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Preface

Intelligent vehicles have been considered an essential way to improve urban mobility, as well as

reduce emission pollution and traffic accidents. With the development of artificial intelligence, such

as deep learning and intelligent vehicle technologies have obtained enormous success. However,

due to the unmatured mature of the critical technologies, such as environment perception, motion

planning, behavior decisions, and motion control, the intelligent vehicle still cannot be deployed in

real and complex scenarios.

The intelligent vehicle is a very complicated technical system. A lot of critical technologies from

different disciplines, such as sensor technology, pattern recognition, control engineering, artificial

intelligence, and vehicle engineering, can affect its performance. This Special Issue aims to explore

the recent progress in these related research fields. The topics include, but are not strictly limited to,

the following:

• Imaging and sensor technology, such as LiDAR, camera, millimeter wave radar, and so on;

• Environment perception technology, such as vehicle/pedestrian detection, tracking and

prediction, travelable area detection, ground segmentation, and so on;

• Planning and control technology, such as global planning, local planning, behavior decision,

motion control, and so on;

• Navigation and localization technology, such as lidar odometry, vision odometry, simultaneous

localization and mapping (SLAM), and so on;

• Intelligence test and evaluation.

Biao Yu, Linglong Lin, and Jiajia Chen

Editors
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Article

Autonomous Parking Space Detection for Electric Vehicles
Based on Improved YOLOV5-OBB Algorithm

Zhaoyan Chen 1, Xiaolan Wang 1,*, Weiwei Zhang 1, Guodong Yao 2, Dongdong Li 2 and Li Zeng 2

1 School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China

2 Voyager Technology lnc, Shanghai 201517, China
* Correspondence: m310121423@sues.edu.cn

Abstract: Currently, in the process of autonomous parking, the algorithm detection accuracy and rate
of parking spaces are low due to the diversity of parking scenes, changes in lighting conditions, and
other unfavorable factors. An improved algorithm based on YOLOv5-OBB is proposed to reduce the
computational effort of the model and increase the speed of model detection. Firstly, the backbone
module is optimized, the Focus module and SSP (Selective Spatial Perception) module are replaced
with the general convolution and SSPF (Selective Search Proposals Fusion) modules, and the GELU
activation function is introduced to reduce the number of model parameters and enhance model
learning. Secondly, the RFB (Receptive Field Block) module is added to fuse different feature modules
and increase the perceptual field to optimize the small target detection. After that, the CA (coordinate
attention) mechanism is introduced to enhance the feature representation capability. Finally, the
post-processing is optimized using spatial location correlation to improve the accuracy of the vehicle
position and bank angle detection. The implementation results show that by using the improved
method proposed in this paper, the FPS of the model is improved by 2.87, algorithm size is reduced
by 1 M, and the mAP is improved by 8.4% on the homemade dataset compared with the original
algorithm. The improved model meets the requirements of perceived accuracy and speed of parking
spaces in autonomous parking.

Keywords: autonomous parking; YOLOv5-OBB; parking space detection; coordinate
attention mechanism

1. Introduction

Autonomous parking systems for self-driving vehicles are crucial, of which parking
space detection [1–3] is a key component. Most of the on-board parking assistance systems
on the market today are based on very high-computing-power chips and a wide variety of
sensors, etc. In order to develop a lower-cost autonomous parking system, it is necessary
to develop it based on a low-computing-power embedded chip. Previous parking space
detection methods [4–7] are mainly based on traditional computer vision techniques such as
edge detection, corner detection, histograms, and feature matching. For example, Hamada
et al. [8] extracted parking space lines using the Hough transform method and inferred
parking spaces using geometric constraints, but it is only applicable to parking space
scenarios with very good illumination conditions. Bui et al. [9] separated fixed parking
space lines by a line segment clustering method. These methods perform poorly when
dealing with different car park lighting conditions and variations in the appearance of
parking spaces.

In recent years, deep-learning-based methods have been able to extract high-level
features from input images and perform location estimation and classification of parking
spaces. Methods based on deep learning are mainly divided into target detection methods
and semantic segmentation methods, and target detection methods are further divided into
one-stage detection and two-stage detection. Li et al. [10] used the deep learning method

World Electr. Veh. J. 2023, 14, 276. https://doi.org/10.3390/wevj14100276 https://www.mdpi.com/journal/wevj1
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to predict the location, type, and orientation of parking space corner points and then
grouped the corner points using geometrical rules to infer the presence of parking spaces.
However, this method can only detect perpendicular and parallel rectangular parking
slots. Zhang et al. [11] proposed a two-stage target detection method, DeepPS, which first
uses YOLOV2 to detect the corners of parking spaces and then obtains the parking space
type and direction matching of parking spaces through local image classification networks
and templates. This method can effectively detect different kinds of parking spaces, but it
requires two deep neural networks, which makes inference time too slow and the amount
of model parameters too large for embedded end deployment.

Zhou et al. [12] proposed an attentional semantic segmentation and instance matching
method to improve the accuracy of parking space detection, but it can only be applied to
AVP systems, and the attention structure is difficult to deploy to some embedded platforms.
Cao et al. [13] proposed a method based on VPS-Net [14] hat can detect different kinds
of sign points, but the prediction of parking spaces with different lengths was inaccurate.
Li et al. [15] proposed a semantic-segmentation-based method to improve the detection of
parking spaces, but the number of arithmetic resources consumed was very high, most
vendors are currently trying to deploy autonomous parking systems in low-computing-
power embedded platforms with only 1–3 TOPS of arithmetic power, and the arithmetic
power is unable to meet the requirement. We are based on a one-stage target detection
method, which can not only detect parking spaces with angles but also has low model
complexity and a fast detection rate, which are suitable for deploying embedded chips with
low computing power.

Other methods [9–17] and datasets [11,15] can only detect and infer a parking space
during the autonomous parking process and cannot determine whether there are obstacles
(such as ice cream cones, floor locks, etc.) in the parking space. Therefore, the method
and dataset we proposed are based on purely visual parking space detection, which can
complete the detection of parking spaces and obstacles around the vehicle based on a single
image. The method in this article de-distorts the images from the left and right fish-eye
cameras and splices them into a bird’s-eye view with a size of 128 × 416. The front and
rear fish-eye cameras do not need to be de-distorted but directly splice them into an image
with a size of 288 × 208 and splice it into an image with a size of 416 × 416. The pictures
are passed into the network model for detection, and finally the target detection results are
sent to the planning control module. The process is shown in Figure 1.

Figure 1. Flow chart for autonomous parking space detection.

The main contributions of our work can be summarized as follows:

1. Improved RFB and CA modules are added to the original yolov5-OBB algorithm to
enhance the generalization ability of the model in complex scenarios such as darkness,
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while replacing the Focus and SSP structures to reduce the number of parameters in
the computation and accelerate the model inference rate.

2. Correlation modeling of the existing a priori knowledge of the simultaneous oc-
currence of parking spaces and storage corners and setting the penalty factor K to
improve the confidence level of the detection of parking spaces and storage corners.

3. A standard evaluation method for target detection was used through comparative
experiments and ablation experiments of the original algorithm on a homemade
parking space detection dataset as well as on a publicly available dataset, and the
results show that our algorithm is competitive in terms of real-time and detection
accuracy in complex scenarios such as nighttime.

The rest of this paper is organized as follows. Section 2 introduces the detection
method of the rotating target frame based on YOLOv5. Section 3 introduces the improved
YOLOv5-OBB algorithm in detail. Section 4 describes the experiments and analysis. We
summarize the paper in Section 5.

2. YOLOv5-OBB Detection Algorithm

2.1. YOLOv5s Model

YOLOv5-OBB (You Only Look Once v5-oriented bounding boxes) is based on YOLOv5
with the addition of target box angle prediction to predict the rotated target box. Firstly, the
YOLOV5 model has superior performance and has received wide recognition in academia
and industry. It has five versions with different model sizes, n, s, m, l, and x, which
correspond to different network depths and widths. Here, in order to meet the real-time
requirements of the model deployed in the embedded chip platform, the YOLOV5s model
was finally selected, and the network structure is shown in Figure 2.

Figure 2. YOLOv5s network overall structure.

Input side: CutMix, Mosic, and other high-level data enhancement methods are used
to stitch four pictures into one picture with random adaptive filling. This not only enriches
the dataset but also corresponds to the reduction in batch-size and training arithmetic and
also optimizes the model’s detection effect on small targets, robustness, and generalization
of the model. Adaptive anchor frame computation and adaptive image scaling methods
are also used.
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Backbone: CSPDarknet [18] is used to extract features mainly from the input image.
The Focus module is used for feature extraction to reduce the number of computational
parameters. The CSP network is used to optimize the problem of huge computation caused
by the repetition of gradient information in the CSP network and for better fusion with the
features extracted by the previous network.

Neck: The PANet module is used to fuse different feature modules. The FPN delivers
high-level semantic features by upsampling, combining high-level semantic information
with low-level detail information to achieve cross-scale feature fusion, and the PAN delivers
localization features and bottom-level semantic information by downsampling, which
delivers and aggregates cross-level information inside the feature pyramid, enabling the
network to better capture the target’s detail features and contextual information, thus
improving the accuracy and robustness of the target detection.

Output: prediction is performed on feature maps of different sizes, in which feature
maps of 52 × 52, 26 × 26, and 13 × 13 sizes predict large, medium, and small targets,
respectively.

2.2. Circular Smooth Labels for Angle Classification

The method of predicting angles using regression can result in predictions outside
of our defined range, leading to an angular boundary problem that produces a large
loss value. So, YOLOv5-OBB employs the method of circular smoothing labels [19], as
shown in Figure 3. The angular regression approach is converted into a classification form,
discretizing the continuous problem directly and avoiding the boundary case. This way,
since the classification results are finite, they do not go beyond the cases outside the defined
range. This also addresses the fact that the classification loss cannot measure the angular
distance between the predicted result and the labels; if GT (ground truth) is 0 degrees,
the loss value is the same when we predict it as 1 degree and −90 degrees, as shown in
Equation (1):

CSL(x) =
{

g(x), θ− r < x < θ+ r
0, otherwise

(1)

where is the window function, which needs to satisfy the properties of periodicity, symme-
try, monotonicity, maximum value, etc. It can generally be an impulse function, rectangular
function, trigonometric function, and Gaussian function, r is the radius of the window
function, and θ denotes the angle of the current enclosing frame. The setting of the window
function allows the model to measure the angular distance between the predicted labels
and the ground truth labels, i.e., the closer the predicted value is to the true value within a
certain range, the smaller the loss value is. Moreover, the problem of angular periodicity is
solved by introducing periodicity, i.e., even if the two degrees, 89 and -90, turn out to be
near neighbors.

Figure 3. Round smooth label chart.
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3. Improvement of YOLOv5-OBB

3.1. Optimizing the Backbone Extraction Module

In YOLOv5, the Focus module is introduced prior to the input layer of the backbone.
This module selectively samples every other element from the feature layer of the image,
effectively downsampling the image size by two while increasing the number of channels
from 3 to 12. Subsequently, these channels are concatenated through a splicing operation.
In an effort to optimize computational efficiency and expedite model inference, the Focus
operation is tactically replaced with a standard convolution operation featuring a 6 × 6
convolution kernel and a stride of two. This strategic replacement not only addresses
potential compilation issues on certain embedded chip platforms associated with the Focus
operator but also significantly reduces the computational workload.

Inspired by SPP-net [20], the SPP module is a pooling layer that is used to perform
pooling operations on the input feature maps at different scales. Its main purpose is to solve
the problem of mismatching in the sensory field size of the CNN when different object sizes
appear in the image. The main idea of the SPP module is to create pooling layers of different
sizes to capture the feature information at different scales. It is introduced in the YOLOv3-
SPP [21] network to achieve feature fusion at different scales, which significantly improves
the network detection accuracy. As shown in Figure 4a, the SPP structure achieves feature
fusion at different scales by passing the input features through the maximum pooling layers
of convolutional kernel sizes 13 × 13, 9 × 9, and 5 × 5 in parallel and then splicing the
different output features. The SPPF module is an improved version of the SPP module
combined with the FPN (Feature Pyramid Network). The FPN [22] is designed to solve the
problem of scale invariance in object detection tasks by fusing different layers of feature
maps to deal with objects of different sizes. The difference between the SPPF and the
SPP lies in the fact that the SPPF inputs the output features into the three maximum
pooling layers of size 5 × 5 in sequence, splices the output results of each layer, and then
splices them together. Each layer’s output is spliced, as shown in Figure 4b. SPPF is less
computationally intensive and faster than SPP. In this paper, the SPP structure is replaced
with the more efficient SPPF structure.

(a) (b)

Figure 4. Selective Spatial Perception and Selective Search Proposals Fusion structure diagram.
(a) SPP structure; (b) SPP structure.

Replacing the SiLU (Sigmoid linear unit) activation function in the CBS structure of
the backbone network in YOLOv5-OBB with the GELU (Gaussian error linear unit) [23]
function improves the generalization ability of the network. The GELU has shown good
performance in a variety of tasks and networks, e.g., replacing the activation function ReLU
with the GELU in ConvNext [24] improves the performance of the ReLU (rectified linear
unit) by 0.7% on the ImageNet dataset, while the number of parameters is also reduced.

The GELU combines the properties of dropout, zoneout, and the ReLU, and its calcu-
lation formula is Equation (2). At the input side, the GELU activation function exhibits an
approximately linear feature, which can better adapt to most of the features of the input

5



World Electr. Veh. J. 2023, 14, 276

data and can improve the model’s learning and expression ability. A comparison of the
SiLU and GELU functions is shown in Figure 5.

GELU = 0.5x(1 + tanh(

√
2
π
(x + 0.044715x3))) (2)

Figure 5. Plot of Gaussian error linear unit activation function and Sigmoid linear unit activa-
tion function.

3.2. Introduction of Improved RFB Modules

In the process of autonomous parking, information about the position of the corners
is needed. Since the corners are small targets [25], there will be overlapping areas with
the rectangular box of the parking space, leading to an overall decrease in the model’s
detection accuracy of the corners and the parking space. Of the three detection output
heads of YOLOv5, the detail information on the 52 × 52 feature map is richer, which is
helpful for the detection of small targets such as the corners of the corners. However,
due to the small receptive field of the feature map, it lacks richer contextual and semantic
information. In order to increase the semantic information of the receptive field and context,
the improved RFB (Receptive Field Block) module is introduced in YOLOv5-OBB. Inspired
by Inception [26], the RFB [27] module contains convolutional layers with different sizes
of convolutional kernels, and these convolutional layers are formed into different multi-
branch structures of the improved RFB. In order to increase the receptive field and improve
the detection accuracy of small targets, different sizes of cavity convolutions are introduced
to give the model a more powerful feature representation.

