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Sensors and Measurement Systems for Marine Engineering
Applications

Dimitrios Nikolaos Pagonis

Naval Architecture Department, School of Engineering, University of West Attica, 12243 Athens, Greece;
d.n.pagonis@uniwa.gr

1. Introduction

In recent years, vast developments and applications of sensor technologies have been
recorded in various industries, including shipbuilding. Therefore, the employment of novel
sensors in marine environments has significantly progressed, as illustrated by some key
examples. For example, wireless sensor networks (WSNs) have emerged as an efficient
and cost-effective alternative for the real-time monitoring of the marine environment, used
for oil spill detection and localization [1], offering significant advantages such as ease
of deployment [2]. Optical-fiber-based sensors have attracted considerable attention for
environmental applications such as the in situ measurement of seawater salinity [3] and
structural health monitoring in marine applications [4,5] due to their durability under
extreme temperature and pressure conditions, high sensitivity, and flexibility. In addition,
piezoelectric energy harvesters have been proposed to eliminate batteries from future
sensing devices [6,7], while piezoelectric sensors have already been employed to determine
ocean wave height and period, as well as underwater objects [8]. Furthermore, nanofi-
brous grids utilizing piezoelectric fibers demonstrate high-resolution, self-powered tactile
sensing capabilities, suggesting their use in real-time motion tracking and spatial sens-
ing in marine environments [9], whereas monolithic printed sensors pave the way for
on-demand, on-site fabrication [10]. These examples underscore the vast technological de-
velopments that have been pivotal in addressing the challenges related to marine research
and environmental protection.

Moreover, over the past three decades, the miniaturization of sensors has led to
the newly developed field of “microsensors”—an emerging field that has grown rapidly,
building on the significant advancements of the semiconductor industry. Consequently, the
sensors deployed on ships have followed the same trend, taking their role one step further
by incorporating semiconductor-based technology into standard marine equipment and
measuring systems. Typical types of sensors employed aboard are gas detection sensors,
gas/air flow sensors, humidity sensors, temperature/pressure sensors, speed/acceleration
sensors, strain sensors, IMUs, etc., which are all essential with regard to vessel safety since
the proper operation of all modern vessels relies heavily on the information provided
by the onboard measuring devices that quantify critical performance parameters. As a
common example, a typical Ro-Ro vessel has four medium-power 4-stroke engines installed
onboard, which are required for the operation of the corresponding generator sets [11].
Failure to detect a possible malfunction by the appropriate sensing system in any of the
installed engines, even one, can lead to immediate safety compromises, as outlined by
the corresponding safety regulations [12], with severe consequences. In addition, modern
sensing devices play a vital role in advancing marine technology by enabling the integration
of new technologies, such as the Internet of Things (IoT), big data, and cloud computing [13].
These technologies rely heavily on sensing devices for functionality and also contribute to
their rapid development.

This Special Issue encompasses the diversity of nine relevant studies, spanning from
the design of novel sensors and energy-harvesting solutions for the maritime industry
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to advanced engine-monitoring systems. Specifically, it comprises eight articles and one
review, which are briefly outlined in the next section. It is important to note that the
purpose of this editorial is not to elaborate on each of the papers presented but rather to
encourage readers to explore them further.

2. An Overview of the Published Articles

In the first article, Bardakas et al. (contribution 1) present a novel rotational–linear
triboelectric nanogenerator (RL-TENG) that converts rotational motion to linear motion to
harvest rotational energy. The device employs ZnO nanoparticles as a triboelectric material,
demonstrating a modular design for various applications. The RL-TENG design offers
several advantages, including reduced wear and increased temperature during operation,
compared to traditional rotational tribogenerators. This technology has significant impli-
cations for maritime applications, particularly in wind energy harvesting for powering
remote monitoring systems or other low-power devices.

In the second article, Pagonis et al. (contribution 2) introduce a mass air flow sensor
designed for low- and medium-power internal combustion engines in the marine industry.
The sensor fabrication process is based on additive manufacturing and PCB technology. The
complex design of the sensing element housing geometry, which is manufactured through
3D printing, is based on standard airfoil geometry, while it is derived through suitable
CFD simulations. The key features of the proposed device are its low cost, fast on-site
manufacturing, robustness, and simplicity, suggesting numerous potential applications in
marine engineering.

In the third article, Yu et al. (contribution 3) present a case study of super-long steel
pipelines floating offshore, focusing on controlling deformation and avoiding resonance
for safety. Their study employs wireless communication equipment and aerial photog-
raphy technology to monitor strain and vibration during construction. This monitoring
method prevents excessive deformation, resonance, and the destruction of anticorrosive
coatings during floating transportation. The obtained results provide a detailed strain
and modal analysis as well as effective monitoring technology for offshore steel pipeline
transportation safety.

In the fourth article (contribution 4), Jiao et al. elaborate on a novel MEMS piezore-
sistive pressure sensor designed to operate under harsh environmental conditions. The
specific sensor demonstrates adequate linearity and sensitivity over a wide operating range,
while a digital temperature compensation system impedes linearity drift due to temperature
variation. The specific technology has significant implications for maritime applications,
particularly in harsh environments, where robust and accurate pressure sensing is required.

In the fifth article, Yang et al. (contribution 5) propose a novel Principal Compo-
nent Analysis integrating a Long Short-Term Memory Network (PCA-LSTM) model for
predicting the productivity of cutter suction dredgers. The developed model involves
operational parameters that are based on mechanism analysis, while it is considered a
deep learning-based approach capable of dealing with operation series data with a spe-
cial memory mechanism. The specific methodology has the potential to improve the
efficiency and productivity of dredging operations, leading to cost savings and reduced
environmental impacts.

In the sixth article, Li et al. (contribution 6) present a novel method for measuring ocean
surface currents in the Kuroshio region using Gaofen-3 SAR data. The developed method,
which combines sub-aperture processing and least-squares (LS) technology to measure
current vectors, demonstrates the capability of the Gaofen-3 SAR to accurately retrieve the
ocean surface current field in the Kuroshio region. The specific methodology has significant
implications for climate studies and maritime navigation in dynamic oceanic environments.

In the seventh article, Tsitsilonis et al. (contribution 7) present a method for identify-
ing engine malfunctioning through instantaneous crankshaft torque (ICT) measurement
analysis. Briefly, this study demonstrates the usefulness of engine ICT as a nonintrusive
diagnostic measurement, allowing for quick and less resource-intensive identification of
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engine malfunctions. The developed methodology has significant implications for maritime
applications, particularly for maintaining the reliability and safety of marine engines.

In the eighth article, Daud et al. (contribution 8) propose a novel Gaussian-process-
based inversion methodology for Seabed Logging (SBL) for detecting potential hydrocarbon-
saturated reservoirs underneath the seabed by employing electromagnetic waves (EM).
The specific method allows for greater flexibility in modeling a variety of EM responses,
while the obtained results indicate that it can efficiently predict the hydrocarbon depth
in seabed logging, having significant implications for offshore oil and gas exploration
and production.

The last article in this Special Issue, a review by Prabowo et al. (contribution 9),
provides a comprehensive survey of the developed sensor technology for maritime appli-
cations, covering various aspects, such as logistics, shipping activities, the hydrodynamic
characterization of new design hulls, advanced machinery performance, arctic-based field
observations, vibration-based damage detection, corrosion control and monitoring, and
the measurement of explosions on critical maritime infrastructures. The specific review
highlights the importance of sensors in maritime-based industries and research, as well as
the potential for further advancements in the field.

3. Conclusions

This Special Issue aims to contribute to the exploration of significant advancements in
sensor and measurement system technologies. Through a brief overview of the selected
research papers, this editorial highlights the innovative approaches and potential impacts
of sensor-driven solutions in addressing the challenges faced by the maritime sector. The
articles presented in this Special Issue provide valuable insights into the implications for
future research in the maritime industry, which can be summarized as follows.

The transformative impact of sensor technologies on maritime engineering is under-
scored by the convergence of innovation, interdisciplinary collaboration, and the continuous
pursuit of safety, efficiency, robustness, and low costs. For instance, additive manufacturing
has emerged as a potential enabler that offers flexibility, speed, cost-effectiveness, and
adaptability to diverse operational environments for sensor fabrication; the work by Pago-
nis et al. illustrates this paradigm shift, showcasing the seamless integration of additive
manufacturing and standard airfoil geometry in the design of mass airflow sensors for
marine engineering applications. In addition, the development of micro-pressure sensors
tailored to harsh environments by Jiao et al. showed the need for robust sensor technolo-
gies in marine applications; most probably, future research will explore the integration of
advanced materials to improve sensor performance and longevity in challenging marine
conditions. Furthermore, the selected research papers highlighted the multifaceted roles of
sensor/measurement system technologies in enhancing safety, efficiency, and predictive
capabilities across various maritime domains. From the development of rotational–linear
triboelectric nanogenerators by Bardakas et al., offering renewable energy solutions for
maritime applications, to the advanced monitoring of offshore steel pipelines by Yu et al.,
leveraging wireless communication and aerial photography to mitigate transportation risks,
each study underscores the transformative potential of sensor-driven solutions.

Additionally, the deployment of novel analytic techniques, as demonstrated by Yang
et al., Tsitsilonis, and Theotokatos, empowers maritime stakeholders with predictive in-
sights, real-time diagnostic capabilities, and better productivity prediction, thereby optimiz-
ing resource utilization and mitigating operational risks. Future research could explore the
application of advanced radar technologies for precise ocean current measurements, aiding
climate studies and maritime navigation in dynamic ocean environments, the potential of
non-intrusive diagnostic measurements for quick and less resource-intensive identification
of engine malfunctions (e.g., employing engine Instantaneous Crankshaft Torque), and
de-risking hydrocarbon exploration in deep marine environments by accurately predicting
hydrocarbon depths, leading to more cost-effective exploration campaigns.

3



Appl. Sci. 2024, 14, 3761

The future trajectory of sensor technologies in the maritime industry is promising,
focusing on novel sensors and measuring systems that can enhance safety, efficiency,
sustainability, and technological advancements to meet the continuously evolving needs
of marine applications. Thus, the current studies presented in this Special Issue should
be seen not only as the research results of investigations carried out by the respective
researchers but also as key starting points, inviting readers to continue with new studies
on the themes explored.

In light of the aforementioned considerations, it is the editor’s belief that future marine
sensing devices will increasingly incorporate advances from other scientific disciplines,
revolutionizing their manufacturing and operation, similar to the miniaturization that
occurred due to the vast advances in the semiconductor industry in the past. Consequently,
many of the current drawbacks associated with employing almost solely semiconductor
technology as the foundation for modern sensing devices, such as complicated manufac-
turing processes, expensive sensor packaging, indirect electrical communication between
the sensing integrated circuit and the necessary readout circuitry, and high prototype
fabrication cost, will generally be overcome.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: In this study, we evaluate a prototype harvesting device that converts rotational motion to
linear motion for harvesting rotational energy. Triboelectric materials are attached to the parts of the
device that execute linear motion, resulting in a contact-separation mode of operation of triboelectric
generators. As a triboelectric material, thin layers of ZnO nanoparticles deposited on Kapton films
are evaluated. The design of the rotational–linear triboelectric nanogenerator (RL-TENG) exhibits
several advantages since it does not suffer from the issues related to rotational tribogenerators
such as wear and increased temperature during operation. Moreover, our approach can result in
the modular design of energy-harvesting devices for a variety of applications. As a demonstrator,
cups were attached to the rotating axis of the RL-TENG to harvest wind energy that is suitable for
maritime applications.

Keywords: triboelectric nanogenerators; rotational energy; triboelectrification; TENGs; wind harvesting

1. Introduction

Triboelectric harvesting has been identified as a very promising technology for the
conversion of mechanical energy to electrical energy due to its low cost, abundance of avail-
able materials and high conversion efficiency even at low operating frequencies [1–5]. The
operation of triboelectric generators (TENGs) is based on the charge exchange between two
surfaces that are in contact (triboelectrification) and the subsequent electrostatic induction
when these surfaces are set in relative motion. A major category of TENGs focuses on the
conversion of rotational energy that could be induced by air and water flow, car wheels, etc.
In general, rotating TENGs can be classified, according to their design, into two categories:
(a) disk type and (b) cylindrical type. Further classification can be performed based on
triboelectric materials (dielectric–dielectric or dielectric–conductor) and the operation mode
(sliding, contact separation, non-contact). One of the first approaches of a segmented disk
TENG was presented by Lin et al. [6]. The tribogenerator was based on sliding triboelec-
trification and periodic overlapping of the segmented disks due to rotation. Large output
currents were obtained at a high frequency (117.6 μA and 29.0 mA/cm2 of 66.7 Hz at a
rotating speed of 1000 rpm). An updated version of the disk generator was later presented
by the same group [7] in order to improve the operational characteristics, the longevity
and the stability of the device. The new design was based on a freestanding triboelectric
layer on the rotational disk, while the electrodes were located onto the stationary disk.
Zhang et al. [8] presented a direct-current triboelectric nanogenerator (DC-TENG) based
on a rotating-disk design. It consisted of two disks and two pairs of carbon fiber flexible
brushes that contacted the electrodes. Due to its design, the tribogenerator was serving as a
constant current source for direct driving electronic devices.

Bai et al. [9] demonstrated a cylindrical rotating triboelectric nanogenerator (TENG)
based on sliding electrification. The TENG was based on a core–shell structure with an
alternative strip on the surface. During rotation, the relative sliding between the contact
surfaces of the core and the shell results in an “in-plane” lateral polarization that drives
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the external current. A power density of 36.9 W/m2 was obtained by a rotating TENG
with 8 strip units at a rotation rate of 1000 rpm. Zhang et al. [10] presented a non-contact
cylindrical rotating TENG for harvesting mechanical energy from water flow such as that
in pipes and sewers. The generator was operated in freestanding mode between two
rotating interfaces to minimize abrasion of the electrodes. When placed in water flow, the
output voltage and the current of the TENG reached 1670 V and 13.4 μA, respectively. An
eccentric-type TENG, consisting of a fixed metal electrode, a rotor-independent layer and a
base, was proposed by Qu et al. [11]. Due to its design, the TENG could effectively reduce
the wear of the friction layer and improve the durability of devices. A rolling friction
contact-separation mode triboelectric generator was presented by Yang et al. [12] that was
fabricated for harvesting vertical rotation energy by utilizing the integrated cylindrical
surface with the conjunction of rolling contact electrification and electrostatic induction.
Several rotational TENGs have also been presented for harvesting wind energy [13]. For
instance, Park et al. [14] developed a continuously rotating TEG, aiming to operate at
marginal wind velocities by maximizing the efficiency of the sliding contact, which was
a one-dimensional fiber rather than a 2D contact area. A ring-type TENG for rotational
energy harvesting was presented by Xin et al. [15]. The device could also be used as a self-
powered rotational speed sensor. These are only some examples of the various designs that
have been presented for harvesting rotational energy. A detailed presentation of rotational
triboelectric generators can be found in [16].

An alternative design for the conversion of rotational energy was demonstrated by
Mo et al. [17]. They developed a self-powered air filter for the removal of particulate matter
from the environment based on a radial piston TENG. In this study, we propose a novel
design for harvesting rotational energy that is based on the transformation of rotational
motion to linear motion, allowing for TENGs to operate at contact-separation mode and
thus minimizing the inherent issues of rotating TENGs, such as wear and the development
of high temperatures.

2. Materials and Methods

2.1. Design and Fabrication of the Rotational–Linear Tribogenerators (RL-TENG)

For the design of the RL-TENG, Autodesk Fusion360 was used, while the fabrication
of the device was performed using a 3D printer (Creality Ender 7). The main printing
parameters are as follows:

1. Material: PETG (polyethylene terephthalate glycol);
2. Layer height: 0.2 mm;
3. Perimeters: 4;
4. Infill: 40% (triangles).

The design of the RL-TENG is shown in Figure 1a. It consists of (a) 3 pairs of contact-
separation type triboelectric generators, i.e., T1, T2, T3 (Figure 1b), (b) the circular base
upon which the TENGs are mounted and (c) a circular cam that is attached to the axis of
rotation and is perpendicular to the base plane.

In Figure 1c, we can see a part of a triboelectric pair. The triboelectric material was
placed on the surface of the component using double-sided aluminum tape. The area of the
triboelectric surfaces that contacted each other is 1 × 1.67 cm2. Figure 2 is a photograph of
the RL-TENG. We can identify the three triboelectric pairs, i.e., T1, T2 and T3, as well as
their wiring. In the central area of the tribogenerator, the cam is placed (not shown in the
figure). Two different cams were used to control whether the triboelectric pairs worked in
a synchronous or asynchronous way. The cam is mounted to the rotating axis (vertical to
the plane, not shown in figure) to provide the rotational motion.
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Figure 1. (a) Schematic of the energy-harvesting device, (b) a magnified view of a triboelectric pair
showing the movable and stationary triboelectric surfaces and (c) a part of a triboelectric pair.

 

Figure 2. Photograph of the RL-TENG. We can identify the three triboelectric pairs (T1, T2 and T3).

For the triboelectric layers, Kapton® (DuPont™, Kingston, ON, Canada) and Kapton®

with a ZnO thin film deposited by sol–gel on the surface were used. The thickness of
both Kapton® layers was 75 μm. Briefly, a sol–gel solution was prepared by dissolving the
appropriate amount of Zinc Acetate Dihydrate (C4H10O6Zn, Merck, Germany, and urea
(CO(NH2)2, The Science Company, Lakewood, CO, USA) in ethanol (C2H5OH, Carlo Erba
Reagents, Emmendingen, Germany) using magnetic stirring, at 60 ◦C for 30 min, in order
to end up with a 40 mM solution containing 5w/w% of urea. The sol–gel was left to cool to
room temperature prior to use for 24 h. ZnO films were prepared by ten successive spin
coatings on Kapton films. After each deposition, the film was annealed at 300 ◦C in air. A
detailed description of the ZnO thin-film fabrication and deposition process as well as its
performance as a triboelectric layer can be found in [18].
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2.2. Characterization Setup

For the characterization of the RL-TENG, the setup shown in Figure 3a was used.
It consists of an aluminum base with threaded holes for ease of mounting the required
components. A DC servo motor (PD4-CB59M024035-E-01) attached to an aluminum profile
extrusion was used to provide rotational motion, powered by a 24 V power supply (350 W)
and controlled via USB. The Plug&Drive Studio 2 computer UI (Nanotec Electronic GmbH &
Co. KG, Feldkirchen, Germany) was utilized for tuning and controlling the rotational speed
of the servo motor. The RL-TENG was mounted on the rotational axis of the servo motor
using a 3D-printed mounting plate with the appropriate spacers, as shown in Figure 3b.

Figure 3. (a) The experimental setup used in the electrical characterization of the RL-TENG; (b) the
RL-TENG mounted on top of the servo motor, aligned with the axis of rotation.

2.3. Electrical Measurements

Four types of measurements were performed: (a) time-dependent output voltage
(transient), (b) capacitor charging, (c) open circuit voltage (Voc) and (d) short circuit current
(Isc). For the transient measurements, the RL-TENG was connected to an InfiniiVision
DSO7104A oscilloscope (Agilent Technologies, Santa Clara, CA, USA) through a 10× probe,
terminated at 1 MΩ input impedance. For the capacitor charging measurements, a full,
quad bridge rectifier circuit was used. The capacitor voltage was monitored by a Keithley
617 electrometer (Keithley, Solon, OH, USA), with an input resistance of 200 TΩ. For the
measurement of the short circuit current Isc, a Stanford Research Systems SR570 (Stanford
Research Systems, Sunnyvale, CA, USA) low-noise current preamplifier was used. For the
estimation of the power as a function of an external load, the methodology developed by
Jayasvasti et al. [19] was adapted. In brief, the methodology consists of adding a small
resistance (1 MΩ) in parallel with the oscilloscope probe (input resistance: 10 MΩ) to
reduce the current flowing through the measuring device. It was demonstrated that this
methodology is more accurate for the extraction of the power output compared to the typical
method of measuring the voltage drop across the load. From the same measurements, the
open circuit voltage can be estimated. All experiments were performed at 25 ± 2 ◦C and
25 ± 3%RH (relative humidity).
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3. Results and Discussion

3.1. Operating Principle of Tribogenerators in Contact-Separation Mode

As we have described above, the RL-TENG is based on the transformation of rotational
motion to linear motion. The output voltage of RL-TENG is a combination of the output
voltages of each triboelectric pair T1, T2 and T3 that operate in contact-separation mode.
In this operation mode, the movable part (active TENG in Figure 4a) is moving in a
vertical direction relative to the stationary part (base TENG in Figure 4a). When the two
triboelectric surfaces (Kapton and ZnO-on-Kapton) are in contact, charges with different
polarities appear on the two materials, due to contact electrification. The type of charge
that appears on each material depends on the electronegativity of the two materials. In
our case, the surface of ZnO is charged positively, and the surface of Kapton is charged
negatively, due to the differences in the electronegativities of the two materials. As the two
triboelectric surfaces start moving away from each other, a charge build up will appear at
the electrodes, located at the backside of the triboelectric materials, and a current will flow
in the external circuit. A detailed theoretical analysis of the triboelectric nanogenerators in
contact-separation mode has been presented by Niu et al. [20] al and Dharmasena et al. [21].

 

Figure 4. (a) Different phases of a triboelectric generator in contact-separation mode; (b) simulation
results of the modeled tribogenerator, showing the output voltage during each phase.

Figure 4a illustrates schematically the TENG operation in contact-separation mode.
Assuming that there are already charges developed on the active and the base surfaces of
the tribogenerator, we can distinguish five different phases during an operation cycle.

- Phase 1: The active area is stationary at its balance position. No current flows through
the external circuit.

- Phase 2: The active area begins moving until it reaches the position of maximum
displacement. Current flows to the external circuit due to electrostatic induction. The
current flow takes place for the duration of the movement of the active area.

- Phase 3: The active area remains still at the maximum displacement for a short amount
of time. No current flows through the external circuit.

- Phase 4: The active area starts moving backwards towards its balance position. Current
flows to the external circuit due to electrostatic induction, but in the opposite direction
relative to phase P2.

- Phase 5: The active area reaches its maximum position and stops moving. No current
flows through the external circuit.

During all the phases described above, the reference surface (TENG-Base) remains in
the same position.

To analyze the electrical performance of the tribogenerator during these phases, we
have modeled and simulated the device in COMSOL 5.0. For the simulation, the following
parameters were used: thickness of Kapton: 50 μm; relative permittivity of Kapton: 3;
and surface charge density: 50 μC/m2. ZnO layer was omitted in the simulation since
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it is several orders of magnitude smaller compared to Kapton. Figure 4b shows the
output voltage of the tribogenerator, connected to an external load resistance Rext (=1 MΩ),
during the various phases. As expected, voltage develops between the electrodes, due to
electrostatic induction, when the two electrodes are in relative motion.

3.2. Characterization of the RL-TENG

The triboelectric pairs were measured for various rotational velocities using the setup
shown in Figure 1. Figure 5 shows the transient signal of triboelectric pair T1 as a function
of time for rotational velocities ranging from 60 rpm to 300 rpm. We notice that, as the
rotational velocity increases, the triboelectric signal increases. In fact, the output voltage
signal increases from 0.2 V for 60 rpm to 2 V for 300 rpm.

Figure 5. Output signal of T1 triboelectric pair of RL-TENG for various rotational velocities:
(a) 60 rpm, (b) 120 rpm, (c) 240 rpm and (d) 300 rpm. (Output voltage frequency is a multiple
of the number of cams located on each disk, in this case 11).

Figure 6a,b show the output current and voltage of triboelectric pair T1 as a function
of the external load for various rotational velocities. The short circuit current increases
from 133 nA to 267 nA, and the open circuit voltage increases from 2.24 V to 3 V as the
rotational velocity of the RLTENG increases from 100 rpm to 300 rpm. Figure 6c shows
the output power as a function of the rotational speed. The output power increases from
0.1 μW to 0.23 μW for the same rotational velocities. Maximum output power is obtained
when the resistance value of the external load is 20 MΩ. Similar results are obtained from
triboelectric pairs T2 and T3, although small differences are observed due to variations in
the manufacturing and assembly process.
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Figure 6. (a) Output voltage, (b) output current and (c) output power of the T1 triboelectric pair of
the RL-TENG as a function of the external load for rotational velocities ranging from 100 to 300 rpm.

3.3. Connectivity of the Triboelectric Pairs

Since the RL-TENG consists of three triboelectric pairs, a question that has been
raised is how to connect them in order to obtain the maximum power from the device.
One obvious approach is to connect each triboelectric pair with a bridge rectifier and
then connect the outputs together either in series or in parallel. Such a solution has been
proven to be an efficient way for scavenging the total amount of generated energy [17].
However, this means that we need to use three separate bridge rectifiers, increasing the
complexity of the electronic components required for device operation. To avoid that, we
have implemented an alternative approach. We have investigated the influence of the
total stored energy for two different cams: (a) During the rotation of the first cam (disk A,
Figure 7a), the tribogenerators are moving in phase as can be seen from Figure 7b, where
we notice that the triboelectric signal of T1 and T3 are almost identical. (b) During the
rotation of the second cam (disk B, Figure 7c), the tribogenerators are out of phase, and
only one triboelectric pair is set in motion during a specific time interval, as can be seen
in Figure 7d, where we notice that T1 is active when T3 is inactive. As a metric for the
comparison between the two methods, we use the energy stored in a capacitor using a
single bridge rectifier during charging.

Figure 8 shows the energy stored at the capacitor as a function of time for triboelectric
pairs T1 and T3 for two rotational velocities, i.e., 60 rpm (Figure 8a) and 300 rpm T3
(Figure 8b), when disk B is used. In the same figures, we see the energy stored when the
triboelectric pairs are connected in parallel prior to the rectifier. We see that the energy of
the combined triboelectric pairs is higher compared to each individual pair. Assuming that
the total energy that should be stored in the capacitor is the sum of the energies that are
stored in each triboelectric pair, from the analysis of the data, we see that for low rotational
velocities, the stored energy is 67% of the total energy. However, as the rotational velocity
increases, the amount of stored energy is reduced reaching 56% at 300 rpm. This energy
loss is probably due to the random signal generated from the triboelectric pairs due to
vibrations caused during device operation. These signals interfere in a destructive way,
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cancelling out each other and reducing the amount of stored energy. Similar results were
obtained when disk A was used.

Figure 7. (a) Disk A for in-phase operation of triboelectric pairs, (b) output voltage of T1 and T3 for
disk A, (c) disk B for out-of-phase operation of triboelectric pairs and (d) output voltage of T1 and T3
for disk B.

Figure 8. Energy stored in the capacitor as a function of time after charging for rotational velocities
(a) 60 rpm and (b) 300 rpm.

3.4. Optimization of Performance Characteristics

From the analysis of the results, we see that the electrical performance of the RL-TENG
is inferior to what we would anticipate compared to the results that we obtained for the
Kapton/ZnO layers in previous experiments. When the same triboelectric surfaces of area
2 × 2 cm2 were evaluated [18], the output voltage reached about 20 V, the short circuit
current 12 μA, the open circuit voltage 105 V and the maximum output power 350 μW,
which is much higher compared to the results obtained for a single triboelectric pair. To
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some extent, this is expected since the surface area of the triboelectric areas T1, T2 and T3 is
reduced compared to the previous ones by 2.4 times (1.67 cm2 compared to 4 cm2).

There are also other parameters that could influence the triboelectric performance
that are related to the operational principle of the triboelectric generator. Being a transient
phenomenon, the triboelectric signal will depend strongly on the relative velocity between
the two surfaces. Taghavi et al. [22] showed that the relative velocity of the triboelectric
surfaces affects the instantaneous signal as well as the average power of TENGs. They also
provided evidence that the separation phase of the two triboelectric surfaces could also
impact the electrical performance of the tribogenerator. Another parameter that affects the
triboelectric signal is the contact force that develops between the two triboelectric surfaces.
Vasandani et al. [23] studied theoretically and experimentally the influence of the contact
force of the triboelectric signal TENG using a PDMS film with microdome patterns. As a
reference electrode, a PET film was used. The triboelectric signal was measured against a
PET reference surface. They demonstrated that, by changing the contact force from 4.4 N to
5.1 N, the triboelectric signal increased by 100%.

To verify the influence of the above-mentioned parameters (surface area and transition
time/force) on the triboelectric signal, we have fabricated a part of a more robust prototype
tribogenerator. In this case, the surface area of the prototype was the same as that of the
test triboelectric generators (Figure 9a). In addition, we have enhanced the mechanical
stability of the structure and used a stronger return spring. Typical results are shown in
Figure 9b. We see that the maximum voltage per tap is 12 V for a rotational velocity of
350 rpm. Moreover, the maximum power per tap is 10 times more compared to that of
the triboelectric pairs used in the RL-TENG. Our results indicate that, with a more robust
structure and with larger triboelectric contact areas, significantly enhanced performance
can be obtained for the RL-TENG.

Figure 9. (a) Part of a more robust triboelectric generator and (b) output voltage as a function of time
at 350 rpm.

3.5. Application for Harvesting Wind Energy

The RL-TENG was adapted to be a wind-harvesting device as shown in Figure 10a.
The wind-harvesting device is composed of (a) a case that encloses the RL-TENG for
mechanical support, providing a way for the vertical shaft to spin freely using deep-groove
ball bearings, (b) the vertical shaft where the cam is mounted using an aluminum adapter
and (c) three cups attached to the vertical shaft. As the wind blows, the cups create
rotational torque, spinning the vertical shaft and as consequence the RL-TENG, as shown
in Figure 10b (Video S1). For measuring the air velocity, a hand-held anemometer was
utilized (UT363BT, UNI-T®, Dongguan, China) that provided real-time and data logging
capabilities via Bluetooth®, displayed at a smartphone app (iENV2.0, UNI-T®).
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Figure 10. (a) RL-TENG attached to the wind-harvesting device and (b) setup for the wind-
harvesting experiments.

Figure 11 shows the power generated by each triboelectric pair as a function of the
wind velocity. We see that the different triboelectric pairs do not have the same performance.
This is normal since the different pairs were prepared, to some extent, manually and not
with a standardized manufacturing and assembly process. Moreover, the rotational speed
of the device as a function of the wind velocity is presented in Figure 11b. We see that there
is a very good match between the triboelectric pairs for which the measurements were not
performed simultaneously.

Figure 11. (a) Maximum power delivered by each triboelectric pair as a function of the wind velocity.
(b) Rotational velocity of the RL-TENG as a function of wind velocity.

3.6. Advantages of the Proposed RL-TENG

Compared to the already available rotational tribogenerators, RL-TENG presents
several advantages including the following:

1. Since RL-TENG operates in contact-separation mode, material wear is minimized
compared to conventional rotational tribogenerators where continuous contact (in
sliding mode) is required at high rotational velocities. It is thus expected that the
operational time of the proposed RL-TENG will be significantly higher compared to
that of rotational devices.

2. Since there is no sliding between the two triboelectric surfaces, no high temperatures
are developed because of friction.

3. Due to its design, several material combinations can be easily used as triboelectric
materials. By selecting a material combination that is further away in the triboelectric
series, the triboelectric signal can be significantly increased.

4. It can be scaled up by increasing its size both radially as well as vertically to increase
the surface area and thus improve the tribogenerator’s performance. Another way to
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increase the surface would be to implement origami-inspired structures which have
been demonstrated to significantly increase triboelectric performance [24,25].

5. Another way to enhance the output performance of the RL-TENG is to use hybrid
energy-harvesting approaches, such as combining piezoelectric, triboelectric and
electromagnetic generators in a single device [25]. The advantage of the proposed
design is that it can be easily adjusted to exploit all performance improvements that
have been demonstrated for contact-separation mode tribogenerators [26].

6. It can be assembled in a modular way.
7. It can be fabricated using simple mechanical parts with reduced cost, increased

lifetime and simple maintenance.

4. Conclusions

In this study, we have presented a rotational-based triboelectric generator based on
a novel design. The proposed RL-TENG consists of three triboelectric pairs that operate
in contact-separation mode, providing an alternative power generation mechanism in
contrast to conventional rotational tribogenerators, mitigating the inherent problems found
in common rotating tribogenerators such as the development of high temperature and
increased material wear due to friction. The experimental results present the output
characteristics of the RL-TENG, showing a clear dependence of open-circuit voltage, short-
circuit current and output power for a wide range of rational speeds, with a maximum
power of 0.23 μW at 20 MΩ and 300 rpm. The effect of connectivity between the triboelectric
pairs was also explored showing that out-of-phase operation (disk B) does not require
separate rectification for every triboelectric pair, reducing complexity and offering increased
energy storage by connecting the pairs in parallel. Finally, a wind-harvesting device
was developed, which presents the potential of the proposed RL-TENG in harvesting
applications utilizing pure rotational motion and is able to provide power up to 1000 rpm.
In conclusion, the proposed design provides flexibility, can be easily adapted to a variety
of harvesting applications, exhibits ease of maintenance, has an ability to operate on a
wide range of rotational velocities with reduced wear and can be optimized for the specific
application by tailoring the relative contact velocity, contact force and contact surface
between the triboelectric surfaces.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app14062396/s1, Video S1: RL-TENG wind experiments.
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Abstract: This work concerns the design, fabrication, and preliminary characterization of a novel
sensor for determining the air intake of low and medium power internal combustion engines
employed at various applications in the marine industry. The novelty of the presented sensor focuses
on the fabrication process, which is based on additive manufacturing combined with PCB technology,
and the design of the sensing elements housing geometry, which is derived through suitable CFD
simulations and is based on standard airfoil geometry. The proposed process enables low-cost, fast
fabrication, effective thermal isolation, and facile electrical interconnection to the corresponding
circuitry of the sensor. For initial characterization purposes, the prototype device was integrated into
a DIESEL engine testbed while a commercially available mass air flow sensor was employed as a
reference; the proper functionality of the developed prototype has been validated. Key features of
the proposed device are low-cost, fast on-site manufacturing of the device, robustness, and simplicity,
suggesting numerous potential applications in marine engineering.

Keywords: engine air intake sensor; additive manufacturing; PCB technology; hot-wire; MAF sensor;
DIESEL engine; internal combustion engine; NACA airfoils

1. Introduction

Marine industry employs a wide range of internal combustion (IC) engines for various
applications; while their role as the prime mover of a vessel is undoubtedly the most impor-
tant, it is broadly accepted that IC engines have a fundamental role in ship operations in
general, making their proper operation crucial; for example, a typical Ro-Ro vessel has four
medium power 4-stroke engines installed onboard, which are required for the operation of
the corresponding generator-sets [1]; a possible failure even only at one of the installed IC
engines will immediately result in a safety compromise, according to the corresponding
safety regulations [2], with severe consequences.

Mass Air Flow (MAF) sensors are measuring devices integrated to IC engines. Their
role is to measure the air intake during the operation of the engine in order to consequently
efficiently adjust the amount of fuel supplied during combustion. The majority of the MAF
sensors currently employed are thermal flow microsensors, since, during the last two
decades, microsystem technologies have greatly contributed to the reduction of the cost
for this specific type of sensor [3,4]. Printed Circuit Board (PCB) technology is a new
sensor fabrication technology that combines printed circuit and MEMS technology and
addresses some drawbacks of the standard microelectronic fabrication process [5]. Briefly,
the sensing elements of a sensor developed with PCB technology are inherently connected
to the macroworld, overcoming the necessity for performing wire bonding (a delicate
process for the creation of the necessary electrical pathways between microscale sensing
elements and the corresponding macroworld circuitry), with immediate benefits in device
complexity, mechanical reliability, process time, and cost [5,6].
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Airfoils find many applications in the industry, including, but not limited to, aero-
nautics, naval, and automotive engineering. An airfoil is a streamlined body, capable of
generating significantly more lift than drag, which provides much smoother flow than
non-streamlined bodies, keeping airflow attached to the surface rather than breaking free
and causing turbulence. Numerous airfoils can be designed for different applications [7].
The most renown are the NACA series developed by the National Advisory Committee for
Aeronautics airfoils during the late 1920s and into the 1930s [8,9].

In this paper, we present a novel air intake sensor, which is based on additive manu-
facturing and PCB technology. In more detail, the sensor’s sensing element was fabricated,
utilizing only standard PCB fabrication techniques and commercially available sensing
components, while 3D printing technology was employed for fabricating an appropriate
air flow, shaping housing. The housing’s geometry was derived through appropriate Com-
putational Fluid Dynamic (CFD) simulations-in order to investigate the effect of the main
design parameters, employing SimScale Online CAE Simulation Platform [10]. The contri-
bution of additive manufacturing is of paramount importance, as it significantly minimizes
the design constrains during manufacturing [11], allowing implementation of the derived
topology as per the optimum deduced from CFD simulations.

As a general remark, the obtained optimal geometry efficiently addresses the measur-
ing challenges present on the intake flow of an IC engine; it is originated in a flow-bypass
topology studied in previous work [12] combined with standard airfoil geometry; the air-
foil geometry implementation drastically improves the bypass flow profile compared to a
previous study [12]. It is the authors’ belief that no research work is currently available fo-
cusing on the employment of standard airfoil geometries in sensor housing design through
appropriate CFD simulations, nor on employing additive manufacturing for delivering
the optimal housing; we should note that its final geometry is quite challenging but it
results in a lightweight and robust housing that can be manufactured in a relevant short
time, even on-site, employing a commercially available 3D printing device. This contributes
to reduced manufacturing cost and space saving, especially onboard a vessel, while at the
same time, promotes the general objective of minimizing the financial and environmental
impact of transportation [11,13].

2. Materials and Methods

The required air flow during the operation of an Internal Combustion (IC) engine
can vary depending on its operating conditions (i.e., the load applied); a typical air flow
intake for a low power industrial engine is 0 to 615 kg/h [14], which is equal to about
0 to 8806 SLPM (25 ◦C at 1 bar), a noticeably large range. In reference [15], the authors
successfully demonstrated a flow sensor based on PCB low-cost technology that was able to
measure the air intake of a working IC engine up to 180 kg/h under the hot-wire principle
of operation for constant current (CC) and constant resistance (CR) mode.

However, saturation in the sensor’s signal was noticed for flows above the specific
value of air intake, limiting the measuring range of the device. Furthermore, during IC
engine operation, the intake flow was not constant but pulsating, due to the engine’s
principle of operation [16]; this effect was not taken into consideration in the specific
PCB-based sensing device.

In reference [12], an engine air intake sensor based on PCB and 3D printing technology
was presented by the authors. Briefly, the sensor’s sensing element was fabricated utilizing
standard PCB fabrication techniques and commercially available components, while 3D
printing technology was employed for fabricating an appropriate air flow shaping housing
with an integrated flow-bypass pathway as a first attempt to address the measuring
challenges present on the intake flow (Figure 1). The functionality of the device has been
well demonstrated for a range of 0 to 260 kg/h (0 to 3723 SLPM), which is increased by
44% compared to the increase initially obtained in [15]. However, we should note that for
flow rate values approximately above 260 kg/h (3723 SLPM), saturation in the sensor’s
signal was still present. A series of appropriate CFD simulations concerning the developed
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flow profile inside the bypass pathway revealed a significant circulating flow at the end
of the pathway, near the sensing element’s mounting location; furthermore, the sudden
expansion at the inlet of the employed bypass design can lead to boundary layer separation
with a reattachment point that can be situated near the sensing element area as the flow
rate increases [17]. As mentioned by the authors, both of these geometry-induced effects
restricted the device’s measuring range.

 

 
(a) (b) 

Figure 1. Airfoils: (a) streamlines over a typical airfoil [9]; (b) NACA 0006-6121 family of air foils [8].

The current work focuses on further optimizing the engine air intake sensor presented
in [12] and drastically increasing its measuring range. In more detail, an optimal bypass
pathway design, employing inlet and outlet designs, which are based on airfoil geome-
tries (i.e., National Advisory Committee for Aeronautics airfoils (NACA) [18], Joukowski
airfoils [19]), was derived through suitable CFD simulations. As we present in the later sec-
tions, by appropriately shaping the flow profile at both inlet and outlet ports of the bypass,
boundary layer separation and circulating flow were minimized significantly, expanding
the sensor’s measuring range.

A. Initial Housing Design Concepts Investigated

The initial housing design (Figure 2) was re-designed regarding both the inlet and
outlet of the bypass section geometries, along with the necessary orifice for appropriately
decreasing the bypass inflow and the outflow topology for constraining the back flow
induced during IC engine operation. Three test design concepts (i.e., test designs 1, 2, and
3) were investigated through CFD simulations. In more detail, a series of simulations were
performed, assuming a maximum engine air intake of 1000 kg/h (14076 SLPM), which
corresponds to an air velocity of 29.87 m/s at the main inflow pathway of the housing,
taking into consideration its cross-section area, equal to 78.54 cm2. For the specific value of
air velocity entering the bypass’ inlet, with a much smaller cross-section area of 3.14 cm2,
the corresponding Reynolds number for the flow inside the Bypass pathway can be easily
estimated at 38,248 pointing to turbulent flow.

20



Appl. Sci. 2021, 11, 11579

 

 

(a) (b) 

A
ir

 in
le

t 

Air outlet 

Air intake Velocity (m/sec) 

Sensing element 

Reduced flow 

Air intake Velocity (m/sec)
                         60  50    40      30                   

Figure 2. (a) Schematic of the housing geometry; (b) corresponding simulation results for the developed flow [12].

Considering the above remark, the turbulence model k-omega (k−ω) SST [20] was
employed for all the simulations performed, since the developed flow profile inside the By-
pass region should be determined as accurate as possible both in the near-wall region
(where the sensing element is situated) and in the fully turbulent region, far from the wall.
Each geometry and the corresponding characteristic simulation results are presented in
Figures 3–5, while the main simulation results and the overall outcome for each test design
are summarized in Table 1. Note that a brief presentation follows for test designs 1 and 2,
while a more thorough description is presented in the next section for the third test design.

  
(a) (b) 

Figure 3. (a) Test design concept (1) 3D, mid-section; (b) rest design concept (1) simulation result.

(a) (b) 

Figure 4. (a) Test design concept (2) 3D, mid-section; (b) test design concept (2) simulation result.
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(a) (b) 

Figure 5. (a) Test design concept (3) 3D, mid-section; (b) test design concept (3) simulation result.

Table 1. Test design concepts.

Design Concept Main Simulation Results Overall Outcome

Test Design concept (1) and (2)

Significant velocity reduction

RejectedUnsteady velocity profile across the entire bypass pathway

High circulating flow present

Test Design concept (3)

Significant velocity reduction

AcceptedStable velocity profile obtained

Minimized circulating flow

As we can see in Figure 3, the first test design was based on a topology similar to the
one employed at reference [12]; the basic difference is that the reduction of the incoming
bypass flow was performed in two consecutive steps instead of employing a single orifice
with a drastically reduced diameter (compared to the bypass tube), which lead to a sudden
increase of inflow velocity locally. In addition, in order to minimize flow circulation
throughout the bypass, an outlet was added before each orifice for the diversion of excessive
flow outside the bypass pathway. The topology of the second test design was similar
(Figure 4), decreasing the incoming flow in two steps; the main difference in this case
was the orifice topology. In more detail, the concept of a “curved orifice” was introduced
(imitating the pipe eccentric reducers design/shape [21]) to allow the orifice diameter to be
gradually reduced and then re-expanded, aiming for minimum flow circulation around
the orifice area.

Summarizing the obtained CFD simulation results for test designs (1) and (2), we
noticed that a high circulating flow was present (dark-blue areas at Figures 3b and 4b),
while the velocity varied significantly throughout the bypass pathway.

In the third test design (Figure 5), considering their important contribution to the au-
tomobile industry [22], airfoil geometries (NACA and Joukowski) were employed for
the basis of the inlet orifice’s geometry to obtain a stable velocity profile near the sens-
ing area with a significant reduction of speed. Thus, several standard airfoil types were
tested through appropriate CFD simulations based on the literature [22–24] and the subject
geometry constrains.

We should point out that, apart from employing an airfoil-based geometry for the inlet
orifice, a “hatch-orifice pair” topology was introduced at the inflow, as presented in Figure 6.
In more detail, instead of adding an outlet prior to the orifice, as in the previous two test
designs, a circumferential pathway was placed around the orifice for the diversion of
the excessive flow. Furthermore, a cone-shaped ending was also employed at the rear-end
of the bypass in order to subside the circulating flow near the outflow region; note that
the flow outlet was perpendicular to the bypass pathway, as shown in Figure 5a. The above
alterations led to substantial minimization of flow circulation throughout the bypass, as
shown in Figure 5b.

22



Appl. Sci. 2021, 11, 11579

Figure 6. Detailed view of Figure 5a; (Hatch and Orifice, cross section).

B. Determining the Optimum Geometry of the Sensor’s Housing

Having determined the most appropriate bypass topology, we proceeded with the nec-
essary study for finalizing the sensor’s complete housing geometry. A maximum engine
air intake of 1000 kg/h (14076 SLPM) was assumed, exceeding by over 50% the maximum
air intake for a typical low power industrial IC engine [14]. We should note that, in order to
expand the measuring range of the final sensor as much as possible, the employed housing
design featured two bypass sections, each with a separate sensing element. That is, one
bypass (“High Velocity Bypass”) with an optimized geometry for a moderate incoming
flow range (0–350 kg/h) and a second bypass (“Low Velocity Bypass”) for a considerably
higher flow range (350–1000 kg/h); note that the names of each bypass refer to the mag-
nitude of the developed velocity inside the pathway for the same incoming flow and not
to the magnitude of the incoming flow itself. In addition, a third sensing element was
mounted directly on the main inflow pathway of the housing for reference. The final
topology is presented in Figure 7.

Figure 7. Design geometry schematic (dimensions in mm).

As in the previous study steps, the exact geometry of the overall design (i.e., orifice
diameters, bypass diameters, outlet areas, etc.) was obtained through a series of CFD
simulations. For the maximum engine air intake (1000 kg/h or 14076 SLPM), an inflow
velocity of 50.82 m/s was obtained, considering the main area at the housing’s inlet. For
the specific velocity, present at each of the bypass inlets (with a much smaller cross-section
area of 3.14 cm2), the corresponding Reynolds number was estimated at 65,064, pointing to
turbulent flow for both bypass pathways.
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Considering the above remark, the turbulence model k-omega (k−ω) SST was em-
ployed, as in the previous series of simulations performed. Characteristic simulation
results (for fully developed flows, corresponding to intakes of 1000 kg/h and 500 kg/h)
are presented at Figure 8 for the deduced optimum geometry.

