field intensity in a stationary state. Instead, it is slowly rotated along the three
axes, which ensures a more uniform distribution of the collected spatial attitude data from
the magnetometer.

Due to the presence of errors, the measurement data of accelerometers and magne-
tometers will be distributed on an ellipsoid that is not centered around the zero point. The
calibration process is the process of fitting the ellipsoid, and the model of the ellipsoid is
as follows:

Because of the presence of errors, the measurement data of accelerometers and magne-
tometers will be distributed on an ellipsoid that is not centered around the zero point. The
calibration process is the process of fitting the ellipsoid, and the model of the ellipsoid is
as follows: (

x− x0

A0

)2
+

(
y− y0

B0

)2
+

(
z− z0

C0

)2
= 1 (A1)

According to the ellipsoid fitting equation, there are six unknown variables, where (x0, y0,
z0) is the fitted ellipsoid center and also the zero bias on the accelerometer or gyroscope. (A0,
B0, C0) is the scaling factor on the three axes, and the above equation can be simplified into:

x2 + a0y2 + b0z2 + c0x + d0x + e0x + f0 = 0 (A2)

The center of the ellipsoid and the scale factor of the required solution, as well as a0,
b0, c0, d0, e0 and f0 have the following relationship:

x0 = − c0
2

2 , y0 = − d0
2a0

, z
0
= − e0

2b0
, A0 =

√
c0

2+
d0

2
a0

+
e0

2
b0

+4 f0

2

B0 = 1
2

√
c0

2+4 f0
a0

+ d0
2

a0
2 + e0

2

a0b0
, C0 = 1

2

√
c0

2+4 f0
b0

+ d0
2

a0b0
+ e0

2

b0
2

(A3)

To obtain the values of a0, b0, c0, d0, e0 and f0, samples of 7 or more magnetometers
and accelerometers need to be measured. By inputting their values into Equation (A3), the
calibrated error parameters of the magnetometer and accelerometer can be obtained.

This study uses PyCharm 2022 and Python 3.8 programming to collect data from
accelerometers in a stationary state and magnetometers in a moving state. We use the above
equation to solve for their ellipsoidal center coordinates and ellipsoidal radius lengths. As
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shown in Table A3, the center and half-axis lengths of the ellipsoids of the accelerometer
and magnetometers obtained are similar. Among them, the half-axis lengths of the three
ellipsoids of the magnetometer are not significantly different, and the fitted ellipsoids
obtained are basically consistent with those of the sphere (Figure A2b). The length of the a
and b axes of the accelerometer in this IMU is basically the same. The length of the c-axis
is about 10 times that of the first two. The fitted shape is similar to a rugby (Figure A2a).
From this, it can be seen that due to the presence of bias and error, the ellipsoidal centers
of the accelerometer and magnetometers are not on the original (0 g, 0 g, 0 g) and (0, 0, 0).
It is necessary to transfer the centers of each ellipsoid to the original center for correction,
normalize the magnetometer, and convert the coordinates of all axes to a sphere with a
radius length of 72.1410. Meanwhile, normalize the a and b axes of the accelerometer while
keeping the c axis unchanged.

Table A3. Ellipsoid calibration parameters.

Type Elliptical Center Coordinates Elliptical Half-Axis Length

x0 y0 z0 a b c

Accelerometer 0.0092 g −0.0158 g 1.0035 g 0.0017 0.0019 0.0117
Magnetometer −2.4917 1.2728 0.6507 74.9957 72.1410 72.5667

As shown in Figure A2, the results of ellipsoidal fitting for accelerometer and mag-
netometers are shown. As mentioned earlier, one is similar to rugby, whereas the other is
similar to a sphere. The ellipsoidal half-axis of the accelerometer is represented by a green
line, whereas the ellipsoidal half-axis of the magnetometer is represented by a yellow line.
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Figure A2. Ellipsoid fitting results. (a) Ellipsoidal fitting results of the accelerometer. (b) Ellipsoidal
fitting results of the magnetometer.

The measurement data on the three axes of the gyroscope will have zero bias due to
the influence of power supply voltage and temperature. The existence of zero bias will
lead to cumulative errors. This will result in a decrease in measurement accuracy, so it
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is necessary to calibrate the gyroscope. Place the IMU stationary on a horizontal plane,
sample it, and take the average value of each axis to obtain the zero deviation on its axis.

∆ωx = ∑k
i=0

ωx
i

k , ∆ωy = ∑k
i=0

ωy
i

k , ∆ωz = ∑k
i=0

ωz
i

k (A4)

By standing the IMU on flat outdoor ground for 1 min and using Python 3.8 program-
ming to collect data, the entire process is repeated five times. The obtained values of ∆ωx,
∆ωy and ∆ωz are −1.0139, 1.2950, and 0.000030371 rad/s, respectively.

Appendix B

Appendix B.1 A Positioning Method Based on EKF

We use the EKF algorithm to fuse the data measured by IMU and encoder, and obtain
real-time position estimation, prediction, and measurement.

Appendix B.2 Prediction and Observation Equations Based on EKF

EKF is an optimal estimate for linear Gaussian systems. However, in many positioning
problems, state transformation and measurement are both nonlinear. EKF takes a first-order
approximation for this nonlinear system using Taylor expansion. Then they use EKF to
complete state estimation. Assuming that the prediction and observation equations of ICV
are both nonlinear systems, the EKF algorithm is as follows:

Tt = g(Ut, Tt−1) + εt
Zt = h(Tt) + σt

(A5)

where, Tt and Tt−1 represent the states of the ICV at t moment and t− 1 moment, respec-
tively; Zt is the observed values of the ICV at t moment; εt and σt are respectively state
(process) noise and observation (measurement) noise; Both of them follow a Gaussian
distribution or normal distribution; Ut is the input control variables within t− 1 moment to
t moment; g(.) and h(.) are the state transition matrix and observation matrix, respectively.

Expanding g(.) in Equation (A5) using Taylor equation at the mean λt−1 of t − 1
moment, taking a first-order approximation, we can obtain:

g(Ut, Tt−1) = g(Ut,λt−1) + Gt(Tt−1 − λt−1) (A6)

Meanwhile, the h(.) in Equation (A6) is expanded using the Taylor equation at the
predicted mean λ, and taking a first-order approximation can obtain:

h(Tt) = h
(
λ
)
+ Ht

(
Tt − λ

)
(A7)

In Equations (A6) and (A7), Gt and Ht are Jacobian matrices:

Gt =
∂g(Ut,λt−1)

∂Tt−1
|Ut,λt−1 (A8)

Ht =
∂h(Tt)

∂Tt

∣∣λ (A9)

Appendix B.3 Encoder and IMU Fusion Positioning Method Based on EKF

Based on the prediction and observation equations mentioned above and the principle
of the EKF algorithm, the steps of the EKF algorithm using IMU and encoder are further
obtained. The specific details are as follows:

The first step is to predict the motion state of ICV:

λt = g(Ut,λt−1) (A10)
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Ft = GtFtGt
T + Qt (A11)

where, λt and Ft represent the mean and variance of the state prediction; Qt is process
noise, it conforms to a normal distribution.

Simultaneously update the measured ICV motion status:

Kt = FtHt
T
(

HtFtHt
T + Rt

)−1
(A12)

λt = λt + Kt
(
Zt − h

(
λt
))

(A13)

Ft = (I−KtHt)Ft (A14)

where, λt and Ft represent the mean and variance of the state prediction; Qt is process
noise, it conforms to a normal distribution. Kt is the Kalman gain; Rt is measure noise; λt
and Ft are the mean and variance of the EKF, respectively; I is unit matrices

In this study, the specific process of the measurement data fusion algorithm for two
positioning sensors based on EKF will be described in the following. Assuming the motion
state of ICV at t moment is Ut =

(
ω, ax, ay

)
. The mean state at t− 1 moment is λt−1, its

state vector is Equation (1) in the formal manuscript. By incorporating the motion model
Equation (2) into the ICV, the mean predicted state in Equation (A10) can be obtained as:

λt =




1 0 0 ∆tcosθ(t−1) ∆tsinθ(t−1)
0 1 0 ∆tsinθ(t−1) −∆tcosθ(t−1)
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



λt−1

+




0 0.5∆t2cosθ(t−1) 0.5∆t2sinθ(t−1)
0 0.5∆t2sinθ(t−1) −0.5∆t2cosθ(t−1)

∆t 0 0
0 ∆t 0
0 0 ∆t




Ut

(A15)

By taking the derivative of Equation (2) in the formal manuscript over λt−1 in sequence,
the Jacobian matrix can be obtained as:

Gt =




1 0 ∂θ1 ∆tcosθ(t−1) ∆tsinθ(t−1)
0 1 ∂θ2 ∆tsinθ(t−1) −∆tcosθ(t−1)
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




(A16)

The expression for ∂θ1 and ∂θ2 are as follows:

∂θ1 = −vx(t−1)∆tsinθ(t−1) + vy(t−1)∆tcosθ(t−1) − 0.5ax∆t2sinθ(t−1) + 0.5ay∆t2cosθ(t−1)
∂θ2 = vx(t−1)∆tcosθ(t−1) + vy(t−1)∆tsinθ(t−1) + 0.5ax∆t2cosθ(t−1) + 0.5ay∆t2sinθ(t−1)

(A17)

At this time, according to the EKF algorithm, the covariance (Ft) of the predicted state
of ICV can be obtained by incorporating Equation (2) and process noise into Equation (1).
However, the measurement error of the two positioning sensors is relatively large. If one
is used for prediction and the other is used for correction, there will still be significant
deviation in the position and attitude of the fused positioning. Therefore, combining the
motion model of ICV with its motion state as prediction, and using the data from both
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sensors (the average of both) as measurement models. When the measurement error of one
sensor is large, choose other measurement data.
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Abstract: Efficiently obtaining leaf nitrogen content (LNC) in rice to monitor the nutritional health
status is crucial in achieving precision fertilization on demand. Unmanned aerial vehicle (UAV)-based
hyperspectral technology is an important tool for determining LNC. However, the intricate coupling
between spectral information and nitrogen remains elusive. To address this, this study proposed an
estimation method for LNC that integrates hybrid preferred features with deep learning modeling
algorithms based on UAV hyperspectral imagery. The proposed approach leverages XGBoost, Pearson
correlation coefficient (PCC), and a synergistic combination of both to identify the characteristic
variables for LNC estimation. We then construct estimation models of LNC using statistical regression
methods (partial least-squares regression (PLSR)) and machine learning algorithms (random forest
(RF); deep neural networks (DNN)). The optimal model is utilized to map the spatial distribution of
LNC at the field scale. The study was conducted at the National Agricultural Science and Technology
Park, Guangzhou, located in Baiyun District of Guangdong, China. The results reveal that the
combined PCC-XGBoost algorithm significantly enhances the accuracy of rice nitrogen inversion
compared to the standalone screening approach. Notably, the model built with the DNN algorithm
exhibits the highest predictive performance and demonstrates great potential in mapping the spatial
distribution of LNC. This indicates the potential role of the proposed model in precision fertilization
and the enhancement of nitrogen utilization efficiency in rice cultivation. The outcomes of this study
offer a valuable reference for enhancing agricultural practices and sustainable crop management.

Keywords: UAV hyperspectral; leaf nitrogen content (LNC); feature optimization; deep learning

1. Introduction

Nitrogen serves as a vital nutrient in fostering the growth and maturation of rice plants.
The suitable application of nitrogen fertilizer stands as a pivotal strategy in attaining both
abundant yields and superior quality in rice crops [1]. According to statistics, approxi-
mately 200 million tons of nitrogen are applied globally to farmland, yet its utilization
efficiency remains below 50%. The resultant nitrogen loss results in problems such as
atmospheric and water contamination, biodiversity depletion, and the exacerbation of
climate fluctuations [2,3]. Accurate estimations of nitrogen levels in rice leaves can be
used to overcome these challenges, facilitating precise fertilization tailored to the plant’s
nutritional requirements. This can consequently reduce the volume of chemical fertilizers
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used, enhance their efficacy, and mitigate nitrogen loss [4]. However, conventional chemical
testing methods are costly, time-consuming, and inherently lag behind real-time agricul-
tural demands [5]. Unmanned aerial vehicle (UAV)-based hyperspectral technology can
overcome these bottlenecks due to its exceptional spectral resolution, spatial precision, and
detection sensitivity. Leveraging these attributes, UAV-based monitoring has emerged as a
potent tool for gauging the nitrogen status of rice paddies. It could invert nitrogen informa-
tion based on UAV spectral data and calculate the rice nitrogen deficit in combination with
critical nitrogen concentration curve, effectively supporting dynamic nitrogen monitoring
and optimizing the management of nitrogen fertilizers [6,7]. This significantly contributes
to the management of nitrogen pollution in farmland, promoting a more sustainable and
environmentally friendly agricultural practice.

Currently, estimations of rice nitrogen content based on UAV hyperspectral tech-
nology primarily concentrate on two key steps: the screening of characteristic variables
and the optimization of estimation models. The former, which is crucial for accurately
estimating leaf nitrogen content (LNC), can be categorized into two groups based on the
methodological approach. The first approach screens the characteristic variables using the
correlation between the variables and LNC. Methods such as the maximum information
coefficient, Pearson correlation coefficient (PCC), and uninformative variables elimination
are commonly employed for this approach. However, due to the inherent weakness of
spectral information and the challenges in its acquisition, relying solely on statistical anal-
ysis methods can often result in an incomplete determination of optimal feature bands.
The second approach centers on feature-importance-based variable screening. Algorithms
such as random forest, gradient boosting decision tree, and extreme gradient boosting are
examples of this category. These methods iteratively select a subset of features from the
initial feature set, train the learner, evaluate the subset based on the learner’s performance,
and ultimately identify features with higher importance [8,9]. However, scholars have iden-
tified inconsistencies in selected wavebands when using various methods to estimate crop
nitrogen content. The multi-method ensemble for wavebands selection may improve the
definition of particular spectral regions in relation to specific absorption features, thereby
increasing the reliability of the results, surpassing the capabilities of a single method [10,11].
In addition, given the intricate relationship between spectra and rice nitrogen, employ-
ing just one screening method may result in the omission of crucial information, thereby
compromising inversion accuracy.

At present, the direct inversion method and vegetation index construction method are
the two primary approaches used for rice nitrogen estimation based on UAV hyperspectral
technology. The direct inversion method determines nitrogen information by establishing a
relationship model between nitrogen content and spectral reflectance. For example, Yang
et al. [12] utilized characteristic variables identified through principal component analysis
(PCA) and employed the support vector machine (SVM) algorithm to construct a relation-
ship model between nitrogen content and these variables. Their findings demonstrate
the efficacy of the PCA-SVM method in assessing LNC. However, combining bands has
been reported to provide more comprehensive information and enhance the accuracy of
nitrogen estimations compared to the use of a single band. Consequently, scholars have
established nitrogen estimation models through the construction of vegetation indices.
This method is currently the most widely adopted approach. For example, Yu et al. [13]
employed the successive projections algorithm to extract characteristic bands and proposed
the nitrogen characteristic transfer index (NCTI) composed of these bands. The authors
then constructed an LNC estimation model using the linear regression method, achieving
an R2 value of 0.774. Similarly, Wang et al. [8] integrated vegetation, color and texture
indices, hyperspectral parameters, and machine learning algorithms to construct an estima-
tion model of nitrogen concentration in rice stems and leaves, with R2 values of 0.7 and
0.8, respectively. These studies offer valuable insights for nitrogen estimation in rice, yet
the complex relationship between spectra and nitrogen requires the introduction of novel
algorithms to enhance model accuracy.
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The contribution of this work was to develop a novel method for LNC estimation in
rice that combines the screening of characteristic variables with model optimization. In this
method, spectral variables were screened using a hybrid method involving PCC and the
extreme gradient boosting (XGBoost) algorithm. A deep neural network algorithm was sub-
sequently employed to establish a model capturing the relationship between characteristic
variables and LNC. This model was then compared against commonly employed methods
such as partial least squares regression (PLSR), and random forest (RF). The optimal model
was subsequently utilized to map the spatial distribution of LNC.

2. Materials and Methods
2.1. Field Experimental Design

The experiment was performed at the National Agricultural Science and Technology Park,
Guangzhou, located in Baiyun District of Guangdong, China (23◦23′38′′ N, 113◦25′37′′ E).
This area has a subtropical monsoon climate, with an average annual temperature of ap-
proximately 24 ◦C. We selected the conventional rice variety Meixiangzhan No. 2 as the
experimental material, with an average plant spacing of 25 cm. The experiment comprised six
nitrogen fertilizer gradients, namely, N1 (0 kg/hm2), N2 (37.5 kg/hm2), N3 (75.0 kg/hm2),
N4 (112.5 kg/hm2), N5 (150.0 kg/hm2), and N6 (187.5 kg/hm2). Each gradient was
replicated five times, resulting in a total of 30 experimental blocks. The phosphorus and
potassium fertilizer application followed the local standard rates. Figure 1 presents the
specific experimental layout. The area of each block was approximately 19.0 m2 for No. 1–6
and 22.5 m2 for No. 7–30.
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2.2. Data and Pre-Processing
2.2.1. Collection and Pre-Processing of UAV Hyperspectral Imagery

Hyperspectral images were collected during the tillering (3 September 2022), jointing-
to-booting (27 September 2022), and heading-to-flowering (21 October 2022) stages of rice
using a UAV-based hyperspectral imaging system (Gaiasky mini3-VN, Dualix Spectral
Image Technology Co. Ltd., Wuxi, China). This system offers a spectral range spanning
from 400 to 1000 nm, with a spectral resolution of 5 nm and a total of 224 bands (Figure 2).
Data collection took place on days of clear weather, with the flight altitude maintained
at 50 m. To ensure data accuracy, calibration was conducted with a standard white plate
and standard gray cloth prior to flights. The acquired images were pre-processed using
SpecView 2.9.3.10, HySpectralStitcher 1.0.1, and ENVI 5.6. Pre-processing steps included
geometric correction, radiometric correction, image stitching, clipping, etc. We computed
the average of the spectra in the region of interest (ROI) for each block. Gauss filtering was
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then employed to denoise the spectral data, yielding canopy spectral reflectance data for
each block (Table 1).

1 
 

 
 
 
 

 

Figure 2. UAV hyperspectral imaging system and parameters used in the experiment.

Table 1. Basic information of UAV hyperspectral images.

Instrumentation Flight
Altitude Block Size Spectral

Range
Forward
Overlap

Side
Overlap

Gaiasky mini
3-VN 50 m No.1–6: 19.0 m2

No. 7–30: 22.5 m2 400–1000 nm 80% 65%

2.2.2. Acquisition of Rice Agronomic Parameters

Rice plant samples were gathered from five points in an “X” shape (Figure 3) at each
block and the acquisition time coincided with the collection of the UAV hyperspectral
images. The collected samples were then washed and the fresh leaves of each rice plant
were weighed, labeled, and placed in bags for oven-drying at 105 ◦C for 30 min. The
temperature was then adjusted to 80 ◦C for drying until a constant weight was achieved.
After drying, the samples were crushed using a pulverizer through a 0.25 mm sieve. The
Kjeldahl method was subsequently employed to determine the LNC. Table 2 reports the
statistical results. The LNC was observed to progressively decrease with rice growth. The
mean LNC during the tillering, jointing-to-booting, and heading-to-flowering stages was
2.63%, 2.03%, and 1.69%, respectively. Moreover, LNC exhibited the highest standard
deviation (0.44) and coefficient of variation (16.90%) at the tillering stage, indicating greater
data variability.

Table 2. Statistical parameters of leaf nitrogen contents from the rice plant samples (unit: %).

Growth Stages Minimum Maximum Mean SD CV (%)

tillering 2.02 3.66 2.63 0.44 16.90
jointing-to-booting 1.69 2.55 2.03 0.23 11.56

heading-to-flowering 1.42 2.06 1.69 0.18 10.38
Note: SD, standard deviation; CV, coefficient of variation.
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2.3. Vegetation Index Construction

Vegetation indices (VIs) serve as valuable indicators of crop health and growth, reflect-
ing the nutritional status of crops [14]. Drawing from the relevant studies [15–19], 20 VIs
were selected as variables for estimating the LNC (Table 3).

Table 3. Definitions and formulae of the selected vegetation indices.

VI Formula Reference VI Formula Reference

NPCI (R670 − R460)/(R670 + R460) [15] SIPI (R800 − R445)/(R800 − R680) [16]
SR R750/R550 [15] PSRI (R680 − R500)/R750 [17]

MSR (R800/R760 − 1)/(R800/R670 + 1)0.5 [15] GI R554/R677 [17]
PBI R810/R560 [15] PSND (R800 − R470)/(R800 + R470) [17]
LCI (R850 − R710)/(R850 + R680) PSSR R800/R500 [17]

GNDVI (R750 − R550)/(R750 + R550) [16] RARS R760/R500 [17]

SRPI R430/R680 [16] OSAVI 1.16 × (R800 − R670)/(R800 + R670 +
0.16) [17]

PRI (R570 − R531)/(R570 + R531) [16] RENDVI (R750 − R705)/(R750 + R705) [18]

MTCI (R750 − R710)/(R710 − R680) [16] DCNI (R720 − R700)/(R700 − R670)/(R720 −
R670 + 0.03) [19]

NDRE (R790 − R720)/(R790 + R720) [16] NDVI (R800 − R670)/(R800 + R670) [19]

Note: Rx denotes the spectral reflectance at wavelength x nm; NPCI, normalized pigment chlorophyll ratio
index; SR, simple ratio vegetation index; MSR, modified simple ratio; PBI, plant biochemical index; LCI, leaf
chlorophyll index; GNDVI, green normalized difference vegetation index; SRPI, simple ratio pigment index;
PRI, photochemical reflectance index; MTCI, MERIS terrestrial chlorophyll index; NDRE, normalized difference
red edge index; SIPI, structure intensive pigment index; PSRI, plant senescence reflectance index; GI, greenness
index; PSND, pigment-specific normalized difference; PSSR, pigment-specific simple ratio; RARS, ratio analysis of
reflectance spectra; OSAVI, optimized soil adjusted vegetation index; NDVI, normalized difference vegetation
index; RENDVI, red edge NDVI; DCNI, double-peak canopy nitrogen index.

2.4. Identification of Characteristic Variables for LNC Estimation

The determination of the characteristic variables is a critical step in the development of
the LNC estimation method [6]. However, conventional statistical analysis methods often
struggle to precisely determine the optimal characteristic variables due to the inherent chal-
lenges in capturing weak spectral information. Moreover, the relationship between spectral
data and agronomic parameters is typically complex, encompassing a combination of linear
and nonlinear associations [20]. In this study, we employ a hybrid approach integrating
correlation analysis with XGBoost to screen characteristic variables for estimating LNC and
compare it with the equivalent singular method. These methods are briefly described in
the following sections:

• Pearson correlation coefficient

A significant correlation has been reported between the spectral reflectance of certain
bands and the LNC [6]. In this study, bands exhibiting high correlation coefficients with
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statistical significance at p ≤ 0.01 were identified as characteristic variables using the
Pearson correlation coefficient, ri, determined as [21]:

ri =
∑N

n=1
(

Rni − Ri
)
(yn − y)√

∑N
n=1

(
Rni − Ri

)2
∑N

n=1(yn − y)2
(1)

where ri is the correlation coefficient between LNC and spectral reflectance; Rni is the
spectral reflectance of the n-th sample in the i-th band; Ri is the mean reflectance of samples
in the i-th band; yn is the LNC of n-th sample; and y is the mean value of LNC.

• Extreme gradient boosting

We employed the XGBoost algorithm to select the optimal characteristic variables
for LNC estimation. XGBoost is a modified gradient-boosting algorithm that averages
and subsequently ranks the feature importance (FI) of each tree. It employs the following
calculation method [22]:

FI(T, F) = H(T)−H(T|F) = −∑j
i=1 pilog2pi −∑F p(F)×∑j

i=1 p( i|F)log2p( i|F), (2)

where H(T) and H(T|F) refer to the entropy of the parent and child nodes based on the
F-feature segmentation, respectively, and pi represents the score of the labeled samples at
the i-th node.

2.5. Model Construction and Validation

Three algorithms, namely partial least squares regression (PLSR), random forest (RF),
and deep neural network (DNN), were employed to develop the LNC estimation model
using the selected characteristic variables. These algorithms were created using Python
software (version 3.10). In the following, we present a summary of each algorithm.

• Partial least squares regression

Partial least-squares regression (PLSR) integrates the strengths of three analytical
techniques: principal component analysis, canonical correlation analysis, and multiple
linear regression. It leverages all available data to construct a model, extracting maximal
information that reflects data variation. PLSR demonstrates a strong predictive capability
and is particularly effective at handling datasets with strong linear correlations among
variables [23]. This method includes a principal component analysis of both the spectral
data matrix and the matrix of rice leaf content during modeling, resulting in a regression
model based on the contributions of the derived variables.

• Random forest

Random forest (RF) is an ensemble learning algorithm proficient in effectively mod-
eling the nonlinear relationship between the characteristic and explanatory variables. It
boasts a strong generalization ability and robustness and a rapid training speed, and only
requires a minimal number of tuning parameters. The model employs a bootstrap strategy
to generate new samples of equal size from the original data. Two-thirds of the original
sample are typically utilized to construct decision trees. The remaining one-third serves
as out-of-bag data (OOB) for inner cross-validation to evaluate the estimated accuracy of
RF. The results from all decision trees are aggregated and their average serves as the final
prediction outcome [24].

• Deep neural network

Deep neural networks (DNNs) are advanced neural network architectures charac-
terized by multi-layered structures comprising input layers, multiple hidden layers, and
output layers. Each layer is interconnected, with connections existing between nodes
in adjacent layers. However, nodes within the same layer and across layers are not in-
terconnected. Through fully connected layers and combinations of activation functions,
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various nodes are linked to construct a sophisticated multi-layer neural network model [25].
Figure 4 depicts the structural layout of DNNs.
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DNNs undergo training via forward and backward propagation algorithms, continu-
ally updating each weight (w) and bias (b) within the network. The backward propagation
algorithm, pivotal to DNN functionality, retroactively propagates the error between the
estimated and measured output values. It iteratively adjusts the w and b across each layer
of the network model, aiming to minimize the error until it aligns with specified accuracy
criteria [26]. The weight and bias are calculated as follows [25]:

w* = w− α
αj(w, b)

αw
(3)

b* = b− α
αj(w, b)

αb
(4)

where w* and w denote the weights after and before the update, respectively; b* and b
represent the biases after and before the update, respectively; α is the learning rate; and
j(w, b) is the loss function of the model. The optimal parameters w* and w are attained
through iterative gradient descent. In this study, a DNN comprising three hidden layers
was constructed. The number of nodes in the input layer corresponded to the number
of characteristic variables. We adopted tanh as the activation function. The network was
trained for 3000 iterations and the mean squared error (MSE) was adopted as the Loss
function to assess the performance.

• Accuracy verification

The collected data (90 samples) were divided into a training set (60 samples) and a
test set (30 samples). The test set was utilized to evaluate the performance of the LNC
estimation models by computing the coefficient of determination (R2) and root mean
squared error (RMSE). Models with a higher R2 and lower RMSE are considered to have a
better estimation effect [27].

R2 = 1− ∑n
i=1 (yi −

^
yi )

2

∑n
i=1 (yi −

-
y )2

(5)

RMSE =

√
∑n

i=1 (
^
yi − yi )

2

n
(6)

where yi and
^
yi are the measured and estimated values, respectively;

-
y is the mean of the

measured values; and n signifies the sample number.
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3. Results
3.1. Determining the Characteristic Variables for the Estimation of LNC
3.1.1. Spectral Characteristics of Rice at Different Growth Stages

Figure 5 presents the spectral curves of rice at various growth stages under different
nitrogen (N) application levels. The rice canopy spectra exhibit low reflectance (r < 0.1)
within the 400–670 nm range, followed by a sharp increase in reflectance within the red-
edge range (670–760 nm). Notably, marked differences in spectra are observed across
varying nitrogen levels within the 750–1000 nm range, with nitrogen fertilizer application
demonstrating a positive correlation with rice spectral reflectance. This phenomenon may
arise from an optimal nitrogen supply, which enhances rice growth and thereby results in
increased reflectance levels.
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3.1.2. Screening of Characteristic Variables for LNC Estimation

The PCC and XGBoost algorithms were employed to identify the characteristic vari-
ables for estimating LNC. Following numerous experiments, the screening criteria for PCC
and XGBoost were established as |r| > 0.76 and FI > 0.01, respectively. Stepwise regression
was then utilized to mitigate multicollinearity among the selected characteristic variables
(Figure 6). Note that the characteristic variables identified by both algorithms exhibited
some degree of overlap (band750.92, PSSR, and RARS).

3.2. Estimation and Accuracy Assessment of LNC

The characteristic variables obtained solely from PCC (Figure 6b), solely from XG-
Boost (Figure 6a), and from their combination (band756.40, band770.11, band742.71, band569.61,
band731.79, band671.94, band463.34, band495.06, band680.08, band880.59, band500.37, band750.92,
PBI, LCI, PSSR, and RARS) were utilized as independent variables, respectively, with LNC
serving as the dependent variable to construct the estimation models of LNC using PLSR,
RF, and DNN algorithms (Figure 7). For the linear models (PLSR), the model based on
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the characteristic variables derived from the linear screening algorithm (PCC) exhibits
a scatter distribution closer to the 1:1 line compared to models built with characteristic
variables from the XGBoost algorithm, indicating a superior estimation performance of
the former. Conversely, for nonlinear models (RF, DNN), the model constructed using the
characteristic variables from XGBoost demonstrates a better performance. Furthermore,
models based on the characteristic variables obtained from the combination of PCC and
XGBoost consistently yield improved estimation results (R2 > 0.8). Among these, the DNN
model exhibits the best performance for estimating the LNC, with a validation R2 of 0.89
and an RMSE of 0.17%.
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3.3. Mapping LNC at the Field Scale

Previous research has indicated that nitrogen-monitoring models based on the entire
growth period are applicable for nitrogen monitoring across all growth stages [8]. Therefore,
we adopted the optimal model (PCC-XGBoost-DNN) to map the spatial distribution of
LNC during various growth stages at the field scale (Figure 8). LNC was higher during
the tillering stage compared to the jointing-to-booting and heading-to-flowering stages.
Moreover, LNC exhibited an increasing trend corresponding to fertilizer application, which
is consistent with the distribution pattern of the sample data. These findings offer valuable
insights for subsequent precision fertilization strategies in rice cultivation.
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4. Discussion

As the global population continues to expand, the world faces significant challenges
in mitigating the environmental repercussions of excessive nitrogen inputs while striv-
ing to maintain high crop yields [28]. China’s annual nitrogen fertilizer input for rice
cultivation is reported to reach 6.3 million tons, representing approximately one-third
of the world’s total rice nitrogen fertilizer consumption. However, nitrogen utilization
efficiency stands at less than 50%, resulting in a loss of over half of the applied nitrogen
to the environment. This phenomenon adversely impacts air and water quality, posing
threats to environmental safety and public health [29,30]. Given the pivotal role of nitrogen
information in assessing rice growth status and yield, real-time access to such data serves
as a crucial reference for optimizing nitrogen fertilizer application and enhancing nitrogen
utilization efficiency [31]. UAV hyperspectral technology has proven to be a vital tool for
obtaining this information [6].

Scholars have achieved successful LNC estimations using both linear [32] and non-
linear [20,33] screening algorithms. This prompted us to speculate on the existence of
a blending relationship (linear and nonlinear) between nitrogen and the corresponding
spectral information. Thus, we conducted an experiment to validate this hypothesis. We
combined a correlation analysis with XGBoost to screen characteristic variables and com-
pared the results with those obtained using a single-method approach. Our findings
indicate that the feature variables identified through the combined correlation analysis and
XGBoost algorithm significantly enhance rice nitrogen inversion, offering a novel approach
to bolstering the accuracy of rapid crop nutrition diagnosis. This hints at the potential of
the multi-method ensemble selection of characteristic variables in regression problems,
which is consistent with former research [10,11]. Furthermore, among all the tested models,
the DNN model emerged as the most effective in terms of LNC estimation. This may be
attributed to the DNN’s inherent nonlinear mapping ability and its resilience to noisy data,
enabling it to handle complex datasets better than shallow modeling approaches. The study
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offers a valuable reference for diagnosing the nutritional status and optimizing nitrogen
fertilizer management in rice, which plays a crucial role in ensuring the sustainability of
crop production.

In this study, we only utilized the cultivar ‘Meixiangzhan 2’ as the test material. Thus,
further work is required to ascertain the method’s applicability to other rice varieties. In
addition, South China belongs to the typical oceanic subtropical monsoon climate influ-
ence zone, with frequent cloudy and rainy weather. Due to constraints such as weather
conditions and collection costs, the dataset utilized in this study remains relatively limited,
potentially introducing some uncertainty into the results. To address this limitation, future
research will explore the integration of data generation algorithms such as generative adver-
sarial networks (GAN) to augment the dataset and enhance model robustness. Furthermore,
this study solely focuses on estimating LNC. Subsequent research will integrate spatial
nitrogen distribution data, expert insights, and regional soil characteristics to formulate
a prescription map for rice fertilizer application. This holistic approach aims to facilitate
precise fertilizer application, thereby enhancing fertilizer reductions and efficiency.

5. Conclusions

The precise determination of pertinent characteristic variables is key to developing
accurate estimation models for LNC. In this study, we propose a novel approach that com-
bines the strengths of PCC and the XGBoost algorithm to comprehensively screen for the
optimal characteristic variables for LNC estimation. Utilizing these selected variables and
field observations of LNC, we subsequently developed LNC estimation models. The most
accurate estimation model was then adopted to explore the possibility of spatially mapping
the LNC at the field scale. The results reveal that the integration of PCC and XGBoost
enables a more meticulous screening of characteristic variables than solely adopting single-
class methods. Furthermore, based on the RMSE values derived from test datasets, the
DNN was determined as the most accurate model at the sample-point level. The proposed
method offers the potential to map the LNC at the field scale using UAV hyperspectral
imagery. The estimation accuracy of LNC was enhanced by combining PCC and XGBoost
for characteristic variables screening, offering insights into optimizing nitrogen fertilizer’s
application in rice cultivation.
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Abstract: Precision irrigation and fertilization in agriculture are vital for sustainable crop production,
relying on accurate determination of the crop’s nutritional status. However, there are challenges
in optimizing traditional neural networks to achieve this accurately. This paper aims to propose a
rapid identification method for crop water and nitrogen content using optimized neural networks.
This method addresses the difficulty in optimizing the traditional backpropagation neural network
(BPNN) structure. It uses 179 multi−spectral images of crops (such as maize) as samples for the neural
network model. Particle swarm optimization (PSO) is applied to optimize the hidden layer nodes.
Additionally, this paper proposes a double−hidden−layer network structure to improve the model’s
prediction accuracy. The proposed double−hidden−layer PSO−BPNN model showed a 9.87%
improvement in prediction accuracy compared with the traditional BPNN model. The correlation
coefficient R2 for predicted crop nitrogen and water content was 0.9045 and 0.8734, respectively. The
experimental results demonstrate high training efficiency and accuracy. This method lays a strong
foundation for developing precision irrigation and fertilization plans for modern agriculture and
holds promising prospects.

Keywords: nitrogen content; water content; double hidden layer; BP neural network; particle
swarm optimization

1. Introduction

Irrigation and fertilization are essential key factors in the crop growth stage [1] To
improve the current situation of overuse in traditional farmland production, it is necessary
to obtain information on crop water and nitrogen in advance to realize precise irrigation
and fertilization [2,3]. The demand for water and fertilizer of crops is influenced by several
factors, including but not limited to sunshine, air temperature and humidity, soil temper-
ature and humidity, and CO2 concentration. These factors contribute to the complexity
of the crop−growing environment, which can be characterized as a time−delay system
with a multitude of parameters that exhibit nonlinearity and strong interdependence. An
artificial neural network has powerful self−learning, self−organizing, and self−adapting
ability, which makes it possible for the network to deal with uncertain or unknown complex
nonlinear systems, and by optimizing the network structure it can fully approximate any
complex nonlinear relations. In the development history of the artificial neural network,
for a long time there was no effective algorithm to adjust the connection weight of hidden
layers [4–6]. This lasted until the error backpropagation (BP) algorithm was proposed,
the weight adjustment problem of a multilayer feedforward neural network for solving
nonlinear continuous functions was successfully solved, and the BP neural network was
used in many applications [7,8]. For example, the remotely sensed leaf area index (LAI)
and vegetation temperature condition index (VTCI) are closely related to crop growth and
crop water stress as two key variables for indicating crop growth conditions and estimating

Agronomy 2023, 13, 2464. https://doi.org/10.3390/agronomy13102464 https://www.mdpi.com/journal/agronomy221



Agronomy 2023, 13, 2464

crop yields in the Guanzhong Plain, and the BP neural network and the IPSO−BP neural
network were used to calculate the weight coefficients and thresholds of the VTCI and LAI
at the four growth stages and to establish an integrated index, I, during the main growth
period [9]. Three simulated tidal flow systems and a full system of continuous vertical
flow of synthetic wastewater were treated by effluent removal with the help of a BP neural
network; by comparing the influent and effluent concentrations, the results show that the
ability of the BP artificial neural network model to predict nutrient concentrations in the
effluent was good; there were only small errors when correlating the predicted values
and the actual values [10]. Based on the monitoring data of soil moisture, soil electrical
conductivity, air temperature, and light intensity, a prediction model of crop water demand
based on the 4−8−1−structure BP neural network was established to guide water−saving
irrigation in the crop production process [11]. Many studies have proved that a BPNN has
a good effect on data prediction.