As shown in Figure 6, the improved RFB module first passes the previously output
feature maps through 1 × 1 convolution, changes the number of channels of the feature
maps, adjusts the number of output channels, and introduces an activation function to
increase the nonlinearity and improve the model’s expressive ability. Then, the null
convolution with dilation rate = 1, dilation rate = 3, and dilation rate = 5 is mapped in each
branch to increase the sensory field of the model. After that, the output of the feature maps
of the three branches are concatenated and output through 1 × 1 convolution to achieve the
purpose of fusion of different features. Finally, a shortcut operation is added to create jump
connections, which are residual connections to prevent gradient vanishing and gradient
explosion problems during training.

Figure 6. Improved Receptive Field Block structure diagram.
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3.3. Increased CA Mechanisms

When in an underground garage with weak lighting conditions or at night, the outline
of a parking space cannot be recognized, and the neck network structure of YOLOV5 focuses
on deep feature fusion, which leads to a large number of details being lost, thus causing a
large number of missed and false detections. In order to improve the recognition rate and
reduce the impact of lighting conditions, this paper introduces the CA (coordinate attention)
mechanism [28] in the back-end of the backbone network and the up-adoption stage of
feature extraction to enhance the feature expression ability of the model. However, most of
the current attention mechanisms (e.g., CBAM [29], SE [30]) generally use global maximum
pooling or average pooling, which will lose the object spatial information. In contrast, the
CA mechanism goes beyond simply incorporating a channel attention mechanism; it also
incorporates a spatial attention mechanism. This spatial attention mechanism allows for
the incorporation of positional information within the channel attention mechanism.

The CA mechanism consists of two main parts, namely coordinate information em-
bedding and coordinate attention generation. As shown in Figure 7, given input X, two
spatial extensions (1 × W) and (1 × H) of the pooling kernel are used to encode each
channel along horizontal and vertical coordinates, respectively. The outputs are cascaded
and then sent to a shared (1 × 1) convolutional transform. The spliced feature maps are
sent to Batchnorm and Nonlinear to encode spatial information in the vertical and hor-
izontal directions. The output then is split into two separate tensors. Using two other
(1 × 1) convolutional transforms, they are converted into tensors with the same number
of channels to the input X, respectively, to obtain f ∈ RC×H×1 and f ∈ RC×1×W . Then,
under the Sigmoid activation function, two attentional weight maps in the spatial direction
are obtained, and each attentional weight feature map has a long-term dependency in a
particular direction. Finally, the input feature maps are multiplied with the two weights to
enhance the representativeness of the feature maps.

Figure 7. Coordinate attention mechanism calculation process.

In order to reduce the false detection rate and improve the detection accuracy under
weak lighting conditions, the algorithm pays more attention to the important features dur-
ing inference. The CA mechanism is added to the backbone of YOLOV5s, and the improved
backbone network is shown in Figure 8. Not only does it not increase the excessive number
of parameters and model computation of the network, but it also facilitates the extraction of
important feature information. The optimization effect on the dataset is shown in Figure 9,
which further improves the prediction score and reduces the false detection rate for data
with less feature information.
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Figure 8. Map of where the coordinate attention mechanism is located in the backbone.

Figure 9. Adding a CA mechanism improves results.

3.4. Location-Rule-Based NMS Improvement

Currently, there is a notable decrease in the detection accuracy of parking spaces when
depot corners are included in the training data. This decline in accuracy can be attributed
to the spatial overlap between different categories of depot corners and parking spaces.
Consequently, the model encounters challenges in accurately defining bounding boxes and
category labels for these objects during both training and testing phases. This not only
results in reduced bounding box accuracy but also introduces confusion in category labels.

Therefore, it is imperative to optimize the detection of parking spaces and library
corners. Presently, post-processing algorithms predominantly emphasize non-maximum
suppression methods, which filter out target boxes with confidence scores below a pre-
defined threshold and those with significant positional overlap as determined by the
intersection over union (IOU) metric. Leveraging prior knowledge, we have observed that
most parking spaces align with library corners and exhibit strong positional correlation. To
account for this correlation, we introduced a penalty factor, denoted as K, and incorporated
it into existing post-processing algorithms. This strategic inclusion enhances the detection
accuracy of both parking spaces and bank corners.

Referring to DIOU [31] loss function in modeling the similar relationship between two
target frames in terms of spatial location, the concept of centroid distance is introduced.
As shown in Figure 10, the correlation function is constructed by calculating the distance
between the centroids of the parking space frame and the library corner frame and the
diagonal lengths of the target frames of both. In Equation (3), where d1 and d2 represent the
diagonal lengths of the two detection frames, respectively, p(b1, b2) represents the distance
between the center points of the two detection frames. K is the correlation coefficient of
the two spatial locations, and the more spatially related the two target frames of different
categories are, the larger the calculated value of K. The correlation coefficient of K is the
correlation coefficient between the two target frames.

K = e
− p(b1,b2)

max(d1,d2) (3)

8
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Figure 10. Calculated correlation coefficient K graph.

Then, we need to determine the specific value of the correlation coefficient K. We
statistically calculate the distance between the parking space frame and the other category
frames on the 20,000 training sets of the homemade dataset, sequentially find the K value
between the parking space and the corner of the warehouse, vehicles, pedestrians, and so
on, and then sum up and take the average. From Figure 11, we can see that the K-value
correlation between the parking space and the corner of the warehouse (cross) is the highest
and is much larger than that of the other categories, so we set the K-value to be greater than
0.25 when we process the non-extremely large value suppression based on the location rule
and consider that the two target frames are spatially strongly correlated.

Figure 11. K average for other categories and car parking spaces.

Inspired by the formula of soft-NMS [32], when the correlation score is smaller than
the set value of K, no change is made and the original prediction score is retained; when
the correlation score is larger than the set value of K, the new prediction score grows
linearly, and the optimization function (4) is constructed to be used to optimize the two
strongly correlated objective boxes, where Smax represents the detection box with the
highest confidence, Si represents the non-optimization score of the current target box, and
Snew

i represents the optimized confidence score of the current target frame.

snew
i =

{
smax × K + si K > 0.25
si other

(4)

The above optimization method is added to the non-maximal value suppression,
called K-NMS, and the algorithm process starts with iteratively traversing to optimize all
the target frames, where is the maximum confidence of the candidate target frames in the
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picture, the confidence of the other target frames, and is the optimized confidence. As
shown in Figure 12, if two target frames of different categories are strongly correlated,
the confidence of the target frame with lower confidence is optimized according to the
correlation coefficient of the two target frames. Firstly, K-value calculation is performed by
Equation (3) for all the different categories of target boxes in Figure 12 and is then based
on the K-value with the help of Equation (4) optimizing the confidence of the target boxes.
The result is shown in Figure 12, which improves the confidence of the car parking spaces.

Figure 12. The effect of NMS optimization based on location rules.

4. Experimental Results and Analyses

4.1. Datasets

The experimental dataset used in this paper is a homemade dataset, where each image
consists of four images captured by vehicle-mounted fish-eye cameras stitched together
with a size of 416 × 416, as shown in Figure 13. A total of 20,000 images were collected in
different car park locations and under various weather and lighting conditions, Table 1 is
the details of the data set division. Real-time obstacle avoidance is required in autonomous
parking; thus, nine categories of target spaces, vehicles, library corners, pedestrians, etc.,
need to be detected. The number of labels in the dataset is plotted as shown in Figure 14a.

Figure 13. Diagram of the different scenarios of the dataset.
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Table 1. Dataset division details.

Sence Train Val Total

Sunny 5500 500 6000
Night 3500 500 4000
Rain 2500 500 3000

Underground 6500 500 7000

(a) (b)

Figure 14. T-map of the dataset label distribution and aspect distribution: (a) label distribution;
(b) aspect distribution.

In Figure 14b above, the target length and width distribution of the dataset indicates
that there is a high distribution of small targets and that there is diversity in the size of
the targets.

4.2. Experimental Environment

The experimental environment of this paper is Python 3.8, CUDA 11.1, PyTorch 1.10.1,
and the graphics card NVIDIA V100 GPU, which performed the training and testing. In
this paper, data enhancement techniques such as Mosaic, HSV, and random level flipping
were used in the experiments to improve the generalization of the model. The number
of training iterations was set to 300 epochs, the batch size was set to 16, the optimizer
used SGD (stochastic gradient descent) with a momentum of 0.937, the initial learning rate
was set to 0.01, and the EMA (exponential moving average) was used to determine the
hybrid exponential sliding average, combined with SGD, making the model more robust.
The trained model is converted to ONNX format, and then the model is compiled and
converted in the CoreChip platform. Finally, the model is deployed in the CoreChip V9M
platform, as shown in Figure 15.

Figure 15. V9M embedded platform development board.
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4.3. Evaluation Criteria

In our experiments, we used a specific IoU threshold, which was set to IoU = 0.5 in
this experiment. We used the following metrics to evaluate the performance of the model:
precision (P), recall (R), average precision (AP), and mean average precision (mAP). These
metrics can be calculated using Equations (5)–(8):

P =
TP

TP + FP
(5)

P =
TP

TP + FN
(6)

AP =
∫ 1

0
P(R)dR (7)

mAP =
1
n

n

∑
i=1

APi (8)

where TP denotes the number of prediction frames with an IoU greater than the threshold
with respect to the target frame, FP denotes the number of prediction frames with an
IoU less than the threshold with respect to the target frame, FN denotes the number of
target frames that are not predicted, and n is the number of categories in the dataset. By
calculating these metrics, we are able to evaluate the performance and accuracy of the
model in the target detection task. mAP is an important composite metric that takes into
account the average accuracy of the different categories and provides an assessment of the
overall model performance.

On embedded devices, the real-time nature of model detection needs to be evaluated,
and the size of the model parameter count also needs to be considered. Moreover, the
evaluation criterion of FPS (frame per second) is introduced; the larger the FPS, the more
frames per second are detected, the faster the detection rate is, and the better the real-time
performance of the model is. The number of model parameters is the sum of the parameters
in the model, which is directly related to the amount of space required by the model in the
disk, affecting the amount of memory occupied by the model inference and also affecting
the initialization time of the program.

4.4. Analysis of the Experimental Results

In this paper, different experimental groups are designed to experimentally analyze
different improvements using controlled variables, and each group of experiments is tested
on different model contents using the same training parameters, so as to analyze the effects
of the backbone improvement, the addition of the RFB module and the CA mechanism,
and the K-NMS improvement on the model performance. The results of the model testing
are shown in Table 2, where “

√
” represents the strategies used in the improved model, and

“×” represents the strategies not used in the improved model.

Table 2. Experimental results of different improved methods.

Improved Name A B C D mAP FPS Size/MB

No improvement × × × × 62.32% 49.26 34.1
Improvement 1

√ × × × 63.27% 52.66 32.7
Improvement 2

√ √ × × 66.69% 52.47 32.9
Improvement 3

√ √ √ × 69.65% 52.13 33.1
Improvement 4

√ √ √ √
70.72% 52.13 33.1

Analysis of the results in Table 2 reveals: A is the replacement of Focus and SPP in
the YOLOV5-OBB network with more efficient ordinary convolution of size 6 × 6 and
SPPF, respectively, and with the replacement of the SiLU activation function with the
GELU, the mAP is improved by only 0.95% after improvement 1, but the model inference
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speed is significantly improved, and the number of model parameters is reduced; B is
the introduction of the RFB module, which increases the speed of model inference and
reduces the number of model parameters; C is the introduction of the RFB module, which
increases the speed of model inference and reduces the number of model parameters.
Introduction of the RFB module increases the receptive field, and mAP is improved by
3.42% after improvement 3; C is the addition of the CA module to the YOLOV-OBB network,
improving the feature expression ability of the model, at the same time attenuating the
transmission of the noise in the network, and mAP is improved by 2.96% after improvement
3; D uses the improved K-NMS algorithm to emphasize the spatial connection between the
car parking space and the corner of the depot. Without losing speed and increasing the size
of the model, mAP improved by 1.03% after improvement 4.

Compared with the original YOLOv5-OBB, the loss function of the improved training
in this paper has a significant decrease, as shown in Figure 16. From the training comparison
graph above, it can be clearly seen that with the gradual increase in the number of iterations,
the curve of the loss function gradually converges, and the loss value becomes smaller
and smaller. When the number of training rounds reaches 270, the loss value basically
tends to stabilize. Compared with the original algorithm, the regression accuracy is higher,
indicating the effectiveness of the improved algorithm. The enhancement of the detection
effect before and after the improvement is shown in Figure 17.

Figure 16. Training loss comparison graph.

To further verify the superiority of the improved YOLOv5-OBB model in terms of
accuracy and efficiency, we selected several other parking space detection models for
comparative experiments, and the experimental results in our homemade dataset are
shown in Table 3. Compared with the VPSNet and DeepPS models in our homemade
dataset, the improved YOLOv5-OBB model has 5.73% and 2.03% higher mAP values with
fewer parameters and faster detection.

Table 3. Performance comparison of different parking space detection models on our self-
made datasets.

Model Name mAP FPS Size/MB

VPSNet [33] 64.99% 41.2 134.1
DeepPS 68.69% 38.6 232.9

YOLOV5-OBB 62.32% 49.26 34.1
Ours 70.72% 52.13 33.1

13



World Electr. Veh. J. 2023, 14, 276

Figure 17. Detection effect before and after improvement in different scenes.

At the same time, we also compared it with some current parking space detection
methods based on deep learning in the PSV dataset. As shown in Table 4, among the
1593 real labels in the PSV test set, the precision and recall of our model are both competitive.

Table 4. Parking slot detection performance of different methods in the PSV test set.

Model Name GT TP FP
Precision

Rate
Recall Rate

DeepPS 1593 1396 63 95.68% 87.63%
VPSNet [33] 1593 1507 54 96.54% 94.60%

Ours 1593 1510 51 97.21% 95.61%

In summary, the improved YOLOV5-OBB outperforms the previous model in de-
tection environments with small targets and weak lighting environments and has strong
robustness, detection, and recognition capabilities. The heat map of the detection results of
the improved YOLOV5-OBB in different car park environments is shown in Figure 18.