 
 

(a) (b) 

Figure 8. Design geometry simulation results. (a) 1000 kg/h (14,076 SLPM); (b) 500 kg/h (7038 SLPM).

As we can see in the specific figure, a drastic drop of over 50% for the Low Velocity
bypass and 80% for the High Velocity Bypass of the initial value for the air velocity entering
the housing inlet was predicted, resulting in reduced air velocity at the sensing element, as
presented in Table 2; an approximately three-fold increase was noticed at the orifice areas,
as expected.

Table 2. Design geometry simulation results, velocity reduction at sensing element area.

Bypass Design

Flow Entering the
Housing Inlet

Velocity
Magnitude at the Housing

Inlet_ Vin (m/s)

Estimated Velocity
Magnitude at

Sensing Element Area_ Vs (m/s)

Velocity
Decrease

(%)

Decrease
Factor

(Vs/Vin)(kg/h) (SLPM approx.)

High Velocity
Bypass

1000 14318 56 27 51 0.48

615 8806 34 17 50 0.5

350 5011 16.7 8.3 50 0.5

Low Velocity
Bypass

1000 14318 56 10 82 0.18

615 8806 34 6.4 81 0.19

350 5011 16.7 3.3 80 0.20

Having finalized the geometry details, an appropriate model was built, employing
additive manufacturing (i.e., 3D printing technology). In more detail, Fused Deposition
Modelling (FDM) [25] was employed through a typical commercial 3D printer (Ultimaker
S5), while the building material selected was standard PLA in combination with supportive
material PVA; the constructed housing is presented at Figure 9.

 

Figure 9. 3D printed sensor housing fabricated with PLA material in combination with PVA support-
ive material; the PT100 RTDs-integrated on PCB substrate are also presented (upper right image).
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C. Sensing Element Employed

The sensing element of the device was fabricated, employing PCB technology (more
details can be found in [15]); the specific process combines limited process steps, low cost,
and increased robustness. Laconically, three commercially available PT100 Resistance
Temperature Detectors (RTDs) were mounted on a typical PCB substrate after the necessary
copper patterning for forming the corresponding Cu tracks; as a next step, appropriate vias
were formed in order to connect the RTDs to the contact pins at the backside of the PCB.
The resulting sensing element is presented in Figure 9 (upper right image).

D. Experimental Setup for the Initial Characterization of the Developed Sensor

An initial characterization of the developed sensor was performed on a DIESEL engine
testbed. In more detail, the sensor was integrated into a typical four-cylinder low-power
industrial engine (IVECO®, N45 MST series), with rated power of 125 HP at 2200 rpm,
coupled with an Eddy Current dynamometer (DYNOmite®), with maximum absorbed
power 400 HP at 5000 rpm. As can be seen in Figure 10, the device under characterization
was mounted in a series with the integrated Mass Air Flow (MAF) reference sensor of
the testbed (BOSCH®, HFM5 series), which records the engine air intake. Both the engine
speed and the mechanical load applied by the dynamometer were monitored continuously
and controlled accordingly by the testbed’s control station.

  
(a) (b) 

Figure 10. (a) Engine testbed experimental setup; (b) the developed sensor mounted in series with the integrated MAF of
the testbed.

3. Results

For the purposes of a preliminary electrical characterization of the developed sensor,
hot-wire principle of operation on constant current (CC) mode was selected. In more detail,
a constant current of 40 mA was supplied to one of the RTDs on the sensing element, while
the corresponding voltage decrease was monitored for different operating points of the
engine. The power supplied, taking into consideration the initial resistance of the RTD
element, was 238 mW. The air intake varied from 0 to 485 kg/h (0 to 6944 SLPM) by
running the engine at appropriate operating points of speed and mechanical load applied;
the maximum tested inflow corresponded to a mechanical load of 78.8%, which was not
further increased due to safety reasons related to the testbed.

We should note that the estimated pressure drop (ΔP) between the inlet and outlet
of the housing, employing the optimum topology with two bypasses pathways, was
approximately 1000 Pa, according to the performed CFD simulations for a maximum air
intake of 615 kg/h, while the maximum allowed air intake restriction in the testbed’s IC

25



Appl. Sci. 2021, 11, 11579

engine is 6500 Pa [14], significantly higher than the estimated pressure drop. Furthermore,
during all the performed sequential runs of the engine, no alteration was noticed at any of
the engine performance parameters monitored, which could be induced by the presence
of the developed device under characterization. Thus, the presence of the bypasses on
the airflow did not influence in any way the performance of the testbed’s IC engine.

For each operating point, three sets of measurements were performed, with respect
to the three different configurations available; that is, for the three locations on which
the RTD element was mounted (main inflow pathway, High Velocity Bypass, and Low
Velocity Bypass). The recorded sensor’s output is presented in Figures 11a, 12a and 13a
respectively; note that approximation curves were fitted in the specific experimental data,
employing simple polynomial functions with a high accurate fit (R2 = 0.997 or above). A
comparative graph for the three sensor configurations is presented at Figure 14. According
to the IEC 60751:2008 standard (international standard for industrial PT resistance sensors),
the sensing RTD’s resistance variation, with respect to temperature at a range of 0 to 155 ◦C,
is given using the following equation [26,27]:

R(T) = R0 × (1 + A · T + B · T2) (1)

where:

R0 is the nominal resistance value at 0 ◦C
T is the operating temperature in ◦C
A is an appropriate coefficient according to IEC 60751 (A = 3.9083·10−3 ◦C−1)
B is an appropriate coefficient according to IEC 60751 (B = −5.775·10−7 ◦C−2)

 

(a)  (b) 

Figure 11. RTD on main inflow pathway. (a) Sensor’s output vs. incoming flow; (b) RTD temperature and resistance change
vs. incoming flow.

 
(a) (b) 

Figure 12. RTD on High Velocity Bypass. (a) Sensor’s output vs. incoming flow; (b) RTD temperature and resistance change
vs. incoming flow.
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(a)  (b) 

Figure 13. RTD on Low Velocity Bypass. (a) Sensor’s output vs. incoming flow; (b) RTD temperature and resistance change
vs. incoming flow.

Variation of Output Voltage (mV) vs Incoming Flow 

Figure 14. Output voltage variation vs. incoming flow for the three sensor configurations (i.e., for
the three locations on which the sensing RTD element was mounted).

Since the resistance value of the sensing element was recorded during characterization,
we can easily calculate its temperature for each point of incoming flow, employing the above
equation. The resulting RTD’s temperature decrease, together with the monitored resistance
change, are presented at Figures 11b, 12b and 13b.

As we can easily observe from the above figures, a significant variation in the sensor’s
output signal was recorded in all three cases, with respect to the incoming flow, validating
the functionality of the fabricated sensor. Furthermore, a drastic extension of the measuring
range can be noticed when employing either bypass, compared to mounting the sensing
element directly on the main inflow pathway, as expected.

In more detail, saturation in the sensor’s signal manifests itself for flow rate values
above 3000 SLPM (210 kg/h) and 4000 SLPM (280 kg/h), approximately, when no bypass
or when the High Velocity Bypass was employed, respectively (Figures 11a and 12a), while
no saturation was present in the case of the Low Velocity Bypass, even for the maximum
engine air intake (Figure 13a). Similarly, the sensing element’s temperature was drastically
reduced by 40 ◦C, approximately, when no bypass or when the High Velocity Bypass was
employed (Figures 11b and 12b), while a 46 ◦C drop was present in the case of Low Velocity
Bypass (Figure 13b).
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4. Discussion

As a general remark, based on the previously presented experimental findings,
the adaptation of standard airfoil geometry to the housing design leads undoubtedly
to an extensive increase in the measurement range of the final sensing device. Taking into
consideration the findings of previous relative research work [12], but also the simulations
presented in this paper, this increase is attributed mainly to the drastic reduction of the cir-
culating flow inside the bypass pathway, especially near the sensing area, by appropriately
shaping the flow profile at both inlet and outlet ports of the bypass pathway.

Furthermore, we should note that the obtained experimental results are in agree-
ment with those theoretically predicted by the performed simulations, since the recorded
measurement range for both bypass topologies was significantly larger compared to the ob-
tained range when the RTD element was placed directly on the housing ‘s main inlet. In
more detail, an increase of 33.3% and over 130% was measured for the High Velocity Bypass
and Low Velocity Bypass topologies, respectively. Regarding the numerically estimated
reduction in velocity over the sensing element for each topology (see previous section,
Table 2), we should consider the following based on our findings.

The convective heat flux of air over a surface can be expressed by the following equation:

q = hc_air · ΔT (2)

where:

q is the rate of heat flux perpendicular to a surface (W/m2)
hc_air is the convective heat transfer coefficient of air (W/m2·K)
ΔT is the temperature difference between the air and surface (K).

The convective heat transfer coefficient of air (hc_air) can be estimated though by
the following empirical equation [28]:

hc_air = 12.12 − 1.16 v + 11.6 v1/2 (3)

where v is the relative speed between the surface and air (m/s).
Equation (3) is graphically presented at Figure 15 for velocity values from 0 to 17 m/s;

we note that the value of the convective heat transfer coefficient (hc_air) increases negligibly
for velocities exceeding 16 m/s, while for velocities exceeding 14 m/s, the increase is
less than 2% (i.e., from 39.3 to 40 W/m2·K). Thus, regardless of the topology employed
in the developed sensor, even if we consider the Constant Temperature (CT) mode of
operation, where the temperature difference (ΔT) between the incoming air and the sensing
element is maintained constant, saturation of the sensor’s signal should be expected at an
air velocity of 14 m/s, approximately.

Figure 15. Convective heat transfer coefficient of air over a surface vs. velocity.
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Additionally, when the sensor is operating at Constant Current (CC) mode, as in
the performed characterization, the sensing element’s temperature declines considerably as
the incoming flow (i.e., velocity) increases. Note that the maximum temperature decrease
deduced from the experimental data presented was from 40 ◦C to 46 ◦C (Figures 11b, 12b
and 13b), which corresponds to a decrease of 31.6% to 36.5% of the initial temperature.
Therefore, we can safely conclude that saturation of the sensor’s signal is expected at a
significantly lower velocity of 14 m/s (which theoretically applies considering CT mode of
operation) for all three topologies.

Considering the velocity decrease factor, which is deduced from the performed CFD
simulations for each bypass topology (see Table 2), we can estimate the air velocity over
the sensing element for any of the specific inflow values tested. As already mentioned in
the results section, saturation at the sensor’s output signal was recorded for a flow rate of
4000 SLPM (280 kg/h), approximately, for the High Velocity Bypass topology employed.
The specific flow rate for this particular housing inlet area corresponds to an incoming
velocity of 15.2 m/s; thus, the reduced velocity inside the bypass is estimated at 7.6 m/s
(considering an approximate 0.5 decrease factor), which is significantly lower than 14 m/s
and in accordance with the previously performed analysis, concerning the saturation of
the sensor’s signal.

Similarly, in the case of the Low Velocity Bypass pathway for the maximum applied
inflow of 6944 SLPM (485 kg/h), the estimated incoming velocity is 26.3 m/s, while
the reduced velocity inside the bypass is estimated at 5 m/s, considering an approximate
0.19 decrease factor according to the CFD simulations performed. Therefore, no saturation
at the sensor’s signal is expected for the specific bypass topology, even for the maximum
air intake (615 kg/h), since the estimated value is substantially below 14 m/s; note that this
is supported by the obtained experimental results. As a reference, in the case of the sensing
element directly mounted on the main inflow pathway of the housing, saturation occurred
at an incoming velocity of 11.4 m/s, which was closer to the value of 14 m/s in comparison
to the other topologies, as expected.

We should note at this point that the exact values of air velocity above the sensing ele-
ment cannot be directly compared for the three different topologies without incorporating
a non-negligible error, since even a modest difference regarding the location of the element
inside each bypass pathway, with respect to the one assumed for the simulated flow profile,
can result in a reasonable difference between the velocity estimated and experimentally
measured; apparently, presuming that two or three elements are situated concurrently
at the exact same locations, with regard to the assumed positions at the corresponding
simulations, can enhance this error. Furthermore, the obtained results from the simulation
study, regarding the optimization of each topology, can potentially incorporate, to some
extent, different modelling errors (different models/meshing topology, etc.).

Regarding the foremost measurement errors present in the specific study, we should
take into consideration the errors introduced by the sensing element (RTD) employed
and the reference MAF sensor integrated in the diesel engine testbed. In more detail,
considering 126 ◦C as the maximum RTD temperature, the introduced error by the sensing
element (IEC 60751:2008, Class F0.6) [26,27] was equal to ±1.86 ◦C, less than 4.6% of
the measured temperature decrease for all three topologies; for constant current mode of
operation with 40 mA supplied to the element, the above figure corresponds to a maximum
variation of the sensor’s output of ±0.074 V. With respect to the integrated MAF sensor,
the absolute value of the measurement deviation was less than or equal to 3% [29]; thus,
for the engine air intake range employed, a maximum error of ±14.55 kg/h concerning
the reference MAF sensor should be considered.

At this point, we should mention that, in the context of the specific preliminary electri-
cal characterization of the developed sensor, no reference temperature sensing element was
available in order to compensate for the expected output variation, which was induced
due to ambient temperature variation. Therefore, a reasonable fluctuation of intake air
temperature is expected to lead to a drift at the device’s characteristic curve. However,
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in order to quantify the above statement, further electrical characterization of the sensor
should be performed at the engine testbed at different air temperatures, a procedure that is
practically not feasible for adequate temperature fluctuation and with no additive value
for a preliminary investigation of the developed device’s functionality, employing the CI
mode of operation. That being said, the above analysis, based on the experimental findings,
strongly supports the CFD study results, concerning the optimum design geometry of
the housing, while the adaptation of standard airfoil geometry to the housing design leads
undoubtedly to a substantial increase in the measurement range of the final sensing device.

5. Conclusions

A thermal air flow sensor for use as a Mass Air Flow (MAF) measuring device for small
to medium size IC engines was designed and fabricated successfully, employing additive
manufacturing technology combined with PCB technology; the proper functionality of the de-
veloped prototype was validated by performing a preliminary electrical characterization.

The design of the sensor’s housing was derived from an appropriate Computational
Fluid Dynamic (CFD) study; three basic design concepts, which employ different ap-
proaches for the design of an internal air flow bypass pathway, were investigated. As a
result, the optimum design determined is based on a “Hatch and Orifice” topology for
the bypass air inlet, while well-established airfoil geometries in the automobile industry
(NACA and Joukowski) are the basis for the challenging air flow profile shaping over the
sensing element, minimizing the developed circulating air flow. An appropriate set of
simulations were additionally performed in order to further optimize the selected con-
cept’s geometry, with regard to an assumed maximum engine air intake of 1000 kg/h
(14,076 SLPM), which exceeds by over 50% the maximum air intake for a typical low power
Industrial IC engine [14]. Subsequently, the final housing design features two bypass
sections, each with a separate sensing element: one bypass (“High Velocity Bypass”) with
an optimized geometry for a moderate incoming flow range (0–350 kg/h) and a second
bypass (“Low Velocity Bypass”) for a considerably higher flow range (350–1000 kg/h).

Additive manufacturing was successfully employed for the fabrication of the chal-
lenging housing design by employing a commercially available desktop 3D printer and
standard building materials (PLA/PVA), while PCB technology was selected for the sensing
element for increased robustness and limited process steps.

The developed device was integrated into a typical four-cylinder low power engine
on a DIESEL engine testbed, in series with the integrated Mass Air Flow (MAF) reference
sensor. The air intake was varied from 0 to 485 kg/h (6944 SLPM) by running the testbed
at appropriate operating points of speed and mechanical load applied, while the hot-wire
principle of operation on constant current (CC) mode was selected.

A significant variation in the sensor’s output signal was recorded for both pathways,
with respect to the incoming flow, validating the functionality of the fabricated sensor.
Furthermore, a drastic extension of the measuring range was noticed when employing
either bypass compared to mounting the sensing element directly on the main inflow
pathway. Saturation in the sensor’s signal manifested itself for flow rate values above
280 kg/h (4000 SLPM), approximately, when High Velocity Bypass topology was employed,
while no saturation was present in the case of the Low Velocity Bypass, even for the maxi-
mum engine air intake of 485 kg/h (6944 SLPM). The sensing element’s temperature was
drastically reduced by 40 ◦C or 46 ◦C depending on the topology employed.

Based on the findings of previous relative research work [12], but also on the cur-
rent experimental findings, the adaptation of standard airfoil geometry to the housing
design, in combination with the “Hatch and Orifice” topology for the bypass air inlet, lead
undoubtedly to an extensive increase in the measurement range of the sensing device,
mainly attributed to the drastic reduction of the circulating flow inside the bypass pathway.
Furthermore, the experimental results strongly supported the CFD study performed with
regard to the optimum design geometry of the housing.
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Key features of the developed device are low-cost, fast on-site manufacturing, ro-
bustness, and simple fabrication procedure, suggesting numerous potential applications
in marine engineering and in industrial applications in general. Future work includes
the characterization of the sensor at increased air intake, employing a different experimen-
tal setup, together with appropriate characterization (including reproducibility evaluation),
both on Constant Current (CC) and Constant Temperature (CT) modes of operation, under
the hot-wire principle and calorimetric principle of operation.
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Abstract: How to control deformation and avoid resonance is the key to ensuring the safety of
the super-long pipeline when it is floating in the sea. Based on the deformation warning value of
pipeline prototype composite material obtained from laboratory tests, the raw water pipeline project
in Tong’an Xiamen adopts wireless communication equipment to transmit data, supplemented by
aerial photography technology to monitor and feedback the strain and vibration during the dynamic
construction of long-distance pipeline floating transportation. Combined with dynamic construction,
this monitoring method avoids excessive deformation and resonance of the steel pipeline during
floating transportation, and prevents the destruction of the anticorrosive coating. The airtightness test
after completion shows that the whole pipeline meets the acceptance requirements. The monitoring
results show that the strain at the bent position of the pipeline is large in the process of floating
transportation, and the jacking speed and position of the tugboats have an important influence on
the deformation of the pipeline. The same type of project should focus on these aspects and timely
feedback monitoring data. At the same time, the study also provides detailed strain, modal analysis
and effective monitoring technology for the safety of offshore steel pipeline floating transportation.

Keywords: marine floating transport; field monitoring; dynamic construction; steel pipeline strain;
vibration mode

1. Introduction

The construction of the trans-sea pipeline is an important part of the municipal
pipeline project. Due to the complexity of the sea environment, the construction of the
pipeline floating on the sea is difficult. The existing floating transportation method is mostly
a single pipeline segment floating by segment, while the overall floating transportation
technology of super-long pipeline is to float the whole pipeline to the sinking position after
individual pipelines make up the whole. Ye et al. [1] studied the mechanical properties
of the whole sinking process of super long asymmetric pipe. Compared with the pipe-
laying vessel method [2] and pipeline jacking method [3], this construction method has less
navigation influence, shorter construction period, less influence from geological conditions
and low construction cost, it can complete the laying of underwater long-distance water
conveyance pipeline with high efficiency and high quality. However, floating transportation
on the sea is greatly affected by wind, wave and flow, so real-time monitoring feedback
and dynamic adjustment are the keys to ensuring the safety of floating transportation of
steel pipelines.

The Marine environment is complex. There are three main methods to study ocean
engineering: theoretical research [4–6], numerical simulation [7–9], indoor modal and
on-site test [10–13]. Compared with other methods, field monitoring can obtain the raw
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data of Marine structures and track the effective information in real-time, which provides
essential support for offshore installations and reduce the risk of accidents [14,15]. At
present, the monitoring methods of offshore pipelines mainly include fiber Bragg grating,
acoustic emission and wireless sensor testing. Brower et al. [16] used optical fiber to
monitor submarine pipelines as early as 2004. Ren et al. [17] apply Distributed Optical
Fiber Sensor (DOFS), including strain and temperature sensors, to the health monitoring of
the Bohai CB271 oil production platform. The experimental investigations on a method
for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic
sensor were conducted by Feng et al. [18]. Xu et al. [19] developed a new Fiber Bragg
Grating (FBG)-based bundle-structure riser stress monitoring sensor which could meet
the requirements of riser safety monitoring in offshore oil fields. Fiber Bragg gratings are
easy to move and paste, and the installation process has less impact on the pipeline surface.
However, it also has some disadvantages, such as chirps and creeps. Jin and Eydgahi [20]
proposed monitoring of distributed pipeline systems by acoustic sensor networks. Based on
the Underwater Acoustic Sensor Networks, Wang et al. [21] proposed an energy-efficient
data transmission scheme called EGRC (Energy-efficiency Grid Routing based on 3D
Cubes). Mahmutoglu and Turk [22] proposed a novel passive acoustic-based system that
could locate the leak holes and determine their size remotely. The acoustic sensor is portable
and easy to install, but it is sensitive to environmental noise and prone to false positives.
The Independent Remote Monitoring System (IRMS) of Mexico deepwater floating is fully
independent of the primary Integrated Marine Monitoring Systems (IMMS) system in
terms of sensors [23]. An energy-efficient cooperative scheme for wireless sensor network
(WSN) nodes used in long-distance water pipeline monitoring systems was proposed by
Seddiq et al. [24]. Huang and Nagarajaiah [25] developed new structural health monitoring
(SHM) techniques, in which, the degree of damage was determined by local monitoring
using a robotic crawler with magnetic flux leakage (MFL) sensor. It could monitor damage
due to vibration fatigue. Production Systems Unmanned aerial vehicles (UAVs) technology
prototypes to monitor pipelines were introduced by Gómez and Green [26]. The unmanned
aerial vehicles technology is suitable for the overall monitoring of long and large pipelines,
but it is not mature yet. Furthermore, besides the monitoring method, the mechanical
and deformation characteristics of the pipeline body are also worthy to attend. Many
efforts focused on the material characteristics and deformation mechanism of the pipe
body. Wang Y et al. [27] investigate the transverse impact response for ultra-lightweight
cement composite (ULCC) filled pipe-in-pipe structures through a parametric study using
both a validated finite element procedure and a validated theoretical model. ESPÍN-
LAGOS et al. [28] have determined through mechanical tests, metallographic analysis,
and morphological studies that the degree of discoloration of the HAZ is directly affected
by the atmospheric oxygen content during purging, and it has been proven to have a
good electrical resistance in welded joints. Kiss I et al. [29] measured the characteristics of
stainless steel during large plastic deformation through a hot torsion test, and obtained the
best heating temperature range for the studied steel deformation.

Offshore pipeline monitoring is a challenging task. The main concerns are pipeline
stress and strain, pipeline leakage and vibration. Relevant scholars have conducted a
large number of studies on the offshore pipeline. They focused on a single fixed pipeline
joint and ignored the deformation of the pipeline itself. For ultra-long pipelines, there
will inevitably be an error in the calculation of force exerted on them by these methods.
Guo et al. [30] analyzed stress states of pipelines upon floating by using the Finite Element
Calculation method. Chen et al. [31] presented a probabilistic methodology for monitor-
ing the condition of offshore pipelines and predicting the reliability considering stress
observation and structural deterioration. There were many ways to monitor pipeline cor-
rosion and leakage. Arumugamr et al. [32] described the application of the finite element
method (FEM) and the development of equations to predict the failure pressure of single
corrosion affected pipelines subjected to internal pressure and axial compressive stress.
Aniskin A et al. [33] introduced the application of the boundary element method in the
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calculation of a closed cylindrical shell of stepped thickness, and compared it with two
numerical methods: boundary and finite element. Negative pressure wave [34] and dy-
namic modelling [35,36] methods were used to monitor pipeline leaks. Almazyad et al. [37]
presented a scalable design and simulation of a water pipeline leakage monitoring system
using Radio Frequency Identification and Wireless Sensor Network technology. The study
on the vibration of the pipeline is mostly about the vibration characteristics of the sub-
marine pipeline during the period of use, while the study on the vibration of the floating
pipeline is less. Jin and Shao [38] presented numerical simulations and experimental verifi-
cation of a vibration-based damage detection technique. Goldsmith et al. [39] suggested
that fatigue could be calculated based on the modal shape of response and amplitudes from
the monitoring data. Yang et al. [40] investigated the transverse vortex-induced vibrations
(VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean
currents by a series of experiments. Considering the function of inertia and dampness,
under the optimal span, a frequency response analysis was carried out. Zhang et al. [41]
proved that resonance did not happen between the pipeline and wave. One marine riser
fatigue acoustic telemetry scheme was proposed by Li et al. [42] to monitor deep and
ultra-deepwater risers’ vibration fatigue. Sollund et al. [43] studied the dynamic response
of multiple ocean pipelines. A semi-analytical method for the multi-spans offshore pipeline
was developed by them, which provided a fast and accurate alternative to finite element
modeling of potentially interacting spans. Also, Cook et al. [44] proposed ‘Threshold’ mon-
itoring by comparing measured data at alert levels to determine whether key performance
indicators have reached a critical or near-critical level.

There is a lack of on-site data for the super-long steel pipeline floating project, and
it is also difficult. Determination of deformation warning value of steel pipeline and 3PE
composite material, monitoring instrument accuracy, waterproofing and long-distance
signal attenuation, the monitoring scheme and the dynamic construction method which
can effectively reduce the deformation and resonance of the pipeline, these are problems
urgent to solve and design. Based on the project in Tongan Xiamen, this paper attempted to
carry out on-site monitoring and real-time feedback of long-distance offshore steel pipeline
floating transportation, and studies the monitoring scheme, dynamic construction method
and deformation characteristics of offshore pipe floating transportation.

2. Project Characteristics

2.1. Project Profiles

Raw water pipeline project locates in Tongan Xiamen (Pile No. C2 + 187.77~C3 + 565.91).
The length of pipeline 1 is 595 m in the straight pipeline and 120m in the oblique pipeline
section, totally 715 m; the length of pipeline 2 is 370 m in the straight pipeline section
and 290 m in the oblique pipeline, totally 660 m. The whole pipeline is 1375 m long,
1600 mm in diameter, about 1087 t in weight, 20 mm in the wall thickness, and coated with
3PE anticorrosive coating on the surface. The whole pipeline is similar to the inverted
rainbow pipeline structure. Both of the two pipelines are relatively long, so it is difficult
to arrange the position of tugboats and towing force during floating transportation. The
reasonable arrangement of tugboats can make the pipelines bear even force in the floating
transportation process and avoid the local deformation of the pipelines. The floating
pipeline section operates in a cross-flow direction from the downstream direction, with
a turning angle of about 90◦, and the detailed floating routes of the two pipelines are
illustrated in Figure 1. The vertical distance of the floating pipeline is 800 m and the
route is 1.15 km. Due to the influence of sea surface width and the Tong’an bridge, it is
difficult to float the whole pipeline at a time. Therefore, the pipeline 1 was floated to the
sinking position firstly, then the pipeline 2 was floated, the two pipelines were welded at
the sinking position in the sea. Finally, the whole pipeline was sunk at once. The floating
transportation process is shown in Figure 2.
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Figure 1. Satellite image of immersed pipeline segment (taken from Google map).

 

Figure 2. Aerial photo of floating transportation on site.

2.2. Key Engineering Problems
2.2.1. The Particularity of Offshore Construction

Offshore construction tools and monitoring have certain particularities. The wind,
wave and flow on the sea are unpredictable and non-artificial. The change of weather has a
great impact on the construction environment on the sea, and the change of the flow at the
estuary is more drastic. Long and large pipelines are susceptible to wind, wave and flow
during floating transportation. If the pipeline body deforms too much under the action
of external forces, the damage is irreversible, and the pipeline quality and later service
will have very adverse consequences. If the raw water pipeline is damaged, it is difficult
to repair. Akram A et al. [45] providing insights on the use of thermosetting liner for the
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repair of offshore pipelines exposed to corrosion and leakage. The seawater erodes the
pipeline body and pollutes the inside of the pipeline and the airtightness of the pipeline
cannot meet the requirements, resulting in a huge loss of social benefits and economic
benefits. The flow of liquids from the pipes into the ocean may also cause pollution and
affect its sustainable development. The impact of natural elements was quantified using the
ICI index (Impact Quantification Index) proposed by López et al. [46], which summarizes
different sources of variation in a single value.

Secondly, offshore construction operations are not as convenient and flexible as those
on land. If there is no reliable construction monitoring, operators cannot make timely and
correct responses, which is likely to cause irreparable damage to engineering structures.
In addition, metal objects are prone to decay after immersion in seawater, so offshore
construction also requires effective waterproofing and erosion protection of precision
instruments and structures.

2.2.2. The Particularity of Materials

The deformation test of steel-3PE composite material shows that the steel pipeline and
3PE would be separated from each other after large deformation. The indoor test material
was the Q345 steel plate as same as the field steel pipeline material. The length, width and
thickness of the steel plate were 40 cm, 20 cm and 2 cm respectively. Its surface was coated
with 3PE anticorrosive and was tested on the universal material testing machine. During
the testing process, the steel plate was on the top and the 3PE anticorrosive coating was on
the bottom. The strain gauge was attached to the position corresponding to the steel plate
and the 3PE anticorrosive coating (as shown in Figure 3), and the force was applied on the
middle line of the steel plate.

Figure 3. Laboratory test drawing of steel-3PE.

The steel-3pe deformation curve is shown in Figure 4. It can be seen that the strain
at the centerline of the steel plate is the largest. When the load is about 30 kN, the center
point of the steel plate (the measuring point 2-1) reaches the elastic limit state, and there is
a significant difference between the steel plate and 3PE strain at the same position. The
maximum strain of the corresponding steel plate is 437 με. If the load on the composite
continues to increase, the steel plate and the 3PE material will be separated from each other.
Based on the test situation and considering that the compressive strength of general welds
is similar to that of the base metal, the monitoring tester suggests that the safety range of
the monitoring and warning strain value could be 260 με. As soon as the monitoring strain
approaches or reaches this value, the monitoring tester should immediately send out early
warning signals and location information to the operators on the construction site.
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Figure 4. Deformation curve of steel-3PE.

3. Monitoring Instruments and Monitoring Programs

3.1. Monitoring Instruments

In the Marine environment, waterproofing and data transmission of monitoring
equipment are the first problems to be solved. The measures adopted in this monitoring are
as follows: after the strain gauge was pasted on the pipeline, it was further fixed with AB
epoxy resin glue, and then sealed and coated with 703 waterproof glue, the wireless anti-
interference communication system was also used to solve the problem of the interference
and long-distance signal attenuation.

Figure 5 shows the specific monitoring equipment and data transmission process. The
advanced isolation system of DH3819 has a strong anti-interference ability. Furthermore,
it can automatically complete some functions such as the setting of parameters and the
collection of data. This system has eight measurement points for each acquisition module.
The maximum acquisition rate of each measurement point is 5 Hz, the obtainable strain
range is ±19,999 με, and the measurement error is less than 0.5% ± 3 με. The adopted
communication mode is the wireless network communication; ZigBee is lightweight and
portable, which can be used for wireless communication extension to reduce the field
workload and improve the field test safety; DH5902N can be synchronized with GPS and
can be tested and monitored in extreme environments such as strong vibration, high/low
temperature and high humidity. The strain gauge was connected with the DH3819 static
strain acquisition instrument through a waterproof cable-tied and fixed on the pipeline. 4 to
32 channels are provided for the system of DH3819, and all the channels can synchronously
collect data, and the maximum frequency of each channel is 256 kHz. ZigBee was used
to extend the wireless transmission of data. Finally, the data was transmitted to the
computer through USB. The acceleration sensor was connected with the DH5902N mode
acquisition instrument via a waterproof cable, and the computer received data through WiFi.
The floating transportation dynamic construction could be completed through real-time
monitoring and data analysis and the real-time feedback of aerial photography technology.

A lifting test was carried out before floating to ensure the reliability of testing equip-
ment and the accuracy of steel pipe monitoring data. The test method is shown in Figure 6.
The mid-point of the steel pipeline was carried out by a hoist on-site with the spacing of
the buoyancy tank was 325 m. The strain at the mid-point was monitored with the results
shown in Table 1. The pipeline was regarded as a statically determined structure with two
hinged ends. The theoretical strain value was calculated according to the lifting height,
and compared with the measured strain value.
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Figure 5. Flow chart of field monitoring data transmission.

Figure 6. Lifting test on site.

Table 1. Lifting test results.

Case Lift Height f (cm) Theoretical Strain ε=12df/l2 (με) Measured Strain ε (με) Deviation

1 7.8 14.18 14.76 4.09%
2 9.5 17.27 17.8 3.07%
3 11.2 20.35 18.91 7.08%
4 12.9 23.45 21.55 8.10%
5 14.6 26.54 24.66 7.08%
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3.2. Monitoring Programs
3.2.1. Arranging the Number of Tugboats

The water flow force on the steel pipeline was estimated to determine whether the
number of floating tugboats was sufficient. The calculation method of water flow force
was referred to in the literature of Chen and Ren [47], and the calculation formula of the
maximum water flow force of the pipeline Section 1 is as follows:

FD = 1/2CDρu2S (1)

where: FD is water flow force, N; CD is the drag coefficient, which is 1.2; ρ is the density
of water, which is 1000 kg/m3 according to the test data. u is the water flow velocity, and
0.35 m/s is taken according to the test data. S is the area facing the flow (the submergence
depth is 0.4 D, D is the diameter, m), m2.

It is generally believed that 1 KW = 1.36 horsepower, and the drag force per 1 KW
is 199.92 N. Therefore, one 700-horsepower tugboat and three 120-horsepower tugboats
were equipped in the floating transport process of pipeline Section 1, and the maximum
towing force was 155,812.2 n > 33,633.6 n, which met the requirements of floating transport
towing force.

During site construction, the tugboats should be arranged uniformly with the pon-
toons as far as possible, and rotated from the downstream to the transverse direction with
a larger radius of curvature. Under the condition of overcoming buoyancy resistance, the
tugboats kept the same power pushing on the buoyancy tank to avoid excessive defor-
mation and 3PE destruction caused by uneven thrust. Each tugboat was equipped with a
walkie-talkie and 1~2 tugboats were reserved to respond to abnormal situations timely.

3.2.2. Field Monitoring Arrangement

As shown in Figure 7 that Considering that there may be a problem of stress concen-
tration near the bending point, strain monitors were performed near the bending section
of the pipeline Sections 1 and 2 with a larger bending angle. At the same time, select a
strain monitoring section near the middle of the straight pipeline section and the inclined
pipeline section. Because the inclined pipeline section is longer in pipeline Section 2, two
strain monitoring sections are selected here, one at the midpoint of the entire inclined
pipeline, and one between the two pontoons with a larger distance. Three measuring
points were arranged in each section. In the case that the water flow was perpendicular to
the straight pipeline section, taking Section 1 of pipeline 1 as an example, the measuring
point 1-1 belongs to the facing water, 1-2 was the top, and 1-3 was the backwater. As the
bending Angle of pipeline Section 2 was only 1◦, and the cable had been uncoiled to meet
the construction needs before floating, the pipeline section had been flipped by 90◦. Taking
Section 4 as an example, the measuring point 4-1 was the top, 4-2 was the backwater, and
4-3 was at the bottom. In general, the number of measurement points had little influence on
the modal parameters of natural frequency. Four modal monitoring parts were arranged
in Section 2, and two measuring points were arranged on each monitoring part. Taking
Section 1 as an example, measurement points 1-1 were the top and 1-2 were the backwater.

During the process of pipeline floating, the pilot boat moved synchronously with the
pipeline to obtain monitoring data. The test boat of pipeline Section 1 was equipped with
DH3819, which was used to receive 9 strain signals in 3 sections of the inclined pipeline
section. DH3819 and DH5902N were arranged on the test boat of pipeline Section 2 to
receive 12 strain signals in 4 sections of the inclined section and 8 vibration acceleration
signals in 4 sections of the straight section.
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(a) 

 
(b) 

Figure 7. Arrangement of strain and modal measuring points. (a) Section arrangement of pipeline. (b) Point arrangement
of section.

4. Analysis of Monitoring Results

4.1. Strain Monitoring Results

The pipeline body followed the direction of the flow before the floating movement be-
gan. After the floating movement started, the pipeline body was rotated counterclockwise
at a speed of about 2◦/min. It rotated to the direction perpendicular to the flow at 45 min,
and to the designated position at 110 min, with the strain value tending to be stable.

Figure 8 shows the strain during the floating movement process of pipeline Section 1.
The maximum tension strain at the point 1-1 facing the water surface is 99.1 με, and the
maximum pressure strain is −122.3 με; at the top measuring point 1-2, the maximum
tensile strain is 55.4 με, and the maximum pressure strain is −48.6 με; the maximum tensile
strain is 150.9 με and the maximum pressure strain is −52.4 με at the backwater detection
point 1-3. The measuring point 2-1 was located at the corner outside the surface of the
water. It used a unidirectional strain gauge and the maximum strain was along the axis of
the straight pipeline section. The maximum tension strain is 57.9 με, and the maximum
pressure strain is −100.4 με. The measuring point 2-2 was at the top, the main stress
direction is clear, and the right-angle strain flower is adopted, 0◦ along the axis direction
and 90◦ vertical pipeline axis direction. The maximum tensile strain of 0◦ is 44.5 με, and
the maximum pressure strain is −78.4 με. The maximum tensile strain of 90◦ is 87.7 με,
and the maximum pressure strain is −60.2 με. Measuring points 2-3 at the angle of the
backwater, the direction of principal stress was unknown, so the tri-directional strain flower
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is adopted. The maximum tensile strain of 0◦ is 177.9 με, and the maximum pressure strain
is −99.9 με. The maximum tensile strain of 45◦ is 60.4 με, and the maximum pressure strain
is −24.5 με. The maximum tensile strain of 90◦ is 44.7 με, and the maximum pressure strain
is −135.7 με. The maximum tensile strain at the facing water surface measuring point 3-1
is 66.9 με, and the maximum pressure strain is −130.6 με. The maximum tension strain at
the top measuring point 3-2 is 14.5 με, and the maximum pressure strain is −68.2 με. The
maximum tension strain at the backwater detection point 3-3 is 85.3 με, and the maximum
pressure strain is −53.1 με. The cables of measuring points 3-1 and 3-2 were pulled during
floating transportation, and the strain curve shows a downward trend.

 
Figure 8. Pipeline Section 1 floating strain.

In the early stage of floating transport of pipeline segment 1, the pipeline rotated from
downstream to cross-flow, and the middle tugboat had a large jacking force to correct it,
so there was a short tension stage on the upstream and a short compression stage on the
water-carrying side. At the time of floating transport of 72 min, a strong wind suddenly
blew on the sea surface, causing an abrupt increase in the strain of the pipeline. In general,
the strain in the floating transportation of pipeline Section 1 does not exceed the warning
value. The steel pipeline is pressed against the surface of the water or pulled away from
the surface of the water, and the strain curve is anti-symmetric. The strain of the windward
side and the dorsal side of pipeline Section 1 is significantly greater than that of the top. The
strain of the windward side and the dorsal side is the most dramatic under the influence of
sea waves and flows, while the strain of the top is relatively small, and the strain of the
measurement point 1 at the bend is greater than that of the measurement point 2 and 3 at
the flat section.

The strain in the floating transportation of pipeline segment 2 is shown in Figure 9.
The maximum tension strain at the top of measuring point 4-1 is 0.2 με, and the maximum
pressure strain is −167.8 με; The maximum tension strain at the backwater detection point
4-2 is 278.4 με, and the maximum pressure strain is −151.4 με; the maximum tension strain
at the measuring point 4-3 is 26.6 με, and the maximum pressure strain is 14.8 με. The
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maximum tension strain at the backwater detection point 5-2 is 337.8 με, and the maximum
pressure strain is −123.3 με. The maximum tension strain at the top measuring point 6-1 is
29.9 με, and the maximum pressure strain is −53.6 με; the maximum tension strain at the
backwater detection point 6-2 is 150.9 με, and the maximum pressure strain is -167.5 με;
the measuring point 6-3 at the bottom, the maximum tensile strain is 46.0 με, and no
pressure strain is observed. The maximum tension strain at the top measuring point 7-1
is 25.0 με, and the maximum pressure strain is −99.0 με; the maximum tension strain at
the backwater detection point 7-2 is 89.0 με, and the maximum pressure strain is −18.6 με;
the maximum tension strain at the measuring point 7-3 at the bottom is 21.4 με, and the
maximum pressure strain is −5.0 με.

Figure 9. Pipeline Section 2 floating strain.

In the early stage of buoyancy movement of pipeline segment 2, the strain value
of each measuring point is small, with the maximum strain less than 100 με. When the
buoyancy movement reaches 48 min, a gale of six sprang up off the sea. In general, the
strain in the floating transportation of pipeline Section 2 does not exceed the warning value.
The steel pipeline is under pressure at the top, under tension at the bottom, and tension
at the surface of the back. The strain change on the waterside of the pipeline is the most
drastic, followed by the top and the bottom. The strain monitoring curves of test sections
4-1 show good consistency.

4.2. Dynamic Regulation

By real-time monitoring and timely warning and feedback to the construction in-
stitution, the construction institution can dynamically adjust the construction operation
according to the monitoring feedback situation, avoid the pipeline damage caused by the

43



Appl. Sci. 2021, 11, 10186

deformation of steel pipeline and 3PE composite material, and ensure the safety of pipeline
floating transportation.

At the beginning of floating transportation of pipeline Section 1, the wind speed was
3 m/s, the flow velocity was 0.35 m/s, and the wave height was 0.15 m, the axis of the
pipeline was along the direction of water flow. The strain of the pipeline obtained by
on-site monitoring is small and the change amplitude tends to be gentle. When floating
at 72 min, a level 6 gale suddenly appears at sea, the wind speed was 6.5 m/s, the flow
velocity was 0.55 m/s, and the wave height was 0.45 m. At this time, the angle between the
pipeline axis and the flow direction was about 90◦. The strain of the pipeline increases and
the construction institution notifies the tugboats to increase the towing capacity. However,
it is found that the strain suddenly increases and quickly approaches the warning value
through monitoring. The monitoring personnel immediately reports the situation to the
construction institution. Considering that the situation is caused by too much tugboat
thrust, the operator at the construction site should be informed to reduce the tugboats thrust
slowly, and always pay attention to the monitoring data, the strain data to be monitored
returns to the normal level, that is, stop reducing the thrust of the tugboats. As shown
in Figure 10, real-time monitoring and construction cooperate to dynamically adjust the
construction operation (Section 2 at the bend is the maximum main strain).

Figure 10. Dynamic floating construction of pipeline Section 1.
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When the floating movement of pipeline Section 2 begins, the wind speed was 3 m/s,
the flow velocity was 0.35 m/s, and the wave height was 0.15 m, the axis of the pipeline
was along the direction of water flow. At 48 min of floating transportation, a strong wind
suddenly appeared at sea, which was opposite to the floating transportation direction
of the pipeline section. The wind speed was up to 6.5 m/s, the wave was up to 0.45 m,
and the flow velocity was 0.55 m/s. At this time, the angle between the pipeline axis and
the flow direction was about 90◦. Dynamic construction is shown in Figure 11. Through
monitoring, it is found that the strain at the water surface measurement point on the back
of the pipeline continues to increase when it reaches 200 με, which is mainly caused by the
increase in wind speed and flow velocity. The monitoring personnel immediately gave
warning to the construction institution and reports the position of the maximum strain,
informing the construction site operators to send an additional tugboat near Section 6 near
the midpoint of the inclined pipeline section and continuously adjusting the position of
the additional tugboat according to the monitoring data. Although the maximum strain
of measuring point 5-2 at 55 min was 337.8 με, exceeding the alarm value, it was still
within the safety range. After the additional tugboat starts to work, the overall strain of the
pipeline gradually reduced and then becomes stable. Finally, the pipeline Section 2 was
transported to the designated position safely.

Figure 11. Dynamic floating construction of pipeline Section 2.
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4.3. Modal Monitoring Results

The pipeline modal test adopted the environmental excitation method. The response
signals of all the measurement points arranged on the pipeline were collected at once, and
then the response signals were analyzed in the frequency spectrum to identify the modal
parameters of the pipeline. The spectrum analysis adopted the power spectrum method to
identify the system modal parameters by using the self-power spectrum of the pipeline
response output and the mutual power spectrum amplitude of the reference point response
input. The high-frequency acquisition could make the collected signal closer to the original
signal and reduce the influence of industrial noise. As the floating time was as long as 3 h,
the modal test of the floating process of pipeline segment 2 was divided into two stages,
and the parameter balance was carried out respectively.

As shown in Figure 12 that A-1, B-1, B-2, C-2, D-1, D-2 are measured in the pipeline
modal test. In the first stage of the test, at about 55 min, the time-history curve of accel-
eration increases significantly, which is the same as the time of strain surge. Since the
sailing speed of the additional tugboat was not synchronized with that of other tugboats
and the tugboats had been adjusting their positions, the movement of the extra tugboats
had a temporary impact on the steel pipeline and the waves and flows near the pipeline.
Therefore, there are some big fluctuations in the acceleration time-history curve between
55–93 min, among which the acceleration time-history curve at 62 min and 92 min has a
large increase, but the duration is short.

Figure 12. Data diagram of floating vibration of pipeline segment 2.

As shown in Figure 13 that according to the spectrum analysis, from the beginning of
the floating movement to the wind rise, the horizontal and vertical first-order vibration
frequency is 16.602 Hz, the frequency changes with a small increase to 17.578 Hz after
adding a tugboat. At the beginning of floating transportation, the axis of the pipeline was
parallel to the direction of the water flow, and the amplitude was the smallest. When the
pipeline angle was transferred to 90◦, the amplitude increased slightly, and the amplitude
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reached the maximum value after the wind rose. Then the tugboat was added, and the
amplitude of the pipeline decreased significantly while the frequency increased.

  

Figure 13. Frequency spectrum of pipeline segment 2 floating transport.

During the whole process of floating transportation, on-site real-time monitoring
and dynamic construction reduced the impact of abrupt weather on the vibration of the
pipeline, and the monitoring results show that there is no resonance phenomenon with
excessive amplitude. All these further verify the rationality of the dynamic construction
scheme based on the timely feedback of monitoring data.

5. Discussion

1. During the floating transportation of pipelines 1 and 2, the strain of the upstream and
the downstream was obviously greater than that of the top, which was because that
the upstream and the downstream were directly affected by water flow and waves,
while the top part was less affected. In addition, the strain at the bent point of the
pipeline was also larger than that of other parts. The bend point was not only affected
by the vertical action of water flow and waves, but also affected by the component
force transmitted by the bend section.

