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This Special Issue of Mathematics is dedicated to the application of Operations Research
methods to a wide range of problems. Operations Research uses mathematical modeling
and algorithms for supporting decision processes and finding optimal solutions in many
fields. For this Issue, high-quality papers were solicited to address both theoretical and
practical issues in the wide area of Operations Research. In particular, submissions present-
ing new theoretical results, models and algorithms were welcome. Some topics mentioned
in the Call for Papers for this Issue were linear and nonlinear programming, optimiza-
tion problems on graphs, project management, scheduling, logistics and transportation,
queuing theory and simulation, to name a few.

After a careful refereeing process, 15 papers were selected for this Issue. As a rule,
all submissions were reviewed by three experts in the corresponding area. The authors
of the accepted papers come from 16 countries: Hungary, Turkey, Spain, France, Japan,
Mexico, Czech Republic, Germany, Thailand, Chile, India, Korea, Croatia, Chile, USA and
Lithuania. Subsequently, the published papers were surveyed in increasing order of their
publication dates for this Special Issue.

The first accepted paper [1] deals with body-centered cubic lattices which are impor-
tant grids appearing in nature. The authors formulate the shortest path problem on higher
dimensional body-centered grids as an integer programming problem. Finally, a Gomory
cut is applied to guarantee an integer solution, and some comments on Hilbert bases of
rational polyhedral cones are given.

The second paper [2] studies an alternative mechanism for using mathematical pro-
gramming to incorporate negative learning into a widely used ant colony optimization.
The authors compare their approach with existing negative learning approaches from
the literature on two combinatorial optimization problems: the minimum dominating set
problem and the multi-dimensional knapsack problem. It is shown that the new approach
outperforms the existing ant colony algorithms and negative learning mechanisms.

In the third paper [3], the authors cluster the Pareto Front for a multi-objective opti-
mization problem in a given number of clusters and identify isolated points. In particular,
K-center problems and some variants are investigated and a unified formulation is given,
where both discrete and continuous variants, partial K-center problems and their min-sum
K-radii on a line are considered. In the case of dimension two, a polynomial dynamic
programming algorithm is given, while for a higher dimension, the associated problem
is NP-hard. For some variants, including the K-center problem and min-sum K-radii
variants, further improvements are discussed. In addition, parallel implementations lead
to a speed-up in practice.

Paper [4] deals with a graph-theoretic subject. In particular, the authors develop lower
and upper bounds on the global total k-domination number of a graph. It is the minimum
cardinality of a so-called global total k-dominating set of this graph. The results were obtained
by using algebraic connectivity in graphs. Moreover, the authors present an approach to
obtain a global total (k + 1)-dominating set from a global total k-dominating set.

In the fifth paper [5], three methods for deriving a priority vector in the theoretical
framework of pairwise comparisons are investigated with respect to sensitivity and order
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violation, namely, the Geometric Mean Method, the Eigenvalue Method and the Best–
Worst Method. The authors apply a One-Factor-at-a-Time sensitivity analysis via Monte
Carlo simulations. The investigations show that the Best–Worse Method is statistically
significantly more sensitive and, thus, less robust than the other two methods.

Paper [6] investigates a parallel machine scheduling problem on uniform machines
with identical processing times as well as given release and delivery times with a minimiz-
ing makespan, which is the time when the last job is delivered to the customer. The authors
present a polynomial algorithm which is based on the ‘branch less cut more’ framework
developed earlier. This algorithm generates a tree similar to a branch and bound algorithm,
but the branching and cutting criteria depend on structural properties and are not based
on lower bounds. The algorithm finds an optimal solution if for any pair of jobs a specified
inequality with respect to the release and delivery times is satisfied. If these conditions are
not satisfied or for the case of non-identical processing times, the algorithm can be used as
an approximate one.

Paper [7] considers short-term scheduling of the pressing process which occurs in the
fabrication of a multi-layer printed circuit board. For this problem, a mixed-integer linear
programming formulation is given for the case of minimizing the makespan. In addition, a
three-phase heuristic is also given. It turns out that the MILP model can solve small and
medium-sized instances. On the one hand, the MILP model could not solve most of the
large-sized instances within a time limit of two hours, but the heuristic found an optimal
solution for all instances, for which the MILP model could find an optimal solution in
much smaller times.

Paper [8] deals with particle swarm optimization. For bio-inspired algorithms, where
a proper setting of the initial parameters by an expert is required. In this paper, the authors
suggest a hybrid approach allowing the adjustment of the parameters based on a state
deducted by the swarm algorithm. The state deduction is reached by a classification of the
observations using a hidden Markov model. Extensive tests for the set covering problem
show that the presented hybrid algorithm finds better regions in the heuristic space than
the original particle swarm optimization, and it shows an overall good performance.

Paper [9] investigates a perishable inventory system with an (s, Q) ordering policy
together with a finite waiting hall. The single server only begins serving when N customers
have arrived. This is known as N-policy. The authors investigate the impatient demands
which are caused by the N-policy server to an inventory system. In particular, the steady-
state vector is investigated. In addition, some measures of the performance of the system
are analyzed and the expected cost rate in the steady state is given.

Paper [10] deals with cryptocurrency portfolio selection and applies a multi-criteria
approach based on PROMETHEE II. The authors found that their model gave the best
cryptocurrency portfolio when considering the daily return, the standard deviation, the
value-at-risk, the conditional value-at-risk, the volume, the market capitalization as well as
nine cryptocurrencies for the period from January 2017 to February 2020. It turned out that
the proposed model won against all other models considered.

In the eleventh paper [11], a game decision-making model for a low-carbon e-commerce
supply chain is derived. The paper analyzes the influence of carbon trading on the regional
sustainable development. It turns out that the total carbon emission is positively related to
the commission rate. The empirical analysis conducted by the authors confirms that the
implementation of carbon trading is conducive to the regional sustainable development
and that controlling the environmental governance intensity promotes carbon productivity.
In the future, the inclusion of more factors is intended to make the model more realistic.

In the twelfth paper [12], a new cuckoo search algorithm is presented which is able
to self-adapt its configuration. This is reached by means of machine learning, where a
cluster analysis is used. Experimental results are presented for the set covering prob-
lem. A comparison with other hybrid bio-inspired algorithms is also performed. The
authors mention some possible future works, e.g., improving the criterion of population
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increase and decrease by using clusterization strategies or implementing further machine
learning techniques.

Paper [13] develops a novel hybrid optimization framework, entitled learning-based
linear balancer. The authors also design a regression model to predict better movements
for the approach and to improve the performance. The approach is based on balancing the
intensification and diversification performed by the hybrid approach in an online form.
To test the suggested approach, 15 benchmark functions are considered. The authors also
compare their approach against a spotted hyena optimizer and a neural network approach.

In the fourteenth paper [14], a subject from queuing theory is considered, where the
suggested approach consists of two stages. In the first stage, Little’s law in Multiphase
Systems is analyzed. In particular, Strong Law of Large Numbers-type theorems are proven.
Then, the results obtained in this stage are verified by means of simulation. Here, the
Python concept is used to test the results obtained in the first stage.

The last paper [15] deals with the university course timetabling problem. It presents a
new integer programming model for generating a timetable of an academic department
considering basic workload and course overload and, also, the profile and area of each
professor. A real-world case is considered. By analyzing different strategies, the efficiency
of the new model is shown.

Finally, as the guest editor, it is my pleasure to thank the editorial staff of the journal
Mathematics for the pleasant cooperation, not only during the preparation of this, but also
for the previous four Special Issues which I handled as editor for the journal Mathematics.
I would also to thank all referees for their thorough and timely reports on the submitted
works and also the authors for submitting many interesting works from a broad spectrum
in the Operations Research area. For potential authors who missed the deadline for this
Special Issue, I remind that there is another future Special Issue in Mathematics entitled
‘Recent Advances of Discrete Optimization and Scheduling’ edited by Alexander Lazarev,
Bertrand Lin and myself, which deals with similar subjects.
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Abstract: The purpose of this research is to solve the university course timetabling problem (UCTP)
that consists of designing a schedule of the courses to be offered in one academic period based
on students’ demand, faculty composition and institutional constraints considering the policies
established in the standards of the Association to Advance Collegiate Schools of Business (AACSB)
accreditation. These standards involve faculty assignment with high level credentials that have to
be fulfilled for business schools on the road to seek recognition and differentiation while providing
exceptional learning. A new mathematical model for UCTP is proposed. The model allows the
course-section-professor-time slot to be assigned for an academic department strategically using the
faculty workload, course overload, and the fulfillment of the AACSB criteria. Further, the courses
that will require new hires are classified according to the faculty qualifications stablished by AACSB.
A real-world case is described and solved to show the efficiency of the proposed model. An analysis
of different strategies derived from institutional policies that impacts the resulting timetabling is also
presented. The results show the course overload could be a valuable strategy for helping mitigate
the total of new hires needed. The proposed model allows to create the course at the same time the
AACSB standards are met.

Keywords: timetabling problem; course university timetabling problem; AACSB standards; integer
linear programming

1. Introduction

Timetabling is the process of building a timetable while satisfying several constraints.
The timetabling problem has many applications such as educational and transportation
issues for employees and others [1]. This research is focused on the university course
timetabling problem, a problem that has been extensively studied [2]. The University
Course Timetabling Problem (UCTP) consists of supplying a schedule of the courses to be
offered in one academic period based on students enrolled and constraints established by
the university. A course timetabling usually involves the allocation of resources (teachers,
students, classrooms, etc.) and time slots to each given meeting (lectures, seminars, etc.)
while satisfying constraints [3].

The UCTP has three stages: (i) faculty course assignment optimization, (ii) faculty
course scheduling optimizations and (iii) faculty room assignment optimization [4], there
are many constraints to be considered and they are usually divided into two categories: (i)
hard constraints, these constraints must be satisfied in order to produce a feasible timetable
and (ii) soft constraints, these constraints are desirable but not absolutely essential [2].

UCTP is considered one of the most interesting problems faced by universities [5]
but some of them are still constructing timetables by hand [6] with the assistance of
simple office applications like spreadsheets. This is a very difficult task given the many
restrictions to be satisfied [3]. The automation of timetabling problems is a task that saves

Mathematics 2021, 9, 2500. https://doi.org/10.3390/math9192500 https://www.mdpi.com/journal/mathematics5
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a lot of work and time for institutions, it also provides optimal solutions by improving
the quality of education and services [5]. The educational timetabling problem has been
formulated in many different ways and has been addressed using several analytic or
heuristic approaches. However, it is difficult to implement the same approach to a problem
because each institution has different characteristics and constraints or limitations [7].

There are some authors that consider preferences of the faculty in different areas. Such
is the case of the method proposed by Immonen and Putkonen [8] where they build a
timetable satisfying pre-requisite knowledge and specific preferences for faculty. Also
Tavakoli et al. [9] say one subject can be taught by many lecturers but the priority must
be given to the one with higher qualifications. In [10], authors use a bee colony optimiza-
tion and consider the preferences of subjects a professor can teach. Another work is the
one proposed by Domenech and Lusa [11] in which they propose a mathematical model
considering some preferences according to the category of the professor. Al-Yakoob and
Sherali [12] developed a mathematical model for assigning faculty members to classes con-
sidering their preferences of time as much as possible and the qualifications of the faculty.

Another characteristic considered in the construction of the timetable is the workload
of the faculty, for example, in [11] authors propose a mathematical model where they
balance the teachers’ workload. Authors in [12] present a mathematical model for assigning
faculty members to classes considering teaching load and qualifications, the objective of
the model is to minimize the dissatisfaction of faculty members. In some cases according
to the level of the professor some institutions may establish a number of days a professor
can teach in order to give them the opportunity to do work in research, such is the case
of the approach made by Chen and Shih [13] where teachers of specific levels can only
teach two classes per week and each teacher may not teach more hours than the limit
stipulated by the academic department. Further, authors in [10] consider the maximum
number of courses a professor can teach, or create a fair course timetable, balancing the
interests between faculty [14].

Characteristics like, preferences of different types, workload, among others are im-
portant in the construction of timetable for business schools that are accredited by the
Association to Advance Collegiate Schools of Business (AACSB) or for those institutions
that would like to obtain the accreditation. For the latter, it is important to build the
timetable fulfilling the standards established by AACSB. The mathematical model pre-
sented by Boronico and Kong [15] determines the full-time faculty (without any decision
about the timetable) required according to accreditation guidelines of AACSB for the
different campuses and disciplines, this is the reason business schools must now specify
their relative emphasis on teaching, intellectual contributions, service, and make explicit
commitments to particular types of intellectual contributions [16].

For business schools, it is very important to obtain the AACSB accreditation, spe-
cially for those schools outside North America and Europe [17], according to Bajada and
Trayler [18], the faculty of a modern business school is expected to be academically quali-
fied (AQ) under AACSB standards. For an institution that would like to receive AACSB
accreditation, a certain percentage of the business school faculty must be AQ [17].

AACSB is an important influence on many business schools, that is the reason the
accredited business schools are expected to have highly qualified faculty members to
complete the course timetabling, but the number of faculty available to fill open positions
is not sufficient and it is difficult for schools to recruit and retain the qualified faculty [19].

AACSB is becoming more important for business schools and fulfilling the standards
is determinant to achieve the accreditation or re-accreditation. This implies universities
need to accomplish the percentages of professors in every category and the construction of
the timetable is directly related to that standard.

In the reviewed literature, we did not find any other paper that involves the timetabling
problem with all the characteristics addressed here and the AACSB standards. This re-
search is focused in the construction of a university course timetable for a business school
considering mainly the preferences and qualifications of faculty, teaching load and the

6



Mathematics 2021, 9, 2500

category of the professors in order to fulfill the percentages of the qualification standards
established by the AACSB. The output of the model will be the assignment of professor
to subject and time slot, also the number of professors that have to be hired in order to
achieve the percentages indicated by the standard of the AACSB.

The papers found in the reviewed literature have some similarities with the pro-
posed model. For example, authors like Immonen and Putkonen [8] and Al-Yakoob
and Sherali [12] include in their construction of timetabling the qualification of profes-
sors. The category of professors is considered by Domenech and Lusa [11] and Chen
and Shih [13]. Another similarity is the consideration of maximum number of courses,
a characteristic taken into account by Ojha and Sahoo [10]. But our proposal has some
differences with the papers found in literature, for example, we do not consider the balance
of workload whereas Domenech and Lusa [11] and Al-Yakoob and Sherali [12] include
this characteristic and the models proposed by them. One of the decision made by our
proposed model is whether to give or not work overload to professors, characteristic not
found in any other model. Boronico and Kong [15] take into account the standards of
AACSB but they do not construct the timetable. Their model indicates the number of
professors needed in each campus is order to comply the percentages of each category in
the AACSB standards. To sum it up, any other paper that involves the timetabling problem
with all the characteristics addressed here and the AACSB standards was not found.

The article is organized as followed, the rest of the Section 1 provides a description of
the AACSB accreditation as well as the faculty standard; Section 2 describes on detail the
context of the case study; Section 3 presents the proposed mathematical model; Section 4
presents the case information; Section 5 presents a discussion of the results; Section 6
presents the conclusions of the present work.

AACSB Accreditation and Standards

A challenge facing economic programs in business schools is that of aligning pro-
grams to be consistent with the assessment expectations for the AACSB accreditation [20].
Business school accreditation is a way for business schools to differentiate their brand and
demonstrate the highest standard of achievement [21]. The AACSB is the most important
institution responsible of accrediting business schools around the world. The AACSB was
founded in 1916 and established the first standards for programs in business administration
in 1919. Nowadays, there are 874 business institutions in 56 countries that have earned the
AACSB accreditation [22].

A business school has to follow the next process in order to apply for the AACSB
Accreditation: first, the business school must establish its membership and eligibility for
accreditation. During the initial accreditation process, the school is evaluated based on
the AACSB accreditation standards. After earning the AACSB accreditation, the business
school is periodically evaluated to continue its accreditation [22].

The nine standards that every business school have to achieve are divided into three
categories: (1) Strategic management and innovation, (2) Learner success and (3) Thought
leadership, engagement and societal impact learning and teaching. Standard three declares
that the school should maintain and strategically deploy a sufficient number of participating
(P) and supporting (S) faculty. A participating faculty actively takes part in the activities
of the school besides teaching responsibilities. A supporting faculty is more dedicated
to teaching responsibilities; she/he does not normally participate in the intellectual or
operational life of the school [22].

According to the AACSB, the faculty is classified as follows: Scholarly Academic
(SA), Practice Academic (PA), Scholarly Practitioner (SP), or Instructional Practitioner (IP).
Faculty members who do not meet the definitions of any of these categories are classified
as Additional Faculty (A).

• Scholarly Academics (SA) are faculty who have normally attained a terminal degree in
a field related to the area of teaching and who sustain currency and relevance through
scholarship and related activities.
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• Practice Academics (PA) are faculty who have normally attained a terminal degree in a
field related to teaching and who sustain currency and relevance through professional
engagement, interaction, and relevant activities.

• Scholarly Practitioners (SP) are faculty who have normally attained a master’s degree
related to the field of teaching; have professional experience and produce scholarship
related to their professional background and experience.

• Instructional Practitioners (IP) are faculty who have normally attained a master’s
degree related to the field of teaching and who have professional experience and
continue their engagement related to their professional background and experience.

• Additional Faculty (A) are faculty who do not meet the expectations of the school as
SA, PA, SP, or IP because the individual faculty member’s initial preparation and/or
on-going engagement activities are not aligned with the school’s criteria.

In the first case (SA), they should have actual and relevancy research and activities
linked to the same field of teaching. In the second case (PA), the teachers should be working
in relevant professional positions also related to the field of teaching. The faculty classified
as SA and PA must have a doctorate degree.

On the other hand, SP and IP have a master’s degree related to a teaching field and
have significant professional experience at the same field they are teaching. The difference
in this case is that SP sustain research associated to the area of their professional background
and experience where they teach, and IP show relevancy and engagement through their
professional experience related to their teaching field.

For more information on the above categories, please refer to the AACSB manual.
The standards provide guidance about the criteria the school should develop. The cri-

teria applied to faculty is the following:

• At least 60% of faculty should be participating. Faculty sufficiency related to teaching
is measured through a teaching productivity metric (a particular institutional metric,
e.g., contact-hours, course-hours, courses) and the overall should be at least 60% for
the participating components.

• Percentage of time devoted to mission for each faculty qualification group:

– Scholarly Academics ≥ 40%.
– Scholarly Academics + Practice Academics + Scholarly Practitioners ≥ 60%.
– Scholarly Academics + Practice Academics + Scholarly Practitioners + Instructional

Practitioners ≥ 90%.
– Additional Faculty less than 10%.

Normally, full-time professors spend 100% of their time devoted to the mission and an
adequate and rational manner to assess the percentage of time devoted to the mission
should be establish for part-time faculty [23].

2. Context of the Problem

The Business School is composed of seven departments. In a fall 2020 semester the
school offered 345 courses in total for 7750 registered students. In the past, the 24% of
the courses of the entire Business School corresponded to the academic department under
study. This department can be considered one of the biggest in the business school. It offers
9 service courses to the other departments at school and also to other six bachelors degree
of others schools.

Some years ago, the university started the process of achieving the AACSB accredita-
tion, now the construction of the timetable has to consider the characteristics of the school
and it has to fulfill the requirements of standard three of the AACSB. The current process is
as follows:

1. The dean’s office informs the academic department the number of students demanded
by each course.
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2. The academic department defines the number of groups (sections) for the same course
to be offered according to the maximum number of students per course allowed by
the university.

3. A first draft of the timetable is created manually, trying to satisfy the percentages of
each category in the AACSB standard and other requirements.

4. If the academic department notices a lower percentage than the required, then they
have to recruit a professor of specific category.

5. The academic department confirms the assignment with each professor and some
changes could be made.

6. Once the timetable is confirmed, it is sent to dean’s office where the assignment of
classrooms is performed.

7. Finally, the academic department proceeds to register the course timetable in the
university’s system and to publish it on the official website.

In this case, student curricula consists of eight semesters and fifty courses that are di-
vided into general education courses, basic/initial disciplinary education courses, and dis-
ciplinary courses. In a specific academic period there are students enrolled in each of the
level (from first to eighth semesters), so it is needed to program all the courses by period
but just the disciplinary courses are in charge of the academic department.

The requirements of the administration are:

• There are two schemes of time slots for the academic department courses: scheme A)
three sessions of one hour on Monday, Wednesday and Friday and, scheme B) two
sessions of one hour and thirty minutes for Tuesday and Thursday.

• The first class of the day starts at 7:00 a.m. and the last one starts at 7:00 p.m.
• The courses that belong to the same semester in the curricula are assigned in different

time slots.
• Semester courses from 1st to 4th are assigned to start in the morning (07:00 to 14:00 h.),

and from the 5th to 8th in the afternoon (13:00 to 20:00 h, and 7:00 a.m.). Some courses
will need to be scheduled at additional times due to their high demand.

• The course assignment for a professor is made by considering her/his knowledge area.
• The number of courses to be assigned to full-time professors is well known and it

depends of her/his profile (researcher or manager position).
• Further, overload is allowed, when a course is assigned to a professor additionally to

her/his official basic workload (authorized by the university).
• It is not desirable to assign more than two courses to part-time professors.
• When the total of courses to be scheduled exceeds the actual capacity (using course

load and overload), then new hires should be considered.

3. Mathematical Formulation

When a department belongs to a school which wants to be accredited by high stan-
dards such as AACSB, and plays a fundamental role scheduling a large number of courses,
it requires having mechanisms that facilitate decision-making to assign courses to the
right teachers. Therefore, the mathematical formulations offer opportunities not only
for assigning a large number of sections, but also for accomplishing the requirements of
faculty qualifications.

The mathematical model proposed allows to determine the assignation of course-
section-professor-time slot using the actual capacity. In case, it is not possible to schedule
all courses, the remaining courses will be assigned to one faculty member category based
on AACSB faculty qualifications policies and then the new hires can be established. Also
the concept of course overload is contemplated.
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Sets
C Set of courses, index i ∈ C.
P Set of professors, index j ∈ P.
Pf ull−time Set of full-time professors, index j ∈ Pf ull−time, Pf ull−time ⊂ P.
Ppart−time Set of part-time professors, index j ∈ Ppart−time, Ppart−time ⊂ P.
T Set of semesters, index t ∈ T.
B Set of time slots, index k ∈ B.
Bt Subset of time slots that are allowed to schedule courses belonging the

semester t ∈ T.
Cj Set of courses that the professor j can teach according with her/his knowledge

area, Cj ⊂ C.
Si Set of sections needed to be schedule for the course i.
H1 Set of faculty qualification categories, index p ∈ H1 = {SA, PA, SP, IP, A}.
H2 Set of categories for faculty composition based on the level of professors

involvement, index q ∈ H2 = {participating, supporting}.
H3 Set of profiles of new hires based on the minimum academic profiles needed

in order to allocate all the courses, index r ∈ H3.
CHr Set of courses that can be taught by a professor with academic profile r ∈ H3.
P∗ Set of professors with faculty composition category: participating.

Parameters
hi Semester to which the course i belongs.
mmax

j Maximum number of courses to be assigned to professor j.
mmin

j Minimum number of courses to be assigned to professor j.
cmax

j Maximum number of course overload allowed for professor j.
αj Qualification of the professor j, αj ∈ H1.
u Percentage of faculty time spent dedicated to the mission per course for

supporting faculty.
v Percentage of faculty time spent dedicated to the mission per participating

faculty (in some cases it could be naturally 100%).

The decision variables in our model are denoted as follows:

xijkl =

{
1 if, the course i is assigned to professor j in time slot k in section l
0 otherwise.

σj = Number of courses assigned to professor j without exceeding the number of
courses allowed according to her/his academic profile.

σ+
j = Number of additional courses assigned to full-time professors as course overload.

wi = Quantity of sections of the course i without assignation of schedule and professor.
ypqr = Quantity of course sections that weren’t programmed due to the lack of enough

teacher staff, also to be programmed for new candidate professors with faculty
qualification category p ∈ H1 and with faculty composition category based on the
level involvement q ∈ H2 and an academic profile r ∈ H3.

zpqr = Auxiliary variables denoting the quantity of minimum candidates to professors
to be hired with faculty qualification category p ∈ H1, with faculty composition
category based on the level involvement q ∈ H2 and an academic profile r ∈ H3.

The variables ypqr individually help to know how many courses without sched-
ule require a specific professor profile (new hire) to maintain the adequate levels of the
AACSB standards.

The objective function has to be established in accordance with the institution’s
strategy, in this paper three possible objectives are stated. Naturally, it is desirable to
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minimize the total of courses without schedule (that need to be assigned to new hires)
(Equation (1)).

minimize ∑
p∈H1

∑
q∈H2

∑
r∈H3

ypqr (1)

Other objective function based on a policy is to minimize the aggregation of courses
without schedule and the course overload of professors, this is described in expression (2).

minimize ∑
p∈H1

∑
q∈H2

∑
r∈H3

ypqr + ∑
j∈P

σ+
j (2)

Further, in expression (3) the total number of new hires is minimized since the objective
in expression (1) does not differentiate courses that can be assigned to different academic
profiles. The value of zpqr is estimated in (20).

minimize ∑
p∈H1

∑
q∈H2

∑
r∈H3

zpqr (3)

Since all sections should be assigned whenever possible, the group of constraints (4)
guarantees that all course sections will be scheduled only if there is enough capacity (i.e.,
wi = 0), otherwise, the variable wi will take a value greater than zero (wi > 0).

∑
j∈P

∑
k∈B

∑
l∈Si

Xijkl + wi =| Si | ∀i ∈ C (4)

where | Si | denotes the cardinality of the set Si.
The constraint group (5) states that each course section should be assigned just once.

∑
j∈P

∑
k∈B

Xijkl ≤ 1 ∀i ∈ C, ∀l ∈ Si (5)

Course sections without a schedule and teacher assignment will result in new teacher
hires with an AACSB faculty qualification category p ∈ H1, a category of faculty com-
position based on the level of involvement q ∈ H2 and with an academic profile r ∈ H3.
In constraint group (6) it is stated that the number of course sections without schedule that
can be assigned to a candidate professor with an academic profile r ∈ H3 should be equal
to the number of courses assigned to new professors with a profile in each set of categories
(H1 and H2). It allows to balance and to relate course sections with faculty profiles.

∑
p∈H1

∑
q∈H2

ypqr = ∑
i∈CHr

wi r ∈ H3 (6)

All professors have a maximum and a minimum number of course sections to be
assigned, this is restricted by (7) and (8). Commonly, for full-time professors this quantity
represents the mandatory number of courses to be assigned, in that case mmax

j = mmin
j .

σj ≤ mmax
j ∀j ∈ P (7)

σj ≥ mmin
j ∀j ∈ P (8)

This model contemplates the concept of restricted course overload in order to consider
to teach more than the maximum courses allowed for each professor. The number of
assigned course sections of each professor is equal to the sum of the course load plus the
course overload assigned, as it is shown in the group of constraints (9).

∑
i∈C

∑
k∈B

∑
l∈Si

xijkl = σj + σ+
j ∀j ∈ P (9)
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When the course overload does not apply for all professors or for part-time professors,
it can be easily restricted. The constraint group (10) states the maximum number for
professor j course overload.

σ+
j ≤ cmax

j ∀j ∈ P (10)

Regarding the schedule, in (11) it is stated that all courses that belong to a same
semester must be assigned to different time slots.

∑
i∈{C|hi=t}

∑
j∈P

∑
l∈Si

Xijkl ≤ 1 ∀t ∈ T, ∀k ∈ B (11)

As it was mention in the previous section, the courses belonging to semester t should
be scheduled just in the allowed time slots (the subset Bt), as it is shown in constraint
group (12).

∑
j∈P

∑
k/∈Bt

Xijkl ≤ 0 ∀t ∈ T, ∀i ∈ {C|hi = t} , ∀l ∈ Si (12)

The constraint group (13) ensures that all professors will be assigned their courses
in different time slots. It means that, there will not be any overlap in the schedule
of professors.

∑
i∈C

∑
l∈Si

Xijkl ≤ 1 ∀j ∈ P, ∀k ∈ B (13)

The courses assigned to the professors will be according to their credentials (14).
Previously, a list of courses that a professor can teach according to her/his expertise area
was created.

Xijkl ≤ 0 ∀j ∈ P, ∀i /∈ Cj, ∀l ∈ Si, ∀k ∈ B (14)

In some cases, full-time professors need to have a free day scheme in the afternoon
allowing to teach at graduate programs as expressed in constraints (15)–(19). The set of time
slots in conflict is B′ ⊂ B for days scheme A, and B′′ ⊂ B for days scheme B. The auxiliary
binary variables Aj and Bj denote if a professor j is free in the time slots to teach at the
graduate program in the scheme A and scheme B, respectively.

Aj + Bj ≤ 1 ∀j ∈ Pf ull−time (15)

Aj · σj ≥ ∑
i∈C

∑
l∈Si

∑
k∈B′

Xijkl ∀j ∈ Pf ull−time (16)

Aj ≤ ∑
i∈C

∑
l∈Si

∑
k⊆B′

Xijkl ∀j ∈ Pf ull−time (17)

Bj · σi ≥ ∑
i∈C

∑
l∈Si

∑
k∈B′′

Xijkl ∀j ∈ Pf ull−time (18)

Bj ≤ ∑
i∈C

∑
l∈Si

∑
k⊆B′′

Xijkl ∀j ∈ Pf ull−time (19)

In (20) the number of professors needed for profile is calculated.

zpqr ≥
ypqr

M
, ∀p ∈ H1, ∀q ∈ H2, ∀r ∈ H3 (20)

where M denotes the maximum course load for a new professor.
To establish the criteria and policies for faculty based on AACSB standards the con-

straints (21)–(25) were incorporated.
Based on the metric selected (number of courses), we restricted that 60% of courses

have to be imparted by participating faculty, as it is shown in constraint (21).

∑
j∈P∗

(
σj + σ+

j

)
+ ∑

p∈H1

∑
r∈H3

ypqr ≥ 0.60 ∑
i∈C
| Si |, q = participating (21)
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The total time dedicated to mission for each AACSB faculty qualification category is
calculated in (22). The constraints are defined with q1 = participating, q2 = supporting and,
∀p ∈ H1.

dedp = u


 ∑

j∈P−P∗ |αj=p
(σj + σ+

j ) + ∑
r∈H3

ypq2r


+ v

(
|P∗|+ ∑

r∈H3

zpq1r

)
(22)

Then, the time dedication to the mission of all faculty and courses with a hiring profile
is restricted in (23)–(25). Different metrics can be applied according to the best structure
for the institution. Here, the percentage of total time spend dedicated to the mission
differentiating the percentage of participating faculty and supporting faculty is calculated.

dedSA ≥ 0.4 ∑
p∈H1

dedp (23)

dedSA + dedPA + dedSP ≥ 0.6 ∑
p∈H1

dedp (24)

dedSA + dedPA + dedSP + dedIP ≥ 0.9 ∑
p∈H1

dedp (25)

Further, additional constraints to limit the number of new hires can be added for some
determined profile. In constraint group (26) the latter condition is added.

zpqr ≤ apqr (26)

where apqr are the maximum number of hires allowed by faculty qualification category p,
with faculty composition category based on the level involvement q ∈ H2 and an academic
profile r ∈ H3.

Finally, the no-negativity constraints are included for the integer variables.

wi ≥ 0 ∀i ∈ C (27)

ypqr, zpqr ≥ 0 ∀p ∈ H1, ∀q ∈ H2, ∀r ∈ H3 (28)

σj, σ+
j ≥ 0 ∀j ∈ P (29)

Remarks of the Mathematical Formulation

Here some main remarks about the mathematical formulation are exposed:

• In the proposed mathematical model the variables that allow to define the timetabling
are xijkl , while wi are the number of sections by course i that could not be programmed
with the current faculty. In the Equation (4) is established the relation between
these variables.

• Since in the objective functions the ypqr variables are minimized directly or indirectly
and the sum of all ypqr and the sum of all wi variables are equal, then the wi variables
are also minimized in an indirectly form.

• The variables ypqr and zpqr are related in the mathematical model in constraints (20),
which allow to determine the number of new hires given the number of courses
without schedule for all p ∈ H1, q ∈ H2 and r ∈ H3 categories.

• The values of variables xijkl impact in the assignations of the variables ypqr, since as
was mentioned before, the variables xijkl and wi are related, and the variables wi are
related with ypqr, then, the variables xijkl are related indirectly with the variables ypqr.

• Regarding the latter, the constraints of balancing (21)–(25) are used to ensure com-
pliance with the standard three of AACSB while defining the values for variables
ypqr.
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• The variables xijkl and zpqr are related through the relation stablished before about the
pairs of variables (xijkl , wi) (wi, ypqr) and (ypqr, zpqr).

4. Case Information

In this section the main information of the case studied corresponding to the fall 2020
academic period is described.

As it is stated in Table 1, in the academic period fall 2020, the academic department
was constituted by 28 teachers (17 full-time professors and 11 part-time professors) with
different profiles and preferences of courses according to their qualifications. They are
classified as six supporting professors and 22 participating, according to the category
(explained in the Section 1) the same 28 teachers can be classified as: 12 IP, 12 SA, 2 PA,
1 SP and 1 is classified as A (categories explained in Section 1).

There were 28 courses, each one with a specific number of sections (or groups), in total
82 sections to be scheduled. The course load and the list of possible courses to assign
for each professor, are presented in Table 1. To get the solution, the course overload
for part-time professors was considered as zero, since this concept is applicable just for
full-time faculty.

Table 1. Information of professors.

Professor
ID

Max.
Courses Courses Professor

ID
Max.
Courses Courses

P1 2 23 P15 3 27, 15, 10, 11
P2 3 24, 18, 2, 1 P16 2 25
P3 2 20, 8, 16 P17 4 16, 17, 7
P4 3 8, 16 P18 4 9, 16, 4, 6
P5 1 25 P19 4 16, 12
P6 3 25, 14, 21, 11, 3, 10 P20 2 18, 2, 1
P7 2 25, 16 P21 2 8,6
P8 2 11, 15, 2, 10 P22 2 28, 1, 2
P9 2 13, 5, 16, 20 P23 3 23, 12, 8, 7
P10 2 3, 24 P24 3 27, 1, 2
P11 2 26, 24 P25 2 9, 16
P12 2 16 P26 2 15
P13 3 22, 17, 16 P27 3 19, 16
P14 2 25, 3, 10, 11 P28 3 16

The courses are distributed in the follow way:

Semester 1: 16 and 19.
Semester 2: 7 and 9.
Semester 3: 12 and 13.
Semester 4: 6, 8, 10 and 25.
Semester 5: 11, 14 and 18.
Semester 6: 2, 5, 17 and 20.
Semester 7: 1, 4, 15, 21 and 26.
Semester 8: 3, 22, 23, 24, 27 and 28.

Regarding new hires, based on the conditions established by the institution, it is
possible to define limits on new hires, according to the categories and profiles established.
For this, the constraint group (26) are established with the following limits: zero new hires
with profile SA-supporting and for PA-supporting categories, also, zero new hires with
profile SP-supporting, IP-supporting and A-supporting. The latter applies for all academic
profiles (r ∈ H3).

The academic profiles are defined through the clusters of courses:
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Academic profile 1: courses 10, 11, 12, 15, 20, 26, 27,
Academic profile 2: courses 1, 2, 18, 24,
Academic profile 3: courses 7, 8, 9, 13, 17, 23,
Academic profile 4: courses 3, 14, 25, 26, 27,
Academic profile 5: courses 16, 4, 5, 6, 19, 21, 22, 28.

In this way we assume a determined professor can be related with courses in one
specific academic profile by her/his knowledge area.

To calculate the percentage of time dedication to the mission, course-hours for sup-
porting professors (i.e., 7.5% of the time per course) were applied. And, the sum of time
dedication to mission is 100% for all participating professors. Finally, since a new hire will
be classified as either supporting or participating, for practical purposes we consider a new
hire with a participating profile to be full-time and part-time for a supporting profile.

5. Results

In this section the results obtained for the UCTP based on the AACSB policies
are presented.

Four strategies were applied to analyze the effects of combining new hiring profiles
and course overload for professors through the minimization criteria, whether or not course
overload was allowed. The four strategies are:

1. to minimize courses without schedule allowing course overload (base case). This
formulation is composed of objective function (1), and constraints (4)–(29).

2. to minimize courses without schedule and zero teaching overload. This formulation
is composed of objective function (1), and constraints (4)–(29). To avoid the course
overload, in constraint (10), the parameter cmax

j is equal zero for all j ∈ P.

3. to minimize courses without schedule and teaching overload. This formulation is
composed of objective function (2), and constraints (4)–(29).

4. to minimize hiring profiles (professors). This formulation is composed of objective
function (3), and constraints (4)–(29). In this case, course overload is allowed.

The four strategies were solved through the proposed integer programming model
implemented with ILOG CPLEX Optimization Studio version 12.8 on a computer with an
Intel i7 at 2.5 GHz and 8 Gb of RAM. The solution algorithm used was the classic Branch
and bound method. The execution time of the solutions was less than a second (0.58 s. in
average) and in all cases the optimality was obtained with a zero value for the solution
gap. To access the output of the solver CPLEX of the first strategy, see the Section Data
Availability Statement.

5.1. Minimizing the Courses without Schedule Allowing Course Overload, the Base Case

The timetable for the case studied is shown in Figures 1 and 2. First, in Figure 1 we
show the assigned courses to each time slot in day scheme A: Monday, Wednesday and
Friday (i.e three classes of 1 h per week). The color indicates the semester to which the
course belongs. We named each assignation as C#S#P#, where the number contiguous
to C is the course ID, then, the number next to the S is the number of section of that
course, and finally, the number after P is the professor’s ID. As an example, the blue cell in
time 07:00-08:00 (C19S1P27) implies that Section 1 of the course with ID19 from the first
semester is assigned to professor ID P27 at that time. Naturally, Table 1 with the professors’
information shows that professor ID P27 can teach course ID19.
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Days Sem#1

Time Monday, Wednesday, Friday Sem#2

07:00-08:00 C19S1P27 C7S1P17 C12S2P19 C8S3P3 Sem#3

C14S1P6 C26S1P11 C3S6P10 Sem#4

08:00-09:00 C9S1P18 C25S4P7 Sem#5

09:00-10:00 C25S1P5 Sem#6

10:00-11:00 C6S2P21 Sem#7

11:00-12:00 C25S5P5 Sem#8

12:00-13:00 C7S2P17 C8S2P23
13:00-14:00 C16S3P27 C8S4P23 C18S1P20 C1S2P2

C27S1P15
14:00-15:00 C9S5P25 C6S1P21 C11S1P14 C2S1P20

C1S1P24 C28S1P22
15:00-16:00 C9S4P18 C12S3P19 C25S3P16 C5S1P9

C15S3P26 C27S2P24
16:00-17:00 C11S2P8 C2S3P24 C26S2P11 C22S1P13
17:00-18:00 C22S3P13
18:00-19:00 C18S3P20 C3S2P14
19:00-20:00 C18S2P2 C3S3P10

Figure 1. Timetable for courses in day scheme A: Monday, Wednesday and Friday, three classes of
1 h per week.

Days Sem#1

Time Tuesday and Thursday Sem#2

07:00-08:30 C9S6P18 C12S4P23 C25S2P16 C20S2P3 Sem#3

C15S1P15 C3S5P10 Sem#4

08:30-10:00 C16S6P19 C8S5P23 Sem#5

10:00-11:30 C16S2P17 C12S1P19 C8S6P4 Sem#6

11:30-13:00 C16S4P12 C9S3P25 C13S1P9 C8S1P4 Sem#7

13:00-14:30 C16S5P3 C9S2P18 C10S1P8 C14S2P6 Sem#8

C17S1P17 C24S2P2
14:30-16:00 C16S1P4 C25S6P7 C2S2P8 C21S2P6

C23S4P1
16:00-17:30 C20S1P10 C21S1P6 C3S4P14
17:30-19:00 C2S4P22 C15S2P26 C22S2P13
19:00-15:00 C17S2P13 C4S4P18 C23S2P1

Figure 2. Timetable for courses in day scheme B: Tuesday and Thursday, two classes of 1 h and a half
per week.

Figure 2 shows the assigned courses in day scheme B: Tuesday and Thursday classes
(i.e., two classes of 1 h and 30 m per week). The same name structure for course assignation
was applied.

The timetable obtained has 75 course sections scheduled (40 in Figure 1 and 35 in
Figure 2) from the total of 82 needed course sections. Sixty four courses are assigned with
basic faculty workload and 11 are overload assigned to full-time professors. The remaining
seven non-scheduled course sections have an assigned hiring profile. The corresponding
sections are: one section from course ID3, three sections from course ID4, two sections from
course ID23, one section of the course ID24.

Figure 3 shows the proportions of the courses scheduled (with basic workload and
with course overload) and courses with hiring profiles. It is important to note, that the
contemplated assigned professors correspond to the list of active professors in the im-
mediate preceding period, but when the courses’ demand increases, it will be necessary
to contemplate hiring profiles. In these cases, the solution implies seven non-scheduled
courses with hiring profiles.
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Scheduled
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courses

12%

Scheduled
courses with
basic faculty
workload

79%

Courses with
hiring profiles

9%

Figure 3. Proportions of courses.

As it was mentioned before, five academic profiles to new hires are defined, based on
the composition of the program curricula and the creation of clusters of courses. This allows
to identify the exact number of new hires needed. In this case, four professors are needed
(one SA-participating, one PA-participating, two SP-supporting) each one belonging to a
different academic profile. These new hires are the minimum hires to allocate the seven
non-scheduled courses.

Beyond the fact that the optimal solution is obtained, it is possible to show the fulfill-
ment of the constraints by observing the information in Figures 1 and 2. The timetabling
states that 75 sections were scheduled and assigned a professor and seven sections were
not scheduled but have an assigned hiring profile, giving a total of 82 sections (the grand
total of sections). Here, constraint (4) is accomplished. Additionally, can be seen how
each section for each course is assigned just once (constraint (5)). Constraints (7)–(10) are
about the maximum numbers of courses, the course overload and the maximum overload
allowed for each professor, for this, the figures (Figures 1 and 2) exhibit how this load is
accomplished according to the information presented in Table 1.

Also in Figures 1 and 2, it is seen how the courses of same semester (same color)
are assigned in different time (constraint (11)), the courses from first semester to forth
semester are scheduled from 7 hrs. to 14 hrs. and the courses from fifth semester to eighth
semester are scheduled to 13 hrs. to 20 hrs. or 7 hrs., however, there are some exceptions
due to high demand (constraint (12)). As well as, it is possible to observe how the schedule
of professors is at different times (constraint (13)) and the courses assigned to them are
according to their credentials (constraint (14)). In addition, the timetable includes the
consideration that some professors need to have a free afternoon (restriction (15)–(19)) in
order to be able to teach graduate courses.

The total courses assigned to participating faculty already hired by the university
(55 sections), plus the courses not scheduled but assigned to a profile (seven sections) must
be greater than or equal to 60% of the total Sections (50 sections). Here constraint (21) is
accomplished. For constraints related to accomplish of percentages per category (23)–(25),
the results can be reviewed in Section 5.5.

To access the complete output, please refer to the data availability statement in the section.

5.2. Minimizing Courses without Schedule and Zero Teaching Overload

In the Figures 4 and 5 the timetables for the two schemes of days are presented for
the application of second strategy. As is shown, when the problem presented before is
solved minimizing the courses without schedule and zero teaching overload, the model
can assign 69 sections with the number of available professors. The 13 remaining courses
are: two sections of course ID3, four sections of course ID4, one section of course ID6,
one section of course ID15, one section of the course ID20, two sections of course ID 21,
and two section of the course ID24. In contrast with the first strategy, this one requires
new hires to assign seven different courses, and, if the courses are not from common
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knowledge areas or require the same academic profile, then it will result in more hires.
For this strategy, these courses are linked to academic profiles resulting in a number of six
teachers needed. The distribution of this new hires, are: one PA-participating (full-time)
profile and five SP-supporting (part-time) professors. The number of five SP-supporting
professors needed is calculated based on the number of different courses without schedule
and on the maximum load to be assigned to a full-time professor or part-time professor.

Days Sem#1

Time Monday, Wednesday, Friday Sem#2

07:00-08:00 C25S1P16 C11S1P15 C15S3P26 C3S4P10 Sem#3

08:00-09:00 C8S6P4 Sem#4

09:00-10:00 C9S5P18 C12S1P19 C6S1P21 Sem#5

10:00-11:00 C16S4P12 C25S6P5 Sem#6

11:00-12:00 C19S1P27 C9S2P18 C12S2P19 C8S5P4 Sem#7

12:00-13:00 C7S2P17 Sem#8

13:00-14:00 C16S1P27 C25S3P7 C22S1P13
14:00-15:00 C9S4P18 C25S2P6 C18S2P2 C26S2P11

C23S4P23
15:00-16:00 C9S3P18 C25S4P16 C23S2P1
16:00-17:00 C17S2P17 C22S2P13
17:00-18:00 C2S1P20 C27S2P15
18:00-19:00 C14S1P6 C5S1P9 C26S1P11 C23S1P23
19:00-20:00 C14S2P6 C17S1P17 C28S1P21

Figure 4. Timetable of second strategy for courses in day scheme A: Monday, Wednesday and Friday,
three classes of 1 h per week.

Days Sem#1

Time Tuesday and Thursday Sem#2

07:00-08:30 C16S5P28 C8S4P23 C18S3P2 C1S2P24 Sem#3

C22S3P13 Sem#4

08:30-10:00 C16S2P27 C12S3P19 C8S2P3 Sem#5

10:00-11:30 C7S1P17 C13S1P9 C8S1P4 Sem#6

11:30-13:00 C16S3P28 C12S4P19 C8S3P21 Sem#7

13:00-14:30 C9S6P25 C25S5P7 C11S2P8 C20S2P3 Sem#8

C1S1P24 C23S3P1
14:30-16:00 C16S6P28 C9S1P25 C10S1P15 C3S5P14
16:00-17:30 C2S4P21 C27S1P24
17:30-19:00 C18S1P2 C2S2P8 C3S6P10
19:00-15:00 C2S3P20 C15S2P26 C3S2P14

Figure 5. Timetable of second strategy for courses in day scheme B: Tuesday and Thursday, two
classes of 1 h and a half per week.

5.3. Minimizing Courses without Schedule and Teaching Overload

In the Figures 6 and 7 the timetables for the two schemes of days are presented for the
application of the third strategy. If the problem is solved considering the minimization of
courses without schedule and teaching overload, the model assigns 71 sections with the
number of available professors and suggests to hire five professors to teach eleven courses
and only two professors will have one extra course as teaching overload. The courses to be
assigned to new hires are: three sections of course ID3, three sections of course ID4, one
section of course ID6, one section of course ID18, two sections of course ID 21, and one
section of the course ID28. With the first strategy, seven sections of four different courses
implied four new hires, while in the second strategy, thirteen sections implied five new
hires, and with the application of the third strategy, eleven sections of seven different
courses resulted in five new hires. This shows that to the extent that unscheduled courses
are more and different, this results in a greater need for new hires.
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Days Sem#1

Time Monday, Wednesday, Friday Sem#2

07:00-08:00 C11S2P15 C26S2P11 C3S6P10 Sem#3

08:00-09:00 C9S5P18 C8S5P23 Sem#4

09:00-10:00 C16S1P27 C8S1P4 Sem#5

10:00-11:00 C25S5P14 Sem#6

11:00-12:00 C16S2P27 C7S1P17 C12S3P19 C25S6P7 Sem#7

12:00-13:00 C9S4P25 C25S1P7 Sem#8

13:00-14:00 C16S6P12 C7S2P17 C12S4P19 C25S3P16
C2S3P8 C26S1P11 C27S2P24

14:00-15:00 C13S1P9 C25S2P5 C2S4P2 C22S3P13
15:00-16:00 C16S4P28 C10S1P8 C3S4P6
16:00-17:00 C17S1P17 C23S2P1
17:00-18:00 C18S2P20 C20S1P3 C23S3P23
18:00-19:00 C14S2P6 C5S1P9 C24S2P2
19:00-20:00 C14S1P6 C17S2P17 C15S1P15 C22S1P13

Figure 6. Timetable of third strategy for courses in day scheme A: Monday, Wednesday and Friday,
three classes of 1 h per week.

Days Sem#1

Time Tuesday and Thursday Sem#2

07:00-08:30 C9S6P25 C12S2P19 C8S2P4 C11S1P15 Sem#3

C4S4P18 C23S4P1 Sem#4

08:30-10:00 C19S1P27 C9S2P18 C12S1P19 C8S3P23 Sem#5

10:00-11:30 C16S5P28 C8S4P4 Sem#6

11:30-13:00 C16S3P28 C9S3P18 C25S4P16 Sem#7

13:00-14:30 C9S1P18 C6S2P21 C18S1P20 C2S1P2 Sem#8

C1S1P24 C22S2P13
14:30-16:00 C8S6P21 C20S2P3 C23S1P23
16:00-17:30 C2S2P22 C15S3P26 C24S1P10
17:30-19:00 C1S2P22 C27S1P24
19:00-15:00 C15S2P26 C3S2P14

Figure 7. Timetable of third strategy for courses in day scheme B: Tuesday and Thursday, two classes
of 1 h and a half per week.

5.4. Minimizing Hiring Profiles (Professors)

In Figures 8 and 9 the timetables for the two schemes of days are presented for the
application of the fourth strategy. When we solve the problem considering the minimization
of hiring professors Equation (3), the model can assign 75 sections with the number of
available professors and suggests to hire three professors to teach seven courses and eight
professors will have teaching overload. The courses to be assigned to new hires are: three
sections of the course ID3, three sections of the course ID9, and one section of the course
ID24. Compared to the previous strategies, this one consists of assigning sections to new
hires from only three different courses. This can result in similar academic profiles.
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Days Sem#1

Time Monday, Wednesday, Friday Sem#2

07:00-08:00 C19S1P27 C6S1P21 C14S1P6 C2S3P20 Sem#3

C4S4P18 C23S2P23 Sem#4

08:00-09:00 C25S3P14 Sem#5

09:00-10:00 C8S1P3 Sem#6

10:00-11:00 C7S2P17 C12S2P19 C8S3P23 Sem#7

11:00-12:00 C7S1P17 C12S1P19 C25S6P16 Sem#8

12:00-13:00 C16S5P28 C8S5P4
13:00-14:00 C8S4P4 C18S2P2 C26S1P11 C22S2P13
14:00-15:00 C13S1P9 C8S2P23 C2S2P24 C1S2P2

C3S4P10
15:00-16:00 C6S2P21 C20S2P9 C21S1P6 C27S1P15
16:00-17:00 C5S1P9 C26S2P11 C23S4P1
17:00-18:00 C20S1P3 C4S2P18 C23S3P23
18:00-19:00 C18S3P20 C15S2P15 C3S5P10
19:00-20:00 C2S4P24 C23S1P1

Figure 8. Timetable of fourth strategy for courses in day scheme A: Monday, Wednesday and Friday,
three classes of 1 h per week.

Days Sem#1

Time Tuesday and Thursday Sem#2

07:00-08:30 C16S4P28 C9S6P25 C12S4P19 C8S6P4 Sem#3

C17S1P13 C4S3P18 C27S2P24 Sem#4

08:30-10:00 C16S2P17 C12S3P19 C25S4P5 Sem#5

10:00-11:30 C16S1P28 C9S3P25 C10S1P15 Sem#6

11:30-13:00 C16S6P7 C25S5P5 Sem#7

13:00-14:30 C16S3P27 C25S2P16 C11S2P8 C17S2P17 Sem#8

C21S2P6 C22S1P13
14:30-16:00 C9S1P18 C25S1P7 C14S2P6 C1S1P22

C22S3P13
16:00-17:30 C18S1P20 C15S1P26 C3S3P10
17:30-19:00 C4S1P18 C24S1P2
19:00-15:00 C11S1P14 C2S1P8 C15S3P26 C28S1P22

Figure 9. Timetableof fourth strategy for courses in day scheme B: Tuesday and Thursday, two classes
of 1 h and a half per week.

5.5. General Analysis

In the following, it is explained the behavior of each strategy in relation to the dedica-
tion of time of faculty to the mission (AACSB), also the impact of the objective function in
the strategies regarding to new hires.

Table 2 presents the percentages of time dedication to the business school mission
for each faculty qualification categories based on the AACSB standards. The obtained
percentages are calculated for the four strategies established, strategy 1: to minimize the
courses without schedule allowing course overload (base case); strategy 2: to minimize the
courses without schedule and zero teaching overload; strategy 3: to minimize the courses
without schedule and teaching overload; and, strategy 4: to minimize hiring profiles
(professors). The percentage of dedication is obtained from the actual faculty and the new
hires obtained from the application of the strategies.
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Table 2. Percentage dedication of time of faculty to the Mission by strategy.

Strategy SA PA SP IP A

Strategy 1 62% 6% 6% 21% 5%
Strategy 2 57% 6% 9% 23% 5%
Strategy 3 61% 2% 9% 23% 5%
Strategy 4 65% 1% 5% 24% 5%

In general, the percentage of time dedication to the mission for SA faculty states over
40% and the largest value (65%) was obtained with the strategy 4. Strategy 2 results in the
lowest percentage (57%) for SA faculty. The actual faculty in this case has a greater number
of faculty in SA and SP categories, this is why the lowest values in all faculty qualification
categories are for the PA, SP and A categories in all the strategies.

Table 3 shows the distribution of new hires that are needed when one of the four
proposed strategies is implemented. The first strategy minimizing the courses without
schedule allowing course overload needs to hire one professor of SA profile, one professor
of PA profile and two professors of SP profile, while the second strategy minimizing
courses without schedule and zero teaching overload requires one professor PA and five
professors of SP profile. The third strategy minimizing courses without schedule and
teaching overload needs five professors of SP profile and strategy four, minimizing hiring
profiles (professors) needs one professor of SA profile, one professor of SP profile and one
professor of IP profile.

Table 3. Number of new hires needed by strategy.

Strategy SA PA SP IP A

Strategy 1 1 1 2 0 0
Strategy 2 0 1 5 0 0
Strategy 3 0 0 5 0 0
Strategy 4 1 0 1 1 0

As it is seen, the first strategy suggests hiring four professors, less professors than
strategy two or strategy three, due to the objective function that minimizes the courses
without schedule and allows teaching overload, so with this objective, the model will try to
assign more courses to current faculty and hire less professors. On the other hand, strategy
two, requires six professors; in this second strategy, the objective function tries to minimize
the courses without schedule, but here, the teaching overload is not allowed. This is why;
this model suggests hiring more professors than any other strategy, because the teaching
overload is not allowed, so the model assigns only the workload allowed to all faculty
and suggests hiring more professors in order to cover the courses. In the third strategy,
the model suggests hiring five professors; here, the model tries to minimize the aggregation
of courses without schedule and teaching overload, it is important to notice than in this
strategy all new hires are part-time (SP) given the conditions stated in Section 4. Strategy 4,
suggests hiring less professors than any other strategy, due to, the model tries to minimize
the hiring profiles, so, the timetable is created leaving the courses of the same profiles
without schedule in order to hire less professors. The higher number of hire professors in
all strategies is presented in the category SP.

6. Conclusions

This paper proposes an integer programming model to create the timetable of an aca-
demic department considering basic workload and course overload, as well as the profile
and area of knowledge of each professor. The novelty in this paper is the incorporation of
necessary requirements to fulfill the standards of AACSB, the most important accrediting
association for business schools. It is well known that an accreditation as AACSB demands
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qualified faculty in each category and it is preponderant for business schools to have tools
like the proposed here to support the decision making process.

The model was solved with data from a real case utilizing four different strategies that
show the impact of allowing course overload and new hires. In all cases, the requirements
of AACSB were met. This model will be useful to help the administration to select the
best option that aligns with the objectives of the university. In this particular case, it was
identified that the fourth strategy (minimize hires) is one of the best options given that it
reduces the cost of new hires. This is why the course overload is a valuable resource that
contributes to the last mentioned objective.

It is also common for universities that apply course overload to have a policy that
establishes the maximum overload to be assigned to professors according to their hiring
(the course overload implies an additional payment to a full-time professor). Therefore, it
is important to explore the strategies and policies of an institution that impact the course
timetabling and professor assignment.

In order to replicate this model, we suggest to classify the professors into full-time and
part-time and according to the qualification categories (SA, PA, SP, IP, A), and participating
or supporting (required by AACSB); to collect all the information related to the professors
as the number of courses allowed to teach, as well as the courses they can teach according
to their expertise. One important and necessary element is to define the time slots where
the courses can take place.

The number of courses that can not be scheduled will require new hires, but identifying
how many new hires are needed is important to know the knowledge area of the courses to
create some categories of hiring profiles. For example, the courses about decision making
methods, the courses about strategy and others. We divided the total set of disciplinary
courses into disjoint sets to define these new hire profiles. In this sense, the current faculty
can provide a first way to define the hire profiles with the courses that they teach as
a reference.

Finally, it is important to know the strategy that the university wants to follow in
order to use an appropriate objective function or criteria.

As future work, it is contemplated to add the preferences of time slots for faculty
and additional necessities (course language, balancing the number of courses scheduled
in the same time slot, room assignment, etc.). Further, the budget for new hires could be
considered in order to not exceed the academic department budget.
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Abbreviations
The following abbreviations are used in this manuscript:

AACSB Association to Advance Collegiate Schools of Business
UCTP University Course Timetabling Problem
AQ Academic Qualified
P Participating Faculty
S Supporting Faculty
SA Scholarly Academic Faculty
PA Practice Academic Faculty
SP Scholarly Practitioner Faculty
IP Instructional Practitioner Faculty
A Additional Faculty
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Abstract: The structure of this work in the field of queuing theory consists of two stages. The first
stage presents Little’s Law in Multiphase Systems (MSs). To obtain this result, the Strong Law of
Large Numbers (SLLN)-type theorems for the most important MS probability characteristics (i.e.,
queue length of jobs and virtual waiting time of a job) are proven. The next stage of the work is to
verify the result obtained in the first stage.
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1. Introduction

Interest in the field of multiphase queueing systems has been stimulated by the
theoretical values of the results, as well as by their possible applications in information
and computing systems, communication networks, and automated technological pro-
cesses. The investigation methods of single phase queueing systems are provided in [1–3].
The asymptotic analysis of queueing systems in heavy traffic models are of special inter-
est (see, for example, in [4–7]). The papers [8,9] describe the research start of diffusion
approximation relative to queueing networks. Intermediate models—multiphase queue-
ing systems—are considered rarer due to serious technical difficulties (see, for example,
book [10]).

In this paper, we present a survey of articles issued between 2010 and 2021 that inves-
tigate heavy traffic networks. In [11], a multiclass queueing system was investigated—we
consider a heterogeneous queueing system to consist of one large pool of identical servers.
The arriving customers belong to one of several classes, which determines the service
times in the distributional sense. In [12], a class of multiclass networks was analyzed—a
class of stochastic processes known as semi-martingale reflecting Brownian motions is
often used to approximate the dynamics of heavily loaded queuing networks. In [13],
a model of approximation of resource sharing games was developed. In [14], the problem
of scheduling in queueing networks was analyzed. In [15], a model of parallel multiclass
queues was investigated. The model of input queued switch operation was analyzed in [16].
In [17], the stationary distribution was investigated. The authors justified the steady-state
diffusion approximation of a generalized Jackson network in heavy traffic. Their approach
involves the so-called limit interchange argument, which has since become a popular tool
and has been employed by many others who study diffusion approximations. A survey of
stochastic network analysis was presented in [18]. In [19], MapTask scheduling in heavy
traffic optimality is analyzed. In [20], the authors investigate the departure process in
open queuing networks. The delay process is analyzed in [21]. Motivated by the strin-
gent requirements on delay performance in data center networks, the authors study a
connection-level model for bandwidth sharing among data transfer flows, where file sizes
have phase-type distributions and proportionally fair bandwidth allocation is used. In [22],
universal bounds are investigated. In [23], the load balancing policy problem in heavy
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traffic was developed. In [24], the MaxWeight 23 scheduling algorithm is considered. Our
paper on SLLN in MS is one of the first works in this area.

The study of generalized networks can be traced back to their namesake [25,26],
who considered networks with inputs and exponential service times and showed that the
invariant probability for the process has a simple product form. The foregoing assumptions
on the arrival streams and service times were made to greatly simplify the analysis of these
networks. Relaxing these assumptions was the subject of the work by Borovkov [27], where
a model similar to Markovian network is considered. The finite buffer case is treated in
Konstantopoulos and Walrand [28], and general point process arrival streams and general
service processes are considered for networks without feedback [29].

We will next present some definitions in the theory of metric spaces (see, for exam-
ple, [30]). Let C be a metric space consisting of real continuous functions in [0, 1] with a
uniform metric of the following.

ρ̂(m, n) = sup
0≤s≤1

|m(s)− n(s)|, m, n ∈ C.

Let D be a space of all real-valued right-continuous functions in [0,1] having left limits
and endowed with the Skorokhod topology, induced by the metric d̂ (under which D is
complete and separable). Moreover, note that d̂(m, n) ≤ ρ̂(m, n) for m, n ∈ D. In this paper,
we constantly use an analog of the theorem on converging together (see, for example, [30]).

Suppose ε̂ > 0 and Mk, Nk, M ∈ D. If Pr
(

lim
k→∞

d(Mk, M) > ε̂

)
= 0

and Pr
(

lim
k→∞

d̂(Mk, Nk) > ε̂

)
= 0, then Pr

(
lim
k→∞

d̂(Nk, M) > ε̂

)
= 0.

(1)

There is one service device in each phase of the MS; the service discipline is FCFS (i.e.,
first come, first served). Service time distribution and the incoming flow of jobs to the first
phase of the MS are both common. We investigate here an x-phase MS (i.e., when a job is
served in the ith phase of MS, it proceeds to the i + 1 phase of MS, and it leaves MS after the
job has been served in the x-phase of MS). Let us denote the time of arrival of the kth job by
tk. The service time of the kth job in the ith phase of MS is denoted by S(i)

k ; Zk = tk+1 − tk.

Let us introduce mutually independent renewal processes mi(t) = {max
x

x
∑

j=1
S(i)

j ≤ t},

e(t) = {max
x

x
∑

j=1
Zj ≤ t} (number of jobs that arrive at MS until the time moment t).

Next, we denote the number of jobs by σi(t) after service departure from the ith phase
of MS until the time t; the queue length of jobs by Qi(t) in the ith phase of MS at the time
moment t; ui(t) = ∑i

j=1 Qj(t), i = 1, 2, . . . , x, and t > 0.

Let inter-arrival (Zk) at MS and service times (S(i)
k ) in each phase of MS for i =

1, 2, . . . , x be mutually independent and identically distributed random variables.
Define αi = (ES(i)

k )−1, α0 = (EZk)
−1, βi = α0 − αi, β0 = 0, m̂i(t) = e(t) − mi(t),

i = 1, 2, . . . , x, t > 0.
Suppose the following condition to be satisfied α0 > α1 > · · · > αx > 0. Then, the

following is the case.
βx > βx−1 > · · · β1 > 0. (2)

2. SLLN for the Queue Length of Jobs in MS

One of the main results of this paper is a theorem on SLLN for the summary length of
jobs in MS.

Theorem 1 (SLLN for the summary length of jobs in MS). If conditions (2) are fulfilled, then
the following is the case.

25



Mathematics 2021, 9, 2282

(
V1(s)

s
;

V2(s)
s

; . . . ;
Vx(s)

s

)
⇒ (β1; β2; . . . ; βx).

Proof. The relations of the following:

Qi(s) = σi−1(s)− σi(s), (3)

Qi(s) = fs(σi−1(·)−mi(·)), (4)

Qi(s) = fs(m̂i(·)−
i−1

∑
j=1

Qj(·)) (5)

are obtained for i = 1, 2, . . . , x, s > 0, and fs(m(·)) = m(s)− inf
0≤p≤s

m(p) (see [31]).

In view of (3)–(5), we find that the following is the case:

vi(s) = m̂i(s)− inf
0≤p≤s

(m̂(p)− vi−1(p)), (6)

for i = 1, 2, . . . , x, s > 0.
Next, using (6) for ni(t) = vi(t)− m̂i(t), we obtain the following:

ni(t) ≤ sup
0≤p≤t

n(p) ≤ sup
0≤m≤t

(− inf
0≤n≤m

(m̂i(n)− vi−1(n)))

= sup
0≤p≤t

( sup
0≤p≤m

(vi−1(p)− m̂i(p))) ≤ sup
0≤p≤t

(vi−1(p)− m̂i(p))

= sup
0≤p≤t

(vi−1(p)− m̂i−1(p) + m̂i−1(p)− m̂i(p))

= sup
0≤p≤t

(ni−1(p) + m̂i−1(p)− m̂i(p)) ≤ sup
0≤p≤t

ni−1(p) + sup
0≤p≤t

(m̂i−1(p)− m̂i(p))

≤ · · · ≤
i

∑
j=1

sup
0≤p≤t

(m̂j−1(p)− m̂j(p)) ≤
x

∑
j=1

sup
0≤p≤t

(m̂j−1(p)− m̂j(p)),

(7)

where i = 1, 2, . . . , x, t > 0.
Hence, we obtain the following:

vi(s) < m̂i(s) +
x

∑
j=1

sup
0≤p≤s

(m̂j−1(p)− m̂j(p)), (8)

for i = 1, . . . , x, s > 0.
Thus, for any i (i = 1, 2, . . . , x), we obtain the following.

vi(p) =
i

∑
l=1

Ql(p) =
i

∑
l=1

[σl−1(p)− σl(p)] ≥ e(p)− σl(p) ≥ e(p)−mi(p) = m̂i(p), (9)

From (8) and (9), we obtain the following:

|vi(s)− m̂i(s)| ≤
x

∑
j=1

sup
0≤p≤s

(m̂j−1(p)− m̂j(p)), (10)

for i = 1, . . . , x, s > 0.
For ε̂ > 0, we derive the following:

Pr
(∣∣∣∣

vi(s)
s
− β̂i

∣∣∣∣ > ε̂

)
≤ Pr

(∣∣∣∣
m̂i(t)

s
− β̂i

∣∣∣∣ >
ε̂

2

)
+ Pr

(∣∣∣∣
vi(s)− m̂i(s)

s

∣∣∣∣ >
ε̂

2

)

≤ Pr
(∣∣∣∣

m̂i(s)
s
− β̂i

∣∣∣∣ >
ε̂

2

)
+

x

∑
j=1

Pr




sup
0≤m≤t

(m̂j−1(m)− m̂j(m))

s
>

ε̂

2 · x


,

(11)
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where i = 1, . . . , x, s > 0.
Note that sup

0≤m≤s
(m̂i−1(m)− m̂i(m))/s ≥ 0 for i = 1, . . . , x. In addition, note that the

following is the case:

lim
s→∞

m̂i−1(s)− m̂i(s)
s

= β̂i−1 − β̂i < 0 (12)

almost everywhere for i = 1, . . . , x (see [31]). Thus, similarly as in [31], we prove that the
second item in (11) also tends to zero.

Thus, we obtain that for ε̂ > 0, the following is the case.

lim
s→∞

Pr
(∣∣∣∣

vi(s)
s
− β̂i

∣∣∣∣ > ε̂

)
= 0, i = 1, . . . , x. (13)

Using the convergence together theorem (see, for example, [30] and (13)), we complete
the proof of the theorem.

The theorem on SLLN for the queue length of jobs is proved similarly as Theorem 1.

Theorem 2 (SLLN for the queue length of jobs in MS). If conditions (2) are fulfilled, then the
following is the case.

(
Q1(s)

s
;

Q2(s)
s

; . . . ;
Qx(s)

s

)
⇒ (β̂1; β̂2 − β̂1; . . . ; β̂x − β̂x−1).

Proof. Using (13), we derive the following:
∣∣∣∣
Qi(s)

s
− (β̂i − β̂i−1)

∣∣∣∣ ≤
∣∣∣∣
vi(s)

s
− β̂i

∣∣∣∣+
∣∣∣∣
vi−1(s)

s
− β̂i−1

∣∣∣∣, (14)

where i = 1, . . . , x, s > 0.
Using the convergence together theorem (see, for example, [30] and (14)), we complete

the proof of the theorem.

3. SLLN for the Virtual Waiting Time of a Job in MS

In this section, we present the proof of Little’s formula in MS. The main tools in
proving this fact are SLLN for the queue length of jobs and the virtual length of a job in MS.

Definitions of the random variables tk, Zk, S(i)
k , e(t), and mi(t) for i = 1, 2, . . . , x are

the same as in the proof of Theorems 1 and 2. Let us define β̄i = ES(i)
k , β̄0 = EZk, and

ᾱi =
β̄i

β̄i−1
− 1 for i = 1, 2, . . . , x. Assume that condition (2) is fulfilled. Therefore, ᾱi > 0

for i = 1, . . . , x.
In addition, let us define Vi(t) as a virtual waiting time of a job in the ith phase of MS

at time t. Denote Si(s) as the time, that is, the summary service of jobs arriving at the ith
phase of MS until time t for i = 1, . . . , x and s > 0.

Note that Si(s) = ∑
σi−1(t)
j=1 S(i)

j for i = 1, . . . , x and s > 0.

Moreover, let ni(s) = Si(s)− s, fs
(
n(· )

)
= n(s)− inf

0≤m≤s
n(m), n̂i(s) = ∑

mi−1(s)
j=1 S(i)

j −
s, m0(s) = e(s) for i = 1, . . . , x, s > 0.

If Si(0) = Vi(0) = 0, then the following is the case (see [1], p. 41).

Vi(s) = fs(ni(· )) for i = 1, . . . , x and s > 0

Thus, we prove a theorem about SLLN for the virtual waiting time of a job in MS.

Theorem 3 (SLLN for the virtual waiting time of a job in MS). If conditions (2) are fulfilled,
then the following is the case.
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(
V1(s)

s
;

V2(s)
s

; . . . ;
Vx(s)

s

)
⇒ (ᾱ1; ᾱ2; . . . ; ᾱx).

Proof. Using the estimation, we obtain for each fixed η̂ > 0 that the following is the case:

Pr
(∣∣∣∣

Vi(s)
s
− ᾱi

∣∣∣∣ > ε̂

)
= Pr

(∣∣∣∣
fs(ni(·))

s
− ᾱi

∣∣∣∣ > ε̂

)

≤ P
(∣∣∣∣

fs(ni(·))
s

− fs(n̂i(·))
s

∣∣∣∣ >
ε̂

2

)
+ Pr

(∣∣∣∣
fs(n̂i(·))

s
− µi

∣∣∣∣ >
ε̂

2

)

≤ Pr
(∣∣∣∣

ni(s)− n̂i(s)
s

∣∣∣∣ >
ε̂

4

)
+ Pr

(∣∣∣∣
fs(n̂i(·))− n̂i(s)

s

∣∣∣∣ >
ε̂

4

)

+ Pr
(∣∣∣∣

n̂i(s)
s
− ᾱi

∣∣∣∣ >
ε̂

4

)
≤ Pr

(∣∣∣∣
ni(s)− n̂i(s)√

s

∣∣∣∣ >
ε̂

4

)

+ Pr



| sup

0≤m≤s
(−n̂i(m))|

s
>

ε̂

4


+ Pr

(∣∣∣∣
n̂i(s)

s
− ᾱi

∣∣∣∣ >
ε̂

4

)

≤ Pr
(∣∣∣∣

ni(s)− n̂i(s)√
s

∣∣∣∣ >
ε̂

4

)
+ Pr




∣∣∣∣∣ sup
0≤m≤s

(−n̂i(m))

∣∣∣∣∣
s

>
ε̂

4




+ Pr
(∣∣∣∣

n̂i(s)
s
− ᾱi

∣∣∣∣ >
ε̂

4

)
,

(15)

for i = 1, 2, . . . , x and s > 0.
Thus, we achieve that for each ε̂ > 0:

Pr
(∣∣∣∣

Vi(s)
s
− ᾱi

∣∣∣∣ > ε̂

)
≤ Pr

(∣∣∣∣
ni(s)− n̂i(s)√

s

∣∣∣∣ >
ε̂

4

)

+Pr




∣∣∣∣∣ sup
0≤m≤s

(−n̂i(m))

∣∣∣∣∣
s

>
ε̂

4




+ Pr
(∣∣∣∣

n̂i(s)
s
− ᾱi

∣∣∣∣ >
ε̂

4

)
,

(16)

i = 1, . . . , x and s > 0.
Since it is proven ((12)), the following is the case.

Pr
(

lim
s→∞

∣∣∣∣
ni(s)− n̂i(s)√

s

∣∣∣∣ > ε̂

)
= 0, i = 1, . . . , x. (17)

Thus, the first item in inequality (16) tends to zero (see (17)). In addition, we prove
that the second item in inequality (16) also tends to zero (see, for example, [4]) (if conditions
(2) are fulfilled). Therefore, we apply the limit theorem for a complex renewal process (see,
for example, [5]). Thus, the third item in inequality (16) also tends to zero.

We have proven that all of the items on the inequality (16) converge to zero. Thus, we
achieve that for each fixed ε̂ > 0, the following is the case.

Pr
(

lim
t→∞

∣∣∣∣
Vi(s)

s
− ᾱi

∣∣∣∣ > ε̂

)
= 0, i = 1, . . . , x. (18)

Using the convergence together theorem (see, for example, [30] and (18)), we complete
the proof of the theorem.
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Finally, we derive the corollary of proved theorems (Little’s formula). The formula
L = λW (Little’s law) expresses the fundamental principle of queueing theory: Under very
general conditions, the time-average or expected time-stationary number of customers in
a system, L (e.g., the average queue length), is equal to the product of the arrival rate A
and the customer-average or expected customer-stationary time each customer spends
in the system, W (e.g., the average waiting time). The relation L = λW is very useful
because the assumptions are minimal; it applies to other stochastic models in addition to
queues; it applies to queueing networks and subnetworks as well as individual queues;
it applies to subclasses as well as the entire customer population; and it is remarkably
independent of modelling details, such as service disciplines and underlying probability
distributions. Moreover, there are extensions of L = λW - the continuous, distributional,
ordinal and Central Limit Theorem versions, that enable us to analyze many seemingly
unrelated problems.

Corollary 1 (Little’s formula in MS). If conditions (2) are fulfilled, then the following is the case.

lim
s→∞

Qi(s)
Vi(s)

⇒ (β̂i − β̂i−1)

ᾱi
, i = 1, . . . , x.

Proof. At first, we used Theorems 2 and 3 on SLLN for the queue length of jobs and virtual
waiting time of a job in MS.

Thus, the following is the case.

lim
s→∞

Qi(s)
Vi(s)

= lim
s→∞

Qi(s)
s

Vi(s)
s

⇒ (β̂i − β̂i−1)

ᾱi
, i = 1, . . . , x. (19)

The proof is complete.

4. Simulation
4.1. Overview of Similar Simulations

We have investigated many articles in order to find a similar simulation. Although
we found many articles on the same topic (MS), only a few of them described the precise
simulation. While investigating a similar simulation in many articles, model descriptions
have been found but most of them only described the theoretical model using formulas
and algorithm block schemes.

Nevertheless, a few software models or simulations have been found. The simulations
that we found can be divided into two groups: (1) simulations made with particular
software packages; and (2) simulations created as programs using programming languages
and/or other programming tools. We can observe that these two directions of research are
developing successfully (here, we can mention the recent work on modeling retrial queue
systems [32–34], etc.).

In [35], the intelligent management system and the expert system are described.
The authors describe the architecture of these systems, but no code or other details were
provided. In [36], the authors apply SimEvents MATLAB-Simulink and describe the block
scheme of their model. However, no programming code or details were provided.

In [37], the authors reviewed the popular simulation software, such as GPSS World,
AnyLogic, and Arena environments. In the authors’ opinion, these software packages
could make any simulation process very long and expensive because they are not optimal
for such a simulation and are mostly used for business process simulations. In addition,
most of them are commercial. Therefore, the authors decided to use their own neural
network model, but no details were provided.

In [38], a real simulation model created using the Python programming language was
described. The authors also provided the programming code. This simulation is described
in detail, and all of the Python libraries that were used are provided.

29



Mathematics 2021, 9, 2282

After this review, some conclusions can be drawn:

1. Commercial models do not meet the requirement to make MS simulations. In addition,
they are usually expensive.

2. None of the provided models meets the requirement to make all of the necessary
simulations and experiments.

Consequently, we decided to create our own model that fits all of the requirements,
can run on one computer and any operating system, and works in multi-threading mode.

4.2. Simulator

To implement the experiment, a Multiphase Queueing System (MS) simulator was
created. The Python programming language (version 3.6.9) and its multiprocessing pro-
gramming library were used. The simulator runs on any operating system that supports the
Python programming language. The main new features of this simulator are the following:

• Real asynchronous processes that are not dependent on each other;
• Possibility to stop simulation at a particular time and not only when all clients are

served (as [38]);
• Possibility to measure any moment of time:

– Client enters MS tk (and also Zk = tk+1 − tk – time between two clients’ arrival);
– Waiting time Vi of each client in every queue;
– Service time S(i)k of client k in the ith service of the queue;
– Amount of clients Qi(t) in each queue after time t (when the process stopped

after time t);

• Client proceeds to the consumer process not only after it pass all services (as [38]) but
also immediately if MS stopped after the specified time t;

• All of the values to be measured are stored in synchronized variables for eliminating
their undefined states (some issues could appear because of the operating system, the
Python programming language, or hardware errors);

• Each service really stops after all of the clients pass away or after the specified time t;
• Clients enters the consumer process from any place of MS if it stops after the specified

time t. For example, a client cannot pass all of the services or could even be in a
waiting queue for one of the services;

• All of the calculations are performed, and only then is MS stopped or when all the
clients pass through or after the specified time ends.

As shown in Figure 1, the simulator has input (producer process) and output (con-
sumers process) storage and I (configurable) phases in the queue between them. K (con-
figurable) clients created by producer process with random (configurable) time interval
between them proceed to the first phase and then, after they have been served there, they
proceed to the next phase. Each phase has its own serving time and waiting time before
serve. The process continues until the last queue is stopped, after which the client comes to
the consumer process.

The main difference in this model is the possibility to stop the simulation after a par-
ticular time t (configurable) interval. Imagine that somebody wants to stop the simulation
after time t. Then, after the specified time, all of the phases are stopped in the state that they
are in and the consumer process collects all of the clients from all of the phases. Here, all
the calculations could be performed, including client number in the phase at the moment t.

In this simulation, when it finishes after the specified time t, all clients have their own
states and other information, such as the following:

• All times between jobs’ arrivals to MS;
• All service times of all jobs in all queues (where they had time to gain);
• All jobs waiting times in all queues and the number of jobs in all queues at time t

(when the simulation stopped).
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Figure 1. Algorithm of the simulation model.

All of the measurable parameters of the model are listed in Table 1.

Table 1. Model parameters.

Parameter Description

tk Client’s k arrival to MS time
Vi Client’s waiting time before service in the ith phase
Si Client’s service time in the ith phase
Qi Clients amount in the ith phase at the moment t

After the model stops, the consumer process performs all of the computations for the
values listed in Table 2.

Table 2. Computational parameters of the model.

Parameter Description

E(Vi) Estimated waiting time before service in the ith phase
E(Si) Estimated service time in the ith phase
Qi/t Clients amount in the queue i at time t, divided by t
Zk+1 Estimated time between two clients entering MS
E(Z) Estimated time between clients on entering MS

4.3. Experiment

The experiment results were obtained using this simulation with the
following parameters:

• Time interval of 15 s (measurements were made each second from 1 to 15);
• Five phases in MS;
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• 100,000 clients received from the producer.

During the experiment, the MS system was stopped at each second, and all of the
calculations were made. In each phase, the following is the case:

• Q1–Q5—numbers of clients in all five phases divided by t;
• E(V1)–E(V5)—estimated waiting times in each phase are calculated and divided by t;
• Q1/V1–Q5/V5 ratios for each phase are calculated.

The list of hardware and software used in the experiment is provided in Table 3.

Table 3. Hardware and software used in the experiment.

OS Linux Mint, Linux PC 5.4.0-62-generic #70-Ubuntu
SMP Tue Jan 12 12:45:47 UTC 2021 ×86_64 ×86_64
×86_64 GNU/Linux

Python programming
language

Python 3.6.9 (default, 18 April 2020, 01:56:04)
[GCC 8.4.0] on Linux

Python libraries multiprocessing, time, random, numpy, sys, asyncio,
matplotlib, pylab, matplotlib.pyplot, math, ctypes

IDE Visual Studio Code

Processor Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz

Memory 32747MB (17387MB used)

Storage ATA Samsung SSD 860

Video adapter NVIDIA GeForce GTX 1080 Ti/PCIe/SSE2

The results of calculation ratios Q1/V1, Q2/V2, Q3/V3, Q4/V4, and Q5/V5 in 1–15 s
simulations are provided in Table 4.

Table 4. Results of ratio calculation.

t, s Q1/V1 Q2/V2 Q3/V3 Q4/V4 Q5/V5

1 0 0 0 0 0
2 15,783.208889 7713.886687 10,173.894957 8327.816417 4849.444553
3 16,158.595911 24,539.397682 3903.148301 12,644.343116 7150.621767
4 7150.621767 14,994.150418 4764.470185 9563.342329 9489.530662
5 16,618.375117 11,304.161697 24,609.465659 11,133.676329 7467.462789
6 16,349.095476 16,200.135701 10,906.525734 21,445.316714 7687.643707
7 16,540.717478 10,413.616874 17,795.190157 11,758.146436 9688.644638
8 17,363.635526 11,608.885913 13,812.022670 14,145.828118 8471.549574
9 19,027.493286 15,717.070406 19,310.638918 13,772.830493 14,585.097103
10 17,339.523710 11,679.801550 14,368.463078 12,014.946867 10,045.985695
11 20,742.679577 23,891.867419 15,796.962250 17,233.303617 18,584.620158
12 17,426.702838 84,383.182448 12,677.306401 11,978.191479 8637.416323
13 19,019.020194 16,494.458220 21,366.420617 20,901.589822 26,116.328410
14 0 0 0 0 0
15 0 0 0 0 0

The ratios mentioned in Table 4 are provided in Figures 2–6, respectively.
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Figure 2. Ratio of Q1/V1.

Figure 3. Ratio of Q2/V2.

Figure 4. Ratio of Q3/V3.
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Figure 5. Ratio of Q4/V4.

Figure 6. Ratio of Q5/V5.

4.4. Description of the Results

As described in the theory, each Qi/E(Vi) ratio should converge into a constant. This
was an expected result—each Qi/E(Vi) ratio after some period of time converges into
a constant value or becomes almost stable after some period of time and remains fairly
stable for a certain period of time. In the theory, we have an infinite flow of clients, really
independent phases, and infinitely large computational resources. In other words, we
really have the ideal conditions and no faults or errors.

In reality, this model runs on one computer where there is one processor with real and
virtual cores, memory, and storage limits. Under these conditions, some unstable work
of the system is present because it is impossible to eliminate all of the faults and errors.
A more important point is that the computer’s operating system shares resources between
processes using its own algorithms, and it can be difficult to allocate the required amount
of hardware resources to a particular process.

Another significant problem is the lack of resources, which produces some limitation
for any model work (e.g., to have an infinite flow of jobs). Each phase could also be
“clogged” with clients when another one is waiting for them. In addition, during the
experiment, other restrictions appeared in the current configuration. For example, in theory
we need to use the infinite number of clients, but in reality using even 1,000,000 is difficult.

In the real condition, there are some faults and errors in multi-threading libraries when
using the Python programming language, and there are some undefined states. Some other
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mistakes could appear due to the calculation accuracy and time measurement because
approximations are used. The lack of resources especially affects measurements of time
because the system could lag.

The most expected result is to find a stable interval for every phase where the equilib-
rium of model load and theoretical conditions are satisfied and to create the experiment
where all listed theorems could be checked. A stable time interval should be found for each
ratio, in this interval the ratio of Qj/E(Vj) should be the same or very similar.

All of the calculation results for each ratio are listed above. In every chart of each ratio,
we can observe the state and the time when the ratio becomes stable or changes a little.
Each phase becomes a stable state at a different time period. This could happen because of
different times of the critical load and also because of no load for each phase.

For example, the first ratio Q1/E(V1) becomes stable after 2 s (4 s value is an issue)
and remains stable until 13 s. The second ratio is more stable from 3 to 11 s, the third
from 6 to 12, the fourth from 7 to 12, and the fifth is more stable at the beginning but less
stable at the end. It is difficult to find a stable period for the fifth (or last) phase because it
becomes clogged after all of the other phases are empty or almost empty. When a large
flow of clients arrives, the period of stability should begin, but the phase becomes empty
very soon. In addition, for this configuration, all clients pass MS at the 14th second, and all
phases become empty.

This experiment result shows that each phase has its own stability period; thus, it could
be considered that the ratio of Qj/E(Vj) converges to a constant, as proved in the theory.

Corollary 2 (Validation of Little’s formula in MS). At this stage of the work, we confirm that
the results of the first stage are correct.

5. Concluding Remarks

• We observe that the heavy traffic condition used in the proof of the theorems on SLLN
is fundamental. Abandoning this condition makes the proof of the theorems very
complicated. In the future, it would be interesting to examine the situation under
light traffic.

• By using another method to prove theorems and normalizing boundary processes
differently than compared to SLLN (e.g., probability limit theorems or the law of the
iterated logarithm—but this is implicated only in the single-phase case, and there is
no research in the multiphase case), Little’s law becomes the successful process or
becomes its law of the iterated logarithm analog. With SLLN, the boundary process is
constant—this process can be modeled.

• The theoretical results cannot be directly verified by modeling them, which is evi-
denced by the modeling block diagram. Modeling has its own explicit specifics; thus,
a comprehensive review of the literature in this area was required.

• The ideas of the modeling part are related to the often cited work [38]. In this work,
for the first time, the modern possibilities of the Python programming language were
applied in order to model the queuing system. Continuing this topic, the Python
concept was used to test the theoretical results of the first stage.

• The first and second parts of this paper deal with similar but completely separate
subject areas. As much as possible, efforts were made to bring them closer together
and to present them as a single study.
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Abstract: The idea of hybrid approaches have become a powerful strategy for tackling several
complex optimisation problems. In this regard, the present work is concerned with contributing
with a novel optimisation framework, named learning-based linear balancer (LB2). A regression
model is designed, with the objective to predict better movements for the approach and improve
the performance. The main idea is to balance the intensification and diversification performed by
the hybrid model in an online-fashion. In this paper, we employ movement operators of a spotted
hyena optimiser, a modern algorithm which has proved to yield good results in the literature. In
order to test the performance of our hybrid approach, we solve 15 benchmark functions, composed of
unimodal, multimodal, and mutimodal functions with fixed dimension. Additionally, regarding the
competitiveness, we carry out a comparison against state-of-the-art algorithms, and the sequential
parameter optimisation procedure, which is part of multiple successful tuning methods proposed
in the literature. Finally, we compare against the traditional implementation of a spotted hyena
optimiser and a neural network approach, the respective statistical analysis is carried out. We
illustrate experimental results, where we obtain interesting performance and robustness, which
allows us to conclude that our hybrid approach is a competitive alternative in the optimisation field.

Keywords: metaheuristics; machine learning; hybrid approach; optimisation

1. Introduction

In recent years, the constant increase in complexity of the problems to be solved in
the industry and academy have raised the necessity to further improve and evolve new
techniques. In this context, hybrid approaches have been a standard and focus of multiple
works. They have proved to be the most successful strategy in terms of solving capacity
tackling hard optimisation problems [1]. In modern approaches, the use of randomised
optimisation methods have been the focus of work by the scientist community, a well-
known example are the metaheuristics. They have been successfully used to solve large
instance of complex and difficult optimisation problems, being useful when exact methods
are unable to provide solutions in a reasonable amount of time [2]. Usually, in the design
behind an algorithm, we find multiple complex items which are in charge of carrying out
the work in order to solve optimisation problems [3]. Inherent features, like intensification
and diversification [4–6], which are in control on how the approach can exploit and explore
the search space, respectively. Additionally, parameters and search components, such
as population, probabilities, search operators, initial solutions, and so on, comprehend
important family items in the work of an approach. In order to be intelligent, an agent which
works in a changing environment should have the ability to learn [7]. If the approach can
learn and adapt, we do not need to foresee and provide solutions for all possible situations
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which may appear on run-time. Machine learning, being part of artificial intelligence,
encircle a number of algorithms with the aim to optimise a performance criterion using
example data or past experience [8–10]. A well-known style of learning is the supervised
learning, which is mainly composed by learning functions with the aim of predict values,
and some of his classical objectives are regression and classification [11].

In this paper, we examine whether a formal relationship between an effective balance
of intensification and diversification, influenced by a regression model, and a classic
configuration of a metaheuristic exists, and whether it is sufficiently strong to be exploited
for an automated framework. Most metaheuristics operate in a sequential, iterative, and
in a previously designed manner, but the environment where they operate usually has
a dynamic nature. Additionally, they are stochastic algorithms, which comprehends
deterministic and random components. The stochastic components can take many forms,
such as simple randomisation by randomly sampling the search space or by random walks.
Thus, the randomness brings certain degree of uncertainness in the search. For instance,
if an agent just finished performing an intensification movement, and the next step in
the process performs a diversification movement, it has no certainty on reaching a better
neighbourhood. In Figure 1, we illustrate a graphic example of a situation where a white
agent needs to make a move; we aim to help the agent to have higher possibility to reach a
green dot (possible best solution) or a yellow dot (less possible best solution) than a red
dot (bad solution). The objective in the design of this framework is to let the approach
learn how to orchestrate the work performed by the agents in every iteration, hence, we
enforce the decision making of the approach and make him learn from previous iterations
on run-time. In this regard, two components are designed: movements operators; in this
work we employ movements from the spotted hyena optimiser (SHO) algorithm [12], and
a regression model. First, SHO is an interesting modern metaheuristic, which has proved
to yield good results in solving optimisation problems [13,14]. It is mainly based in the
grouping behaviours of a special type of Hyena, where the strong point in the algorithm is
the clustering features of the agents searching in the solution space. On the other hand,
the learning model, is where the central axis of the work is completed by linear regression
analysis. The work is completed as follows: dynamic data generated by the agents through
iterations will be managed by the learning model. In this context, each time a threshold
amount of iteration is met, a regression analysis is carried out by the learning model.
Thus, the search will be influenced by the resulting knowledge from the previous learning
process.

The efficiency of LB2 proposed in this research is evaluated in three phases by solving
15 well-known mathematical optimisation problems. The employed benchmark concerns
unimodal, multimodal, and mutimodal functions with fixed dimension. Additionally,
these continuous functions comprehends multiple features, such as being convex, non-
differentiable, unconstrained, and so on. Regarding the experimentation phases, we
compare our results with state-of-the-art optimisation methods, such as particle swarm
optimisation (PSO) [15], gravitational search algorithm (GSA) [16], differential evolution
(DE) [17], whale optimisation algorithm (WOA) [18], vapour–liquid equilibrium (VLE)
[19], and an hybrid between Nelder–Mead algorithm and dragonfly algorithm (INMDA)
[20]. In the second phase, we compare against sequential parameter optimisation (SPO)
[21]. The key work in SPO is performed by a prediction model, bringing improvements
in the parameters values and algorithm performance in an iterative scheme. Third, we
carry out a statistical evaluation of the results obtained by the traditional implementation
of SHO, neural network (NN) [22], sine cosine algorithm (SCA) [23], and our proposed
hybrid approach. Finally, we illustrate interesting experimental results, where the proposed
hybrid approach achieves good performance proving to be a good and competitive option
to tackle continuous optimisation problems.