Figure 18. Heat map visualization for car parking detection.
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5. Conclusions

In order to solve the problems of low space detection accuracy and slow inference
speed in the process of autonomous parking, this paper proposes an improved YOLOv5-
OBB algorithm. Firstly, in order to speed up the model inference speed, in the backbone
network, the Focus and SSP modules are replaced with more efficient ordinary convolution
and SPPF modules, and the SiLU activation function is replaced with the GELU. Secondly,
an improved RFB module is introduced to increase the receptive field. After that, the CA
mechanism is introduced to improve the effect of off-position detection in environments
with weak lighting conditions. Finally, a position-rule-based NMS is proposed to penalize
the correlation between the parking space and the corner of the reservoir, which further
improves the accuracy of parking space detection. Compared with the original YOLOV5-
OBB model, the mAP is improved by 8.4%. When the size of the model is reduced by 1
M, the FPS increases by 2.87, which meets the deployment requirements of automotive
embedded platforms. In order to deploy the model in embedded platforms with more
limited arithmetic power, subsequent research will carry out optimization of the network
structure, using methods such as model pruning or knowledge distillation to reduce the
number of parameters of the model and further improve the inference speed.
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Abstract: Multiple object tracking (MOT), as a core technology for environment perception in au-
tonomous driving, has attracted attention from researchers. Combing the advantages of batch global
optimization, we present a novel online MOT framework for autonomous driving, consisting of
feature extraction and data association on a temporal window. In the feature extraction stage, we
design a three-channel appearance feature extraction network based on metric learning by using
ResNet50 as the backbone network and the triplet loss function and employ a Kalman Filter with a
constant acceleration motion model to optimize and predict the object bounding box information, so
as to obtain reliable and discriminative object representation features. For data association, to reduce
the ID switches, the min-cost flow of global association is introduced within the temporal window
composed of consecutive multi-frame images. The trajectories within the temporal window are
divided into two categories, active trajectories and inactive trajectories, and the appearance, motion
affinities between each category of trajectories, and detections are calculated, respectively. Based on
this, a sparse affinity network is constructed, and the data association is achieved using the min-cost
flow problem of the network. Qualitative experimental results on KITTI MOT public benchmark
dataset and real-world campus scenario sequences validate the effectiveness and robustness of our
method. Compared with the homogeneous, vision-based MOT methods, quantitative experimental
results demonstrate that our method has competitive advantages in terms of higher order tracking
accuracy, association accuracy, and ID switches.

Keywords: multiple object tracking; min-cost flow; feature extraction; data association on temporal
window; autonomous driving

1. Introduction

Multiple object tracking (MOT) can be defined as localizing various objects in a
scene after obtaining a sequence of data (i.e., a series of RGB images) over a period
of time from sensors, combining these with data association techniques to accomplish
the correct matching of the same object between data frames, and forming the tracking
trajectory of each object. MOT has enormous potential in both academia and indus-
try and has gained increasing attention in the fields of computer vision and artificial
intelligence [1–3]. Autonomous driving is the emerging future of the automotive industry,
helping to alleviate traffic congestion, reduce traffic accidents, improve driving safety,
meet the various needs of different people groups, etc. [4–6]. As a core technology for
autonomous driving environment perception, MOT is crucial to tasks such as obstacle
avoidance, ego-vehicle route planning, intention recognition, and vehicle control of au-
tonomous driving vehicles.
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To realize MOT, two main challenges need to be considered: (1) How to measure the
similarity between intra-frame objects, and (2) How to recover identity based on the simi-
larity between objects across frames. Problem (1) involves object feature extraction, while
Problem (2) pertains to data association. The object appearance features are important clues
for measuring the similarity between objects in MOT. Historically, traditional hand-crafted
features like RGB color histograms [7] and Local Binary Pattern Histograms (LBPH) [8]
have been commonly used for data association. However, these manually designed features
have limitations in fully capturing the semantic information of objects and lack robustness
in handling significant appearance variations. As a result, their performance tends to be
subpar on MOT benchmarks. Nevertheless, with the emergence and advancement of deep
neural networks, specifically Convolutional Neural Networks (CNNs), we have witnessed
a remarkable shift in feature extraction. The CNN-based feature extractors have gained
widespread popularity in MOT research [9–12]. These feature extractors possess a hierar-
chical structure, where different convolutional layers characterize the objects from various
perspectives. This enables the extracted features to encode more details and semantic infor-
mation of the objects, thereby distinguishing them from other appearance-similar objects.
In addition, due to the high dynamic and complexity of traffic scenes, the main challenges,
including object scale changes, light intensity, occlusion, shadows, etc., which are currently
faced in MOT for autonomous driving, also increase the difficulty in extracting features
with significant discriminability of the object. Therefore, we employ ResNet50 [13] as the
backbone network and design an object appearance feature extraction network based on
metric learning, which is trained using triplet loss. The network minimizes the distance be-
tween the same objects while maximizing the distance between different objects, resulting
in discriminative target appearance features. Furthermore, we introduce a Kalman Filter
(KF) with constant acceleration (CA) to achieve accurate prediction of object positions by
fusing current observations with past state estimates.

Data association is the core of MOT, which aims to correctly match the detections at
the current frame with their historical trajectories, and the calculation of feature affinity
between objects and trajectories plays an important role in the process. Most existing
methods only calculate the feature affinity between the trajectories of the previous frame
and the detections of the current frame, ignoring the trajectories that were not matched at the
previous frame. This approach is feasible for the continuously detected objects, but for the
reappearing objects caused by disappearance or occlusion, they may be assigned to incorrect
trajectories, leading to unnecessary ID switches and reducing the tracking performance. To
address this issue, we present how to categorize the trajectories within a temporal window
composed of consecutive multi-frame images into active trajectories and inactive trajectories
and compute the feature affinity between each category of trajectories and detections
separately. Active trajectories and inactive trajectories are defined as follows: during the
tracking, if no new detections are added to a trajectory in the current frame, its state is set
to inactive, otherwise it is set to active. Additionally, we conjoin the concept of the min-
cost flow for global association and propose a temporal window data association method.
Specifically, when there is a strong (large) affinity between detections and trajectories, our
method solves the min-cost flow problem of the network constructed using the affinity
between detections and trajectories, enabling optimal matching between detections and
trajectories within the temporal window.

To summarize, we present a novel online MOT framework for autonomous driving
utilizing min-cost flow on temporal window. The main contributions are summarized
as follows:

• By leveraging the feature extraction capabilities of CNN and incorporating metric
learning, we design a three-channel neural network with ResNet50 as the backbone
network and a triplet loss as learning function. The network aims to extract object
appearance features that possess high discriminability. Simultaneously, we employ
the KF with CA motion model to optimize and predict the bounding box information
of objects. As a result, we obtain robust object representation features.
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• The trajectories within the temporal window are divided into active trajectories and
inactive trajectories. The affinities between each category of trajectories and detec-
tions are computed based on appearance and motion features. By constructing a
sparse affinity network and solving the min-cost flow problem, the data association is
performed, leading to a reduction in ID switches.

• The extensive experiments have been conducted on the KITTI MOT dataset and
our real-world campus scenario. The ablation study confirms the effectiveness of
the key modules. The comparison results between our method and the existing
homogeneous, vision-based methods using state-of-the-art evaluation measures show
that our method exhibits competitive tracking performance.

2. Related Work

Over the past few decades, researchers have proposed a wide range of solutions for
MOT. Existing MOT methods can be categorized into two frameworks based on tracking
techniques: tracking-by-detection and joint detection and tracking. The main difference
lies in whether there is a tracking module integrated with the object detection network.

2.1. Tracking by Detection

The tracking-by-detection methods have become one of the mainstream approaches
for MOT [1,7–12,14–16]. It is a paradigm for multi-stage object tracking. In this tracking
paradigm, the video sequence frames are first subjected to object detection using a detector.
Then, a tracker is employed to extract features, and a data association method is used to es-
tablish correspondences between objects and trajectories. By repeating these steps frame by
frame, the final tracking results are obtained. The tracking-by-detection paradigm usually
consists of three main modules: object detection, feature extraction, and data association.

Owing to the powerful feature extraction capabilities of CNNs, object detection for
autonomous driving has made significant breakthroughs [17–23]. Ren et al. [17] proposed
Faster R-CNN, which used a Region Proposal Network (RPN) instead of Selective Search
to generate Region of Interest (RoI) proposals faster. RPN shared the convolutional layers
with Fast R-CNN [18], reducing computational complexity and significantly accelerating
object detection. G-RCNN [19] was an innovative object detection model that introduced
a unique granule concept in CNN. In unsupervised mode, G-RCNN utilized the granule
technique combined with spatiotemporal information to extract more accurate RoIs and
efficiently capture the details and contextual information of objects, thereby enhancing
the performance of object detection. YOLOv4 [20], with CSPDarknet-53 as the backbone
network, introduced the “bag of freebies” and “bag of specials” techniques to improve
data augmentation and regularization during training, achieving faster inference. YOLOv4
had been considered to strike the best balance between speed and accuracy. YOLOX [21]
utilized an anchor-free, decoupled head techniques that allowed the network to process
classification and regression using separate networks, reducing the number of parameters
and increasing the inference speed. Edge YOLO [22] was a lightweight object detection
framework based on YOLOv4, which was designed for 5G edge computing scenarios. It
incorporates channel pruning to significantly reduce the network size and improves the
feature fusion method to efficiently reduce GPU resource consumption.

Feature extraction is an essential stage in tracking-by-detection MOT methods, and
accurate feature extraction is key to high-quality tracking. The object features in MOT mainly
focus on appearance features [7–12], motion models [1,14], aggregation features [15,16], etc.
The appearance features extraction can be divided into hand-crafted features and CNN-based
feature extraction. Hand-crafted features include RGB histograms [7], LBPH [8], etc. However,
these features cannot capture the semantic information of the objects and have limited
discriminative ability. Since CNNs were introduced to computer vision, it has been used by
many researchers for extracting object appearance features. Mykheievskyi et al. [9] pro-
posed a simple CNN to learn the local feature descriptors of objects, and Gonzalez et al. [10]
adopted a Multiple Granularity Network. Quasi-Dense Similarity Learning [11] generates
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hundreds of region proposals for contrastive learning of appearance features by densely
sampling image pairs and employs most of the information regions on the image to ob-
tain high-quality appearance features. Ref. [12] utilized the self-attention mechanisms to
focus on key information about the objects to obtain reliable appearance feature repre-
sentations. Some researchers used motion models to represent the object. For instance,
LGM [14] solved the long-term tracking problem in MOT by effectively utilizing object
local and global motion information that was modeled by the box and tracklet embed-
ding modules, without object appearance features. If only appearance features or motion
models are used in MOT methods, then the spatiotemporal correlation of objects will be
neglected, leading to tracking failures. Therefore, aggregation features have been pro-
posed. STURE [15] achieved learning of spatiotemporal representations between current
candidate detections and historical sequences in a mutual embedding space. By designing
diverse loss functions, it was capable of extracting more discriminative representations
for detections and sequences, thereby enhancing the current detection features and elim-
inating the differences among them. Yang et al. [16] projected the position and motion
features of each object into an adaptive search window, which matched based solely on the
similarity of appearance features. This ensured a better balance between appearance and
motion features.

In tracking-by-detection methods, data association between trajectories and detec-
tions is crucial. It first calculates the affinity between the trajectories and the detections
using the extracted features, and then employs different strategies for matching based on
the affinity. MOTSFusion [24] was a closed-loop method that adopts a strategy of track
first, reconstruct, and then reconstruct and track again. It synthesized information from
trajectory extraction and object reconstruction to achieve accurate tracking and recovery
of objects by combining 2D trajectory with 3D object modeling and can handle occlusion
and missing objects, improving the efficiency and robustness of tracking. TripletTrack [25]
exploited a CNN trained with the triplet loss and a Long Short-Term Memory to extract
appearance features and motion features from the tracked and detected objects, respec-
tively, determined the similarity of their features and constructed an affinity matrix using a
small affinity network, and then adopted the Hungarian algorithm for association. FAM-
Net [26] employed Siamese networks for single object tracking of each object in adjacent
frames and implicitly obtained the appearance and position information of the objects. It
achieved continuous multi-frame end-to-end joint data association training by performing
local associations. ByteTrack [2] separated the objects into two categories, high-confidence
and low-confidence, based on their detection confidence. For the first matching, KF was
adopted to generate the trajectory positions at the next frame. Based on either motion
affinity or appearance affinity, an association matrix was constructed, and the Hungarian
algorithm was then used to match the high-confidence detections with the trajectories.
For the second matching, the Intersection over Union distance was used to compute the
affinity between the low-confidence detections, the remaining tracked objects and trajecto-
ries from the previous step. The Hungarian algorithm was employed again to complete
the matching.

2.2. Joint Detection and Tracking

The joint detection and tracking (JDT) methods typically apply the state-of-the-art
detector frameworks as the backbone network. The detection branch and feature extraction
branch share the underlying features to accomplish the tasks of object detection and feature
extraction, enabling data association and achieving simultaneous object detection and
tracking. As the object detection and feature extraction tasks are carried out within the
same backbone network, the JDT methods are more efficient. YOLOTracker [3] adopted
the Hungarian algorithm for data association. It employed the CSPDarknet-53 network as
the backbone network and utilized a path aggregation network to fuse low-resolution and
high-resolution features. Additionally, the texture features and semantic information were
integrated to reduce inconsistencies in object feature extraction and obtain a more compre-
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hensive object representation. Guo et al. [27] employed ResNet101 as the backbone network
and introduced temporal-aware object attention and distractor attention, which enhance
object focus and suppress interference. This approach enables better focus on the target and
suppression of distractions, leading to collaborative joint optimization between position
prediction and embedding association tasks. CenterTrack [28] followed the CenterNet
framework and took the current frame, the previous frame, and a heatmap generated based
on the centers of tracked objects as inputs. In addition to returning the center point, length,
and width of the detected bounding box, the regression branch also returned an extra offset,
which was used for tracking prediction. Tokmakov et al. [29] proposed an end-to-end
trainable method based on [28], named PermaTrack. It used convolutional gated recurrent
units to encode the entire frame for feature mapping estimation. PermaTrack incorporated
a spatiotemporal, recurrent memory module to utilize past history and infer the position
and identity of objects at the current frame. JDT methods require simultaneous execution
of detection and feature extraction tasks, but optimizing these tasks separately can lead
to conflicts. To solve it, MOTFR [30] introduced a locally shared information decoupling
(LSID) module to separate the detection and feature extraction tasks, effectively addressing
their optimization conflicts while ensuring necessary information sharing. MOTFR also
incorporated a feature purification module that, combined with the LSID module, utilized
extracted object features to guide the optimization of the detection task, further improving
tracking performance and enhancing the accuracy of object detection. SegDQ [31] was a
Transformer-based method that utilized multi-task learning and dynamic feature queries.
It employed a semantic segmentation branch to learn and predict foreground masks, aid-
ing in the extraction of foreground features and bounding box regression for MOT tasks.
SegDQ introduced a dynamic query method that generated biased object queries using
deep features extracted from the backbone network, enabling more robust prediction of
newly detected objects. Cai et al. [32] proposed a Transformer-based method called MeMOT.
MeMOT leveraged hypothesis generation to generate object proposals at the current frame,
providing an initial point for the tracking task. Additionally, it adopted memory encoding
to extract core information from the memory of each tracked object, which was used for
feature representation and relational modeling. MeMOT addresses both object detection
and data association tasks using memory decoding. By utilizing memory and attention
mechanisms, MeMOT can establish long-term connections between objects, resulting in
more stable and accurate tracking performance.

3. Method

As shown in Figure 1, our proposed online MOT framework follows tracking-by-
detection structures. The framework is divided into two parts: feature extraction and data
association on the temporal window. In the first stage, our previous work [33] is utilized to
accurately segment the objects in the detected bounding boxes by YOLOX [21]. Then, we
design an object appearance feature extraction network based on metric learning to obtain
discriminative appearance features and apply a motion model to estimate the position
information of each trajectory in the trajectories set at the current frame. In the second
stage, within a temporal window composed of consecutive multi-frame images and the
affinity between inactive trajectories, active trajectories, and detections is computed based
on their appearance features and motion affinity. An affinity network is constructed, and
the min-cost flow problem of this network is solved to complete the matching between the
current frame’s detections and trajectories.
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Figure 1. The overall framework of our method. (1) Feature extraction (in the purple dashed box).
(2) Data association on temporal window (in the golden dashed box).