2. Floating posture and wind speed will affect the amplitude of the pipeline, but not
the vibration frequency of the pipeline. However, increasing the number of tugboats
will increase the vibration frequency of the pipeline and decrease the amplitude. For
the same vibration system, the amplitude may change, but the vibration frequency
is unchanged. Floating posture and wind speed do not change the weight and
stiffness of the pipeline structure (i.e., vibration system), but increasing or decreasing
the number of tugboats will change the weight and stiffness of the whole structure
composed of tugboats and steel pipelines.

3. The strain at the bending point of the pipeline must be paid special attention to during
the dynamic construction of the floating pipeline. The construction institution shall
reasonably arrange the number of tugboats according to the real-time monitoring
data, pay attention to controlling the speed of tugboats and the size of the towing
force, and prevent the damage of anticorrosive coating and the vibration damage of
pipeline due to excessive bending strain.

4. Through the reasonable arrangement of tugboats and buoyancy tanks for the super-
long pipeline, the dynamic construction of the long-distance floating process can be
realized with on-site monitoring. Ensure that the deformation and vibration of the

47



Appl. Sci. 2021, 11, 10186

steel pipeline during floating transport are within a safe range. The obtained data and
conclusions can provide a useful reference for similar pipeline floating construction.

5. The limitation of the discrete sensor is that it can only measure a finite section of the
structure and cannot cover the whole length. If conditions permit, construction institu-
tions or researchers can use distributed optical fiber sensors to realize non-destructive
monitoring of a full kilometer distance, with more accurate event identification and
positioning capabilities and more accurate and timely early warning.

6. Conclusions

Considering that the floating process of super-long steel pipeline at sea is a nonlinear
geometric large deformation problem and is very sensitive to the load. This paper conducts
field monitoring and dynamic construction of the super-long steel pipeline offshore floating
project to feedback the deformation state of the pipeline to the construction institution,
enabling construction institutions to adjust construction operations. Strictly control the
deformation of the pipeline to ensure the safety of the extra-long steel pipeline floating,
and obtain valuably measured and analyzed data, which provides a reference for similar
projects. The specific conclusions are as follows:

• In the process of floating transportation, the pipeline was under the stress state of
the upstream and the downstream, and the strain of the upstream and the down-
stream was obviously greater than that of the top of the steel pipeline. The strain
at the bend was larger than that at the straight section. The long-distance pipeline
could also maintain good consistency in its stress state while floating. Therefore, in
the process of construction and monitoring, special attention should be paid to the
upstream, downstream and bend of the floating steel pipeline, to keep the force on the
pipeline uniform.

• If other structures (such as tugboats) were not added, the vibration frequency of the
pipeline would remain basically unchanged. The amplitude would increase with the
increase of wind, wave and water flow, and decrease obviously with the increase of
the number of tugboats. The number, position and speed of tugboats both affected the
pipeline, so the tugboats must be adjusted reasonably in the construction operation.

• The offshore floating transport pipeline should be subjected to on-site strain and
modal monitoring at the same time. The monitoring personnel should feedback the
data to the construction institution in real-time, giving a warning when necessary, and
use the monitoring data to guide the construction institution to adjust the construction
plan reasonably and dynamically. To ensure the strain and anticorrosion coating
of the steel pipeline are within a safe range during the floating transportation and
prevent the vibration damage of the pipeline. If it is possible, distributed optical fiber
sensors can also be used for full-length and overall non-destructive monitoring of the
kilometer pipeline, its event recognition and positioning capability are more accurate
and early warning will be more accurate and timely.
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Abstract: In this work, a MEMS piezoresistive micro pressure sensor (1.5 × 1.5 × 0.82 mm) is
designed and fabricated with SOI-based micromachining technology and assembled using anodic
bonding technology. In order to optimize the linearity and sensitivity over a wide effective pressure
range (0–5 MPa) and temperature range (25–125 ◦C), the diaphragm thickness and the insulation of
piezoresistors are precisely controlled by an optimized micromachining process. The consistency of
the four piezoresistors is greatly improved by optimizing the structure of the ohmic contact pads.
Furthermore, the probability of piezoresistive breakdown during anodic bonding is greatly reduced
by conducting the top and bottom silicon of the SOI. At room temperature, the pressure sensor with
40 μm diaphragm demonstrates reliable linearity (0.48% F.S.) and sensitivity (33.04 mV/MPa) over a
wide pressure range of 0–5.0 MPa. In addition, a polyimide protection layer is fabricated on the top
surface of the sensor to prevent it from corrosion by a moist marine environment. To overcome the
linearity drift due to temperature variation in practice, a digital temperature compensation system
is developed for the pressure sensor, which shows a maximum error of 0.43% F.S. in a temperature
range of 25–125 ◦C.

Keywords: temperature compensation; wide-range; pressure sensor; polyimide anticorrosive coating;
harsh environment

1. Introduction

The piezoresistive effect of a semiconductor was first discovered in the 1950s, which
is the theoretical basis of most pressure sensors [1–3]. In addition to piezoresistive sen-
sors, several different transduction mechanisms have been applied to convert pressures or
strains to signals, such as inductance, capacitance, piezoelectricity, and resonance, which
can be detected on circuitry [4,5]. Among these designs, piezoresistive sensors are generally
accepted due to their simple construction and low energy consumption [6]. The micro
pressure sensors have been greatly developed and played a pivotal role in the automobile
industry, aerospace industry, and medical equipment with the promotion of MEMS tech-
nology [7–11]. In marine engineering, pressure sensors are commonly used in applications
involving high pressure up to several megapascal (MPa), high temperature up to several
hundred degrees Celsius, and moist external conditions. However, some intrinsic pitfalls
of the silicon piezoresistive pressure sensor, such as inadequate performance in harsh
environment, e.g., high pressure or high temperature, and output drift due to temperature
variation, have limited its application in marine settings.

In order to improve the performance of the micro piezoresistive pressure sensor, nu-
merous studies have focused on optimization of structure, fabrication, and encapsulation.
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Dong et al. [12] introduced a monolithic composite MEMS pressure sensor with an effective
range of 450 kPa. Nag et al. [13] modified the structure by integrating rod beams in a
silicon diaphragm. A pressure range of 0–689.5 kPa was achieved. Sheeparamatti et al. [14]
fabricated two micro pressure sensors based on polysilicon on insulator (PolySOI) and
amorphous silicon on insulator (a-SOI). These two sensors provided a pressure range of
0–1 MPa. Alcheikh et al. [15] presented the fabrication and electromechanical characteriza-
tion of silicon-based 3D force micro sensors with piezoresistive gauges. The high sensitivity,
the high linearity, and the low hysteresis of the sensors submitted to a normal force are
obtained. Sujit et al. [16] incorporated FEM (finite element method) to give suggestions on
the selection of parameters for the piezoresistors, such as shape and the position on the
sensitive diaphragm.

To prevent micro sensors from being damaged by external environment, most pressure
sensors are encapsulated by silicone rubber. However, a large deformation of silicone
rubber under a high pressure could lead to a fracture of bonding wires. Previous published
work [17,18] has presented an anticorrosive PDMS (polydimethylsiloxane) coating to
prevent the conductive layer of a strain sensor from being damaged by corrosive external
environment. In addition, Won et al. [19] spun polyimide film onto the electrode of
the sensor to protect it from the humid environment. However, hardly any previous
research has focused on the performance and protection of the micro sensors under a
harsh environment, such as high pressure, high temperature, or moist corrosive electrolyte
environment, which will lead to a shortening of the micro sensor life. Therefore, our work
aims at resolving the contradiction between the output performance and stability with a
miniature size in harsh environment.

Previous research has established two approaches to treat nonlinearity temperature
drift. The first approach is to use an analog compensation circuit, such as the external
thermistor. Aryafar et al. [20] presented a passive technique for temperature compensation
of a silicon pressure sensor based on extra polysilicon resistors with negative temperature
coefficient of resistivity. The second approach is to use a digital compensation system with
the combination of electronic circuits and specific software. However, the first approach
has intrinsic pitfalls such as poor reliability, low accuracy, and high design difficulty [21].
Concerning the second approach, neural network has recently been applied. Yang et al. pro-
posed an artificial neural network (ANN) [22] to establish a temperature shift compensated
model. Zhou et al. developed an extreme learning machine (ELM) to calibrate the pressure
shift [23]. Neural networks, however, require a long training time and a large amount of
calculation, which is a barrier for marine engineering applications. Therefore, our work
proposes a low-cost pressure measurement system with temperature compensation based
on embedded technology and rational polynomial fitting to reduce the cost of temperature
compensation and increase the flexibility of the compensation system.

In this work, a MEMS piezoresistive pressure sensor with ideal performance over a
wide effective range by optimizing the micromachining process is designed, simulated,
fabricated, and tested. Firstly, the optimization greatly enhances the performance and the
stability of the pressure sensor under harsh environment such as high temperature and
pressure. Secondly, a novel polyimide anticorrosive layer is fabricated by polyimide film on
the top of the micro sensor to prevent it from corrosion by an electrolyte such as seawater.
Finally, to compensate the temperature drift, a digital low-cost temperature compensation
system is built for this micro pressure sensor.

2. Design and Fabrication

2.1. Design and Fabrication of the Micro Sensor

In general, a piezoresistive pressure sensor has a sensing diaphragm [24–27]. For
piezoresistive sensors, the sensitive diaphragms above the vacuum cavities are pressured
and then generate stress. The variation of piezoresistors caused by the applied pressure is
transferred into voltage due to the piezoresistive effect [28,29]. Therefore, the performance
of a piezoresistive sensor depends largely on the pressure sensitive diaphragm. Firstly,
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the dimensions of the pressure sensor’s diaphragm were designed based on previous
published work [12]. Then, the thickness of the diaphragm was determined by theoretical
calculation from Expression (1), where Pburst is five times the maximum applied pressure,
σfracture is the maximum stress of the diaphragm, A is the area of the diaphragm, h is its
thickness, and v is the Poisson’s ratio. The calculated minimum thickness is 26.87 μm.
Therefore, the simulation was done in COMSOL Multiphysics FEA (finite element analysis)
software for a thickness of more than 30 μm. Based on this, the pressure sensor models
have an n-type silicon diaphragm with the dimensions 900 × 450 μm and thicknesses of
40 and 50 μm. The von Mises stress induced in the diaphragm with various thicknesses
were determined and evaluated with the analytic explanation for a face-loaded pressure
of 5 MPa. The simulation results obtained from the FEA tool are shown in Figure 1a–d.
Along the centerline of the diaphragm, the tensile stress at the diaphragm edge reaches its
maximum and the compressive stress in the center of the diaphragm reaches its maximum.
This resulted from the silicon diaphragm contracting at the center and stretching at the
edges when the pressure was applied uniformly from the top. Therefore, the piezoresistors
should be located in these places to increase the sensitivity. By comparing the simulation
results of the pressure sensor models with different diaphragm thicknesses, it can be
found that the surface stress of the pressure sensor with 40-μm-thick membrane is larger,
indicating that the thinner membrane thickness exhibits the higher sensitivity.

Pburst =
3.4

1 − v2 × σf racture × h2

A
(1)

 
Figure 1. Von Mises stress distribution under finite element analysis: (a,c) stress distribution under 5
MPa of face-loaded pressure; (b,d) transverse stress distribution along the centerline.

The schematic diagram of the proposed silicon piezoresistive pressure sensor is shown
in Figure 2. The pressure sensor has a rectangular silicon diaphragm, which is fabricated
on the device layer of a SOI wafer [30,31]. By using buried-oxygen-layer etching stop
technology [32], the diaphragm thickness of the pressure sensor can be precisely controlled.
After one-mask deep reactive ion etching (DRIE), the pressure sensor’s rectangular di-
aphragm is shaped. The thickness of the diaphragm is the same as that of the device layer.
The piezoresistors are formed on the silicon diaphragm by boron ion implantation. Four
piezoresistors are connected to a Wheatstone bridge structure by forming ohmic contact
with aluminum wires. The contact area between the aluminum conductor and the heavily
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doped region of the piezoresistors has a great influence on the resistance value of the four
piezoresistors in the Wheatstone bridge. Therefore, the consistency of ohmic contact area
should be ensured by improving the accuracy of lithography and etching, and increasing
the width of aluminum wire relative to that of piezoresistors. Furthermore, a layer of
SiO2 is deposited and patterned on the substrate in the plasma enhanced chemical vapor
deposition (PECVD) system, as a passivation layer to improve the reliability of pressure
sensors in harsh environments. Dimensions of the diaphragm and the piezoresistors are
shown in Figure 2c. The silicon diaphragm has dimensions of 900 × 450 × 50/40 μm. Four
boron-doped piezoresistors (250 × 20 μm) are arranged in parallel on the diaphragm along
the <110> direction and connected with aluminum wire to form a Wheatstone bridge.

 

Figure 2. Schematic diagrams of the silicon piezoresistive pressure sensor: (a) top view and (b) cross-
section view of the pressure sensor; (c) dimensional parameters; (d) Wheatstone full-bridge of the
pressure sensor.

The silicon piezoresistive pressure sensor is fabricated with the micromachining
technology and assembled using the anodic bonding technology. As illustrated in Figure 3,
the substrate of the pressure sensor is an n-type (100) SOI wafer with a resistivity of
1–10 Ω·cm. The thicknesses of the silicon device layer, the buried oxide layer, and the
handle layer of the SOI are 50/40, 0.5, and 280 μm, respectively. The main processes follow:
Firstly, the device layer is patterned by photoresist and doped by boron implantation
with a doping concentration of 4 × 1014 atoms/cm2 to form piezoresistors (steps 1 and 2).
The doped region is then covered by a polyimide film, exposing only the alignment
marks. By using the deep reactive ion etching (DRIE) technique, the alignment marks are
transferred to the silicon substrate (step 3). Secondly, the contact areas between the Al wires
and the piezoresistors are exposed by patterned photoresist and doped by heavy boron
implantation with a doping concentration of 2 × 1015 atoms/cm2 to form the ohmic contact
(step 4). Subsequently, a layer of 500 nm-thick silicon oxide is deposited in the PECVD
system to form the bottom passivation layer, while the ohmic contact areas are exposed by
RIE (steps 5 and 6). Then, a layer of 1 μm-thick Al is sputtering deposited and patterned by
wet etching to form interconnects and four output pads of the Wheatstone bridge (step 7).
After that, a layer of 500 nm-thick silicon oxide is deposited in the PECVD system to form
the top passivation layer with the output pads exposed by RIE (steps 8 and 9).
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Figure 3. Fabrication process of the silicon piezoresistive pressure sensor.

In order to prevent the pizeoresistors from breakage by the voltage applied during
anodic bonding, the passivation layers on the edge of the SOI are also etched to expose
the device layer and another 1 μm-thick Al layer is sputtered and patterned to connect the
device layer and handle layer. Next, the pressure sensor’s sensing diaphragm is patterned
by double-sided alignment lithography and etched by DRIE and RIE (steps 10, 11, and
12). After polishing by CMP, the handle layer of SOI is bonded to Pyrex7740 glass by
anodic bonding with voltage of 1600 V, current of 20 mA, temperature of 300 ◦C, pressure
of 1600 N, and time of 20 min (step 13). Finally, the sensor dies are released from the SOI
wafer by using a dicing saw (step 14).

2.2. Fabrication of Polyimide(PI) Protection Layer

To protect the micro sensor from the corrosion of the external environment, such as
the electrolytic salty seawater, a protective layer composed of a PI (polyimide) film was
developed. Polyimide is a kind of organic polymer material with excellent comprehensive
properties, such as better high temperature resistance than PDMS, excellent insulation
properties, and stability under electrolyte condition. Meanwhile, polyimide can be well
attached on the surface of the devices due to its ductility and flexibility. Therefore, a
polyimide film was selected as the protective layer for the micro sensor and for protection
of the bonding wires.

After bonding the sensor with packaged PCB by gold wire, polyimide solution of 15%
concentration was placed into a vacuum chamber for 30 min to remove the air bubbles.
Then, the solution was uniformly dripped onto the top surface of the micro pressure sensor.
A high-speed rotary coating machine was used to make the polyimide solution form a
uniform thin film. The rotation speed, which is an important factor for the thickness of
the polyimide film, was set at 500 rpm for 10 s, then 3000 rpm for 30 s. After spinning,
the micro sensor with polyimide film was placed in an oven for further solidification. The
heating process for the polyimide film was 80 ◦C for 10 min, 120 ◦C for 30 min, 150 ◦C
for 10 min, 180 ◦C for 10 min, and then 220 ◦C for 40 min. Finally, a thin polyimide film
with a thickness of 10 μm was covered on the top surface of the micro pressure sensor as a
protective layer to prevent corrosion by moist air and electrolyte droplets. The device with
a 10 μm-thin PI protection film and the dice itself are shown in Figure 4.
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Figure 4. (a) Micro pressure sensor after bonding without a protection layer. (b) Micro pressure
sensor after bonding with a 10 μm PI protection layer.

3. Results and Discussions

3.1. Output Characteristics under High Temperature

The output characteristic of the pressure sensor was measured by a digital pressure
test system consisting of a high-precision piston pressure meter, a hot air gun, and a
control system. A constant DC voltage of 3.3 V was applied as the incentive power of
the Wheatstone bridge, and the output voltage was captured by a digital multimeter
(VC8246B).

To test the output characteristics under different temperature conditions, a piezore-
sistive pressure sensor with a 50 μm sensing diaphragm was pressured from 0 to 3 MPa
and the output voltage of the Wheatstone bridge was recorded for every 0.2 MPa. The
temperature test points were set from 25 to 125 ◦C for every 10 ◦C. The V–P characteristic
curve of the pressure sensor under different temperatures is depicted in Figure 5. As shown
in Figure 5a, the output voltage exhibits an expected linear correlation in a wide effective
pressure range from 0 to 3 MPa and a temperature range from 25 to 125 ◦C. Sensitivity
of the pressure sensor is the ratio of response change to excitation pressure change, and
the nonlinearity is the maximum deviation between the actual output of the device and
the ideal output curve that changes linearly with the input pressure. Fitting the experi-
mental data with a linear least-square technique, the sensitivity of the pressure sensor was
22.99 mV/MPa and the nonlinearity was 0.25% F.S. at 25 ◦C. Due to the application of SOI
wafer, the pressure sensor showed a stable performance with the nonlinearity of 0.31% F.S.
under 125 ◦C.

Figure 5. Output characteristics of the silicon piezoresistive pressure sensor: (a) output voltage versus pressure and (b)
sensitivity versus temperature.
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The ambient temperature would greatly influence the output characteristics of the
pressure sensor. The curve of the sensitivity variation versus the temperature is shown
in Figure 5b. To depict the relation between sensitivity and temperature more accurately,
the experimental data is fitted by a two-degree polynomial. The results show that the
increase of ambient temperature can still lead to a distinct decline of the sensitivity. This is
because the buried oxide layer can only reduce the leakage current of the piezojunction in
the handle layer, but not in the device layer of the SOI wafer.

3.2. Output Characteristics under High Pressure

In subsequent experiments of pressure measurement range, two devices with different
diaphragm thicknesses, 40 and 50 μm, were tested. The V–P curves of the two devices
are presented in Figure 6. As depicted, the device with the thinner diaphragm showed a
higher sensitivity but with higher nonlinearity over a wide pressure range. Gratifyingly, the
two pressure sensors were operated up to 5 MPa with an acceptable linearity. In order to
evaluate the performance of the silicon pressure sensors, the main characteristics of tested
devices are presented in Table 1, and the comparison among tested devices and the other
pressure sensor is presented in Table 2. As can be seen, the increase of ambient temperature
leads to the decrease of the full-scale output and sensitivity of the pressure sensor, and the
increase of its nonlinearity. The micro sensor is designed for harsh applications; therefore,
the thickness of the sensing diaphragm is increased to enhance the performance under
high pressure. Note that the increase of diaphragm thickness leads to decreased full-scale
output, nonlinearity, and sensitivity of the pressure sensor.

Figure 6. Output voltage of the sensor with different diaphragm thickness.

Table 1. Main characteristics of the tested devices under different test conditions.

Parameters Units Tested Devices

Operation
Temperature

◦C 25 125 25 25

Thickness of
Diaphragm μm 50 50 40 50

Excitation Voltage V 3.3 3.3 3.3 3.3
Pressure Range MPa 0–3 0–3 0–5 0–5

Full-Scale Output mv 69.28 55.23 167.87 117.1
Sensitivity mv/MPa 22.99 18.52 33.04 23.55

Nonlinearity F.S.% 0.25 0.31 0.48 0.41
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Table 2. Comparison among our devices, a commercial device, and others described in literature.

Parameters Units
Fabricated

Devices
MSD700-ASO 1 [14] [31]

Thickness of
Diaphragm μm 50 40 – 40 1.2

Chip Size mm 1.5 × 1.5 × 0.82 0.95 × 0.95 × 0.6 1.5 × 1.5 1.6 × 1.6 × 0.9
Excitation Voltage V 3.3 3.3 5 10 3

Pressure Range MPa 0–5 0–5 0–0.7 0–1 0–0.55
Full-Scale Output mv 117.1 167.87 100 105 45.99

Sensitivity mv/V/MPa 7.85 10.01 28.57 10.5 27.87
Nonlinearity F.S.% 0.41 0.48 0.3 – 0.34

1 Product code: MSD700-ASO, MEMSensing Microsystems Co., Ltd., Suzhou, China.

3.3. Output Characteristics under PI Protection

The output characteristics under high pressure range of the PI protected micro pressure
sensor were tested. The device with a PI protection layer was pressured from 0 to 5 MPa.
In order to compare the influence of the protective layer on the output characteristics, V–P
curves of the devices with and without the top surface PI layer are presented in Figure 7.

Figure 7. Output voltage of the devices with and without the PI protection layer.

The output curves show that the PI protection layer has almost no effect on the
output characteristics of the micro sensor. A further experiment was designed to test
the anticorrosive performance of the polyimide layer. Both devices, with and without a
polyimide protection layer, were immersed in seawater and heated to 80 ◦C in an oven
to accelerate the corrosion of the devices. The devices were removed from the seawater
and dried before a resistance test every 30 min. Normally, the resistance of the Wheatstone
bridge was between 1.7 and 2.0 kΩ; if the output resistance was not in the normal range,
the device was considered out of operation. The experiment results are shown in Table 3.

Table 3. Resistance of the Wheatstone bridge.

Test Devices Number 0 min 30 min 60 min 90 min 120 min

Devices without polyimide
protective layer

1 normal open circuit – – –
2 normal open circuit – – –

Devices with polyimide
protective layer

3 normal normal normal normal normal
4 normal normal normal normal normal

Results show that the devices with the polyimide protective layer could still work
after 2 h immersion in seawater, while the devices without PI layer were out of operation
after 30 min immersion. It can be inferred that the PI protective layer possesses an excep-
tional anticorrosive performance. Therefore, the PI protection layer has a broad prospect
on the micro pressure sensor for harsh environment applications, such as gas pressure
measurement on ships or other marine engineering applications.
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In order to compare the stability of PI protection layer and traditional silicone rubber
encapsulation under instantaneous violent pressure variation, a dynamic pressure test was
designed. Tested pressure sensors were covered with a PI protection layer and silicone
rubber, nonencapsulated sensors served as a control group. The start pressure was set at 3,
4, and 5 MPa. After each instantaneous decompression to normal atmospheric pressure, the
output resistance was measured and compared with the control group. The process was
repeated three times; if the output resistance was abnormal, the process was discontinued.
Test results are presented in Table 4.

Table 4. Encapsulation stability tests.

Test Cycle Protective Layer Pressure 1 2 3

Cycle 1

Silicone rubber
3 MPa Pass Pass Pass
4 MPa Pass Pass Abnormal

Polyimide coat
3 MPa Pass Pass Pass
4 MPa Pass Pass Pass
5 MPa Pass Pass Pass

Cycle 2

Silicone rubber
3 MPa Pass Pass Pass
4 MPa Abnormal – –

Polyimide coat
3 MPa Pass Pass Pass
4 MPa Pass Pass Pass
5 MPa Pass Pass Pass

It can be concluded from the table that the polyimide coat exhibits better stability than
traditional silicone rubber encapsulation. Due to less deformation under high pressure
compared with silicone rubber, the PI protection layer leads to less potential for abnormal
output resistance caused by a fracture of the bonding wires. In conclusion, the polyimide
protection layer has reliable corrosion resistance and high stability under violent pressure
variation. Thus, it has great potential for application on micro sensors designed for harsh
environments and high-pressure applications.

3.4. Temperature Compensation System

In addition to the large temperature difference between day and night on the sea, the
operating temperature of the instruments onboard also varies from moment to moment.
To overcome the sensitivity drift due to the temperature variation, a practical and flexible
pressure measurement system with temperature compensation is developed to calibrate the
drift caused by the ambient temperature variation. The design purpose of the embedded
digital compensation system is to simplify the complexity and reduce the cost to satisfy the
requirement of marine engineering. Hardware of the compensation system consists of a
commercial monolithic-integrated 24-bit analog–digital convertor and signal amplifier, a
high-precision temperature sensor, power management system, and a low-cost MCU. The
system diagram is shown in Figure 8.
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Figure 8. The diagram of the digital pressure measurement system with temperature compensation.

Generally, the output of the pressure sensor at a constant voltage can be expressed
as follows:

Vout = ST × P + V0 (2)

where ST is the sensitivity at T ◦C, P denotes the incentive pressure, and V0 represents the
zero-drift voltage due to fabrication error when no incentive pressure exists.

Firstly, the zero-drift voltage V0 is compensated by average approximation. The
compensation value is obtained preliminarily by averaging the zero-drift voltages at
various temperatures. After compensation, the output voltage can be described as a
proportional function:

VZ = Vout − V0 ≈ ST × P (3)

Secondly, the temperature-drift voltage is compensated by a sensitivity coefficient.
After compensation, the output voltage can be described as follows:

Vcomp = K × VZ ≈ K × ST × P (4)

where K denotes the compensation coefficient of ST The coefficient K can be calculated from:

K =
Sre f

ST
=‖ ST = a1T2 + a2T + a3, Sre f = 22.99 ‖ (5)

where a1, a2, and a3 are the coefficients of the rational polynomial model, and Sre f is
the sensitivity at 25 ◦C (which is defined as the reference). After the curve fitting of the
sensitivity, the polynomial coefficients a1, a2, and a3 were obtained: 1.657 × 10−4, −0.06873,
and 24.58, respectively.

By simultaneously collecting output data from the pressure sensor and the temperature
sensor through the serial ports of the microcontroller, the voltage of the pressure sensor
at different temperatures can be mapped to that at the reference temperature (i.e., 25 ◦C).
Therefore, the output voltage of the measurement system becomes weakly correlated with
the temperature. The output characteristics of the pressure measurement system before
and after compensation are shown in Figure 9a,b. The results show that the temperature
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compensation system for the pressure sensor could successfully implement the sensitivity
drift compensation. The maximum error of the output value after compensation was
0.43% F.S.

Figure 9. (a) Output without temperature compensation. (b) Output with temperature compensation.

4. Conclusions

Our work aimed to develop a novel solution for micro pressure sensors for harsh
marine environment applications. A wide-range MEMS piezoresistive micro pressure
sensor was presented, which was fabricated with the optimized bulk-micromachining
technology and packaged using Si-glass bonding technology. The pressure sensors achieved
reliable performance in a harsh environment such as high pressure and high temperature
while using a miniature size. To manage the moist and liquid external environment
for marine application, a flexible polyimide protection layer was fabricated on the top
surface of the micro sensor, which showed reliable performance and stability of protection.
Meanwhile, a flexible digital compensation system was developed to calibrate linearity
drift in a temperature range, which showed potential for large-scale applications with
low cost. However, the sensitivity of the sensor was sacrificed for measurement range
and stability to some extent. In future work, we will keep focusing on structure and
material optimization of piezoresistive pressure sensors to enhance the performance of
pressure sensors.
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Abstract: Dredging is a basic construction for waterway improvement, harbor basin maintenance,
land reclamation, environmental protection dredging, and deep-sea mining. The dredging process of
cutter suction dredgers is so complex that the operational data show strong characteristics of dynamic,
nonlinearity, and time delay, which make it difficult to predict the productivity accurately via basic
principles models. In this paper, we propose a novel integrating PCA-LSTM model to improve the
productivity prediction of cutter suction dredger. Firstly, multiple variables are reduced in dimension
and selected by PCA method based on the working mechanism of cutter suction dredger. Then the
productivity is predicted via mud concentration in long short-term memory network with relevant
operational time-series data. Finally, the proposed method is successfully applied to an actual case
study in China. Also, it performs well in the cross-validation and comparative study for several
important characteristics: (i) it involves the operational parameters based on the mechanism analysis;
and (ii) it is a deep-learning-based approach that can deal with operation series data with a special
memory mechanism. This study provides a heuristic idea for integrating the data-driven method
and supervision of human knowledge for application in practical engineering.

Keywords: operational data; productivity prediction; cutter suction dredger; long short-memory
network; working mechanism

1. Introduction

Marine-based transportation has always played a critical role in the national eco-
nomics of China [1], while rivers may suffer from sediment accumulation that obstructs
riverways and reduces the carrying activity [2,3]. Cutter suction dredgers are common
and useful machines that can remove the mud deposited at the bottom of water and keep
transportation routes in good condition [4]. Dredging productivity is one of the most
important indexes to evaluate the dredging performance, which is affected by many factors
such as soil properties, the power of the pump, the cutter structural parameters, and so
on [5]. The process of sand being cut into a mixture of mud and water by a rotating cutter
is very complicated. Most of the parameters are dynamically influenced by the uncertain
working environment and human operation [6]. Due to the limitations of dredging technol-
ogy, there are indeed some obstacles for parameters monitoring and real-time prediction,
which is a challenge for constructing digital models to describe this process and dredging
productivity accurately [7].

Due to the developed sensor technology, more operational data have been gained
for analyzing dredging performance. In the literature review, machine learning methods
were recently adopted to model the complex and dynamical construction process of CSD
(cutter suction dredger) for their excellent learning and mining ability [8]. Generally,
the learning-based prediction models can be mainly divided into two main types based
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on the depth of structure: shallow learning models and deep learning models [9]. The
shallow learning methods mainly cover neural-network-based methods such as RBF (radial
basis function), ELMs (extreme learning machines), and SVM (support vector machine).
As traditional learning models used in productivity prediction, Wang et al. adopted
an RBF neural network to deal with the different working conditions and established
an accurate nonlinear mathematical model for the instantaneous output prediction with
control variables [10]. Guan et al. developed the model of cutter operation parameters
using improved ELMs to simulate and predict the productivity distribution in actual
construction [11]. Yang et al. predicted the cutter suction dredger production with a double
hidden layer BP neural network [12].

The prediction methods on deep learning mainly include: DNN (deep neural network),
DBN (deep belief network), CNN (convolutional neural network network), and RNN (re-
current neural network network). DNNs are adopted through multiple auto-encoder (AE)
or denoising auto-encoder (DAE) stacking networks, wherein high-dimensional input data
are extracted from classless data as the distribution of the original data is represented by
deep learning neural networks [13]. Wang et al. developed DNN models for production
forecasting wherein the data-driven method was well used to deal with hydraulic frac-
tures and intrinsic complexity [14]. DNN architecture transfers sigmoid function to ReLu
and maxout with the purpose of overcoming gradient disappearance, but requires small
batch training, which leads to over-fitting and local optimal solution problems. DBN is
also a deep network that is stacked with multiple Restricted Boltzman Machines (RBMs)
and a classification layer or regression layer. Xu et al. designed a DBN-based model to
approximate the function type coefficients of a state-dependent autoregressive model in
nonlinear system and realize predictive control [15]. Hu et al. adopted DBN to extract
deep hidden features behind the monitoring signals and predict the bearing remaining
useful life [16]. Researchers have improved DBN by combining a feed-forward neural
network (FNN) to make prediction more accurate [17]. Zhang proposed a multi-target DBN
collection method in which the output of multiple DBNs has a certain weight that reveals
the final output of the network set; this method performed well on NASA aero-engine
data [18]. Furthermore, convolutional neural networks (CNNs) are greatly developed with
the excellent characteristics of parameter sharing and spatial pooling, which make it more
advantageous in computing speed and accuracy [19]. However, all these ML methods have
a limitation in situations that involve a time-series input.

Then recurrent neural networks (RNNs) are proposed with adding a twist where the
output from previous time step is fed as input to the current step. The most important
feature of RNN is that the hidden state can remember all information calculated from the
previous sequence [20]. Thus, it can generate output through prior input (the past memory)
and learning in training. It is common to complete the parameter learning of recurrent
neural networks by learning over back-propagation, wherein the error is passed forward
step by step in the reverse order of time. In [21], a learning-based method is applied to
improve the RNN training process while the number of prediction time-steps increases.
However, RNNs still suffer from the long-term dependencies, and long short-term memory
(LSTM) fills the gap by setting a gate control unit that can choose and keep some useful
information in the long-term sequential data. Being different from the traditional RNN,
the model is trained by both the stored information of last time step and new input of the
current moment, which enhances the prediction accuracy and stability greatly [22].

However, for the practical application in CSD, it is equally significant to analyze
the interrelated influencing factors as the productivity prediction. LSTM lacks effective
processing for high-dimensional characteristics of large-scale data; it should be used
integrating with other methods. Principal component analysis (PCA) is one of the most
widely used algorithms for feature reduction, which reconstructs the main k-dimensional
feature based on the original n-dimensional feature by deep learning. While PCA is a
pure data-driven method that cannot consider the casual relationship and correlation
between variables, the procedure of variable analysis based on a working mechanism
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and human experience is necessary. Yang et al. described a HEPCA model, which made
variables supplement based on expert knowledge after the PCA process and generate a
more accurate input for the predictive model [23].

Therefore, combining the advantages and characteristics of the different methods
described above, this paper presents the long short-term memory integrating principal
component analysis model (PCA-LSTM) to predict productivity using the monitoring
sensors data. The PCA-LSTM is strutted into four phases. In the first phase, monitoring
sensors are analyzed to select related variables according to the working mechanism and
knowledge. In the second phase, PCA method is applied to extract the deep feature from
the high-dimension dataset and to obtain the correlation of variables. In the third phase, a
prediction model is built and trained by the LSTM network. Finally, cross validation and
comparative analysis are conducted with a generated model from “Chang Shi 10” in China.

2. Preliminaries

In this section, the related preliminaries regarding PCA and LSTM will be introduced
briefly on the basis of the practical application in this study.

2.1. Principal Components Analysis (PCA)

PCA is an important technique that can transform multiple variables into a few main
components (comprehensive variables) by means of dimensional reduction, increasing
interpretability while minimizing information loss [24]. These main components are usually
expressed as linear combinations of the original variables, which can represent most of the
information of the whole dataset.

For original data X = (x1, x2, . . . , xi, . . . , xn) and X ∈ R
k∗n

, we can get the covariance
matrix Cx:

Cx = E[(X − E[X])(X − E[X])T] (1)

After centralizing the data, the mean function E[X] is zero and:

Cx =
1
n

XXT (2)

Assuming that there is a matrix P (P ∈ R
k′∗k

), through which we can transform the

original sample data matrix X into a dimensionality-reduced matrix Y (Y ∈ R
k′∗n

):

Y = PX (3)

Then the original data dimension is successfully reduced from k to k′, wherein the
first k′ principal components can explain most of the variance.

For matrix Y, its covariance matrix can be expressed through original matrix X as:

Cy =
1
n

YYT =
1
n
(PX)(PX)T =

1
n

PXXTPT = P
1
n

XXTPT = PCxPT (4)

It is obvious from Equation (4) that Cx is guaranteed to be a non-negative definite
matrix and thus is diagonalizable by some unitary matrix. Then the objective optimization
is transformed to find an orthonormal transformation matrix P. Normally, we can use
eigenvalue decomposition or singular value decomposition to solve the matrix P, and the
first k′-dimensional new features corresponding to k′ eigenvalues can represent the whole
data best.

2.2. Long Short-Term Memory Network (LSTM)

In this paper, an integrating model of long short-term memory network based on
principal components analysis (PCA-LSTM) is explored to analyze the operational time-
series data generated from the dredging process. The proposed model is developed on
the basis of long short-term memory network (LSTM), which is a special form of recurrent
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neural networks (RNN) that can address long-distance dependencies and delay in time-
series modeling.

The LSTM architecture was firstly proposed by Sepp Hochreiter and Jürgen Schmid-
huber in 1997 [25]. There is a special memory cell unit added to the original hidden layer
in classic RNN architecture. The cell state is controlled by three gates: Input gate It, Forget
gate Ft, and Output gate Ot, as shown in Figure 1.

Figure 1. The architecture of classical LSTM.

The forget gate Ft decides which information needs to be kept and which can be
forgotten. The information consists of the current input Xt and previous hidden state/short-
term memory ht−1.

Ft = σ(WForeget · [ht−1, Xt]) + biasForget (5)

For every time step, the sigmoid function generates values between 0 and 1 that indi-
cate whether the old information is necessary. 0 denotes forget, and 1 means keep. WForget
is the weight matrix between forget gate and input gate. biasForget is the connection bias.

The input gate decides what should be stored in the long-term memory in the new
information. It works with the current input Xt and previous short memory ht−1 through
two layers. In the first layer, the short-term memory and current input is passed through a
sigmoid function that values from 0 (not important) to 1 (important):

it = σ(WInput · [ht−1, Xt]) + biasInput (6)

where WInput is the weight matrix of sigmoid operator between input gate and output gate.
biasInput is the bias vector.

The second layer uses the tanh function to regulate the network. The tanh operator
creates a vector C̃t with all the possible values between −1 and 1:

C̃t = tanh(WCell · [ht−1, Xt]) + biasCell (7)

where Wcell is the weight matrix of tanh operator between cell state information and
network output. biasCell is the bias vector.

With these two layers input, the cell state updates a new cell state (long-term memory):

Ct = Ft � Ct−1 + it � C̃t (8)

where � is the Hadamard product.
When it comes to the output gate, the current input Xt, the previous short-term

memory ht−1, and the newly obtained cell state Ct determine the new short-term memory
(hidden state) that will be passed on to the cell in the next time step.

Ot = σ(Woutput · [ht−1, Xt]) + biasoutput (9)
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ht = Ot � tanh(Ct) (10)

Woutput is the weight matrix of the output gate. This hidden state is used for prediction.
Both new cell state and hidden state are carried over to the next time step.

3. The Proposed PCA-LSTM Model

As described above, the basic knowledge regarding PCA and LSTM networks was
introduced to set up the proposed PCA-LSTM model in this section. Considering mecha-
nism and human experience, the PCA procedure will bring about a more accurate variable
analysis for the practical multi-sensors system. The time-series data of effective variables
are subsequently learned in LSTM network to output the target prediction.

3.1. PCA Based on Mechanism

The traditional PCA was introduced in Section 2.1. Due to the purely data-driven
process, historical data is analyzed in PCA without any prior knowledge, which may bring
about that some redundancies may be considered despite the causal relationship. Therefore,
human experience will be introduced to interfere with the variable selection procedure
ahead of PCA, based on the known mechanism.

The monitoring system always contains a broad range of sensors data related to the
target object. Some of the data is on control variables, while some of the data is just on
display variables that visualize the parameters.

Assuming the sensor system obtains an initial dataset:

X = (x1, x2, . . . , xi−m, xi−m+1, . . . , xi, . . . , xk) (11)

where xi represents the i-th sensor equipped in the system.

xi = [xi1, xi2, . . . , xi j, . . . , xin]
T (12)

where xi j represents the j-th data obtained by i-th sensor.
When studying the working mechanism of the target, variables causal relationship

will be analyzed and some of the redundant variables will be deleted, as well as some
meaningless display parameters. This creates a new sample set:

X′ = (x1, x2, . . . , xi−m, xi, . . . , xk) (13)

PCA based on human experience method obtains a hyperplanar representation of all
samples through recent reconstruction, realizing the dimension reduction from k to k′ with
the least loss.

The samples are centralized firstly as:

∑i xi = 0 (14)

Then a new coordinate system can be obtained after projection transformation:

W = (w1, w2, . . . wi−m, wi, . . . , wk) (15)

where wi is the standard orthogonal basis vector.

‖wi‖2 = 1 (16)

wi
Twj = 0, (i 	= j) (17)

If a portion of the coordinate is abandoned, namely the dimension is reduced from k
to k′ (k′ < k), the projection of samples xi in the low-dimensional coordinate system will be:

zij = (zi1, zi2, . . . , zin′) (18)
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zij = wj
Txi (19)

where zij is the j-th coordinate of xi in low-dimensional space; and xi can be recon-
structed as:

x̂i = ∑k′
j=1 zijwj (20)

For the whole training dataset, the distance between original samples xi and the
reconstructed samples x̂i can then be determined as:

k
∑

i=1

∥∥∥∥∥ n′
∑

j=1
zijwj − xi

∥∥∥∥∥
2

2

=
k
∑

i=1
zi

Tzi − 2
k
∑

i=1
zi

TWTxi + const

∝ −tr(WT(
k
∑

i=1
xixi

T)W)

(21)

where const is the constant item, and W can be obtained by Equation (15).

Because
k
∑

i=1
xixi

T is a covariance matrix, the target distance function can be mini-

mized as: {
MinW − tr

(
WTX′X′TW

)
s.t. WTW = I

(22)

where I is the identity matrix.
With the Langerin multiplier method [26], it can be calculated as:

X′X′Twi = λiwi (23)

After eigenvalue decomposition, the eigenvalue λ can be obtained as follows:

λ = {λ1, λ2, . . . , λi−m, λi, . . . , λk) (24)

According to the practical demand, reconstruction threshold μ is set to satisfy the condition:

∑k′
i=1 λi

∑k
i=1 λi

≥ μ (25)

When the maximum threshold μ is satisfied, the eigenvalues can be obtained in turn:

λ1 ≥ λ2 ≥ . . . ≥ λk′ (26)

And the eigenvectors corresponding to the first k′ eigenvalues constitute the PCA solution:

W∗ = (w1, w2, . . . , wi−m, wi, . . . , wk′) (27)

The variables corresponding to the eigenvectors are:

X′′ = (x1, x2, . . . , xi−m, xi, . . . , xk′) (28)

Based on the variables obtained by PCA procedure above, the correlation matrix can
be calculated as:

R = (rij)k′∗k′ (29)

Then the most positively relevant variables to the target will be proceeded in the
subsequent prediction model:

X∗∗ = (x1, x2, . . . , xp) (30)
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3.2. The Proposed Methodology

The variables most related to the target were obtained by PCA based on human
experience that can be used as inputs in the next LSTM network to obtain prediction results.
Namely, with current input being X∗∗

t , the current cell state and hidden state are updated
as described in Section 2.2.

Ct = Ft � Ct−1 + it � C̃t
= Ft � Ct−1 + it � {tanh(WCell · [ht−1, X∗∗

t ]) + biascell}
=
{

σ(WForget·[ht−1, X∗∗
t ]) + biasForget

}� Ct−1 +
{

σ(WInput·[ht−1, X∗∗
t ]) + biasInput

}� {tanh(WCell ·[ht−1, X∗∗
t ]) + biasCell}

(31)

ht = Ot � tanh(Ct)
=
{

σ(Woutput·[ht−1, X∗∗
t ]) + biasoutput

}� tanh(Ct)
(32)

Based on the new cell state and hidden state, we define gradient δ
(t)
h and δ

(t)
c to

calculate the back propagation error layer by layer:

δ
(t)
h =

∂L(t)

∂h(t)
(33)

δ
(t)
c =

∂L(t)

∂C(t)
(34)

where L(t) is the loss function, and at the last sequence index τ, the gradient can be
described as follows:

δ
(τ)
h =

∂L(τ)

∂O(τ)

∂O(τ)

∂h(τ)
= WOutput

T(Ô(τ) − O(τ)) (35)

δ
(τ)
c =

∂L(τ)

∂h(τ)

∂h(τ)

∂C(τ)
= δ

(τ)
h � O(τ) � (1 − tanh2(C(τ))) (36)

Therefore, for any moment t, δ
(t+1)
h and δ

(t+1)
c can be obtained, deriving from δ

(t)
h and

δ
(t)
c as follows:

δ
(t)
h =

∂L(t)

∂O(t)

∂O(t)

∂h(t)
+

∂L(t+1)

∂h(t+1)

∂h(t+1)

∂h(t)
= WOutput

T(Ô(t) − O(t)) + WTδ
(t+1)
h diag(1 − (h(t+1))

2) (37)

where W is the coefficient matrix.
Then the reverse gradient error of δ

(t)
c can be obtained through the gradient error of

the current layer returned from h(t) and the gradient error of the previous layer δ
(t)
c :

δ
(t)
c =

∂L(t)

∂C(t+1)

∂C(t+1)

∂C(t)
+

∂L(t)

∂h(t)

∂h(t)

∂C(t)
= δ

(t+1)
c � F(t + 1) + δ

(t)
h � O(t) � (1 − tanh2(C(t))) (38)

Then, the gradient of all parameters can be calculated easily using δ
(t)
h and δ

(t)
c , and

all the parameters can be updated iteratively with the lowest error.
As mentioned above, the proposed method can be run in terms of Figure 2. It mainly

consists of two parts: PCA and LSTM. The variables most related to the target are firstly
obtained by PCA based on expert knowledge and used as inputs for LSTM network to get
the prediction results.
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Figure 2. The flowchart of proposed novel PCA-LSTM based on mechanism.

4. Case Study

Cutter Suction Dredger is a special kind of ship that is widely used in dredging
engineering. In this section, the proposed method is validated in a real case study of
well-equipped 4500 m3/h cutter suction dredger “Chang Shi 10” that serves in the Yangzi
River region.

Mud and sand is cut to mix with water by a rotary cutter during the construction
operation of the dredger. Meanwhile, the dredge pump works and creates vacuum pressure
at the suction mouth of the cutter. Under the great pumping force, mud is sucked into
the dredger pipeline and finally discharged to the dumping area. The primary system
according to the dredging procedure was highlighted in Figure 3.

Figure 3. The primary system highlighted in cutter suction dredger (1:150).
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4.1. Principal Components Analysis Based on Mechanism and Knowledge

During the construction, mud formation is influenced by many factors such as soil
type, mechanical parameters and rotation speed of the cutter, traverse speed of the dredger,
dredge pump parameters, and so on. To monitor and control the dredging process,
up to 255 specific real-time sensors were arranged to collect the operational data [27].
Figure 4 shows some of the related monitoring parameters and relationship in automatic
control system.