The rest of this paper is organised as follows. The related work is introduced in the
next section. The proposed hybrid approach is explained in Section 3. Section 4 illustrates
the experimental results. Finally, we conclude and suggest some lines of future research.
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Less possible 
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Figure 1. Graphic example of the search space illustrating green dots possible best solutions, yellow
dots less possible best solutions, and red dots bad solutions.

2. Related Work

This work proposes a learning-based hybrid approach, where the main feature is the
capability to influence the search performed by the agents ruled by the movements of
SHO. Therefore, following the taxonomy illustrated by Talbi in [24], our proposed work
can be described as a low-level teamwork hybridisation. Concerning the works reported in
the literature between machine learning and metaheuristics [8,25], it is well-known that
this relationship is not a one-way street, we do not have only approaches were machine
learning techniques assist and enhance metaheuristics, but also the other way around:
machine learning models improved by metaheuristics, is a much consolidated group in
the hybridisation field [26–30]. This paper is concerned with the first group, where novel
approaches have been proposed, such as [31], where a diversification-based learning (DBL)
framework is proposed. DBL is designed under families of components introduced in the
field of metaheuristics and machine learning that have broad applications in optimisation.
Additionally, a novel approach based on two well-known components is presented in [32],
an hybrid between intelligent guided adaptive search (IGAS) and path-relinking algorithm,
named IGASPR. The main learning phase is ruled by the means of growing neural gas
(GNG), the objective is to influence the construction of solutions controlling the features
of the best solutions in each iteration. Concerning proposed works under the influence
of regression analysis, [33] illustrates a data mining based approach for PSO. The main
ideas behind that contribution is that the parameter selection task can appropriately be
addressed by a data mining-based approach. The designed model employs a regression
analysis by means of non-linear regression models, the main objective is to learn suitable
parameters values from previous moves for PSO on run-time. In this field, this type of
scheme is also known as specifically-located hybridisation and it is concerned with the
parameter control strategies. In the literature, [34] also employ this type of hybridisation.
The authors propose an hybrid employing Tabu search (TS) and support vector machine
(SVM). The proposed approach is designed to tackle on hard combinatorial optimisation
problems, such as knapsack problem, set covering problem, and the travelling salesman
problem. The main task concerns the selection of decision rules from a corpus of solutions
generated in a randomly fashion, which are used to predict high quality solutions for a
given instance and it is used to fine-tune and guide the search performed by TS. However,
it is stated by the authors that the complexity of the approach is a key factor, they highlight
the time consumed and knowledge necessarily needed to implement, the process to build
the corpus, and the extraction of the classification rule. On the other hand, regarding
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hybrid specialising in intensification and diversification, to the best of our knowledge there
was none under the influence of a regression model. However, in [25], the feasible options
on intensification employing clustering [35] and frequent itemsets using association rules
[36,37] are illustrated. Regarding diversification, the use of clustering [35], self-organising
maps (SOM) [38], and binary space-partitioning (BSP) trees [39] have proved to be good
options balancing this issue in different approaches.

The LB2 proposed in this work draws inspiration by the following arguments. Firstly,
the scarce literature concerning machine learning mainly associated to regression model
assisting metaheuristics. Second, most approaches are problem-dependant, for instance,
in [32], the problem to be tackled by the regression model is the selection of best fitted
parameters for PSO in order to improve the performance. It is a good exploratory and
pioneer approach considering this attempt to be on run-time. However, the uncertainty in
extrapolating this specifically-located implementation to other approaches is high, espe-
cially taking into account the "no free lunch" theorem. Therefore, our proposition focus in
two major issues when designing a global search method, diversification, and intensifica-
tion. Thus, if we analyse the metaheuristic field, they are general features who are always
present. Third, the technique selected is a highly relevant issue. It is stated and explained
by authors, in [33], the level of complexity is an issue to take into account in the design
of the hybrid. Thus, we think this issue may have an impact replicating the results and
extrapolating the implementation to an unknown environment. In this context, we employ
classic techniques, where the novel mechanism are the clear advantages provided by our
proposed hybrid approach.

3. Proposed Hybrid Approach

In this section we present the proposed LB2 framework, we discuss the main ideas
in the design, motivations, and inspiration behind the proposed approach. Firstly, in
order to carry out the search in the solution space, the strategy employed is inspired by
population-based metaheuristics. The main idea is to perform using a set of agents who
evolve under the influence of multiple equations, known as movement of operators. In
this regard, they are usually classified as intensification and diversification concerning the
work performed, exploitation or exploration of the search space. In this work we employ
SHO and his four movement operators, where each hyena is currently an agent in the
framework.

The second answer proposed is concerned with the component in charge of the
regression analysis. In this first attempt to design LB2 the main concern was the complexity
of the employed technique [40,41]. In this regard, multiple techniques and methods to carry
out a regression analysis [42], such as linear models, SVM, and decision-tree-based models.
Thus, a linear model was selected because it is the most commonly used, and all other
regression methods build upon an understanding on how linear regression works [43,44].
Nevertheless, the regression model can potentially evolve in a more complex component, a
more detailed explanation is presented in Section 5.

The global conceptualisation of the proposed hybrid is illustrated in Figure 2. It
is based in the behaviour of multiple agents with the same attributes, also known as
population. They are controlled by the movements of SHO, influenced and balanced by the
learning-based model. A general description is presented in Section 3.1. The methodology
and detailed explanation of the proposed approach is explained in Section 3.2. In Section 3.3,
the population-based metaheuristic is presented, and the proposed algorithm is illustrated
in Section 3.4.
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Figure 2. Graphic example of the search process.

3.1. General Description

The proposed LB2 follows a population-based strategy, which concerns multiple
agents evolving in the solution space, intensification and diversification are performed,
and the process is terminated when a threshold amount of iteration is met. Dynamically
adjusting the configuration and behaviour is an important topic that continues to be of
growing interest. This work, in order to carry out the search, proposes two components:
scheme and β. Firstly, the scheme is concerned with the amount of intensification and
diversification to be performed in each iteration by the population. Regarding β, it is a
parameter employed as the threshold where the learning model needs to carry out the
regression analysis. The knowledge generated will be used to influence the selection
mechanism, which manages the scheme that needs to be performed. In this regard, the
selection will dynamically rule over the work of each agent, indicating the amount of
exploration and exploitation to carry out in the search space. The proposed steps of the
proposed LB2 are described as follows:

Step 1: Set parameters concerning the population-based algorithm: B,E,h, termination
criteria for the search.
Step 1.1: Set termination criteria for the search: set amount of iterations to perform LB2.
Step 2: Set parameters concerning the learning model: scheme, probabilities, β.
Step 2.1: Set schemes for intensification and diversification.
Step 2.2: Set the probabilities for each scheme to be selected by the selection mechanism.
Step 2.3: Set the value for threshold β.
Step 3: Generation of the initial population size to perform in the search.
Step 4: while the termination criteria is not met.
Step 5: For each agent:
Step 5.1: Selection mechanism on intensification: the scheme is selected and the exploitation
is carried out.
Step 5.2: Management of dynamic data generated.
Step 5.3: Selection mechanism on diversification: the scheme is selected and the exploration
is carried out.
Step 5.4: Management of dynamic data generated.
Step 6: Update parameters concerning the population-based algorithm: B,E,h.
Step 7: Check if the threshold β has been met.
Step 7.1: Perform regression analysis.
Step 7.2: Management of the knowledge generated: update scheme probabilities.

3.2. Methodology

Firstly, we need to define the schemes to perform through the search, in this first
attempt designing LB2, three levels where proposed and illustrated in Table 1. They define
the amount of work that needs to be performed in each iteration, the selection issue is
tackled by the means of probabilities, and they are defined as follows.
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for intensification: pi =
1

ISsoft
+

1
ISmedium

+
1

IShard
= 1

for diversification: pd =
1

DSsoft
+

1
DSmedium

+
1

DShard
= 1

where the probability pi and pd will be modified by the learning model every β amount of
iterations. This model is in charge of the regression analysis ruled by the means of linear
regression, where the fitted function is of the form:

y = wx + b

where y corresponds to the dependant variable, which is the fitness and the value we
want to predict. x represent the independent variable, which correspond to the scheme
performed. In this simple linear regression model proposed, we present the close rela-
tionship between the fitness and his convergence with the balance of intensification and
diversification performed. Regarding our proposed learning-model, we define three fitted
functions for each scheme on intensification and three for each scheme on diversification.
They are represented as follows:

For intensification:
yi−soft = wixi−soft + bi

yi−medium = wixi−medium + bi

yi−hard = wixi−hard + bi

For diversification:
yd−soft = wixd−soft + bd

yd−medium = wixd−medium + bd

yd−hard = wixd−hard + bd

In order to carry out the analysis, we employ the least squares method which is a
well-known approach used. We evaluate the grade of relationship between the works
performed by the agents in the amount of intensification and diversification with the best
fitness values reached. The model will make the decision based as follows:

W(xi) = MIN(yi−soft, yi−medium, yi−hard) and

W(xd) = MIN(yd−soft, yd−medium, yd−hard)

where W(xi) and W(xd) represent the schemes with the highest possibilities to achieve
better performance in the next β iterations. The regression model will modify the prob-
abilities of selection for each scheme. Thus, when the threshold is met, the process of
selection, carried out in a Monte Carlo roulette fashion, will be influenced. Additionally,
we highlight that all benchmark functions are minimisation problems which are aligned
with our proposed function MIN.

Regarding the threshold β, important issues need to be considered, such as amount
of total iterations, computing capacity, number of agents as population, and number of
schemes in the approach. In this work, small test were carried out with β values 200, 500,
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and 1000. However, we concluded that the best performance was achieved with a value of
1000.

A practical example can be described as follows: At the beginning, in each iteration,
the approach will select a scheme using a probabilistic roulette for the intensification
and diversification. Thus, for a three way scheme, as displayed in Table 1, the initial
probabilities for each scheme to be selected was in a 33.3%–33.3%–33.3% ratio. Additionally,
the regression model is always storing and sorting the fitness values and agents on run-time.
When the threshold β is met, the model performs a computing process corresponding to the
regression analysis. Thus, it is decided which scheme have the highest chance to achieve a
high performance over the next β amount of iterations. To do so, the probabilities values of
each scheme for intensification and diversification are updated, giving the winning scheme
a higher probability to be chosen. For instance, we designed a ratio of 60%–20%–20% ratio,
a graphic example is illustrated in Figure 3. Here, the scheme assigned with a blue color
had a minimum value in the resulting regression analysis compared with the other two
schemes, in this case, the winner is assigned a higher value of probability to be selected,
and so on.

(a) Roulette at the beginning (b) Roulette after model intervention

Figure 3. Graphic example of the modification of probabilities by the model.

3.3. Spotted Hyena Optimiser

In this paper, we instantiate SHO as a means to carry out the search of solutions in
order to solve optimisation problems. The movement operators are organised as illustrated
in Table 2 with the aim to be employed by LB2. The main feature of SHO is the cohesive
clustering in his population [12]. The mathematical model concerns diversification meth-
ods: encircling prey, hunting, and search for prey. Additionally, intensification method:
attacking prey. Additionally, they are described as follows:

1. Encircling prey: Each hyena takes the current best candidate solution as the target
prey. They will try to move towards the best position defined.

Dh =
∣∣B · Pp(x)− P(x)

∣∣ (1)

P(x + 1) = Pp(x)− E · Dh (2)

where Dh is the distance between the current spotted hyena and the prey, x indicates
the current iteration, B and E are coefficient vectors, Pp is the position of the prey, and
P is the position of the spotted hyena. The vectors B and E are defined as follows:

B = 2 · rnd1 (3)

E = 2h · rnd2 − h (4)

h = 5− (Iteration ∗ (5/Maxiteration)) (5)

where Iteration = 1, 2, 3, . . . , Maxiteration, rnd1 and rnd2 are random vectors in [0, 1].
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2. Hunting: The hyenas make a cluster towards the best agent so far to update their
positions. The equations are proposed as follows:

Dh = |B · Ph − Pk| (6)

Pk = Ph − E · Dh (7)

Ch = Pk + Pk+1 + ... + Pk+N (8)

where Ph is the best spotted hyena in the population, and Pk indicates the position of
other spotted hyenas. Here, N is the number of spotted hyenas, which is computed
as follows:

N = countnos(Ph, Ph+1, Ph+2, ..., (Ph + M)) (9)

Here, M is a random vector [0.5, 1], nos defines the number of solutions and count all
candidate solutions plus M, and Ch is a cluster of N number of optimal solutions.

3. Attacking Prey: SHO works around the cluster forcing the spotted hyenas to assault
towards the prey. The following equation was proposed:

P(x + 1) = Ch/N (10)

Here, P(x + 1) updates the positions of each spotted hyenas according to the position
of the best search agent and save the best solution.

4. Search for Prey: The agents mostly search the prey based on the position of the cluster
of spotted hyenas, which reside in vector Ch. SHO makes use of the coefficient vector
E and B with random values to force the search agents to move far away from the
prey. This mechanism allows the algorithm to search globally.

Table 1. Example of the standard work to be completed by the approach.

Scheme Amount of
Intensification

Amount of
Diversification

Soft 1 1
Medium 2 2

Hard 3 3

Table 2. Organisation example of the pool of movement operators from metaheuristics.

Pool of Operators

Intensification Diversification

Exploitation movement 1 Exploration movement 1
Exploitation movement 2 Exploration movement 2

: :

3.4. Proposed Algorithm

In this subsection, we illustrate the designed algorithm. Algorithm 1 depicts the
general framework our proposed approach, where the operators of SHO performs intensifi-
cation and diversification under the influence and balance of our regression model. Finally,
Algorithm 2 presents the work in charge of the regression model. The regression analysis
is performed and the vectors with controls values are modified.
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Algorithm 1 Proposed LB2

1: Set initial parameters for SHO
2: Set initial parameters for regression model
3: Generate initial population
4: while (i ≤MaximumIteration) do
5: for each agent in the population do
6: StandardIntensification = Select-scheme-by-Roulette
7: while (StandardIntensification) do
8: Perform intensification operators
9: end while

10: if check if a best value was reached using StandardIntensification then
11: Update data structures with best values reached
12: end if
13: StandardDiversification = Select-scheme-by-Roulette
14: while (StandardDiversification) do
15: Perform diversification operators
16: end while
17: if Check if a best value was reached using StandardDiversification then
18: Update data structures with best values reached
19: end if
20: end for
21: if Check threshold β then
22: Call to Algorithm 2: Regression Model
23: end if
24: end while

Algorithm 2 Regression Model
1: while review of dynamic-data for all xi−soft do
2: Management of dataframe with dynamic-data
3: end while
4: Compute statistical modelling method: yi−soft
5: while review of dynamic-data for all xi−medium do
6: Management of dataframe with dynamic-data
7: end while
8: Compute statistical modelling method: yi−medium
9: while review of dynamic-data for all xi−hard do

10: Management of dataframe with dynamic-data
11: end while
12: Compute statistical modelling method: yi−hard
13: while review of dynamic-data for all xd−soft do
14: Management of dataframe with dynamic-data
15: end while
16: Compute statistical modelling method: yd−soft
17: while review of dynamic-data for all xd−medium do
18: Management of dataframe with dynamic-data
19: end while
20: Compute statistical modelling method: yd−medium
21: while review of dynamic-data for all xd−hard do
22: Management of dataframe with dynamic-data
23: end while
24: Compute statistical modelling method: yd−hard
25: Data structures with regression analysis are updated
26: Check MIN(yi−soft, yi−medium, yi−hard)
27: Check MIN(yd−soft, yd−medium, yd−hard)
28: Update probabilities for intensification scheme
29: Update probabilities for diversification scheme

4. Experimental Results

This section describes the experimentation process to evaluate the performance of our
proposed LB2. In this work we make use of 15 standard benchmark test functions. These

46



Mathematics 2021, 9, 1976

benchmark are described in Section 4.1, and the experimental setup is described in Section
4.2 along the respective analysis in Section 4.3.

4.1. Benchmark Test Functions

In order to test the performance and demonstrate the efficiency of our proposed hy-
brid approach, we applied 15 well-known benchmark function, Table 3. These function
are divided into three main categories, such as unimodal [45] represented in Equations
(11)–(14) and Figures 4 and 5, multimodal [46] represented in Equations (15)–(19) and
Figures 6 and 7, and fixed-dimension multimodal [45,46], Equations (20)–(25) and Figures
8 and 9. Regarding the features of these functions, f1 to f9 are high-dimensional problems.
On the other hand, f10 to f15 comprehends low-dimensional problems. Additionally, all
test functions reflect different degrees of complexity, f1 to f4 are convex, f7, f11, and f13
are non-convex, f5, f6, and f8 are non-linear functions. Regarding the justification behind
the selection of this set of functions, f1 to f4 have only one global optimum and has no
local optima, which makes this first group of functions highly appropriate to study the
convergence rate and intensification ability of our proposed approach. Additionally, f5 to
f15 concerns large search space and multiple local solutions besides the global optimum.
Thus, they are useful evaluating how efficient the approach is avoiding local optima and
the diversification abilities. Additionally, it is well-known that functions from the second
group, f5 to f9, correspond to a group of very difficult problems to solve for optimisation
algorithms, where there is an exponentially increase in number of dimensions [47]. Finally,
all these functions are minimisation problems.

Table 3. Optimum values reported for the benchmark functions in the literature, with their corresponding solutions and
search subsets.

Function Search Subsets Opt Sol

f1(x) [−100, 100]30 0 [0]30

f2(x) [−10, 10]30 0 [0]30

f3(x) [−100, 100]30 0 [0]30

f4(x) [−30, 30]30 0 [1]30

f5(x) [−500, 500]30 −12,596.487 [420.9687]30

f6(x) [−5.12, 5.12]30 0 [0]30

f7(x) [−32, 32]30 0 [0]30

f8(x) [−600, 600]30 0 [0]30

f9(x) [−50, 50]30 0 [1]30

f10(x) [−65.536, 65.536]2 1 [−32]2

f11(x) [−5, 5]2 −1.0316285 (0.08983, −0.7126) and
(−0.08983, 0.7126)

f12(x) [−5, 10] for x1
and [0, 15] for x2

0.397887 (−3.142, 12.275), (3.142, 2.275),
and (9.425, 2.425)

f13(x) [−2, 2]2 3 (0, −1)
f14(x) [0, 1]3 −3.86 (0.114, 0.556, 0.852)
f15(x) [0, 1]6 −3.32 (0.201, 0.150, 0.477, 0.275, 0.275, 0.377, 0.657)

Unimodal functions:

Sphere Function

f1(x) = f (x1, x2, ..., xn) =
n

∑
i=1

x2
i (11)

Schwefel’s Function No. 2.22

f2(x) =
n

∑
i=1
|xi|+

n

∏
i=1
|xi| (12)
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Schwefel’s Function No. 1.2

f3(x) =
n

∑
i=1

(
i

∑
j=1

xj

)2

(13)

Generalised Rosenbrock’s Function

f4(x) =
n−1

∑
i=1

[
100(x2

i − xi+1)
2 + (1− xi)

2
]

(14)

(a) f1, Sphere Function (b) f2, Schwefel’s Function No. 2.22

Figure 4. Unimodal benchmark mathematical functions f1 and f2 in a 3D view.

(a) f3, Schwefel’s Function No. 1.2 (b) f4, Generalised Rosenbrock’s Function

Figure 5. Unimodal benchmark mathematical functions f3 and f4 in a 3D view.

Multimodal functions:

Generalised Schwefel’s Function No. 2.26

f5(x) = −
n

∑
i=1

xi sin (
√
|xi|) (15)

Generalised Rastrigin’s Function

f6(x) = 10n +
n

∑
i=1

(x2
i − 10 cos (2πxi)) (16)

Ackley’s Function

f7(x) = −20exp(−0.2

√
1
n

n

∑
i=1

x2
i )− exp(

1
n

n

∑
i=1

cos (2πxi)) + 20 + exp(1) (17)

Generalised Griewank’s Function

f8(x) = 1 +
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos (
xi√

i
) (18)
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Generalised Penalised Function

f9(x) =
π

n
×
{

10 sin2(πy1) +
n−1

∑
i=1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}

+
n

∑
i=1

u(xi, 10, 100, 4)

(19)

where u(xi, a, k, m) is equal to

1. k(xi − a)m if xi > a

2. 0 if −a ≤ xi ≤ a

3. k(−xi − a)m if xi < −a

and

1. yi = 1 + 1
4 (xi + 1)

(a) f5, Generalised Schwefel’s Function No. 2.26 (b) f6, Generalised Rastrigin’s Function

Figure 6. Multimodal benchmark mathematical functions f5 and f6 in a 3D view.

(a) f8, Generalised Griewank’s Function (b) f9, Generalised Penalised Function No. 01

Figure 7. Multimodal benchmark mathematical functions f8 and f9 in a 3D view.

Multimodal functions with fixed dimensions:
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Shekel’s Foxholes Function

f10(x) =

[
1

500
+

25

∑
j=1

1

j + ∑2
i=1
(
xi − ai,j

)6

]−1

(20)

where:

ai,j =

[−32 −16 0 16 32 −32 ... 0 16 32
−32 −32 −32 −32 −32 −16 ... 32 32 32

]

Six-hump Camel Back Function

f11(x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 (21)

Branin’s Function

f12(x) =

(
x2 −

5.1x2
1

4π2 +
5x1

π
− 6

)2

+ 10
(

1− 1
8π

)
cos(x1) + 10 (22)

Goldstein-Price Function

f13(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]

[
30 + (2x1 − 3x2)

2
(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)] (23)

Hartman’s Function No.1

f14(x) = −
4

∑
i=1

ci e

[
−

3

∑
j=1

ai,j
(
xj − pi,j

)2
]

(24)

where the values of a, c, and p are tabulated in Table. 4

Table 4. Values of aij, ci, and pij for function f14(x); n = 3 and j = 1, 2, 3.

i aij ci pij

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 30 3.2 0.03815 0.5743 0.8828

Hartman’s Function No.2

f15(x) = −
4

∑
i=1

ci e

[
−

6

∑
j=1

ai,j
(
xj − pi,j

)2
]

(25)

where the values of a, c and p are tabulated in Table 5.

Table 5. Values of aij, ci, and pij for function f15(x); n = 6 and j = 1, 2, ..., 6.

i aij ci pij

1 10 3 17 3.5 1.7 8 1 0.131 0.169 0.556 0.012 0.828 0.588
2 0.05 10 17 0.1 8 14 1.2 0.232 0.413 0.830 0.373 0.100 0.999
3 3 3.5 1.7 10 17 8 3 0.234 0.141 0.352 0.288 0.304 0.665
4 17 8 0.05 10 0.1 14 3.2 0.404 0.882 0.873 0.574 0.109 0.038
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(a) f10, Shekel’s Foxholes Function (b) f11, Six-hump Camel Back Function

Figure 8. Multimodal functions with fixed dimensions f10 and f11 in a 3D view.

(a) f12, Branin’s Function No. 01 (b) f13, Goldstein-Price Function

Figure 9. Multimodal functions with fixed dimensions f12 and f13 in a 3D view.

4.2. Algorithms Used for Comparison and Experimental Setup

In order to compare the results obtained, we designed this step in three phases.
First phase, we compare against state-of-the-art optimisation methods reported in [18,
19,48], such as particle swarm optimisation (PSO) [15], gravitational search algorithm
(GSA) [16], differential evolution (DE) [17], whale optimisation algorithm (WOA) [18],
vapour–liquid equilibrium (VLE) [19], and an hybrid between Nelder–Mead algorithm
and dragonfly algorithm (INMDA) [20]. In the second phase we compare against SPO [21],
which is a heuristic that combines classical and modern statistical techniques to improve
the performance of search algorithms. Finally, we take a closer look at the performance
achieved by the traditional SHO, a neural network (NN) [22], and a sine cosine algorithm
(SCA) [23] approach solving the benchmark functions in comparison with our proposed
approach. Regarding the implementation of traditional SHO, the number of search agents
was set to 30, control parameter h with values in range of [5, 0], the constant M in the
range of [0.5, 1], and the value for number of generations was 10,000. Regarding the neural
network, the design was defined as follows: For each benchmark function, a total of one
million randomly generated solutions were created. On the other hand, we designed a
multi-layer perceptron. The main components comprehend an input node, 7 hidden layers
of 50 nodes, and an output equal to the number of dimensions for each function. The
training was carried out employing the gradient descent method [49] over 1000 iterations
for each randomly generated solution. The main objective behind the NN proposed is
the prediction of better function values on run-time. The implementation was performed
in python 3.7 and run in an environment windows 10 with 64 bits on Core i-5 processor
with 2.40 GHz and 8 GB memory. Finally, regarding the experimentation phase, for each
benchmark function the algorithm utilises 30 independent runs.

4.3. Performance Comparison

In this subsection, we illustrate and demonstrate the performance of our proposed
LB2 tackling the benchmark functions described in the Section 4.1.
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4.3.1. First Experimentation Phase

First, all results obtained by SHO and LB2 were rounded to four decimals. The results
published for PSO, GSA, DE, WOA, and VLE, were rounded in Tables 6–8 to four decimals,
using scientific notation, only for presentation purposes. However, all computations
were carried out using the reported decimals by their respective authors. Regarding the
performance on unimodal functions, Table 6 illustrates the results and comparison in f1
to f4, the average (Avg) and standard deviation (StdDev) are presented and compared,
and we highlight in bold the best values reached. Additionally, it is well-known that
unimodal functions can help us to measure the exploitation capabilities of our proposed
approach. In this regard, it is surprising how good LB2 performed. It was the second
most efficient algorithm tackling this set of benchmark function just behind INMDA.
Additionally, the small values reached corresponding to the StdDev shows that it is a
very solid algorithm. Concerning the multimodal functions and multimodal functions
with fixed dimensions, both sets can help us to evaluate the potential of our algorithm
in carrying out the exploration. Tables 7 and 8 illustrates the results and comparison on
functions f5 to f9 and f10 to f15 correspondingly, the average (Avg) and standard deviation
(StdDev) are presented, and we highlight in bold the best values reached. Surprisingly, the
LB2 attained really good results and small Avg and StdDev values once again, proving
to be a competitive approach able to tackle continuous problems. Moreover, having a
relatively good performance in these three previous set of benchmark test functions, we
can conclude that this first attempt corresponding to the LB2 has the potential to be a
competitive approach.

4.3.2. Second Experimentation Phase

In this subsection, we compare against SPO, which has proved to be a good and
competitive option in the field of parameter tuning. In this work, we compare the results
obtained by our LB2 against the works reported and implemented in [21]. They imple-
mented a PSO and a PSO + SPO approach, they solve 4 benchmark test functions. Table 9
illustrates the best values reached, where the first column, named problem, represent the 4
functions solved by the approach reported (2 unimodal and 2 multimodal). Column 2, 3,
and 4, represent the best values achieved by PSO and PSO + SPO (both implemented by
the authors), and our proposed LB2. It is clear the superiority of our approach reaching all
4 optimum values. However, in future work, in order to improve the hybrid methodology
proposed in this work, we have as an objective the implementation and comparison of SPO
and F-Race approaches in order to bring a more detailed and larger competition between
multiple optimisation and tuning tools.
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4.3.3. Third Experimentation Phase

In this subsection, we present a comparison of LB2 against a traditional SHO and a
neural network approach, both implementation made by us. Tables 10–12 illustrates a
summary of the values achieved in the experimentation phase. Column F corresponds
to the test function solved, and Opt depicts the global optimum for the given function.
Column best, worst, and Avg are the given values for best value reached, worst value
reached, the mean value, and the Avg time achieved in 30 executions.

Regarding Table 10, LB2 achieved 7 optimum values in f1– f3, f5, f6, f8, and f10,
in comparison of SHO which achieved 5 optimum values in f1– f3, f6, f8. Additionally,
regarding non-optimum values reached, our proposed approach is superior in 5 values
in functions f4, f5, f9, f13, and f15. However, the same goes for SHO in functions f11, f12,
and f14. Regarding Table 9, LB2 achieve better values than the NN approach implemented.
However, in functions f13 and f14 the performance of our proposed approach falls behind
considerably. Regarding Table 12, small differences can be observed, LB2 reached 1 more
optimum value. However, the biggest difference concerns the robustness in the overall
performance illustrated on columns Avg and StdDev. This can be observed in functions f4,
f5, and f10.

Regarding the average time achieved in the three illustrated tables, significant differ-
ence can be observed between NN, SCA, and LB2. In the hardest test function, multimodal,
and multimodal with fixed-dimension, NN falls significantly behind against SCA and LB2

in solving time, which is the strong point on these types of algorithms. Additionally, we
highlight the drawback behind a NN approach, the costly process of training and tuning of
the model. Nevertheless, the objective behind this test, presented in Table 11, concerns the
future incorporation of new learning methods to LB2.

Regarding the room for improvements observed in the performance, values achieved
in column StdDev for f5, f11, f14, and f15 can be interpreted as the approach being trapped
in local optima. The discussion follows two possible issues: the value employed as β and
the scheme values for the diversification process. Firstly, the proposed value for threshold
β is static through the search, the consequence can be interpreted as the approach expecting
a more balanced and timely feedback from the learning model. Thus, when a local optima
is detected, a proper answer can be delivered and carried out on run-time. Nevertheless,
the incorporation of a learning-based component managing a dynamic β value on run-time
will be proposed in order to tackle this issue. On the other hand, regarding the scheme
values for diversification, the employment of static values through the search can be a
critical issue. The amount and frequency on which diversification is carried out will be our
next focus as a balanced exploration in the search space needs to be performed.

In order to further analyse and demonstrate the improvement in the performance
of the hybridisation in optimisation tools, a statistical analysis is carried out. To this end
we compare convergence and we analyse the 30 executions performed for each function
through the Kolmogorov Smirnov Lilliefors (Lilliefors 1967) [50] and Wilcoxon’s signed
rank (Mann and Whitney 1947) [51] statistical tests. Additionally, in order to carry the
statistical analysis of this phase, we make use of the RStudio software to conduct both tests.
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The process is as follows, samples were tested for normality using Kolmogorov
Smirnov Lilliefors test, having failed it (p-values > 0.05). Therefore, the non-parametric
Mann-Whitney test subsequently used to compare the quality of SHO and LB2 results. We
need to take in consideration the next two hypothesis:

H0 : µSHO = µLB2

H1 : µLB2 6= µSHO

where µSHO and µLB2 are the arithmetic median of fitness values achieved corresponding
to SHO and our proposed LB2. Again, at this next step we take into consideration that
the significance level is also established to 0.05, thus, smaller values that 0.05 defines that
H0 cannot be assumed. In this regard, Table 13 illustrate the comparison between the two
implementations, we highlight in bold the values where there is a statistically significant
winner.

Table 13. Exact p values obtained on the benchmark test functions.

F SHO LB2

f1 SHO - >0.05
LB2 >0.05 -

f2 SHO - >0.05
LB2 >0.05 -

f3 SHO - >0.05
LB2 >0.05 -

f4 SHO - 2.35 × 10−18

LB2 >0.05 -
f5 SHO - 6.611 × 10−7

LB2 >0.05 -
f6 SHO - >0.05

LB2 >0.05 -
f7 SHO - >0.05

LB2 >0.05 -
f8 SHO - >0.05

LB2 >0.05 -
f9 SHO - 7.01 × 10−7

LB2 >0.05 -
f10 SHO - 1.1 × 10−7

LB2 >0.05 -
f11 SHO - 0.02067

LB2 >0.05 -
f12 SHO - >0.05

LB2 0.04 -
f13 SHO - >0.05

LB2 >0.05 -
f14 SHO - 1.395 × 10−6

LB2 >0.05 -
f15 SHO - 1.863 × 10−9

LB2 >0.05 -

5. Conclusions and Future Work

In this paper, a novel learning-based framework was proposed. Well-known methods
and techniques are employed to design a competitive hybrid approach capable to tackle
on optimisation problems. The proposed framework performs under a population-based
strategy, multiple agents explore, learn, and evolve in the search space. In this regard, two
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main components were employed: a population-based algorithm, named spotted hyena
optimiser, and a learning model which is based in a statistical modelling method.

Regarding the results achieved solving the benchmark functions, LB2 demonstrated
to be a competitive method and a promising alternative to tackle optimisation problems.
However, some issues remains and improvements can be proposed. Firstly, LB2 needs
to be tested tackling benchmark functions with higher difficulty. In this regard, we are
considering more complex functions with higher dimensionality, such as CEC 2021’s
composite functions. Additionally, the incorporation of hard optimisation problems, such
as set covering problem (SCP), manufacturing cell design problem (MCDP) are being
considered as future testing objectives. On another hand, results illustrated in the third
experimentation phase can be interpreted as LB2 being trapped in local optima for certain
functions. Nevertheless, improvements can be carried out in order to tackle this issue. In
this regard, new learning-based components will be proposed. The main objective is to
dynamically adjust parameters, such as threshold β and the scheme for diversification
and intensification. The idea is to keep the balance in the feedback of dynamic data and
knowledge generated between the population and the learning model on run-time. Finally,
new learning methods will be implemented, the objective concerns the viability, certainty,
and confidence in the generated knowledge. Thus, a more complex component will be
designed in order to measure the profit behind the knowledge for a better decision making
through the search.
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Abstract: Metaheuristics are intelligent problem-solvers that have been very efficient in solving huge
optimization problems for more than two decades. However, the main drawback of these solvers
is the need for problem-dependent and complex parameter setting in order to reach good results.
This paper presents a new cuckoo search algorithm able to self-adapt its configuration, particularly
its population and the abandon probability. The self-tuning process is governed by using machine
learning, where cluster analysis is employed to autonomously and properly compute the number
of agents needed at each step of the solving process. The goal is to efficiently explore the space of
possible solutions while alleviating human effort in parameter configuration. We illustrate interesting
experimental results on the well-known set covering problem, where the proposed approach is able
to compete against various state-of-the-art algorithms, achieving better results in one single run
versus 20 different configurations. In addition, the result obtained is compared with similar hybrid
bio-inspired algorithms illustrating interesting results for this proposal.

Keywords: clustering techniques; metaheuristics; machine learning; self-adaptive, parameter setting;
exploration; exploitation

1. Introduction

Recent studies about bio-inspired procedures to solve complex optimization problems
have demonstrated that finding good results and the best performance are laborious tasks,
so it is necessary to apply an off-line parameter adjustment on metaheuristics [1–5]. This
adjustment is considered an optimization problem itself, and several studies are proposing
some solutions to solve that, but it always depends on his static therms [6]. Many of these
studies use mathematical ways to change the values of one of each parameter during their
execution. In this context, parameters like the population size of metaheuristics are initially
set without considering their variation or behaviors. We consider using a machine learning
(ML) technique that lets us analyze the population and determine the values of the number
of solutions and the abandon probability.

As we can see in [7], machine learning and optimization are two topics of artificial
intelligence that are rapidly expanding, having a wide range of computer science appli-
cations. Due to the rapid progress in the performance of computing and communication
techniques, these two research areas have proliferated and drawn widespread attention
in a wide variety of applications [8]. For example, in [9], the authors present different
clustering techniques to evaluate the credit risk in a determinate population of Europe.
Although both fields belong to different communities, they are fundamentally based on
artificial intelligence, and the techniques from ML and optimization frequently interact
with each other and themselves to improve their learning and/or search capabilities.
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On the other hand, advances in operations research and computer science have
brought forward new solution approaches in optimization theory, such as heuristics and
metaheuristics. While the former are experience-based procedures, which usually provide
good solutions in short computing times, metaheuristics are general templates that can
easily be tailored to address a wide range of problems. They have been shown to provide
near-optimal solutions in reasonable computing times to problems for which traditional
methods are not applicable [10]. Moreover, as we can see in [11], the tendency to use a
hybrid method to solve some type of recent problem, such as those that COVID-19 has
brought with it, has recently proven its effectiveness. In one of the important studies of
these two main topics, we are interested in exploring the integration to use ML into meta-
heuristics, in terms to enhance any of the characteristics or attributes of those algorithms:
the solutions, performance, or time to get the results. In this way, we propose to use an
unsupervised machine learning technique that let us learning in the search space of the
metaheuristic, exploiting the characteristic of their attributes that let us use to enhance
the metaheuristic parameters in an online way: spatial clustering based on noise applica-
tion density (DBSCAN) is one of those techniques that gathers those characteristics. We
propose to use noise clustering to associate with the abandon probability and the solu-
tions clustering result for determining the number of nests of the cuckoo search algorithm
(CSA). They are studies that include some hybrid propose to enhance the CSA whit an
ML technique, as in [12], when the authors present a Kmean technique to determinate the
discrete parameters to improve the CSA. In [13], the contribution is a hybrid method with
a sin-cousin algorithm to enhance the search space to be used on the CSA. Other different
scenarios, but similar cases are in [14], they present a CuckooVina, a combination of cuckoo
search and differential evolution in a conformational search method. Thus, some studies
propose a hybridization to enhance CSA, but they do not respond to our search to find
some ML technique that allows enriching the self-adaptation capabilities of CSA in the
way we present.

To illustrate and prove our approach, we apply an improvement of the cuckoo search
algorithm with a self-adaptive capability (SACSADBSCAN). This approach was tested on
the set covering problem, whose goal is to cover a range of needs at the lowest cost and is a
widely used problem to demonstrate research.

The remainder of the paper is structured as follows: in Section 2, we introduce the
theoretical background on the optimization and clustering algorithms that have been
integrated into the proposed approach, then, in Section 3, we present the original CSA,
and his parameters that need to be set to run, moreover we introduce to the DBSCAN
algorithm, how is the characteristic operation of this algorithm, and how we propose to
exploit them in the metaheuristics. Following this, in Section 4 we present the integration of
DBSCAN on CSA, how parameter values are configured in the execution of our approach.
Then, in Section 5 experimental results and discussions are shown. Finally, we conclude
and suggest some lines of future research in Section 6.

2. Related Work

As previously mentioned, parameter adjustment of metaheuristics is a complex task
and is considered an optimization problem itself, in many cases, this depends on the
try-error test to find a good combination of parameters. In this scenario, some studies
use different ways, many of those with a mathematical formula to vary the values of the
parameters of the CSA.

For example, to determine the step size α and Pa parameter of the Cuckoo Search,
Ref. [15] uses a mathematical formula that depends on the range of those minimal and
maximal values of those parameters and the number of iterations of the algorithm. With that
idea, the target is to use a bigger target area, also those neighboring areas. In [16], authors
propose a self-adaptive step size in his studies to vary the α parameter according to the
fitness in each iteration, applying a mathematical formula to get the value to set. In addition,
Ref. [17] vary the α and Pa values according to their propose, α changes his value according
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to the algorithm iterations, meanwhile Pa vary randomly depending on the dimension
map of the problem. Similar studies are in [18] where Q-Learning is used to set the step
size value of the cuckoo search algorithm in a self-adaptive way.

Another study case of adaptive CSA is [19], where the author varies the step size and
the abandon probability considering the historical values of them, including their best and
worst values to determine the new one. Following with the vary in population, in [20] the
authors divide the cuckoo population between making an analysis to them and improve
the results.

In another case, such as in [21] use a hybrid algorithm to set the values of their parame-
ters and reduce the population, when the diversity of population decreases, the population
is reduced, allowing the algorithm to diversify in subsequent iterations.

As we can see, the machine learning techniques that we have cited up to this point
are used to determine a static value in the metaheuristic parameters, which is used as it
is the initial value. However, it is used to vary the value of the metaheuristic parameters.
During its execution, it is seen minimally in the literature.

In other terms, machine learning has also been applied to the metaheuristic to compact
the heuristic space through a clustering procedure [22] and artificial networks [23]. These
manuscripts use forecasting and classification. In deep, machine learning integrates with
metaheuristics is proposed to forecast different classes of problems, such as electric load [24],
economic recessions [25], optimise the low-carbon flexible job shop scheduling problem [26]
and other industrial problems [27]. As we mentioned, several dataset groups can be
classified by employing machine learning. In this context, we can found image classification
problem [28], electronic noise classification of bacterial food bones pathogens [29], urban
management [30] and to mention some recently studies. Finally, in [31] the authors use the
DBSCAN algorithm to make a binarization strategy and transform the continuous search
space to a binary one.

Although machine learning has a big presence in the metaheuristic discipline, its use
to set values is quite limited. The use to vary, in an online way, the value of the parameters
of the metaheuristic is an area to dig deeper. In this way, we believe that the self-adaptive
with DBSCAN, beyond the enhancement of metaheuristics, there seems to be a lot of scope
for exploration, using a machine learning technique like DBSCAN with his characteristic
we can make an analysis, and thanks to that, change the values of the parameters, is the
aim pursued in this work.

3. Theoretical Background
3.1. Cuckoo Search Algorithm

Metaheuristics belong to a class of approximation methods. These are types of higher-
level general-purpose algorithms that can be used for a wide range of different types of
problems. They have been widely used to solve large-scale combinatorial optimization
problems within acceptable computational time, but they do not guarantee optimum
solutions [32].

There are a lot of metaheuristics. A full set of all nature-inspired algorithms can be
found in [33], and one of them is CSA, which has several study cases. CSA [34] is inspired
by the obligate brood parasitism of some cuckoo species by laying their eggs in the nests of
other bird species. The steps of CSA are described below:

1. Each cuckoo lays an egg at a time and drops it into a randomly selected nest.
2. The best nests with high-quality eggs will be carried over to the next generations.
3. The number of available host nests is fixed, and the egg laid by a cuckoo is discovered

by the host bird with a probability Pa ∈ [0, 1]. In this case, a new random solution
is generated.
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Every new generation is determinate by Lévy flight [34], that is given by the
Equation (2)

xd
i (t + 1) = xd

i + α⊗ Levy(β)

∀i ∈ {1, ..., n} ∨ ∀d ∈ {1, ..., m}
(1)

where xd
i is the element d of a solution i at iteration t. xd

i (t + 1) is a solution in the iteration
t + 1. α > 0 is the step size which should be related to the scales of the problem of interest,
the upper (Ub) and lower bounds (Lb) that the problem need to be determinated, in this
scenario values between 0 and 1.

Levy ∼ u = tβ, (0 < β < 3) (2)

The Lévy flight represents a random walk while the random step length is drawn
from a Lévy distribution which has an infinite variance with an infinite mean.

3.2. Density Based Spatial Clustering Application with Noise

Density-Based Spatial Clustering of Applications with Noise [35] is a popular data
grouping algorithm that uses automated analysis techniques to similar group information
together. It can be used to find clusters of any shape in a data collection with noise and
outliers. Clusters are dense sections of data space separated by regions with a lower density
of points.

The goal is to define dense areas that can be determined by the number of things in
close proximity to a place. It is crucial to understand that DBSCAN has two important
parameters that are required for work.

1. Epsilon (ε): Determines how close points in a cluster can be seen to each other.
2. Minimum points (MinPts): The minimal amount of points required to produce a

concentrated area.

The underlying premise is that there must be at least a certain number of points in
the vicinity of a particular radius for each given group. The ε parameter determines the
surrounding radius around a given point; every point x in the data set is tagged as a central
point with a neighbor above or equal to MinPts; x is a limit point if the number of neighbors
is less than MinPts. Finally, if a point is neither a center nor a border, it is referred to as a
point of noise or an outlying point.

When users do not know much about the data being modified, this technique proves
helpful in metaheuristics. See pseudo-code in Algorithms 1 and 2 to understand how this
strategy works.

The computed groups are shown on the right side of Figure 1. Each iteration of the
process adjusts the positions until the algorithm converges. It is important to mention
that the noise points are those that do not remain in any cluster at the time of iterating the
algorithm and we can visualize them as the white points around the clusters identified in
the graph (Red, Yellow, Blue and Green), all these noise points are grouped into a single
cluster, and in this way all the points will belong to a specific cluster.
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Algorithm 1: Cuckoo Search pseudo-code.

1 Input: α, β, n, Pa, T ;
2 Output: a set of solutions ;
3 //Produce the first generation of n nests ;
4 foreach nest ni, (∀i = 1, . . . , n) do
5 foreach dimension d, (∀d = 1, . . . , m) do
6 xd

i ← Random{0, 1} ;
7 end
8 fi ← z(xi) ;
9 end

10 global f it← +∞ ;
11 //Produce T-generations of n nests ;
12 while t < T do
13 //Evaluate the fitness and update the best solution ;
14 {min f it, minindex} ← min( f );
15 if min f it < global f it then
16 global f it← min f it ;
17 x̂d(t)← xd

minindex(t) ;
18 end
19 //the bird abandon the nest with probability Pa;
20 foreach nest ni, (∀i = 1, . . . , n) do
21 foreach dimension d, (∀d = 1, . . . , m) do
22 if rand > Pa then
23 { Select the worst nest according to Pa[0, 1] and replace them for

new random solutions };
24 end
25 end
26 end
27 //the bird fly to another new nest with Lévy flight;
28 foreach nest ni, (∀i = 1, . . . , n) do
29 foreach dimension d, (∀d = 1, . . . , m) do
30 if rand > Pa then
31 { Generate new solutions through Equations (1) and 2};
32 xd

i (t + 1)← xd
i (t) + α⊗ Lévy(β) ;

33 //In previous step, the value generated belongs to the real domain
an it must be brought to a binary domain ;

34 xd
i (t + 1)← T(xd

i (t + 1)) ;
35 end
36 end
37 end
38 end
39 Postprocess results and visualizations;
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Algorithm 2: DBSCAN pseudo-code.

1 Input: dataset of P = {p1....pn};
2 Input: eps;
3 Input: MinPts;
4 Output: a set of k clusters.;
5 foreach unvisited point in P do
6 determine the state as visited;
7 neighborPts = getNeighbors(point, eps);
8 C = 0
9 if count(neighborPts) < MinPts then

10 set the state as noise;
11 else
12 C = next cluster;
13 expandCluster(point, neighborPts, C, eps, MinPts)
14 end
15 end
16 expandCluster(point, neighborPts, C, eps, MinPts);
17 add point to cluster C;
18 foreach pnt in neighborPts do
19 if !visitedPoints(pnt) then
20 add pnt to visited ones;
21 newNeighborPts = getNeighbors(pnt, eps);
22 if sizeof(neighborPts) >= MinPts then
23 neighborPts = neighborPts

⋃
newNeighborPts

24 end
25 end
26 if pnt is not yet member of any cluster then
27 add pnt to cluster C
28 end
29 end
30 getNeighbors(point, eps);
31 return points within pnt eps-neighborhood

Cluster 1

Cluster 2

Cluster 3

Cluster 3
Cluster 4

Cluster 1
Cluster 2

Noise 
Cluster

Figure 1. Application of the DBSCAN algorithm to the solution space as an example of clustering.
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4. Proposed Approach: Integrating DBSCAN in CSA

In this section, we describe how DBSCAN was integrated on CSA, in addition to
all the keys elements for this technique to work. We add a shortcode at the end of each
iteration to decide whether intervention is appropriate to implement parameter control
intervention and use the DBSCAN algorithm to calculate the values of those parameters
(see Algorithm 3).

Algorithm 3: Integration CSA with DBSCAN.
1 Input: α, β, n, Pa, T ;
2 Output: a set of solutions ;
3 //Produce the first generation of n nests ;
4 foreach nest ni, (∀i = 1, . . . , n) do
5 foreach dimension d, (∀d = 1, . . . , m) do
6 xd

i ← Random{0, 1} ;
7 end
8 fi ← z(xi) ;
9 end

10 global f it← +∞ ;
11 //Produce T-generations of n nests ;
12 while t < T do
13 //the bird abandon the nest with probability Pa;
14 foreach nest ni, (∀i = 1, . . . , n) do
15 foreach dimension d, (∀d = 1, . . . , m) do
16 if rand > Pa then
17 { Select the worst nest according to Pa[0, 1] and replace them for new

random solutions };
18 end
19 end
20 end
21 //the bird fly to another new nest with Lévy flight;
22 foreach nest ni, (∀i = 1, . . . , n) do
23 foreach dimension d, (∀d = 1, . . . , m) do
24 if rand > Pa then
25 { Generate new solutions through Equations (1) and 2};
26 xd

i (t + 1)← xd
i (t) + α⊗ Lévy(β) ;

27 //In previous step, the value generated belongs to the real domain an it
must be brought to a binary domain ;

28 xd
i (t + 1)← T(xd

i (t + 1)) ;
29 end
30 end
31 end
32 //Evaluate the fitness and update the best solution ;
33 {min f it, minindex} ← min( f );
34 if min f it < global f it then
35 global f it← min f it ;
36 x̂d(t)← xd

minindex(t) ;
37 end
38 //Integration of DBSCAN parameter tuning ;
39 if LibertyParameter % t == 0 and t > 1 then
40 { Run DBSCAN with nest solutions and evaluate results to set parameter settings};
41 end
42 end
43 Post-process results and visualizations;

In the following sections, we explain some relevant topics that are important to men-
tion to understand our approach. Section 4.1 explains under which criteria the DBSCAN
intervening in the metaheuristic to make an analysis on the search space and make the
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clustering on the solutions. Then, Section 4.2 indicates how the noise cluster is fundamental
to determinate the abandon probabilities.

4.1. Free Execution Parameter

We decide to include a variable to control the moment to intervene the parameter
values of the CSA to make the metaheuristic maintain its independence of executions and
its specific behavior, in this case, we consider it prudent to set it on one hundred iterations
of a free run. If these execution values are reached, then the algorithm performs a procedure
to update the CSA parameter values, as is described in line 39 of the Algorithm 3.

4.2. Online Parameter Setting

As we mention in the previous section, the update of the values of the parameters
in the CSA occurs when the value of the free execution parameter has reached its limit,
then the DBSCAN algorithm can be run and used the generated clusters to infer in the
parameter values of the metaheuristic. How to associate the parameters of the Pa and Nest
is detailed in the following sections.

4.2.1. Probability Abandon Nest

To set the value of the probability of nest abandon, we use the value of the noise point
obtained from the DCSCAN execution. That value indicates the points that are excluded
from any cluster, so we can associate the number of noise points to make the metaheuristic
consider those probabilities to explore new points of the search space. To make this possible,
we associate the percentage number of noise points to set the abandon probabilities value.
To let the metaheuristic keep the normal execution we use bounds between 10 to 40
percentage. That indicates, that if the noise points are more than 40% then, the Pa values
are set to 0.4, in the same way, if the noise point is less than 10%, the Pa values are set to
0.1. In other cases, the values are set to the percentage values of noise points.

4.2.2. Number of Nests

To determine when varying the number of nests on the CSA, our approach considers
keeping in memory the last best fitness value to compare with the new candidate solutions,
if the best value of fitness does not vary on the fourth intervention of the DBSCAN, we
consider that it is necessary to increase the number of nests, to amplify the search space. So,
in this case, the number of nests increases in five on five every time this scenario occurs. On
the other hand, if the global best value improves four times consecutively, then the number
of nest decrease, eliminating the worst five.

4.3. Exploration Influence

During the tests, we realize that the CSA solution space converges to a single large
cluster that considers all possible solutions while evaluating the executions, in some
instances, certain clusters appear to have values compressed very close to each other. We
deem it entirely appropriate in this scenario to have CSA explore the search space. For this,
half of the cluster points are renovated to new random ones, allowing the metaheuristic
to diversify the search space. The replacement criteria are according to the following
Formula (3)

ExpIn f l =

n

∑
ClusterSol=1

FitnessClusterSol

n
(3)

where ClusterSol corresponding to all solutions in the current cluster evaluates. ExplIn f l
is evaluated with the best possible solution of the global population, if the absolute value of
the difference between both is larger than one, then we renew a half-point on those clusters.
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4.4. Set Covering Problem

Many studies use the Set Covering Problem (SCP) to represent real scenarios into the
studies, as we can see in the area of management of crew on airlines [36], in the optimization
of the location of the emergency buildings [37], manufacturing [38] and production [39].
As we can see, SCP is a classical combinatorial optimization problem. It is belong to the
NP-hard class [40] and is formally defined as well: let A = (aij) be a binary matrix with
M-rows (∀ i ∈ I = {1, . . . , M}) and N-columns (∀ j ∈ J = {1, . . . , N}), and let C = (cj)
be a vector representing the cost of each column j, assuming that cj > 0, ∀ j = {1, ..., N}.
Then, it observes that a column j covers a row i if aij = 1. Therefore, it has:

aij =

{
1, if row i can be covered by column j
0, otherwise

The SCP entails identifying a group of materials that can be used to address a lot of
purposes for the least amount of money. A feasible solution corresponds to a subset of
columns in its matrix form, and the demands are associated with rows and regarded as
constraints. The goal of the challenge is to find the columns that best cover all of the rows.

The Set Covering Problem identifies a low-cost subset S of columns that covers each
row with at least one column from S. The SCP can be expressed using integer programming
as follows:

minimize
n

∑
j=1

cjxj

subject to:

n

∑
j=1

aijxj ≥ 1 ∀ i ∈ I

xj ∈ {0, 1} ∀ j ∈ J

(4)

Instances: We use 65 instances from Beasley’s OR-library, which are arranged into
11 sets, to evaluate the algorithm’s performance when solving the SCP. To represent the
instances, we present on Table 1 the following details: instance group, the number of rows
M, number of columns N, the cost range, density (percentage of non-zeroes in the matrix).

Table 1. Instances taken from the Beasley’s OR-Library.

Instance M N Cost Density Best
Group Range (%) Known

4 200 1000 [1, 100] 2 Known
5 200 2000 [1, 100] 2 Known
6 200 1000 [1, 100] 5 Known
A 300 3000 [1, 100] 2 Known
B 300 3000 [1, 100] 5 Known
C 400 4000 [1, 100] 2 Known
D 400 4000 [1, 100] 5 Known

NRE 500 5000 [1, 100] 10 Unknown
(except NRE.1)

NRF 500 5000 [1, 100] 20 Unknown
(except NRF.1)

NRG 1000 10,000 [1, 100] 2 Unknown
(except NRG.1)

NRH 1000 10,000 [1, 100] 5 Unknown

Reducing the instance size of SCP: In [41] different pre-processing approaches have
been proposed in particular to reduce the size of the SCP, with Column Domination and
Column Inclusion being the most effective. These methods are used to accelerate the
processing of the algorithm.

Column Domination is the process of removing unnecessary columns from a problem
in such a way that the final solution is unaffected.

69



Mathematics 2021, 9, 1840

Steps:

• All the columns are ordered according to their cost in ascending order.
• If there are equal cost columns, these are sorted in descending order by the number of

rows that the column j covers.
• Verify if the column j whose rows can be covered by a set of other columns with a cost

less than cj (cost of the column j).
• It is said that column j is dominated and can be eliminated from the problem.

Column Inclusion: when the domination process has terminated, the process of
inclusion is performed, which means if a row is covered only by one column, means that
there is no best column to cover those rows, which implies, that column must be included
in the optimal solution. All of this process will be included to data of instances and let the
new solutions satisfying the constraints.

5. Experimental Results

To evaluate the performance of our proposal, we test the instances of the SCP [42],
comparing the original CS with different configurations, versus the SACSDBCAN.

5.1. Methodology

To adequately evaluate the performance of metaheuristics, a performance analysis
is required [43]. For this work, we compare the supplied best solution of the CSA to the
best-known result of the benchmark retrieved from the OR-Library [44]. Figure 2 depicts
the procedures involved in doing a thorough examination of the enhanced metaheuristic.
We create objectives and recommendations for the experimental design to show that the
proposed approach is a viable alternative for determining metaheuristic parameters. Then,
as a vital indicator for assessing future results, we evaluate the best value. We use ordinal
analysis and statistical testing to evaluate whether a strategy is significantly better in
this circumstance. Lastly, we detail the hardware and software aspects that were used to
replicate computational experiments, and we present all of the results in tables and graphs.

Figure 2. Evaluation stages to determine the performance of an metaheuristic.

As a result, we conduct a contrast statistical test for each case, using the Kolmogorov–
Smirnov–Lilliefors process [45] to measure sample autonomy and the Mann–Whitney–
Wilcoxon [46] test to statistically evaluate the data, in Figure 3 we describe and determinate
the organization.

The Kolmogorov-Smirnov-Lilliefors test allows us to assess sample independence
by calculating the ZMIN or ZMAX (depending on whether the task is minimization or
maximization) obtained from each instance’s 31 executions.
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Test for normality
(Shapiro-Wilk and Kolmogorov-Smirnov-Lilliefors)

Dependent or 
independent samples

Dependent or 
independent samples

Wilcoxon-Mann-Whitney Paired T-test Test for homoscedasticity 
(Levene)

Unpaired t-test ANOVA

At least one of them is 
not normally distributed

The samples are 
normally distributed

Dependent ones Independent ones Independent onesDependent ones

Wilcoxon

Variances are equalVariances are not-equal

Figure 3. Statistical significance test.

The relative percentage deviation is used to assess the results (RPD). The RPD value
computes the difference between the objective value Zmin and the minimal best-known
value Zo pt for each instance in our experiment, and it is determined as follows:

RPD =

(
Zmin − Zopt

Zopt

)

5.2. Set Covering Problem Results

Infrastructure: Java 1.8 was used to implement SACSDBSCAN. The Personal Com-
puter (PC) has the common attributes: MacOS with a 2.7 GHz Intel Core i7 CPU and 16 GB
of RAM.

Setup variables: The configuration for our suggested approach is shown in
Table 2 below.

Table 2. SACSDBSCAN Parameters for SCP.

Population Initial Abandon Probability Pa α Max Iterations Lb and Ub

10 0.1–0.4 0.01 5000 0 and 1

Sixty-five SCP instances were considered, each of which was run 31 times; the results
are presented in Tables 3 and 4.

Overview: The algorithms are ranked in order of Zmin achieved. The instances that
obtained Zmin are also displayed.

• Score

1. CS got 38/65 Zmin.
2. SACSDBSCAN got 10/65 Zmin.

• The two algorithm got Zmin in the same instances : 5.4–6.4–A.4–B.2–B.3–B.4–B.5–D.3–
D.5–NRE.1–NRE.2–NRE.3–NRF.1–NRF.3–NRF.4–NRF.5–NRH.5

As can be seen in the results of the algorithms that solved SCP, we compare the
distribution of the samples of each instance using a violin plot, which allows us to observe
the entire distribution of the data. We provide and discuss the most difficult instances of
each group to create a resume of all the instances below (4.10, 5.10, 6.5, A.5, B.5, C.5, D.5,
NRE.5, NRF.5, NRG.5 and NRH.5):

In [47], the authors display the results obtained, the information is detailed, and the
configuration that they use. The information is organized as follows: MIN: the minimum
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value reached, MAX: the maximum value reached, AVG: the average value, BKS: the
best-known solution, RPD is determined by Equation (43), and lastly the average of the
fitness obtained.

The first method was the standard cuckoo search algorithm with various settings,
and the second was SACSDBSCAN, as previously indicated. Tables 5–8 show the behavior
of our proposed algorithm versus the original algorithm. The best results are highlighted
with underline and maroon color. For example, in the instance 4.1, the best reached solution
by our proposal overcomes than the classical CS algorithm. The same strategy is used in
all comparisons.

Table 3. Results of SACSDBSCAN for instance 4, 5, 6 and A.

Instance

SACSDBSCAN

Nest = 10 to 50

Pa = 0.1 to 0.45

BKS Fit RDP AVG MIN MAX STD

4.1 429 429 0.00 429 429 430 0.352
4.2 512 512 0.00 513 512 518 1.552
4.3 514 516 0.00 517 516 520 1.407
4.4 494 494 0.00 495 494 497 0.775
4.5 512 512 0.00 512 512 514 0.828
4.6 560 560 0.00 560 560 564 1.121
4.7 430 430 0.00 430 430 433 0.799
4.8 492 492 0.00 495 492 499 2.640
4.9 641 641 0.00 646 641 653 3.680
4.10 514 514 0.00 514 514 516 0.743

5.1 253 253 0.00 253 253 254 0.516
5.2 302 303 0.00 306 303 312 3.355
5.3 226 226 0.00 227 226 229 1.345
5.4 242 242 0.00 243 242 245 1.234
5.5 211 211 0.00 211 211 212 0.458
5.6 213 213 0.00 213 213 213 0.000
5.7 293 293 0.00 293 293 296 0.816
5.8 288 288 0.00 288 288 289 0.258
5.9 279 279 0.00 280 279 281 0.632
5.10 265 265 0.00 266 265 268 1.047

6.1 138 138 0.00 141 138 144 1.807
6.2 146 146 0.00 148 146 150 1.598
6.3 145 145 0.00 148 145 148 1.060
6.4 131 131 0.00 131 131 133 0.737
6.5 161 161 0.00 163 161 167 1.751
A.1 253 254 0.00 256 254 259 1.234
A.2 252 254 0.01 256 254 259 1.502
A.3 232 232 0.00 234 232 236 1.060
A.4 234 235 0.00 238 235 242 2.586
A.5 236 236 0.00 237 236 238 0.640

72



Mathematics 2021, 9, 1840

Table 4. Results of SACSDBSCAN for instance B, C, D, NRE, NRF, NRG and NRH.

Instance

SACSDBSCAN

Nest = 10 to 50

Pa = 0.1 to 0.45

BKS Fit RDP AVG MIN MAX STD

B.1 69 73 0.05 76 73 79 2.610
B.2 76 76 0.00 80 76 87 3.218
B.3 80 80 0.00 84 80 88 2.673
B.4 79 79 0.00 82 79 88 2.560
B.5 72 72 0.00 73 72 78 1.710

C.1 227 227 0.00 229 227 234 1.993
C.2 219 219 0.00 221 219 225 1.685
C.3 243 243 0.00 246 243 250 2.131
C.4 219 219 0.00 221 219 224 1.309
C.5 215 215 0.00 216 215 217 0.799

D.1 60 61 0.02 64 61 66 1.414
D.2 66 70 0.06 70 70 70 0.000
D.3 72 76 0.05 79 76 82 1.859
D.4 62 63 0.02 66 63 67 1.486
D.5 61 63 0.03 64 63 66 0.910

NRE.1 29 29 0.00 30 29 30 0.516
NRE.2 30 31 0.03 32 31 34 0.862
NRE.3 27 28 0.04 29 28 31 0.976
NRE.4 28 30 0.07 31 30 33 0.834
NRE.5 28 29 0.03 29 29 30 0.516

NRF.1 14 15 0.07 15 15 16 0.458
NRF.2 15 15 0.00 16 15 17 0.458
NRF.3 14 16 0.13 17 16 17 0.507
NRF.4 14 15 0.07 15 15 16 0.389
NRF.5 15 15 0.00 15 15 16 0.258

NRG.1 176 188 0.06 194 188 197 2.789
NRG.2 154 160 0.04 165 160 167 2.282
NRG.3 166 180 0.08 182 180 183 0.862
NRG.4 168 177 0.05 183 177 186 2.728
NRG.5 168 181 0.07 183 181 184 0.799

NRH.1 63 69 0.09 71 69 72 0.976
NRH.2 63 66 0.05 67 66 67 0.414
NRH.3 59 66 0.11 67 66 68 0.738
NRH.4 63 63 0.00 64 63 66 1.528
NRH.5 55 59 0.07 60 59 61 0.707
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The distribution of the data in all instances (Figures 4–14), shows that the performance
of our proposal is better than the traditional the cuckoo search optimizer. Concentrating
the largest distribution of results in the optimal values, while in original CS they are
visibly distant. For example, in the instance B.5, we can see that the distribution is better in
our proposal, but at the same time, reflex the behavior to move the result on the best values
in his executions, getting the center of the distribution in the best value quartile. Other
instance that shows this behaviour can be observed in C.5. Here, our proposal generates
again a large number of optimum results.

The scenario in D.5 and NRE.5, is similar in all of them, the behavior of the ASCSDB-
SCAN show that reach best results compare to CS. In instance NRF.5 we can see that the
behavior of both algorithms obtains a similar figure, reflexing the results obtained from the
nature of the sample data. In this scenario, we can rescue results in our proposal, obtains
betters solutions. The instance NRG.5 is the only scenario where the results of this instance
are at six point of distance to obtain an Zopt in SACSDBSCAN. Finally, for the instance
NRH.5, the behavior of the ASCSDBSCAN is again superior than CS.
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Figure 4. Instance 4.10 distribution.
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Figure 5. Instance 5.10 distribution.
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Figure 6. Instance 6.5 distribution.
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Figure 7. Instance A.5 distribution.

CS CSDBSCAN
Algorithms

70

75

80

85

90

Ex
ec

ut
io

n 
Fi

t

B5

Figure 8. Instance B.5 distribution.
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Figure 9. Instance C.5 distribution.
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Figure 10. Instance D.5 distribution.
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Figure 11. Instance NRE.5 distribution.
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Figure 12. Instance NRF.5 distribution.
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Figure 13. Instance NRG.5 distribution.
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Figure 14. Instance NRH.5 distribution.

5.3. Statistical Test

As previously stated, we offer the following hypotheses in order to determine inde-
pendence:
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- H0: states that Zmin/Zmax follows a normal distribution.
- H1: states the opposite.

The test performed has yielded p_value lower than 0.05; therefore, H0 cannot be
assumed. Now that we know that the samples are independent, and it cannot be assumed
that they follow a normal distribution, it is not feasible to use the central limit theorem.
Therefore, for evaluating the heterogeneity of samples we use a non-parametric evaluation
called Mann–Whitney–Wilcoxon test to compare all the results of the hardest instances we
propose the following hypotheses:

- H0: CS is better than SACSDBSCAN.
- H1: states the opposite.

Finally, the statistical contrast test reveals which technique is considerably superior.
The Wilcoxon signed rank test was used to compare SCP on the algorithms techniques

for the hardest instances (Tables 9–19). Smaller p-values than 0.05 define that H0 cannot be
assumed because the significance level is also set to 0.05.

To conduct the test run that supports the study, we use a method from the PISA system.
We specify all data distributions (each in a file and each data in a line) in this procedure,
and the algorithm returns a p-value for the hypotheses.

The following tables show the result of the Mann–Whitney–Wilcoxon test. To under-
stand them, it is necessary to know the following acronyms:

• SWS = Statistically without significance.

Table 9. p-values for instance 4.10.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 1.711× 10−12 Not applicable

Table 10. p-values for instance 5.10.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 2.228× 10−12 Not applicable

Table 11. p-values for instance 6.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 1.711× 10−12 Not applicable

Table 12. p-values for instance A.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 3.055× 10−12 Not applicable

Table 13. p-values for instance b.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 3.417× 10−12 Not applicable
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Table 14. p-values for instance c.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 4.100× 10−12 Not applicable

Table 15. p-values for instance d.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 1.288× 10−12 Not applicable

Table 16. p-values for instance NRE.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 1.915× 10−12 Not applicable

Table 17. p-values for instance NRF.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 2.406× 10−12 Not applicable

Table 18. p-values for instance NRG.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 3.296× 10−12 Not applicable

Table 19. p-values for instance NRH.5.

CS SACSDBSCAN

CS Not applicable SWS
SACSDBSCAN 2.482× 10−12 Not applicable

In all the cases, as mentioned above, the p-values reported are less than 0.05, and SWS
suggests that they have no statistical significance. So, with this knowledge, in each instance
mentioned, we can see the SACSDBSCAN algorithm was better than the original CS.

If we focus on the instances where our proposal improves the result obtained in
comparison to the original CS algorithm, we can infer that the solutions achieved are
distributed in a centered way on their optimal value, which reflects that the behavior of
this algorithm is very positive. This is reflected in the violin Figure 8 or Figures 10 and 14.

5.4. Comparison Results in Similar Hybrid Algorithms

Within the literature, recent studies can be found that use hybrid algorithms that
solve the coverage problem [5,48–50]. However, to compare a hybrid algorithm that
resembles our proposal, we have considered making a comparison of results with hybrid
algorithms that work with bio-inspired metaheuristics, improved by ML, and they solve
the set covering problem. In this scheme, we have three algorithms. The first one is the
crow search algorithm boosted by the DBSCAN method (called CSADBSCAN). The second
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studied approach was the integration between the crow search algorithm and the Kmean
method (CSAKmean). Both hybridizations were proposed by Valdivia et al. in [51]. Finally,
we employ an improved version of the cuckoo search algorithm with the Kmean transition
algorithm (KMTA), recently proposed by García et al. in [52].

Tables 20 and 21 present best values reached in CSADBSCAN, CSAKmean and KMTA.
Those algorithms implement different strategies to improve metaheuristics with ML. To re-
sume and centering the results of the best values obtained, we add the AVG measure in the
final row of each table. Unfortunately, KMTA only reports results of the first of each family
instance, so N/R means Not Reported.

Table 20. Best values reached by an improved bio-inspired algorithm with ML that solve the set
covering problem Instances 4, 5, 6 and A.

Instance BKS
SACSDBSCAN CSADBSCAN CSAKmean KMTA

Best RDP Best RDP Best RDP Best RDP

4.1 429 429 0.000 429 0.000 429 0.000 430 0.002
4.2 512 512 0.000 512 0.000 513 0.002 N/R N/R
4.3 516 516 0.000 516 0.000 516 0.000 N/R N/R
4.4 494 494 0.000 494 0.000 495 0.002 N/R N/R
4.5 512 512 0.000 512 0.000 514 0.004 N/R N/R
4.6 560 560 0.000 560 0.000 560 0.000 N/R N/R
4.7 430 430 0.000 430 0.000 430 0.000 N/R N/R
4.8 492 492 0.000 492 0.000 493 0.002 N/R N/R
4.9 641 641 0.000 641 0.000 645 0.006 N/R N/R
4.10 514 514 0.000 514 0.000 513 0.002 N/R N/R

5.1 253 253 0.000 253 0.000 253 0.000 253 0.000
5.2 302 303 0.003 302 0.000 308 0.020 N/R N/R
5.3 226 226 0.000 226 0.000 228 0.009 N/R N/R
5.4 242 242 0.000 242 0.000 242 0.000 N/R N/R
5.5 211 211 0.000 211 0.000 211 0.000 N/R N/R
5.6 213 213 0.000 213 0.000 213 0.000 N/R N/R
5.7 293 293 0.000 293 0.000 293 0.000 N/R N/R
5.8 288 288 0.000 288 0.000 288 0.000 N/R N/R
5.9 279 279 0.000 279 0.000 279 0.000 N/R N/R
5.10 265 265 0.000 265 0.000 267 0.008 N/R N/R

6.1 138 138 0.000 140 0.014 140 0.014 138 0.000
6.2 146 146 0.000 146 0.000 146 0.000 N/R N/R
6.3 145 145 0.000 145 0.000 147 0.014 N/R N/R
6.4 131 131 0.000 131 0.000 131 0.000 N/R N/R
6.5 161 161 0.000 162 0.006 163 0.012 N/R N/R

A.1 253 254 0.004 254 0.004 254 0.004 254 0.004
A.2 252 254 0.008 256 0.016 257 0.020 N/R N/R
A.3 232 232 0.000 233 0.004 235 0.013 N/R N/R
A.4 234 235 0.004 236 0.009 235 0.004 N/R N/R
A.5 236 236 0.000 236 0.000 236 0.000 N/R N/R

AVG – – 0.001 – 0.002 – 0.005 – 0.002

Table 20 shows how SACSDBSCAN obtain better results average in comparison with
the other algorithms for the instances 4, 5, 6 y A. Table 21 shows how SACSDBSCAN obtain
better results average in comparison with CSADBSCAN and CSAKmean in a very wide
value to CSADBSCAN, a difference to 1.141 and 0.038 distance with CSAKmean. Only
KMTA obtain the best AVG value with the reported best values with 0.018 difference.
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Table 21. Best values reached by an improved bio-inspired algorithm with ML that solve the set
covering problem Instances B, C, D, NRE, NRF, NRG, and NRH.

Instance BKS
SACSDBSCAN CSADBSCAN CSAKmean KMTA

Best RDP Best RDP Best RDP Best RDP

B.1 69 73 0.058 69 0.000 74 0.072 69 0.000
B.2 76 76 0.000 81 0.066 83 0.092 N/R N/R
B.3 80 80 0.000 82 0.025 84 0.050 N/R N/R
B.4 79 79 0.000 83 0.051 84 0.063 N/R N/R
B.5 72 72 0.000 78 0.083 72 0.000 N/R N/R

C.1 227 227 0.000 233 0.026 228 0.004 229 0.009
C.2 219 219 0.000 226 0.032 226 0.032 N/R N/R
C.3 243 243 0.000 253 0.041 254 0.045 N/R N/R
C.4 219 219 0.000 224 0.023 225 0.027 N/R N/R
C.5 215 215 0.000 222 0.033 215 0.000 N/R N/R

D.1 60 61 0.017 68 0.133 66 0.100 60 0.000
D.2 66 70 0.061 73 0.106 71 0.076 N/R N/R
D.3 72 76 0.056 82 0.139 82 0.139 N/R N/R
D.4 62 63 0.016 70 0.129 67 0.081 N/R N/R
D.5 61 63 0.033 72 0.180 66 0.082 N/R N/R

NRE.1 29 29 0.000 70 1.414 30 0.034 29 0.000
NRE.2 30 31 0.033 83 1.767 34 0.133 N/R N/R
NRE.3 27 28 0.037 74 1.741 34 0.259 N/R N/R
NRE.4 28 30 0.071 83 1.964 33 0.179 N/R N/R
NRE.5 28 29 0.036 92 2.286 30 0.071 N/R N/R

NRF.1 14 15 0.071 372 25.571 17 0.214 14 0.000
NRF.2 15 15 0.000 74 3.933 18 0.200 N/R N/R
NRF.3 14 16 0.143 335 22.929 19 0.357 N/R N/R
NRF.4 14 15 0.071 52 2.714 18 0.286 N/R N/R
NRF.5 15 15 0.000 65 3.333 16 0.067 N/R N/R

NRG.1 176 188 0.068 287 0.631 197 0.119 176 0.000
NRG.2 154 160 0.039 208 0.351 168 0.091 N/R N/R
NRG.3 166 180 0.084 211 0.271 183 0.102 N/R N/R
NRG.4 168 177 0.054 250 0.488 186 0.107 N/R N/R
NRG.5 168 181 0.077 230 0.369 183 0.089 N/R N/R

NRH.1 63 69 0.095 N/R N/R 71 0.127 64 0.016
NRH.2 63 66 0.048 N/R N/R 71 0.127 N/R N/R
NRH.3 59 66 0.119 N/R N/R 69 0.169 N/R N/R
NRH.4 63 63 0.000 N/R N/R 68 0.079 N/R N/R
NRH.5 55 59 0.073 N/R N/R 61 0.109 N/R N/R

AVG – – 0.021 – 1.162 – 0.059 – 0.003

6. Conclusions

In this paper, we can conclude that the use of the machine learning technique to make
a metaheuristic autonomous parameters setting has the 38/65 min values fitness on the
test that we make, in one single configuration over the 20 different configurations, that
demonstrates that with our proposed algorithm, it is not necessary make the complex task
to find the best parameter setting of the metaheuristic CS, that is, in most of the time, in a
try-and-error way. The result of the experiment demonstrates that it is positive to use the
DBSCAN algorithm to infer his result and use that information to let us make changes
to the values of the parameters. The comparison results with other bio-inspired hybrid
algorithms applied on the set covering problem demonstrate that the use of DBSCAN
obtains better results on average fitness values in comparison with studies that report all
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the best results values. The exploration criteria that we use can let the algorithm vary
the search space to find another best candidate, as we saw in the box graphs and the
distribution of the instances. In addition, the use of the noise points associate with the Pa,
lets the SACSDBSCAN keep the variety on his behavior and not forget the stochastic factor
that characterizes a metaheuristic.

The free execution parameter allows the metaheuristic to maintain its natural behavior
across executions. At the time of reaching the freedom parameter, we can analyze the
results of the metaheuristics and classify its results space to be able to make its classification
and corresponding intervention of the possible candidate solutions, eliminating the worst
for possible new better solutions.

As future work, we consider implementing an improvement to the criterion of popu-
lation increase and decrease using clusterization strategies. In another line of work, we
want to implement different machine learning techniques to be able to perform algorithms
that allow effective use of the population increase/decrease in metaheuristics, and thus
be able to deliver tools that make these algorithms more efficient. In addition, we are
considering contributing new works that provide comparisons of this algorithm with
other hybrid variants of cuckoo search, and other types of metaheuristics that use ML
to improve their performance, different from those presented in this work, used to solve
continuous problems.
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Abbrevations

Symbol
α Step size to generate the next solution
Pa Probability abandon of CSA
β Scalar number between 0 and 3
ε Max Distance with each other point
T Max number of Iterations
t Current Iteration
Lb Lower Bound
Ub Upper Bound
Xd

i (t) Solution ith in dimension d at iteration t
Acronyms
ML Machine Learning
CSA Cuckoo Search Algorithm
SACSADBSCAN Self-Adaptive Cuckoo Search DBSCAN
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DBSCAN Spatial Clustering Based on Noise Application Density
SCP Set Covering Problem
RPD Relative Percentage Deviation
CSADBSCAN Crow Search Algorithm boosted by the DBSCAN method
CSAKmean crow search algorithm and the Kmean method
KMTA Kmean transition algorithm
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Abstract: Considering the carbon trading mechanism and consumers’ preference for low-carbon
products, a game decision-making model for the low-carbon e-commerce supply chain (LCE-SC) is
constructed. The influences of commission and carbon trading on the optimal decisions of LCE-SC are
discussed and then verified through numerical analysis. On this basis, the influence of carbon trading
on regional sustainable development is empirically analyzed. The results show that the establishment
of carbon trading pilots alleviates the negative impact of unfair profit distribution. Increasing the
commission rate in a reasonable range improves the profitability of LCE-SC. Nevertheless, with
the enhancement of consumers’ low-carbon preference, a lower commission rate is more beneficial
to carbon emission reduction. The total carbon emission is positively related to the commission
rate. However, the unit carbon emission decreases first and then increases with the commission rate.
The influence of the carbon price sensitivity coefficient on the service level is first positive and then
negative, while the influence on the manufacturer’s profit goes the opposite. The empirical analysis
confirms that the implementation of carbon trading is conducive to regional sustainable development
and controlling environmental governance intensity promotes carbon productivity.

Keywords: carbon emission; carbon trading; e-commerce supply chain; sustainable development

1. Introduction

At present, global climate change caused by greenhouse gas has become a serious
threat to sustainable development [1], and it has become a global consensus to take rea-
sonable and effective measures to control carbon emission [2]. As early as 1960, Coase [3]
proposed that the problem of externalities can be solved by defining property rights and
trading voluntarily in the market. Stern [4] and Yang et al. [5] also mentioned that estab-
lishing a carbon trading market pricing by the market is an effective emission-reduction
measure since the external cost for carbon emission can be internalized. Since the establish-
ment of carbon trading pilots in Beijing, Shanghai, Tianjin, Fujian Province, Guangdong
Province, Hubei Province, and Chongqing in 2013, the Chinese carbon trading market
has been active. At the end of 2017, carbon trading was officially launched in China [6].
According to data from taipaifang.com (http://www.tanjiaoyi.com, accessed date 20 July
2021), the total transaction volume of the seven pilots amounted to RMB 94.9 million
in 2019.

Implementing the carbon trading mechanism exerts manifold impacts. For low-
emission enterprises, production costs are directly suppressed and even economic benefits
can be obtained through carbon trading. For high-emission enterprises, excessive carbon
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emission brings greater production costs and social pressure, which impels them to invest
more manual labor and materials in carbon emission reduction (CER) and promote the
transformation of development mode [7]. For instance, as the first wave of enterprises
included in the emission management in Hubei Province, Huaxin Cement emitted carbon
exceeding the quota by 1.153 million tons and spent more than RMB 30 million to purchase
the carbon quota in 2014. In 2015, the enterprise achieved a surplus carbon quota of
424,000 tons through investment in CER, and its net income from carbon trading exceeded
RMB 9 million [8].

As the burgeoning commercial form, the e-commerce platform has changed the op-
eration mode of the traditional supply chain. Due to convenience and efficiency, the
e-commerce platform has won the favor of lots of consumers. Data from the National
Bureau of Statistics of China show that Chinese online retail sales amounted to RMB
10.63 trillion in 2019, an increase of 16.5% over 2018. In practice, there are two working
forms of the e-commerce platform, reselling and agency selling. Since the enterprise can
directly decide key factors such as retail price and thus control market demand through
pricing power, the majority of e-commerce platform’s suppliers prefer agency selling. As
a result, the e-commerce platform and the supplier form an e-commerce supply chain
(E-SC) that is different from the offline one [9]. As the revolution of the supply chain in
the Internet era, the E-SC has become the main supply chain operation mode and the most
important network economic carrier.

Considering the impact of implementing carbon trading on corporate profitability
and the change of enterprise operation mode in the Internet era, the decision-making
of emission-dependent enterprises has changed. However, existing research on the low-
carbon supply chain centers on enterprises in traditional supply chains [10–12], so it is
innovative to discuss the decision-making of the E-SC under the carbon trading mechanism.
Thus, our research focuses on the following issues. Firstly, in the context of carbon trading,
how should the low-carbon e-commerce supply chain (LCE-SC) make decisions? Secondly,
what impacts does fluctuation of the carbon market and platform fee exert on the LCE-SC’s
optimal decisions, including the decisions on production and environmental protection?
Thirdly, as an important measure to achieve sustainable development, how does the carbon
trading mechanism influence corporate economic and environmental performance, and
further influence regional sustainable development? The goals of our work are to identify
the operation mode of LCE-SC under carbon trading and examine the aforementioned
issues. Then, we expect to verify the significance of carbon trading implementation and
put forward relevant suggestions for enterprise operation and government policymaking.

Game theory is a typical method to study the decision-making of e-commerce supply
chains and low-carbon supply chains. For example, the literature [13,14] uses game theory
to solve the equilibrium decision of the e-commerce supply chain model, proving the
feasibility of using game theory to explore the decision-making of LCE-SC. Besides, game
theory can well reflect the confrontation between the e-commerce platform and suppliers.
PSM-DID is recognized as an excellent empirical method to study the implementation effect
of a policy. For example, using PSM-DID, Jia et al. [15] demonstrated the positive impact of
high-speed rail construction on China’s regional economic development, and Liu et al. [16]
analyzed the impact of environmental regulation on enterprise green innovation. However,
the two methods have not been combined to study carbon trading. This is exactly our
innovation, that is, to combine micro modeling research with macro empirical research to
explore the implementation effect of carbon trading.

Specifically, this paper firstly constructs an LCE-SC decision-making model which
consists of a manufacturer with a certain carbon cap and an agency-selling e-commerce
platform that provides the manufacturer with sales service. Then, the influence of carbon
trading on the decisions and performance of LCE-SC is discussed. On this basis, empirical
analysis is conducted to further study the influence on the sustainable development of the
enterprise group, that is, regional sustainable development. The results are as follows.
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Different from existing studies [17–19], an LCE-SC considering the carbon trading
mechanism and consumers’ low-carbon preference is constructed in this paper. It is found
that the increased carbon price sensitivity coefficient leads to an increase and then a decline
in the e-commerce platform’s service level. The influence of the commission rate on the
total carbon emission is positive, but the influence on unit carbon emission is first negative
and then positive. Compared with the low-cap manufacturer, the high-cap one’s sales
price is higher but profit is lower. The e-commerce platform cooperating with the high-cap
manufacturer can make more profits.

The moderating effect of carbon parameters is discussed. Different from the existing
research conclusion [20], it is found that within a certain range, with the increase in
the commission rate, the e-commerce platform’s and supply chain system’s profits both
increase. However, when the threshold is exceeded, the overall profit of LCE-SC decreases;
and although the e-commerce platform gains a high percentage of profit, its actual profit
declines. Besides, as consumers’ low-carbon preference is enhanced, a lower commission
rate is more beneficial to reducing emissions and improving supply chain profit. This
study also indicates that the carbon price sensitivity coefficient exerts a non-linear effect on
the manufacturer’s profit: with the increase in the coefficient, the manufacturer’s profit
decreases first and then increases. Moreover, the higher the coefficient, the more significant
the marginal impacts of optimizing emission-reduction cost on the manufacturer’s and the
e-commerce platform’s profits.

This paper combines micro research with macro research and adopts theoretical
modeling and empirical analysis to study the implementation effect of carbon trading.
Based on numerical simulation, this paper proposes a preliminary assumption that the
carbon trading mechanism positively affects regional carbon productivity. Using panel
data of 30 provincial administrative regions in China from 2009 to 2017, an empirical
analysis is conducted. It is found that implementing the carbon trading mechanism is
conducive to regional sustainable development in China’s provinces. Resource endowment,
industrial structure, environmental governance, and demographic factors also have a
certain impact on regional sustainable development. It is also noteworthy that excessive
environmental regulation is not beneficial to regional sustainable development, which
shows that environmental governance programs should be optimized.

The rest of this paper consists of the following parts. Firstly, a literature review is
provided in Section 2. Section 3 is the description and assumptions of the LCE-SC decision-
making model. The optimal decisions of LCE-SC are deduced and the influence mechanism
of commission rate and carbon trading is discussed in Section 4. Section 5 is the empirical
research on the influence of carbon trading on regional sustainable development. The
conclusions and managerial insights are proposed in Section 6.

2. Literature Review

The literature closely related to this study is organized into the following three
streams: decision-making of LCE-SC, the influence of the carbon trading mechanism
on decisions of low-carbon supply chains, and the influence of carbon trading on regional
sustainable development.

2.1. Decision-Making of LCE-SC

The decision-making problem of LCE-SC is a hot spot in current research. Ji and
Sun [21] constructed four decision-making models of e-commerce delivery strategies with
diverse emission restriction intensities and analyzed the influence of the restriction intensity
on e-commerce enterprises’ decisions. Considering customers’ low-carbon awareness, Han
and Wang [20] discussed the pricing strategy of LCE-SC and designed a coordination
mechanism of the system. Wang and Huang [22] studied the return strategy, pricing,
and CER decisions under online sales and carbon tax. Wang et al. [23] discussed the
impact of government low-carbon subsidy on the recycling strategy of the closed-loop
E-SC. These studies focused on the influence of CER on the supply chain operation, without
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consideration of carbon trading. Unlike existing research, this paper explores the influence
mechanism of carbon trading on LCE-SC decision-making.

2.2. Influence of Carbon Trading on Decisions of Low-Carbon Supply Chains

The carbon policy is internalized in the operation cost and influences the supply chain
decision-making together with economic factors [24]. More and more scholars tend to
consider the impacts of both the carbon trading market and product market on supply
chain members’ performances. The aim is to establish a supply chain model that follows
the Triple Bottom Line Principle of economic-social-environmental [25,26]. Focusing on
the management of the two-echelon supply chain, Dong et al. [27] discussed the impact
of carbon trading on the output and sales price. Du et al. [28] found that the carbon
trading policy is easier to implement and more effective to save public resources than
other government punitive measures. Xu et al. [29] studied the decision-making of CER
and coordination in the supply chain considering carbon trading. Xu et al. [30] discussed
the influence of carbon trading on the production and pricing decisions of the make-to-
order supply chain. Wang et al. [31] focused on the fresh supply chain and discussed
its optimal decisions under cap-and-trade. The above literature studies the influence of
emission policies on the decision-making of offline supply chains. Unlike existing studies,
this paper extends carbon trading to the rapidly developing LCE-SC and discusses its
influence mechanism.

2.3. Influence of Carbon Trading on Regional Sustainable Development

The influence of carbon trading on regional sustainable development has been studied.
The carbon trading market was first launched in the United States, the United Kingdom, and
the European Union, and has contributed to CER [32]. Wang et al. [33] built a CGE model for
Guangdong Province to analyze the influence of carbon trading on the province’s economy
of China and found that the mechanism can effectively reduce GDP losses and achieve the
strict emission-reduction targets. Zhao et al. [34] constructed a dynamic simulation model
and found that the negative effect of carbon trading on the GDP of the Beijing-Tianjin-Hebei
region is far less than the positive effect on energy saving and CER. Zhou et al. [35] proved
empirically that the implementation of carbon trading has caused a decline in China’s
carbon intensity. However, from the provincial perspective, the establishment of pilots
only has an obvious negative effect on the carbon intensities of Beijing and Guangdong
Province [36]. Using semi-structured interviewing, Hamzah et al. [37] confirmed that the
implementation of carbon trading is consistent with Malaysia’s sustainable development
goals. With carbon emission intensity as one of the control variables, the carbon trading
mechanism affects both CER and economic growth, and the effect extent is diverse in
different provinces [38]. Zheng et al. [39] adopted a multi-agents technique and found
by model simulation that the carbon trading mechanism harms the growth of GDP while
reducing emission. It is recommended that in order to maintain economic stability, different
regions need to set different emission restrictions.

Most of the existing literature uses carbon intensity as the dependent variable to
empirically study the implementation effect of carbon trading. However, carbon intensity
emphasizes CER rather than economic growth, which is the opposite of what developing
countries seek. Therefore, this paper adopts carbon productivity as the dependent variable
to explore the impact of the carbon trading mechanism on enterprise group behavior, that
is, the impact on regional sustainable development.

The differences between our research and the related literature are shown in Table 1.
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Table 1. Papers that are most related to our research.

Author(s) Supply Chain
System Policy Research

Method

Customers’
Environmental

Awareness

Emission
Reduction
Investment

Variable
Carbon Price

Xu et al. [29] A manufacturer
and a retailer Carbon trading

Modeling and
numerical
simulation

Yes Yes No

Fan et al. [11] A manufacturer
and a retailer Carbon trading

Modeling and
numerical
simulation

No Yes No

Xu et al. [40] A manufacturer
and a retailer

Governmental
subsidy

Modeling and
numerical
simulation

Yes Yes No

Ma et al. [41]

A supplier, a
third-party

logistics service
provider, and a

retailer

Carbon trading
and carbon tax

Modeling and
numerical
simulation

No No No

Wang et al. [31] A supplier and
multiple retailers Carbon trading

Modeling and
numerical
simulation

No No No

Xia et al. [42]

A manufacturer;
an ordinary

manufacturer and
a low-carbon
manufacturer

Carbon trading
Modeling and

numerical
simulation

Yes No No

Liu et al. [43] A manufacturer
and a retailer

Power control
structure

Modeling and
numerical
simulation

Yes Yes -

This paper

A manufacturer
and an

e-commerce
platform

Carbon trading

Modeling,
numerical

simulation, and
empirical
analysis

Yes Yes Yes

3. Problem Description and Assumptions

An LCE-SC model composed of an emission-dependent manufacturer and an agency-
selling e-commerce platform is constructed in this paper and the model structure is shown
in Figure 1. The manufacturer reaches cooperation with the e-commerce platform before
production and sells products to online consumers through the platform. In return, the
e-commerce platform charges a constant proportion of commission per unit of product [44].
Exogenous commission rate has been widely used in the research of the e-commerce supply
chain [45]. In this working form, the manufacturer has the pricing power and can control
the market demand through sales price. Settling in the platform, the manufacturer produces
products and decides sales price. Carbon emissions are generated during production. If the
carbon emissions are excessive, the manufacturer needs to purchase the carbon quota from
other enterprises; otherwise, the surplus carbon quota is sold. The e-commerce platform
provides the manufacturer with sales promotion services, such as online-store display,
advertising, online customer service, and credit maintenance. Online consumers purchase
products through the platform. Subsequently, the platform transmits the order to the
manufacturer in charge of delivery. After consumers receive the product, the platform
returns the payment to the manufacturer and charges a commission [46].

Assume that the carbon trading market has been established in the country or region,
where the manufacturer can sell or purchase carbon emission. Similar to the product
market, carbon trading price is affected by carbon emission.
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Figure 1. Model structure of LCE-SC.