Although BPNNs have been widely used, they have some defects and deficiencies,
including the following: (1) Because the learning rate is fixed, the convergence speed of
the network is slow, and the network requires a long training time [12]. For some complex
problems, the training time of a BP algorithm may be very long, which is mainly due to
the long learning duration [13]. It can be improved by using a variable learning rate or
an adaptive learning rate [14]. (2) A BP algorithm can make the weight converge to a
certain value, but it does not guarantee that the value is the global minimum of the error
plane because the gradient descent method may produce a local minimum value [15]. The
additional momentum method can be used to solve this problem [16]. (3) BPNN learning
and memory are unstable. In other words, if learning samples are added, the trained
network must be trained from the beginning, and there is no memory for the previous
weights and thresholds [17]. However, it can save the better weights of the prediction,
classification, or clustering [18]. (4) There is no theoretical guidance for the selection of the
number of layers and units of the network’s hidden layer; these are generally determined
by experience or by repeated experiments [19]. Motivated by these problems, we focused
on determining the number of hidden layer nodes of a BP neural network based on particle
swarm optimization (PSO).

In this study, field crops were taken as the research object. The spectral information of
crop water and nitrogen was extracted by a multi−spectral camera, and the information
of crop leaf water and nitrogen content was measured by a hand−held sensor. Consid-
ering that artificial neural networks can process nonlinear adaptive information well, by
analyzing the correlation between crop spectrum characteristics and moisture nitrogen, an
improved BPNN model using multispectral crop images to rapidly identify crop nitrogen
and water contents was constructed. Finally, this study provides a theoretical basis for
precision irrigation and fertilization of field crops. We also considered the influence of the
number of hidden layers. The main contributions of this study are as follows:

• PSO was used to optimize the number of hidden layer nodes in a BP neural net-
work, which improved the training efficiency and reduced the time and tedium of
determining the number of hidden layer nodes by experience.

• In addition to increasing the number of hidden layer nodes and improving the pre-
diction accuracy of a BP neural network, we found that a double−hidden−layer
structure can effectively reduce the performance errors of the network and improve
its performance.

• A prediction model of crop nitrogen and water contents based on PSO−BPNN with a
double−hidden−layer structure was established. Experiments showed that the model
was highly efficient at predicting the nitrogen and water contents of the crop.

The primary objectives of this study are as follows:
Section 2: to provide a comprehensive description of the data acquisition scheme,

model descriptions, and mathematical preliminaries utilized in the study.
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Section 3: to present and explain the optimization principle and modeling scheme
employed for the model, specifically focusing on the application of particle swarm opti-
mization (PSO) and the proposed double−hidden−layer network structure.

Section 4: to present and discuss the comparative experimental results obtained from
the study, analyzing the performance and accuracy of the PSO−BPNN model in comparison
to the traditional BPNN model.

Section 5: to draw conclusions based on the findings and implications of the study,
summarizing the key outcomes, and discussing the potential prospects and applications of
the proposed method.

2. Materials and Methods
2.1. Data Acquisition

This study aimed to determine the water and nitrogen content in a crop canopy by
employing a plant nutrient analyzer(device model: YLS−D, Hubei, China) in the field.
The collection methodology involved dividing the field into multiple rectangular grid
areas, from which random samples were extracted. Each sample was meticulously ob-
tained from distinct sections of the plant canopy, namely, the upper, middle, and lower
regions. Subsequently, the measurements of water and nitrogen content at each sampling
location were diligently recorded. To obtain accurate results, the average value of the
three canopy regions was deemed representative of the overall water and nitrogen con-
tent of the crop canopy. Concurrently, a handheld multi−spectral camera(device model:
RedEdge−M, Seattle, Washington, US) was employed to capture vertical images of the
canopy at the sampling positions. The real−time previewing of the multi−spectral image
position was enabled through Wi−Fi connectivity with a mobile phone. By maintaining a
camera−lens−to−canopy distance of approximately 30 cm and ensuring proper alignment
with the sensor’s five channels, images were captured and saved in a 16−bit TIFF format.
Notably, the comprehensive dataset encompassed 179 sets of crop canopy multispectral im-
ages, along with the corresponding water and nitrogen content data. A detailed depiction
of the data acquisition process can be found in Figure 1.
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2.2. BPNN Model Description

A BPNN is a kind of multilayer feedforward network trained by an error backprop-
agation algorithm [20]. It is one of the most widely used neural network models. The
neurons in the input layer are responsible for receiving the input information from the
outside and transmitting it to the neurons in the middle layer. The middle layer is the
internal information processing layer, which is responsible for information transformation.
Depending on the demands of information change, the middle layer can be designed as
a single hidden layer or multiple hidden layers. The output hidden layer transmits the
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information to each neuron in the output layer. After further processing, it completes a
learning forward propagation process and outputs the information processing results to the
outside world from the output layer. A double−hidden−layer neural network structure
was used in this study. Network precision was improved by increasing the number of
hidden layers [21]. The topological structure of a BP neural network is shown in Figure 2.
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The learning process of a BP neural network comprises mainly the following parts:

(i) Setting variables and parameters. Xk = [xk1, xk2, . . ., xkM], (k = 1, 2,. . ., N) is the input
variable, also known as training samples, and N is the number of training samples.

WMI(n) =




w11(n) w12(n) · · · w1I(n)
w21(n) w22(n) · · · w2I(n)

...
...

...
...

wM1(n) wM2(n) · · · wMI(n)


 is the weight vector between the input

layer and the hidden layer I in the nth iteration.

WI J(n) =




w11(n) w12(n) · · · w1J(n)
w21(n) w22(n) · · · w2J(n)

...
...

...
...

wI1(n) wI2(n) · · · wI J(n)


 is the weight vector between the hidden

layer I and the hidden layer J in the nth iteration.

WJP(n) =




w11(n) w12(n) · · · w1P(n)
w21(n) w22(n) · · · w2P(n)

...
...

...
...

wJ1(n) wJ2(n) · · · wJP(n)


 is the weight vector between the hidden

layer J and the output layer in the nth iteration.
Yk(n) = [yk1(n), yk2(n), · · · , ykP(n)], (k = 1, 2,. . ., N) is the actual output of the network

in the nth iteration. dk = [dk1, dk2, · · · , dkP], (k = 1, 2,. . ., N) is the desired output.
η is the learning rate, and n is the number of iterations.

(ii) Initialization. Assign a smaller random nonzero value to WMI (0), WIJ (0), WJP (0), and
n = 0.

(iii) Random input sample Xk.
(iv) The input sample Xk, input signal u, and output signal v of each layer of the BPNN

are calculated forward, where vP
p (n) = ykp(n), p = 1, 2,. . ., P.

(v) Calculate the error E(n) from the expected output dk and the actual output Yk(n)
obtained in the previous step to judge whether it meets the requirements. If it meets
the requirements, go to step viii; if not, go to step vi.
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(vi) Determine whether the n + 1 is greater than the maximum number of iterations. If it is
greater, go to step viii. If it is not greater, the local gradient δ of each layer of neurons
is inversely calculated for the input sample Xk. The equations are

δP
p (n) = yp(n)(1− yp(n))(dp(n)− yp(n)), p = 1, 2, . . . P (1)

δJ
j (n) = f ′(uJ

j
(n))

P

∑
p=1

δP
p (n)wjp(n), j = 1, 2, . . . J (2)

δI
i (n) = f ′(uI

i (n))
J

∑
j=1

δJ
j (n)wij(n), i = 1, 2, . . . I (3)

(vii) Calculate the weight correction ∆w and correct the weight; if n = n + 1, go to step iv.

∆wjp(n) = ηδP
p (n)v

J
j (n) wjp(n + 1) = wjp(n) + ∆wjp(n) j = 1, 2, . . . J; p = 1, 2, . . . P (4)

∆wij(n) = ηδJ
j (n)v

I
i (n) wij(n + 1) = wij(n) + ∆wij(n) i = 1, 2, . . . I; j = 1, 2, . . . J (5)

∆wmi(n) = ηδI
i (n)xkm(n) wmi(n + 1) = wmi(n) + ∆wmi(n) m = 1, 2, . . . M; i = 1, 2, . . . I (6)

(viii) Judge whether all the training samples have been learned. If they have, the learning
process is finished. If they have not, go to step iii.

2.3. Application Principle of the Particle Swarm Optimization Algorithm

PSO has the characteristics of evolutionary computation and swarm intelligence.
Similar to other algorithms, PSO can search for the best solution in complex space through
cooperation and competition among individuals [22].

In a PSO algorithm, the solution of each optimization problem is regarded as a “bird”
or “particle” in the search space [23]. At the beginning of the algorithm, the initial solution
is generated; that is, the population composed of m particles is randomly initialized in the
feasible solution space, where the position Zi = {zi1, zi2, · · · zin} of each particle represents
a solution to the problem, and a new solution is searched for according to the objective
function calculation. In each iteration, the particle tracks two extrema to update itself; one
is the best solution pid found by the particle itself, and the other is the best solution pgd
found by the entire population, which is the global extremum. Also, each particle has a
velocity of Vi = {vi1, wi2, · · ·win}. When the two optimal solutions are found, each particle
updates its velocity according to Equation (7):

vid = wvid(t) + η1rand()[pid − zid(t)] + η2rand()[pgd − zid(t)]
zid(t + 1) = zid(t) + vid(t + 1)

(7)

where Zid(t + 1) is the velocity of the ith particle in the d dimension in the t + 1 iteration, w
is the inertia weight, η1 and η2 are acceleration constants, and rand() is a random number
between 0 and 1. Also, the upper limit of the velocity can be set to prevent the particle
velocity from being too great; that is, when vid(t + 1) > vmax, vid(t + 1) = vmax; when
vid(t + 1) < −vmax, vid(t + 1) = −vmax.

From the updated equation of particles, we can see that the moving direction of
particles is determined by three parts: their original velocity vid; the distance pid − zid(t + 1)
from their best experience; and the distance pgd − zid(t) from the best experience of the
group, and their relative importance is determined by the weight coefficients w, η1, and η2.
When the end condition of the algorithm is reached, that is, a sufficiently optimal solution
is found or the maximum number of iterations is reached, the algorithm ends. The basic
flow of PSO is shown in Figure 3.
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To solve the defects of a BPNN, we combined a PSO algorithm with a BPNN algorithm
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the neural network. The overall algorithm flow is shown in Figure 4.
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The implementation steps of the PSO–BP algorithm are
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Step 1. The structure and parameters of the BP neural network are initialized.
Step 2. Combined with the connection weights of the BP neural network, the network

structure of the PSO is initialized. First, the weight vector W = {w1, w2, . . ., wn} of the BP
network is constructed as the space particle in the PSO optimization algorithm, and then
the parameters of the PSO network are set, namely, inertia weight, the acceleration constant,
particle speed, and position in Equations (8) and (9).

Step 3. The speed and position of the weighted particles are updated. The particles
start from an initial position Xid in space with a certain initial velocity Vid, where i is the
number and d is the dimension. In the process of particle motion, the velocity and position
will change constantly, and the update formulas are Equations (8) and (9), respectively:

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

gd) (8)

Xk+1
id = Xk

id + Vk+1
id (9)

where Equation (8) is the velocity of the particle and Equation (9) is the position of
the particle.

Step 4. Find the global optimal extremum. First, the fitness function value of each
particle in the space is calculated. When the particle is iterated many times, a new fitness
function value is calculated. If the fitness function value of the new particle is better than
the current value, the individual extreme value pbest and the population extreme value gbest
are updated until the best extreme value is found. The mean square error of the BP neural
network on the training set is taken as the fitness function, and the calculation method is
Equation (10).

E(xp) =
1
N

n

∑
p=1

m

∑
k=0

(ypk(xp)− tpk)
2

(10)

where xp is the input sample of group p, p = 1, 2, . . ., n; ypk is the kth output of input xp
sample; and tpk is the expected value of the kth output of input xp sample, k = 1, 2, . . ., m.

Step 5. Weight optimization is achieved. Compare the best fitness function value
obtained in Step 4 with the preset objective, or judge whether the maximum iteration times
have been reached. If the requirements are met, it indicates that the global best weight has
been found and the operation is finished.

Step 6. In the PSO–−BP network, the outputs of the hidden and output layers are
calculated as follows:

x′ = f (
2

∑
i=0

wij − θ1)d = f (
2

∑
j=0

wjkx′ − θ2) (11)

f (u) =
1

1 + e−uj
=

1

1 + e−(∑ wjxj−θj)
(12)

Step 7. Error judgment. Calculate whether the error function meets the expectation. If
so, the network training ends and retains the trained weight; otherwise, the error of each
layer is calculated layer by layer. The calculation of expectation and error is as follows:

ep =
1
2∑

k

(
yk −

∧
yk

)2
(13)

δ
p1
jk =

(
tp1
k − dp1

k

)
dp1

k

(
1− dp1

k

)
δ

p1
ij =

p1

∑
k=0

δ
p1
jk wjkx′p1(1− x′p1) (14)
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Step 8. Adjust the weight of each layer of the network; the specific calculation is

wjk(n0 + 1) = wjk(n0) + η
p

∑
p1=1

δ
p1
jk x′p1wij(n0 + 1) = wij(n0) + η

p

∑
p1=1

δ
p1
ij x′p1 (15)

Step 9. After the adjustment, continue to input the sample and repeat the calcula-
tion process in Step 6 with the new weight. Once the error meets the requirements of
Equation (14), the training is stopped.

Step 10. Save the trained neural network models and predict the crop nitrogen and
moisture contents of the trained neural network.

3.2. Construction of Prediction Model of Crop Water and Nitrogen Contents Based on BPNN with
Double Hidden Layers

The performance of the PSO algorithm is affected by various interaction parameters,
such as group size N, inertia factor ω, learning factors c1 and c2, maximum speed vmax, and
maximum iteration number Gk. The range of the population size is generally from 20 to 50.
If ω = 0, then the adjustment of particle velocity is related only to the current position and
the historical best position, and the change in velocity size has nothing to do with it [24].
When the inertia factor ω is added, particles can effectively explore other parts of space,
not only in the vicinity of the individual and global best positions but also in the function
of global and local exploration. When ω is large, the global search ability is strong; when ω
is small, the local search ability is strong [25]. Generally, c1 = c2 = 2. Ambroziak’s research
shows that if we want to obtain good results and simplify the operation, c1 and c1 are better
as constants [26]. These parameters must be given artificially at the beginning of training.
The specific parameter values of this study are shown in Table 1.

Table 1. Parameter selection of PSO algorithm.

N ω c1 c2 vmax Gk

50 0.1 2 2 0.5 200

In this study, 179 sets of multispectral images of crop leaves were collected to extract
the reflectance value, and the nitrogen and water contents of the leaves were measured
by a plant nutrient analyzer. Finally, the reflectance of the blue, green, red, near−infrared
(NIR), and RedEdge bands, as well as crop nitrogen and water contents, were obtained—a
total of seven variables. A correlation analysis of the seven variables is shown in Figure 5.
The correlation between the reflectance of each spectral band and the nitrogen and water
contents of the crops was not strong, showing a nonlinear mapping relation. It is therefore
more suitable to use a neural network to build a prediction model.

Five neurons were in the input layer of the BPNN—that is, the reflectance of five
spectral bands—and two neurons were in the output layer; namely, the nitrogen and water
contents of the crops. Because the units of input data and output data were different, to
facilitate data training the data had to be normalized into a dimensionless form before
modeling. The training data in this study were normalized to between 0.001 and 0.999. The
naturalization equation is given by Equation (16).

P =
p− pmin

pmax − pmin

× 0.998 + 0.001 (16)

where p is the original data, pmin is the minimum value of the data with the same di-
mension, pmax is the maximum value of the data with the same dimension, and P is the
normalized data.
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In the process of modeling with the BPNN, the number of hidden layer neurons in the
network structure could not be determined. Generally, the greater the number of hidden
layers in a neural network, the stronger its nonlinear mapping capability. Upon reaching
an appropriate number of neurons, further increasing the number would not help much to
improve the accuracy of the network but would increase the amount of calculation [27].
Currently, the number of neurons is determined mainly by trial calculation via an empirical
equation; the general empirical formulas are given by Equations (17) and (18).

l <
√
(m + n) + a (17)

l < 2m + 1 (18)

l is the number of hidden neurons, m is the number of neurons in the input layer, n is
the number of neurons in the output layer, and a is a constant from 0 to 10 [28].

According to the empirical formulas of Equations (17) and (18), it was determined
that the number of neurons in the first hidden layer ranged from 2 to 13. The networks
with different hidden layers were trained 10 times, and the numbers of epochs and mean
squared error (MSE) values were recorded. The recorded results are shown in Figure 6. In
Figure 6, the color of the 3D sphere represents the number of neurons in the hidden layer,
and the size of the sphere represents the MSE. After the trial calculation, when the number
of neurons in the hidden layer was 12, the correlation coefficient R−value of the trained
BPNN was the largest, while the number of iterations and the MSE value were low.

This study aimed to establish a BPNN with double hidden layers. Through trial
calculation, we determined the number of nodes in the first hidden layer to be 12. It was
found that the best ratio of the number of nodes in the first hidden layer and the second
hidden layer was 3:1 in the case of high−dimensional input [29]. Therefore, the number of
nodes in the second hidden layer of the neural network was determined to be 4. Finally,
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a BPNN with a 5−12−4−2 structure was established. The structure diagram is shown in
Figure 7.
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Figure 7. BPNN with a 5−12−4−2 structure (It contains 5 input neurons, with 12 neurons in the first
hidden layer, 4 neurons in the second hidden layer, and 2 neurons in the output layer).

Below is the pseudo−code for optimizing a BP neural network using PSO:

1. Initialization:

• Define the population size and the maximum number of iterations.
• Randomly initialize the position and velocity of particles in the search space.
• Initialize the global best position and fitness value.

2. Particle Movement and Update:

• For each iteration, update the velocity and position of each particle using the
PSO equations.

• Apply velocity and position limits if necessary.
• Evaluate the fitness of each particle using the BP neural network with the current

position as the weights.
• Update the personal and global best positions if a particle finds better solutions.

3. Termination Condition:

• Stop the process when either the maximum number of iterations is reached, or a
desired fitness value is achieved.

4. Return the Best Solution:

• After the termination condition is met, return the position of the particle with the
best fitness value as the optimized weights for the BP neural network.
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4. Comparative Experimental Results and Analysis

Next, we trained 150 groups of samples, and the remaining 29 groups were used
for verification. We compared and analyzed the performances of a traditional BPNN, a
single−hidden−layer BP neural network optimized by PSO (PSO−1H−BPNN), and a
double−hidden−layer BP neural network optimized by PSO (PSO−2H−BPNN), and also
determined the prediction accuracies of the three neural networks.

4.1. Performance Analysis of the Neural Networks

Three kinds of neural networks were trained by 150 groups of samples. The conver-
gence and network performances of the training are shown in Figures 8 and 9. In Figure 8,
we can see that the MSE of the BPNN was the largest and that of PSO−2H−BPNN was
the smallest. This shows that a BP neural network with a double−hidden−layer structure
optimized by PSO can effectively reduce the number of training errors. Also, increasing the
number of hidden layers increases the number of iterations, but the increase is not obvious.
This also confirms the results of a previous study that increasing the number of hidden
layers will increase the training time [30].
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In Figure 9, we can see that the decision coefficient R of the three neural networks
gradually increased after training, and the decision coefficient R of PSO−2H−BPNN
reached 0.92978. Compared with a conventional BPNN, the network performances of
PSO−1H−BPNN and PSO−2H−BPNN improved by 3.97% and 9.87%, respectively, which
indicates that PSO–2H–BPNN had the best performance of the three kinds of neural networks.
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4.2. Prediction Accuracy Analysis of Three Kinds of Neural Networks

We used three kinds of neural networks to simulate the remaining 29 groups of samples.
The results of the predicted and expected outputs are shown in Figure 10. From Figure 10, it
can be seen that in the simulation of either nitrogen content or water content, the predicted
output and the expected output had the strongest consistency in PSO−2H−BPNN. Also,
the deviation degree of the PSO−2H−BPNN prediction error was the smallest of the three
kinds of neural networks.

Finally, a linear correlation analysis was performed between the predicted output and
the expected output of the sample, as shown in Figure 11. From Figure 11, it can be seen
that for the predicted nitrogen content of the crop the correlation coefficient R2 of the BPNN,
PSO−1H−BPNN, and PSO−2H−BPNN reached 0.7995, 0.8352, and 0.9045, respectively,
and the correlation coefficient R2 of PSO−2H−BPNN was the highest. On the predicted
water content of the crop, the correlation coefficient R2 of the BPNN, PSO−1H−BPNN,
and PSO−2H−BPNN reached 0.7533, 0.88099, and 0.8734, respectively, and the correla-
tion coefficient R2 of PSO−2H−BPNN was also the highest. In the same kind of neural
network prediction, the accuracy of predicting crop nitrogen content was higher than that
of predicting crop water content.
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5. Conclusions

In this study, we designed a double−hidden−layer BP neural network optimized
by a PSO algorithm. Compared with a conventional BPNN, the network performance of
PSO−2H−BPNN was improved by 9.87%. On the predicted nitrogen content of the crop,
the correlation coefficient R2 of PSO−2H−BPNN reached 0.9045, and on the predicted
water content of the crop, the correlation coefficient R2 of PSO−2H−BPNN reached 0.8734.
Both had the highest determination coefficient. For the same kind of neural network
prediction, the accuracy of predicting the crop nitrogen content was higher than that of the
crop water content.

Although the network can quickly identify crop moisture and nitrogen content, it
has a high requirement for collecting multi−spectral images of crop canopy. For canopy
multispectral image data collected under sufficient lighting conditions, high accuracy can
be easily achieved, but canopy multispectral image data collected under cloudy or evening
conditions may reduce recognition accuracy. In future studies, we will try using a different
algorithm to replace PSO, continue to optimize BP neural networks, and continually
improve the prediction accuracy of the network.
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Abstract: Pre-sowing treatment of seeds by plasma can improve seed vigor and promote seed germi-
nation and growth. To solve the problems of low processing volume and uneven treatment in plasma
seed treatment devices, according to the process scheme of medium-blocking discharge plasma seed
treatment, a medium-blocking discharge vibration-uniform material plasma seed treatment device
was designed, the structure and working principle of the vibration-uniform material device were
systematically analyzed, and the mathematical model of seed force was established. According
to electromagnetic vibration theory, the seed sorting and conveying principles were analyzed in
the lower trough, and the relevant parameters were selected and calculated. Using EDEM discrete
element simulation software, a numerical simulation of alfalfa seed feeding and vibration-uniform
material process was carried out. A three-factor, three-level orthogonal test was established. The
results showed that the vibration amplitude and groove shape significantly affected the coefficient of
variation of seed uniformity on the groove during the seed feeding and vibration-uniform material
processes, and the groove wheel speed had a certain effect on the coefficient of variation of uniformity.
The main order of factors affecting the uniformity of seed spreading was vibration amplitude B >
notch shape C > speed A. The optimal speed was 35 r/min, the optimal notch shape was circular,
and the optimal vibration amplitude was 0.55 mm.

Keywords: alfalfa seeds; uniform fabric; discrete elements

1. Introduction

In recent years, with the improvement of people’s living standards and the change of
consumption concept, the demand for meat, eggs, and milk has significantly increased [1].
Alfalfa has a high yield and excellent grass quality and is loved by various livestock and
poultry [2]. As the main source of protein feed, alfalfa plays an important role in the protein
feed shortage in China’s animal husbandry [3,4]. Therefore, researching technologies to
improve alfalfa yield is of great practical significance.

Seeds are important agricultural production materials, and their vitality affects the
entire life cycle of plants. However, the vitality of seeds decreases due to dormancy and
physiological aging [5,6]. Effective pre-sowing treatment of seeds is an important way to
improve seed viability and to achieve increased crop yields and incomes [7,8]. Currently,
commonly used pre-sowing treatment methods for seeds include chemical, biological, and
physical treatments [4]. Chemical treatment methods generally use some chemical agents,
which can easily damage the environment and even harm human and animal health [9].
Biological treatment methods, such as biological control and plant hormones, are costly
and have unclear effects and are also susceptible to environmental influences [10–12]. In
recent years, physical treatment methods have become more and more popular due to
their environmental protection and good effects [13]. Among them, plasma seed treatment
technology is widely used due to its high efficiency, environmental friendliness, and strong
applicability [14,15].
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Foreign studies have determined that plasma is an effective pre-treatment method for
promoting seed germination and growth [16]. Sera et al. [17] observed that, after plasma
treatment, the growth of wheat and oat seeds was promoted, and the growth of young roots
was accelerated. Moreover, cold plasma has a good sterilizing effect on seeds. Schnabel
et al. [18] used medium-blocking discharge and microwave plasma to treat rapeseed seeds,
both of which reduced the number of spore rods. Cold plasma can also improve the surface
morphology and wetting properties of seeds. Nalwa et al. [19] used low-pressure glow
discharge oxygen cold plasma to treat sweet pepper seeds. The surface morphology of
the seeds changed and resulted in better seedling characteristics after planting. There
have been many studies on plasma seed treatment technology in China. Meng Yiran
found that using plasma to treat seeds can promote seed growth, increase yield, enhance
seed stress resistance, and kill pathogenic bacteria on grain surfaces [20]. Wang Decheng
et al. [21] designed a plasma seed treatment device with temperature control to address
the issue of high temperatures caused by continuous treatment with low-pressure radio
frequency plasma.

The transportation mode of seeds affects the effect of a plasma seed treatment. The
commonly used transportation mode of the sample tray and conveyor belt will lead to an
uneven seed treatment effect due to the relatively fixed seed position. Therefore, vibration
transportation is widely used because of its simple structure and reliable operation [22].
Xing Jiejie et al. [23] used ADAMS and other software to establish a parameterized electro-
magnetic vibration orientation device and seed simulation model of corn seeds and verified
that the vibration effect of the model was in line with reality from the three aspects of vibra-
tion analysis, contact force, and model vibration effect. Xia Hongmei et al. [24] designed a
guided vibration seed supply device that can realize uniform seed transportation. Lim [25]
pointed toward a possible methodology to model vibrating granular bed systems with
inelastic bases using continuum theories. Stepanenko et al. [26] obtained the dependence of
the function of the flow rate of grain material on the stepped surface of the vibrating feeder.

Currently, the application of plasma in agriculture, both domestically and interna-
tionally, is not comprehensive or well understood in terms of its mechanisms. Most
of the developed processing equipment is experimental machines with limited process-
ing capacity. For some batch processing machines that use a conveyor belt as the trans-
portation method, the seeds can block each other, making it difficult to achieve uniform
treatment [27–29]. This article aims to address the issues of insufficient processing capacity
and uneven treatment of current plasma seed processing machines through motion and
dynamic analysis of seeds on a vibrating device. Based on the process plan of medium-
blocking discharge plasma seed treatment, we designed a uniform material flow vibration
plasma seed treatment device to provide technical support and a theoretical basis for the
industrialization of seed treatments.

2. Materials and Methods
2.1. Establishment of Alfalfa Seed Model

To ensure the accuracy of the simulation results, 100 alfalfa seeds were randomly
selected from each, and the length, width, and thickness of the seeds were measured by
digital vernier calipers (range 0~150 mm, accuracy 0.01 mm) [30], and the dimensions of
the three axes of the seeds were 2.29 mm long, 1.38 mm wide, and 0.95 mm high. Alfalfa
seeds are shown in Figure 1. The Poisson’s ratio, shear modulus, density, and contact
parameters of the alfalfa seeds were obtained through literature research and physical
experiments [31,32]. The material properties and contact parameters of the seed discrete
element model are shown in Tables 1 and 2 [33,34]. The discrete element model of alfalfa
seeds was established using EDEM 2021 simulation software [35], as shown in Figure 2. As
the alfalfa seeds are irregular in shape, their discrete element models are difficult to build
by individual particles. Therefore, multiple spherical particles are aggregated to build
models to simulate the actual seed properties more accurately. The Hertz–Mindlin nonslip
model was selected as the particle contact model [36,37].
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Table 1. Seed discrete element model and material parameters.

Parameters Numerical Value

The Poisson’s ratio of alfalfa seeds 0.4
The shear modulus of alfalfa seeds (MPa) 10

The density of alfalfa seeds
(
g/cm−3) 0.65

The Poisson’s ratio of steel 0.3
The shear modulus of steel (MPa) 102

The density of steel
(
g/cm−3) 7850

The Poisson’s ratio of nylon 0.4
The shear modulus of nylon (MPa) 90

The density of nylon
(
g/cm−3) 1200

Table 2. Contact parameters between seed and material.

Contact Parameters Recovery Factor Coefficient of Static Friction Coefficient of
Rolling Friction

alfalfa-alfalfa 0.21 0.191 0.005
alfalfa-nylon 0.47 0.500 0.010
alfalfa-steel 0.63 0.075 0.023
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2.2. Device Model
2.2.1. Medium-Blocking Discharge Plasma Seed Treatment Device

Technical requirements for the medium-blocking discharge plasma seed treatment device:

(I). General requirements

The medium-blocking discharge plasma seed treatment device operates under atmo-
spheric pressure conditions, the batch processing volume reached up to 10 kg, the generation
power of the medium-blocking discharge ranged from 0 to 500 W (adjustable), and the
medium-blocking discharge treatment time for seeds ranged from 5 to 20 s (adjustable).

(II). Functional requirements

(a) The feeding amount was accurate and reliable, and the feeding regulation range
was large. Under the condition of striving for precision, the feeding device was
structurally designed so that the number of seeds fed each time was accurate,
which was conducive to the seeds lying flat and evenly into the treatment bin.

(b) Feeding process achieved even spreading of seeds through the device’s vibration
conveyance. Whether the seeds could evenly enter between the polar plates for
media-blocking discharge plasma treatment was one of the key technologies of
this device.

(c) The transportation was stable, and the operation was reliable. The stable
conveying structure prevented the seeds from being affected in the distribu-
tion state during the transmission process, thereby improving the stability of
equipment performance.

In summary, the main technical parameters of the medium-blocking discharge vibration-
uniform material plasma seed treatment device are shown in Table 3.

Table 3. The main technical parameters of the medium-blocking discharge vibration-uniform material
plasma seed treatment device.

Name Numerical Value

Plasma type Medium-blocking discharge
Plasma generation power (W) 0~500

Seed processing time (s) 5~20 (adjustable)
Working air pressure (Pa) 105 (atmospheric pressure)

Treatment volume maximum (kg/batch) 10 (in alfalfa)
Temperature (◦C) 15~20

According to the design requirements of the medium-blocking discharge plasma seed
treatment device, a process plan for a medium-blocking discharge plasma seed treatment
device with uniform material flow and vibration was proposed, as shown in Figure 3. The
working process of the medium-blocking discharge plasma seed treatment device with
uniform material flow and vibration consisted of four parts: the feeding device ensured
accurate feeding of seeds; the uniform material distribution device ensured automatic
uniform spreading of the seeds during transportation; the conveyor device realized smooth
and batch transportation of seeds; and the medium-blocking discharge plasma generation
system was used to provide a stable plasma environment for the seeds in the transportation
device. The entire process was monitored and controlled in real time by the control system.
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During operation, the control system controlled the deceleration motor to feed the 
seeds through the feeding device. The seeds fell onto the vibration-uniform material dis-
tribution device, and a unidirectional half-wave rectified current was inputted to the vi-
brator, causing the vibrator to generate a periodic electromagnetic force that drove the 
groove body to move back and forth, achieving automatic and uniform spreading of 
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Figure 3. Process diagram of medium-blocking discharge plasma seed treatment.

Based on the process plan of the medium-blocking discharge plasma seed treatment
device, a medium-blocking discharge plasma seed treatment device with uniform material
flow and vibration was designed. The device mainly consisted of a feeding device, a
vibration-uniform material distribution device, a conveyor device, a medium-blocking
discharge plasma generation system, a collection device, etc. Among them, the feeding
device included a feeding bin, seed dispenser body, outer groove wheel, connecting shaft,
deceleration motor, etc. The vibration-uniform material distribution device included a
groove body, groove body bracket, plate spring, vibrator, clamping iron, connecting fork,
base, and other components. The conveyor device included a belt, roller, support frame,
and so on. The medium-blocking discharge plasma generation system mainly included
an RF power supply, voltage regulator, electrode plate, shielding layer, etc. The collection
device mainly consisted of a guiding support frame, collection bin, etc. The structure
schematic of the medium-blocking discharge plasma seed treatment device with a vibratory
uniform transport function is shown in Figure 4.
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Figure 4. The structure schematic of the medium-blocking discharge plasma seed treatment device
with a vibratory uniform transport function. 1. Rack; 2. Plate spring; 3. Groove body, Discharger
body; 4. Groove body bracket; 5. Material box; 6. Motor; 7. Belt; 8. Upper level board; 9. Upper level
board shield; 10. Roller; 11. Lower level board; 12. Lower level board shield.

During operation, the control system controlled the deceleration motor to feed the
seeds through the feeding device. The seeds fell onto the vibration-uniform material
distribution device, and a unidirectional half-wave rectified current was inputted to the
vibrator, causing the vibrator to generate a periodic electromagnetic force that drove the
groove body to move back and forth, achieving automatic and uniform spreading of seeds
and forward transportation. Finally, the forward-moving seeds fell onto the conveyor belt,
where they were transported by the motor-driven belt inside the drum to the processing
area for plasma treatment. After treatment, the processed seeds were transported by the
conveyor belt to the collection device for collection.
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2.2.2. Kinematic Analysis of Seed Movement on the Material Groove

The vibration-uniform material distribution device used electromagnetic vibration,
and the principle of electromagnetic vibration was to use the periodic electromagnetic force
generated by the electromagnetic vibrator as the excitation force to maintain a persistent
and stable vibration. The excitation force generated by the electromagnetic vibrator was
related to the power supply mode. The power supply mode of the electromagnetic vibrator
was mostly unidirectional half-wave rectification, as shown in Figure 5.
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In order to analyze the movement of seeds on the uniform material distribution device,
a force analysis was conducted on the seeds on the material groove. A coordinate system
was established with the surface direction of the material groove as the x-axis and the
vertical direction of the material groove as the y-axis, as shown in Figure 6.
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Figure 6. Force analysis diagram of seeds on the material groove.

Note: In the diagram, m—the mass of the seed; g—the gravitational acceleration;
α—the installation angle of the groove body; β—the vibration direction angle; N—the
positive pressure of the groove body on the seeds; F—the frictional force of the groove body
on the seeds.

Due to the suction of the electromagnet, the material groove moved from the upper
right corner to the lower left corner with the seeds at an acceleration of a, and the seeds
were affected by the inertia force of ma. The vertical force to the surface of the material
groove, ma sinβ, reduced the positive pressure on the seeds, thereby reducing the frictional
force. As shown in Figure 7a, when the parallel force to the surface of the material groove,
ma cosβ, was greater than the frictional force F, the seed slid upward along the x-axis;
when the vertical force on the seed, ma sinβ, was greater than the gravity force of the seed
itself, mg cosα, the seed began to jump and underwent projectile motion. If the throwing
time was equal to the descending time of the material groove, the seed had the longest
running time and the farthest distance traveled on the material groove when it contacted
the groove, as shown in Figure 7b, from point B to C; if the throwing time was less than the
descending time of the material groove, the seed would return to the groove earlier and
follow the groove down, similar to taking “two steps forward and one step back” on the
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material groove, resulting in a smaller displacement of the seed’s forward movement, as
shown in Figure 7c. If the throwing time of the seed was greater than the descending time
of the material groove, the seed would jump higher and return later, but land closer to the
groove, as shown in Figure 7d.
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time was less than the descending time of the material groove. (d) he throwing time of the seed was
greater than the descending time of the material groove. “A” indicates the initial position of the seed
when the vibration device starts working; “B” indicates the position of the seed when the vibration
device reaches the highest point; “C” indicates the location where the seed makes second contact
with the material groove.

(1) Displacement, velocity, and acceleration of the material groove.
To further determine the motion of seeds on the groove, a mathematical model was

established for the motion of seeds on the material groove. By performing dynamic analysis
of the groove performing harmonic motion and a seed on its surface, the displacement
formula of the working surface of the groove was derived, thereby determining the dis-
placement, velocity, and acceleration of the groove.

S = λsinωt (1)

ωt = ϕ (2)

In the equation: λ—the single amplitude of the material groove vibrating along the k-k
direction; ω—the circular frequency of the vibration; ϕ—the phase angle of the vibration;
t—time.

Decomposing the vibration displacement along the x-axis and y-axis directions, the
fractional displacements along the x-axis and y-axis are obtained, respectively, as shown in
Equations (3) and (4):

Sy = λsinωtsinβ (3)

Sx = λsinωtcosβ (4)

Taking the first derivative and second derivative of time t for Formulas (1), (3) and (4),
the velocities vx and vy along the x-axis and y-axis, as well as the accelerations ax and ay
along the x-axis and y-axis were obtained as follows:

vy = λωcosωtsinβ (5)

vx = λωcosωtcosβ (6)

ay = −λω2sinωtsinβ (7)

ax = −λω2sinωtcosβ (8)
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(2) The conditions for the seed to perform a throwing motion on the material groove.
First, the movement of a single seed on the groove was analyzed. Under this condition,

the interaction forces between the seeds were completely neglected. It was assumed
that the seed had relative motion with the surface of the material groove, with relative
displacements ∆χ and ∆y in the x-axis and y-axis directions, relative velocities ∆

.
χ and ∆

.
y,

and relative accelerations ∆
..
χ and ∆

..
y.

The force that promoted the sliding of the seed along the x-axis direction was the sum
of the inertial and gravitational components of the seed parallel to the surface of the groove,
as shown in Formula (9).

Fx = −m
(
ax + ∆

..
χ
)
+ mgsinα (9)

The positive pressure of the groove surface on the seeds was given by Formula (10):

N = −m
(
ay + ∆

..
y
)
+ mgcosα (10)

In the formula: m—the mass of the seed; α—the inclination angle of the tank, when
conveying downward take the “+” sign, when conveying upward take the “−” sign.