Figure 4. The monitoring parameters related to dredging process and productivity.

As shown in Figure 4, some of the parameters are control variables, while some of
them are only display variables that make the data visualization.

Soil property is an important factor affecting the construction process and efficiency of
cutter suction dredgers. For different solidity and water-solubility, the mud concentration is
limited by cutting performance and silt mixing. The cutter structure, pipeline diameter, and
the motor power of pumps are all specific variables (constant), which were demonstrated
according to the demand for rated productivity at the beginning of the design. However,
the cutter speed, trolley trip, cutter ladder movement, and dredge pump rotation are all
control variables that can be adjusted during the operation process in specific construction.
When digging hard soil, the dredging depth should be reduced while enhancing the cutter
speed to prevent the formation of large diameter mud balls and pipe blocking. When the
dredging soil is sediment or silt, the pump velocity should be appropriately increased to
reduce the mud concentration and avoid sedimentation or clogging in the pipeline.

According to the actual sensor system of cutter suction dredger “Chang Shi 10”, we
firstly select 20 variables from the initial operational dataset as shown in Table 1.

Table 1. Initial variables from the operational dataset.

Variable Description Unit

S8 Angle of the cutter ladder
S9 Depth of the dredging m
S12 Rotation speed of the submersible pump rpm
S13 Rotation speed of the cutter rpm
S20 Flow m3/h
S23 Soil density kg/m3
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Table 1. Cont.

Variable Description Unit

S79 Distance of the swing movement m
S80 Angle of the swing
S100 Rotation speed of the No.1 dredge pump rpm
S101 Rotation speed of the No.2 dredge pump rpm
S108 Power of the cutter kw
S164 Mud density kg/m3

S165 Flow rate m/s
S182 Trolley trip m
S198 Discharge pressure of the submersible pump kPa
S199 Discharge pressure of the No.1 dredge pump kPa
S200 Discharge pressure of the No.2 dredge pump kPa
S201 Vacuum kPa
S223 Water density kg/m3

S21 Mud concentration %

Traditionally, the instantaneous productivity of the cutter suction dredger is the
product of the flow and mud concentration.

P = Cm·Q = Cm·(v·πr2) (39)

where Cm(%) represent the mud concentration; Q is the flow amount per hour; and v is
the flow rate.

As shown in Table 1, we choose S21 (mud concentration) as the target variable. In
actual dredging construction process, the change of flow rate in the sludge pipeline is one
of the important factors affecting the flow. Thus, we delete the redundant variable S20 flow
in the first step.

Meanwhile, the mud concentration is determined by the density of soil, water, and
mud.

Cm =
γm − γw

γs − γw
(40)

where γm is the mud density; γw is the water density; and γs is the soil density.
Then we drop three redundant variables S223, S23, and S164 in the second step.
For the study period in this case, the ship works with just No.1 dredge pump. Thus,

the variables related to No.2 dredge pump are non-meaningful to the productivity. Namely,
S101 and S200 are dropped according to human analysis and finally we obtain the related
variable set as:

X′ = {S8, S182, S108, S13, S9, S201, S12, S198, S100, S199, S165, S79, S80, S21} (41)

As described in Section 3.1, the selected variables X′ dataset based on human experi-
ence will be processed by PCA in this section. In addition, the contribution result is shown
in Figure 5.

It is obvious that the top 10 principal components can represent more than 97% of the
overall data. For the top two principal components, the dataset can be plot as Figure 6.
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Figure 5. The percentage of explained variance for principal components.

Figure 6. Scatter plot of the dataset after PCA.

From the scatter plot of dataset in 2D figure, the correlation of the variables related to
target S21 can be set as shown in Equation (28):

X′′ = {S8, S182, S108, S13, S9, S201, S12, S198, S100, S199, S165, S79, S80} (42)

The most positively relevant variables to target can be further determined by the
correlation matrix, as shown in Figure 7.

As the correlation matrix shows, the correlation between S21 and S199 is 0.48677, which
means the discharge pressure of No.1 dredge pump affects the concentration most. It
is consistent with the practical production. Pressure will influence the mud and water
proportion that is pumped into pipeline. The variable S165 shows a correlation of 0.34628,
which is also mentioned by other researchers [5,27]. The flow rate may determine the
mud sedimentation during pipeline transportation. Furthermore, the vacuum correlation
is 0.34152, since the vacuum gauge is installed on the upper part of the cutter, which is
sensitive to the change of the mud concentration in the pipeline. Additionally, the angle of
cutter ladder, the depth of dredging, and the trolley trip are all factors that affect the mud
formation by operation controllers. However, for the discharge of the submersible pump,
it is just the indirect factor to display the vacuum condition.
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Figure 7. The correlation matrix of the variables.

Meanwhile, it is indicated in the correlation matrix that there are five negative variables
to the target. Thus, we obtain the final variables set most positively relevant to the target
S21 as:

X∗∗ = {S182, S108, S8, S9, S201, S198, S100, S199, S165} (43)

In general, the mud concentration is mainly inter-influenced by the dredge pump
pressure, flow rate, vacuum, cutter ladder angle, dredging depth, and trolley trip.

4.2. Modeling Prediction Analysis

In this section, we choose the first segment series data and follow the steps given in
Sections 2.2 and 3.2 to train the proposed model. This segment series data is collected from
the monitoring system with a frequency of 100 sample points per minute. We intercept
a dataset of 18,000 for 3-hour working time zone and obtain final 16,764 data after the
pre-process.

4.2.1. Learning Results Analysis

In terms of the variable’s selection process in Section 4.1, we use the most positively
related nine parameters as input to predict the target output concentration Cm (%). Con-
sidering the data amount effects on the learning ability in data-driven models, we divide
the input with a proportion of 6:4 and 7:3 to test the model twice. The learning results are
shown in Figures 8 and 9 respectively.
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Figure 8. The learning results of 6:4 proportion.

Figure 9. The learning results of 7:3 proportion.

Concentration changes with the working conditions. As shown in the learning results,
the normal range of the concentration is from 0 to 45%, which is a comprehensive result
of the multiple factors interaction. High concentration is not necessarily good for the
production since it may cause sedimentation or clogging in the pipeline. The results in this
case are all normal and satisfactory. However, when it comes to the detailed comparison,
the learning process with 60% of the dataset performs better than 70% dataset. For the
60% data training, its maximum and minimum error are 0.3091 and 0.0149 respectively.
However, the maximum error is 0.526 in the 70% data training process. Also, as shown in
Figure 10, for 60% dataset, the loss value decreases and then keeps steady in the training
process. The error in testing falls and then keeps steady. However, for the 70% dataset,
both training and testing error are less stable and consistent.

Figure 10. Loss curve of the different datasets.
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4.2.2. Cross Validation

Considering the necessary adaptability to dynamical changes, we use another dataset
of 36,000 for 6-hour working time zone and obtain a final of 31,304 data samples for further
cross validation to illustrate the proposed method’s effectiveness and generality. The
learning results are shown in Figure 11.

Figure 11. The learning result of cross validation.

It is obvious that the proposed method performs well in both training and testing
processes. The average error in cross validation is 1.021%, which decreases since the data
amount is becoming larger. In other words, data volume is essential for the deep learning
method to function properly. This is just the advantage we explore in this novel model for
prediction with operational “big data”. Especially, the model can be updated by upcoming
new data for more accurate results.

4.3. Comparative Study

This paper presents the novel PCA-LSTM method, which combines advantages of
PCA and deep learning algorithm LSTM to manage big time-series data in operation
monitoring systems. We compare the proposed method with other prediction methods
including traditional PCA-LSTM and LSTM using the same dataset as Section 4.2 for
further analysis. The results are shown in Figures 12 and 13.

Figure 12. The training result of comparative study.
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Figure 13. The testing result of comparative study.

It is obvious in Figure 12 that the proposed method works better with a satisfactory
error range. LSTM shows the maximum deviation because there is no variable selection
before of the prediction process. Although it is a powerful tool to deal with the big series
data for its special gate control function, it cannot give consideration to the variable analysis.

In Figure 13, it is easy to find that the novel PCA-LSTM performs better than both
traditional PCA-LSTM and LSTM in the test. The yellow line in the figure marks the
proposed PCA-LSTM, which has the lowest mean average error of 0.9213%. The green line
marks the traditional PCA-LSTM, which shows a mean average error of 1.5301%. However,
LSTM shows the worst result with a MAE (mean average error) of 2.0269%. The results
differences are caused mainly because of the variable selection for the prediction model. As
the input of the data-driven model, variable selection should be more focused with human
knowledge and experience.

From a practical point of view, the comparative results are also analyzed by different
evaluating indicators such as MAE (mean average error), R2 (coefficient of determination),
and RMSE (root mean square error). As shown in Table 2, all of the models show a
good performance with the coefficient of determination, which can explain the LSTM
effectiveness. However, for the root mean square error, the proposed method takes on a
better stability in the prediction result. The comparative results indicate that the control of
input is essential to the machine learning methods.

Table 2. Results analysis of the comparative study.

MAE R2 RMSE

Proposed PCA-LSTM 0.0424 0.9999 0.0925
Traditional PCA-LSTM 0.3063 0.9863 0.4054

LSTM 0.3352 0.9828 0.5010

5. Conclusions

This paper proposes the novel PCA-LSTM method for the productivity prediction of
cutter suction dredger, wherein the deep learning process makes good use of the real-time
operational monitoring data. The PCA method based on mechanism and knowledge is pro-
posed to analyze the multiple parameters and select relevant variables from the operation
process. Then the results are used as input into LSTM model to obtain the target prediction.
This approach is also successfully validated by comparison against other methods on
a real-world case in China. The productivity of cutter suction dredger is influenced by
many correlated factors such as the soil characteristics, cutter parameters, mud pump
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performance, and pipeline layout. Thus, the mud concentration should be stabilized at a
suitable value by comprehensive adjustment to improve its efficiency and productivity.

However, this is still a workable extension of deep learning application in the pro-
ductivity prediction of cutter suction dredger. In the future, we will further construct the
dynamical predictive models according to the changing working condition. When the
operational parameters change dynamically under different conditions, the generated data
should be classified into status space to study how the operation influences the dredging
performance. Additionally, considering the sensors distance in the system, more factors on
time-delay should be put up to improve the prediction accuracy.
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Abstract: The Kuroshio is the strongest warm current in the western North Pacific, which plays a
crucial role in climate and human activities. In terms of this, the accurate acquisition of ocean surface
current velocity and direction in the Kuroshio region is of great research value. Gaofen-3 synthetic
aperture radar (SAR) provides data support for the study of ocean surface current measurements
in the Kuroshio region, but no relevant experimental result has been published yet. In this paper,
four available stripmap mode SARs’ data acquired by Gaofen-3 in the Kuroshio region are used
for measuring the ocean surface current field. In general, the Doppler centroid anomaly (DCA)
estimation is a common method to infer ocean surface currents from single-antenna stripmap data,
but only the radial velocity component can be retrieved. In order to measure current vectors, a novel
method combining the sub-aperture processing and the least squares (LS) technology is suggested
and demonstrated by applying to the Gaofen-3 SAR data processing. The experiment’s results agree
well with model-derived ocean current data, indicating that the Gaofen-3 SAR has the capability
to accurately retrieve the ocean surface current field in the Kuroshio region and motivate further
research by providing more data.

Keywords: ocean surface current; Gaofen-3 SAR data; the Kuroshio region; sub-aperture processing;
the least squares

1. Introduction

Current is ubiquitous in the global ocean, the information about which is valuable
in many applications. The circulation current in different regions of the deep ocean will
exchange material and energy, which is of great importance for the global climate process.
Moreover, monitoring currents in the coastal waters is conducive to navigation, offshore
oil and gas field development, fishery resources management, and so forth. According
to the data requirements survey report on oceanic variables issued by EuroGOOS, the
ocean surface current velocity and direction were the two most requested [1]. Therefore,
it is necessary to investigate various methods for measuring the velocity and direction
values of the ocean current field. Compared with the in-situ current measurement tools,
such as drift buoy and current meter, which are time-consuming and limited in spatial
measurement range, the spaceborne synthetic aperture radar (SAR) has become a vital tool
for ocean remote sensing mainly due to its day/night and quasi-all-weather capability and
its high-spatial resolution [2].

There are two common techniques used for current measurement with SAR data, that
is, one is Doppler centroid analysis (DCA) and the other is along-track interferometry
(ATI) [3,4]. DCA is suitable for single-antenna SAR data processing and has low require-
ments for the system. Chapron [5] first proposed the DCA method in 2005 and processed
the ENVISAT ASAR data to retrieve the radial velocity of the sea surface in different areas
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Appl. Sci. 2021, 11, 7656

including the current field near the Gulf Stream. In the following years, the DCA method
was used many times to measure the ocean surface current field in the Agulhas Current
regime [6–8]. These studies show that DCA has good applications in these regions with
strong boundary currents. The Kuroshio Current is also one of the strongest western bound-
ary currents, but there have not yet been any relevant SAR experimental results applied to
the Kuroshio region. In addition, the DCA method using Doppler centroid shift can only
derive the line-of sight (LOS) velocity component of ocean surface current, not including
the direction values. The ATI method uses interferometric phase to achieve high-resolution
ocean surface current measurements. Moreover, ATI systems can be transformed into
ones with squint beams to measure the ocean current vectors [9–11]. However, ATI needs
to operate the SAR data of at least two antennas; the related system is complicated, the
experimental data are small, and it is far from scale application than DCA using single
SAR data.

Like the Gulf Stream in the North Atlantic, the Kuroshio is a powerful western
boundary current and forms the western limb of the North Pacific Subtropical Gyre. Owing
to the influence of the geostrophic Coriolis force, the remote sensing measurement of
Kuroshio current speed can be performed with the spaceborne altimeters [12,13], but the
spatial resolution is relatively rough, reaching tens of kilometers, and the data around
the land are easily missed. Gaofen-3 is China’s first C-band full-polarization synthetic
aperture radar imaging satellite, which provides reliable high-resolution SAR image data
for ocean remote sensing [14]. So far, Gaofen-3 SAR data have been used to study ocean
surface waves [15], ocean winds [16] and internal waves [17]. Gaofen-3 provides data
support for the ocean current retrieval in the Kuroshio region, which will promote relevant
application research.

This paper uses four available Gaofen-3 SAR datasets to measure the ocean surface
current in the Kuroshio region. In order to retrieve current velocity and direction informa-
tion at the same time, a novel method combining sub-aperture processing technology and
least squares technology is proposed and applied. The following second part introduces
the principle and process of the data processing method in detail. The third part is to
carry out the ocean current measurement experiment of the Gaofen-3 SAR data and verify
the experimental results. The fourth part discusses and analyzes the applicability of the
method, including the influence of system and environmental factors on the results, and
the fifth part presents conclusions.

2. Measurement of the Ocean Surface Current

2.1. Ocean Doppler Information of Single Antenna SAR Data

Due to the relative motion between the SAR platform and the ocean surface, the
azimuth Doppler information of the echo signal would change, suggesting that the Doppler
frequency can be used to retrieve the ocean surface motion. In fact, considering the
complexity of ocean motion and the particularity of SAR for ocean imaging, the estimated
Doppler centroid shift in SAR ocean data usually includes the following items [18]:

fdc = f phys
dc + f geo

dc + f ele
dc +� fdc. (1)

In Equation (1), f phys
dc is the geophysical term, f geo

dc is the geometric attitude term, f ele
dc

indicates electronic misdirection of antenna, � fdc represents the residual error in data
processing. As one of our concerns, f phys

dc is proportional to the ocean surface Doppler
velocity in the line-of-sight direction, which contains not only the information of ocean
currents, but also the contributions of wind and wave motion. In Bragg theory, wind and
wave motion primarily involve Bragg wave phase velocity and large-scale wave orbit
velocity. Therefore, f phys

dc can be expressed as

f phys
dc = fc + fb + fo, (2)
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where fc, fb and fo denote the Doppler centroid frequency variation caused by ocean
currents, Bragg wave phase velocity, and large-scale wave orbit velocity, respectively. How
to estimate f phys

dc from fdc has been studied in detail in reference [8], and the relevant data
processing process will not be discussed. The focus of this paper is to separate fc from
f phys
dc and further extract the ocean current information.

According to the geometric relationship between ocean current and SAR platform
shown in Figure 1, fc can be expressed as:

fc =
2
λ
(ux cos ϕ sin θ + uy sin ϕ sin θ), (3)

where ux and uy represent the azimuth and range velocity components of the current,
respectively. ϕ is the angle between the beam center and the flight direction in the hor-
izontal plane, which is called the azimuth angle. θ is the incidence angle, and λ is the
electromagnetic wavelength. We can also obtain the Doppler frequency caused by platform
movement as:

fp =
2vp

λ
cos ϕ sin θ, (4)

where vp is the radar speed.

Figure 1. Schematic diagram of the geometric relationship between current and radar.

In Bragg scattering theory, Bragg resonance is the main SAR imaging mechanism for
the ocean surface. Furthermore, the phase velocity of the Bragg wave is the main factor
affecting the deviation of current measurements, which is expressed as [19,20]:

c =
√

g/kb + Tkb, (5)

where g is the acceleration of gravity, and T is the ratio of water surface tension to seawater
density. kb = 2π/λb is the wavenumber of Bragg waves, which can be expressed by
electromagnetic wavenumber ke and incidence angle θe as

kb = 2ke sin θe. (6)

Therefore, the Doppler centroid variation caused by the Bragg wave phase velocity is

fb =
2
λ

√
g/kb + Tkb. (7)

In the composite surface model, as one form of Bragg theory, there are not only small-
scale Bragg waves but also large-scale modulating waves on the ocean surface. In this

83



Appl. Sci. 2021, 11, 7656

situation, the large-scale waves will be displayed in SAR images by modulating the energy
distribution of Bragg waves, and the Doppler centroid will also shift with the variation of
large-scale wave orbital velocity, that is, there is fo, which also results in the deviation of
current measurements. Generally, the orbital velocity is affected by the weighted average
of the local backscatter within the SAR resolution cell and during the SAR integration
time [4,5]. In some studies [4,21,22], the empirical model derived from actual data fitting
can be used to remove the motion induced by wind and waves, including the effect of
orbital speed. This processing method is in good agreement with the actual situation, but
is limited by different sensor data and sea surface position, the measurement accuracy will
be different. Yu et al. [23] also pointed out that the influence of orbital velocity can be
suppressed by space averaging. This operation is simple, but the residual error will be left.

Motion errors will affect SAR imaging and sea surface current field estimation. Ref-
erence [24] states that motion errors decrease the image quality in the course of imaging.
In principle, the uncertainty caused by motion errors can be corrected with the motion
measurement data obtained from the global positioning system (GPS) or other ancillary
instrument. In Reference [24], a deep SAR motion compensation scheme is proposed to be
combined with the deep SAR imaging algorithm, which could eliminate the influence of
motion errors and improve SAR imagery quality in practical applications. Reference [25]
also discusses the influence of motion errors on imaging, and points out that classical mo-
tion compensation is typically not required for spaceborne systems due to their stable and
homogeneous motion. The Gaofen-3 satellite adopts a dual frequency GPS system to realize
precise orbit determination, which has high attitude control accuracy and stability [26].
Therefore, the motion errors have a limited impact on the imaging results.

For the application of current measurements, the influence of motion and attitude
errors on the predicted Doppler shift is mainly considered, as shown in Reference [8].
Due to errors in satellite position and attitude used to predict the Doppler shift, the ocean
current product will deviate. After attitude control, the Gaofen-3 satellite eliminates the
change of Doppler center frequency caused by earth rotation, earth ellipticity and satellite
orbit oblateness [26]. Therefore, the predicted Doppler shift of SAR data is close to zero. If
the azimuth angle error �ϕ is considered in current measurements with actual data, the
Doppler frequency caused by platform motion will have errors [27]. Therefore, Equation (8)
can be obtained based on Equation (4), and the Doppler frequency caused by current
becomes Equation (9):

� fa =
2vp

λ
[cos(ϕ +�ϕ) sin θ − cos ϕ sin θ]

≈ − 2
λ

vp�ϕ sin ϕ sin θ

(8)

f
′
c =

2 sin θ

λ

[
ux cos(ϕ + Δϕ) + uy sin(ϕ + Δϕ)

]
≈ 2 sin θ

λ

[(
ux + Δϕuy

)
cos ϕ +

(
uy − Δϕux

)
sin ϕ

]
.

(9)

2.2. Measurement Method with Single Antenna SAR Data

According to the above analysis, the Doppler centroids in different azimuth angles
reflect the current information in different directions. However, single antenna full-aperture
SAR data usually only provide the Doppler frequency in one direction. Therefore, the
method in this paper firstly carries out sub-aperture processing to acquire sub-apertures
image data representing different look directions, and then carries out Doppler centroid
estimation, respectively. Furthermore, the equations are established according to the
estimated Doppler centroids. Finally, the current vectors are estimated by the least squares
method. This method can be divided into three steps: sub-aperture processing, Doppler
centroid estimation and vector estimation of current. The flow chart is shown in Figure 2.

In the first step, the input is Gaofen-3 single look complex (SLC) data. After implement-
ing azimuth FFT of the input SLC, the sub-aperture data is extracted by aperture division
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in the Doppler frequency domain, then IFFT is performed to acquire L sub-aperture SLC in
time-domain as the output of the first step. Besides, the azimuth angle ϕk corresponding to
each sub-aperture is also the output and used as the input for the third step. The L sub-
aperture SLC is inputted in step 2 to estimate the Doppler frequency of each sub-aperture,
respectively. In step 2, each input sub-aperture SLC data is divided into M ∗ N blocks,
and the Doppler centroid frequency of each block is estimated. The Doppler frequency
at the same spatial position block (i, j) with different sub-apertures form a vector Yi,j as
the output. Therefore, azimuth angle ϕk and vector Yi,j are the inputs of the third part.
The coefficient matrix W is generated by combining the Gaofen-3 system parameters, that
is, wavelength, incident angle, flight speed, and the azimuth angle of L sub-apertures.
Then, the vector equation of the unknown vector X is established with vectors Yi,j and
W. The unknown vector X includes current vector information, so the current vector at
each position in space can be calculated by solving the equation with the least squares
method. The output of step 3 is the sea surface current field of the entire data. The spe-
cific processing process and the calculation of variables are explained respectively in the
following subsection.

Figure 2. Flow chart of ocean current field measurement using single antenna SAR data.

2.2.1. Sub-Aperture Processing

Generally, the beam of SAR is perpendicular to the direction of flight, and the current
velocity component in the range direction is obtained by Doppler centroid estimation with
full-aperture data. However, through the above analysis, in order to retrieve the current
vectors, it is necessary to derive the Doppler centroids in different directions, so the data
under different azimuth angles can be processed through sub-aperture processing.

In the basic theory of SAR, there is a linear relationship between Doppler frequency
and azimuth time. By dividing Doppler frequency, the full-resolution image is decomposed
into a series of low-resolution images formed by beams in different directions, which is
sub-aperture processing technology [28].

In this method, sub-aperture data are divided in the azimuth frequency domain. The
divided beam is shown in Figure 3, where the solid line represents the beam center of
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different sub-aperture S. The sub-aperture bandwidths are same, and the sub-aperture
center frequency is fk, k = 1, 2, · · · , L, where L is the number of sub-apertures. In the
ideal side-looking condition, the estimated Doppler centroid should be zero when the
full-aperture beam irradiates the stationary target. However, in practical systems, the
full-aperture beam is not always perpendicular to the azimuth direction. The full-aperture
azimuth angle is calculated from the data recorded by the Inertial Navigation System (INS)
or estimated from the data in the stationary area, such as land. According to Equation (4),
the azimuth angle ϕk of the sub-apertures beam center line can be expressed as

ϕk = arccos(
λ fk

2vp sin θ
). (10)

Figure 3. Schematic diagram of sub-aperture processing.

2.2.2. Doppler Centroid Estimation

Accurate Doppler centroid estimation of real data is the basis of subsequent processing
through the above analysis. According to Reference [29], the methods used for Doppler
centroid estimation include the energy balance method, the power spectrum correlation
method, the correlation Doppler centroid estimation method and the optimal estimation
method. They use different weighting functions B( f ). The results of the optimal estimation
method are more accurate, very close to the Cramer–Rao bound, so this paper uses this
method to estimate Doppler centroid. The weighting function of optimal estimation
method is shown in Equation (11), where E( f ) denotes the Doppler power spectrum.
According to [29], Figure 4 shows E( f ) and B( f ), where Fa is pulse repeat frequency
(PRF). In Figure 4a, we show the Doppler bandwidth of the sub-aperture image, which
corresponds to S in Figure 3. In data processing, we use a band-pass filter to extract the
sub-aperture frequency band from the azimuth spectrum. The specific process is referred
to in Reference [30]. The frequency point at the center of each sub-aperture bandwidth
corresponds to a sub-aperture azimuth angle, and the sub-aperture azimuth angles at both
ends are the extreme values, so we can get

B( f ) =
E′( f )
E2( f )

. (11)

As shown in Figure 4, the Doppler power spectrum E( f ) is an even function, while
the weighting function B( f ) is an odd function. The convolution of the two functions has
only one zero-crossing point, which is then calculated by mathematical methods such as
the least squares. The zero-crossing point is the Doppler centroid frequency. We convolute
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the Doppler spectrum of each sub-aperture with the weighted function in Figure 4b to find
the zero-crossing point, so as to estimate the Doppler centroid.

(a) (b)

Figure 4. (a) Doppler power spectrum with sub-apertures bandwidth. (b) Weighting function used
for Doppler centroid estimation.

In order to accurately estimate the Doppler centroid in actual data, enough sampling
points need to be taken in the azimuth and range direction for calculation. Therefore, it
is necessary to block sub-aperture image data for Doppler estimation and eliminate the
influence of non-geophysical terms. Finally, an average Doppler frequency for several
kilometers’ range of ocean surface is acquired, which is expressed as fi,j (i = 1, 2, · · · , M,
j = 1, 2, · · · , N, M and N represent the number of blocks in azimuth and range direction of
each sub-aperture datapoint , respectively). Generally, there is a time interval between sub-
aperture images, and the variation of the resulting ocean surface is usually at the pixel level.
However, the Doppler estimation of sub-apertures requires thousands of pixels to obtain
the mean motion state of the ocean surface over several kilometers, so it is considered that
the changes of Doppler frequency between different sub-apertures are mainly caused by
different beam directions, rather than the ocean surface evolution.

It should be noted that the Doppler centroid estimation process in this paper acts on
the correctly imaged single look complex data for the purpose of current inversion. In some
of the literature, the Doppler estimation process acts on SAR raw data to improve imaging
quality, such as in [31,32]. Compared with imaging processing, this paper pays more
attention to the application process of imaging data. In addition, the Doppler estimation
algorithm in References [31,32] is applied to airborne SAR data with large squint and high
contrast. In this paper, the squint angle of the Gaofen-3 satellite is close to zero, and the
SAR data scattering is uniform and the contrast is low.

2.2.3. Vector Estimation of Ocean Current

In this section, we assume that the Doppler frequency caused by the Bragg wave phase
velocity is the same at the same spatial position in each sub-aperture image. In addition,
in order to improve the efficiency of the algorithm, we deal with the influence of orbital
velocity through space averaging, and consider that the residual errors in the same Doppler
estimation block are the same. Set the Doppler frequency shift caused by the influence of
Bragg wave phase velocity and residual orbit velocity to fB, and combine Equations (8)
and (9), then we can get:

f k
i,j = � f k

a + f k
c (i, j) + fB(i, j)

= − 2
λ

vp�ϕ sin ϕk sin θ

+
2
λ

(
ux(i, j) +�ϕuy(i, j)

)
cos ϕk sin θ

+
2
λ

(
uy(i, j)−�ϕux(i, j)

)
sin ϕk sin θ + fB(i, j),

(12)

where f k
i,j represents the Doppler results of the data block at the central coordinate (i, j) of

87



Appl. Sci. 2021, 11, 7656

the k-th sub-aperture image. Let Yi,j represent the vector composed of Doppler centroids of
all L sub-aperture resolution units at spatial coordinates (i, j), expressed as

Y i,j = [ f 1
i,j, f 2

i,j · · · f k
i,j · · · f L

i,j]
T . (13)

Then, the overdetermined linear equations are established and expressed in matrix
form as:

Y i,j = WX i,j, (14)

where the coefficient matrix W and the unknown vector Xi,j containing the current infor-
mation are respectively expressed as

W =
2 sin θ

λ

⎡⎢⎢⎢⎣
−vp sin ϕ1 cos ϕ1 sin ϕ1 λ/2 sin θ
−vp sin ϕ2 cos ϕ2 sin ϕ2 λ/2 sin θ

...
...

...
...

−vp sin ϕL cos ϕL sin ϕL λ/2 sin θ

⎤⎥⎥⎥⎦ (15)

X i,j = [�ϕ, ux(i, j) +�ϕuy(i, j), uy(i, j)−�ϕux(i, j), fB(i, j)]T . (16)

Then, after the least squares method is used to solve Xi,j, the azimuth velocity compo-
nent ux and range velocity component uy corresponding to the data block at coordinates
(i, j) can be expressed as

ux =
Xi,j(2)− Xi,j(1)Xi,j(3)

1 + Xi,j(1)2 (17)

uy =
Xi,j(1)Xi,j(2) + Xi,j(3)

1 + Xi,j(1)2 . (18)

Therefore, the current velocity uc and direction φc can be obtained:

uc =
√

u2
x + u2

y =

√√√√X2
i,j(2) + X2

i,j(3)

1 + X2
i,j(1)

. (19)

φc = arctan
(

ux

uy

)
= arctan

(
Xi,j(2)− Xi,j(1)Xi,j(3)
Xi,j(1)Xi,j(2) + Xi,j(3)

)
. (20)

The current field corresponding to the whole SAR image can be measured by solving
the current vector of each spatial position in turn.

3. Gaofen-3 Data Experiment and Results

3.1. Experiment Description

The experiment site is located in the Kuroshio Current region. The Kuroshio originates
from the North Equator, enters the East China Sea via the Philippines, close to the eastern
part of Taiwan, and then flows through the Ryukyu Islands, along the southern part of the
Japanese archipelago, and ends in the waters near 142◦ E and 35◦ N. The Kuroshio has the
characteristics of strong flow velocity, large flow, narrow flow range, deep extension, high
temperature and high salt, and so forth.

Gaofen-3 is a Chinese spacecraft carrying a C-band SAR, which was launched in
August 2016, from Taiyuan (Shanxi Province, China). The Gaofen-3 satellite is capable of
high resolution, large imaging width, high radiation accuracy, multiple imaging modes
and long-term operation. It can monitor global marine and land information all day
and all night, and expand the earth observation range and improve the rapid response
capability through left–right attitude maneuver. The satellite has 12 imaging modes, which
is the SAR satellite with the most imaging modes in the world. Gaofen-3 has outstanding
flexibility, high attitude control accuracy and stability, and has the ability of continuous two-
dimensional attitude guidance maneuver. In addition, the satellite adopts an independent
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health management mechanism to reduce the risk of whole satellite failure. Some Gaofen-3
SAR system parameters are shown in Table 1. For more specific parameters and technical
details, please refer to [26].

Table 1. Gaofen-3 system parameters.

Parameters Values Units

Radar Frequency 5.4 GHz
Incidence Angle 20–60 deg

Polarization HH/HV/VH/VV –
Spatial Resolution 1–500 m

Swath 10–650 km
Platform Speed 7567 m/s
Orbit Altitude 755 km

The four Gaofen-3 SAR datasets are single look complex (SLC) images acquired in
ultra-fine strip-map (UFS) mode, of 3 m high resolution within 30 km swath owing to the
dual-receive technique. The Gaofen-3 raw data is imaged by a special integrated SAR data
processor, and a chirp scaling (CS) algorithm is used for UFS mode data. More details
can be found in Reference [33]. The radar wavelength of the Gaofen-3 SAR system is 5.6
cm, the central incident angle is 22.5 degrees in ultra-fine strip-map mode. The GF-3 SAR
system is right view, and implemented zero Doppler through attitude control. Further
information about the data is shown in Table 2. Figure 5 depicts the geographical locations
in the red marks.

Figure 5. Geographic location of Gaofen-3 SAR data (marked in red).

Table 2. Gaofen-3 experimental data parameters.

Number Date Center Coordinates Orbit Polarization Swath

1 8 May 2021 132.79◦ E, 31.53◦ N Descend HH 30 km
2 23 April 2021 129.70◦ E, 30.46◦ N Descend HH 30 km
3 15 April 2021 123.86◦ E, 25.92◦ N Ascend HH 30 km
4 16 November 2020 121.44◦ E, 21.75◦ N Ascend HH 30 km

Figure 6 shows four SAR intensity images. It can be observed that all the images are
relatively uniform in intensity, and are not affected by vortices, internal waves and other
sea surface phenomena, which means that the weighted effect of the sea surface normalized
radar cross section (NRCS) on Doppler centroid variation is minimal. Note that Johannessen
et al. [6] pointed out that the Doppler estimation method works best for the quasi-uniform
radar cross section, which is consistent with the image features in this experiment.
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(a) (b)

(c) (d)

Figure 6. SAR intensity images corresponding to the four positions in Figure 5. (a–d) correspond to
the labels 1, 2, 3, and 4, respectively.

3.2. Retrieved Ocean Surface Current

In the first step of the proposed method, we extracted six sub-apertures for compu-
tation. Taking the processing result of label 1 SAR data as an example, after the first step
of sub-aperture processing, one of the sub-aperture intensity images is shown in Figure 7.
Obviously, the speckle noise of sub-aperture image is more serious and the resolution is
reduced. In addition, the maximum azimuth angle of the sub-apertures is 0.3 degrees. In
the second part, we divided each sub-aperture dataset into 30 × 30 blocks, which resulted
in a grid spatial resolution of 1 km × 1 km for each block. Then, after the Doppler centroid
estimation, the corresponding Doppler image is shown in Figure 7b.

In the third step, the Doppler image results of each sub-aperture data are calculated
according to the flow chart, and finally the two-dimensional current field results are
obtained. Corresponding to the four Gaofen-3 SAR datasets in Figure 6, the retrieved
ocean surface current field after the proposed method processing is shown in Figure 8,
where the color ruler and the arrow point represent the velocity and direction of the ocean
current, respectively.

As can be seen from Figure 8, the ocean currents at panel (a), (c) and (d), that is, the
positions at labels 1, 3 and 4 in Figure 5, are moving in a direction close to the northeast,
which is consistent with the trend of the Kuroshio Current movement. Figure 8a is close to
the Japanese islands, with the highest latitude, and the current velocity is the largest. In
Figure 8b, the current velocity is the lowest and the direction changes, which is mainly due
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to the hindrance from the south of Japan island. The current field in Figure 8c is usually
affected by the surrounding islands, making the velocity slower and the current direction
closer to the east. Figure 8d has the lowest latitude, and the current field is closest to the
equator, which is the source of the Kuroshio, so the current velocity is relatively high, and
it moves northeast along the Taiwan island.

(a) (b)

Figure 7. The result of sub-aperture processing: (a) one of the sub-apertures intensity image, and the
result of Doppler centroid estimation: (b) the corresponding Doppler image.

(a) (b)

(c) (d)

Figure 8. The retrieved ocean surface current field corresponding to the acquisitions in Figure 6.
(a–d) correspond to the labels 1, 2, 3, and 4, respectively.

3.3. Results Validation

Generally, the in-situ data derived by Argos drifter buoys, current meters, and so forth,
is optimally used for the verification of ocean current results. In addition, satellite altimeter
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data can also be used to verify geostrophic current. Unfortunately, there is no spatio-
temporal synchronization in-situ data and altimeter data available for this experiment. In
fact, since the ocean current retrieved by the altimeter is usually at a resolution of tens of
kilometers, it is not suitable for comparison with the data with a smaller width and higher
resolution in this article.

Ocean circulation model data can also be used for ocean current verification. The
hybrid coordinate ocean model (HYCOM) has been widely used in a variety of ocean
current research projects [34–36]. Therefore, the HYCOM model data are used to verify
the results in this article. In this section, HYCOM’s global reanalysis dataset with a spatial
resolution of 1/12◦ and a temporal resolution of 1 day is acquired for comparison. Figure 9
shows the HYCOM ocean current model data consistent with the SAR acquisition time and
location. The black box represents the boundary of the experimental area. The length and
color of the arrow represent the current velocity, and the direction of the arrow indicates
the current direction. It is obvious that the ocean current state in the black box compares
qualitatively well with the experimental results in Figure 8.

(a) (b)

(c) (d)

Figure 9. The HYCOM model data corresponding to the ocean current results in Figure 8. (a–d)
correspond to the labels 1, 2, 3, and 4, respectively.

In order to quantitatively analyze the relationship between experimental results and
the model data, the results in Figure 8 were down-sampled and matched with the data in
Figure 9, and the current velocity and direction scatter plots are shown in Figures 10 and 11,
respectively. Figure 10 illustrates the statistical comparison of current velocity, where the
minimum correlation coefficient is close to 0.9 and the maximum correlation
coefficient is 0.98. Both root mean square error (RMSE) and bias are less than 0.1 m/s, which
meets the requirements for accuracy of current velocity measurement in marine environ-
ment applications.
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(a) (b)

(c) (d)

Figure 10. The scatter plot of the current velocity after comparing the experimental results in Figure 8
with the model data in Figure 9. (a–d) correspond to the labels 1, 2, 3, and 4, respectively.

(a) (b)

(c) (d)

Figure 11. The scatter plot of the current direction after comparing the experimental results in
Figure 8 with the model data in Figure 9. (a–d) correspond to the labels 1, 2, 3, and 4, respectively.

Figure 11 shows the statistical comparison for the current direction results, where a
direction of zero means the ocean current is going eastward. The current direction statistics
of the four plots show that the correlation coefficients between the experimental results and
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the model data are all greater than 0.95. Both RMSE and bias are less than 10◦. Although
the HYCOM data represent the average state of the current field in the day, the Kuroshio
current does not change much in one day. The results in Figures 10 and 11 suggest that,
after using the proposed method to process Gaofen-3 data, the ocean surface current fields
in the Kuroshio region are measured accurately.

The current characteristics in this paper and HYCOM need to be further compared.
The proposed method has the advantages of flexible data acquisition time and high spatial
sampling rate. The Gaofen-3 system can image the sea area of interest and obtain the
current information at specific times, with high spatial resolution of only a couple of
kilometers. However, the disadvantage is that the acquisition of current field in the case of
complex sea conditions and uneven sea surface scattering is not applicable, so it needs to
be further studied in combination with other information. The advantage of the current
field obtained from HYCOM data is that the model integrates a variety of sensor data
and is applicable to a wide range of sea environment, but the disadvantage is that it only
represents the average motion state of one day, and the spatial resolution is only tens of
kilometers, and there is a lack of data in the nearshore sea area. Therefore, in terms of the
factors that lead to the difference between the two models in retrieving the current field,
the input data type and accuracy, the calculation and processing process, and the temporal
and spatial characteristics of the current field products will make them different.

4. Discussion

Considering that the marine environment is complex and full of many unknowns
and uncertainties, many works about ocean surface current field measurement are mainly
based on data-driven studies, especially in the application of using Doppler centroids to
estimate ocean currents. As mentioned in the introduction, ENVISAT ASAR data has been
used to study the sea surface current field in different regions including Gulf Stream and
Agulhas Stream [5,6,8]. The SAR data acquired by different systems, such as ERS [37],
TerraSAR-X [38] and Sentinel-1 [39], are also used in sea surface current measurement
research, respectively, demonstrating the ability of currents retrieval. The work in this
paper focuses on using the Gaofen-3 SAR data to carry out application research on the
ocean surface current measurement in the Kuroshio region. In terms of this, the promising
experimental results have proved the current measurement capability of the Gaofen-3
system. However, it should be noted that the results will also be affected by the system,
environment, and processing methods. Since there is little knowledge about the actual sea
surface state, it is hard to accurately and quantitatively analyze the dynamic process of the
sea surface. Nevertheless, the main influencing factors and processes of the system and
environment on the experimental results will be discussed below in this section, and the
applicable scope of the proposed method will be given.

The incidence angle will affect the SAR ocean surface imaging mechanism. At a
medium incidence angle range from 20◦ to 60◦, which is consistent with the Gaofen-3
system design, the sea surface is dominated by Bragg scattering, and Bragg waves are the
main scatterers on the sea surface, which is in line with the principles of the proposed
method. At steep incidence angles, the specular scattering will increase imaging nonlinear-
ity, which is not conductive to current measurement. Moreover, if the incidence angle is
too large, the sea surface will be affected by wave breaking. In the experiment, the azimuth
beam width determines the number of sub-apertures, which in turn also affects the current
measurement results. When the azimuth beam width of the system is large, the number
of sub-apertures will be more, and the number of azimuth angles will increase, which
will lead to more equations used for least squares estimation to suppress the influence of
random noise. However, in the case of the designed azimuth beam width, an increase in
the number of sub-apertures will result in a decrease in sub-aperture time illuminating the
ocean surface, which results in a decrease in the signal-to-noise ratio and current accuracy.
Therefore, the number of sub-apertures is a compromise selection based on the data pro-
cessing process. In this paper, six sub-apertures are used in the Gaofen-3 data experiment.
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Generally, in order to improve the accuracy of Doppler estimation, the size of the resolution
cell for ocean current products exceeds 1 km. When the system resolution increases, the
amount of data that can be used to estimate the Doppler center increases, which will also
increase the accuracy of Doppler estimation. The resolution of the Gaofen-3 UFS mode
data used in this paper is about 2 m, and the spatial resolution of the current field is 1 km.

Usually, the wind field will cause the variation of sea surface wave motion, resulting
in the deviation of current measurement results. Therefore, in traditional current measure-
ment methods, such as DCA and ATI, it is necessary to first estimate the deviation value
using the known wind field information, and then subtract it from the current measure-
ment results. This process makes the current measurement process more complex, and the
accuracy of wind field information and the difference of deviation estimation methods will
affect the current measurement accuracy. The method used in this paper does not need
prior wind field information to estimate wave motion, but reasonably introduces variables
representing Bragg wave phase velocity and residual orbital velocity into the equations,
and finally directly solves the current information. The experimental results show that
this procedure is feasible. Note that the actual sea surface environment is complex and
changeable, and it is difficult to consider all the characteristics of the marine environment
in one method. In this article, the experiment is located in the Kuroshio region, which has
the characteristics of high current velocity and uniform ocean surface backscattering, and
is less affected by strong sea surface motion phenomena such as hurricanes and vortices.
These are the basic environmental features for the success of the experiment.

In summary, the method proposed in this paper is suitable for SAR systems with a
medium incidence angle and high resolution, and the appropriate number of sub-apertures
is selected according to the azimuth beam width and processing process. The sea surface
current field with high velocity and uniform backscattering, such as Kuroshio, Agulhas
current and Gulf Stream, and so forth, is an ideal measurement object. The marine environ-
ment is required to be stable without being affected by complex ocean motion phenomena.

5. Conclusions

The ocean surface current field affects global climate change and human activities,
and its speed and direction information is one of the most valuable parameters in ocean
research. At present, using the Doppler centroid anomaly to process a single SAR image
is a commonly used method of remote sensing current measurement, and the SAR data
of different systems have retrieved relatively satisfactory ocean surface radial velocities
in the Gulf Stream, Agulhas Stream and other sea areas. The Kuroshio Current is also
one of the largest western boundary currents in the world, but there are no more relevant
experimental reports on the application of SAR data current measurement. Gaofen-3 SAR
data have played an important role in retrieving ocean waves, ocean winds and other
ocean parameters, but its ability to measure ocean currents needs to be verified. Therefore,
this paper uses four available Gaofen-3 SAR datasets to carry out the ocean surface current
measurement experiment in the Kuroshio region.

In order to derive the ocean surface current vectors, a Doppler-based current mea-
surement method combining sub-aperture processing and the least squares technology is
suggested. Instead of prior wind information, the method considers the influence of wave
motion in the equations, and then estimates the current field directly. The ocean current
results derived from Gaofen-3 SAR data are compared with those from ocean model data.
It is found that the current velocity and direction both show good agreement. The velocity
accuracy is within 0.1 m/s and the direction accuracy is within 10°, which can meet the
application requirements and demonstrate the current measurement capability of Gaofen-3.

Finally, the influencing factors of the experimental process and the applicable con-
ditions of the method are discussed. System parameters, such as incidence angle and
resolution, sea conditions, and changes in the processing process, will all have an impact
on the current measurement results. The proposed method is suitable for SAR data with
medium incidence angle, high resolution and uniform sea surface scattering. The data pro-
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cessing procedures under more complex sea conditions need further research and analysis
in future work.
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Abstract: In this study a coupled thermodynamics and crankshaft dynamics model of a large two-
stroke diesel engine was utilised, to map the relationship of the engine Instantaneous Crankshaft
Torque (ICT) with the following frequently occurring malfunctioning conditions: (a) change in Start
of Injection (SOI), (b) change in Rate of Heat Release (RHR), (c) change in scavenge air pressure, and
(d) blowby. This was performed using frequency analysis on the engine ICT, which was obtained
through a series of parametric runs of the coupled engine model, under the various malfunctioning
and healthy operating conditions. This process demonstrated that engine ICT can be successfully
utilised to identify the distinct effects of malfunctions (c) or (d), as they occur individually in any
cylinder. Furthermore by using the same process, malfunctions (a) and (b) can be identified as they
occur individually for any cylinder, however there is no distinct effect on the engine ICT among
these malfunctions, since their effect on the in-cylinder pressure is similar. As a result, this study
demonstrates the usefulness of the engine ICT as a non-intrusive diagnostic measurement, as well
as the benefits of malfunctioning conditions mapping, which allows for quick and less resource
intensive identification of engine malfunctions.

Keywords: instantaneous crankshaft torque; frequency analysis; two-stroke diesel engine; engine
harmonic frequencies; malfunctioning conditions mapping; thermodynamics model; crankshaft
dynamics model; degradation; diagnostics

1. Introduction

Large two-stroke diesel engines are highly efficient and robust internal combustion
engines, and as a result they are utilised as main engines in the majority of the world
ocean-going fleet, operating under a wide range of conditions [1]. However, main engine
breakdown and engine components degradation still present major challenges, leading
to significant costs due to vessel down time and engine inefficiencies [2,3], as well as
compromising crew safety [4]. Consequently, early diagnosis of engine abnormalities,
degradation and faults is essential in maintaining the vessel’s safety, as well as avoiding
higher operational expenditure associated with fuel, maintenance, costly downtime and
increased repair costs.