The model symbols are described as follows:
c—unit production cost without consideration of the cost of CER.
p—unit sales price of products, the manufacturer’s decision variable.
ρ—commission rate, which represents the platform fee for the unit sales. The parameter

is assumed to satisfy 0 < ρ < 1− c
p to ensure that manufacturing is more lucrative.

s—service level of sales promotion for low-carbon products, the e-commerce plat-
form’s decision variable. According to Nair and Narasimhan [47], the cost function is
assumed to be C(s) = ls2/2, among which l(l > 0) is the coefficient of service cost, specifi-
cally referring to the cost of improving the unit service level.

Y—total carbon emission, the manufacturer’s decision variable. Assuming that the
emission cap of the manufacturer is YU , which is the amount of carbon emission pro-
duced by the conventional production, and there is Y ≤ YU . As the manufacturer invests
in emission-reduction equipment, the cost for reducing carbon emission is assumed as
I(Y) = h(YU −Y)2 I(Y) = h(YU −Y)2 I(Y) = h

(
YU −Y

)2, where h(h > 0) is the coeffi-
cient of emission-reduction cost. There are I(Y) ≥ 0, I′(Y) ≤ 0, I

′′(Y) > 0, which mean
that as CER increases (i.e., carbon emission decreases), the cost increases, and the marginal
cost increases.

q—market demand for low-carbon products. Since the e-commerce platform’s sales
service directly affects consumers’ online shopping experience, the market demand is
sensitive to service level. Drawing on the demand function form of Xia et al. [48], it is
supposed that the demand function is

q = α− βp + γs + k
(

YU −Y
)

(1)

where α is the size of the product market, β, γ and k, respectively, represent sensitivity
coefficients of price, service level, and CER for product demand.

pc—carbon price. The pricing mechanism of the carbon market is similar to the
product market, which means that pc is affected by supply and demand. The inverse
demand function is

pc = αc − rY (2)

where αc is the scale of the carbon market, and r is the carbon price sensitivity coefficient
which measures the punishment intensity for carbon emissions.

To ensure that the manufacturer who emits much carbon is punished, pc in the inverse
demand function (i.e., Equation (2)) is allowed to be negative. pc > 0 means that the
manufacturer invests in CER and sells the redundant carbon emission to obtain profits.
The higher the carbon emission, the lower the profit. When pc < 0, namely the emission is
higher than αc/r, the manufacturer is obliged to purchase carbon emission or get punished
due to high emission, thus paying a cost.

To ensure the practical meaning of the research problem, it is assumed that ac − rYU < 0,
which means the high-emission manufacturer suffers punishment. Moreover, 4(h + r)β−
k2(1− ρ) > 0, 2rYU − αc > ck, α(1− ρ) > cβ, ck + 4hYU + 2αc >

Akl(1−ρ)(α+kYU)
lβA−2B , which

can ensure that the optimal solutions of the model exist and are positive.
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On the basis of the model assumptions, the manufacturer’s profit function in the
product market is:

πM1 = (p− c− ρp)
[
α− βp + γs + k

(
YU −Y

)]
(3)

The manufacturer’s profit function in the carbon market is:

πM2 = (ac − rY)Y− h(YU −Y)
2

(4)

The manufacturer’s total profit function is:

πM = πM1 + πM2 = (p− c− ρp)
[
α− βp + γs + k

(
YU −Y

)]
+ (ac − rY)Y− h(YU −Y)

2
(5)

The e-commerce platform’s profit function is:

πE = ρp
[
α− βp + γs + k

(
YU −Y

)]
− ls2/2 (6)

4. Optimal Decisions of LCE-SC and the Influence Mechanism of Carbon Trading
4.1. Optimal Decisions

In practice, the e-commerce platform formulates and publishes the conditions of
entry for the manufacturer to settle in the platform, and most large-scale e-commerce
companies, such as Tmall (https://www.tmall.com, accessed date 20 July 2021) and Youpin
(https://www.xiaomiyoupin.com, accessed date 20 July 2021), set higher entry thresholds
to maintain brand benefits. Only when the manufacturer satisfies the conditions can it
enter and cooperate with the platform. Thus, with consideration of the actual operation of
e-business, the leading enterprise in LCE-SC is assumed to be the e-commerce platform.
The manufacturer, as the follower, follows the sale rules to sell low-carbon products. Thus,
the platform and the manufacturer constitute a Stackelberg game model. In decision-
making, the platform first decides its service level s. The manufacturer subsequently makes
decisions on the carbon emission Y and the sales price p. The solutions of backward
induction are shown as follows.

It can be derived from Equation (5) that the Hessian matrix of πM is H =




∂2πM
∂p2

∂2πM
∂p∂Y

∂2πM
∂Y∂p

∂2πM
∂Y2




=

[ −2(1− ρ)β −k(1− ρ)
−k(1− ρ) −2(h + r)

]
and det(H) = 4(h + r)β(1− ρ)− k2(1− ρ)2 > 0. Besides,

since ∂2πM
∂p2 < 0, there is a maximum of πM. The reaction functions of p and Y are the

simultaneous solution of ∂πM/∂p = 0 and ∂πM/∂Y = 0.

p =
2(h + r)cβ +

[
2(h + r)(α + sγ) + k

(
2rYU − αc − ck

)]
(1− ρ)

4(h + r)β(1− ρ)− k2(1− ρ)2 (7)

Y =

(
ck + 4hYU + 2αc

)
β− k(1− ρ)

(
kYU + α + sγ

)

4(h + r)β− k2(1− ρ)
. (8)

Substituting Equations (7) and (8) into Equation (6), ∂2πE/∂s2 = −l < 0 can be de-
rived, so the maximum of πE exists. According to ∂πE/∂s = 0, the e-commerce platform’s
optimal service level is

s∗ =
2B
[
4α(h + r)− ck2 + 2k

(
2rYU − αc

)]

γ[A2l − 8B(h + r)]
(9)

The optimal sales price is derived by substituting Equation (9) into Equation (7).
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p∗ =
F2 + cF3 + F6

(1− ρ)F3

Similarly, according to Equations (8) and (9), the optimal carbon emission is

Y∗ =
(Alβ− 2B)

(
ck + 4hYU + 2αc

)
− Akl(1− ρ)

(
α + kYU)

A2l − 8B(h + r)

According to y = Y/q, the optimal unit carbon emission of the product can be calculated.

y∗ =
(1− ρ)F4

β[8Bc(h + r) + F2 + F6]

Correspondingly, the manufacturer’s profit in the product market is

π∗M1
=

2(h + r)β(F1 + F2)[2(h + r)F1 + F2]

F2
3 (1− ρ)

The manufacturer’s profit in the carbon market is

π∗M2
=

αcF3F4 − rF2
4 − h(YU F3 − F4)

2

F2
3

The manufacturer’s total profit is

π∗M =
2(h + r)β(F1 + F2)[2(h + r)F1 + F2]

F2
3 (1− ρ)

+
αcF3F4 − rF2

4 − h(YU F3 − F4)
2

F2
3

The e-commerce platform’s profit is

π∗E =
1
F2

3

{
βρ[2(h + r)F1 + F2][2(h + r)F1 + F2 + cF3]

(1− ρ)2 − 2l(h + r)βρF2
5

}

The common factors are as follows: A = 4(h + r)β− k2(1− ρ), B = (h + r)βγ2ρ, F1 =
2Bc + Al(α− cβ− αρ), F2 = Akl(1− ρ)

(
2rYU − αc

)
, F3 = A2l − 8B(h + r), F4 = (Alβ

−2B)
(
ck + 4hYU + 2αc

)
− Akl(1− ρ)

(
α + kYU), F5 = 4α(h + r) − ck2 + 2k

(
2rYU − αc

)
,

F6 = 2Al(h + r)(α− cβ− αρ).

4.2. Analysis of LCE-SC Model

Proposition 1. Manufacturer’s optimal carbon emission Y∗ and the unit carbon emission y∗

are positively related to YU , αc, and h, while Y∗ and y∗ are negatively related to k and r. Y∗ is
positively related to ρ, while there are two cases of the relationship between y∗ and ρ: when ρ satisfies

ρ < 1− [F2+8(h+r)Bc+F6]{kl(kYU+α)(1−ρ)[2A−k2(1−ρ)]+(ck+4hYU+2αc)βF7}
F4{2cβ(h+r)[4(h+r)γ2−k2l]−l[2(h+r)β−k2(1−ρ)](F5+ck2)} , y∗ is negatively related

to ρ; otherwise, y∗ is positively related to ρ.
Note that F7 = 2k2l(1− ρ) + 2(h + r)γ2(2ρ− 1)− 4(h + r)lβ.

Proof of Proposition 1. See Appendix A. �

According to Proposition 1, except ρ, the correlations of other parameters with Y∗ and
y∗ are similar. Thus, these two decision variables are represented by carbon emission here.

For the manufacturer, the carbon emission increases with the emission cap YU . There-
fore, the carbon emission of the high-cap manufacturer is still high under carbon trading
and CER. With the increase in the coefficient of emission-reduction cost h, the manufacturer
pays more for CER, and the revenues from the products market and carbon market are
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insufficient to cover the cost. Therefore, the manufacturer prefers high carbon emissions to
ensure profit.

With the increase in the commission rate ρ, in order to obtain a high profit after paying
commission, appropriate depression of CER is an alternative method for the manufacturer
to control costs. However, the unit carbon emission decreases first and then increases with
the commission rate. The reason lies in the significant increase in product demand caused
by the increase in the commission. Hence, the total carbon emission increases, but the
unit emission decreases. Once the threshold of the commission rate is exceeded, a serious
distribution inequity erodes the manufacturer’s enthusiasm for production, which means
that the market demand drops off and the unit carbon emission goes up. The practical
significance of this conclusion is that increasing the commission rate leads to environmental
deterioration, and once the commission rate is too high, the market share of the product
will be seriously damaged. It is more advantageous to control the commission rate in a
lower range to realize the benign operation of the supply chain. In addition, the higher the
sensitivity coefficient of CER k, the higher the market demand for low-carbon products,
which further motivates the manufacturer to control emissions.

Changes in the scale of the carbon market αc and the carbon price sensitivity coefficient
r reflect the influence mechanism of the carbon market. A larger scale of carbon market
means a higher threshold for the manufacturer to bear high-emission punishment, which
lowers the enthusiasm for CER and results in higher carbon emissions. Moreover, a larger
carbon price sensitivity coefficient means that high emissions can lead to an excessively
low or negative carbon price, causing substantial economic loss. In this situation, the
manufacturer tends to reduce emissions to obtain profit. This shows that the carbon market
directly affects the carbon emission of the manufacturer, and government departments can
regulate the carbon emissions of manufacturing enterprises by adjusting the supply and
demand relationship in the carbon market.

Proposition 2. The e-commerce platform’s optimal service level s∗ is positively related to YU , ρ,
and k, while s∗ is negatively related to αc and h. There are two cases of the relationship between
s∗ and r: when r satisfies ck + 4hYU + 2αc > 2klA(1− ρ)F5/F3, s∗ is positively related to r;
otherwise, s∗ is negatively related to r.

Proof of Proposition 2. See Appendix B. �

As can be seen from Proposition 2, with the increase in the emission cap YU , carbon
emission and emission reduction (YU − Y∗) both increase. The e-commerce platform is
willing to provide a better sales promotion service for low-carbon products. It is indicated
that in Proposition 1, a higher coefficient of emission-reduction cost h leads to more carbon
emission. As a result, the e-commerce platform puts less emphasis on the products, and
the service level decreases accordingly. With the increase in the sensitivity coefficient
of CER k, the market demand increases. The increasing profit impels the platform to
improve sales service to promote its brand value. When referring to the carbon market,
the influence mechanism of the scale of the carbon market αc is found to be similar to h.
Besides, the correlation between the optimal service level and the carbon price sensitivity
coefficient r is first positive and then negative. When r is small, increasing the coefficient
impels the manufacturer to reduce emission, and its low-carbon products can gain more
favor from e-commerce platform; when r is large, the manufacturer’s profit gained for
emission reduction is far less than the cost, so the increment of emission reduction decreases,
and a lower service level is provided by the e-commerce platform. The carbon price
sensitivity coefficient indirectly affects the sales promotion service of the e-commerce
platform, that is, blindly strengthening the punishment intensity for carbon emissions is
not conducive to improving the service level, which will affect consumers’ online shopping
experience. The practical significance of this conclusion is that the government should
control environmental regulation within a certain intensity range.
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Proposition 3. The optimal sale price p∗ is positively related to YU , ρ, k, and r, while p∗ is
negatively related to αc and h.

Proof of Proposition 3. Similar to that of Proposition 1. �

According to Proposition 1, as the emission cap YU increases, the manufacturer suffers
more punishment in the carbon market. Therefore, Proposition 3 shows that the sales price
increases to make up for this loss. This means that the high-cap manufacturer’s sales price
is higher than the low-cap one’s. However, an increased coefficient of emission-reduction
cost h erodes the enthusiasm of the manufacturer for reducing emission, and the decline in
variable costs leads to a lower sales price. Similarly, increasing the sensitivity coefficient
of CER k can help lower carbon emissions. For the sake of maximizing its profit, the
manufacturer increases sales price to compensate for the emission-reduction cost. As for
the commission rate ρ, the increase in this parameter means that the e-commerce platform
divides more profit. As a result, the manufacturer tends to guarantee its own profit by
increasing sales price. Since the increase in the carbon-market scale αc implies a decrease
in the punishment for carbon emissions, the impact of αc on the sales price is the same
as the impact of h. On the contrary, increasing the carbon price sensitivity coefficient r
causes the high-emission manufacturer to purchase carbon emissions and the low-emission
one to pay more for CER according to the law of increasing marginal cost. As a result,
the sales price increases. This conclusion is consistent with the research of Xing et al. [49]
which shows that increasing sales price is the optimal strategy for the manufacturer under
carbon trading.

Proposition 4. (1) The optimal manufacturer’s profit π∗M is positively related to αc and k, while
π∗M is negatively related to YU , h, and ρ. (2) The optimal e-commerce platform’s profit π∗E is
positively related to YU , r, and k, while π∗E is negatively related to αc and h.

Proof of Proposition 4. Similar to that of Proposition 1. �

As can be seen from Proposition 4, with the increase in the emission cap YU , the
manufacturer’s profit decreases, and the e-commerce platform’s profit increases. In the
context of carbon trading and CER, the profit of the high-cap manufacturer is lower, and
the e-commerce platform cooperating with the high-cap manufacturer gains a higher
profit. Moreover, as the coefficient of emission-reduction cost h increases, the sales price
and market demand of the products decrease but the carbon emission increases. The
manufacturer’s revenues in the product market and the carbon market are insufficient to
cover the increasing emission-reduction costs, which results in a decline in the profits of
both members in LCE-SC. On the contrary, increasing the sensitivity coefficient of CER
k causes an increase in the product demand, which boosts the manufacturer’s revenue
in the product market as well as the e-commerce platform’s profit. Similarly, the carbon
price sensitivity coefficient r increases the platform’s profit. Understandably, a higher
commission rate ρ brings less profit to the manufacturer. Since the expansion of the carbon
market αc causes a decrease in sales price and demand, the sales revenue and the profit
shared by e-platform decline. However, the increase in the manufacturer’s carbon revenue
and the decline in the cost of CER boost its own profit.

Different from the previous conclusion that reducing carbon emission harms the
profits of supply chain members [41,50], this paper points out that emission reduction does
not erode the profits of supply chain members by comparing Proposition 1 and Proposition
4. On the contrary, by enhancing consumers’ low-carbon preference or reducing the
manufacturer’s emissions-reduction cost, profits of the members in LCE-SC all increase,
and carbon emission decreases, thus improving supply chain operation.
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4.3. Numerical Analysis

In order to verify the above propositions and further discuss the influence of the
parameters on the decision-making of LCE-SC, numerical examples are given below. Draw-
ing on the research of Shen and Wang [51] and Wang et al. [23], the base parameters are
supposed to be α = 10000, β = 5, γ = 2, c = 500, l = 1.

Analyze the impact of commission rate ρ and the sensitivity coefficient of CER k on the
LCE-SC’s performances. Based on the base parameters, assume that YU = 6000, αc = 5000,
h = 1, and r= 1, and take ρ and k as independent variables. The changing surfaces of
economic and environmental performances are shown in Figure 2.

Figure 2. Changes in the LCE-SC’s performances with ρ and k.

As can be seen from Figure 2d, with the appropriate increase in the commission
rate ρ, the optimal profit of the LCE-SC increases. This is because the increase within a
reasonable range in the commission rate causes an increase in market demand, which
makes the supply chain maintain high profitability. It can be concluded that for LCE-
SC, the implementation of carbon trading alleviates the negative impact of the unfair
profit distribution. However, a high commission rate loses its coordinating role, and
market demand drops significantly, which results in a decline in the overall profit of
LCE-SC. Although the e-commerce platform obtains a high percentage of profit, its actual
profit declines, which can explain why the commission rates set by major e-commerce
platforms often do not exceed 30%. Additionally, no matter how the commission rate
changes, increasing consumers’ preference for low-carbon products is conducive to CER
and also increases the profits of both parties. Moreover, the lower the commission rate, the
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more significant the marginal influence of the sensitivity coefficient of CER k on reducing
emission and manufacturer’s profit, which shows that as consumers’ low-carbon preference
is enhanced, a lower commission rate is beneficial to environmental protection.

Analyze the impact of the coefficient of emission-reduction cost h and carbon price
sensitivity coefficient r on the LCE-SC’s performances. Based on the base parameters,
assume that ρ = 0.05, k = 1, αc = 5000, and YU = 6000, and take h and r as independent
variables. The changing surfaces of economic and environmental performances are shown
in Figure 3.

Figure 3. Changes in optimal decisions with h and r.

It is graphically shown in Figure 3b that the influence of the carbon price sensitivity
coefficient r on the manufacturer’s profit is first negative and then positive. With the
increase in r, carbon emission decreases according to Figure 3a, and the manufacturer’s
revenue is not enough to cover the ever-growing emission-reduction cost, resulting in a
decrease in its profit. When r is too high, the manufacturer still chooses to reduce emission,
but the extent of reduction becomes smaller. At this time, boosting sales revenue can make
up for the emission-reduction cost, and the profit increases. It is illustrated in Figure 3b,c
that, as r increases, the marginal impacts of emission-reduction cost coefficient h on profits
of both members in LCE-SC increase. This shows that when r is in the low-value range,
the method to optimize the emission-reduction program for reducing cost has a certain
limitation; when r is larger, the marginal profit by optimizing the emission-reduction
program is higher.
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Analyze the impact of carbon emission cap YU and the scale of the carbon market αc
on the LCE-SC’s performances. Based on the base parameters, assume that ρ = 0.05, k = 1,
h = 1, and r = 1, and take YU and αc as independent variables. The changing surfaces of
economic and environmental performances are shown in Figure 4.

Figure 4. Changes in optimal decisions with YU and αc.

As illustrated in Figure 4, the changing surface of each variable with the carbon
emission cap YU and the scale of the carbon market αc is almost flat. It can be concluded
that the changes in the carbon-market scale have the same impacts on the carbon emissions
of both high-cap and low-cap enterprises and the profits of both members in LCE-SC.
According to Proposition 1, the government can regulate carbon emissions through the
scale of the carbon market, and the above conclusion indicates that this measure cannot
produce differentiated CER effects for high-cap and low-cap enterprises, which causes a
certain limitation.

With the rapid growth of the national economy, environmental issues related to the
over-consumption of resources and energy have become more serious in China. Excess
carbon emission has caused the greenhouse effect, which attracts widespread attention [52].
In the context of low carbon, enterprises seek a balance between maintaining profit growth
and controlling carbon emission. However, the existing research centers on the impact
of carbon trading on the industry from a macro perspective or the impact on corporate
decision-making from a micro perspective [11], and there is no research combining the two.
On the one hand, as important micro-units in the regional economy [53], enterprises are
the main force to drive regional economic development. On the other hand, industrial
enterprises are the focus to control carbon emissions, and their total amount of CER reflects
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the whole industry’s effort to conserve energy and reduce emissions. Therefore, it is of
practical significance to expand the micro research to the macro level.

The key to balancing economic development and emission reduction is to increase
carbon productivity which is also the unique way for developing countries to achieve
sustainable development [54]. To ascertain the influence of carbon trading on carbon
productivity, assuming that ρ = 0.05, k = 1, h = 1, r = 1, and YU = 6000, αc is taken as
the explanatory variable. Changes in LCE-SC’s carbon productivity ( π∗M+π∗E

Y∗ ) and emission-

dependent manufacturer’s carbon productivity ( π∗M
Y∗ ) are shown in Figure 5. As shown in

this figure, increasing the scale of the carbon market promotes the carbon productivities
of both LCE-SC and the manufacturer. It can be preliminarily inferred from the micro
perspective that enterprises’ carbon productivity is improved due to the implementation of
carbon trading. Then, what is the implementation effect of the carbon trading mechanism
on the macro level? In the next section, the issue is addressed by empirical analysis.
Considering the authority and availability of statistical data, regional carbon productivity
is selected as the indicator to measure the sustainable development level of the enterprise
group. The research relationships from the micro perspective and the macro perspective
are shown in Figure 6.

Figure 5. Changes in carbon productivity with the scale of carbon market.

Figure 6. Relationship between the micro research and the macro research.
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5. An Empirical Analysis of the Influence of Carbon Trading on Regional Enterprises’
Sustainable Development
5.1. The Method of Empirical Analysis

Based on natural experiments and pooled cross-sections, the Difference-in-Difference
method (DID) is widely adopted in evaluating the implementation effect of specific
policies [55]. The advantage of DID lies in controlling the discrepancy between the ex-
perimental group and the control group before and after implementing the policy to
eliminate some uncontrollable and unpredictable factors [56]. The basic form of DID is:
Ygt = β0 + β1Tg + β2Pt + β3

(
Tg × Pt

)
+ εgt, among which Tg and Pt are dummy variables

with g = 1, . . . , G indexing cross-sectional units and t = 1, . . . , T indexing periods. The
interaction item is the estimation of the treatment effect under the parallel trend assump-
tion [57]. In recent years, the DID gradually became the mainstream method for measuring
the effect of carbon trading. For example, Zhang et al. [36] and Dong et al. [58] empirically
analyzed the implementation effect of carbon trading policy on the basis of provincial
panel data and the DID method. Zhu et al. [59] explored whether the carbon trading policy
promotes green development efficiency in China by DID.

However, the selection of carbon trading pilots is not arbitrary. Instead, it is dependent
on the regional economic level, historical data of carbon emission, environmental regulation,
and other important indicators, which causes heterogeneity. Among such observational
studies, scholars tend to choose the Propensity Score Matching (PSM) to overcome the
selective bias in causality assessment [60]. Rosenbaum and Rubin [61] proved that among
the observation subjects that match the propensity scores, the treatment group and the
control group have similar baseline characteristic distribution. Therefore, scholars tend
to combine the PSM and DID methods to verify the policy effect. For example, based on
provincial panel data, Zhou et al. [35] conducted an empirical study to assess the influence
of carbon trading policy using PSM-DID. With reference to previous research, this paper
adopts PSM-DID to empirically analyze the influence of the carbon trading mechanism on
regional sustainable development.

5.2. Variable Selection and Data Sources
5.2.1. Carbon Productivity

The research object of this section is the influence of the carbon trading mechanism
on regional sustainable development. With reference to Zhang et al. [62], it is found
that scholars prefer to choose carbon intensity as the dependent variable for empirical
research. However, for developing countries, carbon intensity is more suited to measuring
carbon emission reduction rather than stressing economic development. Thus, referring
to Wang et al. [63], carbon productivity, which reflects GDP per unit carbon emission, is
selected as the dependent variable. The higher carbon productivity means greater economic
output and lower carbon emission, so carbon productivity can measure a country’s or
a region’s effort to deal with the global warming problem, and place more emphasis on
economic growth.

5.2.2. Control Variables

With reference to Yan et al. [64] and Hu et al. [65], resource endowment and industrial
structure are selected as control variables in this paper. According to Proposition 2, environ-
mental governance intensity is added. On this basis, referring to Xu et al. [66], household
consumption and population scale are supplemented to reduce the endogenous deviation
between the treatment group and the control group due to demographic factors. Table 2
shows the specific measurement methods of these variables.
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Table 2. Measurement methods of control variables.

Variable Measurement Method Symbol

Resource Endowment
Proportion of investment in fixed assets of the
mining industry (excluding rural households) to
the total investment in fixed assets

RE

Industrial Structure Proportion of secondary industry to regional GDP IS
Environmental Governance

Intensity
Proportion of investment completed in the
treatment of industrial pollution to regional GDP EGI

Household Consumption Household consumption in the total consumption
of energy HC

Population Scale Population at year-end POP

5.2.3. Data Sources and Descriptive Statistics

Taking into account the availability and timeliness of the data, provincial panel data
from 2009 to 2017 are used. The data of Tibet, Hong Kong, Macao, and Taiwan are excluded
from the research since there are relatively more defaults. The original data sources for
calculating the variables are as follows: GDP, investment in fixed assets of the mining
industry (excluding rural households), investment of fixed assets in the whole society, GDP
of the secondary industry, investment completed in the treatment of industrial pollution,
and population at year-end come from the China Statistical Yearbook of 2010 to 2018
and the provincial annual database of the National Bureau of Statistics. The household
consumption is from the China Energy Statistical Yearbook of 2010 to 2018. Table 3 shows
the descriptive statistics of variables in the model.

Table 3. Descriptive statistics of variables.

Variables ln CP RE IS EGI ln HC ln POP

2009
Mean 7.76602 0.04620 0.47461 0.00159 6.86159 8.16080

Std. Dev. 0.52569 0.04531 0.07627 0.00116 0.69372 0.76387

2010
Mean 7.82837 0.04374 0.49071 0.00113 6.95988 8.17059

Std. Dev. 0.52532 0.04516 0.07586 0.00089 0.70520 0.75837

2011
Mean 7.91161 0.04554 0.49565 0.00107 7.04084 8.17772

Std. Dev. 0.54293 0.04507 0.08064 0.00067 0.70480 0.75428

2012
Mean 7.96974 0.04119 0.48648 0.00110 7.11616 8.18518

Std. Dev. 0.55357 0.03921 0.07903 0.00085 0.69778 0.75045

2013
Mean 8.01021 0.03832 0.46781 0.00172 7.12947 8.19240

Std. Dev. 0.60977 0.03522 0.07952 0.00131 0.67814 0.74697

2014
Mean 8.06601 0.03313 0.45984 0.00189 7.15885 8.19891

Std. Dev. 0.61777 0.03036 0.07815 0.00180 0.66334 0.74442

2015
Mean 8.11762 0.02778 0.43255 0.00122 7.23768 8.20539

Std. Dev. 0.62495 0.02502 0.07790 0.00073 0.66524 0.74327

2016
Mean 8.18463 0.01971 0.41553 0.00133 7.29991 8.21142

Std. Dev. 0.67653 0.01824 0.07769 0.00142 0.66808 0.74330

2017
Mean 8.21442 0.01861 0.40707 0.00090 7.35082 8.21709

Std. Dev. 0.67278 0.01852 0.07578 0.00074 0.67553 0.74345
Mean 8.00763 0.03491 0.45892 0.00133 7.12836 8.19106

According to Table 3, from 2009 to 2017, carbon productivity increased year by year,
while resource endowment generally showed a downward trend, but rebounded slightly in
2011. Industrial structure showed an upward trend from 2009 to 2011 and began to decline
in 2012. Environmental governance intensity was in an unstable fluctuation, peaking in
2014, and it reached the lowest in 2017. Household consumption and population scale
increased from 2009 to 2017. It can be seen that the changing trends of each control
variable and the explained variable are not exactly the same or the opposite. Therefore,
whether these control variables have a significant impact on carbon productivity needs to
be further verified.
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5.3. Model Construction

Calculate the ring growth of China’s carbon productivity, and draw a line chart in
time series. As shown in Figure 7, before 2013, the changes in China’s carbon productivity
were in an unstable fluctuation, but since the carbon trading mechanism was implemented,
carbon productivity has been steadily increasing. It is preliminarily inferred that the
carbon trading mechanism improves carbon productivity. Therefore, the implementation
of the carbon trading mechanism is regarded as a natural trial, where pilot provinces
and cities constitute the treatment group and the control group includes other provinces.
Specifically, Beijing, Shanghai, Guangdong Province (Shenzhen is included in Guangdong
Province), Tianjin, Hubei Province, Chongqing, and Fujian Province compose the treatment
group, while the control group consists of other provinces excluding Tibet, Hong Kong,
Macao, and Taiwan. Since the pilots were initiated in 2013, 2009–2012 is regarded as
the pre-implementation period with 2013–2017 as the implementation period. Carbon
trading’s implementation effect is evaluated by contrasting the changes in the two periods
between the treatment group and the control group. The absolute variables such as
carbon productivity, household consumption, and population scale are logarithmically
processed. The regression model based on the DID method with the control variables
added is as follows:

ln CPit = β0 + β1 periodt + β2treatedi + β3didit + β4CVit + µit

Among the model, i indexes region, hile t indexes year. didit = periodt × treatedi is
the interactive item that reports the net implementation effect of carbon trading and is the
core explanatory variable of the regression model. periodt is the time dummy variable.
periodt = 1 indicates that carbon trading has been implemented that year, while periodt = 0
indicates the opposite. treatedi is the region dummy variable. treatedi = 1 indicates the
province or city is the pilot area, while treatedi = 0 indicates the opposite. ln CPit represents
the logarithm of carbon productivity, and CVit represents the set of control variables.

Figure 7. Annual carbon productivity growth.

5.4. Analysis of Regressive Results
5.4.1. Preliminary DID Analysis

The influence of carbon trading on regional carbon productivity is analyzed by DID.
Table 3 shows the regressive results of Stata15.1. The results point out that the effect of
the interactive item on the carbon productivity of pilot regions is positive with the 1%
significant level, which implies that the carbon trading mechanism has a positive impact
on regional sustainable development.
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Although the regressive results preliminarily verify the implementation effect of
carbon trading, the parallel trend assumption that the pilot regions and other regions
possess the same changing trend of carbon productivity should be satisfied. Therefore, data
in the respective four years before and after implementing the carbon trading mechanism
are selected to test the parallel trend. A regression model is constructed with the interaction
item and ln CP as the independent and dependent variables, respectively. As shown in
Table 4, Be f ore variables are all significant and the parallel trend assumption is not satisfied,
which implies the self-selection bias in the pilot region cannot be ruled out.

Table 4. The results of preliminary DID regression.

ln CP

period 0.122 *
(2.53)

treated 0.396 ***
(5.55)

did 0.233 **
(2.67)

RE −6.122 ***
(−8.93)

IS −0.881 **
(−3.36)

EGI −143.706 ***
(−7.18)

ln HC −0.229 ***
(−4.18)

ln POP 0.283 ***
(5.12)

_cons 7.934 ***
(33.35)

N 270
R2 0.7598

* p < 0.05, ** p < 0.01, *** p < 0.001.

5.4.2. Analysis of PSM Results

In order to eliminate the self-selection bias and make the pilot regions and other
regions meet the parallel trend assumption, the PSM method is selected to improve the
matching degree between the two groups. After the nearest neighbor matching, the
estimated value of the average treatment effect on the treated (ATT) is 0.405 and the t value
is 3.48 at the 1% significant level. Therefore, the ATT is significantly positive, which
indicates that the establishment of carbon trading pilots significantly promotes regional
carbon productivity.

To test whether the distribution of each control variable in the treatment group and
the control group is balanced after matching, a t-test is adopted. As shown in Table 5,
after matching, the biases of resource endowment, environmental governance intensity,
and household consumption are reduced by more than 90%, and deviations of industrial
structure and population scale have also been improved to a certain extent. Moreover, the p
values of each control variable do not pass the test of significance at the level of 10%. It can
be deduced from the results that the null hypothesis that there is no systematic difference
between the two groups is accepted. The result of PSM is valid, and PSM-DID can be used
to estimate the implementation effect of carbon trading.
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Table 5. The results of the parallel trend test in the DID model.

ln CP

Be f ore4 0.457 *
(2.09)

Be f ore3 0.514 *
(2.35)

Be f ore2 0.608 **
(2.78)

Be f ore1 0.692 **
(3.17)

Current 0.796 ***
(3.64)

A f ter1 0.863 ***
(3.95)

A f ter2 0.929 ***
(4.25)

A f ter3 1.097 ***
(5.02)

A f ter4 1.093 ***
(5.00)

_cons 7.825 ***
(76.63)

N 270
R2 0.3551

* p < 0.05, ** p < 0.01, *** p < 0.001.

5.4.3. PSM-DID Regression Analysis

After PSM, observations that did not satisfy the common support assumption are
deleted. Then the DID method is used for regression, the results are shown in Table 6
where control variables are not added in Model 1 but added in Model 2. Comparatively
analyzing the two models, it is found that there is an obvious improvement of R2 in Model 2
compared with Model 1, which shows that adding control variables increases the goodness
of fit. Thus, analysis of the influence of each control variable on carbon productivity has
practical significance.

Table 6. Validity test of PSM.

Variable Mean Control Mean Treated Reduct |bias| t Value p Value

RE 0.01424 0.01408 99.5 −0.05 0.958
IS 0.47500 0.45169 41.7 −1.52 0.132

EGI 0.00094 0.00090 94.4 −0.36 0.723
ln HC 7.28740 7.28770 99.8 0.00 0.998

ln POP 8.27600 8.23570 55.6 −0.26 0.797

The results in Table 7 are as follows:
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Table 7. The results of PSM-DID regression.

Model 1 Model 2

period 0.174 *
(2.55)

0.160 **
(3.27)

_treated 0.420 ***
(4.00)

0.363 ***
(5.24)

did 0.287 *
(2.11)

0.202 *
(2.35)

RE −8.478 ***
(−6.22)

IS −0.933 **
(−3.16)

EGI −163.073 ***
(−5.81)

ln HC −0.255 ***
(−4.31)

ln POP 0.297 ***
(4.42)

_cons 7.890 ***
(146.95)

8.101 ***
(31.84)

N 206 206
adjR2 0.3179 0.7350

* p < 0.05, ** p < 0.01, *** p < 0.001.

Whether or not the regression model is added control variables, the coefficient of the
core explanatory variable, did, is significantly positive at the 5% significant level. This
shows that after eliminating the self-selection bias as much as possible, the net imple-
mentation effect of carbon trading on carbon productivity is significantly positive. This
suggests that carbon trading is conducive to regional sustainable development, and the
model is robust.

The higher the fixed assets investment of the mining industry, the lower the regional
carbon productivity; the higher the gross annual value of the secondary industry, the
more disadvantageous to regional sustainable development. The impact of RE on carbon
productivity is significantly negative at the level of 0.1%, which indicates that resource en-
dowment is an important factor that affects carbon productivity. It is also worth noting that
dependence on resources is not conducive to the development of technologically innovative
industries. Since the impact of IS is significantly negative at the 1% significant level, it is
imperative to promote the industrial transformation to achieve sustainable development.

The greater the intensity of environmental governance, the lower the regional car-
bon productivity. The impact of EGI on carbon productivity is significantly negative
at the 0.1% significant level, which indicates that excessive environmental regulation is
unbeneficial to regional development. It is of significance to optimizing environmental
governance programs.

The enlargement of the population scale is conducive to regional sustainable develop-
ment, while the increase in household consumption drops regional carbon productivity.
The impacts of ln HC and ln POP on ln CP are significant at the level of 0.1%, but the
former’s coefficient is negative and the latter’s is positive. It is shown that the low-carbon
lifestyle plays a positive role in promoting carbon productivity, and appropriate pop-
ulation growth fills the labor shortage of high-tech industries and promotes regional
sustainable development.

5.4.4. Placebo Test

In order to verify the validation of the DID model after PSM, a placebo test was
conducted. We randomly assigned the treated group and the control group, randomly
assigned the time node of policy implementation, and re-estimated the model. This process
is repeated 1000 times. If the estimated coefficient of the interaction item is not significant,

108



Mathematics 2021, 9, 1717

the regression model of PSM-DID in Section 5.4.3 is proved valid. The result of the placebo
test is shown in Figure 8. It can be seen that the estimated coefficient of the interaction
term is distributed around 0 and obeys the normal distribution, which shows that the DID
model passes the placebo test.

Figure 8. Placebo test.

6. Results and Discussion

By establishing the LCE-SC model and conducting empirical analysis, we achieve
the goal of finding the influences of carbon trading on optimal decisions and sustainable
development. The important results are summarized below.

The existing literature shows that increasing the commission rate will harm the rev-
enue of the E-SC [20]. However, we found that in the LCE-SC, increasing the commission
rate within a reasonable range improves the profitability of LCE-SC, which indicates that
implementing carbon trading can effectively alleviate the negative impact of unfair profit
distribution. Moreover, as consumers’ low-carbon preference is gradually enhanced, a
lower commission rate is more conducive to CER. However, the unit carbon emission
decreases first and then increases with the commission rate. Compared with the low-cap
manufacturer, the high-cap one’s sales price is higher but profit is lower. The e-commerce
platform cooperating with the high-cap manufacturer can make more profits.

When discussing carbon trading, the extant literature assumes that the carbon price is
a fixed exogenous variable [40–43]. However, we assumed that the carbon price is affected
by Demand and Supply and found that with the increase in the carbon price sensitivity
coefficient, the e-commerce platform’s sales promotion service first increases and then
declines, and the manufacturer’s profit first declines and then increases. The higher the
carbon price sensitivity coefficient, the higher the marginal profits that members in LCE-SC
can obtain by optimizing the coefficient of emission-reduction cost. Besides, changes in
the carbon market scale have the same impacts on the decisions of both high-cap and
low-cap enterprises.

We find from both the modeling analysis and empirical research that the imple-
mentation of carbon trading significantly improves regional carbon productivity, and
it is noteworthy that controlling the intensity of environmental regulation is conducive
to regional sustainable development. In addition, promoting industrial transformation,
advocating a low-carbon lifestyle, and appropriately relaxing population restriction are
empirically proven to be effective in increasing carbon productivity.

As the impact of carbon trading expands, and the cultivation of sinking markets pro-
motes the continuous and rapid development of the e-commerce industry, it is imperative
to explore the impact of carbon trading on LCE-SC and regional sustainable development.
Compared with existing studies, the innovation of our research includes two aspects: on
the one hand, the existing research only considers the production and inventory decisions
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of the traditional offline supply chain affected by carbon trading, such as in [67–69]. This
paper introduces the carbon trading mechanism into the e-commerce supply chain for the
first time, complementing the research on the interaction of carbon trading and supply
chain management.

On the other hand, the existing research discussing the policy effect adopts micro
research methods only, such as in [50,70] showing the influences of carbon tax and carbon
quota by modeling analysis, respectively, or macro research methods only, such as in [71,72]
studying the effects of subsidy and carbon trading by empirical analysis respectively,
lacking the transition between the two. This paper combined micro modeling analysis with
macro empirical research and found it a feasible way to better study the implementation
effect of a policy.

7. Conclusions

In the low-carbon context, the carbon trading mechanism and consumers’ low-carbon
preference are introduced into the decision-making model of LCE-SC, which differs from
the models in existing studies. The optimal decisions of LCE-SC have been gained by
the Stackelberg game. On this basis, this paper analyzes how the commission rate and
carbon trading influence the decision-making and performance of LCE-SC. The moder-
ating effects of these parameters are discussed by numerical simulation. Then, based on
the initial hypothesis that the carbon trading mechanism promotes carbon productivity,
further empirical research on the implementation effect of carbon trading is conducted. As
expected, we got the following conclusions that play a directive role in enterprise operation
and policymaking.

Firstly, for emission-dependent manufacturers, producing low-carbon products not
only generates higher variable costs but also brings environmental benefits, that is, bet-
ter brand image and higher profits for enterprises. Therefore, considering consumers’
low-carbon preference and the e-commerce platform’s sales rules, manufacturers should
optimize emission-reduction programs to control emission-reduction costs for the sake of
higher profits and fewer carbon emissions.

Secondly, CER relies on the investment of low-carbon manufacturers, as well as the
cooperation of e-commerce enterprises. As the core factor for coordinating e-commerce
platforms and settled-in manufacturers, the commissions need to be kept in a low range
to reduce emissions. Thus, e-commerce platforms should consider the impact of the
commission rate on CER and set an appropriate commission rate for the win-win result of
economic benefits and environmental performance in LCE-SC.

Thirdly, as implementing carbon trading contributes to both the economy and the
environment, the government should actively promote the carbon trading mechanism
with a way to standardize the operation of pilot carbon trading markets. By doing this,
the role of carbon trading in mitigating unfair profit distribution and promoting regional
sustainability can be fully utilized. Besides, the government should appropriately relax
population restrictions and foster more high-tech professionals. Meanwhile, the intensity
of environmental governance should also be controlled. Since the cost of CER brings
pressure for emission-dependent enterprises, the government can consider providing
emission-reduction subsidies.

Finally, increased consumers’ low-carbon preference can improve low-carbon enter-
prises’ economic and environmental benefits. Therefore, the government should help
promote the publicity of low-carbon products and advocate the low-carbon lifestyle,
which is advantageous to regional sustainable development. In the current big data
era, e-commerce platforms have the most direct contact with consumers. They can track
consumers’ consumption behavior and analyze their information by technical means for
personally recommending low-carbon products.

Although our research fills the gap of the literature on carbon trading to some extent,
there are certain research limitations. Since the carbon price is influenced by the government
instead of determined entirely by the market, more factors can be considered in LCE-SC,
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such as subsidy for the carbon price and differential carbon pricing for enterprises in
different regions. The consideration that can make the model more realistic is the direction
of future work.
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Appendix A

Proof of Proposition 1.
∂Y∗
∂YU = 4h(lβA−2B)−k2lA(1−ρ)

F3
> 0; ∂Y∗

∂αc
= 2(lβA−2B)

F3
> 0; ∂Y∗

∂ρ =

klβ[4(h+r)α+2k(2rYU−αc)−ck2]
{

k4l(1−ρ)2+8(h+r)2βγ2−2k2(h+r)(1−ρ)[4lβ−γ2(1+ρ)]
}

F2
3

> 0. The same

procedure is adapted to prove that ∂Y∗
∂h > 0, ∂Y∗

∂r < 0, ∂Y∗
∂k < 0, ∂y∗

∂YU > 0, ∂y∗
∂αc

> 0, ∂y∗
∂h > 0,

∂y∗
∂r < 0, ∂y∗

∂k < 0.

According to ∂y∗
∂ρ =

β[8Bc(h+r)+F2+F6]{kl(kYU+α)(1−ρ)[2A−k2(1−ρ)]+(ck+4hYU+2αc)βF7}
β2[8Bc(h+r)+F2+F6]

2 −
β(1−ρ)F4{2cβ(h+r)[4(h+r)γ2−k2l]−l[2(h+r)β−k2(1−ρ)](F5+ck2)}

β2[8Bc(h+r)+F2+F6]
2 , if 1 − ρ >

[F2+8(h+r)Bc+F6]{kl(kYU+α)(1−ρ)[2A−k2(1−ρ)]+(ck+4hYU+2αc)βF7}
F4{2cβ(h+r)[4(h+r)γ2−k2l]−l[2(h+r)β−k2(1−ρ)](F5+ck2)} , ∂y∗

∂ρ < 0; if 1 − ρ <

[F2+8(h+r)Bc+F6]{kl(kYU+α)(1−ρ)[2A−k2(1−ρ)]+(ck+4hYU+2αc)βF7}
F4{2cβ(h+r)[4(h+r)γ2−k2l]−l[2(h+r)β−k2(1−ρ)](F5+ck2)} , ∂y∗

∂ρ > 0. �

Appendix B

Proof of Proposition 2.
∂s∗
∂YU = 8Bkr

F3γ > 0, ∂s∗
∂ρ =

2l(h+r)βγAF5[4(h+r)β−k2(1+ρ)]
F2

3
> 0, ∂s∗

∂αc
= − 4Bk

F3γ < 0. The same

procedure is adapted to prove that ∂s∗
∂k > 0, ∂s∗

∂h < 0.

According to ∂s∗
∂r =

2βγρk{F3(4hYU+2αc+ck)−2klA(1−ρ)F5}
F2

3
, if 4hYU + 2αc + ck > 2klA(1−ρ)F5

F3
,

∂s∗
∂r > 0; if 4hYU + 2αc + ck < 2klA(1−ρ)F5

F3
, ∂s∗

∂r < 0. �
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Abstract: This paper proposes the PROMETHEE II based multicriteria approach for cryptocurrency
portfolio selection. Such an approach allows considering a number of variables important for
cryptocurrencies rather than limiting them to the commonly employed return and risk. The proposed
multiobjective decision making model gives the best cryptocurrency portfolio considering the daily
return, standard deviation, value-at-risk, conditional value-at-risk, volume, market capitalization and
attractiveness of nine cryptocurrencies from January 2017 to February 2020. The optimal portfolios are
calculated at the first of each month by taking the previous 6 months of daily data for the calculations
yielding with 32 optimal portfolios in 32 successive months. The out-of-sample performances of
the proposed model are compared with five commonly used optimal portfolio models, i.e., naïve
portfolio, two mean-variance models (in the middle and at the end of the efficient frontier), maximum
Sharpe ratio and the middle of the mean-CVaR (conditional value-at-risk) efficient frontier, based on
the average return, standard deviation and VaR (value-at-risk) of the returns in the next 30 days and
the return in the next trading day for all portfolios on 32 dates. The proposed model wins against all
other models according to all observed indicators, with the winnings spanning from 50% up to 94%,
proving the benefits of employing more criteria and the appropriate multicriteria approach in the
cryptocurrency portfolio selection process.

Keywords: cryptocurrency; portfolio selection; return and risk measures; market capitalization;
volume; attractiveness; PROMETHEE II; multicriteria model

1. Introduction

As a response to the everlasting changes in the surroundings, investors adjust the
structure of their portfolios in order to maximize the targeted return and risk ratio. In peri-
ods of persistently low interest rates, as exhibited in the last decade in the world, traditional
investments become less interesting and investors seek alternative forms of investment in
the pursuit of higher returns and possibly a lower risk obtained by diversification of the
portfolio. In this regard, cryptocurrencies as an alternative form of investment, obtained
increasing attention of many investors and this paper. The basic requirement that each
new-alternative form of investment should meet is the contribution in terms of Markowitz
diversification, i.e., contribution to a more favourable relationship between return and risk
of the portfolio, which is exactly what this paper is trying to examine for cryptocurrency
portfolio only.

Over the last few years, a number of papers have been published on this topic. Some
consider the contribution of particular cryptocurrencies, mostly Bitcoin, to portfolios includ-
ing other assets being either traditional ones or combinations of traditional and alternative
investments [1–5]. Some consider cryptocurrencies’ contribution through a set of cryptocur-
rencies, mostly represented by the cryptocurrency index (CRIX) or its subsets, regarding
certain criterion like market capitalization [6–10]. All of them confirm that cryptocurrencies
contribute to a better return/risk ratio of portfolios. Recognizing good features of cryp-
tocurrencies as an asset class, some studies have evaluated pure cryptocurrency portfolios,
using different approaches to portfolio selection and comparing their performances. Most
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common strategies for portfolio selection are: the 1/N equal weighted rule, so called naïve
diversification, Markowitz’s mean-variance optimization strategy, risk parity principle,
maximum Sharpe ratio or just taking the CRIX portfolio [11–14]. There are different win-
ning strategies depending on the observed period and the sample. The question arises
about the “quality” and characteristics the cryptocurrencies should have to be included
in the portfolio. It is to be expected that not all available cryptocurrencies are equally
favourable for investment, due to their specificities in a number of features. In the previ-
ously mentioned papers, the prevailing strategy for selecting a cryptocurrency sample was
focusing on a number of top cryptocurrencies in terms of market capitalization. Sometimes
the selection was limited to, e.g., the portfolio represented by CRIX or a portfolio containing
a number of “most popular” currencies. Only within a few studies, the criterion of liquidity
was added in the process of cryptocurrencies selection. Trimborn et al. [8] included cryp-
tocurrencies in their portfolios, combined with stocks from the US, German and Portuguese
capital markets. Given the high volatility and a relatively low liquidity, instead of the
standard mean-variance model, they propose the LIBRO (liquidity bounded risk–return
optimization) method. Garcia et al. [15] extend the stochastic mean-semivariance model to
a fuzzy multiobjective model. In addition to return and risk, liquidity is also considered
as a portfolio performance measure. The proposed methodology is tested on a data set of
assets from the Latin American integrated market, showing the effectiveness and efficiency
of the model. Variations in volatility and return but also in other asset specific indicators
like liquidity and attractiveness should be included in the appropriate, comprehensive
manner in portfolio optimization models that include cryptocurrencies. That is why in this
paper a set of different and cryptocurrency-specific criteria are considered. This is a rather
novel approach in cryptocurrency portfolio selection since some papers used liquidity only
as a precondition for selecting assets into the portfolio, while attractiveness has only been
proved in the time-series analysis to influence the cryptocurrency prices and returns.

The traditionally applied portfolio optimization approach based on the Markowitz
mean-variance model is not appropriate for cryptocurrency portfolio selection, since stan-
dard model assumptions like normal return distribution or a quadratic utility function
are not met for this investment class. Thus, in the process of portfolio selection it is more
suitable to consider alternative risk measures, which take into account also higher moments
of distribution. This issue was partially recognized and accepted in the previously analysed
papers, mostly by taking the conditional value-at-risk (CVaR) as the risk measure, i.e., by
applying mean-CVaR strategy for portfolio selection. Moreover, for this class of risky assets,
it is useful to include more different risk measures in the portfolio selection model.

There are numerous studies and resulting findings on including suitable alternative
risk measures in models. Methods of mathematical programming and multicriteria de-
cision making (MCDM) make it possible to incorporate all recognized specificities and
constraints into the model, in order to find out which assets with the assigned weights
should be selected for the optimal cryptocurrencies portfolio. Generally, MCDM methods
can be classified into two categories, discrete multiattribute decision making (MADM) and
continuous multiobjective decision making (MODM) methods. MODM methods are used
where alternatives are non-predetermined. The aim is to design the optimal alternative
by considering a set of quantifiable objectives, i.e., well-defined design constraints. Thus,
MODM methods deal with the design process and the number of alternatives is infinite
(continuous) [16]. Since variables other than return and risk are considered as important,
the selection of the optimal portfolio becomes a multiobjective problem in which we have to
design the best portfolio out of an infinite number of feasible portfolios. Sometimes before
selecting the optimal portfolio, it is necessary to reduce the sample of possible constituents
of the portfolio by taking exclusively those with the best properties. In that case, when
security analysis is required, MADM methods are very useful.

In the last fifty years a large number of multiple criteria methods have been applied
in the field of stock portfolio selection. One of the newer bibliographic reviews of papers
that apply MCDM methods and procedures for stock portfolio selection was carried out by
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Aouni et al. [17] who, as a result, offered a classification of a range of MCDA techniques
used in the security analysis/evaluation part and in portfolio construction/optimization
parts. The review indicates analytic hierarchy process (AHP)-based techniques, ELECTRE-
based approaches and Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) approaches as the most popular in the security analysis phase and goal program-
ming as the most popular in the portfolio construction phase. The main advantage of
multicriteria methods over mean-risk models for portfolio selection is that they take into
consideration a number of conflicting criteria, not only risk and return. It is important
to emphasize that without a decision-maker there is no solution to multicriteria models.
Weights of criteria are determined by the decision-makers’ opinion and then the chosen
multicriteria method formulates the best compromise solution for that decision-maker.
Therefore, the subjectivity of the decision-maker represents the often-mentioned disad-
vantage of these models. An effective way of reducing subjectivity in these models is by
increasing the number of participating experts in the process of decision-making.

This paper focuses on the selection of the optimal cryptocurrency portfolio, which
should be observed as a multicriteria programming problem and which should be solved
using the appropriate techniques. In this paper a modified and adjusted multiobjective
programming model based on the PROMETHEE II approach is proposed. It will be applied
and tested using a sample of cryptocurrencies for which all required data are available in
the period from 2017 to 2020. Although already used for other assets, the proposed model
has never been applied to cryptocurrency portfolio selection, which due to their specifics
require special attention in criteria selection, and preference function types and criteria
weights. The weights of the seven chosen criteria are estimated using the AHP method or,
more precisely, its eigenvalue procedure, incorporating the opinion of different experts’ for
more objective decision-making.

Based on the problem defined though literature inspection, a research hypothesis can
be defined: A multicriteria approach for cryptocurrency portfolio selection based on the
PROMETHEE II model yields better out of sample performances compared to the five most
commonly used portfolio optimization models in different performances aspects.

Therefore, this paper contributes to the existing literature in several ways. Firstly,
by defining the appropriate model for cryptocurrency portfolio selection due to their
specificities, i.e., a multicriteria approach based on the PROMETHEE II model. Secondly,
by incorporating criteria that, to the best of our knowledge, have never been used before in
portfolio optimization. Thirdly, by engaging different experts to obtain results that are more
objective. Finally, by examining whether the proposed multicriteria model yields better out-
of-sample performances compared to the five most commonly used portfolio optimization
models while using different important out-of-sample performances measures.

The remainder of the paper is organized as follows. Section 2 provides a short
overview of cryptocurrencies. Section 3 describes the data and offers a detailed description
of the criteria used in the paper, together with descriptive statistics for the selected cryp-
tocurrencies in the observed period. Section 4 presents the proposed multicriteria model,
its implementation is presented in Section 5 and the results of the research in Section 6.
Section 7 provides a discussion and interpretation of the obtained results. The last section
concludes the paper. The four tables with results of out-of-sample comparisons of different
models are given in the Appendix A.

2. Cryptocurrencies—A Short Overview

Cryptocurrency emerged as a byproduct of another invention. Satoshi Nakamoto, the
unknown founder of Bitcoin, the most famous cryptocurrency, presented his invention
as a “Peer-to-Peer Electronic Cash System” [18]. Numerous attempts made during the
1990s to establish a decentralized digital money system finally succeeded and resulted in
the introduction of a new currency—cryptocurrency. While only 6 or 7 years ago most
professionals in the world of finance still considered cryptocurrency as something untrust-
worthy and the scientific approach to studying it was scarce, we are currently witnessing a
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real surge of interest in cryptocurrencies. The Internet abounds in platforms that provide
information about basic concepts, data, features, ways of trading, very interesting thoughts
and analyses offered by professionals on many aspects of cryptocurrencies. Nonetheless,
there is a clear need for scientific research and scientifically based analyses to provide
answers to a number of issues that have recently been raised and that have drawn our
attention.

Unlike money, which is tangible, the currency you can take along, cryptocurrency is
digital money, a digital asset that can be exchanged. Using cryptocurrency instead of paper
currency means avoiding bank intermediation and verification and transaction costs [19].
The prefix “crypto” indicates the use of cryptography for security and verification purposes
in the course of creating and transferring money. The cryptocurrency transactions are
processed and completed using the blockchain technology—the technology that underpins
many of the innovations that are currently revolutionising the financial services sector
around the world [20]. The most notable application of blockchain is in the development
and operation of cryptocurrencies, but there is a space and opportunity for its application
in other sectors such as international trade, taxation, supply chain management, business
operations and governance. Authors demonstrate how organizations and regulators
can leverage blockchain to improve business operations and efficiency while reducing
operational costs.

The supply of cryptocurrency is limited, i.e., cryptocurrencies are mined and are
created by decryption—complex mathematical tasks are solved by the power of computers.
After finding the solution, the miner builds a block and adds it to the chain for which they
are rewarded with a certain amount of cryptocurrency. For example, Bitcoin’s algorithm
determines the rate at which new bitcoins are created over time until they reach the
maximum of 21 million bitcoins, which should be reached by the year 2140 [19]. The
author discusses a possibility of introducing a Bitcoin standard and, despite some benefits
it would have over the current fiat money standards, it concludes that it is unlikely that
the Bitcoin standard will stem out, since the authorities will take actions to prevent it. The
reason for this is twofold. The first is to protect the seigniorage revenues gained from the
costless money creation, while the second is to preserve the ability to affect their domestic
economies by implementing the interest rate policies.

Theoretical roots of the decentralization of money offered by today’s digital currencies
we can find even back in the seventies in the Friedrich von Hayek’s theory of private money.
Economic implications of the theory for digital currencies are investigated in the paper [21].
In the digital economy, cash can actually disappear and payments can centre on social and
economic platforms, weakening traditional monetary policy channels. The article confirms
that stable digital money is preferable for foresight, calculation and accounting.

However, there is no consensus among professionals dealing with cryptocurrencies
about their classification and evaluation [22]. Authors propose refining the existing stan-
dards and introducing rules for classification and evaluation of cryptocurrencies. They also
indicate that the best solution is to develop new international financial reporting standards
for the accounting of cryptocurrencies.

Today, for Bitcoin and the rest of ever more numerous cryptocurrencies, we could
say that they can fulfil their “fundamental task” of (crypto) currency, digital money as
a means of payment. A continuously growing number of companies accept Bitcoins as
payment for their goods and services [23]. There are Crypto ATMs—according to https:
//coinatmradar.com/ (accessed on 19 April 2021) there were 18,541 ATMs in 72 countries,
275,795 establishments offering other services (exchange offices, shops and various other
services accepting cryptocurrency). Currently there are 270 web-based digital currency
exchanges according to https://coin.market/exchanges, (accessed on 19 April 2021).

There is an opinion that cryptographic assets do not fully satisfy the conditions to
be a currency and that they are more similar to an asset class [24]. White et al. [25] claim
“that Bitcoin’s behaviour more closely resembles. . . , an emerging asset class, rather than
a currency. . . ”. Furthermore, [26] have shown that cryptocurrencies behave more like
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an investment instrument than a currency and [27] that Bitcoins are mostly used as a
speculative investment and not as an alternative currency and medium of exchange. Bouri
et al. [28] conclude that Bitcoin is a poor hedge but contributes to a well-diversified portfolio.
In the focus of our interest and in that of many potential investors are cryptocurrencies as
an alternative form of investment. The “infrastructure” to support cryptocurrencies as a
potential special investment class exists: we can discuss the cryptocurrency market in terms
of the total supply of and demand for cryptocurrencies. Furthermore, we can also talk
about the primary and secondary market of cryptocurrencies: the primary market refers to
newly issued cryptocurrencies that raise capital for the issuer’s needs, most often start-ups
based on blockchain technology, while the secondary market relates to trading in already
established cryptocurrencies. Based on stock, bond and other indices, the cryptocurrency
index (CRIX) has been established as a benchmark for the cryptocurrency market. The
index was created as a result of the joint project of Humboldt University Berlin from
Germany, SKBI School of Business, Singapore Management University and CoinGecko. A
special, new methodology was required for creating the new index, given the specificity
of the cryptocurrency market. The process of generating the index, the specificity of the
approach and methodology is described in [29]. Besides that, the indexing methodology
and information on current index composition along with other relevant data can be found
at https://www.coingecko.com/en/crypto_index/crix (accessed on 5 November 2020)
and/or https://thecrix.de/ (accessed on 5 November 2020).

Some papers study the characteristics of cryptocurrencies as a special class of invest-
ment by examining the relationship between return and risk, the correlation of return with
that of other classes and the politicoeconomic determinants. Burniske and White [30], in-
spired by Greer’s [31] classification of investments in superior asset classes and criteria for
their identification, highlight four distinct features distinguishing between different types
of investment: investability, politicoeconomic features, correlation of returns, i.e., price in-
dependence and risk–reward profile. First, for a particular type of investment there should
be so called investability, which also implies a certain level of liquidity. Second, a special
type of investment has a special political and economic profile that follows from the source
value of investment, investment management and its primary purpose. Third, the market
value of the investment should be independent of other types of investment, indicating the
absence of or low correlation of their returns. The previous three characteristics should
lead to differentiated risk–reward profiles, which can then be further “broken down” into
the specificity of returns and volatility of each particular class. Thus, for example, ordinary
shares and bonds make different types of investments: after meeting the first criterion of
investability, they differ according to the other three criteria. The authors consider Bitcoin
as the main representative of cryptocurrencies in the course of 5 years and conclude that
Bitcoin represents a special type of investment due to the observed indicators. It should
be borne in mind that cryptocurrencies are not a reliable store of value and they do not
have a stable purchasing power over a long period of time, unlike fiat money. Moreover,
cryptocurrencies are not able to ensure the stream of payments to the owner, unlike other
assets such as real estate, stocks or bonds [32].

The risk and the return of cryptocurrencies Bitcoin, Ripple and Ethereum are consid-
ered in an extensive paper [33]. The ratio between the return and risk of cryptocurrencies
differs from those found in shares, ordinary currencies and precious metals. Cryptocur-
rencies are exposed neither to the factors most frequently affecting the stock market nor
to macroeconomic factors, their market is influenced by other specific impacts. Sajter [34]
compares the returns of the same three cryptocurrencies with the returns of six major
world equity indices and concludes that the observed cryptocurrencies can be considered a
new, specific form of investment, since the trend of their values or returns is not related
to the trend of equity index returns. Similarly, Ankenbrand and Bieri [35] concluded that
cryptocurrencies can be seen as an individual asset class. Additional studies [11,36,37] offer
valuable insides and facts about cryptocurrencies as a new financial asset, which makes
them an effective diversification tool.
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Many studies named in the Introduction of the paper have already shown the benefits
of including cryptocurrencies into portfolio optimisation processes. The task of this study is
to propose appropriate methodology for selecting optimal cryptocurrency portfolio, taking
into consideration a broader set of features of this new investible instrument.

3. Data and Criteria

The starting sample consisted of the top 20 cryptocurrencies ranked by market capital-
ization, calculated on the basis of circulating supply, according to https://coinmarketcap.
com/all/views/all/ (accessed on 12 February 2020). As the first criterion we took the most
common one—market capitalization. Market capitalization is a metric that indicates the
market value and size of a cryptocurrency [38]. Since the cryptocurrency price can give an
inaccurate measure of its total value, the market capitalization can identify the value of a
cryptocurrency and accurately compare it to other cryptocurrencies. This concept is the
same as the one from the stock market, where stock market capitalization is the current
stock price multiplied by the total number of existing stocks. Accordingly, cryptocurrency
market capitalization equals the total number of circulating coins multiplied by its current
price. The most common metrics for the total number of circulating coins is the circulating
supply, defined as the number of coins currently circulating in the market available to the
general public. Although market capitalization is often taken as a starting criterion for the
cryptocurrency sample selection, due to its importance for practitioners, it should be also
taken as a separate criterion in the process of portfolio optimization.

The portfolio construction can be significantly obstructed by the problem of liquidity
of assets and in this sense a special attention has to be put on cryptocurrencies, since they
have far lower daily trading amounts than traditional financial assets [8]. The possibility of
trading the assets on the reallocation date and selling or buying between two reallocation
dates is of crucial importance in portfolio management. In a recent study [39] analyse four
cryptocurrencies in order to identify the determinants of their liquidity. They have found
the number of transactions to be one of the most important liquidity drivers, while the most
commonly used financial market variables have not proved to have explanatory power.
Since spread data for cryptocurrencies are not easily available, Trimborn et al. [8] used the
turnover value as a proxy for liquidity. It is calculated for a set period, for example 24 h, as
the sum of products of the number of assets and its price. That data is actually registered
as the volume (24 h) on the https://coinmarketcap.com/all/views/all/ (accessed on 25
August 2020) the amount of cryptocurrency that has been traded during a certain period
of time, i.e., 24 h in this case. As the second criterion we selected the trading volume,
following the opinion and practice that the trading volume can also be used as a liquidity
measure. It shows how easily the stock can be bought and sold. A low trading volume
indicates the infrequent trading with a cryptocurrency and consequently the difficulty to
purchase or to sell shares. A high trading volume means that a cryptocurrency is highly
liquid and may be bought or sold easily. Besides that, among practitioners it can be seen
that the volume presents one of the most valuable pieces of data, which can show the
direction and movement of the cryptocurrency and predict the future price and its demand.

However, as shown by the CRIX values (according to https://thecrix.de/ (accessed
on 12 February 2020)), the Bitcoin prices, market capitalization and trading volumes
(https://coinmarketcap.com/currencies/bitcoin/ (accessed on 12 February 2020)), in the
period from January 2015 to February 2020, the market was characterised by a sluggish
movement of prices, market capitalization and volumes from 2015 to 2017. The surge in
their values started in 2017, they peaked in 2018, followed by the intensive trading period
characterized by high volatility with continuous fluctuations in their values until February
2020. Therefore, the period of monotonous price movements and trading from 2015 to 2017
is excluded from further calculations since it is more interesting and challenging to test the
proposed model in more volatile periods.

Cryptocurrencies display high expected returns with large volatilities [11]. The mean-
variance analysis is limited because of the highly non-normal return distribution of cryp-
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tocurrencies [6]. Kajtazi and Moro [2] found, in line with previous research, that bitcoin ex-
hibits large kurtosis and is positively skewed (albeit to a much lesser extent than previously
reported). Moreover, among several unique properties, [40] found that cryptocurrencies
have leverage effects and Student’s t error distributions. The study [41] uses the symmetric
(GARCH 1,1) and asymmetric (EGARCH, TGARCH and PGARCH) models to measure the
volatility of cryptocurrencies. The results prove again the high volatility of cryptocurrencies
and in most cases, the asymmetric PGARCH with Student’s t distribution provides a better
fit. In accordance with these findings, we continued with the combination of alternative
risk measures, which should be used for this class of risky assets. Besides volumes and
market capitalization, daily closing prices are collected from https://coinmarketcap.com/
(accessed on 12 February 2020). Based on daily closing prices, the values of four more
criteria: expected daily return, standard deviation, value-at-risk (VaR) and conditional
value-at-risk (CVaR) were calculated.

From the day of its appearance within JP Morgan Bank, the value-at-risk (VaR) as a risk
measure has been attracting immense attention. It has become one of the most controversial
financial instruments. Despite being criticised, it became a very popular and widely used
risk measure because of its simplicity, applicability and universality [42]. In addition,
controlling authorities have imposed regulatory constraints on the asset allocations of
financial institutions based on the estimation of VaR [43]. VaR is a statistical measure that
assesses the risk of an asset or the whole portfolio, expressed with one number. It shows
the worst estimated loss for a certain time horizon and a certain confidence level. VaR
represents the difference between the invested amount of money and the value that is not
going to be failed in α% cases—the value that corresponds to the 1-α percentile of the
distribution. However, VaR does not provide any information about the values from the tail
of the distribution, i.e., the values that exceed the value of VaR with small probability, but
high losses. The risk measure that provides such information is conditional value-at-risk
(CVaR). For a given time horizon and confidence level α, CVaR is defined as the conditional
expectation of losses greater than VaR. VaR has a drawback of not being a coherent risk
measure, i.e., it does not fulfil the subadditivity condition: ρ(X + Y) ≤ ρ(X) + ρ(Y). This
means that VaR of a portfolio is greater than the sum of VaRs of its constituents [44],
which can discourage portfolio diversification and lead to the dangerous risk concentration.
Ref. [45] compared VaR, variance and CVaR and concluded that only CVaR is a coherent
risk measure. Moreover, CVaR has superior mathematical characteristics over VaR; it keeps
good properties of VaR and overcomes its shortages. In agreement with experts, it is
decided to proceed with both measures as criteria, VaR for estimating loss for a specific
time horizon and a certain confidence level, CVaR as a coherent risk measure, which gives
valuable information about losses from the tail of distribution, which exceed VaR.

Guided by opinions and findings indicating that the phenomenon of cryptocurrency
created considerable interest and became an appealing investment due to its unique
qualities [46], as the last, seventh criterion we took the popularity or attractiveness of
cryptocurrencies. Ref. [23] studied Bitcoin attractiveness for investors and users finding its
significant impact on Bitcoin price with variation over time. Sovbetov [47] concluded that
attractiveness of cryptocurrencies matters, also finding that its recognition is subjected to
the time factor. Positive correlation of cryptocurrency attractiveness and its price has also
been confirmed by other research [46,48]. The attractiveness of cryptocurrencies is usually
measured by the amount of the cryptocurrency-related posts in social media like Twitter,
Google Trends, Yahoo, Wikipedia and others. Although, the fact that somebody is interested
in gaining information from social media does not necessarily mean active participation in
the market, many studies prove significant influences and connections between data offered
by social media and trading and prices of assets. Matta et al.’s [49] study proved that the
investment professionals in Bitcoin use social media activity and information extracted by
a web search and found it helpful. Investors search social media when making decisions
since it is proved that sentiment analysis captures information not embedded in prices [50].
News and information extracted from online social media (blogs, Twitter feeds, etc.) can be
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used to predict changes in various economic and business indicators, which is supposed to
have an impact also for the Bitcoin price [51]. Stolarski et al. [52] studied cryptocurrency
perception using Wikipedia and Google Trends although cryptocurrencies seem to have
embraced Twitter as a major channel of communication. Park and Lee [53] investigate
the Twitter-mediated communication behaviours among cryptocurrencies, finding that
cryptocurrencies’ active networking strategies affected their credit scores. Kaminski [54]
had already shown that the microblogging platform Twitter may be interpreted as a virtual
trading floor that emotionally reflects Bitcoin’s market movement. Therefore, quickly
recognizing and incorporating the impact of tweets on the price direction in the trading
strategy can provide both a purchasing and selling advantage [55]. Kraaijeveld and De
Smedt [56] study the predictive power of the Twitter sentiment for various cryptocurrencies,
finding that it has predictive power for the returns of Bitcoin, Bitcoin Cash and Litecoin
and for EOS and TRON. Due to the importance of Twitter in studying cryptocurrencies,
its transparency and simplicity regarding data collection, we proceed with the number of
Tweets, obtained from https://bitinfocharts.com/comparison/tweets-btc-eth-ltc-xrp.html
(accessed on 25 August 2020), as the attractiveness measure.

Finally, the dataset contains nine cryptocurrencies: Bitcoin—BTC, Dash, Ethereum
Classic—ETC, Ethereum—ETH, Litecoin—LTC, Monero—XMR, Neo, Stellar—XLM and
Ripple—XRP, for which all required data are available in the period from January 2017 to
February 2020. Namely, some of the top 20 cryptocurrencies by market capitalization on 12
February 2020 are not traded in the proposed period from 2017 to 2020 and for some there
are no comparable and available data for the number of tweets.

Table 1 gives the overview of descriptive statistics for nine cryptocurrencies along with
the Jarque–Bera (JB) test for normality. The null hypothesis of the JB test is a joint hypothesis
of both the skewness and the excess kurtosis being zero, i.e., matching a normal distribution.
From Table 1 it can be concluded that for all cryptocurrencies, the null hypothesis can be
rejected at 1, 5 and 10% significance levels, i.e., the returns are not normally distributed. This
can be corroborated by mostly all cryptocurrencies having positively skewed distribution
(except for Bitcoin, which has a somewhat negatively skewed distribution, although the
coefficient of skewness is roughly around zero). Moreover, all cryptocurrencies show
positive excess kurtosis indicating leptokurtic distribution, meaning that the tails on this
distribution is heavier than that of a normal distribution, indicating a higher degree of
risk and higher probability of extreme values. For that reason, in the process of portfolio
selection it is more appropriate to take into consideration alternative risk measures and
other criteria, as we anticipated.

Table 1. Descriptive statistics for the selected cryptocurrencies from 1 January 2017 to 11 February 2020.

BTC DASH ETC ETH LTC XMR NEO XLM XRP

Min −0.2075 −0.2432 −0.4353 −0.3155 −0.3952 −0.2932 −0.4610 −0.3664 −0.6163
q1 −0.0159 −0.0275 −0.0240 −0.0213 −0.0263 −0.0262 −0.0364 −0.0325 −0.0241
Me 0.0023 −0.0012 0.0000 0.0001 −0.0008 −0.0004 −0.0017 −0.0021 −0.0026
q3 0.0215 0.0290 0.0272 0.0257 0.0268 0.0287 0.0328 0.0308 0.0205

Max 0.2251 0.4377 0.4577 0.2901 0.5103 0.4303 0.8012 0.7231 1.0274
µ 0.0020 0.0021 0.0019 0.0030 0.0025 0.0016 0.0040 0.0030 0.0033
σ 0.0426 0.0629 0.0664 0.0571 0.0625 0.0616 0.0850 0.0826 0.0778
α3 −0.05 0.96 0.15 0.25 1.14 0.39 1.62 1.99 2.90
α4 3.56 6.72 6.94 4.29 9.52 4.72 14.88 16.19 37.41
JB 592.47 *** 2289.7 *** 2263.1 *** 871.8 *** 4495.8 *** 1072.9 *** 10874 *** 13042 *** 67245 ***

Source: The authors’ calculations in R Studio (*** indicate significance at the 0.01 level).

Values of other criteria for the whole sample are given in Table 2. VaR, measuring
the level of financial risk for each cryptocurrency over the whole sample, indicates that
the highest possible loss can be obtained with Monero, Neo and Stellar and the lowest
possible loss with Bitcoin. The values of CVaR, measuring the mean of tail risk, is the
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lowest for Bitcoin and the highest for Neo, Stellar and Ripple. The biggest values of the
mean volume (MVlm), mean market capitalization (MMC) and mean number of tweets
(MoT) can be observed for Bitcoin and the lowest values for Monero, Ethereum Classic and
Stellar respectively.

Table 2. Values of other criteria for the whole sample.

BTC DASH ETC ETH LTC XMR NEO XLM XRP

VaR 0.0676 0.0921 0.0957 0.0848 0.0852 0.1026 0.1100 0.1078 0.0900
CVaR 0.1013 0.1634 0.1683 0.1475 0.1664 0.1496 0.2304 0.2212 0.2167
MVlm 9.16 × 109 1.86 × 108 3.73 × 108 3.64 × 109 1.30 × 109 6.76 × 107 2.00 × 108 1.33 × 108 8.42 × 108

MMC 1.11 × 1011 1.78 × 109 1.14 × 109 2.91 × 1010 4.30 × 109 1.64 × 109 1.59 × 109 2.45 × 109 1.55 × 1010

MoT 37,033.30 3299.03 121.85 11,778.24 2397.39 508.05 1181.00 37.97 4296.33

Source: The authors’ calculations in MATLAB and R Studio.

4. The Multicriteria Model

The multicriteria (MC) model based on the PROMETHEE II approach [57] is applied.
According to the PROMETHEE II model, each alternative P, in this case the cryptocurrencies
portfolio, is evaluated with two flows. The positive flow Φ+(P) indicates how much one
cryptocurrency portfolio is better than other cryptocurrency portfolios in all criteria. The
higher the Φ+(P) is, the better is the cryptocurrency portfolio. The negative flow Φ−(P)
indicates how much better the cryptocurrency portfolio is over other cryptocurrency
portfolios. The lesser the Φ−(P) is, the better the cryptocurrency portfolio is. Finally, the
net flow Φ is the difference between these positive and negative flows: i.e.,

Φ(P) = Φ+(P)−Φ−(P) (1)

The higher the net flow Φ(P) is, the better the cryptocurrency portfolio is. Positive and
negative flows are calculated by pairwise comparisons of all the cryptocurrency portfolios
and for every criterion simultaneously.

Since the number of possible portfolios that can be made up from a sample of cryp-
tocurrencies is infinite, it is impossible to compare all pairs of portfolios. Therefore, this
study employs the procedure introduced by Khoury and Martel [58] and Zmitri et al. [59],
following the applications of the procedure in [60,61].

Each cryptocurrency portfolio (its positive and negative flow) is compared to two
imaginary portfolios: ideal (P) and anti-ideal (P). Compared to the anti-ideal, the positive
flow Φ+(P) is obtained. The higher the Φ+(P) is, the better is the cryptocurrency portfolio
since it is more distant from the anti-ideal. The lower the Φ−(P) is, the better the cryp-
tocurrency portfolio is since it is closer to the ideal, Moreover, the higher the net flow Φ is,
the better the cryptocurrency portfolio is.

For each criterion Cj, (j = 1, 2, . . . , n), which has to be maximized, the ideal is:

Cj
(

P
)
= max

i
Cj(Ai), (2)

where A = {A1, A2, . . . , AN} is the set of N alternatives, in this case nine cryptocurrencies.
For the same criterion, which has to be maximized, the anti-ideal is:

Cj(P) = min
i

Cj(Ai) (3)

Without the loss of generality, we can suppose that all criteria are to be maximized.
The set of feasible solutions is the set of cryptocurrency portfolios, which can be formed

from the observed cryptocurrencies. The evaluation of the cryptocurrency portfolio P
according to criterion j is obtained by multiplying the share invested in each cryptocurrency
Ai in the portfolio P, i.e., ai, with the evaluation of cryptocurrency i according to criterion
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j. Obviously, the sum of all shares invested in each cryptocurrency Ai in the portfolio P
equals 1.

Cj(P) =
N

∑
i=1

aiCj(Ai) (4)

For each criterion Cj the preference functions are defined as in the PROMETHEE
method where indifference q and preference p thresholds are predefined numbers from
the interval

[
0, Cj

(
P
)
− Cj(P)

]
, where 0 ≤ q, p ≤ Cj

(
P
)
− Cj(P) and q ≤ p is always true.

Moreover, q and p always have economic significance.
In this particular application we assumed that the highest value of preference threshold

p cannot exceed half the span between the anti-ideal and ideal according to that criterion,

i.e., p ∈
[

q,
Cj(P)−Cj(P)

2

]
.

Like in [62], we used the same preference function for all criteria and in this study
that is the linear preference function with the indifference threshold (type V), as it most
generally displays the relations between pairs of cryptocurrency portfolios. It has the
following general form:

Ψ(d) =





0, d ≤ q
d−q
p−q , q < d ≤ p

1, d > p
(5)

where d is the difference in the evaluation of the two alternatives by the same criterion.
In this application, when the cryptocurrency portfolio P is compared to the anti-

ideal (P), i.e., when we calculate Φ+
j (P), the difference d presents the “distance” from the

anti-ideal (by j-criterion). Taking that dj(P) = Cj(P)− Cj(P) for Φ+
j (P) we have [61]:

Φ+
j (P) =





0, Cj(P) ≤ Cj(P) + q−j
Cj(P)−Cj(P)−q−j

p−j −q−j
, Cj(P) + q−j < Cj(P) ≤ Cj(P) + p−j

1, Cj(P) > Cj(P) + p−j

(6)

Analogously, taking that dj(P) = Cj
(

P
)
− Cj(P) for Φ−j (P) we have:

Φ−j (P) =





0, Cj(P) ≥ Cj
(

P
)
− q+j

Cj(P)−Cj(P)−q+j
p+j −q+j

, Cj
(

P
)
− p+j ≤ Cj(P) < Cj

(
P
)
− q+j

1, Cj(P) < Cj
(

P
)
− p+j

(7)

Finally, for Φj(P) we have:

Φj(P) =





−1, Cj(P) ≤ Cj(P) + q−j
Cj(P)−Cj(P)−p−j

p−j −q−j
, Cj(P) + q−j < Cj(P) ≤ Cj(P) + p−j

0, Cj(P) + p−j < Cj(P) ≤ Cj
(

P
)
− p+j

p+j −Cj(P)+Cj(P)

p+j −q+j
, Cj

(
P
)
− p+j ≤ Cj(P) < Cj

(
P
)
− q+j

1, Cj(P) ≥ Cj
(

P
)
− q+j

(8)

or graphically as in paper [61] p. 62.
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Positive and negative flows, Φ+
j (P) and Φ−j (P), have to be calculated separately for

each criterion Cj,j = 1, 2, . . . , n. Then, the net flow is obtained as a weighted sum of the
difference between positive and negative flows, i.e.,

Φ(P) =
n

∑
j=1

wj

(
Φ+

j
(P)−Φ−

j
(P)
)

(9)

where relation (10) follows for any possible cryptocurrency portfolio P,

Φ(P) ≤ Φ(P) ≤ Φ
(

P
)

(10)

The weights wj of the criteria are obtained in agreement with the decision maker
and/or by some of the methods for determining the weights of criteria. For obtaining
the weights in this case, the AHP method and its eigenvalue procedure with pairwise
comparisons obtained by a group of experts is applied.

Finally, the optimal cryptocurrency portfolio (a1, a2, . . . , aN) is one that finds the
maximum net flow, i.e.,

Max Φ(P) (11)

subject to:
N

∑
i=1

ai = 1 (12)

0 ≤ ai ≤ aMi , (13)

where ai is the share invested in Ai in the cryptocurrency portfolio, aMi is the maximum
proportion to invest in cryptocurrency Ai in cryptocurrency portfolio P and N is the number
of cryptocurrencies, which can be included in cryptocurrency portfolio P.

5. Implementation of the Model

The presented model was used for the selection of optimal portfolios of cryptocur-
rencies based on the sample of nine cryptocurrencies: Bitcoin—BTC, Dash, Ethereum
Classic—ETC, Ethereum—ETH, Litecoin—LTC, Monero—XMR, Neo, Stellar—XLM and
Ripple—XRP and seven criteria: daily return, standard deviation, value-at-risk (VaR),
conditional value-at-risk (CVaR), volume, market capitalization and attractiveness.

For criteria selection and determination of their weights, twelve experts were engaged,
some of them professionals dealing with cryptocurrencies and others scientists, including
the authors of the paper. By engaging twelve experts, we reduced subjectivity in the process
of weights calculation. Weights of the chosen criteria were estimated using the Saaty’s AHP
method, its eigenvalue procedure [63,64]. After the complete Saaty matrix was obtained by
the experts, the weight of criteria was calculated using Expert Choice and are given in the
last row of Table 3. The reported inconsistency is 0.02.

Table 3. Heading of decision matrices.

Criterion µ σ VaR CVaR MVlm MMC MoT

Min/Max max min min min max max max
Type V V V V V V V

Weights 0.208 0.141 0.321 0.183 0.057 0.055 0.035

We can see that the biggest accent in the evaluators’ judgements for the importance of
criteria is given to the possible losses by investing in cryptocurrency portfolios. Due to the
generally accepted and confirmed opinion of high riskiness of cryptocurrencies, the VaR
has taken the highest percentage, as much as 32%. The other risk measures, together with
the expected return are also highly esteemed: expected return—E(R) 21%, CVaR 18% and
standard deviation—St.dev. 14%. Volume—Vol and market capitalization—MMC have
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lower and almost equally estimated importance, 5.7% and 5.5% respectively. The lowest
weight is given to the criterion of attractiveness, measured by the number of tweets (MoT),
3.5%.

For choosing the preference functions for the observed criteria, the same group of
experts was consulted and it was decided to proceed with the linear preference function
with the indifference threshold (type V) for all criteria, as it most generally displays the
relations between the pairs of alternatives. Thresholds q−, q+, p− and p+ were calculated
in the following manner for all criteria, which is in accordance with that previously said
about the intervals of the threshold’s values:

q−j =
(
sj(2)− sj(1)

)
, q+j =

(
sj(9)− sj(8)

)
,

p−j =

(
sj(9)−q+j −sj(1)−q−j

)

2 + q−j ,

p+j =

(
sj(9)−q+j −sj(1)−q−j

)

2 + q+j , ∀j = 1, 2, . . . 7,

where sj(1), sj(2), . . . , sj(9) are sorted values of the evaluation of alternatives according to
criterion j. Finally, the heading of all decision matrices is given in Table 3.

For the period from January 2017 to February 2020, using the rolling window of
6 months of daily returns, volumes and market capitalization, the mean daily returns,
standard deviations, VaR, CVaR and average volumes and average market capitalization
were calculated. The optimal portfolios using the described MC model were calculated at
the first of each month by taking the previous 6 months of daily data for the calculations.
Moreover, the attractiveness, measured by the number of tweets, was taken for each
cryptocurrency on the day before the calculation of the optimal portfolio. Therefore, 32
optimal portfolios in 32 successive months were obtained. The maximum proportion
to invest in cryptocurrency Ai in the optimal cryptocurrency portfolio P was limited to
aMi = 0.5 ∀i = 1, 2, . . . , 9.

6. Results

The resulting portfolios with the weights of each cryptocurrency are given in Table 4.
We can see that the most favourable cryptocurrency is Bitcoin, the fact that could be
discerned from the data and results given in Tables 1 and 2. It is followed by Ethereum,
Litecoin, Ripple, Dash and Ethereum Classic, depending on the date and period. In general,
it can be said that there was a high level of diversification, which was also supported with
the constraint (13).

Table 4. Optimal portfolios with the weights of each cryptocurrency.

Date BTC DASH ETC ETH LTC XMR NEO XLM XRP

1 July 2017 0.2322 0.0169 0.2200 0.4971 0.0068 0.0022 0.0067 0.0023 0.0158
1 August 2017 0.2890 0.0191 0.0596 0.4944 0.1186 0.0026 0.0077 0.0017 0.0073

1 September 2017 0.4893 0.0025 0.0266 0.1093 0.2581 0.0017 0.1099 0.0006 0.0020
1 October 2017 0.4842 0.0291 0.0188 0.2111 0.0338 0.0153 0.1947 0.0040 0.0089

1 November 2017 0.4656 0.0886 0.0317 0.1163 0.0553 0.0396 0.1539 0.0111 0.0379
1 December 2017 0.4990 0.4086 0.0007 0.0014 0.0594 0.0024 0.0274 0.0003 0.0007

1 January 2018 0.4783 0.1963 0.0069 0.0130 0.0936 0.1759 0.0120 0.0083 0.0156
1 February 2018 0.4545 0.0044 0.0015 0.4811 0.0037 0.0069 0.0204 0.0238 0.0038

1 March 2018 0.4709 0.0003 0.0002 0.4962 0.0082 0.0003 0.0004 0.0228 0.0007
1 April 2018 0.1742 0.0003 0.0002 0.3038 0.4956 0.0004 0.0004 0.0246 0.0005
1 May 2018 0.3200 0.0005 0.0003 0.4991 0.1567 0.0008 0.0006 0.0211 0.0008
1 June 2018 0.3893 0.0001 0.0001 0.4998 0.1017 0.0001 0.0002 0.0085 0.0004
1 July 2018 0.4686 0.0003 0.0004 0.4987 0.0009 0.0004 0.0008 0.0293 0.0005

1 August 2018 0.4721 0.0361 0.0074 0.0210 0.4140 0.0089 0.0133 0.0077 0.0195
1 September 2018 0.4938 0.0222 0.0191 0.0662 0.1051 0.0125 0.0062 0.2239 0.0510

1 October 2018 0.4935 0.0378 0.0304 0.0130 0.0367 0.0119 0.0052 0.2561 0.1155
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Table 4. Cont.

Date BTC DASH ETC ETH LTC XMR NEO XLM XRP

1 November 2018 0.4658 0.0098 0.0259 0.0100 0.0120 0.0168 0.0064 0.3960 0.0573
1 December 2018 0.4921 0.0008 0.0009 0.0005 0.0007 0.0011 0.0004 0.3042 0.1995

1 January 2019 0.4817 0.0113 0.0115 0.0094 0.0233 0.0169 0.0066 0.0983 0.3409
1 February 2019 0.3563 0.0415 0.0350 0.0341 0.0861 0.0461 0.0318 0.0541 0.3150

1 March 2019 0.3634 0.0008 0.0004 0.0009 0.1370 0.0006 0.0006 0.0004 0.4958
1 April 2019 0.3890 0.0541 0.0372 0.0545 0.1975 0.0505 0.0412 0.0607 0.1152
1 May 2019 0.4853 0.0050 0.0032 0.0086 0.1316 0.0048 0.0036 0.0041 0.3539
1 June 2019 0.4997 0.0003 0.0002 0.0007 0.3894 0.0002 0.0003 0.0002 0.1091
1 July 2019 0.4534 0.0936 0.0310 0.0677 0.1890 0.0560 0.0294 0.0342 0.0458

1 August 2019 0.4994 0.4289 0.0005 0.0013 0.0485 0.0066 0.0004 0.0009 0.0134
1 September 2019 0.4995 0.4596 0.0005 0.0006 0.0005 0.0030 0.0002 0.0019 0.0341

1 October 2019 0.4418 0.2611 0.0011 0.0021 0.0015 0.0015 0.0006 0.0030 0.2873
1 November 2019 0.4995 0.2797 0.0003 0.0005 0.0005 0.0004 0.0002 0.0003 0.2186
1 December 2019 0.4992 0.0006 0.0012 0.0125 0.0014 0.0025 0.0069 0.0007 0.4750

1 January 2020 0.4994 0.0004 0.0010 0.0014 0.0005 0.0029 0.0021 0.0015 0.4908
1 February 2020 0.5000 0.0000 0.4997 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

Source: the authors’ calculations in MATLAB 2017a, The MathWorks, Inc.

For the evaluation of the results, out-of-sample testing was performed. The optimal
portfolios obtained by the multicriteria (MC) model are compared with the naïve portfolio
(NAIVE), two mean-variance (MV) models (first one in the middle of the efficient frontier
having the average variance—MV middle and the second at the end of the efficient frontier
having the maximum variance and containing only one cryptocurrency—MV max). It
is also compared to a portfolio obtained using the maximum Sharpe ratio (Max Sharp)
and the one with mean-CVaR optimization (MCVaR), from the middle of the mean-CVaR
efficient frontier. The nominated principles of portfolio selection are commonly found in
related research and in portfolio optimization in general.

Brauneis and Mestel [13] compared risk and return of different MV portfolios to
single cryptocurrency investments and two benchmarks, the naively diversified portfolio
and the CRIX. They found that in terms of the Sharpe ratio and certainty equivalent
returns, the naïvely diversified portfolio outperforms single cryptocurrencies and more
than 75% of MV portfolios. The similar study by Platanakis et al. [12] concluded that naïve
diversification is as good, if not better, than MV diversification. Weiyi [14] concludes that
none of the observed models (minimum variance, risk parity, MV, maximum Sharpe and
maximum utility) is consistently better than the 1/N rule in the Sharpe ratio. We took
into consideration confirmed good features of the naïve portfolio and included the 1/N
principle of portfolio selection as one of the models to be compared with the proposed MC
model.

Within the group of papers considering the contribution of cryptocurrencies to port-
folios with the rest of assets being either traditional ones or combinations of traditional
and alternative investments, there are studies that considered the conditional value-at-risk
(CVaR) as the appropriate risk measure: [2,6,8,9]. Namely, it is necessary to take into con-
sideration the alternative risk measures. In accordance with the approach of the mentioned
studies, we proceed with comparison of performances of the mean–CVaR model (Table 5)
and proposed MC model.

In almost all mentioned studies, the Sharpe ratio is a standard metric for measuring
risk-adjusted model performance. It is also used as a principle in the process of selecting the
optimal (cryptocurrency) portfolio [9,14]. Together with NAÏVE and mean–CVaR model,
in the out-of-sample testing and comparison, we used the maximum Sharpe ratio model,
given in Table 5.
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Table 5. Five portfolio optimization models.

Model Abbreviation Objective Function Constraints

1 1/N rule NAIVE

2 Markowitz model MV middle Max E(RP)
σP ≤ s

N
∑

i=1
ai = 1

ai ≥ 0

3 Markowitz model MV max Max E(RP)
N
∑

i=1
ai = 1

ai ≥ 0

4 Maximum Sharpe ratio model Max Sharp Max E(RP)
σP

N
∑

i=1
ai = 1

ai ≥ 0

5 Mean–CVaR model MCVaR middle Max E(RP)
CVaRP ≤ c

N
∑

i=1
ai = 1

ai ≥ 0

s is the standard deviation of middle portfolio on the mean-variance efficient frontier; c is the CVaR of the middle portfolio on the
mean-CVaR efficient frontier.

An inevitable model in the analysis is the Markowitz mean-variance (MV) model. In
this study we employed two MV models, the first one in the middle of the efficient frontier
having the average variance—MV middle and the second at the end of the efficient frontier
having the maximum variance and containing only one cryptocurrency—MV max.