When the seed was in sliding motion relative to the trough surface, it contacted the
surface of the trough, with positive pressure N ≥ 0 and acceleration ∆

..
y = 0. When treated

as a throwing motion N = 0 and ∆
..
y 6= 0. Formula (11) was obtained.

sinϕd = gcosα/ω2λsinβ (11)

In the formula: ϕd—initial angle of the throwing motion, i.e., the phase angle at the
beginning of the throwing motion instantaneously.

ϕd = arcsin
1
D

(12)

D = Ksinβ/cosα (13)

K = ω2λ/g (14)

In the formula: D—throwing index, indicating the characteristics of the throwing
motion; K—vibration intensity.

From the above formula, it can be seen that when D > 1, there was a solution to the
initial throwing phase angle ϕd, and the seeds could have throwing motion on the surface
of the groove; when D < 1, ϕd had no solution and the seeds could not perform throwing
motion on the surface of the groove. Therefore, it could be concluded that the throwing
index should not be less than 1 in order to make the seeds do throwing motion on the
surface of the groove.

Since the vibration intensity K = ω2λ/g and ω = 2πn
60 , after choosing the amplitude

λ, the vibration frequency was calculated according to Formula (15):

n = 30

√
Dgcosα

π2λsinβ
(15)

If the vibration frequency n was pre-selected, the amplitude was calculated according
to Formula (16):

λ =
900Dgcosα

π2n2sinβ
(16)

(3) Selection of throwing index D.
The movement state of the seed on the surface of the groove depended on the throwing

index D. As can be seen from Formulas (12) and (13), the throwing index D should not be
less than 1 in order to make the seeds do throwing movement on the surface of the groove.
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The value of D normally ranged from 1 to 3, so that the time of the throwing process was
less than the vibration cycle, thus improving the efficiency of the machine.

(4) The inclination angle α of the groove body and the vibration direction angle β.
When the seeds did throwing motion on the groove, from the perspective of improving

the conveying speed, there was an optimal vibration direction angle at different trough
inclination corresponding to each vibration intensity K. In order to improve the conveying
ability of the vibration-uniform material distribution device for the seeds, the groove body
was installed with a downward tilt because the inclination angle α was generally between
10◦ and 15◦ and was not too large. Therefore, this design selected an inclination angle
of 10◦. Typically, the value range of K was between 2 and 5, but due to the small size of
the seed particles, the K value was relatively large, and the value of K was set to 8 in this
design. Thus, the vibration direction angle β can be determined to be 21◦.

(5) Vibration amplitude and vibration frequency
Generally, electromagnetic vibrating machines used high frequency and small am-

plitudes, with amplitudes usually around 3000 times/min and vibration amplitudes of
0.5–1 mm. Due to the small volume of material acted upon in this design, the vibration
amplitude was not necessarily too large. Therefore, the vibration frequency was 60 Hz, and
the vibration amplitude was 0.5 mm.

(6) Theoretical conveying speed.
The theoretical conveying speed of seeds on the material groove was calculated using

Formula (17):
vd = f (D)ωacosβ (17)

Since the throwing index D was known, f (D) was determined as 0.92 from the
dimensionless coefficient curve, and vd was calculated to be 0.19 m/s.

(7) Actual conveying speed.
The actual conveying speed of seeds on the material groove was calculated using

Formula (18):
vm =γaChCmCwvd (18)

In the formula: γa—inclination correction coefficient, γa = 0.9; Ch—is the material
layer thickness influence factor, which was taken as 0.9 here; Cm— the material property
influence factor, and since alfalfa seeds belong to granular materials, Cm was selected as
0.9; Cw¯the sliding motion influence factor, since D = 2.5, the effect of sliding motion was
ignored, so it was taken as 1 here.

Finally, the actual conveying speed of seeds on the material chute, vm, was calculated
as 0.14 m/s.

2.3. Experimental Design

Whether the seeds were spread evenly during the vibrating conveying process on the
material groove was an evaluation index for the performance of the feeding device and
the uniform vibration conveying device. A “Grid Bin Group” was set in the middle of the
material groove to display the number of seed particles passing through the set area, as
shown in Figure 8.

Three types of groove wheel shapes were selected, namely circular arc groove, conical
arc groove, and right-angled groove. The rotational speeds of the groove wheels were set
as 35 r/min, 45 r/min, and 55 r/min. The vibration amplitudes of the material groove were
set as 0.45 mm, 0.5 mm, and 0.55 mm. The simulation was carried out under the above
conditions, and a three-factor, three-level simulation experiment was conducted using the
uniformity variation coefficient as the evaluation index. The factor level table is shown
in Table 4.
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Figure 8. Setting of particle flow rate.

Table 4. Table of factor levels.

Level

Factor

A (r/min)
Rotational Speed

B (mm)
Vibration Amplitudes

C
Groove Wheel Recess Shape

1 35 0.45 circular arc groove
2 45 0.5 conical arc groove
3 55 0.55 right-angled groove

The coefficient of variation was given by Formula (19):

Yz =

√
1

n− 1∑(Xi − x)2 × 100% (19)

In the formula: X—the average number of seeds distributed per measurement segment;
n—the total number of samples in the experiment; Xi—the number of seeds per 100 mm
measuring section.

3. Results and Discussion

The orthogonal table L9
(
34) was selected to arrange the orthogonal test scheme, and

the fourth column was blanked as the error term in the variance treatment. The uniformity
variation coefficient was used as the evaluation index to analyze and determine the optimal
groove shape in the feeding device and the optimal amplitude parameter in the uniform
vibration device. The experimental results are shown in Table 5.

Table 5. Orthogonal test results.

Serial
Number

A (r/min)
Rotational Speed

B (mm)
Vibration Amplitudes

C
Groove Wheel Recess Shape

The Coefficient of
Variation (%)

1 1 1 1 36.18
2 1 2 2 42.72
3 1 3 3 36.06
4 2 1 2 42.72
5 2 2 3 33.91
6 2 3 1 35.49
7 3 1 3 33.84
8 3 2 1 35.51
9 3 3 2 31.48
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3.1. Analysis of Extreme Differences

When using the uniformity variation coefficient as the evaluation index, the extreme
difference analysis of the seed feeding vibration conveying simulation orthogonal test is
shown in Table 6.

Table 6. Table of extreme difference analysis of the feeding vibration conveying simulation
orthogonal test.

Serial Number A (r/min)
Rotational Speed

B (mm)
Vibration Amplitudes

C
Groove Wheel Recess Shape

The Coefficient of
Variation (%)

1 1 1 1 37.30
2 1 2 2 27.10
3 1 3 3 28.50
4 2 1 2 45.30
5 2 2 3 37.80
6 2 3 1 21.20
7 3 1 3 60.40
8 3 2 1 28.50
9 3 3 2 24.50

K11 30.97 47.667 29.00
K12 34.77 31.13 32.30
K13 37.80 24.73 42.23
Rj 6.83 3.24 13.23

excellent level A1 B3 C1
Primary and

secondary factors B > C > A

When the uniformity variation coefficient was used as the evaluation index, the
smaller its value, the better. From Table 6, it can be seen that the primary and secondary
factors affecting the uniformity of seed spreading in the feeding and vibrating conveying
process were in the following order: vibration amplitude B > groove shape C > rotational
speed A. The optimal levels were: the optimal rotational speed was A1 = 35 r/min; the
optimal groove shape was C1 = circular arc shape; and the optimal vibration amplitude was
B3 = 0.55 mm.

3.2. Analysis of Variance

The variance analysis of the seed feeding and vibrating conveying simulation orthogo-
nal experiment is shown in Table 7.

Table 7. Analysis of variance for the seed feeding and vibrating conveying simulation orthogonal
experiment.

Source Sum of Squares Formula Degree of Freedom Mean Square F Significance-P

Modified model 1195.267 a 6 199.211 27.360 0.036
intercept distance 10,719.15 1 10,719.15 1472.186 0.001
Rotational Speed 70.336 2 35.168 4.830 0.172

Vibration amplitude 840.249 2 420.124 57.701 0.017
groove shape 284.682 2 142.341 19.549 0.049

Error 14.562 2 7.281
Total 11,928.9 9

Total after correction 1209.83 8

Note: p < 0.05 indicates a significant effect; p ≥ 0.05 indicates no effect, “a” indicates that the modified model
is significant.

From the analysis of variance table, it can be seen that when using the uniformity varia-
tion coefficient as the evaluation index, R2 = 0.952, indicating a good fitting effect. Under a
confidence level of 95%, the vibration amplitude and groove shape had a significant impact
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on the uniformity variation coefficient of seeds on the groove body, while the rotational
speed of the groove wheel had no influence on the uniformity variation coefficient.

3.3. Uniformity Test

The uniformity test was conducted in the Forage Machinery Laboratory of China
Agricultural University. Seeds were fed from the feeding device. The rotational speed of
the groove wheel of the feeding device was set at 35 r/min, and the vibration frequency
of the vibration-uniform material distribution device was set at 60 Hz. The uniformity
test of the plasma seed treatment device was carried out (Figure 9). The samples for the
uniformity test were the seeds transported to the discharge area, and random samples
were taken within the discharge area with a sampling area of 20 mm × 20 mm. Sampling
was repeated 10 times, and each sample was tested twice. The weight of the obtained
alfalfa seed samples was measured using an electronic balance (OHAUS Instruments Ltd.
Shanghai, China, precision 0.0001 g).
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According to the uniformity evaluation method of CNAS-GL003:2018 “Guidelines
for the Evaluation of Uniformity and Stability of Proficiency Testing Samples”, one-way
ANOVA was selected to evaluate the uniformity of the seeds when entering the discharge
region [38]. The calculation formula is shown below:

M = ∑m
i=1 ni (20)

In the formula: ni—the number of times the ith seed sample was tested; M—total
number of tests for all seed samples; m—total number of seed samples to be tested.

The average value of the test for a single seed sample:

xi = ∑n
j=1

xij

ni
(21)

In the formula: xij—the value of the ith seed sample tested at the jth time; xi—test
averages for each seed sample.

Total average of all samples
=
xi :

=
xi = ∑m

i=1
xi
m

(22)

Mean square value between samples:

MS1 =
1

m− 1∑m
i=1 (xi − x)2ni (23)
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Mean square error within sample:

MS2 =
1

M−m∑m
i=1 ∑n

j=1

(
xij − xi

)2 (24)

Statistics used to characterize inter-sample variability in one-way ANOVA methods F:

F =
MS1

MS2
(25)

The weighed alfalfa samples were subjected to one-way ANOVA, and the results are
shown in Table 8. The F statistic was 0.652. By referring to GB/T 4086.4-1983, the critical
value for F0.05(9,10) was found to be 3.02. Compared with the value of F of the statistic,
it met the requirement that F was less than the critical value, which indicates that at the
0.05 level of significance, this uniformity of the tested alfalfa seed samples in the discharge
region met the requirement of uniformity for proficiency testing.

Table 8. Results of one-way ANOVA for alfalfa samples.

Source of Variance Degree of Freedom Sum of Squares Mean Square F

Between samples 9 0.02821 0.003134
0.652Within-sample 10 0.04805 0.004805

4. Conclusions

(1) The key components of the medium-blocking discharge vibration-uniform convey-
ing plasma seed treatment device were designed, and kinematic analysis of the seed on the
groove was conducted to determine the relevant parameters. The operating frequency of
the vibration-uniform feeding device was 60 Hz, the vibration amplitude was 0.5 mm, the
vibration direction angle β was 21◦, the trough inclination angle α was 10◦, and the actual
conveying speed of the seed on the trough vm was 0.14 m/s.

(2) Using the discrete element method and based on EDEM software, the effects
of the rotational speed of the groove wheel, vibration amplitude, and groove shape on
the coefficient of variation of seed uniformity during feeding and vibrating conveying
were analyzed. The results showed that the vibration amplitude and groove shape had a
significant impact on the uniformity variation coefficient of seeds on the groove body, while
the rotational speed of the wheel had no influence on the uniformity variation coefficient.
The optimal rotational speed of the wheel was 35 r/min, the best groove shape was the
circular arc groove, and the optimal vibration amplitude was 0.55 mm.

(3) Simulation experiments were conducted on the seed feeding and vibration con-
veyance processes, and the optimal rotational speed of the wheel, groove shape, and
vibration amplitude were determined. The uniformity test of the plasma seed treatment
device was conducted on a vibration-uniform material distribution device. It was demon-
strated that at a significance level of 0.05, the uniformity of the tested alfalfa seed samples
in the discharge area met the requirements of proficiency testing uniformity. In the future,
prototype manufacturing and processing will be carried out based on these parameters,
and the machined prototype will be used for testing to compare and verify the reliability of
the simulation results.
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Abstract: In citrus cultivation, it is a difficult task for farmers to classify different pests correctly
and make proper decisions to prevent citrus damage. This work proposes an efficient modified
lightweight transfer learning model which combines the effectiveness and accuracy of citrus pest
characterization with mobile terminal counting. Firstly, we utilized typical transfer learning feature
extraction networks such as ResNet50, InceptionV3, VGG16, and MobileNetV3, and pre-trained the
single-shot multibox detector (SSD) network to compare and analyze the classification accuracy and
efficiency of each model. Then, to further reduce the amount of calculations needed, we miniaturized
the prediction convolution kernel at the end of the model and added a residual block of a 1 × 1
convolution kernel to predict category scores and frame offsets. Finally, we transplanted the preferred
lightweight SSD model into the mobile terminals developed by us to verify its usability. Compared
to other transfer learning models, the modified MobileNetV3+RPBM can enable the SSD network to
achieve accurate detection of Panonychus Citri Mcgregor and Aphids, with a mean average precision
(mAP) up to 86.10% and the counting accuracy reaching 91.0% and 89.0%, respectively. In terms of
speed, the mean latency of MobileNetV3+RPBM is as low as 185 ms. It was concluded that this novel
and efficient modified MobileNetV3+RPBM+SSD model is effective at classifying citrus pests, and
can be integrated into devices that are embedded for mobile rapid detection as well as for counting
pests in citrus orchards. The work presented herein can help encourage farm managers to judge
the degree of pest damage and make correct decisions regarding pesticide application in orchard
management.

Keywords: transfer learning; MobileNetV3; pest detection; embedded system; citrus pest

1. Introduction

Horticultural management faces the problem of identifying and classifying pests.
Citrus yield and quality are adversely affected by pest damage, which occurs frequently [1].
Due to its complex structure and the high similarity in appearance between different
species [2,3], pest classification is a challenging task. To prevent the transmission of pests
that cause citrus diseases, it is necessary to identify and classify pests as soon as possible in
crops and to select pesticides and biological prevention methods that are effective.

Manual capture and sampling methods for pest identification are ineffective, labo-
rious, and labor-intensive. Commonly, methods for detecting pests that utilize physical
information technology, including the acoustic detection method [4,5], electronic nose tech-
nology [6,7], and spectral imaging technology [8,9], have spatial and temporal limitations
when used in complex orchard environments. As a result of the breakthrough development
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in target detection and recognition technology due to the upgrading of computer hardware
and deep learning technologies, it is gradually becoming possible to use digital image
technology to accurately analyze pest images and understand the degree of pest dam-
age [10,11]. To overcome the limitations of traditional detection methods, the development
of a visual computerized system using machine learning for image processing for the
accurate classification and identification of pests will gradually become a trend in the field
of agricultural research [12].

In recent years, the CNN-based deep learning model, as a class of powerful image
classification tools, has been widely applied to various problems in the agricultural industry,
including for the identification of plant diseases [13], the classification of fruits [14], weed
identification [15], and the classification of pests in crops [16]. Li et al. [17] put forward a
detection method for pests associated with rape that relied on a deep convolutional neural
network, which achieved the rapid and accurate detection of five rape pests, including
Aphids, cabbage caterpillar larvae, rape bugs, flea beetles, and Phaedon brassicae Baly, with
an average accuracy of 94.12%. Kuzuhara et al. [18] proposed a two-stage pest detection
and identification technique utilizing enhanced convolutional neural networks and using
the Xception model to re-identify the CNN output.

The single-shot multibox detector (SSD) model prioritizes inference speed and can
guarantee better accuracy. It has become the model of choice for many mobile target
recognition researchers. He et al. [19] designed a rapeseed pest imaging system and
developed a supporting Android application based on the SSD model, which can be
combined with UAV and Internet of Things technology to monitor rapeseed pests. In
addition, there are many cases of detection systems similar to those designed by He [20,21].
The accuracy of plant species identification was improved by using Google Net, AlexNet,
and VGGNet models in [22]. Khan et al. [23] conducted an intensive pre-training SSD model
to extract depth features to classify six kinds of ale and banana fruit diseases to improve
classification accuracy and the degree of accuracy. In [24], an SSD network analyzed
complex pest images to determine powerful local features. Therefore, the classification of
12 important rice field pests with a high average accuracy was achieved. However, the
above cases of pest detection have only remained in the aspect of model building and have
not realized specific applications. To this end, it is particularly urgent to design a mobile
pest imaging system combined with the SSD model to realize intelligent pest monitoring.

In this paper, we take citrus trees as the research object and Panonychus citri Mcgregor
(PCM) and Aphids as the detection objects. We combine several typical transfer learning
models, pre-train the SSD network, compare and analyze the classification accuracy and
efficiency of each model, and select the best model, which can effectively alleviate the
problem of a poor model effect caused by insufficient training samples, and can be adapted
to the detection of various diseases. The contribution of this paper is as follows:

• We compare the latest MobileNet, GoogLeNet, ReseNet and VGGNet feature extraction
networks, and optimize the best feature extraction network to further improve the
detection speed and accuracy of the SSD.

• Before the model performs prediction, we add a miniaturized residual block of a 1 × 1
convolution kernel to each feature map used for prediction to predict category scores
and frame offsets.

• The effective modified MobileNetV3-SSD model is transplanted into the embedded
terminal developed by us to realize the rapid monitoring of pests.

Citrus plantations are investigated using a rapid detection method to obtain pest
information, which is of great significance for the identification of citrus pests and provides
a theoretical basis for the precise management of the orchard and the design of accurate
fertilization and application equipment.
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2. Materials and Methods
2.1. Datasets of Pests

The dataset images were collected on 13 October 2021 at the selenium-enriched navel
orange planting base in Yongzhou, Hunan Province, China (26◦22′40′′ N, 111◦46′28′′ E),
as this is a high incidence period for PCM and Aphids. The weather was clear and sunny
that day. During sampling, a CMOS camera (Sony ILCE-7RM4A, Sony Corporation, Tokyo,
Japan) was used as the sampling tool to acquire image data with a single citrus tree as
the basic unit, and a total of 100 citrus tree images were collected. In consideration of a
sampling equilibrium, five locations in the middle of citrus trees were selected as sampling
points: front (A), back (C), left (D), right (B), and top (E). The sampling diagram is shown
in Figure 1. In total, 1000 images were collected for the two types of pests, and the size of
the images was uniformly adjusted to 224 × 224 pixels after preprocessing. To enhance
the network model’s accuracy in detecting anomalies, clipping, rotation, translation, and
other methods were adopted to enhance the dataset images, and the two pest datasets were
amplified to a total of 5000 images.

Figure 1. Sampling diagram. (A, B, C, D, and E represent the front, right, back, left, and top positions
of the canopy of citrus trees, respectively, and are the positions for data collection).

LabelImg software “https://github.com/heartexlabs/labelImg (accessed on 25 June
2023)” was used to label the preprocessed pest images, and an xml data source file was
generated. The labeled 10,000 sample images were split into three datasets, the training set,
validation set, and test set, which were assigned randomly at a proportion of 8:1:1.

2.2. Modified SSD

The classic SSD network is a one-stage target detection network modeled after YOLO.
It was proposed to improve the rough design of the anchor set by the YOLO network. It is
designed using mainly multi-scale and multi-aspect ratio dense anchor points and a feature
pyramid network. The SSD model is based on the base network of VGG16 and ends with
several newly added layers. Instead of using the last feature map of ConvNet, it uses the
multiple layers in a pyramidal feature hierarchy of ConvNet to predict objects with different
scales, which is very beneficial for imaging PCM and aphid targets of various sizes as in
our datasets. In this paper, under the premise of ensuring accuracy, to reduce the amount of
model parameters and improve the detection speed, we will improve the SSD model from
two aspects: feature extraction network optimization and prediction convolution kernel
miniaturization.

2.2.1. Optimization of Feature Extraction Networks

The original SSD is based on VGG16 and is a feature to extract the backbone network.
However, with the development of the transfer learning model structure, pre-training
models are becoming more abundant. To optimize the best feature extraction network,
we chose the ResNet50 model of the ResNet series and the InceptionV3 model of the
GoogLeNet series for validation. However, the above three models have complex structures
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and parameters that are too large, making them difficult to apply in mobile or embedded
devices. MobileNetV3 has outstanding structural lightweight features and has obvious
advantages under the premise that embedded systems require model simplification. To this
end, we chose the latest MobileNetV3 model as the fourth comparison network and trained
it on the datasets in combination with the SSD framework for comparing the detection
performance of each model.

1 VGG16

In the Network of Visual Geometry Groups [25], the structure depth is extended to
16 layers by using a very small (3 × 3) convolution filter. Two completely connected layers
are formed by successive 3 × 3 convolutions and 2 × 2 maximum pool layers in the VGG
model. The softmax output of is the last layer. The VGG16 model structure is displayed in
Figure 2.

Figure 2. VGG16 model (S-Stride).

2 ResNet

The deep residual network, also known as ResNet, provides a direct path for infor-
mation dissemination throughout the entire network by virtue of the deep structure of the
system [26]. Due to improvements at the network level, the performance and accuracy of
the deep network decline rapidly. The gradient disappears in RESNET during backprop-
agation. The parasitic neural network has a fast (or jumping) connection with a normal
period, which allows it to understand global characteristics. Quick connections can be
added immediately after multiple weight layers. During training, the network can skip
unnecessary layers and optimize the number of correction layers to increase the speed of
the process. Mathematically, conclusion H(x) can be expressed as follows:

H(x) = F(x) + x (1)

Weights are learned from residual mappings, as shown in the following equation:

F(x) = H(x)− x (2)

where layers of nonlinear weights are represented by F(x).
In this paper, we evaluated the ResNet50 residual network model for cropland pest

classification. The Resnet50 model consists of 50 parameter layers on a deep spool network.
As shown in Figure 3, these parameters are associated with the transition through the
learning cycle. There are 7× 7 volumes, 64 cores, 3× 3 layers in the maximum pool, 2 steps,
16 remaining blocks, 7 × 7 layers in the intermediate pool, 7 × 7 layers in interval 7, and
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a softmax output layer before the connection is completed. A softmax output level of 2
represents the number of aggregated pests.

Figure 3. Transfer learning architecture with modified ResNet50 model (BN—batch normalization,
S—stride, and P—padding).

3 GoogLeNet

GoogLeNet [27] is a depth model that uses a CNN. Using this model, knowledge
transfer learning has improved computing efficiency and produced good results in a variety
of fields [28,29]. In total, the GoogLeNet architecture comprises twenty-two deep elements,
including two volumes, four largest pools, nine linear encapsulation modules, and an
intermediate pool used in the final linear encapsulation module (Figure 4). Each inception
module uses 1 × 1 convolution, and a dimensionality reduction operation is performed
before the multi-dimensional 3 × 3 and 5 × 5 convolutions. In GoogLeNet, since an
efficient inception model can be implemented with very small convolutions, the number of
parameters is reduced. Compared to AlexNet, the computational cost is two times less.

Figure 4. GoogLeNet architecture using transfer learning (S—stride).

4 Modified MobileNetV3

CNN networks for mobile terminals have experienced rapid growth over the past few
years. From 2017 to 2019, three versions of a mobile network were continuously improved
in terms of architecture. MobileNetV1 [30] was developed based on the conventional
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VGG architecture combined with depth-separable convolutions. After one year since the
introduction of MobileNetV2 [31], there has been a linear bottleneck and an inverse residual
characteristic. As MobileNetV3 was developed with NAS and NetAdapt optimization,
expensive layers were discarded, and the nonlinear functions of h-swish were replaced by
ReLU, which is a modified version of swish nonlinearity with a faster calculation speed
and better quantization effect. The main idea is to use the piecewise linear hard analog
ReLU6(x+3)

6 to replace the sigmod, where the nuance occurs in the use of ReLU6 instead of
regular clipping constants. Therefore, h-swish is defined as follows [32]:

h− swish[x]= x
ReLU 6(x + 3)

6
(3)

First of all, judging from the actual measurement results, using ReLU6 optimization is
applicable to almost all software and hardware frameworks. Second, in quantized mode, it
removes the potential loss of numerical precision caused by different implementations of
the approximate sigmoid. Finally, in practice, h-swish can be implemented as a piecewise
function that reduces the number of memory accesses, thus greatly reducing the latency
cost.

In addition, MobileNetV3 introduces the SE module after the 3 × 3 depth-separable
convolution in the inverse residual module, and firstly performs global pooling compres-
sion (Squeeze) to obtain a 1× 1× C vector. Then, after two “fully connected layer-activation
(Excitation)” operations (in order to reduce the calculation time, the number of output
channels of the first “fully connected layer-activation” operation is compressed to 1/4 of
the original), it outputs the 1 × 1 × C vector. Finally, the obtained vector is bitwise multi-
plied with the result of the depthwise separable convolution to adjust the weight of each
channel to improve the network accuracy. In the design of the overall network structure
of MobileNetV3, firstly, the NAS algorithm is used to search and optimize the network
structure (such as the arrangement and structure of blocks in the network) to obtain the
general network structure, and finally, the NetAdapt algorithm is used to determine the
number of channels for each filter. Figure 5 shows the MobileNetV3 architecture for feature
extraction from citrus pest images.

Figure 5. Modified MobileNetV3 architecture.

2.2.2. Predictive Convolution Kernel Miniaturization

Through the analysis of [33], it was found that the accuracy of the model using the
1 × 1 convolution kernel of the SSD network residual block is not much different from the
accuracy of the model when using the 3 × 3 convolution kernel, but it can greatly reduce
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the calculation cost. Before the model performs prediction, we added a residual block of a
1 × 1 convolution kernel to each feature map used for prediction to predict category scores
and frame offsets. We named it residual prediction block miniaturization (RPBM), and its
structure is shown in Figure 6.

Figure 6. Miniaturized residual prediction network.

2.2.3. Model Training Environment

Hardware configuration: The TIntel E5-2660 processor is a single-core device, with a
memory size of 32 GB. The graphics processor used was a 3070ti graphics card (NVIDIA
Corporation, Santa Clara, CA, USA).

Software environment: The OS used was Version 16.04 of Ubuntu, the integrated
development environment was Anaconda3, and TensorFlow was used as the deep learning
framework.

2.2.4. Model Evaluation Indicators

To objectively evaluate the characteristics of a variety of feature networks, this ar-
ticle evaluates from four perspectives: algorithm running speed, the number of model
parameters, accuracy rate (AR), and mean average precision (mAP).

Usually, the time required for a classifier to train and predict an image is the computa-
tional time, which is also called latency [34]. To minimize the error, the mean of latency
(moL) for multiple images was used as the speed indicator in this manuscript.

The number of model parameters is one of the important indicators for embedded
devices to run deep learning models [35]. The weight parameters of each layer were added
to obtain the total number of parameters, in which the model parameters were stored as a
floating point type and the model parameters were obtained by calculating with 4 bytes.

The correct rate of sample indicates how many samples were included correctly in the
total number of samples. A classification is generally better if the correct rate is more high.
Therefore, a true positive implies that the number of positive samples is predicted to be
the number of true positive samples. The number of negative samples is predicted to be
the number of true negative samples. In false positives, the number of negative samples is
predicted to be the number of positive samples. When a false negative occurs, the number
of positive samples is predicted to be the number of negative samples. As a result, the AR
can be expressed as follows [36]:

AR =
TP + TN

TP + TN + FP + FN
(4)

There are some instances in which a high accuracy rate is not enough to indicate that
the performance of the algorithm is excellent, so mAP is introduced as a measurement
index. As a result of target recognition, each class can draw a recall line that is accurate and
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fast. AP represents the area under the curve, whereas the map represents the average of
multiple test lines’ AP, and its calculation formula is as follows [37]:

mAP =
1
|QR| ∑

q∈QR

AP(q) (5)

where QR represents the number of validation sets and q represents a certain validation set.
The counting accuracy (CA) indicator is mainly used to record the correct identification

and number of pest species counted by the detector. The correct identification of the pest
species refers to the condition of predicting correct positive samples, and the calculation
formula of its percentage in the actual total samples (true positive rate—TPR) is as follows:

TPR =
TP

TP + TN + FP + FN
× 100% (6)

Correct counting means that the number of a certain type of pest in the statistical
sample is consistent with the actual number of this type of pest in the sample. We assume
that the percentage of the number of samples with correct identification and counting of
the pest species in the total number of samples is PP, and the percentage of the number
of samples with correct identification of pest species but incorrect counting in the total
number of samples is PN, then the formula for the counting accuracy rate is as follows:

CA =
PP

PP + PN
× 100% (7)

2.3. Pest Detection Embedded Mobile System

To verify the usability of the above transfer learning model in embedded devices,
we developed a citrus pest detector (Figure 7). The detector includes a processor, a high-
definition camera (resolution: 1280 × 960 pixels, model: RER-USB4KHDR01, manufacturer:
REVISION), a Beidou (Beidou Navigation Satellite System, BDS) positioning module, a
LoRa communication module and a display module. The processor is a K510 AI chip
(Beijing Canaan Jess Information Technology Co., Ltd., Beijing, China). The trained SSD
model stored data using the memory of the K510 processor.

Figure 7. Citrus pest detector (1. BDS module; 2. LoRa; 3. package shell; 4. LCD screen; 5. camera;
6. K510 AI controller).

Regarding the model deployment process, first, we converted the PyTorch model
into a model described by the Open Neural Network Exchange (ONNX) intermediate
representation and formed an .onnx file, which contains the name and data type of the
model input and output. Next, we used the inference engine-ONNX Runtime to run the
.onnx file to complete model deployment.

The software workflow of the detector is shown in Figure 8. Firstly, the pest image
information is obtained through the camera. After preprocessing, the trained modified
SSD embedded in K510 is used to identify whether there are pests. For images with pests,
feature extraction and classification are performed to identify the type and to count the
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pests. Then, the location information is obtained through the BDS module, and output is
displayed with the pest identification results. Finally, the detection information is sent to the
server through the LoRa communication module, which is convenient for users to predict
the development trend of pests, and thus facilitate the overall control and prevention of
pests.

Figure 8. Detector software flow chart.

3. Results

We evaluated the modified SSD model on our PCM and aphid datasets. we ana-
lyzed the model training process and compared various feature extraction networks such
as ResNet50, InceptionV3, VGG16, MobileNetV3, and modified MobileNetV3, and opti-
mized the best feature extraction model. In order to verify the advantages of the modified
SSD model in reducing the amount of computations needed and improving the accu-
racy, we compared the modified SSD model with other popular frameworks. Finally, we
transplanted our model into the embedded detector that we developed, and analyzed its
accuracy and efficiency.

3.1. Results of Citrus Pest Identification Model
3.1.1. Analysis of Model Training Process

Two kinds of pest training set and validation set sample data were selected for training,
and changes to the loss function in the first 40 epochs were recorded, as shown in Figure 9.
In the first 10 iterations, the loss of the training sets and the validation sets decreased
rapidly, and then gradually stabilized between 10 and 25 iterations, indicating that no more
features could be obtained. After 25 iterations, there was no change in the loss of training
sets, but there was a slow and fluctuating increase in the loss of test sets, indicating that an
overfitting phenomenon occurred; in other words, the model becomes too strict to ideally
suit the features of the training sets, which causes the model to deviate from reality. In
order to prevent the occurrence of over-fitting, an appropriate number of iterations should
be selected, or a weight decay method should be used, that is, a small factor is used to
reduce the weight during each epoch.

The sample images of the training sets were input into the SSD network model with
epochs of 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, 125, and 150. The accuracy curves of the
detection and classification of the two pests are shown in Figure 10. From the perspective
of the accuracy rate, after the network model is stabilized, the training effect of PCM
is better as the accuracy rate reaches 91.7%, and the accuracy rate of Aphids is 91.1%.
The main reason for this is that PCM is relatively fixed in its morphology, while Aphids
are changeable in their morphology, and so the model generalization ability is slightly
insufficient.
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Figure 9. Convergence trend of loss during training.

Figure 10. Accuracy of pest detection under different epochs.

3.1.2. Optimization Results and Analysis of Feature Network

The training set samples of two pests, using ResNet50, InceptionV3, VGG16, Mo-
bileNetV3 and MobileNetV3 +RPBM, were compared and analyzed to determine their
detection effects. The curve changes in the loss of different feature extraction networks
with the increase in the number of iterations are shown in Figure 11.

Figure 11. The loss value of SSD under different feature networks.

According to the loss curve from Figure 11, as the number of iterations increases, the
loss of the five models may converge rapidly, but MobileNetV3+RPBM is the fastest.
When the network iterates 1700 times, the loss of ResNet50, MobileNetV3, and Mo-
bileNetV3+RPBM gradually becomes stable, while the GoogLeNet model is stable after
4200 iterations, and the training time is relatively long. The loss of VGG16 converges the
slowest.

As shown in Table 1, we observed that the Params of MobileNetV3 are only 15.147 M,
which is approximately 1/38 of that of VGG16, and its mAP and AR scores are 86.40% and
91.07%, respectively, which are lower than VGG16 but higher than GoogleNet. The moL
of VGG16 is 679 ms higher than that of GoogLeNet (459 ms), while that of MobileNetV3
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is low at 286 ms. Although the AR and mAP of MobileNetV3 are lower than those of
VGG16, the former has absolute advantages over MobileNetV3 in latency and efficiency. If
we only compare whether to add the RPBM after MobileNetV3, we can find that the AR
and mAP of MobileNetV3+RPBM and MobileNetV3 are not that different, but the Params
of MobileNetV3+RPBM are much smaller than those of MobileNetV3, suggesting that
MobileNetV3+RPBM is more suitable for use in our Citrus pest detector as a light feature
extraction network.

Table 1. Comparison of performance parameters of different models.

Feature Extraction
Network mAP/% AR/% Params/M moL/ms

VGG16 89.22 91.34 584.179 679
GoogLeNet 85.80 90.18 37.864 459
ResNet50 90.11 96.41 1478.179 1078

MobileNetV3 86.40 91.07 15.147 286
MobileNetV3+RPBM 86.10 91.00 10.025 185

3.1.3. Comparison with Other Frameworks

As can be seen from Table 2, the mAP of MobileNetV3+RPBM+SSD is higher than that
of YOLOv7-tiny by 17.44%. It is even higher than that of FFSSD at 73.41% of the moL cost
of the FFSSD. Although the Params of Pelee, proposed in [38], are lower than that of our
model, it only achieves an 84.44% mAP when we take the model trained on our datasets.

Table 2. Comparison of performance parameters of different models.

Framework mAP/% Params/M moL/ms

YOLOv7-tiny [39] 68.66 6.201 42
Pelee [38] 84.44 9.430 172

FFSSD [40] 78.98 13.550 252
MobileNetV3+RPBM+SSD (our) 86.10 10.025 185

3.2. Analysis of the Practical Validation Results of Citrus Pest Identification Model

The test sets of the two pests were collected, and the PP, PN, and NN values were
recorded. The results are shown in Table 3.

Table 3. Detector experimental results.

Type RRC 1/% RRWC 2/% TPR/% CA/%

PCM 82.0 9.0 91.0 90.1
Aphids 39.0 50.0 89.0 43.8

1.RRC, right recognition and counting; 2 RRWC, right recognition but wrong counting.

From the perspective of successful identification, the identification rates of PCM and
Aphids are relatively high, as the sampling characteristics were correctly selected in 91.0%
and 89.0% of cases. PCM has a CA value of 90.1%, while Aphids have a CA value of 43.8%.
Essentially, Aphids densely inhabit areas, stay close to each other, and are more aggressive.
Thus, an overlapping phenomenon occurs. It is difficult to mark all of the pests during
marking, resulting in some aphid samples becoming negative samples during training,
and the accuracy is reduced. The visual detection results of the LCD display are shown in
Figure 12.
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Figure 12. Mobile pest detector test results: (a) low-density detection results, (b) middle-density
detection results, (c) high-density detection results (note: the number of pests less than 10 is low
density, and between 11 and 50 is middle- density, otherwise, it is high density).

From the perspective of the detection characteristics of the number of pests, when the
density of pests is small, the counting results are more accurate. When the density is high,
there may be dozens of pests on leaf veins and stems, which leads to problems such as
mutual covering and difficulty in focusing, resulting in a low counting accuracy.

4. Discussion

This paper takes Panonychus citri Mcgregor and Aphids as the research objects, and
compares and analyzes the performance of the SSD model under the pre-training of various
transfer learning feature extraction networks in citrus pest recognition. In order to further
test the applicability of the model in a mobile embedded terminal, a prediction convolution
kernel miniaturization method is proposed to improve the SSD model, and the advantages
of this method in terms of computational cost and accuracy are compared and analyzed.

Through the comparative analysis of the parameters, the accuracy, and the execution
efficiency of VGG16, GoogLeNet, ResNet50, MobileNetV3, and MobileNetV3+RPBM, we
selected MobileNetV3+RPBM as the feature extraction network for citrus pest images as the
mAP and AR reach up to 86.10% and 91.00%, respectively, and the moL is as low as 185 ms,
which is invaluable for embedded devices with limited computing resources, and which is
favorable for running the pest detection model in the embedded system. Although the moL
of MobileNetV3+RPBM+SSD is relatively high, the mAP of it is highest when compared
with YOLOv7-tiny, FFSSD, and Pelee. Therefore, we used MobileNetV3+RPBM+SSD as the
detection model in the citrus pest detector.
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The classification and counting of PCM and Aphids were achieved by using Mo-
bileNetV3+RPBM+ SSD, and the identification accuracy rate reached up to 91.0% and
89.0%, respectively. In terms of CA, PCM reaches 90.1%, while Aphids were only at 43.8%.
The main reason for this is that the dense colony characteristics of Aphids lead to serious
overlapping in the image data, which affects the counting accuracy.