In order to diagnose the engine’s condition, measurement and monitoring of vital
performance parameters are required. Amongst the most important parameters indicating
the engine health status is the in-cylinder pressure [5,6], which can effectively be used
to analyse combustion quality [7], diagnose cylinder blowby and compression faults [8],
and diagnose the fuel injector’s condition [9]. However, obtaining the in-cylinder pressure
measurement can be intrusive [10] and requires the deployment of large networks of
expensive sensors to perform continuous measurement [11], thus increasing costs, creating
data synchronisation issues and introducing multiple failure points.

To overcome the above shortcomings, other peripheral engine measurements are used
to accurately determine the cylinders condition. In specific, a combination engine working
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media pressures and temperatures are used, however these are not as revealing of the
engine cylinders’ health status as the in-cylinder pressure [6]. Thus, the Instantaneous
Crankshaft Speed (ICS) measurement has been utilised in automotive applications to obtain
combustion phasing information [12], identify imbalanced cylinders [13], and cylinders
with a decreased mean effective pressure [14]. Regarding larger engines, the ICS signal has
been utilised to detect misfiring for medium [15] and slow-speed engines [16], in addition
to cylinder imbalances [17]. Thus, the ICS measurement can be utilised due to the low cost
of speed sensors, however the raw ICS signal from the angle encoder requires significant
processing and high sample rates to provide sufficient detail, which is often not achieved
in practice [18]. Hence, by using ICS measurements faults in the engine cylinders are
identified, but their specific causes are often not revealed.

The Instantaneous Crankshaft Torque (ICT) can be used to acquire detailed informa-
tion of the cylinders’ condition, which can be obtained at sufficiently high sample rates
and accuracy [19]. In specific, for automotive applications the peak pressure position [20],
and properties such as combustion phasing and the burned mass fraction were estimated
for each cylinder [21], by utilising measurements from an ICT sensor. Furthermore, progress
was made in reconstructing the in-cylinder pressure diagram, however singularities were
encountered during the torque signal inversion [11]. Regarding larger engines the ICT
measurement was utilised for a two-stroke diesel engine of a land-based power plant,
to determine the indicated power for each cylinder using an Artificial Neural Network
(ANN) [18]. The ICT measurement is thus able to provide greater insight into the cylinders
condition using just a single sensor, however its utilisation in the marine industry remains
a novel concept as more traditional means of monitoring and diagnostics employed [22,23].

In the shipping industry, the most common form of diagnostics relies on human
judgement combined with information on acceptable degradation tolerances of engine
parts and performance parameters, which is provided by the manufacturer [24]. However,
this is a manual approach which is error-prone due to the involvement of the human
factor. As a result, statistical techniques such as regression [25], Support Vector Machines
(SVMs) [26], Bayesian networks [27], and ANNs [28] have been implemented which utilise
data from a multitude of engine parameters to perform diagnostics on the main engine
holistically or its individual components. These techniques rely on the collection of training
and validation data sets from large sensor networks in both healthy and faulty conditions,
which are hard to obtain. This is due to the lack of such sensor networks and high quality
data for the majority of the world fleet [29], as well as data sharing issues [30]. As a
result, first-principles modelling is employed to reduce the required number of measured
parameters and identify the cylinders condition. Specifically, thermodynamics modelling
has been used in conjunction with some measured parameters in order to identify engine
faults such as excessive peak combustion pressure [31], fuel injectors condition [32,33]
and cylinder compression as well as blowby [34]. These techniques also demonstrated
their usefulness by using engine models to derive baseline conditions, which facilitate
comparisons with the current engine operation, making it easier to reveal faults and
degradation effects.

From the above literature review, the following research gaps were identified: Despite
the usefulness of the ICT measurement, there is no study for large two-stroke diesel engines
that utilises said measurement to identify specific types of engine faults. Subsequently,
the aim of this study is to provide a framework for assessing the performance large two-
stroke diesel engines, by mapping the relationship of specific malfunctioning conditions
with the engine ICT, through the comparison with engine healthy (baseline) conditions.
This is accomplished by utilising a novel combination of less data-intensive first-principles
models, which implies coupling a thermodynamics and crankshaft dynamics model to
predict the engine’s ICT at various malfunctioning conditions. The following four most
frequently encountered malfunctioning conditions are considered:
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1. Change in the Start of Injection (SOI); occurs due to fuel injector wear and engine
detuning [32].

2. Change in the Rate of Heat Release (RHR); occurs due to poor fuel quality, and fuel
injector or fuel pump wear [33,35].

3. Change in the scavenge air pressure; occurs due to turbocharger compressor or
scavenge air cooler fouling [34].

4. Cylinder blowby; occurs due to wear in the cylinder liner or piston rings [34,36].

An initial study on a modelling approach for predicting a marine engine’s shaft
dynamics was presented by the authors [37]. The present study is an extension of that,
and includes improved thermodynamics model formulations, and additional analysis on
the modulus and phase angle of the most affected frequency components of the engine
ICT signal.

2. Methods and Tools

2.1. Reference System & Methodology

The reference system considered in this study is a 10-cylinder two-stroke diesel
engine, driving a generator operating at a constant speed of 125 rev/min. This engine
was utilised for the development of a coupled thermodynamics and crankshaft dynamics
model, which provides the in-cylinders pressure and flywheel ICT as output. The technical
characteristics and measured data used to develop and calibrate the coupled model were
obtained from [18,38]. In specific, the measured data include the in-cylinder pressure for a
single cylinder and the flywheel ICT for four loads as shown in Figure 1, whilst a summary
of the engine technical details is listed in Table 1.

Table 1. Reference system basic technical specifications [18].

Maximum Continuous Rating 15.50 MW
Number of cylinders 10

Nominal rotational speed 125 rev/min
Piston bore 0.67 m

Stroke 1.70 m
Firing order 1-9-4-6-3-10-2-7-5-8

Figure 1. Measured (a) in-cylinder pressure and (b) flywheel ICT, at four engine loads of 100%, 85%,
75% and 55%. Firing cylinders are marked as C1, C2, . . . C10.

Initially, the engine thermodynamic model and the engine crankshaft dynamics model
were developed and coupled with each other. These models and their coupling are de-
scribed in Sections 2.2 and 2.3. Subsequently, the thermodynamic model parameters
calibration was carried out by employing a nonlinear data-fitting Levenberg-Marquardt
algorithm from MATLAB [39]. The objective employed was to minimise the least-squares
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difference between the measured and simulated in-cylinder pressure from the coupled
model, by assuming that all cylinders have identical in-cylinder pressure. The state of the
calibrated model was considered to represent the engine healthy conditions.

Following the calibration process, four different engine malfunctioning conditions
were examined at 100% load as listed in Section 1, and four corresponding parameters
within the coupled model were used to simulate the engine malfunctioning operation.
To test individually all malfunctioning conditions, one parameter was varied 6 times
in equal steps from its minimum to its maximum values (defined in Section 2.4), while
the rest of the parameters were assigned a constant value corresponding to the healthy
engine conditions. The above procedure was performed for each cylinder for three model
parameters that correspond to each of the following malfunctioning conditions; change
in SOI, change of RHR, and blowby. The remaining parameter corresponding to the
change in scavenge air pressure malfunction, was varied for the entire engine and not
for each individual cylinder, as a drop in the scavenge air pressure affects all cylinders
simultaneously. Therefore, a total of six parametric runs were performed for the three
malfunctioning conditions of each cylinder, providing a total of 180 (3× 6× 10) parametric
runs. In addition to these parametric runs, six parametric runs were performed for the
scavenge air pressure malfunction, which affects all cylinders uniformly, raising the total
to 186 runs.

For each parametric run, a frequency analysis by using a Fast Fourier Transform (FFT)
was performed to the output of the engine ICT, and the top three most affected signal
frequencies and phase angles where identified. These were utilised to map the relationship
between the engine ICT and the specific malfunctioning conditions considered in this study.

2.2. Thermodynamic Model Description

An in-house thermodynamics model was developed to predict the engine in-cylinder
pressure under the various operating conditions examined. The engine scavenging process
was modelled using a two-zone approach, which is considered necessary in order to capture
the complexities during the fresh air and exhaust gas mixing [40]. The remaining part
of the engine cycle from Exhaust Valve Close (EVC) to Scavenge Port Open (SPO) was
modelled using a one-zone approach which is able to provide sufficient accuracy for the
in-cylinder pressure diagram prediction [41].

The formulation of each approach is developed using the energy the working medium
as homogeneous. In specific, it involves a system of non-linear differential equations that
is solved for the pressure, temperature and burnt fuel fraction state variables for each zone.
For the one-zone approach the following system of ordinary differential equations (ODE)
is obtained:⎡⎢⎢⎢⎢⎢⎣

ṗ

Ṫ

ξ̇

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
m

∂u
∂p

m
∂u
∂T

0

V − mT
∂R
∂p

−m
(

R + T
∂R
∂T

)
0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
−1⎡⎢⎢⎢⎢⎢⎣

Q̇∑ − pV̇ + Ḣ∑ − uṁ − ∂u
∂φ

mφ̇

T
(

∂R
∂φ

mφ̇ + Rṁ
)
− pV̇

Fsφ̇(1 − ξ)2

⎤⎥⎥⎥⎥⎥⎦ (1)

where p, T and ξ are the pressure, temperature and burnt fuel fraction respectively; u, R, Fs
and φ denote the internal energy, gas constant, stoichiometric fuel-air ratio, and equivalence
ratio respectively; and finally, V, m and Q̇∑ are the volume, mass, sum of heat release
and heat transfer rates respectively, whereas Ḣ∑ denotes the sum of enthalpy flow rates
entering and exiting the cylinder.

The internal energy u and gas constant R, along with their corresponding partial
derivatives with respect to p, T and φ are calculated through combustion gas properties [42].
The stoichiometric fuel-air ratio Fs is set to 0.0694 for marine diesel fuel [43], whilst the
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equivalence ratio φ is calculated considering the burnt fuel fraction ξ in accordance to the
following equation [5]:

φ =
ξ

Fs(1 − ξ)
(2)

Furthermore, the mass conservation applied for the one-zone approach provides the
following equation:

ṁ = ṁi − ṁo + ṁ f b (3)

where the subscripts i and o denote inlet and outlet mass flowrates respectively, which
are calculated by utilising the valve isentropic flow equations [5]. The burnt mass rate is
denoted by ṁ f b and is calculated using the single-Wiebe combustion model according to
the following equation [7]:

ṁ f b = m f θ̇
a (w + 1)

Δθ

(
θ − θSOC

Δθ

)w
exp

{
−a

(
θ − θSOC

Δθ

)w+1
}

(4)

where m f is the total fuel injected in the cylinder, θ denotes the crank angle, Δθ is the
duration of combustion, w is the Wiebe shape parameter, whereas a is set to 6.9078 to
maintain a combustion efficiency of 99.9% [44]. In addition, θSOC denotes the start of
combustion crank angle, which is calculated in accordance to the following equation:

θSOC = θSOI + ΔθIGD (5)

where θSOI is the start of injection crank angle which is provided as input, and ΔθIGD is the
ignition delay calculated in accordance to the Sitkey equation [7].

The sum of heat transfer and heat release rates is calculated by considering the burnt
mass rate from Equation (4) above, and the sum of enthalpy flowrates is calculated by
considering the valve inlet and outlet mass flowrates, in accordance to the Equations (6)
and (7) respectively:

Q̇∑ = ṁ f bh f orm − Cw ∑
j

Aj(T − Tj) (6)

Ḣ∑ = ṁihi − ṁoho (7)

where h f orm is the fuel enthalpy of formation, Cw is the Woschni heat transfer coefficient [7],
and Aj, Tj are the heat transfer areas and surface temperatures respectively for the jth
cylinder part. The subscript j denotes the piston, cylinder head, liner and exhaust valve.

The scavenging period (from the SPO to EVC) is modelled by employing the two-
zone approach [41], which considers that the cylinder is divided into two zones, namely,
the charge air zone, and the exhaust gas zone (the latter contains a mixture of the exhaust
gas and charge air). By applying the energy and mass conservation equations as well as
the ideal gas law and considering the homogeneous mixture, the following system of ODE
is obtained:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(8)

where the subscripts 1 and 2 denote the charge air and mixture zones respectively, and the
subscript 1, 2 denotes the charge air flow from zone 1 to zone 2. Furthermore, Q̇1 and Q̇2
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denote the heat transfer rates for each zone respectively, which are calculated using the
Woschni heat transfer coefficient Cw in accordance to the following equations:

Q̇1 = −Cw

[
Ap(T − Tp) + Al

V1

V
(T − Tl)

]
(9)

Q̇2 = −Cw

[
∑
q

Aq(T − Tq) + Al
V2

V
(T − Tl)

]
(10)

where the subscripts p and l denote the piston and cylinder liner respectively, and the
subscript q denotes the valve and cylinder head.

The mass flow rate from zone 1 to zone 2 is calculated according to the following equation:

ṁ1,2 = csṁi (11)

where cs is the scavenging mixing factor calibrated at every load point [41].
The application of the mass and volume conservation provide the following equations:

ṁ1 = (1 − cs)ṁi (12)

ṁ2 = csṁi − ṁo (13)

V̇ = V̇1 + V̇1 (14)

The switch between the one-zone and two-zone approaches takes place after the
scavenge ports open, when the charge air zone volume V1 is sufficiently large, such that
singularities during the matrix inversion in Equation (8) are avoided [45]. In specific, when
the scavenge ports open, the one-zone approach equations from Equation (1) continue to
be integrated, along with the following additional differential equation:

V̇1 = ṁ1R1T1 p−1 (15)

Subsequently, the zone volume fraction is utilised as the criterion which performs the
switch from the one-zone to the two-zone approach, according to whether the following
inequality is satisfied:

V1

V
≥ c (16)

where c is set to 10−3.

2.3. Crankshaft Dynamics Model

The thermodynamics model was coupled to the crankshaft dynamics model, which
is configurable to predict the ICT for either stationary generators or propulsion applica-
tions. The engine crankshaft dynamics was modelled using a lumped parameter model,
the detailed development of which is described in [37]. The lumped parameter model
represents the entire engine crankshaft in a series of 16 discrete inertia disks or Degrees of
Freedom (DOFs), as shown for the reference system in Figure 2. The DOFs 4–8 and 10–14
correspond to each of the 10 cylinders, whilst DOFs 1–3, 9, 15, and 16 correspond to the
engine vibration dampers, chaindrive, flywheel and generator armature respectively. Each
DOF is connected to its neighbouring DOF(s) using a spring and a damper element, that
simulate the shaft’s rigidity and structural damping. Furthermore, each DOF is connected
with a damper element to a non-rotating frame of reference, simulating the friction in the
shafting system’s bearings.
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Figure 2. Crankshaft dynamics lumped mass model schematic [46].

The following crankshaft dynamics model governing equation was derived by apply-
ing the angular momentum conservation on the engine shafting system:

JΘ̈ + CΘ̇ + KΘ = TJ + TC + TF + TL (17)

where Θ, Θ̇ and Θ̈ are 16× 1 vectors of the angular displacement and its respective first and
second derivatives; J is a 16 × 16 diagonal inertia matrix; C and K are 16 × 16 tridiagonal
damping and stiffness matrices respectively; and TJ , TC, TF and TL are 16 × 1 vectors of the
variable inertia, cylinder combustion, engine friction, and engine load torques respectively.

The inertia variation throughout the engine rotation is a result of the rotating and
reciprocating motion of the engine pistons and the connecting rods [20]. As a result,
the variable inertia vector elements corresponding to the engine cylinders (DOFs 4–8 and
10–14) are calculated using Equation (18) below, whilst all other elements corresponding to
DOFs 1–3, 9, and 15–16 are set to zero [46]. Thus, the variable inertia torque is calculated
according to the following equation:

TJ,n = Mrec

[
r2 −

(
dsn

dθn

)2
]

θ̈n + Mrec
d2sn

dθ2
n

dsn

dθn
θ̇2

n (18)

where Mrec and r are the reciprocating piston mass and crank radius respectively, s is the
instantaneous piston displacement with respect to the Top Dead Center (TDC), and the
subscript n refers to the DOFs corresponding to each cylinder.

The cylinder combustion torque vector is arranged in a similar way as the variable
inertia torque vector, where its elements corresponding to the engine cylinders are calcu-
lated using Equation (19), and all other elements are set to zero. The combustion torque for
individual cylinders is therefore calculated according to the following equation:

TC,n =
dsn

dθn
pn Ap (19)

where by using the same notation as in the thermodynamics model, pn is the in-cylinder
pressure for the nth DOF corresponding to each cylinder, and Ap corresponds to the
piston area.

The engine friction torque is calculated as a function of the engine rotational speed,
utilising the friction coefficients in accordance to the following equation [18]:

TF = FΘ̇ (20)

where F is a 16 × 16 diagonal matrix containing the friction coefficients.
The engine load torque is calculated as a constant for the case where the engine is

configured for a stationary generator [18], or as a function of the engine speed for the case
where the engine is configured for propulsion applications [47]. In specific, the load torque
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is implemented at the last element of the engine load vector, such that TL = [0, 0, · · · , τL]
T,

and for both of the above configurations the following equations are used respectively:

τL,gen = kg
PMCR

θ̇MCR
(21)

τL,prop = kd θ̇N where kd =
PMCR

θ̇N+1
MCR

(22)

where PMCR and θ̇MCR is the engine power and rotational speed at MCR respectively, kg is
the generator load constant, which is obtained from on-site bus voltage measurements [18],
and N ≈ 2 is the propeller law exponent [47].

The torque at the flywheel is calculated considering the shaft stiffness at the flywheel
location, and angle of twist between the flywheel and the generator armature according to
the following equation:

τf ly = k15(θ16 − θ15) (23)

where k15 is the shaft stiffness at the 15th DOF, and θ16, θ15 are the angular displacements
of DOFs 15 and 16, corresponding to the flywheel and generator armature, respectively.

2.4. Malfunctioning Conditions Modelling

In total, 4 malfunctioning conditions are investigated in this study, as listed in Section 1.
The first one is the change in SOI, which can be caused due to the fuel injector wear and
tear or engine detuning. In specific, engine detuning can occur after a large number of
operating hours, as the Variable Injection Timing (VIT) of individual cylinders may require
retuning [33]. In addition, detuning occurs due to the wear and tear of the injector pump
or the camshaft lobe, the latter occurs to a large percentage of the world fleet, which still
operates using camshaft-driven engines. The SOI angle variation for each cylinder are
taken into account by using the θSOI term in Equation (5), which is expected to vary by
±2.5◦ with respect to the healthy engine condition SOI [48].

The second malfunctioning condition considered is the change in RHR. In specific, this
can occur due to a number of reasons including poor fuel quality, and worn or clogged fuel
injectors [33,34]. To change the RHR, this study considers the variation of the Weibe shape
parameter w emplyed in Equation (4). This impacts the fuel burn rate, and as a results the
combustion rate. Since the model is very sensitive to changes of the Weibe shape parameter,
its range was considered ±0.5 with respect to the healthy engine’s parameter value.

The third malfunctioning condition is a change in the scavenge air pressure. A decrease
in the scavenge air pressure can occur due to scavenge air cooler fouling, turbocharger
compressor fouling, air filter fouling, turbine wear or a combination of those. On the
contrary, an increase in the scavenge air pressure can occur due to fouling in the turbine
nozzle, or due to higher exhaust gas temperatures resulting from the incomplete combus-
tion, late combustion of poor quality fuel [29]. This malfunction is implemented to the
thermodynamic model as a change in the scavenge air pressure, which is an input parame-
ter affecting the air flow rate though the scavenging ports that are utilised to calculate the
cylinder inlet mass mi. Ths study considers changes in the scavenge air receiver pressure
by ±0.2 bar with respect value for the healthy engine condition [32] .

The fourth malfunctioning condition is the engine blowby, which occurs due to wear
in the cylinder liner or piston rings [34,36]. This was modelled by simulating an additional
isentropic orifice, namely the blowby orifice, which connects the scavenge air receiver with
the cylinder. The effective area profile of the blowby orifice was set as constant throughout
the entire engine revolution, and its value was adjusted manually such that a range of
typical blowby mass flowrates can be obtained [36,49].

The modelled malfunctioning conditions and their respective parameter changes are
summarised in Table 2.
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Table 2. Malfunctioning condition parameters variation.

Malfunctioning Condition Changed Parameter Parameter Range Parameter Step

Change in SOI Start of Combustion (θSOI) ±2.5◦ 1.25◦
Change in RHR Weibe shape parameter (w) ±0.5 0.25

Change in scavenge air pressure Scavenge air pressure ±0.3 bar 0.15 bar
Blowby Blowby effective area 0 ∼ 28.5 mm2 7.12 mm2

3. Results & Discussion

3.1. Healthy Engine Conditions

To simulate the engine performance for the baseline conditions, the coupled thermo-
dynamic and crankshaft dynamics model was calibrated at 100% engine load using the
measured in-cylinder pressure as described in Section 2.1. In specific, the calibration param-
eters employed were the start of injection (Equation (5)), duration of combustion and Weibe
shape parameter (Equation (4)), as well as the scavenging mixing factor (Equations (11)
and (12)). Subsequently, by comparing to the measured data, the coupled model was
validated at 100%, 85%, 75%, and 55% engine loads as shown in Figure 3.

The calibration process resulted to the simulated in-cylinder pressure having a Nor-
malised Root Mean Square Error (NRMSE) of 9.2% at 100% engine load, as shown in
Figure 3a. Through the validation of the in-cylinder pressure for the remaining three en-
gine loads in Figurs 3c,e,g, it is observed that the NRMSE is increasing to 10.8%, 11.8%
and 13.9% respectively. This error increase occurs as these loads are further away from
the calibration load of 100%. In addition, the simulated peak combustion pressure is close
to the measurements, with a maximum difference of 2.3 bar which occurs at 85% engine
load. Also, the crank angle corresponding to the simulated peak combustion pressure is
always within 2 crank angle degrees from the measurements, with the exception at 85%
engine load where the simulated peak pressure is at 3.5 crank angle degrees less than the
measurements. Finally, it is observed that the compression part of the cycle is captured
accurately by the simulated pressure. However the expansion from the peak pressure to
approximately 60◦CA, appears to occur quicker in the case of the simulated in-cylinder
pressure as compared to the measurements, for all engine loads.

The NRMSE error in the simulated flywheel ICT in Figure 3b,d,f,h is observed to
follow the same pattern as the error for the in-cylinder pressure, since it steadily increases
at the engine loads further way from the calibration load. Furthermore, the error in the
simulated flywheel ICT is observed to be greater than that of the in-cylinder pressure
for all loads, which is due to the assumptions made in the crankshaft dynamics model.
In specific, since the in-cylinder pressure from only one cylinder was available, all the
cylinders in the crankshaft dynamics model were set to have identical in-cylinder pressures,
which would also represent best the healthy engine conditions. As a result, the flywheel
ICT was simulated using identical in-cylinder pressures, whilst in the physical engine the
in-cylinder pressures were most likely to be different [38], which would result to a larger
error in the flywheel ICT. Further analysis on the errors induced in the simulated flywheel
ICT can be found in [46].
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Figure 3. In-cylinder pressure at (a) 100%, (c) 85%, (e) 75% and (g) 55% engine load. Flywheel ICT at
(b) 100%, (d) 85%, (f) 75% and (h) 55% engine load.

3.2. Malfunctioning Engine Conditions

The malfunctioning conditions were simulated using the coupled thermodynamics
and crankshaft dynamics model, in accordance to the procedure mentioned in Section 2.1.
The change of the in-cylinder pressure for a malfunctioning cylinder is shown in Figure 4,
whereas the change in the flywheel ICT for the representative case of cylinder 2 malfunc-
tioning is shown in Figure 5. The flywheel ICT change was normalised with respect to the
average torque of the healthy engine conditions.

Regarding the change in SOI, it is observed from Figure 4a that as the start of injection
is retarded relative to the healthy conditions, the peak in-cylinder pressure decreases. This
occurs since combustion takes place later in the cylinder expansion process compared to the
healthy conditions, which can have adverse effects on engine efficiency. Conversely, as the
injection timing is advanced the pear in-cylinder pressure increases as combustion takes
place closer to the TDC. Furthermore, as shown in Figure 5a, the flywheel ICT is observed
to achieve its maximum difference compared to the healthy condition at approximately
35◦CA after the TDC of cylinder 2, which is followed by an oscillatory behaviour that
attenuates throughout the engine revolution. This delay in the torque response after the
malfunctioning cylinder is attributed to the crankshaft’s flexibility, hence the malfunction of
cylinder 2 on the flywheel torsional stresses do not appear instantly. Moreover, depending
on whether the peak in-cylinder pressure is greater or less than the respective one of the
engine healthy conditions, the amplitude of the flywheel ICT difference varies accordingly.
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Figure 4. In-cylinder pressure for the healthy and malfunctioning conditions of (a) change in SOI,
(b) change in RHR, (c) change in scavenge air pressure, and (d) blowby.

Figure 5. Normalised difference in flywheel ICT of the healthy engine conditions and the cylinder
2 malfunctioning conditions of (a) change in SOI, (b) change in RHR, (c) change in scavenge air
pressure, and (d) blowby.

Regarding the change in RHR, as shown in Figures 4b and 5b, it appears to have a
very similar effect in both the in-cylinder pressure and the flywheel ICT as compared to the
change in SOI malfunctioning condition. In specific, as the Weibe shape parameter increases
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the RHR becomes faster causing the in-cylinder pressure to peak higher as compared to
the healthy condition.

The change in the scavenge air pressure effects the entire in-cylinder pressure curve,
but has the greater impact in the compression part of the cycle as observed from Figure 4c.
In specific, a decrease of 0.3 bar in the scavenge air pressure from the healthy conditions,
can result in a decrease of up to 10 bar in the in-cylinder pressure at TDC, and decrease
of 5 bar in the peak combustion pressure. Moreover, since all cylinders are affected with
this malfunctioning condition, a decrease of 0.3 bar with respect to the healthy conditions,
results to a 0.5% decrease in the flywheel ICT. As a result, small changes in the scavenge
air pressure can result to significant changes in the maximum compression and peak
combustion pressure of all cylinders, which subsequently affects significantly the engine
torque. Hence, this underpins the importance of maintenance in the scavenge air system.
Furthermore, after cylinder 2 fires there is no significant change in the flywheel ICT
oscillations as shown in Figure 5c, since all cylinders are affected.

Finally, when the engine cylinder experiences blowby, this decreases the combustion
and expansion part of the in-cylinder pressure diagram, as shown in Figure 4d. As com-
pared to the SOI and RHR malfunctioning conditions, the change in the peak combustion
pressure although significant, may not be as large, however the expansion of the in-cylinder
pressure diagram is affected, thus reducing the individual piston torque significantly. As a
result the normalised difference in the flywheel ICT experiences the largest oscillations com-
pared to all other malfunctioning conditions reaching a minimum of 39% and a maximum
of 23%, as shown in Figure 5d. Therefore, this malfunctioning condition can potentially
introduce large torsional strain on the engine shaft. Similarly to the SOI and RHR mal-
functioning conditions, a delay of 54◦CA between the TDC of the malfunctioning cylinder
2 and the maximum flywheel ICT oscillation is observed from Figure 5d, which occurs
as a result of the shafting system’s flexibility. However, in contrast to the SOI and RHR
malfunctioning conditions, the phase in the difference of the flywheel ICT does not change,
as during blowby the in-cylinder pressure diagram remains always lower compared with
the respective one of the healthy engine conditions.

3.3. Frequency Analysis and Malfunctioning Conditions Mapping

In accordance to the methodology in Section 2.1, by performing a frequency analysis
on the flywheel ICT, the engine harmonic frequencies with the most affected modulus
and phase angle are determined as a result of the malfunctioning conditions. In specific,
according to Figure 6, it is deduced that the change in SOI and RHR for the malfunctioning
cylinder no. 2, affects mostly the modulus of the 28th and the 34th harmonic frequencies,
and the phase angle of the 14th harmonic frequency. The rest harmonic frequencies affected
are observed to be identical for both malfunctioning conditions, which as mentioned in
Section 3.2 confirms that both the change in SOI and RHR have a similar effect on the
flywheel ICT. Furthermore, the change in scavenge air pressure and blowby modulus is on
average 14.3 Nm less for their respective harmonic frequencies, compared to the change
in SOI and RHR malfunctioning conditions. However, the harmonic frequencies with
the most affected modulus for the change in scavenge air pressure and blowby, are lower
by an average of 12 harmonics as compared to the change in SOI and RHR. Therefore,
it can be distinguished from noise, and thus it can readily measure their modulus with
adequate accuracy.
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Figure 6. Change in the (a) modulus and (b) phase angle of the top three most affected engine
harmonic frequencies from a malfunction of cylinder 2, at 100% load. Most affected frequencies are
denoted with the letter F at the top of each bar.

The results shown in Figure 6 can be condensed to perform the malfunctioning
conditions mapping, which includes the harmonic frequencies of the top three most af-
fected frequency moduli and phase angles for every malfunctioning cylinder, as shown in
Figure 7a,b respectively. It is visible in Figure 7, that specific malfunctioning conditions
have a distinct effect on the flywheel ICT harmonic frequencies for all cylinders, which
makes them easily identifiable by employing this mapping process. In specific, as shown in
Figure 7a, the modulus of distinct harmonic frequencies is affected for the case of blowby.
Hence, the modulus of the 1st harmonic frequency for malfunctioning cylinders 2–10,
and the modulus of the 4th harmonic frequency for malfunctioning cylinders 1, 2, 4, and 10
are affected. Similarly, for the change in scavenge air pressure the modulus of the 3rd and
5th harmonic frequencies is affected distinctly, for all engine cylinders malfunctioning. As a
result, the above suffices to diagnose blowby or a change in scavenge air pressure if they
occur individually, to all 10 cylinders respectively.

However, the change in SOI and RHR have a very similar impact on the flywheel
ICT, hence the modulus of the nearly identical harmonic frequencies is affected, as shown
in Figure 7a. This makes it difficult to distinguish weather a change in SOI or RHR is
responsible when a specific cylinder is malfunctioning. In specific both malfunctioning
conditions affect the modulus of the 4th harmonic frequency for malfunctioning cylinders
3, 5, 6, and 8, as well as the 8th and 9th harmonic frequencies for malfunctioning cylinders
4 and 8 respectively. For the remaining cylinders, the affected moduli are exceeding the
10th harmonic frequency which can make them difficult to distinguish from noise in the
flywheel ICT signal. However, as shown in Figure 7b, the most affected phase angle of the
4th harmonic frequency corresponds to both malfunctioning conditions, for cylinders 1,
2, 7, 9 and 10. As a result, since phase angle of a lower harmonic frequency is affected as
compared to the effected modulus harmonic frequencies, the effect of both malfunctioning
conditions is easier to identify for all 10 cylinders respectively.

Figure 7. Mapping of individually occurring malfunctioning conditions for each cylinder showing
the harmonic frequencies with the most affected (a) modulus and (b) phase angle, at 100% load.
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4. Conclusions

In this study, the mapping of four frequently occurring malfunctioning conditions was
performed for a large two-stroke diesel engine, by simulating and identifying their effect
on the engine’s flywheel ICT. The malfunctioning conditions examined were (a) change
in SOI, (b) change in RHR, (c) change in scavenge air pressure and (d) blowby, which
were simulated using a validated thermodynamics and crankshaft dynamics coupled
engine model.

In specific, changes in SOI and RHR have a nearly identical impact on the engine’s
in-cylinder pressure diagram, which primarily affects the maximum combustion pressure
and its location. Conversely, changes in the scavenge air pressure primarily affect the
compression part of the cycle, with smaller effects observed in the peak combustion
pressure and its location. Most importantly changes in the scavenge air pressure affect
all cylinders uniformly rather than individually, hence the impact of this malfunctioning
condition on the engine performance is greater. This also differs from the effect that blowby
has on the in-cylinder pressure diagram, where the combustion and expansion part of the
cycle are primarily effected.

As a result, the changes in SOI and RHR appear to have similar effects in the fly-
wheel ICT, where as compared to the healthy engine conditions, a sudden change in the
torque fluctuations is observed at approximately 35◦CA after the malfunctioning cylinder
reaches TDC. The delay in the change of the ICT fluctuations measured at the flywheel is a
result of the crankshaft flexibility, demonstrating the importance in considering this phe-
nomenon when considering engine dynamics to identify malfunctions in specific cylinders.
The change in scavenge air pressure does not cause similar fluctuations in the flywheel ICT
as all cylinders are affected uniformly, thus the crankshaft torsional stresses do not change
drastically. However, when blowby occurs the flywheel ICT fluctuations are observed to
change significantly at 54◦CA after the faulty cylinder reaches TDC, and they attenuate for
the rest of the engine’s rotation.

Subsequently, using the flywheel ICT of the malfunctioning engine conditions, a fre-
quency analysis was performed to identify and map the harmonic frequencies with the
most affected modulus and phase angle, with their corresponding malfunctioning cylinder.
From this mapping process it was determined that the change in scavenge air pressure,
and blowby for any malfunctioning cylinder, have a distinct effect on the flywheel ICT
harmonic frequencies, and can thus be identified easily using the malfunctioning conditions
map. However, the change in SOI and RHR display mostly similar effects on the flywheel
ICT. Thus according to the malfunctioning conditions map it is possible to detect weather a
cylinder is experiencing a change in SOI or RHR, but cannot distinguish between the two.

The benefit of the malfunctions mapping approach developed in this study is that
the engine model is employed only once to develop the malfunctions map, and simulate
the flywheel ICT under healthy engine conditions. Subsequently, a computationally cheap
and simple algorithm can be deployed in-situ which performs a frequency analysis on
the flywheel ICT signal, and determines the harmonic frequencies of the most effected
modulus and phase angle. As a result, in a future study the results of this process can
then be readily compared with the malfunctions map to diagnose the engine’s condition.
Furthermore, malfunctioning conditions occurring in a combination of different cylinders
can be examined and mapped in a more extensive database, that includes a larger range of
malfunctioning and encompasses better the engine’s realistic operating conditions.
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The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
DOF Degree of Freedom
EVC Exhaust Valve Close
FFT Fast Fourier Transform
ICS Instantaneous Crankshaft Speed
ICT Instantaneous Crankshaft Torque
MCR Maximum Continuous Rating
NRMSE Normalised Root Mean Squared Error
RHR Rate of Heat Release
SOI Start of Injection
SPO Scavenge Port Open
SVM Support Vector Machine
TDC Top Dead Center
VIT Variable Injection Timing
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Abstract: Seabed logging (SBL) is an application of electromagnetic (EM) waves for detecting
potential marine hydrocarbon-saturated reservoirs reliant on a source–receiver system. One of
the concerns in modeling and inversion of the EM data is associated with the need for realistic
representation of complex geo-electrical models. Concurrently, the corresponding algorithms of
forward modeling should be robustly efficient with low computational effort for repeated use of the
inversion. This work proposes a new inversion methodology which consists of two frameworks,
namely Gaussian process (GP), which allows a greater flexibility in modeling a variety of EM
responses, and gradient descent (GD) for finding the best minimizer (i.e., hydrocarbon depth).
Computer simulation technology (CST), which uses finite element (FE), was exploited to generate
prior EM responses for the GP to evaluate EM profiles at “untried” depths. Then, GD was used
to minimize the mean squared error (MSE) where GP acts as its forward model. Acquiring EM
responses using mesh-based algorithms is a time-consuming task. Thus, this work compared the
time taken by the CST and GP in evaluating the EM profiles. For the accuracy and performance, the
GP model was compared with EM responses modeled by the FE, and percentage error between the
estimate and “untried” computer input was calculated. The results indicate that GP-based inverse
modeling can efficiently predict the hydrocarbon depth in the SBL.

Keywords: seabed logging; electromagnetic data; hydrocarbon depth; inverse modeling; Gaussian
process; gradient descent; computer simulation technology

1. Introduction

Seabed logging (SBL) is an application of the marine controlled-source electromagnetic
(CSEM) surveying technique for discovering and characterizing high-resistive bodies (e.g.,
hydrocarbon-saturated reservoirs) remotely in the deep marine environment based on
contrasts of electrical resistivity of the subsurface. Its capability of identifying the fluid
content inside the potential reservoirs is undoubted. This emerging application uses a
powerful electric dipole transmitter to continuously emit low-frequency electromagnetic
(EM) waves, normally between 0.1 and 10 Hz [1], in all directions through the seawater
column and subsurface beneath the seabed. The SBL exploits the fact that hydrocarbon-
saturated reservoirs have higher electrical resistivity (approximately 30–500 Ωm) than
its surroundings, such as seawater (approximately 0.5–2.0 Ωm) and sedimentary rocks
(approximately 1.0–2.0 Ωm) [2]. The conductivities (i.e., inversely proportional to resis-
tivities) of hydrocarbon-filled reservoirs can reach about 0.01–0.1 S/m or lower in certain
depths underneath the seabed. The main component of an SBL is the utilization of a towed
EM source known as a horizontal electric dipole (HED) and stationary EM receivers for
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recording the returned EM signals [1]. Studies related to the commercial SBL application
can be found in [1–9]. Figure 1 is adopted from [10] to depict the illustration of the SBL
application in the offshore environment.

Figure 1. Illustration of the seabed logging (SBL) application in the deep marine environment.
The source is towed by a ship and the electromagnetic (EM) receivers are placed on the seafloor
beforehand. The target reservoir is in the sedimentary rock. The low-frequency EM waves travel in
all directions (straight arrow: direct wave; dotted arrow: air wave; dashed arrow: guided wave).

Numerical modeling is a crucial task in geophysics problems since it provides prior
knowledge and information of the potential reservoirs. Many powerful computational
modeling techniques have been exploited for processing the EM responses, such as finite
element (FE), finite difference (FD), finite volume (FV), integral equations (IE), etc. These
numerical techniques are capable of modeling the subsurface realistically in the marine
environment by defining grids or meshes. According to [11], the FE technique is highly
preferred due to its ability to support unstructured meshes. These meshes are able to
provide a quality geological representation by placing small grid elements in the areas
where better resolution is highly needed, such as in large conductivity contrast areas [11].
However, as the consequence, the mesh-based algorithms require a very lengthy compu-
tational time to solve the linear system; in addition, these forward modeling techniques
involve very complicated deterministic mathematical equations. According to [12,13], the
most time-consuming task in the algorithms is solving the integral and multiple linear
equations, not to mention for the inversion scheme that requires multiple EM forward
solutions [13]. Here, the corresponding forward modeling should be robust and capable of
operating the EM simulation rapidly, especially for repeated use in the large number of
iterations involved in the inversion scheme as well as for multiple source–receiver positions
in the SBL application [14].

To address these problems, this work aimed to develop a novel Gaussian process-
based inversion methodology to provide meaningful information where the hydrocarbon
potentially resides underneath the seabed. For the optimization procedure, this inverse
modeling utilized the gradient descent (GD) method to find the best estimate (i.e., hydrocar-
bon depth) based on the forward Gaussian process (GP) regression model. As mentioned
before, GP acts as the alternative forward modeling technique as it is capable of being a
surrogate model for the complicated mathematical model that requires high computational
time to solve [15]. Researchers in [16] also stated that GP is an elegant and simple approach,
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where it performs well in modeling nonlinear problems. Mean squared error (MSE) was
used as the objective function (i.e., loss function) in the optimization. The main focus of
this work was to find the depth of hydrocarbon of observational EM responses, whose
hydrocarbon layer was assumed to be present but with an unknown depth. This work
is novel in two ways. First, it presents the integration of a stochastic process (the GP
regression model acts as the EM forward model) and an indirect search algorithm (the
iterative GD method as the acquirer of minimizer) in one inversion methodological flow.
Second, applying this proposed inverse modeling for predicting the input parameter of the
potential high-resistive bodies (e.g., hydrocarbon depth) is a new procedure or approach in
SBL data processing. This attempt could be very beneficial to de-risk hydrocarbon explo-
ration in the offshore environment. Details of the GP and GD approaches are discussed in
the next section.

2. Mathematical Background

Gaussian process (GP) and gradient descent (GD) algorithms are commonly exploited
in machine learning (ML) problems. In order to seek the most favorable fairness between
the performance of the modeling and the need of low computational time, considering the
strengths and integrating these two mathematical approaches could be very advantageous
to any applications that struggle with the same concern. Here, Figure 2 shows the com-
mon ML process to predict outputs given a set of inputs, its corresponding outputs, and
desired/query inputs. It represents the general idea on which this work is focusing. The
proposed inversion methodology is believed capable of providing meaningful and useful
information to the SBL application with an acceptable accuracy and low computational
efforts. In this section, the background and examples from the literature of GP and GD
approaches are thoroughly discussed in Sections 2.1 and 2.2, respectively.

Figure 2. Machine learning (ML) process. ML utilizes sets of inputs, the corresponding outputs, and
interested inputs to yield the predictive outputs.

2.1. Gaussian Process

Mathematically, the Gaussian process (GP) can be defined as an infinite collection of
random variables where any of the finite subsets can be treated as Gaussian (i.e., normal)
distribution [17,18]. A GP model is fully expressed or specified by a mean function
m(x) in a vector and a covariance k(x, x′) in the form of a matrix. GP is a probabilistic
and nonparametric method for fitting any functional forms based on observations of the
domain. This method differs from most of the other black-box identification approaches.
GP does not try to approximate the model by trying to fit the parameters of the chosen
basis function, but it searches the relationship among the given knowledge or information.
This stochastic approach can provide predictive mean and variance. The mean represents
the most likely outputs, whereas the variance plays a role as the uncertainty’s quantifier.
The magnitude of variance is incorporated into the GP prediction and inference. It does
reflect the amount and quality of the data distribution, and it is an essential numerical
feature when it comes to differentiating the GP regression from any other computational
intelligence methods.

GP regression is a well-known technique and has been adopted in many scientific
and engineering fields, such as machine learning, computer experiments, geostatistics,
electronics, etc. Its convenient properties in modeling make GP successful in demonstrating
outstanding performances in numerous applications. Researchers in [19] employed GP
regression for predicting the concentration of ozone in an area of Bourgas, Bulgaria. The
prediction was based on the measurements of the concentration of ozone, phenol, sulphur
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dioxide, and benzene in the air (hourly). Researchers in [20] studied the capability of GP in
estimating load-bearing pile capacity. This research work compared the performance of GP
prediction with other approaches, and GP worked very well in predicting the pile capacity.
In a wireless networking application, researchers in [21] inferred that, besides resulting in
low-cost outcomes, GP was also capable of obtaining low complex proximity reports for a
received-signal-strength (RSS) threshold. Next, GP was also used by researchers in [22]
to explain the uncertainty in estimating the state of health (SOH) of lithium-ion batteries.
Additionally, according to researchers in [23], GP can successfully decrease the complexity
of the computer vision with a better performance of reconstructions.

In [24], GP was hybridized with particle swarm optimization (PSO) to do advanced
prediction of roadway broken road zone based on data collected in China. The study in-
ferred that the hybrid model showed the best performance with higher variance accounted
for (VAF), higher coefficient of determination (R2), and lower root mean squared error
(RMSE) compared to the other methods such as multiple linear regression (MLR) and
artificial neural network (ANN). For geophysics problems, researchers in [25] mentioned
that GP was able to yield reliable information of permeability and porosity in well analysis.
GP was also used by researchers in [26] to predict the presence of a thin hydrocarbon
layer by utilizing its predictive variance for quantifying the uncertainties of EM responses.
Furthermore, GP was exploited for seismic signal detection as well. According to [27], the
rate of detection when using GP was higher compared to other methods and the rate of
false alarm was lower especially for the weak seismic signals. Researchers in [28] proved
that GP was successfully capable of being exploited in processing EM responses by cali-
brating the stochastic and the computer experiment models for magnitude versus offset
(MVO) analysis.

2.2. Gradient Descent

Gradient descent (GD) is a popular iterative process used to update the model pa-
rameters of a function by minimizing the objective function (i.e., loss function) based
on a first-derivative (i.e., slope) basis. The derivative of a function is fully employed to
determine whether to increase or decrease the model parameters (i.e., direction to move).
Moreover, finding the slope can also tell how big of a step should be taken to reach the
optimal point. Conceptually, this approach optimizes the function by iteratively moving
in the negative direction of the gradient, also known as steepest descent. The smoothness
of the moving process to reach the minimum depends on the size of steps, which in the
GD method is called the learning rate, i.e., α. A higher learning rate can extend over a
larger function area, but there is a risk of overshooting the optimal point. Meanwhile,
a smaller learning rate is more precise since the slope is frequently re-calculated. How-
ever, if it is not wisely parameterized, the optimization needs more time to converge and
obtain the minima. Thus, choosing the suitable step size implies a high efficiency of the
optimization algorithm.

This well-known method has been employed and exercised in many scientific appli-
cations, mostly in optimization problems such as in machine learning [29]. Researchers
in [30] exploited GD to establish an operation model of nodes for the classification of heart
conditions based on a deep neural network. Furthermore, researchers in [31] adopted the
GD method to produce phase-only computer-generated holograms (CGHs). This study
inferred that the GD required low time to optimize the phase-only CGH distribution and
provided higher-precision images compared to the Gerchberg–Saxton (GS) algorithm. Next,
researchers in [32] used the GD method to optimize the vector centers of the consequent
layer functions and receptive field matrices in a neuro-fuzzy model based on the standard
criterion of mean square error. Furthermore, GD was also used by [33] for minimizing
the equation of error used in the study by updating the W1 and W2 matrices in order to
solve the predicting student performance (PSP) problem. Researchers in [34] also utilized
stochastic GD as one of the machine learning methods to be compared for the inversion of
a stochastic skin optical model. The researchers also used multi-layer perceptron (MLP),
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linear support vector regressor (SVR), convolutional neural network (CNN), and lasso
regressor in the comparative study.

3. Methodology

This work aimed to predict the depth of hydrocarbon in the seabed logging (SBL)
application by using a novel methodology, namely Gaussian process (GP)-based inverse
modeling. Here, four subsections are discussed: 3.1. Preprocessing computer outputs,
3.2. Evaluating electromagnetic (EM) profile using the GP, 3.3. Predicting depth of
hydrocarbon, and 3.4. Estimate and GP model validation.