Applied portfolio optimization models for the purpose of out-of-sample testing and
comparison are presented in Table 5.

The average return in the next 30 days, the standard deviation of the returns in the
next 30 days, VaR of the returns in the next 30 days and return in the next trading day
for 32 portfolios (on 32 dates) obtained as results of the six different optimization models
are given in Appendix A, in Tables A1–A4 respectively. In Table 6 of the MC model
winnings, we summarized in how many cases the MC model was better than other models,
considering different indicators.

Table 6. MC model winnings.

Indicator
Number of Cases When MC Model Is Better Than

NAIVE MV Middle MV Max Max Sharp MCVaR

Average return in the next 30 days 17 18 18 18 21
Standard deviation of the returns in

the next 30 days 26 22 24 22 30

VaR of the returns in the next 30 days 25 21 23 22 25
Return in the next trading day 20 18 19 16 17

7. Discussion and Interpretation of Results

Regarding the average return in the next 30 days NAÏVE portfolio performed rather
close to the MC model with 15 (47%) winnings, while in all other comparisons it loses more
convincingly (Table 6). This is a completely opposite finding to those of [4,12,13] that found
undeniable superiority of the naïve portfolio.

When comparing performances of the mean–CVaR model and proposed MC model,
only regarding the return in the next trading day the mean–CVaR model came closer
to the MC model with 15 (47%) winnings, while in all other comparisons it loses more
convincingly (Table 6). This proves the necessity of including more risk measures in the
portfolio selection.

Looking at MC model winnings against the three models, according to all performance
indicators, we could find that Max Sharp performed better than the previous two models,
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however the MC model won in all categories, except in the return in the next trading
day. There the MC model and the maximum Sharpe ratio model had the same number of
winnings (Table 6).

Finally, both MV middle and MV max models were outperformed by the MC model
(Table 6) as in [60].

The obtained results show that the proposed MC model functioned really well: it
outperformed all other models in all four out-of-sample comparisons in a very convincing
manner. It won at least in 50% of cases (MC model against Max Sharp in the comparison of
returns of the portfolios in the next trading day, Table 6) up to even 94% of cases (MC model
against MCVaR in the comparison of standard deviations of the returns in the next 30 days,
Table 6). The best performance MC model shows in the case of comparisons of standard
deviations of the returns in the next 30 days, from 22 to 30 winnings from 32 possible cases,
i.e., in 69–94% of cases. It is not only the percentage of winnings that should be considered,
but also the differences in the values of risk measured by standard deviation, which are
mostly in favour of the MC model—they can be rather big in cases when the MC model
wins and rather small in opposite cases, Table A2. This excellent performance of the MC
model is followed by another comparison of risk, measured by the value-at-risk, as shown
in Table A3 where the MC model had from 21 to 25 winnings, i.e., in 66–78% of cases, also
with notable differences of values of VaR in favour of the MC model. A slightly lesser
“success” of the MC model, but still very notable, is according to the comparisons of returns:
from 17 to 21 winnings, i.e., in 53–66% of cases, when comparisons of the average return in
the next 30 days were considered (Table A1), and from 16 to 20 winnings, i.e., 50–67% of
cases, when comparisons of the returns of portfolios in the next trading day were observed
(Table A4).

The excellent performance of the presented multicriteria model for the selection of
cryptocurrencies portfolio was even stronger if we took into consideration not only the
partial results from the four comparisons, but also the return–risk ratios.

Undoubtedly, the inclusion of more criteria—features of cryptocurrencies, among
them more risk estimators, since simple descriptive statistics pointed out the specificities
of cryptocurrencies and unfulfilled assumptions of other models—and the adoption of
appropriate methodology, the appropriate multicriteria decision-making model, helped us
to design the best method for cryptocurrency portfolio selection.

8. Conclusions

In the last few years numerous studies have confirmed cryptocurrencies as valuable
constituents of optimal portfolios, parallel with equally remarkable amounts of research
finding that cryptocurrencies have differentiated risk–reward profiles, with the absence
of or very low correlation of returns with other types of investment. Depending on the
sample and period, different portfolio optimization models were winners and, so, different
models were recommended for cryptocurrency portfolio selection. Some of those studies
recognized the need to introduce other criteria, besides return and risk. The first one is
the constraint of liquidity, while market capitalization constraint is only partially adopted
in the selection of the cryptocurrency sample where it is usually those with the highest
market capitalization that are selected. Sometimes the observed cryptocurrency benchmark
portfolio is CRIX or some number of its most weighted constituents. In that way, the
criterion of market capitalization is partially introduced. Additionally, the need of applying
alternative risk measures in the cryptocurrency portfolio selection process is only partially
adopted. Due to the non-normal distribution of cryptocurrencies’ returns, there is a clear
need to overcome the mean-variance framework and to employ appropriate risk measures.

Since cryptocurrencies undoubtedly contribute to the better risk–return performances
of portfolios, the issue is to recognize criteria, beside the return and risk, important for
the selection of cryptocurrencies, and to propose the model for cryptocurrency portfolio
selection, which will adopt the recommended criteria. These were the issues of this research.
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The seven criteria have been recognized and adopted for the cryptocurrency portfolio
selection. Beside the expected return and variance as a risk measure, additional risk
measures, value-at-risk and conditional value-at-risk are recognized as important for
this job and employed in the process. Moreover, market capitalization and volumes of
cryptocurrencies are considered as very important market indicators for many investors.
The seventh criterion is attractiveness, in this case measured by number of tweets.

The proposed model is a multiobjective programming model based on the PROMETHEE
II method, while weights of the seven chosen criteria are estimated using the AHP method, its
eigenvalue procedure.

The model is demonstrated and tested using a sample of cryptocurrencies for which
all required data were available in the period from January 2017 to February 2020.

Out-of-sample testing results and comparisons with performances of commonly used
models, according to different indicators, gave a significant advantage to the proposed
method for cryptocurrency portfolio selection, confirming the advantages of including
a range of criteria, besides return and variance, and the use of appropriate multicriteria
decision methodology.

Working on these issues, a number of questions and ideas arise. In the process of
criteria evaluation, the group of consulted experts put the attention primarily to VaR and
other risk measures together with the expected return. While exploring other criteria, using
mostly Internet and social media as sources of information, we met practitioners’ opinions
where they were very much oriented towards market volume, market capitalization and/or
attractiveness, together with returns, and less to the risk and appropriate risk measures.
This provides an incentive to explore the importance of criteria, consulting a wider set
of practitioners, not necessarily formally accepted experts, to test the model under such
conditions. In the process of exploring the criteria other indicators that might be interesting
as additional criteria in the model, like a hash rate and transaction costs were encountered.
The importance and influence of such indicators and ways for their evaluation and inclusion
in the model should be investigated. Moreover, it is worth considering other MCDM models
for comparison purposes. Finally, the proposed model together with all other models
studied in this paper were considering the cryptocurrency market under relatively normal
conditions, before the big COVID-19 crisis. Future research should consider the behaviour
and previously confirmed “independency” features of cryptocurrencies, which made them
desirable portfolio constituents and the model performances under new conditions.
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Appendix A

Table A1. Mean return in the next 30 days for 6 different models.

Date MC Model NAIVE MV Middle MV Max Max Sharp MCVaR

1 July 2017 −0.00846 −0.00720 −0.01004 −0.00666 −0.00951 −0.00981
1 August 2017 0.01831 0.02118 0.03384 0.05164 0.02166 0.03836

1 September 2017 −0.00430 −0.00613 −0.00458 −0.00410 −0.00492 −0.00444
1 October 2017 0.00431 0.00208 −0.00140 −0.00281 0.00337 −0.00144

1 November 2017 0.01793 0.01934 0.01497 0.01278 0.01590 0.01024
1 December 2017 0.01934 0.02716 0.01697 0.01703 0.01704 0.03068

1 January 2018 −0.01059 0.00131 −0.00742 −0.00883 −0.01040 0.01044
1 February 2018 −0.00639 −0.00487 −0.01148 −0.01911 −0.00893 −0.00612

1 March 2018 −0.01426 −0.01784 −0.01557 −0.01677 −0.01630 −0.02305
1 April 2018 0.00745 0.01100 0.01384 0.01948 0.01507 0.01174
1 May 2018 −0.00612 −0.01076 −0.00860 −0.01028 −0.01018 −0.01046
1 June 2018 −0.00753 −0.00885 −0.01051 −0.01215 −0.01215 −0.01319
1 July 2018 0.00515 0.00399 0.00985 0.01724 0.01724 0.00109

1 August 2018 −0.01040 −0.01383 −0.00656 −0.00656 −0.00656 −0.01950
1 September 2018 0.00298 0.00494 −0.00005 −0.00005 −0.00005 0.00652

1 October 2018 −0.00356 −0.00543 −0.00348 −0.00501 −0.00501 −0.00562
1 November 2018 −0.01107 −0.01438 −0.01314 −0.01314 −0.01314 −0.01625
1 December 2018 −0.00679 −0.00543 −0.00706 −0.00540 −0.00540 −0.00498

1 January 2019 −0.00401 −0.00306 −0.00399 −0.00406 −0.00406 −0.00137
1 February 2019 0.00410 0.00537 0.00215 0.00123 0.00123 0.00403

1 March 2019 −0.00036 0.00105 0.00023 −0.00221 −0.00221 −0.00098
1 April 2019 0.00723 0.00619 0.00887 0.00856 0.00856 0.00314
1 May 2019 0.01003 0.00856 0.00907 0.00561 0.00561 0.00633
1 June 2019 0.00837 0.00365 0.01015 0.01308 0.01126 0.00297
1 July 2019 −0.00280 −0.00630 −0.00425 −0.00992 −0.00130 −0.00385

1 August 2019 −0.00283 −0.00490 −0.00533 −0.00880 −0.00058 −0.00745
1 September 2019 −0.00102 0.00100 −0.00119 −0.00227 −0.00227 0.00129

1 October 2019 −0.00748 −0.00963 −0.00803 −0.00820 −0.00820 −0.00898
1 November 2019 0.00047 0.00348 0.00146 0.00244 0.00244 0.00966
1 December 2019 −0.01043 −0.01316 −0.00938 −0.00853 −0.00853 −0.01360

1 January 2020 0.00825 0.01545 0.00872 0.00910 0.00910 0.01045
1 February 2020 0.00984 0.00939 0.01109 0.01365 0.01365 0.00962

MC model better 17 18 18 18 21

Source: the authors’ calculations in MATLAB.

Table A2. Standard deviations of the returns in the next 30 days.

Date MC Model NAIVE MV Middle MV Max Max Sharp MCVaR

1 July 2017 0.07496 0.07034 0.08456 0.09640 0.07659 0.08502
1 August 2017 0.02971 0.03042 0.07466 0.13974 0.02929 0.08411

1 September 2017 0.08286 0.08559 0.10009 0.14038 0.08286 0.10368
1 October 2017 0.02294 0.02917 0.04006 0.06587 0.02291 0.04376

1 November 2017 0.02931 0.03416 0.05672 0.08712 0.03975 0.03611
1 December 2017 0.06198 0.07373 0.07455 0.10676 0.06230 0.10038

1 January 2018 0.07012 0.08032 0.07903 0.08970 0.07036 0.09869
1 February 2018 0.07227 0.08305 0.08522 0.08559 0.07905 0.08818

1 March 2018 0.04150 0.04706 0.04925 0.05854 0.05060 0.05228
1 April 2018 0.05874 0.06295 0.06776 0.07955 0.07089 0.06727
1 May 2018 0.03771 0.03840 0.04498 0.05410 0.05242 0.04872
1 June 2018 0.04323 0.04423 0.05136 0.05276 0.05276 0.04925
1 July 2018 0.03391 0.03815 0.04317 0.05796 0.05796 0.04673

1 August 2018 0.03502 0.04523 0.02895 0.02895 0.02895 0.06235
1 September 2018 0.03518 0.04872 0.02362 0.02362 0.02362 0.06286

1 October 2018 0.02748 0.03353 0.03006 0.04139 0.04139 0.03769
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Table A2. Cont.

Date MC Model NAIVE MV Middle MV Max Max Sharp MCVaR

1 November 2018 0.04095 0.04527 0.03705 0.03705 0.03705 0.04776
1 December 2018 0.05492 0.06052 0.05309 0.04829 0.04829 0.06143

1 January 2019 0.03969 0.05116 0.04060 0.04527 0.04527 0.05446
1 February 2019 0.02653 0.02979 0.02501 0.02969 0.02969 0.02797

1 March 2019 0.02655 0.03019 0.02918 0.02886 0.02886 0.03839
1 April 2019 0.03636 0.03649 0.04521 0.05675 0.05675 0.03620
1 May 2019 0.04675 0.04806 0.04614 0.05193 0.05193 0.05490
1 June 2019 0.03360 0.03284 0.03676 0.04620 0.03992 0.03908
1 July 2019 0.06093 0.05895 0.06195 0.06508 0.06314 0.06872

1 August 2019 0.02973 0.02882 0.03370 0.03898 0.03230 0.03474
1 September 2019 0.02418 0.02615 0.02208 0.02248 0.02248 0.02790

1 October 2019 0.03216 0.03724 0.03032 0.02840 0.02840 0.04025
1 November 2019 0.03067 0.02952 0.03456 0.03739 0.03739 0.04333
1 December 2019 0.02573 0.03019 0.02428 0.02389 0.02389 0.03456

1 January 2020 0.03087 0.03795 0.02997 0.03032 0.03032 0.03732
1 February 2020 0.03878 0.02656 0.04639 0.06295 0.06295 0.03108

MC model better 26 22 24 22 30

Source: the authors’ calculations in MATLAB.

Table A3. VaR of the returns in the next 30 days.

Date MC Model NAIVE MV Middle MV Max Max Sharp MCVaR

1 July 2017 0.14720 0.11604 0.13227 0.14674 0.13408 0.13272
1 August 2017 0.03533 0.02392 0.06561 0.13305 0.02524 0.06911

1 September 2017 0.27211 0.28985 0.24010 0.32852 0.26675 0.24837
1 October 2017 0.03294 0.05378 0.08710 0.11948 0.03510 0.09091

1 November 2017 0.07482 0.07651 0.10852 0.12399 0.08613 0.07650
1 December 2017 0.16536 0.18522 0.20809 0.25023 0.16609 0.17318

1 January 2018 0.21151 0.25978 0.23845 0.25880 0.21708 0.29431
1 February 2018 0.17755 0.19189 0.19366 0.18522 0.18750 0.23017

1 March 2018 0.11269 0.12871 0.13160 0.15434 0.13431 0.13820
1 April 2018 0.13467 0.14447 0.14563 0.16561 0.15232 0.14870
1 May 2018 0.08546 0.09116 0.10130 0.11899 0.11694 0.09309
1 June 2018 0.11563 0.12065 0.12794 0.12948 0.12948 0.11978
1 July 2018 0.07847 0.08296 0.08595 0.10819 0.10819 0.08638

1 August 2018 0.08055 0.10988 0.06853 0.06853 0.06853 0.13807
1 September 2018 0.11266 0.16303 0.08042 0.08042 0.08042 0.19286

1 October2018 0.10553 0.14092 0.11317 0.15436 0.15436 0.16628
1 November 2018 0.12795 0.15882 0.14356 0.14356 0.14356 0.16667
1 December 2018 0.12172 0.11357 0.11108 0.08417 0.08418 0.12669

1 January 2019 0.10461 0.13097 0.10311 0.10881 0.10881 0.12652
1 February 2019 0.04699 0.05833 0.04236 0.04825 0.04825 0.05481

1 March 2019 0.09956 0.11617 0.10688 0.09842 0.09842 0.12041
1 April 2019 0.07099 0.07830 0.08055 0.10363 0.10363 0.08677
1 May 2019 0.07546 0.07203 0.07128 0.07143 0.07143 0.07445
1 June 2019 0.06173 0.07472 0.06425 0.06511 0.06457 0.09343
1 July 2019 0.14050 0.13559 0.14333 0.13756 0.14634 0.13558

1 August 2019 0.07357 0.08857 0.09535 0.10416 0.08327 0.11402
1 September 2019 0.05368 0.06360 0.05207 0.05984 0.05984 0.04936

1 October 2019 0.14063 0.16482 0.13385 0.12099 0.12099 0.16620
1 November 2019 0.06858 0.06168 0.07058 0.07231 0.07231 0.05574
1 December 2019 0.08079 0.08534 0.06071 0.04909 0.04909 0.09815

1 January 2020 0.02731 0.03345 0.02903 0.03027 0.03027 0.03496
1 February 2020 0.06595 0.04800 0.08808 0.13353 0.13353 0.05235

MC model better 25 21 23 22 25

Source: the authors’ calculations in MATLAB.
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Table A4. Returns of the portfolios in the next trading day.

Date MC Model NAIVE MV Middle MV Max Max Sharp MCVaR

1 July 2017 −0.05645 −0.06292 −0.07465 −0.09359 −0.06811 −0.07560
1 August 2017 0.03577 0.02565 0.02260 0.02486 0.03253 0.02559

1 September 2017 0.00297 0.01380 0.00572 −0.01678 0.01417 0.00383
1 October 2017 −0.01723 −0.02591 −0.03030 −0.03836 −0.01826 −0.02971

1 November 2017 0.04395 0.02462 0.03310 0.01488 0.05000 0.01074
1 December 2017 0.01040 0.10020 −0.02426 −0.05243 0.00404 0.02641

1 January 2018 −0.07168 −0.04928 −0.09462 −0.10738 −0.06419 −0.00381
1 February 2018 0.03349 0.00930 −0.00893 −0.03345 0.00466 0.02299

1 March 2018 0.04778 0.03813 0.02425 0.02016 0.01826 0.08550
1 April 2018 −0.01446 0.00911 0.00616 0.01479 0.00598 0.01621
1 May 2018 −0.03046 −0.03979 −0.00839 0.00906 0.00489 −0.04919
1 June 2018 −0.01244 −0.00694 −0.02743 −0.02966 −0.02966 0.00158
1 July 2018 −0.04448 −0.05134 −0.06004 −0.05867 −0.05867 −0.05018

1 August 2018 −0.02712 −0.02684 −0.02849 −0.02849 −0.02849 −0.02431
1 September 2018 0.00013 −0.00348 0.00641 0.00641 0.00641 −0.00126

1 October 2018 −0.05305 −0.06265 −0.05678 −0.08304 −0.08304 −0.06307
1 November 2018 −0.00680 −0.00333 0.00310 0.00310 0.00310 0.00029
1 December 2018 −0.02196 −0.01661 −0.03203 −0.04476 −0.04476 −0.00428

1 January 2019 0.01353 0.04387 0.01459 0.02443 0.02443 0.05353
1 February 2019 0.00689 0.01316 0.00035 −0.00406 −0.00406 0.00622

1 March 2019 −0.02904 −0.03510 −0.03372 −0.03543 −0.03543 −0.04990
1 April 2019 0.00806 0.00734 0.01564 0.02526 0.02526 0.01167
1 May 2019 0.00893 0.00780 0.00419 −0.00493 −0.00493 0.01672
1 June 2019 −0.03842 −0.05909 −0.03652 −0.03673 −0.03660 −0.06384
1 July 2019 0.04833 0.03980 0.04017 0.02479 0.04818 0.03693

1 August 2019 −0.00234 −0.01228 −0.01201 −0.00979 −0.01507 −0.02272
1 September 2019 −0.02812 −0.01824 −0.00708 −0.01410 −0.01410 −0.02744

1 October 2019 −0.00146 −0.01488 −0.00119 0.00666 0.00666 −0.01956
1 November 2019 −0.00238 −0.00461 0.00050 0.00192 0.00192 −0.00002
1 December 2019 −0.03441 −0.04339 −0.03297 −0.03182 −0.03182 −0.04782

1 January 2020 0.07870 0.07880 0.08613 0.09150 0.09150 0.09386
1 February 2020 0.07537 0.04447 0.09245 0.12755 0.12755 0.04793

MC model better 20 18 19 16 17

Source: the authors’ calculations in MATLAB.
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Abstract: In this study, we consider a perishable inventory system that has an (s, Q) ordering policy,
along with a finite waiting hall. The single server, which provides an item to the customer after
completing the required service performance for that item, only begins serving after N customers
have arrived. Impatient demand is assumed in that the customers waiting to be served lose patience
and leave the system if the server’s idle time overextends or if the arriving customers find the system
to be full and will not enter the system. This article analyzes the impatient demands caused by the
N-policy server to an inventory system. In the steadystate, we obtain the joint probability distribution
of the level of inventory and the number of customers in the system. We analyze some measures of
system performance and get the total expected cost rate in the steadystate. We present a beneficial
cost function and confer the numerical illustration that describes the impact of impatient customers
caused by N-policy on the inventory system’s total expected cost rate.

Keywords: (s, Q)-policy; Markovian Arrival Process; N-policy; impatient customers

1. Introduction

Perishable inventory system research draws inspiration from Nahmias’ [1] seminal
piece on ordering policies for perishable inventory. Nahmias studied the ordering poli-
cies for fixed and random shelf lifetime perishable inventory. Earlier inventory systems
research usually assumed that the stock items are non-perishable. However, this is not
realistic, thus creating the need to study perishable inventory systems. For more details
on perishable inventory, we refer interested readers to Aijun Liu et al. [2], Darestani [3],
Ioannidis [4], Kalpakam and Arivarignan [5], Liu and Lian [6], Sung-Seok Ko [7], Weiss [8],
and Zhang et al. [9].

Generally, in the literature on inventory models, customers receive the stock demanded
instantaneously only when the stock is available; otherwise, waiting is the norm. In the
case of the inventory maintained at a service facility, customers usually wait for the item
demanded because some service is performed on it, for instance, a fast food outlet or
hospital dispensary. Further, due to the complexity and uniqueness of a customer’s order,
the service time may stretch and be variable, such as special medicinal preparation for
liver-impaired patients or gluten-free dietary requests. This then builds a queue in the
service system, often leading to impatient customers, with those customers sometimes

Mathematics 2021, 9, 1514. https://doi.org/10.3390/math9131514 https://www.mdpi.com/journal/mathematics136
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reneging or balking from the service. Recognizing that queues can form during stock-
out situations, Berman et al. [10] examined an inventory model with a service facility
where both the demand and service rates are known and constant. They determined the
optimal order quantity for the minimal expected total cost. Since then, there has been
keen interest in the perishable queueing-inventory system and impatient customers (see,
for example, Amirthakodi and Sivakumar [11], Arivarignan et al. [12], Hamadi et al. [13],
Manuel et al. [14], and Lawrence et al. [15]).

For many inventory systems with service activities, the setup can require several
minutes, and these setup activities incur costs to the inventory system. One way to
reduce the setup cost is to employ an N-policy, i.e., if the system is empty, the server is
on vacation. When there are at least N customers in the system, the server begins service.
Yadin and Naor [16] suggested the N-policy concept. Heyman [17] first analyzed the
N-policy system with an M/G/1 queue. The N-policy has been extended by others, such
as Ke [18], Kella [19], and Wang and Ke [20], to a queueing network. Krishnamoorthy and
Anbazhagan [21] have considered a finite waiting hall perishable inventory system under
an N-policy. Similarly, Jeganathan et al. [22] considered a perishable inventory system with
a finite waiting hall and customer service under an N-policy, but they allowed the server to
take multiple vacations, assuming that the customers reach the service station in a Poisson
manner and inventory replenishment is instantaneous.

All previous references about N-policy in the inventory system focused on the setup
cost reduced in the system. Herein, we examine another fact that the cost of customers lost.
It is a significant component of the total expected cost rate.

Despite the fact that the N-policy successfully lessens the inventory system’s general
arrangement cost, it can nevertheless bring about waiting time vulnerability for the primary
N-1 customers. For instance, the first customer arrives at a vacant waiting hall, and
the service channel withholds the service until the other N-1 customers arrive into the
system. Assuming the customer appearance rate is moderate, there is a probability of
developing customer impatience. Our work is motivated by this perception. Specifically,
we investigated the effect of N-policy on the arriving customers to the inventory system
and focused on showing the possible results of increasingly impatient customers’ impact
on the total expected cost rate of the system.

In real life, you can see some rides in theme and amusement parks, theaters in malls,
as well as adventure activities like skydiving, scuba diving, rafting, and parasailing starting
to sell tickets to customers after some customers come to their systems. In these systems,
the first customers have to wait for other arrivals. They become easily impatient, so they
go for other systems.

We examine a perishable inventory system with a finite waiting capacity, and the
customers arrive as a Markovian Arrival Process. We assume that the server provides
service only when there are N customers in the system; otherwise, the server remains idle.
If the customers arrive and find the system to be full, they will not enter the system. At the
same time, the customer who is waiting for service and finds the server to be idle becomes
impatient and may exit the system.

The remainder of this paper is structured as follows. Section 2 presents the notation
used in the paper and the corresponding model development. In Section 3, the steady-
state analysis of the model is presented. In Section 4, we derive the measures of system
performance under steady-state analysis. In Section 5, the total expected system cost rate
is obtained. A cost analysis is provided in Section 6. Section 7 presents the numerical
illustration. Section 8 concludes the paper.

2. Model

The following notation will be used in this paper:

0 : Zero matrix.
I : Identity matrix.
Ix : Identity matrix of order x.
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[P]ij : Entry at (i, j)th position of a matrix P.
Fi(x×y)

: Size of matrix Fi is x row and y column.

e : Unit column vector of appropriate dimension.
I(t) : Inventory level at time t.
T(t) : Server status at time t.
C(t) : Number of customers waiting and being served at time t.
J(t) : Phase of the arrival process at time t.

T(t) =
{

0, if server is idle
1, if server is busy.

Consider that a perishable inventory system contains a limited waiting hall size
H(< ∞) (including the service receiver) with at most S items as inventory and a single
server. When the customer demand reaches a predetermined level N (0 < N < H), the
server begins service. The customers request for one item each. The customer only receives
the requested item after certain service activities are performed on that item. Service time
is a negative exponential distribution with parameter µ(> 0). For replenishment, an order
quantity Q(= S− s > s + 1) is placed when the inventory level drops to the reorder level
s and the items are received only after a random time, which has a negative exponential
distribution with parameter β(> 0). The customers who are waiting for service may exit
the system while the server is idle, these impatient(reneging) customers are assumed to
leave the system after a random time, which is distributed as a negative exponential with
parameter α(> 0). If the waiting hall is full, then all new arriving customers are considered
to be lost. The lifetime of each item has a negative exponential distribution with parameter
γ(> 0). We assume that the item does not perish when it is in service.

The MAP is a rich class of point processes that include many well-known processes
such as the Poisson process. As is notable, the Poisson measure is the least complex and
most manageable one, which is utilized widely in stochastic modeling.The possibility of the
MAP is to fundamentally sum up the Poisson process and still save the manageability for
modeling purposes. Hence, the MAP is a convenient tool for modeling both renewal and
non-renewal arrivals. While MAP is defined for both discrete and continuous times, here
we use only the continuous time case. For the description of the arrival process, we use the
MAP’s description as given in Lucantoni et al. [23]. Consider a continuous-time Markov
chain on the state space 1, 2,. . ., x. When the chain is in state i, 1 ≤ i ≤ x, it remains for an
exponential time with parameter vi. When the sojourn time ends, the chain may transition
in two ways. First, if the transition is with a customer arrival, then the chain enters state j
with probability cij, 1 ≤ j ≤ x. Second, if the transition is without a customer arrival, then
the chain enters state j with probability dij, 1 ≤ j ≤ x, i 6= j. Note that the chain can remain
in the same state (i.e., from state i to state i) when an arrival occurs. Consider the matrices
Ff , f = 0, 1 of size x as [F0]ii = −vi and [F0]ij = vidij,i 6= j, [F1]ij = vicij, 1 ≤ i, j ≤ x. Clearly,
F = F0 + F1 is an infinitesimal generator of a continuous-time Markov chain. We assume
that F is irreducible and F0e 6= 0.

Let ϕ be the stationary probability vector of a continuous-time Markov chain with
generator F. Then, ϕ is the unique probability vector satisfying ϕF = 0, ϕe = 1.

Suppose ω is the primary probability vector of the hidden Markov chain dependent
on the MAP. Then we can obtain the time epochs by picking an appropriate ω, such as
an independent arrival point, the end of the interval of at least k arrivals, and where the
system is in a particular state such as the beginning or end of a busy period.

Setting ω = ϕ, we obtain the stationary distribution of the MAP. The constant
λ = ϕF1e is the fundamental rate, which provides the mean of the customer arrivals
in unit time.

For more details on the MAP, we refer the interested reader to Latouche and Ra-
maswami [24], Lee and Jeon [25], and Chakravarthy and Dudin [26].
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3. Analysis

Let L(t),T(t),C(t) and J(t), respectively, denote the inventory level, server status, number
of customer waiting and being served and phase of the arrival process at time t. From the
assumptions made on the input and output processes, it can be shown that the quadruple
{(I(t), T(t), C(t), J(t)), t ≥ 0} is a Markov process whose state space is

E = E1 ∪ E2 ∪ E3 ∪ E4, with
E1 = {(i, 0, 0, r) : 1 ≤ i ≤ S; 1 ≤ r ≤ x}
E2 = {(i, k, m, r) : 1 ≤ i ≤ S; k = 0, 1; 1 ≤ m ≤ N − 1; 1 ≤ r ≤ x}
E3 = {(i, k, m, r) : 1 ≤ i ≤ S; k = 1; N ≤ m ≤ H; 1 ≤ r ≤ x}
E4 = {(0, 0, m, r) : 0 ≤ m ≤ H; 1 ≤ r ≤ x}

We order the elements of Elexicographically. Then the infinitesimal generator P of the
Markov process {(I(t), T(t), C(t), J(t)), t ≥ 0} has the following block partitioned form:

[P]ij =





Yi, j = i− 1, i = 1, 2, . . . S
Xi, j = i, i = 0, 1, . . . S
Z, j = i + Q, i = 1, 2, . . . s

Z′ j = i + Q, i = 0
0, otherwise .

where
0 1

Z′ = 0
(

F2((H+1)x×Nx)
0((H+1)x×Hx)

)

Submatrix F2 is
0 1 · · · N − 1

F2 =

0
1
...

N − 1
N
...

H




βIx 0 · · · 0
0 βIx · · · 0
...

...
...

...
0 0 · · · βIx
0 0 · · · 0
...

...
...

...
0 0 · · · 0




0 1

Z =
0
1

(
F3(Nx×Nx)

0(Nx×Hx)
0(Hx×Nx) F4(Hx×Hx)

)

Submatrices F3 and F4 are

0 1 · · · N − 1

F3 =

0
1
...

N − 1




βIx 0 · · · 0
0 βIx · · · 0
...

...
...

...
0 0 · · · βIx




0 1 · · · H

F4 =

0
1
...

H




βIx 0 · · · 0
0 βIx · · · 0
...

...
...

...
0 0 · · · βIx




For i = 0
0

Xi = 0
(

F5((H+1)x×(H+1)x)

)
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Submatrix F5 is

0 1 2 · · · N − 2 N − 1 N · · · H − 2 H − 1 H

F5 =

0
1
...

N − 1
N
...

H − 1
H




F0 − βIx F1 0 · · · 0 0 0 · · · 0 0 0
αIx F0 − (α + β)Ix F1 · · · 0 0 0 · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · αIx F0 − (α + β)Ix F1 · · · 0 0 0
0 0 0 · · · 0 αIx F0 − αIx · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0
... 0 0 0

... αIx F0 − αIx F1

0 0 0
... 0 0 0

... 0 αIx F0 − αIx




For i = 1,2, . . . s
0 1

Xi =
0
1

(
F6(Nx×Nx)

0(Nx×Hx)
0(Hx×Nx) F7(Hx×Hx)

)

Submatrices F6 and F7 are

0 1 2 · · · N − 2 N − 1

F6 =

0
1
...

N − 2
N − 1




F0 − (iγ + β)Ix F1 0 · · · 0 0
αIx F0 − (α + iγ + β)Ix F1 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · F0 − (α + iγ + β)Ix F1
0 0 0 · · · αIx F− (α + iγ + β)Ix




1 2 · · · H − 1 H

F7 =

1
2
...

H − 1
H




F0 − (iγ + µ + β)Ix F1 · · · 0 0
0 F0 − (iγ + µ + β)Ix · · · 0 0
...

...
...

...
...

0 0 · · · F0 − (iγ + µ + β)Ix F1
0 0 · · · 0 F− (iγ + µ + β)Ix




For i = s + 1, . . . S

0 1

Xi =
0
1

(
F8(Nx×Nx)

0(Nx×Hx)
0(Hx×Nx) F9(Hx×Hx)

)

Submatrices F8 and F9 are
0 1 2 · · · N − 2 N − 1

F8 =

0
1
...

N − 2
N − 1




F0 − (iγ)Ix F1 0 · · · 0 0
αIx F0 − (α + iγ)Ix F1 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · F0 − (α + iγ)Ix F1
0 0 0 · · · αIx F− (α + iγ)Ix




1 2 · · · H − 1 H

F9 =

1
2
...

H − 1
H




F0 − (iγ + µ)Ix F1 · · · 0 0
0 F0 − (iγ + µ)Ix · · · 0 0
...

...
...

...
...

0 0 · · · F0 − (iγ + µ)Ix F1
0 0 · · · 0 F− (iγ + µ)Ix




140



Mathematics 2021, 9, 1514

For i = 1
0

Yi =
0
1

(
F10(Nx×(H+1)x)

F11(Hx×(H+1)x)

)

Submatrices F10 and F11 are

0 1 · · · N − 1 N · · · H

F10 =

0
1
...

N − 1




iγIx 0 · · · 0 0 · · · 0
0 iγIx · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · iγIx 0 · · · 0




0 1 2 · · · H − 1 H

F11 =

0
1
...

H − 1
H




µIx iγIx 0 · · · 0 0
0 µIx iγIx · · · 0 0
...

...
...

...
...

...
0 0 0 · · · iγIx 0
0 0 0 · · · µIx iγIx




For i = 2, . . . S
0 1

Yi =
0
1

(
F12(Nx×Nx)

0(Nx×Hx)
F13(Hx×Nx) F14(Hx×Hx)

)

Submatrices F12, F13, and F14 are

0 1 · · · N − 1

F12 =

0
1
...

N − 1




iγIx 0 · · · 0
0 iγIx · · · 0
...

...
...

...
0 0 · · · iγIx




0 1 · · · H

F13 =

1
2
...

H




µIx 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0




1 2 · · · H− 1 H

F14 =

1
2
...

H




iγIx 0 · · · 0 0
µIx iγIx · · · 0 0

...
...

...
...

...
0 0 · · · µIx iγIx




It is noted that matrix Z′ is of the order ((H + 1)x) × (Nx + Hx), matrix Z is of the order
(Nx + Hx) × (Nx + Hx), matrices Xi,i = 1,2,. . .S are of order (Nx + Hx) × (Nx + Hx), matrix
X0 is of the order ((H + 1)x) × ((H + 1)x), matrices Yi,i = 2,3,. . .S are of order (Nx + Hx) ×
(Nx + Hx), and matrix Y1 is of the order (Nx + Hx) × ((H + 1)x), respectively.

4. Study of Steady-State Vector

The process {I(t), T(t), C(t), J(t); t ≥ 0} is a continuous-time Markov chain (CTMC)
having the state space E. Hence, the steady-state vector

Ξ(i, k, m, r) = lim
t→∞

Pr[I(t) = i, T(t) = k, C(t) = m, J(t) = r/I(0), T(0), C(0), J(0)]
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exists, and is independent of the initial state.

Let Ξ = (Ξ(0), Ξ(1), . . . , Ξ(S)),
where Ξ(i) = (Ξ(i, 0), Ξ(i, 1)), i = 0, 1, . . . S
with Ξ(i, k) = (Ξ(i, k, 0), Ξ(i, k, 1), . . . Ξ(i, k, H)), k = 0, 1
with Ξ(i, k, m) = (Ξ(i, k, m, 1), Ξ(i, k, m, 2), . . . Ξ(i, k, m, x)), m = 0, 1, . . . H

Then, the steady state vector Ξ satisfies ΞP = 0, Ξe = 1.

Lemma 1. For the Markov process, the steady-state vector Ξ whose rate matrix is P is defined by

Ξ(i) = Ξ(Q)∇i, i = 0, 1, . . . S

where

∇i =





(−1)Q−iYQX−1
Q−1YQ−1 . . .Yi+1X−1

i , i = 0, 1, . . . Q− 1;
I, i = Q;

(−1)2Q−i+1 S−i
∑

j=1





(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j(
YS−jX−1

S−j−1YS−j−1 . . .Yi+1X−1
i

)


, i = Q + 1, . . . S;

and Ξ(Q) can be attained by workout the following two equations:

Ξ(Q)





(−1)Q ∑S−1

j=0





(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)

ZX−1
S−j

(
YS−jX−1

S−j−1YS−j−1 . . .YQ+2X−1
Q+1

)






YQ+1 +XQ +

{
(−1)QYQX−1

Q−1YQ−1 . . .Y1X−1
0

}
Z′

 = 0

and

Ξ(Q)

(
Q−1

∑
i=0

{
(−1)Q−iYQX−1

Q−1YQ−1 . . .Yi+1X−1
i

}
+ I +

S

∑
i=Q+1

{(−1)2Q−i+1
S−i

∑
j=0
{
(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j

(
YS−jX−1

S−j−1YS−j−1 . . .Yi+1X−1
i

)
}})e = 1

Proof. The well-known equations are,

ΞP = 0 and Ξe = 1.

The equation ΞP = 0 can be written as

Ξ(i + 1)Yi+1 + Ξ(i)Xi = 0, i = 0, 1, . . . Q− 1
Ξ(i + 1)Yi+1 + Ξ(i)Xi + Ξ(i−Q)Z′ = 0, i = Q

Ξ(i + 1)Yi+1 + Ξ(i)Xi + Ξ(i−Q)Z = 0, i = Q + 1, Q + 2, . . . S− 1
Ξ(i)Xi + Ξ(i−Q)Z = 0, i = S

(1)

Except (1), the above equations can be solved recursively, yielding

Ξ(i) = Ξ(Q)∇i, i = 0, 1, . . . S.

where

∇i =





(−1)Q−iYQX−1
Q−1YQ−1 . . .Yi+1X−1

i , i = 0, 1, . . . Q− 1;
I, i = Q;

(−1)2Q−i+1 S−i
∑

j=0





(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j(
YS−jX−1

S−j−1YS−j−1 . . .Yi+1X−1
i

)


, i = Q + 1, . . . S;
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Solving Equation (1) and normalizing the condition after putting the value of ∇i in that
equation, we obtain Ξ(Q), i.e.,

Ξ(Q)





(−1)Q ∑S−1

j=0





(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)

ZX−1
S−j

(
YS−jX−1

S−j−1YS−j−1 . . .YQ+2X−1
Q+1

)






YQ+1 +XQ +

{
(−1)QYQX−1

Q−1YQ−1 . . .Y1X−1
0

}
Z′

 = 0

and

Ξ(Q)(
Q−1

∑
i=0

{
(−1)Q−iYQX−1

Q−1YQ−1 . . .Yi+1X−1
i

}
+ I +

S

∑
i=Q+1

{
(−1)2Q−i+1

S−i

∑
j=0

{(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j

(
YS−jX−1

S−j−1YS−j−1 . . .Yi+1X−1
i

)}
})e = 1

�

5. Derivation of System Performance Measures

We infer some performance measures of this system during a steady state. It is seen
that Ξ(i) is the steady-state probability vector for the inventory level being i with every
constituent mentioned: server status in the system, the number of customers, waiting and
being served, and the phase of the arrival process. Hence, Ξ(i)e provides the probability
that the inventory level in a steadystate is i. Similarly, Ξ(i, k, m)e is the probability that the
inventory level i, server status j, and customers waiting (including being served) k are in a
steadystate.

5.1. Mean Inventory Level

Let ML be the mean inventory level in a steadystate, which can be expressed as

ML = ∑S
i=1i

(
∑1

k=0∑N−1
m=1 Ξ(i, k, m)

)
e + ∑S

i=1i
(

∑H
m=NΞ(i, 1, m)

)
e + ∑S

i=1i(Ξ(i, 0, 0))e.

5.2. Mean Reorder Rate

Let MRO be the mean reorder rate in a steady state. If a demand service is completed
or any of the (s + 1) items fails, then the inventory level drops to s from level (s + 1), a stock
reorder is triggered. This then leads to

MRO = µ
H
∑

m=1
Ξ(s + 1, 1, m)e + (s + 1)γ

1
∑

k=0

N−1
∑

m=1
Ξ(s + 1, k, m)e

+(s + 1)γ ∑H
m=N Ξ(s + 1, 1, m)e + (s + 1)γΞ(s + 1, 0, 0)e.

5.3. Mean Perishable Rate

Let MP be the mean perishable rate in a steadystate, which is given by

MP = ∑S
i=1∑1

k=0∑N−1
m=1 iγΞ(i, k, m)e + ∑S

i=1∑H
m=N iγΞ(i, 1, m)e + ∑S

i=1iγΞ(i, 0, 0)e.

5.4. Mean Balking Rate

Let MB be the mean balking rate in a steadystate, which can be stated as

MB =
1
λ

∑S
i=1Ξ(i, 1, H)F1e +

1
λ

Ξ(0, 0, H)F1e.

5.5. Mean Reneging Rate

Let MR be the mean reneging rate in a steadystate, which is given by

MR = ∑S
i=0∑N−1

m=1 mαΞ(i, 0, m)e + ∑H
m=1mαΞ(0, 0, m)e.
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5.6. Mean Waiting Time

Let MW be the mean waiting time of the customers in the waiting hall in a steady state.
Then, by Little’s formula,

MW = L
λa

where L = ∑N−1
m=1 m

(
∑S

i=1 ∑1
k=0 Ξ(i, k, m)

)
e + ∑H

m=N m
(

∑S
i=1 Ξ(i, 1, m)

)
e + ∑H

m=1 mΞ(0, 0, m)e

and the effective arrival rate (Ross [27]) λa is given by

λa =
1
λ

∑S
i=1∑1

k=0∑N−1
m=1 Ξ(i, k, m)F1e +

1
λ

∑S
i=1∑H−1

m=NΞ(i, 1, m)F1e +
1
λ

∑S
i=1Ξ(i, 0, 0)F1e +

1
λ

∑H=1
m=0 Ξ(0, 0, m)F1e.

6. Cost Analysis

In order to calculate the total expected cost per unit time, we consider the following
cost components.

CC: Unit inventory carrying cost per unit time
CS: Setup cost per order
CB: Balking cost per customer per unit time
CP: Perishable cost per item per unit time
CR: Reneging cost per customer per unit time

Using the system performance measures from Section 5, the long-run expected system
cost rate is given by

TC(S, s, H) = CC ML + CS MRO + CB MB + CP MP + CR MR + CW MW

where ML, MRO, MP, MR, and MW are given in Section 5.

7. Numerical Illustration

This section presents some numerical experimentations that feature the convexity of
the total expected system cost rate. In particular, we show the calculability of the outcomes
inferred in our work and uncover the presence of local optima when the total cost function
is a bivariate function. It is difficult to show convexity as the computations of Ξ′s are
recursive. The arrival process is Erlang, and as an MAP, its parameters are given by (F0,
F1), with

F0 =



−1 1 0
0 −1 1
0 0 −1


 and F1 =




0 0 0
0 0 0
1 0 0




In Tables 1–3, each row has a value in bold, and each column has a value that is
underlined to represent the minima of the row and column, respectively. The value that is
bold and underlined is then the least cost rate of the inventory system. Therefore, we have
a (local) optimum for the related cost function of the table.

Table 1. Total expected cost rate interms of S and s.

S/s 8 9 10 11 12 13 14

30 3.2593 2.5439 2.1758 2.0335 2.0755 2.3231 2.8720

31 2.0682 1.5162 1.2608 1.1835 1.2480 1.4639 1.8954

32 1.4396 0.9747 0.8044 0.7869 0.8831 1.1048 1.5060

33 1.4966 0.9729 0.8102 0.8291 0.9707 1.2480 1.7235

34 2.6559 1.7741 1.4900 1.5060 1.7365 2.1750 2.8915
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Table 2. Total expected cost rate interms of s and H.

H/s 3 4 5 6 7

3 0.9623 0.9560 0.9772 1.1089 1.3626

4 0.8967 0.8933 0.9065 1.0349 1.2932

5 3.8915 3.7048 3.5771 3.5779 3.7260

6 6.6794 6.4398 6.2803 6.2629 6.3866

7 9.7410 9.5087 9.3401 9.2999 9.3926

Table 3. Total expected cost rate in terms of S and H.

S/H 6 7 8 9 10

9 32.0697 30.3781 32.8875 38.2844 44.1008

10 31.8089 29.1228 32.8407 37.5364 42.5232

11 29.5793 28.5009 33.1264 37.1302 41.1433

12 30.5683 28.1685 33.3080 36.8679 39.9816

13 31.3798 28.3862 33.4184 36.7971 39.1530

14 32.0893 28.6924 33.7491 36.6116 38.6069

15 32.6321 29.2989 34.2411 36.8371 38.0025

16 33.1071 29.8624 34.7161 37.2047 37.9498

17 33.5074 30.6399 35.2495 37.5077 37.8875

18 33.9234 31.3228 35.7665 37.9689 38.0269

Let H = 8, N = 5, β = 0.95, µ = 1.04, γ = 0.6, α = 0.35, λ = 0.8 and CC = 0.1, CS = 0.8,
CB = 0.07, CP = 0.05, CR = 0.1, CW = 0.1.

In Table 1, the values of TC(S,s,8) are shown.
The numerical example suggests that TC(S, s, 8) in (S, s) is convex and that the local

optimum occurs at (S, s) = (32, 11), as displayed in Table 1 and Figure 1.

Figure 1. Total expected cost rate of S and s.

Let S = 40, N = 2, β = 0.11, µ = 1, γ = 0.235, α = 0.59, λ = 0.93 and CC = 0.011,
CS = 0.001, CB = 0.03, CP = 0.01, CR = 0.4, CW = 0.05.

From Table 2, the numerical example suggests that TC(40,s,H) in (s,H) is convex and
that the local optimum occurs at (s,H) = (4,4).

Let s = 2, N = 2, β = 0.46, µ = 1.25, γ = 0.14, α = 0.1, λ = 0.24 and CC = 0.17,
CS = 0.005, CB = 0.97, CP = 0.03, CR = 0.08, CW = 0.06.

TC(S,2,H) values are displayed in Table 3.
The numerical example suggests that TC(S, 2, H) in (S, H) is convex and that the local

optimum occurs at (S, H) = (12, 7).
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Figure 2 grants the impact of the impatient customer rates(α), on the total expected
cost rate TC via five curves thatrelate to N = 2,3,4,5,6. The acquired values for the remaining
parameters and costs are displayed in the actual figure. Because ofFigure 2, we perceive that
the total cost value decreases when the customer requirements for service begin (i.e., N)
increases and the impatient customers’ rate(α) increases.

Figure 2. TC(32,11) vs. α, H = 8, β = 0.95, µ = 1.04, γ = 0.6, CC = 0.1, CS = 0.8, CB = 0.07, CP = 0.05,
CR = 0.1, CW = 0.1.

Figure 3 grants the impact of the impatience customer rates (α), on the total expected
cost rate TC via three curves thatrelate to µ = 2,3,4. Because ofFigure 3, we perceive that the
total cost value decreases when the service rate (µ) decreases, and the impatient customer
rate(α) increases.

Figure 3. TC(32,11) vs. α, H = 8; β = 0.95; N = 3; γ = 0.6; CC = 0.1; CS = 0.8; CB = 0.07; CP = 0.05;
CR = 0.1; CW = 0.1.

Figure 4 grants the impact of the service rates (µ) on the total expected cost rate TC
via four curves thatrelate to γ = 0.03,0.04,0.05,0.06. Because ofFigure 4, we perceive that
the total cost value increases when the service rate (µ) increases and the perishable rate
(γ) increases.

In Tables 4–9, we show the impact of the setup cost CS, the carrying cost CC, the
balking cost CB, the reneging cost CR, and the waiting time cost CW on the optimal values
(S∗, s∗) and the corresponding total expected cost rate TC∗. Towards this end, we first
fix the parameters and cost value as H = 8, N = 5, β = 0.95, µ = 1.04, γ = 0.6, α = 0.35,
λ = 0.8, and CP = 0.05.
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Figure 4. TC(32,11) vs. µ, H = 8; β = 0.95; N = 5; CC = 0.1; CS = 0.8; CB = 0.07; CP = 0.05; CR = 0.1;
CW = 0.1.

Table 4. Impact of CC and CS costs on the optimal value.

CC/CS 0.7 0.8 0.9 1.0 1.1

32 11 32 11 32 11 32 11 32 11

0.09 0.664642 0.698524 0.732406 0.766289 0.800171

32 11 32 11 32 11 32 11 32 11

0.10 0.694095 0.727977 0.761860 0.795742 0.829625

32 11 32 11 32 11 32 11 32 11

0.11 0.723549 0.757431 0.791313 0.825196 0.859078

32 11 32 11 32 11 32 11 32 11

0.12 0.753002 0.786885 0.820767 0.854649 0.888532

32 11 32 11 32 11 31 10 31 10

0.13 0.782456 0.816338 0.850221 0.884103 0.917985

Table 5. Impact of CW and CB costs on the optimal value.

CB/CW 0.09 0.10 0.11 0.12 0.13

32 11 32 11 32 11 32 11 32 11

0.07 0.719856 0.721000 0.722143 0.723287 0.724431

32 11 32 11 32 11 32 11 32 11

0.08 0.786885 0.788028 0.789172 0.790316 0.791460

32 11 32 11 32 11 32 11 32 11

0.09 0.853914 0.855057 0.856201 0.857345 0.858489

32 11 32 11 32 11 32 11 32 11

0.10 0.920942 0.922086 0.923230 0.924374 0.925518

32 12 32 12 32 12 33 12 33 12

0.11 0.980997 0.982192 0.983386 0.984581 0.985776

147



Mathematics 2021, 9, 1514

Table 6. Impact of CW and CR costs on the optimal value.

CW/CR 0.09 0.10 0.11 0.12 0.13

32 11 32 11 32 11 32 11 32 11

0.09 0.696894 0.719856 0.742817 0.765779 0.788741

32 11 32 11 32 11 32 11 32 11

0.10 0.763923 0.786885 0.809846 0.832808 0.855770

32 11 32 11 32 11 32 11 32 11

0.11 0.830952 0.853914 0.876875 0.899837 0.922799

32 12 32 11 32 11 32 11 32 11

0.12 0.897962 0.920942 0.943904 0.966866 0.989828

32 12 32 12 32 12 32 12 33 12

0.13 0.956834 0.980997 1.005160 1.029322 1.053485

Table 7. Impact of CW and CS costs on the optimal value.

CW/CS 0.7 0.8 0.9 1.0 1.1

32 11 32 11 32 11 32 11 32 11

0.09 0.685973 0.719856 0.753738 0.787620 0.821503

32 11 32 11 32 11 32 11 32 11

0.10 0.753002 0.786885 0.820767 0.854649 0.888532

32 11 32 11 32 11 32 11 32 11

0.11 0.820031 0.853914 0.887796 0.921678 0.955561

32 11 32 11 32 11 32 11 32 11

0.12 0.885104 0.920942 0.954825 0.988707 1.022590

33 11 33 11 33 11 33 11 33 11

0.13 0.943977 0.980997 1.018017 1.055037 1.089619

Table 8. Impact of CW and CC costs on the optimal value.

CW/CC 0.09 0.10 0.11 0.12 0.13

32 11 32 11 32 11 32 11 32 11

0.09 0.631495 0.660949 0.690402 0.719856 0.749309

32 11 32 11 32 11 32 11 32 11

0.10 0.698524 0.727977 0.757431 0.786885 0.816338

32 11 32 11 32 11 32 11 32 11

0.11 0.765553 0.795006 0.824460 0.853914 0.883367

32 11 32 11 32 11 32 11 32 11

0.12 0.832582 0.862035 0.891489 0.920942 0.946720

31 11 31 11 31 11 31 10 31 10

0.13 0.899611 0.929064 0.956402 0.980997 1.005592
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Table 9. Impact of CS and CR costs on the optimal value.

CS/CR 0.09 0.10 0.11 0.12 0.13

32 11 32 11 32 11 32 11 32 11

0.7 0.730040 0.753002 0.775964 0.798926 0.821888

32 11 32 11 32 11 32 11 32 11

0.8 0.763923 0.786885 0.809846 0.832808 0.855770

32 11 32 11 32 11 32 11 32 11

0.9 0.797805 0.820767 0.843729 0.866691 0.889652

32 11 32 11 32 11 32 11 32 11

1.0 0.831688 0.854649 0.877611 0.900573 0.923535

32 11 32 11 32 11 31 11 31 11

1.1 0.865570 0.888532 0.911493 0.934455 0.957417

From Tables 4–9, we observe the below monotonic behavior of (S∗, s∗):

• The total expected cost rate increases when each of the setup cost CS, the carrying cost
CC, the balking cost CB, the reneging cost CR, and the waiting time cost CW increase.

• As is to be expected, (S∗, s∗) monotonically increase when CW increases.
• (S∗, s∗) monotonically decrease when CC and CS increase.
• (S∗, s∗) monotonically increase when CC and CW increase.
• S∗ increases with CB and CW increasing.

8. Conclusions

In this paper, we proposed a perishable inventory system model in which the demands
arrive according to a MAP and the replenishment process is negatively exponential. The
server provides service at least N number of customers in the system(i.e., N-policy). We
investigated the effect of the N-policy on the arriving customers to the inventory system.
The joint distribution is derived in the steady-state, and we analyzed some measures of
system performance and obtained the total expected cost rate in the steady-state. Addi-
tionally, we presented the numerical illustration that describes the impact of impatient
customers caused by the N-policy on the inventory system’s total expected cost rate. From
the sensitive analysis, we can see that the total expected cost value diminishes because
of the impatient customer rate. The total expected cost value seriously diminishes when
the customer requirements for service begin(i.e., N) with rate increments. The service rate
building also did not assist with decreases in the effect on the total expected cost rate.
Additionally, the total expected cost value decreases due to the customer loss cost by the
impatient customer rate, which is greater than the total expected cost value decrease due to
other cost and rate values. From these perceptions, we stated that the impatient customers
due to N-policy have an enormous impact on the total expected cost of the system. Future
work can investigate the way to reduce the increasing of impatient customers caused by
the N-policy server in the inventory system by adding other concepts like vacation policy
with the N-policy server.
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Abstract: Bio-inspired computing is an engaging area of artificial intelligence which studies how natural
phenomena provide a rich source of inspiration in the design of smart procedures able to become
powerful algorithms. Many of these procedures have been successfully used in classification, prediction,
and optimization problems. Swarm intelligence methods are a kind of bio-inspired algorithm that have
been shown to be impressive optimization solvers for a long time. However, for these algorithms to
reach their maximum performance, the proper setting of the initial parameters by an expert user is
required. This task is extremely comprehensive and it must be done in a previous phase of the search
process. Different online methods have been developed to support swarm intelligence techniques,
however, this issue remains an open challenge. In this paper, we propose a hybrid approach that allows
adjusting the parameters based on a state deducted by the swarm intelligence algorithm. The state
deduction is determined by the classification of a chain of observations using the hidden Markov model.
The results show that our proposal exhibits good performance compared to the original version.

Keywords: swarm intelligence method; parameter control; adaptive technique; hidden Markov model

1. Introduction

Swarm intelligence methods have attracted the attention of the scientific community in
recent decades due to their impressive ability to adapt their methodology to complex prob-
lems [1]. These procedures are defined as bio-inspired computational processes observed
in nature because they mimic the collective behavior of individuals when interacting in
their environments [2]. Many of these procedures have become popular methods, such as
genetic algorithms, differential evolution, ant colony system, particle swarm optimization,
among several others, and they are still at the top of the main research in the optimization
field [3]. Swarm intelligence methods work as a smart-flow using acquired knowledge
in the iterative way to find near-optimal solutions [4]. The evolutionary strategy of these
techniques mainly depends on the initial parameter configuration which is dramatically
relevant for the efficient exploration of the search space, and therefore to the effective
finding of high-quality solutions [5].

Finding the best value for a parameter is known as offline parameter setting, and it is
done before executing the algorithm. This issue is treated even as an optimization problem
in itself. On the other hand, the “online” parameters control is presented as a smart
variation of the original version of the algorithm where the normal process is modified by
new internal stimulants. Furthermore, according to the No Free Lunch theorem [6], there is
no general optimal algorithm parameter setting. It is not obvious to define a priori which
parameter setting should be used. The optimal values for the parameters mainly depend
on the problem and even the instance to deal with and within the search time that the user
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wants to spend solving the problem. A universally optimal parameter value set for a given
bio-inspired approximate method does not exist [7].

Using external techniques of the autonomous configuration, the swarm intelligence
algorithms are able to adapt their internal processes during the run, based on performance
metrics in order to be more efficient [8]. In this way, the user does not require any expert
knowledge for reaching efficient solving processes. The adaptation process can be handled
under two schemes: offline parameter tuning and online parameter control. In the online
control, the parameters are handled and updated during the run of the algorithm, whereas
in the offline parameter initialization, the values of different parameters are fixed before
the run of the algorithm [6].

In this work, we tackle the online parameter definition problem with an autonomous
search concept. This approach focuses on the algorithm parameters adjustment while the
search process is performed as guided by the information obtained from the relation be-
tween the position of the solutions in the search space. This procedure allows the algorithm
to change its functioning during the run, adapting to the particular conditions of the region
discovered [9]. The main contribution of this work is to provide a bio-optimization solver
with the ability to self-regulate their internal operation, without requiring advanced knowl-
edge to efficiently calibrate the solving process. We propose a hybrid schema applying
hidden Markov models to recompute the parameter values into a super-swarm optimiza-
tion method. Hidden Markov models classify a chain of visible observations corresponding
to the relationship between the distance of solutions given by the bio-inspired optimization
algorithm. Recognizing when solutions are close to each other is a capability which is
not part of all optimization algorithms. An external strategy that satisfies this problem is
always valued for its potential use in complex engineering problems.

As a solver technique, we employ the popular particle swarm optimization (PSO) tech-
nique. The decision to use the PSO was based on two assumptions: (a) many bio-inspired
methods that use the paradigm to generate solutions by updating velocity and position can be
improved under this proposal; and (b) PSO is one of the most popular optimizer algorithms,
so there is extensive literature that reports its excellent efficiency [10].

To evaluate this proposal, we solve a well-known optimization problem: the set
covering problem. We treat a set of the hardest instances taken from the OR-Library [11]
in order to demonstrate that the improved behavior of the particle swarm optimization
exhibits a better yield than its original version and bio-inspired approximate methods of
the state of the art.

The manuscript continues as follows: Section 2 presents a bibliographic search for related
work in the field. The results of this search justify the proposal of this work; Section 3 explains
offline and online parameter adjustment showing their differences; Section 4 describes the
developed solution and the concepts used; Section 5 details the experimental setup, while
Section 6 presents and discusses the main results obtained; finally, conclusions and future
work are outlined in Section 7.

2. Related Work

Recent works show that swarm intelligence methods remain favorites in the optimiza-
tion field [12–16], and their popularity has led them to be used in different application
domains, such as resource planning, telecommunications, financial analysis, scheduling,
space planning, energy distribution, molecular engineering, logistics, signal classification,
and manufacturing, among others [17].

In [18], a recent survey on a new generation of nature-based optimization methods
is detailed. This study presents metaheuristics as efficient solvers able to solve mod-
ern engineering problems in reduced time. Nevertheless, and despite this quality, these
techniques present some complications inherent to the phenomenon that defines them.
Among them, we find the adjustment and control of their input parameters that directly
impact the exploration process of the search space [3,19]. This task is generally done when
an external parameter is overcome by a non-deterministic move operator. The exploration
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phase operates with a set of agents that attempt to escape from local optima [20–22]. In this
context, the autonomous search paradigm [23] describes how to empower metaheuristics
to adjust its parameters during the resolution process, reacting to the information obtained.
This technique accelerates the convergence of the algorithm, reducing the operational cost,
and providing robustness to the process, making it react to the problem that is being solved.

By focusing on online parameter setting in optimization algorithms, we can find [24].
Here, the authors provide a perspective (from 30 years) explaining that an automatic tuning
allows adapting the parameter values depending on the instance and the evolution of the
algorithm. One of the first attempts using a controlled parameter variation in the particle
swarm optimizer was proposed in [25]. A linear decreasing function was used for the
inertia coefficient parameter w, with a start value of ws = 0.9 and a final value of w f = 0.4,
testing this configuration for well-known benchmark functions. In [26], the parameter
adjustment tries to make a transition between exploration and exploitation states, linearly
decreasing and increasing the personal and social coefficients, respectively. In [27], an ideal
velocity for the particles is defined, and the value of ω is updated to adjust the current
average velocity to a value closer to the ideal. In [28,29], hybrid approaches to the PSO
algorithm were developed. The first one includes a two-fold adaptive learning strategy
to guarantee the exploration and exploitation phases of the algorithm. The second one
proposes a learning strategy using a quasi-entropy index when local search works.

Related works that adjust the parameters of the PSO algorithm based on the fitness
obtained along the iterations have been discussed. For example, in [30], two values that
describe the state of the algorithm are defined: the evolutionary speed factor and the
aggregation degree. Both values are used to update the ω values for each particle. In [31],
the inertial and best solution acceleration coefficients are adjusted for each particle based on
the relation between the current particle’s fitness and the global best fitness. In [32], authors
related the value of ω with the convergence factor and the diffusion factor to dynamically
set its value. In [33], the value of ω for each particle in the swarm is computed based on
the ratio of the personal best fitness value with the personal best fitness average, for all
particles. In [34], the value of ω is calculated from the relation to fitness-based ranking
for each particle and the problem dimension number. In [35], the value of ω is updated
to accelerate the PSO convergence. In [36], a success rate for the PSO is defined based on
the proportion of particles that improved their personal best position at iteration t. This
method aims to increase the value of w when the proportion of particles that improved
their personal best is high and decrease it otherwise. In [37], the inertial coefficient w
is increased for the best particle and decreased for all others, based on the idea that the
best particle is more confident on the direction of its movement. The inertial coefficient
decreases linearly for the rest of particles.

Taking into account the fitness, but considering the relationship between the position of
the particles in relation to the best, efforts have been made to adjust the value of the parame-
ters. In [38], acceleration and inertial parameters are adjusted according to state deduction
using a fuzzy classification system. The state classification depends on the calculation of the
evolutionary factor. In [39], inertia weight and acceleration coefficients are adjusted using
the gray relational analysis, proposed by [40], using the relation of the particle compared to
the global best.

In recent years, the hybridization of metaheuristics with supervised and unsupervised
methods has emerged as a promising field in approximation algorithms. In 2017, the term
“Learnheuristic” was introduced in [41] to address the integration between metaheuristics
and machine learning algorithms, and they provide a survey of the closest papers. In this
research, a simple but robust idea is proposed. There are two work-groups: machine
learning algorithms to enhance metaheuristics and metaheuristics to improve machine
learning techniques. For the first group, is it possible to find (i) metaheuristics for improving
clustering methods using the artificial bee colony algorithm [42], local search [43], particle
swarm optimization [44] and ensemble-based metaheuristics [45]; (ii) metaheuristics to
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efficiently address the feature selection topic [46]; and (iii) metaheuristics for improving
classification algorithms [47–49].

Recently, machine learning methods have also been used for the parameter control
issue. An example of auto-tuning in a deep learning technique can be seen in [50]. Here, the
authors provide an improvement to support and store a large number of parameters required
by deep learning algorithms. Now, considering improvements that include machine learning
in optimization algorithms, we can find in [51] that the PSOs parameters are adjusted by
using an agent that chooses actions from a set in a probabilistic way, then measures the
results and sends a reinforcement signal. In [52], a decision tree was used to perform the
tuning of parameters. Hop-field neural networks were used in [53] to initiate solutions of a
genetic algorithm applied to the economic dispatch problem. A mechanism for identifying
and escaping from extreme points is punished in [54]. Here, the whale swarm algorithm
includes new procedures to iteratively discard the attenuation coefficient and it enables
the identification of extreme points during the run. An integration between the Gaussian
mutation and an improved learning strategy were also proposed to boost a population-based
method in [55]. New interactions between machine learning and optimization methods have
recently been published in [56–58]. Moreover, improved machine learning techniques have
been used for action recognition from collaborative learning networks [59], for the automatic
recognition and classification of ECG and EEG signals [60–62], for complex processing on
images [63], for health monitoring systems using IoT-based techniques [64], and several others
works. In [65], a support vector machine is employed as a novel methodology to compute
the genetic algorithm’s fitness. A similar work can be seen in [66]. Clustering techniques
were studied for the exploration of the search space [67] and for dynamic binarization
strategies on combinatorial problems [68]. In [69], case-based reasoning techniques were
investigated to the identify sub-spaces of searches to solve a combinatorial problem. In [70],
an incremental learning technique was applied to constrained optimization problems. Finally,
in [71], an alternative mechanism for the incorporation of negative learning on the ant colony
optimization is proposed.

Finally, a few works explore the integration of hidden Markov models and optimiza-
tion algorithms. In [72,73], a population-based method is proposed to train hidden Markov
models. Another work which uses a bio-solver to optimize a hidden Markov model is
presented in [74]. On the other hand, recent studies have studied how hidden Markov mod-
els improve the optimization algorithms. In [75], authors studied the relation of particle
distances to determine the state of the particle swarm optimizer. The states were inspired
by [38,76]. Parameters are updated according to the determined state. Similar work can be
seen in [75,77,78].

3. Preliminaries

Parameter setting is known as a strategy for providing larger flexibility and robustness
to the bio-inspired techniques, but requires an extremely careful initialization [7,19]. Indeed,
the parameters of these procedures influence the efficiency and effectiveness of the search
process [79]. To define a priori which parameter setting should be used is not an easy-task.
The optimal values for the parameters mainly depend on the problem and even the instance
to deal with and the search time within which the user wants to solve the problem.

This strategy is divided into two key approaches: the offline parameter tuning and
the online parameter control (see Figure 1).

The adaptation process is called online when the performance information is obtained
during solving, while the process is considered offline when a set of training instances is
employed to gather the feedback [80]. The goal of parameter tuning is to obtain parameter
values that could be useful over a wide range of problems. Such results require a large
number of experimental evaluations and are generally based on empirical observations.
Parameter control is divided into three branches according to the degree of autonomy of the
strategies. Control is deterministic when parameters are changed according to a previously
established schedule, adaptive when parameters are modified according to rules that take
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into account the state of the search, and self-adaptive when parameters are encoded into
individuals in order to evolve conjointly with the other variables of the problem.

Parameter
Setting

Parameter
Tuning

Parameter
Control

Deterministic Adaptive Self-Adaptive

During the runBefore the run

Figure 1. Scheme of the parameter adaptation process in bio-inspired methods.

The offline approaches require a high computational cost [19,81]. This cost increases
when we use the offline approach for solving each input instance of a problem. Indeed, the
optimal parameter values depend on the instances of the problem to be addressed. Fur-
thermore, according to the No Free Lunch theorem, there is no generic optimal parameter
setting. A universally optimal parameter value set for a given bio-inspired approximate
method does not exist [6,82].

The great advantage of the online approach against the offline approach is that the
effectiveness of the parameter control may change during the search process. That is, at
different moments of the search, different optimal values are found for a given parameter.
Hence, online approaches that change the parameter values during the search must be
designed. Online approaches may be classified as follows [6]:

• Dynamic update: A random or deterministic updates the parameter value. This opera-
tion is performed without taking into account the search progress.

• Adaptive update: In this approach, parameter values evolve during the search progress.
To change the parameter values, a function that mimics the behavior of the phenomenon
is performed. For that, the memory of the search is mainly used. Hence, the parameters
are associated with the representation and these are subject to updates in function of the
problem’s solution.

Online control is only recent but also interesting and challenging as the feedback is
uniquely gathered during solving time with no prior knowledge from training phases and
no user experts.

4. Developed Solution

Swarm intelligence methods have been developed for almost 30 years. The term
swarm intelligence was coined in 1993 [83] and since its appearance, it has become a
popular optimization method [84]. The distributed structure presents possible advantages
over centralized methods, such as the simplicity of the search agents, the robustness
provided by the redundancy of components, and the ability to escape local optimums [6].
This type of structure is typical in many biological systems, such as insect colonies, flocks
of birds, and schools of fish. The synergy between the swarm members provides each of
them with advantages that they could not achieve on their own, such as protection against
predators and a more reliable supply of food [14,85].

Particle swarm optimization is a most popular population-based bio-inspired algo-
rithm [86,87]. This method intelligently mimics the collaborative behavior of individuals
or “particles” through two essential components: the position and the velocity. A set of
particles (candidate solutions) forms the swarm that evolves during several iterations.
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This procedure describes a powerful optimization method [88]. The technique operates by
altering velocity through the search space and then updates its position according to its
own experience and neighboring particles.

Particle swarm optimization can be identified as an intelligent system with two phases:
(a) when the algorithm reaches large velocities in the initial phase, the current solutions
focus more on diversification; (b) as velocities tend towards zero, the current solution
focuses on intensification. The best reached solutions are memorized as pBest. The standard
particle swarm optimization is governed by the movement of particles through two vectors:
the velocity Vi = 〈v1

i , v2
i , . . . , vD

i 〉 and the position Xi = 〈x1
i , x2

i , . . . , xD
i 〉. First, the particles

are randomly positioned in a D-dimensional heuristic space with random velocity values.
During the evolution process, each particle updates its velocity via Equation (1) and
position through Equation (2):

vd
i = ωvd

i + c1φd
1(pBestd

i − xd
i ) + c2φd

2(gBestd − xd
i ) (1)

xd
i = xd

i + vd
i (2)

where d = {1, 2, . . . , D} represents the size of the problem; the positive constants ω, c1,
and c2 are acceleration coefficients; φ1 and φ2 are two uniformly distributed random
numbers in the range [0, 1]; pBesti is the best position reached by ith particle; and gBest is
the global best position found by all particles during the resolution process.

4.1. Evolutionary Factor f

Diversity measures explain the distribution of a set of particles in the search space [89].
In this sense, ref. [38] proposes a measure derived from the distances between the PSO
particles, known as the evolutionary factor f . This factor is computed in Equation (3):

f =
dp − dw

dg − dw
∈ [0, 1] (3)

where dp represents the pBest fitness (position) reached by a particle until that moment.
The dw and dg values describe the worst and gBest distance of the swarm, respectively.

Figure 2 shows the relationship between the position of the PSO particles and the
state in which they will be classified: sub-figure (a) depicts the exploration state, where the
particles are far away from each other; sub-figure (b) shows an exploitation/convergence
state, where the particles are close to each other and the best particle appears in the center
of the group; sub-figure (c) illustrates the jumping-out state, where the particles are close to
each other, but the best particle has found a better zone and appears far from the others. To
compute the difference among distances, the average of all distances davg is also required.

dg
davgexploration

exploitation
convergence exploration

jump-out

(a)

(b)
(a)

(c)

Figure 2. Example of PSO particle distribution: (a) dg ≈ davg exploration; (b) dg � davg exploitation,
convergence; and (c) dg � davg jump out.
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4.2. Markov Models

This section defines the hidden Markov model used in this paper to identify the state
(or inner-phase) of the PSO. For that, we detail how the states of a PSO can be modeled as
a Markov chain, allowing the state to be inferred from the evolutionary factor calculated
for the particle swarm optimizer.

4.2.1. Markov Chains

The Markov chain is a statistical model that defines the probability of transition
from one state to another within a finite set of states. The Markov chain assumes that
the transition to the next state only depends on the current state, regardless of previous
states [90].

The states within a Markov chain are finite and the transitions between states are
defined according to a probability. This probability must add up to 1, indicating all probable
states that can be reached from the current state. Figure 3 shows a typical Markov chain.

State A State B

State C State D

0.3

0.2 0.5 1.01.0

0.4 0.6

Figure 3. Markov chain. The arcs connecting the nodes/states indicate the transition probability
between states.

For this Markov chain, we observe four states: A, B, C, and D. Arrows indicate
which state can be accessed from a particular state and the number next to it indicates the
probability that the transition occurs. These probabilities can be studied as a square matrix
where the transition probability for all states is represented. The transition matrix M in the
example above is defined as

M =




0 0.3 0.2 0.5
0 0 0 1
1 0 0 0
0 0 0.4 0.6




4.2.2. Hidden Markov Model

The hidden Markov model (HMM) is a framework that allows, through the observa-
tion of some visible state, to deduce elements of the Markov chain that are not directly
visible, i.e., hidden [91,92]. The transition between states is assumed to be in the form of a
Markov chain. The Markov chain can be defined by an initial probability vector π and a
transition matrix A. Observable elements O are emitted according to some distribution in
each hidden state, and they are noted in the emission matrix B.

There are three main tasks that an HMM solves:

1. Decoding.Given the parameters A, π, B, and the observed data O, estimate the
optimal sequence of hidden states Q;

2. Likelihood. Given an HMM λ = (A, B) and a sequence of observations O, determine
the probability that those observations belong to the HMM, P(O|λ);
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3. Learning. Given a sequence of observations O and a set of states in the HMM, we
learn its parameters A and B.

In our work, the decoding task will be used to determine the hidden state given
a group of observations, obtained from a discretization of the evolutionary factor. The
learning task will be used in each iteration to learn the value of the B emission matrix,
specifically.

4.3. HMM-PSO Integration

In [38], four inner-phases (or states) through which PSO moves are defined: explo-
ration, exploitation, convergence, and jumping-out. A previous work describes these states
as a Markov chain [93] (detailed in Figure 4). This chain corresponds to the hidden chain
that will be deduced using decoding and learning tasks.

S-Ph1 S-Ph2

S-Ph3S-Ph4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Figure 4. Evolutionary states defined for the Adaptive PSO algorithm: S-Ph{1,2,3,4} represent Explo-
ration, Exploitation, Convergence, and Jump-out, respectively.

The HMM receives three input parameters: the first one is an initial probability vector
π that computes a deterministic start in the exploration state: π = [1, 0, 0, 0]. The second
parameter corresponds to the transition matrix between states A. As shown in figure, it is
only possible to stay in the current state or to advance to the next state from left to right.
As an initial value, all transitions have a probability of 0.5. The matrix A is defined as

A =




0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5

0.5 0 0 0.5




The type of hidden Markov model used in this work obtains its classifications from a
group of observations belonging to a discrete alphabet. Therefore, we apply a discretization
process to the evolutionary factor f of each inner-phase of the PSO. The discretization
process used in this work is defined in [75] and corresponds to identifying the interval
in which the calculated evolutionary factor belongs. The seven defined intervals are:
([0, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 1]).
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The emission matrix B is the third parameter of the model. This matrix corresponds
to the probability with which the elements of the alphabet of observations are emitted for
each state. The emission matrix that we use in this work is defined in [75,94], and it is
detailed as follows:

B =




0 0 0 0.5 0.25 0.25 0
0 0.25 0.25 0.5 0 0 0

2/3 1/3 0 0 0 0 0
0 0 0 0 0 1/3 2/3




The parameters π, A and B completely define the hmm model. Once defined, the
model is capable of deducing hidden states—exploration, exploitation, convergence, jump-
ing out—from the discretization of a chain of observations—evolutionary factor f —using
the Viterbi algorithm. At each iteration, it is possible to adjust the parameters of the hmm
model using task 2 with Baum–Welch’s algorithm. For more details about the operation of
both algorithms, please refer to [95].

5. Experimental Setup

In this section, we detail the proposal of integration of HMM in PSO, for the determi-
nation of the state and control of the parameters. This hybridization was tested on the set
covering problem, which is a classic combinatorial optimization problem. One of the first
works was proposed in [96], and it defines the Equation (4) as the formulation for the set
covering problem:

minimize
n

∑
j=1

cjxj

subject to:
n

∑
j=1

aijxj ≥ 1 ∀ i ∈ M

xj ∈ {0, 1} ∀ j ∈ N

(4)

where cj represents positive constants of the cost vector, and aij details binary values of
the constraint matrix with M-rows and N-columns. If column j covers a row i, then xj = 1.
Otherwise, xj = 0. We take the hardest instances of the set covering problem from the
OR-Library [11].

To have an overview of the components involved in the search process, state identifi-
cation and parameter control, Figures 5 and 6 show the flowchart of the algorithms.

Based on experimental analysis, the parameters are adjusted according to Table 1.
Table 2 shows the initial parameter settings for the original PSO algorithm and our version.
The initial values for the original PSO are the same as those used by the author. The initial
values for the ω and np parameters on the hidden Markov model supporting the PSO
algorithm (HPSO) come from [97].
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Init

Init N level 1 PSO
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No

Any PSO
left in list?
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Parameter optimization
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1
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Figure 5. PSO algorithm state deduction integration.
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Figure 6. State deduction and parameter adjustment for PSO.
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Table 1. Parameters update by identified state.

State Inertial Velocity Number of Particles
(Inner-Phase) w np

Exploration ω = ωmin + (ωmax −ωmin) · Rand(0, 1) np− 1
Exploitation ω = 1

1+ 3
2 exp−2.6 f np + 1

Convergence ω = ωmin np + 1
Jump out ω = ωmax np− 1

Table 2. Initial configuration for input parameter values.

Orginal PSO Parameters Proposed HPSO Parameters

Parameter Value Parameter Value

ω 1− k
L+1

ωmin 0.4
ωmax 0.9

npmin 5 npmax 30
npmax 50 npmax 30

c1 2.05 rand(0, 1) c1 2.05 rand(0, 1)
c2 2.05 rand(0, 1) c2 2.05 rand(0, 1)

iter. num. 50 iter. num. 50
iter. num. 250 iter. num. 250

6. Results and Discussion

In this section, we evaluated the functioning of our proposed HPSO. We compared our
proposal against the original PSO. Then, we present a statistical comparison of the results
obtained, and we illustrate the convergence of the search process and the percentages of
exploration and exploitation.

Before integrating the adaptive approach, we analyzed the temporal complexity of
the original PSO algorithm to evaluate that our proposal does not impact its performance.
If we study each statement and expression, including control flows from the particle swarm
optimization algorithm, we can state that time complexity is given by (T× np× n), where
T represents the maximum number of iterations, np stores is the number of particles (or
solutions), and n is the dimension of each particle. In the worst case, the basic algorithm is
upper bounded by O(kn2).

Then, performing a temporal analysis about our adaptive approach, we state that the
temporal complexity of PSO is not altered. If we consider that: (a) this procedure operates
in a determinate number of iterations (see Table 2); (b) it works with the same solutions;
and (c) it runs in a way that is independent from the main algorithm, we can affirm that
the upper bound is given by (np× n), which again, has an upper bound equal to O(kn2).

6.1. Original PSO Comparison

Table 3 shows the results obtained by our proposal and the original PSO in 11 hard
instances of the set covering problem [68]. Each instance was executed 31 times and each
run iterated 1000 cycles. These runs allow us to analyze the independence of the sam-
ples by determining the Zbest. The comparative includes the relative percentage distance
(RPD). This value quantifies the deviation of the objective value Zbest from Zopt, which is
the minimal best-known value for each instance in our experiment, and it is computed
as follows:

RDP =

(
Zbest − Zopt

Zopt

)
(5)

Results show that the difference between both algorithms increases as the instance
of the problem grows. The best results are highlighted with underline and maroon color.
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For example, in the scp41, the best reached solution by HPSO overcomes than the classical
PSO algorithm. The same strategy is used in all comparisons.

Table 3. Comparison of results between PSO and HPSO.

Instance Optimum Best HPSO Best PSO Avg. HPSO Avg. PSO RPD HPSO RPD PSO

scp41 429 429 430 429.81 432.419 0 0.233
scp51 253 253 255 253.68 260.71 0 0.791
scp61 138 138 140 138.19 140.871 0 1.449
scpa1 253 253 256 254.32 258.097 0.395 1.186
scpb1 69 69 71 69 91.129 0 2.899
scpc1 227 227 234 228.36 238.258 0 3.084
scpd1 60 60 79 60.13 123.323 0 31.667

scpnre1 29 29 85 29 106.871 0 193.103
scpnrf1 14 14 39 14 49.29 0 178.571
scpnrg1 176 176 348 178.17 480.839 0.568 97.727
scpnrh1 63 65 277 65.25 349.452 1.587 339.683

Using the Wilcoxon–Mann–Whitney rank sum statistical test, we compare the results
obtained by our proposal against the original PSO algorithm. It is valid to use this test
because all runs are independent from each other and the results do not follow a normal
distribution, since they are affected by pseudo-random numbers. Thirty-one samples of the
obtained best fitness for 11 different instances of the set covering problem are compared.
The test gives an p-value lower than 0.05 if it is possible to determine that one sample has
statistically lower values than the other, and a value higher than 0.05 if not. Table 4 shows
the comparison between the two algorithms.

Table 4. Statistical comparison.

Instance HPSO < PSO PSO < HPSO

scp41 0.728 0.277
scp51 0.002 0.998
scp61 0.000 1.000
scpa1 0.000 1.000
scpb1 0.000 1.000
scpc1 0.000 1.000
scpd1 0.000 1.000

scpnre1 0.000 1.000
scpnrf1 0.000 1.000
scpnrg1 0.000 1.000
scpnrh1 0.000 1.000

We can see that it was not possible to determine a statistical difference only for
instance scp41, while for the other instances, the hypothesis that our algorithm improved
the resolution process is confirmed.

6.2. Exploration/Exploitation Balance

In swarm intelligence methods, the population diversity is a measurement which
evidences the performance of an algorithm, through the distribution of generated solu-
tions [98,99]. This principle is significantly important to analyze the behavior of each
solution in a swarm as well as the swarm as a whole. A recent work proposes a model
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based on the dimension-wise measurement to study the yield of algorithms [100]. The
formulations that calculate this metric are defined in Equations (6) and (7):

Div(j) =
1

np

np

∑
i=1
|mean(xj)− xj

i | (6)

Div =
1
D

D

∑
d=1

Div(d) (7)

where Div(j) describes the computed dimensional Hussain diversity over a solution xj,
mean(xj) represents the mean over each dimension j, np stores the number of solutions
(population size). Finally, D saves the dimension size. After taking the dimension-wise
distance of each swarm-individual i from the mean of the dimension j, we compute the
average Div(j) for all the individuals. Then, the average diversity of all dimensions is
calculated in Div.

Using this fundamental, in [101], a model is proposed that allows to compute the
evolution of the exploration and the exploitation effects obtained by the two algorithms,
in each instance through all iterations. Resulting values represent percentages of explo-
ration and exploitation on the population at iteration t. To calculate the exploration (XPL)
balance, Equation (8) is applied, and to obtain the exploitation (XPLT) impacts, Equation (9)
is employed:

XPL% =

(
Div

Divmax

)
× 100 (8)

XPLT% =

( |Div− Divmax|
Divmax

)
× 100 (9)

For both equations, Div and Divmax represent the measures of diversity (distance)
calculated over the population. Div represents the diversity of the full set of search agents
through the aggregation of the diversity of each agent. However, Divmax represents the
maximum value of diversity found. As can be intuited, the measurement of the percentage
of exploration and exploitation varies depending on the measure of diversity used.

Figures 7 and 8 show the behavior of both algorithms. There are peaks, very noticeable
in the original version and softer in our version. These peaks represent the change between
inner-phases (the exploration and the exploitation processes).

6.3. Convergence Curves

We show plots for the convergence of the algorithms, PSO and HPSO, solving the set
covering problem. Both algorithms reach a promising zone in the search space early on its
execution. Convergence for both algorithms is very similar. Figures 9 and 10 shows the
convergence achieved by both algorithms for their best execution on the instances scp41,
scpa1, scpnre1, and scpnrh1.

6.4. Results Discussion

For the evaluation of the autonomous search method proposed, we used different
measures that allowed us to evaluate the performance: a statistical comparison of the
results of our algorithm against the original PSO, the variation of the evolutionary factor
during the execution, the variation of the internal parameters of our algorithm, and the
percentage of exploration and exploitation obtained in the search using the dimensional
Hussain diversity measure.
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Figure 7. Exploration and exploitation percentage for original PSO. For small instances (scp41 and scpa1), the algorithm
shows an exploitative behavior, for bigger instances (scpnre1 and scpnrh1), the algorithm shows an exploitative behavior.
We can observe the transition between inner-phases at iterations 50, 300, and 600.
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Figure 8. Exploration and exploitation percentage for HPSO. The algorithm shows a mostly exploitative behavior for small
and big instances.
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The statistical comparison of the results was conducted to determine whether there is
an improvement to the original algorithm. Statistical tests confirm that there is a statistically
distinguishable improvement when comparing the results of HPSO and PSO solving the
combinatorial problem, for all tested instances.

The value of the evolutionary factor f shows a tendency to remain low, interrupted
by sudden rises. Low values of f indicate that the PSO particles are close to each other
and that the algorithm is converging. The higher value indicates that a particle found a
solution with a better fit in an area far away from the group, which indicates that the PSO
was able to avoid a local optimum.

The variation of the internal parameters shows an upward trend for the number of
particles, and as the search progresses, new particles participate in the search. On the
other hand, the inertia coefficient varies abruptly, going from the minimum value to the
maximum value in a few iterations. This behavior did not affect the quality of the solutions;
however, such an abrupt variation does not generate a recognizable pattern and the ω
adjustment method must be reviewed.

The percentage of exploration and exploitation obtained shows that the algorithm
maintains a mostly intensifying behavior, demonstrating that a promising area was found
during the first iterations, maintaining the trend throughout the search. The transition
between exploration and exploitation is more noticeable in smaller instances, which is
explained by a smaller size of the search space. In general, the exploration and exploitation
graphs show an efficient search.
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Figure 9. Convergence of PSO: The algorithm shows a premature convergence, with very few improvements after the first
50 iterations.
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Figure 10. Convergence of HPSO. The algorithm shows improvements until approximately iteration 150, which represents
50% of the total iterations.

7. Conclusions and Future Work

In this work, we presented an autonomous search method for the PSO algorithm. This
work was performed by hidden Markov models, which allow for the state identification
of a PSO while the search process is running. The identification allows us to adjust PSO
parameters based on a state deducted by the HMM. The deduction was made from the
calculation of the evolutionary factor f metric, which gives information about the disposition
of the particles inside PSO.

Different combinations of parameters to be adjusted for the PSO algorithm were
evaluated, experimenting on a set of instances of the set covering problem and measuring
the results. This experimentation showed that the combination of parameters w and
np generates the best results. Then, the algorithm was compared against the original
version of PSO without parameter control. The comparison of results was made using the
Wilcoxom–Mann–Whitney statistical test, with the aim of testing the hypotheses posed
for this work. The hypothesis was assumed and the parameter control shows a statistical
difference in the quality of the solutions obtained. Moreover, we present figures that show
the exploration and exploitation balance obtained by our proposal. If it is possible observe
that the exploitation percentage increases compared to the original PSO. This behavior
indicates that the HPSO was able to find better regions in the heuristic space, intensifying
the search in those areas.

Future works consider verifying the impact on the classification of states when making
changes to the transfer and binary functions in 0/1 optimization problems [102]. The
discretizations made to the evolutionary factor f can also be adjusted, which will change
the input data for the HMM model and its deductions. Finally, the PSO algorithm can
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be viewed as a framework for population-based metaheuristics, therefore testing with a
different base algorithm is considered.
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Abstract: The main stages of printed circuit board (PCB) manufacturing are the design, fabrication,
assembly, and testing. This paper focuses on the scheduling of the pressing process, which is a
part of the fabrication process of a multi-layer PCB and is a new application since it has never been
investigated in the literature. A novel mixed-integer linear programming (MILP) formulation for
short-term scheduling of the pressing process is presented. The objective function is to minimize
the makespan of the overall process. Moreover, a three-phase-PCB-pressing heuristic (3P-PCB-PH)
for short-term scheduling of the pressing process is also presented. To illustrate the proposed MILP
model and 3P-PCB-PH, the test problems generated from the real data acquired from a PCB company
are solved. The results show that the proposed MILP model can find an optimal schedule for all
small- and medium-sized problems but can do so only for some large-sized problems using the
CPLEX solver within a time limit of 2 h. However, the proposed 3P-PCB-PH could find an optimal
schedule for all problems that the MILP could find using much less computational time. Furthermore,
it can also quickly find a near-optimal schedule for other large-sized problems that the MILP could
not solved optimally.

Keywords: pressing process; printed circuit board; scheduling; mixed-integer linear programming;
heuristic

1. Introduction

A printed circuit board (PCB) is a major component in most electronics, such as televi-
sions, mobile phones, digital cameras, computers, and medical devices. The manufacturing
of PCBs has become a competitive industry due to the increased demand for electronic
products. The PCBs can be classified into three types, according to the number of their
layers, as single-layer PCBs, double-layer PCBs, and multi-layer PCBs.

According to Khandpur [1], PCB manufacturing consists of the design, fabrication,
assembly, and testing. The PCB design is the process of creating a circuit schematic by
PCB designers. Then, PCB fabrication is the process of constructing the PCB (bare board)
before placing electronic components in the PCB assembly. The fabrication of each type
of PCB is different. In this paper, we consider only the fabrication of multi-layer PCBs.
As stated in Reference [1], the main materials used in multi-layer PCB fabrication include
the copper-clad laminate sheets and prepregs. The fabrication of multi-layer PCBs can be
summarized in the following five steps:

1. The laminate sheets are cut to the required size in the cutting process.
2. The circuit pattern is created on the cut laminate in the etching process.
3. A number of etched laminates (or cores) are stacked together with a prepreg inserted

between each pair of them. The stack (or panel) is pressed using heat and pressure in
the pressing process.
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4. Holes will be drilled in the pressed board in the drilling process and the circuit pattern
will be made on the outer surfaces.

5. The remaining steps are the quality control and labeling processes.

Figure 1 shows a schematic representation of the steps in multi-layer PCB fabrication.
A major cost-consuming process in multi-layer PCB fabrication is the cutting process.
Most PCB companies aim to cut the laminates so that the waste areas from cutting the
laminates are minimized. This process could be formulated as a two-dimensional cutting
stock problem (2DCSP). The drilling process is another time-consuming process in the
multi-layer PCB fabrication. Most PCB companies aim to find an optimal path for drilling
the holes in the designed positions in the circuit pattern so that the travel time or distance
of the drilling device is minimized, and so the overall processing time is reduced. A mathe-
matical problem that relates to the drilling process is the hole drill routing optimization
problem (HDROP).

Figure 1. The steps of multi-layer printed circuit board (PCB) fabrication.

There have been many research studies reported on the 2DCSP and HDROP, where di-
verse techniques have been used to solve the 2DCSP, such as an integer linear programming
model using a column generation technique [2], an exact arc-flow model [3], a branch-and-
price algorithm [4], and heuristic algorithms based on column generation [5,6]. There are
some reports on the cutting process that have used real data from PCB companies, such as
in References [7,8]. As for the HDROP, numerous research studies have been developed
to solve it, such as a particle swarm optimization (PSO) [9], an ant colony system [10], a
cuckoo search algorithm [11], and a hybridized cuckoo search-genetic algorithm [12].

The PCB assembly is the process of placing electronic components, such as resistors,
capacitors, and transistors, at the specified location on a bare board. In a PCB assembly
line, there are many placement machines with different unit assembly times for the same
component. A board is passed through all the machines to complete the component
placement. Therefore, the components should be allocated to appropriate machines so that
the assembly time is minimized. This leads to the problem of getting an optimal workload
balance in the PCB assembly line [13–16]. The aim of this problem is to minimize the
production cycle time of the assembly line for a given PCB type, which is the maximum
time needed by one of the placement machines. Some techniques have been proposed to
solve this problem, such as using a genetic algorithm [13] and a branch-and-bound-based
optimization algorithm [14]. Some extended problems with additional constraints can be
found in the literature, such as the use of feeder modules, precedence constraints between
components, and feeder duplications [15], as well as an integrated workload balancing and
single-machine optimization problem [16].