The convolution kernel miniaturization method proposed in this paper only plays
a role in improving the processing speed. The future optimization of our model may be
necessary to further improve the accuracy of pest detection and counting.

5. Conclusions

In order to realize the rapid and accurate detection of pest information in citrus
orchards and improve intelligent management in this field, this paper designed a portable
intelligent detection system to obtain pest information by combining the advantages of
deep learning technology and embedded devices. In the design of the detection model,
reducing the amount of model parameters, improving the detection speed, and ensuring the
accuracy were the comprehensive goals. To this end, this paper improved the SSD model
from two aspects: feature extraction network optimization and prediction convolution
kernel miniaturization. The parameters of the proposed novel MobileNetV3+RPBM model
were reduced by 5.122 M compared with the optimal MobileNetV3 parameters, while the
mAP and AR detection accuracy indicators for the two citrus pests were still maintained
above 85%, which shows that our modified SSD model can indeed reduce the number of
parameters and latency, which is of great significance for the intelligent target detection of
mobile portable devices with limited computing power.
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Abstract: This study aims to investigate the near-infrared spectral properties of Rose Oxide (4-Methyl-
2-(2-methyl-1-propenyl) tetrahydropyran) in wine, establish a quantitative detection, and build
relationships between the chemical groups of Rose Oxide and near-infrared characteristic bands, so
as to provide ideas and references for the near-infrared detection of a low-content aroma substance
in wine. In total, 133 samples with different wine matrices were analyzed using Fourier transform–
near-infrared (FT-NIR) spectroscopy. Min–max normalization (MMN), principal component analysis
(PCA), and synergy interval partial least squares regression (Si-PLSR) were used for pre-processing,
outlier rejection, analysis of spectral properties, and modeling. Finally, the quantitative detection model
was established using the PLSR method and the wine sample containing Rose Oxide was verified
externally. Eight subintervals (4000–4400 cm−1, 4400–4800 cm−1, 5600–6000 cm−1, 6000–6400 cm−1,
6400–6800 cm−1, 6800–7200 cm−1, 7200–7600 cm−1, 8400–8800 cm−1) were determined as the charac-
teristic band intervals of Rose Oxide in the NIR region. Among them, 5600–6000 cm−1 was assigned
to the first overtone C–H stretching in tetrahydropyran ring and methyl as well as the combination
C–H stretching of the CH3 function groups, 6000–6400 cm−1 was assigned to the first overtone C–H
stretching of the C–H=group and the combination C=C stretching in isobutyl, and 8400–8800 cm−1

was assigned to the second overtone C–H stretching and C–O stretching in tetrahydropyran ring as
well as the C–H stretching vibration in methyl. In addition, 4000–4800 cm−1, 6400–6800 cm−1, and
7200–7600 cm−1 were assigned to the C–H stretching vibration, while 6400–7600 cm−1 was assigned
to the C–O stretching vibration. The training result showed that the calibration model (r2

cv of 0.96
and RMSECV of 2.33) and external validation model (r2

cv of 0.84 and RMSECV of 2.72) of Rose Oxide
in wine were acceptable, indicating a good predictive ability. The spectral assignment of Rose Oxide
provides a new way for the NIR study of other terpenes in wine, and the use of the established
Si-PLSR model for the rapid determination of Rose Oxide content in wine is feasible.

Keywords: Rose Oxide (4-Methyl-2-(2-methyl-1-propenyl) tetrahydropyran); de-aromatic wine; NIR
spectroscopy; Si-PLSR; wavebands analysis

1. Introduction

Rose Oxide (4-Methyl-2-(2-methyl-1-propenyl) tetrahydropyran), with strong fragrance
of rose and lychee, is the main component of rose and rose geranium. It is not only used
to prepare flavors, such as rose, leaf, and other flower flavors, but it is also widely used
in upscale cosmetics and the food industry. Surprisingly, many varieties of grapes also
contain Rose Oxide broadly, which enriches their aroma features and makes wine purer and
fresher [1]. As an oxide of monoterpenols, Rose Oxide has a strong volatility. It becomes
a kind of recognizable aroma [2]; even its concentration reduced by three times during
fermentation [3]. Therefore, Rose Oxide is an important sign for identifying the varieties,
years, and origins of wine objectively [4]. Studies have shown that the existence of Rose
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Oxide is highly significant correlated with whether grape and wine have a rose aroma [1].
Although Rose Oxide has a low concentration in wine, it also has a lower odor threshold
with only 0.2 µg/L [4] and a higher odor activity value (OAV) of generally more than
100 [4,5]. This means that Rose Oxide could be easily perceived and contribute significantly
to the overall aroma of wine. In addition, Rose Oxide could react with other terpene
aroma substances and play a decisive role in the formation of aroma when other aroma
substances hold a low concentration [2]. Many studies have revealed that Rose Oxide is the
key compound for bringing out the floral, rose, and even lychee aromas of wine [6,7] and
that it correlates with positive emotions and higher liking scores for wine consumers [8].

However, the quantification of Rose Oxide is complicated as a trace component. Gas
chromatography (GC) coupled to at least one detector, such as a flame ionization detector
(GC-FID) or a mass spectrometer (GC-MS), is the typical method for analyzing the Rose
Oxide content in wine [9]. It is necessary to conduct a pre-treatment of the wine sample,
such as extraction, heating, oscillation, analysis, as well as other steps, and finally use the
instrument to conduct a qualitative and quantitative analysis. These methods are labor-
intensive and costly, and they easily cause the loss of volatility of Rose Oxide. Therefore,
a rapid, simple, and economical method for predicting the content of Rose Oxide as an
alternative to the traditional analysis methods is required. Near-infrared (NIR) spectroscopy
can address these limitations.

The NIR spectrum lies between the visible and IR regions of the electromagnetic spec-
trum in the wavelength range 780–2500 nm and involves the excitation of non-fundamental
vibrations, overtones, and combination modes [10,11]. NIR spectroscopy mainly reflects
the information of hydrogen-containing groups, including C–H (such as methyl, methylene,
methoxy, carboxyl, and so on), O–H (hydroxyl), S–H (sulfhydryl), N–H (amino), and so
on. There is also some other groups’ information (such as C=C, C=O, and so on), but
the intensity is weak. These groups are important components of organic compounds,
which means that the structures and compositions of almost all organic compounds can
be found in the near-infrared spectrum. The process of NIR generally includes spectrum
pretreatment, outlier elimination, band screening, and quantitative model establishment.
Band screening, also called spectrum allocation, aims to detect the feature wavebands of the
chemical groups in targeting ingredients and ensuring the spectral fingerprint information
of the ingredients. It is the basis for establishing the quantitative models and providing
models with a theoretical note. NIR spectroscopy is a simple and non-destructive tech-
nique which generally does not require any sample pretreatment which may result in the
loss of the substance under test. Therefore, it is widely used in agriculture, petroleum,
chemical, tobacco, pharmaceutical, and food industries [12]. Several studies have used NIR
spectroscopy for predicting compounds in wine, such as phenolic compounds [13], trace
metal elements [14], and volatile compounds [9], as well as different terpenes in plants,
such as α-pinene, β-pinene, myrcene, eugenol, cineole, and linalool [11,15]. To the best of
our knowledge, no attempts have been made to establish an association between the NIR
spectrum and terpene profiles of wines, let alone study the spectral characteristics of its
molecular group and create a quick detection method in wines.

Here, we aimed to investigate the spectral properties of Rose Oxide and methods of
quantitatively detecting it in wine. First, based on a single controlled environment (model
wine), the NIR feature wavebands of Rose Oxide were screened using spectral preprocessing,
outlier rejection, and synergy interval partial least squares (Si-PLS) methods. Second, a
quantitative detection method for Rose Oxide was constructed based on these spectral
wavebands using the partial least squares regression (PLSR) method in a relatively complex
environment (de-aromatic wine). Third, wine samples containing Rose Oxide were used
to effectively validate the accuracy and model transferability of the above method. In
this study, NIR spectroscopy was used to analyze the typical terpene compounds in wine,
establish a rapid detection method of Rose Oxide, and hopefully provide methodological
support for the rapid and non-destructive detection of terpene compounds in wine.
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2. Materials and Methods
2.1. Materials

Grape variety to be de-flavored: Cabernet Franc, collected from the Ningxia Helan
Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F
University in October 2021, which contains 222.5 g/L of residual sugar (expressed as
glucose) and 4.6 g/L of acid (expressed as tartaric acid); bacterial strain: a strain of S. cere-
visiae called ACTIFLORE F33 from Lafford Company in France; and the sample set of
external verification: 21 Cabernet Franc dry red wines (produced from wineries at Ningxia
Helan Mountain’s East Foothill) with different concentrations of Rose Oxide were added to
construct external verification wine samples.

2.2. Instruments and Reagents

The instruments and reagents used in the experiment include: HW.SY21-KP8 Electric
Thermostatic Water Bath (Chengfeng Inc., Beijing, China ); ME203E Electronic Balance
(Mettler Toledo Inc., Shanghai, China); FE28pH meter (Mettler Toledo Inc., Shanghai,
China); DW-YL270 Cryogenic Refrigerator (Zhongke Meiling Cryogenic Technology Inc.,
Hefei, Anhui, China); KH-500DE CNC ultrasonic cleaner (Hechuang Ultrasonic Instrument
Inc., Kunshan, Jiangsu, China); Hei-VAP Table Rotary Evaporation Instrument (Hadolf
Instrument Equipment Inc., Shanghai, China); GCMS-QP2020 Gas chromatography–mass
spectrometry instrument (Shimazu Laboratory Equipment Inc., Shanghai, China); Bruker-
TANGO-T Fourier Transform–near-infrared spectrometer (Brock Scientific Instruments
Inc., Hong Kong, China), a built-in automatic background scanning program can timely
eliminate the impact of environmental changes in detection results, equipped with Rock-
SolidTM patent interferometer, multi-layer coating low OH quartz beam splitter, and InGAs
digital detector.

The ultrapure water was obtained from the Milli-Q Pure Water Preparation System
(Millipore Inc., Molsheim, France). The analytically pure-grade reagent, anhydrous ethanol,
tartaric acid, and sodium hydroxide were purchased from Chemical Reagent Inc., Tianjin,
China. The chromatographic grade reagents, 2-octanol (purity ≥ 99.0%) and (+)-Rose Oxide
(purity ≥ 99.0%), were purchased from Sigma-Aldrich Corporation (Beijing, China).

2.3. Methods
2.3.1. Sample Preparation and Data Acquisition

Model wine preparation: In total, 120 mL of anhydrous ethanol, 880 mL of distilled
water, and 5 g of tartaric acid were added to the blue silk-mouthed bottle and mixed evenly
with ultrasonic waves; the pH was adjusted to between 3.2 and 3.4 using saturated NaOH.
This was followed by the addition of cis-Rose Oxide into the configured model wine to
the concentration of 0–40 µg/L (2 µg/L was a step), with a gradient that referred to the
concentration range of Rose Oxide in real wine [16,17]. The sample was refrigerated at 4 ◦C
after being prepared, sealed by the sealing film, and tested quickly and timely to reduce
the volatilization of aroma substances.

De-aromatic wine solution: Ripened Cabernet Franc grapes were picked to make
wine using 200 mg/L of Saccharomyces cerevisiae at 25–27 ◦C after hand-destemming
and crushing. After the alcohol fermentation, the vacuum rotary evaporator was used
to finish the deodorization procedure optimized based on Margaux Cameleyre [18]; the
parameters of the rotary evaporator were set to 50 rpm and 30 ◦C, and two rounds of
rotational evaporation were performed. For the first time, 500 mL of the original wine was
spun in a water bath for 1.5 h. The matrix and ethanol water fractions of the wine sample
were collected and blended to form 500 mL of initial de-aromatic wine, following which
the second spinning was continued with identical parameters and was replenished with
12% ethanol–water to 500 mL again after 1.5 h. The matrix of de-aromatic wine and the
distillate of anhydrous ethanol were collected and blended into the final de-aromatic wine.
Rose Oxide was added to the de-aromatic wine, and the gradient settings and precautions
were the same as those of the simulated wine samples.
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Spectral data acquisition: The NIR spectra of different samples were recorded on a
Fourier transform–near-infrared spectrometer equipped with an indium gallium arsenide
detector from 11,500 to 4000 cm−1. The temperature of the samples was equilibrated at 30 ◦C
in the instrument. Each sample was scanned for 32 s with a spectral resolution of 8 cm−1.

2.3.2. Data Pre-Processing and Outlier Rejection

The analysis process of spectral signals would be interfered with by the redundant
information, spectral overlap, and baseline drift due to the complexity of the wine matrix.
Min–max normalization (MMN) and vector normalization (VN) methods can effectively
reduce redundant information and eliminate the effects of changes in the spectra, such as
light range changes or sample dilution. First derivative (FD) and second derivative (SD)
methods can eliminate the effects of baseline drift or smoothing background interference,
distinguish overlapping peaks, and provide higher resolution and sharper spectral profile
changes than the original spectra [19]. Thus, the above four methods were used to process
the spectral signals of Rose Oxide in model wine and de-aromatic wine. For a spectral signal
x= (x1, x2, . . . , xn), the equations of MMN, VN, FD, and SD were as follows:

xMMN
i =

xi − xmin

xmax − xmin
(1)

xVN
i =

xi√
n
∑

i=1
x2

i

(2)

xFD
i =

xi+g − xi

g
(3)

xSD
i =

xi+g − 2xi + xi−g

g2 (4)

where xi was the i-th vector of x, xmin was the minimum vector of x, xmax was the maximum
vector of x, and g was the window width.

During the acquisition of Rose Oxide spectral signals, human and instrumental errors
may cause some signals to deviate severely from the true value, resulting in outliers. In
this study, principal component analysis (PCA) was used to shine the simples upon the
low-dimensional space, then the outliers would be found according to the Hotelling T2

statistic under the coordinate of first and second principal components [20]. The confidence
level of T2 detection was calculated as follows:

xT(t)PΛ−1PTx(t) ≤ δT2 (5)

δT2 =
(N − 1)(N + 1)

N(N − K)
F (6)

where δT2 was the confidence level of T2 detection, x(t) was the input matrix at the time t,
Λ was the covariance matrix, N was the number of principal components, k was the kth
principal component, and F was the F-distribution.

In this study, two T2 confidence intervals with 99% and 95% were used to reject outliers.
The specific screening criteria were as follows: samples located outside the 99% confidence
interval were directly judged as outliers, and samples located between the two confidence
intervals of 95% and 99% were judged as pending values and had to be validated to decide
whether to reject them, while those located within the 95% confidence space were judged
as excellent values and could be used for subsequent modeling.
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2.3.3. Synergy Interval Partial Least Squares Regression (Si-PLSR)

The NIR spectrum contained abundant information regarding the molecular vibra-
tion absorption of hydrogen-containing groups, with most of them being redundant and
unrelated. The removal of these extraneous spectral bands may significantly reduce the
input variables and improve the accuracy of the prediction model. Therefore, synergy
interval partial least square (Si-PLS) was used to screen the synergy intervals reflecting the
Rose Oxide content [21,22]. Then, the rapid quantitative detection method of the Rose Oxide
content in wine would be available based on the selected intervals. The specific calculation
process was referred to [23]:

Step 1: Constructing PLSR models in the range of 11,500–4000 cm−1 for Rose Oxide.
The root means square error of cross validation (RMSECV) was calculated as:

RMSE =

√
1
n∑n

i=1 (yi − y′)2 (7)

where yi was the measured value of the i-th sample, y′ was the predicted value of the i-th
sample, and n was the number of samples.

Step 2: Dividing the spectral region of 11,600–4000 cm−1 into 19 equal-width subinter-
vals into steps of 400 cm−1. Establishing the regression model of each subinterval by the
PLS correction analysis.

Step 3: Selecting the subintervals, of which the RMSECV were smaller than the
RMSECV calculated by step 1.

Step 4: Establishing the new Si-PLSR model based on the selected subintervals and
evaluating the performance of the model.

2.3.4. External Validation

Twenty-one commercial wines were used to verify the accuracy of rapid detection
models. First, headspace solid-phase microextraction combined with gas chromatography–
mass spectrometry (HS/SPME-GC-MS) was used for quantifying the measured value of
Rose Oxide [24]. The details were as follows:

SPME sample processing: Volatiles were extracted using solid-phase microextraction
using DVB/CAR/PDMS fiber (50/30 µm film thickness, 2 cm Stableflex) assembled with
a 57330-U holder (Supelco, Bellefonte, PA, USA). A wine sample (8 Ml), 2.0 g of NaCl,
2-octanol (final concentration was 400 µg/L), and a magnetic stirring bar were mixed in
a 20 Ml glass vial. The vial was incubated in a thermostatic water bath to equilibrate for
15 min at 40 ◦C, then the fiber was exposed for 30 min at 40 ◦C. This was immediately
followed by thermos-desorption of the extraction fiber in the GC injector for 5 min at
280 ◦C prior to GC-MS analysis. The extraction operation was repeated twice for each wine
sample.

GC-MS analysis: GC-MS-QP2020 equipped with a DB-WAX capillary column (60 mm
× 0.25 mm × 0.25 µm; Agilent J & W, Santa Clara, CA, USA) was used. The carrier gas
was high-purity helium (99.999%) without shunt, and the gas flow rate was 1.5 Ml/min.
The temperature of the GC capillary column was maintained as follows: 40 ◦C for 3 min,
increase to 160 ◦C at a rate of 4 ◦C/min, followed by an increase to 220 ◦C at the rate of
7 ◦C/min, and this temperature was maintained for 10 min. We set the temperature of
the inlet as 250 ◦C, the ion source as 220 ◦C, and the connecting rod as 200 ◦C. We set the
energy of the electron impact source as 70 Ev. Electron ionization mass spectrometric data
were acquired within the mass range of 35–350 m/z at 0.2 s intervals combined with the
selected ion monitoring mode for the quantitative analysis.

Qualitative and quantitative analysis: A calibration curve for the pure standard was
established to analyze the Rose Oxide content in the simulated wine solution by the above
HS/SPME-GC-MS method. Rose Oxide was identified by comparing the retention times,
retention indexes, aroma characteristics, and mass spectra with those of the standards
available in the NIST 17.0 mass spectral library. The concentration of Rose Oxide was
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quantitated by interpolating the relative area of the sample versus the area of the internal
standard (2-octanol) using calibration curves previously established for pure standards.
Then, the predicted value of Rose Oxide was obtained using the NIR model established
in this study, and the validity and practical applicability of the model were judged by
comparing the true values with the predicted values.

2.4. Data Analysis

Microsoft excel was used for processing and preliminary analysis of spectral data,
MATLAB R 2021b (MathWorks Inc., Natick, MA, USA) was adopted for spectrum prepro-
cessing, Si-PLS analysis and model establishment, and Unscrambler X 10.4 (Camo Inc.,
Oslo, Norway) was used to eliminate outliers. Origin 2019 (OriginLab Inc., Northampton,
MA, USA) was used for data drawing.

3. Results
3.1. Original Spectral Analysis of Model and De-Aromatic Wine

The NIR spectral signals of the wine with added Rose Oxide are shown in Figure 1. The
red curves expressed the model wine, and the blue curves expressed the de-aromatic wine.
It could be observed that the different matrix backgrounds exerted a considerable effect on
the height and width of the peaks in the curves, but they had little effect on the position of
the peaks.
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Figure 1. The raw spectra of different concentrations of Rose Oxide in simulated wine matrices and
de-aromatic wine matrices.

The absorption peak of the de-aromatic wine was 0.30–1.00 (a.u.) higher than that
of the model wine in 5500–11,600 cm−1 and 0.00–0.50 (a.u.) higher in 4000–5000 cm−1.
However, their original spectra overlapped at 5000–5500 cm−1, probably because of the
characteristic absorption of ethanol in this interval, while the ethanol content of both matri-
ces was consistent. Although the matrix solution was different, the change in the spectral
curves caused by a different content of Rose Oxide could be observed at 4500–5500 cm−1,
5500–6000 cm−1, 6000–7500 cm−1, and 8000–9000 cm−1. Therefore, we tentatively specu-
lated that the characteristic waveband of Rose Oxide is mainly located in the wave number
range of these four regions.

3.2. Spectral Pre-Processing and Outlier Rejection

The average data of all original spectral were pretreated using MMN, VN, FD, and SD.
The spectral pre-processing results of Rose Oxide in model wine and de-aromatic wine are
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shown in Figure 2. The spectral curves were narrower and smoother after pre-processing
by the MMN and VN algorithm, but there was no significant difference between the two
curves. The FD and SD algorithms separated the overlapping regions in the different
spectral curves and intensified the absorption peaks around 4500 cm−1, 5500 cm−1, and
7500 cm−1. The RMSE and the determination coefficients (r2) estimated the availability of
four pre-processing methods as shown in Table 1. Among them, MMN had the highest
r2

cv value of 0.14 and the lowest RMSEcv value of 11.34 in de-aromatic wine, while VN
showed the best performance, with an r2

cv value of 0.31 and RMSEcv value of 10.10 in model
wine. Considering MMN exhibits a better performance for both spectral curves, and the
de-aromatic wine was more complex than the model wine, MMN was selected as the best
pre-processing method and applied in subsequent data analysis and model construction,
while VN was only selected as the pre-processing method to explore the theoretical spectral
features of Rose Oxide, which was not used for the subsequent establishment of the Rose
Oxide prediction model.
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ferent spectral curves and intensified the absorption peaks around 4500 cm−1, 5500 cm−1, 
and 7500 cm−1. The RMSE and the determination coefficients (r2) estimated the availability 
of four pre-processing methods as shown in Table 1. Among them, MMN had the highest 

2

cv
r  value of 0.14 and the lowest 

CV
RMSE  value of 11.34 in de-aromatic wine, while VN 

showed the best performance, with an 2

cv
r  value of 0.31 and

CV
RMSE value of 10.10 in 

model wine. Considering MMN exhibits a better performance for both spectral curves, 
and the de-aromatic wine was more complex than the model wine, MMN was selected as 
the best pre-processing method and applied in subsequent data analysis and model con-
struction, while VN was only selected as the pre-processing method to explore the theo-
retical spectral features of Rose Oxide, which was not used for the subsequent establish-
ment of the Rose Oxide prediction model. 
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Table 1. Results of spectral full-band modeling of model wine and de-aromatic wine by four pre-
processing methods (before outlier rejection).

Pre-Processing Methods
Model Wine De-Aromatic Wine

r2
c RMSEC r2

cv RMSECV r2
c RMSEC r2

cv RMSECV

MMN 0.75 6.37 0.23 10.70 0.04 12.10 0.14 11.34
VN 0.78 5.97 0.31 10.10 0.06 11.90 0.03 12.30
FD 0.51 8.85 0.12 11.40 0.05 12.00 0.05 12.00
SD 0.14 11.34 0.09 11.80 0.06 11.90 0.09 11.80

Note: r2
c , the correlation coefficient of calibration set (the closer to 1, the better); RMSEC , the calibration set root

mean square error; r2
cv, the correlation coefficient of the cross-validation set; RMSECV , root mean square error of

calibration set (the smaller the better).
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The outliers were found by the Hotelling T2 statistics in the coordinate of PC1 and PC2,
as shown in Figure 3. Out of a total of 133 model wine samples (No. 1 to 133), 3 samples (No.
90, 122, and 130) were excluded as outliers directly at a 99% confidence level. Sample No.
1 was distributed between the 95% and 99% confidence spaces and needed to be verified.
As shown in Table 2, r2

p increased from 0.44 to 0.47, and RMSEP decreased from 9.03 to
8.67 after excluding the No. 1 sample, which indicated the it was an outlier. Out of a total of
133 de-aromatic wine samples (No. 1 to 133), 4 samples (No. 3, 63, 71, and 99) were outside
the 99% confidence interval and were rejected directly. Additionally, five new samples (13,
31, 47, 109, and 128) were distributed between the 95% and 99% confidence spaces and
needed to be verified. As shown in Table 2, the r2

p values increased, and the RMSEP values
decreased by excluding samples No. 13, 109, and 128, while the model effect worsened after
excluding samples No. 31 and 47. Therefore, samples No. 13, 109, and 128 were defined as
outliers and samples No. 31 and 47 passed the verification. After removing the outliers, the
RMSE values were reduced and the r2 values were enhanced in most models (compared
to the results in Table 1), suggesting that outlier rejection may improve the accuracy and
stability of the prediction model. However, the model after pre-processing and outlier
removal still did not work well because an RPD less than 1.5 meant a poor prediction
performance. This may be caused by the interference of unrelated information in a full
waveband. Thus, the feature wavebands of Rose Oxide in wines have to be screened out.
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Table 2. Results of model validation after outlier rejection between 95% and 99% confidence space.

Sample Exclusion r2
c RMSEC r2

p RMSEP RPD

Model
wine

All samples (except number 90, 122, and 130) 0.78 5.93 0.44 9.03 1.33
1 0.79 5.79 0.47 8.67 1.38

De-aromatic
wine

All samples (except number 3, 63, 71, and 99) 0.61 7.95 0.11 11.60 1.06
13 0.70 7.06 0.14 11.30 1.08
31 0.67 7.32 0.09 11.70 1.05
47 0.57 8.37 0.08 11.80 1.04

109 0.63 7.82 0.18 11.10 1.10
128 0.71 6.86 0.22 10.80 1.13

Note: r2
p, the correlation coefficient of the validation set; RMSEP, validation set root mean square error; RPD, the

ratio of prediction to deviation (RPD < 1.5: poor model. 1.5 ≤ RPD < 2.5: general model. 2.5 ≤ RPD < 5: good
model. RPD > 5: excellent model).

3.3. Si-PLS Analysis

Rose Oxide, as a monoterpene cyclic ether compound with a tetrahydropyran ring,
is attached to a methyl and an isobutylene group, and possesses C=C, C–H, C–O–C, –CH3,
and –CH2 functional groups. In this study, the Si-PLS method was used to extract the
feature bands. The full wavenumber (11,600–4000 cm−1) range was divided into 19 equal
subintervals, with each subinterval modeled separately. The experimental results were
shown in Figure 4. The RMSECV values for subintervals 8, 11, 12, 13, 14, 15, 18, and
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19 were smaller than the RMSECV values (10.7 and 12.4) modeled for the full band in
model and de-aromatic wine, while the remaining subintervals had lager RMSECV values,
which suggested that the model built with these eight subintervals would be better. The
eight subintervals of two different background matrices were identical, indicating that
they contained the feature information of Rose Oxide. Indeed, the references regarding
the function group and spectral structure of Rose Oxide were limited. However, Davis
et al. [25] conducted a study on the same functional groups in other chemicals, such as
alkanes, alkenes, ethers, and tetrahydropyran, as shown in Table 3. It can be shown that
the overtones of CH3 stretching and deformation modes were largely responsible for the
strong absorption region of 5901–5909 cm−1 (the first overtone) and 8264–8696 cm−1 (the
second overtone), while the combination C–H stretching vibration bands of the CH3 group
were at 4100, 4395, 4400, 4500–4545, 5520, 5814, 7355, and 7263 cm−1 in alkanes. The first
overtone C–H stretching of the C–H=group bands were at 6100–6200 cm−1, while the
combination C=C stretching bands at 4482, near 4600, 4670–4780, and 6130 cm−1, were
found in alkenes. Moreover, the C–H stretching bands of CH and CH2 functional groups in
tetrahydropyran at 5565–6150 and 8040–9320 cm−1 were assigned to the first and second
overtones, respectively, while bands at 3885–4795, 6500, and 7500 cm−1 were assigned to
the combination regions. The C–O–C group was readily identified by the second overtone
bands at 8300 and 8495 cm−1 and the combination bands at 6400–7515 cm−1 in ethers.
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Table 3. Spectral mapping analysis of functional groups in similar substances of Rose Oxide.

Chemicals Assignment Groups
Wave Numbers (cm−1)

First Overtone Second Overtone Combination Regions

Alkanes
V(C–H) 5555–5882 8264–8696 6666–7090, 4545, and 4500

V(–CH2–) Near 6135 Near 8290 4545 and 4525

V(–CH3) 5901–5909 8264–8696
4500–4545, 4395, 4100, 4400,

5520,
5814, 7355, and 7263

Alkenes
V(C–H=) 6100–6200

V(=CH2) About 9260, 8787–9009,
and 9091

V(C=C) 4482, near 4600, 4670–4780,
and 6130

Tetrahydropyran V(C–H) 5565–6150 8040–9320 3885–4795, 6500, and 7500

Ethers

V(C–H) 3800–4500 and 6400–7515
V(–CH2–) 5690 and 5790
V(–CH3) 5898 and 5910

V(CH–O–) 8300 6400–7515
V(CH2–O–) 8495

In this study, eight subintervals (4000–4400 cm−1, 4400–4800 cm−1, 5600–6000 cm−1,
6000–6400 cm−1, 6400–6800 cm−1, 6800–7200 cm−1, 7200–7600 cm−1, 8400–8800 cm−1) were
recognized as the characteristic bands of Rose Oxide using the Si-PLS method. According to
the assignments of the relevant groups mentioned in Table 3 and the eight characteristic
intervals identified using the Si-PLS method, the group assignments of chemical structures
in Rose Oxide were shown in Table 4. We observed that bands at the wave number region
5600–6000 cm−1 were due to the first overtone of C–H stretching in the tetrahydropyran
ring and methyl group, as well as the combination of the C–H stretching of the CH3 function
groups. Furthermore, bands between 6000 cm−1 and 6400 cm−1 were assigned to the first
overtone C–H stretching of the C–H= group and the combination C=C stretching in isobutyl
and the wavenumber of 8400–8800 cm−1 belonged to the second overtone C–H stretching
and C–O stretching in the tetrahydropyran ring, as well as the C–H stretching vibration
in the methyl group. For the combination regions, 4000–4800 cm−1, 6400–6800 cm−1, and
7200–7600 cm−1 were assigned to the C–H stretching vibration, while 6400–7600 cm−1

was assigned to the C–O stretching vibration. These represented the spectral fingerprint
information of Rose Oxide and are important for spectral identification and modeling
applications.

Table 4. Group assignment of different chemical structures in Rose Oxide.

Chemical Structure Assignment Group
Wave Numbers (cm−1)

First Overtone Second Overtone Combination Regions

Tetrahydropyran ring V(C–H) 5600–6000 8400–8800 4000–4800, 6400–6800, and
7200–7600

V(C–O) 8400–8800 6400–7600

Methyl V(CH3) 5600–6000 8400–8800 4000–4800, 5600–6000,
7200–7600

Isobutyl V(C–H=) 6000–6400
V(C=C) 4400–4800, 6000–6400

Nevertheless, the individual intervals included limited information and did not com-
pletely reflect the absorption properties of the Rose Oxide spectra. Therefore, subinter-
vals 8, 11, 12, 13, 14, 15, 18, and 19 (corresponding to wave numbers: 8800–8400 cm−1,
7600–5600 cm−1, and 4800–4000 cm−1) were selected as joint intervals and re-modeled
using the PLSR method. According to the results of joint interval modeling shown in
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Table 5, the r2
c and RMSEc were 0.97 and 2.22 for the model wine and 0.97 and 2.36 for the

de-aromatic wines, respectively; the r2
cv and RMSECV were 0.96 and 2.55 for the model

wine and 0.96 and 2.33 for the de-aromatic wines, which significantly improved the stability
and predicted the accuracy of the model. The considerable improvement in the RPD value
from 0.99 to 5.24 in de-aromatic wine indicated that a screened joint interval excluded a
large amount of irrelevant information and condensed the spectral information of Rose
Oxide, which laid the foundation for a further investigation of the spectral characteristics
of its molecular groups and chemical bonds. The results of the best prediction model for
the Rose Oxide were presented in Figure 5. It was apparent that the validation data (cross-
validation method used in this study) were in good agreement with the resulting model.
The correlation between the values tested by HS/SPME-GC-MS and the NIR calibration for
the different wine substrates was good, and the models showed a satisfactory fitting result
and predictive ability.

Table 5. Results of full-band and joint interval modeling of model wine and de-aromatic wine.

Interval
Combinations

Model Wine De-Aromatic Wine

r2
c RMSEC r2

cv RMSECV RPD r2
c RMSEC r2

cv RMSECV RPD

Full waveband 0.75 6.37 0.23 10.70 1.19 0.04 12.10 0.14 11.34 0.99
Joint interval 0.97 2.22 0.96 2.55 4.78 0.97 2.36 0.96 2.33 5.24Agronomy 2023, 13, 1123 12 of 16 
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de-aromatic wines.

3.4. External Validation

The external validation aimed at estimating the predictive ability of the model based
on a sample set that has not been included in the modeling process. In this study, the
external validation of the PLS model for Rose Oxide in de-aromatic wine was conducted
with the set of 21 samples, as shown in Table 6. The r2

p was 0.84 (higher than 0.80), indicating
that the PLS models for Rose Oxide based on NIR spectra explained 84.00% of the variation
in the data. The RPD value obtained for the Rose Oxide in the external validation was 2.36
(higher than 1.50) and the RMSEP value was 2.72, indicating the good prediction capacity
of the NIR models for Rose Oxide in real wines. The regression equations are also presented
in Table 6. It could be obtained that the Rose Oxide values tested by HS/SPME-GC-MS and
the NIR calibration were similar. The results of external validation showed that this model
could predict the Rose Oxide content of real wine to some extent, although the amount
of information that can be explained was limited compared to the model built from the
calibration set samples. On the one hand, the presence of other aromatic substances in real
wine may affect the feature waveband of Rose Oxide, while on the other hand, it might be
caused by the interference of other chemicals in the matrix. In conclusion, improving the
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accuracy of the external validation of the model is important for the transfer and application
of the model, which still requires extensive research in the future.

Table 6. External validation of the established PLS models based on de-aromatic wine for Rose Oxide
(µg/L) in real wines.

Spectral Number External Validation

RMSEP RPD r2
p Regression Equation

21 2.72 2.36 0.84 y = 0.717x + 3.5288

4. Discussion
4.1. Spectral Band Allocation of Rose Oxide

The NIR technology is also called “black box” technology. Most studies pay little atten-
tion to the connection between the chemical groups and spectral wavebands of substances
in “black box”. In fact, it is still beneficial to the analysis and application of near-infrared
spectroscopy to master the distribution of the organic compounds near-infrared band. In
this study, the near-infrared waveband allocation of Rose Oxide was analyzed based on the
model wine substrate, and eight feature waveband subintervals were screened using the
Si-PLS method for associating with the chemical groups of Rose Oxide. In fact, it is difficult
to accurately attribute the near-infrared band because the near-infrared band may be the
combination of several different fundamental frequency double and harmonic spectrum
bands, and there is no sharp peak and baseline separation of spectral peaks, mostly over-
lapping peaks and wide peaks. In this study, the simulation of wine substrate and the
Si-PLS method were adopted to avoid the above defects. On one hand, the model wine is a
simple matrix with alcohol and pH values consistent with real wine, which reduces the
interference of other chemical components while simulating the actual situation as much
as possible. On the other hand, although it is hard to accurately locate the near-infrared
band, the distribution range can be expanded by screening the feature bands in the form
of a joint interval so that the broad peaks of near-infrared can be basically distributed in
the sub-interval. In the process of chemical group allocation, the distribution of chemical
bonds will always be the focus because the absorption of organic matter in the near-infrared
band is generally caused by various chemical bond stretching vibrations. In this study, the
frequency doubling and co-frequency absorption of tetrahydropyran rings, C–H bonds,
C–O bonds, and C=C bonds at different positions on the methyl and isobutene groups
of rose ether were assigned to eight selected characteristic bands. It can be observed
that wavebands 5600–6000 cm−1 were related to the first overtone C–H stretching in the
tetrahydropyran ring and methyl group, as well as the combination C–H stretching of the
CH3 function groups, which has been substantiated by the results of other studies. For
example, Tosi and Pinto [26] found that bands near 5905 cm−1 in all the hydrocarbons
can be attributed to the methyl group. Burns and Ciurczak [27] showed that 5700 cm−1,
5810 cm−1, and 5900 cm−1 were due to the 2v (C–H) vibration of the CH2 functional
group of cyclohexane and 2v (C–H) of the CH3 groups of hydrocarbons with the methyl
group. Bands between 6000 cm−1 and 6400 cm−1 were assigned to the first overtone C–H
stretching of the C–H=group and the combination C=C stretching in isobutyl. As described
by Gerasimov and Snavely [28], 6120, 6130, 6140, and 6200 cm−1 corresponded to the CH
stretching bands of vinyl (CH2=CH–) and vinylidene (CH2=C<), which was consistent with
the results obtained in this study. In addition, the distribution of other characteristic bands
has been confirmed by relevant studies. There are also studies that used the fundamental
frequency of chemical substances in the mid-infrared region to calculate their frequency
doubling and frequency co-absorption bands in the near-infrared region, which can provide
a new direction for the near-infrared spectral band attribution analysis of Rose Oxide.
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4.2. Potential of Near-Infrared Spectroscopy Models of Rose Oxide

De-aromatic wine is often used to explore the perceptual interaction among aromas in
wine because it is a modeling background substrate obtained from real wine based on a
strict de-aromatic procedure. Except for the absence of aroma substances, the non-volatile
substrate is consistent with real wine [18]. In this study, the prediction model of Rose Oxide
was established based on the de-aromatic wine matrix. The experiment shows that the
prediction model of Rose Oxide can explain 84% of the information with an RPD value
greater than 1.5, indicating that the method had a certain feasibility. Indeed, many studies
have taken the near-infrared detection of volatile aroma substances into consideration. For
example, NIR technology combined with the PLS method was used to detect esters and
higher alcohols in wine, and it achieved a good prediction [9]. In addition, NIR technology
was used to detect volatile aroma substances such as esters and short-chain fatty acids in
Riesling wine, and the model established based on PLS has also shown good prediction
results [29]. A NIR correction model of oak volatiles was established in dry red wine
using the PLS method, of which the r2 was greater than 0.86 and the RPD was greater than
1.5 [30]. These results indicate that NIR spectroscopy can be used for the rapid detection of
volatile aroma substances in wine. However, the majority of previous research has been
aimed at the near-infrared analysis of volatile substances with a relatively rich content in
wine, such as esters and higher alcohols. There are many compounds in wine with a low
content, such as Rose Oxide, but with a great aroma contribution. Their rapid detection is
also particularly important. Under the condition of modeling based on real wine substrate,
the aroma substances of Rose Oxide are often ignored because the lengthy pre-treatment will
lead to the loss of Rose Oxide in the wine sample, which would result in an error in the test
results. In this study, a modeling sample set was constructed based on the standard for Rose
Oxide in different concentrations and de-aromatic wine substrates. Under the background
of a substrate simulating real wine samples to the greatest extent, the measured values
of Rose Oxide could be accurately obtained, and a wide range of modeling concentrations
could be obtained, which had a good universality for the rapid detection of the aroma
substances of Rose Oxide. It provides methodological support for the near-infrared rapid
nondestructive detection of similar aroma substances in wine.