3.1. Preprocessing Computer Outputs

Computer simulation technology (CST) software, which uses finite element (FE), is
exploited in this work to model and evaluate prior information of EM responses (e.g., mag-
nitudes of electric (E)-field) in the SBL for the proposed GP-based inversion methodology.
CST is part of SIMULIA, a Dassault Systèmes brand, sourced from Darmstadt, Germany.
According to [35], CST Studio Suite® exclusively uses the FE method as the EM simulation
solver for low-frequency application. Nine SBL models with the same input properties,
except the hydrocarbon depth, were simulated using the CST software. Details of the
SBL data acquisition are presented in Appendix A. For demonstration, one SBL model
replicated by the CST is depicted in Figure A1. The SBL models, known as target models,
were replicated with three background layers such as air, seawater, and sediment. The
nine different “tried” depths were between 200 m and 1000 m from the seafloor with an
increment of 100 m each. All the computer input properties and parameters used in the
SBL modeling are indicated in Table 1.

Table 1. Input properties and parameters of the seabed logging (SBL) models.

Input Property or Parameter Numerical Values in Unit

Electrical conductivity (Air) 1.0 × 10−11 S/m
Electrical conductivity (Seawater) 1.63 S/m
Electrical conductivity (Sediment) 1.00 S/m

Electrical conductivity (Hydrocarbon) 2.0 × 10−3 S/m
Thickness of layer (Air) 300 m

Thickness of layer (Seawater) 1000 m
Total thickness of layer (Sediment) 3500 m
Thickness of layer (Hydrocarbon) 200 m

Transmission frequency 0.125 Hz
Current strength 1250 A

Transmitter length 270 m
Depth of elevation (Transmitter) 30 m

Length of SBL models 20,000 m
Width of SBL models 20,000 m
Height of SBL models 5000 m

As discussed by researchers in [28], interpretation of the SBL data relies on an assump-
tion that the normalized magnitude versus offset (MVO) between the target responses
(i.e., with presence of hydrocarbon) and reference responses (i.e., without presence of
hydrocarbon) can pre-identify the presence of high-resistive bodies. The idea is that the
magnitudes of target response are divided by the magnitudes of reference response along
the offsets (i.e., source–receiver separation distances). Ratio of the normalization should be
greater than one, which is associated with the existence of the potential reservoirs. Thus,
all the generated CST outputs were preprocessed before being used for the forward GP
modeling. By considering the ratio measurements and the symmetrical property of the
developed SBL models, we chose nine different datasets with 73 datapoints per set, which
are from an approximate distance of 11,840.80 m to an approximate distance of 19,004.97 m,
for the data processing presented in the next subsection.
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3.2. Evaluating Electromagnetic Profile Using the Gaussian Process

This work uses Gaussian process machine learning (GPML) MATLAB codes for the
GP regression, previously written by Rasmussen and Nickisch, which can be found in [36].
Note that the MATLAB version used by this work is R2019b. As mentioned before, the
Gaussian process (GP) acts as the alternative approach to the numerical forward model-
ing in the SBL application for evaluating EM profiles at various “untried” hydrocarbon
depths. Suppose all nine CST datasets, D1,D2, . . . , D9 = {(xi, yi)}N

i=1, where N = 73, are
treated as the training datasets for the GP modeling. It is also possible to simply write the
d-dimensional input variable vector and its corresponding output, which is magnitude of
E-field vector, as xi ∈ X and yi ∈ Y, respectively. Generally, in this work, X is the N-by-d
matrix and Y is the N-by-1 column vector, where x ∈ R

d=2 and y ∈ R
d=1. In other words,

x = (s, h), where s and h represent the offset (i.e., source–receiver separation distance) and
the depth of hydrocarbon, respectively.

In order to evaluate or estimate the EM profiles at various “untried” depth inputs
conforming to the testing input, x∗ = (s∗, h∗), the posterior distribution of the testing
output y∗ is defined in Equation (1). This work’s interest was to predict the depth parameter
of hydrocarbon along the offsets from 11,840.80 m to 19,004.97 m. Thus, here, only the
testing input variable of hydrocarbon depth, h∗, is varied accordingly, while the s∗ remains
unchanged. Note that the interested hydrocarbon depths in the GP regression are from
200 m to 1000 m with an increment of 20 m each (including the “tried” depths).

(y∗|X, Y, x) ∼ G(m∗, κ∗), (1)

where the predictive mean, m∗, and the predictive variance, κ∗, are expressed in
Equations (2) and (3), respectively.

m∗ = K(X, x∗)T
[
K(X, X) + σ2

N IN

]−1
Y, (2)

and
κ∗ = k(x∗, x∗)− K(X, x∗)T

[
K(X, X) + σ2

N IN

]−1
K(X, x∗). (3)

Based on Equations (2) and (3), K(X, X) is the covariance matrix with a dimension of N-
by-N amongst the X, K(X, x∗) is the covariance matrix with a dimension of N-by-1 between
the X and x∗, k(x∗, x∗) is the covariance of the x∗, IN is an N-dimensional unit matrix,
and σ2

N IN is the noise covariance matrix. All these covariance matrices are composed of
squared exponential (SE) terms, where each element of the matrices is computed using
Equation (4) as follows:

k
(
x, x′

)
= σ2

f

[
exp

(
−|x − x′|2

2�2

)]
, (4)

where σf represents the signal variance and � represents the isotropic length scale.These two

parameters are known as the hyperparameters of the SE covariance function, θ =
{

σf , �
}

.
SE is a very famous covariance function used in GP regression. According to [37], GP
with SE is infinitely differentiable. This feature is very important for the derivative-
based approach.

Here, it must be noted that all the computations of Equations (1)–(4) require the esti-
mate of θ. These hyperparameters are numerically estimated by minimizing the negative
log marginal likelihood (NLML) using a gradient-based optimizer. The NLML equation is
defined in Equation (5) as follows:

NLML = −log[p(Y|X, θ)] =
N log(2π)

2
+

log
∣∣K(X, X) + σ2

N IN
∣∣

2
+

YT[K(X, X) + σ2
N IN

]−1Y
2

. (5)
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In Equation (5), a logarithmic identifier is used to simplify the integral expression
involved in the marginal likelihood method [25]. Once the hyperparameters are success-
fully estimated, the estimation of the GP regression is then defined using Equations (2)
and (3). The m∗ is a mean value of the estimation that gives the best estimate of y∗ (i.e.,
magnitude of E-field at x∗), and the κ∗ is the predictive variance of the testing input in
terms of two standard deviations (95% confidence interval), which reflects the reliability of
the predictive mean. These two equations are the basis in the forward GP modeling.

3.3. Predicting Depth of Hydrocarbon

The fitted GP model is denoted as Yf it(s, h), where h here includes all “tried” and
“untried” depths. This means that, for every h (i.e., 200 m–1000 m with a gap of 20 m), the
GP gives estimates of the EM profile, Yf it(s, h), at distances from 11,840.80 m to 19,004.97 m.
Assume that the observational dataset Yobs(s,�) is observed at N = 73 distance points
and the hydrocarbon resides underneath the seabed but with “unknown” depth. To find
out the depth of hydrocarbon of the observational dataset Yobs, the least square criterion is
formed between the Yf it and Yobs. Mean squared error (MSE) is used as the loss function
in the optimization algorithm. In general, MSE measures the average amount of squared
differences between Yf it and Yobs. The loss function L

(
hj
)

is expressed in Equation (6)
as follows: {

L
(
hj
)}M

j=1 =
1
N

N

∑
i=1

[
Yf it

(
si, hj

)− Yobs(si)
]2

, (6)

where L
(
hj
)∣∣j = 1, 2, . . . , M and M = 41.

Equation (6) is a function of h. The loss function is minimized over the h with the
minimizer serving as an estimate of the hydrocarbon depth. By using Equation (6), the
L
(
hj
)

between the Yf it and Yobs are calculated. Here, the least L
(
hj
)

is then identified. As
for now, the minimizer of the least L

(
hj
)

serves as the best estimate of hydrocarbon depth
for Yobs. Thus, in this work, the respective minimizer is treated as the initial guess of depth.
Then, the iteration index j is set as zero and the initial guess is denoted as h0.

Next, for the optimization using the GD method, the first-partial derivative of the
L
(
hj
)

with respect to hj is required. The partial derivative of the loss function is defined
in the equation below. The derivation of Equation (7) is provided in Appendix B (in
Equation (A1)):

L′(hj
)
=

2
N

(
N

∑
i=1

[
Yf it

(
si, hj

)− Yobs(si)
])

·Y′
f it
(
si, hj

)
, (7)

where Y′
f it is the derivative of the GP using the SE covariance function with respect to hj.

It must be noted here that the forward GP model is defined by estimations composed by
the predictive mean as shown in Equation (2). To find out the Y′

f it, the predictive mean m∗
is differentiated with respect to hj as follows:

m′∗ = K′(X, x∗)T
[
K(X, X) + σ2

N IN

]−1
Y, (8)

where K′(X, x∗) is the derivative of covariance function between X and x∗ with respect
to hj. As mentioned earlier, each element of the covariance matrix is computed using the
SE covariance function (Equation (4)). Thus, the derivative of SE between X and x∗ with
respect to hj is defined in order to find the K′(X, x∗), as expressed in Equation (9). Its
derivation is provided in Appendix B (in Equation (A2)):

k′(x, x∗) = σ2
f ·
( |x − x∗|

�2

)
·exp

(
−|x − x∗|2

2�2

)
. (9)
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Next, the following step is finding the correction or update of hj. It is denoted as hj+1.
By referring to the GD algorithm, the equation of hj+1 is expressed as follows:

hj+1 = hj − α·L′(hj
)
, (10)

where α is the learning rate, which governs the step size of the optimization. Normally, as a
start, a geometric sequence with a common ratio of 10 is used to indicate which minimizer
can give a significant optimization.

After getting the hj+1, the EM profile at hj+1, denoted as Yf it
(
si, hj+1

)
, is then estimated

using the GP regression by defining the hj+1 as its testing input and the GP modeling steps
are repeated. Next, the new loss function for hj+1 between Yf it and Yobs is calculated using
Equation (11) as follows:

L
(
hj+1

)
=

1
N

N

∑
i=1

[
Yf it

(
si, hj+1

)− Yobs(si)
]2

. (11)

The tolerance threshold ε, which acts as the stopping criterion for the iterations, is
defined for verifying the L

(
hj+1

)
before deciding the optimal hydrocarbon depth for the

Yobs. In the context of this work, it was decided that the changes between each subsequent
minimizer or depth had to be less than 0.05. As presented in Section 4, the specific limit
leads to acceptable results. Equation (12) shows the equation of relative percentage change
(RPC) used in this work:

RPCj+1 =

∣∣hj+1 − hj
∣∣∣∣hj

∣∣ × 100%. (12)

The next conditions used in this work are the following: the maximum number of iter-
ations is 100 and the loss function (i.e., MSE) must converge. In other words, L

(
hj+1

)
must

be always lower than L
(
hj
)
. Each iteration must satisfy these three threshold conditions.

The optimal depth of hydrocarbon for Yobs is believed to be successfully predicted if the
process does not meet the conditions. Otherwise, it is returned to the step of evaluating
the L′(hj

)
onwards by defining a new iteration index, j = j + 1. All the flows are repeated

until the ε is neglected, then the iterations stop. The methodological flow presented in this
section is shown in Figure 3.

3.4. Estimate and GP Model Validation

Error measurement is very important to determine the reliability of estimations. In
this work, for estimate validation, the percentage error between the computer input (i.e.,
hydrocarbon depth used in the computer simulation) and the depth predicted by the
GP-based inverse modeling was calculated using Equation (13). Meanwhile, for GP model
validation, three error validators were used in this work, namely mean absolute deviation
(MAD), mean absolute percentage error (MAPE), and root mean squared error (RMSE).
The errors of EM profiles provided by the GP model were calculated by assuming the
EM responses modeled by the FE (through the CST software) as the true EM values. All
equations of the MAD, MAPE, and RMSE are defined in Equations (14)–(16), respectively,
as follows:

Percentage Error =
∣∣∣∣ htrue − hestimate

htrue

∣∣∣∣× 100%, (13)

MAD =
1
N ∑|yFE − yGP|, (14)

MAPE =
1
N ∑

|yFE − yGP|
|yFE| × 100%, (15)

RMSE =

√
1
N ∑(yFE − yGP)

2, (16)
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where htrue is the CST depth input, hestimate is the depth estimated by the GP-based inverse
modeling, yFE is the EM response modeled by FE method, yGP is the EM response evaluated
by the forward GP modeling, and N is the total number of observations.

Figure 3. Methodological flow of Gaussian process (GP)-based inverse modeling. Note that all the
seabed logging (SBL) models replicated by the computer simulation technology (CST) software are
target models (i.e., with hydrocarbon layer). Hence, determining the presence of hydrocarbon is not
discussed in this work. HC stands for hydrocarbon and w.r.t. represents with respect to.

4. Results and Discussion

All prior electromagnetic (EM) responses were generated using the computer simula-
tion technology (CST) software. Nine seabed logging (SBL) models were parameterized
with the same input properties, except for its depth of hydrocarbon, which were 200 m–
1000 m with a gap of 100 m each. It must be noted that these EM responses were evaluated
using the finite element (FE) method, which was used exclusively by the CST software
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for the low-frequency applications. In this work, only magnitude of electric (E)-field was
considered as the corresponding output. Figure 4 shows the magnitude versus offset plot
for all nine SBL datasets.

Figure 4. Magnitude of electric (E-)-field versus offset for nine different depths of hydrocarbon from
200 m to 1000 m with an increment of 100 m each.

Based on Figure 4, the x-axis represents the offset distances from approximately
11,840.80 m to 19,004.97 m and the y-axis represents the magnitude of E-field with a
logarithmic scale. This figure reveals that the CST was capable of simulating the SBL
application in the deep marine environment. The generated EM responses behave similarly
to the real behavior of EM signals in media with various conductivities. The EM signals
travel through a high-resistive body with less attenuation. Thus, a model with higher
hydrocarbon depth generates a much smaller magnitude of E-field due to the factor of far
EM signal propagation. Next, these EM responses were fully utilized by the GP regression
in order to provide more EM profiles at “untried” depths. The contour plot of the two-
dimensional (2D) GP model is depicted in Figure 5.

Figure 5. Two-dimensional (2D) forward Gaussian process (GP) model with 41 different electromag-
netic (EM) datasets with depths from 200 m to 1000 m with an increment of 20 m.

Based on Figure 5, the x-axis is the offset distance and the y-axis is the 41 depths of
hydrocarbon from 200 m to 1000 m, while the magnitudes of the E-field are represented
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in color codes. This forward GP model is a combination of EM profiles at “tried” and
“untried” hydrocarbon depths. The purpose of this GP modeling was to evaluate as many
EM responses as possible at various depths of hydrocarbon for the inversion scheme,
for which generating all these EM responses using the CST software could take high
computational time. Simulating and generating all these 41 datasets using the CST could
require around 3 h and 30 min, whereas the GP modeling only took 45 min for the prior
knowledge acquisition and less than 1 min for developing the forward GP model and
evaluating 41 profiles.

In this work, three random observational datasets were generated separately using
the CST software where the depths of hydrocarbon were assumed to be “unknown”, i.e.,
350, 650, and 950 m. Here, the goal was to find the best estimates of hydrocarbon depths
of the observational datasets with the smallest MSE values. In other words, a small MSE
value indicates that the EM profile evaluated by the forward GP model gives the most
likely values for the observational dataset, thereby giving the best depth information. As
discussed before, the step size of the optimization was determined by the learning rate. For
this work, three different learning rates were used for every inversion scheme. The first
scheme (1st observational dataset) used 0.051 as its learning rate, whereas the second (2nd
observational dataset) and third (3rd observational dataset) schemes used 0.087 and 0.081,
respectively. Details of how this work determined the suitable learning rates are provided
in Appendix C. Plots of MSE versus learning rate and iteration number versus learning
rate for every observational dataset are depicted in Figures 2–6 and A1. After identifying
the learning rate, optimization using the gradient descent was executed. Thus, three MSE
versus hydrocarbon depth plots are plotted as shown in Figures 6–8.

By referring to Figures 6–8, the x-axis is the depth of hydrocarbon and the y-axis
is the misfit, which is the MSE. The blue points are the 41 MSE values between the GP
model from depths 200 m to 1000 m and the observational data. The red points indicate
the optimized MSEs with respect to the updated minimizers. Every optimization must
satisfy the convergence condition. Thus, in order to monitor the convergence status, this
work illustrates MSE versus number of iterations plots for every observational dataset,
which are depicted in Figures 9–11. In these figures, the x-axis and y-axis represent the
number of iterations and MSE, respectively. Based on these figures, even though the first
inversion scheme needed a higher number of iterations than the second and third ones, all
the iterations were smaller than the defined maximum number, which was 100. Moreover,
all the MSEs converged where the optimizations stopped at the lowest MSE values. To
make it easy to interpret, the main results are presented in Table 2.

Figure 6. Mean squared error (MSE) versus hydrocarbon depth plot (1st observational dataset).
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Figure 7. Mean squared error (MSE) versus hydrocarbon depth plot (2nd observational dataset).

Figure 8. Mean squared error (MSE) versus hydrocarbon depth plot (3rd observational dataset).

Figure 9. Convergence test (1st observational dataset).
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Figure 10. Convergence test (2nd observational dataset).

Figure 11. Convergence test (3rd observational dataset).

Table 2. The main Gaussian process (GP)-based inverse modeling results (all three observational datasets).

Dataset Index Iteration Number Estimate (m) MSE RPC (%)

1 h58 58 349.92 0.00000033 0.04977145
2 h34 34 650.20 0.00000039 0.04978711
3 h21 21 950.22 0.00000051 0.04991896

Based on Table 2, the first observational dataset required 58 iterations to yield the
best estimate of hydrocarbon depth, which was 349.92 m. The second observational
dataset needed 34 iterations to get its best estimate, which was 650.20 m. In contrast,
only 21 iterations were needed by the third observational dataset to produce the estimate
of 950.22 m. Moreover, only 114.047 s, 73.760 s, and 60.556 s were taken by the GP-
based inversion methodology to reach the estimates of 349.92 m, 650.20 m, and 950.22 m,
respectively. From the table, the calculated MSE values were also very small. This means
that the deviations between its true EM values and the predicted EM profiles were very
low. All the final RPCs were also lesser than 0.05 as compared to what was defined in the
methodology. In addition, in the context of this work, the reliability of the GP regression
in evaluating the EM profiles was investigated as well by considering data modeled by
the FE method as the true EM values. Thus, MADs, MAPEs, and RMSEs between the EM
responses modeled by FE and EM evaluated by the GP (at depths 200–1000 m with a gap

127



Appl. Sci. 2021, 11, 1492

of 100 m each) were calculated. The results are presented in Table 3. Furthermore, to find
out the accuracy and performance of the GP-based inverse modeling in predicting the
hydrocarbon depth, percentage errors between the true depths (i.e., computer input) and
the estimates were calculated as well. The percentage errors are indicated in Table 4.

Table 3. Validation of the Gaussian process (GP) model.

Hydrocarbon Depth (m) MAD MAPE (%) RMSE

200 1.39 × 10−9 0.0849 2.63 × 10−9

300 1.84 × 10−9 0.1027 4.25 × 10−9

400 1.48 × 10−9 0.1035 3.26 × 10−9

500 1.64 × 10−9 0.1144 3.49 × 10−9

600 1.68 × 10−9 0.1168 4.28 × 10−9

700 1.21 × 10−9 0.1270 2.33 × 10−9

800 1.37 × 10−9 0.1204 3.57 × 10−9

900 1.85 × 10−9 0.1346 5.79 × 10−9

1000 9.64 × 10−9 0.1212 1.81 × 10−9

Average 1.49 × 10−9 0.1140 3.49 × 10−9

Table 4. Percentage errors of hydrocarbon depth prediction.

True Depth (m) Estimate (m) Percentage Error (%)

350.0000 349.9172 0.0237
650.0000 650.2015 0.0310
950.0000 950.2225 0.0234

Based on Table 3, all the MADs, MAPEs, and RMSEs for depths 200 m to 1000 m
with 100 m gap each were very small, which were 1.49 × 10−9 (on average), 0.114% (on
average), and 3.49 × 10−9 (on average), respectively. As seen in Table 4, the percentage
errors were very low as well, which was 0.0260% on average. All the results revealed that
GP regression was capable of evaluating the EM profiles at various depths of hydrocarbon
accurately and with low time consumption. The main goal was also achieved in that
the GP-based inversion methodology can predict the depth of hydrocarbon in the SBL
application efficiently.

5. Conclusions

This work proposed Gaussian process (GP)-based inverse modeling to predict the
depth of hydrocarbon in the seabed logging (SBL) application. The capability of computa-
tional modeling and inversion of the SBL data with good accuracy and low computational
effort is one of the main concerns in electromagnetic (EM) problems. Thus, this work
used machine learning-based approaches, namely GP, as the forward modeling of EM
profiles and the gradient descent (GD) method as the optimizer for finding the input
parameter of the hydrocarbon (e.g., depth) in the SBL data processing. This work utilized
three datasets generated through the computer simulation technology (CST) software with
random “unknown” hydrocarbon depths as the observational responses. Based on the
results, GP regression can provide accurate EM profiles at various depths of hydrocarbon
with low computational time (45 min for the prior data acquisition) and less than 2 min for
the GP-based inversion methodology. We believed that if the forward modeling performed
by the GP could be done rapidly for the repeated use, the inverse modeling (by the GD)
would not significantly affect the total computational time of the inversion methodology.
Next, the resulting mean absolute deviations (MADs), mean absolute percentage errors
(MAPEs), and root mean squared errors (RMSEs) between the GP model and the data
modeled by finite element (FE) method were very small. Furthermore, the GP-based
inverse modeling could also predict the depth of hydrocarbon for each observation dataset
accurately. All the calculated percentage errors between the estimates (by the GP-based
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inversion methodology) and the true depth values (computer input) were very small as
well. Therefore, it can be concluded that the GP-based inverse modeling was successfully
developed to predict the depth of hydrocarbon in the SBL. This attempt could help marine
EM data processing, especially in order to de-risk hydrocarbon exploration in the deep
marine environment.
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Appendix A. Data Acquisition Using CST Software

Typical synthetic seabed logging (SBL) models were replicated using the computer
simulation technology (CST) software. The input parameters can be seen in Table 1. The
first layer was air, followed by seawater and sediment. Based on Figure A1, the isotropic
hydrocarbon layer was positioned in the sediment layer at 200 m from the seafloor (for
demonstration purposes, only one model is shown here). The source was placed at the
center of the model and elevated at 30 m from the seafloor (coordinate: x = 10,000 m,
y = 10,000 m, z = 1270 m), and inline receivers were located on the seafloor (i.e., static
source–receiver separation distances). All the generated electromagnetic (EM) responses
were symmetrical from the center to the left and right boundaries.

Figure A1. Setup of the seabed logging (SBL) model in the computer simulation technology (CST)
software. The depth of hydrocarbon is 200 m from the seafloor.

129



Appl. Sci. 2021, 11, 1492

Appendix B. Derivation of First-Partial Derivative

Equation (A1) shows the derivation of the first-partial derivative of the mean squared
error (MSE) with respect to hj.
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Equation (A2) shows the derivation of the derivative of the squared exponential (SE)
covariance function with respect to the testing point, x∗.
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Appendix C. Identifying Learning Rate (α) of Gradient Descent

Geometric sequences with a common ratio of 10 were tested first in order to indicate
which learning rates would give the significant optimization. From here, other values of
learning rate were examined as well to find the smallest mean squared error (MSE) that
could be optimized. Based on Figure 2, Figure 4, and Figure 6 3.30 × 10−7, 3.90 × 10−7,
and 5.10 × 10−7 were the smallest optimized MSEs for all observational data. Thus, based
on the MSEs, the size of the learning rates was narrowed down. Next, the number of
iterations was then considered as plotted in Figure 3, Figure 5, and Figure 7. From here,
learning rates that gave the smallest MSE with the lowest iteration number and followed
the relative percentage change (RPC) condition were chosen for the Gaussian process
(GP)-based inverse modeling.
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Figure 2. Bar plot of mean squared error (MSE) versus learning rate (1st observational dataset).

Figure 3. Bar plot of iteration number versus learning rate for the smallest mean squared error (MSE) (1st observational dataset).

Figure 4. Bar plot of mean squared error (MSE) versus learning rate (2nd observational dataset).
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Figure 5. Bar plot of iteration number versus learning rate for the smallest mean squared error (MSE) (2nd observational dataset).

Figure 6. Bar plot of mean squared error (MSE) versus learning rate (3rd observational dataset).

Figure 7. Bar plot of iteration number versus learning rate for the smallest mean squared error (MSE) (3rd observational dataset).
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Abstract: The development of human civilization over the last decade has reached a landmark as
Industry 4.0 has been widely introduced. Several aspects of industry and manufacturing activities
are changing due to the Internet of Things (IoT), location detection technologies, and advanced
human–machine interfaces. To enact industrial affairs under those specifications, a sensor is required
to transform physical events into numerical information. The use of sensors in marine applications
also appears in research and studies, in which the sensor is used for both monitoring the phenomena
of a designated subject and data acquisition. Achievements in quantifying complex phenomena
in critical maritime designs are fascinating subjects to discuss regarding their development and
current states, which may be reliable references for further research on developing sensors and
related measurement analysis tools in marine, shipbuilding, and shipping fields. This comprehensive
review covers several discussion topics, including the origins and development of sensor technology,
applied sensor engineering in logistic and shipping activities, the hydrodynamic characterization of
designed hulls, the monitoring of advanced machinery performance, Arctic-based field observations,
the detection of vibration-based damage to offshore structures, corrosion control and monitoring,
and the measurement of explosions on critical maritime infrastructures.

Keywords: sensor technology; logistic and shipping; hull hydrodynamic; machinery performance;
Arctic field; vibration and corrosion; explosion loading

1. Introduction

The Fourth Industrial Revolution (or Industry 4.0 [1–9]) is the ongoing automation
of traditional manufacturing and industrial practices using modern smart technology.
Large-scale machine-to-machine communication (M2M) [10–12] and the Internet of Things
(IoT) [13–15] are being integrated for increased automation, improved communication and
self-monitoring, and the production of smart machines that can analyze and diagnose
issues without the need for human intervention. This phase is the latest development in a
series of industrial revolutions, as summarized here and in Figure 1:

• The First Industrial Revolution [16–20] began in the 18th century through steam power
and production mechanization. Compared to thread production on simple spinning
wheels, the mechanized version achieved eight times the volume in the same amount
of time. Its use for industrial purposes was the most remarkable breakthrough for
advancing humanity. Instead of weaving looms powered by muscle, steam engines
could be used for power.

• The Second Industrial Revolution [21–25], also known as the Technological Revolution,
was between 1871 and 1914. It resulted from the installation of extensive railroads and
telegraph networks, which allowed for faster transfer of people, ideas, and electricity.
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• The Third Industrial Revolution began with the first computer era [26–30]. These
early computers were often very simple, unwieldy, and incredibly large relative to
the computing power they were able to provide, but they laid the groundwork for
the world today, which one is hard-pressed to imagine without computer technology.
Around 1970, the Third Industrial Revolution involved electronics and IT (information
technology) in furthering automation in production. In the early 2000s, computational
instruments grew rapidly, which were followed by the development of numerical anal-
ysis, e.g., the finite element method (FEM) [31–35] and computational fluid dynamics
(CFD) [36–40]. These have been continuously deployed and improved, especially for
the calculation of complex phenomena.

Figure 1. An outline of the industrial revolutions.

The Industrial Revolution era was expected to influence maritime-based industry and
research even before it was openly discussed in the World Economic Forum in 2016. In
terms of the relationship between industry and research, the maritime-based field is vast
and rapidly growing due to the collaboration of these efforts. It is a complex constitution
consisting of shipping and expedition, marine offshore condition monitoring, and Arctic–
Antarctica exploration. Development is mandatory to maintain the sustainability of these
fields as an essential contribution to the top ten global industries [41–45]. To increase the
competitiveness of the maritime industry, the speed of digitalization and application of
the latest technologies must increase rapidly, which will lead to many technological and
regulatory challenges. The main aims of saving costs and efficiency will open up a wide
range of opportunities for maritime-based industry and research 4.0. Combined with the
other latest technologies, sensors will become one of the most powerful tools in Maritime
Industry 4.0. The physical processes of sensors are seamlessly integrated with software and
computational processes in cyber-physical systems. These systems typically involve intelli-
gent sensing technologies at the data measurement and monitoring level of the system’s
architecture. In order to comprehend such vital tasks, sensors are required to provide assis-
tance to operators, technicians, and engineers [46–50]. The characteristics of the sensor are
directed to provide real-time, meaningful information to increase productivity, efficiency,
and flexibility in various sectors, including commercial and academic research.

An urgent need to apply sensors in both the maritime industry and research activities,
as well as a tendency to do so, has been shown since early 2010, and it is important to
quantify the frequency with which they are applied to predict the trends and developments
of the new decade initiated in 2021. The current development of sensor technology will
provide an excellent opportunity to improve the efficiency and safety of marine structures
and environments. Real-time monitoring and analysis strategies will be vital to improv-
ing commercial automation in shipping, logistics, and marine and offshore activities in
Maritime 4.0. IoT devices and machine learning algorithms will contribute a certain level
of intelligence for industrial control systems and answer all problems that may arise. By
collecting high-quality data with reliable sensor technology, the possibility of extending
the life cycle of marine structures can be improved according to the highest standards
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of operation and maintenance. The current sensor technology and the development of
a new generation of sensors and robust networking architectures will be on the cusp of
revolutionary changes in environmental monitoring and data collection in Maritime 4.0.

This work aims to present a schematic review of sensor-based technology and its
applications that is thoroughly focused on maritime industry and research. Contemporary
subjects, including logistics and shipping, hull hydrodynamics, machinery performance,
Arctic expedition, vibration and corrosion-based damage, and explosion analysis, are
discussed and summarized to provide a charted trend of sensor application as an observa-
tional and measurement instrument. Predictions related to the technology’s applications in
the new decade based on the state and development of the previous decade are presented.

2. Applied Sensor Engineering in Logistic and Shipping Activities

Technological and digital revolutions in the transport sector, including logistic and
shipping activities of Maritime 4.0, have redefined the functional roles of shipping and
ports. Ships have an important role in industrial activities as means of the transportation
of passengers or goods. In 2018, approximately 11 billion tons of cargo were transported
using ships [51]. Furthermore, several regulations were introduced in the 20th century to
maintain passenger safety in maritime areas and strengthen ships. One of the regulations
was the Safety of Life at Sea (SOLAS) convention established in 1914 [52]. Table 1 lists
milestones along with regulations in international maritime safety. At present, several
developments have been shown to increase the utility of the ship-using industry, including
satellites, radars, and sensors. These developments can be used to determine the position
of a ship and for maritime monitoring.

Table 1. Milestones in international maritime safety [53].

Year Initiative or Regulation

1914 Safety of Life at Sea (SOLAS): Ship design and life-saving equipment
1929 First international conference to consider hull subdivision regulations

1948 The International Maritime (Consultative) Organization (IMO) is set up as a
United Nations agency

1966 Load Line Convention: Maximum loading and hull strength
Rules of the road
The International Association of Classification Societies (IACS):
Harmonization of classification rules and regulations

1969 Tonnage Convention

1972 International Convention on the International Regulations for Preventing
Collisions at Sea (COLREG)

1974 IMO resolution on probabilistic analysis of hull subdivision
1973 Marine Pollution Convention (MARPOL 73)

1978 International Convention on Standards for Training,
Certification and Watchkeeping for Seafarers (STCW)

1979 International Convention on Maritime Search and Rescue (SAR)
1988 The Global Maritime Distress and Safety System (GMDSS)

In 2007, Nezlin et al. [54] investigated satellite imagery as an alternative approach
for assessing stormwater in the ocean region. The research examined the image quality of
four types of satellite data: (1) Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Level 2
normalized water-leaving radiation of 555 nm wavelength; (2) SeaWiFS Level 3 chlorophyll;
(3) Advanced Very High-Resolution Radiometer (AVHRR) Level 3 sea surface temperature
(SST); and (4) Moderate-Resolution Imaging Spectroradiometer (MODIS) Level 3 SST.
One of the crucial conclusions of the research is that the MODIS sensors provided better
coverage than SeaWiFS or AVHRR did due to better spectral, spatial, and particularly,
temporal resolution. Song et al. [55] researched the detection of ships in an inland river
using high-resolution optical satellite imagery. This research’s background shows that it is
more difficult to detect ships in an inland river due to several challenges compared to ship
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detection in a sea and offshore area. The first challenge is that ships in an inland river are
gathered together and difficult to separate. Secondly, ships lying alongside a pier are very
likely to be identified as part of the pier. Usually, optical Earth observation satellites with a
resolution adequate for ship detection are located in low Earth orbit [56]. Figure 2 shows a
typical example of an optical satellite image of a coast. Satellite imagery is an important
tool that can be used for monitoring marine vessels.

Figure 2. A GeoEye-1 optical image of Cascais in Portugal [56].

The examination of illegal fishing regions, maritime traffic management, oil spill
detection, and national defense with ship detection all require maritime management
technology [56–58]. De Maio et al. [57] investigated multi-polarization synthetic aperture
radar (SAR) images for detecting oil spills. Synthetic aperture radar (SAR) is an active
microwave imaging sensor that can provide high-resolution images under all weather and
all light conditions [59,60]. Consequently, it plays a crucial role in marine monitoring and
maritime traffic supervision [61].

Research on generating multiscale high-resolution synthetic aperture radar (SAR)
images for ship detection was carried out by Zou et al. [61]. In the study, a high-resolution
synthetic aperture radar (SAR) ship detection method was combined with an improved sam-
ple generation network, a multiscale Wasserstein auxiliary classifier generative adversarial
network (MW-ACGAN), and the Yolo v3 network, to meet the application requirements
of high-resolution small ship detection. The result shows that the Multiscale Wasserstein
Auxiliary Classifier Generative Adversarial Network (MW-ACGAN) can effectively gener-
ate realistic multiclass ship images. The process of developing high-resolution synthetic
aperture radar (SAR) ship slices is presented in Figure 3. The amount of ship traffic activity
on the Northern Sea Route (NSR) of Russia’s northern coast from 2016 to 2019 is illustrated
in Figure 4. As can be seen, the total number of ship voyages increased from 2016 to
2019 [62].
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Synthetic aperture radar (SAR) images still possess several challenges—for example,
most existing methods only detect ships with horizontal bounding boxes. Furthermore,
ships are frequently arbitrary-oriented and densely arranged in complicated backgrounds.
These deficiencies have received attention from researchers such as Pan et al. [63]. A
multi-stage rotational region-based network (MSR2N) was proposed by Pan et al. [63] to
solve the above problems. Additionally, the MSR2N can reduce background noise and
prevent missing detection. The result is shown in Figure 5. As can be seen, as the interval
of rotation angles decreases, the detection performance improves. Dai et al. [64] proposed a
new detector based on convolution neural networks for multiscale synthetic aperture radar
(SAR) ship detection in complex backgrounds. The model was applied to the Gaofen-3
dataset, a high-resolution civil SAR satellite in China, in order to test it. Comparisons of
the performance with the SAR ship detection dataset (SSDD) and the proposed method
are presented in Figure 6. The results show that the new method has a better performance
than that of the SAR ship detection dataset (SSDD). The landmark research on sensor
engineering applications in logistic and shipping activities is summarized in Table 2.

Figure 3. The method of creating high-resolution synthetic aperture radar (SAR) ship slices [61].

Figure 4. Ship traffic statistics on the Northern Sea Route (NSR) in 2016–2019: (a) the total number of voyages and
(b) the total number of sailing permits for Russia’s Northern Sea Route Administration (NSRA) (redrawn based on data in
Gunnarsson [62]).
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Figure 5. The experimental results of the multi-stage rotational region-based network (MSR2N): (a) results of different
methods on the SAR ship detection dataset (SSDD); (b) results of rotation angles (MSR2N) (redrawn based on data in Pan
et al. [63]).

Figure 6. Comparison of the evaluated detection performance among (a) CFAR, F-RCNN, and Coupled-CNN E A; (b) SSD,
MFLHD, and the method proposed by Dai et al. (redrawn based on data in Dai et al. [64] and Gui et al. [65]).

Table 2. Landmark research on sensor engineering applied in logistic and shipping activities.

Milestone Author(s) Observational Subject Tools/Instrument Important Remarks

2007 Nezlin et al.
[54]

Ship-based sampling
for evaluation of
stormwater in the
ocean region

High-resolution
satellite imagery

The study shows that Moderate-Resolution
Imaging Spectroradiometer (MODIS)
sensors provided better coverage than
Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) or Advanced Very
High-Resolution Radiometer (AVHRR) due
to greater spectral, spatial, and particularly,
temporal resolution (twice a day), thereby
significantly improving information about
plume dynamics.
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Table 2. Cont.

Milestone Author(s) Observational Subject Tools/Instrument Important Remarks

2017 De Maio et al.
[57]

Oil spill detection in
the sea territory

Multi-polarization
synthetic aperture
radar (SAR) images

The presence of both simulated and real
data in the one-sided generalized likelihood
ratio test (GLRT) confirms the practical
effectiveness for oil detection.

2018 Kanjir et al.
[56]

Vessel detection in the
sea territory

Optical satellite
imagery

The result shows that vessel monitoring
from spaceborne optical images is a thriving
research topic and will have excellent
operational potential in the future due to a
massive number of satellite data, much of it
being free and open.

2018 Xie et al. [66] Inshore ship detection Synthetic aperture
radar (SAR)

The result shows that inshore ships can be
detected using SAR images with reasonable
accuracy and integrity.

2019 Gui et al. [65] Ship detection on the
surface of the sea

Multilayer fusion
light-head detector
(MFLHD)
Synthetic aperture
radar (SAR)

The extensive experiments on the
multilayer fusion light-head detector
(MFLHD) achieved superior performance in
SAR ship detection, in terms of both
accuracy and speed.

2019 Song et al.
[55]

Ship detection in the
inland river

High-resolution optical
satellite imagery

The result shows that using a mixture of
multi-scale Deformable Part Models (DPMs)
and a Histogram of Oriented Gradient
(HOG) is effective in ship detection and
performs properly in separating ships
clustered together and those alongside the
pier.

2020 Zou et al. [61] Ship detection on the
surface of the sea

Multiscale Wasserstein
auxiliary classifier
generative adversarial
network
(MW-ACGAN) and the
Yolo v3 network
Synthetic aperture
radar (SAR)

The Multiscale Wasserstein Auxiliary
Classifier Generative Adversarial Network
(MW-ACGAN) can effectively generate
realistic multiclass ship images.

2020 Dai et al. [64] Ship detection on the
surface of the sea

Synthetic aperture
radar (SAR)

The novel detector based on convolution
neural networks for multiscale SAR ship
detection showed better performance
compared to the method from the SAR ship
detection dataset (SSDD).

Recently, research on performance evaluations in marine navigation systems was
intensely reviewed by Fukuda et al. [67]. The global navigation satellite system (GNSS)
has been widely used for ship navigation, and spoofing poses an important threat to
maritime logistics. Fukuda et al. [67] conducted research on the global navigation satellite
system (GNSS) by combining it with an inertial measurement unit (IMU) and a Doppler
velocity log (DVL). An inertial measurement unit (IMU) can identify three-axis acceleration
and three-axis angular velocity. On the other hand, a Doppler velocity log (DVL) can
measure the speed of a ship. Based on this research, the method can achieve less than 1 km
horizontal error in an hour. A critical research issue for ship traffic safety in narrow waters
is the ship speed limit, which is one of the most common causes of maritime accidents.
Wang et al. [68] presented a new methodology to quantify the shipping traffic volume in
the Yangtze River under current speed limits by using the automatic identification system
(AIS) big data. The steps of the proposed method are as follows: (1) cleaning the raw AIS
data to filter out unavoidable errors to improve the quality of the data, (2) geocoding the
AIS data, (3) calculating the ship traffic aspect, and (4) estimating the shipping speed and
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traffic volume to analyze the speed limit. This work provides valuable insights to maritime
safety authorities regarding adjustment of ship speeds to avoid heavy traffic congestion in
narrow waterways and minimize the associated maritime risks. Feng et al. [69] also applied
AIS data to propose a time efficiency assessment that evaluates the amount of time each
ship spends in the different areas within a port (i.e., berth, anchorage, and fairway) based
on the space–time trajectories of ship movements in Shanghai Yangshan Port and Xiamen
Port in China. In this study, the space–time path concept from time geography is used to
generate space–time trajectories from collected AIS data for vessel traffic services (VTS).
The basic idea in this proposed work assumes that a ship is considered a moving object
whose location changes over time in a port. The AIS is integrated with a GPS receiver
and gyrocompass, and reports specific information, including Maritime Mobile Service
Identity, navigation status, turn rate, speed over ground, position coordinate, etc. The
AIS trajectory-based time efficiency assessment framework is divided into five different
steps: trajectory construction, geographic zone identification, status classification, time
efficiency statistics, and time efficiency assessment, as illustrated in Figure 7. This study
provides useful information to shipping lines and port authorities for efficient scheduling
and logistic support during operation. The challenge for future research is the integration of
AIS data with other relevant ship information (e.g., cargo volume and cargo type) and port
operation data (e.g., operation schedule and loading/unloading capacity) that can further
enhance the proposed framework to conduct more comprehensive efficiency assessments.

Figure 7. AIS-based time efficiency assessment framework [69].
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3. Hydrodynamic Characterization of Designed Hulls

Hydrodynamic characterization is one of the most critical topics in marine structures
for understanding the performance of a designed model. Hydrodynamic performance
can be divided into resistance and propulsion, seakeeping and ship vibrations, and ma-
neuvering. The measurement of hydrodynamic performance can be classified into three
approaches: an empirical/statistical approach, a numerical approach (CFD based), and an
experimental approach (scaled model test and full-scale trial). In this section, landmark
research on sensor applications for characterizing the hydrodynamic performances of
marine structures is comprehensively reviewed. Tzabiras and Kontogiannis [70] conducted
lab-based resistance measurement of passenger ship models using different bows to verify
the capability of the computational result. Three bulb-shape models were tested in the
towing tank, where five resistance-type wave probes were mounted on the beam at five
locations. The resistance was measured together with the dynamic sinkage and trim of
the free-towed model. In 2011, the effect of heave and pitch motions on resistance and the
ice-breaking pattern was investigated by Polach and Ehlers [71]. The towing mode test in
an ice-going tanker ice basin was idealized as a spring–mass system, with a load cell as the
spring element and a ship model and its mass as the mass element. Several sensors were
used to measure the response. A pointer in the carriage was used to measure the broken
channel, and a dynamic motion unit (DMU) at the bow measured the heave and pitch
accelerations. Moreover, two cameras using the coordinate system were used to measure
the cusp width.

In the following year, Lee et al. [72] conducted research on the hydrodynamic design
and performance of an underwater hull-cleaning robot. Several sensors and instruments
were mounted on the HCR’s body to measure the hydrodynamic performance on the
towing tank. A resistance dynamometer with a capacity of 3000 N was mounted to measure
the drag force. The HCR’s horizontal speed was measured using an electromagnetic
flowmeter, and a commercial weighing scale was used to measure vertical thrust. The
following year, in a collaboration project between IIHR and CNR-INSEAN, Bouscasse
et al. [73] proposed a comprehensive experiment to investigate the seakeeping behavior
of Delft 372 fast catamaran advancing in head waves. The catamaran model was towed
through a kinematic system at the CNR-INSEAN water tank. Each demi-hull of the
catamaran was connected by a transversal aluminum beam to ensure free pitch motion
and restrain surge, sway, and roll movements. The position and motion of the model were
identified using a Krypton optical system with three infrared LEDs. Two transducers (a
Kenek probe and a Keyence ultrasound wave probe) fixed to the carriage measured the
incident wave system. For wave elevation measurement, a second wave system (set of
two probes) was mounted aside the hull at the LCG position. Two HYDRONICS load cells
mounted between the gimbal and the model were used to measure the total resistance
directly in waves. A data acquisition system with a sample rate of 300 Hz was used to
record all of the physical quantities. Jang et al. [74] performed an experimental investigation
in a water tunnel to measure frictional resistance reduction. Skin friction reduction using
air lubrication techniques generated on the hull’s lower surface at various flow rates was
observed. In this work, different flow rates were controlled by a flow meter. Images
captured the air layer types, and two floating-plate-type friction sensors were used to
measure local friction changes.

Fossati et al. [75], under the Lecco Innovation Hub project, reported a full-scale
measurement using the 10-m Sailing Yacht Lab obtained during the first sea trials carried
out in offshore Colico Marina. A description of the scientific framework, measurement
capabilities, and data acquisition procedure is provided. In the data collection system
architecture, six load cells located near the possibly highest loads were used to estimate the
overall forces and moments transmitted by the sails and rig to the hull. The proposed GPS-
aided inertial navigation test system computes the yacht attitude and boat dynamic. To
acquire the angular rate, acceleration, and local magnetic field, gyroscopes, accelerometers,
and magnetometers were arranged on the three primary axes, respectively. A GEMAC
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23554 analog inclination sensor installed beside the inertial navigation system was used
to calculate the heel and trim angle. Furthermore, NMEA-GPS provided navigation data
(wind speed and direction, boat speed, and depth). An ultrasonic 3D anemometer set
on the yacht bow was used for the addition of wind measurement. Additionally, time of
flight (TOF) technology was used to measure the 3D geometry of the sail flying shape, and
MEMS sensors and pressure pads were used to estimate the sail pressure. All the obtained
signals were collected and synchronized using data recording equipment.

The majority of hydrodynamic tests are conducted in a towing tank environment,
where the wave conditions are different from actual sea waves. In 2016, Rajendran et al. [76]
measured wave-induced motion and bending moment tested at a basin with realistic ex-
treme seas on a cruise ship. In the experimental program, resistive wave sensors measured
the wave-induced motion, and strain gauges calculated the vertical bending moment of
the model. Jiao et al. [77] comprehensively proposed a comparative analysis between a
small-scale laboratory seakeeping test and a large-scale seakeeping measurement test with
realistic sea waves of a 72,000-ton class ship. In this research project, advanced onboard
remote control and an experimental telemetry system were developed to realize seakeeping
measurement at sea near the shore of the bay of Huludao, China. The project focused on
measurement of wave data, navigational information, global motions and loads, acceler-
ations, impact pressures, and visual recording (green water on deck, wave run-up, and
slamming). The sensors used in the small-scale laboratory tests included wave probes,
strain gauges, pressure sensors, accelerometers, rotary potentiometers, and data collectors.
For the large-scale measurement systems, an anemometer, wave buoy, and tachometer
measured the ocean environment. A fiber optic sensor was needed for the real-time hull
stress monitoring and evaluation system. Then, sailing trace, position, speeds, and motions
were calculated by a GPS/INS system. The radio control and telemetry system were
developed to allow the conduction of large-scale model trials in sea conditions. As seen
from the result, the proposed large-scale experimental test has tremendous significance for
the future development of a large-scale seakeeping measurement technique.