The testing is the process after assembling all components to the board. Environmental
stress-screening chambers are commonly used to test PCBs to identify early fallouts before
they are used in the field. The chamber can process multiple PCBs simultaneously, i.e., the
PCBs are processed in batches. Therefore, the process of PCB testing can be considered
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as the batch-processing machine scheduling (BPMS) problem and has been addressed
extensively in the literature. For example, a simulated annealing approach was proposed
to minimize the makespan of a single BPMS problem [17]. A PSO algorithm was pre-
sented to minimize the makespan when scheduling non-identical parallel batch-processing
machines [18]. A simulation-based intelligence optimization method was developed to
minimize the makespan of a flow-shop scheduling problem with multiple heterogeneous
batch-processing machines [19]. In addition, a PSO algorithm was presented to minimize
the total weighted tardiness of non-identical parallel BPMS problems [20].

This paper focuses on the pressing process, which is also another time- and cost-
consuming process in multi-layer PCB manufacturing. The pressing process, a stage in
multi-layer PCB fabrication, consists of many phases that require a lot of materials and
expensive machines. A good schedule is needed to reduce the production time and to
increase the machine utilization, which requires effective assignment and scheduling. After
extensively reviewing the literature on the scheduling problems that relate to PCB manufac-
turing, we have not found any studies linked to the scheduling of the pressing process. A
similar mathematical problem in the literature is the flexible job shop scheduling problem
(FJSP) [21–24]. The pressing process scheduling and FJSP have similar backgrounds, which
are assignment and sequencing. In the FJSP, there are an operation-to-machine assignment
and sequencing operation in each machine, but the pressing process scheduling has more
than one stage of the assignment. In practice, most PCB companies manually schedule the
pressing process, which may not yield the best resource utilization. Therefore, this paper
aims to provide a mathematical model for scheduling the pressing process that maximizes
the resource utilization. Furthermore, due to the complexity of the pressing process, an
effective heuristic algorithm for solving this problem is also presented.

Novelties of the Paper

This paper investigates the pressing process scheduling, which is an application in
real-world PCB industries, and, to the best of our knowledge, has never been investigated
in the literature. Some PCB companies usually schedule the pressing process by dividing
the planning horizon into fixed time intervals. Then, each time interval is assigned either
to be in a cycle of a machine or to be vacant. However, this may not be the best way of
scheduling the pressing process since in reality, the starting time and completion time of a
cycle do not need to follow the fixed time intervals. It is more flexible if the starting and
completion times of the cycles are considered as continuous variables. The contributions of
this paper can be summarized as follows:

1. This paper proposes a novel mixed integer linear programming (MILP) model for the
pressing process scheduling that can find an optimal schedule to meet the objective of
maximizing the resource utilization, while the times are continuous values.

2. This paper presents a three-phase-PCB-pressing heuristic algorithm (3P-PCB-PH) for
solving the pressing process scheduling, based on the proposed MILP, which can find
a near-optimal solution within a reasonable computational time and is practical for
real-life applications.

The remainder of this paper is organized as follows. In Section 2, the problem de-
scription of the pressing process scheduling is introduced. The proposed MILP model is
presented in Section 3, while the 3P-PCB-PH algorithm is presented in Section 4. Numeri-
cal examples are shown in Section 5. The discussions and the conclusions are drawn in
Sections 6 and 7, respectively.

2. Problem Description

This section explains the pressing process in multi-layer PCB manufacturing. The aim
of the pressing process is to press the panel that consists of copper foils, prepregs, and
core(s), and is shown schematically in Figure 2.
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Figure 2. An example of a panel.

The overall processes of one cycle of a press machine are shown schematically in
Figure 3. A single cycle of a press machine takes 360 min, which includes the following
three phases:

1. Lay-up process phase: The panels are arranged on a selected stainless-steel template
(SST), where the number of panels on the SST depends on the size of the SST, the
gap between each panel on the SST, and the pattern layout of arrangement. The final
arrangement of panels on a SST is called a book. Then, each book is loaded into slots
(openings) of a press machine. The number of loaded books is equal to the number of
openings of the press machine. This phase takes 120 min.

2. Pressing process phase: The press machine that is already loaded with books is sent
into an oven, where the books are heated and pressed. After 120 min, the press
machine is removed from the oven.

3. Cool-down process phase: The pressed books in the press machine are cooled down
for 120 min. Finally, the books will be removed from the press machine to complete
one cycle of the press machine.

Figure 3. Schematic diagram showing one cycle of a press machine.

Note that, after a press machine has finished one cycle, it is immediately available for
a new cycle. Similarly, an oven is immediately available for another press machine after
finishing the pressing process phase. Moreover, the following assumptions are made:

• The three phases of a press machine cycle must be performed continuously (no idle
time between phases).

• The number of press machines and ovens are known, and the number of ovens is less
than the number of press machines. This is because the cost of an oven is very high,
and hence the company usually has a small number of ovens.

• Each press machine has the same number of openings.
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• There are many types of panels to press and the demand of each type of panel is given.
The type of panel depends on the customer’s design.

• All panels can be finished within the given due date and resources, i.e., the demands
of panels, which are inputs from the customer, yield a feasible schedule.

• The maximum number of available cycles of each press machine to be operated
within the due date is the same and this value is given. In practice, the production
planning department can estimate this value from the order of the customers and the
available resources.

• There are many sizes of SSTs, and each size is unlimitedly available.
• A layout is a pattern of arrangement of panels on a SST. In this study, there are eight

layouts, as shown in Figure 4. For example, Figure 4a illustrates the layout with two
horizontal sections and the panels are arranged vertically in each section.

• The inner gap is the minimal gap among two panels in a book and the outer gap is the
minimal gap between each panel and the borders of the SST. The inner gap (g) and
outer gap (G) of an arrangement of panels on a SST depend on the type of panel and
these values are known.

Figure 4. Illustration of the eight layouts (a–h) of the panel arrangement.

Note that Figure 4a–h are meant to show only the direction of the panel arrangement
on a SST, and the number of panels in a book is not limited to those shown in the illustration.
In fact, the actual number of panels on a SST using a given layout depends on the size of
panel, the size of the SST, and the gaps. Normally, each PCB company may have its own
formula for computing the number of panels on a SST with a layout.

The four principal constraints for the pressing process are as follows:

1. Only one type of panel can be arranged and pressed in a cycle of a press machine.
2. The books that are inserted in the same press machine must have the same layout and

the same SST size.
3. Each oven can be used by only one press machine at a time to operate the pressing

process phase.
4. The number of finished goods of each type of panel must be greater than or equal to

the demand.

Constraints 1 and 2 are required so that the pressure from the press machine will be
equally distributed to each panel. The objective of the process is to maximize utilization of
all press machines and ovens.
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3. Proposed Mathematical Model

This section presents a MILP model for scheduling the pressing process as described
in Section 2. The indices, sets, parameters, and variables used in the proposed model are
defined below.

Indices:
i The index of panel types.
k The index of SST sizes.
l The index of layouts.
p The index of press machines.
o The index of ovens.
t The index of cycles of a press machine.

Parameters:
I The number of types of panels.
K The number of all SST sizes.
L The number of layouts.
P The number of press machines.
O The number of ovens.
T The maximum number of available cycles of each press machine.
m The number of openings of each press machine.
n The processing time of each phase in the pressing process, i.e., the lay-up, pressing, and
cool-down process phases. In our case, n = 120 min.
aikl The number of panels of type i per opening using stainless size k and layout l.
di Total demand of panel type i.
M A big positive number.

Sets:
Î The set of all types of panels, Î = {1, 2, . . . , I}.
K̂ The set of all SST sizes, K̂ = {1, 2, . . . , K}.
L̂ The set of all layouts, L̂ = {1, 2, . . . , L}.
P̂ The set of all press machines, P̂ = {1, 2, . . . , P}.
Ô The set of all ovens, Ô = {1, 2, . . . , O}.
T̂ The set of all numbers of available cycles of each press machine, T̂ = {1, 2, . . . , T}.

Decision variables:
xiklpt 1, if panel type i is assigned with SST size k and layout l to press machine p at
cycle t.
Xpto 1, if press machine p is put in oven o at cycle t.
Yptp′t′o 1, if cycle t of press machine p precedes cycle t′ of press machine p′ in oven o.
Apt The starting time of the lay-up process phase in cycle t of press machine p.
Bpto The starting time of the pressing process phase in cycle t of press machine p in
oven o.
Cpt The completion time of cycle t of press machine p.
Dpto The completion time of the pressing process phase in cycle t of press machine p in
oven o.
C′pt The auxiliary variable, which is equal to Cpt if there are a panel, a SST, and a layout
assigned in press machine p at cycle t. Otherwise, it is equal to 0.
Cmax The maximum completion time of the last cycle of all press machines which operate
the pressing process, i.e., the makespan of the overall process.

In this model, the variable Yptp′t′o is a precedence binary variable that is only defined
when p 6= p′. It is used to avoid the case where an oven operates the pressing process
phase for more than one press machine at the same time. This variable is adapted from
the precedence binary variable Yiji′ j′k that is used to handle the sequencing operations
on a machine in the mathematical model of the flexible job shop scheduling problem in
Reference [21]. The proposed MILP model can be stated as follows:

Min Cmax (1)
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Subject to:
I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt ≤ 1, ∀p ∈ P̂, ∀t ∈ T̂, (2)

xiklpt ≤ aikl , ∀i ∈ Î, ∀k ∈ K̂, ∀l ∈ L̂, ∀p ∈ P̂, ∀t ∈ T̂, (3)

K

∑
k=1

L

∑
l=1

P

∑
p=1

T

∑
t=1

xiklpt(maikl) ≥ di, ∀i ∈ Î, (4)

I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklp(t−1) ≥
I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt, ∀p ∈ P̂, ∀t ∈ T̂ − {1}, (5)

O

∑
o=1

Xpto = 1, ∀p ∈ P̂, ∀t ∈ T̂, (6)

Bpto + Dpto ≤
(
Xpto

)
M, ∀p ∈ P̂, ∀t ∈ T̂, ∀o ∈ Ô, (7)

Ap,t ≥ Cp,t−1, ∀p ∈ P̂, ∀t ∈ T̂ − {1}, (8)

O

∑
o=1

Bpto = Apt + n, ∀p ∈ P̂, ∀t ∈ T̂, (9)

Cpt = Apt + 3n, ∀p ∈ P̂, ∀t ∈ T̂, (10)
(

Bpto + n
)
−
(
1− Xpto

)
M ≤ Dpto, ∀p ∈ P̂, ∀t ∈ T̂, ∀o ∈ Ô, (11)

Dpto ≤
(

Bpto + n
)
+
(
1− Xpto

)
M, ∀p ∈ P̂, ∀t ∈ T̂, ∀o ∈ Ô, (12)

Bpto ≥ Dp′t′o −
(

Yptp′t′o

)
M, ∀p, p′ ∈ P̂, p 6= p′, ∀t, t′ ∈ T̂, ∀o ∈ Ô, (13)

Bp′t′o ≥ Dpto −
(

1−Yptp′t′o

)
M, ∀p, p′ ∈ P̂, p 6= p′, ∀t, t′ ∈ T̂, ∀o ∈ Ô, (14)

Cpt −M

[
1−

I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt

]
≤ C′pt, ∀p ∈ P̂, ∀t ∈ T̂, (15)

C′pt ≤ Cpt + M

[
1−

I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt

]
, ∀p ∈ P̂, ∀t ∈ T̂, (16)

C′pt ≤ M

(
I

∑
i=1

K

∑
k=1

L

∑
l=1

xiklpt

)
, ∀p ∈ P̂, ∀t ∈ T̂, (17)

Cmax ≥ C′pt, ∀p ∈ P̂, ∀t ∈ T̂, (18)

and,
xiklpt ∈ {0, 1} ∀i ∈ Î, ∀k ∈ K̂, ∀l ∈ L̂, ∀p ∈ P̂, ∀t ∈ T̂,
Xpto ∈ {0, 1} ∀p ∈ P̂, ∀t ∈ T̂, ∀o ∈ Ô,
Yptp′t′o ∈ {0, 1} ∀p, p′ ∈ P̂, p 6= p′, ∀t, t′ ∈ T̂, ∀o ∈ Ô,
Apt, Cpt ≥ 0 ∀p ∈ P̂, ∀t ∈ T̂,
Bpto, Dpto ≥ 0 ∀p ∈ P̂, ∀t ∈ T̂, ∀o ∈ Ô,
C′pt ≥ 0 ∀p ∈ P̂, ∀t ∈ T̂,
Cmax ≥ 0

The objective function (1) is to minimize the makespan of the overall process. This can
imply maximizing the utilization of all resources.

Constraint (2) is the panel-SST-layout assignment constraint. It is used to ensure that
at most one panel type, one SST size, and one layout can be assigned in each cycle of each
press machine. If there is an assignment of a panel type, a SST size, and a layout in a cycle
of a press machine, it is assumed that these must be the same in all openings.
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Constraint (3) is the panel-SST-size-layout compatibility constraint. If panel type i
cannot use SST size k with layout l (aikl = 0), then constraint (3) ensures that this pattern
cannot be assigned to any press machine p and any cycle t.

Constraint (4) is the demand constraint. It requires that the total outputs of each type
of panel from all openings, all cycles, and all press machines must satisfy the demand.

Constraint (5) enforces that a panel type, a SST size, and a layout must be assigned in
a press machine at cycle t− 1 before cycle t. This helps push empty cycles (the cycles of a
press machine with no panel assignment) to be after the cycles with a panel assignment.

Constraint (6) is the press machine assignment constraint. It is used to ensure that
each cycle of each press machine must be assigned to one oven only.

Constraint (7) enforces that if cycle t of press machine p is assigned to oven o, then the
starting time and completion time of the pressing process phase in cycle t of press machine
p in oven o can be any non-negative value. Otherwise, these are set to be 0.

Constraint (8) makes sure that any cycle of a press machine can be started after the
previous cycle has been finished.

Constraint (9) sets the starting time of the pressing process phase in cycle t of press
machine p in its assigned oven to be equal to the starting time of this cycle of press machine
p plus the processing time n that it takes in the lay-up process phase.

Constraint (10) sets the completion time of cycle t of press machine p to be equal to its
starting time plus the processing time 3n (the processing time of one cycle).

Constraints (11) and (12) ensure that if Xpto = 1, the completion time of the pressing
process phase in cycle t of press machine p in its assigned oven will be equal to its starting
time plus the processing time n that it takes in the oven.

Constraints (13) and (14) take care of that the pressing process phase in cycle t of
press machine p and the pressing process phase in cycle t′ of press machine p′, which are
assigned in the same oven, cannot be done at the same time.

Constraints (15)–(17) require that if there is assignment of a panel, a SST size, and a
layout in the press machine p at cycle t, then the variable C′pt is equal to Cpt. Otherwise, it
is equal to 0.

Constraint (18) determines the maximum completion time of the last cycle of press
machines that has a panel assignment (non-empty cycles), which is the makespan of the
overall process.

Note that for the cycle of the press machine that has no assignment of a panel, the
proposed MILP model will still return its starting time (Apt) and completion time (Cpt),
which can be considered as it does not do any work (empty cycle). Also, note that the
objective function (1) is to minimize the makespan of all the cycles of all the press machines
that actually do the work (non-empty cycles). It means that the objective tries to minimize
the makespan of all the cycles of all the press machines that are needed for the respective
outputs to satisfy the demands.

The solution to the proposed MILP model provides information about the panel type,
SST size, and layout that should be assigned in each cycle of a press machine. In addition,
it also tells that each cycle of a press machine should be put into which oven, as well as its
starting time and completion time. Hence, the proposed model can be an option to provide
an optimized schedule in the pressing process of any PCB manufacturing industry.

4. Proposed 3P-PCB-PH Algorithm

Due to the complexity of the pressing process, using a mathematical programming
model may not be suitable for solving a large-sized problem. This section presents a
heuristic algorithm for scheduling the pressing process. The idea of this algorithm is
to solve the proposed MILP model in three phases. Phase 1 consists of matching each
panel type with a SST size and a layout and determining the number of cycles that is
needed for the demands to be satisfied. Next, all cycles that are needed to be used are
scheduled in Phase 2, which yields the number of non-empty cycles of each press machine
and their starting and completion times. In Phase 3, each panel type with its selected SST
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size and layout from Phase 1 is assigned to a non-empty cycle of a press machine. The
parameters that are used in the proposed 3P-PCB-PH algorithm are the same as described
Section 3. The details of the designed 3P-PCB-PH algorithm include Steps 1–5, which are
expressed below.

Step 1: Take the inputs I, K, L, P, O, T, m, n, aikl , ∀i ∈ Î, k ∈ K̂, l ∈ L̂, and di, ∀i ∈ Î.
Step 2 (Phase 1): Selecting the SST size and layout.
In this phase, an appropriate SST size and a layout are chosen for each panel type.

The inputs of Phase 1 include I, K, L, m, di, and aikl , ∀i ∈ Î, k ∈ K̂, l ∈ L̂. For each panel
type i, we select a SST size ki and a layout li that give the maximum number of panels of
type i, say aiki li

. Hence, the number of produced panels of this type per cycle of a press
machine is maiki li

. Next, the minimum number of cycles needed for pressing each panel of

type i ∈ Î can be computed from dci =

⌈
di

maiki li

⌉
(note that the notation dxe is the smallest

integer that is greater than or equal to x). Let dc be the sum of these values of all panel
types, which is the minimum number of total cycles that are needed to be used for pressing,
so that the demands of all panel types are satisfied. Note that the value dc does not exceed
the number of all available cycles P× T, since we have the assumption that the demands
of panels (which are inputs from the customer) yield a feasible schedule. The flowchart of
the algorithm for Phase 1 is shown in Figure 5.

Figure 5. Flowchart for the 3P-PCB-PH algorithm for Phase 1.

Step 3 (Phase 2): Scheduling the press machines and ovens.
In this phase, all dc cycles are distributed to all press machines to generate a schedule

such that the makespan is minimized. The algorithm for Phase 2 is comprised of the
following components.

1. A =
[
Apt
]

P×T : the matrix that collects the starting time of cycle t of press machine p
(the starting time of the lay-up process phase). Initially, A is set to be [0]P×T .

2. C =
[
Cpt
]

P×T : the matrix that collects the completion time of cycle t of press machine
p. Initially, C is set to be [0]P×T .

3. Can: the candidate list represents the next earliest available cycle number to use each
press machine. Initially, Can is set to be [1]1×P, i.e., for each press machine, the cycle
that is ready to start is cycle 1.

4. (start_time, end_time, press_machine, cycle): A scheduled pressing job which col-
lects the starting and end times of the pressing process phase of a press machine at a
cycle, where the start_time, end_time, press_machine, and cycle are the starting time,
end time, press machine number, and cycle number, respectively. For example, if we
have a scheduled pressing job (240, 360, 1, 1), it means that the pressing job occurs
from time 240 to 360 min and is the task of press machine 1 at cycle 1.

5. Oven_Schedule_List: the list of scheduled pressing jobs to use in each oven in a se-
quential order. Each element in the Oven_Schedule_List is also a list, which collects the
scheduled pressing job tuples that are assigned in the corresponding oven. Figure 6
shows an example of an Oven_Schedule_List when the number of ovens (O) is three
and the processing time of the pressing process phase (n) is 120 min. The first list in
Oven_Schedule_List contains the scheduled pressing jobs that are already assigned to
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oven 1. There are two pressing jobs in the first list. The first is (120, 240, 1, 1), which
means oven 1 has to press from 120 to 240 min and is the task of press machine 1 at
cycle 1, while the second is (480, 600, 1, 2) which means oven 1 has to press from 480
to 600 min and is the task of press machine 1 at cycle 2. Similarly, the list for oven 2
has only one job that is already assigned, and there is no job that is currently assigned
to oven 3 since the third list is empty. Note that, initially, the list Oven_Schedule_List
is set to be the list of O empty lists [ [ ] ]1×O. The algorithm for Phase 2 will later
populate this list with suitable jobs.

6. Oven_Idle_time_List: the list of idle time intervals of each oven in a sequential order.
Each element in the Oven_Idle_time_List is also a list which collects all the idle time
intervals in the corresponding oven. Initially, each oven has only one idle time interval
[0, ∞), indicating that no task had been assigned to it yet.

Figure 6. An example of an Oven_Schedule_List.

After introducing all the components, we proposed the algorithm for Phase 2 as fol-
lows. The inputs for the algorithm are P, O, n, and dc, where dc is used as the total number
of iterations. For each iteration, a press machine with the minimum workload is selected,
say p′. Next, we check whether Can[p′], the next earliest available cycle of press machine
p′, is the first cycle. If yes, the starting time of press machine p′ at cycle Can[p′] is set to
be 0. Otherwise, it is set to be the end time of the previous cycle. Let this starting time be
start_time_press_machine. Note that this starting time is not yet a final starting time of the
press machine since we need to check the feasibility with the assigned oven first. Then, the
press machine p′ at cycle Can[p′] will be assigned to the oven with the minimum workload,
say o′, to operate the pressing process phase. Next, we check whether the oven o′ has been
used yet. If not (i.e., the Oven_Idle_time_List[o′] has only one idle time interval [0, ∞)), the
cycle Can[p′] of press machine p′ can be started at start_time_press_machine, and sequen-
tially, p′ is sent into the oven o′ at the time start_time_press_machine + n. Otherwise, we
consider all idle time intervals in the Oven_Idle_time_List[o′]. These intervals are examined
from left to right to find the earliest time that the press machine p′ at cycle Can[p′] can start
the pressing process phase in the oven o′. An example is illustrated in Figure 7. Suppose
that o′ is oven 1 that already has a task of cycle 1 from press machine 1 assigned before, and
the processing time of the pressing process phase (n) is 120 min. Suppose p′ is press ma-
chine 2 and Can[2] is cycle 1. Since this is the first cycle, the value start_time_press_machine
is 0. However, since oven 1 has been used, we will examine the idle time intervals
from left to right. From Figure 7, Oven_Idle_time_List[1] = [[0, 120], [240, ∞)]. It is clear
that the first interval [0, 120] is not feasible since the lay-up process phase has not been
done. So, press machine 2 at cycle 1 can start the pressing process phase as early as
possible in oven 1 at time 240 min in the second idle time interval [240, ∞). Let this
time be start_time_oven. We can then find the time that the press machine p′ is removed
from the oven o′ (end_time_oven = start_time_oven + 120) as well as the actual starting
time (start_time_press_machine) and completion time of press machine p′ at cycle Can[p′],
which are the start_time_oven − 120 and end_time_oven + 120, respectively. We update
these values in matrices A and C as well as update the list Oven_Schedule_List[o′] and
Oven_Idle_time_List[o′]. Then, Can[p′] is incremented by 1 so that the next cycle of the
press machine p′ is a new candidate. The algorithm is repeated until all dc cycles are
scheduled. The flowchart of the algorithm for Phase 2 is shown in Figure 8.
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Figure 7. An example of finding start_time_oven.

Step 4 (Phase 3): Assigning the panel-SST-size-layout combinations to cycles of the
press machines.

From Phase 2, the number of working cycles for each press machine is known. In
Phase 3, each panel type with its selected SST size and layout will be assigned to a cycle of
a press machine as follows. Recall that dci is the minimum number of cycles needed to be
used for pressing each panel of type i ∈ Î. The dc1 cycles for the first panel type are chosen
from the first cycles of all press machines such that the work is distributed among the press
machines equally. The dc2 cycles for the second panel type are then chosen from the next
available cycles of all the press machines so that the work is distributed equally, and so
on. As a result of this panel-cycle assignment, the panels of the same type are finished
in a group, which is preferable in real-world situations. Figure 11 depicts an example of
this assignment.

Step 5: Output the number of finished goods of each panel type i ∈ Î; Apt, Cpt, ∀p ∈
P̂, t ∈ T̂, the schedule of press machines and ovens, xiklpt, ∀i ∈ Î, k ∈ K̂, l ∈ L̂, p ∈ P̂, t ∈
T̂, and the makespan.

The total number of finished goods of each panel type i can be computed from
maiki li

dci , ∀i ∈ Î. The value of Apt, Cpt, ∀p ∈ P̂, t ∈ T̂ can be obtained from matrices A
and C in Phase 2, and these values can then be used for creating the schedule of press
machines. The schedule of ovens can be interpreted from the list Oven_Schedule_List in
Phase 2. The makespan of the overall processes is the maximum element in C. The output
xiklpt, ∀i ∈ Î, k ∈ K̂, l ∈ L̂, p ∈ P̂, t ∈ T̂, which is equal to 1, can be obtained from Phase 3.
From all three phases, the computational complexity of the proposed 3P-PCB-PH algorithm
is O

(
P2T2 + IKL

)
.

Note that PCB manufacturing companies prefer to finish each PCB type in a group,
since it is easier to prepare material and sequence the next work. The proposed MILP in
the previous section can find an optimal schedule for a pressing process with the minimum
makespan, but cycles of the same panel type may not be scheduled consecutively. This is a
limitation of the proposed MILP model, whereas the proposed 3P-PCB-PH algorithm can
handle this preference. Therefore, the proposed 3P-PCB-PH algorithm is more practical for
real PCB manufacturing industries.
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Figure 8. Flowchart of the 3P-PCB-PH algorithm for Phase 2.
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5. Numerical Experiments

To demonstrate the proposed MILP model and 3P-PCB-PH algorithm, we used real-
world data from a PCB company. The data and test problems are shown in Sections 5.1 and 5.2,
respectively. The computational results from the proposed MILP model and heuristic algo-
rithm are shown in Sections 5.3 and 5.4, respectively.

5.1. Data

The data acquired from an actual PCB company included seven panel types, six SST
sizes, eight layouts, six press machines, each of which had 10 openings, and three ovens.
We assumed that the processing time of each phase in the pressing process (the lay-up,
pressing, and cool-down process phase) was 120 min, with a planning horizon of 3 days and
a maximum number of available cycles of each press machine to be 12. This is because one
cycle of a press machine takes 360 min (6 h). If a press machine works continuously, it can
carry out up to 12 cycles of the pressing process in 3 days. We also considered a planning
horizon of 2 and 1.5 days for the small problem, where the maximum number of available
cycles of each press machine was eight and six cycles, respectively. The information of each
type of panel, which consisted of warp (or length), fill (or width), inner gap, and outer gap,
is shown in Table 1. The size of each SST is shown in Table 2.

Table 1. Sizes, inner gap, and outer gap of each panel type.

Panel Warp (a) Fill (b) Inner Gap (g) Outer Gap (G)

1 20.5 24 0.5 0.25
2 25.65 22.25 1 0.5
3 26 24 0.5 0.25
4 26.5 22.5 1 0.5
5 19 22.25 0.5 0.25
6 15 23.8 0.5 0.25
7 27.75 20.5 0.5 0.25

Table 2. Sizes of each SST.

Stainless-Steel Warp (X) Fill (Y)

1 50 44
2 50 53
3 50 56
4 50 58
5 43 25.5
6 43 27

The number of layouts was eight, as described in Figure 4 (in Section 2). The formulas
for computing the number of panels (per book) based on the size of the SST and the layout
are shown in Table 3. In the formulas, the values a, b, g, and G are the warp, fill, inner gap,
and outer gap of panel type i, respectively. The values X and Y are the warp and fill of the
SST size k, respectively. Note that the notation x is the greatest integer that is less than or
equal to x.

5.2. Test Problems

According to Pan [25], the speed that mixed-integer linear programming problems
can be solved at depends upon the number of binary variables, constraints, and continuous
variables, where the most deciding factor is the number of binary variables. Therefore,
the generated test problems are categorized to be 3 groups, i.e., small-, medium-, and
large-sized test problems, depending on the number of binary variables.
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Table 3. Formulas for computing the number of panels of type i per opening using SST size k and
layout (aikl).

Layout (l) aikl

1
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2 )

a+g

⌋
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Y−2(G− g
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5.2.1. Small-Sized Test Problems

The small-sized test problems were generated where the number of binary variables
in each problem is less than 8500. The parameters in the small-sized test problems are as
follows. The number of SST sizes (K) and the number of layouts (L) were six and eight
respectively, as described in the previous subsection. The number of panel types (I) was
three, which are the panel types 1–3 in Table 1. The number of press machines (P) and
the number of ovens (O) were varied at three to four and two to three, respectively. The
maximum number of available cycles of each press machine (T) was varied as six, eight,
and 12 cycles, and the demand of each type of panel (di) was randomly generated. The
details of the small-sized test problems are summarized in Table 4.

Table 4. The small-sized test problems for the proposed MILP model and 3P-PCB-PH algorithm.

No. I K L P O T di, i∈{1,2,. . . ,I}
1 3 6 8 3 2 6 110, 150, 125
2 3 6 8 3 2 8 200, 220, 230
3 3 6 8 3 2 12 270, 250, 210
4 3 6 8 4 2 6 110, 150, 125
5 3 6 8 4 3 6 110, 150, 125

5.2.2. Medium-Sized Test Problems

The medium-sized test problems were generated where the number of binary variables
in each problem is between 8500 to 30,000. The parameters in the medium-sized test
problems are as follows. The number of panel types (I) was three to five, while the number
of SST sizes (K), the number of layouts (L), the number of press machines (P), and the
number of ovens (O) were six, eight, six, and three respectively, which are the real data
from the previous subsection. The maximum number of available cycles (T) was varied at
six, eight, or 12. The demands of each test problem were randomly generated. The details
of the medium-sized test problems are shown in Table 5. In Problems 1–3, the number of
types of panels was three, which included panel types 1–3 in Table 1. Problems 4–6 had
panel types 1–4, and the other problems had panel types 1–5, as described in Table 1.
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Table 5. The medium-sized test problems for the proposed MILP model and 3P-PCB-PH algorithm.

No. I K L P O T di, i∈{1,2,. . . ,I}
1 3 6 8 6 3 6 300, 300, 300
2 3 6 8 6 3 8 450, 480, 500
3 3 6 8 6 3 12 720, 900, 600
4 4 6 8 6 3 6 200, 300, 400, 100
5 4 6 8 6 3 8 300, 400, 200, 500
6 4 6 8 6 3 12 500, 700, 700, 500
7 5 6 8 6 3 6 200, 250, 200, 250, 200
8 5 6 8 6 3 8 400, 300, 200, 250, 300

5.2.3. Large-Sized Test Problems

The large-sized test problems were generated where the number of binary variables
in each problem is greater than 30,000. The parameters in the large-sized test problems are
as follows. The number of panel types (I) was varied at five to seven. The number of SST
sizes (K), the number of layouts (L), the number of press machines (P), and the number
of ovens (O) were six, eight, six, and three respectively, which are the real data from the
previous subsection. Furthermore, we also evaluated slightly larger-sized problems by
increasing the number of press machines and ovens by one. The maximum number of
available cycles (T) was 12 and the demand of each type of panel (di) was randomly
generated. The details of the large-sized test problems are shown in Table 6. In Problems
1–3, the number of types of panels was five, which included panel types 1–5 in Table 1.
Problems 4–6 had panel types 1–6, and the other problems had all seven panel types, as
described in Table 1.

Table 6. The large-sized test problems for the proposed MILP model and 3P-PCB-PH algorithm.

No. I K L P O T di, i∈{1,2,. . . ,I}
1 5 6 8 6 3 12 500, 500, 500, 500, 500
2 5 6 8 7 3 12 500, 500, 500, 500, 500
3 5 6 8 6 4 12 500, 500, 500, 500, 500
4 6 6 8 6 3 12 500, 360, 220, 180, 380, 720
5 6 6 8 7 3 12 500, 360, 220, 180, 380, 720
6 6 6 8 6 4 12 500, 360, 220, 180, 380, 720
7 7 6 8 6 3 12 300, 325, 290, 425, 450, 475, 200
8 7 6 8 7 3 12 300, 325, 290, 425, 450, 475, 200
9 7 6 8 6 4 12 300, 325, 290, 425, 450, 475, 200

5.3. Result of the Test Problems Using the Proposed MILP Model

In this section, all the test problems were solved using the proposed MILP model
and the ILOG OPL CPLEX 12.6 software running on a personal computer with a core i7
2.20 GHz CPU and 8 GB RAM. The maximum running time was limited to 2 h.

5.3.1. Results of the Small-Sized Test Problems Using the Proposed MILP Model

The model size and computational results of each small-sized test problem using
the proposed model are shown in Table 7. The model size consisted of the number of
binary variables, continuous variables, and constraints. The results included the number
of finished goods of each type of panel (outputs), CPU time, and the optimal makespan
(Cmax) of the overall process.
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Table 7. Computational results of the small-sized test problems using the proposed MILP model.

No. I K L P O T di

Model Size Results

Binary Continuous Constraint Outputs CPU
Time Cmax(min)

1 3 6 8 3 2 6 110, 150, 125 3060 128 3741 120, 160,
160 2.31 s 1440 a

2 3 6 8 3 2 8 200, 220, 230 4272 170 5373 200, 240,
240 2.48 s 2160 a

3 3 6 8 3 2 12 270, 250, 210 6984 254 9213 280, 280,
240 3.21 s 2520 a

4 3 6 8 4 2 6 110, 150, 125 4368 170 5563 120, 160,
160 8.15 s 1200 a

5 3 6 8 4 3 6 110, 150, 125 4824 218 6499 120, 160,
160 3.18 s 1080 a

a Optimal solution.

As shown in Table 7, all the small-sized test problems could be solved to an optimal
solution within the 2 h time limit. The computational time of each problem is small. Note
that Problems 1, 4, and 5 have the same demands. The results of Problem 4 indicate that if
the number of press machines was increased by one from Problem 1, the pressing process
of Problem 1 could be finished ahead of time for 240 min (i.e., the makespan was reduced
from 1440 to 1200 min). However, the results of Problem 5 indicate that the pressing process
of Problem 1 could be finished ahead of time for 360 min (i.e., the makespan was reduced
from 1440 to 1080 min) if the number of press machines and ovens were increased by one
from Problem 1. These show that the proposed MILP model can help in deciding which
resources should be increased to reduce the production time.

5.3.2. Results of the Medium-Sized Test Problems Using the Proposed MILP Model

Table 8 shows the size and computational results of each medium-sized test problem
using the proposed MILP model. The number of binary variables of each problem is
between 8500 to 30,000. The results showed that all the medium-sized test problems
could be solved to an optimal solution within the 2 h time limit. Note that the maximum
computational time for solving the medium-sized test problems (9 min and 31 s in Problem
7 of the medium-sized test problems) increased significantly compared with the maximum
computational time for solving the small-sized test problems, which is only around 8 s (in
Problem 4 of the small-sized test problems).

5.3.3. Results of the Large-Sized Test Problems Using the Proposed MILP Model

The model size and computational results of each large-sized test problem using the
proposed model are shown in Table 9. The results show that only Problems 1, 2, and 4 of
the large-sized test problems could be solved to an optimal solution within the 2 h time
limit, while the other problems could not, but we report the best feasible solution that
could be found within the time limit. Note that the maximum computational time for
solving the large-sized test problems to get an optimal solution (48 min and 14 s in Problem
4 of the large-sized test problems) increased significantly compared with the maximum
computational time for solving the medium-sized test problems (9 min and 31 s in Problem
7 of the medium-sized test problems). In addition, an optimal solution could not be found
for most large-sized test problems within the time limit of 2 h. This is common when
solving large-sized mixed-integer linear programming problems. Since some practitioners
can accept a promise solution within reasonable time instead of an optimal solution, this
paper also presents a heuristic algorithm for solving the pressing process scheduling that
could find a good solution within reasonable time, and the results of the proposed heuristic
algorithm are presented in the next subsection.
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Table 8. Computational results of the medium-sized test problems using the proposed MILP model.

No. I K L P O T di

Model Size Results

Binary Continuous Constraint Outputs CPU
Time Cmax(min)

1 3 6 8 6 3 6 300, 300,
300 8532 326 12,339 320, 320,

320 32.81 s 1560 a

2 3 6 8 6 3 8 450, 480,
500 12,816 434 19,335 480, 480,

520 16.79 s 2520 a

3 3 6 8 6 3 12 720, 900,
600 23,544 650 37,647 720, 920,

600
1 min
28 s 3600 a

4 4 6 8 6 3 6 200, 300,
400, 100 10,260 326 14,068 200, 320,

400, 120 20.65 s 1800 a

5 4 6 8 6 3 8 300, 400,
200, 500 15,120 434 21,640 320, 400,

200, 520
3 min
59 s 2280 a

6 4 6 8 6 3 12 500, 700,
700, 500 27,000 650 41,104 520, 720,

720, 520
4 min 2

s 3960 a

7 5 6 8 6 3 6
200, 250,
200, 250,

200
11,988 326 15,797

200, 280,
200, 280,

200

9 min
31 s 1920 a

8 5 6 8 6 3 8
400, 300,
200, 250,

300
17,424 434 23,945

400, 320,
200, 280,

320
49.31 s 2520 a

a Optimal solution.

Table 9. Computational results of the large-sized test problems using the proposed MILP model.

No. I K L P O T di

Model size Results

Binary Continuous Constraint Outputs CPU
Time Cmax(min)

1 5 6 8 6 3 12
500, 500,
500, 500,

500
30,456 650 44,561

520, 520,
520, 520,

520

44 min
38 s 4080 a

2 5 6 8 7 3 12
500, 500,
500, 500,

500
38,556 758 58,035

520, 520,
520, 520,

520

23 min
42 s 3600 a

3 5 6 8 6 4 12
500, 500,
500, 500,

500
34,848 794 53,417

520, 520,
520, 520,

520
2 h 4080 b

4 6 6 8 6 3 12
500, 360,
220, 180,
380, 720

33,912 650 48,018
520, 360,
240, 200,
400, 770

48 min
14 s 3360 a

5 6 6 8 7 3 12
500, 360,
220, 180,
380, 720

42,588 758 62,068
520, 360,
240, 200,
400, 770

2 h 3000 b

6 6 6 8 6 4 12
500, 360,
220, 180,
380, 720

38,304 794 56,874
520, 360,
240, 200,
400, 770

2 h 3360 b

7 7 6 8 6 3 12

300, 325,
290, 425,
450, 475,

200

37,368 650 51,475

320, 360,
320, 440,
480, 490,

200

2 h 3720 b

8 7 6 8 7 3 12

300, 325,
290, 425,
450, 475,

200

46,620 758 66,101

320, 360,
320, 440,
480, 490,

200

2 h 3360 b

9 7 6 8 6 4 12

300, 325,
290, 425,
450, 475,

200

41,760 794 60,331

320, 360,
320, 440,
480, 490,

200

2 h 3720 b

a Optimal solution. b The best-known solution from the proposed MILP model.
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An example of an optimal solution from the proposed MILP model is described below.
For the results of Problem 1 in Table 9, the number of outputs of panel types 1–5 that were
obtained after the finishing pressing process was 520 each, which satisfied the demands.
The variables xiklpt and Xpto, which were equal to 1 in the optimal solution of Problem 1,
are shown in Tables 10 and 11, respectively. The corresponding Gantt charts of the press
machines and ovens are presented in Figures 9 and 10 respectively, where the same color
represents the same panel type.

Table 10. List of non-zero xiklpt values in the solution of Problem 1 of the large-sized problems using the proposed MILP model.

Press Machine Non-Zero xiklpt

1 x13111, x51212, x24213, x51214, x33215, x51216, x51217, x24218, x43219, x3221,10, x4321,11
2 x14621, x53622, x53223, x54524, x32225, x12626, x43227, x44228, x32229, x1222,10, x3222,11
3 x23431, x51532, x44233, x43234, x43235, x43236, x12437, x34238, x12239, x2343,10, x4423,11
4 x14141, x43242, x32243, x24244, x13445, x32246, x32247, x32248, x24649, x5414,10, x5134,11
5 x12151, x14352, x54553, x23454, x32255, x23656, x42257, x32258, x43259, x2365,10
6 x51361, x13362, x24663, x42264, x24665, x23466, x24467, x54468, x11269, x1126,10, x3426,11

Table 11. List of non-zero Xpto values in the solution of Problem 1 of the large-sized problems using
the proposed MILP model.

Press Machine Non-Zero Xpto

1 X111, X122, X131, X142, X151, X161, X171, X181, X191, X1,10,3, X1,11,3
2 X212, X223, X233, X241, X253, X263, X272, X282, X292, X2,10,1, X2,11,1
3 X311, X322, X331, X341, X353, X363, X373, X383, X393, X3,10,2, X3,11,2
4 X412, X421, X433, X442, X451, X461, X472, X482, X491, X4,10,1, X4,11,3
5 X513, X522, X531, X543, X553, X563, X573, X581, X593, X5,10,2
6 X613, X623, X632, X643, X652, X662, X673, X681, X692, X6,10,3, X6,11,1

Figure 9. Gantt chart of the press machines for Problem 1 of the large-sized problems using the proposed MILP model.

Figure 10. Gantt chart of the ovens for Problem 1 of the large-sized problems using the proposed MILP model.
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From Table 10, the list of non-zero xiklpt were sorted by cycle numbers (index t) in
ascending order, while the list of non-zero Xpto values (Table 11) were also sorted in a
similar manner.

Figure 9 shows the starting time and completion time of each cycle of each press
machine. One cycle of the press machine takes 360 min, i.e., 120 min for each lay-up,
pressing, and cool-down process phase. The time for the pressing process phase for each
cycle of each press machine is depicted in Figure 10. For example, press machine 3 at cycle
1 had to lay up at 0–120 min (Figure 9), move into the oven 1 at 120–240 min (Figure 10),
and cool-down at 240–360 min (Figure 9). The minimum makespan of the overall process
was 4080 min (Figure 9).

5.4. Result of the Test Problems Using the Proposed 3P-PCB-PH Algorithm

In this section, all the test problems were solved using the proposed 3P-PCB-PH algo-
rithm implemented in Python version 3.7.3 running under the same hardware environment
as in the previous subsection. Each problem was run 10 times to capture the variation in the
computational time. The results of each test problem when using the proposed heuristic
algorithm were compared with the results from the proposed MILP model.

5.4.1. Results of the Small-Sized Test Problems Using the Proposed 3P-PCB-PH Algorithm

The results of the small-sized test problems from the heuristic algorithm and the
proposed MILP model are compared in Table 12. The results included the number of
finished goods of each type of panel (outputs), the average CPU time over 10 runs (Avg CPU
time), and the makespan (Cmax) of the overall process. The last column of Table 12 reports
the percentage gap (%gap) between the makespan from the proposed heuristic algorithm
and the optimal makespan or best-known makespan from the proposed MILP model.

Table 12. Computational results of the small-sized test problems using the proposed 3P-PCB-PH algorithm.

No. I K L P O T di

Results Using Proposed
MILP Model

Results Using Proposed
3P-PCB-PH Algorithm

%gap

Outputs CPU
Time

Cmax
(min)

Outputs
Avg

CPU Time
(SD)

Cmax
(min)

1 3 6 8 3 2 6
110,
150,
125

120, 160,
160 2.31 s 1440 a

120,
160,
160

0.00349 s
(0.00085 s) 1440 a 0%

2 3 6 8 3 2 8
200,
220,
230

200, 240,
240 2.48 s 2160 a

200,
240,
240

0.00488 s
(0.00246 s) 2160 a 0%

3 3 6 8 3 2 12
270,
250,
210

280, 280,
240 3.21 s 2520 a

280,
280,
240

0.00658 s
(0.00346 s) 2520 a 0%

4 3 6 8 4 2 6
110,
150,
125

120, 160,
160 8.15 s 1200 a

120,
160,
160

0.00598 s
(0.00342 s) 1200 a 0%

5 3 6 8 4 3 6
110,
150,
125

120, 160,
160 3.18 s 1080 a

120,
160,
160

0.00509 s
(0.00371 s) 1080 a 0%

a Optimal solution.

As shown in Table 12, the proposed 3P-PCB-PH algorithm could solve all the small-
sized test problems with an average and standard deviation (SD) computational time of
less than 1 s respectively, for solving each problem. The makespans from the proposed
heuristic algorithm were the same as the optimal makespans from the proposed MILP
model (%gap = 0%), but the proposed heuristic algorithm used less computational times
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than the proposed MILP model. This shows that the proposed 3P-PCB-PH algorithm is
very efficient and effective.

5.4.2. Results of the Medium-Sized Test Problems Using the Proposed
3P-PCB-PH Algorithm

Table 13 shows the computational results of each test problem when using the pro-
posed heuristic algorithm compared with the results from the proposed MILP model. All
the medium-sized test problems could still be solved to an optimal solution (%gap = 0%)
by the proposed heuristic algorithm using only a very small average and SD computational
time of less than 1 s each. This shows the efficiency and effectiveness of the proposed
3P-PCB-PH algorithm.

Table 13. Computational results of the medium-sized test problems using the proposed 3P-PCB-PH algorithm.

No. I K L P O T di

Results Using Proposed
MILP Model

Results Using Proposed
3P-PCB-PH Algorithm

%gap

Outputs CPU
Time

Cmax
(min)

Outputs
Avg

CPU Time
(SD)

Cmax
(min)

1 3 6 8 6 3 6
300,
300,
300

320, 320,
320

32.81
s 1560 a

320,
320,
320

0.00469 s
(0.00141 s) 1560 a 0%

2 3 6 8 6 3 8
450,
480,
500

480, 480,
520

16.79
s 2520 a

480,
480,
520

0.00519 s
(0.00248 s) 2520 a 0%

3 3 6 8 6 3 12
720,
900,
600

720, 920,
600

1 min
28 s 3600 a

720,
920,
600

0.00658 s
(0.00245 s) 3600 a 0%

4 4 6 8 6 3 6

200,
300,
400,
100

200, 320,
400, 120

20.65
s 1800 a

200,
320,
400,
120

0.00599 s
(0.00266 s) 1800 a 0%

5 4 6 8 6 3 8

300,
400,
200,
500

320, 400,
200, 520

3 min
59 s 2280 a

320,
400,
200,
520

0.00768 s
(0.00342 s) 2280 a 0%

6 4 6 8 6 3 12

500,
700,
700,
500

520, 720,
720, 520

4 min
2 s 3960 a

520,
720,
720,
520

0.00927 s
(0.00509 s) 3960 a 0%

7 5 6 8 6 3 6

200,
250,
200,
250,
200

200, 280,
200, 280,

200

9 min
31 s 1920 a

200,
280,
200,
280,
200

0.00768 s
(0.00282 s) 1920 a 0%

8 5 6 8 6 3 8

400,
300,
200,
250,
300

400, 320,
200, 280,

320

49.31
s 2520 a

400,
320,
200,
280,
320

0.00909 s
(0.00331 s) 2520 a 0%

a Optimal solution.

5.4.3. Results of the Large-Sized Test Problems Using the Proposed 3P-PCB-PH Algorithm

The results of the large-sized test problems from the proposed heuristic algorithm
and the proposed MILP model are compared in Table 14. Each problem was solved by the
proposed heuristic algorithm using an average and SD computational time of less than 1 s
each. For Problems 1, 2, and 4, the makespans from the proposed heuristic algorithm are
the same as the optimal makespans from the proposed MILP model (%gap = 0%), but the
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proposed heuristic algorithm used much less computational time than the proposed MILP
model. Furthermore, the proposed heuristic algorithm could find a near-optimal schedule
with the same makespan as the best-known solution from the proposed MILP model for
the other large-sized test problems using very small computational times. Note that the
computational time of the proposed heuristic algorithm slightly increases when the size of
problem is increased from small size to large size, which is different from the computational
time of the proposed MILP model. These results show that the proposed 3P-PCB-PH
algorithm is very efficient and effective for solving the pressing process scheduling.

Table 14. Computational results of the large-sized test problems using the proposed 3P-PCB-PH algorithm.

No. I K L P O T di

Results Using Proposed
MILP Model

Results Using Proposed
3P-PCB-PH Algorithm

%gap

Outputs CPU
Time

Cmax
(min)

Outputs
Avg

CPU Time
(SD)

Cmax
(min)

1 5 6 8 6 3 12
500, 500,
500, 500,

500

520, 520,
520, 520,

520

44
min
38 s

4080 a
520, 520,
520, 520,

520

0.00928 s
(0.00346 s) 4080 a 0%

2 5 6 8 7 3 12
500, 500,
500, 500,

500

520, 520,
520, 520,

520

23
min
42 s

3600 a
520, 520,
520, 520,

520

0.00918 s
(0.00297 s) 3600 a 0%

3 5 6 8 6 4 12
500, 500,
500, 500,

500

520, 520,
520, 520,

520
2 h 4080 b

520, 520,
520, 520,

520

0.00987 s
(0.00447 s) 4080 0% c

4 6 6 8 6 3 12
500, 360,
220, 180,
380, 720

520, 360,
240, 200,
400, 770

48
min
14 s

3360 a
520, 360,
240, 200,
400, 770

0.00997 s
(0.00326 s) 3360 a 0%

5 6 6 8 7 3 12
500, 360,
220, 180,
380, 720

520, 360,
240, 200,
400, 770

2 h 3000 b
520, 360,
240, 200,
400, 770

0.00908 s
(0.00291 s) 3000 0% c

6 6 6 8 6 4 12
500, 360,
220, 180,
380, 720

520, 360,
240, 200,
400, 770

2 h 3360 b
520, 360,
240, 200,
400, 770

0.00993 s
(0.00575 s) 3360 0% c

7 7 6 8 6 3 12

300, 325,
290, 425,
450, 475,

200

320, 360,
320, 440,
480, 490,

200

2 h 3720 b

320, 360,
320, 440,
480, 490,

200

0.01015 s
(0.00319 s) 3720 0% c

8 7 6 8 7 3 12

300, 325,
290, 425,
450, 475,

200

320, 360,
320, 440,
480, 490,

200

2 h 3360 b

320, 360,
320, 440,
480, 490,

200

0.01250 s
(0.00504 s) 3360 0% c

9 7 6 8 6 4 12

300, 325,
290, 425,
450, 475,

200

320, 360,
320, 440,
480, 490,

200

2 h 3720 b

320, 360,
320, 440,
480, 490,

200

0.01057 s
(0.00566 s) 3720 0% c

a Optimal solution. b The best-known solution from the proposed MILP model. c The %gap between the solution from the heuristic
algorithm and the best-known solution from the MILP model.

In addition, the results from the proposed heuristic algorithm can give valuable
information. For example, from Problems 1–3, all parameters in the problems are the same
except for the number of press machines and ovens. The results of Problem 2 indicate
that if the number of press machines was increased by one from Problem 1, the pressing
process of Problem 1 could be finished ahead of time for 360 min (i.e., the makespan was
reduced from 4080 to 3600 min). However, the results of Problem 3 indicate that increasing
the number of ovens by one from Problem 1 cannot reduce the makespan. The manager
of the company should increase the number of press machines rather than the number of
ovens if he/she wants to reduce the makespan of the pressing process of Problem 1. This is

192



Mathematics 2021, 9, 653

the same in Problems 4–6, and Problems 7–9. Note that if the number of press machines
is increased, the number of cycles that is needed for the demands to be satisfied can be
distributed to more press machines and, as a consequence, all demands can be finished
faster. These show that the proposed 3P-PCB-PH algorithm can also help in deciding which
resources should be increased to reduce the production time.

An example of a solution from the proposed heuristic algorithm is described below,
where the results of Problem 1 are shown in Tables 15 and 16 for the variables xiklpt and
Xpto, which are equal to 1, and in Figures 11 and 12 for the Gantt charts of the press
machines and ovens. These Gantt charts were different from the Gantt charts from the
MILP model (Figures 9 and 10), and this shows that Problem 1 of the large-sized problems
has an alternative optimal schedule. Note that, in Figure 11, each type of panel is finished
as a group, which is preferable in the real manufacturing industry. The makespan of the
overall process was 4080 min and the number of outputs of each panel type was 520, which
satisfied the demand.

Table 15. List of non-zero xiklpt values in the solution of Problem 1 of the large-sized problems using the proposed
3P-PCB-PH algorithm.

Press Machine Non-Zero xiklpt

1 x11211, x11212, x11213, x23214, x23215, x32216, x32217, x43218, x43219, x5121,10, x5121,11
2 x11221, x11222, x23223, x23224, x23225, x32226, x32227, x43228, x43229, x5122,10, x5122,11
3 x11231, x11232, x23233, x23234, x32235, x32236, x32237, x43238, x43239, x5123,10, x5123,11
4 x11241, x11242, x23243, x23244, x32245, x32246, x43247, x43248, x43249, x5124,10, x5124,11
5 x11251, x11252, x23253, x23254, x32255, x32256, x43257, x43258, x51259, x5125,10, x5125,11
6 x11261, x11262, x23263, x23264, x32265, x32266, x43267, x43268, x51269, x5126,10

Table 16. List of non-zero Xpto values in the solution of Problem 1 of the large-sized problems using
the proposed 3P-PCB-PH algorithm.

Press Machine Non-Zero Xpto

1 X111, X121, X131, X141, X151, X161, X171, X181, X191, X1,10,1, X1,11,1
2 X212, X222, X232, X242, X252, X262, X272, X282, X292, X2,10,2, X2,11,2
3 X313, X323, X333, X343, X353, X363, X373, X383, X393, X3,10,3, X3,11,3
4 X411, X421, X431, X441, X451, X461, X471, X481, X491, X4,10,1, X4,11,1
5 X512, X522, X532, X542, X552, X562, X572, X582, X592, X5,10,2, X5,11,2
6 X613, X623, X633, X643, X653, X663, X673, X683, X693, X6,10,3

Figure 11. Gantt chart of the press machines for Problem 1 of the large-sized problems using the proposed 3P-PCB-
PH algorithm.
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Figure 12. Gantt chart of the ovens for Problem 1 of the large-sized problems using the proposed 3P-PCB-PH algorithm.

6. Discussion

This paper presents a MILP model and a 3P-PCB-PH algorithm for solving the pressing
process scheduling. From the numerical experiments, the proposed MILP model is suitable
for the small-sized and medium-sized problems, where the number of binary variables
is less than 30,000. The proposed MILP model tends to cause long computational times
for solving the large-sized problems, where the number of binary variables is greater than
30,000. Furthermore, the running time was significantly increased as the size of the problem
grows because there are a lot of feasible solutions to be verified for optimality due to many
decision variables. However, the proposed MILP model has the benefit that it gives an
optimal solution if one exists. On the other hand, the proposed 3P-PCB-PH algorithm is
suitable for all sizes of problems. It could find an optimal solution for all problems that the
proposed MILP model could find. It also can find the same best makespans as the proposed
MILP model for all problems that the proposed MILP model could not find an optimal
solution. The computational times of the proposed heuristic algorithm seem to be very fast
and are not hugely increased when the size of the problem is increased from small size to
large size. A benefit of the proposed heuristic algorithm is the saving in time to find a good
solution since it used smaller computational times compared with the computational times
of the proposed MILP model.

The proposed MILP model can also be easily extended to be more practical in
the real-life application. For example, in the proposed model, the objective is to min-
imize the makespan of the overall process of the pressing process scheduling, where
the demands must be satisfied. However, the surplus output of each panel type may
be too large. If we also want to enforce that the surplus output of each panel type
should not be too excessive with the main objective makespan, we can add the term

ε
I

∑
i=1

[
K
∑

k=1

L
∑

l=1

P
∑

p=1

T
∑

t=1
xiklpt(maikl)− di

]
to the objective function. The constant ε should be

very small so that it has no effect on minimizing the main objective makespan.

7. Conclusions

This paper presented a new application of a mixed-integer linear programming to the
scheduling of the pressing process in multi-layer PCB manufacturing. In the process, the
panels are inserted into a press machine and then sent into an oven so that the panels are
pressed and heated in the oven. The objective of the scheduling problem was to minimize
the makespan of the overall pressing process. This objective can often imply increasing the
utilization of available resources.

The goal of this study was to present two methods for solving the pressing process
scheduling, i.e., a MILP model which is an exact method and a 3P-PCB-PH algorithm
which is an approximation method. The first method illustrates a possible application of
the integer linear programming that can handle a complicated problem from the real-world
industry. The real data from a PCB company was used to generate the test problems. The
computational results indicated that the proposed MILP model was suitable for small- and
medium-size problems. The proposed MILP model could find an optimal solution for some
large-sized problems and a good feasible solution for the other large-sized problems within
the time limit. The MILP model has an advantage that it can guarantee to find an optimal
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solution if the problem can be solved optimally within the time limit. On the other hand,
the proposed 3P-PCB-PH algorithm could find the optimal solutions and near optimal
solutions within very small computational time. It is more suitable than the proposed
MILP model when the size of the problem is large. Furthermore, the schedule from the
proposed heuristic is preferable in real manufacturing than the schedule from the proposed
MILP model since each type of panel is finished in a single group. Both the proposed MILP
model and 3P-PCB-PH algorithm could be options to provide an optimal schedule for the
pressing process in any PCB industries or could be adapted to other industrial applications
with similar aspects of scheduling.

Some additional constraints can be introduced into the pressing process for further
development. For example, the cycle time depends on each type of panel, one cycle of
a press machine can press more than one type of panel, and some types of panels have
a higher priority or different due date. Adding these factors to the problem would also
be a very challenging task for the future research, but also increase the complexity of
the problem.

The limitations of this paper are that the problem is assumed to have the same size of
press machines and the same size of ovens. In reality, however, a PCB company may have
several sizes of press machines or ovens.
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Abstract: We consider the problem of scheduling n jobs with identical processing times and given
release as well as delivery times on m uniform machines. The goal is to minimize the makespan,
i.e., the maximum full completion time of any job. This problem is well-known to have an open
complexity status even if the number of jobs is fixed. We present a polynomial-time algorithm for the
problem which is based on the earlier introduced algorithmic framework blesscmore (“branch less
and cut more”). We extend the analysis of the so-called behavior alternatives developed earlier for
the version of the problem with identical parallel machines and show how the earlier used technique
for identical machines can be extended to the uniform machine environment if a special condition
on the job parameters is imposed. The time complexity of the proposed algorithm is O(γm2n log n),
where γ can be either n or the maximum job delivery time qmax. This complexity can even be reduced
further by using a smaller number κ < n in the estimation describing the number of jobs of particular
types. However, this number κ becomes only known when the algorithm has terminated.

Keywords: scheduling; uniform machines; release time; delivery time; time complexity; algorithm

1. Introduction

In this paper, we consider a basic optimization problem of scheduling jobs with release
and delivery times on uniform machines with the objective to minimize the makespan.
More precisely, n jobs from the set J = {1, 2, ..., n} are to be processed by m parallel uniform
machines (or processors) from the set M = {1, 2, ..., m}. Job j ∈ J is available from its release
time rj; it needs a continuous (integer) processing time p, which is the time that it needs on a
slowest machine. We assume that the machines in the set M are ordered by their speeds,
the fastest machines first, i.e., s1 ≥ s2 ≥ · · · ≥ sm are the corresponding machine speeds, si
being the speed of machine i. Without loss of generality, we assume that sm = 1, and the
processing time of job j on machine i is an integer p/si. Job j has one more parameter, the
delivery time qj, an integer number which represents the amount of additional time units
which are necessary for the full completion of job j after it completes on the machine. Thus,
notice that the delivery of job j consumes no machine time (the delivery is accomplished
by an independent agent).

Now, we define a feasible schedule S as a function that assigns to each job j a starting
time tS

j and a machine i from the set M such that, for any job j, we have tS
j ≥ rj and

tS
j ≥ tS

k + p/si holds for any job k scheduled before job j on the same machine. Note that
the first inequality requires that a job cannot start its processing before before the given
release time, and the second one describes the constraint that each machine can process
only one job at any time. The completion time of job j in the schedule S is the time moment
when the processing of job i is complete on the machine i to which it is assigned in the
schedule S, i.e., cS

j = tS
j + p/si and the full completion time of job j in the schedule S is

CS
j = cS

j + qj (the full completion time of job j takes into account the delivery time of that
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job, whereas the completion time of job j does not depend on its delivery time). The goal
is to determine an optimal schedule S being feasible and minimizing the maximum full job
completion time of any job

Cmax(S) = max
j
Cj

or the makespan.
The studied multiprocessor optimization problem, described below, is commonly ab-

breviated as Q|pj=p, rj, qj|Cmax (its version with identical parallel machines is abbreviated
as P|pj=p, rj, qj|Cmax, the first field specifies the machine environment, the second one the
job parameters, and the third one the objective function).

It is well-known that there is an equivalent (perhaps more traditional) formulation
of the above described problem, in which, instead of the delivery time qj, every job j has
its due-date dj. The lateness of job j in the schedule S is LS

j = cS
j − dj. Then, the objective

becomes to minimize the maximum job lateness Lmax, i.e., find a feasible schedule SOPT in
which the maximum job lateness is not more than in any other feasible schedule, i.e., SOPT
is an optimal schedule. The equivalence is easily established by associating with each job
delivery time a corresponding due-date, and, vice-versa, see e.g., Bratley et al. [1]). The
version of the problem with due-dates with identical and uniform machine environments
are commonly abbreviated as P|rj, dj|Lmax and Q|rj, dj|Lmax, respectively.

For the problem considered, each machine from a group of parallel uniform machines
is characterized by its own speed, independent from a particular job that can be assigned to
it, unlike a machine from a group of unrelated machines whose speed is job-dependent. Be-
cause of the uniform speed characteristic, scheduling problems with uniform machines are
essentially easier than scheduling problems with unrelated machines, whereas scheduling
problems with identical machines are easier than those with uniform ones.

The general problem of scheduling jobs with release and delivery times on uni-
form machines is well-known to be strongly NP-hard as already the single-machine ver-
sion is strongly NP-hard. However, if all jobs have equal processing times, the problem
can be polynomially solved on identical machines. The version on uniform machines
Q|pj=p, rj, qj|Cmax is a long-standing open problem even in case the number of machines
m is fixed. In this paper, we present a polynomial-time algorithm for the uniform machine
environment which finds an optimal solution to the problem if for any pair of jobs i and j
with qi > qj and rj > ri, we have

qi − qj ≥ rj − ri (1)

The proposed algorithm relies on the blesscmore (“branch less, cut more”) frame-
work for the identical machine case P|pj=p, rj, qj|Cmax from [2] (the blesscmore algorithmic
concept was formally introduced later in [3]). A blesscmore algorithm generates a solu-
tion tree similar to a branch-and-bound algorithm, however, the branching and cutting
criteria are based on a direct analysis of some structural properties of the problem under
consideration without using lower bounds. The algorithmic framework, on which the
blesscmore algorithm that we describe here is based, takes an advantage of some nice struc-
tural properties of specially created schedules which are analyzed in terms of the so-called
behavior alternatives from [2]. The framework resulted in an O(qmaxmn log n + O(mκn))
time algorithm with qmax being the maximum delivery time of a job and κ < n being a
parameter which becomes known only after the algorithm has terminated. Each schedule is
easily created by a well-known greedy algorithm commonly referred to as Largest Delivery
Time heuristic (LDT-heuristic for short): iteratively, among all released jobs, it schedules
one with the largest delivery time. The algorithm from [2] carries out the enumeration of
LDT-schedules (ones created by the LDT-heuristic)—it is known that there is an optimal
LDT-schedule. Based on the established properties, the set of LDT-schedules is reduced to
a subset of polynomial size which yields a polynomial time overall performance. Although
the LDT-heuristic applied to a problem instance with uniform machines does not provide
the desirable properties, it can be modified to a similar method that takes into account
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the uniform speed characteristic. While scheduling identical machines, the minimum
completion time of each next selected job is always achieved on the machine next to the
one to which the previous job was assigned. With uniform machines, this is not necessarily
the case, for example, the next machine can be much slower than the current one. Hence,
the time moment at which the job will complete on each of the machines needs to be
additionally determined and then this job can be assigned to a machine on which the above
minimum is reached. In this paper, we use an adaptation of the LDT-heuristic, which
will be referred to as the LDTC-heuristic, and a schedule created by the later heuristic
will be referred to as an LDTC-schedule. Instead of enumerating the LDT-schedules (as
in [2]), the algorithm proposed here enumerates LDTC-schedules. Some properties for
the identical machine environment which do not immediately hold for uniform machines
are reformulated in terms of uniform machines, which allows for maintaining the basic
framework from [2], which, as suggested earlier, turned out to be sufficiently flexible.

Similarly to the existence of an optimal LDT-schedule for the identical machine envi-
ronment, there exists an optimal LDTC-schedule for the uniform machine environment.
The complete enumeration of the LDTC-schedules is avoided by the generalization of nice
properties of LDT-schedules to LDTC-schedules for uniform machines. These properties
are obtained via the analysis of the so-called behavior alternatives from [2] that are general-
ized for uniform machines. The algorithm presented in this paper in the worst case requires
O(γm2n log n) steps with γ being any of the number n of jobs or the maximum delivery
time qmax of a job. In fact, n can be replaced by a smaller magnitude κ, the number of special
types of jobs; this is the same parameter κ as for the algorithm from [2], which becomes
known only when the algorithm halts. The running time of the proposed algorithm is
worse than that of the one from [2], in part because of the cost of the LDTC-heuristic which
is repeatedly used during the solution process.

The remainder of this paper is as follows: in Section 2, we give a brief literature review.
Section 3 presents some necessary preliminaries. Then, the basic algorithmic framework
is given in Section 4. Section 5 discusses the performance analysis of the developed
blesscmore algorithm. Section 6 contains a final discussion and concluding remarks.

2. Literature Review

If the job processing times are arbitrary, then the problem is known to be strongly NP-
hard, even if there is only a single machine 1|rj, dj|Lmax [4]. McMahon & Florian [5] gave an
efficient branch and bound algorithm, and Carlier [6] later adopted it for the version with
jobs delivery times 1|rj, qj|Cmax (a solution to the latter version can immediately be used for
the calculation of lower bounds for a more general job shop scheduling problem). For the
single machine case, Baptiste gave an O(n7) algorithm for the problem 1|rj, pj=p|∑ Tj [7]
and also an algorithm of the same complexity for the problem 1|rj, pj=p|∑ wjUj [8] of
minimizing the weighted number of late jobs. Chrobak et al. [9] have derived an algo-
rithm of improved complexity O(n5) for the case of unit weights, i.e., for the problem
1|rj, pj=p|∑ Uj. Later, Vakhania [10] gave an O(n2 log n) blesscmore algorithm for this
problem. Note that, for the problem 1|rj, pj, pmtn|∑ Uj with arbitrary processing times
and allowed preemptions, Vakhania [11] derived an O(n3 log n) blesscmore algorithm.

One may consider a slight relaxation of problems 1|rj, dj|Lmax, P|rj, dj|Lmax and
Q|rj, dj|Lmax in which one looks for a schedule in which no job completes after its due-date.
Such a feasibility setting with a single machine was considered by Garey et al. [12]. They
have proposed an O(n2 log n) algorithm that has further been improved to an O(n log n)
one by using a very sophisticated data structure. This paper uses the concept of a so-called
forbidden region describing an interval in which it is forbidden to start any job in a feasible
schedule. Later, Simons and Warmuth [13] have constructed an O(n2m) time algorithm
for the feasibility setting with the identical machine environment also using the concept of
forbidden regions. (It can be mentioned that the minimization version of the problem can
be solved by applying an algorithm for the feasibility problem by repeatedly increasing the
due-dates of all jobs until a feasible schedule with the modified due dates is found. Using
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binary search makes such a reduction procedure more efficient and reduces the reduction
cost to O(log(np/m)).)

Dessousky et al. [14] considered scheduling problems on uniform machines with
simultaneously released jobs (i.e., with rj = 0 for every job j) and with different objective
criteria. They proposed fast polynomial-time algorithms for these problems, in particular,
for the criterion Lmax. In fact, the LDTC-heuristic is an adaptation of an optimal solution
method that the authors in [14] constructed for the criterion Lmax.

For a uniform machine environment with allowed preemptions (pmtn), the prob-
lem Q|rj, pmtn|Cmax is polynomially solvable even for arbitrary processing times [15],
while a polynomial algorithm for the problem Q|rj, pj=p, pmtn|∑ Cj with minimizing total
weighted completion time in the case of equal processing times has been given in [16]. The
case of unrelated machines is very hard. A polynomial algorithm exists for the problem
R|rj, pmtn|Lmax with allowed preemptions and minimizing maximum lateness, even for
the case of arbitrary processing times [17]. If preemptions are forbidden, Vakhania et al. [18]
gave a polynomial algorithm for the case of minimizing the makespan when only two
processing times p and 2p are possible (i.e., for the problem R|p ∈ {p, 2p}|Cmax. Note that
the case of two arbitrary processing times p and q is known to be NP-hard [19]. For the
special case of identical parallel machines, there exist several works for the same setting as
considered in this paper but for more complicated objective functions regarding the com-
plexity status. In particular, the problems P|rj, pj=p|∑ wjCj of minimizing the weighted
sum of completion times [20] and P|rj, pj=p|∑ Tj of minimizing total tardiness [21] can be
polynomially solved by a reduction to a linear programming problem. In [3], Vakhania pre-
sented an O(n3 log n) blesscmore algorithm for the problem P|rj, pj=p|∑ Uj of minimizing
the number of late jobs. His blesscmore algorithm uses a solution tree, where the branching
and cutting criteria are based on the analysis of behavior alternatives. Moreover, the prob-
lem P|rj, pj=p|∑ f j(Cj) can also be polynomially solved for the case that f j is an arbitrary
non-decreasing function such that the difference fi − f j is monotonic for any indices i and
j [22]. The authors also applied a linear programming approach. An overview of selected
solution approaches for some related scheduling problems with equal processing times
is given in Table 1. It can also be mentioned that a detailed survey on parallel machine
scheduling problems with equal processing times has been given in [23].

Table 1. Overview of solution approaches for related problems with equal processing times.

Problem Approach Reference

1|rj, pj=p|∑ Tj dynamic programming O(n7) Baptiste [7]
1|rj, pj=p|∑ wjUj dynamic programming O(n7) Baptiste [8]

1|rj, pj=p|∑ Uj
blesscmore algorithm

O(n2 log n) Vakhania [10]

P|rj, pj=p|∑ wjCj linear programming Brucker & Kravchenko [20]
P|rj, pj=p|∑ Tj linear programming Brucker & Kravchenko [21]

P|rj, pj=p|∑ Tj
blesscmore algorithm

O(n3 log n), Vakhania [3]

behavior alternatives
Q|rj, pj=p, pmtn|∑ Cj linear programming Kravchenko & Werner [16]

3. Preliminaries

This section contains some useful properties, necessary terminology, and concepts,
some of which were introduced in [2] for identical machines.

LDTC-heuristic. We first describe the LDTC-heuristic, an adaptation of the LDT-
heuristic for uniform machines. As earlier briefly noted, unlike an LDT-schedule, an
LDTC-schedule is not defined by a mere permutation of the given n jobs since the machine
to which the next selected job is assigned depends on the machine speed. Starting from
the minimal job release time, the current scheduling time is iteratively set as the minimum
release time among all yet unscheduled jobs. Iteratively, among all jobs released by the
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current scheduling time, the LDTC-heuristic determines one with the largest delivery
time (a most urgent one) and schedules it on the machine on which the earliest possible
completion time of this job is attained (ties can be broken by selecting the machine with the
minimum index):

Note that, in an LDTC-schedule S, a machine will contain an idle-time interval (a gap)
if and only if there is no unscheduled job released by the current scheduling time. The
running time of the modified heuristic is the same as that of the LDT-heuristic with an
additional factor of m due to the machine selection at each iteration (which is not required
for the uniform machine environment), which results in the time complexity O(mn log n).

Example 1. We shall illustrate the basic notions and the algorithm described here on a small
problem instance with 10 jobs and two uniform machines with s1 = 2 and s2 = 1. The processing
time of all jobs (on machine 2) is 20. The rest of the parameters of these jobs are defined as follows:
r1 = r2 = 0, r3 = r4 = 1, r5 = r6 = r7 = 23 and r8 = r9 = r10 = 45. q1 = q2 = 0,
q3 = q4 = 51, q5 = q6 = q7 = 75 and q8 = q9 = q10 = 54. The LDTC-schedule obtained by the
LDTC-heuristic for the problem instance of the above example is depicted in Figure 1. In general,
we denote the LDTC-schedule obtained by the LDTC-heuristic for the initially given instance of
problem Q|pj=p, rj, qj|Cmax by σ (as we will see in the following subsection, we may generate
alternative LDTC-schedules by iteratively modifying the originally given problem instance).

Machine 1 Machine 2

70

10 65

9

60

8

50

7 45

43

6

40

5

30

4
23

0

21

3

20

2

10

1

1

0

Figure 1. Initial LDTC schedule σ.
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The next property of an LDTC-schedule easily follows from the definition of the
LDTC-heuristic and the equality of the job processing times (job j is said to have the ordinal
number i in schedule S if it is the ith scheduled job in that schedule S):

Property 1. If in an LDTC-schedule S, job j is scheduled after job i, i.e., the ordinal number of job
j in S is larger than that of job i, then cS

j ≥ cS
i .

Next, we give another easily seen important property of an LDTC-schedule S on
which the proposed method essentially relies. Let A be a set of, say k jobs, all of which
being released by time moment t, and let π be any permutation of k jobs all of them
being also released by time t (recall that all the jobs have equal length). Let, further, S(A)
be a partial LDTC-schedule constructed for the jobs in the set A, and let S(π) be a list
schedule constructed for the permutation π (it includes the jobs according to the order in
permutation π, leaves no avoidable gap, and assigns each job to the machine on which it
will complete sooner breaking ties again by selecting the machine with the minimum index).
The following property, roughly, states that both above schedules are indistinguishable if
the delivery times of the jobs are ignored:

Property 2. The completion time of every machine in both schedules S(A) and S(π) is the same.
Moreover, the ith scheduled job in the schedule S(A) starts and completes at the same time as the
ith scheduled job on the corresponding machine in the schedule S(π).

The above property also holds for a group of identical machines and is helpful for
the generalization of the earlier results for identical machines from [2] to uniform ma-
chines. Roughly, ignoring the job release times, the property states that two list schedules
constructed for two different permutations with the same number of jobs have the same
structure. Although the starting and completion times of the jobs scheduled in the same
position on the corresponding machine are the same in both schedules, the full completion
times will not necessarily be the same (this obviously depends on the delivery times of
these jobs).

A block. A consecutive independent part in a schedule is commonly referred to
as a block in the scheduling literature. We define a block in an LDTC-schedule S as the
largest fragment (a consecutive sequence of jobs) of that schedule such that, for each two
successively scheduled jobs i and j, job j starts no later than job i finishes (jobs i and j
can be scheduled on the same or different machines according to the LDTC-heuristic). It
follows that there is a single block that starts schedule S and there is also a single block that
finishes this schedule. If these blocks coincide, then there is a single block in the schedule
S; otherwise, each next block is “separated” from the previous one with gaps on each of
the machines. Here, a zero length gap between jobs i and j will be distinguished in case
job j is scheduled at time rj = cS

i on the same machine as job i (it immediately succeeds
job i on this machine). It is easily observed that the schedule given in Figure 1 consists of a
single block (note that the order in which the jobs are included in this schedule coincides
with the enumeration of these jobs).

A block B (with at least two elements) possesses the following property that will
be used later. Suppose the ιth scheduled job j (not the last scheduled job of the block) is
removed from that block and the LDTC-heuristic is applied to the remaining jobs of the
block. As a consequence, in the resulting (partial) schedule, the processing interval of
the job scheduled as the ιth one overlaps with the processing interval of job j in the block
B earlier.

Some additional definitions are required to specify how the proposed algorithm
creates and evaluates the feasible schedules. At any stage of the execution of the algorithm,
independently whether a new LDTC-schedule will be generated or not, depends on specific
properties of the LDTC-schedules already generated by that stage. The definitions below
are helpful for the determination of these properties.
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An overflow job. In an LDTC-schedule S, let o be a job realizing the maximum full
completion time of a job, i.e.,

Co(S) = Cmax(S), (2)

and let B(S) be the critical block in the schedule S, i.e., the block containing the earliest
scheduled job o satisfying Equation (2). The overflow job o(S) in the schedule S is the last
scheduled job in the block B(S) satisfying Condition (2), i.e., one with the maximum Co(S).
It can be easily verified that in the schedule in Figure 1, job 7 is the overflow job with
Cmax = C7 = 50 + 75 = 125 (the full completion time of the latest completed job 10 is
70 + 54 = 124).

A kernel. Next, we define an important component in an LDTC-schedule S defined
as its fragment containing the overflow job o = o(S) such that the jobs scheduled before
job o in the block B(S) have a delivery time not smaller than qo (we will write o instead
of o(S) when this causes no confusion). This sub-fragment of the block B(S) is called its
kernel and is denoted by K(S). The kernel in the schedule in Figure 1 is the fragment of
that schedule constituted by the jobs 5, 6, and 7.

Intuitively, on the one hand, the kernel K(S) is a critical part in a schedule S, and, on
the other hand, it is relatively easy to arrange the kernel jobs optimally. In fact, we will
explore different LDTC-schedules identifying the kernel in each of these schedules. We
will also relate this kernel to the kernels of the earlier generated LDTC-schedules. We need
to introduce a few more definitions.

An emerging job. Suppose that a job j of kernel K(S) is pushed by a non-kernel job e
scheduled before that job in the block B(S), that is, the LDTC-heuristic would schedule job
j earlier if job i was forced to be scheduled after job j. If qe < qo, then job e is called a regular
emerging job in the schedule S, and the latest scheduled (regular) emerging job (the one
closest to job o) is called the delaying emerging job. The emerging jobs in the schedule in
Figure 1 are jobs 1, 2, 3, and 4, and job 4 is the delaying emerging job (in general, there may
exist a non-kernel non-emerging job scheduled before the kernel K(S) in the block B(S)).

The following optimality condition can be established already in the initial LDTC-
schedule σ.

Lemma 1. If the initial LDTC-schedule σ contains a kernel K such that no job of that kernel is
pushed by an emerging job, then this schedule is optimal.

Proof. Using an interchange argument, we show that no reordering of the jobs of the kernel
K can be beneficial. First, we note that the first job j of kernel K must be scheduled on
machine 1 since otherwise, it would have been pushed by the corresponding job scheduled
on that machine. But this job cannot exist since, by the condition of the lemma, it cannot be
pushed by an emerging job (and if it is not an emerging job, it should have been a part of
kernel K). Since machine 1 will finish job j at least as early as any other machine, the full
completion of job j cannot be reduced.

Let i and j be two successively scheduled jobs from the kernel K, α and β be the
machines to which jobs i and j are assigned, respectively, in the schedule σ. Without loss
of generality, assume that α < β as otherwise it is easy to see that interchanging jobs i
and j cannot give any benefit. We let σ′ be the schedule obtained from schedule σ by
interchanging jobs i and j.

Assume first that jobs i and j are among the first m (or less) scheduled jobs from the
kernel K. By the condition of the lemma, both jobs start at their release time in the schedule
σ. We show that interchanging jobs i and j cannot be beneficial by establishing that

max{Cσ
i , Cσ

j } ≤ max{Cσ′
i , Cσ′

j }.
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Since Cσ
i < Cσ

j , max{Cσ
i , Cσ

j } = Cσ
j , hence we need to show that max{Cσ′

i , Cσ′
j } ≥ Cσ

j .

Since Cσ′
j ≤ Cσ

j , it will suffice to show that

Cσ′
i ≥ Cσ

j . (3)

We have
Cσ′

i = ri + p/sβ + qi

and
Cσ

j = rj + p/sβ + qj.

However, by Condition (1), qi − qj ≥ rj − ri, which establishes Inequality (3).
Suppose now that jobs i and j are not among the first m scheduled jobs of the kernel

K. If by the current scheduling time both jobs are released, then by a similar interchange
argument Inequality (3) can easily be established (without using Condition (1)).

It remains to consider the case when job j is released within the execution interval of
job i, hence tσ

j = rj. We have

Cσ′
i − Cσ

j = qi − qj + tσ′
i − tσ

j = (qi − qj)− (rj − tσ′
i ).

Again, by Condition (1), qi − qj ≥ rj − ri ≥ rj − tσ′
j and Inequality (3) again holds.

Applying repeatedly the above interchange argument to all pairs of jobs from the
kernel K, we obtain that no rearrangement of the jobs of kernel K may result in a maximum
full job completion time less than that of the overflow job o(σ), i.e., the schedule σ is
optimal.

Constructing Alternative LDTC-Schedules

Due to Lemma 1, from here on, it is assumed that the condition in this lemma is
not satisfied, i.e., there exists an emerging job e in the schedule S (note that e ∈ B(S)
as otherwise job e may not push a job of the kernel K(S)). Since job e is pushing a job
of kernel K(S), the removal of this job may potentially decrease the start and hence the
full completion time of the overflow job o(S). At the same time, note again that, by the
definition of a block, the omission of a job not from the block B(S) may not affect the
starting time of any job from the block B(S). This is why we restrict here our attention
to the jobs of the block B(S). (Here, we only mention that later we will also apply an
alternative notion of a passive emerging job, and then the notion “emerging job” is used
either for a regular or a passive emerging job; until then, we use “emerging job” for a
“regular emerging job”).

Clearly, no emerging job can actually be removed as the resultant schedule would
be infeasible. Instead, to restart the jobs in the kernel K(S) earlier, an emerging job e is
applied to this kernel, i.e., it is forced to be rescheduled after all jobs of the kernel K(S)
whereas any job, scheduled after the kernel K(S) in the schedule S, is maintained to be
scheduled after that kernel. The LDTC-heuristic is newly applied with the restriction that
the scheduling of job e and all jobs, scheduled after kernel K(S) in schedule S is forbidden
until all jobs of kernel K(S) are scheduled. The resultant LDTC-schedule is denoted by Se
(the so-called complementary schedule or a C-schedule) (Such a schedule generation technique
was originally suggested by McMahon and Florian [5] for the single-machine setting.)

By Lemma 1, the kernel K(S), a fragment of the LDTC-schedule S considered as an
independent LDTC-schedule is optimal if it possesses no emerging job. Otherwise, the jobs
of the kernel K(S) are pushed by the corresponding emerging jobs. Some of these emerging
jobs can be scheduled after the kernel K(S) in an optimal complete schedule SOPT. Such
a rescheduling is achieved by the creation of the corresponding C-schedules (as we will
see in Lemma 2, it will suffice to consider only C-schedules, i.e., SOPT is a C-schedule). In
Figure 2, a complementary schedule σ4 is depicted in which the delaying emerging job 4 is
rescheduled after all jobs of kernel K(σ) (where σ is the initial LDTC-schedule of Figure 1).
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The application of an emerging job has two “opposite” effects. On the positive side,
since the number of jobs scheduled before the kernel K(S) in the schedule Se is one less
than that in the schedule S, the overflow job o(S) in the schedule Se will be completed
earlier than it was completed in the schedule S; likewise, the completion time of that job,
which is scheduled as the latest one of the kernel K(S) in the schedule Se, will be smaller
than the completion time of the job o(S) in the schedule S. Hence, the application of an
emerging job gives a potential to improve schedule S. On the negative side, it creates a
new gap within the former execution interval of job e or at a later time moment before
kernel K(S) (see Lemma 1 in [2] for a proof for the case of identical machines, the uniform
machine case can be proved similarly). Such a gap may enforce a right-shift (delay) of
the jobs included after job e in the schedule Se; (for example, a new gap “[20–23]” that
arises for machine 1 in the C-schedule σ4 in Figure 2 enforces a right-shift of jobs 8 and 10
included behind job 4). Thus, roughly, the C-schedule Se favors the kernel K(S) but creates
a potential conflict for later scheduled jobs (jobs 8 and 10 in the above example).
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Figure 2. The C-schedule σ4.
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4. The Basic Algorithmic Framework

In this section, we give the basic skeleton of the algorithm in this paper and prove
its correctness. The schedule SOPT is characterized by a proper processing order of the
emerging jobs scheduled in between the kernels. Starting with the initial LDTC-schedule σ,
an emerging job in the current LDTC-schedule is applied and a new C-schedule is created;
in this schedule, the kernel is again determined. The same operation is iteratively repeated
as long as the established optimality conditions are not satisfied. As we will show later, it
will suffice to enumerate all C-schedules to find an optimal solution to the problem.

We associate a complete feasible C-schedule with each node in a solution tree T, the
initial LDTC-schedule being associated with the root. Aiming to avoid a brutal enumeration
of all C-schedules, we carry out a deeper study of the structure of the problem and some
additional useful properties of LDTC-schedules. In fact, our solution tree T consists of a
single chain of C-schedules. We will refer to a node of the tree as a stage (since each node
represents a particular stage in the algorithm with the corresponding LDTC-schedule). We
let Th = (S0, ..., Sh) be the sequence of C-schedules generated by stage h. Thus, S0 is the
initial LDTC-schedule, and the schedule Sh of stage h > 0, the immediate successor of
schedule Sh−1, is obtained by one of the extension rules as described below.

In the schedule Sh, the overflow job o(Sh), the delaying emerging job l, and the kernel
K(Sh) are determined. Using the normal extension rule, we let Sh+1 := Sh

l , where l is the
delaying emerging job in the schedule Sh (we may observe that the schedule σ4 in Figure 2
is obtained from the schedule σ by the normal extension rule). Alternatively, the schedule
Sh+1 is constructed from the schedule Sh by the emergency extension rule as described in the
following subsection.

4.1. Types of Emerging Jobs and the Extended Behavior Alternatives

A marched emerging job. An emerging job may be in different possible states. It is
useful to distinguish these states and treat them accordingly. Suppose that e is an emerging
job in the schedule Sg, and it is applied by stage h, h > g (in a predecessor-schedule of
schedule Sh). Then, job e is called marched in the schedule Sh if e ∈ B(Sh) (job 4 is marched
in the schedule σ4 in Figure 2). Intuitively, the existence of a marched job in the schedule Sh

indicates an “interference” of the kernel K(Sh) with an earlier arranged part of the schedule
preceding that kernel. In our example, it is easy to see that the kernel K(σ4) consists of
jobs 8, 9, and 10, with o(σ4) = 10 and with C10 = 73 + 54 = 127. Here, the marched job 4
has “provoked” the rise of the new kernel, where “the earlier arranged part” includes the
kernel K(σ) of the initial LDTC-schedule σ in Figure 1.

A stuck emerging job. Suppose that job e is marched in the schedule Sh and E(Sh) =
∅, where B(Sh) is a non-primary block. Then, job e is called stuck in the schedule Sh

if either it is scheduled before job o(Sh) or e = o(Sh) (observe that any job stuck in the
schedule Sh belongs to the kernel K(Sh)). In Figure 3, the C-schedule σ4,4 obtained from
the C-schedule σ4 by the application of the delaying emerging job 4 is depicted. Job 4
becomes the overflow job in the schedule σ4,4 (with C4(σ4,4) = 75 + 51 = 126) and, hence,
it is stuck in this schedule.

Block evolution in the solution tree T. Although E(Sh) = ∅, since B(S) is a non-
primary block, a “potential” regular emerging job might be “hidden” in some block pre-
ceding block B(Sh), in the schedule Sh. In general, a block in the schedule Sh can be a part
of a larger block from the schedule Sg for some g < h. Recall that the application of an
emerging job e in a C-schedule S yields the raise of a new gap in the C-schedule Se. As it
can be straightforwardly seen, this can lead to a separation or to a splitting of the critical
block B(S) into two (or possibly even more) new blocks. Likewise, since job e may push the
following jobs in the schedule Se because of the forced right-shift of these jobs, two or more
blocks may merge forming a bigger block consisting of the jobs from the former blocks.

We will refer to blocks from two different C-schedules as congruent if both of them
are formed by the same set of jobs. A block in a C-schedule, which is congruent to a block
from the initial LDTC-schedule, will be referred to as a primary block. Observe that a
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non-primary block may arise because of either block splitting or/and block merging and
that all blocks in the initial LDTC-schedule are primary.

If the block B arises as a result of an application of an emerging job e, then this block
is said to be a non-primary block of job e, and the latter job is said to be the splitting job of B.
Note that, since the application of an emerging job does not necessarily lead to a splitting
of a block, a non-primary block of job e may contain some other emerging jobs which have
already been applied (recall that, before each application of an emerging job, the current
release time of this job has to be increased accordingly; e.g., if job e is applied ι times, its
release time is modified ι times).
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Figure 3. The C-schedule σ4,4.

In the following, we call the blocks which arose after the splitting of one particular
block as the direct descendants of this block (the latter block is called the direct predecessor
of the former ones). Moreover, if the block B ∈ S is the direct predecessor of the blocks
B1, ..., Bk, then the inclusion B ⊆ B1 ∪ ... ∪ Bk holds, but not the opposite one (due to a
possible merging of blocks).

Recurrently, a descendant of a block is its direct descendant, since any descendant of
a descendant of a block is obviously also a descendant of the latter block. Moreover, if
a block is a descendant of another block, then the latter one is called a predecessor of the
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former block. Subsequently, we call two or more blocks relative if they possess at least one
common predecessor block.

Returning to our example, the primary block from the schedule σ in Figure 1 is split
into its two direct descendant blocks with the jobs 1, 2, 3 and 5, 6, 7, 4, 8, 9, 10, respectively,
in the schedule σ4 in Figure 2. The splitting job is the marched job 4. The first block in the
schedule σ4 is congruent to the first block in the schedule σ4,4 in Figure 3. The second block
in the schedule σ4 is further split into two blocks in the schedule σ4,4, and the splitting job
is again job 4. The third block in the schedule σ4,4 (consisting of the jobs 8, 9, 10, and 4 is a
descendant of the primary block in the schedule σ.

A passive emerging job. A passive emerging job e in the schedule Sh is a (“hidden”)
regular emerging job from the schedule Sg, i.e., job e belongs to a block from the schedule
Sg, relative to block B(Sh) (preceding this block), such that qe < qo(Sh). For example, in the
schedule σ4 in Figure 2, the passive emerging jobs are 1, 2, and 3, and in the schedule σ4,4
in Figure 3, the passive emerging jobs are 1 and 2.

Extended behavior alternatives. Now, we define two extended behavior alternatives,
which, together with the five basic behavior alternatives, were introduced earlier in [2]
(Section 2.3). Suppose that there exists no regular emerging job in the C-schedule S (i.e., the
block B(S) starts with the kernel K(S)), and there is no stuck job in this schedule. Then, we
say that an exhaustive instance of alternative (a) occurs in the schedule S which we abbreviate
by EIA(a). If now there exists a stuck job in the schedule S, then an extended instance of
alternative (b) with this job in the schedule S (abbreviated EIA(b)) is said to occur (there may
exist more than one job stuck in the schedule Sh). We easily observe that in the schedule
σ4,4 in Figure 3, an EIA(b) with job 4 arises.

The first above behavior alternative immediately yields an optimal solution, and the
second one indicates that some rearrangement of the already applied emerging jobs might
be required. The first and the second behavior alternatives, respectively, are treated in the
following lemma and in the next subsection, respectively.

Lemma 2. A C-schedule Sh is optimal if an EIA(a) in it occurs.

Proof. By the condition, there exists no stuck job in the schedule Sh. This implies that
none of the jobs of the kernel K(Sh) can be scheduled at some earlier time moment without
causing a forced delay of a more urgent job from this kernel, and the lemma can easily be
proved by an interchange argument.