5. Conclusions

In this study, NIR spectroscopy was used to address the waveband allocation and
quantitative prediction analysis of Rose Oxide. First, MMN and VN were used to pro-process
the spectral signal of the de-aromatic wine and the model wine, and PAC was used to find
the outliers. Then, Si-PLS was used to select the related spectral subintervals of the Rose
Oxide, which improved the accuracy of the prediction model. Finally, the prediction model
of the Rose Oxide content in de-aromatic wine was established and verified in real wine. The
prediction model with a high r2 and low RMSE was effective for detecting the content of
Rose Oxide in wines under certain conditions, and it provided methodology support for the
quantitative analysis of other terpenes in wine using this method. Since the wine samples
in this study were collected from the producing area in the wine region of the Ningxia
Helan Mountain’s East Foothill, whether the Rose Oxide model is applicable to the analysis
of other producing areas or imported wine samples needs to be validated and optimized.
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Abstract: The existing methods of measuring the baler feed rate seldom consider the influence of
machine vibration on the sensor signal during field operation, which leads to the low detection
accuracy and poor stability of feeding quantity detection. We established a feed rate detection model
of a baler based on power monitoring of the pickup platform. Through the dynamic analysis of the
pickup platform, the functional relationship between the working power of the pickup platform and
the feed rate was constructed. A power monitoring system of the pickup platform was developed,
and the model construction experiment of the working power and the feed rate was performed. The
influence mechanism of different running speeds on the torque noise signal of the power input shaft
of the pickup platform was explored. The frequency of the noise signal was mainly concentrated
at 0.5–6 Hz and 9–13 Hz employing a fast Fourier transform, and the noise signal was eliminated
by the frequency-domain-filtering method. The function model of working power and feed rate of
the pickup platform was established based on signal processing, and the determination coefficient
R2 of the model was 0.9796. The field experiment results show that when the feed rate of the baler
is between 1.6 and 4.88 kg/s, the determination coefficient R2 and RMSE between the actual and
predicted feed rate are 0.989 and 0.2, respectively. The relative error range of feed-rate prediction
is −9.37–8.77%, which indicates that the model has high detection accuracy and good stability and
meets the requirements of feed-rate monitoring of a baler in field operation.

Keywords: baler; feed rate; pickup platform; working power; frequency domain filtering; model

1. Introduction

Straw is a crucial biomass resource in agricultural production. The recycling of straw
can not only promote the development of comprehensive straw utilization technology
but also effectively improve the ecological environment [1–6]. To improve the collection
efficiency of crop straw and reduce the transportation cost, balers were usually used to pick
up the scattered straw in the field and press it into a high-density bundle structure [7,8].
The baler’s feed rate is the critical index to evaluate the baler’s functional performance
and working state. If the feed rate is too low, the operation efficiency of the baler will
be affected, and the operation cost will be increased. An excessive feeding amount will
quickly lead to a blockage of the pickup platform, which will lead to operation failure of the
transmission mechanism of the baler and seriously reduce the operation efficiency [9,10].
Therefore, obtaining the baler’s feed rate in real time and keeping it in the best state can not
only guide the driver to complete the straw-bundling operation efficiently but also have
important practical significance for indirectly improving the comprehensive utilization rate
of regional straw and improving the ecological environment.

Agronomy 2023, 13, 425. https://doi.org/10.3390/agronomy13020425 https://www.mdpi.com/journal/agronomy282



Agronomy 2023, 13, 425

Currently, the methods of crop feed-rate detection can be divided into extrusion
force measurement, oil pressure measurement, image recognition, and torque and power
measurement methods according to the principle [11–16]. Jie Zhan researched the rela-
tionship between feed rate, extrusion force and sensor signal based on the principle of
extrusion pressure measurement [17]. Gomez-Gil developed a mathematical model of the
grain-combine feed rate and running speed using GPS technology and particle weight sen-
sors [18]. Sun Yifan developed a mathematical model of power-input-shaft torque, height,
grain moisture content and feed rate of a combine harvester pickup platform based on the
PSO-BP algorithm [19]. Wang Wei predicted the straw feed rate by monitoring the power
of the screw conveyor and established a feeding amount detection model according to the
grey theory [9]. Li Ping collected the pressure value of the header lifting cylinder and fitted
the feed rate and pressure sensor signal by the least square method [20]. Liu Zhongpeng
used an image segmentation algorithm to separate the wheat from the background and
obtained the transformation relationship between the feed rate and image pixels by data
fitting [15]. To sum up, limited by the working principle and mechanical structure of
the baler’s pickup platform, the feed-rate detection method based on extrusion force, oil
pressure measurement and the image recognition principle was not suitable for the baler.
Torque can better reflect the change in feeding amount. However, it is easily affected by
uncontrollable variables, such as the angle of the pick-up mechanism in the detection pro-
cess. As a linear quantity, power has fewer uncontrollable variables that affect its detection
accuracy, which can more effectively reflect the change in machine feeding quantity [21].
In addition, the related research seldom considers the influence of machine vibration on
sensor signals in actual operation, so it is not easy to ensure detection performance in a
complex working environment.

Therefore, this study takes the square baler as the research object. Through an analysis
of the dynamics of the pickup platform, the functional relationship between the working
power of the pickup platform and the feed rate was established. A pick-up platform
working power-monitoring system was built to obtain the original torque signal, and
frequency domain analysis and filtering were performed. The specific function model of
working power and feed rate of the pickup platform was obtained based on signal analysis
and processing. Finally, field experiments tested the accuracy and stability of the feed-rate
detection model. This study can provide a theoretical reference for the research of online
detection technology of baler feed rate.

2. Materials and Methods
2.1. Dynamics Analysis of Pickup Platform

As shown in Figure 1, the overall structure of the pickup platform of the square baler
is mainly composed of a power input shaft, picker shaft, pickup elastic teeth, screw con-
veyor and its shaft, which mainly completes the functions of straw pickup and centralizes
backwards conveying. The working power of the pickup platform comes from the power
input shaft. The power is transferred to the screw conveyor through the belt and drives
the screw conveyor to rotate and then the power is transferred to the picker shaft through
the chain. During continuous rotation, the picker shaft drives the elastic teeth to throw the
ground straw to the screw conveyor. The screw conveyor squeezes the straw to the feeding
mechanism during continuous rotation to complete the pick-up operation. According to
the pitch diameter of the pulley and the transmission mode of each shaft, the transmission
ratio among the power input shaft, screw conveyor shaft, and picker shaft is 1. Through
the analysis of the operational characteristics of the pickup platform, it can be seen that the
rotational speed of each shaft is consistent when the pickup platform works.

The power input shaft provides the working power for the square baler pickup
platform, and the power input shaft power is the pickup platform power when the square
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baler is working. From the mathematical relationship of power, torque, and rotational
speed, the total power of the pickup platform when the power input shaft is working is

P = Tn/9550 (1)

where P is the total power of the power input shaft in kW; T is the total torque of the power
input shaft in N·m; n is the rotational speed of each shaft of the pickup platform in r/min.
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The pickup platform mainly consisted of a picker and a screw conveyor. Accord-
ing to the energy conservation theorem, the total power of the pickup platform can be
decomposed into

P = P0 + Pi + Pj (2)

where P0 is the total loss power of the transmission mechanism in kW, Pi is the total power
of pickup in kW, and Pj is the total power of screw conveyor in kW.

(1) Torque analysis of picker shaft

The total torque Ti of the picker shaft can be decomposed into no-load torque Ti1 and
working torque Ti2, in which the no-load torque is related to its gravity. The working torque
is mainly due to the torque produced by the gravity of the straw. Because the length of the
elastic teeth extending out of the retaining ring is short, it can be considered that the straw
is approximately concentrated at the end of the elastic teeth of the pickup, and thus

{
Ti1 = migR
Ti2 = ρLhv0gR

(3)

q = ρLhv0 (4)

Ti = (mi + q)gR (5)

where mi is the weight of the picker in kg, ρ is the natural laying density of straw in kg/m3,
L is the pickup width in m, h is the natural laying thickness of straw in m, v0 is the running
speed of the baler in m/s, g is the acceleration of gravity in m/s2, R is the radius of gyration
of pickup elastic teeth in m, and q is the theoretical feed rate of straw in kg/s.

(2) Torque analysis of screw conveyor shaft

The total torque Tj of the screw conveyor shaft can be decomposed into no-load torque
Tj1 and working torque Tj2, and the no-load torque is related to its gravity. The working
torque is mainly caused by the extrusion force Fr perpendicular to the surface of the spiral
blade and the tangential friction resistance Ff along the spiral blade under the action of
extrusion and the conveying of the straw by the spiral conveyor, which is not only affected
by the extrusion force Fr perpendicular to the surface of the spiral blade. The friction
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resistance Ff is proportional to the extrusion force Fr of straw on spiral leaves. Assuming
that the friction coefficient between the straw and screw conveyor is f , then

{
Tj1 = D(mjg− Fr)
Tj2 = Dqg + DFf

(6)

Ff = f ·Fr (7)

where D is the radius of gyration of the picker elastic teeth in m and mj is the weight of the
screw conveyor in kg.

According to [22–24], the extrusion force Fr is related to the degree of straw extrusion,
and thus

Fr = Kp·(
Cmax

δ
)

N
(8)

Cmax =
qλ

[(1 + λ)ρVsw]
(9)

where Kp is the coefficient, Cmax is the natural laying thickness of non-grain materials
in mm, δ is the clearance between spiral blade and intaglio in mm, N is a real number, λ is
the mass ratio of fruit and seedlings, Vs is the average linear velocity of straw in screw
conveyor in m/s, and w is the width of the screw conveyor in m.

In this study, the experimental object is crop straw, and λ approximates it to infinity;
thus, Formula (9) can be simplified as

Cmax =
q

ρVsw
(10)

From Equations (6)–(10), it can be seen that the total torque of the screw conveyor
shaft is

Tj = Dqg + D[mjg + Kp(
1

ρVswδ
)

N
qN( f − 1)] (11)

From Equations (2), (5), and (11), it can be seen that the total torque T of the power
input shaft of the pickup platform is

T = T0 + (mi + q)gR + Dqg + D[mjg + Kp(
1

ρVswδ
)

N
qN( f − 1)] (12)

(3) Power analysis of pickup platform

After excluding the torque caused by the gravity of the picker and screw conveyor,
the working torque T′ of the pickup platform is

T′ = T0 + qg(R + D) + D f Kp(
1

ρVswδ
)

N
qN (13)

From Equations (1) and (13), it can be seen that the working power T′ of the pickup
platform is

P′ =
1

9550
T0n +

1
9550

(R + D)gnq +
1

9550
D f nKp(

1
ρVswδ

)
N

qN (14)

It can be seen from the above formula that when other parameters are constant, and
the baler is fed stably and evenly, the working power of the pickup platform is linearly
related to the feed rate. The above formula can be simplified to

P′ = K0 + K1q + K2qN (15)

where K0, K1, and K2 are all constant coefficients.
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2.2. Field Test Method
2.2.1. Test Equipment and Materials

To explore the specific function model between the working power of the pickup
platform and the feed rate, the power-monitoring system of the pickup platform was
built, and the system structure is shown in Figure 2. The system consists of a sensor unit
and a data-management unit. The sensor unit converts the torque and rotational speed
signals of the power input shaft of the pickup platform into voltage signals and pulse
signals, respectively. The built-in module of the acquisition instrument converts the two
signals into torque and rotational speed data. Following this, it is transmitted to the vehicle
data-management unit for display and storage through the RS485 bus. Finally, the power
data of the pickup platform are calculated according to Equation (1).
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Figure 2. Structural block diagram of a monitoring system.

A DYN-200 torque and rotational speed sensor (Bengbu Dayang Sensing System
Engineering Co., Ltd., Bengbu, China) is the test sensor. The torque and rotational speed
data of the power input shaft of the pickup platform are collected synchronously through
the supporting data management software. Its main parameters are as follows (Table 1):

Table 1. Main parameters of the sensor.

Parameters Value

Range of torque ±500 N·M
Range of rotational speed 10,000 RPM

Error of measurement <0.1%
Voltage DC24 V

To accurately collect the torque and rotational speed data of the power input shaft, a
separate power input shaft was designed. The sensor was installed between the power end
and the load end of the power input shaft by two couplings and fixed on the rear protective
plate of the pickup platform by an installation bracket. The installation diagram is shown
in Figure 3.

In October 2022, the model construction test was conducted in the Xiaotangshan
National Experiment Station for Precision Agriculture, Changping District, Beijing. The
test equipment and materials are shown in Figure 4. Dry wheat straw is the test ob-
ject. The torque and rotational speed sensor was installed on the power input shaft
of the pickup platform of the 9YFQ-2.2 baler (Tianjin Xuanhe Agricultural Machinery
Manufacturing Co., Ltd., Tianjin, China). The Lovol Oubao M800-D tractor (Weichai Lovol
Heavy Industry Co., Ltd., Weifang, China) pulls the baler and provides operating power.
In order to ensure the picking quality of the baler, AMG-300 tractor automatic driving
navigation (AgChip Science and Technology (Beijing) Co., Ltd., Beijing, China) was adopted
to control the tractor to drive automatically according to the planned path. In addition,
other test materials include signs, stopwatches, tape measures, and electronic scales, which
were used to divide the test site and accurately measure the working time of the baler.
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2.2.2. Test Methods

In this study, the torque and rotational speed sensors were used to measure the baler’s
power input shaft’s torque and rotational speed data at different running speeds under
the field test conditions, and the working time and feed rate of the baler were obtained by
manual measurement. To obtain sufficient experimental data and reduce the experimental
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cost, the size of the field experiment plot was determined to be 20× 1.8 m. According to the
actual yield and economic coefficient [25–28] of wheat in this experimental field, it can be
calculated that 1.5 kg straw should be laid on each square meter of land. In order to ensure
the uniform laying of straw, a plot with a length of 20 m was divided into ten sections. The
straw was manually weighed and 5.4 kg straw was laid at each interval. The test site is
shown in Figure 5.
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Figure 5. Test site.

Considering the influence of ground height on sensor data acquisition, this study
determined through many no-load tests that the appropriate height for picking up elastic
teeth from the ground of the baler is 50 mm. Before each test, the pickup elastic teeth
were adjusted to the appropriate height, and the sensor was cleared. The tester used a
stopwatch to measure the working time of the baler and inserted signs at the starting
and ending positions of the test plot. The tester starts timing at the moment when the
pickup platform of the baler touches the start sign and stops timing at the moment when
the pickup platform touches the end sign. During data acquisition, a vehicle-mounted
data-management software is used to measure the torque and rotational speed of the baler’s
power input shaft under no-load and load conditions. The difference between the average
torque of the power input shaft under load and the average torque under no load is taken
as the working torque of this test, and the rotational speed is the average value of the
rotational speed data under load.

Q =
M
t

(16)

where Q is the actual feed rate of the baler in kg/s, M is the total amount of straw harvested
in kg, and t is the operation time in s.

2.3. Signal Processing Method

In the process of sensor signal acquisition, the vibration caused by the mechanical
transmission of the baler and ground bumping greatly influences the sensor signal’s
stability [29]. In this study, the frequency domain information of the original torque signal
of the power input shaft was obtained by Fourier transform, the concentrated frequency
band of the noise signal was found, and the torque noise signal was eliminated by frequency
domain filtering.

A discrete Fourier transform is a discrete form of Fourier transform in the time domain
and frequency domain, which is the sampling of the Fourier transform of time domain
signal in discrete time [30–32]. The main idea is to establish the function-mapping relation-
ship between the signal’s frequency spectrum with time as the independent variable and
frequency as the dependent variable from the finite points of the Fourier transform in an
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ordered long sequence. The continuous Fourier transform formula of an analogue signal
x(t) is as follows

X(w) =
∫ ∞

−∞
x(t)e−jwtdt (17)

x(t) becomes X(nT) after T sampling periods. If X(nT) is an B point finite-length
sequence, then DFT is:

X(k) = DFT[x(n)] = ∑N−1
n=0 x(n)Wnk

N = ∑N−1
n=0 x(n)e−j 2π

N nk, k = 0, 1, · · · , B− 1 (18)

Because the computational complexity of the DFT algorithm increases with the increase
in ordered length signal, it does not meet the needs of practical engineering applications.
The FFT algorithm transforms a long DFT operation into several short DFT operations
employing periodicity Wnk

N = W(n+N)k
N , symmetry Wn+N/2

N = −Wn
N , and reducibility

Wnk
N = Wmnk

mN of the DFT algorithm.

3. Results and Discussion
3.1. Signal Analysis and Processing Results

In this study, the test results of a baler working at 5.57 km/h are taken as an example.
The time domain diagram of its original torque and rotational speed signal is shown in
Figure 6. As seen from the figure, when the baler works, the mechanical vibration and
ground turbulence significantly impact the torque sensor signal. The data variability and
overall smoothness were poor. The rotational speed signal was relatively stable, and the
overall distribution was about 278 r/min. The standard deviation was 6.18 r/min. In this
study, we will analyze the causes of torque signal noise.
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Figure 6. Time domain diagram of original torque and rotational speed signal.

The frequency domain information of torque signal under different running speeds
was obtained by fast Fourier transform to explore the influence mechanism of running
speed on the torque noise signal. Figure 7 is a spectrum diagram of the torque signal of the
baler in the static and working state under different running speeds. As seen from Figure 7,
under different running speeds, the amplitude of the torque noise signal when the baler
works is more prominent than when it is at rest. With the baler’s increased running speed,
the noise signal’s amplitude when the machine works gradually increases. The reason is
that when the baler is running at a low speed, the vibration of the machine produced by
the power system is the primary source of the noise signal, and the amplitude of the noise
signal in the two states is equivalent. With the increased running speed of the baler, the
bump caused by ground fluctuation becomes the primary source of the noise signal, and
the amplitude of the noise signal increases with the increase in running speed.

As shown in Figure 7, the torque noise signals were mainly concentrated at 0.5–6 Hz
and 9–13 Hz. In this study, the noise reduction of the original torque signal was conducted
by the frequency-domain-filtering method. The torque signal collected by the baler at the
running speed of 5.57 km/h was taken as the object. Figure 8 is a time domain diagram
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of working torque signals before and after processing. After filtering, the variability of
torque data was reduced, and the overall smoothness of the data was improved. Data
fluctuation was due to the change in torque caused by an uneven straw feed rate during
baler operation.
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3.2. Construction Results of Feed-Rate Detection Model

In this study, we used the frequency-domain-filtering method to process all the original
torque data in the above tests. According to Equation (1), the average working power of
the pickup platform for each group of tests was calculated, and the test results are shown
in Table 2.

In this study, the multivariate linear regression method was used to establish a specific
functional model of working power and feed rate, and the performance of the model was
evaluated by R2 (efficient of determination) and RMSE (root mean square error). R2 was
used to evaluate the correlation degree between the actual value and the predicted value
of the feed rate. The closer R2 is to 1, the better the correlation degree between the actual
value and the predicted value of the feed rate. RMSE was used to evaluate the prediction
ability of the model. A smaller RMSE indicates a better generalization ability of the model.
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In this study, the relationship curve between the working power of the pickup platform
and the feed rate fitted by SPSS26 is shown in Figure 9.

Table 2. Test results.

Test Running Speed
(km/h) Harvest (kg) Working Torque

(N·m)
Rotational Speed

(r/min)
Working Power

(kW)
Feed Rate (kg/s)

1 3.17 30.4 6.23 292.7 0.1909 1.34
2 4.24 32.28 8.66 393.3 0.3566 1.90
3 7.13 20.29 7.23 375 0.2839 2.01
4 5.57 30.61 11.97 345.8 0.4334 2.37
5 6.46 28.57 12.05 342.1 0.4317 2.56
6 5.78 32.81 15.6 365.5 0.5970 2.64
7 7.07 31.06 16.85 338.9 0.5980 3.05
8 8.41 29.63 17.95 391 0.7349 3.46
9 9.35 30.18 26.77 347.4 0.9738 3.92

10 10.64 32.02 33.79 384.3 1.3597 4.73
11 10.53 32.93 29.05 386.2 1.1748 4.81
12 10.48 36.13 40.38 379.9 1.6063 5.26
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Figure 9. Fitting results of working power and feed rate.

As seen from Figure 9, the feed rate increases with the increase in power, and there is
an excellent linear relationship between them. The determination coefficient R2 was 0.9796,
and the functional relationship between the working power of the pickup platform and the
feed rate is shown in Equation (19).

Q = −1.0433P′2 + 4.5791P′ + 0.5859 (19)

3.3. Field Verification Test Results

In order to verify the accuracy and effectiveness of the model in the field operation
of the baler, 11 groups of field verification experiments were conducted according to the
above test methods and signal processing methods. The test site is shown in Figure 10.

In the experiment, the running speed of the baler ranged from 4.14 km/h to 10.37 km/h,
and the feed rate ranged from 1.62 kg/s to 4.88 kg/s. The feed-rate detection model calcu-
lated the predicted value of the feed rate of each group of tests. The relationship between
the actual value and the predicted value of the feed rate in each group was compared and
analyzed. Figure 11 shows the distribution of actual and predicted values of baler feed
rate in each group of tests. According to the test results, the determination coefficient R2

between the actual value and the predicted value of the baler feed rate is 0.989, the RMSE
is 0.2, and the relative error range of the feed-rate prediction is −9.37–8.77%. Therefore, the
results of field experiments prove that the model has high accuracy and good effectiveness,
and meets the needs of monitoring the baler feed rate in the field operation.
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4. Conclusions

The existing methods of measuring the baler feed rate seldom consider the influence
of machine vibration on the sensor signal during field operation, which leads to a low
detection accuracy and poor stability in feeding-quantity detection. In this study, we
established a model for measuring the baler feed rate based on the power monitoring of
the pickup platform. We verified the accuracy and effectiveness of the model’s predictions
through field experiments. The conclusions of this study are as follows:

Through the dynamic analysis of the baler pickup platform, the functional relationship
between the working power of the pickup platform and the feed rate was obtained. A
power-monitoring system for the baler pickup platform was developed, which realizes
the real-time collection of torque and rotational speed data of the power input shaft. The
influence mechanism of the baler running speed on the torque noise signal was analyzed,
the main frequency distribution range of the torque noise signal was determined, and the
torque noise signal was eliminated by the frequency-domain-filtering method. Finally,
a mathematical model of the working power and feed rate of the pickup platform was
constructed, and a field experiment of model performance verification was performed.

Noise signal analysis results showed that when the sampling frequency of the system
was 200 Hz, the frequency of torque noise signal was distributed in the ranges 0.5–6 Hz and
9–13 Hz. The results of the feed-rate detection model construction showed that the R2 of
the model was 0.9796 when the baler feed rate was between 1.34 and 5.26 kg/s. The results
of field experiments showed that the R2 between the actual and predicted values was 0.989,
the RMSE was 0.2, and the relative error range of model prediction was −9.37–8.77%. The
feed-rate detection model has high accuracy and stability.
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Currently, we have only established a model to detect the baler feed rate, but the
model still needs to be integrated into the feed-rate monitoring device and has yet to be
verified in field trials. In future research, we will develop a control system for the pickup
operation of the baler based on feed-rate monitoring. The model in this study will be
integrated into the control system. The real-time and accurate control of the baler feed rate
in field operation may solve the problem that the control object (such as running speed and
pickup height) does not match the feed rate due to the poor monitoring effect of the feed
rate in the current baler feed-rate control system, which leads to a low operating efficiency
of the baler and easy failure of the transmission mechanism. This study can provide a new
technical scheme for the research and development of the feeding-monitoring system of
the baler.
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Abstract: Aiming at the need to prevent agricultural machinery from colliding with obstacles in
the operation of unmanned agricultural machinery, an obstacle detection algorithm using 2D lidar
was proposed, and a pre-collision system was designed using this algorithm, which was tested on
a harvester. The method uses the differences between lidar data frames to calculate the collision
times between the farm machinery and the obstacles. The algorithm consists of the following steps:
pre-processing to determine the region of interest, median filtering, and DBSCAN (density-based
spatial clustering of applications with noise) to identify the obstacle and calculate of the collision time
according to the 6σ principle. Based on this algorithm, a pre-collision system was developed and
integrated with agricultural machinery navigation software. The harvester was refitted electronically,
and the system was tested on a harvester. The results showed that the system had an average
accuracy rate of 96.67% and an average recall rate of 97.14% for being able to stop safely for obstacles
in the area of interest, with a summed average of 97% for both the accuracy and recall rates. The
system can be used for an emergency stop when encountering obstacles in the automatic driving of
agricultural machinery and provides a basis for the unmanned driving of agricultural machinery in
more complex scenarios.

Keywords: lidar; obstacle detection; harvester; pre-collision system

1. Introduction

With the aging of the Chinese population and the continuous reduction in the farming
labor force, who will farm and how will farming be conducted in the future are questions
that urgently need to be considered [1]. Agricultural machinery can significantly reduce
agricultural labor, and farming by machines replacing humans is widespread in China.
Nevertheless, most agricultural machinery still needs to be driven by an operator. Some
agricultural-machinery-assisted driving systems can already control the direction to go
straight or turn without the operator’s control [2]. However, when there are obstacles in
the field, the assisted driving systems must be interrupted manually. Some unmanned
driving is achieved by marking the coordinates of the obstacles and planning the path
in a specific plot [3]. This method must obtain the plot coordinates and plan the path
before each operation. It is not suitable for cross-regional work of agricultural machinery,
which is very common in China. The detection of the farmland environment, especially the
detection of farmland obstacles, is an essential part of realizing unmanned driving.

There have been many studies on the detection of obstacles in the field. Moreover,
there are three main sensor technologies for detecting farmland obstacles: ultrasonic
detection, machine vision detection, and lidar detection technology [4]. Each technical has
advantages and disadvantages, and there are still some detection problems in unstructured
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field environments. Ultrasonic testing has a low cost and simple data processing. Dvorak
tested an ultrasonic sensor’s ability to detect several objects that are commonly encountered
in outdoor agricultural or construction environments [5]. However, ultrasonic detection has
a short measurement range and low ranging accuracy and is easily affected by temperature,
environmental noise, and obstacle surface types. The application of visual methods for
obstacle detection has been the subject of the most research. Many studies were based
on binocular vision detection, and distance information could be obtained. Wei assumed
that humans were the only potential obstacles in the field. By processing the obtained
disparity map by setting thresholds, human-shaped obstacles and their motion states near
the agricultural machinery could be detected [6]. Zhang proposed segmenting the obstacle
area from the background by analyzing the brightness distribution on the scan line and
performing fast stereo feature matching to obtain the spatial information of the human-
shaped obstacle [7]. Aiming at visual obstacle detection for a combined harvester, Ding
proposed a method that combined monocular color image segmentation and stereovision
feature matching to determine the distances between obstacles and the harvester [8]. Yin
denoised the depth image obtained by the 3D camera [9]. After noise removal, the pixels
were filtered through coordinate conversion, and a height threshold was set. Then, the
boundary of the obstacle is extracted using the four-connectivity method, and finally,
information on the locations and sizes of obstacles was obtained. However, the method of
visual inspection has certain limitations. For example, Wei and Yin’s detection objects were
only people in the field [6,9]. Zhang and Ding’s experiments had strict requirements on the
height and color differences between the obstacles and the surrounding environment [7,8].
The accuracy of the visual inspection scheme decreased as the detection distance increased
and was greatly affected by ambient light, which cannot meet the needs of agricultural
machinery for night operations, and there were certain limitations in the application of
unstructured farmland inspection.

Research on the use of lidar for field obstacle detection is also an essential technical
route. Brenneke provided a three-dimensional laser obstacle recognition algorithm that
divides the three-dimensional point cloud into two categories [10]. The first category points
are perpendicular to a line, such as tree trunks, walls, pits, and some artificial road signs;
the second category points have no direct contact with the ground, such as tree branches
and roofs. The identification of the two types of points and coloring them in the entire
image can enable the recognition of obstacles. Jiménez provided an improved obstacle
recognition algorithm, which solves the limitation of ordinary methods that only rely on
the obstacle distance to recognize obstacles and calculates dynamic variables, such as speed,
by extracting the characteristics of obstacles [11]. Asvadi designed a method to detect
static and dynamic obstacles in the urban environment using point cloud data obtained
using three-dimensional laser scanning and positioning data obtained using the inertial
navigation system [12]. Zeng used three-dimensional lidar to collect point cloud data in an
apple orchard and used MATLAB to develop an algorithm to segment trellis wires, support
poles, and tree trunks in the point cloud images [13]. However, these studies all collected
data and then performed offline processing, so real-time inspection and further agricultural
machinery control could not be performed. In addition, due to the high price of 3D lidar, it
is still difficult to apply it to agricultural machinery.

There is also some research on obstacle detection using two-dimensional lidar, and
lidar and image fusion methods. Doerr used two-dimensional lidar to evaluate multiple
feature recognition methods (average height, density, connectivity, and discontinuity meth-
ods) to identify three foreign objects placed in different environments under four crops [14].
Takahashi designed a LIDAR-based emergency obstacle avoidance module for obstacles on
the sidewalk [15]. The module included an obliquely installed 2D lidar and an embedded
microcontroller and used an autoregressive model to locate the obstacle’s position. Peng
designed an obstacle detection algorithm based on a two-dimensional lidar [16]. After
denoising the laser point cloud, it was filtered, segmented, and clustered, and finally,
the shape and position of the obstacle were output. However, it could only be used for
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stationary obstacles. Reina detected farmland obstacles and discerned traversable from
non-traversable areas using stereovision, LIDAR, radar, and thermography fusion [17].
Kragh combined appearance- and geometry-based detection methods by probabilistically
fusing lidar and camera sensing with semantic segmentation using a conditional random
field [18]. Moreover, a small robot platform tested the algorithm in an orchard. Xue studied
the fusion of 2D lidar data and image data to detect trunks [19]. These studies were based
on the distances of obstacles and could not obtain obstacle size information or motion state
information, such as speed, collision time, etc., and no two-dimensional lidar was used
for multi-obstacle research. The above studies were tests in ideal environments indoors or
outdoors, and there were few obstacles detected in actual farmland operation scenarios. In
addition, most of these studies tested small robot platforms and have not been applied to
real agricultural machinery.

Therefore, the objective of this research was to develop a real-time, low-cost, high-
accuracy, pre-collision system as part of the autonomous driving of harvesters. Moreover,
the detection algorithm proposed in this paper can detect an obstacle’s distance and relative
angle using lidar.

2. Materials and Methods
2.1. Equipment

The lidar used in this study was the PACECAT LDS-U50C-S two-dimensional lidar
(Jinhua LANHAI photoelectricity Co., Ltd., Jinhua, China). The lidar is shown in Figure 1.
This lidar is cost-effective and can be used in bright outdoor environments. The protection
level can reach IP65, which is suitable for agricultural applications. The lidar parameters
are shown in Table 1.
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Figure 1. The lidar used in this research.

Table 1. Main parameters of the lidar.

Parameters Value

Measuring range (m) 0.1–40
Ranging accuracy (cm) ±3

Field of view (◦) 360
Angle resolution (◦) 0.09–0.27

Rotating speed (r/min) 300–900

This study’s laser scanning speed was 600 r/min, and the corresponding frame rate
was ten frames per second. The angular resolution was 0.18 degrees, and each data frame
had about 2000 points. The distance and angle data scanned by the lidar were output
through the network port.
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2.2. Lidar Processing Algorithm

In this study, the algorithm for lidar data processing was divided into three steps:
pre-processing, clustering, and obstacle parameter calculation. Preprocessing mainly
included three parts: the selection of the region of interest, coordinate transformation, and
filtering to facilitate subsequent algorithm calculations. Clustering was mainly to detect
and distinguish multiple obstacles. Obstacle parameter calculation was mainly to obtain
the number of obstacles, the width of each obstacle, and the relative speed of each obstacle.

2.2.1. Pre-Processing

Pre-processing was carried out to first delineate the region of interest (ROI) according
to the angle and distance and then only process the data in the region of interest, which
could significantly reduce the processing time of the algorithm. Then, the data were con-
verted from polar coordinates to rectangular coordinates to facilitate subsequent processing.
The data were then filtered, mainly to remove noise due to dust or lidar instability.

The raw data output by the lidar were in polar coordinates. The angle was α, and
the detected distance was d. The position of the 0-degree angle was directly in front of
the lidar. The angle increased clockwise to 360 degrees. During pre-processing, first, the
angular and distance ranges of the region of interest were determined according to the
installation location and the application scenario. The left boundary angle of the ROI was
αL, and the right boundary angle was αR. The data in the region of interest were extracted
and converted into a rectangular coordinate system. A schematic diagram of the region of
interest is shown in Figure 2. The conversion formula is shown in Formula 1.
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{
x = d sin α
y = d cos α

α ∈ [αL, αR] (1)

2.2.2. Filtering

Due to the special environment of agricultural machinery operation, some ambient
light or dust interfered with the test data during the sensing process. This noise was
an impulse noise. It was very similar to the salt and pepper noise in the field of image
processing. This noise could be caused by sharp and sudden disturbances in the signal. An
effective noise reduction method for this type of noise is a median filter or a morphological
filter. To eliminate the influence of these noise points on obstacle detection, we performed
median filtering on the collected data.

Median filtering is a nonlinear signal processing method to eliminate outlier noise. For
each data point to be processed, the data in the left and right neighborhoods are selected
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for sorting according to the selected window length, and the value of the middle size is
selected as the value of this point after filtering. Compared with the mean filter, the median
filter could filter out the salt and pepper noise caused by the dust in the lidar perception.
The window size of the median filter selected in this study was 5. The bubble sort method,
which is a comparison sort, is named for the way the larger elements “bubble” up to the
top of the list [20]. It was used to determine the value of the middle size in the window. An
algorithm diagram of median filtering is shown in Figure 3.
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2.2.3. DBSCAN Clustering

Obstacles in the field include static obstacles and dynamic obstacles, and multiple
obstacles may appear in the area of interest at the same time. In order to cope with such
complex perception scenarios, multiple obstacles need to be distinguished to facilitate
subsequent algorithms to calculate the size information and motion state information of
each obstacle.

This study used a density-based spatial clustering of applications with noise (DB-
SCAN) method to distinguish multiple obstacles. The algorithm divided the points with
sufficient density into clusters and found clusters of arbitrary shapes in the noisy data
sequence. When applying this algorithm, we first determined the minimum number of
points (Nmin_points) of each cluster and the maximum distance threshold (ε) between two
adjacent points during clustering according to the sizes of common obstacles in the field
and the resolution of the lidar. Each cluster was the largest collection of densely connected
points. When clustering, an unclustered point was randomly selected as a seed point
for each frame of data, and the distance (dn) between the seed point and the point to be
clustered was calculated.

dn =
2
√
(xseed − xcur)

2 + (yseed − ycur)
2 (2)

In the formula, xseed and yseed are the abscissa and the ordinate of the seed point,
respectively, and xcur and ycur are the abscissa and ordinate of the current point, respectively.

ε was the distance threshold of clustering. If dn ≤ ε, the current point was the direct
density reachable point of the seed point, and the density reachable point of this point
was calculated in turn. The set of these points was a cluster. Each point of the cluster
was the center, and the cluster was extended with ε as the radius. If there were other
unclustered points within this range, the points were expanded as points within the cluster.
They expanded sequentially until the number of points in the cluster no longer expanded.
If the number of points in the cluster was greater than Nmin_points, the cluster became an
obstacle. Subsequently, the same calculation was performed on the other unclustered points
in the region of interest until the number of clusters no longer increased. Then, the cluster
was divided into multiple obstacles. The number of clusters is considered the number
of obstacles. Each obstacle cluster had an ID value. A simple schematic diagram of the
clustering process is shown in the figure below. In Figure 4, A is the core point, B and C are
the boundary points of the cluster, and N is the outlier point of the cluster.
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2.2.4. Obstacle Information Calculation

After the above processing, each frame of data was clustered into one or more obstacles,
and the number of obstacles was obtained from the number of clusters. Through the
analysis of each obstacle cluster, the real-time width information of the obstacle could be
obtained, and by analyzing the obstacle clusters between the two frames of data, the motion
state information of the obstacles, such as the relative speed and time to collision (TTC),
could be obtained.