In 2019, Carchen et al. [78] proposed full-scale measurement onboard The Princess
Royal research vessel to estimate the effect of biofouling growth on hydrodynamic perfor-
mance. An automated sensor system was placed onboard the research vessel to acquire
high-quality and quantitative hydrodynamic performance data. The results prove the
effectiveness of the proposed method. In 2020, onboard measurement using several sensors
installed on a bulk carrier ship was also investigated in depth by Kim et al. [79]. This study
proposed a data-driven approach to predict added resistance and shaft horsepower using
big data from onboard sensor measurement and the NOAA database. For input features,
various sensing methods and protocols were used to collect the input data. A GPS sensor
was used to measure ship velocity, and a draft sensor was used to calculate the draft of
the vessel. An RPM indicator and echo sounder were then used to determine the RPM
and sea depth, respectively. To measure the tide, wave height, and wind vector, a Doppler
sensor, accelerometer, and anemometer were installed onboard, respectively. Moreover, a
shaft torque sensor using a strain gauge that converts torque to resistance/MODBUS was
applied to calculate output propulsion power. The collected raw data were then processed
by the data acquisition unit of a VDR system. The landmark studies on the application of
sensors for hydrodynamic characterization in marine structures from the early 2010s until
2020 are summarized in Table 3.
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Table 3. Landmark research on the sensing technology for hydrodynamic characterization in marine structures.

Year Authors
Observational Subject

and Purpose
Sensing Technology and

Instrument
Important Remarks

2010 Tzabiras and
Kontogiannis [70]

Hydrodynamic resistance
of three twin-screw and
low-cB passenger ship
models with different
bulbous bows

Five resistance-type wave probes

Wave probe is sensitive to
environmental changes, so
repeated calibration is
needed in each test.

2011 Polach and Ehlers
[71]

Heave and pitch motions
on the resistance in ice
going tanker “Uikku”

Dynamic motion unit (DMU),
load cell, cameras (video
recording), pointer

The oscillations and
vibrations possibly interfere
with resistance signal and
motion measurements.

2012 Lee et al. [72]

Hydrodynamic design and
performance of an
underwater hull cleaning
robot (HCR)

Resistance dynamometer,
electromagnetic flow meter,
camera, weighing scale

The actual drag force is
larger than that obtained by
CFD. This discrepancy is
assumed by a different setup
between CFD and the actual
test.

2013 Bouscasse et al. [73] Seakeeping behavior of
Delft 372 fast catamaran

Krypton optical system (Infrared
LEDs), a finger probe and
Keyence ultrasound wave probe,
second wave system,
HYDRONICS load cells,
acquisition system

The Kenek probe is
applicable for low Fr test and
wave steepness, and the
ultrasound probe is more
accurate for higher Fr and
larger wave steepness.

2014 Jang et al. [74]

Frictional resistance
reduction of hull bottom of
66K DWT Supramax bulk
carrier

Floating-plate-type friction
sensors, camera, flow meter

The air layer is not fully
developed on the floating
plate. The air layer is split
into left and right in front of
the aft local friction sensor.

2015 Fossati et al. [75] A full-scale test of 10-m
Sailing Yacht Lab

Strain gauges based mono-axial
HBM S9M load cells, a
3DM-GX3-35 GPS (AHRS and
GPS receiver), GEMAC 23554
analog inclination sensor,
gyroscope, accelerometer,
magnetometer, ultrasonic 3D
anemometer, TOF flying shape
detection system, MEMS sensor,
and pressure pads

A graphical user interface
(GUI) is used to synchronize
different types of signals and
sampled signals.

2016 Rajendran et al. [76]
Vertical motions and
bending moments on a
cruise ship

Resistive wave sensors, strain
gauge

Strain gauges are placed at
the same height as tVCG to
calculate the vertical bending
moment.
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Table 3. Cont.

Year Authors
Observational Subject

and Purpose
Sensing Technology and

Instrument
Important Remarks

2017 Jiao et al. [77]

A large-scale seakeeping
test at realistic sea
conditions of 72,000-ton
class ship

The sensors of small-scale
laboratory test: wave probes,
strain gauges, pressure sensors,
accelerometers, rotary
potentiometers, and data
collectors
The sensors for large-scale
measurement: Ocean
environment monitoring sensors,
fiber optic sensor, GPS/INS
system, radio control and
telemetry system
(self-propulsion system,
autopilot system, radio
communication system,
telemetry system)

The proposed remote control
and experimental telemetry
system for large-scale
measurement in actual sea
waves were successfully
developed.

2019 Carchen et al. [78]
Ship performance
monitoring system on The
Princess Royal vessel

DGPS and gyrocompass,
Doppler speed log,
electro-magnetic speed log,
instrumented shafts, rudder
potentiometer, wave radar, wave
buoy, weather station (ultrasonic
anemometer),
thermosalinograph

The sampling frequency
selection is crucial for
acquiring the resolution of
the phenomena.

2020 Kim et al. [79]
Propulsion power
measurement of a
200,000-ton bulk cargo ship

GPS sensor/NMEA0183, Draft
sensor (Hydrostatic level
pressure transmitters), RPM
indicator, Echo sounder, Doppler
log, anemometer, accelerometer,
shaft torque sensor (strain
gauge), VDR

The shaft power
measurement and recorded
raw information are
transformed through the
data acquisition unit of a
voyage data recorder (VDR).

Several researchers recently proposed a new direction for full-scale measurement
using onboard sensors of ship performance on actual seas. Full-scale measurements
are conducted to obtain a better understanding of ship hydrodynamics. The method
can achieve a similar sailing performance to that in the real sea environment, and the
response characteristics are more realistic than those in a towing tank. One comprehensive
measurement system included resistance and self-propulsion tests of a 25-m-long ore
carrier “CSB FORTUNE,” which were conducted by Lin et al. [80] in the sea near Qingdao,
China. Figure 8 illustrates the ship layout, which includes propulsion systems, sensor
arrangements, and autopilot systems. A block diagram of two test systems for the actual
ocean environment is shown in Figure 9. For the resistance testing procedure, the sea
condition during the experiments was measured and recorded to meet the required level.
Then, the model was hauled by two winches at a constant speed in the harbor, and a force
balance was used to obtain data for 40 s of resistance measurement. For the self-propulsion
testing procedure, the test was conducted at sea 5 km from the shore of Qingdao. The
first test was performed with zero ship speed to check the propeller torque and measure
the wind speed and direction. Then, the model sailed in a fixed direction at a different
speed, and the thrust and torque data of the propeller were measured. It was found
that the proposed procedure can be used for various applications, including as a guide
for other large-scale ship performance tests. In other work using the same large-scale
model, Guo et al. [81] studied the self-propulsion test for propulsion performance and the
effects of complex wake field environments on propulsion performance. The GPS/INS
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integrated navigation system consisted of GPS antennas and an INS core, and a GNSS
receiver obtained real-time motion data, including speed, track, heading, roll, pitch, and
yaw rate. In the data measurement and acquisition system, the model used non-remote
sensing control, which consisted of acceleration sensors, a self-developed instrument, a
data collector, and a computer. Furthermore, with the measurement data of the same model
as previous studies, Su et al. [82] investigated the effect of energy-saving devices’ (ESDs)
application on ship propulsion performance. The interaction mechanism between the hull
and the ESDs, including the pre-swirl stator and rudder bulb, was studied in a large-scale
ship model. Future studies should focus on the interaction between the pre-swirl stator
and rudder bulb system with different types of hulls.

Ship maneuvering in waves is a hot topic for researchers. In one recent study, a novel
full-scale maneuvering sea trial correction method was developed by Mei et al. [83]. A
trial test of the full-scale motor vessel Yukun with a constant engine setting was conducted
in the northwest of the Yellow Sea to measure the effects of wind, waves, and currents
on the maneuvering motions, including surge, sway, and turning data. The measuring
instruments installed onboard of Yukun are illustrated in Figure 10. A differential global
positioning system (DGPS), wind measuring system, speed log, and fiber optic gyro were
installed on the bridge, mast, ship bow, and gyro deck. In this work, the full-scale Yukun
model’s maneuvering was established, whereby zig-zag test training data were used to
predict the turning circle test. The result revealed that Yukun meets the IMO standard for
ship maneuverability, with the accuracy of the advance and tactical diameter reaching 93%
and 95%, respectively.

In 2021, Ha et al. [84] investigated the characteristics of slamming loads on the bow
of an FPSO in the ocean wave basin of the Korea Research Institute of Ships and Ocean
Engineering (KRISO). In this experiment, a slamming impact load was generated with
three heading angles (180◦, 165◦, and 150◦) and measured using 15 force sensors attached
to the bow. The 15 sensors were KISTLER 4576 force sensors with a sampling rate of 20 kHz.
Moreover, the 6-DOF motions of the model were measured by a non-contact optical
measurement system with a sampling rate of 200 Hz. At the time of the impact event, a
high-speed camera captured the incoming waves at a frame rate of 5000 frames/s. The
comprehensive configuration of the sensing technology used in this work is demonstrated
in Figure 11. The results showed that the slamming impact loads can be classified as
loads with one peak or two peaks, where the second peak is smaller due to the damping
occurrence of the first slamming event. It was revealed that the 150◦ heading angle
produced the most significant slamming impact loads in this work.

Figure 8. Ship layout with sensor arrangements [80].
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Figure 9. Block diagram of two test systems in actual seas [80].

Figure 10. The measuring instruments installed onboard of Yukun [83].
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Figure 11. TENG tilt sensor experimental apparatus [84].

4. Advanced Machinery Performance Monitoring

In recent years, thousands of commercial ships have come to sail across the oceans
every day. These commercial ships are operated by companies incorporated in different
jurisdictions. Furthermore, these ships are built by hundreds of shipbuilding facilities and
have to comply with several international, regional, and national regulations in order to
fulfill the safety requirements across a worldwide network of commercial ports. One of the
purposes of sailing ships is to carry passengers and goods across oceans. Moreover, the
commercial shipping industry and its regulations make international trade possible, safe,
and efficient.
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Recently, there has been increasing interest in developing and implementing ship
hull structure monitoring systems. However, ship losses are still high. The total ship loss
between 2016 and 2019 is presented in Figure 12. During this period, cargo ships faced
the highest loss at a total of 120 ships [85]. Furthermore, ships are extremely complex
systems. Several essential components on a ship, such as the navigation system, power
system, i.e., main engine, and the cargo, make this ship reliable. However, all of the very
complex systems of a ship need supervision by monitoring and control systems. As can be
seen in Figure 12, a total of 21 ships were lost due to machinery failure between 2016 and
2019. In this section, a review of advanced machinery performance monitoring on ships
is presented. Furthermore, these technologies are expected to facilitate the maintenance,
safety, and effectiveness of ship operation.

Several ship management technologies directed at enhancing the effectiveness and safety
of ships have been developed and proposed by many researchers, e.g., Paik et al. [86,87], who
performed research based on the employment of wireless sensor networks for full-scale
in-ship application [86]. Their research examined a wireless sensor network (WSN) used
to communicate in the ship environment. Two ZPAs (Zigbee Protocol Analyzers) were
used as data transmission tests. The results of the wireless communication network are
presented in Figure 13. As can be seen, the average delivery ratio was nearly 100% at all
proposed distances. Based on the work, the wireless communication network can be used
for the abnormal operation of equipment and fire prevention in dangerous regions. Paik
et al. [87] also conducted follow-up research in 2009 on the characteristics of wireless sensor
networks for full-scale ship application. The ship Hannara, a 3000-ton class training ship,
was chosen for this study. The result showed that the characteristics of the wireless sensor
network on a test bed ashore also have a successful connection.

Figure 12. Total ship loss in 2016–2019. (a) Total loss by type of vessel and (b) all causes of loss (redrawn based on data in
Allianz [85]).

Figure 13. Result of the wireless communication tests for the long corridor in the shelter deck. (a) Average delivery ratio
and (b) average radio frequency strength (redrawn based on data in Paik et al. [86]).
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To this day, as the number of passengers onboard commercial vessels has grown,
the concern for ship safety has risen. The safety of passengers on a large ship is the
priority. As such, ships have been extensively fitted with several safety systems, i.e., for
fire, evacuation, stability, and flooding control. This flooding control, specifically by breach
detection, has attracted researchers such as Penttilä and Ruponen [88], who presented in
the 5th International Conference on Collision and Grounding of Ships (ICCGS) in Espoo,
Finland. This conference is very well known in the field of impact phenomena, i.e., in
ship collision and grounding. This study is expected to provide milestone processes to
improve the safety of ships. In the work, various combinations of sensor density, noise,
and filter length combined with an inverse method were introduced for detecting a breach.
It was also noted that flood water can penetrate through non-watertight structures. They
investigated a total of 2392 cases, and the results strongly indicate that the inverse method
is applicable in determining a breach if the sensor arrangement is dense enough. The
method could determine the floodwater origin accurately in 71.1% of the cases. The success
rate of calculating the correct breach is presented in Figure 14. As seen, the average success
rate of finding the primarily flooded room was 98.6%.

Figure 14. The success rate of calculating the correct breach. (a) All doors closed and (b) fireproof doors open (redrawn
based on data in Penttilä and Ruponen [88]).

Other research has focused on advanced ship systems and ship sensors’ data collection
for condition monitoring. Such research was conducted by Lazakis et al. [89] and Raptodi-
mos et al. [90]. Lazakis et al. [89] investigated the Inspection Capabilities for Enhanced Ship
Safety (INCASS) framework to bring an innovative solution for inspection and maintenance
of ship structures and machinery. The INCASS framework consists of advanced structural
risk assessment (SRA) and machinery risk assessment (MRA) tools. The results show that
the INCASS framework has a reliable performance according to ship owners and operators.
Furthermore, a follow-up study was presented by Raptodimos et al. [90] in the same year
of 2016, where they reported that monitoring additional systems under actual operational
situations would ensure safer operation and increased operational efficiency, including
improved fuel efficiency and reduced emitions. Based on the implementation, sensors
installed on a specific system allow for improving measurements and data collection and
can be used further in analysis and assessment to enhance ship safety, maintenance, and
performance and efficiency. Furthermore, research on robotic cleaning has also been in-
creasingly discussed in maritime industries. Noordstrand [91] introduced the Fleet Cleaner
robot, developed and deployed in the Netherlands. This remotely controlled robot is used
for cleaning in ships, especially hull cleaning. The landmark research on the monitoring of
advanced machinery performance is summarized in Table 4.
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Table 4. Research landmark of the advanced machinery performance monitoring.

Milestone Author(s) Observational Subject Tools/Instrument Important Remarks

2007 Paik et al. [86]
Communication based
in the ship
environment

Wireless sensor network (WSN)
ZPAs (Zigbee Protocol
Analyzers)

The wireless sensor network
(WSN) can be used in the ship
environment (in this case,
Hannara ship), with an average
delivery ratio of nearly 100% in all
proposed distances in this case.

2009 Paik et al. [87]
Communication based
in the ship
environment

Wireless sensor network (WSN)
ZPAs (Zigbee Protocol
Analyzers)

Wireless communication that can
be used regularly is desirable
within a ship environment, such as
for fire prevention in dangerous
regions.

2010 Penttilä and
Ruponen [88]

Breach and floodwater
detection in the ship

Sensor density, noise, and filter
length combined with an inverse
method

The result shows that the method
is able to determine the floodwater
origin accurately with an average
success rate of 98.6% in finding the
primarily flooded room.

2016 Lazakis et al.
[89]

Ship inspection and
maintenance for ship
structures and
machinery

Inspection Capabilities for
Enhanced Ship Safety (INCASS)
Structural risk assessment (SRA)
and machinery risk assessment
tools (MRA)

It is noted that the development
and implementation of the
INCASS framework has a reliable
performance according to ship
owners and operators.

2016 Raptodimos
et al. [90]

Ship inspection and
maintenance for ship
structures and
machinery

Inspection Capabilities for
Enhanced Ship Safety (INCASS)
Structural risk assessment (SRA)
and machinery risk assessment
tools (MRA)

Sensors installed on a specific
system allow for improving
measurements and data collection
and can be used further in analysis
and assessment to enhance ship
safety, maintenance, and
performance and efficiency.

2018 Noordstrand
[91]

Remotely controlled
robot for ship hull
cleaning

Fleet Cleaner robot

The Fleet Cleaner robot is very
reliable for cleaning a ship’s hull
because it can be used underwater
and above water at a high
curvature.

2021 Drewing et al.
[92]

Coking in marine diesel
engine injector nozzle Laser heads clocked at 16 MHz

Coking in a marine diesel engine
injector nozzle can be diagnosed
by spectral analysis of the shaft’s
torsional vibrations as measured
by optical sensors.

2021 Kozak et al.
[93]

Semiconductor power
electronics devices,
including thyristors

Acoustic emission sensor

The method proposed for
detecting early-stage damage of
the gate turn-off thyristor using an
acoustic emission sensor is viable
and valuable to observe changes in
volume caused by abnormal
conditions, such as overheating,
internal dislocations, or a decrease
in wafer plate pressure.
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Table 4. Cont.

Milestone Author(s) Observational Subject Tools/Instrument Important Remarks

2021 Kyzioł et al.
[94]

Material properties of
polymer composites in
hull boats

Acoustic emission
Kolmogorov–Sinai (K–S) metric
entropy

The results show that the proposed
method using acoustic emission
and Kolmogorov–Sinai (K–S)
metric entropy can determine the
mechanical properties of the
transition material from the elastic
to the plastic phase of polymer
composites.

In recent years, research focused on sensors for monitoring advanced machinery
performance has been conducted by Drewing et al. [92] and Kozak et al. [93]. Drewing
et al. [92] investigated the diagnosis of the coking of a marine diesel engine injector nozzle
by performing a spectral analysis of the crankshaft’s torsional vibrations. Laser heads
clocked at 16 MHz were used for the measurements. The result showed that the data
recorded from the 16-megahertz laser heads were satisfactory to determine the diesel–
electric unit’s shaft vibrations. It was also noted that it is possible to diagnose coking
of a ship’s diesel engine injection nozzle using spectral analysis of the shaft’s torsional
vibrations, as measured by optical sensors. The location of the ETNP-10 laser heads on
both ends of the shaft can be seen in Figure 15. Recent ships are regularly provided
with converters that utilize semiconductor power electronics devices such as thyristors
or power transistors. Semiconductor power electronics attracted research such as that of
Kozak et al. [93], which aimed to detect early-stage damage. These semiconductor power
electronics devices are mainly used in auxiliary podded drives and thrusters. Kozak et al.
proposed a method for detecting early-stage damage of a gate turn-off thyristor using
an acoustic emission sensor. The acoustic emission sensor and the thyristor packages
are presented in Figure 16. The study showed that the acoustic emission sensor can
detect waves from inside the semiconductor structure. Furthermore, changes in volume
caused by abnormal conditions such as overheating, internal dislocations, or a decrease in
wafer plate pressure can be observed. Polymer composites are sometimes implemented as
hull materials in boats [94]. Due to their unique properties, a method was proposed for
determining the mechanical properties of composite materials using acoustic emission and
Kolmogorov–Sinai (K–S) metric entropy. It was noted that since the composite materials do
not have a yield point, the proposed method shows that acoustic emission and Kolmogorov–
Sinai (K–S) metric entropy can determine the transition of a material from elastic to plastic
phase. In fact, knowing the mechanical properties of the material is extremely important
when designing a structure.

Figure 15. ETNP-10 laser heads installed on both ends of the shaft: (a) view from the engine side; (b) view from the
generator side [92].
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Figure 16. (a) The acoustic emission sensor and (b) the model of the thyristors in plastic (left), stud-mount (middle), and
press-pack packaging (right) [93].

5. Arctic-Based Field Observations

The Arctic is a polar region located at the northernmost part of Earth. The Arctic
region is a unique area among Earth’s ecosystems. The cultures in the region and the
Arctic indigenous peoples have adapted to its cold and extreme conditions. This region is
also notably susceptible to climate change phenomena, which directly affect components
of the environmental ecosystem. The impacts of climate change are seriously observed
in the Arctic, and with more immediate and severe consequences than in most parts of
the world. Field observations indicate that the Arctic is warming at almost twice the rate
of the global average. Furthermore, reductions in sea ice and changes in weather are
continuously visible. In the past decade, various measurements have been conducted—i.e.,
observation of carbon cycle and methane production, mapping of sea surface temperature,
and measurement of ice extent.

In 2010, Hill and Zimmerman [95] performed a series of estimations of biomass
and primary production (PP), which was measured by H14CO3 uptake during in situ
incubation. Active remote sensing was deployed in the research by using spaceborne
LIDAR to provide information on the distribution of particles in the water column. In
2012, Høyer et al. [96] deployed research to validate the performance of the Arctic satellite,
which observes sea surface temperature. Several sensors are considered in this work,
which concluded that the AVHRR (NAVO-GAC) and the AATSR produce satisfactory
results with very small bias. Additionally, it was noted that the amount of synchronized
data validation of the AMSR-E is very high. A follow-up observation of the high-Arctic
wet tundra area was extended by Tagesson et al. [97]. In this research, methane (CH4)
fluxes were observed using the in situ measurement method. A laser off-axis integrated
cavity output spectroscopy analyzer was deployed to measure chamber concentration. The
issue of global warming in the Arctic region was intensely studied by Lund et al. [98] as
the summer-time energy exchange characteristics were spotted and found to cause high
sensible heat flux (H)/net radiation (Rn) and β and low latent heat flux (LE)/net radiation
(Rn). In later years, dedicated research to observe the annual balance of CO2 and CH4 fluxes
in the Arctic environment was performed by Goodrich et al. [99]. Sensor performance was
addressed by assessing sensor combinations on fluxes with different instrumentation at
the same sites. Besides atmospheric conditions, concern regarding the Arctic sea ice extent
has been addressed, as a reduction in volume is expected with increasing environmental
temperature. Connolly et al. [100] re-calibrated the ice dataset using satellite sensing, as
before the satellite era, geopolitical considerations were also a problem for the compilers of
datasets. According to this research, the sea ice trend since the 1970s has been similar to
the trend of ice growth after the mid-1940s. Other research addressed aerosol process and
emission modeling, in which measurement of aerosol optical depth (AOD) is the critical
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process. Such research was conducted by Hesaraki et al. [101] using sun photometry and
sky radiometry instrumentation. The data modeling was based on the input retrieval
from the three AEROCAN sites (AEROCAN is the Canadian federated sub-network of
AERONET). Later, an observation on ice melting was re-conducted, but in a more specific
area. Howell et al. [102] considered the Arctic region near Canada and Greenland for their
work. Sentinel and synthetic aperture radar (SAR) were deployed for melt onset detection
as two collaborating instruments in the observation. One of the notable remarks of the
observation was that localized sea ice dynamics will need to be considered for future melt
onset algorithm development from multi-sensor γC

◦ SAR products. The ability of the
multi-sensor products to identify the ice melting phenomenon shows that these products
could be utilized for lead detection studies.

At the end of the 2010s, research addressed the development and validation of low-cost
sensors for Arctic-based research. Carotenuto et al. [103] provided a study to ensure the op-
erational performance of a low-cost tool for atmospheric and meteorological observations.
For verification of the proposed tool, Vaisala HMP45AC and Campbell-Scientific EC150
were taken as reference sensors. On the other hand, Pomerleau et al. [104] constructed an
instrument to enhance progressive research on measuring snowpack and ice thickness.
The tool adopts the concept of the frequency-modulated continuous-wave (FMCW) radar.
Even though this instrument can be attached to an autonomous vehicle, an unfavorable
environment outside the radar’s limits may hinder the measurement process and lead to
unrealistic results, e.g., during ice and wet snow situations. Landmarks studies of sensor
application in Arctic research from the early 2010s until 2020 are summarized in Table 5.

Table 5. Landmark research on the roles of sensors in Arctic studies and observations.

Milestone Author(s) Observational Subject Tools/Instrument Important Remarks

2010
Hill and
Zimmerman
[95]

Annual production of
global carbon
cycle/primary
production in the
Arctic Ocean

Active sensors: utilizing light
detection and ranging (LIDAR)

Vertical data based on LIDAR
needed to be merged with the
horizontal surface gradients
observed using ocean color
sensors to extrapolate the narrow
LIDAR beam across the study
area.

2012 Høyer et al.
[96]

Sea surface
temperature in the
Arctic Ocean

Advanced Along-Tracking
Scanning Radiometer (AATSR)
Advanced Very High Resolution
Radiometer (AVHRR)
Advanced Microwave Scanning
Radiometer-EOS (AMSR-E)

The most accurate satellite
observations on the subject were
obtained from IR observations
using either the AVHRR
(NAVO-GAC) or the AATSR. The
results indicate low standard
deviations.

2013 Tagesson et al.
[97]

Methane fluxes in the
high-Arctic wet tundra
area

LGR,
DLT200 Fast Methane Analyzer
Moderate-resolution imaging
spectroradiometer (MODIS)

Studied models performed well,
but the observed models involving
satellite-based normalized
difference water index (NDWI)
reproduced the CH4 flux
variability better than the models
not including NDWI.
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Table 5. Cont.

Milestone Author(s) Observational Subject Tools/Instrument Important Remarks

2014 Lund et al.
[98]

Surface energy balance
of Arctic ecosystems

Infrared gas analyzer LI-6262
and 7000
3D sonic anemometer Gill
R2 and R3

Results indicated that H/Rn and
LE/Rn increased, and b and G/Rn
were decreased when subjected to
the increasing active layer depth in
the 2000–2010 period.

2016 Goodrich et al.
[99]

CO2 and CH4 fluxes in
the Arctic region

Metek uSonic-3 Class A
(non-orthogonal
ultrasonic-anemometer)
CSAT3 anemometer

Application of the different eddy
covariance sensor combinations
indicated that seasonal and annual
CO2 and CH4 fluxes from the
different gas analyzers and
anemometers were within
uncertainties.

2017 Connolly et al.
[100]

Ice extent on the Arctic
sea

Satellite sensing
(Nimbus-7, DMSP-F8,
DMSP-F11, DMSP-F13, and
DMSP-F17)

The recent period of Arctic sea ice
retreat since the 1970s followed a
period of sea ice growth after the
mid-1940s. After the 1910s, data
reconstructions agree with
previous studies that pointed to a
decreasing tendency in Arctic sea
ice extent.

2017 Hesaraki et al.
[101]

Aerosol optical depth
(AOD)

Aerosol Robotic Network
(AERONET)
GEOS-Chem (GC)

The histograms of both the
AERONET retrievals and the GC
estimates were better represented
by a lognormal distribution.
AERONET and GC simulations
displayed seasonal variations,
reaching peaks in April/May and
August/September.

2019 Howell et al.
[102]

Melt onset over sea ice
on the Canadian Arctic
and Greenland

Sentinel-1
RADARSAT-2

Passive microwave (PMW)
algorithm provides the best
measurement of melt onset.
However, SAR imagery can
provide more robustness in
estimating the subject, especially
with the spatiotemporal
constraints of C-band SAR
satellites.

2020 Carotenuto
et al. [103]

Atmospheric
(temperature,
humidity) sensor
performance in the
Arctic

AIRQino

AIRQino is proven to be more
economical in terms of power
consumption, and it can produce
reliable data compared to other
high-cost reference sensors.

2020 Pomerleau
et al. [104]

Snowpack and ice
thickness

Autonomous
frequency-modulated
continuous-wave (FMCW) radar

Ice thickness measurements
provide a 2-cm accuracy above a
4-cm resolution limit.
The radar can be put onboard a
light remotely piloted aircraft to
enable surveys on unsafe thin ice
and long river transects.

Based on the review, it can be concluded that atmospheric and hydrological systems
are the primary research subjects using sensor tools/instruments in the Arctic region. At
the end of the decade, a sensor was used collaboratively with an autonomous vessel. As
promising results were obtained, research may be continued to provide observational and
measurement sensors on vessels in the current decade. This prediction is quite realistic,
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as Løken et al. [105] addressed their concern regarding wave measurement of the Arctic
marginal ice zone (MIZ) by using a mounted sensor on ship waves. An ultrasonic gauge
(UG) was taken as the setup instrument to measure ocean surface elevation. Inertial
motion units (IMUs) were deployed to measure data reliability and changes in dynamic sea
motion. Notable results were processed with wave spectral models, i.e., wave attenuation
measurement (WAM) and ERA5 (see Figure 17). A comparative study was also conducted
to analyze wave measurement from several instruments, namely, WAM and wave-in-ice
instruments (WIIs), as presented in Figure 18. The results indicate that the greatest disparity
(represented by the mean percentage error) in the wave height and zero-up crossing period
from the WAM and WII was below 9.7%, observed at stop 1.3 with a difference of 87.8%.

Figure 17. Comparison of the measurement data from WAM-4 (a,b) and ERA5 (c,d): the wave height (HS) and periods
(Tm-01 and Tm-02) (based on data in [105]).
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Figure 18. Measurements of the bow and WII: (a) wave height and (b) crossing period (based on data in [105]).

In other recent work, a mega project of data collection on the Arctic Ocean was initi-
ated by researchers and consultants from Russia and United States. Nikishin et al. [106]
addressed their focus to several subjects, e.g., seismic data, sub-bottom profiler data, ge-
ological sampling, borehole drilling, gravity, magnetic anomalies, and offshore geodetic
data. Various equipment setups were prepared in terms of the seismic data, such as bolt
APG air guns, control, and the ORCA or QINSy monitor navigation system; the DigiSHOT
digital air gun controller; the ION DigiSTREAMER solid-filled seismic streamer; and the
ION DigiSTREAMER integrated offshore seismic data acquisition system. Furthermore,
preparation for a sub-bottom profiler survey was conducted, including the acquisition of
additional data by multi-beam and single-beam echo sounders. In an effort to obtain a rock
sample, the Arktika-2012 expedition was initiated, for which several sequence steps were
taken, i.e., detecting the location of bedrock exposure, determining site parameters, and con-
ducting video-photometric and sonar detection (see the summarized illustration in Figure
19). Acquisition of gravity and magnetic data was conducted later using two gravimeters,
Chekan-AM and Shelf-E (manufactured by Elektobribor), which were mounted on two
involved research vessels in the Arktika-2014 expedition. Additionally, the SeaPath 330
satellite integrated navigation system was used for offshore geodetic data collection. As
backup secondary systems, C-Nav-2050R and C-Nav-3050 were also set to confirm the
designated location reading.

Figure 19. The technical process of rock sampling in Arctic expeditions [106].
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Similarly to the discussed work, researchers from Japan and Australia performed
co-research, but on a quite different subject. As presented by Kodaira et al. [107], the
consortium conducted a field survey during the R/V Mirai Arctic expedition in 2019 to
observe on-ice wind waves. The specific location was also designated, i.e., the western
part of the Arctic Ocean. In the expedition, near-surface atmospheric and oceanographic
variables were measured using the Shipboard Oceanographic and Atmospheric Radiation
(SOAR) measurement system. Specifically, the air temperature and wind characteristics
were recorded using an anemometer (Model 05106). To provide atmospheric data, including
land and oceanic climate per hour, ERA5 (atmospheric reanalysis introduced by European
Centre for Medium-Range Weather Forecasts—ECMWF) was deployed. Several buoys,
namely, spotter buoys (low-cost, compact, and solar-powered buoy developed by Sofar
Technologies, Inc. (San Francisco, CA, USA), were deployed in a designated location
(see Figure 20) to measure the spectral distinction between the wave characteristics in the
non-ice ocean and those in the sea ice-covered area. Satellite instrumentation was also
considered in this work. Synthetic aperture radar (SAR) was used to provide different
images of the sea ice-covered ocean, such as drifting of sea ice, and ice classification. Finally,
passive microwave measurement from the satellite was performed to obtain information
regarding the sea ice concentration (SIC) in the marginal ice zone (MIZ). The images
from the SAR data acquisition were compared to the retrieved SIC data to quantify wave
prediction uncertainties. In this step, the SIC dataset was created by JAXA using the
Advanced Microwave Scanning Radiometer 2 (AMSR2).

Figure 20. Positions of the deployed “spotter” buoys to measure wave characteristics [107].

6. Vibration-Based Damage Detection on Offshore Structures

Offshore platforms are enormous, complex structures that cover a large span of the
ocean for various functions and are repeatedly endangered by harsh environmental loads.
Fixed offshore platforms including jacket platforms, wind turbines (WTs), marine current
turbines (CTs), etc., are the most common types, which suffer severe unforeseen damage
during their service life. Therefore, permanent, continuous, and automatic monitoring
of the platforms’ dynamic behavior needs to be developed to evaluate their safety and
durability for a long-term operation.
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Most recently developed offshore platforms are designed to be self-operating and
self-producing (unmanned conditions). They have been synchronously equipped with
structural health monitoring (SHM) systems to investigate their structural status and assess
their functional fitness and performance levels. SHM techniques consist of either global or
local damage detection. Local damage techniques, as the most used measuring techniques
today, involve non-destructive testing (NDT) methods. The most frequently used NDT
tests are visual, magnetic field, acoustic, eddy current, strain measurement, etc. However,
detecting damage using local damage inspection is not possible when the structure is
enormous and partially submerged in the water. SHM using vibration-based damage
detection techniques can identify damage that affects the overall structure and examine
changes in global structural vibration characteristics. Damage identification in vibration-
based damage techniques is classified into four levels: (i) Level 1, determination of damage
occurrence; (ii) Level 2, detection of damage location; (iii) Level 3, measurement of damage
severity; and (iv) Level 4, prediction of the remaining service life of the structure.

In recent work, considerable new developments in vibration-based damage detection
have emerged, particularly the application of advanced sensing technology, signal pro-
cessing techniques, machine learning (ML), and artificial intelligence (AI). This chapter
will review the development of vibration-based damage detection techniques in offshore
platforms between 2010 and 2021, classified by various application areas, types of damage,
damage tools and instruments, and damage detection strategies. The recent developments
and challenges are also summarized to help researchers and practitioners to develop more
reliable, practical methods for developing offshore structures in the future.

In 2010, Elshafey et al. [108] performed an in-air laboratory experimental test to detect
damage occurrence and location in a four-legged scaled jacket platform using two different
random loadings. Accelerometers and strain gauges were used to measure the responses.
The combination of the random decrement technique and a neural network can be applied
to detect damage magnitude and location. However, it is not recommended that the
methodology replaces the traditional inspection method. Damage detection in another
offshore structure was performed by Razi and Taheri [109] in 2014. The propagating notch
of the offshore submerged pipe’s girth weld was detected using numerical simulation and
experiment-based tests. An experiment using a piezoelectric sensor was conducted using
impact and chirp excitations to verify the correctness of the finite element model. The
approach selected empirical mode decomposition (EMD) to create energy-based damage
indices (EMD_EDIs). The results confirmed that the proposed method can identify the
existence and progression of the propagating notch.

In the same year, Liu et al. [110] introduced a new modal strain energy change ratio
(MSEC) damage indicator for reducing the effects of damage accumulated before the
first measurement in an offshore scaled structure. The method is essential because such
platforms have seldom been tested for damage detection during their previous lifetime. An
experiment-based dynamic test in a water tank using triaxial capacitive accelerometers was
conducted to evaluate the proposed method’s efficiency. It was found that the method can
accurately localize the damage between two adjacent measurements, even with spatially
incomplete data. Research on damage detection based on laboratory tests considering semi-
real conditions with different boundary conditions is scarce. Asgarian et al. [111] proposed
an experimental test of a scaled six-legged jacket-type offshore platform in hinge-based
conditions and pile-supported conditions, performed using a small and limited number
of sensors to detect the damage location. The rate of signal energy (RSE) using wavelet
packet transform to detect the damage location was introduced. In this work, the dynamic
responses of the real offshore platform from forced vibration tests could be used as inputs.
Furthermore, at present, two crucial challenges in damage detection for situ platforms are
spatial incompleteness of data and noisy data measurement.

In 2016, Hosseinlou and Mojtahedi [112] developed experimental and numerical-
based damage detection in a fixed offshore platform using a combination of the Cross
Model Cross Mode (CMCM) method and the Pseudo Simplified (PS) model. The major
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problems in detecting damage in an offshore platform, such as the process being time-
consuming and expensive and involving a high computational burden, are solved using
this methodology. Furthermore, ocean wind turbines have attracted increasing interest
due to their potential energy resources. However, several technological issues, such as
damage detection, still require further development for their successful application. Opoka
et al. [113] addressed crack detection and localization based on strain measurements in an
offshore tripod-supported ocean wind turbine structure using experimental and numerical
tests. An FBG sensor was used in the experimental test to obtain strain measurement
data. The proposed approach can be applied in frames and truss structures. Such research
was also performed by Mieloszyk and Ostachowicz [114]. In this work, an experimental
laboratory investigation in a water basin using FBG sensors installed on the underwater
level was conducted to monitor crack occurrence and location in an offshore wind turbine
support structure. The structure was excited by both artificial irregular waves and wind
conditions. The result verified the convenience of FBG strain sensors permanently placed
on the underwater element of a wind turbine tripod.

To establish an automated methodology for crack propagation detection in operational
conditions of a wind turbine in the Polish Baltic sea, Luczak et al. [115] compared the result
of acceleration-based damage detection between experimental modal analysis (EMA) in
dry conditions and operational modal analysis (OMA) in a towing tank with different real
operational conditions. Piezoelectric tri-axial accelerometers were deployed to measure
the acceleration signal. The developed method revealed consistent results with either
the EMA or OMA method, and its applicability in different operational conditions. In
real applications, when monitoring a jacket platform, it is necessary to consider unstable
wave excitations that influence the structural response. To eliminate the influence of
environmental effects, Li et al. [116] proposed combining the cross-correlation function
and principal component analysis (PCA) method using both experimental and numerical
tests. The result showed that the proposed method has good accuracy in different damage
locations and severities under random wave excitations. However, complicated noises and
operational effects still existed in the practical test. Fathi et al. [117] proposed a Bayesian
approach for damage severity assessment for the first time in offshore structures. A 2D
fixed offshore platform with three damage scenarios was developed, and an experimental
test using uni-axial accelerometers was carried out to validate the method. The proposed
method was more efficient under high-level noisy and incomplete data and more accurate
than previous methods for damage detection in offshore platforms. A review of the research
on vibration-based damage detection methods on offshore structures from the early 2010s
until 2020 is outlined in Table 6.

Table 6. Landmark research on the roles of sensors in vibration-based damage detection on offshore structures.

Authors
Application and

Damage Scenario
SHM

Tools/Instruments
Damage Detection

Strategy
Important Remarks

Elshafey et al.
(2010)
[108]

A four-legged scaled
jacket platform with
four braced floors and
one non-braced floor
Damage is assumed by
cutting one section of
the member with four
damaged locations

4 wired accelerometers
and eight strain gages,
hydraulic actuator,
computer (DAQ system
and Labview), and
407-controller

In-air damage detection (Level 2)
experiment using random
excitation (white noise and
Pierson–Moskowitz spectra) was
conducted. Sensors were used to
measure free decay responses
and extract them using random
decrement. The free decay and
its time derivative were used as
inputs for a neural network for
damage detection (Level 2).

The success level of the
method depended on
the damage location. It
is more sensitive to
predicting damage in
diagonal members than
in horizontal members.
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Table 6. Cont.

Authors
Application and

Damage Scenario
SHM

Tools/Instruments
Damage Detection

Strategy
Important Remarks

Raji and
Taheri (2014)
[109]

Offshore submerged
pipeline
Damage in the pipe’s
girth weld against a
propagating notch from
1 mm in depth to a
depth of 4 mm

8 flexible piezoelectric
actuator/sensors
(pa16n), pneumatic
hammer, piezoelectric
transducers, signal
generator (33210A),
power amplifier (790
series)

Damage detection (Level 2) of
numerical simulations using
ABAQUS and experimental test
in the laboratory tank was
compared using two excitations
(impact and chirp excitation).
The experimental test verified
the integrity of the numerical
model.

The chirp excitation
method was more
effective than the
impact excitation for
damage detection in
the submerged pipes.
SHM of the submerged
pipe’s girth weld could
be efficiently
accomplished with a
minimum of two
transducers—one
acting as a sensor and
the other as an
actuator—bonded on
each side of the girth
weld.

Liu et al.
(2014)
[110]

A four-legged offshore
structure with steel
tubular members
Damage modeled by
removing the bolt of
the flanges in two
locations

12 triaxial capacitive
accelerometers
(4803A-0002),
PL64-DCB8, integrated
measurement and
control cooperation,
data acquisition system
(NI-9215)

New proposed method of
damage localization (Level 2)
was developed to identify the
damage between two adjacent
measurements using modal
strain energy change ratio
(MSEC).
The first scenario assumes that
damage is modeled, and the first
measurement is conducted.
Then, the damage is modeled in
the two other locations, and the
second lot of measurement data
are collected.

The new proposed
method can be used to
accurately localize
damage that occurs in
the time interval of two
adjacent measurements,
even in spatially
incomplete situations.

Asgarian et al.
(2015)
[111]

A scaled six-legged
jacket-type offshore
platform in the Persian
Gulf
11 damage scenarios in
hinge-based condition
and 7 damage scenarios
in pile-supported
condition

8 accelerometers (2
three-dimensional, 2
two-dimensional, and 4
one-dimensional
accelerometers),
eccentric mass shaker,
actuator system,
4-channel TMR data
logger

Experimental dynamic test was
analyzed using the rate of signal
energy (RSE) using wavelet
packet transform to detect
damage location (Level 2).
Two sets of signals from the
intact and damaged conditions
are required to detect damage.
RSE is calculated for each node
where sensors exist, and high
RSE represents damage location.

Only sensors on
damaged members
have desirable RSE,
and the other sensors
have lower values of
RSE. RSE has desirable
values for sensors near
damage location and
non-significant values
for other sensors.
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Table 6. Cont.

Authors
Application and

Damage Scenario
SHM

Tools/Instruments
Damage Detection

Strategy
Important Remarks

Hosseinlou
and Mojtahedi
(2016)
[112]

1:100 scaled fixed jacket
offshore platform
(SPD9 in the Persian
Gulf) with four legs
constructed by ABS
tubes
Damage severity (3
damage scenarios)
defined as the
percentage of stiffness
loss of the FE model

2 light uni-axial
accelerometers (4508
BandK), load cell,
power amplifier (model
2706), electrodynamic
exciter (type 4809) with
a force sensor (AC20,
APTech), PULSE
software processing
package

An experimental test is
performed to provide validation
of the FE result. Then, the
FE-based updating method is
developed, and sensitivity
analysis is used as the basis to
validate of Pseudo Simplified
(PS) model.
The cross model cross mode
(CMCM) method and Pseudo
Simplified (PS) model technique
are proposed to detect damage
severity (Level 3) in using
spatially incomplete and with
noise in modal data.

The proposed method
can be applied for an
offshore platform in
service to save both
time and cost.
The result indicates
that the improved
CMCM method with
the PS model technique
is capable of damage
diagnosis with limited,
spatially incomplete
modal data.

Opoka et al.
(2016)
[113]

Scaled offshore wind
turbine with tripod
support structure
Crack is assumed by
dismantled flange
located in one of the
upper braces of the
tripod model

8 optical three-element
delta rosettes with fiber
Bragg grating (FBG)
sensors, impact
hammer SmartScan,
interrogator smart
fibers for data
acquisition

Both experimental and
numerical vibration tests are
conducted to detect and localize
damage (Level 2) using the root
mean square deviation (RMSD)
estimator as a damage indicator.

The FBG sensors can
measure strains along
the grating length, and
at least two sensors
directed along
directions are needed
to increase confidence
result in the specified
location.
The effectiveness of
localization depends on
the chosen new
frequency peak used in
the analysis.

Mieloszyk
and
Ostachowicz
(2017)
[114]

Offshore wind turbine
with tripod support
structure made of
aluminum alloy (EN
AW6060T66) Pipes
Crack in the
circumferential
direction of the brace

15 fiber Bragg grating
(FBG) single-axis
sensors (Micron Optic,
os3120), 1 temperature
compensation sensor
(Micron Optics, os4100),
interrogator (Micron
Optic si425-500), water
basin, wave generator,
rotor

The damage detection (Level 2)
is analyzed by an experimental
laboratory test in a water basin
that excites both artificial
irregular waves and wind using
FBG strain sensors.
Strain measurement from FGB
sensor is used for the frequency
domain decomposition (FDD)
method to detect and localize
damage using different damage
indexes.

The damage is most
visible on sensors from
the S1 set than on the
others.
Comparing strain
values for every sensor
to detect damage is
possible for the same
conditions only.
The damage index can
develop an automatic
calculation process and
apply it for unmanned
SHM.
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Table 6. Cont.

Authors
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Damage Scenario
SHM

Tools/Instruments
Damage Detection

Strategy
Important Remarks

Luczak et al.
(2019)
[115]

Scaled model of a
tripod-type supporting
structure of an offshore
wind turbine in the
Polish Baltic sea made
of cylindrical
aluminum tubes
Five circumferential
crack scenarios in the
upper central joint of
the tripod support
structure

5 piezoelectric tri-axial
accelerometers,
transducer,
electrodynamic shaker,
hammer, Ship Design
and Research left
Towing Tank in Gdansk
(Poland)

Vibration-based damage
detection (Level 1) of the tripod
model is analyzed by comparing
acceleration signal between
experimental modal analysis
(EMA) in air using a shaker as
input and operational modal
analysis (OMA) in a towing tank
with different operational
conditions simulating real-life
operation.

The low-frequency
excitation cannot
provide a suitable
energy level at higher
frequencies, with
consequent difficulty in
the post-processing of
the acquired data.
The sensor should be
installed below the sea
surface at a
considerable distance
from the acquisition
equipment placed on
the upper part of the
turbine with
consequent signal
amplification.