3.1. Feature Extraction

The affinity between detected objects and trajectories is the core of data association in
MOT. In this paper, both appearance features and motion features of the objects are adopted
during the data association. Specifically, the object appearance features are extracted using
a metric learning-based CNN, while the motion features are obtained by predicting the
position of the object bounding boxes applying KF.

3.1.1. Feature Extraction

ResNet [13] is a deep neural network under the concept of residual learning. By adding
skip connections between convolutional layers, ResNet allows information to propagate
across multiple hidden layers, effectively alleviating the problems of gradient vanishing
and network degradation that commonly occur in traditional deep neural networks. This
enables ResNet to have tens or even hundreds of layers. ResNet50 is one of the variations
of ResNet, which has been widely adopted as a backbone or base network in various
engineering fields, such as object detection, image recognition, autonomous driving, etc.,
demonstrating well the feature extraction ability.

In MOT, regardless of the method used to extract object appearance features, an
important constraint is that the extracted features must be discriminative, meaning that the
affinity between the same object should be high while the affinity between different objects
should be low. Therefore, considering the number of parameters and the performance
of the model, we choose ResNet50 as the backbone network. Incorporating the metric
learning, we design an object appearance feature extraction network, which is shown in
the red dashed box in Figure 2.

From Figure 2, it can be observed that the designed object appearance feature extraction
network based on metric learning consists of ResNet50 and two fully connected layers,
and outputs a 1 × 128-dimensional vector as the object appearance feature. The specific
structure is as follows: the last layer used for classification in ResNet50 is removed, and on
top of it, a fully connected layer (FC layer) with 1024 nodes and another fully connected
layer (appearance feature layer) with 128 nodes is added. Batch normalization and the ReLU
activation function are applied between the FC layer and ResNet50, while no activation
function is applied between the FC layer and the appearance feature layer, resulting in
a 1 × 128-dimensional object appearance feature vector as the output. During network
training, triplets of samples consisting of three images sized 224 × 224 (anchor sample
image, positive sample image, and negative sample image) are input into three identical
object appearance feature extraction network models with shared weights. Each network
model extracts its respective appearance features, and then the metric loss function is
computed and backpropagated to optimize and adjust the network weight parameters.
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Figure 2. The flowchart of the object appearance feature extraction network based on metric learning.
The network in the red dashed box is our designed network.

The objective of training the object appearance feature network is to increase the
affinity of features belonging to the same object across different frames, while minimizing
the affinity between features of different objects, thus the extracted features are discrimina-
tive. Therefore, we introduce metric learning and adopt triplet training to map the object
appearance features into a metric space, where the affinity between features of the same
object is greater than the affinity between features of different objects.

Let the total number of image triplet samples used for training be Nsample. The i-th

(i = 1, 2,. . ., Nsample) triplet sample is denoted as Gi= (ganchor
i , gpositive

i , gnegative
i ), where

ganchor
i indicates anchor sample image, gpositive

i denotes positive sample image, and gnegative
i

represents the negative sample image. ganchor
i forms a of the anchor-positive pair with

gpositive
i , while ganchor

i forms an anchor-negative pair with gnegative
i . The mappings of ganchor

i ,

gpositive
i , and gnegative

i from the original image space to the learned object appearance feature

extraction network feature space are denoted as σ(ganchor
i ), σ(gpositive

i ), and σ(gnegative
i ), re-

spectively. The network is trained using the triplet loss function, Ltriploss, which is commonly
used in metric learning techniques:

Ltriploss =
1

Nsample

Nsample

∑
i=1

max(0, ||σ(g anchor
i ) − σ(g positive

i ) ||22 − ||σ(g anchor
i )− σ(g negative

i ) ||22 +thr) (1)

where, thr refers to the margin value that allows the network to distinguish between
positive sample pairs and negative sample pairs. In other words, the triplet loss learning
requires the distance between all negative sample pairs to be greater than the distance
between positive sample pairs by a positive minimum margin value thr. During the training
process, the loss continuously decreases, making the anchor samples closer to the positive
samples while keeping a larger distance from the negative samples. A smaller thr means
that the anchor samples do not need to be pulled too close to the positive sample set
in the feature space, and the anchor samples do not need to be pulled too far from the
negative sample set, making it easier to meet the convergence condition. However, since
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the distance between positive and negative samples is not widened, there is a risk of not
being able to effectively distinguish ambiguous data. Conversely, a larger thr enables better
differentiation of similar images with more certainty. However, it brings challenges during
the learning process as it requires pulling the anchor points closer to the positive samples
and simultaneously increasing the distance from the negative samples, resulting in a larger
loss, severe parameter update oscillation, and training difficulties. Therefore, setting a
reasonable thr is crucial for training networks based on triplet loss.

When using the triplet loss function of Equation (1) to train the designed object
appearance feature extraction network based on metric learning, the learned feature space
not only ensures that the distance of the anchor-positive is smaller than the distance
between σ(ganchor

i ) and σ(gnegative
i ), but also incorporates a predefined boundary thr, which

can pull samples of the same object closer and push samples belonging to different objects
farther in the learned feature space, as illustrated in Figure 3.

Figure 3. After training, the distance of the anchor-positive decreases and the distance of the anchor-
negative increases.

In addition, when training the network, the gradients of Ltriploss with respect to ganchor
i ,

gpositive
i , and gnegative

i at the feature extraction layer are given by:

∂Ltriploss

∂σ(ganchor
i )

= −
∂Ltriploss

∂σ(gpositive
i )

−
∂Ltriploss

∂σ(gnegative
i )

(2)

∂Ltriploss

∂σ(gpositive
i )

=
1

Nsample

Nsample

∑
i=1

2 × (σ(g positive
i ) − σ(g anchor

i )) × 1(L triploss > 0) (3)

∂Ltriploss

∂σ(gnegative
i )

=
1

Nsample

Nsample

∑
i=1

2 × (σ(g anchor
i ) − σ(g negative

i )) × 1(L triploss > 0) (4)

In Equations (3) and (4), 1(·) is an indicator function: if Ltriploss > 0, the output is 1;
otherwise, the output is 0.

3.1.2. Motion Model

In previous MOT methods, the majority use a constant velocity (CV) motion model to
predict the future motion states of objects and employ filtering algorithms to smooth the
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predicted states [34,35]. However, the constant velocity motion model neglects accelera-
tion, which may result in double or more motion errors when the object detector misses
detections in consecutive frames. In addition, there are also MOT methods that adopt
deep learning (i.e., long short-term memory network) to dynamically model the objects
and predict their positions at the current frame. However, compared to previous motion
models, this approach requires more time cost. In real-world road scenarios, the objects usu-
ally exhibit variable-speed motion, and the motion variation between consecutive frames
is relatively small. Therefore, the object motion state can be approximated as uniform
variable-speed motion. The Kalman Filter, with its simplicity and low complexity, is widely
used for state estimation optimization. Based on the past signal information, it utilizes
the principle of statistical computation to optimize the minimum mean square error and
predict future state variables. Therefore, to strike a better balance between accuracy and
speed, we apply a Kalman Filter with a constant acceleration (CA) motion model to predict
and optimize the object position (bounding box) information. Specifically, we model the
object motion as a CA motion model and use the measurements obtained from the YOLOX
object detector at the current frame. Based on the observation and state transition equations,
we iteratively predict and update the object state to obtain the predicted object position at
the current frame.

Let x = (uc, vc, γc, hc,
.

uc,
.

vc,
.

γc,
.

hc,
..

uc,
..
vc,

..
γc,

..
hc)T be the object state vector, where

(uc, vc) represents the pixel coordinates of the center point of the object bounding box,
γc is the aspect ratio of the bounding box, hc denotes the height of the bounding box,

.
uc,

.
vc,

.
γc, and

.
hc represents the velocities of the corresponding parameters,

..
uc,

..
vc,

..
γc, and

..
hc

represents the accelerations of the corresponding parameters. Assuming the object state
vector at the previous frame t − 1 is xt−1, and the YOLOX object detector detects the object
state observation value at the frame t as zt= (u, v, γ, h)T

t . The state transition equation
and observation equation for the object are as follows:

xt= Axt–1 +ωt–1 (5)

zt= Hxt+μt (6)

where Equation (5) represents the state transition equation, and the state transition matrix
A indicates the object motion variation. ω is the process noise, which is a comprehensive
abstract description of the uncertainty and random disturbances in the establishment of
the motion model, following a normal distribution with zero mean and covariance Q. Q is
the process noise covariance matrix, caused by uncertain noise. The smaller the Q, the
easier the system converges and the higher confidence in the predicted values of the motion
model, but excessively small values may result in divergence. Equation (6) denotes the
observation equation, and the observation matrix H describes the relationship between the
object motion state and the observation. μ is the measurement noise, similar to the process
noise ω in the state transition equation, obeying a normal distribution with zero mean and
covariance R. R is the measurement noise covariance matrix. In each frame of MOT, it is
necessary to predict each object position and update the observation equation and state
transition equation corresponding to each object.

The prediction equations are:

x–
t = Ax+t–1 (7)

where, x+t–1 denotes the posteriori object state estimate of the object at frame t − 1, and x–
t is

the prior (predicted) object state estimate at frame t using the CA motion model. Therefore,
the predicted state estimate evolves from the optimal estimate (posterior) of the previous
state. In this paper, the object motion state is modeled as a CA motion model, and the state
transition matrix A is as follows:
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 τ 0 0 0 τ2/2 0 0 0
0 1 0 0 0 τ 0 0 0 τ2/2 0 0
0 0 1 0 0 0 τ 0 0 0 τ2/2 0
0 0 0 1 0 0 0 τ 0 0 0 τ2/2
0 0 0 0 1 0 0 0 τ 0 0 0
0 0 0 0 0 1 0 0 0 τ 0 0
0 0 0 0 0 0 1 0 0 0 τ 0
0 0 0 0 0 0 0 1 0 0 0 τ
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where τ denotes the time interval between the capture of two consecutive frames by
the camera.

P−
t = APt−1 AT+Qt (9)

where Pt−1 indicates the 12 × 12-dimensional covariance matrix corresponding to the
posteriori object state estimate at frame t − 1. P−

t represents the 12 × 12-dimensional
covariance matrix corresponding to the prior object state prediction at frame t, which will
be used in the update of the Kalman gain in Equation (10). Q is the 12 × 12-dimensional
process noise covariance matrix.

The updated equations are:

Kt= P−
t HT(HP−

t HT+Rt)
−1 (10)

x+t = x−t +Kt(zt − Hx−t ) (11)

Pt= (I − KtH)P−
t (12)

where I is the 12 × 12-dimensional identity matrix, K is the 12 × 12-dimensional Kalman
gain, and R represents the 4 × 4-dimensional measurement noise covariance matrix. From
observing Equations (10)–(12), it can be seen that the KF estimates the current observation
by multiplying the prior state estimate with the observation matrix H. The observation
residual (zt − Hx−t ) is multiplied by the Kalman gain Kt as a correction to the priori
state estimate x−t to obtain the object state optimal estimate x+t . Finally, the KF employs
Equation (12) to update the posterior estimate covariance Pt, which will be used at the
next frame. Equation (12) describes the process of changing the covariance matrix of the
state vector, and it is this continuously updated mechanism that allows the Kalman filter to
overcome the influence of random noise. In this paper, the observation matrix H is:

H =

⎡⎢⎢⎣
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

⎤⎥⎥⎦ (13)

At this point, a prediction-update iteration process has been completed. In the tracking
of each frame, we update the KF for each tracked object, so that we can iteratively predict
the each tracked object position (bounding box) information at each frame.

3.2. Data Association by Min-Cost Flow on Temporal Window

We propose an online MOT data association strategy for autonomous driving, which
treats trajectories and current detections matching as a min-cost flow problem on a temporal
window. First, a sparse affinity network with a finite number of edges is generated using the
affinity between trajectories and current detections. Then, the min-cost flow of the network
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is solved to achieve optimal matching. Finally, the online MOT is realized as the temporal
window slides, where the window is composed of consecutive multi-frame images.

3.2.1. Affinity Metrics

Let the set of existing object trajectories in the temporal window be T = Tact ∪ Tinact,
where Tact represents the active trajectories and Tinact represents the inactive trajectories. At
frame t, the detected object set is denoted as ODt (od

i1
t ∈ ODt) ( i1=1, 2, 3,. . ., I1), where I1

is the total number of detected objects, and od i1
t for the i1-th detected object is represented

as od
i1

t = (ρi1
t , ϕ

i1
t ), where ρ

i1
t represents the object appearance features and ϕ

i1
t is the

bounding box information.

(1) Appearance Affinity Metric

Most tracking-by-detection MOT methods only calculate the appearance affinity be-
tween the detections at the current frame and the active trajectories from the previous
frame, while ignoring the affinity with the inactive trajectories. This approach is feasible
for continuously detected objects, as their appearance changes are relatively small across
adjacent frames. However, for objects that reappear due to occlusion or disappearance,
this approach can lead to tracking failures and ID switches, as they may not match with
their original trajectories. To address the issue, within the temporal window, we calculate
the appearance affinity between the detections at current frame and both the active and
inactive trajectories separately.

For the active trajectories Tact, the appearance feature vector of the j1-th trajectory
matching detection od

j1
t−1 at frame t − 1 is ρ

j1
t−1. The computation of the appearance

affinity between od
j1

t−1 and the detection od
i1

t at frame t is as follows:

D _APPi1, j1(od
i1

t , od
j1

t−1) = 1 −
ρ

i1
t ρ

j1
t−1

||ρi1
t ||2||ρ

j1
t−1||2

(14)

It can be seen that the smaller the D _APP, the more similar the appearance, and vice
versa, indicating dissimilarity. It can also be stated that the affinity measurement quantifies
dissimilarity, which is determined based on the subsequent requirement of solving the
min-cost flow problem.

For the inactive trajectories Tinact, calculate the affinity between all Nj2 appearance

features of the j2-th inactive trajectory and the detection od
i1

t , and take the average as the
appearance affinity (dissimilarity) between the inactive trajectory and the detection od

i1
t :

D _APPi1, j2 =
1

Nj2

Nj2

∑
a=1

(1 −
ρ

i1
t ρ

a
j2

||ρi1
t ||2||ρ

a
j2 ||2

) (15)

where, ρa
j2

indicates the appearance feature vector of the a-th detection in the j2-th inactive
trajectory. By performing such calculations, it ensures a more reliable estimation of the
affinity between od

i1
t and the inactive trajectory.