The maximum and minimum values of the abscissa of each obstacle cluster point were
calculated to obtain the horizontal boundary [xl , xr] of the obstacle. Then, the real-time
width (W) of the obstacle was

W = |xr − xl | (3)

To obtain the motion state information of the obstacle, it was necessary to perform
differential processing on the obstacle data in the two frames of data. In order to cope
with a scene with multiple obstacles, it was first necessary to perform interframe matching
on the obstacles between the two frames of data to ensure that the obstacle in the current
frame and the obstacle in the previous frame represented the same obstacle. In this study,
two criteria were used for interframe matching; one was the width of the obstacle, and the
other was the point of the obstacle. For two obstacles to be the same obstacle in two frames
of data, first, the difference between the widths of the two obstacles must be less than the
threshold (ω), and second, in the current frame, the abscissa value (xp) of a certain point in
the obstacle cluster is within the range of the abscissa of an obstacle in the previous frame:

∣∣Wcur −Wpre
∣∣ ≤ ω (4)

xl ≤ xp ≤ xr (5)

Each obstacle cluster in the previous frame and the current frame were traversed in
turn, and the ID-matching pair of obstacles between the two frames was obtained. After
obtaining the obstacle matching between the two frames, the relative speed and collision
time of the lidar and the obstacle could be obtained by combining the distance difference of
the obstacle between the two frames and the frame rate.

When calculating the distance between an obstacle and the lidar, if the intermediate
point of the obstacle was directly calculated, there could have been deviations due to the
appearance of individual deviation points in the data. In this study, the 6σ method was used
to eliminate the deviation in the data, and the distance between the obstacle and the lidar
was obtained using the average value of the qualified points. The 6σ method originated
in quality management and is a statistical quality control method. In this study, it was
used to deal with the longitudinal distance of lidar scanning obstacles. The ordinates of the
cluster points of a certain obstacle in the current frame were {y1, y2 · · · yn}. Their average
was calculated as y, and the standard deviation was calculated as σy. The ordinates of the
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cluster points of the obstacle in the previous frame were
{

y′1, y′2 · · · y′n
}

. Their average
value was calculated as y′, and their standard deviation was calculated as σy

′. The ordinate
of any point of the obstacle in the current frame was yi, and all ordinate points that satisfied
the following formula were found:

|yi − y| < 3σy (6)

The average value of all ordinates that met this requirement was calculated as the
longitudinal distance (dcur) of the obstacle from the lidar in the current frame. The ordinate
of any point of the obstacle in the previous frame was y′i, and the same method was used to
calculate all ordinates in the previous frame that satisfied the following formula:

∣∣y′i − y′
∣∣ < 3σy

′ (7)

The same method was used to calculate the average value of all ordinates that met this
requirement as the longitudinal distance (dpre) from the obstacle to the lidar in the previous
frame. According to the distance change and the time interval between the two frames, the
relative movement speed (v) was obtained.

v =
dpre − dcur

∆t
=

dpre − dcur

1/FPS
(8)

In the formula, ∆t is the time interval between the two frames of data and FPS is the
frame rate of the lidar. According to the current distance between the obstacle and the
lidar and the above-mentioned relative movement speed, the remaining time (t) before the
obstacle would collide with the lidar could be obtained as:

t =
dcur

v
=

dcur(
dpre − dcur

)
∗ FPS

(9)

Using the same method, the time for each remaining obstacle to collide with the
lidar was calculated to provide parameter support for the subsequent development of the
pre-collision system.

2.3. Emergency Braking Strategy and Software Development
2.3.1. Emergency Braking Strategy

After the above processing, parameters such as the number of obstacles, the width
of each obstacle, the relative movement speed of the agricultural machine, and the time
until collision with the agricultural machine were obtained. When these parameters
were applied to the agricultural machinery pre-collision system, two main judgment
strategies were used to decide whether to make an emergency stop: 1. A TTC safety
threshold (Tε) was set according to the speed of the vehicle and the movement speed of
common obstacles in the work area. If there was any obstacle whose TTC is less than Tε,
the vehicle was stopped. 2. A dangerous area around the vehicle was set according to
the operation type and the application scenario of the agricultural machinery. In this
research, the area was symmetrical about the Y axis directly in front of the lidar, and the
area could be set by the X and Y values. For each frame of obstacle data processed, it was
judged whether the point closest to the lidar was in the dangerous area by setting the X
and Y values. If there was any obstacle in the area, the vehicle stopped. The division of
areas is shown in Figure 5.
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2.3.2. Software Development

To apply the algorithm to the actual agricultural machinery operation, we developed
the program of the algorithm. The real-time pre-collision system used C++ programming
and combines the MFC library [21] to compile the lidar communication and real-time de-
tection display interface. The software could fill in the IP of the lidar so that the processor’s
network and the lidar were in the same network segment to establish communication.
When the system was running, the black display area of the display interface would high-
light the point of the obstacle. Moreover, if an obstacle was detected through algorithm
processing that threatened driving safety and required a stop, the system would issue a
stop command, and at the same time a prompt sentence would be output in the text box on
the right side of the interface to allow the debugger or user to observe and confirm. A data
processing flow diagram of the software is shown in Figure 6, and the software interface is
shown in Figure 7.
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2.4. Design of a Harvester Pre-Collision System

To verify the effectiveness of the algorithm and apply it to actual agricultural machin-
ery operations, we designed a harvester pre-collision system. The system directed the
harvester to stop when encountering dangerous obstacles based on the obstacle informa-
tion detected by the lidar. The system included a lidar, a display terminal, an automatic
navigation controller, and actuators. A schematic diagram of the hardware design of the
system is shown in Figure 8.
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The lidar sent the data to the display terminal through the network interface using
the UDP protocol. The terminal had 2 G of memory, a 32 G solid-state hard drive, and a
Windows 10 operating system. The agricultural machinery pre-collision system software
developed in C++ ran on the terminal, and the software could use the algorithm mentioned
above to process the lidar data. At the same time, to achieve an unmanned effect during
the test, the system was integrated with the agricultural machinery automatic driving
system, and the automatic driving software was also running on the terminal. The result,
processed by the pre-collision system, was sent to the autonomous driving program on the
terminal through shared memory. The terminal sent the instruction of whether to stop to
the automatic driving controller through the CAN bus. Through the modification of the
harvester, an electric push rod was used as an actuator to replace the gear in the cab to
control the forward motion, stopping, and reversing of the vehicle body. The controller
controlled the extension and contraction of the electric actuator through the IO port to
control the driving and parking of the vehicle body.

The harvester used in this study was a Lovol Gushen GM-100 (Weifang City, Shandong
Province, China)wheat combine harvester. Due to the particularity of the harvester, when
selecting the installation position of the lidar, to avoid the false recognition of obstacles
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caused by lifting the header and reel, the lidar was installed above the cab in this study.
Moreover, the height of the harvester was 3.2 m. To detect low obstacles while ensuring
the detection range of the lidar and reducing blind spots, the scanning surface of the lidar
was tilted down by 20◦. During installation, the 0◦ direction of the lidar scan was the same
as the front of the harvester, which was the positive direction of the Y axis, and the 90◦

direction was the positive direction of the X axis of the coordinate system. Lidar installation
pictures are shown in Figure 9. To facilitate subsequent tests, the pre-collision system was
integrated with the agricultural unmanned driving system. During the test, the display
terminal and controller were installed in the cab to facilitate debugging and the viewing of
obstacles. An installation picture is shown in Figure 10.
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In order to allow the system to automatically stop when it detected an emergency,
we carried out an electronic control modification to the harvester. An electric actuator
replaced the function of shifting in the cab to realize a program-controlled stop. The electric
actuator was connected with the hydraulic continuously variable transmission on the
vehicle body through a linkage mechanism. An installation picture is shown in Figure 11.
The body stopped when the electric push rod was in the neutral position. The contraction
and extension of the electric push rod, respectively, controlled the forward and backward
movement of the body. The position of the push rod was fed back to the controller through
an angle sensor. The controller controlled the expansion and contraction of the push rod
through the IO port to control the stopping and movement of the body.
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Figure 11. Electric linear actuator installation.

2.5. Experiment

In order to test the detection error of the algorithm and evaluate the effectiveness of
the system, we applied a system to the harvester and carried out field trials at the Beijing
Xiaotangshan National Experiment Station for Precision Agriculture in June 2021. During
the test, two main experiments were carried out; one was the multi-obstacle detection test,
and the other was the pre-collision stopping vehicle test. The lidar was installed at the
transverse center in front of the top of the harvester cab, with a downward tilt of about
17 degrees and an installation height of about 3.2 m. The lidar was fixed on the harvester
with a bracket to ensure its relative position remained unchanged to avoid a change in
position affecting the recognition results. Assuming that the height of wheat is 1 m, in order
to avoid detecting wheat by mistake when detecting obstacles, the wheat part was not
included when setting the region of interest. A schematic diagram is shown in Figure 12.
The multi-obstacle detection test was carried out under an actual harvest scenario. During
the test, several people were arranged to walk irregularly in front of the harvester to verify
its detection effect. The pre-collision stopping vehicle test was a dynamic test. During the
test, the harvester was driven into the wheat field for automatic driving operation, and
the normal driving speed was 5 km/h. At the same time, people walked in front of the
harvester as an obstacle to test whether the system detected and stopped effectively.
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Figure 12. The installation position and obstacle detection of the lidar on the harvester.

In the experiment, the angular boundary range of the region of interest was set to
[−70◦, 70◦]. Moreover, because of the harvester’s particularity, the lidar’s installation
had an inclination angle. In order to avoid the false detection of wheat, according to
the inclination angle and the height of the wheat (the average height in this experiment
was 70 cm), the distance range was set to 7.3 m. The sliding window size of the median
filter was 5. The minimum number of clustering points was 4, and the clustering distance
threshold was 0.75 m. The TTC safety threshold was 30 s. According to the width of the
harvester, the extended length of the header, and the speed of the vehicle, the x range of
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the dangerous area was set to [−3, 3], and the range of y was [0, 4]. A test picture is shown
in Figure 13.
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3. Results and Discussion
3.1. Multi-Obstacle Detection Results

In order to test the detection effect of the algorithm on multiple obstacles, during the
test multiple people in the wheat field were tested as obstacles. The heights of the people in
the experiment were 1.75–1.82 m. A test picture is shown in Figure 14. The lidar data were
processed according to the above algorithm steps, and the data of each step were recorded
for analysis. Each processing step is shown in Figure 15.
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Figure 15 shows the processing effect of the algorithm at each step. Figure 15a is the
original lidar data in the polar coordinate system. It can be seen in the figure that due to
the installation position and angle of the lidar and because its left and right sides were
blocked, most of the returned lidar data were in the front. The data from the region of
interest that were extracted and converted to the rectangular coordinate system are shown
in Figure 15b. It can be seen in the figure that there was some reduction in the data after the
region of interest was extracted, and there were some outliers on the right side of the figure.
After filtering, the partial separation group points disappeared, as shown in Figure 15c.
The result of clustering the processed data is shown in Figure 15d. There are six clusters
in the figure. Compared with the previous figure, two points are not shown in the figure
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because they did not meet the clustering conditions. Each different cluster is represented
by a different color.
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Figure 15 was compared with Figure 14 to analyze the obstacle information. Cluster 1
in blue was the harvested ground, with few ups and downs. Cluster 2 in orange was an
unharvested wheat field with a relatively stable height. The gap between the two clusters
was the harvest boundary. Since the forward center of the installed lidar was close to the
left side of the vehicle body and the harvester was closer to the harvesting boundary on
the left side, the lateral center of the collected lidar data was near the harvesting boundary.
Because the lidar had an installation inclination angle, combined with the wheat’s height
and the stubble’s height after harvest, the longitudinal distance of the detected wheat
and the ground was also consistent with the actual situation. Cluster 3 in gray, cluster
4 in yellow, and cluster 5 in light blue in the upper right of the graph correspond to the
four people in the front right and far away from the harvester in the experimental graph.
Since the lidar installation had a certain scanning angle and these people were relatively
close, two people were clustered as one obstacle during the clustering. However, it did not
affect the overall pre-collision effect. Cluster 6 in green at the bottom right of the graph
corresponds to the white-clothed person near the harvester in the experimental picture. It
can be seen from the experiment that the application of this algorithm can realize low-cost
two-dimensional lidar harvester multi-obstacle detection.
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A total of 223 frames of data were collected and clustered during the multi-obstacle
detection, of which 212 frames were correctly clustered. The accuracy rate of the multi-
obstacle detection was 95.06%.

3.2. Pre-Collision Results

In order to test whether the pre-collision system could stop autonomously after detect-
ing dangerous obstacles, we conducted a test. In order to test the effect of the pre-crash
system, experiments were carried out in this research. During the test, humans acted as
obstacles within the detection range of the lidar to test whether the system could stop
autonomously after detecting dangerous obstacles. During the test, the number of obstacles
that occurred in front of the harvester and the number of vehicle stops were recorded.
The test results’ precision rate and recall rate were calculated to analyze the system’s
abnormal situation.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

where P is the precision rate and R is the recall rate; TP is the number of times an obstacles
occurred and the vehicle stopped correctly; FP is the number of times an obstacles occurred
and the vehicle did not stop; and FN is the number of times the vehicle stopped without
obstacles. The harmonic mean value (F) of the precision rate and recall rate is

F =

(
α2 + 1

)
× P× R

α2(P + R)
(12)

In the formula, α is the value of the harmonic parameter. Under normal circumstances,
the value of α is 1. In this case, F is

F1 =
2× P× R

P + R
(13)

Five groups of experiments were conducted in this study. Each group included
4–6 anti-collision tests. The number of trials and the number of successful trials in each
group were recorded. The recorded data analysis is shown in Table 2.

Table 2. Analysis of pre-collision system test.

Test Group Number of
Frames

The Number
of Obstacles

That Occurred

The Number of
Vehicle Stops Precision Rate Recall Rate Harmonic

Mean Value

1 791 5 5 100% 100% 100%
2 849 4 4 100% 100% 100%
3 610 5 4 80% 100% 88.89%
4 1274 6 5 83.33% 100% 90.91%
5 341 5 5 100% 100% 100%

It can be seen in Table 2 that in the five groups of experiments that were carried out,
tests 1, 2, and 5 could all stop correctly. However, in test groups 3 and 4, the number
of vehicle stops was less than the number of obstacles that occurred; that is, there was a
situation where an obstacle appeared, but the vehicle did not stop. This led to a drop in the
recall rate. The reason may be that the obstacle was not within the effective detection range
of the lidar, causing the failure to stop the vehicle. Alternatively, the obstacle was not in
the danger zone, and the time to collision had not reached the set threshold, so the vehicle
did not stop. In this situation, the harmonic mean values of the third and fourth groups
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were 88.89% and 90.91%, respectively. The average precision rate was 92.67%. The average
harmonic mean value was 95.96%.

4. Conclusions

This research used low-cost two-dimensional lidar to detect obstacles in farmland.
An algorithm for identifying multiple obstacles and calculating each obstacle’s size and
movement status was proposed. The algorithm performed pre-processing to delineate
the region of interest, perform coordinate conversion, and filter the data. Then, it used
the density-based clustering method to obtain the number and width of each obstacle.
Finally, the relative motion speed and the time to the collision for each obstacle and the
vehicle body were obtained based on the interframe difference algorithm. This algorithm
was used to realize the software development of agricultural machinery pre-collision
systems, using Windows as the system platform and C++ as the programming language.
Multi-obstacle tests and pre-collision tests were carried out on the system. The test results
showed that the system could effectively detect multiple obstacles. The accuracy rate
of multi-obstacle detection was 95.06%. The accuracy rate of stopping when dangerous
obstacles were detected was 92.67%. The harmonized average of the accuracy and recall
rates was 95.96%. This research provides a foundation for the safe autonomous driving of
agricultural machinery. In the future, more complex and efficient obstacle circumvention
strategies can be studied based on the number, width, speed, and other parameters of the
detected obstacles.
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Abstract: Air-assisted sprayers are widely employed in orchards, but inappropriate spray parameters
can lead to large droplet losses, pesticide waste, and environmental pollution. To investigate the
factors affecting the droplet loss of an air-assisted sprayer behind canopies, a two-factor, five-level
full experiment was conducted in an actual orchard, where the two factors were the power gradient
and foliage area volume density (FAVD). In addition, the location of the sampling point was also
considered in the data analysis, including horizontal distance, forward distance, and height. The
results show that all factors significantly affected droplet coverage (p-value < 0.01). The droplet
coverage showed an increase and then a decrease with an increasing power gradient, and the
maximum coverage was measured at power gradient P3 (forward speed: 0.49 m/s, spray pressure:
0.30 MPa, and spray flow rate: 7.13 L/min) or P4 (forward speed: 0.58 m/s, spray pressure: 0.35 MPa,
and spray flow rate: 8.44 L/min). The effect of FAVD on droplet coverage had obvious regularity,
and this regularity did not change with the power gradient. At different positions behind canopies,
the droplet coverage had great differences. The droplet coverage gradually decreases with increasing
horizontal distance and height, while increasing with forward distance. This study provides a
reference for the air-assisted sprayers to reduce droplet loss, and data support for subsequent
research on precision spraying based on FAVD.

Keywords: air-assisted sprayer; behind canopies; droplet loss; foliage area volume density (FAVD);
environmental pollution; orchard

1. Introduction

Air-assisted sprayers are widely employed in orchards to improve spray efficiency [1,2].
Droplets rely on the air-assisted sprayer’s fan to obtain a greater initial velocity, while the
airflow generated by the fan enables leaves to turn over. The flow enhances the droplet
deposition within canopies. However, if the operating parameters are not properly set,
droplets will be carried away by the airflow, resulting in droplet loss, which mainly contains
the deposition loss to the ground and the diffusion loss to the air [3–5]. Off-target losses
lead to the pollution of the orchard environment. Especially, the loss behind canopies
facilitates pesticide residues in neighboring crops and soils [6–8], which is the main form of
pesticide pollution to the environment [9,10].

Current research on anti-drift air-assisted sprayers focuses on developing anti-drift
technologies to enhance droplet deposition in canopies to reduce drift [11–13]. Computa-
tional Fluid Dynamics (CFD) simulation is a common method to study droplet loss and
drift. Pascuzzi et al. performed a numerical simulation to analyze the drift patterns of
the droplets with different diameters influenced by airflow directions [14]. Hong et al.
evaluated the droplet deposition and drift loss from an air-assisted sprayer in the form of
CFD simulation [15]. Duga et al. developed a CFD model for drift from an air-assisted
sprayer, and analyzed the effect of nozzle position, number of nozzles, and fan speed on
droplet drift based on this model [16]. Although CFD simulations predict the deposition
and drift of droplets, there are differences between the simulated and actual environments.
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The simulation results can only serve as a reference and still need to be verified by ac-
tual operation. In terms of anti-drift technology and mechanism improvement, conical
airflow anti-drift devices [17,18], anti-drift nozzles [19,20], and other mechanisms were de-
signed [21]. Rathnayake et al. evaluated the downwind drift characteristics of air-assisted
sprayers in apple orchards and found that the drift distance of droplets in the downwind
direction would exceed 183 m [22]. In addition, applicable methods for the evaluation
of pesticide droplet drift or loss were developed [23,24]. These studies provided useful
implications for the improvement of air-assisted spraying technology and the selection of
application parameters. The canopy characteristics had a great influence on droplet drift in
actual operations [25–27]. However, these characteristics were not considered in the studies.
Therefore, the factors affecting droplet drift or loss in practice are not well-understood, and
further research is needed.

In this paper, an experiment was conducted in an orchard to investigate the factors
influencing the droplet loss of air-assisted sprayers behind canopies. The purpose is to
clarify the effects of different factors on droplet loss behind canopies and quantify each
factor’s impact. This study provides a reference for air-assisted sprayers to reduce droplet
loss in orchard spraying.

2. Materials and Methods
2.1. Air-Assisted Sprayer

A tower-type air-assisted sprayer, G6S, was selected (Figure 1A), which was pro-
duced by Shandong Guohaha Agricultural Machinery Co., Ltd. (Linyi, China). The
main technical parameters are: the overall dimensions of the G6S air-assisted sprayer are
2500 × 1050 × 1500 mm, the maximum capacity of the tank is 350 L, the maximum spray
pressure is 2.0 MPa, the pump is a three-cylinder plunger pump, and the maximum flow
rate of the pump is 48 L/min. The nozzle is a small bee nozzle (Shandong Guohaha
Agricultural Machinery Co., Ltd., Linyi, China), which is a two-way nozzle that combines a
fan-shaped and a conical nozzle (Figure 1B). Spraying was performed with the fan-shaped
nozzle during the experiment, and the spray angle of the fan-shaped nozzle is 65◦. All
18 nozzles are symmetrically distributed on both sides of the tower. The forward speed,
fan speed, and pressure of the sprayer are directly controlled by the throttle, which is
commonly used for air-assisted sprayers in orchards in China at present.
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Figure 1. G6S tower air-assisted sprayer.

2.2. Experimental Scheme

The experiment was conducted from 8 to 25 April 2020 in Tianyang District, Baise City,
Guangxi Zhuang Autonomous Region, China. The fruit tree is mango with large canopies.
Planting parameters such as row spacing, plant spacing, and plant height were determined
in the experimental area by randomly measuring 30 times with a tape measure. Row
spacing, plant spacing, and plant height were on average 4.5, 3.5, and 4.5 m, respectively.
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A two-factor, five-level full experiment was conducted. The two factors were the
power gradient and the foliage area volume density (FAVD) of the fruit tree canopy.

FAVD is the sum of the leaf area per unit volume at a certain height (m2/m3). The
FAVD at different positions of the canopy is different. Therefore, the average FAVD at
different positions of fruit tree canopies was used to represent the FAVD of the whole tree.
Five fruit trees were randomly selected as the five levels of the FAVD, labeled Tree1, Tree2,
Tree3, Tree4, and Tree5. The measurement method is described as follows:

(a) A 50 × 50 × 50 cm cubical frame was selected to randomly frame the canopy 5 times.
(b) The number of leaves in the frame was counted, and the average value was calculated.
(c) The average area of individual leaves of fruit trees was calculated using the following

image processing method [28]:

u Pre-processing the acquired image.
u Segmenting the labeled images to obtain target images.
u Calculating the actual area of the leaf by the reference method.

(d) The FAVD of each fruit tree was calculated based on Equation (1):

FAVD =
N × Slea f

V
(1)

where Sleaf is the area of the leaf, N is the average number of leaves in the cubical frame,
and V is the volume of the cubical frame.

Spray experiments were conducted at five power gradient levels. These levels were
the five positions of the air-assisted sprayer throttle, marked P1, P2, P3, P4, and P5. The five
power gradients were calibrated before the start of the experiment. Per power gradient,
the average forward speed was determined by recording the time to cross a distance of
30 m, 5 times. The time of each case was recorded, and then the ratio of distance to
time was calculated to obtain the average speed. The fan speed was measured five times
by a UNI-T UT370 photoelectric tachometer (UNI-Trend Technology (China) Co., Ltd.,
Dongguan, China) for each power gradient and then averaged. The airflow rate at each
nozzle outlet was measured by a Testo 405i thermal wireless anemometer (Testo AG, Titisee-
Neustadt, Germany), so there were 18 anemometers in total. Per power gradient, data were
continuously collected for 30 s (about 15 data points). The average of these 15 data points
was selected as the outlet airflow rate of the corresponding nozzle. The Testo 405i thermal
wireless anemometer was connected to an android phone via Bluetooth to save the data in
real time.

Spray pressure and spray flow rate can be calculated according to Equations (2) and (3):

Ppressure =
Vtest

Vmax
× Pmax (2)

Ff low =
Vtest

Vmax
× Fmax (3)

where Ppressure is the spray pressure, Vtest is the forward speed calibration value, Vmax is the
maximum forward speed, Pmax is the maximum spray pressure, Fflow is the spray flow rate,
and Fmax is the maximum spray flow rate.

The experimental scheme is shown in Figure 2. First, 3 × 3 × 3 sampling points
(27 sampling points) were arranged behind the canopies of 5 fruit trees and divided into
3 layers: top, middle, and bottom. Second, the sampling points of each layer were labeled
in the order of 1–9. To express each location more clearly, measurement locations were
defined. For example, the location of sampling point 1 at the top layer was described as
‘1 top’, and that at the bottom layer was defined as ‘1 bottom’. The horizontal distance
from the central line of the sprayer to the tree center was 1.8 m. The horizontal distance
from the center of the tree to the first sampling point was 1.8 m. In each layer, the distance
between sampling points was 1.2 m, the distance between each layer was 0.8 m, and the

313



Agronomy 2023, 13, 375

distance from the bottom layer to the ground was 0.8 m. Therefore, the sampling distances
from the center of the tree were 1.8, 3.0, and 4.2 m, respectively. The heights were 0.8, 1.6,
and 2.4 m, respectively. The distances along the trees were 0, 1.2, and 2.4 m, respectively.
Water-sensitive paper (WSP) (76 × 26 mm) was used to collect droplets, which was fixed
at each sampling point with paper clips. For safety reasons and the impact on fruit trees,
water was chosen as the solution during the experiment.
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Figure 2. Schematic of the experimental scheme.

Before each experiment, the WSPs were arranged on the sampling points. Then, the
air-assisted sprayer was started, the power gradient was varied, the nozzle was turned on,
and the sprayer was steadily run to pass by the test fruit trees at a uniform speed along
the centerline between the rows. After traveling to a distance of 20 m from the test fruit
trees, the sprayer was turned off. After drying, the WSPs were collected and scanned. The
above experimental process was repeated in the order of Tree1 to Tree5 and power gradient
P1 to P5, with a minimum interval of 30 min between each experimental group. In total,
675 samples were thus collected.

To facilitate the analysis of each sampling point’s location, a three-dimensional co-
ordinate system (O-XYZ) was constructed. The intersection of the plane containing the
sampling points 1, 2, and 3 was taken as well as the sprayer central axis and the ground as
the coordinate origin O. The direction vertical to the forward orientation was the X-positive
direction, the direction of forward orientation was the Y-positive direction, and the vertical
direction upward from the ground was the Z-positive direction.

X represents the horizontal diffusion direction of droplets, which was used for the
subsequent analysis of the correlation between droplet coverage and horizontal distance. Y
represents the forward diffusion direction of droplets with the sprayer, which was used for
the analysis of the correlation between droplet coverage and forward distance. Z represents
the vertical diffusion direction of droplets, which was used for the analysis of the correlation
between droplet coverage and height.
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2.3. Data Analysis Methods
2.3.1. Selection of Dependent Variables

The WSPs collected by the experiment were processed using DepositScan™ software
(version 1.2). The parameters used to represent the spray effect commonly include droplet
coverage and droplet quantities. The data of the two parameters were read and saved
in an Excel file. In this study, the F-test was used to obtain the consistency between the
two parameters, and the appropriate parameter was selected as the dependent variable for
the subsequent analysis.

As the units of the two parameters were not the same, the values were first normalized
separately according to Equation (4) before the analysis:

x∗ =
xi − xmin

xmax − xmin
(4)

where x* is the normalized result, xi is the original data, xmin is the minimum value of the
original data, xmax is the maximum value of the original data, and i is the ordinal number.

2.3.2. Variables’ Significance Based on Analysis of Variance (ANOVA)

Five variables (FAVD, power gradient, horizontal distance (X), forward distance (Y),
and height (Z)) were selected as factors during the experiment. The droplet coverage at the
sampling site locations was selected as the dependent variable in a multi-way ANOVA,
with the magnitude of the p-value indicating the significant factors.

Based on the ANOVA, the effect of these five variables on droplet coverage was
separately analyzed and drawn by Origin 2019 for visualization.

For analyzing the effect of the power gradient, the power gradient was utilized as the
horizontal axis, and droplet coverage was used as the vertical axis.

For analyzing the effect of FAVD, FAVD was utilized as the horizontal axis, and droplet
coverage was used as the vertical axis. The droplet coverage was averaged for all sampling
point locations behind canopies. The calculation method is shown in Equation (5):

C =
∑n

j=1 Cj

n
(5)

where C is the average droplet coverage, Cj is the droplet coverage of the j-th sampling
point, n is the number of sampling points, n = 27, and j is the ordinal number.

For analyzing the droplet coverage difference of the position behind canopies, the
three sections in the Y direction (Y = 0, Y = 1.2 m, and Y = 2.4 m) were selected to examine
the variation of droplet coverage with horizontal distance and forward distance.

3. Results
3.1. Results of FAVD Calculation and Power Gradient Calibration

FAVD calculation results are shown in Table 1. The power gradient calibration results
are shown in Table 2 and Figure 3.

Table 1. FAVD calculation results.

Tree Number FAVD/(m2·m−3)

Tree1 2.72
Tree2 2.32
Tree3 1.50
Tree4 1.92
Tree5 2.22
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Table 2. Power gradient calibration results.

Power Gradient Forward Speed
(m·s−1)

Fan Speed
(RPM)

Spray Pressure
(MPa)

Spray Flow Rate
(L·min−1)

P1 0.25 9850 0.15 3.63
P2 0.31 10,789 0.19 4.51
P3 0.49 18,820 0.30 7.13
P4 0.58 20,930 0.35 8.44
P5 0.65 22,985 0.39 9.45

Note: All calculated values in the table are average values.
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Figure 3. Minimum and maximum airflow rates (m/s) at the nozzle outlets on both sides of the
air-assisted sprayer for each power gradient.

3.2. Result of Dependent Variable Selection

An F-test was conducted to observe the consistency between droplet coverage and
droplet quantities, and the results are shown in Table 3.

Table 3. F-test results for droplet coverage and droplet quantities.

Tree Number p-Value

Tree1 0.07
Tree2 0.11
Tree3 0.13
Tree4 0.57
Tree5 0.25

According to the results of the F-test, the p-values of all five trees were greater than
0.05, indicating no significant difference between droplet coverage and droplet quantities.
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Therefore, droplet coverage was selected as the dependent variable for subsequent analysis
in this study.

3.3. Results of Variables’ Significance

The ANOVA results are shown in Table 4.

Table 4. Results of ANOVA on factors influencing droplet coverage behind canopies.

Factor Spray Variable F Value p-Value Significance

FAVD

Droplet coverage

7.74 5.56 × 10−3 **
Power gradient 116.63 <2.2 × 10−16 ***

Horizontal distance (X) 23.17 1.83 × 10−6 ***
Forward distance (Y) 6.75 9.55 × 10−3 **

Height (Z) 80.40 <2.2 × 10−16 ***
Note: Significance: *** 0.001, ** 0.01.

As can be seen from Table 4:

(1) For droplet coverage, all five factors were significant. Among them, power gradient,
horizontal distance, and height were the most significant, followed by FAVD and
forward distance. Although the five factors showed different levels of significance,
the p-value of each factor was less than 0.01.

(2) The actual spray needs to combine two factors, FAVD and power gradient, to reduce
the droplet coverage behind the canopy. For the actual spray, FAVD is the fruit tree
variable and power gradient is the sprayer variable, both of which are decisive for
droplet coverage, so it is important to focus on these two variables to reduce the
droplet coverage of a non-target (non-canopy).

3.4. Effect of the Power Gradient on Droplet Coverage behind Canopies

The variation of droplet coverage with power gradient is shown in Figure 4.

Agronomy 2023, 13, 375 7 of 20 
 

3.3. Results of Variables’ Significance 
The ANOVA results are shown in Table 4. 

Table 4. Results of ANOVA on factors influencing droplet coverage behind canopies. 

Factor Spray Variable F Value p-Value Significance 
FAVD 

Droplet coverage 

7.74 5.56 × 10−3 ** 
Power gradient 116.63 <2.2 × 10−16 *** 

Horizontal distance (X) 23.17 1.83 × 10−6 *** 
Forward distance (Y)  6.75 9.55 × 10−3 ** 

Height (Z)  80.40 <2.2 × 10−16 *** 
Note: Significance: *** 0.001, ** 0.01. 

As can be seen from Table 4: 
(1) For droplet coverage, all five factors were significant. Among them, power gradient, 

horizontal distance, and height were the most significant, followed by FAVD and 
forward distance. Although the five factors showed different levels of significance, 
the p-value of each factor was less than 0.01. 

(2) The actual spray needs to combine two factors, FAVD and power gradient, to reduce 
the droplet coverage behind the canopy. For the actual spray, FAVD is the fruit tree 
variable and power gradient is the sprayer variable, both of which are decisive for 
droplet coverage, so it is important to focus on these two variables to reduce the 
droplet coverage of a non-target (non-canopy). 

3.4. Effect of the Power Gradient on Droplet Coverage behind Canopies 
The variation of droplet coverage with power gradient is shown in Figure 4. 

Figure 4. Effect of the power gradient on droplet coverage. 

From Figure 4, it can be seen that: 
(1) The power gradients of P1 and P2 may be more suitable for fruit tree spraying. For 

the five fruit trees, the loss behind the canopy, as expressed as droplet coverage on 
WSPs, was lower at P1 and P2. According to the authors’ previous research [29], the 
droplet coverage within the canopy could meet the spray requirements when power 

   
Tree 1 Tree 2 Tree 3 

  
Tree 4 Tree 5 

Figure 4. Effect of the power gradient on droplet coverage.

317



Agronomy 2023, 13, 375

From Figure 4, it can be seen that:

(1) The power gradients of P1 and P2 may be more suitable for fruit tree spraying. For
the five fruit trees, the loss behind the canopy, as expressed as droplet coverage on
WSPs, was lower at P1 and P2. According to the authors’ previous research [29],
the droplet coverage within the canopy could meet the spray requirements when
power gradients were P1 and P2. Therefore, P1 or P2 could be preferred for fruit tree
spraying to reduce the droplet coverage behind canopies.

(2) The use of power gradients P3 and P4 could be best avoided when spraying mango
trees. The droplet coverage increased first and then decreased with the power gradient.
In Figure 4, P3, P4, and P5 reached the highest losses, quantified by droplet coverage.
For Tree2 and Tree3, the average droplet coverage at P3 (Tree2: 56.97%, Tree3: 47.22%)
was larger than at P5 (Tree2: 54.39%, Tree3: 39.10%), so P3 or P4 resulted in the highest
losses, and the actual spraying should pay attention to the serious loss formed by
these two power gradients.

3.5. Effect of FAVD on Droplet Coverage behind Canopies

Figure 5 shows the variation of droplet coverage with FAVD. It could be indicated that:

(1) With the increase of the FAVD, the average coverage of droplets behind canopies
under different power gradients showed a decrease, increase, and then a decrease.
Overall, the droplet coverage of Tree4 and Tree5 was smaller than that of Tree1, Tree2,
and Tree3.

(2) The power gradient did not change the relationship between FAVD and droplet
coverage, but changed the maximum value of average droplet coverage, e.g., P1
maximum value was 12.73% (Tree3), while P5 maximum value was 56.97% (Tree2).

(3) The effect of FAVD on droplet coverage had obvious regularity, and this regularity
did not change with the power gradient. Therefore, in actual spraying, the effect of
FAVD on droplet coverage should be considered.
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3.6. Droplet Coverage Difference of the Position behind Canopies

The variation of droplet coverage in the horizontal distance (X) and height (Z) at
Y = 0, Y = 1.2 m, and Y = 2.4 m was separately analyzed. Some of the results are shown in
Figures 6–8. All the results are shown in Appendices A–C.
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From Figures 6–8, it can be seen that:

(1) As the horizontal distance (X) and height (Z) increased, the droplet coverage gradu-
ally decreased. During actual spraying, the spray parameters can be appropriately
adjusted to improve the droplet coverage of the target and reduce the droplet loss.

(2) The droplet coverage gradually increased in the Y direction (forward direction). When
the FAVD and power gradient were constant, the droplet coverage gradually increased
along the Y direction. Although the trends under some conditions were different
(such as Tree4 under the P3 power gradient), it did not affect the overall regularity.
This may be due to experimental errors caused by environmental factors.

(3) The possible reasons for the increase of droplet coverage along the Y direction were:
the forward speed of the sprayer in the Y direction makes the droplets have an
initial velocity, and the droplet coverage in the current section was formed by the
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superposition of the current droplets and the previous droplets. Thus, the droplet
coverage gradually increased along the Y direction.

(4) For different power gradients, the variation regularity of droplet coverage along
horizontal distance and height did not change, but the value of droplet coverage
changed.

4. Discussion

In this study, to explore the loss of droplets behind canopies during spraying of fruit
trees by air-assisted sprayers, a two-factor, five-level full experiment was conducted. The
FAVD of fruit trees was tested as a factor. To examine the effect of FAVD on droplet loss,
the experiment results showed that the FAVD significantly affected the droplet coverage
(Table 4 and Figure 5). The FAVD was rarely involved in other studies on the effects of
spraying in orchards. It is usually focused on the influence of spray pressure, airflow rate,
and other parameters on droplet loss [10,30–32]. Although Sun et al. considered FAVD
when studying the droplet penetration model of fruit trees, they did not clarify the effect of
FAVD on droplet loss [33].

The application of air-assisted sprayers in orchards has significantly improved spray-
ing efficiency, but it has also caused many problems, such as excessive spraying, pesticide
residues, and environmental pollution. Many studies have proven that the adjustment of
the pesticide application rate according to the characteristics of the fruit tree canopy is an
effective means to reduce pesticide residues and environmental pollution [34–38]. However,
the acquisition of canopy features was generally based on the ‘sensor scanning/acquisition–
solving geometric equations–fitting canopy profile’ method [39,40], which simplified the
asymmetric and porous structure of the canopy. Canopy characteristics mainly include
canopy volume, leaf wall area, FAVD, etc. FAVD is the parameter that best reflects the char-
acteristics of the canopy. Based on this study, studying the detection method of FAVD, and
adjusting the spraying parameters based on this, will significantly reduce the droplet loss.

This study provides data support for subsequent research on precision spraying based
on FAVD. However, there are still some shortcomings:

(1) In this paper, only one air-assisted sprayer was used as the experimental equipment,
and a variety of sprayers can be used for comparative experiments in the future.