Li et al. (2020)
[116]

NB35-2 WHPB jacket
oil platform
Member loss, stiffness
reduction, and
supporting capacity
reduction in the piled
foundation in various
locations

Servo electric cylinder,
force sensor, 18
three-directional
AKE398B-08
accelerometers
(capacity ±8 g), data
acquisition system 500
Hz

Damage location and severity
(Level 3) measurement using a
combination of the
cross-correlation function and
PCA-based outlier algorithm.

The accelerometers in
the experimental test
were installed on the
deck, with the positions
being consistent with
the measuring points
set in the numerical
simulations.

Fathi et al.
(2020)
[117]

A scaled 2D fixed
offshore platform in
Bohai sea
Damage scenarios
modeled by removing
the branches

15 uni-axial
accelerometers,
electrodynamic exciter
(type 4809), force
sensor (AC20, APTech),
power amplifier (model
2706)

Damage detection (Level 3)
using a new Bayesian model
updating framework is proposed
with incomplete frequency
response function (FRF) data.

The proposed damage
detection method is
efficient under noisy
high-level data; the
accuracy decreases as
the number of
measured DOFs is
reduced.

The past work mainly presented lab-based vibration measurements of structures with
known structural and external load parameters. However, for a long-served offshore
platform, the structural stiffness degrades, and the mass and load parameters change from
the original values; therefore, it will be difficult to measure the structure’s comprehen-
sive modal parameters. Therefore, a more suitable model updating method needs to be
developed to solve offshore platforms’ unknown parameters. Liu et al. [118] conducted
comprehensive measurement of vibration induced by working equipment on a long-served
eight-legged offshore platform (W12-1) to analyze the vibration characteristics and simulate
the offshore responses. In situ measurement was carried out on the decks and columns
of the platform using several cases, with 51 measured points. The layout and the in situ
measurement points are shown in Figure 21. In terms of vibration signal acquisition, the
data acquisition device SDY2400A was used for real-time acquisition of signals. CA-YD-108
acceleration sensors were placed at all measurement points to collect acceleration data in
the site test. The 3D vibration signals from sensors were collected on the compressor and
column, and only the vertical vibration signals of the points on the deck were collected.
In this work, a new updating method for the finite element (FE) model was developed
to determine the unknown structural parameters of offshore platforms. A comparison of
the vibration displacement amplitude at the main frequency of 16.5 Hz obtained from the
FEM simulation and the site measurement is shown in Figure 22. As shown, each case’s
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simulated values are in good agreement with the measured values, thereby indicating
that the modified model is reliable and the updating method for determining unknown
parameters in a complex offshore structure is reliable.

Figure 21. The layout and the in situ measurement points: (a) case 1; (b) cases 2–4; (c) cases 5 and 6; (d) case 7 [118].
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Figure 22. A comparison of the vibration displacement amplitude at the main frequency of
16.5 Hz [118].

In a recent development, machine learning (ML) application for vibration-based dam-
age detection in a wind turbine has been highlighted. Vidal et al. [119] introduced a
structural damage methodology in a jacket-type offshore wind turbine using a vibration
response-only case. This methodology stems from the fact that in the offshore structure,
excitation cannot be imposed and is often not measurable. In this work, two different
machine learning algorithms, namely, k nearest neighbor (k-NN) and quadratic kernel
support vector machine (SVM), are investigated. The proposed damage detection and
localization method at four different crack locations was conducted in a small-scale labora-
tory structure excited by a steady-state wind load. A general overview of the experimental
test is illustrated in Figure 23. Firstly, Gaussian white noise was applied to simulate the
wind load, given by a functional generator (GW INSTEKAF-2005 model). The signal was
amplified and passed to the inertial shaker (model GW-IV47). The response was moni-
tored by triaxial accelerometers (model 356A17, PCB Piezotronics), which were linked to
a data acquisition system (cDAQ-9188 chassis and six NI-9234 modules from National
Instruments). Furthermore, the raw data were pre-processed using group reshape and
column scaling, and principal component analysis (PCA) was applied as a feature selection
technique. After that, the two different machine learning algorithms were compared. As
seen from Tables 7 and 8, the damage detection and localization method using the quadratic
SVM classifier obtained a better result than that from the k-NN algorithm, achieving a
higher result with high prediction speed and a short training time. In future work, the
proposed method should be explored in a more realistic environment.
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Figure 23. Overview of the experimental vibration response-only test [119].

Table 7. A confusion matrix for the k-NN algorithm [119].

0 1 2 3 4

0 >99% <1%
1 <1% 98% 2%
2 7% 93% <1%
3 75% 25%
4 1% <1% 99%

Table 8. A confusion matrix for the SVM model [119].

0 1 2 3 4

0 >99% <1% <1%
1 <1% 99% <1%
2 <1% 99%
3 >99% <1%
4 100%

Similar work to that of Vidal et al. [119] was performed by Puruncajas et al. [120],
who investigated vibration response-only damage detection in a similar structure using
different machine learning applications. A vibration response-only methodology using
an accelerometer and a convolutional neural network (CNN) was proposed and tested on
an experimental laboratory setup. A laboratory experiment test was conducted on a steel
jacket-type offshore wind turbine under different damage scenarios to obtain accelerometer
data; see Figure 24a. Several SHM tools and instruments were used in the experimental
test. A white noise signal was generated by employing a function generator (GWINSTEK
AF-2005 model), and the signal was amplified to a modal shaker (GW-IV47) that induces
vibration. Eight triaxial accelerometers (PCB R Piezotronics, model 356A17), as illustrated
in Figure 24b, were set and connected to six National InstrumentsTM cartridges (NI 9234
model) to gather raw data. After raw time series data were obtained, the data were pre-
processed (signal-to-image conversion) with sensors to obtain a dataset of 24-channel
gray-scale images. A 24-channel-input CNN was designed and trained for classification
of the different structural states. The proposed SHM strategy using a deep CNN with
data augmentation demonstrated outstanding performance with all considered metrics,
with an overall accuracy of 99.90% (see Table 9). In future research, the proposed SHM
strategy of experimental laboratory testing in a water tank needs to be validated using a
more realistic environment.
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Table 9. Comparison of accuracy, validation error, training error, and training time when using data augmentation or when
using the original dataset [120].

Accuracy (%) Validation Error Training Error Training Time # of Images

Without data augmentation 93.81 0.1692 0.1167 11 min 6400
With data augmentation 99.90 0.0044 0.0026 1196 min 1,612,800

Figure 24. (a) An experimental setup with the damage location shown (red circle). (b) Locations of
accelerometers [120].

Furthermore, one of the difficulties in long-term continuous monitoring of offshore
platforms is the data acquisition requiring a high sampling rate and lots of computational
and spatial resources. To solve this problem, the effect of sampling rate on structural
damage identification in offshore structures, an FPSO soft yoke single-point mooring
structure was investigated by Tang et al. [121]. This study compared the acceleration and
posture sensors commonly used in offshore monitoring. In this work, random decrements
and their spectrum characteristics were extracted from acceleration and displacement data
under different sampling rates. The results revealed that data collected at a low sampling
rate can also identify the parameter changes from structural damage.

7. Corrosion Control and Monitoring

Corrosion, one type of age-related damage experienced by most marine structures,
is caused by long-term chemical and electrochemical reactions due to the harsh marine
environment. Marine structures with a long-term operating life, such as a ship, offshore
facility, submarine pipeline, wind turbine, etc., are vulnerable to this common type of
damage. It may lead to failures of mechanical systems and thereby reduce their safety
level and structural integrity. Therefore, continuous corrosion control and monitoring of
marine structures are essential for ensuring their safe operation. A corrosion control and
protection system can delay and mitigate corrosion initiation in marine structures and allow
them to reach the expected service life. The most common corrosion control technologies
used in marine structures are coating (PA), corrosion allowance (CA), and galvanic anode
cathodic protection (GACP). Corrosion monitoring techniques can be divided into two
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major categories: offline monitoring and online monitoring. Offline monitoring measures
the corrosion status within a specific time interval, while online measurement involves
continuous real-time monitoring of the corrosion status of marine structures. Offline
monitoring methods, including magnetic leakage and ultrasonic methods, are usually used.
In contrast, electrochemical measurement, resistance probes, underwater robot probes, and
imaging technology are being used in recent developments.

This section presents a comprehensive review of the development of corrosion monitor-
ing in the marine environment over the past decade. The monitoring scopes, measurement
methods and principles, and related advanced sensing technology and instruments will be
highlighted. In 2010, Chen et al. [122] conducted a laboratory test to evaluate corrosion on
a submerged plate using the Lamb wave-based technique and probability-based diagnostic
imaging using time-of-flight (ToF). A pair of transducers were compiled at the fluid–solid
interface, acting as the wave transmitter and receiver to generate Lamb wave signals. The
signals were then processed with a signal digitizer (Agilent® E1438A). It was found that
corrosion can be identified precisely with the support of a probability-based diagnostic
imaging approach. In 2013, two sensors (Anode-Ladder-System and Corrowatch System)
were developed to monitor the corrosion state in the steel rebar of coastal concrete by
Xu et al. [123]. The sensor design was based on a three-electrode electrochemical test
architecture, where the sensors’ performance was evaluated using a dry–wet cycle test on
the upper reinforcement of the concrete block. In this work, Q235 steel bars were used as
working electrodes, titanium bars were used as reference electrodes, and stainless steel
bars were used as counter electrodes. The investigation revealed that corrosion sensors can
efficiently monitor chloride penetration into concrete.

In the same year, Mu et al. [124] conducted laboratory-based corrosion behavior
monitoring of steel structures in a marine tidal zone using electrochemical impedance
spectroscopy (EIS). Comb-shaped electrodes were used for the electrochemical monitor,
and a ZKW881 rapid corrosion tester was used to monitor frequency impedance. In this
work, four different tidal positions representing the high tidal zone, the middle tidal zone,
the central zone between the middle tidal zone and low tidal zone, and the low tidal
zone were assumed. The results show that the corrosion behavior of steel in immersion
and wet stages is different. The work showed that the fastest corrosion rate is attributed
to the longest wet time in a tidal cycle. In 2015, lab-based experimental corrosion rate
monitoring of two steel rebars in wet conditions using a TFBG corrosion sensor was
performed by Islam et al. [125]. During the test, two steel rebars were immersed in a
container filled with water containing NaCl. A TFBG sensor was attached to the rebar that
was electrically connected to an anode DC power supply. The measurement was performed
by comparing the spectral response of cladding resonances and the SRI change during the
corrosion process. Corrosion monitoring in different material types using other methods
was presented by Nie et al. [126]. The crevice corrosion monitoring relevance of a copper
alloy marine structure based on electrochemical sensing using a boron-doped diamond
electrode (BDD) was investigated. The electrochemical behavior on the BDD electrode was
investigated in NaCl solution (equal to average seawater salinity). The proposed method is
promising for monitoring the corrosion of copper alloys in marine environments. Ships
are periodically situated in a dockyard and inspected by well-trained surveyors and class
societies to assess their physical and structural performance. The expenses required for
onboard inspection can be significant, so introducing new technological tools is a must.

Ortiz et al. [127], under the EU-FP7 project MINOAS in 2016, developed a micro-aerial
vehicle (MAC) with different locomotion capabilities to collect images focusing on a remote
area that the surveyor has difficulty accessing. A novel method for detecting coating
breakdown/corrosion (CBC) on a complete ship hull was performed by classifying image
pixels (color and texture information) using a three-layer feed-forward artificial neural
network. The MAC comprises a flight management unit (FMU) for platform stabilization,
an inertial measuring unit (IMU) as a height and distance sensor, embedded PC and
control software, and a camera set. The detection method using this novel technology was
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reported to successfully classify images between coating breakdown and corrosion. In the
following year, sensing technology using an electrochemical probe was used to monitor
atmospheric corrosion by Dahai et al. [128]. Monitoring of the 60-day corrosion form in
the extreme atmospheric conditions in the Zhoushan offshore environment was conducted
by comparing the electrochemical noise (EN) data of two different steel plates. The EN
data were analyzed by wavelet transform to identify corrosion and transform it into an
energy distribution plot (EDP). It was discovered that noise resistance is well correlated
with weight loss data. Furthermore, the concentration of salt as a critical indicator for
diagnosing the corrosion occurrence of an offshore concrete structure was investigated by
Luo et al. [129]. In this work, a 48-h experimental test for salinity detection was performed
using a low-cost salinity sensor with four sensor probes multiplexed into one system. The
experimental findings indicate that the proposed sensor has higher sensitivity with a lower
cost compared to previous work.

Two years later, the application of artificial intelligence (AI) technology for corrosion
monitoring in naval architecture and ocean engineering was investigated in depth by Yao
et al. [130]. Applying deep learning to ship corrosion monitoring reduces workforce and
financial resources. The corrosion of a ship hull plate was detected and monitored using a
convolutional neural network (CNN) model. A total of 30,000 corrosion image datasets
were trained using AlexNet as the HCDR network, and a classifier model to recognize the
position and location of the corrosion was developed with an overlap-scanning sliding
window algorithm. The proposed CNN model could detect various types of superficial
structural damage, such as delamination, voids, and spalling and corrosion damage. In
2020, a comparison of the monitoring of long-term corrosion of carbon and stainless steel
reinforcements exposed to the actual marine environment was intensely studied by Gartner
et al. [131]. In the monitoring strategy, electrical resistance (ER) probes and coupled
multi-electrodes (CMEs) were placed at five different exposure zones of these concrete
columns for 52 months. The ER probes and CMEs were virtually connected through zero
resistance ammeters (ZRAs). The ZRAs were then connected to a 16-bit analog-to-digital
(A/D) converter. The observations showed that ER probes are able to detect corrosion
initiation and propagation and detect localized corrosion. At the same time, CMEs can
measure the spatio-temporal evolution of the corrosion process (microcell corrosion). The
landmark research on sensor technology application for monitoring corrosion in the marine
environment over the last decade is summarized in Table 10.

Table 10. Landmark research on the sensor technology applications for monitoring corrosion in various marine structures.

Authors Observational Platforms Tools/Instruments Important Remark

Chen et al. (2010)
[122]

Quasi-circular zone chemical
corrosion on the submerged
aluminum plate

Lamb-wave-based identification
(pulse-echo measurement scheme)
with the assistance of
probability-based diagnostic
imaging technique

Rectification and compensation
are required for medium coupling
when applying Lamb wave-based
corrosion monitoring with
coupled media.

Xu et al. (2013)
[123] Steel rebar of coastal concrete Anode–ladder system and

Corrowatch System

Monitoring test corrosion state is
developed based on
electrochemical polarization
dynamics. The ohm-drop effect
can be ignored to obtain a more
accurate result.

Mu et al. (2014)
[124]

Steel structures (Q235B) in the
marine tidal zone

Electrochemical
impedance spectroscopy (EIS)

Simulating the marine tidal
corrosion under laboratory test is
feasible, and the comb-shaped
double electrode probe is suitable
for in situ EIS monitoring.
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Islam et al. (2015)
[125]

Steel reinforcing bar of the
marine concrete structure

Tilted fiber Bragg grating (TFBG)
sensors

Higher-order cladding resonances
exhibit relatively higher
sensitivity to corrosion times than
the lower-order cladding
resonance existing near the Bragg
wavelength.

Nie et al. (2016)
[126]

Copper alloy marine
structures

Oxygen-terminated Boron-doped
diamond (BDD) disk by Diamond
Detectors Ltd.

The monitoring by quantification
of copper ions using the DPV
technique results in an excellent
linear relationship between peak
current density and copper ion
concentration.

Ortiz et al. (2016)
[127]

Coating
breakdown/corrosion (CBC)
in vessel structure (bulk
carrier)

Semi-autonomous micro-aerial
vehicles (MACs)—INCASS aerial
platform
Features:
Laser scanner Hokuyo UST-20LX,
downward-looking LIDAR-Lite
laser range finder, cameras and
video footage, LED, Intel NUC
D54250WYB embedded PC

Future enhancement steps should
comprise the fusion of the laser
scanner with optical flow sensors
to enlarge the inspection area.

Dahai et al. (2017)
[128]

Atmospheric corrosion of T91
steel and Q235B exposed to
Zhoushan offshore
environment

Electrochemical noise (EN) is
composed of a compact (cRIO)
module, two zero resistance
ammeter (ZRA) modules, a
lithium-ion battery, DC power
supply, and two
atmospheric-corrosion-monitoring
probes

The application of atmospheric
probes in the offshore
environment for a long time may
not be suitable due to the formed
rust layer.

Luo et al. (2017)
[129] Offshore concrete structure

Optical fiber-based salinity sensor
based on multimode plastic optical
fiber (POF) as a sensor probe

More improvements are needed
to reach the industrial expectation,
including replacing the multi-axis
stage to realize automatic survey,
making the sensor probe and light
source movable, and re-designing
the sensor probe to attain
simultaneous calculation.

Yao et al. (2019)
[130] Ship hull structural plate

Convolutional neural network
(CNN) model using image data
(camera)

The CNN model training requires
massive image data with different
categories and conditions.

Gartner et al. (2020)
[131]

Concrete columns with carbon
and stainless steel
reinforcements exposed to the
north Adriatic coast
environment

Electrical resistance (ER) probes and
coupled multi-electrodes (CMEs)

The infrequent sampling rate of
measurement by ER and CMEs is
more problematic due to the
severe changing exposure
conditions. Continuous
monitoring with wireless data
acquisition can be implemented.

Recently, Ahuir-Torres et al. [132] conducted a benchmark autonomous detection and
monitoring study of offshore wind turbines using real-time remote sensing technology.
Under a project funded by Innovate UK, they invented smart wireless miniaturized sensors
utilizing the Internet of Things (IoT) and integrated with satellite and terrestrial commu-
nication networks, named the iWindCr project. The arrangement plans of the iWindCr
WSN system and the user interface prototype of iWindCr software are comprehensively
illustrated in Figures 25 and 26, respectively. To detect and monitor the progress of corro-
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sion, two passive electrochemical sensors (open circuit potential (OCP) and zero resistance
ammeter (ZRA)) are merged into the sensor interface of the iWindCr system to monitor
physical and electrochemical changes remotely and quantify the electrode potential and
current. In this work, the corrosion parameter output and threshold value data of the
foundation, tower, and gearbox of an offshore wind turbine were collected. The database
can be used as a benchmark and guideline by end-users to implement corrosion moni-
toring in other complex structures. The proposed benchmark study points out that the
technology should be applicable in different industrial sectors, such as marine, oil and gas,
automobiles, etc.

Figure 25. Arrangement plan of the iWindCr WSN system [132].

Figure 26. The user interface of iWindCr software [132].
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In another recent study, Ha et al. [133] investigated the monitoring of corrosion in
structural members of a steel bridge truss in a real marine environment representing a
severe corrosion environment due to high levels of airborne chlorides and humidity. In
this case, steel plates and atmospheric corrosion monitoring (ACM) sensors were installed
in different locations to measure the corrosion depth and galvanic corrosion current. The
plates and sensors were installed in several places, including on the diagonal, horizontal,
vertical, and portal members. In the experimental setup, the monitoring plates were placed
on horizontal or diagonal truss members. The ACM sensors were placed on members
with a lead-acid battery and a data logger to record the measured corrosion current data.
Furthermore, a thermo-hygrometer was also used to recognize atmospheric corrosion
environments during monitoring. The corrosion monitoring data were measured after
6 and 12 months of exposure to evaluate the corrosion damage and the corrosion grade.
Based on the results, it seems possible to estimate corrosion using monitoring steel plates
and ACM sensors. The horizontal members experienced a more extensive corrosion depth
and the highest galvanic corrosion current compared to diagonal, vertical, and portal
bracing members after the 12-month exposure period. These results, especially the most
critical result considering the extreme corrosion rate in the horizontal members, show that
maintenance is necessary to monitor the local corrosion condition of the structures.

In Maritime 4.0, onboard inspection can be extensively assisted by a robotic platform.
Traditional onboard inspection using human surveyors was confirmed to be relatively
expensive, time consuming, and high risk. Considering these problems, Poggi et al. [134]
launched the adoption of robotics and autonomous systems (RAS)-aided inspections
under the ROBINS project, funded by the Horizon 2020 EU Research and Innovation
program. The aim was to fill the gap between traditional onboard assessments and the
potential application of robotic technology. In general, an overview of RAS-aided inspection
platforms with different capabilities involved in the ROBINS project is highlighted to assist
the whole range of inspection needs (see Figure 27).

Figure 27. RAS platforms: (a) UIB drone, (b) FLY drone, (c) GEIR crawler, and (d) zoomorphic
robot [134].
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Two different aerial drones (UIB drone and FLY drone) are dedicated to flying in
wide, open spaces and cluttered spaces for autonomous information obtention (image and
video streaming). Different sensing devices, including 2D and 3D laser scanners, vision-
based navigation, depth, and RGB-D cameras, are reported to offer an overview of RAS
technologies. Moreover, the most common solution for close-up surveys is represented by
the GEIR crawler, shown in Figure 27c. The crawler can run on the magnetic wheel directly
with the structure to carry out thickness gauging and non-destructive testing. The main
issue is the limited obstacle handling ability when inspecting some parts of a ship.

Another RAS platform developed by the ROBINS project to perform autonomous di-
rect inspection using direct contact with the structure is the zoomorphic robot (Figure 27d).
This portable and user-friendly platform is controlled by actuator–sensor interface tech-
nology, and each unit is equipped with a video camera and an ultrasonic thickness mea-
surement tool. For measuring the RAS inspection abilities, a testing facility module for
general purpose inspections onboard a bulk carrier has been developed (see Figure 28).
The possibility of changing the environment characteristics (lightening, humidity, dirt, etc.)
to simulate different conditions was also considered. The assessment is carried out by
comparing the capabilities of general RAS–human inspection in orienteering, localization,
and identification of actual defects found in coating conditions, such as pitting corrosion,
corrosion, cracks, distortions, mechanical damage, etc. It was noted in the trials that RAS-
aided inspection acquires more extensive quantitative data while minimizing intrinsic
uncertainties of the collected data. However, the use of RAS-aided inspection results is
considered as an assisting tool of the attending surveyor. It means that the final decision
about the applicability of remote techniques is determined by surveyor experience.

Figure 28. The construction module of a testing facility [134].

In the same year, Abdulkader et al. [135], under the National Robotics Program
funding, developed a novel autonomous metal thickness inspection robot for ship hull
inspection during the dry-docking condition. The proposed climbing robot, named Spar-
row, is capable of conducting multiple inspection tasks on a ship hull and navigating
autonomously on the vertical metal surface. According to its description, the robot plat-
form consists of the Sparrow bot with a thickness gauge, an app with control and a video
feed, storage, and the communication unit. The HMI App screen layout is split into the
upper part showing the video feed from the camera and the lower part for the locomotion
control buttons and autonomous buttons. An overview of the Sparrow robotic system is
illustrated in Figure 29. The hardware architecture of the Sparrow robot (see Figure 30)
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comprises six functional units, including a Jetson Nano kit as the central computing unit;
a sensor unit comprising a VectorNav IMU, a wireless 1080 p camera, and Marvelmind
beacons; a thickness measuring unit; a locomotive Unit (Arduino Mega 2560 and motors);
and a communication unit comprising a Bluetooth adapter. For thickness measurement, a
38DL PLUS Ultrasonic Thickness Gauge from Olympus is attached to the center part of the
robot. The gauge is controlled using a linear solenoid, which makes the gauge touch the
ground and obtain the thickness measurement. A series of experimental tests, including a
slippage test and a thickness measurement test under various scenarios, were conducted to
validate and verify the robot’s parameters. It can be concluded from the test results that
the proposed robot could successfully measure the metal plate’s thickness in all consid-
ered scenarios. Future developments should aim at improving navigation on the curved
structure and applying machine learning to classify the metal surface corrosion level.

Figure 29. An overview of Sparrow, a robotic system [135].

Figure 30. The hardware architecture of Sparrow, an autonomous robot [135].

8. Impact and Shock Measurements on Critical Structures

Structures in the marine environment are subject to various loadings during their
building and manufacture processes due to the harsh environment, which contributes to a
number of loading forms, such as nonlinear wave patterns and crack-induced corrosion.
Besides these, impact phenomena also threaten the structures. The events can be triggered
in almost unlimited scenarios, i.e., dust and methane explosions in a mining site, under-
water explosion, and shock due to a torpedo attack in warfare state, until collision and
grounding hull interaction with obstructions. Such conditions will cause severe damage
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to the structures and lead to immense casualties. Considering the critical influences de-
livered by explosions, shocks, and collision and grounding, a series of research studies
have been dedicated to quantifying structural responses and loading behavior in the form
of experimental tests and trials. In these, sensors are deployed to sense and record the
occurred response and behavior from both the target structure and the induced impact
phenomenon.

In 2010, Liu et al. [136] conducted an experiment in coal dust using a large-scale tube
as the medium for explosion set-up. The values measured by 16 pressure sensors, which
were mounted on the wall of the tube (along the axial direction) in the experiment, were
later recorded by a data acquisition (DAQ) system with a sampling frequency of 1 MHz.
Primarily, pressure sensors were used to measure the pressure histories at different points
along the tube during the explosion experiment. According to the recorded measurements,
propagation of the pressure wave occurs in the range of 370–420 m/s, with the maximum
overpressure of the explosion being between 50 and 72 kPa. A year later, similar work was
performed, but with a different explosion medium. Methane–air mixtures (with methane
purity of 99.995%) were considered another possible ignition cause in a coal mine [137]. In
realizing the explosion, an explosion vessel was deployed that was mounted to a pressure
sensor to record the pressure variation that occurred when the ignition grew. A camera was
installed on the experiment site to observe the flame structure and fireball growth. Based
on the experimental observation, it was concluded that the explosion of the mixture was
divided into two stages, namely, the pressure rise stage (in this state, the released energy
level from the combustion reaction is higher than the heat loss to the environment) and the
pressure decline stage (the reaction energy is less than the energy loss to the environment).
Besides mining sites, impact and shock phenomena in sub-zero regions, i.e., the Arctic,
have also received attention. The opening of the Northern Sea Route (NSR) has led to ships
from Asia passing through this region to reach the European and American continents since
the mid-2000s. The motive behind this was found to be the reduced sailing time, lower
fuel consumption, and lower risk of pirating activities compared to the Southern Sea Route
(SSR) through the Gibraltar strait. Scholars from Finland tried to quantify ice-crushing
pressure on a ship hull during interaction with ice [138]. Instead of a piezoelectric pressure
sensor, the experimental research used I-Scan 210 tactile sensors, in which sensing elements
were installed in 44 by 44 grids with a sample rate of 50 Hz along the ship hull (in bow
shoulder, midship, aft shoulder, and aft locations for the general cargo ship; and bow,
bow shoulder, midship, and aft shoulder for the ice-breaker ship). Evaluation of the test
results indicated that the number of contact elements is set as the number of adjacent
elements with a pressure higher than the threshold (in this case, 20 kPa). This threshold
was used because at a pressure level lower than this, the obtained measurement signals
would be mixed with large scattering due to the various noise sources in the experimental
environment.

Related to explosion loading, structural development is also accounted for in terms of
sensors and measurement. Naval vessels, which are subject to explosion risk during the war
state, demand more structural safety. One study improved the naval hull with a multi-layer
projective structure to withstand blast and fragment/debris loadings [139]. To measure
its crashworthiness, dynamic strain gauges were placed on the outer and inner plates of
the liquid cabin, while accelerometers were set on the longitudinal defensive bulkhead to
record impulse acceleration during the blast ignition. The experiment results concluded
that the perforations due to the fragments from the ends were mainly concentrated on a
square plate (side length l = 600 mm), although the travel distance of these fragments in the
air reached almost 2.5 m. Additionally, the function of the liquid cabin was noted, which
was installed in the second layer of the multi-layer projective structure. This part was
designed to halt high-speed fragments from causing critical damage to the inner structure.
Impact loadings that possibly occur are not always in the form of high-speed contact. In the
case of ship collision and hard grounding, the contact is mostly classified as low-velocity
impact. A series of structural trials were conducted by Pierre et al. [140] by considering the
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development of ship structure by arranging sandwich beams. Two cores were deployed,
namely, a corrugated type and a y-frame type, as specimens that are subjects of projectile
impact in the forms of quasi-static and drop-weight loading as representatives of collision
and grounding. The measurements displayed different tendencies in terms of the high
initial load, which was not shown by the quasi-static test. To investigate this phenomenon,
an additional test was conducted, in which the initial hypothesis stating that the measured
initial peak loads during the drop-weight test are highly affected by the mass of the roller
and load cell was confirmed, which is the loading applied to the target beam.

The development of the structural type subjected to low-velocity impact continued
in 2016 with a study in which, instead of modifying the beam geometry, a steel–concrete–
polymer (SCP) composite was used to arrange a barrier to defend the internal tank con-
struction [141]. Considering that anisotropic material was used, material characterization
was performed, including the corrosion resistance sensitivity, as the application was aimed
at maritime-based vessel operation. In this stage, the test was conducted according to
ASTME2661/E2661M-10, which was followed by an idealized collision resistance test
using a sphere with a diameter of Ø 300 mm as the indenter. In this experiment, the
deformation of the construction was recorded by displacement gauges installed at the
representative location points. In 2017, Moon et al. [142] re-performed the explosion test
presented by the previous scholars but in a new way, i.e., underwater conditions, which
was later known as an underwater explosion (UNDEX) experiment. In this work, three
underwater pressure sensors (at radius r 2 m, 4 m, and 6 m from the explosive source
(TNT)) and three data acquisition (DAQ) systems were deployed to measure the generated
reflected wave pressure from the wall of the water tank and pressure from bubbles. In this
case, an underwater shock wave was superimposed on the hydrostatic pressure. Based on
the assessment of the recorded pressure history, the shock wave at a fixed location begins
with an instantaneous pressure level (it reaches the peak point), which is followed by a
decline. Generally, simplified estimation is represented by an exponential function. Similar
to the explosion concept, shock is considered necessary in the structural performance of
ship construction. The quantification of vibration, therefore, is required to be discussed in
the assessment report. The research developed in [143] is a follow-up of the pioneering
works in the U.S. Navy ship DDG-53, which is deployed in ship shock trials; in this work,
measured data were later processed to find other vital coefficients, i.e., total damped ship
vibration. The logarithmic decay rate was used to find the coefficient by fitting the peak
strain values. After that, empirical mode decomposition (EMD) was used to decompose
the measured data X(t) as a function of time t into intrinsic mode functions (IMFs). In this
solution, the high frequency of the IMFs represents noise modes that are to be eliminated
to acquire data ỹ(t) without noise modes. Finally, the least-squares complex exponential
(LSCE) method was employed to extract modal parameters effectively.

Towards the end of the 2010s, intense underwater explosion was taken as an experi-
mental reference. In [144], explosion was combined with the concept of material structure
improvement to enhance structural performance against torpedos and mines. A polyurea
coating was applied on ship hull steel to improve its underwater shock resistance, and
the specimens were installed in an experimental rig. A Photron-Fastcam-SA1 high-speed
camera was placed to measure the speed of the flyer plate before hitting the piston. In terms
of pressure measurement, a piezoelectric pressure sensor produced by PCB Company was
applied in the test rig. Later, the measured signal was acquired by a high-speed data acqui-
sition (DAQ) instrument built by the German HBS. In the final stage, the digital imaging
correlation (DIC) method was used to record the real-time displacement strain during the
high-speed dynamic deformation and present the deformation process and strain field.
This work offers a more complete experimental rig and setting (using piezoelectric pressure
sensors), including sensors and measurement instruments, compared to the previously
reviewed work in earlier years. In 2020, trials of underwater shock loading on cylindrical
shells were conducted by [145]. The experimental subject in this work was very specific
and quite different to that in other work, which mostly uses general plate geometry to
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represent thin-walled structures (except work that considers structural development). The
test specimen in this work was set as a representative of the submarine pressure hull,
submarine cable, torpedo, and tower structures for wind power generation. Furthermore, a
different sensor type, namely, a fiber Bragg grating (FBG) sensor calibrated by a four-point
bending test, was employed in this work to observe the strain of underwater structures.
Other vital findings of the respective reviewed research studies are summarized in Table 11.

Table 11. Summarized findings of the sensor-based research on measuring impact and shock.

Milestone Author(s) Observational Subject Tools/Instrument Important Remarks

2010 Liu et al. [136] Coal dust explosion in
mine sites

Kistler piezoelectric
pressure sensor
Experimental tube

Combustion and explosion of
fine particle coal dust with Ø
45–70 μm was observed faster
than that of coarse particle with
Ø 70–105 μm.

2011 Bai et al. [137] The explosion of
methane–air mixtures

Pressure sensor
High-speed camera
Explosion vessel

Methane/air mixture could be
ignited in the vessel by 40-J
electric spark when the methane
concentration was
approximately 5–13%.

2012 Kujala and
Arughadhoss [138] Steel hull–ice collision I-Scan 210 tactile

sensors

Pressure measurements
conducted by the tactile sensor
in the deployed model scale
provide realistic distributions for
the ice-induced loads. The
condition is concluded from a
level ice environment.

2014 Kong et al. [139]

Naval vessel’s multi-layer
protective structure under
blast and fragment
loadings

Sensors:
Strain gauge
Accelerometer

Stiffened plates were found to be
easily penetrated by fragments.
It is different compared to the
thick structure, to which the
fragments only caused localized
damage.

2015 Pierre et al. [140]

Sandwich beams under
low-velocity impact
(representation of ship
collision and grounding)

Phantom V12 camera
Force sensors

Post-peak responses for the
drop-weight and quasi-static
measurements were very similar,
which indicates that the beam
response is not sensitive to the
material strain rate or inertial
effects for impact velocity of
approx. 5 m/s.

2016 Niklas and Kozak
[141]

Steel–concrete–polymer
(SCP) composite
barrier under corrosion
and impact

AMSYS system
VS30-V VS75-V sensors
Displacement gauges

SCP structures were still in a
tight condition until undergoing
5 times deeper penetration
compared to the initial state.

2017 Moon et al. [142]
Ship structure subjected to
the underwater explosion
(UNDEX)

Underwater pressure
sensor W138A10
Data acquisition (DAQ)
systems:
NI 9234
NI-PXIe-4497
NI PXIe-5160

Analog–digital converter (ADC)
resolution may be low in the
condition where the sampling
rate is very high. On the other
hand, even though the sampling
rate is low, the effect on the
measurement result will be
small, with ADC resolution in a
high state.
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Table 11. Cont.

Milestone Author(s) Observational Subject Tools/Instrument Important Remarks

2018 Jun et al. [143] Naval structure subjected
to shock trial

Shock sensor
Least-squares complex
exponential (LSCE)
method

The values of α presented in the
research are less than the
proposed value for DDG-53,
while the values of β in this
work are greater than the
reference. α and β are the
Rayleigh coefficients.

2019 Li et al. [144]
Polyurea-coated metal
plate subjected to
underwater shock wave

Piezoelectric pressure
sensor
Photron-Fastcam-SA1
high-speed camera
Genesis data
acquisition (DAQ)
systems

Polyuria coating had a
significant effect on the plastic
deformation of the coated plate
subjected to the applied loading
in the trials. The recorded critical
peak was approx. 87 MPa.

2020 Hsu et al. [145]

Cylindrical shell subjected
to underwater shock
loading (representative of
marine structures)

Fiber Bragg grating
(FBG) sensor
Data acquisition (DAQ)
systems

FBG is concluded to have
excellent repeatability and
linearity characteristics in
recording the strain loading
cycles.
To avoid sensor deformation due
to spontaneous loading, the
sensor design may be developed
with a buffer mechanism to
reduce the shock effect in
measurement.

In 2021, research on impacts and sensors was marked by an experimental study on
aluminum plates [146]. The novelty of this work is in the specimen used, which underwent
pre-cracked treatment. The primary purpose of this crack was to quantify slight defects
in the dynamic response and damage degree. The launchings system embedded the
experimental installation to accelerate the steel flyer plate to achieve a high speed before
it flew out from the launching tube and impacted a steel piston in the starting side of the
underwater shock tube. In this work, the velocity of the flyer plate was measured by a laser
velocity measurement instrument, the pressure of the underwater shock was recorded by a
high-range dynamic pressure sensor, and deformation of the target plate was assessed by
two high-speed cameras. In terms of the deflection growth due to the crack extension of
the target plate, as set according to Table 12, the final bulge height and crack length of the
target plate with a small initial crack size were smaller than in the plate with the larger one
under the same loading. All the measurement data related to bulge height and crack length
are presented in comparative bar charts in Figures 31 and 32. Another result measured
is dynamic velocity, and acceleration reflects the characteristic of bending stiffness of the
target plates. In the same loading condition, specimen plates with a smaller crack size had
a lower velocity and acceleration during the deformation process.

Table 12. Summarized findings of the sensor-based research on measuring impact and shock [146].

Notation Plate Thickness (mm) Loading Diameter (mm) Crack Type Crack Length (mm)

T-6 0.5 66 Single slim crack (‘−’) 6

T-9 0.5 66 Single slim crack (‘−’) 9

T+6 0.5 66 Double cross crack (‘+’) 6

T+9 0.5 66 Double cross crack (‘+’) 9
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Figure 31. Measurement results of a specimen after an explosion: final crack length [146].

Figure 32. Recorded results of an explosion test: peak pressure value (left side) and final bulge height
(right side) [146].

Another work in measurement was conducted by Mieloszyk et al. [147], who considers
relatively new specimens, i.e., fiber-reinforced polymer (FRP), instead of metallic-based
materials. Fiber Bragg grating (FBG) sensors (with a gauge length equal to 10 mm and
without coating) were used for performing structural health monitoring (SHM), including
spectra analysis and strain measurement. In order to calculate the quality of the sensors,
spectra (in stages before and after embedding and loading are conducted) were determined
using the Pearson correlation coefficient, as presented in Table 13. The notation set in the
table is defined as follows: F—free sensor; ES, EF—start and final states of the embedding
process on the boat, respectively; R—the finished hull of the boat; B10h, B80h—boat 10 h and
80 h after the sea trials, respectively. In the next experiment, strain changes (see Figure 33)
were summarized based on four FBG sensors installed in the boat hull structures, which
was divided into two research group stages:

• The first group (ES and EF) was defined as the state related to the construction process
while the hull was still in form with a boat shape, and the part with embedded FBG
sensors was manufactured.

• The second group (R, B10h, and B80h) was arranged to represent a finished boat
mounted in a boat trailer.
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Table 13. Calculated Pearson’s correlation coefficients [147].

Stage Sensors

S1 S2 S3 S4

Auto-correlation

F 0.9963 0.9983 0.9997 0.9787

Cross-correlation

ES 0.9949 0.9943 0.9904 0.9700

EF 0.9559 0.9854 0.9575 0.9528

R 0.6219 0.8783 0.5520 0.2515

B10h 0.6950 0.8872 0.5617 0.2310

B80h 0.8341 0.8612 0.5290 0.2604

Figure 33. Measured strain changes by FBG sensors according to the defined research stages [147].

Besides measuring structural performance, recent work on ship collision was ded-
icated to improving a genetic algorithm (GA) to execute collision avoidance [148]. The
algorithm core was designed according to international regulations for preventing colli-
sions at sea (COLREGs)—i.e., Rule 13—Overtaking (The overtaking vessel should keep
out of the way of the vessel being overtaken); Rule 14—Head-on situation (When two
power-driven vessels are meeting on reciprocal or nearly reciprocal courses so as to involve
risk of collision each shall alter her course to starboard so that each shall pass on the port
side of the other); Rule 15—When two power-driven vessels are crossing so as to involve
risk of collision, the vessel which has the other on her own starboard side shall keep out
of the way and shall, if the circumstances of the case admit, avoid crossing ahead of the
other vessel); Rule 16—Action by give-way vessel (Every vessel which is directed to keep
out of the way of another vessel shall, so far as possible, take early and substantial action
to keep well clear); and Rule 17—Action by stand-on vessel (Where one of two vessels is
to keep out of the way the other shall keep her course and speed). The concept was then
implemented in a multiple unmanned surface vehicles (USVs) system and sensor. In its
operation, the sensor calculated the motion parameters and collision risk based on the de-
fined variables in the system, such as USV velocity [Vm(Vmx, Vmy)], target velocity [Vn(Vnx,
Vny)], relative velocity [Vr(Vrx, Vry)], target coordinate [N(xn, yn)], USV heading [βm], target
heading [βn], relative heading [βr], the relative distance between the USV and target [Rm],
relative orientation [γm], and the relative direction of between the USV and target [αm].
The characteristics of the improved GA compared to the conventional one are presented in
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Table 14, which confirm the superiority of the improved version in terms of the processing
time and results in reliability. Considering the variety of vessel speeds encountered when
operating the sensor, a more specific comparative study (see Figures 34–36) was conducted,
whose results indicated that the slower the vessel is, the longer the avoidance duration
is (discrepancy of 4–8 s between the conventional and the improved versions) and the
higher the survivability rate is (the improved version is upgraded by 6–15% compared to
the conventional version).

Table 14. Comparison of the observed parameters based on the GA types [148].

Parameters Conventional GA Improved GA Gap Value (%)

Numbers of iteration (-) 250 100 60 (reduced)

Standard deviation (-) 1.876 0.266 85.82 (reduced)

Computation time (ms) 160 90 43.75 (reduced)

Success rate (%) 80 95 15.79 (enlarged)

Figure 34. Comparison of the avoidance durations between two GA types [148].

Figure 35. Recorded minimum distance from the USV to the obstacles based on GA type [148].
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Figure 36. Influences of the deployed GA types on the success rate [148].

9. Concluding Remarks

Reviews on several aspects of sensor-based instruments and apparatus were per-
formed in this work, including offshore engineering, ocean state, marine structures, and
polar territory. According to the comprehensive review of the mentioned areas, sensors
serve as a vital tool for measuring physical phenomena and observing environmental
conditions. Several essential remarks are summarized as follows:

1. In terms of logistic and shipping activities, sensors are heavily involved to ensure that
the pathway and sailing route of a ship/vessel are correct and clear to avoid collision
or other accidents. The frequently used tools include high-resolution satellite imagery,
enhanced spatio-spectral techniques, multi-polarization synthetic aperture radar
(SAR), multilayer fusion light-head detectors (MFLHDs), and multiscale Wasserstein
auxiliary classifier and generative adversarial networks (MW-ACGANs). These were
then varied into global navigation satellite systems (GNSSs), inertial measurement
units (IMU)s, Doppler velocity log (DVL), spectral entropy (SE), and C0 complexity
in early 2021.

2. The hydrodynamic characteristics of marine design and structure are critical aspects
that need to be accurately estimated. A sensor-based instrument is recorded for six
degrees of freedom, resistance/drag, and propulsion performance. As concluded
from the review, the subject of investigation is not only conventional ships, but also
vessels with special purposes, i.e., cruise ship, sailing yacht, and underwater cleaning
robot. It was also noted in certain works that sensors are deployed for measuring
noise in the underwater territory. This contributes to an effort to quantify the effect of
noise radiation on mammals’ communication waves.

3. Regarding ship/vessel design, energy-saving characteristics have been assessed on
machinery monitoring systems. Methodologies for designing sensors and measuring
this phenomenon include first-principle safety analysis, hazard and operability studies
(HAZOP), fault tree analysis (FTA), wireless sensor network (WSN), structural risk
assessment (SRA), machinery risk assessment (MRA) tools, acoustic emission sensors,
and laser heads clocked at 16 MHz. The evaluation of vibration interference in
recorded motion data in the ice field territory is the interdisciplinary research of this
field (hydrodynamic) and the polar science field.

4. Besides hull performance, machinery safety must also be evaluated from a sustainabil-
ity point of view to either avoid loss in fuel consumption or environmental pollution.
The summarized research indicates that machinery safety does not solely concern
machine performance, but also concerns refraining the subject from undergoing phys-
ical damage (e.g., collision damage, hull joint failure, and unpredicted behavior of
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anisotropic material). Therefore, the collision avoidance concept has been necessarily
developed based on the beam search algorithm (BSA), followed by the deployment of
laser vibrometry and a displacement laser sensor to quantify defects on the hull joint.
In the case of anisotropic materials, a study was performed on polymer composites
using acoustic emission Kolmogorov–Sinai (K–S) metric entropy.

5. Exploring the Arctic territory is the most addressed concern in terms of polar science
and arctic engineering using sensor-based apparatus. For the past decade, works
in this field have been dominated by the dedication to observing environmental
conditions (of the ocean, atmospheric, and tundra areas), primarily when climate
change arises due to an excessive amount of fossil fuel consumption. In recent years,
the study has extended to evaluate problems such as the ice melting phenomenon.
This work has been carried out especially near Canada and Greenland. Furthermore,
autonomous frequency-modulated continuous-wave (FMCW) radar has been used to
measure states of snowpack and ice levels.

6. Concern regarding offshore structure risk was summarized by assessing sensors’ roles
in damage detection, especially against vibration loadings. A fundamental conclusion
regarding damage detection is that the sensor-based apparatus set consisting of four
wired accelerometers and eight strain gauges, a hydraulic actuator, a computer (DAQ
system and Labview), and a 407-controller is more reliable in estimating the damage
of diagonal members based on an experiment on a scaled jacket platform. In 2021, a
study of damage detection using CA-YD-108 acceleration sensors found good results
from the scaled-based model and the in situ measurement.

7. Besides vibration, corroded steel and other marine structure parts are considered
the origin of further catastrophic damage and loss. The demand to estimate this
phenomenon has been fulfilled by a series of studies using various sensor instruments.
On offshore platforms, optical fiber-based salinity sensors based on multimode plastic
optical fiber (POF) have been used. In additional to commercial sensors (including
image data harvesting using a camera for observation), developed ones, such as the
tilted fiber Bragg grating (TFBG) concept, are being adopted to design customized
sensors.

8. Impact and shock are addressed as important design parameters in any marine struc-
ture in which numerous scenarios may occur and inflict direct damage to the structure.
In the studies, force pressure sensors, displacement gauges, high-speed cameras (e.g.,
Photron-Fastcam-SA1 series), accelerometers, and DAQ systems are the principal
sensor-based tools used to measure design performance against impact and shock
(widely known as crashworthy design). It is noted that the current technology is good
enough to obtain reliable measurement of data of these phenomena. Nevertheless,
an argument is raised regarding an area for improvement: measurement sensors are
susceptible to impact and shock, which means that the accuracy of measurements
can sometimes be questionable. Besides impact and shock, structure debris may also
disturb the data recording. Thus, there is a challenge to design a buffer sensor that is
strong enough to withstand such loadings.
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