(2) Motion affinity metric

We apply the motion model described in Section 3.1.2 to estimate the bounding box
positions of all trajectories T within the temporal window are estimated at frame t, then the
motion affinity (dissimilarity) between the trajectory and the detection is measured using
the Intersection over Union (IoU) of their respective bounding boxes:

D_BBi1, j3= 1 − IoU(od
i1

t , op
j3
t ) = 1 − |ϕi1

t ∩ϕ
j3
t |

|ϕi1
t ∪ϕ

j3
t |

(16)
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where, op
j3
t represents the prediction of the j3-th trajectory’s detection at frame t, ϕj3

t

represents the bounding box information of op
j3
t .

3.2.2. Data Association by Min-Cost Flow on Temporal Window

Typically, the min-cost flow is calculated to achieve global optimal matching. In order
to apply it in online MOT, we adopt a sliding temporal window approach where global
optimal matching is performed within a fixed-length temporal window. Assume that the
length of the temporal window is T_L, we obtain the affinities between the detected objects
at frames t − T_L + 1, t − T_L + 2,. . ., t − 1, and t using Equations (14)–(16). After that,
these affinities are utilized to construct an affinity network, which is employed to match
the detected objects at frame t. The affinity network is a directed graph composed of the
following types of nodes:

Source node: Also known as the trajectory start point, it represents a node connected
to all object detection nodes with positive costs and is used to initialize a trajectory with a
positive cost.

Sink node: Also known as the trajectory end point, it represents a node connected to
all object detection nodes with positive costs and is used to terminate a trajectory.

Object detection nodes: In order to satisfy the constraint of non-overlapping trajecto-
ries, each detected object in each frame is split into two nodes (pre-node, post-node) with
single flow capacity.

Affinity edges: They refer to the edges that connect the object detection nodes, which
have the properties of single flow capacity and negative costs.

At frame t, the affinity of the detected object od
i1

t with the j3-th trajectory within the
temporal window is calculated as follows:

D_Ai1, j3 = D _APPi1, j3 × D _BBi1, j3 (17)

where, if the j3-th trajectory is an active trajectory, Equation (14) is used to calculate
D _APPi1, j3 and if it is an inactive trajectory, Equation (15) is employed. Figure 4 illustrates
the affinity between trajectories and detections used for constructing the affinity network
within a temporal window consisting of 5 consecutive frames, based on Equation (17). In
Figure 4, each node (the black circle) represents a detection, and the numerical values on
the affinity edges (purple edges) indicate the affinity between two nodes.

Figure 4. The illustration of the affinity between trajectories and detections within the temporal
window of 5 frames. The nodes are the detections, and the number between two nodes is the affinity.
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Let THRE be the affinity edge threshold. In the affinity network, if D _APPi1, j3 ≤ THRE,
a negative-cost affinity edge, Edgei1, j3

, is added between them with a cost of costi1, j3 :

Edgei1, j3
= costi1, j3= − 1

D_Ai1, j3
(18)

Additionally, we set a maximum number of edges T_C that each object detection node
can connect to, ensuring that the out-degree of each object detection node. This limitation
reduces the overall number of edges and makes the affinity network sparser. Building
upon Figure 4, we construct an affinity network for matching trajectories and detections as
depicted in Figure 5. In this example, we set THRE and T_C to 0.3 and 3, respectively.

Figure 5. The sparse affinity network flow graph constructed within the temporal window of
5 frames. S is the source node, T is the sink node, the green edges represent affinity edges with
negative costs (the numerical values on the green edges), and orange nodes and pink nodes are the
object detection nodes.

In Figure 5, each object detection node is composed of a pre-node (orange node)
and a post-node (pink node), connected by a red unidirectional edge, ensuring that any
detected objects are passed in a single flow direction (i.e., non-overlapping trajectories).
The unidirectional links (green lines) connecting the detected objects between consecutive
frames, with negative cost, are referred to as affinity edges. The numerical values on the
green edges represent the negative cost values of affinity edges calculated according to
Equation (18). The yellow node S is the source node used for initializing trajectories, while
the blue node T is the sink node that terminates the trajectories.

Summing up the above, we consider the problem of finding the optimal matching
between the objects detected at frame t and the trajectories within the temporal window as
the task of solving the min-cost flow problem on the constructed sparse affinity network.
The min-cost flow is a paradigm widely used to solve data association problems in MOT
due to its fast inference and ability to provide globally optimal solutions [36]. Over the
years, researchers have developed several effective solutions to solve general min-cost
flow problems, including methods like cost scaling, successive shortest path, k-shortest
path, etc. However, modifying these methods or directly applying them to MOT may
result in computational inefficiency and hinder the application to large-scale problems.
To address this, Wang et al. [36] developed a highly efficient and accurate minimum-cost
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flow solver called minimum-update Successive Shortest Path (muSSP). muSSP updates
the shortest path tree only when necessary, i.e., when identifying the shortest S-T path.
Experimental results on various MOT public datasets with different object detection results
and graph designs have demonstrated that muSSP provides accurate optimal solutions
with high computational efficiency. Experimental results on various public MOT datasets
with different object detection results and graph designs have demonstrated that muSSP
provides accurate optimal solutions with high computational efficiency. Therefore, we
adopt muSSP to solve the min-cost flow in the constructed sparse affinity network. After
solving it, if an object detected at frame t is matched with a trajectory within the temporal
window, the object is assigned to the corresponding trajectory and the trajectory is marked
as active. If a trajectory within the temporal window does not have any matches with
the detected objects, it is marked as inactive. If a detected object is not connected to any
trajectory within the temporal window, a new trajectory is initiated with that object as the
starting point.

Figure 6 shows an example of trajectory generation at frame t. The temporal window
consists of a sequence of 5 consecutive frames (masked with gray). The min-cost flow
problem in the sparse affinity network is solved within this window. The existing trajecto-
ries within the temporal window are displayed as blue, purple, and red lines. The objects
detected at frame t are represented by blank circles.

Figure 6. A diagram illustration for the trajectory generation within a moving temporal window (as
masked in gray).

From top to bottom, in Figure 6, we demonstrate how to associate new detections with
existing trajectories within the temporal window and how the states of the trajectories are
set after the association. In the first row, the two new detections (blank circles) are matched
with the purple and blue trajectories, marking them as active trajectories, while the red
trajectory is marked as an inactive trajectory. In the second row, one detection is matched to
the blue trajectory, while the other detection does not match any purple or red trajectories.
The unmatched detection is considered as the starting point of a new trajectory, indicated
in pink. At this point, the blue and pink trajectories are active, while the purple and red
trajectories are inactive. The two detections in the third row, one is matched to the pink
trajectory, and another detection is matched to the inactive purple trajectory. Consequently,
the purple and pink trajectories become active, the blue trajectory becomes inactive, and
the red trajectory is terminated.
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4. Experiments

We conduct experiments on the KITTI MOT dataset [37] and the real-world campus
scenario sequences to verify the effectiveness of our method. In this section, we first provide
a brief overview of the two MOT datasets. Secondly, we introduce the MOT evaluation
metrics. Then, we demonstrate the effectiveness of object appearance features, motion
models, and triplet loss function through the ablation study. Additionally, we compare and
analyze our method with the existing homogeneous, state-of-the-art, visual-based MOT
methods on the KITTI MOT dataset. Finally, we present the intuitive visual tracking results
of our method on both two MOT datasets.

4.1. Datasets
4.1.1. KITTI MOT Dataset

The KITTI public benchmark is the first and internationally recognized benchmark
dataset for evaluating computer vision methods in autonomous driving [37]. The resolution
of the rectified images in the dataset is 1242 × 375 pixels, and each image contains a
maximum of 15 cars and 30 pedestrians. The KITTI MOT dataset focuses on tracking
classes Car and Pedestrian. It consists of 50 sequences, with 21 sequences for training
and 29 sequences for testing. For each sequence, it provides LiDAR point clouds, RGB
images, and calibration files. The number of frames used for training and testing is
8008 and 11,095, respectively. For the testing dataset, KITTI does not provide any labels to
the users but keeps the labels on the server for MOT evaluation. As for the training dataset,
it contains 30,601 objects and 636 tracks. The traffic scenes in the KITTI MOT dataset belong
to relatively complex tracking scenarios, involving many challenging factors such as low
light conditions, significant lighting variations, frequent occlusions between objects, and
the ego vehicle making turns.

4.1.2. Real-World Campus Scenario Sequences

The dataset comprises 10 campus scene sequences, where each sequence consists of
images captured during different time periods as the experimental vehicle drives within the
campus. The real-world campus scenario images were recorded at a rate of 10 frames per
second, capturing varying lighting conditions and different locations within the campus.
The resolution of the images is 640 × 480 pixels. The experimental vehicle, as shown in
Figure 7, is based on the EG6043K Koala sightseeing vehicle and is equipped with several
sensors including a millimeter-wave radar (Delphi ESR), a laser radar (IBEO LUX4), a
GPS/inertial navigation system (NAV982), an industrial PC (ARK3500), a display monitor,
and a grayscale camera (Point Grey Bumblebee XB3 with a focal length of 3.8 mm and a
baseline of 120 mm).

Figure 7. Illustration of experimental vehicle and sensor installation. (Left): Experimental vehicle.
(Right): Diagram of sensor installation.
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4.2. MOT Evaluation Metrics

To objectively evaluate the performance of MOT methods, we utilize the following
commonly used evaluation metrics in the field of MOT [38–40]:

Identity Switches (IDSw↓): The total number of object identity swaps that occurred
throughout the entire tracking process.

Multiple Object Tracking Accuracy (MOTA↑): This metric is one of the most important
evaluation metrics for MOT. It is calculated based on false positives (FP), false negatives
(FN), and identity switches (IDSw) as follows:

MOTA = 1 – ∑
t
(FP t+FNt+IDSwt)/ ∑

t
GTt (19)

where GTt represents the number of ground truth annotations at frame t. FPt represents
the number of objects in the tracking results at frame t that do not exist in the ground truth
annotations. In other words, these are tracking results that cannot be correctly matched to
the ground truth annotations. FNt represents the number of ground truth annotations at
frame t that are not detected by the tracking results. These are the objects that exist in the
ground truth annotations but are not tracked.

Mostly Tracked (MT↑): represents the ratio of the number of tracks in which the
tracking results have a matching rate higher than 80% to the total number of ground
truth tracks.

Mostly Lost (ML↓): represents the ratio of the number of tracks in which the tracking
results have a matching rate lower than 20% to the total number of ground truth tracks.

Higher Order Tracking Accuracy (HOTA↑): A comprehensive metric used for evaluat-
ing the performance of MOT methods. It considers both the accuracy of object detection
and tracking and weightedly considers the magnitude of tracking errors, providing a more
comprehensive reflection of the detection performance (Detection Accuracy, DetA↑) and
tracking performance (Association Accuracy, AssA↑) of MOT methods. HOTA measures
the alignment of matched detection trajectories, averages the entire matched detection, and
penalizes unmatched detections. It is recommended to refer to [40] for detailed definitions
and analysis of HOTA, DetA, and AssA. Since 25 February 2021, the KITTI MOT dataset
ranks the MOT methods based on their HOTA scores in descending order.

For evaluation metrics with quotation marks (↑), a higher score indicates better perfor-
mance. On the other hand, for evaluation metrics with a hashtag (↓), the opposite is true,
where a higher score indicates a worse performance.

4.3. Object Appearance Feature Extraction Network Implementation

We implement the proposed object appearance feature extraction network using the
TensorFlow deep learning framework, based on the Windows 10 operating system and
Python language. Other parameters of the experimental platform used for training the
network weights include CPU Intel® Xeon® Silver 4110 @2.1, 16 GB RAM, and Nvidia
GeForce GTX1080TI graphics processor (11 GB VRAM). The training dataset consists of
samples from the KITTI MOT training sequences and real-world campus scenario sequences.
To train the network, we extract the car category objects from the two datasets and perform
scale transformation on the object images to obtain a size of 224 × 224 pixels. Additionally,
we augment the training images using rotations of 90◦ and 180◦. For constructing triplet
images, the anchor samples are primarily taken from unrotated images, negative samples
are preferably selected from rotated negative images, and positive samples are randomly
chosen from all positive images.

During the training, we do not load any pre-trained weights. All convolutional layers
and fully connected layers in the network are initialized with weights following a Gaussian
distribution with mean 0 and standard deviation of 0.01. The bias terms are initialized to
0. We employ the Adaptive Moment Estimation optimizer for weight updates. Based on
empirical values, the initial value of the learning rate is set to 0.001, the weight decay rate is
set to 0.0005, and the momentum is set to 0.900. In the triplet loss function Equation (1), the
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threshold thr is set to 0.6. Figure 8 shows our final training loss curve. By observing Figure 8,
we can see that the loss value starts to increase at around 52,000th epoch, indicating the
occurrence of overfitting. Therefore, when using this network to extract target features, the
network weights saved at 50,000th epoch are employed.

Figure 8. The loss function curve of the feature extraction network.

4.4. Ablation Study

To better analyze the impact of each component of our method on the overall tracking
performance, we conducted an ablation study by individually removing each component
from the overall framework. Comparative experiments were then conducted with methods
that do not use the respective modules to analyze their effects on MOT. The ablation
experiments were conducted on the KITTI MOT training sequences. In the ablation study,
the 21 KITTI MOT training sequences were split into training/validation sets. Meanwhile,
in order to compare the difference between the triplet loss and the conventional binary
loss, we designed and utilized a Siamese CNN without altering the network structure of
the object appearance model. We calculated the correlation probability between a pair of
detection responses and defined the binary cross-entropy loss to train the object appearance
model. The results of the ablation study are shown as Table 1, with the best values
highlighted in bold. In Table 1, “seg” represents the extraction of precise object contours
prior to extracting object appearance features, while “w/o seg” indicates the absence of object
contour extraction, with appearance features directly extracted within the object bounding
boxes. “app_T” represents the object appearance features using the triplet loss function,
“app_E” represents the object appearance features using the binary cross-entropy loss
function, “motion” signifies the object motion information, “ACT” denotes the separation of
trajectories within the temporal window into active and inactive trajectories, “w/o ACT”
signifies no differentiation of trajectories within the temporal window. The first row is the
overall framework of our method, and other rows are the different versions of our method.

Table 1. Results of ablation study.

Different Versions HOTA(%)↑ DetA(%)↑ AssA(%)↑ MOTA(%)↑ MT(%)↑ ML(%)↓ IDSw↓
seg + app_T + motion + ACT (ours) 78.20 75.36 82.24 85.70 92.72 2.84 11

w/o seg + app_T + motion + ACT 76.32 72.18 80.89 81.76 88.39 5.22 18
seg + app_E + motion + ACT 70.74 69.29 73.51 71.98 74.16 9.63 49

seg + app_T + ACT 74.81 70.87 79.26 79.25 86.47 4.75 26
seg + motion + ACT 72.69 68.53 77.30 77.63 79.23 3.26 32

seg + app_T + motion + w/o ACT 75.95 71.74 80.42 82.42 90.82 4.28 21

ours means the standard version of our method with all components employed. The best values are highlighted
in bold.