(2) The G6S air-assisted sprayer uses the throttle (power gradient) to simultaneously
adjust parameters such as forward speed, fan speed, spray pressure, and spray flow
rate. These parameters cannot be separately adjusted, so experiments with different
parameter combinations were not conducted.

(3) In this paper, mango trees with large canopies were used as the experimental trees.
Later, experiments can be carried out on different types of fruit trees to explore the
regularity of droplet loss in different types of fruit trees.

5. Conclusions

A two-factor, five-level full experiment was conducted in an actual orchard. The effects
of the power gradient and FAVD on droplet coverage behind canopies were analyzed, and
the droplet coverage difference behind the canopies was clarified. Based on a detailed
analysis of the experimental data, the following conclusions were obtained:

(1) Droplet coverage and droplet quantities were consistent, and five factors (power
gradient, FAVD, horizontal distance (X), Forward distance (Y), and height (Z)) were
significantly affected by droplet coverage behind the canopies (p-value < 0.01).

(2) In this study, power gradients P1 (forward speed: 0.25 m/s, spray pressure: 0.15 MPa,
and spray flow rate: 3.63 L/min) and P2 (forward speed: 0.31 m/s, spray pressure:
0.19 MPa, and spray flow rate: 4.51 L/min) resulted in the lowest losses behind the
canopy, as quantified by droplet coverage on WSPs. Based on the results found in
this study, the use of power gradient P3 (forward speed: 0.49 m/s, spray pressure:
0.30 MPa, and spray flow rate: 7.13 L/min) or P4 (forward speed: 0.58 m/s, spray
pressure: 0.35 MPa, and spray flow rate: 8.44 L/min) should be avoided.
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(3) The effect of FAVD on droplet coverage had obvious regularity. With the increase of
FAVD, droplet coverage first decreased, then increased, and finally, decreased again.
This regularity did not change with the power gradient. At different positions behind
canopies, the droplet coverage considerably varied. As the horizontal distance (X)
and height (Z) increased, the droplet coverage gradually decreased. However, the
droplet coverage gradually increased in the Y direction (forward direction).

This study revealed the loss regularity of droplets behind the fruit tree canopy, which
can provide reference for the selection of operation parameters. The effect of FAVD on
droplet loss was clarified, and data support was provided for the subsequent research on
variable spraying based on FAVD.
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Abstract: The existing control methods for the slip rate of the driving wheel of a test prototype have
limitations that cause low-quality tillage and finishing operations. We propose a slip rate control
method based on the dual factor adjustment of wheel speed and tillage depth, taking the power shift
tractor New Holland T1404 as an example to verify the algorithm. This method employs the wheel
speed control principle based on the power transmission ratio calculation, throttle adjustment, and
wheel speed control methods, as well as the slip rate control method, with wheel speed–slip rate
control as the main factor and tillage depth–slip rate control as the secondary factor. A tractor test
prototype was built to validate the method. The wheel speed control method enabled the tractor to
accurately control the wheel speed under three working conditions: no load on a cemented ground,
no load in a field, and subsoiling operation. For the subsoiling operation, the slip rate control method
gradually reduced the tractor wheel speed when the slip rate of the tractor’s drive wheel was too
high until it met the requirements. When the wheel speed was adjusted to the lower limit, suspension
control was performed to reduce the tillage depth and improve vehicle trafficability. In the 130 s
validation test, it took 14.1 s for the tractor with the slip rate control function to have a wheel slip rate
exceeding 20%, which was 25.4% lower than that of the tractor without this function. The proposed
method controls the slip rate within the optimal range while ensuring maximum operation quality
(tillage depth).

Keywords: high-power tractors; subsoiling operation; multiple factors; joint-control method

1. Introduction

As the most widely used selfpropelled power machinery in field and management
operations, tractors can complete the traction and driving operations of agricultural equip-
ment [1,2]. In the process of land preparation, the operation type (such as ploughing,
subsoiling, and rotary tillage), operation parameters (such as the number of ploughs, depth,
and width), and the tractor driving parameters (including speed and wheel slip rate) affect
the operational performance of the tractor directly [3,4]. Owing to the relatively complex
field operation environment and fluctuations in the operating load, the tractor in the op-
erational process easily produces an excessive drive-wheel slip rate, which reduces the
operating efficiency and damages the soil environment [5–7].

Approximately 20–55% of the available tractor energy is wasted at the tire-soil inter-
face [8]. A high slip rate leads to wasted tractor power and accelerates the wear of the
tires [9,10]. Authoritative research has shown that a tractor wheel slip rate of 10–20% is
optimal [11–13]. Therefore, with the integration of agronomy and agricultural machinery
for soil protection requirements and the increasing degree of intelligence of medium and
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large tractors [14], drive antiskid operations have gradually become a research hotspot in
the field of intelligent operation control of tractor units.

In the 1980s, Chancellor and Zhang discovered that controlling the slip rate could save
energy and fuel and become efficient in tractor operations [15]. Mirzaeinejad and Mirzaei
investigated the effect of the ratio of front and rear axle loads on the slip rate of the drive
wheels in a tractor. They found that with a front axle load ratio of 45–55%, the tractor has
a low slip rate regarding the drive wheels and good traction performance [16]. Pranav
designed an automatic slip rate control system and analysed the effectiveness of slip rate
control in terms of fuel consumption and traction capacity [17]. Pasillas-Lépine studied an
automatic control method for tractor slip rate with the slip rate and acceleration calibration
as the control objectives, but the control accuracy was poor [18].

After years of research, there have been more studies on slip-rate control. Most
slip-rate control studies are based on automatic tillage depth control and algorithms.
Gupta designed and developed a slip-rate control system based on an Arduino Mega
2560 microcontroller for a two-wheel-drive tractor. The control strategy is to drive the
motor to reduce the tillage depth when the slip rate exceeds the upper limit of the set range
and increase the tillage depth if the slip rate is less than the lower limit [14]. Zhang et al.
proposed a nonlinear slip-rate control method for tractor-drive wheels based on sliding
mode variable-structure control. The method uses traction as the primary regulation target
and slip rate as the secondary regulation target. The drive-wheel slip rate of the tractor
was effectively controlled at approximately 20% of the optimal value [19]. Based on the
fuzzy control theory, Soylu developed an automatic slip-rate control system for agricultural
tractors. He established a control relationship between the slip rate and tillage depth using
the drive-wheel slip rate as a separate input. He determined the variation in tillage depth
in the fuzzy controller [20].

In summary, to reduce the slip rate of the driving wheels, most existing slip-rate control
studies reduce the traction resistance of the tractor by adjusting the tillage depth. These
methods are straightforward and effective; however, the reduced tillage depth reduces the
working quality. Therefore, more factors should be incorporated into the slip-rate control
method, such as the tractor travel speed, fuel consumption, tractive effort, and engine load.

In this study, we aimed to develop a tractor slip-rate control system and propose
a method to control the slip rate of the drive wheel by adjusting the tractor operating
wheel speed and the three-point hitch mechanism height. This method mainly includes
the wheel speed control principle based on the methods of the power transmission ratio
calculation, throttle adjustment, and wheel speed control, and the slip rate control method,
with wheel speed–slip rate control as the main factor and tillage depth–slip rate control as
the secondary factor. A test platform was built based on a power shift tractor. The typical
working conditions are cement ground with no load, field flat ground with no load, and
subsoiling. Field experiments were conducted to verify that the proposed method can
effectively control the tractor wheel speed and reduce the time when the wheel slip rate
exceeds 20% during the subsoiling operation of the tractor. A block diagram of the study
design is shown in Figure 1.
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Figure 1. Block diagram of the study design.

2. Materials and Methods
2.1. Control Method

A method was proposed to control the slip rate of the drive wheel by adjusting the
tractor operating wheel speed and three-point hitch mechanism height. This method mainly
included the wheel speed control principle based on the methods of the power transmission
ratio calculation, throttle adjustment, and wheel speed control, and the slip-rate control
method with wheel speed-slip rate control as the main factor and tillage depth-slip rate
control as the secondary factor.

2.1.1. Wheel Speed Control Principle

In this study, we aimed to control tractor wheel speed precisely. The wheel speed
control method can calculate the current gear based on the target speed and target engine
speed, fine-tune the real-time engine speed, and achieve a target speed to achieve accurate
control of the wheel speed.

The engine speed and transmission ratio of the transmission system jointly determine
tractor wheel speed. By referring to the New Holland T1404 tractor operation manual, a
wheel speed for the tractor of 2200 r/min rated engine speed for each gear can be obtained.
A comparison of gears and speeds is presented in Table 1.

From this, the relationship between the engine speed in each gear and tractor wheel
speed can be calculated, as shown in Figure 2.
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Table 1. Comparison of gears and speeds.

Gears Speed (km·h−1)

A1 2.4
A2 2.9
A3 3.4
A4 4.1
A5 4.9
A6 5.8
B1 5.5
B2 6.6
B3 8.0
B4 9.6
B5 11.3
B6 13.6
C1 15.7
C2 18.8
C3 22.6
C4 27.2
C5 32.0
C6 38.5
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Figure 2. Relationship between tractor wheel speed and engine speed in each gear.

Various combinations of engine speed and gearbox power transmission ratios exist
to meet the requirements at the same wheel speed, which must be selected according to
the actual operational conditions. The fuel economy was relatively high when the engine
was operated at an economical speed. Because wheel speed was the control target, yet the
gearbox was stepped, it was often impossible to meet the engine speed and wheel speed
requirements. We used the power transmission ratio calculation, throttle adjustment, and
wheel speed control methods.

• Gear Calculation Method

The wheel speed and engine speed commands were obtained; the wheel speed–engine
speed relationship in the ideal gear is indicated by the dashed line G’ in Figure 3. Due to
the limitation of the gearbox structure, only the neighbouring gears, G1 or G2, could be
selected. The target speed was adjusted to n1 or n2 (the one with a smaller gap to the target
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speed is preferred) to achieve the wheel speed as the control target; the engine speed was
close to the requirement. The speed controls covered in this study were all wheel-based
speed controls.
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• Throttle-Adjustment Method

When the tractor gear remains unchanged, the tractor wheel speed is only related to
engine speed. Therefore, the control system controls the engine speed after gear changes
by adjusting the throttle to control the tractor drive wheel speed. This calibration test used
a voltmeter to collect the voltage analogue output values of the maximum and minimum
throttle openings, set as 0% and 100%, respectively. A voltage analogue input was used
to control the throttle opening. Then, the neutral gear was maintained, and the throttle
opening was increased by 5% from 5%. The engine speed at each throttle opening was
acquired using the CAN information acquisition equipment. Finally, the engine speed and
throttle opening were fitted. The fitting curve is shown in Figure 4.
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The correspondence between engine speed and throttle opening was obtained from
the fitting formula in Equation (1).

n = 16.12α + 767.5 (1)

where n is the engine speed in r/min, and α is the throttle opening in the range of 0–100%.
When the tractor gearbox gear remains unchanged, the engine speed determines

the tractor wheel speed. Therefore, after the gear shift, the throttle adjustment program
controlled the throttle opening to adjust the tractor wheel speed to the target value. The
tractor throttle adjustment mechanism was generally a foot pedal and hand throttle pusher.
The two control mechanisms work simultaneously, and the control mechanism with a more
significant signal is adequate. We considered the hand throttle pusher as the control object.

The difference between the current and target wheel speeds was calculated by adjust-
ing the throttle to control the tractor wheel speed. The single-wheel speed adjustment was
determined according to the wheel speed control algorithm. The engine speed adjustment
amount was calculated using the relationship between the tractor wheel speed of the
current gear and engine speed. The relationship between throttle and engine speed was
simplified to a proportional function with a slope of 1. The throttle-opening adjustment
amount could be calculated based on the rotating speed and converted into the output
value of the digital-to-analogue converter (DAC). The throttle-adjustment process is shown
in Figure 5.

• Wheel Speed Control Method

After receiving the wheel speed control instruction from the upper computer, the
control system must implement the corresponding control method according to the actual
state of the tractor. First, according to the instructions and the current tractor wheel speed,
it can be divided into three situations: speed increase, speed decrease, and stop. Speed
increase should be divided into two situations: starting and driving speed increase.

When speeding up, to prevent the engine load from increasing or even stalling due to
the decrease in transmission ratio after upshifts, the throttle was adjusted to increase the
engine speed to near the target speed, and then the gear was adjusted. After a successful
shift, the PID controller adjusted the throttle to control the tractor wheel speed.

When the tractor starts, it must select the forward gear and delay it for some time after
shifting to approach the target wheel speed gradually from the static state. If the delay is
too short, the PID controller will work ahead of time, leading to an excessive overshoot or
unstable wheel speed control.

When the tractor slowed down, the shift operation was performed first, then the speed
was reduced to near the target speed, and finally, the PID controller adjusted the wheel
speed. This is because the tractor has a heavy load when pulling the unit, and a sudden
speed reduction may lead to an engine flameout.

When the target wheel speed is 0, the control system executes the stop program, puts
the gearbox in the neutral state, adjusts the throttle opening to the lowest value, turns off
the PID controller, and clears the flag position.

The wheel speed control process is shown in Figure 6.

2.1.2. Slip Rate Control Method

The slip rate control method used was based on the slip rate control system of the
tractor built in this study. A tractor wheel speed influencing factor was added to the control
system. A control strategy was proposed with wheel speed–slip rate control as the primary
control method and tillage depth–slip rate control as the second control method. The
control system is described in the next section.
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The slip rate of the tractor driving wheels is calculated from the tractor wheel speed
and ground speed, according to Equation (2).

Sr =
ut − ua

ut
× 100% (2)

where ua is the ground speed of the tractor, and ut is the wheel speed of the tractor. We
used the real-time kinematic (RTK) carrier phase difference technology to obtain the tractor
ground speed.
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The slip rate control strategy proposed in this study considers the slip rate of the
tractor-driving wheels as the control target and controls two factors: tractor wheel speed
(based on wheel speed) and tillage depth. The tractor’s engine, gearbox, and hitch were
controlled by taking the slip rate range as the input and the target wheel speed and
tillage depth as the output. This strategy uses wheel speed adjustment as the primary
control mode. The target wheel speed was first adjusted when the slip rate exceeded the
threshold. When the wheel speed adjustment reached the lower threshold, the tillage
depth was taken as the control object. These two adjustment methods control the slip
rate by changing the traction resistance. This is a two-factor, single-objective control
strategy. When compared to the slip-rate control strategy based on automatic control of
tillage depth (single-factor and single-objective), it is closer to the driver’s operation and
can ensure operation quality (tillage depth) to the greatest extent, as well as improving
the energy efficiency of agricultural machinery. Therefore, a three-stage control strategy
was adopted to control the slip rate within the best 10–20% and ensure operation quality
(tillage depth).

In the first stage, the tillage depth remained unchanged, and the wheel speed–slip rate
was used to control it. When the slip rate exceeded 15%, the target wheel speed gradually
reduced, and the original target wheel speed was gradually restored after the slip rate was
restored to 10%. The step speed regulation was performed with a step size of 0.5 km/h, and
the adjustment frequency was 1 Hz. Because the traction efficiency of the tractor decreases
when the speed decreases and the operating speed range of the subsoiler is 5–10 km/h, the
lower limit of the target wheel speed in this stage is set to 3 km/h.

In the second stage, when the slip rate was still higher than 20% after reaching the
lowest set wheel speed in the previous stage, it was considered that the working conditions
in this area were poor, which reduced the working quality and improved the passability
of the tractor. Therefore, tillage depth–slip rate control was adopted, and there have been
many studies on tillage depth–slip rate control. The tillage depth was controlled only by
the switching value. The hitch is lifted when the slip rate exceeds 20%, and the machine is
dropped after returning to 10%.

In the third stage, if the wheel slip rate was too high after the hitch system was lifted
to 0, it was judged that the soil condition was terrible and could not pass, stop, or give an
alarm to the upper computer.

When the slip rate exceeded the upper limit, the three stages were executed sequen-
tially. The three stages were executed in reverse order when the slip rate was restored.
In other words, when the slip rate increases, the wheel speed is first reduced, and if the
wheel speed is adjusted sufficiently to make the slip rate return to the normal range, the
second stage is not started. When the wheel speed adjustment made it difficult to restore
the slip rate, the tillage depth was reduced. After the slip rate was restored, the tillage
depth was restored first, and then the wheel speed was restored. A flow diagram of the
slip-rate control strategy is shown in Figure 7.

2.2. Control System Implementation

The overall structure of the control system (VS-SMHCS) is shown in Figure 8. The
software component of the system includes both manual and automatic control modes.
The manual mode is the original operation function of the tractor, which includes reversing
the handle, gear button, handle throttle push rod, and three-point hitch mechanism lift
button. The automatic control mode includes a communication module, work information
collection module, vehicle speed collection module, throttle control module, gear control
module, and hitch-mechanism control module. In the automatic control mode, the com-
munication module is mainly used for data and operation log transmissions between the
onboard computer and controller. The working information collection module collects
tractor speed, wheel speed, gearbox gear, and hitch mechanism height lifting data. It
transmits the collected data to the controller through the controller area network (CAN)
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bus or serial communication. The automatic control mode is mainly used to control the
tractor engine, gearbox, and hitch mechanism through high-level and low-level signals.
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The subsoiling unit is illustrated in Figure 9, which includes the tractor, subsoiler, con-
troller, onboard computer, GNSS antenna, receiver, and sensors. A New Holland T1404
tractor equipped with a power-shift gearbox with 18 forward gears and six reverse gears
was used in the test. The forward gears are divided into sections A, B, and C. Electronic
control technology is widely used. Reversing, shifting, and hitch are switch controls, and the
throttle is an analogue control with a rated power of 104 kW and a rated speed of 2200 r/min.
The tractor was equipped with a speed sensor, hitch position sensor, and hitch force sensor.
The CAN supports the CAN bus protocol ISO 11783 for agricultural vehicles, where the
CAN obtains real-time working information. Additionally, the controller was an MC1206
controller from Beijing Xinhai Rongke Technology Co., Ltd. (Beijing, China). The receiver was
an AMG_PFZ202 GNSS receiver (Nongxin Technology Co. Ltd., Beijing, China).
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The control program is divided into the following parts: an initialisation module, a
timer module, a digital-to-analogue conversion module, an algorithm access module, a
serial communication module, and a CAN bus communication module. After the control
system is started, the program is initialised, and then the working status information of the
tractor is obtained through the CAN bus/serial communication module. When the control
system receives the vehicle speed command, it first calculates the transmission gear and
engine speed and determines whether to accelerate or decelerate. If acceleration is required,
the system adjusts the throttle so that the engine speed reaches the target speed and then
adjusts the engine gear to the target speed. If the vehicle speed is reduced, the gear should
be changed directly to the target speed.

The control system adopted a proportional-integral-derivative (PID) algorithm to
control the throttle of the tractor to accurately and stably adjust the target speed. After
the vehicle speed is adjusted and stabilised, the control system judges the running status
according to tractor information, such as vehicle speed and the horizontal traction of the
hitch. If the wheel slip ratio of the tractor is above the set threshold value of 15%, the
system activates the slip-ratio control module. When the control system detects that the
tractor load is greater than the set threshold of 6500 N, the system determines that the
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traction resistance of the hitch mechanism is excessive and lifts the hitch mechanism to
reduce the working depth of the subsoiler, protecting the tractor. A flowchart of the system
and software is shown in Figure 10.
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2.3. Field Test
2.3.1. Preparation for Test

• Wheel Speed Calibration Based on the CAN Bus
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The proposed slip-rate control strategy considers the wheel speed as the primary
control factor, which is read from the tractor CAN bus. If the error is significant, then the
control effect and test results are significantly affected. Therefore, when the tractor runs
at a constant speed, it records the time the tractor passes through the specified distance,
calculates the actual wheel speed, and compares it with the wheel speed read from the
CAN Bus.

The test site was a straight and level concrete road running from south to north, with a
street light pole at each end. The road had good traction conditions, and the tractor wheels
could be seen to be in a pure rolling motion. When the test was carried out, the tractor
started timing when it passed the first pole and ended when it reached the second pole.

• Hitch Position-Tillage Depth Calibration

A calibration test was conducted in the field to determine the relationship between
the tractor hitch position and tillage depth. The extension length of the three-point hitch
piston rod of the tractor used for lifting the hydraulic cylinder corresponds to the rotation
angle of the lower pull rod. The lower pull rod’s rotation angle determined the tillage
depth of the subsoiler. The rotation angle of the lower pull rod CAN was read by the CAN
Bus tractor. The data range was 0–100%, which corresponded to the lowest position to the
highest position of the hitch.

• Slip Rate Characteristics of the Subsoiling Unit under Different Wheel Speeds

This section verifies the influence of wheel speed on traction resistance, the relationship
between wheel speed and slip rate under no-load conditions, and the influence of wheel
speed on the slip rate during the subsoiling operation. This study explored the steady-state
characteristics of the subsoiling units at different wheel speeds through field experiments.
The experiment was divided into three parts:

1. Test of the Relationship between Wheel Speed and Traction Resistance

The depth of subsoiling was set to 30 cm, the target wheel speed was set to 3, 5, and 7 km/h
in the same field with uniform soil conditions, and the data collected by hanging horizontal
force sensors were recorded.

2. Test of the Relationship between Wheel Speed and Slip Rate under the No-Load Condition

Under the no-load condition, the tractor travelled in the same direction on ordinary
land (average soil moisture content of 22.2%) and soft land with high soil moisture content
(average soil moisture content of 30.5%). The target wheel speeds were set at 3, 5, and 7 km/h,
respectively, and the slip rate was recorded.

3. Test of the Relationship between Wheel Speed and Slip Rate under Subsoiling Conditions.

The depth of subsoiling was set to 30 cm, the target wheel speed was set to 3, 5, and
7 km/h along the same direction in the same field with variable soil conditions, and the
slip rate was recorded.

2.3.2. Field Experiments

Field experiments were conducted to verify the effectiveness of the strategy of con-
trolling the slip rate by adjusting the wheel speed and tillage depth. The specific test was
divided into two parts: the speed regulation effect verification test of the wheel speed
control system and the slip rate control strategy verification test.

The field test was conducted at the Xiaotangshan National Experiment Station for
Precision Agriculture, Changping District, Beijing, from 14 to 20 August 2021. The test sites
were a 6 m × 480 m cement road and a 110 m × 320 m flat field. Before the experiment, the
local area experienced a rainy season lasting for 1 month, the soil moisture content was
relatively high, and the difference in terrain led to uneven soil moisture content. The slip
rate of the tractor was high during the test, and the slip rate fluctuated significantly when
the tractor passed through the field with high moisture content. There were a few weeds,
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some corn stalks had no set ears because of the weather, and the height of the stalks was
approximately 1 m.

First, a verification test of the tractor wheel speed control method was conducted. To
verify the primary function of the wheel speed control method, we performed an automatic
gear shift according to the instructions and adjusted the speed regulation accuracy and
efficiency of the throttle. The experiments were conducted under three conditions: no load
in the cement ground, no load in the field, and subsoiling operation.

• Zero Vehicle Speed Starting Test

The tractor was set to the rear-wheel-drive mode, and the test conditions were selected
for no load cement ground, no load field flat ground, and subsoiling operation. No
implements were installed in the no-load test of the cement ground or the no-load test
of the field flat ground. When the target speed of the engine was set to 1400 r/min, and
the target wheel speed was set to 3, 5, and 7 km/h, the controller controlled the tractor to
adjust from a static state to the target wheel speed and finally stabilised within a 5% error
range of the target wheel speed.

• Target Wheel Speed Switching Test

Test conditions were selected for no load cement ground, no load field flat ground,
and subsoiling operation. No implements were installed for the no-load test of the cement
ground or the no-load test of the field flat ground. When the controller controls the tractor
to run steadily at a target wheel speed of 3, 6, and 7 km/h, the vehicle-mounted computer
sends a new target wheel speed of 5 km/h to the controller via a serial port. Then, the
controller adjusts the tractor wheel speed to the new target value.

Conversely, a tractor slip rate control strategy verification test based on wheel speed
and tillage depth was carried out. In the same field with unstable soil conditions, the
subsoiling depth was set to 30 cm, and the target wheel speed was set to 5 km/h. The trac-
tor unit performed subsoiling operations and recorded the relevant data in the same
direction under the conditions of manual operation (constant wheel speed and man-
ual hitch control) and automatic slip rate control (automatic wheel speed and tillage
depth control).

3. Results and Discussion
3.1. Results of the Preparation Tests
3.1.1. Wheel Speed Calibration Results

The distance between the two lampposts was 89.7 m, the measured time was 81.53 s
when the tractor travelled at 3.96 km/h (CAN bus data), the actual wheel speed was
3.96075 km/h, and the error was 0.00075 km/h. When the tractor moved at 5.04 km/h
(CAN bus data), the measured time was 64.16 s, the actual wheel speed was 5.03304 km/h,
and the error was 0.00696 km/h. The error was small, so the CAN bus wheel speed could
be regarded as the actual wheel speed.

3.1.2. Three-Point Hitch Position–Tillage Depth Calibration Results

The left-lower, right-lower, and upper pull rod length was 98 cm, 100.5 cm, and 76 cm,
respectively. The left and right lifting rod length was 85.5 cm and 87 cm, respectively.
When the hanging pull rod was in different positions, the vertical distance between the
subsoiling shovel tip and the soil surface was taken as the tillage depth, and the curve was
plotted (Figure 11).

The corresponding relationship between engine speed and throttle opening was ob-
tained from the fitting formula, as shown in Equation (3):

h = 0.00344x2 − 0.75216x + 31.61615 (3)

where h is the tillage depth in cm, and x is the hitch position in the range of 0–100%.
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Figure 12 shows that the subsoiling resistance is stable in a specific range when the
wheel speed is constant, and the subsoiling resistance increases with an increase in wheel
speed. Table 1 shows that, during subsoiling operation, when compared with the 3 km/h
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operation, the average traction resistance of the tractor working at 5 km/h and 7 km/h
increased by 1196 N and 2169 N, respectively, which increased by 38% and 69%, respectively.
The maximum traction resistance increased by 1587 N and 2663 N, respectively, which
increased by 45% and 76%, respectively.

Table 2. Traction resistance data analysis.

Wheel Speed (km·h−1) 3 5 7

Average traction resistance (N) 3125 4321 5294
Maximum traction resistance (N) 3510 5097 6173

• Relationship between Wheel Speed and Slip Rate under the No-Load Condition

The slip rates of the tractor subsoiling unit under different working speeds (wheel
speeds) and different soils are shown in Figure 13. The data analysis results are presented
in Table 3.
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Table 3. Slip rate at different wheel speeds without load.

Wheel Speed (km·h−1) 3 5 7

General road
condition

Average slip rate (%) 3.28 3.52 5.39
Maximum slip rate (%) 9.08 6.83 9.26

Soft road
condition

Average slip rate (%) 10.99 15.19 21.60
Maximum slip rate (%) 25.67 30.94 45.22

As shown in Figure 13A,B, the relationship between wheel speed and slip rate is more
evident on soft road surfaces. In Figure 13B, from 13–25 s, the slip rate for the 7 km/h
drive is >the slip rate of the 5 km/h drive, which is >the slip rate of the 3 km/h drive.
When compared with the drive at 3 km/h, the average slip rate of the tractors driving at
5 km/h and 7 km/h on ordinary land increased by 0.24% and 2.11%, respectively, and the
maximum value increased by 2.25% and 0.18%, respectively (Table 2). In the soft fields, the
average slip rate increased by 4.2% and 10.61%, respectively, and the maximum slip rate
increased by 5.27% and 19.55%, respectively.

Test Results of Wheel Speed–Slip Rate under Subsoiling Conditions
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The slip rate of the tractor under different working speeds (wheel speeds) during
the subsoiling operation is shown in Figure 14. The data analysis results are presented
in Table 4.
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Table 4. Slip rate data at different wheel speeds during subsoiling operation.

Wheel Speed (km·h−1) 3 5 7

Average slip rate (%) 4.85 7.86 12.41
Maximum slip rate (%) 11.72 19.92 38.76

The slip rate decreased at 7 km/h, 5 km/h, and 3 km/h (Figure 14). In the subsoiling
operation, when compared with the 3 km/h operation, the average slip rate of the drive
wheels operating at 5 km/h and 7 km/h wheel speeds increased by 3.01% and 7.56%,
respectively. The maximum slip rate increased by 8.2% and 27.04%, respectively (Table 4).

In summary, when the depth of subsoiling is constant, the traction resistance of the
hitch and slip rate of the driving wheel increase with an increase in the wheel speed. There
is a directly proportional relationship between the wheel speed and slip rate in a no-load
tractor. This relationship was evident when the ground adhesion conditions were poor but
not when they were good.

3.2. Results of Wheel Speed Control Tests
3.2.1. Zero Vehicle Speed Starting Test

When the target engine speed was 1400 r/min, the tractor wheel speeds reached the
target wheel speeds of 3 km/h, 5 km/h, and 7 km/h (Figure 15).
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Figure 15. Parking start test under three working conditions: (A) no-load test on a cement floor;
(B) no-load test in flat fields; (C) subsoiling operation.

The wheel speed increased rapidly during the clutch engagement stage (Figure 15).
The throttle was adjusted after the clutch was fully engaged so that the wheel speed
gradually approached the target wheel speed and stabilised at the target value. The
absolute error was 0.23 km/h, the relative error was 3.3%, and the maximum adjustment
time (the sum of the clutch engagement time and throttle adjustment time) was 4.4 s under
the three working conditions (Table 5). The shift time was not shown in the chart; the
average single shift time was 1.5 s, according to the data analysis.

Table 5. Analysis of experimental data of 0-speed starting tests.

Wheel Speed (km·h−1) Working Condition Absolute Error (km·h−1) Relative Error (%) Accommodation Time (s)

3
No-load test on a cement floor 0.06 2.0 3.7

No-load test in flat fields 0.06 2.0 2.7
Subsoiling operation 0.07 2.3 4.4

5
No-load test on a cement floor 0.04 0.8 4.3

No-load test in flat fields 0.15 3.0 1.2
Subsoiling operation 0.14 2.8 1.1

7
No-load test on a cement floor 0.07 1.0 1.7

No-load test in flat fields 0.13 1.9 4.2
Subsoiling operation 0.23 3.3 1.8

3.2.2. Target Wheel Speed Switching Test

The adjustment of the tractor wheel speed when the target wheel speed was switched
from 3 km/h, 6 km/h, and 7 km/h to 5 km/h is shown in Figure 16.
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The wheel speed was adjusted for 4.5 s and stabilised at the new target value at
approximately 10 s (Figure 16). The adjustment curves of 3–5 km/h, 6–5 km/h, and
7–5 km/h under the three working conditions were roughly the same. The absolute error
was 0.14 km/h, the relative error was 3%, and the maximum adjustment time (the sum
of the shift time and throttle adjustment time) was 4.4 s after switching the new target
wheel speed to a steady state under the three working conditions (Table 6). The test results
show that the speed regulation accuracy of the wheel speed control method was 0.23 km/h,
the relative error was 3.3%, and the maximum regulation time was 4.4 s, which meets the
production requirements and shows high stability under various working conditions.

Table 6. Analysis of speed switching experimental data.

Wheel Speed (km·h−1) Working Condition Absolute Error (km·h−1) Relative Error (%) Accommodation Time (s)

3
No-load test on a cement floor 0.09 3.0 2.0

No-load test in flat fields 0.04 1.3 2.0
Subsoiling operation 0.07 2.3 4.3

6
No-load test on a cement floor 0.04 0.8 2.6

No-load test in flat fields 0.09 1.8 3.4
Subsoiling operation 0.09 1.8 2.8

7
No-load test on a cement floor 0.04 0.6 4.4

No-load test in flat fields 0.06 0.9 4.0
Subsoiling operation 0.23 3.3 1.8

3.3. Results of Slip Rate Control Tests

The verification test results of the slip rate control method are shown in Figure 17.
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When the slip rate was automatically controlled, it increased to more than 15% in
11.1 s (Figure 17). When the speed regulation strategy was started, the target wheel speed
gradually decreased, and the ground speed and slip rate decreased. The target wheel speed
also dropped to the lower limit of 3 km/h in 22.0 s. At 23.3 s, the slip rate increased again
and exceeded the threshold value, and an automatic ploughing depth control strategy was
activated. At 26.8 s, the hitch was lifted, and the slip rate was reduced. The hitch was
lowered to 36.8 s. At 43.6 s, the target wheel speed recovered to 5 km/h. At 43.6–82.0 s,
the tractor operated normally at a wheel speed of 5 km/h. The automatic slip rate control
strategy was repeated at 82.0–130.0 s. In Figure 17B, the average ground speed under
manual driving is shown; the slip rate automatic control modes were 3.74 km/h and
3.61 km/h, respectively, and the actual operating efficiency was reduced by only 3.4%. The
slip rate control test data are listed in Table 7.

Table 7. Slip rate control test data.

Data Manual Operation Automatic Slip Rate Control

Average slip rate (%) 25.9 9.8
Maximum slip rate (%) 94.8 45.4

Time when slip rate exceeds 20% 47.0 14.1

The average and maximum slip rates under manual driving and automatic slip rate
control were 25.9% and 94.8%, and 9.8% and 45.4%, respectively (Table 7). During a
sampling time of 130 s, the time at which the slip rate under manual driving and automatic
control exceeded 20% was 47.0 s and 14.1 s, respectively, which account for 36.2% and
10.8%, respectively. Under the combined control of wheel speed and tillage depth, the
average slip rate decreased by 16.1%, the maximum slip rate decreased by 49.4%, and the
time when the slip rate was higher than 20% decreased by 25.4%.

In summary, the test results show that when the slip rate exceeds the threshold value,
the controller can implement an automatic control strategy for the slip rate and, in turn,
adjust the wheel speed and hitch height. When compared with manual operation, the
time when the slip rate exceeded 20% under a sampling time of 130 s was reduced by
25.4%. The effectiveness of the combined control strategy of wheel speed and tillage depth
was demonstrated.

4. Conclusions

Currently, the primary control mode for tractor slip rate is the automatic control of
tillage depth, which uses an electro-hydraulic hitch as the control object and only controls
the slip rate by adjusting the hitch height. These methods do not consider the influence of
operation speed on the slip rate, leading to varying tillage depths and reducing the quality
of tillage and subsoiling operations. Therefore, we proposed a slip rate control method
based on wheel speed and tillage depth and used the New Holland T1404 power shift
tractor to verify the algorithm. When compared to single-factor adjustment (automatic
control of tillage depth), this method can ensure the greatest extent of operational quality
(tillage depth).

Typical working conditions include cement ground with no load, flat field ground
with no load, and subsoiling. Field experiments were conducted to verify that the wheel
speed control method could ensure that the tractor accurately controlled the wheel speed
under three working conditions: no load on the cement ground, no load in the field, and
subsoiling operation. For the subsoiling operation, the slip rate control method could
gradually reduce the tractor wheel speed when the slip rate of the tractor’s drive wheel
was too high until it met the requirements. When wheel speed was adjusted to the lower
limit, suspension control was performed to reduce the tillage depth and improve vehicle
trafficability. In the 130 s validation test, the time for the tractor with the slip rate control
function to have a wheel slip rate exceeding 20% was only 14.1 s, which was 25.4% lower
than that of the tractor without this function. In summary, the control method proposed
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in this study controls slip rate within the optimal range while ensuring operation quality
(tillage depth) to the greatest extent.

In addition, the strategy of controlling slip rate by adjusting the two factors proposed
in this paper verifies that wheel speed can be used as an essential factor in slip rate control
and is not organically combined with the regulation of tillage depth. Therefore, in future
research, we will determine the combination mode and prioritise tillage depth and wheel
speed regulation by identifying changes in slip rate. Moreover, we will further optimise
the control system of the power-shift tractor designed in this study.
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Abstract: In order to ensure canopy area coverage with the most compact mechanical configuration
possible, this paper proposes a configuration optimization design method of dual-manipulator to
meet the research and development needs of an apple-efficient harvesting robot using the typical
tree shape of a “high spindle” in China as the object. A Cartesian coordinate dual-manipulator
with two groups of vertically synchronous operations and a three-degree range of motion based on
the features of the spatial distribution of fruits under a typical canopy of dwarf and close planting
was designed. Two-stage telescoping components that can be driven by both gas and electricity are
employed to ensure the picking robotic arm’s quick response and accessibility to the tree crown.
Based on the quantitative description of the working space and configuration parameters of the
dual-manipulator, a multi-objective optimization model of the major configuration parameters is
constructed. A comprehensive evaluation method of the dual-manipulator configuration based on the
CRITIC–TOPSIS combined method is proposed. The optimal solutions of the lengths and elevations
of upper and lower telescopic parts of the dual-manipulator and the distance from the mounting
base of the outer frame of the dual-manipulator to the center of the tree trunk are determined,
which are 1119.3 mm and 39.4◦, 898.7 mm and 26◦, 755.3 mm, respectively. The interaction between
the configuration parameters of the dual-manipulator and its working area is then simulated and
examined in order to verify the rationality of the optimum configuration settings. The results show
that the optimal configuration of the dual-manipulator can fully cover the target working space,
and the redundancy rate is 16.62%. The results of this study can be utilized to advance robotic
fruit-picking research and development.

Keywords: picking robots; robotic configurations; dual-manipulator; design optimization

1. Introduction

China leads the world in apple planting area and production, generating 55% of all
apples [1], which is a crucial assurance for the secure supply of fruits for humans and a
rise in farmers’ incomes. However, in recent years, with the decrease in the agricultural
labor force, the labor cost of apple planting and production has been rising, reaching about
66% of the total production cost [2]. In orchard production, the mechanization rate of fruit
harvesting is the lowest, less than 3%, especially in the harvest season of short-term explosive
employment demand, and the problem of “difficult and expensive employment” is particularly
prominent. Because fresh apples need to have good appearance quality, developing robots
with selective and accurate harvesting ability is expected to solve the problems faced
by apple production at present and achieve the goal of alleviating labor intensity and
improving harvesting efficiency. This research direction has been a wide concern in the
world in recent years [3,4].