4.2. Emergency Extension Rule

Throughout this subsection, assume that there arises an EIA(b) with job e ∈ B(Sh) in
the schedule Sh (this job is stuck in that schedule) and there exists a passive emerging job
in schedule Sh. We let e be the latest applied job stuck in the schedule Sh, and let l be the
latest scheduled passive emerging job in that schedule. By the definition of job l, there
is a schedule Sg, a predecessor of schedule Sh in the solution tree T such that e ∈ B(Sg)
and l ∈ B(Sg). Although jobs l and e belong to different blocks in the schedule Sh, the
corresponding blocks can be merged by reverting the application(s) of job e. This can
clearly be accomplished by restoring the corresponding earlier release time of job e (recall
that the release time of an emerging job is increased each time it is applied). Once these
blocks are merged, job l becomes a regular emerging job and, hence, it can be applied.

Denote by r the release time of an emerging job e before it is applied to a kernel K.
Then, we say that job e is revised (for the kernel K) if it is sequenced back before the kernel
K; this means that we reassign the value r to its release time and apply the LDTC-heuristic.

In more detail, let B be a block relative to B(Sh) in the schedule Sh containing job
l. Now, B and B(Sh) are different blocks and, in addition, there also might exist a chain
B1, ..., Bk−1 of succeeding (relevant) blocks between the two blocks B and B(Sh) in this
schedule Sh. Let B0 = B and Bk = B(Sh). First, the blocks Bk−1 and Bk are merged by
reverting the application of the corresponding emerging job. Then, the resulting block
is similarly merged with block Bk−2, and so on. In general, to merge the block B′ with
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its successive (relative) block B′′, the corresponding release time of one of the currently
applied jobs scheduled in block B′′ (which are scheduled between the jobs of the two blocks
B′ and B′′ before the merging is applied) is restored, i.e., this job is revised.

According to our definition, the revision of the splitting job of the two blocks B′ and
B′′ will lead to a merging of these two blocks. Note also that the revision of any other
applied emerging job, which is scheduled in the block B′′, will also lead to this effect.
Among all such jobs with the largest delivery time, the latest scheduled one in block B′′

will be referred to as the active splitting job for the blocks B′ and B′′.
The blocks Bk−1 and Bk are merged by the revision of the active splitting job of these

two blocks which is scheduled in block Bk. In a similar way, the active splitting job of
the block Bk−2 is revised in order to merge the block Bk−2 with the block obtained earlier
and so on, and this process continues until all blocks from the chain B0, B1, ..., Bk−1, Bk
are merged.

Observe that the active splitting job in the schedule σ4,4 in Figure 3 is job 4. Its revision
yields the merging of the three blocks from this schedule into a single primary block of the
schedule σ of Figure 1.

We denote the resultant merged block by B(l) (this block, ending with the jobs from
block B(Sh), can, in general, be non-primary), and we will refer to the above described
procedure as the chain of revisions for the passive emerging job l. Note that the chain of
revisions is accomplished only if, besides a passive emerging job l, there exists a stuck job
e. In addition, observe that, although this procedure somewhat resembles the traditional
backtracking, it is still different as it keeps untouched the “intermediate” applications that
could have been earlier carried out between the reverted applications.

Let Revl,e(Sh) be the C-schedule, obtained from schedule Sh by the chain of revisions
for job l (here e is the corresponding stuck job). Observe that job l changes its status from
a passive to a regular emerging job in this schedule, i.e., it is activated in the C-schedule
Revl,e(Sh). The emergency extension rule applies job l in the schedule Revl,e(Sh) to the
kernel K(Revl,e(Sh)), setting Sh+1 := (Revl,e(Sh))l .

In the schedule σ4,4 in Figure 3, we have l = 2 and e = 4; the C-schedule Rev2,4(σ4,4)2
is represented in Figure 4 (which turns out to be an optimal schedule for the problem
instance of our example.

4.3. The Description of the Algorithm and Its Correctness

We give the following Algorithm 1 and prove its correctness:

Algorithm 1 Blesscmore Algorithm

Step 1: Set h := 0 and Sh := σ.

Step 2: If the condition of Lemma 1 holds, then return the schedule σ and stop.

Step 3: Set h := h + 1.

Step 4: { iterative stopping rules } If in the schedule Sh: either (i) there exists no regular
emerging job and no job from block B(Sh) is stuck, or (ii) there is neither regular nor
passive emerging job (there may exist a stuck job in block B(Sh)), or (iii) there occurs an
EIA(a), then return a schedule from the tree T with the minimum makespan and stop;

Step 5: { normal extension rule }: if in the schedule Sh, there occurs no EIA(b), then
Sh+1 := Sh

l , where l is the regular delaying emerging job else
{ emergency extension rule } if in the schedule Sh there occurs an EIA(b), then Sh+1 :=
Revl,e(Sh))l , where l is the latest scheduled passive emerging job, and e is the latest applied
stuck job in schedule Sh.

Step 6: goto Step 3.
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Figure 4. An optimal C-schedule Rev2,4(σ4,4)2.

We give the final illustration of the algorithm for our example. At Step 1, we have
S0 = σ (Figure 1). Since the condition at Step 2 is not satisfied, h := 1, and the normal
extension rule is used to generate the C-schedule S1 := σ4 in Figure 2. Then, similarly, the
normal extension rule is used to generate the C-schedule S2 = σ4,4 in Figure 3. Since, in
the latter schedule S2, an EIA(b) with job 4 occurs, this job is revised and an alternative
C-schedule S3 := Rev2,4(σ4,4)2 after the chain of revisions for the passive emerging job 2 is
created. The kernel K(S3) of this schedule consists of jobs 8, 9, and 10 (as that of schedule
S1) with o(S3) = 10 and L10(S3) = 65 + 54 = 119. This is the optimal makespan: There is
neither a regular emerging job nor a stuck job in the C-schedule S3. Hence, the stopping
rule (i) applies, and the algorithm stops with an optimal solution.

Now, we prove the following theorem:

Theorem 1. For some stage h, the C-schedule Sh is an optimal schedule SOPT.

Proof. Suppose that the optimality condition in Lemma 1 is not satisfied for the schedule
S0 = σ, and let us consider C-schedule Sh of an iteration h > 1. Assume schedule Sh is not
optimal, and assume first that there is no stuck job in schedule Sh. Then, in any feasible
schedule S with a better makespan, the number of jobs scheduled before the kernel K(Sh)
in block B(Sh) must be one less than in the latter schedule as otherwise, due to Property 2
and the fact that there is no stuck job in schedule Sh, a job from the kernel K(Sh) cannot
have a smaller full completion time in the schedule S′ than job o(Sh) in the schedule Sh (as
the jobs of the kernel K(Sh) are already included in an optimal sequence, see Lemma 1).
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Thus, some job l ∈ B(Sh) included before the kernel K(Sh) in the schedule Sh must be
scheduled after that kernel in the schedule S. We claim that job l is to be a regular emerging
job. Indeed, if it is not, then ql ≥ qo, o = o(Sh) or/and l 6∈ B(Sh). If ql ≥ qo, then, due

to inequality t(S
h)l

l ≥ tSh
o and Proposition 2, |(Sh)l | ≥ |Sh|. Hence, the makespan of any

feasible schedule in which job l is scheduled after the kernel K(Sh) cannot be less than that
of schedule Sh. Suppose now l 6∈ B(Sh). If l is not a passive emerging job, then obviously
the above reasoning applies again. Suppose l is a passive emerging job, and suppose first
that there is no marched job in the block B(Sh). Then, since the block B(Sh) starts with the
kernel K(Sh) (there exists no regular emerging job schedule Sh), the full completion time of
the overflow job is a lower bound on the optimum schedule makespan (this can be seen
similarly to Lemma 1). Obviously, the same reasoning applies in case there are marched
jobs in the block B(Sh), but none of them is stuck in schedule Sh.

The above proves the validity of the stopping rule (i) from Algorithm 1. Suppose
now that there is neither a regular nor passive emerging job, and there is a stuck job
in schedule Sh. Clearly, the full completion time of the overflow job o ∈ B(Sh) cannot
be decreased unless such stuck job e ∈ B(Sh) is revised. Note that the corresponding
C-schedule coincides with an earlier generated C-schedule Sg, for some g < h from the
solution tree T. Furthermore, in any feasible schedule having a makespan less than that of
the schedule Sh, another job l with ql < qo is to be applied instead of job e. Moreover, job l
should belong to a block, relative to the block B(Sh), as otherwise the time interval released
by the removal of that job from its current execution interval may not yield a right-shift of
any job from the block B(Sh). It follows that job l is a passive emerging job. This proves
the stopping rule (ii). The stopping rule (iii) follows from Lemma 2.

It remains to show that the search in the space of the C-schedules is correctly organized.
There are two extension rules. The normal extension rule is used at stage h if there exists a
regular emerging job in the schedule Sh. In this case, the delaying emerging job l is applied,
i.e., Sh+1 := Sh

l . Consider an alternative feasible schedule Sh
j , where j is another emerging

job (above, we have shown that only emerging jobs need to be considered). It is easy to
see that the left-shift of the kernel jobs in the schedule Sh

j cannot be more than that in the

schedule Sh
l , and the forced right-shift for the jobs scheduled after job j in the schedule

Sh
j cannot be less than that of the jobs scheduled after job l in the schedule Sh

l (recall that

pj = pl). Hence, the schedule Sh
j is dominated by the schedule Sh

l unless job l gets stuck at
a later stage h′ > h. In the latter case, the emergency extension rule revises first job l. In the
resultant C-schedule, the passive delaying job converts into a regular delaying emerging
job. Then, the emergency extension rule applies this (converted) regular regular delaying
emerging job. We complete the proof by repeatedly applying the above reasoning for the
normal extension rule.

5. Performance Analysis

It is not difficult to see that the direct application of Algorithm 1 of the previous section
may yield the generation of some redundant C-schedules: the jobs from the same kernel
K including the overflow job o may be forced to be right-shifted after they are already
“arranged” (i.e., the corresponding emerging job(s) are already applied to that kernel) due
to the arrangement accomplished for the kernel K′ preceding kernel K. As a result (because
of the application of an emerging job for the kernel K′), one or more redundant C-schedules
in which a job from the kernel K repeatedly becomes an overflow job might be created.
Such an unnecessary rearrangement of the portion of a C-schedule between the kernels
K′ and K is avoided by restricting the number of jobs that are allowed to be scheduled in
that portion. This number becomes well-defined after the first disturbance of this portion
caused by the application of an emerging job for the kernel K′. This issue was studied in
detail for the case of identical machines in [2] (see Section 4.1). It can be readily verified that
the basic estimations for the case of identical machines similarly hold for uniform machines.
In particular, the number of the enumerated C-schedules remains the same for uniform
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machines. A complete time complexity analysis requires a number of additional concepts
and definitions from [2] and would basically repeat the arguments for identical machines.

Recall that we use a different schedule generation mechanism for identical and uni-
form machines: the LDT-heuristic applied for the schedule generation in the identical
machine environment is replaced by the LDTC-heuristic for the uniform machine environ-
ment. LDT-schedules possess a number of nice properties used in the algorithm from [2].
LDTC-schedules also possess such necessary useful properties (Properties 1 and 2) that
allowed us to use the basic framework from [2]. While generating an LDT-schedule for
identical machines, every next job is scheduled on the next available machine (the next to
the last machine m being machine 1) and the starting and completion time of each next
scheduled job is not smaller than that of all previously scheduled ones. In some sense,
the generalization of these properties are Properties 1 and 2, which still assure that the
structural pattern of the generated schedules is kept, and it does not depend on which
particular jobs are being scheduled in a particular time interval (note that this would not be
the case for an unrelated machine environment). This allowed us to adopt the blesscmore
framework from [2] for the uniform machine environment (for instance, intuitively, while
restricting the number of the scheduled jobs between two successive kernels, no matter
which particular jobs are being scheduled between these kernels).

Another “redundancy issue” occurs when a series of emerging jobs are successively
applied to the same kernel K without reaching the desired result, i.e., the applied emerging
jobs become new overflow jobs in the corresponding C-schedules (see Section 4.2 in [2]).
In Lemma 7 from the latter reference, it is shown that this yields an additional factor of
p in the running time of the algorithm. This result also holds for the uniform machine
environment. The magnitude p remains valid for the uniform machine environment as
the difference between the completion times of two successively scheduled jobs on the
same machine cannot be more than p (recall that p is the processing time of any job on the
slowest machine m). The desired result follows since the delivery time of each emerging
job next applied to kernel K is strictly less than that of the previously applied one (see the
proof of Lemma 7 in [2]).

The above results yield the same bound O(γm) on the number of the enumerated
C-schedules as in [2]), where γ can be either n or qmax (see Lemma 8 from Section 4.3
and Theorem 2 from Section 6.1, in [2]). In fact, γ is the total number of the applied
emerging jobs, a magnitude that can be essentially smaller than n. This yields the overall
cost O(γm2n log n) due to the cost O(mn log n) of the LDTC-heuristic (instead of O(n log n)
for the LDT-heuristic). A further refinement of the overall time complexity accomplished
in [2] is not possible for the uniform machine environment. In the algorithm from [2],
while generating every next C-schedule, instead of applying the LDT-heuristic to the whole
set of jobs, it is only applied to the jobs from a small part of the current C-schedule, the
so-called critical segment (a specially determined part of the latter schedule containing
its kernel), and the remaining jobs are scheduled in linear time just by right-shifting the
jobs following the critical segment by the required amount of time units (conserving their
current processing order). This is not possible for uniform machines as such an obtained
schedule will not necessarily remain an LDTC-schedule, i.e., a linear time rescheduling
will not provide the desired structure.

6. Discussion and Concluding Remarks

We showed that the earlier developed technique for scheduling identical machines can
be extended to the uniform machine environment if Condition (1) on the job parameters is
satisfied, thus making a step towards the settlement of the complexity status of this long-
standing open problem. In particular, the imposed condition reflects potential conflicts
that arise in the uniform machine environment but do not arise in the identical machine
environment. It is a challenging question whether the removal of Condition (1) results
in an NP-hard problem or if it can still be solved in polynomial time, at least, for a fixed
number of machines. Although the LDTC-heuristic would not give the desired results if
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Condition (1) is not satisfied, it might still be possible to develop a more intelligent heuristic
that can successfully be combined with the blesscmore framework and the analysis of
the behavior alternatives from [2]. This approach may have some limitations though. As
we have mentioned earlier, it is unlikely that it can be applied to the unrelated machine
environment, mainly because the structural pattern of the generated schedules will depend
on, which particular jobs are scheduled in a particular time interval on each machine from
a group of unrelated machines, which makes the analysis of the behavior alternatives much
more complicated. At the same time, the approach might be extensible to shop scheduling
problems. It is a challenging question whether it can be extended to the case where
there are two allowable job processing times (this turned out to be possible for the single-
machine environment, see the blesscmore algorithm in [24]) and for a much more general
setting with mutually divisible job processing times for identical and uniform machine
environments (this turned out to be also possible for the single-machine environment—a
maximal polynomially solvable special case of (a strongly NP-hard) problem 1|rj, dj|Lmax
with mutually divisible job processing times was dealt with recently in [25]). Finally,
we note that the algorithm presented here can also be used as an approximate one for
non-equal job processing times, as it is often the case in practical applications.
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Abstract: In this paper, we compare three methods for deriving a priority vector in the theoretical
framework of pairwise comparisons—the Geometric Mean Method (GMM), Eigenvalue Method
(EVM) and Best–Worst Method (BWM)—with respect to two features: sensitivity and order violation.
As the research method, we apply One-Factor-At-a-Time (OFAT) sensitivity analysis via Monte Carlo
simulations; the number of compared objects ranges from 3 to 8, and the comparison scale coincides
with Saaty’s fundamental scale from 1 to 9 with reciprocals. Our findings suggest that the BWM is, on
average, significantly more sensitive statistically (and thus less robust) and more susceptible to order
violation than the GMM and EVM for every examined matrix (vector) size, even after adjustment
for the different numbers of pairwise comparisons required by each method. On the other hand,
differences in sensitivity and order violation between the GMM and EMM were found to be mostly
statistically insignificant.

Keywords: Best–Worst Method; Eigenvalue Method; Geometric Mean Method; Monte Carlo simula-
tions; pairwise comparisons; sensitivity

1. Introduction

Pairwise comparisons constitute a fundamental part of sophisticated multiple-criteria
decision-making frameworks, such as the analytic hierarchy/network process (AHP/ANP),
PROMETHEE, ELECTRE, PAPRIKA, and many others [1–9]. In addition, hundreds of
successful applications of pairwise comparisons in almost all domains of human activity
have been published in the literature [10].

The objective of a pairwise comparison method is to assign weights to compared
objects corresponding to their preference/importance and to rank objects from the most
preferred/important to the last. The Geometric Mean Method (GMM) proposed by Craw-
ford [11] and the Eigenvalue (eigenvector) Method (EVM) proposed by Saaty [7] are the
most popular methods for deriving weights from pairwise comparisons arranged in the
form of a pairwise comparison (PC) matrix. The Best–Worst Method (BWM) proposed by
Jafar Rezaei in 2015 (see Rezaei [12]) is one of the latest contributions to the field of pairwise
comparisons. It is based on the pairwise comparisons of all objects (in the original paper,
the objects were criteria) with the best object and the worst object (known a priori) only.
Therefore, it belongs in the family of pairwise comparison methods with missing elements
and/or incomplete pairwise comparison matrices (with additional information). Since its
introduction, the BWM has attracted the attention of many researchers and practitioners
and has been applied to various problems in areas such as waste management, tourism,
sustainability or biochemistry [13–18].

The appeal of the BWM lies in its obvious simplicity; however, until now, numerical
comparisons of the BWM with other methods, the GMM and EVM (AHP) in particular, have
rarely been covered in the literature. The studies of Ajrina et al. [19] and Haseli et al. [20]
compared the BWM and the AHP via one and two numerical examples, respectively.
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The original paper on the BWM [12] provided a comparison of the results of the BWM
with the AHP in only one particular example based on an experiment with 46 respondents
(university undergraduate students) and 322 PC matrices (and pairs of vectors) of the order
n = 4. The work came to the conclusion that the BWM performs better than the AHP,
and the weights derived by the BWM are highly reliable. Other comparison studies of the
BWM and AHP/GMM are not known to the authors.

Therefore, the aim of this paper is to bridge this gap and provide a comprehensive
numerical comparison of the BWM, EVM (AHP), and GMM with respect to two crucial
method properties: sensitivity and the violation of the order of preferences (order violation
in short). Sensitivity analysis is a well-established tool for assessing how the input of a
model/method affects the output (or vice-versa) and is widely used in natural sciences,
in particular in climatology [21–24]. To assess sensitivity, we apply One-Factor-At-a-Time
(OFAT) methodology [25]. The second feature we focus on, order violation, describes
how often a unit change in the input leads to a change in the final ranking (ordering) of
compared objects, therefore providing useful information on the robustness of rankings.
As a research method, we apply Monte Carlo simulations, where pairwise comparisons
are selected from Saaty’s fundamental scale from 1 to 9 (with reciprocals) and where the
number n of compared objects ranges from 3 to 8, as real-world multiple criteria problems
usually do not involve large numbers of criteria. Then, we perform a statistical analysis of
the acquired results, enabling a final comparison of all three methods.

This paper is organized as follows: preliminaries on pairwise comparison methods,
prioritization, sensitivity, and order violation are provided in Section 2, while Monte Carlo
simulations are described in Section 3 followed by a discussion in Section 4. Conclusions
close the article.

2. Preliminaries

The input data for the PC method is a PC matrix C = [cij], where cij ∈ R+ and
i, j ∈ {1, . . . , n}. The values of cij and cji indicate the relative importance (or preference) of
the objects i and j.

In the context of the BWM, the compared objects are criteria. The set of n criteria to be
compared and ranked is denoted as F = {F1, . . . , Fn}.

Definition 1. The matrix C = [cij] is said to be reciprocal if ∀i, j ∈ {1, . . . , n} : cij = c−1
ji and

C = [cij] is said to be consistent if ∀i, j, k ∈ {1, . . . , n} : cij · cjk · cki = 1.

Note that if C = [cij] is consistent, then it is also reciprocal, but not vice versa. In this
paper, it is assumed that a PC matrix is always reciprocal. The reciprocity condition seems
to be natural in many decision-making situations. For instance, if an element cij of a PCM
C = [cij] expresses that the i-th criterion is cij times more important than the j-th criterion,
then it is evident that the j-th criterion is 1/cij times more important than the i-th one; thus,
cij = 1/cji. In particular, for each criterion i, we obtain cii = 1, which corresponds to the
fact that the importance of each criterion with respect to itself is equal to one.

2.1. The Eigenvalue Method and the Geometric Mean Method

The result of a pairwise comparison method is a priority vector (vector of weights) w.
According to one of the most popular prioritization methods, the EVM (the Eigenvalue

Method) proposed by Saaty [7], the vector w is determined as the rescaled principal
eigenvector of the matrix C. Thus, assuming that Cw̄ = λmaxw̄, the priority vector w is
w = [w(F1), . . . , w(Fn)]T = γ[w̄1, . . . , w̄n]T, where γ is a scaling factor, γ =

[
∑n

i=1 w̄i
]−1, so

that ‖w‖ = 1.
In the Geometric Mean Method (GMM) (see Crawford [11]) the weight of the ith al-

ternative is given by the geometric mean of the ith row of the matrix C = [cij]. Thus,
the priority vector is given as follows:
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w =
[
w(F1), . . . , w(Fn)

]T

= γ

[( n

∏
r=1

c1r

) 1
n

, . . . ,
( n

∏
r=1

cnr

) 1
n
]T (1)

where γ =
[
∑n

i=1 ∏n
r=1 cir

]−1 is the scaling factor again.
Several aspects of these methods are discussed in more detail, e.g., in Ramík [26].

2.2. The Best–Worst Method

In the Best–Worst method (see Rezaei [12]), each criterion is pairwise compared only
with the best criterion and the worst criterion.

The Best–Worst method proceeds as follows [12]:

Step 1. A set of criteria is determined.
Step 2. The decision maker identifies the best (most desirable, most important) criterion

and the worst (least desirable, least important) criterion.
Step 3. Preferences of the best criterion with respect to all other criteria are determined

on a scale from 1 (equal importance) to 9 (absolute preference).
Step 4. Preferences of all other criteria with respect to the worst criterion are determined

onathe scale from 1 to 9.
Step 5. bOptimal weights of all criteria are found by solving a corresponding non-linear

programming problem; see Equation (2).

Let cBj denote the preference of the best criterion (B) over the criterion Fj, and let ciW
denote the preference of the criterion Fi over the worst criterion (W). Let wB and wW be
the weights of the best and worst criterion, respectively. The goal is to find the vector of
criteria weights (a priority vector) w = (w1, w2, . . . , wn).

Rezaei [12] suggested finding the priority vector by solving the following optimiza-
tion problem:

min
(

max
j

{∣∣wB
wj
− cBj

∣∣,
∣∣ wj

wW
− cjW

∣∣
})

(2)

s.t.
n

∑
j=1

wj = 1 (3)

wj ≥ 0, ∀j = 1, . . . , n. (4)

The problem can equivalently be stated as follows:

min ξ (5)

s.t. ∣∣wB
wj
− cBj

∣∣ ≤ ξ, ∀j = 1, . . . , n, (6)

∣∣ wj

wW
− cjW

∣∣ ≤ ξ, ∀j = 1, . . . , n, (7)

n

∑
j=1

wj = 1, (8)

wj ≥ 0, ∀j = 1, . . . , n. (9)

Further, it is assumed that for all j, the following inequalities hold:

cBW ≥ cjW ≥ 1; cBW ≥ cBj ≥ 1. (10)
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A linear version of the BWM was introduced by Brunelli & Rezaei [27] and Rezaei [28],
where the letter “L” denotes linear:

min ξL (11)

s.t. ∣∣wB − cBjwj
∣∣ ≤ ξL, ∀j = 1, . . . , n, (12)

∣∣wj − cjWwW
∣∣ ≤ ξL, ∀j = 1, . . . , n, (13)

n

∑
j=1

wj = 1, (14)

wj ≥ 0, ∀j = 1, . . . , n. (15)

Notice that the solution to the linear version of the BWM differs from the solution to
the non-linear version in general. In addition, in this case, the value of ξ∗L should not be
divided by CI.

When comparing n objects (criteria, alternatives, etc.) pairwise, the EVM and GMM
require n(n − 1)/2 comparisons to be made. The BWM requires only comparisons (of
criteria) with the best and worst criterion, and the reduced number of comparisons amounts
to 2n− 3. This reduction might be very important when dealing with a large number of
compared objects.

2.3. Order Violation

First, let us explain the concept of order violation.

Definition 2. Let C = [cij] be a pairwise comparison matrix of n objects, let cij ∈
{ 1

9 , 1
8 , . . . ,

1, . . . , 8, 9
}

, and let w = (w1, . . . , wn) be a corresponding vector of weights (a priority vector).
The order violation occurs when for some pair of objects (i, j), i, j ∈ {1, . . . , n}, with the weights wi
and wj, respectively, it holds that after a change of one element ckl , k, l ∈ {1, . . . , n}, by one unit of
the scale, the relation wi ≥ wj changes into wi < wj.

Remark 1. By a unit change in Definition 2, we mean the change to an adjacent point of a given
discrete scale; e.g., a change from 6 to 7 (and reciprocal values change as well), or from 1

6 to 1
7 (and

reciprocal values also change again). In addition, other scales than Saaty’s fundamental scale can be
used for comparisons, but we decided to adhere to the scale of the original study of Rezaei [12].

Order violation means that after a change of only one pairwise comparison by just one
unit (which is a minimal possible change) the order (ranking) of compared objects provided
by the given PC method changes as well. Thus, it can be considered an undesirable feature,
as it indicates that the order of objects is unstable and a minimal change or error is sufficient
to disturb it.

2.4. Sensitivity

To evaluate the sensitivity of the BW, EV, and GM methods, we applied One-Factor-
At-a-Time (OFAT) methodology. We define sensitivity as a change in the priority vector
(output) when one preference (input) is changed by one unit:

Definition 3. Let w = (w1, . . . , wn) be the vector of weights obtained by a generic prioritization
method PM. Let w∗ = (w∗1 , . . . , w∗n) be the vector of weights after one preference was changed by
one unit. Then, the sensitivity4w is defined as follows:

4 w(PM)
(n) =

100
n

n

∑
i=1
|wi − w∗i |. (16)
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The sensitivity 4w expresses, in a percentage, a per-weight change in the original
priority vector w. If, for instance, 4w(GMM)

(n) = 2, this means that each component of
the original weight vector w = (w1, ..., wn) changed by 2% on average when the GMM
was applied.

The following example illustrates the use of order violation and sensitivity.

Example 1 (Best Worst Method [29]). Consider buying a car according to five criteria: quality,
price, comfort, safety, and style. The best criterion is price, and the worst criterion is style. The buyer
provides the following pairwise comparisons:

Best to all preferences: (2, 1, 4, 3, 8). All to worst preferences: (4, 8, 4, 2, 1).
By using the linear BWM model and the MS Excel Solver from Best Worst Method [29], we

obtain the following weights of criteria:

w = (0.246, 0.431, 0.123, 0.154, 0.046).

Now, we change one preference by one unit (in bold) in the best to all preferences: (2, 1, 3, 3, 8).
The weights of criteria are now

w∗ = (0.233, 0.427, 0.155, 0.136, 0.048).

The sensitivity4w(BWM)
(5) isthere f ore 100

5 ∑5
i=1 |wi − w∗i | = 1.4.

Thus, the weights of the criteria changed, on average, by 1.4%.
As for the order violation, initially the criterion of comfort’was ranked fourth and the criterion

of safety was ranked third. After the unit change in one PC comparison, the criterion of comfort was
ranked third and the criterion of safety was ranked fourth. Therefore, an order violation occurred.

3. Monte Carlo Simulations

Simulations of the EVM and GMM were performed in C#; simulations of the BWM
were carried out via the MS Excel Solver [29].

The procedure for a full PC matrix, the GMM (EVM), and Saaty’s scale was as follows:

Step 1. A random PC (reciprocal) matrix C of the order n with entries from Saaty’s scale
(from 1 to 9) was generated.

Step 2. The priority vector w was derived by the GMM (EVM).
Step 3. A randomly chosen element cij of a PC matrix C was randomly changed by one

unit of a scale up or down, and the reciprocal element cji was changed accordingly.
Step 4. The priority vector w∗ was derived by the GMM (EVM).
Step 5. Sensitivity (16) was calculated and order violation was checked.
Step 6. The procedure was repeated 500–1000 times for each matrix size n ∈ {3, 4, 5, 6,

7, 8}.
The EVM and GMM were performed on the same set of random PC matrices.

The procedure for the BWM and Saaty’s scale was as follows:

Step 1. Pairwise comparisons of all n objects with respect to the best and the worst object
(in the form of two vectors) were randomly generated with the use of Saaty’s
scale while preserving relations (10).

Step 2. The priority vector w was calculated by the linear version of the BWM according
to Equation (11).

Step 3. A randomly chosen element from one of the two vectors generated in Step 1
was changed by one unit (up or down, again randomly), while preserving
Saaty’s scale.

Step 4. The priority vector w∗ was derived by the linear BWM according to Equation (11).
Step 5. Sensitivity (16) was calculated and order violation was checked.
Step 6. The procedure was repeated 500–1000 times for each matrix size n ∈ {3, 4, 5, 6,

7, 8}
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Table 1 provides the average values of sensitivity along with standard deviations
and the frequency of the order violation. As can be seen, the least sensitive (thus, the most
robust) method was the GMM followed by the EVM. The Best–Worst method performed
significantly worse. In the case of order violation, again, the GMM performed best and the
BWM worst.

Table 1. Simulation results: mean sensitivity and average order violation occurrence (for
each method separately). BWM: Best–Worst Method; GMM: Geometric Mean Method; EVM:
Eigenvalue Method.

Method n Mean Sensitivity (st. dev.) Order Violation (%)

BWM

3 2.801 (2.7771) 0
4 2.161 (2.170) 31.4
5 1.621 (1.687) 38.9
6 1.273 (1.276) 50.8
7 0.966 (1.031) 53.8
8 0.741 (0.831) 97.2

GMM

3 1.942 (1.475) 10.6
4 0.919 (0.681) 12.2
5 0.465 (0.364) 12.3
6 0.263 (0.212) 15.2
7 0.185 (0.148) 19.1
8 0.113 (0.081) 61.0

EVM

3 1.790 (1.444) 10.9
4 0.932 (0.619) 14.8
5 0.474 (0.314) 16.6
6 0.304 (0.178) 22.0
7 0.196 (0.094) 24.3
8 0.134 (0.059) 64.7

Figures 1 and 2 provide graphical illustrations of the sensitivity and order violation
for all examined matrix sizes.

Figure 3 shows a comparison of the GMM and EVM with the BWM adjusted for the
lower number of pairwise comparisons.

Figures 4–6 show the sensitivity distribution of all three methods for n ∈ {4, 6, 8}.
Figures 7–9 provide frequency diagrams of the sensitivity for all three methods and

n = 6.

Figure 1. Average order violation: BWM, EVM, and GMM.
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A discussion of the results is provided in the next section. The data are available in
the Mendeley repository [30].

Figure 2. Mean sensitivity: BWM, EVM, and GMM.

Figure 3. Mean sensitivity: BWM adjusted, EVM, and GMM.

Figure 4. Sensitivity distribution: all methods, n = 4.
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Figure 5. Sensitivity distribution: all methods, n = 6.

Figure 6. Sensitivity distribution: all methods, n = 8.

Figure 7. Sensitivity of the BWM: frequency distribution, n = 6.
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Figure 8. Sensitivity of the GMM: frequency distribution, n = 6.

Figure 9. Sensitivity of the EVM: frequency distribution, n = 6.

4. Discussion

Our results, summarized in Table 1, indicate that the mean sensitivity decreases with
the matrix size for all three prioritization methods; however, the sensitivity of the BWM
is markedly larger than that of the GMM and EVM. In Figures 7–9, it can be seen that
while the sensitivity of more than 1% is rare for the GMM and EVM (for n = 6), it is quite
common for the BWM. A standard statistical tool for testing the equality of three or more
means is the ANOVA (analysis of variance). However, the ANOVA requires an equality of
variances, and from Table 1 and Figures 4–6, it is clear that this assumption was violated.
Bartlett’s test confirmed that variances in the sensitivity of all three methods were not
equal (at p = 0). Therefore, we applied Welch’s test instead, and the null hypothesis of
sensitivity equality was rejected at the p = 0 level (p was so small that MS Excel rounded
the value to 0) for all 3 ≤ n ≤ 8. Since the BWM is “handicapped” by the lower number
of pairwise comparisons required, we also performed Welch’s test for sensitivity equality
of all three methods, where the sensitivity of the BWM was adjusted (decreased) by the
factor 2n−3

n(n−1)/2 , corresponding to the number of pairwise comparisons required by the
BWM and EVM/GMM, respectively; see also Figure 3. Even after the adjustment, the null
hypothesis of equal sensitivity was rejected at p = 0 for all examined n again. Interestingly,
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the two-sample t-test revealed that differences in the sensitivity of the GMM and EVM
were statistically significant at the p = 0.01 level only for n ∈ {6, 8}.

As for order violation, its occurrence increased for all three methods as the matrix
size n increased. In the case of n = 8, the order violation occurrence was more likely
(above 50%) than not, and in the case of the BWM, it was almost certain to happen (above
97%). This result for n = 8 means that even the smallest possible deviation (or error) in
one pairwise comparison on the input leads to a different ranking of objects in more than
50% cases. It is likely that for greater matrix sizes, this phenomenon will happen even
more often; this therefore implies that the robustness of rankings of objects derived from
pairwise comparisons by the BWM, EVM, and GMM is rather low, and the decision maker
should take this into account. Differences in order violation occurrence (considered to be a
binomial variable where either order violation happened or not) between all three methods
were again tested for statistical significance. The null hypothesis that there is no difference
between the BWM and GMM, and the BWM and EVM, was rejected at p < 10−10 for all n.
Differences between the GMM and EVM were statistically significant at the p = 0.01 level
for n ∈ {5, 6, 7}, but not statistically significant at p = 0.01 for n ∈ {3, 4, 8}.

5. Illustrative Application of Our Approach to Order Violation Evaluation

The study of Zabihi et al. [31] focused on developing a global information system
(GIS)-based multiple-criteria decision making model for a citrus land suitability assessment.
The authors selected five relevant criteria: elevation, maximum temperature, minimum
temperature, slope angle, and rainfall. To determine the importance of criteria, the authors
pairwise compared all criteria with the Saaty’s scale. The resulting pairwise comparison
matrix is shown in Table 2. By using the EVM, we obtained the vector of the weights
of all criteria, and we ranked them from the most important to the least important as
follows: elevation (weight 0.497), minimum temperature (0.242), rainfall (0.132), maximum
temperature (0.087), and slope angle (0.041). (Notice that the weights in parentheses slightly
differ from the study of Zabihi et al. [31], perhaps due to numerical errors in [31].)

Table 2. A pairwise comparison matrix for the calculation of criteria weights for the citrus site
selection (Table 4, Zabihi et al. [31]).

Sustainability
Criterion

Elevation Maximum
Temperature

Minimum
Temperature

Slope Angle Rainfall

elevation 1 5 3 7 5
maximum 1/5 1 1/3 3 1/2temperature
minimum 1/3 3 1 5 3temperature

slope angle 1/7 1/3 1/5 1 1/5
rainfall 1/5 2 1/3 5 1

Since measurements or judgments are usually associated with errors, the question
arises as to how stable the obtained ranking of the criteria is, or, in other words, is there an
element (the so called critical element) in the PC matrix in Table 2 such that the minimal
change of this matrix element leads to an order violation; i.e., a change in the ranking of
all criteria?

Without loss of generality, we can examine all matrix elements in Table 2 (we denote
the matrix as C = [cij]) larger than or equal to 1 (with the exception of
diagonal elements):

• Let us start with c12 = 5. We change the value of 5 down by 1 scale unit (to 4), apply
the EVM to find the priority vector and the ranking of all five criteria, and we get the
following result: the ranking of elevation, minimum temperature, rainfall, maximum
temperature, and slope angle remains unchanged. Next, we change the value of
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c12 = 5 up by 1 unit (to 6), repeat the procedure, and find that the final ranking is
unchanged again.

• We take another matrix element larger than or equal to 1, namely c13 = 3, and change
it by 1 scale unit up and down. Again, the final ranking obtained by the EVM is
unchanged in both cases.

• We proceed with the remaining elements larger than or equal to 1, namely c14, c15,
c24, c32, c34, c35, c52, and c54, and change each of them by 1 scale unit up and down.
The final ranking obtained by the EVM remains unchanged in all cases.

We thus conclude that the pairwise comparison matrix given in Table 2 is “robust” in
the sense that the ranking of the alternatives (elevation, minimum temperature, rainfall,
maximum temperature, and slope angle) remains the same if one element of the matrix is
changed by 1 scale unit up or down.

The pairwise comparisons presented in Table 2 were obtained by an expert team,
and the EVM yielded the priority vector w = (0.497, 0.087, 0.242, 0.041, 0.132). Taking
these weights of the criteria into account, another expert team may pairwise compare the
criteria’s importance as presented in Table 3. Notice that Saaty’s consistency ratio of the
PC matrix presented in Tables 2 and 3 is CR = 0.055 and CR = 0.007, respectively; i.e., the
PC matrix presented in Table 3 appears to be much more consistent than the original PC
matrix presented in Table 2.

Table 3. A pairwise comparison matrix for the calculation of criteria weights for the citrus site
selection by another expert team.

Sustainability
Criterion

Elevation Maximum
Temperature

Minimum
Temperature

Slope Angle Rainfall

elevation 1 6 2 9 4
maximum 1/6 1 1/3 2 1temperature
minimum 1/2 3 1 6 2temperature

slope angle 1/9 1/2 1/6 1 1/3
rainfall 1/4 1 1/2 3 1

By applying the EVM to the PC matrix found in Table 3, we obtain the vector of the
weights of the criteria. The ranking of the criteria is the same as above: elevation (0.486),
minimum temperature (0.256), rainfall (0.119), maximum temperature (0.093), and slope
angle (0.045).

Although the new pairwise comparison matrix, denoted as C′ = [c′ij], shown in Table 3
is more consistent, a critical element can be found in it. In particular, by changing the
value of the element c′25 = 1 by 1 scale unit up (to 2) and by using the EVM, we obtain the
following weights and ranking of the criteria: elevation (0.483), minimum temperature
(0.255), maximum temperature (0.112), rainfall (0.106), and slope angle (0.045). We can see
that the change of the critical element c′25 by 1 scale unit, which is the smallest possible
change of a PC matrix, caused order violation; i.e., it led to a different ranking of the criteria
for citrus land suitability assessment. The sensitivity 4w(EVM)

(5) = 0.749 was above the
mean value 0.474 (see Table 1) in this case. Knowing this, the decision maker should pay
special attention to this particular PC comparison (or a measurement in general) to ensure
its accuracy and to avoid a distortion of the final ranking. Our Monte Carlo simulations
revealed that the frequency occurrence of critical elements increased with the increasing
matrix size for all three priority deriving methods; see Table 1.
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6. Conclusions

The aim of this paper was to provide a comparison of the sensitivity and order
violation of three popular prioritization methods in pairwise comparisons: the Geometric
Mean Method, the Eigenvalue Method, and the Best–Worst Method.

Our results suggest that the Best–Worst Method is statistically significantly more
sensitive and more susceptible to order violation than the Geometric Mean Method and
the Eigenvalue Method for 3 ≤ n ≤ 8 compared objects. On the other hand, the difference
in sensitivity of the Geometric Mean Method and the Eigenvalue Method was found to be
statistically insignificant in most cases.

Since both the GMM and EVM outperformed the BWM, and the differences in the
GMM and EVM were rather small, both “standard” methods can equally be recommended
as a suitable prioritization method with regard to sensitivity and order violation.

Further, we demonstrated how our approach can be used in practice for the evaluation
of the stability of a ranking obtained by a given PC method. We came across a surprising
finding that, with the increasing size of the PC matrix, the relative frequency of critical
elements also increases.

Future research may focus on a comparison of extensions of the aforementioned
methods aiming at interval pairwise comparisons or fuzzy pairwise comparisons.
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Abstract: A nonempty subset D ⊂ V of vertices of a graph G = (V, E) is a dominating set if every
vertex of this graph is adjacent to at least one vertex from this set except the vertices which belong to
this set itself. D ⊆ V is a total k-dominating set if there are at least k vertices in set D adjacent to every
vertex v ∈ V, and it is a global total k-dominating set if D is a total k-dominating set of both G and
G. The global total k-domination number of G, denoted by γ

g
kt(G), is the minimum cardinality of a

global total k-dominating set of G, GTkD-set. Here we derive upper and lower bounds of γ
g
kt(G), and

develop a method that generates a GTkD-set from a GT(k− 1)D-set for the successively increasing
values of k. Based on this method, we establish a relationship between γ

g
(k−1)t(G) and γ

g
kt(G), which,

in turn, provides another upper bound on γ
g
kt(G).

Keywords: global total domination; total k-domination number

1. Introduction

We start by introducing the basic notation. Suppose we are given a simple graph
G = (V, E) with |V| = n (n is called the order of graph G) and |E| = m (m is called the
size of graph G). Given D ⊆ V (D 6= ∅) and vertex v ∈ V, let ND(v) be the set of all
vertices from set D, adjacent to vertex v (also called the neighbors of vertex v from set
D); we will use ND(v) for the set of vertices in set D which are not neighbors of vertex v
(ND[v] = ND(v) ∪ {v}). We let ND[v] = ND(v) ∪ {v}, and we call δD(v) = |ND(v)| the
degree of vertex v in set D. We denote by δD(v) the cardinality of set ND(v) (δD(v) =
|ND(v)|). We will use more compact notation N(v), N[v], δ(v), N(v) and N[v] instead of
NG(v), NG[v], δG(v), NG(v) and NG[v], respectively, when this will cause no confusion.
The minimum (the maximum, respectively) degree in graph G is traditionally denoted by δ
(∆, respectively). G[S] and G, respectively, will stand for the subgraph of graph G induced
by S ⊆ V and the complement of graph G, respectively.

Let X and Y be subsets of set V. We denote by E(X, Y) the set of all the edges in graph
G joining a vertex x ∈ X with a vertex y ∈ Y. Let u and v be vertices from set V. Then
the distance between these two vertices d(u, v) is the length (the number of edges) of a
minimum u− v-path. The length of the longest u− v path, for any u and v, is called the
diameter of graph G, denoted by diam(G). The girth of graph G is the length of the shortest
cycle in that graph and is denoted by g(G).

Let D ⊆ V be a nonempty subset of set V. Then D is called a total k-dominating set for
graph G if there are at least k vertices in set D adjacent to every vertex v ∈ V (we will also
say that vertex v is totally k-dominated by set D). The cardinality of a total k-dominating set
in graph G with the minimum cardinality is called the total k-domination number of graph
G and is denoted by γkt(G). We will refer to a total k-dominating set with cardinality γkt(G)
as a γkt(G)-set. A total 1-dominating set is normally referred to as a total dominating set,
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and the total 1-domination number is referred to as the total domination number, denoted
by γt(G). We refer the reader to [1–9] for more detail on these definitions.

Given again a non-empty set D ⊆ V, D is called a global total k-dominating set of
graph G (GTkD set for short) if D is a total k-dominating set of both graphs G and G.
The global total k-domination number of G, denoted by γ

g
kt(G), is the cardinality of a

global total k-dominating set with the minimum cardinality. A global total k-dominating
set of cardinality γ

g
kt(G) will be referred to as a γ

g
kt(G)-set. Again, if k = 1, a global total

1-dominating set is a global total dominating set (see [10,11]).
As it is well-known and also easily be seen,

2k + 1 ≤ γ
g
kt(G) ≤ n,

for any graph G with order n. Here we shall exclusively deal with the connected graphs
due to a known fact that if G1, G2, . . . , Gr (r ≥ 2) are the connected components in graph
G, then

γ
g
kt(G) =

r

∑
i=1

γkt(Gi)

(see [12]).
The main goal of this paper is to complete the current study of global total k-domination

number in graphs. First, we give upper and lower bounds on γ
g
kt(G), and then we develop

a method that generates a GTkD-set from a GT(k− 1)D-set for the successively increasing
values of k. Based on this method, we establish a relationship between γ

g
(k−1)t(G) and

γ
g
kt(G), which, in turn, provides another upper bound on γ

g
kt(G).

The rest of the paper is organized as follows. In the next section, we present known
results and give some remarks. In Sections 3 and 4, we derive upper and lower bounds,
respectively, for global total k-domination number. In the Section 5, we provide our method
that obtains a global total (k + 1)-dominating set from a global total k-dominating set.

2. Relations between γ
g
kt(G) and γkt(G)

Clearly, the definition of a GTkD set gives us an implicit lower bound for the parame-
ter γ

g
kt(G):

Observation 1. Let G be a graph; then γ
g
kt(G) ≥ max{γkt(G), γkt(G)}.

The above lower bound is not necessarily attainable, as we illustrate in the following
figure: we depict graph G and its complement G, and the corresponding minimum total
2-dominating set in both graphs (black vertices); see Figure 1.

Figure 1. Graph G and its complement G, which satisfy γ2t(G) = 5, γ2t(G) = 5 and γ
g
2t(G) = 6.

The following proposition was proved in [12].

Proposition 1. Let G be a graph,

(i) If γkt(G) > ∆(G) + k, then γ
g
kt(G) = γkt(G).

(ii) If γkt(G) ≤ ∆(G) + k, then γ
g
kt(G) ≤ ∆(G) + k + 1.
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Corollary 1. Let G be a graph with maximum degree ∆. Then, γ
g
kt(G) ≤ max{γkt(G), ∆+ k+ 1}.

Proposition 2. Let G be a graph with order n and maximum degree ∆. If n > ∆(∆+k)
k , then

γ
g
kt(G) = γkt(G).

Proof. If n > ∆(∆+k)
k , then ∆ + k < kn

∆ ≤ γkt(G); consequently, ∆ + k + 1 ≤ γkt(G).
By Corollary 1 we have γ

g
kt(G) = γkt(G).

Theorem 1. For any graph G, γ
g
kt(G) = γkt(G) if and only if there exists a minimum total

k-dominating set D such that any subset D′ of D with |D| − k + 1 vertices is not included in any
star in the graph—that is, and only if there is not a vertex v ∈ V such that D′ ⊆ N[v].

Proof. Let D be a minimum total k-dominating set which is also a global total k-dominating
set, and let D′ be a subset of D with cardinality |D| − k + 1. If there exists a vertex v ∈ V
such that D′ ⊆ N[v], then v ∈ D′ and it is adjacent to |D| − k vertices in D′, so v has less
than k non-adjacent vertices in D, or v /∈ D′, and it is adjacent to |D| − k + 1 vertices in D′,
so v has less than k non-adjacent vertices in D. In both cases we have a contradiction with
the fact that D is a global total k-dominating set.

On the other hand, we take a minimum total k-dominating set D such that for any
subset D′ of D with |D| − k + 1 vertices and every vertex v ∈ V, we have D′ 6⊆ N[v]. Then,
for any vertex v ∈ D we have |N(v)| < |D| − k, so v has, at least, k non-neighbors in
D. If v ∈ V \ D we have |N(v)| < |D| − k + 1, so v has, at least, k non-neighbors in D.
Therefore, D is a global total k-dominating set.

3. Upper Bounds for the Global Total k-Domination Number

In this section, we obtain some upper bounds for the global total k-domination number
in a graph. Bermudo et al. in [12] showed a characterization when the global total k-
domination number is equal to the order of the graph, but we give here that characterization
in a more specific way. To do that, in the following proposition we give a condition to
guarantee that the global total k-domination number is less than n.

Proposition 3. Let G be a graph with order n, minimum degree δ and maximum degree ∆.
If k < min{δ, n− ∆− 1}, then γ

g
kt(G) ≤ n− 1.

Proof. Let us see that, for any v ∈ V, the set D = V \ {v} is a GTkD set of G. We have
that δD(v) = δ(v) ≥ δ > k and δD(v) = n− 1− δ(v) ≥ n− 1− ∆ > k. For every u ∈ D
we have δD(u) ≥ δ(u)− 1 ≥ δ− 1 ≥ k and δD(u) ≥ n− 1− δ(u)− 1 ≥ n− 2− ∆ ≥ k.
Therefore, D is a GTkD set of G.

Proposition 3 is not an equivalence, as we can see if we consider a triangle and
we add a leaf to every vertex of the triangle. In such a case γ

g
1t(G) ≤ n − 1 = 5 and

k = 1 = min{δ, n− ∆− 1}.
Now, in order to present the characterization of all graphs having a global total k-

domination number equal to the number of vertices, we need to define the following set.
Given a graph G and an integer i, let Ti(G) = {v ∈ V(G) : δ(v) = i} (i.e., the set of vertices
in graph G with the degree i).

Theorem 2. Given graph G with order n and the minimum and the maximum degrees δ and ∆,
γ

g
kt(G) = n if and only if one of the conditions (a)–(c) below hold

(a) k = δ < n− ∆− 1 and V =
⋃

v∈Tδ(G)

N(v).

(b) k = n− ∆− 1 < δ and V =
⋃

w∈T∆(G)

(V \ N[w]).

230



Mathematics 2021, 9, 480

(c) k = δ = n− ∆− 1 and V =


 ⋃

v∈Tδ(G)

N(v)


 ∪


 ⋃

w∈T∆(G)

(V \ N[w])


.

Proof. (a) If k = δ < n− ∆− 1 and V =
⋃

v∈Tδ(G)

N(v), we consider D = V \ {u} for any

u ∈ V. We note that there exists v ∈ N(u) such that δ(v) = k; this implies that δD(v) < k.
Thus, D is not a GTkD set of G. Hence, γ

g
kt(G) = n.

(b) If k = n − ∆ − 1 < δ and V =
⋃

w∈T∆(G)

(V \ N[w]), for any u ∈ V there ex-

ists w ∈ V such that δ(w) = ∆ and u /∈ N[w]. If we consider D = V \ {u}, then
δD(w) ≤ n− ∆− 2 < k; thus, D is not a GTkD set of G. Therefore, γ

g
kt(G) = n.

(c) If k = δ = n − ∆ − 1 and V =


 ⋃

v∈Tδ(G)

N(v)


 ∪


 ⋃

w∈T∆(G)

(V \ N[w])


, using

(a) or (b), we obtain that V \ {u} is not a GTkD set of G, for any u ∈ V. Consequently,
γ

g
kt(G) = n.

Finally, if we assume that γ
g
kt(G) = n, by Proposition 3 we have that k ∈ {δ, n−∆− 1}.

For every vertex v ∈ V, we note that D = V \ {v} is not a GTkD set of G, so there
exists u ∈ D such that δD(u) < k or δD(u) < k. If k = δ < n − ∆ − 1, since δD(u) ≥
n− 2− δ(u) ≥ n− 2−∆ ≥ k, then we have that δD(u) < k = δ; this implies that u ∈ Tδ(G)
and v ∈ N(u). If k = n− ∆− 1 < δ, since δD(u) ≥ δ(u)− 1 ≥ δ− 1 ≥ k, then we have
that n− 2− δ(u) ≤ δD(u) < k = n− ∆− 1; that is, n− 2− δ(u) = δD(u) = n− ∆− 2, so
u ∈ T∆(G) and v ∈ V \ N[u]. If k = δ = n− ∆− 1, since δD(u) < k or δD(u) < k, we have
that u ∈ Tδ(G) and v ∈ N(u), or u ∈ T∆(G) and v ∈ V \ N[u].

The following corollary was directly obtained from Theorem 2.

Corollary 2. Let G be a graph with minimum degree δ, maximum degree ∆ and order n 6=
∆ + δ + 1. Then γ

g
kt(G) = n if and only if one of the following condition holds.

(a) k = δ < n− ∆− 1 and γkt(G) = n.

(b) k = n− ∆− 1 < δ and γkt(G) = n.

Corollary 3. Let G be a graph of order n, minimum degree δ and maximum degree ∆. If one of the
following conditions holds:

(a) k = δ < n− ∆− 1 and |Tδ(G)| ≥ n− δ.

(b) k = n− ∆− 1 < δ and |T∆(G)| ≥ ∆ + 1

(c) k = δ = n− ∆− 1 and |Tδ(G)| ≥ n− δ or |T∆(G)| ≥ ∆ + 1,

then γ
g
kt(G) = n.

Proof. Since γ
g
kt(G) = γ

g
kt(G), ∆ = n − δ − 1, T∆(G) = Tδ(G) and V \ NG[w] = N(w),

it is enough to check that |T∆(G)| ≥ ∆ + 1 implies V =
⋃

w∈T∆(G)(V \ N[w]). However,
for any vertex v ∈ V, if |T∆(G)| ≥ ∆ + 1, then there exists a vertex w ∈ T∆(G) which is not
a neighbor of v, so v ∈ ⋃w∈T∆(G)(V \ N[w]).

It was proved in [12] that γ
g
kt(G) ≤ min

{
γkt(G) + ∆, γkt(G) + γkt(G)

}
. It would be

convenient to characterize the graphs G such that γ
g
kt(G) = γkt(G) + ∆, and the graphs

G such that γ
g
kt(G) = γkt(G) + γkt(G). On the other hand, the invariants of a graph are

important when characterizing them; below we use some of them such as diameter and
girth. The following proofs use the ideas showed in [11].
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Theorem 3. If G is a graph such that diam(G) ≥ 5, every total k-dominating set is a GTkD set
of G.

Proof. Let D be a total k-dominating set and u, v ∈ V such that d(u, v) ≥ 5. Since δD(u) ≥ k
and δD(v) ≥ k, there exist {u1, . . . , uk} ⊆ D∩N(u) and {v1, . . . , vk} ⊆ D∩N(v). For any
vertex w ∈ V we know that δD(w) ≥ k. If ui ∈ N(w) for some i ∈ {1, . . . , k}, then

w /∈
k⋃

i=1

N[vi]; that means, δD(w) ≥ k. Therefore, D is a GTkD set of G.

Corollary 4. If G is a graph such that diam(G) ≥ 5, then γ
g
kt(G) = γkt(G).

According to the idea given in [11], we obtain the following result.

Proposition 4. If G is a graph such that diam(G) = 4 and there exist {u, v1, . . . , vk} ⊆ V such
that dist(u, vj) = 4 for every j ∈ {1, . . . , k}, then γ

g
kt(G) ≤ γkt(G) + k.

Proof. Let D be a minimum total k-dominating set of a graph; then there exists the vertex
set {u1, . . . , uk} ⊆ D such that {u1, . . . , uk} ⊆ N(u). For any vertex w ∈ V and i ∈
{1, . . . , k}, w cannot be adjacent to both ui and vi, so D ∪ {v1, . . . , vk} is a global total
k-dominating set.

In Figure 2 we can see an example where the equality in Proposition 4 for k = 2
is attained. Taking into account that any neighbor of a vertex of degree 2 must belong
to any total 2-dominating set (grey vertices), we show in that figure the minimum total
2-dominating set (b) and the minimum global total 2-dominating set (c).

u

w

v1

v2

u

w

v1

v2

u

w

v1

v2

(a) (b) (c)

Figure 2. (a) Grey vertices are neighbors of vertices of degree 2. (b) Minimum total 2-dominating set
and (c) minimum global total 2-dominating set.

For a graph G, we let δ∗(G) = min{δ(G), δ(G)}.

Proposition 5. Let G be a graph of order n and minimum degree δ; then γ
g
kt(G) ≤ n− δ∗(G) + k.

Proof. Let us see that every set D ⊆ V such that |D| ≥ n − δ∗(G) + k is a global total
k-dominating set. Since |D| ≥ n− δ+ k, every vertex v satisfies δV\D(v) ≤ δ− k, δD(v) ≥ k.
Since |D| ≥ n− δ + k, every vertex v satisfies δV\D(v) ≤ δ− k, so δD(v) ≥ k.

4. Lower Bounds for the Global Total k-Domination Number

We know that any graph G satisfies γ
g
kt(G) ≥ 2k + 1, and a characterization for graphs

satisfying the equality was given in [12]. Additionally, in that work the authors showed
the following inequality.

Remark 1. Let G be a graph with order n, minimum degree δ and maximum degree ∆. Then,

γ
g
kt(G) ≥ max

{
kn
∆

,
kn

n− δ− 1

}

For example, the lower bound given above can be reached in the graph shown in
Figure 3.
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Figure 3. A graph G with order n = 10, δ = 5 and γ
g
2t(G) = 2n

n−δ−1 .

Theorem 4. Let G be a graph of order n, maximum degree ∆ and size m. Then

γ
g
kt(G) ≥ 2m + n(2k− ∆) + (2k + 1)2

n + 2k
.

Proof. Let D be a γkt(G)-set. Since every vertex in V \ D cannot have more that |D| − k
neighbors in D, we have E(D, V \ D) ≤ (n− |D|)(|D| − k), so

m = E(D, D) + E(D, V \ D) + E(V \ D, V \ D)

≤ |D|∆(G)− E(D, V \ D)

2
+ E(D, V \ D) +

(∆− k)(n− |D|)
2

≤ |D|∆ + (n− |D|)(|D| − k) + (∆− k)(n− |D|)
2

=
|D|∆ + (n− |D|)(|D| − 2k + ∆)

2

=
−|D|2 + (n + 2k)|D|+ n∆− 2kn

2
,

which implies that

(2k + 1)2 + 2m ≤ |D|2 + 2m ≤ (n + 2k)|D|+ n∆− 2kn,

then

|D| ≥ 2m + n(2k− ∆) + (2k + 1)2

n + 2k
.

Theorem 5. Let G be a graph with order n, maximum degree ∆ and size m. Then,

γ
g
kt(G) ≥ 2m + n(∆− 2k)

n + k− ∆
.

Proof. We suppose that D is a γkt(G)-set and |D| ≥ 2r+ 1 for some r ≥ 2, and |D| ≥ 2k+ 2.
Since D is minimal, for any vertex v1 ∈ D there exists a vertex wv1 such that one of the
following conditions holds.

(1) wv1 ∈ D, v1 ∈ N(wv1) and δD(wv1) = k,

(2) wv1 ∈ D, v1 /∈ N(wv1) and δD(wv1) = |D| − k− 1,

(3) wv1 ∈ V \ D, v1 ∈ N(wv1) and δD(wv1) = k,

(4) wv1 ∈ V \ D, v1 /∈ N(wv1) and δD(wv1) = |D| − k.

Now, in cases (1) and (3), we take v2 ∈ D \ N(wv1), and in cases (2) and (4), we take
v2 ∈ D ∩ N(wv1), and we know that there exists a vertex wv2 6= wv1 such that one of the
above conditions holds. Since |D| ≥ 2r + 1 we can obtain wv1 , . . . , wvr vertices satisfying
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one of the conditions above. We suppose that there exist i, j− i, s and r− j− s vertices
satisfying (1), (2), (3) and (4), respectively. Then,

E(D, D) ≤ ik + (j− i)(|D| − k− 1) + (|D| − j)(|D| − k− 1)
2

=
ik− i(|D| − k− 1) + |D|(|D| − k− 1)

2

=
i(2k− |D|+ 1) + |D|(|D| − k− 1)

2
,

E(D, V \ D) ≤ sk + (r− j− s)(|D| − k) + (n− |D| − r + j)(|D| − k)
2

=
sk− s(|D| − k) + (n− |D|)(|D| − k)

2

=
(n− |D|)(|D| − k) + s(2k− |D|)

2
,

and

E(V \ D, V \ D) ≤ s(∆− k) + (r− j− s)(∆− |D|+ k)
2

+
(n− |D| − r + j)(∆− k)

2

=
s(∆− k) + (r− j− s)(∆− k− |D|+ 2k)

2

+
(n− |D| − r + j)(∆− k)

2

=
(∆− k)(n− |D|) + (r− j− s)(2k− |D|)

2
;

therefore,

m ≤ E(D, D) + E(D, V \ D) + E(V \ D, V \ D)

≤ i(2k− |D|+ 1) + |D|(|D| − k− 1)
2

+
(n− |D|)(|D| − k) + s(2k− |D|)

2

+
(∆− k)(n− |D|) + (r− j− s)(2k− |D|)

2

=
i(2k− |D|+ 1) + |D|(|D| − k− 1)

2

+
(n− |D|)(|D| − 2k + ∆) + (r− j)(2k− |D|)

2

=
|D|(n + k− ∆) + n(−2k + ∆) + (i + r− j)(2k− |D|) + i

2

≤ |D|(n + k− ∆) + n(−2k + ∆)
2

;

then

|D| ≥ 2m + n(∆− 2k)
n + k− ∆

.

Let us see another lower bound using the algebraic connectivity. Given a graph
G, its adjacency matrix A and the diagonal matrix D whose entries are the degrees of
all vertices in the graph, the Laplacian matrix is defined as L = A − D. The algebraic
connectivity of G, denoted by µ is the second smallest eigenvalue of the Laplacian matrix.
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The algebraic connectivity of G = (V, E) with order n satisfies the following equality given
by Fielder [13].

µ = 2n min

{
∑vivj∈E(wi − wj)

2

∑vi∈V ∑vj∈V(wi − wj)2 : w 6= αj for α ∈ R
}

,

where j = (1, 1, . . . , 1) and w ∈ Rn.

Theorem 6. Let G be a graph with order n and algebraic connectivity µ. Then,

γ
g
kt(G) ≥ kn

n− µ
.

Proof. Let D be a γkt(G)-set. It can be found that if we take

w =

{
1 if v ∈ D
0 if v /∈ D

in the set given above, since µ is the minimum, we have

µ ≤ n ∑v∈D δD(v)
|D|(n− |D|) ≤

n(n− |D|)(|D| − k)
|D|(n− |D|) =

n(|D| − k)
|D| ;

therefore, |D| ≥ kn
n−µ .

Theorem 7. Let G be a graph of order n and maximum degree ∆. If k ≥ min
{

∆
2 , n−δ−1

2

}
, then

γ
g
kt(G) ≥

√
4kn + 1 + 1

2
.

Proof. Let D be a γkt(G)-set. For every v ∈ D, if we suppose that k ≥ ∆
2 , we have

δD(v) ≥ δD(v), then

|D|(|D| − k− 1) ≥ ∑
v∈D

δD(v) ≥ ∑
v∈D

δD(v) ≥ (n− |D|)k,

which implies that |D|2 − |D| ≥ kn, or equivalently, that
(
|D| − 1

2

)2
≥ kn + 1

4 ; that is,

|D| ≥
√

4kn+1+1
2 .

If n−δ−1
2 ≤ k < ∆

2 , since γ
g
kt(G) = γ

g
kt(G) and ∆ = n − δ − 1, we can obtain the

same result.

The lower bound given in Theorem 7 is attained, for instance, in the graph given in
Figure 4.

Figure 4. A graph G such that γ
g
2t(G) ≥

√
8n+1+1

2 .
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In graph theory, it is common to analyze graphs obtained by some transformation
from an originally given graph. An example of such a transformation is the elimination of
one or more edges of the graph. Given a graph G, it is natural to think about what happens
if you add or delete edges on the graph. We note that removing an edge in G is equivalent
to adding an edge to graph G. Therefore, it suffices to study just one of these cases.

Proposition 6. Let G be a graph with order n, minimum degree δ and maximum degree ∆, and let
k < min{δ, n− ∆− 1}. Then the following inequalities are satisfied (for an edge e):

γ
g
kt(G− e) ≤ γ

g
kt(G) + 2,

γ
g
kt(G + e) ≤ γ

g
kt(G) + 2.

Proof. Let G be a graph and D be a γ
g
kt(G)-set, and we consider e ∈ E. Notice that

e ∈ E(V \ D, V \ D), e ∈ E(D, V \ D) or e ∈ E(D, D); we will divide the proof into three
cases and we denote G′ = G− e.

Case 1: If e ∈ E(V \D, V \D). Note that every vertex in V(G′) has at least k neighbors
and k non-neighbors in D. Therefore, γ

g
kt(G

′) ≤ |D| = γ
g
kt(G) < γ

g
kt(G) + 2.

Case 2: If e ∈ E(D, V \ D). Let e = uv, where u ∈ D and v ∈ V \ D. We note that
for every w ∈ V(G) − {v}, δD(w) ≥ k and δD(w) ≥ k. On the other hand, note that
δD(v) > k in G′, and if δD(v) ≥ k in G′, then γ

g
kt(G

′) ≤ |D| = γ
g
kt(G) < γ

g
kt(G) + 2. Now,

if δD(v) = k− 1 in G′, then there exists w ∈ V(G′) \ D such that w ∈ NG′(v). Therefore,
D ∪ {w} is a GTkD set of G′, so γ

g
kt(G

′) ≤ |D ∪ {w}| = γ
g
kt(G) + 1 < γ

g
kt(G) + 2.

Case 3: If e ∈ E(D, D). Let e = uv where u, v ∈ D. We note that for every w ∈ V(G)−
{u, v}, δD(w) ≥ k and δD(w) ≥ k. In the worst case δD(u) < k and δD(v) < k; the others
cases are solved as the above; there exists w, p ∈ V(G′) \ D such that w ∈ NG′(u) and
p ∈ NG′(v). Now, if w = p then D ∪ {w} is a GTkD set of G′ and γ

g
kt(G

′) ≤ |D ∪ {w}| =
γ

g
kt(G) + 1 < γ

g
kt(G) + 2; otherwise, w 6= p and then D ∪ {w, p} is a GTkD set of G′; hence

γ
g
kt(G

′) ≤ |D ∪ {w, p}| = γ
g
kt(G) + 2.

Thus, the first inequality is satisfied: γ
g
kt(G− e) ≤ γ

g
kt(G) + 2. Now, as we say above

for this problem, removing an edge in G is analogous to adding an edge in G. Since G− e
and G + e are complementary graphs and it is known that γ

g
kt(G) = γ

g
kt(G), it is verified

that γ
g
kt(G − e) = γ

g
kt(G + e). Hence, by the first inequality γ

g
kt(G + e) = γ

g
kt(G − e) ≤

γ
g
kt(G) + 2 = γ

g
kt(G) + 2. So, γ

g
kt(G + e) ≤ γ

g
kt(G) + 2.

Let S be a subset of set V such that the maximum degree of the subgraph induced
by the vertices from set S is no more than k − 1. Then set S will be referred to as a
k-independent set of vertices. The cardinality of a k-independent set of the maximum
cardinality will be referred to as the k-independence number in graph G and will be
denoted by βk(G). The lower k-independence number ik(G) is the minimum cardinality of
a maximal k-independent set in graph G.

Proposition 7. Let D be a global total k-dominating set in G and let V \ D be a maximum
(∆− k)-independent. Then,

n− β∆−k(G) ≤ |D| ≤ min{n− γ(G), n− i∆−k(G)}.

Proof. Since V \ D is a maximal (∆− k)-independent set, V \ D is a dominating set; thus,
n− |D| ≥ γ(G). Moreover, i∆−k(G) ≤ n− |D| ≤ β∆−k(G).

5. Deriving Upper Bounds for γ
g
(k+1)t(G) from γ

g
kt(G)

It is intuitively clear that the greater k is, the more difficult is to find a global total
k-dominating set of graph G = (V, E) with the minimum cardinality. In particular, the fol-
lowing relationship is easy to see: γ

g
1t(G) ≤ γ

g
2t(G) ≤ γ

g
3t(G) ≤ . . . ≤ γ

g
kt(G), for every
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k ≤ min{δ, n−∆− 1}. Ideally, one would wish to have a method that obtains a GT(k+ 1)D
set of minimum cardinality from a GTkD set with the minimum cardinality. It is clear
that this is not an easy task. In this next section we develop a method that generates a
GT(k+ 1)D set from a GTkD, based on which we establish a relationship between minimum
cardinality GTkD and GT(k + 1)D sets—more precisely, between γ

g
kt(G) and γ

g
(k+1)t(G),

which, in turn, provides upper bounds for γ
g
(k+1)t(G).

We first need to introduce some necessary definitions. Given D ⊆ V, a subset of the
set of vertices V, let N(D) be the set of vertices from V \ D having at least one neighbor in
D; that is, N(D) = {x ∈ V \ D | ∃ y ∈ D such that x ∈ NG(y)}. Similarly, we denote by
N(D) the set of vertices from V \ D having at least one non-neighbor in D.

Now let A and B be subsets of set V. We will say that a subset D ⊆ A is a relative
dominating set of B from set A if for every x ∈ B there exists at least one vertex v ∈ D
such that v ∈ N(x) or v ∈ B. Correspondingly, we call the minimum cardinality of such
a relative dominating set the relative domination number of set B from set A and denote
it by γ′(A, B). We abbreviate by γ′(A, B)-set a relative dominating set of B from set A of
cardinality γ′(A, B).

Finally, γ′(A, B) is the relative domination number of B from set A in graph G and
γ′(A, B)-set is a relative dominating set of B from set A in graph G with cardinality γ′(A, B);
see an example in Figure 5.

Lemma 1. Let G be a graph with diam(G) = 2 and g(G) = 4, and let S be an induced subgraph
isomorphic to C4. Let B = V \ (N(S) ∪ S) and A = N(B). Then γ

g
1t(G) ≤ γ′(A, B) + 4.

Proof. Let D′ be a γ′(A, B)-set, D = S ∪ D′ and v ∈ V. Note that since diam(G) = 2,
D′ ⊆ A ⊆ N(S). Thus, we can see that v ∈ N(S), v ∈ B or v ∈ S. If v ∈ N(S), then it has at
least one neighbor in S and hence also in D. On the other hand, if v ∈ B, then v must have
at least one neighbor in D′ and hence also in D. If v ∈ S, then v has at least one neighbor in
S, and hence also in D. Therefore, D is a total 1-dominating set of G.

If v ∈ S, then there exists one non-neighbor vertex of v in S, and hence also in D.
If v ∈ B, then the four vertices in S are non-neighbors of v, and hence vertex v has at least
one non-neighbor in set D. If v ∈ N(S), since g(G) = 4, v it has at most two neighbors
in S; thus, it has at least two non-neighbors in S and hence also in D. Therefore, D is
a global 1-dominating set of G. Finally, D is a global total 1-dominating set of G, so
γ

g
1t(G) ≤ γ′(A, B) + |S| = γ′(A, B) + 4.

u v

Figure 5. In the depicted graph G, the set S is formed by the white vertices, set A is formed by the
black vertices and set B is formed by the gray vertices. Note that γ′(A, B) = 2 (the set {u, v} is a
γ′(A, B)-set) and γ

g
1t(G) = 6.

Corollary 5. Let G be a graph with diam(G) = 2 and g(G) = 4; let S be an induced subgraph
isomorphic to C4, B = V \ (N(S) ∪ S) and A = N(B). Then the following conditions hold.

• If B = ∅, then γ
g
1t(G) = 4.

• Since γ′(A, B) ≤ |B|, γ
g
1t(G) ≤ |B|+ 4.
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• If |N(x) ∩ S| = 2, ∀x ∈ A, then γ
g
2t(G) ≤ 2|B|+ 4.

Let k be a positive integer with 1 ≤ k < min{δ, n− ∆− 1}, and D be a γ
g
kt(G)-set for

graph G. Below we define special sets of vertices that will be used in future derivations.

• H = V(G) \ D.
• Z = {x ∈ H | δD(x) ≥ k + 1 and δD(x) ≥ k + 1} are all vertices in H which are global

total (k + 1)-dominated.
• X = Tk(G[D]) are all vertices in D with only k neighbors.
• Y = T|D|−k−1(G[D]) are all vertices in D with only k non-neighbors.
• X′ = N(X) ∩ H are all the vertices in H which have at least one neighbor in set X.
• N = γ′(X′, X)-set, a relative dominating set of X from set X′.
• Y′ = N(Y) ∩ H are all the vertices in set H which have at least one non-neighbor in

set Y.
• R = γ′(Y′, Y)-set, a relative dominating set of X from set X′ in G.
• P = H \ Z are all the vertices in set H which are not yet global total (k + 1)-dominated.
• M = γ′(H, P)-set ∪ γ′(H, P)-set;
• S = D ∪ N ∪ R ∪M;

Now we show that the set S obtained as above is a global total (k + 1)-dominating set
given a γ

g
kt(G)-set D.

Theorem 8. Let G be a graph and D be an arbitrary γ
g
kt(G)-set. Then the set S obtained as above

is a global total (k + 1)-dominating set of graph G.

Proof. Let D be an arbitrary γ
g
kt(G)-set, H = V \ D, Z = {x ∈ H: δD(x) ≥ k + 1 and

δD(x) ≥ k + 1}, X = Tk(G[D]) and Y = T|D|−k−1(G[D]). Further, let P = H \ Z, E be
a γ′(H, P)-set, F be a γ′(H, P)-set and M = E ∪ F (all these sets being constructed as
above specified). If X = ∅ and Y = ∅, then every vertex from D ∪ Z has at least k + 1
adjacent and k + 1 non-adjacent vertices in set D. Besides, note that every vertex v ∈ P
has at least k + 1 adjacent and k + 1 non-adjacent vertices in set D ∪M. Additionally, since
V = D ∪ Z ∪ P, D ∪M is a global total (k + 1)-dominating set of graph G.

Assume now that X 6= ∅ and Y = ∅, and let X′ = N(X)∩ H and N be a γ′(X′, X)-set
(notice that by the construction of the set X′, there always exists the set N). Observe that
every vertex from set D ∪ Z has at least k + 1 adjacent and k + 1 non-adjacent vertices in
set D ∪ N. Besides, every vertex v ∈ P has at least k + 1 adjacent and k + 1 non-adjacent
vertices in set D ∪M. Since V = D ∪ Z ∪ P, D ∪ N ∪M is a global total (k + 1)-dominating
set of G.

The case X = ∅ and Y 6= ∅ is analogous to the above case. We obtain that D ∪ R ∪M
is a global total (k + 1)-dominating set of G, where Y′ = N(Y) ∩ H and R is a γ′(Y′, Y)-set.

Finally, assume that X 6= ∅ and Y 6= ∅. Let X′ = N(X) ∩ H, Y′ = N(Y) ∩ H, N be a
γ′(X′, X)-set and R be a γ′(Y′, Y)-set. Using a similar arguments as above, we again obtain
that S is a global total (k + 1)-dominating set of graph G.

In the next proposition we derive an upper bound on the cardinality of the global total
(k + 1)-domination number. In the same lemma, we give a necessary condition when the
global total (k + 1)-domination number is equal to the total (k + 1)-domination number.

Proposition 8. Let G be a graph with δ ≥ k and D be a γ
g
kt(G)-set. Then the following condi-

tions hold:

(a) γ
g
(k+1)t(G) ≤ γ

g
kt(G) + |N ∪ R ∪M|.

(b) If |N ∪M| > ∆ + k− γ
g
kt(G), then γ

g
(k+1)t(G) = γ(k+1)t(G).

Proof. (a) By Theorem 8, S is a global total (k + 1)-dominating set of G; hence, the bound
trivially holds.

238



Mathematics 2021, 9, 480

(b) Recall that |S| = γ
g
kt(G) + |N ∪ R ∪M|. Additionally, it is easy to see that S \ R

is a total (k + 1)-dominating set of G. In [12] it is proved that if γkt(G) > ∆ + k, then
γ

g
kt(G) = γkt(G) (see Proposition 2.10). Hence, if |S| ≥ γ

g
kt(G) + |N ∪M| ≥ γ(k+1)t(G) >

∆ + k + 1, then γ
g
(k+1)t(G) = γ(k+1)t(G). Hence, if |N ∪ M| > ∆ + k + 1− γ

g
kt(G) then

γ
g
(k+1)t(G) = γ(k+1)t(G).

Using the definition of the above introduced sets and Theorem 8 and Proposition 8,
we can obtain a global total k-domination set for any k = 2, . . . , min{δ, n− ∆− 1}. As a
side-result, we also obtain the corresponding upper bounds to a global total k-domination
number. Finally, we note that this procedure provides a global total k-dominating set of
minimum cardinality, 2 ≤ k ≤ min{δ, n− ∆− 1}, for some graphs; see Figure 6.

v1 v2

v3v4

v5

v6

v7

v8

Figure 6. A graph G with γ
g
1t(G) = 4, γ

g
2t(G) = 6 and γ

g
3t(G) = 8. Note that if D = {v1, v2, v3, v4}

a γ
g
1t(G)-set, then S = {v1, v2, v3, v4, v5, v7} which is a γ

g
2t(G)-set. Likewise, from S we construct

S′ = {v1, v2, v3, v4, v5, v6, v7, v8} which is a γ
g
3t(G)-set.

6. Conclusions

We studied the global total k-domination number in general graphs. In particular, we
presented new upper and lower bounds using the algebraic connectivity in graphs. We also
established a relationship between the global total k-domination numbers of the originally
given graph G and the transformed ones. Then we derived an explicit relationship between
a γ

g
kt(G)-set and a γ

g
(k+1)t(G)-set, which allowed us to obtain another upper bound for the

global total k-domination number in a recurrent fashion, starting from k = 1. We gave
an example of a graph G for which a γ

g
kt(G)-set, for every k = 2, . . . , min{δ, n− ∆− 1}

is provided. For future work, the global total k-domination number could be studied on
unitary operations in graphs, such as edge subdivision, edge contraction, path contraction
and removal of a vertex. It would be a challenging task to adopt the proposed method as
such and also extend it for a wider class of graphs.
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Abstract: With many efficient solutions for a multi-objective optimization problem, this paper aims
to cluster the Pareto Front in a given number of clusters K and to detect isolated points. K-center
problems and variants are investigated with a unified formulation considering the discrete and
continuous versions, partial K-center problems, and their min-sum-K-radii variants. In dimension
three (or upper), this induces NP-hard complexities. In the planar case, common optimality property
is proven: non-nested optimal solutions exist. This induces a common dynamic programming
algorithm running in polynomial time. Specific improvements hold for some variants, such as
K-center problems and min-sum K-radii on a line. When applied to N points and allowing to uncover
M < N points, K-center and min-sum-K-radii variants are, respectively, solvable in O(K(M +

1)N log N) and O(K(M + 1)N2) time. Such complexity of results allows an efficient straightforward
implementation. Parallel implementations can also be designed for a practical speed-up. Their
application inside multi-objective heuristics is discussed to archive partial Pareto fronts, with a
special interest in partial clustering variants.

Keywords: discrete optimization; operational research; computational geometry; complexity; algo-
rithms; dynamic programming; clustering; k-center; p-center; sum-radii clustering; sum-diameter
clustering; bi-objective optimization; Pareto Front; parallel programming

1. Introduction

This paper is motivated by real-world applications of multi-objective optimization
(MOO). Some optimization problems are driven by more than one objective function,
with conflicting optimization directions. For example, one may minimize financial costs,
while maximizing the robustness to uncertainties or minimizing the environmental impact
[1,2]. In such cases, higher levels of robustness or sustainability are likely to induce financial
over-costs. Pareto dominance, preferring one solution to another if it is better for all the
objectives, is a weak dominance rule. With conflicting objectives, several non-dominated
points in the objective space can be generated, defining efficient solutions, which are the
best compromises. A Pareto front (PF) is the projection in the objective space of the efficient
solutions [3]. MOO approaches may generate large sets of efficient solutions using Pareto
dominance [3]. Summarizing the shape of a PF may be required for presentation to decision
makers. In such a context, clustering problems are useful to support decision making to
present a view of a PF in clusters, the density of points in the cluster, or to select the most
central cluster points as representative points. Note than similar problems are of interest
for population MOO heuristics such as evolutionary algorithms to archive representative
points of a partial Pareto fronts, or in selecting diversified efficient solutions to process
mutation or cross-over operators [4,5].

Mathematics 2021, 9, 453. https://doi.org/10.3390/math9040453 https://www.mdpi.com/journal/mathematics241
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With N points in a PF, one wishes to define K � N clusters while minimizing the
measure of dissimilarity. The K-center problems, both in the discrete and continuous
versions, define the cluster costs in this paper, covering the PF with K identical balls while
minimizing the radius of the balls used. By definition, the ball centers belong to the PF
for the discrete K-center version, whereas the continuous version is similar to geometric
covering problems, without any constraint for the localization of centers. Furthermore,
sum-radii or sum-diameter are min-sum clustering variants, where the covering balls are
not necessarily identical. For each variant, one can also consider partial clustering variants,
where a given percentage (or number) of points can be ignored in the covering constraints,
which is useful when modelling outliers in the data.

The K-center problems are NP-hard in the general case, [6] but also for the specific
case in R2 using the Euclidean distance [7]. This implies that K-center problems in three-
dimensional (3D) PF are also NP-hard, with the planar case being equivalent to an affine
3D PF. We consider the case of two-dimensional (2D) PF in this paper, focusing on the
polynomial complexity results. It as an application to bi-objective optimization, the 3D PF
and upper dimensions are shown as perspectives after this work. Note that 2D PF are a
generalization of one-dimensional (1D) cases, where polynomial complexity results are
known [8,9]. A preliminary work proved that K-center clustering variants in a 2D PF are
solvable in polynomial time using a Dynamic Programming (DP) algorithm [10]. This paper
improves these algorithms for these variants, with an extension to min-sum clustering
variants, partial clustering, and Chebyshev and Minkowski distances. The properties of
the DP algorithms are discussed for efficient implementation, including parallelization.

This paper is organized as follows. The considered problems are defined formally with
unified notations in Section 2. In Section 3, related state-of-the-art elements are discussed.
In Sections 4 and 5, intermediate results and specific complexity results for sub-cases are
presented. In Section 6, a unified DP algorithm with a proven polynomial complexity is
designed. In Section 7, specific improvements are presented. In Section 8, the implications
and applications of the results of Sections 5–7 are discussed. In Section 9, our contributions
are summarized, with a discussion of future research directions.

2. Problem Statement and Notation

In this paper, integer intervals are denoted as [[a, b]] = [a, b]∩Z. Let E = {x1, . . . , xN} =
{xi}i∈[[1,N]] a set of N elements of R2, such that for all i 6= j, xi I xj defining the binary
relations I ,≺ for all y = (y1, y2), z = (z1, z2) ∈ R2 with

y ≺ z ⇐⇒ y1 < z1 and y2 > z2 (1)

y 4 z ⇐⇒ y ≺ z or y = z (2)

y I z ⇐⇒ y ≺ z or z ≺ y (3)

These hypotheses on E define 2D PF considering the minimization of two objectives [3,11].
Such configuration is illustrated by Figure 1. Without loss of generality, transforming ob-
jectives to maximize f into − f allows for the consideration of the minimization of two
objectives. This assumption impacts the sense of the inequalities of I ,≺. A PF can also be
seen as a Skyline operator [12]. A 2D PF can be extracted from any subset of R2 using an
output-sensitive algorithm [13], or using any MOO approach [3,14].

The results of this paper will be given using the Chebyshev and Minkowski distances,
generically denoting d(y, z) the l 8 and lm norm-induced distance, respectively. For a given
m > 0, the Minkowski distance is denoted dm, and given by the formula

∀y = (y1, y2), z = (z1, z2) ∈ R2, dm(y, z) = m
√
|y1 − z1|m + |y2 − z2|m (4)
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The case m = 2 corresponds to the Euclidean distance; it is a usual case for our
application. The limit with m→ 8 defines the Chebyshev distance, denoted d 8 and given
by the formula

∀y = (y1, y2), z = (z1, z2) ∈ R2, d 8(y, z) = max
(∣∣∣y1 − z1

∣∣∣,
∣∣∣y2 − z2

∣∣∣
)

(5)

Once a distance d is defined, a dissimilarity among a subset of points E′ ⊂ E is defined
using the radius of the minimal enclosing ball containing E′. Numerically, this dissimilarity
function, denoted as fC , can be written as

∀E′ ⊂ E, fC(E′) = min
y∈R2

max
x∈E′

d(x, y) (6)

A discrete variant considers enclosing balls with one of the given points as the center.
Numerically, this dissimilarity function, denoted fD , can be written as

∀E′ ⊂ E, fD(E′) = min
y∈E′

max
x∈E′

d(x, y) (7)

For the sake of having unified notations for common results and proofs, we define
γ ∈ {0, 1} to indicate which version of the dissimilarity function is considered. γ = 0
(respectively, 1) indicates that the continuous (respectively, discrete) version is used, fγ,
thus denoting f1 = fC (respectively, f0 = fD). Note that γ ∈ {0, 1} will be related to
complexity results which motivated such a notation choice.

For each a subset of points E′ ⊂ E and integer K > 1, we define ΠK(E), as the set of all
the possible partitions of E′ in K subsets. Continuous and discrete K-center are optimization
problems with ΠK(E) as a set of feasible solutions, covering E with K identical balls while
minimizing the radius of the balls used

min
π∈ΠK(E)

max
P∈π

fγ(P) (8)

The continuous and discrete K-center problems in the 2D PF are denoted K-γ-CP2DPF.
Another covering variant, denoted min-sum-K-radii problems, covers the points with
non-identical balls, while minimizing the sum of the radius of the balls. We consider the
following extension of min-sum-K-radii problems, with α > 0 being a real number

min
π∈ΠK(E)

∑
P∈π

fγ(P)α (9)

α = 1 corresponds to the standard min-sum-K-radii problem. α = 2 with the standard
Euclidean distance is equivalent to the minimization of the area defined by the covering
disks. For the sake of unifying notations for results and proofs, we define a generic operator
⊕ ∈ {+, max} to denote, respectively, sum-clustering and max-clustering. This defines the
generic optimization problems

min
π∈ΠK(E)

⊕

P∈π

fγ(P)α (10)

Lastly, we consider a partial clustering extension of problems (10), similarly to the
partial p-center [15]. The covering with balls mainly concerns the extreme points, which
make the results highly dependent on outliers. One may consider that a certain number
M < N of the points may be considered outliers, and that M points can be removed in the
evaluation. This can be written as

min
E′⊂E:|E\E′ |6M

min
π∈ΠK(E′)

⊕

P∈π

fγ(P)α (11)
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Problem (11) is denoted K-M-⊕-(α, γ)-BC2DPF. Sometimes, the partial covering is
defined by a maximal percentage of outliers. In this case, if M is much smaller than N,
we have M = Θ(N), which we have to keep in mind for the complexity results. K-center
problems, K-γ-CP2DPF, are K-M-max-(α, γ)-BC2DPF problems for all α > 0; the value
of α does not matter for max-clustering, defining the same optimal solutions as α = 1.
The standard min-sum-k-radii problem, equivalent to the min-sum diameter problem,
corresponds to k-0-+-(1, γ)-BC2DPF problems for discrete and continuous versions, k-M-
+-(1, γ)-BC2DPF problems consider partial covering for min-sum-k-radii problems.

3. Related Works

This section describes works related to our contributions, presenting the state-of-the-
art for p-center problems and clustering points in a PF. For more detailed survey on the
results for the p-center problems, we refer to [16].

3.1. Solving P-Center Problems and Complexity Results

Generally, the p-center problem consists of locating p facilities among possible loca-
tions and assigning n clients, called c1, c2, . . . , cn, to the facilities in order to minimize the
maximum distance between a client and the facility to which it is allocated. The continuous
p-center problem assumes that any place of location can be chosen, whereas the discrete
p-center problem considers a subset o m potential sites, denoted f1, f2, . . . , fm, and dis-
tances di,j for all i ∈ [[1, n]] and j ∈ [[1, m]]. Discrete p-center problems can be formulated
with bipartite graphs, modeling that si unfeasibile for some assignments. In the discrete
p-center problem defined in Section 2, points f1, f2, . . . , fm are exactly c1, c2, . . . , cn, and
the distances are defined using a norm, so that triangle inequality holds for such variants.

P-center problems are NP-hard [6,17]. Furthermore, for all α < 2, any α-approximation
for the discrete p-center problem with triangle inequality is NP-hard [18]. Two approxi-
mations were provided for the discrete p-center problem running in O(pn log n) time and
in O(np) time, respecitvely [19,20]. The discrete p-center problem in R2 with a Euclidean
distance is also NP-hard [17]. Defining binary variables xi,j ∈ {0, 1} and yj ∈ {0, 1} with
xi,j = 1 if and only if the customer i is assigned to the depot j, and yj = 1 if and only if loca-
tion f j is chosen as a depot, the following Integer Linear Programming (ILP) formulation
models the discrete p-center problem [21]

min
x,y,z

z (12a)

s.t :
n

∑
j=1

di,jxi,j 6 z ∀i ∈ [[1, n]] (12b)

m

∑
j=1

yj = p (12c)

m

∑
j=1

xi,j = 1 ∀i ∈ [[1, n]] (12d)

xi,j 6 yj ∀(i, j) ∈ [[1, N]]× [[1, n]], (12e)
xi,j, yj ∈ {0, 1} ∀i, j ∈ [[1, n]]× [[1, m]], (12f)

Constraints (12b) are implied by a standard linearization of the min–max original
objective function. Constraint (12c) fixes the number of open facilities to p. Constraints
(12d) assign each client to exactly one facility. Constraints (12e) are necessary to induce
that any considered assignment xi,j = 1 implies that facility j is open with yj = 1. Tighter
ILP formulations than (12) were proposed, with efficient exact algorithms relying on the
IP models [22,23]. Exponential exact algorithms were also designed for the continuous
p-center problem [24,25]. An nO(

√
p)-time algorithm was provided for the continuous

Euclidean p-center problem in the plane [26]. An nO(p1−1/d)-time algorithm is available for
the continuous p-center problem in Rd under Euclidean and L 8 -metric [27].
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Specific cases of p-center problems are solvable in polynomial time. The continu-
ous 1-center problem is exactly the minimum covering ball problem, which has a linear
complexity in R2. Indeed, a “prune and search” algorithm finds the optimum bounding
sphere and runs in linear time if the dimension is fixed as a constant [28]. In dimension d,
its complexity is in O((d + 1)(d + 1)!n) time, which is impractical for high-dimensional
applications [28]. The discrete 1-center problem is solved in time O(n log n), using furthest-
neighbor Voronoi diagrams [29]. The continuous and planar 2-center problem is solved in
randomized expected O(n log2 n) time [30,31]. The discrete and planar 2-center problem
is solvable in O(n4/3 log5 n) time [32].

1D p-center problems, or those with equivalent points that are located in a line,
have specific complexity results with polynomial DP algorithms. The discrete 1D k-center
problem is solvable in O(n) time [33]. The continuous and planar k-centers on a line, finding
k disks with centers on a given line l, are solvable in polynomial time, in O(n2 log2 n) time
in the first algorithm by [29], and in O(nk log n) time and O(n) space in the improved
version provided by [34]. An intensively studied extension of the 1D sub-cases is the
p-center in a tree structure. The continuous p-center problem is solvable in O(n log3 n)
time in a tree structure [7]. The discrete p-center problem is solvable in O(n log n) time in a
tree structure [35].

Rectilinear p-center problems, using the Chebyshev distances, were less studied. Such
distance is useful for complexity results; however, it has fewer applications than Euclidean
or Minkowski norms. For the planar and rectangular 1-center and 2-center problems,
O(n) algorithms are available for the 1-center problem, and such 3-center problems can be
solved in O(n log n) time [36]. In a general dimension d, continuous and discrete versions
of rectangular p-center problems are solvable in O(n) and O(n logd−2 n log log n + n log n)
running time, respectively. Specific complexity results for rectangular 2-center problems
are also available [37].