Comparing the first row with the second row, we can see that HOTA decreases by
1.88%. This indicates that the approach of first segmenting the objects accurately and then
extracting appearance features can significantly improve tracking performance. This is be-
cause the segmented bounding boxes only contain the object ontology, without background
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noise. Thus, the extracted appearance features are less contaminated by noise and can fully
represent the object.

Compared to the binary loss (validation loss, corresponding to the third row), using
the triplet loss in metric learning techniques can significantly improve the tracking accuracy.
HOTA increases from 70.74% to 78.20%, which validates the feasibility of training target
feature extraction networks with the triplet loss in MOT.

The fourth and fifth rows validate the impact of different object features on MOT
performance. The third row uses only appearance features, while the fourth row uses
only the object motion model. Comparing the first row with the third and fourth rows,
we can see that although using only appearance features has a certain impact on tracking
performance, with a decrease in various evaluation metrics, using only the motion model
has the largest impact on tracking performance. The HOTA experiences the largest drop
(approximately 5.51%), and other evaluation metrics also show significant decreases. This
indicates that various object features have different degrees of impact on MOT performance,
and appearance features play an important role in MOT. It also validates the effectiveness
of the proposed object appearance extraction network, which can effectively preserve the
visual features of the objects.

The sixth row differs from the first row primarily in that trajectory sets within the tem-
poral window are not differentiated as active or inactive during data association. Compar-
ing the two rows, we can observe that when trajectory states within the temporal window
are not differentiated, HOTA decreases by approximately 2.25%, while IDSw increases by
10. This suggests that distinguishing trajectory states within the temporal window and
matching current frame detections with all trajectories in the temporal window can reduce
ID switches caused by occlusion or disappearance and improve MOT performance.

4.5. Comparison with the State-of-the-Art Methods

We upload the testing results of our method on the KITTI MOT testing sequences to the
official testing platform of KITTI for easier comparison with other state-of-the-art methods.
We compare our method with the existing homogeneous, state-of-the-art, visual-based
MOT methods [7,8,10,11,14,24–26] in recent years, and the results are shown in Table 2.
In Table 2, the best values are highlighted in black bold, while the second-best values are
highlighted in blue bold.

Table 2. Performance comparison results of different tracking methods on the KITTI MOT testing
sequences.

HOTA
(%)↑

DetA
(%)↑

AssA
(%)↑

MOTA
(%)↑

MT
(%)↑

ML
(%)↓ IDSw↓ Runtime

(ms)↓
FAMNET [26] 52.56 61.00 45.51 75.92 52.46 9.69 521 1500 + D

JCSTD [7] 65.94 65.37 67.03 80.24 57.08 7.85 173 70 + D
MASS [8] 68.25 72.92 64.46 84.64 74.00 2.92 353 10 + D

Quasi-Dense [11] 68.45 72.44 65.49 84.93 69.54 3.85 313 70 + D
MOTSFusion [24] 68.74 72.19 66.16 84.24 72.77 2.92 415 440 + D

LGM [14] 73.14 74.61 72.31 87.60 85.08 2.46 448 80 + D
SMAT [10] 71.88 72.13 72.13 83.64 62.77 6.00 198 100 + D

TripletTrack [25] 73.58 73.18 74.66 84.32 69.85 3.85 322 100 + D
Ours 73.93 73.35 75.81 86.49 78.52 3.17 126 63 + D

+ D means the detection time.

As can be seen from Table 2, as the most comprehensive evaluation metric for MOT, our
method achieves the highest HOTA, which demonstrates the effectiveness of the proposed
MOT method. Further analysis reveals that our method also achieves the best performance
in terms of the AssA, with a score of 75.81%, which is the only method that exceeds 75%
among all methods. It means that the proposed data association strategy exhibits strong
association performance and can maintain the object IDs as much as possible. This is mainly
attributed to the following factors: (1) The proposed object appearance extraction network

34



World Electr. Veh. J. 2023, 14, 243

can extract appearance features that adequately represent the objects, and the object motion
model based on CA smooths and optimizes the object bounding box information. (2) The
data association by min-cost flow on the temporal window considers the classification of
inactive and active trajectory states. Unlike other methods that only consider the matching
between the current frame detections and the previous frame trajectories, our method
matches all trajectories within the temporal window with the current frame detections,
allowing reappearing objects to be matched with their historical trajectories to maintain
consistent IDs. Additionally, applying the min-cost flow within the sliding temporal
window achieves global optimal matching within the temporal window.

Moreover, our method obtains the fewest IDsw (126), which further demonstrates the
effectiveness of the proposed MOT method. The data association by min-cost flow on the
temporal window reduces ID switches caused by occlusion or disappearance, resulting
in stronger robustness for the MOT method. Our method does not achieve the highest
DetA score (73.35), which is lower than LGM [14] (74.61) but higher than other comparative
methods. This is mainly due to the fact that different methods employ different object
detectors, and the performance of various object detectors varies. Despite the relatively
lower performance of the object detector utilized in our method, we also acquire better
results in terms of HOTA, AssA, and IDsw compared to LGM. It further validates the
superiority of our proposed data association strategy by global association on the temporal
window. In other words, even in situations where the object detector performance is lower,
our method still can effectively address the matching problem between trajectories and
detections, leading to improved performance.

From Table 2, among all the MOT methods, our method has a per-frame runtime
of 63 ms, which is faster than FAMNET [26], LGM [14], JCSTD [7], SMAT [10], Quasi-
Dense [11], TripletTrack [25], and MOTSFusion [24], but slower than MASS [8]. Since
the KITTI MOT dataset is captured at a rate of 10 frames per second, selecting an object
detection method with a per-frame runtime of no more than 37 ms would ensure real-time
performance for the MOT method.

4.6. Visually Intuitive Evaluation

To provide a more intuitive illustration of the performance of our proposed MOT
method, in addition to the aforementioned quantitative results, we showcase some qualita-
tive results of our method on the KITTI MOT testing sequences and real-world campus
scenario sequences in Figure 9.

Figure 9a depicts a challenging intersection scene from the KITTI MOT testing se-
quences, which often involves crossing, overlapping, and occluded objects. It can be
observed that at frame 82, Obj. 7 is severely occluded by Obj. 0. However, at frame 86,
when Obj. 7 reappears, our proposed method successfully associates it with its historical
trajectory. Similarly, in Figure 9b, Obj. 5 is completely occluded, but our method still
assigns the correct ID when the object reappears. In Figure 9d, in a real-world campus
scenario with poor lighting conditions, Obj. 13, 14 are completely occluded at frame 29.
However, our method correctly matches the trajectories with the objects when they reap-
pear. In Figure 9e, Obj. 20 is at a distant distance from the ego-vehicle, but even after being
heavily occluded by pedestrians and reappearing, our method maintains its ID. These
four examples demonstrate the robustness of our proposed MOT method in various traffic
scenarios. Figure 9c shows an example where our method fails. The scenario depicts the
ego-vehicle waiting for traffic lights at a traffic intersection. Obj. 23 is under a tree shade
and is considerably far from the ego-vehicle. It is completely occluded by a tanker truck at
frame 599 and reappears at frame 609. However, our method assigns it the ID 26, resulting
in an ID switch. The main reason for this failure is that, during the experiment, the chosen
temporal window consists of seven consecutive frames, while Obj. 23 reappears after ten
frames. By then, its trajectory is no longer part of the trajectory set within the temporal
window, making it impossible to match it with historical trajectory. Since our method uses
min-cost flow to match trajectories with detections within the temporal window, the size
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of the temporal window cannot be arbitrarily increased. A larger temporal window leads
to a more complex network, longer computation time to solve the network, and increased
runtime of the MOT method. Therefore, the size of the temporal window limits the tracking
performance of our MOT method.

(a)

(b)

(c)

(d)

(e)

Figure 9. Tracking results. In each sequence, the tracked cars’ IDs are located at the top of their
bounding box, and the objects that will undergo severe or complete occlusion in subsequent frames
are marked with red circles. (a) KITTI MOT testing-0008 tracking results. (b) KITTI MOT testing-0009
tracking results. (c) KITTI MOT testing-0015 tracking results. (d) Real-world campus scenarios-0001
tracking results. (e) Real-world campus scenarios-0003 tracking results.

In addition, observation of Figure 9 shows that our proposed MOT method accurately
associates continuously appearing objects with their corresponding trajectories. It indicates
that our method exhibits good association capabilities when dealing with the continuous
motion of objects, which helps maintain the uniqueness and continuity of the tracking. This
is particularly important in handling objects that temporarily disappear or experience par-
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tial occlusion in the sequences. Therefore, our MOT method demonstrates high reliability
and accuracy when dealing with continuously appearing objects.

5. Conclusions

In this paper, following the tracking-by-detection pipeline, we present an online multi-
ple object tracking using min-cost flow on temporal window for autonomous driving, which
mainly composes of two parts: feature extraction and data association on the temporal
window. We apply ResNet50 as the backbone network and design a three-channel network
based on metric learning to extract discriminative object appearance features and employ a
KF with a CA motion model to optimize the object bounding box information, resulting
in reliable and discriminative object representations. In the temporal window composed
of consecutive frames, we compute the affinities between the current frame detection and
active/inactive trajectories. Based on this, we construct a sparse affinity network and solve
the min-cost flow problem on the network to obtain the MOT results. Qualitative and
quantitative experiments on the KITTI MOT testing sequences and our real-world campus
scenario sequences show that the proposed method outperforms existing visual-based
MOT methods of the same type. In the future, we will further optimize the data association
strategy to reduce the impact of temporal window length on tracking performance.
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Abstract: Building an autonomous driving system requires a detailed and unified semantic represen-
tation from multiple cameras. The bird’s eye view (BEV) has demonstrated remarkable potential as a
comprehensive and unified perspective. However, most current research focuses on innovating the
view transform module, ignoring whether the crucial image encoder can construct long-range feature
relationships. Hence, we redesign an image encoder with a large kernel attention mechanism to
encode image features. Considering the performance gains obtained by the complex view transform
module are insignificant, we propose a simple and effective Bilinear-Attention Transform module
to lift the dimension completely. Finally, we redesign a BEV encoder with a CNN block of a larger
kernel size to reduce the distortion of BEV features away from the ego vehicle. The results on the
nuScenes dataset confirm that our model outperforms other models with equivalent training settings
on the segmentation task and approaches state-of-the-art performance.

Keywords: camera; bird’s eye view; autonomous driving; view transformation; semantic segmentation

1. Introduction

The development of autonomous driving has become a highly dynamic area of re-
search. To ensure safety, autonomous driving needs access to a robust, detailed, and
rich representation of its surroundings, especially in urban driving scenarios. As one of
the crucial technologies of autonomous driving, environment perception [1,2] is mainly
achieved through the combination of cameras, radar, LIDAR, and other sensors to capture
information about the environment around the vehicle, which is also a prerequisite and
basis for the realization of autonomous driving. In recent years, offline High-Definition
maps combined with environmental awareness have become a viable solution to achieve
high-level autonomous driving functions as soon as possible. However, the High-Definition
map is limited by the update frequency and update cost and is not the perfect choice for
the solution. In this context, Bird’s-Eye View (BEV) perception is gradually developed as
an alternative solution that provides a more comprehensive and detailed representation of
the surroundings in a top-down view of the scene and facilitates downstream tasks such as
navigation and control of autonomous vehicles.

Due to the advantages of BEV in downstream tasks, the field of BEV sensing has
grown rapidly in the past three years and has produced many excellent research studies.
The history of the development of BEV perception can be traced back to [3], which proposes
the Inverse Perspective Transformation (IMP) to accomplish the transformation of image
views to BEV and is a pioneering work in view transformation. Existing BEV perception
methods can be divided into four categories according to the view transform module:
IMP-based methods, depth-based or voxel-based methods, MLP-based methods, and
Transformer-based methods. However, the existing methods have some limitations and
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areas for improvement. The IMP-based methods, such as [4–6], are unable to generate high-
quality BEV representations due to the large differences and severe deformations between
the two views. In addition, these methods rely heavily on the horizon assumption, and the
models perform very poorly when the environment does not conform to that assumption
or when no prior information is available. The MLP-based methods, such as [7,8], ignore
the geometric prior for calibrating the camera and usually transform the multi-view images
separately, which cannot fully exploit the information embedded in the overlapping parts of
the images. Transformer-based methods, such as [9,10], have undergone rapid development
in the last two years and have shown excellent model results. However, these methods
have efficiency problems in the training and inference processes, which limit their practical
application. Moreover, these methods still rely on deep pretraining, indicating that depth
information is still crucial for view transformation in such methods. In contrast, depth-
based methods, such as [11–14], have higher computational efficiency and flexibility in
multi-view image processing. However, there is still a gap between these methods and the
state-of-the-art LiDAR-based models. To bridge this gap, we need to explore performance
improvement paths further while maintaining computational efficiency.

Summarizing previous work, depth- or voxel-based BEV perception exhibits a high
degree of modularity and reusability with a paradigm with three essential components:
an image encoder, a view transform module, and a BEV encoder. These different modules
form a comprehensive BEV perception pipeline. The image encoder is the foundation and
provides the necessary feature extraction capabilities. The view transform module converts
input data from multiple camera views into a uniform BEV representation for consistent
and coherent processing. The BEV encoder module encodes the 3D voxel data, capturing
the intrinsic spatial and semantic features for subsequent analysis. This modular design
allows the decoupling of specific functions, increasing flexibility and facilitating the reuse of
individual components in different BEV-perception systems. Most current research focuses
on improving or innovating view transform modules, ignoring the image encoder and the
BEV encoder. However, the state-of-the-art view transform module yields only a four-point
performance improvement [15]. While it is true that the view transformation module is an
integral part of the model both intuitively and practically, using simple bilinear sampling to
perform the view transformation work is equally effective, though not at the most advanced
level. The view transform module has much less impact on the model’s performance in
the current architecture than the selection of the appropriate input resolution and batch
size [15]. Meanwhile, since the region size of BEV features is artificially set, the data features
out of range in the original image will be discarded. Therefore, in the initial stage of the
model, using a backbone network with stronger modeling capability to learn long-range
relationships can further exploit the information in the images and improve the model’s
performance. In addition, the 2D to 3D transform module causes much information loss,
especially distortion of features at long distances.

Following the above, we investigate three components: the image encoder, the view
transform module, and the BEV encoder. The traditional CNN image encoders, such
as ResNet [16] and ConvNeXt [17], cannot model long-range feature relationships. In
contrast, the Transformer-based image encoder ignores more feature relationships between
channels, while model training is more difficult and data requirements are greater. In
addition, the Large Kernel Attention [18] module combines the advantages of convolution
and self-attentive mechanisms, including local structural information, remote-dependent
modeling capability, and adaptability. Therefore, we utilize the Large Kernel Attention
in combination with the ConvNeXt module, where ConvNeXt can improve the modeling
ability of local structural information in the model, and the Large Kernel Attention can
further complement the modeling ability of the model for remote features while retaining
the modeling ability of the model for channels. For the view transform module, a single
bilinear sampling is used to complete the view transform task, which does not pay enough
attention to the local information of image features. We combine bilinear sampling and
attention mechanisms to design a view transform module to ensure that it can complete
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the view transformation simply and efficiently while having better transform performance.
Meanwhile, some depth-based studies [15,19,20] all follow the same BEV features map
settings yet simply use ResNet-18 as the BEV features encoder, which also leads to the fact
that the BEV features map itself suffers from distortion of long-range features after the view
transform module, which is not well solved, and therefore the model is less effective in the
regions farther away from the center of the ego vehicle. To alleviate this contradiction, we
redesigned a module for encoding BEV features using a combination of large kernel-size
convolutional blocks [21], which can efficiently model the remote relations of BEV features.
In this study, we select semantic segmentation as the evaluation task of our proposed model.
We also conducted experiments on the nuScenes dataset to evaluate our proposed model’s
performance. Our proposed model shows good performance with a mIoU of 45.6 in the
experiments. The results also illustrate the effectiveness of each component.