Agronomy 2022, 12, 3128. https://doi.org/10.3390/agronomy12123128 https://www.mdpi.com/journal/agronomy353



Agronomy 2022, 12, 3128

A picking manipulator is the key component of a picking robot to locate the position
and posture of the picking gripper according to the growth posture of fruit [5], which
directly determines the working space and efficiency of the picking robot. To guarantee
proper functioning of the robot, it is crucial to combine the planting mode and production
efficiency needs of a particular picking object, choose the configuration of the picking
robotic manipulator and optimize the design of its structural parameters.

According to the number of manipulators that can be driven, there are currently two
types of fresh-fruit-picking robots: single-manipulator configuration and multi-manipulator
configuration. When choosing goods with a relatively narrow distribution area in green-
houses, such as strawberries, tomatoes, sweet peppers, etc., the single-manipulator picking
robot’s configuration is frequently utilized. The single-manipulator configuration is mainly
articulated to adapt to the narrow operating space in the greenhouse and meet the harvest-
ing requirements of mature fruits in specific areas. The “RUBION” automated damage-free
strawberry-picking robot was created by Preter et al. [6] and has a customized five-DoF
(degree of freedom) articulated mechanical arm. Its prototype can pick a strawberry in 4 s
and is mostly employed in tiny working spaces, such as greenhouse scenes. Arad et al. [7]
developed a sweet pepper harvesting robot named “SWEEPER”, and its prototype includes
a six-DoF articulated industrial manipulator model Fanuc LR Mate 200iD. The robotic
manipulator of “SWEEPER” is installed on a movable trolley with a scissor lift mechanism
and harvests sweet peppers within a 200–290 mm reachable three-dimensional area in
front of the robot body. The average cycle time for harvesting a single fruit (including fruit
localization, obstacle localization, visual serving, detaching fruit) is 24 s. The cherry tomato
picking robot developed by Feng et al. [8] used a DENSO VS-6556 six-DoF articulated
robotic manipulator to pick tomatoes in the 600–1200 mm area with a distance of 550 mm
and put the fruits into the basket after picking. Its picking efficiency is 8 s in each cycle.
The apple harvesting robot by Abundant Robotics [9] adopts a parallel mechanical arm and
negative pressure air suction picking end, and the average picking efficiency is one apple
per second, which greatly reduces manpower work.

For the fruits distributed in a tall tree canopy, the picking robot needs to have a larger
working area and picking efficiency. The standard mechanical manipulator configuration
used by the greenhouse fruit and vegetable picking robot is difficult to meet the needs, and
the multi-manipulator configuration with parallel operation capability [10–14] has been
continuously applied to picking robots [15].

Xiong et al. [16] developed an automatic strawberry-picking robot. The overall picking
manipulator is composed of two three-DoF Cartesian coordinate picking robotic arms
running on a single track and a self-developed and designed end. The machine vision
system is used to detect the area of 1200 mm × 500 mm within 500 mm of the robot body
for positioning and picking ripe strawberries. Working with both arms at the same time can
improve the work efficiency by half, and the average picking time of a strawberry is 4.6 s.
Williams et al. [17] developed a kiwifruit selective intelligent harvesting robot. The robot
has four separate platforms, and each platform is installed with a three-DoF articulated
harvesting robotic arm. Each robot arm independently picks kiwifruit cultivated in the
pergola-style frame within a range of about 1.7–2.0 m from the ground and about 3 m wide.
Compared with the single-arm picking cycle of 3.36 s per piece, the picking robotic arms
on the four platforms work at the same time, and the average harvest time of kiwifruit is
only 0.84 s per piece. Israeli company FFRobotics (Gesher HaEts, Israel) has developed an
apple harvesting robot for apple orchards that adopts fence cultivation mode [18]. Three
parallel tracks are arranged on each side of the prototype, and two picking robotic arms are
installed on each track, a total of 12 three-DoF robots. The Cartesian coordinate picking
robotic manipulator can simultaneously pick multiple apple tree crowns in the fruit rows
on both sides of the fruit road. FFRobotics company claims that the picking efficiency of
high-quality apples is 10 times higher than that of manual work. AGROBOT Robotics of
Spain (Huelva, Spain) has developed a picking robot for strawberry high-ridge cultivation
and frame cultivation [19]. Six independent parallel tracks are set on the main body, and
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each track runs four three-DoF Cartesian coordinate picking robotic arms (a total of 24
independent arms) working together on four rows of strawberries at the same time, which
greatly improves the efficiency of strawberry picking. In view of this, a brief summary
of the above-mentioned manipulator configuration is carried out, as shown in Table 1.
By selecting representative manipulator configurations and products and analyzing their
shortcomings, some ideas are provided for the configuration of this paper.

Table 1. A table with shortcomings in representative manipulators and products.

Classification of
Existing Manipulators Picking Object Large-Scale

Operation Area
Compact
Structure

Representative
Product Shortcoming

Articulated
manipulator

Greenhouse
strawberry, sweet

pepper
No Yes RUBION [7],

SWEEPER [8]
Used for greenhouse fruits, which
cannot cover a large working area

Parallel manipulator Apple Yes Yes Abundant Robotics [10]

The manipulator has complex
configuration and difficult to

design multiple parallel
manipulators

Multi-Cartesian
manipulator Apple Yes Yes FFRobotics [18] Mainly aimed at the American

vertical trellis cultivation mode

The optimization and determination of its structural characteristics are also a prereq-
uisite for the design of the manipulator in terms of workspace coverage, dynamic control
precision and cloud route planning depending on the requirements of various jobs. Ac-
cording to the research and development needs of the greenhouse cucumber picking robot,
Feng Qingchun [20] et al. established the quantitative relationship of each arm length, in-
stallation position and picking space of a five-DoF articulated picking arm and selected the
optimal arm length parameter, which effectively covered over 90.5% of the fruit distribution
area. Using finite element virtual simulation technology, Sun Feng et al. [21] constructed a
multi-objective optimization model according to the dynamic characteristics of six-DoF ar-
ticulated manipulator joints and solved the optimal combination of manipulator structural
parameters, which reduced the average angular velocity of each manipulator’s joint to
varying degrees. The maximum descending range can reach 9.3654% compared with that
before optimization, which effectively improves the stability of the end position and posture
of the manipulator. Zhao Jiangbo [22] et al. established a multi-objective optimization
model with a linear weighting of three factors in order to comprehensively optimize the
cooperative workspace, load capacity and end motion accuracy of the manipulator with
two six-DoF joints and obtained the optimal structural parameters of the manipulator by
using the particle swarm optimization algorithm. The cooperative workspace of the two
arms increased by 9.5%, the end motion speed increased by 7.8%, and the load capacity of
the mechanical arm increased by 6.1%.

For the apple-picking robot, the effective coverage of the working area of the tall tree
canopy by the robot working space is a necessary condition for the design of the picking
robotic manipulator. In this paper, the high-spindle-shaped apple tree widely planted in
China is taken as the object, and the vertical parallel operation of the dual-manipulator
picking mechanism is studied according to the spatial shape of the tree canopy. According
to the relationship between the structural parameters of the manipulator and its working
space, a multi-objective optimization model of the parameters of its key components is
established. By solving the optimal configuration parameter combination, the purpose
of covering the fruit picking area with a compact machine is achieved. On this basis, the
optimal configuration is analyzed and verified by simulation experiments. This research
can provide a design basis for research and development of apple-picking robots.
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2. Design Specifications for Apple Harvesting Robot
2.1. Standard Spindle-Shaped Tree

In recent years, application of dwarf and close planting cultivation technology in
standard apple orchards has become a hot trend in different apple-producing areas in
China [23], which also laid a good foundation for intelligent and mechanized operation
of orchard production. To improve the efficiency of orchard production management and
facilitate mechanized operations, the spindle-shaped standard fruit tree shape is widely
used in China [24], which has the characteristics of early fruiting, high land utilization and
large yield. As shown in Figure 1a, the fruit branches are pruned in a standardized manner,
and there are support rods behind the fruit trees, which are fixed and constrained by
vertical equal-spaced steel wire ropes installed along the tree row so that about 25 branches
of each fruit tree grow along the steel wire ropes. The crown is a high spindle shape. The
row spacing of fruit trees is 3500 mm, the plant spacing is 1000 mm and the tree height
is 3000–3500 mm. Fruit trees have a crown width between 1000 and 1500 mm during the
fruiting season and a side thickness between 400 and 500 mm. A vertical fruit wall is
created when the crowns of fruit trees next to one another touch and cross over one another.
To collect fruit from either side of the crown, the robot alternately goes back and forth
between the rows of fruit trees. (For an illustration, see Figure 1a,b).
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Figure 1. (a) Apple orchard with standard cultivation; (b) spindle-shaped canopy.

2.2. Definition of Harvesting Workspace

Constrained by the shape of spindle-shaped branches, the spatial distribution densities
of fruits in the canopy vary (as shown in Figure 2a,b). The canopy of 3-year-old Fuji apple
trees in northern China was divided into sampling blocks with length, width and height
of 50 cm × 20 cm × 50 cm in different layers and orientations, and the sampling blocks
with height less than or equal to 1000 mm from the ground belonged to the bottom of the
canopy, 1000–2000 mm belonged to the middle of the canopy and more than or equal to
2000 mm belonged to the top of the canopy. Each layer is divided into the inner chamber
(<200 mm away from the trunk) and outer chamber (>200 mm away from the trunk), with
the trunk as the central axis. The number of fruits in each sampling block and canopy level
was counted separately. It is obvious that the fruit density of different canopy layers of
the apple high-spindle canopy gradually increases from top to bottom. The fruit density
of the upper layer was lower, 5 fruits/m2, and the density of the middle and lower layers
was higher, 12 fruits/m2 and 13 fruits/m2. In general, the fruits in the canopy are mainly
distributed at 1000 mm–2500 mm from the ground, accounting for about 95% of the total
number of fruits.
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level canopy space; (c) front view of the harvesting workspace: the red and blue areas indicate that
the canopy is harvested on both sides; (d) top view of a middle-level harvesting workspace.

Because of the low density of fruit distribution at the edge of the canopy, combined
with the compact design requirements of the robot picking manipulator, it is considered
that the middle and lower areas of the canopy with high fruit density are the picking
operation space, so the target space of picking operation is determined as follows: the trunk
of the fruit tree as the center, a space with a length of 1500 mm, a width of 400 mm and a
height of 1000–2500 mm from the ground (as shown in Figure 2c,d).

3. Dual-Manipulator Prototypes for Apple Harvesting
3.1. Mechanical Configuration Design

The design requirement of the picking robotic arm is to drive the picking claws to
move between the tree crown and the robot body according to the spatial position of the
fruit in the robot’s field of view to separate the fruit from the branches and put it into the
fruit collection basket. For the standard apple tree shape as described above, the apple
fruits are concentrated in the area of a tall and large cuboid. The Cartesian coordinate
manipulator combined with the linear motion mechanism has a good match between the
working space and the fruit growing area, so it has good applicability. In addition, unlike
the manipulator with a tandem joint coordinate configuration, the Cartesian coordinate
manipulator has no singularity problem. The current picking scene does not require the
rotation of the manipulator, and the Cartesian coordinate manipulator can have a larger
picking work area. To improve the working space and efficiency of the traditional Cartesian
coordinate manipulator, this paper designs a dual-manipulator configuration arranged
vertically in parallel to meet the needs of picking robots for fruit picking in tall tree canopies.

The dual-manipulator prototype (as shown in Figure 3a) primarily consists of two
sets of picking mechanical arms aligned longitudinally and their respective independent
driving components. Three degrees of freedom—horizontal, vertical and telescopic—are
available for each picking arm. The mounting base of the outer frame is set as the origin
O, the horizontal movement is parallel to the X-axis direction and the vertical movement
is parallel to the Z-axis direction. Two sets of horizontal driving components travel up
and down along the vertical driving components in turn, and its vertical motion driving
mechanism is fixed to the picking robot body. The translating picking arms move along the
corresponding horizontal drive members. The picking arm’s telescoping movement is a
two-stage driving system that consists of a pneumatic telescopic component and an electric
drive servo component. The pneumatic telescopic part is driven by a cylinder, which is
used to drive the picking gripper to move back and forth quickly in the non-picking area
between the robot and the crown, improving the positioning efficiency of the robot to the
picking end gripper. The electric drive servo component is driven by a servo motor, and
the motion displacement and speed are precisely controllable (as shown in Figure 3b).
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Figure 3. (a) Dual-manipulator configuration assembly. (1). Upper horizontal track (2). Vision sensor
(upper) (3). Upper picking arm (4). Upper transverse conveying device (5). Lower horizontal track
(6). Lower transverse conveying device (7). Vertical tracks (8). Lower picking arm (9). Back outlet of
the vertical conveying device (10). Vision sensor (lower) (11). Harvested fruit (12). Transposed elbow
(13). Vertical conveying device. (b) Two-stage telescopic wireframe diagram of the robotic arm (1).
Picking gripper (2). Pneumatic telescopic parts (3). Adjustable angle connecting parts (4). Electric
servo telescopic parts.

The picking robot controller receives the three-dimensional position data of the fruit
in the canopy obtained by the vision sensor and divides the picking area of the dual-
manipulator in real time. According to the close-up cameras installed on the telescopic parts,
the two sets of robotic arms pick and collect the fruits in the picking area in turn. The picking
gripper that performs the picking task has two degrees of freedom: rotation and opening
and closing, which can “screw” the target fruit. The main material of the claws is made of
aluminum alloy, which can ensure rigidity and light weight. The contact part of the fruit is
made of flexible material, and it is coated on the aluminum alloy frame of the claw, which
can well protect the surface of the picked fruit. Conveying devices for fruit collection tasks
are divided into horizontal and vertical. Horizontal conveying comprises upper and lower
transverse conveying devices, wherein the device is provided with a conveying channel,
flexible baffles are arranged on both sides of the conveying direction and transposition
elbows are installed at the conveying endpoint, which, respectively, follows the upper and
lower horizontal track for synchronous lifting, collect fruits harvested by picking grippers
and transport them to the vertical conveying device through the transposition elbows. The
vertical conveying device is designed with two conveying passages, which, respectively,
convey the fruits delivered by the upper and lower horizontal transposed elbows. The
fruits flow out from the back outlet of the vertical conveying device and are collected by
the universal fruit transfer frame.

3.2. Definition of Dual-Manipulator’s Workspace

For the picking operation of spherical fruits, the picking robotic manipulator drives
and positions the picking grippers with the three-dimensional coordinates of the center
of the fruit as the target position. The working space of the picking manipulator refers to
the set of spatial points that its end can reach due to its configuration and structure [25].
Obtaining the maximum coverage of the target working space with a compact configura-
tion size is an important index to evaluate the configuration design of the manipulator.
Therefore, establishing the relationship between the configuration parameters of the pick-
ing manipulator and its working space is the premise of the configuration optimization
design. Especially, for the approximately rectangular canopy area, the accessibility of the
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picking robotic manipulator in the canopy height and depth directions is a quantitative
representation of the picking robot’s working space.

The picking manipulator and the canopy target working space are parameterized
(as shown in Figure 4). The height of the mounting base of the picking robot arm from
the ground (denoted by B) is 300 mm; taking the mounting base of the robotic arm as the
origin O, the picking direction of the picking arm is the X-axis, the height direction of the
robot body frame is the Z-axis and, on the XOZ plane, create a coordinate system. Assume
that the depth of the target picking canopy is represented by W, the height of the upper
limit position of the target picking canopy from the ground is represented by T and the
height of the lower limit position of the target picking canopy from the mobile platform is
represented by K.

Figure 4. Dual-manipulator simplified configuration parameterization.

The quadrilateral region produced by extending the edge of the canopy to the center
of the canopy at each elevation angle is designated as A on the XOZ plane when the double
picking robotic arms are at the upper and lower height limit locations. On the XOZ plane,
the projected area of the chosen target working space is A0. The double-arm invalid picking
space A1 is the remaining space, and the predicted invalid picking areas for the robotic
upper and lower picking arms are Au and Ad, respectively. The center distance between
the outer frame installation base and the trunk of the tree is G, and the maximum reachable
height of the upper arm is H. Set the length of the upper picking manipulator arm as Lu and
the inclination angle with the horizontal as θu. The length of the lower picking manipulator
arm is Ld, and the inclination angle to the horizontal is θd. The total structure length Lm is
the sum of H, Lu, Ld. When the lower picking arm is at the lower limit position, the height
from the bottom of the mobile platform is Lh. The length β of the telescopic module in the
rear section of each picking arm is set to 3/4 of the length of its associated picking arm
(when the picking task is completed, the picking arm can be retracted into the frame as
much as possible to improve the utilization rate of the internal space of the frame).

Taking the trunk of the tree as the center, the fruits on one side of the tree are distributed
in the blue rectangular area. Four boundary points Pi ( i = 1, 2, 3, 4) are the initial conditions,
and the reachable space at the end of the picking robot arm is the red area Rj (j = 1, 2, 3, 4),
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the upper picking limit point at the end of the upper picking robot arm is Rumax(R2) and
the lower picking limit point at the end of the lower picking robot arm is Rdmax(R3).

4. Optimization and Evaluation of Key Configuration Parameters
4.1. Two-Objective Optimization Model

Considering that the size of the component configuration directly determines the
overall volume, load and stiffness of the manipulator, it is necessary to use the compact
picking manipulator structure to cover the picking target area. In view of the fact that the
working space of the picking manipulator is mainly determined by the length of the upper
and lower picking arms and their elevation angle and is directly related to the overall size
of the picking manipulator, this paper takes the configuration parameters as the parameters
that need to be optimized.

As shown in Figure 4, when the upper and lower picking arms are at their respective
extreme positions, this makes the Rumax point on the extension line of the P2P3 line Rumax
coincide with point P3 or be below point P3, and the lower picking arm is at the bottom.
When the limit position is retracted, the lower endpoint Pm of the rear section of the
manipulator may interfere with the moving platform. In order to minimize the redundancy
ratio γ of the workspace (i.e., the invalid workspace A1) of the picking robot, an objective
optimization function of “avoiding invalid workspace” should be established, which
accords with the structural parameters of each picking arm and the conditions of three
limit feature points: Rumax, Rdmax and Pm. Specifically:





δ(Lu, θu, Ld, θu, G) = Au + Ad

Au = 1
2 W × [G× tanθu + H − T]

Ad = 1
2 W × [2K + (W − 2G)× tanθd − 2Lh]

where H = T − (G−W)× tanθu, Lh = β× Ld × sinθd, γ = A1
A ;

At the same time, to make the picking robot move more flexibly when performing
the picking task, the configuration should be compact on the premise of meeting the
requirements of the target picking space task of the dual-arm picking robot. Therefore, an
objective optimization function is established to make the total structure length Lm small
and achieve a “compact structure”.

The three characteristic limit points Rumax, Rdmax, Pm and the proposed objective
optimization function are used to limit the optimization conditions and set the parameter
change interval of the distance between the outer frame mounting base and the center
of the tree trunk as G as [Gio, Gic]; the parameter variation interval of the upper picking
arm length Lu and the lower picking arm length Ld is [Lio, Lic]; the parameter variation
intervals of the inclination angle θu between the upper arm and the horizontal and the
inclination angle θd between the lower arm and the horizontal are [θio, θic]. Reasonably
limit the range of these five design variables so that the two objectives of “avoiding invalid
workspace” δ(Lu, θu, Ld, θu, G) and “compact structure” ϕLu, θu, Ld, θd, G can be minimized
when meeting the picking requirements, namely:

min
{

δ(Lu, θu, Ld, θd, G)
ϕ(Lu, θu, Ld, θd, G)

s.t.
{

Lio ≤ Lu, Ld ≤ Lic; θio ≤ θu, θd ≤ θic;
Gio ≤ G ≤ Gic; Lu, Ld, θu, θd, G ∈ 0.1× N;

}

The multi-objective optimization equation in the above formula is solved by the non-
dominated sorting genetic algorithms (NSGA-II) [26,27]. NSGA-II is a genetic algorithm
method that uses fast non-dominated sorting and elite mechanism to solve multi-objective
optimization problems. The implementation steps are as follows:
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(1) Taking aw = {1, 1, 1, 1} as the corresponding fusion weighted initial values of
images in different wavebands, adding random numbers r ∈ (−1, 1) to each coefficient
to generate an initial population of fusion coefficients and performing fast non-dominant
sorting on the initial population; (2) carrying out the binary selection, crossover and varia-
tion on the initial population to obtain a new population; (3) merging the new population
with the initial population into a new population, performing non-dominant ranking on
all individuals and calculating the crowding degree in the non-dominant set; (4) when
generating a proper number of first-generation populations, the individuals with low non-
dominant level are preferred, and, when they are at the same level, the individuals with
high crowding distance are preferred to ensure individual diversity; (5) if the evolutionary
algebra reaches 1000, the algorithm is stopped and the contemporary population is taken
as the optimal Pareto solution set. Otherwise, go to step (2) to continue the loop. In order
to better understand the NSGA-II algorithm, its flowchart is as follows (Figure 5).
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4.2. Optimal Solution Selection Based on CRITIC–TOPSIS

Because multi-objective optimization problems often obtain a solution set consisting
of many non-inferior solutions (effective solutions), it is necessary to combine the actual
needs to determine the optimal objective solution. The TOPSIS method [28] (technique
for order preference by similarity to an ideal solution method) is an effective method for
multi-objective decision analysis of finite programs. It obtains a comprehensive evalua-
tion of the individuals in the target solution set by calculating the distance between the
evaluation-specific solution and the corresponding positive and negative ideal targets. In
particular, considering the difference in volatility and correlation of δ(Lu, θu, Ld, θd, G),
ϕ(Lu, θu, Ld, θd, G) solution sets (hereinafter referred to as A1, Lm), their contributions to
the optimal results are different. This paper introduces the CRITIC weight method [29],
which normalizes the solution sets of the two optimization objectives and then weighs and
evaluates them. The calculation steps are:
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(1) Pareto solution sets have different schemes. The solution sets of A1, Lm are com-
posed of decision matrix S:

S =
(
Sij
)

n×2 (i = 1, 2, · · ·, n; j = 1, 2)

(2) To eliminate the influence of dimensions on the evaluation results, each element in
the decision matrix is standardized and both objectives are reverse indicators:

β∗ij =
Sjmax − Sij

Sjmax − Sjmin

where Sjmax, Sjmin are the largest and smallest elements in column j.
(3) Calculate the standard deviation of each optimization objective in the decision

matrix as follows:

Dj =

√
∑n

i=1 (Sij − X j)
2

n− 1

where X j is the average value of the elements in column j, and Dj is the standard deviation
of the indicators in column j, which is used to express the difference and fluctuation of the
values within each indicator. If the standard deviation of A1 solution set is larger, it reflects
that the numerical difference of A1 solution set is larger, more information can be reflected
and the evaluation intensity of index A1 is stronger. When assigning weights to A1, more
weights will be distributed, which also means that this goal has a greater influence on the
selection of the whole optimal goal solution.

(4) Calculate the correlation and conflict quantitative index values among optimization
objectives:

rij =
∑n

i

(
Sij − X j

)(
Sik − Xk

)

√
∑n

i=1

(
Sij − X j

)2
∑n

i=1

(
Sik − Xk

)2

Rj =
2

∑
j=1

(
1− rij

)
(i = 1, 2, · · ·, n; j = 1; k = 2)

where rij is the correlation coefficient between the i-th index and the j-th index, and j is the
conflict between the j-th decision index and other indexes. The smaller the value of Rj is,
the smaller the conflict is, which means that the information of the optimization goal is
repeated too much in the solution set and the smaller the contribution to determining the
optimal solution.

(5) The weight of each optimization target is quantified after comprehensively measur-
ing the contrast intensity and conflict among indexes, and its comprehensive information
amount Cj is calculated as follows:

Cj = Dj

2

∑
j=1

(
1− rij

)
= Dj × Rj

where Cj is the amount of information contained in the solution set of the j-th optimization
objective. The greater the value of Cj, the greater the contribution of the j-th objective to
the determination of the optimal solution and the greater its corresponding weight.

(6) The weights ω∗j of the two optimization objectives are calculated by using the
obtained information Cj:

ω∗j =
Cj

∑2
j=1 Cj
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(7) Each element in the decision matrix is weighted to obtain a weighted decision
matrix T:

T = (tij)n×2 (i = 1, 2, . . . , n; j = 1, 2)

where tij = β∗ij ×ω∗j .
(8) The ideal optimal solution V+

j = max
1≤i≤n

Tij and the worst solution V−j = min
1≤i≤n

Tij

are obtained according to the weighting matrix T, and the distances P+
i , P−i of each element

tij of the weighting matrix T to V+
j , V−j are calculated:

P+
i =

√√√√
2

∑
j=1

(tij −V+
j )

2 P−i =

√√√√
2

∑
j=1

(tij −V−j )
2
(i = 1, 2, · · ·, n)

The approximation degree between the i-th solution and the ideal optimal solution is
expressed as Ki, and the value of Ki is in the interval of (0, 1). The more Ki tends to 1, the
closer the i-th scheme is to the optimal scheme:

Ki =
P+

i
P+

i + P−i

5. Test and Results
5.1. Test

According to the final solution of the configuration parameters of the dwarf and close
planting apple orchard picking robot and the structural parameters of the manipulator,
combined with the picking target workspace, the simulation verification of the picking
working space of the robot is carried out.

The parameters of the picking operation area in the canopy of a typical fruit tree in
Section 2.2 are substituted into the multi-objective optimization model. Input the standard
orchard environmental working parameters and the actual task requirements of the dual-
manipulator picking robot and set the numerical variation range of the relevant variables.
Considering the movement limit range of the manipulator extending and retracting into
the frame, and referring to the average thickness of the fruit tree crown on one side of
400–500 mm, the parameter interval of the length Lu of the upper arm and the length Ld of
the lower arm is set as 700–1500 mm. In particular, since the average height of the canopy
from the ground is 1000–1200 mm, the lower arm must meet the premise of accommodating
the target workspace. The parameter variation range of the inclination angle θd between the
lower arm and the horizontal is 20–40◦. The difference between the horizontal inclination
angle of the upper arm and the horizontal inclination angle of the lower arm should not be
too large, which will affect the lifting stroke of the horizontal linear tracks (components
1 and 5 in Figure 3a) and the picking of fruits in the middle area of the lifting stroke.
Therefore, the parameter variation range of the inclination angle θu between the picking
manipulator and the horizontal is set to be 20–50◦. The row spacing of the orchard is about
3500 mm. Due to the limitation of the width of the bottom of the car body and the position
of the picking robot between the fruit rows when working, the parameter variation range
of the distance G between the outer frame mounting base and the center of the tree trunk is
450–1000 mm.

s.t.
{

700 ≤ Lu, Ld ≤ 1500; 20 ≤ θu ≤ 50; 20 ≤ θd ≤ 40;
450 ≤ G ≤ 1000; Lu, Ld, θu, θd, G ∈ 0.1× N;

}

In the parameter setting of the NSGA-II genetic algorithm, the choice of crossover
probability and mutation probability affects the behavior and solution performance of
the whole algorithm and even directly affects the convergence of the algorithm. The
crossover probability is generally selected in the range of 0.9–0.97, The greater the crossover
probability, the faster the new individuals will be produced. However, when the crossover
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probability is too high, then there is a greater possibility that the genetic model will be
destroyed, which will make the individual structure with high fitness quickly destroyed.
However, if the crossover probability is too small, the whole algorithm will slow down or
even stagnate. As far as the variation probability is concerned, the general value range is
0.01–0.1, and, if the value is too small, it is difficult to produce a new individual structure.
If the value is too large, the genetic algorithm loses its constraint and becomes a random
search algorithm.

Therefore, in this solution, the initial population size of the NSGA-II genetic algorithm
is set as 50, the crossover probability is 0.9, the crossover distribution index is 20, the
mutation probability is 0.04 and the maximum iterative generation is 1000 generations (it
is recommended to set it to 20 times the number of design variables, and the number of
variables in this paper is five). The objective optimization function and constraints are
compiled and the Pareto solution set and the changes in various parameters are obtained
as shown in Figure 6.
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Figure 6. Pareto optimal solution set.

The weight of total structure length Lm is 23.4%, and the weight of dual-manipulator
invalid picking space A1 is 76.6% by objective weight calculation with the CRITIC method.
The top 10 solutions in TOPSIS’s sorting of Pareto solution sets are shown in the following
Table 2. Finally, the first structural parameter is determined as the final optimal structural
parameters, which are bold in Table 2.

Table 2. Top 10 Pareto optimal solutions after TOPSIS ranking.

Sub-Order
Number

Design Variables Design Objective Combined Score
Index (Ki)Lu (mm) θu (◦) Ld (mm) θd (◦) G (mm) A1 (dm2) Lm (cm)

1 1119.3 39.4 898.7 26.0 755.3 11.96 422.6 0.784
2 1119.1 42.2 881.7 26.1 753.1 12.78 418.1 0.783
3 1132.3 40.5 887.1 26.1 753.6 12.28 421.7 0.780
4 1115.7 42.5 858.9 26.0 750.3 13.26 415.4 0.775
5 1137.2 38.3 902.4 26.1 754.9 11.49 426.0 0.773
6 1129.1 44.4 838.5 26.1 751.6 13.97 412.3 0.751
7 1137.2 37.2 942.4 25.6 755.7 11.20 431.0 0.747
8 1116.1 45.6 831.9 26.1 741.9 14.59 409.9 0.722
9 1111.4 48.2 832.1 26.3 740.3 15.23 406.2 0.693

10 1155.9 36.5 1040.7 24.4 760.6 10.84 442.9 0.688

The solution with the highest comprehensive score index (Figure 7a) is the optimal
configuration parameter for this optimization. The position of this solution in the Pareto
optimal solution set is shown in Figure 7b.
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Figure 7. (a) Composite score index (Ki) calculated by the Pareto optimal solution set by the weighted
TOPSIS method; (b) the position of the solution obtained by the final decision in the Pareto optimal
solution set.

By investigating the actual orchard working parameters, the orchard 3D simulation
environment was drawn and the working space and target picking space of the picking
robot were analyzed (as shown in Figure 8). The main section of the accessible picking
working area formed by the upper limit position and the lower limit position of the picking
robot arm can completely contain the target picking area, which can not only meet the
requirements of the best recovery ratio of the picking robot but also reach a larger accessible
area with a smaller structural length of the robot arm. The overall configuration is compact,
which is suitable for working in an unstructured orchard environment.
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Figure 8. Optimization results of picking arm structure of dual-manipulator picking robot in orchard
simulation environment.

5.2. Analysis of the Validity of the Optimal Parameters

In order to verify the unique validity of the optimal parameter solution, it is necessary
to clarify the relationship between the optimization objective and each parameter. On
the premise that the two-arm working space covers the target space, the optimal results
of ϕ(Lu, θu, Ld, θd, G) (i.e., Lm) and δ(Lu, θu, Ld, θd, G) (i.e., A1) are set as fixed constant
values CLm and CA1 , respectively, to verify whether another optimization objective has
a unique optimal solution within the numerical range of each configuration parameter,
that is, to transform a multi-objective optimization into a single-objective optimization
problem for comparison and verification. The curve of the result value of the optimization
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objective function minδ(Lu, θu, Ld, θd, G) varying with each structural parameter is shown
in Figure 9a–e.

{
minδ(Lu, θu, Ld, θd, G)
ϕ(Lu, θu, Ld, θd, G) = CLm

{
δ(Lu, θu, Ld, θd, G) = CA1
minϕ(Lu, θu, Ld, θd, G)

s.t.
{

700 ≤ Lu, Ld ≤ 1500; 20 ≤ θu ≤ 50; 20 ≤ θd ≤ 40;
450 ≤ G ≤ 1000; Lu, Ld, θu, θd, G ∈ 0.1 ∗ N;

}
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Figure 9. (a–e) The relationship between the structural parameters of the dual-manipulator and
the optimization target A1. (f–j) The relationship between the structural parameters of the dual-
manipulator and the optimization target Lm.
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It can be seen in Figure 9a that the projected area A1 of the robot’s invalid picking space
increases with the length of the upper arm Lu, which presents an approximate “U”-shaped
curve state. Lu is in the range of 1000–1200 mm, and there is a low point of the downward
trend of A1, which means that the optimal Lu is generated in the range of 1000–1200 mm.
Different from Figure 9a, it can be seen in Figure 9b that, when the inclination angle θu
between the upper arm and the horizontal increases, the projected area A1 of the invalid
picking space can be changed to about 40◦ at θu when there is a trend change inflection
point that first descends and then rises, and the overall curve is similar to the letter “V”
shape, which means that the optimal θu is generated within a small area of about 40◦.
Compared with the curve change in Figure 9a, the curve of Figure 9c oscillates less, and
the projected area A1 of the invalid picking space has several lower values of A1 in the
range of 900–1100 mm of Ld, and the range of variation interval is large, indicating that
the optimal Ld has little influence on the result value of A1. It can be seen in Figure 9d that
the corresponding change curve of the inclination angle θd between the lower arm and the
horizontal and the projected area A1 of the invalid picking space is similar to the letter “W”
as a whole, at 25◦ and 35◦. There is an inflection point of the changing trend of A1 value
on the left and right of the angle, and, after 35◦, the upward amplitude of A1 increases
sharply, which means that, when the inclination angle θd between the lower arm and the
horizontal is greater than 35◦, it is difficult to obtain the optimal θd value. It can be seen
from Figure 9e that, when the center distance G is in the range of 650–800 mm, the change
range of the ineffective picking space projected area A1 is small and the low value of A1
appears intensively; especially in the range of 750–800 mm, the trend is more obvious.

Similarly, the optimization objective function minϕ(Lu, θu, Ld, θd, G) shows the curve
of the result value changing with each structural parameter, as shown in Figure 9f–j.

It can be seen in Figure 9f that the optimal Lu value is located in the region of
1050–1200 mm in the middle of the variation scheme. Although the total structure length
Lm corresponding to this range shows an upward trend with the increase in Lu, the change
range is small. It can be seen in Figure 9g that, when the inclination angle θu between
the upper picking manipulator and the horizontal increases, the total structure length Lm
will first decrease and then increase when θ_u changes to about 40◦. The trend change
inflection point, the optimal θu is at this angle. The unique solution produced around 40◦

is characteristically distinct. It can be seen in Figure 9h that the total structure length Lm
increases correspondingly with the increase in Ld, but the increased range is different. The
optimal Ld is in the range of 800–900 mm, and the value of the total structure length Lm
remains in this range, at lower levels, and the increase is small. It can be seen in Figure 9i
that, when the inclination angle θd between the lower arm and the level changes from 20◦ to
24◦, the total structure length Lm is greatly disturbed, and the obtained Lm value is at a high
level. In contrast, in the 24–28◦ region, the variation in Lm is small and there are many low
points of Lm in this region, and the optimal θd is more likely to be generated in this region.
It is not difficult to see from Figure 9j that, when the center distance G varies from 700 mm
to 800 mm, the total structure length Lm presents a “U”-shaped curve, the low value of Lm
frequently appears around 750 mm and the optimal G has obvious characteristics around
750 mm.

To sum up, the results of the two optimization objectives are fixed by constants, and
whether the other optimization objective has a unique optimal solution within the numerical
range of each configuration parameter is explored. By comparing the result intervals of
each optimal configuration parameter after analysis, it is found that the intersection part of
the intervals is the result of the final selected optimization parameter scheme, which can
verify the effectiveness of the bi-objective optimization. When Lu is 1119.3 mm, θu is 39.4,
Ld is 898.7 mm, θd is 26 and G is 755.3 mm, the redundant working space of the upper and
lower picking manipulators can be minimized, and the structure length of the dual-arm
picking robot is small and the overall configuration is compact.
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6. Conclusions

This paper investigates the picking conditions of the dwarf and close planting apple
orchard in the Beijing area and obtains the distribution law of mature fruit in the apple
canopy by using the crown three-dimensional zoning method. The main configuration of
the apple picking robot was determined through analysis of the orchard target workspace,
and the structure of the picking robot arm driven by electric and pneumatic telescope was
designed by using three-dimensional mechanical design software. Parametric analysis
of the relationship between the configuration of the apple-picking robot, the structure
parameters of the dual-manipulator and the target workspace is established, and a multi-
objective optimization function is established with “avoiding invalid workspace” and
“compact structure” as performance indexes.

The CRITIC–TOPSIS combined method is used to evaluate and screen the multi-
objective optimal solution. The final optimization result is that the length of the upper
picking arm is 1119.3 mm, the horizontal elevation angle is 39.4◦, the length of the lower
picking arm is 898.7 mm, the horizontal elevation angle is 26◦ and the outer frame in-
stallation base is 755.3 mm from the center of the tree trunk. The working space of the
dual-manipulator completely covers the target working space, and the redundancy rate of
the working space is 16.62%.

The experimental results show that the sensitivity of the two optimization objectives
to the change in configuration parameters is different, and the optimal solution has unique
validity within the numerical range of composition parameters, thus achieving the design
goal of minimizing the invalid working space and compacting the structure of the dual-
manipulator picking robot. The optimization method in this paper can be used for a
standardized scene, similar to the standardized dwarf densely planted orchard. At the
same time of research and development of picking robots, agronomic requirements need to
be completed simultaneously, and the research and development of robots and agronomy
complement each other. The dual-manipulator apple picking robot proposed in this paper
can also be iterated into a four-manipulator apple picking robot; that is, two groups of arms
are combined into two groups of four-arms, and the upper and lower group arms have the
same structural parameters, so this iteration has certain practical application significance.
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