3.2. Solving Variants of P-Center Problems and Complexity Results

Variants of p-center problems were studied less intensively than the standard p-center
problems. The partial variants were introduced in 1999 by [15], whereas a preliminary
work in 1981 considered a partial weighted one-center variant and a DP algorithm to solve
it running in O(n2 log n) time [38]. The partial discrete p-center can formulated as an ILP
starting from the formulation provided by [21] as written in (12). Indeed, considering
that n0 points can be uncovered, constraints (12.4) become inequalities ∑m

j=1 xi,j 6 1 for
all i, j and the maximal number of unassigned points is set to n0, adding one constraint
∑n

j=i ∑m
j=1 xi,j > n− n0. Similarly, the sum-clustering variants K-M-+-(α, γ)-BC2DPF can

be written as the following ILP

min
z,r>0

N

∑
n=1

rn (13a)

s.t :
N

∑
n=1

d(xn, xn′)
αzn,n′ 6 rn′ ∀n′ ∈ [[1, N]] (13b)

N

∑
n′=1

zn′ ,n′ = K (13c)

N

∑
n′=1

zn,n′ 6 1 ∀n ∈ [[1, N]] (13d)

N

∑
n=1

N

∑
n′=1

zn,n′ > N −M (13e)

zn,n′ 6 zn′ ,n′ ∀(n, n′) ∈ [[1, N]]2, (13f)
zn,n′ ∈ {0, 1} ∀(n, n′) ∈ [[1, N]]2, (13g)

rn > 0 ∀n ∈ [[1, N]], (13h)
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In this ILP formulation, binary variables zn,n′ ∈ {0, 1} are defined such that zn,n′ = 1
if and only if the points xn and xn′ are assigned in the same cluster, with xn′ being the
discrete center. Continuous variables rn > 0 denote the powered radius of the ball centered
in xn, if xn is chosen as a center, and rn = 0 otherwise. Constraint (13b) is a standard
linearization of the non-linear objective function. zn,n indicates that if point xn is chosen as
the center, then this implies with (13c) that K such variables are nonzero, and with (13f)
that a nonzero variable zn,n′ implies that the corresponding zn′ ,n′ is not null. (13d) and (13e)
allow the extension with partial variants, as discussed before.

Min-sum radii or diameter problems were rarely studied. However, such objective
functions are useful for meta-heuristics to break some “plateau” effects [39]. Min-sum di-
ameter clustering is NP-hard in the general case and polynomial within a tree structure [40].
The NP-hardness is also proven, even in metrics induced by weighted planar graphs [41].
Approximation algorithms were studied for min-sum diameter clustering. A logarithmic
approximation with a constant factor blowup in the number of clusters was provided
by [42]. In the planar case with Euclidean distances, a polynomial time approximation
scheme was designed [43].

3.3. Clustering/Selecting Points in Pareto Frontiers

Here, we summarize the results related to the selection or the clustering of points in
PF, with applications for MOO algorithms. Polynomial complexity resulting in the use of
2D PF structures is an interesting property; clustering problems have a NP-hard complexity
in general [17,44,45].

To the best of our knowledge, no specific work focused on PF sub-cases of k-center
problems and variants before our preliminary work [10]. A Distance-Based Representative
Skyline with similarities to the discrete p-center problem in a 2D PF may not be fully
available in the Skyline application, which makes a significant difference [46,47]. The
preliminary results proved that K-γ-CP2DPF is solvable in O(KN logγ N) time using O(N)
additional memory space [10]. Partial extensions and min-sum-k-radii variants were not
considered for 2D PF. We note that the 2D PF case is an extension of the 1D case, with 1D
cases being equivalent to the cases of an affine 2D PF. In the study of complexity results,
a tree structure is usually a more studied extension of 1D cases. The discrete k-center
problem on a tree structure, and thus the 1D sub-case, is solvable in O(N) time [33]. 3F PF
cases are NP-complete, as already mentioned in the introduction, this being a consequence
of the NP-hardness of the general planar case.

Maximization of the quality of discrete representations of Pareto sets was studied with
the hypervolume measure in the Hypervolume Subset Selection (HSS) problem [48,49].
The HSS problem is known to be NP-hard in dimension 3 (and greater dimensions) [50].
HSS is solvable with an exact algorithm in NO(

√
K) and a polynomial-time approximation

scheme for any constant dimension d [50]. The 2D case is solvable in polynomial time
with a DP algorithm with a complexity in O(KN2) time and O(KN) space [49]. The
time complexity of the DP algorithm was improved in O(KN + N log N) by [51], and in
O(K(N − K) + N log N) by [52].

The selection of points in a 2D PF, maximizing the diversity, can also be formulated
using p-dispersion problems. Max–Min and Max-Sum p-dispersion problems are NP-
hard problems [53,54]. Max–Min and Max-Sum p-dispersion problems are still NP-hard
problems when distances fulfill the triangle inequality [53,54]. The planar (2D) Max–Min
p-dispersion problem is also NP-hard [9]. The one-dimensional (1D) cases of Max–Min
and Max-Sum p-dispersion problems are solvable in polynomial time, with a similar DP
algorithm running in O(max{pN, N log N}) time [8,9]. Max–Min p-dispersion was proven
to be solvable in polynomial time, with a DP algorithm running in O(pN log N) time and
O(N) space [55]. Other variants of p-dispersion problems were also proven to be solvable
in polynomial time using DP algorithms [55].

Similar results exist for k-means, k-medoid and k-median clustering. K-means is
NP-hard for 2D cases, and thus for 3D PF [44]. K-median and K-medoid problems are
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known to be NP hard in dimension 2, since [17], where the specific case of 2D PF was
proven to be solvable in O(N3) time with DP algorithms [11,56]. The restriction of k-means
to 2D PF would be also solvable in O(N3) time with a DP algorithm if a conjecture was
proven [57]. We note that an affine 2D PF is a line in R2, where clustering is equivalent to
1D cases. 1D k-means were proven to be solvable in polynomial time with a DP algorithm
in O(KN2) time and O(KN) space. This complexity was improved for a DP algorithm
in O(KN) time and O(N) space [58]. This is thus the complexity of K-means in an affine
2D PF.

4. Intermediate Results
4.1. Indexation and Distances in a 2D PF

Lemma 1. 4 is an order relation, and ≺ is a transitive relation

∀x, y, z ∈ R2, x ≺ y and y ≺ z =⇒ x ≺ z (14)

Proposition 1 implies an order among the points of E, for a re-indexation in
O(N log N) time

Obj1

Obj2
x1•
x2•

x3• x4• x5•x6• x7• x8•
x9• x10• x11• x12• x13• x14• x15•

Figure 1. Illustration of a 2D Pareto Front (PF) with 15 points and the indexation implied by
Proposition 1.

Proposition 1 (Total order). Points (xi) can be re-indexed in O(N log N) time, such that

∀(i1, i2) ∈ [[1; N]]2, i1 < i2 =⇒ xi1 ≺ xi2 (15)

∀(i1, i2) ∈ [[1; N]]2, i1 6 i2 =⇒ xi1 4 xi2 (16)

Proof. We index E such that the first coordinate is increasing. This sorting procedure runs
in O(N log N) time. Let (i1, i2) ∈ [[1; N]]2, with i1 < i2. We thus have x1

i1
< x1

i2
. Having

xi1Ixi2 implies that x2
i1
> x2

i2
. x1

i1
< x1

i2
and x2

i1
> x2

i2
is by definition xi1 ≺ xi2 .

The re-indexation also implies monotonic relations among distances of the 2D PF

Lemma 2. We suppose that E is re-indexed as in Proposition 1. Letting d be a Minkowski,
Euclidean or Chebyshev distance, we obtain the following monotonicity relations

∀(i1, i2, i3) ∈ [[1; N]]3, i1 6 i2 < i3 =⇒ d(xi1 , xi2) < d(xi1 , xi3) (17)

∀(i1, i2, i3) ∈ [[1; N]]3, i1 < i2 6 i3 =⇒ d(xi2 , xi3) < d(xi1 , xi3) (18)

Proof. We first note that the equality cases are trivial, so we can suppose that i1 < i2 < i3
in the following proof. We prove the propriety (17); the proof of (18) is analogous.
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Let i1 < i2 < i3. We note that xi1 = (x1
i1

, x2
i1
), xi2 = (x1

i2
, x2

i2
) and xi3 = (x1

i3
, x2

i3
).

Proposition 1 re-indexation ensures x1
i1
< x1

i2
< x1

i3
and x2

i1
> x2

i2
> x2

i3
. With x1

i3
− x1

i1
>

x1
i2
− x1

i1
> 0, |x1

i1
− x1

i2
| < |x1

i1
− x1

i3
|

With x2
i3
− x2

i1
< x2

i2
− x2

i1
< 0, |x2

i1
− x2

i2
| < |x2

i1
− x2

i3
|

Thus, for any m > 0, dm(xi1 , xi2) < |x1
i1
− x1

i3
|m + |x2

i1
− x2

i3
|m = dm(xi1 , xi3) and also

d 8(xi1 , xi2) = max(|x1
i1
− x1

i2
|, |x2

i1
− x2

i2
|) < max(|x1

i1
− x1

i3
|, |x2

i1
− x2

i3
|) = d 8(xi1 , xi3).

Hence, the result is proven for Euclidean, Minkowski and Chebyshev distances.

4.2. Lemmas Related to Cluster Costs

This section provides the relations needed to compute or compare cluster costs. Firstly,
one notes that the computation of cluster costs is easy in a 2D PF in the continuous
clustering case.

Lemma 3. Let P ⊂ E, such that card(P) > 1. Let i (resp i′) be the minimal (respective maximal)
index of points of P with the indexation of Proposition 1. Then, fC(P) can be computed with
fC(P) = 1

2 d(xi, xi′).

To prove the Lemma 3, we use the Lemmas 4 and 5.

Lemma 4. Let P ⊂ E, such that card(P) > 1. Let i (resp i′) the minimal (resp maximal) index of
points of P with the indexation of Proposition 1. We denote with O =

xi+xi′
2 the midpoint of xi, xi′ .

Then, using a Minkowski or Chebyshev distance d, we have for all x ∈ P: d(x, O) 6 d(xi, O) =
d(xi′ , O).

Proof of Lemma 4: We denote with r = d(xi, O) = d(xi′ , O) = 1
2 d(xi, xi′), with the equality

being trivial as points O, xi, xi′ are on a line and d is a distance. Let x ∈ P. We calculate
the distances using a new system of coordinates, translating the original coordinates such
that O, is a new origin (which is compatible with the definition of Pareto optimality). xi
and xi′ have coordinates (−a, b) and (a,−b) in the new coordinate system, with a, b > 0
and am + bm = rm if a Minkowski distance is used, otherwise it is max(a, b) = r for the
Chebyshev distance. We use (a′, b′) to denote the coordinates of x. xi ≺ x ≺ xi′ implies
that −a 6 a′ 6 a and −b 6 b′ 6 b, i.e., |a′| 6 a and |b′| 6 b, which implies d(x, O) 6 r,
using Minkowski or Chebyshev distances.

Lemma 5. Let P ⊂ E such that card(P) > 1. Let i (respective i′) be the minimal (respective
maximal) index of points of P with the indexation of Proposition 1. We denote, using O =

xi+xi′
2 ,

the midpoint of xi, xi′ . Then, using a Minkowski or Chebyshev distance d, we have for all y ∈ R2:
d(xi, O) = d(xi′ , O) 6 max(d(xi, y), d(xi′ , y)).

Proof of Lemma 5: As previously noted, let r = d(xi, O) = d(xi′ , O) = 1
2 d(xi, xi′). Let

y ∈ R2. We have to prove that d(xi′ , y) > r or d(xi, y) > r. If we suppose that d(xi, y) < r,
this implies that y ≺ O. Then, having y ≺ O ≺ xi′ implies d(xi′ , y) > d(xi′ , 0) = r with
Lemma 2.

Proof of Lemma 3: We first note that fC(P) = miny∈R2 maxx∈P d(x, y) 6 maxx∈P d(x, O),

using the particular point O =
xi+xi′

2 . Using Lemma 4, maxx∈P d(x, O) 6 r, and thus
fC(P) 6 r with r = d(xi, O) = d(xi′ , O) = 1

2 d(xi, xi′). Reciprocally, for all y ∈ R2,
r 6 max(d(xi, y), d(xi′ , y)) using Lemma 5, and thus r 6 maxx∈P d(x, y). This implies that
r 6 miny∈R2 maxx∈P d(x, y) = fC(P).
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Lemma 6. Let P ⊂ E such that card(P) > 3. Let i (respective i′) the minimal (respective maximal)
index of points of P.

fD(P) = min
j∈[[i+1,i′−1]],xj∈P

max
(
d
(
xj, xi

)
, d
(
xj, xi′

))
(19)

Proof. Let y ∈ P− {xi, xi′}. We denote j ∈ [[i, i′]], such that y = xj. Applying Lemma 2 to
i < j < i′, for all k ∈ [[i, i′]],, we have d

(
xj, xk

)
6 max

(
d
(
xj, xi

)
, d
(
xj, xi

))
. Then

fD(P) = min
y=xj∈P

max
x∈P

d(x, y)

fD(P) = min
j∈[[i,i′ ]],xj∈P

max
(

max
(
d
(

xj, xi
)
, d
(

xj, xi
))

, max
k∈[[i,i′ ]]

d
(
xj, xk

))

fD(P) = min
j∈[[i,i′ ]],xj∈P

max
(
d
(
xj, xi

)
, d
(
xj, xi′

))

Lastly, we notice that extreme points are not optimal centers. Indeed,
max(d(xi, xi), d(xi, xi′)) = d(xi, xi′) > max(d(xi+1, xi′), d(xi+1, xi)) with Proposition 2,
i.e., i, is not optimal in the last minimization, dominated by i + 1. Similarly, i′ is dominated
by i′ − 1.

Lemma 7. Let γ ∈ {0, 1}. Let P ⊂ P′ ⊂ E. We have fγ(P) 6 fγ(P′).

Proof. Using the order of Proposition 1, let i (respectively, i′) the minimal index of points of
P (respectively, P′) and let j (respectively, j′) the maximal indexes of points of P (respectively,
P′). fC(P) 6 fC(P′) is trivial using Lemmas 2 and 3. To prove fD(P) 6 fD(P′), we use
i 6 i′ 6 j′ 6 j, and Lemmas 2 and 6

fD(P) = min
k∈[[i,j]],xk∈P

max
(
d(xk, xi), d

(
xj, xk

))

6 min
k∈[[i′ ,j′ ]],xk∈P

max
(
d(xk, xi), d

(
xj, xk

))

6 min
k∈[[i′ ,j′ ]],xk∈P′

max
(

d(xk, xi′), d
(

xj′ , xk

))
= fD(P′)

Lemma 8. Let γ ∈ {0, 1}. Let P ⊂ E, such that card(P) > 1. Let i (respectively, i′) the minimal
(respectively, maximal) index of points of P. For all P′ ⊂ P, such that xi, xi′ ∈ P′, we have
fγ(P) = fγ(P′)

Proof. Let P′ ⊂ P such that xi, xi′ ∈ P′. With Lemma 7, we have fγ(P′) 6 fγ(P). fC(P′) =
fC(P) is trivial using Lemma 3, so that we have to prove fD(P) 6 fD(P′).

fD(P) = min
k∈[[i,i′ ]],xk∈P

max(d(xk, xi), d(xi − xi′)) 6 min
k∈[[i′ ,j′ ]],xk∈P′

max(d(xk, xi), d(xk, xi′)) =

fD(P′)

4.3. Optimality of Non-Nested Clustering

In this section, we prove that non-nested clustering property, the extension of interval
clustering from 1D to 2D PF, allows the computation of optimal solutions, which will
be a key element for a DP algorithm. For (partial) p-center problems, i.e., K-M-max-
(α, γ)-BC2DPF, optimal solutions may exist without fulfilling the non-nested property,
whereas for K-M-+-(α, 0)-BC2DPF problems, the nested property is a necessary condition
to obtaining an optimal solution.
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Lemma 9. Let γ ∈ {0, 1}; let M > 0. There is an optimal solution of 1-M-⊕-(α, γ)-BC2DPF on
the shape Ci,i′ = {xj}j∈[[i,i′ ]] = {x ∈ E | ∃j ∈ [[i, i′]], x = xj}, with |i′ − i| > N −M.

Proof. Let π ∈ ΠK(E) represent an optimal solution of 1-M-⊕-(α, γ)-BC2DPF, let OPT be
the optimal cost, and C ⊂ E with |C| > N −M and fγ(C) = OPT. Let i (respectively, i′) be
the minimal (respectively maximal) index of C using order of Proposition 1. C ⊂ Ci,i′ , so
Lemma 8 applies and fγ(Ci,i′) = fγ(C) = OPT. |Ci,i′ | > |C| > N −M, thus Ci,i′ defines an
optimal solution of 1-M-⊕-(α, γ)-BC2DPF.

Proposition 2. Let E = (xi) be a 2D PF, re-indexed with Proposition 1. There are optimal
solutions of K-M-⊕-(α, γ)-BC2DPF using only clusters on the shape Ci,i′ = {xj}j∈[[i,i′ ]] = {x ∈
E | ∃j ∈ [[i, i′]], x = xj}.

Proof. We prove the results by the induction on K ∈ N∗. For K = 1, Lemma 9 gives
the initialization.

Let us suppose that K > 1 and the Induction Hypothesis (IH) that Proposition 2 is
true for K-M-⊕-(α, γ)-BC2DPF. Let π ∈ ΠK(E) be an optimal solution of K-M-⊕-(α, γ)-
BC2DPF; let OPT be the optimal cost. Let X ⊂ E be the subset of the non-selected points,
|X| 6 M, and C1, . . . , CK be the K subsets defining the costs, so that X, C1, . . . , CK is a
partition of E and

⊕K
k=1 fγ(Ck)

α = OPT. Let N′ be the maximal index, such that xN′ /∈ X,
which is, necessarily, N′ > N −M. We reindex the clusters Ck, such that xN′ ∈ CK. Let i be
the minimal index such that xi ∈ CK.

We consider the subsets C ′K = {xj}j∈[[i,N′ ]], X′ = X ∩ [[1, i − 1]] and C ′k = Ck ∩
{xj}j∈[[1,i−1]] for all k ∈ [[1, K− 1]]. It is clear that X′, C ′1, . . . , C ′K−1 is a partition of {xj}j∈[[1,i−1]],
and X′, C ′1, . . . , C ′K is a partition of E. For all k ∈ [[1, K− 1]], C ′k ⊂ Ck, so that fγ(C ′k) 6 fγ(Ck)
(Lemma 7).

X′, C ′1, . . . , C ′K is a partition of E, and
⊕K

k=1 fγ(C ′k)α 6 OPT. C ′1, . . . , C ′K is an optimal
solution of K-|X′|-⊕-(α, γ)-BC2DPF. C ′1, . . . , C ′K−1 is an optimal solution of (K− 1)-|X′|-⊕-
(α, γ)-BC2DPF, applied to points E′ = ∪K−1

k=1 C ′1 ∪ X′. Letting OPT′ be the optimal cost of
(K− 1)-|X′|-⊕-(α, γ)-BC2DPF, we have OPT = OPT′ ⊕ fγ(C ′K)α. Applying IH for of (K−
1)-|X′|-⊕-(α, γ)-BC2DPF to points E′, we have C ′′1 , . . . , C ′′K−1 an optimal solution of (K− 1)-
|X′|-⊕-(α, γ)-BC2DPF among E′ on the shape Ci,i′ = {xj}j∈[[i,i′ ]] = {x ∈ E′ | ∃j ∈ [[i, i′]], x =

xj}.
⊕K

k=1 fγ(C ′′k )α = OPT′, and thus
⊕K

k=1 fγ(C ′′k )α⊕ fγ(C ′K)α = OPT. C ′′1 , . . . , C ′′K−1, C ′K is
an optimal solution of K-M-⊕-(α, γ)-BC2DPF in E using only clusters Ci,i′ . Hence, the result
is proven by induction.

Proposition 3. There is an optimal solution of K-M-⊕-(α, 0)-BC2DPF, removing exactly M
points in the partial clustering.

Proof. Starting with an optimal solution of K-M-+-(α, 0)-BC2DPF, let OPT be the optimal
cost, and let X ⊂ E be the subset of the non-selected points, |X| 6 M, and C1, . . . , CK,
the K subsets defining the costs, so that X, C1, . . . , CK is a partition of E. Removing
random M− |X| points in C1, . . . , CK, we have clusters C ′1, . . . , C ′K such that, for all k ∈
[[1, K − 1]], C ′k ⊂ Ck, and thus fγ(C ′k) 6 fγ(Ck) (Lemma 7). This implies

⊕K
k=1 fγ(C ′k)α 6⊕K

k=1 fγ(Ck)
α = OPT, and thus the clusters C ′1, . . . , C ′K and outliers X′ = E \ ∪kC ′k define

and provide the optimal solution of K-M-⊕-(α, 0)-BC2DPF with exactly M outliers.

Reciprocally, one may investigate if the conditions of optimality in Propositions 2 and 3
are necessary. The conditions are not necessary in general. For instance, with E =
{(3, 1); (2, 2); (1, 3)}, K = M = 1 and the discrete function FD , ie γ = 1, the selection
of each pair of points defines an optimal solution, with the same cost as the selection of
the three points, which do not fulfill the property of Proposition 3. Having an optimal
solution with the two extreme points also does not fulfill the property of Proposition 2. The
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optimality conditions are necessary in the case of sum-clustering, using the continuous
measure of the enclosing disk.

Proposition 4. Let an optimal solution of K-M-+-(α, 0)-BC2DPF be defined with X ⊂ E as the
subset of outliers, with |X| 6 M, and C1, . . . , CK as the K subsets defining the optimal cost. We
therefore have

(i)
∣∣∣⋃K

k=1 Ck

∣∣∣ = M, in other words, exactly M points are not selected in π.
(ii) For each k ∈ [[1, K]], defining ik = min{i ∈ [[1, N]]|xi ∈ Ck} and jk = max{i ∈

[[1, N]]|xi ∈ Ck}, we have Ck = {xi}i∈[[ik ,jk ]].

Proof. Starting with an optimal solution of K-M-+-(α, 0)-BC2DPF, let OPT be the optimal
cost, and let X ⊂ E be the subset of the non-selected points, |X| 6 M, and C1, . . . , CK be
the K subsets defining the costs, so that X, C1, . . . , CK is a partition of E. We prove (i) and
(ii) ad absurdum.

If |X| < M, one may remove one extreme point of the cluster C1, defining C ′1.
With Lemmas 2 and 3, we have fC(C ′1) < fC(C1), and fC(C ′1)α + ∑K

k=1 fC(Ck)
α < fC(C1)

α +

∑K
k=1 fC(Ck)

α = OPT. This is in contraction with the optimality of C1, . . . , CK, C ′1, C2 . . . , CK,
defining a strictly better solution for K-M-+-(α, 0)-BC2DPF. (i) is thus proven ad absurdum.

If (ii) is not fulfilled by a cluster Ck, there is xi /∈ Ck with i ∈ [[ik, jk]]. If xi ∈ X, we have
a better solution than the optimal one with X′ = X∪ {xik} \ {xi} and C ′k = Ck ∪ {xi} \ {xik}.
If xi ∈ Cl with l 6= k, we have nested clusters Cl and Ck. We suppose that ik < il (otherwise,
reasoning is symmetrical). We define a better solution than the optimal one with C ′l =
Ck ∪ {xi} \ {xil} and C ′k = Ck ∪ {xil} \ {xi}. (ii) is thus proven ad absurdum.

4.4. Computation of Cluster Costs

Using Proposition 2, only cluster costs Ci,i′ are computed. This section allows the
efficient computation of such cluster costs. Once points are sorted using Proposition
1, cluster costs fC(Ci,i′) can be computed in O(1) using Lemma 3. This makes a time
complexity in O(N2) to compute all the cluster costs fC(Ci,i′) for 1 6 i 6 i′ 6 N.

Equation (19) ensures that cluster costs fD(Ci,i′) can be computed in O(i′ − i) for all
i < i′. Actually, Algorithm 1 and Proposition 5 allow for computations in O(log(i′ − i))
once points are sorted following Proposition 1, with a dichotomic and logarithmic search.

Lemma 10. Letting (i, i′) with i < i′. fi,i′ : j ∈ [[i, i′]] 7−→ max
(
d
(
xj − xi

)
, d
(
xj − xi′

))

decreases before reaching a minimum fi,i′(l), fi,i′(l + 1) > fi,i′(l), and then increases for j ∈
[[l + 1, i′]].

Proof : We define gi,i′ ,j, hi,i′ ,j with gi,i′ : j ∈ [[i, i′]] 7−→ d
(

xj − xi
)

and hi,i′ : j ∈ [[i, i′]] 7−→
d
(
xj − xi′

)
.

Let i < i′. Proposition 2, applied to i and any j, j + 1 with j > i and j < i′, ensures
that g is decreasing. Similarly, Proposition 2, applied to i′ and any j, j + 1, ensures that h
is increasing.

Let A = {j ∈ [[i, i′]]|∀m ∈ [[i, j]]gi,i′(m) < hi,i′(m)}.gi,i′(i) = 0 and
hi,i′(i) = d(xi′ − xi) > 0, so that i ∈ A. A is a non-empty and bounded subset of N, so that
A has a maximum. We note that l = max A.hi,i′(i′) = 0 and gi,i′(i′) = d(xi′ − xi) > 0, so
that i′ /∈ A and l < i′.

Let j ∈ [[i, l− 1]]. gi,i′(j) < gi,i′(j + 1) and hi,i′ ,j(j + 1) < hi,i′(j), using the monotony of
gi,i′ and hi,i′ . fi,i′(j + 1) = max

(
gi,i′(j + 1), hi,i′(j + 1)

)
= hi,i(j + 1) and

fi,i′(j) = max(gi,i′(j), hi,i′(j)) = hi,i(j) as j, j + 1 ∈ A. Hence, fi,i′(j + 1) = hi,i′(j + 1) <
hi,i′(j) = fi,i′(j). This proves that fi,i′ is decreasing in [[i, l]].

l + 1 /∈ A and gi,i′(l + 1) > hi,i′(l + 1) have to be coherent with the fact that l = max A.
Let j ∈ [[l + 1, i′ − 1]]. j + 1 > j > l + 1, so gi,i′(j + 1) > gi,i′(j) > gi,i′(l + 1) >

hi,i′(l + 1) > hi,i′(j) > hi,i′(j + 1) using the monotony of gi,i′ and hi,i′ .This proves that fi,i′ is
increasing in [[l + 1, i′]].
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Lastly, the minimum of f can be reached in l or in l + 1, depending on the sign of
fi,i′(l + 1) − fi,i′(l). If fi,i′(l + 1) = fi,i′(l), there are two minimums l, l + 1. Otherwise,
there is a unique minimum l0 ∈ {l, l + 1}, fi,i′ , which decreases before increasing.

Algorithm 1: Computation of fD(Ci,i′)

input: indexes i < i′, a distance d
output: the cost fD(Ci,i′)

define i := i, v := d(xi − xi′), i := i′, v := d(xi − xi′),
while i− i > 2

i′′ :=
⌊

i+i
2

⌋

if d(xi − xi′′) < d(xi′ − xi′′) then i := i′′ and v := d(xi′ − xi′′)
else i := i′′ and v := d(xi − xi′′)

end while
return min(v, v)

Proposition 5. Let E = {x1, . . . , xN} be N points of R2, such that for all i < j, xi ≺ xj. The
computing cost fD(Ci,i′) for any cluster Ci,i′ has a complexity in O(log(i′ − i)) time, using O(1)
additional memory space.

Proof. Let i < i′. Let us prove the correctness and complexity of Algorithm 1. Algorithm 1
is a dichotomic and logarithmic search; it iterates O(log(i′ − i)) times, with each iteration
running in O(1) time. The correctness and complexity of Algorithm 1 is a consequence
of Lemma 10 and the loop invariant, which exists as a of minimum of fi,i′ , fi,i′(j∗) with
i 6 j∗ 6 i, also having v = fi,i′(i) and v = fi,i′(i). By construction in Algorithm 1, we
have d

(
xi − xi

)
< d

(
xi′ − xi

)
, and thus fi,i′(i) = d

(
xi′ − xi

)
. This implies that fi,i′(i− 1) =

d
(
xi′ − xi−1

)
> fi,i′(i), and thus i 6 j∗, using Lemma 10. Similarly, we always obtain

d
(
xi − xi

)
> d

(
xi′ − xi

)
, and thus fi,i′(i) = d

(
xi − xi

)
, fi,i′(i + 1) = d

(
xi − xi+1

)
> fi,i′(i),

so that i > j∗ with Lemma 10. At the convergence of the dichotomic search, i− i = 1 and
j∗ is i or i; therefore, the optimal value is fD(Ci,i′) = fi,i′(j∗) = min(v, v).

Remark 1. Algorithm 1 improves the previously proposed binary search algorithm [10]. If it
has the same logarithmic complexity, this leads to two times fewer calls of the distance function.
Indeed, in the previous version, the dichotomic algorithm is computed at each iteration fi,i′(i′′)
and fi,i′(i′′ + 1) to determine if i′′ is in the increasing or decreasing phase of fi,i′ . In Algorithm 1,
the computations that are provided for each iteration are equivalent to the evaluation of only fi,i′(i′′),
computing d(xi − xi′′) and d(xi′ − xi′′).

Proposition 5 can compute fD(Ci,i′) for all i < i′ in O(N2 log N). Now, we prove
that the costs fD(Ci,i′) of all i < i′ can be computed in O(N2) time instead of O(N2 log N)
using O(N2)-independent computations. Two schemes are proposed, computing the
lines of the cost matrix in O(N) time, computing fD(Cj,j′)

α for all j′ ∈ [[j; N]] for a given
j ∈ [[1; N]] in Algorithm 2, and computing fD(Cj′ ,j)

α for all j′ ∈ [[1; j]] for a given j ∈ [[1; N]]
in Algorithm 3.

Lemma 11. Let i, i′ ∈ [[1, N]], with i + 1 < i′. Let c ∈ [[i + 1, i′ − 1]], such that fi,i′(c) =
fD(Ci,i′).

(i) If i′ < N, then there is c′, such that c 6 c′ 6 i′, with fi,i′+1(c′) = minl∈[[i+1,i′−1]] fi,i′(l) =
fD(Ci,i′+1).

(ii) If i > 1, then there is c′′, such that i 6 c′ 6 c, with fi−1,i′(c′) = minl∈[[i+1,i′−1]] fi−1,i′(l) =
fD(Ci−1,i′).

Proof. We prove (i); we suppose that i′ < N and we prove that, for all c′ < c fi,i′+1(c) 6
fi,i′+1(c′), so that either c is an argmin of the minimization, and the superior minimum to
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c. (ii) is similarly proven. Let c′ < c. fi,i′(c) = fD(Ci,i′), which implies fi,i′(c) 6 fi,i′(c′)
and, with Lemma 10, fi,i′ is decreasing in [[c′, c]], i.e., fi,i′(c′′) = d(xc′′ , xi′) for all c′′ ∈ [[c′, c]]
We thus have d(xc′ , xi′) > d(xc′ , xi), and, with lemma 2, d(xc′ , xi′+1) > d(xc′ , xi′). Thus,
fi,i′+1(c′′) = d(xc′ , xi′+1. With lemma 2, d(xc′ , xi′+1 > d(xc, xi′+1. fi,i′(c) = d(xc, xi′) implies
that d(xc, xi′) > d(xc, xi), and then d(xc, xi) 6 d(xc, xi′) 6 d(xc, xi′+1). Thus fi,i′+1(c) =
d(xc′ , xi′+1, and fi,i′(c) 6 fi,i′(c′).

Proposition 6. , Let E = {x1, . . . , xN} be N points of R2, such that for all i < j, xi ≺ xj.
Algorithm 2 computes fD(Cj,j′)

α for all j′ ∈ [[j; N]] for a given j ∈ [[1; N]] in O(N) time using
O(N) memory space.

Proof. The validity of Algorithm 2 is based on Lemmas 10 and 11: once a discrete center c
is known for a fD(Cj,j′)

α, we can find a center c′ of fD(Cj,j′+1)
α with c′ > c, and Lemma 10

gives the stopping criterion to prove a discrete center. Let us prove the time complexity;
the space complexity is obviously within O(N) memory space. In Algorithm 2, each
computation f j′ ,j(curCtr) is in O(1) time; we have to count the number of calls for this
function. In each loop in j′, one computation is used for the initialization; the total number
of calls for this initialization is N − j 6 N. Then, denoting, with cN 6 N, the center found
for Cj,N , we note that the number of loops is cN − j 6 N. Lastly, there are less that 2N
computations calls f j′ ,j(curCtr); Algorithm 2 runs in O(N) time.

Algorithm 2: Computing fD(Cj,j′)
α for all j′ ∈ [[j; N]] for a given j ∈ [[1; N]]

Input: E = {x1, . . . , xN} indexed with Proposition 1, j ∈ [[1; N]], α > 0, N points of R2,
Output: for all j′ ∈ [[1; j]], vj′ = f α

D(Cj′ ,j)

define vector v with vj′ := 0 for all j′ ∈ [[j; N]]
define curCtr := j + 1, curCost := 0
for j′ := j + 1 to N

curCost := f j′ ,j(curCtr)
while curCost 6 f j′ ,j(curCtr + 1)

curCtr := curCtr + 1
curCost := f j′ ,j(curCtr)

end while
vj′ := curCostα

end for
return vector v

Proposition 7. Let E = {x1, . . . , xN} be N points of R2, such that for all i < j, xi ≺ xj.
Algorithm 3 computes fD(Cj′ ,j)

α for all j′ ∈ [[1; j]] for a given j ∈ [[1; N]] in O(N) time, using
O(N) memory space.
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Algorithm 3: Computing fD(Cj′ ,j)
α for all j′ ∈ [[1; j]] for a given j ∈ [[1; N]]

Input: E = {x1, . . . , xN} indexed with Proposition 1, j ∈ [[1; N]], α > 0, N points of R2,
Output: for all j′ ∈ [[1; j]], vj′ = fD(Cj′ ,j)

α

define vector v with vj′ := 0 for all j′ ∈ [[1; j]]
define curCtr := j− 1, curCost := 0
for j′ := j− 1 to 1 with increment j′ := j′ − 1

curCost := f j′ ,j(curCtr)
while curCost 6 f j′ ,j(curCtr− 1)

curCtr := curCtr− 1
curCost := f j′ ,j(curCtr)

end while
vj′ := curCostα

end for
return vector v

Proof. The proof is analogous with Proposition 6, applied to Algorithm 2.

5. Particular Sub-Cases

Some particular sub-cases have specific complexity results, which are presented in
this section.

5.1. Sub-Cases with K = 1

We first note that sub-cases K = 1 show no difference between 1-0-+-(α, γ)-BC2DPF
and 1-0-max-(1, γ)-BC2DPF problems, defining the continuous or the discrete version of
1-center problems. Similarly, 1-M-+-(α, γ)-BC2DPF and 1-M-max-(1, γ)-BC2DPF prob-
lems define the continuous or the discrete version of partial 1-center problems. 1-center
optimization problems have a trivial solution; the unique partition of E in one subset is
E. To solve the 1-center problem, it is necessary to compute the radius of the minimum
enclosing disk covering all the points of E (centered in one point of E for the discrete
version). Once the points are re-indexed with Proposition 1, the cost computation is in
O(1) time for the continuous version using Proposition 3, and in O(log N) time for the
discrete version using Proposition 5. The cost of the re-indexation in O(N log N) forms the
overall complexity time with such an approach. One may improve this complexity without
re-indexing E.

Proposition 8. Let E = {x1, . . . , xN}, a subset of N points of R2, such that for all i 6= j, xi I xj.
1-0-⊕-(α, γ)-BC2DPF problems are solvable in O(N) time using O(1) additional memory space.

Proof. Using Lemma 3 or Lemma 6, computations of fγ are, at most, in O(N) once the
extreme elements following the order ≺ have been computed. Computation of the extreme
points is also seen in O(N), with one traversal of the elements of E, storing only the
current minimal and maximal element with the order relation ≺. Finally, the complexity of
one-center problems is in linear time.

Proposition 9. Let M ∈ N∗, let E = {x1, . . . , xN} a subset of N points of R2, such that for
all i 6= j, xi I xj. The continuous partial 1-center, i.e., 1-M-⊕-(α, 0)-BC2DPF problems, is
solvable in O(N min(M, log N)) time. The discrete partial 1-center, i.e., 1-M-⊕-(α, 1)-BC2DPF
problems, is solvable in O(N log N) time.

Proof. Using Proposition 2, one-center problems are computed equivalently:
min

m∈[[0;M]]
fγ(C1+m,N−m)

α.
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For the continuous and the discrete case, re-indexing the whole PF with Proposition 1
runs in O(N log N) time, leading to M computations in O(1) or O(log(N − M)) time,
which are dominated by the complexity of re-indexing. The time complexity for both cases
are highest in O(N log N). In the continuous case, i.e., γ = 0, one requires only the M
minimal and maximal points with the total order ≺ to compute the cluster costs using.
If M < log N, one may use one traversal of E, storing the current m minimal and extreme
points, which has a complexity in O(MN). Choosing among the two possible algorithms,
the time complexity is in O(N min(M, log N)).

5.2. Sub-Cases with K = 2

Specific cases with K = 2 define two clusters, and one separation as defined in
Proposition 2. For these cases, specific complexity results are provided, enumerating all
the possible separations.

Proposition 10. Let N points of R2, E = {x1, . . . , xN}, such that for all i 6= j, xiIxj. 2-0-⊕-
(α, γ)-BC2DPF problems are solvable in O(N log N) time, using O(Nγ) additional memory space.

Proof. Using Proposition 2, optimal solutions exist, considering two clusters: C1,i and
Ci+1,N . One enumerates the possible separations i ∈ [[1; N]]. First, the re-indexation phase
runs in O(N log N) time, which will be the bottleneck for the time complexity. Enumerat-
ing the (N-1) values fγ(C1,i)

α ⊕ fγ(Ci+1,N)
α and storing the minimal value induces (N-1)

computations in O(1) time for the continuous case γ = 0, and uses O(1) additional mem-
ory space: the current best value and the corresponding index. Considering the discrete
case, one uses O(N) additional memory space fγ(C1,i)

α, fγ(Ci+1,N)
α to maintain the time

complexity result.

One can extend the previous complexity results with the partial covering extension.

Proposition 11. Let E = {x1, . . . , xN} be a subset of N points of R2, such that for all i 6= j,
xiIxj. 2-M-⊕-(α, γ)-BC2DPF problems are solvable in O(N((M + 1)2 + log N)) time and
O(Nγ) additional memory space, or in O(N((M + 1)2 logγ N) + log N)) time and O(1) addi-
tional memory space.

Proof. After the re-indexation phase running in O(log N) time), Proposition 2 ensures that
there is an optimal solution for 2-M-⊕-(α, γ)-BC2DP, removing the m1 > 0 first indexes,
the m3 > 0 last indexes, and m2 > 0 points between the two selected clusters, with
m1 + m2 + m3 6 M. Using Proposition 3, there is an optimal solution, exactly defining the
M outliers, so that we can consider that m1 + m2 + m3 = M. Denoting i as the last index of
the first cluster, the first selected cluster is C1+m1,i; the second one is Ci+m2+1,N−M+m1+m2 .
We have i > m1 + 1 and i + m2 + 1 6 N −M + m1 + m2 i.e., i 6 N −M + m1. We denote,
with X, the following feasible i, m1, m2

X = {(i, m1, m2) ∈ [[1; N]]× [[0; M]]2, 0 6 m1 + m2 6 M and m1 + 1 6 i 6 N −M + m1}

Computing an optimal solution for 2-M-⊕-(α, γ)-BC2DP brings the following enu-
meration

OPT = min
(i,m1,m2)∈X

fγ(C1+m1,i)
α + fγ(Ci+m2+1,N−M+m1+m2)

α (20)

In the continuous case (ie γ = 0), we use O((M + 1)2) computations to enumerate
the possible m1, m2, and O(N) computations to enumerate the possible i once m1, m2
are defined. With cost computations running in O(1) time, the computation of (20) by
enumeration runs in O(N(M + 1)2) time, after the re-indexation in O(N log N) time. This
induces the time complexity announced for γ = 0. This computation uses O(1) additional
memory space, storing only the best current solution (i, m1, m2) ∈ X and its cost; this is
also the announced memory complexity .
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In the discrete case (i.e., γ = 1), we use O((M + 1)2) computations to enumerate the
possible m1, m2, and O(N) computations to enumerate the possible i once m1, m2 are fixed.
This uses O(1) additional memory space, and the total time complexity is O(N log N((M +
1)2). To decrease the time complexity, one can use two vectors of size N to store a given
m1, m2, for which the cluster costs fγ(C1+m1,i)

α and fγ(Ci+m2+1,N−M+m1+m2)
α are given by

Algorithms 2 and 3, so that the total time complexity remains in O(N((M + 1)2 + log N))
with an O(N) additional memory space. These two variants, using O(1) or O(N) additional
memory space, induce the time complexity announced in Proposition 11.

5.3. Continuous Min-Sum K-Radii on A Line

To the best of our knowledge, the 1D continuous min-sum k-radii and the min-sum
diameter problems were not previously studied. The specific properties hold, as proven in
Lemma 12. This allows a time complexity of O(N log N).

Lemma 12. Let E = {x1, . . . , xN} be N points in a line of R2, indexed such that for all i < j,
xi ≺ xj. The min-sum k-radii in a line, K-0-+-(1, 0)-BC2DPF, is equivalent to selecting the
K− 1 highest values of the distance among consecutive points, with the extremity of such segments
defining the extreme points of the disks.

Proof. Let a feasible and non-nested solution of K-0-+-(1, 0)-BC2DPF be defined with
clusters Ca1,b1 , Ca2,b2 , . . . , CaK ,bK such that 1 = a1 6 b1 < a2 6 b2 < · · · < aK 6 bK = N.
Using the alignment property, we can obtain

d(x1, xN) =
n−1

∑
i=1

d(xi, xi+1) =
K

∑
k=1

d(xak , xbk
) +

K

∑
k=2

d(xbk−1
, xak ) =

K

∑
k=1

f0(Cak ,bk
) +

K

∑
k=2

d(xbk−1
, xak )

Reciprocally, this is equivalent to considering K-0-+-(1, 0)-BC2DPF or the maximiza-
tion of the sum of K − 1 sa a different distance among consecutive points. The latter
problem is just computing the K− 1 highest distances among consecutive points.

Proposition 12. Let E = {x1, . . . , xN} be a subset of N points of R2 on a line. K-0-+-(1, 0)-
BC2DPF, the continuous min-sum-k-radii, is solvable in O(N log N) time and O(N) mem-
ory space.

Proof. Lemma 12 ensures the validity of Algorithm 4, determining the K− 1 highest values
of the distance among consecutive points. The additional memory space in Algorithm 4
is in O(N), computing the list of consecutive distances. Sorting the distances and the
re-indexation both have a time complexity in O(N log N).
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Algorithm 4: Continuous min-sum K-radii on a line

Input: K ∈ N∗, N points of R2 on a line E = {x1, . . . , xN}

re-index E using Proposition 1
initialize vector v with vi := (i, d(xi+1)− d(xi)) for i ∈ [[1; N − 1]]
initialize vector w with vj := 0 for j ∈ [[1; K− 1]]
sort vector v with d(xi+1)− d(xi) increasing
for the K− 1 elements of v with the maximal value d(xi+1)− d(xi), store the indexes

i in w
sort w in the increasing order
initialize P = ∅, i = i = 1, OPT = 0.
for j ∈ [[1; K− 1]] in the increasing order

i := wj
add Ci,i in P
OPT := OPT + fC(Ci,i)

i := i + 1
end for
add Ci,N in P
OPT := OPT + fC(Ci,N)

return OPT the optimal cost and the partition of selected clusters P

6. Unified DP Algorithm and Complexity Results

Proposition 2 allows the design of a common DP algorithm for p-center problems and
variants, and to prove polynomial complexities. The key element is to design Bellman
equations.

Proposition 13 (Bellman equations). Defining Oi,k,m as the optimal cost of k-m-⊕-(α, γ)-
BC2DPF among points [[1, i]] for all i ∈ [[1, N]], k ∈ [[1, K]] and m ∈ [[0, M]], we have the
following induction relations

∀i ∈ [[1, N]], Oi,1,0 = fγ(C1,i)
α (21)

∀m ∈ [[1, M]], ∀k ∈ [[1, K]], ∀i ∈ [[1, m + k]], Oi,k,m = 0 (22)

∀m ∈ [[1, M]], ∀i ∈ [[m + 2, N]], Oi,1,m = min(Oi−1,1,m−1, fγ(C1+m,i)
α) (23)

∀k ∈ [[2, K]], ∀i ∈ [[k + 1, N]], Oi,k,0 = min
j∈[[k,i]]

(
Oj−1,k−1,0 ⊕ fγ(Cj,i)

α
)

(24)

∀m ∈ [[1, M]], ∀k ∈ [[2, K]], ∀i ∈ [[k + m + 1, N]],

Oi,k,m = min
(

Oi−1,k,m−1, min
j∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
))

(25)

Proof. (21) is the standard 1-center case. (22) is a trivial case, where it is possible to fill the
clusters with singletons, with a null and optimal cost. (23) is a recursion formula among
the partial 1-center cases, an optimal solution of 1-m-⊕-(α, γ)-BC2DPF among points [[1, i]],
selecting the point xi, and the optimal solution is cluster C1+m,i with Proposition 3, with a
cost fγ(C1+m,i)

α or an optimal solution of 1-m− 1-⊕-(α, γ)-BC2DPF if the point xi is not se-
lected. (24) is a recursion formula among the k-0-⊕-(α, γ)-BC2DPF cases among points
[[1, i]]; when generalizing the ones from [10] for the powered sum-radii cases, the proof
is similar. Let k ∈ [[2, K]] and i ∈ [[k + 1, N]]. Let j ∈ [[k, i]], when selecting an optimal
solution of k-0-⊕-(α, γ)-BC2DPF among points indexed in [[1, j− 1]], and adding cluster
Cj,i, a feasible solution is obtained for k-0-⊕-(α, γ)-BC2DPF among the points indexed in
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[[1, i]] with a cost Oj−1,k−1,0 ⊕ fγ(Cj,i)
α. This last cost is lower than the optimal cost, thus

Oi,k,0 6 Oj−1,k−1,0 ⊕ fγ(Cj,i)
α. Such inequalities are valid for all j ∈ [[k, i]]; this implies

Oi,k,0 6 min
j∈[[k,i]]

(
Oj−1,k−1,0 ⊕ fγ(Cj,i)

α
)

(26)

Let j1 < j2 < · · · < jk−1 < jk = i indexes, such that C1,j1 , Cj1+1,j2 , . . . , Cjk−1+1,i defines
the optimal solution of k-0-⊕-(α, γ)-BC2DPF among the points indexed in [[1, i]]; its cost is
Oi,k,0. Necessarily, C1,j1 , Cj1+1,j2 , . . . , Cjk−2+1,jk−1

defines the optimal solution of k− 1-0-⊕-
(α, γ)-BC2DPF among the points indexed in [[1, jk−1]]. On the contrary, a better solution for
Oi,k,0 would be constructed, adding the cluster Cjk−1+1,i. We thus have Oi,k,0 = Ojk−1,k−1,0 ⊕
fγ(Cjk−1+1,i)

α. Combined with (26), this proves Oi,k,0 = minj∈[[k,i]]

(
Oj−1,k−1,0 ⊕ fγ(Cj,i)

α
)

.
Lastly, we prove (25). Let m ∈ [[1, M]], k ∈ [[2, K]], i ∈ [[k + m + 1, N]]. Oi,k,m 6

Oi−1,k,m−1; each solution of k-m− 1-⊕-(α, γ)-BC2DPF among the points indexed in [[1, i− 1]]
defines a solution of k-m-⊕-(α, γ)-BC2DPF among the points indexed in [[1, i]], with the
selecting point xi as an outlier. Let O′i,k,m, with the cost of k-m-⊕-(α, γ)-BC2DPF among the
points indexed in [[1, i]]; necessarily selecting the point i, we obtain Oi,k,m 6 O′i,k,m. O′i,k,m is
defined by a cluster Cj,i and an optimal solution of k-m-⊕-(α, γ)-BC2DPF among the points

indexed in [[1, j− 1]], so that O′i,k,m = minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
)

. We thus have

Oi,k,m 6 min
(

Oi−1,k,m−1, min
j∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
))

(27)

Reciprocally, let 1 = a1 < b1 < a2 < b2 < · · · < ak < bk indexes, such that
Ca1,b1 , Ca2,b2 , . . . , Cak ,bk

defines an optimal solution of k-m-⊕-(α, γ)-BC2DPF among the
points indexed in [[1, i]]; its cost is Oi,k,m. If bk = i, then Oi,k,m = O′i,k,m and (27) is an
equality. If bk < i, then Ca1,b1 , Ca2,b2 , . . . , Cak ,bk

defines an optimal solution of k-m− 1-⊕-
(α, γ)-BC2DPF among the points indexed in [[1, i− 1]]; its cost is Oi,k,m−1. We thus have
Oi,k,m = Oi,k,m−1, and (27) is an equality. Finally, (25) is proven by disjunction.

Bellman equations of Proposition 13 can compute the optimal value Oi,k,m by induc-
tion. A first method is a recursive implementation of the Bellman equations to compute the
cost ON,K,M and store the intermediate computations Oi,k,m in a memoized implementa-
tion. An iterative implementation is provided in Algorithm 5, using a defined order for
the computations of elements Oi,k,m. An advantage of Algorithm 5 is that independent
computations are highlighted for a parallel implementation. For both methods computing
the optimal cost ON,K,M, backtracking operations in the DP matrix with computed costs
allow for recovery of the affectation of clusters and outliers in an optimal solution.

In Algorithm 5, note that some useless computations are not processed. When having
to compute ON,K,M, computations ON,k,m with k + m < K + M are useless. ON−1,K,M will
also not be called. Generally, triangular elements ON−n,k,m with n + k + m < K + M are
useless. The DP matrix On,k,m is not fully constructed in Algorithm 5, removing such
useless elements.
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Algorithm 5: unified DP algorithm for K-M-⊕-(α, γ)-BC2DPF

Input: - N points of R2, E = {x1, . . . , xN} such that for all i 6= j, xi I xj ;
- Parameters: K ∈ N∗, M ∈ N, ⊕ ∈ {+, max}, γ ∈ {0, 1} and α > 0 ;

sort E following the order of Proposition 1
initialize matrix O with Oi,k,m := 0 for all m ∈ [[0; M]], k ∈ [[1; K− 1]],

i ∈ [[k; N − K + k]]

compute fγ(C1,i)
α for all i ∈ [[1; N − K + 1]] and store in Oi,1,0 := fγ(C1,i)

α

for i := 2 to N
compute and store fγ(Ci′ ,i)

α for all i′ ∈ [[1; i]]
compute Oi,k,0 := minj∈[[k,i]]

(
Oj−1,k−1,0 ⊕ fγ(Cj,i)

α
)

for all k ∈ [[2; min(K, i)]]
for m = 1 to min(M, i− 2)

compute Oi,1,m := min(Oi−1,1,m−1, fγ(C1+m,i)
α)

for k = 2 to min(K, i−m)

compute Oi,k,m := min
(

Oi−1,k,m−1, minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
))

end for
end for
delete the stored fγ(Ci′ ,i)

α for all i′ ∈ [[1; i]]
end for

initialize P = ∅, i = i = N, m = M
for k = K to 1 with increment k← k− 1

compute i := min{i ∈ [[i−m; i]]|Oi,k,m := Oi−i,k,m−i+i}
m := m− i + i
compute and store fα(Ci′ ,i) for all i′ ∈ [[1; i]]

find i ∈ [[1, i]] such that i := arg minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
)

add Ci,i in P
delete the stored fα(Ci′ ,i) for all i′ ∈ [[1; i]]

end for

return ON,K,M the optimal cost and the selected clusters P

Theorem 1. Let E = {x1, . . . , xN} a subset of N points of R2, such that for all i 6= j, xiIxj.
When applied to the 2D PF E for K > 2, the K-M-⊕-(α, γ)-BC2DPF problems are solvable to
optimality in polynomial time using Algorithm 5, with a complexity in O(KN2(1 + M)) time and
O(KN(1 + M)) space.

Proof. The validity of Algorithm 5 is proven by induction; each cell of the DP matrix
Oi,k,m is computed using only cells that were previously computed to optimality. Once
the required cells are computed, a standard backtracking algorithm is applied to compute
the clusters. Let us analyze the complexity. Let K > 2. The space complexity is in
O(KN(1 + M)), along with the size of the DP matrix, with the intermediate computations
of cluster costs using, at most, O(N) memory space, only remembering such vectors due
to the deleting operations. Let us analyze the time complexity. Sorting and indexing the
elements of E (Proposition 1) has a time complexity in O(N log N). Once costs fγ(Ci′ ,i)

α

are computed and stored, each cell of the DP matrix is computed, at most, in O(N)
time using Formulas (21)–(24). This induces a total complexity in O(KN2(1 + M)) time.
The cluster costs are computed using N times Algorithm 3 and one time Algorithm 2;
this has a time complexity in O(N2), which is negligible compared to the O(KN2(1 +
M)) time computation of the cells of the DP matrix. The K backtracking operations
requires a O(N2) time computation of the costs fα(Ci′ ,i) for all i′ ∈ [[1; i]] and a given
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i, M operations in O(1) time to compute min{i ∈ [[i − m; i]]|Oi,k,m = Oi−i,k,m−i+i} and

O(N) operations in O(1) time to compute arg minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
)

. Finally,

the backtracking operations requires O(KN2) time, which is negligible compared to the
previous computation in O(KN2(1 + M)) time.

7. Specific Improvements

This section investigates how the complexity results of Theorem 2 may be improved,
and how to speed up Algorithm 5, from a theoretical and a practical viewpoint.

7.1. Improving Time Complexity for Standard and Partial P-Center Problems

In Algorithm 5, the bottleneck for complexity are the computations
minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
)

, for i ∈ [[2, N]], k ∈ [[2, min(K, i)]], m ∈ [[0, i − k]].
When⊕ = max, it is proven that such a minimization can be processed in O(log N) instead
of O(N) for the naive enumeration, leading to the general complexity results. This can
improve the time complexity in the p-center cases.

Lemma 13. Let k ∈ [[1, K]] and j ∈ [[1, N]]. The application m ∈ [[0, M]] 7−→ Oj,k,m is decreasing.

Proof. Let m ∈∈ [[1, M]]. For each E′ ⊂ E, any feasible solution of k-(m − 1)-⊕-(α, γ)-
BC2DPF in E′ is a feasible solution of k-m-⊕-(α, γ)-BC2DPF, with the partial versions
defined by problems (11). An optimal solution of k-m− 1-⊕-(α, γ)-BC2DPF is feasible for
k-(m− 1)-⊕-(α, γ)-BC2DPF, it implies Oj,k,m−1 > Oj,k,m.

Lemma 14. Let k ∈ [[1, K]] and m ∈ [[0, M]]. The application j ∈ [[1, N]] 7−→ Oj,k,m is increasing.

Proof. We yfirst note that the case k = 1 is implied by the Lemma 7, so that we can
suppose in the following, that k > 2. Let k ∈ [[2, K]], m ∈ [[0, M]] and j ∈ [[2, N]]. Let
π ∈ ΠK(E) be an optimal solution of k-m-⊕-(α, γ)-BC2DPF among the points indexed in
[[1, j]]; its cost is Oj,k,m. Let X ⊂ E, the subset of the non-selected points, |X| 6 M, and
C1, . . . , Ck with the k subsets defining the costs, so that X, C1, . . . , Ck is a partition of E and⊕k

k′=1 fγ(Ck′)
α = Oj,k,m. If xj ∈ X, then Oj,k,m = Oj−1,k,m−1 > Oj−1,k,m using Lemma 13,

which is the result. We suppose to end the proof that xj /∈ X and re-index the clusters
such that xj ∈ Ck. We consider the clusters C ′1, . . . , C ′k = C1, . . . , Ck−1, Ck − xk. With X, a
partition of (xl)l∈[[1,j−1]] is defined, with, at most, M outliers, so that it defines a feasible
solution of the optimization problem, defining Oj−1,k,m as a cost OPT′ > Oj−1,k,m. Using
Lemma 7, OPT′ 6 Oj,k,m, so that Oj−1,k,m−1 > Oj−1,k,m.

Lemma 15. Let i ∈ [[2, N]], k ∈ [[2, min(K, i)]], m ∈ [[0, i − k]]. Let gi,k,m : j ∈ [[2, i]] 7−→
max(Oj−1,k−1,m, fγ(Cj,i)

α). There is l ∈ [[2, i]], such that gi,k is decreasing for j ∈ [[2, l]], and then
increases for j ∈ [[l + 1, i]]. For j < l, gi,k = fγ(Cj,i)

α and for j > l, gi,k = Oj−1,k−1,m.

Proof. Similarly to the proof of Lemma 10, the following applications are monotone:
j ∈ [[1, i]] 7−→ fγ(Cj,i)

α decreases with Lemma 7,
j ∈ [[1, N]] 7−→ Oj,k,m increases for all k with Lemma 14.

Proposition 14. Let i ∈ [[2, N]], k ∈ [[2, K]], m ∈ [[0, M]]. Let γ ∈ {0, 1}. Once the val-
ues Oi′ ,k−1,m′ in the DP matrix of Algorithm 2 are computed, Algorithm 6 computes Oi,k,m =

minj∈[[k+m,i]] max
(

Oj−1,k−1,m, fγ(Cj,i)
α
)

calling O(log i) cost computations fγ(Cj,i). This in-

duces a time complexity in O(log1+γ i) using straightforward computations of the cluster costs
with Propositions 3 and 5.
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Algorithm 6: Dichotomic computation of minj∈[[k+m,i]] max
(

Oj−1,k−1,m, fγ(Cj,i)
α
)

input: indexes i ∈ [[2, N]], k ∈ [[2, min(K, i)]], m ∈ [[0, i− k]], α > 0 γ ∈ {0, 1};
a vector v containing vj := Oj,k−1,m for all j ∈ [[1, i− 1]].

define i := k + m, v = fγ(Ck+m,i)
α,

define i := i, v := vi−1,
while i− i > 2

i′′ :=
⌊

i+i
2

⌋

if fγ(Cj,i)
α < vi′′ then set i := i′′ and v := vi′′

else i := i′′ and v := fγ(Cj,i)
α

end while
return min(v, v)

Proof. Algorithm 6 is a dichotomic search based on Lemma 15, similarly to Algorithm
1, derived from Lemma 10. The complexity in Algorithm 6 is O(log i) cost computations
fγ(Cj,i). In the discrete case, such computations run in O(log i) time with Proposition 5,
whereas it is O(1) in the continuous case with Lemma 3. In both cases, the final time
complexity is given by O(log1+γ i).

Computing minj∈[[k+m,i]] max
(

Oj−1,k−1,m, fγ(Cj,i)
α
)

in time O(log i) instead of O(i)
in the proof of Theorem 1 for p-center problem and variants, the complexity results are
updated for these sub-problems.

Theorem 2. Let E = {x1, . . . , xN} be a subset of N points of R2, such that for all i 6= j, xiIxj.
Whe napplied to the 2D PF E for K > 2, the K-M-max-(α, γ)-BC2DPF problems are solvable
to optimality in polynomial time using Algorithm 4, with a complexity in O(KN(1 + M) log N)
time and O(KN(1 + M)) space.

Proof. The validity of Algorithm 5 using Algorithm 6 inside is implied by the validity of
Algorithm 6, proven in Proposition 14. Updating the time complexity with Proposition 14,
the new time complexity for continuous K-center problems is seen in O(KN(1 + M) log N)
time instead of O(K(1 + M)N2), as previously. For the discrete versions, using Proposition
14 with computations of discrete cluster costs with Proposition 5 induces a time complexity
in O(KN(1 + M) log2 N). The complexity is decreased to O(KN(1 + M) log N), where the
cluster costs are already computed and stored in Algorithm 5, and thus the computations of
Algorithm 6 are seen in O(1). tThisinduces the same complexity for discrete and continuous
K-center variants.

Remark 2. For the standard discrete p-center, Theorem 2 improves the time complexity given in
the preliminary paper [10], from O(pN log2 N) to O(pN log N). Another improvement was given
by Algorithm 1; the former computation of cluster costs has the same asymptotic complexity but
requires two times more computations. tTis proportional factor is non negligible in practice.

7.2. Improving Space Complexity for Standard P-Center Problems

For standard p-center problems, Algorithm 5 has a complexity in memory space in
O(KN), the size of the DP matrix. This section proves it is possible to reduce the space
complexity into an O(N) memory space.

One can compute the DP matrix for k-centers “line-by-line”, with k increasing. This
does not change the validity of the algorithm, with each computation using values that
were previously computed to the optimal values. Two main differences occur compared to
Algorithm 5. On one hand, the k + 1-center values use only k-center computations, and the
computations with k′ < k can be deleted once all the required k-center values are computed
when having to compute only the K-center values, especially the optimal cost. On the other
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hand, the computations of cluster costs are not factorized, as in Algorithm 5; this does not
make any difference in the continuous version, where Lemma 3 can to recompute cluster
costs in O(1) time when needed, whereas recomputing each cost induces the computations
running in O(log N) for the discrete version with Algorithm 1.

The search order of operations slightly degrades the time complexity for the discrete
variant, without inducing a change in the continuous variant. This allows only for computa-
tions of the optimal value; another difficulty is that the backtracking operations, as written
in Algorithm 5, require storage of the whole stored values of the whole matrix. The issue is
obtaining alternative backtracking algorithms that allow the computation of an optimal
solution of the standard p-center problems using only the optimal value provided by the
DP iterations, and with a complexity of, at most, O(KN logγ N) time and O(N) memory
space. Algorithms 7 and 8 have such properties.

Algorithm 7: Backtracking algorithm using O(N) memory space

input: - γ ∈ {0, 1} to specify the clustering measure;
- N points of a 2D PF, E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj ;
- K ∈ N the number of clusters;
- OPT, the optimal cost of K-γ-CP2DPF;

output: P an optimal partition of K-γ-CP2DPF.

initialize maxId := N, minId := N, P = ∅, a set of sub-intervals of [[1; N]].
for k := K to 2 with increment k← k− 1

set minId := maxId
while fγ(CminId−1,maxId)) 6 OPT do minId := minId− 1 end while
add [[minId, maxId]] in P
maxId := minId− 1

end for
add [[1, maxId]] in P

return P

Algorithm 8: Backtracking algorithm using O(N) memory space

input: - γ ∈ {0, 1} to specify the clustering measure;
- N points of a 2D PF, E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj ;
- K ∈ N the number of clusters;
- OPT, the optimal cost of K-γ-CP2DPF;

output: P an optimal partition of K-γ-CP2DPF.

initialize minId := 1, maxId := 1, P := ∅, a set of sub-intervals of [[1; N]].
for k := 2 to K with increment k← k + 1

set maxId := minId
while fγ(CminId,maxId+1)) 6 OPT do maxId := maxId + 1 end while
add [[minId, maxId]] in P
set minId := maxId + 1

end for
add [[minId, N]] in P

return P

Lemma 16. Let K ∈ N, K > 2. Let E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj.
For the discrete and continuous K-center problems, the indexes given by Algorithm 7 are lower
bounds of the indexes of any optimal solution. Denoting [[1, i1]], [[i1 + 1, i2]], . . . , [[iK−1 + 1, N]],
the indexes given by Algorithm 7, and [[1, i′1]], [[i

′
1 + 1, i′2]], . . . , [[i′K−1 + 1, N]], the indexes of an

optimal solution, we have, for all k ∈ [[1, K− 1]], ik 6 i′k
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Proof. This lemma is proven a decreasing induction on k, starting from k = K − 1. The
case k = K − 1 is furnished by the first step of Algorithm 4, and j ∈ [[1, N]] 7−→ fγ(Cj,N)
decreaswa with Lemma 7. WIth a given k, i′k 6 ik, ik−1 6 i′k−1 is implied by Lemma 2 and
d(zik , zik−1−1) > OPT.

Algorithm 8 is similar to Algorithm 7, with iterations increasing the indexes of the
points of E. The validity is similarly proven, and this provides the upper bounds for the
indexes of any optimal solution of K-center problems.

Lemma 17. Let K ∈ N, K > 2. Let E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj.
For K-center problems, the indexes given by Algorithm 8 are upper bounds of the indexes of
any optimal solution. Denoting [[1, i1]], [[i1 + 1, i2]], . . . , [[iK−1 + 1, N]], the indexes given by
Algorithm 8, and [[1, i′1]], [[i

′
1 + 1, i′2]], . . . , [[i′K−1 + 1, N]], the indexes of an optimal solution, we

have, for all k ∈ [[1, K− 1]], ik > i′k.

Proposition 15. Once the optimal cost of p-center problems are computed, Algorithms 7 and 8
compute an optimal partition in O(N log N) time using O(1) additional memory space.

Proof. We consider the proof for Algorithm 7, which is symmetrical for Algorithm 8. Let
OPT be the optimal cost of K-center clustering with f . Let [[1, i1]], [[i1 + 1, i2]], . . . , [[iK−1 +
1, N]] be the indexes given by Algorithm 7. Through this construction, all the clus-
ters C defined by the indexes [[ik + 1, ik+1]] for all k > 1 verify fγ(C) 6 OPT. Let
C1 be the cluster defined by [[1, i1]]; we have to prove that fγ(C1) 6 OPT to conclude
the optimality of the clustering defined by Algorithm 4. For an optimal solution, let
[[1, i′1]], [[i

′
1 + 1, i′2]], . . . , [[i′K−1 + 1, N]] be the indexes defining this solution. Lemma 16 en-

sures that i1 6 i′1, and thus Lemma 7 assures fγ(C1,i1) 6 fγ(C1,i′1
) 6 OPT. Analyzing the

complexity, Algorithm 7 calls for a maximum of (K + N) 6 2N times the clustering cost
function, without requiring stored elements; the complexity is in O(N logγ N) time.

Remark 3. Finding the biggest cluster with an extremity given and a bounded cost can be acheived
by a dichotomic search. Rhis would induce a complexity in O(K log1+γ N). To avoid the separate
case K = O(N) and γ = 1, Algorithms 7 and 8 provide a common algorithm running in
O(N log N) time, which is enough for the following complexity results.

The previous improvements, written in Algorithm 9, allow for new complexity results
with a O(N) memory space for K-centrer problems.

Algorithm 9: p-center clustering in a 2DPF with a O(N) memory space

Input:
- N points of R2, E = {x1, . . . , xN} such that for all i 6= j, xi I xj ;
- γ ∈ {0, 1} to specify the clustering measure;
- K ∈ N the number of clusters.

initialize matrix O with Oi,k := 0 for all i ∈ [[1; N]], k ∈ [[1; K− 1]]
sort E following the order of Proposition 1
compute and store Oi,1 := fγ(C1,i) for all i ∈ [[1; N]] (with Algorithm 2 if γ = 1)
for k = 2 to K− 1

for i = k + 1 to N − K + k
compute and store Oi,k := minj∈[[2,i]] max(Oj−1,k−1, fγ(Cj,i)) (Algorithm 6)

end for
delete the stored Oi,k−1 for all i

end for
OPT := minj∈[[2,N]] max(Oj−1,K−1, fγ(Cj,N)) with Algorithm 6

return OPT the optimal cost and a partition P given by backtracking Algorithm 7 or 8
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Theorem 3. Let E = {x1, . . . , xN} a subset of N points ofR2, such that for all i 6= j, xiIxj. When
applied to the 2D PF E for K > 2, the standard continuous and discrete K-center problems, i.e., K-
0-max-(α, γ)-BC2DPF, are solvable with a complexity in O(KN log1+γ N) time and O(N) space.

Remark 4. The continuous case improves the complexity obtained after Theorem 2, with the same
time complexity and an improvement in the space complexity. For the discrete variant, improving the
space complexity in O(N) instead of O(N) induces a very slight degradation of the time complexity,
from O(KN log N) to O(KN log2 N). Depending on the value of K, it may be preferable, with
stronger constraints in memory space, to have this second version.

7.3. Improving Space Complexity for Partial P-Center Problems?

This section tries to generalize the previous results for the partial K-center problems,
i.e., K-M-max-(α, γ)-BC2DPF with M > 0. The key element is to obtain a backtracking
algorithm that does not use the DP matrix. Algorithm 10 extends Algorithm 7 by consider-
ing all the possible cardinals of outliers between clusters k and k + 1 for k ∈ [[0, K− 1]] and
the outliers after the last cluster. A feasible solution of the optimal cost should be feasible
by iterating Algorithm 7 for at least one of these sub-cases.

Algorithm 10: Backtracking algorithm for K-M-max-(α, γ)-BC2DPF with M > 0

input: - a K-M-max-(α, γ)-BC2DPF problem
- N points of a 2D PF, E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj ;
- OPT, the optimal cost of K-M-max-(α, γ)-BC2DPF problem;

output: P an optimal partition of K-M-max-(α, γ)-BC2DPF problem.

for each vector x of K + 1 elements such that ∑K
k=0 x[k] = M

initialize maxId− x[K] := N, minId := N − x[K], P := ∅, a set of sub-intervals
of [[1; N]].

for k = K to 2 with increment k← k− 1
set minId := maxId
while fγ(CminId−1,maxId))

α 6 OPT do minId := minId− 1 end while
add [[minId, maxId]] in P
set maxId := minId− 1− x[K− 1]

end for
if fγ(C1+x[0],maxId))

α 6 OPT then add [[1 + x[0], maxId]] in P and return P
end for

return error “OPT is not a feasible cost for K-M-max-(α, γ)-BC2DPF ”

It is crucial to analyze the time complexity induced by this enumeration. If the number
of vectors x of K + 1 elements is such such that ∑K

k=0 x[k] = M is in Θ(KM), then this
complexity is not polynomial anymore. For M = 1, a time complexity in O(KN log N)
would be induced, which is acceptable within the complexity of the computation of the
DP matrix. Having M > 2 would dramatically degrade the time complexity. Hence, we
extend the improvement results of space complexity only for M = 1, with Algorithm 11.

Theorem 4. Let E = {x1, . . . , xN} a subset of N points of R2, such that for all i 6= j, xiIxj.
When applied to the 2D PF E for K > 2, partial K-center problems K-1-max-(α, γ)-BC2DPF, are
solvable with a complexity in O(KN log1+γ N) time and O(N) space.

7.4. Speeding-Up DP for Sum-Radii Problems

Similarly to Algorithm 6, this section tries to speed up the computations
minj∈[[k+m,i]]

(
Oj−1,k−1,m + fγ(Cj,i)

α
)

, which are the bottleneck for the time complexity
in Algorithm 5. This section presents the stopping criterion to avoid useless computa-
tions in the O(N) naive enumeration, but without providing proofs of time complexity
improvements.
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Algorithm 11: Partial p-center K-1-max-(1, γ)-BC2DPF with a O(N) memory space

Input:
- N points of R2, E = {x1, . . . , xN} such that for all i 6= j, xi I xj ;
- γ ∈ {0, 1} to specify the clustering measure;
- K ∈ N, K > 2 the number of clusters.

initialize matrix O with Oi,k,m := 0 for all i ∈ [[1; N]], k ∈ [[1; K− 1]], m ∈ [[0; 1]]
sort E following the order of Proposition 1
compute and store Oi,1,0 := fγ(C1,i) for all i ∈ [[1; N]] (with Algorithm 2 if γ = 1)
compute and store fγ(C2,i) for all i ∈ [[2; N]] (with Algorithm 2 if γ = 1)
compute and store Oi,1,1 := min( fγ(C2,i), Oi−1,1,0) for all i ∈ [[2; N]]
for k = 2 to K

for i := k + 1 to N − K + k
compute and store Oi,k,0 := minj∈[[2,i]] max(Oj−1,k−1,0, fγ(Cj,i)) (Algorithm 6)

compute and store Oi,k,1 := minj∈[[k+1,i]] max
(

Oj−1,k−1,1, fγ(Cj,i)
)

Oi,k,1 := min(Oi−1,k,0, Oi,k,1)
end for
delete the stored Oi,k−1,m for all i, m

end for
return ON,K,1 the optimal cost and a partition P given by backtracking Algorithm 10

Proposition 16. Let m ∈ [[0, M]], i ∈ [[1, N]] and k ∈ [[2, K]]. Let β an upper bound for Oi,k,m.
We suppose there exist j0 ∈ [[1, i]], such that fγ(Cj0,i)

α > β. Then, each optimal index j∗, such
that Oi,k,m = Oj∗−1,k−1,m + fα(Cj∗ ,i) necessarily fulfills j∗ > j0. In other words, Oi,k,m =

minj∈[[max(k+m,j0+1),i]]

(
Oj−1,k−1,m + fγ(Cj,i)

α
)

.

Proof. With fγ(Cj0,i)
α > β, Lemma 7 implies that for all j < j0, fγ(Cj,i)

α > fγ(Cj0,i)
α >

β. Using Oi′ ,k′ ,m > 0 for all i′, k′ implies that for all j < j0, fγ(Cj0,i)
α + Oj0−1,k−1,m >

β, and the optimal index gives Oi,k,m = minj∈[[k+m,i]]

(
Oj−1,k−1,m + fγ(Cj,i)

α
)

, which is
superior to j0.

Proposition 16 can be applied to compute each value of the DP matrix using fewer
computations than the naive enumeration. In the enumeration, β is updated to the best
current value of

(
Oj−1,k−1,m + fγ(Cj,i)

α
)

. The index would be enumerated in a decreasing
way, starting from j = i until an index is found, such that fγ(Cj0,i)

α > β, and no more
enumeration is required with Proposition 16, ensuring that the partial enumeration is
sufficient to find the wished-for minimal value. This is a practical improvement, but we do
not furnish proof of complexity improvements, as it is likely that this would not change
the worst case complexity.

8. Discussion
8.1. Importance of the 2D PF Hypothesis, Summarizing Complexity Results

Planar p-center problems were not studied previously in the PF case. The 2D PF
hypothesis is crucial for the complexity results and the efficiency of the solving algo-
rithms. Table 1 compares the available complexity results for 1D and 2D cases of some
k-center variants.

The complexity for 2D PF cases is very similar to the 1D cases; the 2D PF extension
does not induce major difficulties in terms of complexity results. 2D PF cases may in-
duce significant differences compared to the general 2D cases. The p-center problems are
NP-hard in a planar Euclidean space [17], since adding the PF hypothesis leads to the
polynomial complexity of Theorem 1, which allows for an efficient, straightforward imple-
mentation of the algorithm. Two properties of 2D PF were crucial for these results: The 1D
structure implied by Proposition 1, which allows an extension of DP algorithms [58,59],
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and Lemmas 3 and 6, which allow quick computations of cluster costs. Note that rectan-
gular p-center problems have a better complexity using general planar results than using
our Theorems 2 and 3. Our algorithms only use common properties for Chebyshev and
Minkowski distances, whereas significant improvements are provided using specificities of
Chebyshev distance.

Table 1. Comparison of the time complexity for 2D PF cases to the 1D and 2D cases.

Problem 1D Complexity Our 2D PF Complexity 2D Complexity

Cont.
min-sum-K-radii O(N log N) Proposition 12 O(KN2) Theorem 1 NP-hard [40]

Cont. p-center O(N log3 N) [7] O(pN log N) Theorems 2 and 3 NP-hard [17]
Discr. p-center O(N) [33] O(pN log N) Theorem 2 NP-hard [17]
Cont. 1-center O(N) [20] O(N) Proposition 8 O(N) [20]
Discr. 1-center - - O(N) Proposition 8 O(N log N) [29]
Cont. 2-center - - O(N log N) Proposition 10 O(N log2 N) [28]
Discr. 2-center - - O(N log N) Proposition 10 O(N4/3 log5 N) [32]
partial 1-center - - O(N min(M, log N)) Proposition 9 O(N2 log N) [38]
Rect. 1-center O(N) [36] O(N) Proposition 2 O(N) [36]
Rect. 2-center O(N) [36] O(N log N) Proposition 10 O(N) [36]
Cont. rect. p-center O(N) [36] O(pN log N) Theorem 3 O(N) [36]
Discr. rect. p-center O(N log N) [36] O(pN log N) Theorem 2 O(N log N) [36]

Note that our complexity results are given considering the complexity of the initial
re-indexation with Proposition 1. This O(N log N) phase may be the bottleneck for the final
complexity. Some papers mention results which consider that the data are already in the
memory (avoiding an O(N) traversal for input data) and already sorted. In our applications,
MOO methods such as epsilon-constraint provide already sorted points [3]. Using this
means of calculating the complexity, our algorithms for continuous and discrete 2-center
problems in a 2D PF would have, respectively, a complexity in O(log N) and O(log2 N)
time. A notable advantage of the specialized algorithm in a 2D PF instead of the general
cases in 2D is the simple and easy to implement algorithms.

8.2. Equivalent Optimal Solutions for P-Center Problems

Lemmas 16 and 17 emphasize that many optimal solutions may exist; the lower and
upper bounds may define a very large funnel. We also note that many optimal solutions
can be nested, i.e., non-verifying the Proposition 2. For real-world applicationa, having
well-balanced clusters is more natural, and often wished for. Algorithms 7 and 8 provide
the most unbalanced solutions. One may balance the sizes of covering balls, or the number
of points in the clusters. Both types of solutions may be given using simple and fast
post-processing. For example, one may proceed with a steepest descent local search using
two-center problem types for consecutive clusters in the current solution. For balancing
the size of clusters, iterating two-center computations induces marginal computations in
O(log1+γ N) time for each iteration with Algorithm 6. Such complexity occurs once the
points are re-indexed using Proposition 1; one such computation in O(N log N) allows for
many neighborhood computations running in O(log1+γ N) time, and the sorting time is
amortized.

8.3. Towards a Parallel Implementation

Complexity issues are raised to speed-up the convergence of the algorithms in practice.
An additional way to speed up the algorithms in practice is to consider implementation
issues, especially parallel implementation properties in multi- or many-core environments.
In Algorithm 5, the values of the DP matrix Oi,k,m for a given i ∈ [[1; N]] requires only to
compute the values Oj,k,m for all j < i . Independent computations can thus be operated
at the iteration i of Algorithm 5, once the cluster costs fγ(Ci′ ,i)

α for all i′ ∈ [[1; i]] have
been computed, which is not the most time-consuming part when using Algorithms 2
and 3. This is a very useful property for a parallel implementation, requiring only N − 1
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synchronizations to process O(KN2(1 + M)) operations. Hence, a parallel implementation
of Algorithm 5 is straightforward in a shared memory parallelization, using OpenMP
for instance in C/C++, or higher-level programming languages such as Python, Julia or
Chapel [60]. One may also consider an intensive parallelization in a many-core environ-
ment, such as General Purpose Graphical Processing Units (GPGPU). A difficulty when
using this may be the large memory size that is required in Algorithm 5.

Section 7 variants, which construct the DP matrix faster, both for k-center and min-sum
k-radii problems, are not compatible with an efficient GPGPU parallelization, and one
would prefer the naive and fixed-size enumeration of Algorithm 5, even with its worse
time complexity for the sequential algorithm. Comparing the sequential algorithm to the
GPGPU parallelization, having many independent parallelized computations allows a
huge proportional factor with GPGPU, which can compensate the worst asymptotic com-
plexity for reasonable sized instances. Shared memory parallelization, such as OpenMP,
is compatible with the improvements provided in Section 7. Contrary to Algorithm 5,
Algorithms 9 and 11 compute the DP matrix with index k increasing, with O(N) indepen-
dent computation induced at each iteration. With such algorithms, there are only K− 2
synchronizations required, instead of N − 1 for Algorithm 5, which is a better property
for parallelization. The O(N) memory versions are also useful for GPGPU parallelization,
where memory space is more constrained than when storing a DP matrix on the RAM.

Previously, the parallelization of the DP matrix construction was discussed, as this
is the bottleneck in time complexity. The initial sorting algorithm can also be parallelized
on GPGPU if needed; the sorting time is negligible in most cases. The backtracking
algorithm is sequential to obtain clusters, but with a low complexity in general, so that a
parallelization of this phase is not crucial. We note that there is only one case where the
backtracking Algorithm has the same complexity as the construction of the DP matrix:
the DP variant in O(N) memory space proposed in Algorithm 11 with Algorithm 10 as a
specific backtrack. In this specific case, the O(K) tests with different positions of the chosen
outlier are independent, which allows a specific parallelization for Algorithm 10.

8.4. Applications to Bi-Objective Meta-Heuristics

The initial motivation of this work was to support decision makers when an MOO
approach without preference furnishes a large set of non-dominated solutions. In this
application, the value of K is small, allowing for human analyses to offer some preferences.
In this paper, the optimality is not required in the further developments. Our work can
also be applied to a partial PF furnished by population meta-heuristics [5]. A posteriori,
the complexity allows for the use of Algorithms 5, 9 and 11 inside MOO meta-heuristics.
Archiving PF is a common issue of population meta-heuristics, facing multi-objective
optimization problems [4,5]. A key issue is obtaining diversified points of the PF in the
archive, to compute diversified solutions along the current PF.

Algorithms 5, 9 and 11 can be used to address this issue, embedded in MOO ap-
proaches, similarly to [49]. Archiving diversified solutions of Pareto sets has application for
the diversification of genetic algorithms, to select diversified solutions for cross-over and
mutation phases [61,62], but also for swarm particle optimization heuristics [63]. In these
applications, clustering has to run quickly. The complexity results and the parallelization
properties are useful in such applicationas.

For application to MOO meta-heuristics like evolutionary algorithms, the partial
versions are particularly useful. Indeed, partial versions may detect outliers that are
isolated from the other points. For such points, it is natural to process intensification
operators to look for efficient solutions in the neighborhood, which will make the former
outlier less isolated. Such a process is interesting for obtaining a better balanced distribution
of the points along the PF, which is a crucial point when dealing with MOO meta-heuristics.
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8.5. How to Choose K, M?

A crucial point in clustering applications the selection of an appropriate value of
K. A too-small value of K can miss that instances which are well-captured with K + 1
representative clusters. Real-world applications seek the best compromise between the
minimization of K, and the minimization of the dissimilarity among the clusters. Similarly,
with [11], the properties of DP can be used to achieve this goal. With the DP Algorithm 9,
many couples {(k, ON,k)}k are computed, using the optimal k-center values with k clusters.
Having defined a maximal value K′, the complexity for computing these points is seen
in O(NK′ log1+γ N). When searching for good values of k, the elbow technique, may be
applied. Backtracking operations may be used for many solutions without changing the
complexity. Rhe same ideas are applicable along the M index. In the previoulsy described
context of MOO meta-heuristics, the sensitivity with the M parameter is more important
than the sensitivity for the parameter K, where the number of archived points is known
and fixed regarding other considerations, such as the allowed size of the population.

9. Conclusions and Perspectives

This paper examined the properties of p-center problems and variants in the special
case of a discrete set of non-dominated points in a 2D space, using Euclidean, Minkowski
or Chebyshev distances. A common characterization of optimal clusters is proven for the
discrete and continuous variants of the p-center problems and variants. Thie can solve
these problems to optimality with a unified DP algorithm of a polynomial complexity.
Some complexity results for the 2D PF case improve the general ones in 2D. The presented
algorithms are useful for MOO approaches. The complexity results, in O(KN log N) time
for the standard K-center problems, and in O(KN2) time for the standard min-sum k-
radii problems, are useful for application with a large PF. When applied to N points
and able to ncover M < N points, partial K-center and min-sum-K-radii variants are,
respectively, solvable in O(K(M + 1)N log N) and O(K(M + 1)N2) time. Furthermore,
the DP algorithms have interesting properties for efficient parallel implementation in
a shared memory environment, such as OpenMP or using GPGPU. This allows their
application for a very large PF with short solving times. For an application for MOO
meta-heuristics such as evolutionary algorithms, the partial versions are useful for the
detection of outliers where intensification phases around these isolated solutions may be
processed in order to obtain a better distribution of the points along the PF.

Future perspectives include the extension of these results to other clustering algo-
rithms. The weighted versions of p-center variants were not studied in this paper, which
was motivated by MOO perspectives, and future perspectives shall consider extending
our algorithms to weighted variants. Regarding MOO applications, extending the results
to dimension 3 is a subject of interest for MOO problems with three objectives. However,
clustering a 3D PF will be an NP-hard problem as soon as the general 2D cases are proven
to be NP-hard. The perspective in such cases is to design specific approximation algorithms
for a 3D PF.
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Abstract: Ant colony optimization is a metaheuristic that is mainly used for solving hard combi-
natorial optimization problems. The distinctive feature of ant colony optimization is a learning
mechanism that is based on learning from positive examples. This is also the case in other learning-
based metaheuristics such as evolutionary algorithms and particle swarm optimization. Examples
from nature, however, indicate that negative learning—in addition to positive learning—can ben-
eficially be used for certain purposes. Several research papers have explored this topic over the
last decades in the context of ant colony optimization, mostly with limited success. In this work
we present and study an alternative mechanism making use of mathematical programming for the
incorporation of negative learning in ant colony optimization. Moreover, we compare our proposal
to some well-known existing negative learning approaches from the related literature. Our study
considers two classical combinatorial optimization problems: the minimum dominating set problem
and the multi dimensional knapsack problem. In both cases we are able to show that our approach
significantly improves over standard ant colony optimization and over the competing negative
learning mechanisms from the literature.

Keywords: ant colony optimization; mathematical programming; negative learning; minimum
dominating set; multi-dimensional knapsack problem

1. Introduction

Metaheuristics [1,2] are approximate techniques for optimization. Each metaheuristic
was originally introduced for a certain type of optimization problem, for example, function
optimization or combinatorial optimization (CO). However, nowadays one can find a meta-
heuristic variant for different types of optimization problems. Ant colony optimization
(ACO) [3,4] is a metaheuristic algorithm originally introduced for solving CO problems.
The inspiration of ACO was the foraging behavior of natural ant colonies and, in particular,
the way in which ant colonies find short paths between their ant hive and food sources.
Any ACO algorithm works roughly as follows. At each iteration, a pre-defined number
of artificial ants derive solutions to the considered optimization problem. This is done in
a probabilistic way, making use of two types of information: (1) greedy information and
(2) pheromone values. Then, some of these solutions—typically the best ones—are used
to update the pheromone values. This is done with the aim of changing the probability
distribution used for generating solutions such that high-quality solutions can be found.
In other words, ACO is an optimization technique based on learning from positive exam-
ples, henceforth called positive learning. Most of the work on ACO algorithms from the
literature focuses on solving CO problems, such as scheduling problems [5], routing and
path-planning problems [6,7], problems related to transportation [8], and feature selec-
tion [9]. Several well-known ACO variants were introduced in the literature over the years,
including theMAX -MIN Ant System (MMAS) [10], Ant Colony System (ACS) [11], and
the Rank-Based Ant System [12], just to name a few of the most important ones.

Mathematics 2021, 9, 361. https://doi.org/10.3390/math9040361 https://www.mdpi.com/journal/mathematics271
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As already mentioned above, ACO is strongly based on positive learning, which also
holds for most other metaheuristics based on learning. By means of positive learning the
algorithm tries to identify those solution components that are necessary for assembling
high-quality solutions. Nevertheless, there is evidence in nature that learning from negative
examples, henceforth called negative learning, can play a significant role in biological self-
organizing systems:

• Pharaoh ants (Monomorium pharaonis), for example, use negative trail pheromone a
‘no entry’ signals in order to mark unrewarding foraging paths [13,14].

• A different type of negative feedback caused by crowding at the food source was
detected in colonies of Lasius niger [15]. This negative feedback enables the colony
to maintain a flexible foraging system despite the strong positive feedback by the
pheromone trails.

• Another example concerns the use of anti-pheromone hydrocarbons used by male
tsetse flies. They play an important role in tsetse communications [16].

• Honeybees (Apis mellifera ligustica) were shown to mark flowers with scent and to
strongly reject all recently visited flowers [17].

Based on these examples, Schoonderwoerd et al. [18] stated already in 1997 that it
might be possible to improve ACOs’ performance with an additional mechanism that tries
to identify undesirable components with the help of a negative feedback mechanisms.

1.1. Existing Approaches

In fact, the ACO research community has made several attempts to design such a
negative learning mechanism. Maniezzo [19] and Cordón et al. [20] were presumably the
first ones to make use of an active decrease of pheromone values associated to solution
components appearing in low-quality solutions. Montgomery and Randall [21] proposed
three anti-pheromone strategies that were partially inspired by previous works that made
use of several types of pheromones; see, for example, [22]. In their first approach, the
pheromone values of those solution components that belong to the worst solution at each
iteration are decreased. Their second approach—in addition to the standard pheromone—
makes explicit use of negative pheromones. Each ant has a specific bias—different to
the one of the other ants—towards each of the two types of pheromone. Finally, their
third approach uses a certain number of ants at each iteration in order to explore the use
of solution components with lower pheromone values, without introducing dedicated
anti-pheromones. Unfortunately, the presented experimental evaluation did not allow
clear conclusions about a potential advantage of any of the three strategies over standard
ACO. Different extensions of the approaches from [21] were explored by Simons and
Smith [23]. The authors admitted, however, that nearly all their approaches proved to be
counter-intuitive. Their only idea that showed to be useful to some extent was to make use
of a rather high amount of anti-pheromone at the early stages of the search process.

In [24], Rojas-Morales et al. presented an ACO variant for the multi dimensional
knapsack problem based on opposite learning. The first algorithm phase serves for build-
ing anti-pheromone values with the intention to enable the algorithm during the second
phase to avoid solution components that lead to low-quality solutions despite being locally
attractive, due to a rather high heuristic value. Unfortunately, no consistent improvement
over standard ACO could be observed in the results. In addition, earlier algorithm variants
based on opposition-based learning were tested on four rather small TSP instances [25].
Another application to the TSP was proposed in Ramos et al. [26], where they proposed
a method that uses a second-order coevolved compromise between positive and nega-
tive feedback. According to the authors, their method achieves better results than single
positive feedback systems in the context of the TSP. Finally, the most successful strand
of work on using negative learning in ACO deals with the application to constraint sat-
isfaction problems (CSPs). Independently of each other, Ye et al. [27] and Masukane and
Mizuno [28,29] proposed negative feedback strategies for ACO algorithms in the context of
CSPs. Both approaches make use of negative pheromone values in addition to the standard
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pheromone values. Moreover, in both works the negative pheromone values are updated
at each iteration with the worst solution(s) generated at that iteration. The difference is
basically to be found in the way in which the negative pheromone values are used for
generating new solutions. Finally, we would also like to mention a very recent negative
learning approach from the field of multi-objective optimization [30].

1.2. Contribution and General Idea

When devising a negative feedback mechanism there are fundamentally two ques-
tions to be answered: (1) how to identify those solution components that should receive a
negative feedback, and (2) how exactly to make use of the negative feedback. Concerning
the first question, it can be observed that all the existing approaches mentioned in the pre-
vious section try to identify low-quality solution components on the basis of the solutions
generated by the ACO algorithm itself. In contrast, the main idea of this article is to make
use of an additional optimization technique for identifying these components. In particular,
we test two possibilities in this work. The first one is the application of mathematical pro-
gramming solvers—we used CPLEX—for solving opportunely defined sub-instances of the
tackled problem instance. Second, we tested the use of an additional ACO algorithm that
works independently of the main algorithm for solving the before-mentioned sub-instances.

We have tested this mechanism in a preliminary work [31] by applying it to the so-
called capacitated minimum dominating set problem (CapMDS), with excellent results.
In this extended work we first describe the mechanism in general terms in the context
of subset selection problems, which is a large class of CO problems. Subsequently, we
demonstrate its application to two classical NP-hard combinatorial optimization problems:
the minimum dominating set (MDS) problem [32] and the multi dimensional knapsack
problem (MDKP) [33]. Our results show that, even though positive learning remains to be
the most important form of learning, the incorporation of negative learning improves the
obtained results significantly for subsets of problem instances with certain characteristics.
Moreover, for comparison purposes we implement several negative learning approaches
introduced for ACO in the related literature. The obtained results show that our mechanism
outperforms all of them with statistical significance.