In conclusion, our contributions are summarized as follows:

1. We redesign an image encoder combined with the Large Kernel Attention to address
the conventional encoder’s lack of remote feature modeling capability.

2. To overcome the great difference between image features and BEV features, a view
transform module is designed by combining bilinear sampling and attention mech-
anisms to ensure that BEV features pay more attention to image features that are
closely related.

3. To address the problem of distortion of BEV features at long distances, a BEV encoder
with a large kernel size for BEV features is redesigned to obtain a larger receptive area.

The paper is organized as follows: Section 2 reviews the related work in BEV percep-
tion methods. Section 3 introduces our proposed model’s overall architecture and each
component’s composition. Next, Section 4 describes the experimental setup, experiment
results, comparative results, and detailed component analysis. The conclusion of this study
is summarized in Section 5.

2. Related Work

In this section, we classify BEV perception into two categories according to the view
transformation methods: geometry-based and network-based methods, and we describe
the work related to each of these two categories.

2.1. Geometry-Based Method

The IMP-based method utilizes the homographic matrix derived from the internal and
external parameters of the camera. Cam2BEV [4] first employs IPM to transform multiple
image features and finally obtains the BEV semantic map. To alleviate the distortion
problem of the IPM-based method, TrafCam3D [5] proposes a dual-view network structure.
For the pedestrian prediction problem, SHOT [6] projects each part of the pedestrian at
different ground levels, respectively. The above studies demonstrate that IMP is effective
enough under the condition that the flat-ground assumption is satisfied.

However, it is obvious that real-world driving scenarios cannot always satisfy the
flat-ground assumption. Therefore, researchers began working on predicting the exact
depth needed to accomplish the task of perspective view to BEV transformation. First, the
Depth-based methods lift 2D features into 3D space by adding depth. Specifically, [22,23]
predict each pixel’s depth and directly utilize the existing LiDAR-based task head after
transforming the 2D features into a pseudo-point cloud type. CaDDN [12] proposes
a similar approach, but instead of directly generating a pseudo-point cloud, the pixels
with predicted depth distribution are projected to the BEV, while the process uses depth
supervision from the LiDAR. In addition, LSS [11] proposes to predict an explicit depth
distribution for each 2D feature and then project the 2D features into BEV features. Based
on the LSS, BEVDet [19] proposes a multi-camera model for 3D object detection tasks.
BEVDet4D [24] exploits the previous camera frames to enhance the model’s performance.
BEVDepth [20] demonstrates that the performance of BEV-perception models can benefit
from depth supervision and proposes a faster pooling operation.
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2.2. Network-Based Method

The network-based methods start with using MLP for the view transformation task,
transforming the perspective view to BEV. VED [25] first proposes an end-to-end monocular
real-time prediction model with a MLP layer to transform the perspective view to BEV.
VPN [7] further applies the MLP-based view conversion module to scenarios with multiple
camera inputs. Specifically, VPN first transforms the encoded image features from multiple
cameras into BEV features using MLP and then fuses all BEV features. FISHING [26]
then introduces LIDAR and radar features based on VPN to complete the post-fusion and
achieve multimodal perception. To address the problem of spatial information loss caused
by MLP, PON [8] uses feature pyramids to obtain multi-scale image features and then
uses MLP for view transformation. HFT [27] makes a further comparison between the
advantages and disadvantages of using the camera parameter-based MLP method.

The Transformer-based methods utilize the currently popular Transformer to design
the view transform module without the camera parameters. Unlike the MLP-based method
that starts with 2D features, this method, in turn, uses an attention mechanism to capture
the corresponding 2D features. DETR [28] and STSU [29] accomplish the 2D detection task
by capturing the corresponding features with the pre-defined query. DETR3D [30], on
the other hand, extends DETR to 3D object detection by geometric feature sampling. For
autonomous driving, PETR [10] and PETRv2 [31] further employ camera parameters to
generate position encoding and utilize temporal cues, respectively.

3. Method

This section presents the detailed design of our proposed model for BEV semantic
segmentation. In Section 3.1, we first describe the overall architectural details of our
proposed model. In Section 3.2, we introduce the image encoder for extracting 2D features
from multi-camera images and illustrate why and how to redesign the image encoder. Next,
we explain in detail how our designed view transform module generates 3D voxel features
from 2D features in Section 3.3. In Section 3.4, we give detailed illustrations of the BEV
encoder of our proposed model.

3.1. Overall Architecture

In this study, our model pipeline takes N RGB images F =
{

Fi ∈ R3×H×W , i = 1, 2, . . . , N
}

from multiple cameras and the corresponding internal and external parameters as input.
The output is a BEV segmentation map obtained by a specific task head. Specifically, our pro-
posed model consists of three core components: the image encoder, the view transform mod-
ule named the Bilinear-Attention module, and the BEV encoder. In particular, the Bilinear-
Attention module consists of two submodules: the Bilinear Sampling module and the De-
formable Attention module, as shown in Figure 1. The multi-camera images are first fed to
the image encoder, which outputs 2D features F2d =

{
F2d

i ∈ RC2d×H2d×W2d , i = 1, 2, . . . , N
}

.

Next, the 3D voxel Fvox ∈ RCvox×Zvox×Xvox and corresponding 3D coordinates generated in
advance are projected onto the 2D features and constructed by bilinear sampling. The 3D
voxel is then further refined by the Deformable Attention module. Finally, the 3D voxel is
encoded into BEV features Fbev ∈ RCbev×Hbev×Wbev by the BEV encoder. The details of each
component in the pipeline are described in the following sections.

 

Figure 1. The pipeline of our proposed model.
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3.2. Image Encoder

A high-performance image feature encoder is crucial for computer vision tasks. Much
research in BEV perception uses ResNet or EfficientNet as the backbone network of the
image encoder because both ResNet and EfficientNet are proven and mature networks
with excellent performance. However, when training the model, the backbone network is
the last stage to update the parameters and is less affected because the model is updated
by backpropagation. Theoretically, the performance of the model is better if a backbone
network with better pre-training performance and more robustness is selected. In the past,
the powerful modeling capability of Visual Transformer has greatly impacted the image
field. ConvNeXt [17], on the other hand, proposes a new pure convolution that provides
stronger performance by emulating the Visual Transformer model. However, ConvNeXt is
limited by the convolutional kernel size, cannot model remote dependencies, and cannot
provide a good balance between local and global modeling capabilities. Although the
excellent Transformer-based backbone network has excellent remote feature modeling capa-
bility, its huge data demand, higher training difficulty, and more computational resources
required than convolutional networks make it not applicable. The Large Kernel Attention
module [18] overcomes the abovementioned drawbacks and nicely combines the advan-
tages of self-attention and large kernel convolution. The Large Kernel Attention module
consists of three components: a spatial local convolution (depth-wise convolution), a spa-
tial long-range convolution (depth-wise dilation convolution), and a channel convolution
(1×1 convolution), as shown in Figure 2. Specifically, a K ×K convolution is decomposed into
a [K

d ]× [K
d ] depth-wise dilation convolution with dilation d, a (2d − 1)× (2d − 1) depth-wise

convolution, and a 1 × 1 convolution.

 

Figure 2. Decomposition diagram of large-kernel convolution from [18].

Through the above decomposition, the Large Kernel Attention module captures long-
range relationships with slight computational cost and parameters, estimates the impor-
tance of a point, and generates an attention map. The Large Kernel Attention module can
be written as

Attention = Conv1×1(DW-D-Conv(DW-Conv(F))) (1)

Output = Attention ⊗ F + F (2)

where F ∈ RC×H×W is the input feature, Attention ∈ RC×H×W denotes attention map, which
indicates the importance of each feature, and ⊗ means element-wise product. We redesign an
image encoder combining the Large Kernel Attention and ConvNeXt blocks to address the
above situation. The network architecture of our image encoder is shown in Figure 3.

Given N images of the size (H, W), we construct the image encoder shown in Figure 3a
to downsample the input image by a factor of 8 to obtain the output features with a
resolution of (H/8, W/8). Specifically, the network architecture of the image encoder
consists of five parts: the stem part, three downsampling blocks, four stages of ConvNeXt
blocks, two blocks with the Large Kernel Attention, and a bilinear upsampling block. We
first employ a convolutional layer with a kernel size of 4 and a stride of 4 and choose layer
normalization to do the normalization operation in the stem part, as shown in Figure 3b. In
this way, we can obtain the output feature map of the stem part as (H/4, W/4). Next, we
adopt three convolution stages of ConvNeXt [17], which contain convolution blocks in the
order of (3, 3, 9). The specific composition of the convolution block is shown in Figure 3d.
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It contains a depthwise convolution layer with a kernel size of 7 responsible for mixing
information in the spatial dimension, layer normalization, the GELU activation function,
and two pointwise convolution layers for mixing information in the channel dimension,
respectively. To further obtain more global features, we employ the Large Kernel Attention
mechanism as described before after the first and second convolutional stages, whose
specific structure is shown in Figure 3e. In addition, a separate downsampling layer is
added in the middle of each convolutional stage, consisting of a convolutional layer with a
kernel size of 2 and a stride of 2, and a layer normalization to achieve spatial downsampling.
Finally, to obtain richer features, we concatenate the output of the third convolution block
with an upsampling multiplier of two through an upsampling block with the output of
the fourth convolution block to obtain the final 2D features F2d. This up-convolution block
consists of one up-sampling layer and two convolution layers with a kernel size of 3, as
shown in Figure 3c.

Figure 3. The structure of our redesigned image encoder. (a) The overall architecture of the
image-view encoder. (b) The structure of the Stem part. (c) The structure of the Upsample block.
(d) The structure of the ConvNeXt block. (e) The structure of the Large Kernel Attention block.
(f) The structure of the downsample block.

3.3. View Transform Module

The depth-based approach achieves dimensionality lifting of 2D features by predict-
ing a corresponding set of depth values for each 2D feature, then puts all features into a
pre-generated view frustum, and finally forms a BEV feature map by pooling calculations.
Although the method achieves satisfactory results, the predicted depth values depend
on the ground plane assumption, and the accuracy of depth prediction seriously affects
the model’s overall performance. In addition, the Simple-BEV [15] also demonstrates the
substitutability of the Lift-Splat method [11]. For the lifting operation of 2D features, [15]
employs a pre-generated set of 3D voxels to obtain sub-pixel features by projecting each
voxel in the 2D feature map using bilinear sampling for each voxel. It has been experimen-
tally demonstrated that this method is more efficient due to the absence of hyperparameters
while maintaining its effectiveness. However, there are better choices than this view trans-
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form method because simple sampling implies a lack of global information modeling
capability, which impacts model performance. To address the above situation, we designed
a view transform module named the Bilinear-Attention module, as shown in Figure 4. The
structure of the proposed Bilinear-Attention module is composed of a Bilinear Sample
module and a Compressed Attention module.

 

Figure 4. The overall architecture of the Bilinear-Attention module. The view transform module has
two components: the Bilinear Sample module to complete the 2D feature lifting dimension operation
and the Compressed Attention module to refine the 3D voxel features.

We assume that the input feature map size for the view transform module is (1, 2).
We first generate a 3D feature for each voxel grid by bilinear sampling using a pre-defined
3D voxel grid with dimensions (Z, Y, X) and its corresponding 3D coordinate information.
Specifically, according to the set hyperparameters (Z, Y, X), a 3D voxel grid is generated
along with the 3D coordinate information corresponding to each grid, which is then
converted to the corresponding 2D coordinates using the coordinate system conversion
formula based on 2D and 3D space, as follows:

λp =
[

K | 03
][R 0

03 1

][
0T

3 −C

0 1

]
P (3)

where p =
(
x y 1

)T denotes the 2D pixel position. P =
(
X Y Z 1

)T being a 3D
point defined with homogeneous coordinates. The projection matrix that incorporates the
intrinsic parameters is denoted as K throughout this thesis. Mathematically, the position
and orientation of the camera are defined by a 3 × 1 vector C and a 3 × 3 rotation matrix R.
Next, bilinear sampling is performed according to the corresponding 2D coordinates to
generate the corresponding voxels for each 3D grid to obtain the sampled 3D voxel grid F′,
whose dimensional size is (N, Y, Z, X). This method, however, has a limited receptive field
for mapping the generated 3D features onto the 2D feature maps. To address this problem,
we then compress the dimension using a convolutional layer with a kernel size of 3 to
obtain the output features X used to generate the Query Q and Key K on the basis of a
3D voxel grid filled with features of size (N, 1, Z, X), and the process can be expressed
as follows:

Q = WqX (4)

K = WkX (5)

V = WvX (6)

where the Wq, Wk, and Wv are the learnable parameters. Meanwhile, the dimensions of Q
and K are set to be the same (N, 1, Z, X) and the dimensions of value V are the same as
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3D features F′. On top of the obtained Query, Key, and Value, we adopt a self-attentive
mechanism to refine the 3D features further and increase the global interaction of the
features. We first compute the attention map using the dot product of Query and Key. In
the next step, we employ the computed attention map and V to generate the final voxel
features. The process can be expressed as follows:

Attention = Softmax(QKT) (7)

Fvox = Attention ⊗ V ⊕ F′ (8)

where Attention denotes the obtained attentional map. After our proposed feature diffusion
module, the final output Fvox of the view transform module, a 3D voxel grid with rich
features, is obtained.

3.4. BEV Encoder

The BEV feature encoder of many depth-based research studies is ResNet-18 with
small receptive fields, while traditional convolution methods are less capable of modeling
the long-range relationships of BEV features due to the limitations of the moving window,
which cannot focus on the long-range features outside the center of the ego vehicle. In
addition, the view transform module causes much information loss, especially distortion of
features at long distances. Although the current BEV perception algorithms are generally
set within 100 m of the surrounding area, the problem of information loss at long distances
is still apparent. This means that many studies using ResNet-18 as a standard BEV feature
encoder are weakened in their ability to model the long-range relationships of BEV features
by the loss of information at long distances, thus leading to significantly further deteriora-
tion of the long-range results compared to the near-range results. Therefore, to enhance the
spatial long-range modeling capability, we redesigned a BEV feature encoder with large
kernel-size convolutional blocks [21], as shown in Figure 5, to try to focus on the features
away from the center of the BEV features.