2. Preliminaries and Problem Definitions

Even though the negative learning mechanism presented in this work is general and
can be incorporated into ACO algorithms for any CO problem, for the sake of simplicity
this study is conducted in the context of subset selection problems. This important class of
CO problems can formally be defined as follows:

1. Set C is a finite set of n items.
2. Function F : 2C 7→ {TRUE, FALSE} decides if a subset S ⊆ C is a feasible solution.

Henceforth, let X ⊆ 2C be the set of all feasible solutions.
3. The objective function f : X 7→ R assigns a value to each feasible solution.

The optimization goal might be minimization or maximization. Numerous well-
known CO problems can be stated in terms of a subset selection problem. A prominent
example is the symmetric traveling salesman problem (TSP). Hereby, the edges E of the
complete TSP graph G = (V, E) correspond to item set C. Moreover, a subset S ⊆ E is
evaluated by function F as a feasible solution if and only if the edges from S define a
Hamiltonian cycle in G. Finally, given a feasible solution S, the objective function value
f (S) of S is calculated as the sum of the distances of all edges from S. The optimization
goal in the case of the TSP is minimization. In the following we explain both the MDS
problem and the MDKP in terms of subset selection problems.

2.1. Minimum Dominating Set

The classical MDS problem—which is NP-hard—can be stated as follows. Given is an
undirected graph G = (C, E), with C being the set of vertices and E the set of edges. Given
a vertex ci ∈ C, N(ci) ⊂ C denotes the neighborhood of ci in G. A subset S ⊆ C is called
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a dominating set if and only if for each vertex ci ∈ C the following holds: (1) ci ∈ S or (2)
there is at least one cj ∈ N(ci) with cj ∈ S. The MDS requires finding a feasible solution of
minimum cardinality. This problem is obviously a subset selection problem in which C is
the set of items, F(S) for S ⊆ C evaluates to TRUE if and only if S is a dominating set of G,
and f (S) := |S|. A standard integer linear programming (ILP) model for the MDS problem
can be stated as follows.

minimize ∑
ci∈C

xi (1)

subject to:

∑
cj∈N(ci)

xj ≥ 1− xi ∀ci ∈ C (2)

xi ∈ {0, 1} ∀ci ∈ C (3)

The model consists of a binary variable xi for each vertex ci ∈ C. The objective function
counts the selected vertices, and the constraints (2) ensure that each vertex either belongs
to the solution or has, at least, one neighbor that forms part of the solution. In the literature,
there are many variants of the MDS problem. Examples include the minimum connected
dominating set problem [34], the minimum total dominating set problem [35] and the
minimum vertex weight dominating set problem [36]. The currently best metaheuristic
approach for solving the MDS problem is a two-goal local search with inference rules
from [37].

2.2. Multi Dimensional Knapsack Problem

The MDKP is also a classical NP-hard CO problem that is often used as a test case
for new algorithmic proposals (see, for example, [38–40]). The problem can be stated as
follows. Given is (1) a set C={c1, . . . , cn} of n items and (2) a number of m resources. The
availability of each resource k is limited by capk > 0, which is also called the capacity
of resource k. Moreover, each item ci ∈ C consumes a fixed amount ri,k ≥ 0 from each
resource k = 1, . . . , m (resource consumption). Additionally, each item ci ∈ C comes with a
profit pi > 0.

A candidate solution S ⊆ C is a valid solution if and only if, concerning all resources,
the total amount consumed by the items in S does not exceed the resource capacities. In
other words, it is required that ∑ci∈S ri,k ≤ capk for all k = 1, . . . , m. Moreover, a valid
solution S is labeled non-extensible, if no ci ∈ C \ S can be added to S without losing the
property of being a valid solution. The problem requires to find a valid solution S of
maximum total profit (∑ci∈S pi). The standard ILP for the MDKP is stated in the following.

maximize ∑
ci∈C

pi · xi (4)

subject to:

∑
ci∈C

ri,k · xi ≤ capk ∀k = 1, . . . , m (5)

xi ∈ {0, 1} ∀ci ∈ C (6)

This model is built on a binary variable xi for each item ci ∈ C. Constraints (5) are
called the knapsack constraints. In general, the literature offers very successful exact
solution techniques; see, for example, [41–43]. However, devising heuristic solvers still
remains to be a challenge. Among numerous metaheuristic proposals for the MDKP
problem, the currently best performing ones are the DQPSO algorithm from [44] and the
TPTEA algorithm from [45].
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3. MMAS: The Baseline Algorithm

Many of the negative learning approaches for ACO cited in Section 1.1 were introduced
for different ACO variants. In order to ensure a fair comparison, we add both our own
proposal as well as the approaches from the literature to the same standard ACO algorithm:
MAX -MIN Ant System (MMAS) in the hypercube framework [46], which is one of
the most-used ACO versions from the last decade. In the following we first describe the
standard MMAS algorithm in the hypercube framework for subset selection problems. This
will be our baseline algorithm. Subsequently we describe the way in which the negative
learning proposal from this paper and the chosen negative learning proposals from the
literature are added to this baseline algorithm.

3.1. MMAS in the Hypercube Framework

The pheromone model T in the context of subset selection problems consists of a
pheromone value τi ≥ 0 for each item ci ∈ C, where C is the complete set of items.
Remember that, in the context of the MDS, C is the set of vertices of the input graph,
while C is the set of items in the case of the MDKP. The MMAS algorithm maintains three
solutions throughout a run:

1. Sib ⊆ C: the best solution generated at the current iteration, also called the iteration-
best solution.

2. Srb ⊆ C: the best solution generated since the last restart of the algorithm, also called
the restart-best solution.

3. Sbs f ⊆ C: the best-so-far solution, that is, the best solution found since the start of
the algorithm.

Moreover, the algorithm makes use of a Boolean control variable
bs_update ∈ {TRUE, FALSE} and the convergence factor cf ∈ [0, 1] for deciding on the
pheromone update mechanism and on the question whether or not to restart the algorithm.
At the start of the algorithm, solutions Sbs f and Srb are initialized to NULL, the convergence
factor is set to zero, bs_update is set to FALSE and the pheromone values are all initilized to
0.5 in function InitializePheromoneValues(T ); see lines 2 and 3 of Algorithm 1. Then, at each
iteration, na solutions are probabilistically generated in function Construct_Solution(T ),
based on pheromone information and on greedy information. The construction of solutions
will be outlined in detail for both problems (MDS and MDKP) below. The generated
solutions are stored in set S iter, and the best one from S iter is stored as Sib; see lines 5–10 of
Algorithm 1. Then, the restart-best and best-so-far solutions—Srb and Sbs f —are updated
with Sib, if appropriate; lines 11 and 12. Afterward, the pheromone update is conducted
in function ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbs f ) and the new value for
the convergence factor cf is computed in function ComputeConvergenceFactor(T ); lines 13
and 14. Finally, based on the values of cf and bs_update, the algorithm might be restarted.
Such a restart consists in re-initializing all pheromone values, in setting the restart-best so-
lution Srb to NULL, and bs_update to TRUE. In the following, the function for the pheromone
update and for the calculation of the convergence factor are outlined in detail.

ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbs f ): the pheromone update that is
described here is the same as in any other MMAS algorithm in the hypercube framework.
First, the three solutions Sib, Srb, and Sbs f receive weights κib, κrb and κbs f , respectively. A
standard setting of these weights, depending on cf and bs_update, is provided in Table 1. It
always holds that κib + κrb + κbs f = 1. After having determined the solution weights, each
pheromone value τi is updated as follows:

τi := τi + ρ · (ξi − τi) , (7)

where
ξi := κib · ∆(Sib, ci) + κrb · ∆(Srb, ci) + κbs f · ∆(Sbs f , ci) (8)

Hereby, ρ ∈ [0, 1] is the so-called learning rate, and function ∆(S, ci) evaluates to 1 if
and only if item ci forms part of solution S. Otherwise, the function evaluates to 0. Finally,
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after conducting this update, those pheromone values that exceed τmax = 0.999 are set to
τmax, and those values that have dropped below τmin = 0.001 are set to τmin. Note that, in
this way, a complete convergence of the algorithm is avoided. Finally, note that the learning
mechanism represented by this pheromone update can clearly be labeled positive learning,
because it makes use of the best solutions found for updating the pheromone values.

Table 1. Values for weights κib, κrb, and κbs f . These values depend on the convergence factor cf and
the Boolean control variable bs_update.

bs_update = FALSE bs_update = TRUE
cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbs f 0 0 0 0 1

Algorithm 1 MMAS in the hypercube framework (baseline algorithm)

1: input: a problem instance with the complete item set C
2: Sbs f := NULL, Srb := NULL, cf := 0, bs_update := FALSE
3: InitializePheromoneValues(T )
4: while termination conditions not met do
5: S iter := ∅
6: for k = 1, . . . , na do
7: Sk := Construct_Solution(T )
8: S iter := S iter ∪ {Sk}
9: end for

10: Sib := best solution from S iter

11: if Sib better than Srb then Srb := Sib

12: if Sib better than Sbs f then Sbs f := Sib

13: ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbs f )
14: cf := ComputeConvergenceFactor(T )
15: if cf > 0.999 then
16: if bs_update = TRUE then
17: Srb := NULL, and bs_update := FALSE
18: InitializePheromoneValues(T )
19: else
20: bs_update := TRUE
21: end if
22: end if
23: end while
24: output: Sbs f , the best solution found by the algorithm

ComputeConvergenceFactor(T ): Just like the pheromone update, the computation of
the convergence factor is a standard procedure that works in the same way for all MMAS
algorithms in the hypercube framework:

cf := 2







∑
τi∈T

max{τmax − τi, τi − τmin}

|T | · (τmax − τmin)


− 0.5




Accordingly, the value of cf is zero in the case when all pheromone values are set to
0.5. The other extreme case is represented by all pheromone values having either value
τmin or τmax. In this case, cf evaluates to one. Otherwise, cf has a value between 0 and 1.
Herewith the description of all components of the baseline algorithm is completed.
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3.1.1. Solution Construction for the MDS Problem

In the following we say that, if a vertex ci is added to a solution S under construction,
then ci covers itself and all its neighbors, that is, all cj ∈ N(ci). Moreover, given a set
S ⊂ C—that is, a solution under construction—we denote by N(ci | S) ⊆ N(ci) the set
of uncovered neighbors of ci ∈ C. The solution construction mechanism is shown in
Algorithm 2. It starts with an empty solution S = ∅. Then, at each step, exactly one of the
vertices of those that do not yet form part of S or that—with respect to S—have uncovered
neighbors (C) is chosen in function ChooseFrom(C) and added to S. The choice of a vertex
in ChooseFrom(C) is done as follows. First, a probability p(ci) is calculated for each ci ∈ C:

p(ci) :=
ηi · τi

∑ck∈C ηk · τk
(9)

Hereby, ηi := |C|+ 1 is the greedy information that we used. Then, a random number
r ∈ [0, 1] is drawn. If r ≤ drate, cj (to be added to S) is selected such that p(cj) ≥ p(ci)

for all ci ∈ C. Otherwise, cj is chosen by roulette-wheel-selection based on the calculated
probabilities. Note that drate is an important parameter of the algorithm.

Algorithm 2 MDS solution construction

1: input: a graph G = (C, E)
2: S := ∅
3: C := {ci ∈ C | ci /∈ S or N(ci | S) 6= ∅}
4: while C 6= ∅ do
5: cj := ChooseFrom(C)
6: S := S ∪ {cj}
7: C := {ci ∈ C | ci /∈ S or N(ci | S) 6= ∅}
8: end while
9: output: a valid solution S

3.1.2. Solution Construction for the MDKP

As in the MDS-case, the solution construction starts with an empty solution S := ∅,
and at each construction step exactly one item cj is selected from a set C ⊆ C. The definition
of C in the case of the MDKP is as follows. An item ck ∈ C forms part of C if and only
if (1) ck /∈ S, and (2) S ∪ {ck} is a valid solution. The probability p(ci) for an item ci ∈ C
to be chosen at the current construction step is the same as in Equation (9), just that the
definition of the greedy information changes. In particular, ηi is defined as follows:

ηi :=
pi

∑m
k=1 ri,k/capk

∀ ci ∈ C. (10)

These greedy values are often called utility ratios in the related literature. Given the
probabilities, the choice of an item cj ∈ C is done exactly in the same way as outlined above
in the case of the MDS problem.

4. Adding Negative Learning to MMAS

In the following we first describe our own proposal for adding negative learning to
ACO. Subsequently, our implementations of some existing approaches from the literature
are outlined.

4.1. Our Proposal

As mentioned in the introduction, for each negative learning mechanism there are
two fundamental questions to be answered: (1) how is the negative information generated,
maintained and updated, and (2) how is this information being used.
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4.1.1. Information Maintenance

We maintain the information derived from negative learning by means of a second
pheromone model T neg, which consists of a pheromone value τ

neg
i for each item ci ∈ C. We

henceforth refer to these values as the negative pheromone values. Whenever the pheromone
values are (re-)initialized, the negative pheromone values are set to τmin, which is in
contrast to the standard pheromone values, which are set to 0.5 (see above).

4.1.2. Information Generation and Update

The generation of the information for negative learning is done by two new instruc-
tions, which are introduced between lines 9 and 10 of the baseline MMAS algorithm
(Algorithm 1):

Ssub := SolveSubinstance(S iter, cf ) (11)

S iter := S iter ∪ {Ssub} (12)

Function SolveSubinstance(S iter, cf ) merges all solutions from S iter, resulting in a sub-
set C′ ⊆ C. Then an optimization algorithm is applied to find the best-possible solution
that only consists of items from C′. In this work we have experimented with two options:

1. Option 1: Application of the ILP solver CPLEX 12.10. In the case of the MDS problem,
the ILP model from Section 2.1 is used after adding an additional constraint xi = 0
for all ci ∈ C \ C′. In the case of the MDKP, we use the ILP model from Section 2.2
after replacing all occurrences of C with C′.

2. Option 2: Application of the baseline MMAS algorithm (Algorithm 1). In the case
of both the MDS and the MDKP problem, this application of the baseline MMAS
only considers items from C′ for the construction of solutions. Moreover, this MMAS
application uses its own pheromone values, parameter settings, etc. Finally, the
best-so-far solution of this (inner) ACO is initialized with Sib.

In both options, solution Ssub—which is returned by SolveSubinstance(S iter, cf )—is
the best solution between Sib and the best solution found by the optimization algorithm
(CPLEX, respectively baseline MMAS) in the allotted computation time. This computa-
tion time is calculated on the basis of a maximum computation time (tsub CPU seconds)
and the current value of the convergence factor, which is passed to function SolveSubin-
stance(S iter, cf ) as a parameter. In particular, the allowed computation time (in seconds) is
(1− cf )tsub + 0.1cf . This means that the available computation time for solving the sub-
instance C′ decreases with an increasing convergence factor value. The rationale behind
this setting is that, when the convergence factor is low, the variance between solutions in
S iter is rather high and C′ is therefore rather large, which means that more time is necessary
to explore sub-instance C′.

The last action in function SolveSubinstance(S iter, cf ) is the update of the negative
pheromone values based on solution Ssub. This update only concerns the negative pheromone
values of those components that form part of C′. The update formula is as follows:

τ
neg
i := τ

neg
i + ρneg · (ξneg

i − τ
neg
i ) , (13)

where ρneg is the negative learning rate and ξ
neg
i = 1 if ci /∈ Ssub, resp. ξ

neg
i = 0 otherwise. In

other words, the negative pheromone value of those components that do not form part of
Ssub is increased.

4.1.3. Information Use

The negative pheromone values are used in the context of the construction of solutions.
In particular, Equation (9) is replaced by the following one:

p(ci) :=
ηi · τi · (1− τ

neg
i )

∑ck∈C ηk · τk · (1− τ
neg
k )

(14)
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In this way, those items that have accumulated a rather high negative pheromone
value (because they have not appeared in the solutions derived by CPLEX, respectively
the (inner) MMAS algorithm, to the sub-instances of previous iterations) have a decreased
probability to be chosen for solutions in the current iteration. Note that a very similiar
formula was used already in [27].

4.2. Proposals from the Literature

As mentioned before, the proposals from the literature were introduced in the context
of several different ACO versions. In order to ensure a fair comparison, we reimplemented
those proposals that we chose for comparison in the context of the baseline MMAS al-
gorithm. In particular, we implemented four different approaches, which all share the
following common feature. In addition to the iteration-best solution (Sib), the restart-best
solution (Srb) and the best-so-far solution (Sbs f ), these extensions of the baseline MMAS
algorithm maintain the iteration-worst solution (Siw), the restart-worst solution (Srw) and the
worst-so-far solution (Sws f ). As in the case of Srb and Sbs f , solutions Srw and Sws f are initial-
ized to NULL at the start of the algorithm. Then, the following three lines are introduced
after line 12 of Algorithm 1:

Siw := worst solution from S iter

if Siw worse than Srw then Srw := Siw

if Siw worse than Sws f then Sws f := Siw

The way in which these three additional solutions are used differs among the four
implemented approaches.

4.2.1. Subtractive Anti-Pheromone

This idea is adopted from [21], but has already been used in similar form in [19,20].
Our implementation of this idea is as follows. After the standard pheromone update of the
baseline MMAS algorithm (see line 13 of Algorithm 1), the following is done. First, a set B is
generated by joining the items in solutions Siw, Srw and Sws f , that is, B := Siw ∪ Srw ∪ Sws f .
Then, all those items in which the pheromone value receives an update from at least one of
the solutions Sib, Srb, or Sbs f in the current iteration are removed from B. That is:

if κib > 0 then B := B \ Sib

if κrb > 0 then B := B \ Srb

if κbs f > 0 then B := B \ Sbs f

Afterward, the following additional update is applied:

τi := γ · τi ∀ ci ∈ B (15)

In other words, the pheromone values of all those components that appear in “bad”
solutions, but who do not form part of “good” solutions, are subject to a pheromone value
decrease depending on the reduction rate γ. Finally, note that the solution construction
procedure in this variant—which is henceforth labeled ACO-SAP—is exactly the same as in
the baseline MMAS algorithm.

4.2.2. Explorer Ants

The explorer ants approach from [21]—henceforth labeled ACO-EA—is very similar
to the previously presented ACO-SAP approach. The only difference is in the construction
of solutions. This approach has an additional paramete: pexpa ∈ [0, 1], the proportion of
explorer ants. Given the number of ants (na) and pexpa , the number of explorer ants nexp

a is
calculated as follows:

nexp
a := max{1, bpexpa · nac} (16)
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At each iteration, na − nexp
a solution constructions are performed in the same way as

in the baseline MMAS algorithm. The remaining nexp
a solution constructions make use of

the following formula (instead of Equation (9) for calculating the probabilities:

p(ci) :=
ηi · (1− τi)

∑ck∈C ηk · (1− τk)
(17)

In other words, explorer ants make use of the opposite of the pheromone values for
constructing solutions.

4.2.3. Preferential Anti-Pheromone

Like our own negative learning proposal, the preferential anti-pheromone approach
from [21] makes use of an additional set T neg of pheromone values. Remember that T neg

contains a pheromone value τ
neg
i for each item ci ∈ C. These negative pheromone values

are initilized at the start of the algorithm as well as when the algorithm is restarted, to
a value of 0.5. Moreover, after the update of the standard pheromone values in line 13
of the baseline MMAS algorithm, exactly the same update is conducted for the negative
pheromone values:

τ
neg
i := τ

neg
i + ρneg · (ξneg

i − τ
neg
i ) , (18)

where
ξ

neg
i := κib · ∆(Siw, ci) + κrb · ∆(Srw, ci) + κbs f · ∆(Sws f , ci) (19)

Hereby, ρneg ∈ [0, 1] is the negative learning rate, and function ∆(S, ci) evaluates to 1 if
and only if item ci forms part of solution S. Moreover, values κib, κrb and κbs f are the same
as the ones used for the udpate of the standard pheromone values. This means that the
learning of the negative pheromone values is dependent on the dynamics of the learning
of the standard pheromone values.

The standard pheromone values and the negative pheromone values are used as fol-
lows for the construction of solutions. The probabilities for the a-th solution construction—
where a = 1, . . . , na—are determined as follows:

p(ci) :=
ηi · (λτi + (1− λ)τ

neg
i ))

∑ck∈C ηk · (λτk + (1− λ)τ
neg
k ))

, (20)

where λ := a−1
na−1 . This means that λ = 0 for the first solution construction, which means

that only the negative pheromones values are used. In the other extreme, it holds that
λ = 1 for the na-th solution construction, that is, only the standard pheromone values are
used. All other solution constructions combine both pheromone types at different rates.
Note that this preferential anti-pheromone approach is henceforth labeled ACO-PAP.

4.2.4. Second-Order Swarm Intelligence

Our implementation of the second-order swarm intelligence approach from [26]
works exactly like the ACO-PAP approach from the previous section for what concerns
the definition and the update of the negative pheromone values. However, the way in
which they are used is different. The item probabilities for the construction of solutions is
calculated by the following formula:

p(ci) :=
ηi · (τi)

α · (τneg
i )(α−1)

∑ck∈C ηk · (τk)α · (τneg
k )(α−1)

, (21)

where α ∈ [0, 1] is a parameter of the algorithm. Note that this approach is henceforth
labeled ACO2o.
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4.3. Summary of the Tested Algorithms

In addition to the baseline MMAS algorithm (henceforth simply labeled ACO), and
the four approaches from the literature (ACO-SAP, ACO-EA, ACO-PAP and ACO2o) we test
the following six versions of the negative learning mechanism proposed in this paper:

1. ACO-CPL+neg: The mechanism described in Section 4.1 using option 1 (CPLEX) for
solving sub-instances.

2. ACO-CPLneg: This algorithm is the same as ACO-CPL+neg, with the exception that
Equation (12) is not performed. This means that the algorithm does make use of
solution Ssub for additional positive learning. Studying this variant will show if, by
solely adding negative learning, the algorithm improves over the baseline ACO.

3. ACO-CPL+: This algorithm is the same as ACO-CPL+neg, apart from the fact that the
update of the negative pheromone values is not performed. In this way, the algorithm
only makes use of the additional positive learning mechanism obtained by adding
solution Ssub to S iter.

The remaining three algorithm variants are ACO-ACO+
neg, ACO-ACOneg and ACO-ACO+.

These algorithm variants are the same ones as ACO-CPL+neg, ACO-CPLneg and ACO-CPL+,
except that they make use of option 2 (baseline ACO algorithm) for solving the correspond-
ing sub-instances at each iteration.

A summary of the parameters that arise in these 11 algorithms is provided in Table 2,
together with a description of their function and the parameter value domains that were
used for parameter tuning (which will be described in Section 5.2). Moreover, an overview
on the parameters that are involved in each of the 11 algorithms is provided in Table 3.

Table 2. Summary of the parameters that arise in the considered algorithms, together with their
description and the domains considered for parameter tuning.

Parameter Description Considered Domain

na Number of solution constructions per iteration {3, 5, 10, 20}
ρ Learning rate {0.1, 0.2, . . . , 0.4, 0.5}
drate Determinism rate for solution construction {0.0, 0.1, . . . , 0.8, 0.9}
ρneg Negative learning rate {0.1, 0.2, . . . , 0.4, 0.5}
γ Reduction rate for negative pheromone values {0.1, 0.2, . . . , 0.8, 0.9}
pexpa Proportion of explorer ants {0.1, 0.2, . . . , 0.4, 0.5}
α Exponent for the pheromone values {0.01, . . . , 0.99}
tsub Maximum computation time (seconds) for sub-

instance solving
{1, 2, . . . , 9, 10}

nsub
a Number of solution constructions in the inner appli-

cation of the baseline ACO algorithm (option 2 for
solving sub-instances)

{3, 5, 10, 20}

ρsub Learning rate in the inner application of the baseline
ACO algorithm (option 2 for solving sub-instances)

{0.1, 0.2, . . . , 0.4, 0.5}

dsub
rate Determinism rate for solution construction in the in-

ner application of the baseline ACO algorithm (option
2 for solving sub-instances)

{0.0, 0.1, . . . , 0.8, 0.9}
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Table 3. Summary of the parameters that arise in each algorithm.

Parameter Algorithms
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na X X X X X X X X X X X
ρ X X X X X X X X X X X
drate X X X X X X X X X X X
ρneg X X X X X X
γ X X
pexpa

X
α X
tsub X X X X X X
nsub

a X X X
ρsub X X X
dsub

rate X X X

5. Experimental Evaluation

The experiments concerning the MDS problem were performed on a cluster of ma-
chines with two Intel® Xeon® Silver 4210 CPUs with 10 cores of 2.20 GHz and 92 Gbytes
of RAM. The MDKP experiments were conducted on a cluster of machines with Intel®

Xeon® CPU 5670 CPUs with 12 cores (2.933 GHz) and at least 32 GB RAM. For solving
the sub-instances in ACO-CPL+neg, ACO-CPLneg and ACO-CPL+ we used CPLEX 12.10 in
one-threaded mode.

5.1. Problem Instances

Concerning the MDS problem, we generated a benchmark instance set with instances
of different sizes (number of vertices n ∈ {5000, 10,000}), different densities (percentage
of all possible edges d ∈ {0.1, 0.5, 1.0, 5.0}) and different graph types (random graphs
and random geometric graphs). For each combination of n, d and graph type, 10 random
instances were generated. This makes a total of 160 problem instances.

In the case of the MDKP we used a benchmark set of 90 problem instances with
500 items from the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html, ac-
cessed on 20 January 2021). This set consists of 30 instances with 5, 10, and 30 resources.
Moreover, each of these three subsets contains 10 instances with resource tightness 0.25,
0.5, and 0.75. Roughly, the higher the value of the resource tightness, the more items can be
placed in the knapsack. These 90 problem instances are generally known to be the most
difficult ones available in the literature for heuristic solvers.

5.2. Algorithm Tuning

The scientific parameter tuning tool irace [47] was used for the purpose of parameter
tuning. In particular we produced for each of the 11 algorithms (resp., algorithm versions)
exactly one parameter value set for each problem (MDS problem vs. MDKP). For the
purpose of tuning the algorithms for the MDS problem, we additionally generated for each
combination of n, d (density), and graph type exactly one random instance. In other words,
16 problem instances were used for tuning, and the tuner was given a maximal budget
of 2000 algorithm applications. In the context of tuning the algorithms for the MDKP, we
randomly selected one of the 10 problem instances for each combination of “the number of
resources” (5, 10, 30) and the instance tightness (0.25, 0.5, 0.75). Consequently, nine problem
instances were used for tuning in the case of the MDKP. Remember that the parameter
value domains considered for tuning are provided in Table 2. The parameter values that
were determined by irace for the 11 algorithms and for the two problems are provided in
Tables 4 (MDS problem) and 5 (MDKP).
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Table 4. Parameter values for all algorithms for solving the minimum dominating set (MDS) problem.
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na 3 20 20 20 3 10 10 20 10 3 3
ρ 0.4 0.1 0.1 0.5 0.1 0.2 0.5 0.4 0.5 0.1 0.2
drate 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
ρneg – – 0.4 0.4 – – 0.2 0.5 – – – – – – 0.2 0.2
γ – – – – – – – – – – – – – – 0.6 0.6 – – – –
pexpa

– – – – – – – – – – – – – – – – 0.1 – – – –
α – – – – – – – – – – – – – – – – – – – – 0.96
tsub – – 8 7 6 6 7 8 – – – – – – – –
nsub

a – – – – – – – – 3 3 3 – – – – – – – –
ρsub – – – – – – – – 0.3 0.5 0.4 – – – – – – – –
dsub

rate – – – – – – – – 0.7 0.7 0.5 – – – – – – – –

Table 5. Parameter values for all algorithms for solving the multi dimensional knapsack problem
(MDKP).

Parameter Algorithms
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na 20 10 20 20 10 10 20 20 20 3 10
ρ 0.3 0.4 0.1 0.4 0.1 0.1 0.3 0.1 0.2 0.1 0.3
drate 0.7 0.1 0.7 0.4 0.6 0.7 0.8 0.8 0.8 0.8 0.9
ρneg – – 0.2 0.5 – – 0.4 0.5 – – – – – – 0.1 0.2
γ – – – – – – – – – – – – – – 0.9 0.7 – – – –
pexpa

– – – – – – – – – – – – – – – – 0.3 – – – –
α – – – – – – – – – – – – – – – – – – – – 0.95
tsub – – 7 3 5 3 9 3 – – – – – – – –
nsub

a – – – – – – – – 5 10 10 – – – – – – – –
ρsub – – – – – – – – 0.3 0.2 0.4 – – – – – – – –
dsub

rate – – – – – – – – 0.7 0.7 0.7 – – – – – – – –

5.3. Results

Using the previously determined parameter values, each of the 11 considered algo-
rithms was applied 30 times—that is, with 30 different random seeds—to each of the
160 MDS problem instances. Hereby, 500 CPU seconds were chosen as a time limit for
the graphs with 5000 nodes, whereas 1000 CPU seconds were chosen as a time limit for
each run concerning the graphs with 10,000 nodes. Moreover, each algorithm was applied
100 times to each of the 90 MDKP instances. This was done with a time limit of 500 s per run.
Note that, in this way, the same computational resources were given to all 11 algorithms
in the context of both tackled problems. The choice of 100 runs per instance in the case of
the MDKP was done in order to produce results that are comparable to the best existing
approaches from the literature, which were also applied 100 times to each problem instance.

Due to space restrictions we present a comparative analysis of the 11 algorithms in
terms of critical difference (CD) plots [48] and so-called heatmaps. In order to produce the
average ranks of all algorithms—both for the whole set of problem instances (per problem)
as well as for instance subsets—the Friedman test was applied for the purpose of comparing
the 11 approaches simultaneously. In this way we also obtained the rejection of the
hypothesis that the 11 techniques perform equally. Subsequently, all pairwise algorithm
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comparisons were performed using the Nemenyi post-hoc test [49]. The obtained results
are shown graphically (CD plots and heatmaps). The CD plots show the average algorithm
ranks (horizontal axis) with respect to the considered (sub-)set of instances. In those cases
in which the performances of two algorithms are below the critical difference threshold—
based on a significance level of 0.05—the two algorithms are considered as statistically
equivalent. This is indicated by bold horizontal bars joining the markers of the respective
algorithm variants.

5.3.1. Results for the MDS Problem

Figure 1a shows the CD plot for the whole set of 160 MDS instances, while Figure 1b,c
present more fine-grained results concerning random graphs (RGs) and random geometric
graphs (RGGs), respectively. Furthermore, the heatmaps in Figure 2 show the average
ranks of the 11 algorithms in an even more fine-grained way. The graphic shows exactly
one heatmap for each algorithm. The ones of algorithms ACO-CPL+neg, ACO-CPLneg and
ACO-CPL+ are shown in Figure 2a, the ones of algorithms ACO-ACO+

neg, ACO-ACOneg and
ACO-ACO+ in Figure 2b, and the ones of the remaining five algorithms in Figure 2c. The
upper part of each heatmap shows the results for RGs, while the lower part concerns the
results for RGGs. Each of these parts has two columns: the first one contains the results for
the graphs with 5000 nodes, and the second one for the ones with 10,000 nodes. Moreover,
each part has four rows, showing the results for the four considered graph densities. In
general, the more yellow the cell of a heatmap, the better is the relative performance of the
corresponding algorithm for the respective combination of features (graph type, graph size,
and density).

2 3 4 5 6 7 8 9

(a) All instances
2 3 4 5 6 7 8 9

(b) RG instances

1 2 3 4 5 6 7 8 9 10

(c) RGG instancres

Figure 1. Criticial difference plots concerning the results for the MDS problem.
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Figure 2. Heatmaps concerning the results for the MDS problem.

The global CD plot from Figure 1a allows to make the following observations:

• All the six algorithm variants proposed in this paper significantly improve over the
remaining five algorithm variants, that is, over the baseline MMAS (ACO) and over
the four considered negative learning variants from the literature.

• The three algorithm variants that make use of CPLEX for generating the negative
feedback (option 1) outperform the other three variants (making use of option 2) with
statistical significance. This shows the importance of the way in which the negative
feedback is generated. In fact, the more accurate the negative feedback, the better the
global performance of the algorithm.

• Concerning the four negative learning mechanisms from the literature, it is shown
that only ACO-SAP and ACO-EA are able to outperform the baseline MMAS algo-
rithm. In contrast, ACO-PAP and ACO2o perform significantly worse than the baseline
MMAS algorithm.

• When comparing variants ACO-CPL+neg and ACO-CPLneg with ACO-CPL+, it can be
observed that ACO-CPL+neg has only a slight advantage over ACO-CPL+ (which is not
statistically significant). This means that, even though negative learning is useful, the
additional positive feedback obtained by making use of solution Ssub for updating
solutions Sib and Srb is very powerful.
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• The comparison of the three algorithms making use of option 2 (ACO-ACO+
neg,

ACO-ACOneg and ACO-ACO+) shows a significant difference to the comparison con-
cerning the three algorithms using option 1: the two versions that make use of negative
learning (ACO-ACO+

neg and ACO-ACOneg) outperform the version without negative
learning (ACO-ACO+) with statistical significance. This can probably be explained
by the lower quality of the positive feedback information, as solutions Ssub can be
expected to be generally worse than solutions Ssub of the algorithm version using
option 1.

When looking at the results in a more fine-grained way, the following can be observed:

• Interestingly, the graph type seems to have a big influence on the relative behavior of
the algorithms. In the case of RGs, for example, ACO-CPL+ is the clear winner of the
comparison with ACO-CPL+neg in second place. However, the really interesting aspect
is that ACO-CPLneg finishes last with statistical significance. This means that negative
learning seems even to be harmful in the case of RGs. On the contrary, ACO-CPLneg is
the clear winner of the competition in the context of RGGs, with ACO-CPL+neg finishing
in second place (with statistical significance), and ACO-CPL+ only in third place. This
means that, in the case of RGGs, negative learning is much more important than the
additional positive feedback provided by solution Ssub, which even seems harmful.

• Another interesting aspect is that, in the context of RGs, two negative learning versions
from the literature (ACO-SAP and ACO-EA) clearly outperform our proposed negative
learning variants using option 2.

• The heatmaps from Figure 2 also indicate some interesting tendencies. Negative learn-
ing in the context of our algorithm variants ACO-CPL+neg, ACO-CPLneg, ACO-ACO+

neg
and ACO-ACOneg seems to gain importance with an increasing sparsity of the graphs.
On the other side, in the context of RGs, it is clearly shown that the relative quality
of ACO-SAP and ACO-EA grows with increasing graph size (number of vertices) and
with increasing density.

5.3.2. Results for the MDKP

Figure 3a shows the CD plot for the whole set of 90 MDKP instances, while Figure 3b–g
present more fine-grained results concerning instances with different numbers of resources
and with a varying instance tightness. Again, the heatmaps in Figure 4 complement this
more fine-grained presentation of the results. The 11 algorithms are distributed in the same
way as described in the context of the MDS problem into three heatmap graphics. Each
heatmap (out of 11 heatmaps in total) has three rows: one for each number of resources
(5, 10, 30). Moreover, each heatmap has three columns: one for each considered instance
tightness (0.25, 0.5, 0.75). Interestingly, from a global point of view (Figure 3a) the relative
difference between the algorithm performances is very similar to the one observed for the
MDS problem. In particular, our negative learning variants using option 1 perform best.
Again, ACO-CPL+neg has a slight advantage over ACO-CPL+, which is—like in the case of
the MDS problem—not statistically significant. Basically there is only one major difference
to the results for the MDS problem: ACO-SAP, one of the negative learning variants from
the literature, outperforms ACO-ACOneg and ACO-ACO+.
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1 2 3 4 5 6 7 8 9 10

(a) All instances
1 2 3 4 5 6 7 8 9 10

(b) Instances with density 0.25

1 2 3 4 5 6 7 8 9 10

(c) Instances with 5 resources
1 2 3 4 5 6 7 8 9 10

(d) Instances with density 0.5

1 2 3 4 5 6 7 8 9 10

(e) Instances with 10 resources
1 2 3 4 5 6 7 8 9 10

(f) Instances with density 0.75

1 2 3 4 5 6 7 8 9 10

(g) Instances with 30 resources

Figure 3. Criticial difference plots for more fine-grained subdivisions of instances concerning the results for the MDKP problem.

When studying the results in a more fine-grained way, the following observations can
be made:

• The negative learning component of our algorithm proposal seems to gain importance
with a growing number of resources. This can especially be observed for algorithm
variants ACO-CPL+neg, ACO-ACO+

neg and ACO-ACOneg. However, there is an interest-
ing difference between ACO-CPL+neg and ACO-ACO+

neg: while ACO-CPL+neg improves
with an increasing instance tightness, the opposite is the case for ACO-ACO+

neg.
• Again, as in the case of the MDS problem, the relative performance of ACO-SAP, the

best one of the negative learning variants chosen from the literature, is contrary to
the relative performance of ACO-ACO+

neg. In other words, the relative performance
of ACO-SAP improves with a decreasing number of resources and with an increasing
instance tightness.
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Figure 4. Heatmaps concerning the results for the MDKP.

5.3.3. Comparison to the State-of-the-Art

Even though the objective of this study is not to outperform current state-of-the-art
algorithms for the chosen problems, we are certainly interested to know how our globally
best algorithm (ACO-CPL+neg) performs in comparison to the state-of-the-art.

In the case of the MDS problem we chose for this purpose one of the classical bench-
mark sets, which was also used in one of the latest published works [37]. This benchmark
set is labeled UDG and consists of 120 graphs with numbers of vertices between 50 and
1000. For each of the six graph sizes, UDG contains graphs of two different densities. The
benchmark set consists of 10 graphs per combination of graph size and graph density. Fol-
lowing the procedure from [37], we applied ACO-CPL+neg 10 times with a time limit of 1000
CPU seconds for each application to each of the 120 instances of set UDG. Note that we did
not specifically tune the parameters of ACO-CPL+neg. Instead, the same parameter values
as in the previous section were used. The results are shown in a summarized way—as
in [37]—in Table 6. In particular, each table row presents the results for the 10 instances
of the respective instance family. For each of the six compared algorithms, the provided
number is the average over the best solutions found for each of the 10 instances within 10
runs per instance. The best result per table row is indicated in bold face. Surprisingly, it

288



Mathematics 2021, 9, 361

can be observed that ACO-CPL+neg matches the performance of the best two approaches.
It is also worth mentioning that the five competitors of ACO-CPL+neg in this table were all
published since 2017 and are all based on local search. In particular, algorithm RLSo [50]
was shown to outperform all existing ACO and hyper-heuristic algorithms, which were
the state-of-the-art before this recent start of focused research efforts on sophisticated local
search algorithms. Concerning computation time, in [37] it is stated that CC2FS requires on
average 0.21 s, FastMWDS requires 0.83 s, and FastDS requires 22.19 s to obtain the best
solutions of each run. ACO-CPL+neg is somewhat slower by requiring on average 36.14 s.

In the context of the MDKP, we compare ACO-CPL+neg to the current state-of-the-art
algorithms: a sophisticated particle swarm optimization algorithm (DQPSO) from [44],
published in 2020, and a powerful evolutionary algorithm (TPTEA) from [45], published in
2018. As these two algorithms—in their original papers—were applied to the 90 benchmark
problems used in this work, it was not required to conduct additional experiments with
ACO-CPL+neg. A summarized comparison of the three algorithms is provided in Table 7.
Each row contains average results for the 10 problem instances for each combination of
the number of resources (5, 10, 30) and the instance tightness (0.25, 0.5, 0.75). In particular,
we show averages concerning the best solutions found (table columns 3–5), the average
solution quality obtained (table columns 6–8), and the average computation times required
(table columns 9–11). As in the case of the MDS problem, we were surprised to see that
ACO-CPL+neg can actually compete with current state-of-the-art algorithms. The state-of-
the-art results were even improved by ACO-CPL+neg in some cases, especially for what
concerns medium instance tightness for 5 and 10 resources, and low instance tightness for
30 resources. Moreover, the computation time of ACO-CPL+neg is much lower than that of
TPTEA, and comparable to the one required by DQPSO.

Table 6. MDS problem: summarized comparison to the state-of-the-art. Competitor names are
accompanied by publication year and the reference.

Instance Family CC2FS FastMWDS RLSo ScBppw FastDS ACO-CPL+neg

2017 [51] 2018 [52] 2018 [50] 2019 [53] 2020 [37]

V50U150 12.9 12.9 12.9 12.9 12.9 12.9
V50U200 9.4 9.4 9.4 9.4 9.4 9.4
V100U150 17.0 17.0 17.0 17.3 17.0 17.0
V100U200 10.4 10.4 10.4 10.6 10.4 10.4
V250U150 18.0 18.0 18.0 19.0 18.0 18.0
V250U200 10.8 10.8 10.8 11.5 10.8 10.8
V500U150 18.5 18.5 18.6 20.1 18.5 18.5
V500U200 11.2 11.2 11.2 12.4 11.2 11.2
V800U150 19.0 19.0 19.1 20.9 19.0 19.0
V800U200 11.7 11.7 11.9 12.6 11.8 11.7
V1000U150 19.1 19.1 19.2 21.3 19.1 19.1
V1000U200 12.0 12.0 12.0 13.0 12.0 12.0
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6. Discussion and Conclusions

Metaheuristics based on learning—such as ant colony optimization, particle swarm
optimization and evolutionary algorithms—are generally based on learning from positive
examples, that is, they are based on positive learning. However, examples from nature
show that learning from negative examples can be very beneficial. In fact, there have been
several attempts during the last two decades to find a way to beneficially add negative
learning to ant colony optimization. However, hardly any of the respective papers were
able to show that the proposed mechanism was really useful. This is with the exception of
the strand of work on constraint satisfaction problems. The goal of this work was, therefore,
to devise a new negative learning mechanism for ant colony optimization and to show
its usefulness. The main idea of our mechanism is that the negative feedback should not
be extracted from the main ant colony optimization algorithm itself. Instead, it should be
produced by an additional algorithmic component. In fact, after devising a new negative
learning framework, we have tested two algorithmic options for producing the negative
information: (1) making use of the mathematical programming solver CPLEX, and (2)
making use of the baseline ACO algorithm, but in terms of additional applications for
solving sub-instances of the original problem instances.

All considered algorithm variants were applied to two NP-hard combinatorial opti-
mization problems from the class of subset selection problems: the minimum dominating
set problem and the multi dimensional knapsack problem. Moreover, four negative learn-
ing mechanisms from the literature were implemented on the basis of the chosen baseline
ACO algorithm in order to be able to compare our proposals with existing approaches. The
obtained results have shown, first of all, that the proposed negative learning mechanism—
especially when using CPLEX for producing the negative feedback information—is superior
to the existing approaches from the literature. Second, we have shown that, even though
negative learning is not useful for all problem instances, it can be very useful for subsets of
problem instances with certain characteristics. In the context of the minimum dominating
set problem, for example, this concerns rather sparse graphs, while for the multi dimen-
sional knapsack problem the proposed negative learning mechanism was especially useful
for problem instances with rather many resources. From a global point of view, it was
also shown that it is generally not harmful to add negative learning, because the globally
best-performing algorithm variant makes use of negative learning. Finally, we were even
able to show that our globally best-performing algorithm variant is able to compete with
current state-of-the-art algorithms for both considered problems.

Future lines for additional work include the following aspects. First, we aim to apply
the proposed mechanism also to problems of a very different nature. Examples include
scheduling and vehicle routing problems. Second, we aim at experimenting with other
alternatives for producing the negative feedback information.
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Abstract: Recently, operations research, especially linear integer-programming, is used in various
grids to find optimal paths and, based on that, digital distance. The 4 and higher-dimensional
body-centered-cubic grids is the nD (n ≥ 4) equivalent of the 3D body-centered cubic grid, a well-
known grid from solid state physics. These grids consist of integer points such that the parity of all
coordinates are the same: either all coordinates are odd or even. A popular type digital distance,
the chamfer distance, is used which is based on chamfer paths. There are two types of neighbors
(closest same parity and closest different parity point-pairs), and the two weights for the steps
between the neighbors are fixed. Finding the minimal path between two points is equivalent to
an integer-programming problem. First, we solve its linear programming relaxation. The optimal
path is found if this solution is integer-valued. Otherwise, the Gomory-cut is applied to obtain the
integer-programming optimum. Using the special properties of the optimization problem, an optimal
solution is determined for all cases of positive weights. The geometry of the paths are described by
the Hilbert basis of the non-negative part of the kernel space of matrix of steps.

Keywords: integer programming; digital geometry; non-traditional grids; shortest chamfer paths;
4D grid; linear programming; optimization; digital distances; chamfer distances; weighted distances

1. Introduction

In digital geometry, by modeling the world on a grid, path-based distances are fre-
quently used [1,2]. They allow to apply various algorithms of computer graphics and image
processing and analysis, e.g., distance transformation [3]. Non traditional grids (related to
various crystal structures) have various advantages over the traditional rectangular grids,
e.g., having better packing density.

The face-centered cubic (FCC) and body-centered cubic (BCC) lattices are very impor-
tant non-traditional grids appearing in nature. While the FCC grid is obtained from the
cubic grid by adding a point to the center of each square face of the unit cubes, in the BCC
grid, the additional points are in the centers of the bodies of the unit cells. Both FCC and
BCC are point lattices (i.e., grid vectors point to grid points from any point of the grid).
In this paper, we concentrate on the BCC grid and its higher dimensional generalizations.
The BCC grid can be viewed as the union of the cubic lattices (the body-centers of the
above-mentioned unit cubes form also a cubic lattice). The points located in edge-connected
corners of a cube are called 2-neighbors, these points are from the same cubic lattice, while
a corner and the body-center of a unit cell are 1-neighbors, as they are the closest neighbor
point pairs in the 3D BCC lattice.

There is a topological paradox with the rectangular grids in every dimension, that
can be highlighted as follows: considering a usual chessboard, the two diagonals contain
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different color squares, they go through on each other without a crossing, i.e., without
a shared pixel. This is due to the fact that neighbor squares of a diagonal share only a
corner point, and no side. One of the main advantages of the BCC grid is, that there
are only face neighbor voxels, i.e., if two Voronoi bodies of the grid share at least one
point on their boundary, then they share a full face (either a hexagon or a square). In
this way, in the BCC grid, the topological paradox mentioned above cannot occur. The
inner and outer part of the space is well-defined for any object built up by voxels of the
BCC grid. Another important reason considering the BCC grid is its well applicability in
graphical reconstruction.

The BCC lattice has been proven to be optimal for sampling spherically band-
limited signals.

To perfectly reconstruct these signals from their discrete representations, around 30%
fewer samples per unit volume have to be taken on a BCC grid than on an equivalent cubic
grid. When the same number of samples is used with equivalent filters for resampling, a
BCC-sampled volume representation ensures much higher quality of reconstruction than a
cubic-sampled representation does [4–6].

Higher dimensional variants of FCC and BCC grids can also be defined and they have
both theoretical and practical interest [7]. As their finite segments can be seen as graphs,
they could also be used to build special architecture processor or computer networks. The
BCC grid has the advantage that, independent of the dimension, exactly two types of
neighborhoods are defined and thus, it allows relatively simple simulations (e.g., random
walks) and computations. We note here that in the 4 dimensional extension of the BCC
grid, the two types of neighbors have exactly the same Euclidean distance and in higher
dimension, actually, the 2-neighbors of a point are closer than its 1-neighbor.

Concerning path-based (in grids, they are also called digital) distances, one of the
simplest, but on the other hand, very practical and well applicable choices is to use chamfer
distances [3]. These distances are, in fact, weighted distances based on various (positive)
weights assigned to steps to various types of neighbors. These distances are studied in
various grids [7–10] both with theoretical and practical analysis and also in connection
with other fields including approximations of the Euclidean distance [11,12] and various
other applications.

In this paper, similar to what we have used in other nontraditional grids (see, e.g., [8,13,14]
for analogous results on the semi-regular Khalimsky grid and on the regular triangular
grid), we use the tools for operation research to find shortest paths (optimal solution with
the terminology of operational research) between any two points. Of course, shortest
(also called minimal) paths can be found in various ways, for arbitrary graphs one may
use Dijkstra algorithm [15]. However, the grids we use are much more structured than
arbitrary graphs as we can refer to the vertices of the graph (points of the grid) by their
coordinates. Our method gives explicit formulae for the shortest paths; in this way, our
method is more efficient than the application of the Dijkstra algorithm for the grids. This
efficiency is obtained by the mathematical analysis of the algorithms.

Since our approach, by using operational research techniques in the field of digital
geometry is not common, in the next section we describe our grids and in Section 3 we
recall briefly some basic concepts of the field operations research that we need for our work.
Further, in Section 4 we represent the shortest path problem on the higher dimensional
(m > 3) BCC grids as an integer programming problem. After filtering the potential bases
in Section 5, the optimal solutions are determined in Section 6. Then, in Section 7, the
Gomory cut is applied to ensure integer solution. We also give some details on the Hilbert
bases of rational polyhedral cones in Section 8. Finally, the paper is concluded in Section 9.

2. The BCC Grid and Its Extensions to Higher Dimensions

Based on a usual description of the BCC grid, we can give the following definitions
used throughout of this paper. Let us consider the m > 1 dimensional digital space Zm,
especially, only the points that are represented by either only even or only odd coordinates:
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Bm is a subset of Zm such that it includes exactly the points (x1, . . . , xm) if and only if x1
mod 2 ≡ x2 mod 2 ≡ · · · ≡ xm mod 2: Bm = {x = (x1, . . . , xm) ∈ Zm | the parity of all
coordinates of x are the same}.

Note that B2 is in fact the square grid with one of its unusual representations called
2D diamond grid/diagonal-square grid and B3 is the original BCC grid, however, in this
paper we use mostly B4 and its higher dimensional generalizations.

These grids can be seen as the union of two m dimensional (hyper)cubic (also called
rectangular) grids, they are referred as the even and odd (sub)lattices of the grid, based on
the parity of the coordinates of their points.

There are two types of usually defined neighborhoods on Bm: We say that the
points (x1, . . . , xm) and (y1, . . . , ym) are 1-neighbors if and only if |xi − yi| = 1 for every
i ∈ {1, . . . , m}. These points of Bm are closest neighbors in Euclidean sense if m ∈ {2, 3}.
Moreover, in each dimension, the 1-neighbor points are the closest point pairs containing
points from both the even and odd sublattices. Two points (x1, . . . , xm) and (y1, . . . , ym)
of the same sublattice are 2-neighbors if and only if there is exactly one i ∈ {1, . . . , m}
such that |xi − yi| = 2 and the points agree on all other coordinate values, i.e., for every
j ∈ {1, . . . , m}, i 6= j the equation xj = yj holds. In case m ∈ {2, 3}, the 2-neighbor points
are the second closest point pairs of Bm. However, in dimension 4, the Euclidean distance
of the two types of neighborhood relation coincide, while in higher dimensions (m > 4) the
2-neighbors are closer than the 1-neighbors in Euclidean sense.

Since we have two types of neighbors, we may use different weights for them in
chamfer distances. The positive weights of the steps between 1- and 2-neighbors are
denoted by w and u in this paper, respectively. We will use the term neighbor for both
including 1- and 2-neighbors, and the term step as step from a point to one of its neighbors.

Then, the chamfer distance (also called weighted distance, and in this paper, we will
refer to it simply with the term distance), of two points of the grid is defined as the weight
of (one of the) smallest weighted path(s) between them, where a path is built up by steps
to neighbor points.

Further, each of the mentioned grids is a point lattice, i.e., they are closed under
addition of grid vectors. Based on that, when we look for a shortest path between two
grid-points, w.l.o.g, we may assume that one of the points is the origin described by the m
dimensional zero vector.

3. Theoretical Bases from Linear and Integer Programming
3.1. The Linear Programming Problem

The problem of linear programming is an optimization problem such that the math-
ematical form of both the objective function and the constraints are linear. The standard
form of the problem is as follows:

min f Tx

Gx = h

x ≥ 0,

where G is an m× n matrix, h is an m dimensional vector, f is an n dimensional vector of
constants, and x is the n dimensional vector of variables. Notice that the non-negativity
constraints are linear inequalities. In the practice, it is necessary to allow that some
constraints are inequalities and some variables are “free”, i.e., they may have positive, zero,
and negative values as well. It is easy to see that any optimization problem with linear
constraints and objective function can be transformed to the standard form by embedding
the problem into a higher dimensional space.

3.2. The Simplex Method and Its Geometric Content

The linear programming and its first general algorithm, the simplex method was
discovered by George Dantzig in 1947. However, it was published only in 1949 [16]. The
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simplex method is still in intensive use by professional solvers. It also gives a complete
description of the convex polyhedral sets. This theory is summarized based on the book [17].
The author is well-known for the international operations research community as he
obtained the EURO Gold Medal in 2003. However, this early book of him is not known for
the international scientific community, although it is the best book written on the geometry
of linear programming by the authors opinion.

A convex polyhedral set is the intersection of finitely many half-spaces. Notice that
the ball is the intersection of infinitely many half-spaces. What is called 0-dimensional
facet or corner point in the usual geometry, is called extreme point in this theory. A point is
an extreme point of the polyhedral set if it is the only intersection point of the polyhedral
set and a supporting hyperplane. Notice that all surface points of the ball are extreme
points in this sense, as they are the intersection points of the ball and the tangent plane.
The extreme points of the polyhedral set of the linear programming problem are the basic
feasible solutions. For the sake of simplicity, assume that the rank of matrix G is m. Let B be
a subset of the columns of G such that the vectors of B form a basis. The matrix formed
from the elements of B is an m×m matrix. It is also denoted by B. Assume that matrix G
and vector x are partitioned accordingly, i.e., G = (B, N), and xT = (xT

B , xT
N). The basic

solution of basis B is obtained if x satisfies the equation system and its xN part is 0. It can
be obtained as follows:

Gx = (B, N)

(
xB
xN

)
= BxB + NxN = b.

Hence,

xB = B−1b− B−1NxN . (1)

Thus, the xB part of the basic solution is B−1b. The basic solution is feasible if B−1b ≥ 0.
The simplex method starts from an extreme point of the polyhedral set, i.e., from a

basic feasible solution. The algorithm moves from here to a neighboring extreme point. Two
extreme points are neighboring, if a one dimensional edge of the polyhedral set connects
them. The value of the objecting function in the selected neighboring extreme point is at
least as good as in the current extreme point. This procedure is repeated. It stops if the
current extreme point is an optimal solution. There are important consequences. One is
that if an optimal solution exists, then at least one basic feasible solution is optimal. The
other one is as follows: Let the set of the extreme points of the polyhedral set be the set of
vertices of an undirected graph. Two vertices are connected by an edge if and only if an
edge of the polyhedral set connects them. This graph is a connected graph as (i) there is no
restriction on the starting point and (ii) every other extreme point can be optimal, because
its support plane determines a linear objective function such that only this extreme point is
optimal solution.

The optimality condition of the simplex method is as follows. Let fB be the vector
consisting of the basic components of the objective function. The current basic feasible
solution is optimal, if the inequality

fBB−1gj − f j ≤ 0 (2)

holds for all non-basic columns of G. In other words, (2) must hold for all columns gj in
N. If the inequality (2) is violated by a column gj, then gj can replace a vector of the basis
such that the objective function value either improves or remains the same. The latter
case will be excluded by the strict inequalities assumed among the data of the minimal
path problem, see below. The replacement can also show that the problem is unbounded.
However, this case is also excluded by the assumption of the step lengths.
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3.3. The Gomory Cut

Gomory’s method of integer programming is based on the observation that the basic
variables are expressed by the other variables in the form of the equation system (1).
Assume that one of these equations is

xi = di0 − ∑
j∈K

dijxj

where K is the index set of the non-basic variables. Assume further on, that di0 is non-
integer. It is the current value of the integer variable xi. Let φj be the fractional part of the
coefficient, i.e., the fractional part of dij

φj = dij − bdijc, j ∈ K ∪ {0}.

Let us substitute these quantities into the equation. If the equation is rearranged such
that all terms which are integers for sure, are in the left-hand side, the new form of the
equation is obtained as follows:

xi − bdi0c + ∑
j∈K
bdijcxj = φ0 − ∑

j∈K
φjxj.

Hence,

φ0 ≡ ∑
j∈K

φjxj (mod 1).

All the coefficients of this relation are between 0 and 1. Thus the two sides can be con-
gruent only if the value of the right-hand side is in the set { φ0, φ0 + 1, φ0 + 2, . . . }. Hence,
the inequality

∑
j∈K

φjxj ≥ φ0 (3)

must be satisfied. The summation in (3) goes for the non-basic variables. The value of
the non-basic variables is 0 in the basic solution. Thus, this inequality is not satisfied by
the current basic feasible solution as the values of the variables in the sum are all 0. This
inequality is the Gomory cut.

4. The Integer Programming Model and Its Linear Programming Relaxation

Many problems of combinatorial optimization are actually integer programming
problems. The shortest path problem in a finite graph has also its integer programming
version. A grid can be represented by an infinite graph. Therefore, the integer programming
model is different.

The matrix of the steps of the 4-dimensional BCC grid are as follows:

a1 a2 a3 a4 a5 a6 a7 a8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24




2 0 0 0 −2 0 0 0 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
0 2 0 0 0 −2 0 0 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
0 0 2 0 0 0 −2 0 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 2 0 0 0 −2 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1


 (4)

The matrix of the 4D BCC grid, the vectors a1, . . . , a8 represent steps between two
neighbor points of the same sublattice (2-neighbors), while the vectors d9, . . . , d24 represent
diagonal steps, i.e., steps between neighbor points of different sublattices (1-neighbors).

This matrix is denoted by A. It has the same role in the particular problem of the short-
est path problem as matrix G in the general linear programming problem. The columns of
A are denoted by a1, . . . , a8, d9, . . . , d24 The first 8 columns are steps within the same rectan-
gular grid, i.e., in the even or in the odd sublattice (2-neighbors), and the last 16 columns
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are (diagonal) steps between the two rectangular grids (1-neighbors). As we have already
mentioned, the weights of these steps are denoted by u and w. The number of columns is
2m + 2m in the general m dimensional case having vectors a1, . . . , a2m, d2m+1, . . . , d2m+m2 ,
where m ≥ 2 and is an integer. Thus, the size of the matrix is m × (2m + 2m) in the
general case.

It is supposed that the minimal path starts from the origin which is a point of the grid.
The target point, i.e., the other end point of the path, is

b =




p1
p2
p3
p4


. (5)

Then the optimization model of the minimal path is as follows:

min u
8

∑
j=1

xj + w
24

∑
j=9

xj (6)

8

∑
j=1

ajxj +
24

∑
j=9

djxj = b (7)

xj ≥ 0, j = 1, 2, . . . , 24 (8)

xj is integer, j = 1, 2, . . . , 24 (9)

5. Filtering the Potential Bases

The aim of this paper was to give an explicit formula for the minimal path in every
possible case. The theory of linear optimization and its famous algorithm called simplex
method are based on the analysis of linear bases. First problems (6)–(8) are solved by the
simplex method. If the optimal solution is not integer, then Gomory cut is applied for
completing the solution of problems (6)–(9). However, this case occurs only once as it is
shown below. The matrix A has 24 columns of 4-dimension. Thus, there are

(
24
4

)
= 10, 626

potential candidates to be a basis and producing an optimal solution. The number of
candidates increases in a fast way with the dimension. It is 850,668 in 5-dimensions.
Obviously, many candidates are not bases as the columns are linearly dependent. If these
candidates are filtered out, then still too many candidates remain. Thus, further filtering
methods must be introduced.

The grid has a highly symmetric structure. It is enough to describe the minimal paths
that the two end points of the path belong to a cone such that congruent cones cover the
whole 4-dimensional space without overlapping. It is assumed that the path starts from
the origin which is a point of the grid and goes to the point (5) where

p1 > p2 > p3 > p4 > 0. (10)

The assumption is

p1 > p2 > · · · > pm > 0 (11)

in the m-dimensional case.
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The 4-dimensional case is discussed first. Assume that the optimal basis is B which
consists of 4 columns of matrix A. Then, a solution of the linear equation system Bx = b is
required with

x =




x1
x2
x3
x4


 ≥ 0.

Furthermore, it must also be an integer, but this constraint is checked in a second main
step. First, the bases having columns from the last 16 columns of A, i.e., all elements of the
matrix are either +1 or −1, are investigated. One example for such a matrix is




1 1 1 −1
1 1 −1 −1
1 −1 1 −1
−1 −1 −1 −1


.

It is a basis because the columns are linearly independent and the determinant of the
matrix is 8. However, this basis does not give a non-negative solution as all coefficients in
the last row are negative. Similarly, it follows from the assumptions that if two equations
are added or a higher index equation is subtracted from a lower index equation, then the
right-hand side of the obtained new equation is positive. Hence, to obtain a non-negative
solution, it is necessary that the obtained equation has at least one positive coefficient on
the left-hand side. The value of any coefficient in the new row is either +2 or 0 or −2.

As a result of the high number of cases, we have used a computer program in Math-
ematica to filter out the cases not giving a non-negative solution. It investigates the four
discussed conditions for every potential bases as follows. The described method can be
generalized to the m dimensional case.

Theorem 1. Let S be a selected set of m columns of matrix A. This subset is a basis and gives a
non-negative solution for all right-hand sides satisfying the assumption p1 > p2 > · · · > pm > 0
only if

1. The determinant of the basis must be non-zero.
2. Every row must contain at least one positive element, i.e., at least one +1 or +2.
3. The sum of any two rows must contain at least one positive element, i.e., at least one +2.
4. (Assume that the rows of matrix A are indexed from 1 till m such that the top row has index 1

and the index of the last row is m.) If a higher index row is substituted from a lower index row,
then the obtained new row must contain at least one positive element, i.e., at least one +2.

Proof. No. 1 is obvious. No. 2 follows from the fact that the original right-hand sides are
positive. Nos. 3 and 4 follow again from the fact that the right-hand side remains positive
after the operation of the two equations.

These four requirements produced a significant reduction of the candidates. Only
333 candidates remained from the initial

(
24
4

)
= 10, 626

4× 4 matrices. If only the last 16 columns are used, then 68 candidates remains out of
1820 ones. The latter remaining candidates are given in Appendix A Not all remaining
candidates can provide with an optimal solution of the linear programming relaxation.
This information is also provided in Appendix A.
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6. The Optimal Solutions of the Linear Programming Relaxation

Assume that m = 4. The basis {a1, a2, a3, a4} is always feasible if the coordinates of
the target point are positive. As it was mentioned above, the simplex method can get to
an optimal solution, if any, starting from any feasible solution. Therefore the analysis is
started from this basis for the sake of convenience.

Lemma 1. The basis {a1, a2, a3, a4} is optimal if and only if

2u− w ≤ 0. (12)

Proof. The inverse of the matrix of the basis is 1
2 I4 where I4 is the 4× 4 unit matrix. Let aj

be a non-basic column of matrix A, i.e., j ∈ {5, 6, . . . , 24}. The components of aj (5 ≤ j ≤ 8)
or dj (9 ≤ j ≤ 24) are denoted by a1j, a2j, a3j, and a4j. The optimality condition (2) is

u
2

4

∑
i=1

aij − w ≤ 0. (13)

Thus, (13) can be violated only if

4

∑
i=1

aij > 0. (14)

Condition (14) is satisfied by the vectors d9, d10, d11, d13, and d17. The left-hand side
of (13) is 2u−w in case of vector d9 and is u−w for the four other vectors. As u, and w are
positive, the condition u− w > 0 is stricter than 2u− w > 0. It means that if 2u− w > 0,
then (13) is violated by the column of d9, i.e., the basis is not optimal. If 2u− w ≤ 0, then
(13) is true for all columns.

It follows from the lemma that if 2u− w > 0 > u− w, then the only possible change
of the basis is that d9 enters instead of a4. If 2u− w > u− w ≥ 0, then d9 still may enter
the basis instead of a4. If u− w > 0, the four other vectors may enter such that d10 enters
instead of a3 and each of d11, d13, and d17 enters instead of a4. This kind of analysis is very
long as there are many alternative optimal solutions.

In the proofs of Theorems 2 and 3, the term weakest condition is used. The optimality
condition of a basis is that (2) holds for every non-basic vector. The particular form of (2) is
(13) in the case of the basis {a1, a2, a3, a4}. The particular form is different for other bases.
Notice that even (13) depends on the vector, i.e., the column of matrix A. The condition
depends on the step length, i.e., on u and w which are positive. The term weakest condition
refers to that condition which can be violated in the easiest way. For example, the weakest
condition of (13) is when all four aij are equal to 1. It is the case when the value of the
left-hand side is the greatest possible. Similarly, there is a greatest possible value of the
particular form of (2) in the discussed cases in the proofs of Theorems 2 and 3.

Here is a theorem which gives an optimal solution in O(1) steps.

Theorem 2. The basic feasible solution of one of the bases {a1, a2, a3, a4}, {a1, a2, a3, d9},
{a1, a2, d9, d10}, {a1, d9, d10, d12}, and {d9, d10, d12, d16} is optimal.

Proof. Lemma 1 states that the basis is optimal if 2u ≤ w. The simplex method is applied.
As it was mentioned in the proof of the lemma, the weakest condition for entering the basis
and improving the value of the objective function is 2u < w. If this condition is satisfied,
then d9 enters instead of a4 and the basis becomes {a1, a2, a3, d9}. The calculation of the
optimality condition can be carried out based on formula (2). The weakest condition of
entering the bases is 3u > 2w. Thus, the basis {a1, a2, a3, d9} is optimal if 2u ≥ w ≥ 3

2 u. If
w is just under 3

2 u, then a10 may enter the basis. The basis becomes {a1, a2, d9, d10} and
is optimal if 3

2 u ≥ w ≥ u. There are alternative optimal solutions in the next two simplex
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iterations. One option is selected in the statement in both steps. The basis {a1, d9, d10, d12}
is optimal if u ≥ w ≥ 1

2 u. Finally, the basis {d9, d10, d12, d16} is optimal if 1
2 u ≥ w.

The potential optimal solutions and the objective function values are summarized in
Table 1. The values of the not mentioned variables are 0.

With the exception of the first solution, all other solutions are integer valued as the
components of the target points are either odd, or even. This fact implies that the Gomory
cut must be applied only at basis {a1, a2, a3, a4}.

Table 1. The optimal solutions, i.e., distances between (0, 0, 0, 0) and (p1, p2, p3, p4).

Basis Variables The Value of the Optimality
Objective Function Condition

{a1, a2, a3, a4} x1 = p1
2 , x2 = p2

2 ,
x3 = p3

2 , x4 = p4
2

u p1+p2+p3+p4
2 w ≥ 2u

{a1, a2, a3, d9} x1 = p1−p4
2 , x2 = p2−p4

2 ,
x3 = p3−p4

2 , x9 = p4
u p1+p2+p3−3p4

2 + wp4 2u ≥ w ≥ 3
2 u

{a1, a2, d9, d10} x1 = p1−p3
2 , x2 = p2−p3

2 ,
x9 = p3+p4

2 , x10 = p3−p4
2

u p1+p2−2p3
2 + wp3

3
2 u ≥ w ≥ u

{a1, d9, d10, d12} x1 = p1−p2
2 , x9 = p2+p4

2 ,
x10 = p3−p4

2 , x12 = p2−p3
2

u p1−p2
2 + wp2 u ≥ w ≥ 1

2 u

{d9, d10, d12, d16} x9 = p1+p4
2 , x10 = p3−p4

2 ,
x12 = p2−p3

2 , x16 = p1−p2
2

wp1
1
2 u ≥ w

Theorem 2 can be generalized to m-dimension. Some technical details must be dis-
cussed before the formalization and the proof of the theorem.

The first issue is how to generate the columns of matrix A in the m-dimensional case.
As it was mentioned, the number of columns is 2m + 2m. The first 2m columns are the
columns of two diagonal matrices. All elements in the main diagonal are 2, and −2 in the
case of the first, and second matrices, respectively. A possible construction of the last 2m

columns is as follows. Let us write the integers from 0 to 2m − 1 in increasing order by m
binary digits, each. Moreover, let us arrange the numbers vertically such that the top digit
is the digit of 2m−1 and the lowest digit is the digit of 1. In the final step, every vector is
mapped component-wise into a vector where each component is 1 or −1. A component
0 is mapped to 1 and a component 1 is mapped to −1. Hence, d2m+1 = (1, 1, . . . , 1) and
d2m+2m = (−1,−1, . . . ,−1). Hence, the next lemma follows immediately.

Lemma 2. Let k be an integer such that 0 ≤ k ≤ m. The components of vector d2m+2k are as
follows: (a) the first m− k components are 1, and (b) the last k components are −1.

The matrix consisting of the columns d2m+2r , r = 0, 1, . . . , m− 1 is




1 1 1 · · · 1
1 1 1 · · · −1

· · ·
1 1 1 · · · −1
1 1 −1 · · · −1
1 −1 −1 · · · −1




. (15)

Lemma 3. The absolute value of the determinant of matrix (15) is 2m−1.
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Proof. If row i is subtracted from row i− 1(i = 2, . . . , m), then the matrix




0 0 0 · · · 2
0 0 0 · · · 0

· · ·
0 0 2 · · · 0
0 2 0 · · · 0
1 −1 −1 · · · −1




(16)

is obtained. The determinants are equal. Furthermore, the absolute value of the determinant
of matrix (16) is 2m−1.

Let k be an integer such that 0 ≤ k ≤ m. B(k) denotes the basis

{ai|i = 1, . . . , m− k} ∪ {d2m+2r |r = 0, 1, . . . , k− 1}

and its matrix as well. The matrix is as follows:



2 0 · · · 0 1 1 1 · · · 1
0 2 · · · 0 1 1 1 · · · 1

· · ·
0 0 · · · 2 1 1 1 · · · 1

0 0 · · · 0 1 1 1 · · · 1
0 0 · · · 0 1 1 1 · · · −1

· · ·
0 0 · · · 0 1 1 1 · · · −1
0 0 · · · 0 1 1 −1 · · · −1
0 0 · · · 0 1 −1 −1 · · · −1




. (17)

Lemma 4. Let k be an integer such that 0 ≤ k ≤ m. The set of columns of matrix B(k) form a
basis of the m-dimensional Euclidean space.

Proof. The determinant of the matrix consisting of the columns (17) is the product of
two subdeterminants. One is a diagonal matrix where all diagonal elements are 2. The
other one is a k× k matrix type (15). The determinants of both submatrices are different
from zero.

Lemma 5. Let k be an integer such that 0 ≤ k ≤ m. All components of the basic solution of basis

{ai|i = 1, . . . , m− k} ∪ {d2m+2r |r = 0, 1, . . . , k− 1}

is positive under the assumption of (11).

Proof. If k = 0, then

xi =
pi
2

> 0, i = 1, . . . , m. (18)

The basic solution is determined by the equation

B(k)x = b. (19)

Its solution is as follows:

xi =
pi − pm−k+1

2
i = 1, . . . m− k, (20)

x2m+1 =
pm−k+1 + pm

2
(21)
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x2m+2r =
pm−k+r − pm−k+r+1

2
, r = 1, . . . , k− 1 (22)

Substituting the solution, it satisfies the equation system.

Lemma 6. The inverse of the matrix B(1) is




0.5 0 · · · 0 −0.5
0 0.5 · · · 0 −0.5

· · ·
0 0 · · · 0.5 −0.5

0 0 · · · 0 1




. (23)

Let k be an integer such that 2 ≤ k ≤ m. The inverse of B(k) is



0.5 0 · · · 0 −0.5 0 0 · · · 0
0 0.5 · · · 0 −0.5 0 0 · · · 0

· · ·
0 0 · · · 0.5 −0.5 0 0 · · · 0

0 0 · · · 0 0.5 0 0 · · · 0.5
0 0 · · · 0 0 0 0 · · · −0.5

· · ·
0 0 · · · 0 0 0 0.5 · · · 0
0 0 · · · 0 0 0.5 −0.5 · · · 0
0 0 · · · 0 0.5 −0.5 0 · · · 0




. (24)

Proof. The product of the two matrices is the unit matrix.

Now it is possible to formalize the generalization of Theorem 2. The theorem gives a
list of m + 1 bases such that the basic solution of at least one basis is always optimal.

Theorem 3. The basic solution of at least one of the bases (17) is always optimal.

Proof. It follows from Lemmas 4 and 5 that each vector set of type (17) is a basis of the
m-dimensional Euclidean space and its basic solution is feasible. The tool for investigating
the optimality of these bases is formula (2).

Case 1, the basis {ai|i = 1, . . . , m}.
The inverse of the matrix of the basis is 1

2 Im where Im is the m×m unit matrix. The
basic part of the vector of the objective function, i.e., fB, is the m-dimensional vector
(u, u, . . . , u). Hence,

fbB−1 = (u, u, . . . , u)
1
2

Im =
u
2
(1, 1, . . . , 1). (25)

A column d2m+r (1 ≤ r ≤ 2m) may enter to the basis and can improve the solution if

u
2
(1, 1, . . . , 1)d2m+r > w. (26)

The weakest condition for entering the basis is obtained if the left-hand side is maximal.
It is reached, if all components of d2m+r is positive, i.e., at d2m+1. Condition (26) is

um
2

> w. (27)

Notice, that vectors aj (m + 1 ≤ j ≤ 2m) may not enter to the basis, because the basis
becomes infeasible.
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Case 2, the basis {ai|i = 1, . . . , m− k} ∪ {d2m+2r |r = 0, 1, . . . , k− 1} and 1 ≤ k ≤ m.
The same logic is applied as in Case 1. The first m− k components of fb are u and the last k
components are w. It follows from (24) that

fbB−1 = (u, u, . . . , u, w, w, . . . , w)B(k)−1

= (
u
2

,
u
2

, . . . ,
u
2

,− (m− k)u
2

+ w, 0, . . . , 0). (28)

The value of the general product fbB−1gj is fbB−1aj or fbB−1dj, respectively, if
1 ≤ j ≤ 2m or 2m+ 1 ≤ j ≤ 2m+ 2m, respectively. Recall that the necessary and sufficient
condition that a basic solution is optimal, is that condition (2) holds for all index j.
Moreover, if j is the index of a basic variable, then the left-hand side of (2) is 0. The value
of f j is u if 1 ≤ j ≤ 2m and otherwise is w.

If 1 ≤ j ≤ m − k, then fbB−1aj − f j = 0, because the vector is in the basis. If
j = m− k + 1, then fbB−1aj − f j = −(m− k)u + 2w− u. It is non-positive if and only if

w ≤ (m− k + 1)u
2

. (29)

If m − k + 2 ≤ j ≤ m or 2m − k + 2 ≤ j ≤ 2m, then fbB−1aj − f j = −u < 0. If
m + 1 ≤ j ≤ 2m − k, then fbB−1aj − f j = −2u < 0. Finally, if j = 2m − k + 1, then
fbB−1aj − f j = u(m− k)− 2w− u. It is non-positive if and only if

w ≥ (m− k− 1)u
2

. (30)

The components of the vector dj are denoted by dji. Assume that 2m+ 1 ≤ j ≤ 2m+ 2m.
In determining the maximal value of the left-hand side of (2), formula (28) is used. It follows
immediately that the maximal value is achieved only if the first m− k components of the
column are 1. The last k− 1 components are indifferent as they are multiplied by 0. Thus,
the component dj,m−k+1 is critical. The left-hand side of (2) as a function of this component is

(m− k)u
2

− dj,m−k+1

(
(m− k)u

2
− w

)
− w

=

{
0 if dj,m−k+1 = 1
u(m− k)− 2w if dj,m−k+1 = −1

(31)

Thus, the left-hand side of (2) is nonpositive if dj,m−k+1 = 1 or dj,m−k+1 = −1 and

w ≥ (m− k)u
2

. (32)

(32) is a stronger condition than (30). Hence, the basis is optimal if

(m− k + 1)u
2

≥ w ≥ (m− k)u
2

. (33)

Notice that the intervals of the conditions (27) and (33) k = 1, . . . , m cover the non-
negative half-line which implies the statement.

Theorem 4. If (33) holds for 1 ≤ k ≤ m, then the length of the minimal path is

u
(

∑m−k
i=1 pi − (m− k)pm−k+1

)

2
+ wpm−k+1. (34)

Proof. Notice that the optimal solution of the linear programming relaxation is integer valued.
Formula (34) is obtained by substituting the optimal solution into the objective function.
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7. The Application of the Gomory Cut

The optimal solutions of the linear programming relaxation are given in (18)–(22).
As all components of the target point are either odd or even, the optimal solutions given
in (20)–(22) are integer. Non-integer optimal solution of the linear programming relaxation
is obtained only, if the basis {ai|i = 1, . . . , m} is optimal and the target point is in different
cubic lattice than the starting point. The linear programming optimal solution uses steps
which do not change the cubic lattice. However, an integer feasible solution must contain
an odd number from the last 2m steps of matrix A. Hence, the inequality

m+2m

∑
i=m+1

xi ≥ 1 (35)

must be satisfied.

Lemma 7. The Gomory cut is the inequality (35).

Proof. The inverse of the basis is 1
2 Im. Assume that the Gomory cut is generated from the

first equation of (7). Thus, all integer parts are 1
2 . Hence, the form of (3) is

m+2m

∑
i=m+1

1
2

xi ≥
1
2

. (36)

It is equivalent to (35).

Theorem 5. If um
2 ≤ w and p1, . . . , pm are odd numbers, then an optimal solution is

xi =
pi − 1

2
, i = 1, . . . , m, x2m+1 = 1, xi = 0, i = m + 1, . . . , 2m + 2m, i 6= 2m + 1 (37)

and the optimal value is

u
m

∑
i=1

pi
2
− mu

2
+ w. (38)

Remark 1. The first condition is the opposite of (27) and ensures that the basis {a1, . . . , am} is
optimal.

Proof. The inequality (35) is added to the problem as an equation with a non-negative
slack variables s as follows:

m+2m

∑
i=m+1

xi − s = 1 (39)

Thus, every column of matrix A is extended by one component. This component is 0
in the case of the first 2m columns and is 1 in the case of the last 2m. Furthermore, a new
column is added which belongs to variable s. This column is the negative m + 1-st unit
vector, as variable s appears only in the last equation. As it is shown below, the optimal
basis of the extended problem is {1, . . . , m} ∪ {2m + 1}.

Notice that the products B−1gj in formula (2) are the coordinates of vector gj in the
current basis. Thus, (2) can be checked if the coordinates of B−1gj are known. The inverse
of the extended matrix B is similar to (23).

Case 1. m + 1 ≤ j ≤ 2m. The coordinates are (B−1gj)j = −1 and (B−1gj)i = 0, i 6= j.
Hence, the left-hand side of (2) is −2u < 0.
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Case 2. 2m + 2 ≤ j ≤ 2m + 2m. The coordinates are

(B−1gj)i =





0 if dji = 1, 1 ≤ i ≤ m
−1 if dji = −1, 1 ≤ i ≤ m
1 if i = m + 1,

where dji is the i-th component of vector dj. Hence, the left-hand side of (2) is

u ∑
i:dji=−1

1 + w− w ≤ −u < 0.

Case 3. j = 2m + 2m + 1. It is the case of the unit vector of s. The coefficient of s in the
objective function is 0. The coordinates are

(B−1gj)i =

{ 1
2 if 1 ≤ i ≤ m
−1 if i = m + 1.

Hence, the left-hand side of (2) is

um
2
− w.

This value is nonpositive according to the conditions. Thus, the optimality condition
is satisfied in all cases.

Corollary 1. If (33) holds for 1 ≤ k ≤ m, then the length of the shortest path from the origin to
the point (p1, p2, . . . pm)T is (34). If um

2 ≤ w and p1, . . . , pm are even numbers, then the length of
the shortest path is

u
m

∑
i=1

pi
2

. (40)

If um
2 ≤ w and p1, . . . , pm are odd numbers, then the length of the shortest path is (38).

8. The Hilbert Basis of the Nonnegative Part of the Kernel Space

Jeroslow reformulated an old paper of Hilbert [18] on the language of the contempo-
rary mathematics and proved an important theorem [19]. Later Schrijver discovered the
same theorem independently [20]. The Theorem 6 below contains the reformulated version
of Hilbert’s theorem (first statement) and the new theorem of Jeroslow and Schrijver.

Theorem 6. Let C be a cone determined by finitely many linear inequalities such that the coefficients
of the inequalities are rational numbers in the m dimensional space. Let

S = C ∩ Zm

be the set of the integer points in C.

• There is a finite subset T of S such that for every vector s ∈ S there are non-negative integer
weights αt such that

s = ∑
t∈T

αtt. (41)

• If C is a pointed cone, i.e., the origin is the extreme point of C, then there is only one set T
with this property.
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Let n = 2m + 2m. The kernel space of the general matrix A is

{x ∈ Rn | Ax = 0}. (42)

Its non-negative part is the set

P = {x ∈ Rn | x ≥ 0, Ax = 0}. (43)

P is a pointed cone. LetH be its Hilbert basis.
Although H seems an algebraic object, it has strong geometric and optimization

meanings. Matrix A has the property in any dimension that if a vector a (or d) is its column,
then the vector −a (or −d) is a column of A as well. For the first look, the elements of H
describe elementary circuits of the grid. For example, a1 + d17 + d24 = 0 (see also Figure 1).
Thus, starting from a point and making the steps of types 1, 17, and 24, the walk returns to
the origin. However, there is another interpretation of the equation as follows:

a1 + d17 + d24 = a1 − d16 − d9 = 0 (44)

implying that

a1 = d16 + d9. (45)

The meaning of the Equation (45) is that one step in the same rectangular sublattice is
equivalent with two steps between the two sublattices (see also Figure 2). Thus, stepping
in the same sublattice is better than the two steps between the sublattices if u < 2w.

                                                      y 
 
 
                                                      2 
 
 
 
 
                                                      1 
 
 
 
                             d17                            d24 
                                                    
                           v      1                                                    d17 
                                                                                             a1          d24          
                                                                                  1                      
                                                                                                           2                                   x 
                                                         1      
 
 
 
                                                              z 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(-1,1,0,0) 

(-1,1,1,0) 
(-1,1,1,1) (-1,0,0,0) 

(-1,-1,-1,0) 

(-1,-1,0,0) 

(2,0,0,0) 

(-1,-1,-1,-1) 

Figure 1. The sum of vectors a1, d17, and d24 is the four-dimensional zero vector. The coordinates of
the construction are also shown.

If the opposite inequality is true, i.e., u > 2w, then it is better to step always between
the sublattices. This example has further three similar cases as follows:

a1 = d10 + d15, a1 = d11 + d14, a1 = d12 + d13. (46)

As we can see, a cycle in an undirected graph may have two different important
interpretations as to walk a cycle arriving back to the initial point or to walk from a point
to another in two different paths [21]. Many further composite steps can be obtained from
Table 2. For example, it is possible to go from the origin to the point (2,2,0,0) by using steps
a1 and a2 with length 2u or with 2w by using either steps d9 and d12, or d10 and d11 as it
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is shown in Figure 3. A cycle form of the same relation based on the above-mentioned
diagonal steps can be seen in Figure 4.

                                                      y 
 
 
                                                      2 
 
 
 
 
                                                      1 
 
 
 
 
     
                           v      1                   d9                            d16 
                                                                                             a1          d9          
                                                                                  1    d16                  
                                                                                                           2                                   x 
                                                         1      
 
 
 
                                                              z 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The sum of vectors d9 and d16 is exactly the vector a1 in the four-dimensional BCC grid. A
unit hypercube is also shown.
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                                                                                                          a2  d9
 
                                                                      d10 
                                                             1                        d12         d12 
 
                                                     d11 
                                                                                                        d11 
                                                      d10                                                  
                                                    
                              1                                                     
                           v                                                                 a1          d9           a2
                                                                                  1                      
                                                                                                           2                                   x 
                                                         1      
 
                                                       
 
                                                              z 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Alternative paths from (0, 0, 0, 0) to (2, 2, 0, 0), each is built up by two steps, in the four-
dimensional BCC grid.

There is an iterative way to explore many elements of the Hilbert basis. The basic
idea is that the known elements are excluded and the optimization problem looks for
the next unknown element having the smallest l1 norm. The model has variables xj
j ∈ {1, 2, . . . , 24}, where the meaning of xj is that step j is used how many times in the
circuit as in (42) or (43). Thus, it must be an integer. There is a second set of variables
denoted by yj j ∈ {1, 2, . . . , 24}. They are binary variables as follows:

yj =

{
1 if xj > 0
0 if xj = 0.

(47)
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The meaning of yj is if the step represented by the jth column of matrix A is included
in the circuit or not.

                                                      y 
 
 
                                                      2 
 
 
 
 
                                                      1                               d12         d12 
 
 
                                                                                                        d22 
                                                      d23                                                  
                                                    
      d23                        1                                                     
                           v                                                                                      d9
                                                                                  1                      
                                                                                                           2                                   x 
                                                         1      
 
                                                      d22 
 
                                                              z 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The sum of four diagonal vectors is the zero vector, each vector is also shown from
the origin.

The objective function is the minimization of the number of used types of steps

min
24

∑
j=1

yj. (48)

Then the constraint being in the kernel space is similar to constraint (7) but the right-
hand side must be the zero vector

8

∑
j=1

ajxj +
24

∑
j=9

djxj = 0. (49)

The relation of the two types of variables is, that if yj = 1 if and only if xj > 0. Let M
be a big positive number. The constraint to be claimed is

xj ≤ Myj, j = 1, . . . , 24. (50)

Notice that (50) claims only that if xj is positive, then yj = 1. However, it is not
possible in an optimal solution that xj = 0 and yj = 1. The zero vector must be excluded
by claiming that the sum of the variables must be at least 1

24

∑
j=1

xj ≥ 1. (51)

The variables must be non-negative integer and binary, respectively,

xj ≥ 0 and integer; yj = 0 or 1, j = 1, . . . , 24. (52)

The problems (48)–(52) are used in an iterative way. When a new member of the
Hilbert basis is found, then it is excluded by the constraint that not all same types of steps
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can occur in a new element. Let x̄ be the last optimal solution. Lest S = {j|x̄j > 0}. Then
the inequality

∑
j∈S

yj ≤ |S| − 1 (53)

is added to the problem as a new constraint. The next optimal solution must be different
from x̄.

Some trivially existing solution, i.e., if the sum of two columns is the zero vector, can
be excluded immediately. Thus, the constraints

y1 + y5 ≤ 1, . . . , y4 + y8 ≤ 1, y9 + y24 ≤ 1, . . . , y16 + y17 ≤ 1 (54)

can be introduced.
The types obtained by iterative application of the model are summarized in Table 2.

Table 2. Types of the elements of the Hilbert basis.

Type # of a’s # of d’s Example # of Cases

1 2 0 a1 + a5 = 0 4
2 0 2 d9 + d24 = 0 8
3 1 2 a1 + d17 + d24 = 0 32
4 2 2 a1 + a2 + d21 + d24 = 0 48
5 0 4 d9 + d12 + d22 + d23 = 0 24
6 3 2 a1 + a2 + a3 + d23 + d24 = 0 32
7 1 4 a1 + d9 + d20 + d22 + d23 = 0 64
8 0 6 2× d9 + d16 + d20 + d22 + d23 = 0 16
9 2 4 2× a1 + d17 + d20 + d22 + d23 = 0 16

10 4 2 a5 + a6 + a7 + a8 + 2× d9 = 0 16

A sequence of optimal bases of the linear relaxation is discussed in Theorem 3. The
relation of the changes of the bases and the elements of the Hilbert basis is shown in Table 3.
The relation can be obtained in the way shown in formula (44). Notice that the ratios of the
numbers of a and d vectors are the same of the ratios of u and v where the optimal solution
changes according to Theorem 2. The elements of the Hilbert basis can be obtained by
taking the difference of the two optimal solutions.

Table 3. The relation of the elements of the Hilbert basis and the changes of basis.

Old Basis New Basis Hilbert Basis Element Type Ratio

a1, a2, a3, a4 a1, a2, a3, d9 a1, a2, a3, a4, 2× d24 10 4
2 = 2

a1, a2, a3, d9 a1, a2, d9, d10 a1, a2, a3, d23, d24 6 3
2

a1, a2, d9, d10 a1, d9, d10, d12 a1, a2, d21, d24 4 2
2 = 1

a1, d9, d10, d12 d9, d10, d12, d16 a1, d17, d24 3 1
2

It is easy to see from formula (37) that when the optimal fractional solution is converted
to optimal integer solution, then a type 10 member of the Hilbert basis has a key role. It is
a1, a2, a3, a4, 2× d24.

9. Conclusions

This paper continues the analysis of the BCC grids started in [22]. It generalizes the
grids to 4 and higher dimensions. Minimal routes are determined from the origin to a target
point. An integer linear programming model is applied. Its linear programming relaxation
is solved by the simplex method. There is only one case when the optimal solution is
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fractional. The integrality is achieved by the Gomory method in this case. In 4D, Table 1
shows the direct formulae to compute distance based on Theorem 2 (and generalized to nD
in Corollary 1). The non-negative cone of the kernel space of the matrix of the steps in the
grid has an important role. The elements of its Hilbert basis describe the alternative routes,
i.e., the geometry of the routes, and the changes of the bases during the simplex method.
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Appendix A

Table A1. The bases remained after the filtering of the 4-dimensional case containing no vectors from
the first 8 vectors, i.e., containing only diagonal vectors. (The columns of matrix A are referred by
their indices from 1 to 24.)

No. Basis Optimal No. Basis Optimal

1 9 10 11 13 YES 2 9 10 11 14 YES
3 9 10 11 15 YES 4 9 10 11 16 YES
5 9 10 12 13 YES 6 9 10 12 14 YES
7 9 10 12 15 YES 8 9 10 12 16 YES
9 9 10 15 19 NO 10 9 10 15 20 NO
11 9 10 16 19 NO 12 9 10 16 20 NO
13 9 11 12 14 YES 14 9 11 14 18 NO
15 9 11 14 20 NO 16 9 11 16 18 NO
17 9 12 13 14 YES 18 9 12 13 18 NO
19 9 12 13 22 NO 20 9 12 14 15 YES
21 9 12 14 16 YES 22 9 12 14 17 NO
23 9 12 14 18 NO 24 9 12 14 20 NO
25 9 12 14 22 NO 26 9 12 14 23 NO
27 9 12 15 22 NO 28 9 12 16 18 NO
29 9 12 16 22 NO 30 9 14 15 20 NO
31 9 14 16 20 NO 32 9 16 18 19 NO
33 9 16 18 20 NO 34 9 16 20 22 NO
35 10 11 12 13 YES 36 10 11 13 14 YES
37 10 11 13 15 YES 38 10 11 13 16 YES
39 10 11 13 17 NO 40 10 11 13 18 NO
41 10 11 13 19 NO 42 10 11 13 21 NO
43 10 11 13 24 NO 44 10 11 14 17 NO
45 10 11 14 21 NO 46 10 11 15 17 NO
47 10 11 15 21 NO 48 10 11 16 21 NO
49 10 12 13 17 NO 50 10 12 13 19 NO
51 10 12 15 17 NO 52 10 13 15 19 NO
53 10 13 16 19 NO 54 10 15 17 19 NO
55 10 15 17 20 NO 56 10 15 19 21 NO
57 11 12 13 18 NO 58 11 12 14 17 NO
59 11 13 14 18 NO 60 11 13 16 18 NO
61 11 14 17 18 NO 62 11 14 17 20 NO
63 11 14 17 21 NO 64 12 13 14 17 NO
65 12 13 17 18 NO 66 12 13 17 22 NO
67 12 13 18 19 NO 68 12 14 15 17 NO
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