We assume that the 3D voxel features after the view transform module is
Fvox ∈ RCvox×Zvox×Xvox , where Cbev, Zvox, Xvox denote the number of channels, height, and
width of the 3D voxel features initially obtained, respectively. As shown in Figure 5a, the
network architecture of our BEV feature encoder consists of three components: a stem
part, two stages consisting of ResNet-18 blocks, and a stage consisting of RepLK blocks. In
particular, we first employ a convolutional layer with a kernel size of 7, followed by a batch
normalization layer and a ReLU activation layer in the stem part, as shown in Figure 5b.
After the stem part, we can get the output features as (Zvox/2, Xvox/2). Furthermore,
we connect the two Res-stages to encode the feature maps further and downsample to
(Zvox/4, Xvox/4), where the Res-stage consists of the ResNet-18 block shown in Figure 5d.
Finally, we adopt several RepLK blocks to form a RepLK stage, as shown in Figure 5e, to
sample the feature map (Hvox/8, Wvox/8). The core components of the RepLK block are a
large kernel convolution part and a feedforward part, where a depth-wise convolutional
layer of the kernel size of 31 further encodes BEV features, and a 1 × 1 convolutional layer
in the feedforward part is responsible for changing the number of channels or feature map
size. To obtain richer BEV features, we upsample the output features after each downsam-
pling to their original size and then perform channel dimension stitching. Finally, the final
output of the BEV encoder is fed into a specific task head to obtain the prediction results.
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Figure 5. The network architecture of the BEV feature encoder. (a) The structure of the BEV encoder.
(b) The structure of the Stem part. (c) The structure of the Upsample block. (d) The structure of the
ResNet-18 blocks. (e) The structure of the RepLK blocks.

4. Experiments

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and the working hypotheses. The findings and their implications
should be discussed in the broadest possible context. Future research directions may also
be highlighted.

4.1. Setup

Dataset. We evaluated our proposed model on the nuScenes dataset. The nuScenes
dataset contains 1000 scenes, of which 850 are used for training and validation purposes,
and the remaining 150 are reserved for testing. Each scene lasts 20 s, providing much
temporal information for analysis. The nuScenes dataset contains a comprehensive sensor
suite, including six cameras, one LiDAR sensor, and five radar sensors, where each camera
has known corresponding internal and external parameters. In total, the dataset contains
40,000 keyframes capturing scenes from multiple angles and sensor modes. The camera
images in the dataset have a resolution of 1600 × 900 pixels, ensuring a high level of detail
and visual fidelity for visual perception tasks.

Evaluation Metrices. We follow the evaluation metrics of traditional segmentation
tasks and measure the intersection-over-union (IoU) between the segmentation results and
the ground truth. The IoU for each class can be written as follows:

IoU(S p, Sg) =

∣∣∣∣ (Sp ∩ Sg)

(Sp ∪ Sg)

∣∣∣∣ (9)

And the average IoU for all classes can be written as:

mIoU(Sp, Sg) =
1
N

N

∑
n=1

IoU(Sp, Sg) (10)

where Sp ∈ R
Hg×Hg×N and Sg ∈ R

Hg×Hg×N denote the segmentation prediction results
and the ground truth, respectively. Hg and Wg denote the height and width of the ground
truth, respectively. N is the number of dataset categories.

Details. For the image encoder, we employ the ConvNeXt block that has been pre-
trained on the ImageNet dataset in advance. Our proposed model and reproduced model
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are trained on two NVIDIA GeForce RTX 3060 12G GPUs. Except for the specially stated
hyperparameters, we follow the settings in ConvNeXt [17] and VAN [18]. For training, we
use the AdamW optimizer, whose learning rate is set to 1 × e−3 and the weight decay is set
to 1 × e−2. The loss function is computed using binary-cross-entropy loss functions. For
the hyperparameters (Z, Y, X) of the view transform module, we follow the same settings
(200, 8, 200) as in the baselines of this task.

4.2. Experiment Result

In this section, to evaluate the performance of the proposed model, we compre-
hensively compare our proposed model with other state-of-the-art methods, including
FISHING [26], LSS [11], FIERY [13], CVT [32], GKT [33], TIIM [34], BEVFormer [9], and
Simple-BEV [15], as shown in Table 1. For the LSS and the Simple-BEV, we show the retrain-
ing results using the same configuration as the results reported in the original papers. The
results of CVT and GKT are as reported in the original papers. For the model performance
of other methods, we use all the data from this study [15]. For a fair comparison, we use
only the single time step model without considering the time model and only consider the
model’s performance with multi-camera images as input. The results of evaluating the
models on nuScenes are shown in the table. The proposed model achieves 45.4 mIoU on the
nuScenes dataset, which outperforms most current segmentation methods and is similar to
state-of-the-art performance. For the LSS and the Simple-BEV, we retrain with eight batch
size settings, and two batch size settings and obtain results of 33.0 mIoU and 43.8 mIoU,
respectively. In addition, to further demonstrate the performance of our proposed model,
we visualized four key frames of the nuScenes dataset, as shown in Figure 6.

Figure 6. The visualization of results includes (a) the multi-camera input images, (b) the prediction
results of our proposed model, and (c) the ground truth.
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Table 1. Comparison of results of BEV segmentation on nuScenes. () denotes our reproduced results
of our same setting.

Method Lifting Batch Size mIoU

FISHING [26] MLP - 30.0
LSS [11] Depth Estimation 8 (4) 33.0 (32.1)

FIERY [13] Depth Estimation 12 35.8
CVT [32] Deformable Attn. 16 36.0
GKT [33] Geometry Attn. 16 37.2
TIIM [34] Ray Attn. 8 38.9

BEVFormer [9] Deformable Attn. 1 44.4
Simple-BEV [15] Bilinear 2 (40) 42.5 (47.4)

Ours Bilinear-Attn. 2 45.6

4.3. Detailed Analysis

In this section, we test the nuScenes dataset using different model combinations
to validate our proposed components’ effectiveness. Here we emphasize in advance
that, without special instructions, our experimental settings are all batch size 2 and input
resolution 448 × 800. In order to compare the segmentation performance of the components
in detail, we compare the experimental results according to two categories: encoders and
view transform modules.

Image encoder and BEV encoder: We employ an experimental comparison using
different encoder combinations, and the view transform module defaults to our proposed
Bilinear-Attention module. Specifically, we select the classical ResNet-101 and ResNet-18
as an image encoder and a BEV encoder, respectively, together with our proposed two
encoders, and combine them into four experimental setups for our experiments. As
shown in Table 2, Conv-LKA and Res-RepLK denote our proposed image encoder and
BEV encoder, respectively. It can be observed that our proposed image encoder and BEV
encoder can improve the performance with an increase of 1.8 and 1.3 in mIoU, respectively.
Finally, when both of our proposed encoders are used, the model’s overall performance is
improved by 2.6 mIoU. The growth of FLOPs is also obvious when our proposed encoders
are used. As shown in Table 3, we perform comparison experiments on BEV encoders with
different kernel sizes. We can observe that a larger convolutional kernel size is beneficial
for the model’s performance but leads to performance degradation when the kernel size
exceeds a certain limit. Experimental results show that the optimal kernel size is 13 × 13,
while the larger kernel size does not significantly impact the overall number of parameters
in our proposed model. Finally, we use the retrained simple-BEV to compare it with our
proposed method and visualize the results, as shown in Figure 7.

Table 2. Ablations of the different encoder combinations.

ResNet-101 Conv-LKA ResNet-18 Res-RepLK Parameters FLOPs mIoU
√

-
√

- 42.1 M 428.3 G 43.0√
- -

√
40.6 M 512.7 G 44.3

-
√ √

- 38.1 M 552.1 G 44.8
-

√
-

√
36.6 M 653.5 G 45.6

Table 3. Ablations of the different kernel sizes of the BEV encoder.

Kernel Size Parameters mIoU

7 × 7 36.5 M 43.9
9 × 9 36.5 M 44.5

13 × 13 36.6 M 45.6
31 × 31 36.7 M 45.4
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Figure 7. The comparison results of our proposed model and Simple-BEV. “*” denotes re-training
with equivalent training settings. (a) The multi-camera input images; (b) the prediction results of
retrained Simple-BEV; (c) the prediction results of our proposed model; and (d) the ground truth.

View transform module: We introduce another commonly used depth-based view
transform method to compare and analyze with our proposed view transform module.
Our proposed Bilinear-Attention module is split into a Bilinear Sample module and a
Compressed Attention module for the ablation experiments. As shown in Table 4, Bilinear
and Attention denote the Bilinear Sample module and the Compressed Attention module,
respectively. LKA-RepLK indicates that both of our proposed encoders are used. We
can observe that using the Bilinear Sample module alone does not perform as well as the
depth prediction, but it is very close. Moreover, it can be observed that our proposed view
transform module achieves an 8.2 improvement over the MLP approach in mIoU. Using
the Bilinear Sample module alone also yields a 7.5 improvement in mIoU.

Table 4. Ablations of the different view transform module combinations.

Encoder MLP Depth Bilinear Attention mIoU

LKA-RepLK
√

- - - 37.2
LKA-RepLK -

√
- - 44.8

LKA-RepLK - -
√

- 44.7
LKA-RepLK - -

√ √
45.6

5. Conclusions

This study proposes a camera-based model to accomplish the semantic segmentation
task from the BEV perspective. To obtain an image view encoder with more powerful
encoding performance and capable of capturing long-distance relationships, we redesign
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the backbone network with the Large Kernel Attention module. In addition, we propose the
Bilinear Sample module to complete the lifting operation instead of directly predicting the
depth, and then refine the 3D features with our proposed Compressed Attention module.
We redesign the structure of the BEV encoder with RepLK to address the problem of
long-range distortion of BEV features. We evaluated our proposed model on the nuScenes
dataset. Our experiment results demonstrate that our model outperforms other models
with equivalent training settings on the segmentation task while approaching state-of-
the-art performance. While our current work focuses on semantic segmentation, we
recognize the significance of expanding our evaluation to include object detection tasks.
We are committed to enhancing computational efficiency and model size, ensuring that our
approach remains practical for real-world applications. This optimization will contribute
to the scalability and deployability of our model. Meanwhile, we recognize the challenges
associated with detecting small or distant objects in the Bird’s-Eye view. Our future work
will involve dedicated optimization strategies to address these challenges and improve
the model’s performance in such scenarios. Finally, point clouds provide invaluable depth
and spatial information, we envision integrating point cloud data alongside other sensor
modalities to augment our model’s understanding of the environment.

Author Contributions: Conceptualization, K.L. and X.W.; methodology, K.L.; software, K.L.; validation,
K.L.; formal analysis, K.L.; investigation, X.W.; resources, W.Z.; data curation, X.W.; writing—original
draft preparation, K.L.; writing—review and editing, X.W.; visualization, X.W.; supervision, W.Y.;
project administration, W.Y.; funding acquisition, W.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.
In Proceedings of the IEEE/CVF Conference on Computer Vision And Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 12697–12705.

2. Li, Q.; Wang, Y.; Wang, Y.; Zhao, H. Hdmapnet: An online hd map construction and evaluation framework. In Proceedings of the
2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 4628–4634.

3. Mallot, H.A.; Bülthoff, H.H.; Little, J.; Bohrer, S. Inverse perspective mapping simplifies optical flow computation and obstacle
detection. Biol. Cybern. 1991, 64, 177–185. [CrossRef] [PubMed]

4. Reiher, L.; Lampe, B.; Eckstein, L. A sim2real deep learning approach for the transformation of images from multiple vehicle-
mounted cameras to a semantically segmented image in bird’s eye view. In Proceedings of the 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–7.

5. Zhu, M.; Zhang, S.; Zhong, Y.; Lu, P.; Peng, H.; Lenneman, J. Monocular 3D vehicle detection using uncalibrated traffic cameras
through homography. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September–1 October 2021; pp. 3814–3821.

6. Song, L.; Wu, J.; Yang, M.; Zhang, Q.; Li, Y.; Yuan, J. Stacked homography transformations for multi-view pedestrian detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 6049–6057.

7. Pan, B.; Sun, J.; Leung, H.Y.T.; Andonian, A.; Zhou, B. Cross-view semantic segmentation for sensing surroundings. IEEE Robot.
Autom. Lett. 2020, 5, 4867–4873. [CrossRef]

8. Roddick, T.; Cipolla, R. Predicting semantic map representations from images using pyramid occupancy networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11138–11147.

9. Li, Z.; Wang, W.; Li, H.; Xie, E.; Sima, C.; Lu, T.; Qiao, Y.; Dai, J. Bevformer: Learning bird’s-eye-view representation from
multi-camera images via spatiotemporal transformers. In Proceedings of the European Conference on Computer Vision, Tel Aviv,
Israel, 23–27 October 2022; pp. 1–18.

10. Liu, Y.; Wang, T.; Zhang, X.; Sun, J. Petr: Position embedding transformation for multi-view 3d object detection. In Proceedings of
the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 531–548.

11. Philion, J.; Fidler, S. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D. In Proceedings
of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XIV 16,
2020. pp. 194–210.

52



World Electr. Veh. J. 2023, 14, 239

12. Reading, C.; Harakeh, A.; Chae, J.; Waslander, S.L. Categorical depth distribution network for monocular 3D object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual. 19–25 June 2021; pp. 8555–8564.

13. Hu, A.; Murez, Z.; Mohan, N.; Dudas, S.; Hawke, J.; Badrinarayanan, V.; Cipolla, R.; Kendall, A. Fiery: Future instance prediction
in bird’s-eye view from surround monocular cameras. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15273–15282.

14. Xie, E.; Yu, Z.; Zhou, D.; Philion, J.; Anandkumar, A.; Fidler, S.; Luo, P.; Alvarez, J.M. M2BEV: Multi-Camera Joint 3D Detection
and Segmentation with Unified Birds-Eye View Representation. arXiv 2022, arXiv:2204.05088.

15. Harley, A.W.; Fang, Z.; Li, J.; Ambrus, R.; Fragkiadaki, K. Simple-BEV: What really matters for multi-sensor bev perception? In
Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023;
pp. 2759–2765.

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

17. Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986.

18. Guo, M.-H.; Lu, C.-Z.; Liu, Z.-N.; Cheng, M.-M.; Hu, S.-M. Visual attention network. arXiv 2022, arXiv:2202.09741. [CrossRef]
19. Huang, J.; Huang, G.; Zhu, Z.; Ye, Y.; Du, D. Bevdet: High-performance multi-camera 3D object detection in bird-eye-view. arXiv

2021, arXiv:2112.11790.
20. Li, Y.; Ge, Z.; Yu, G.; Yang, J.; Wang, Z.; Shi, Y.; Sun, J.; Li, Z. Bevdepth: Acquisition of reliable depth for multi-view 3D

object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023;
pp. 1477–1485.

21. Ding, X.; Zhang, X.; Han, J.; Ding, G. Scaling up your kernels to 31 × 31: Revisiting large kernel design in cnns. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 11963–11975.

22. Wang, Y.; Chao, W.-L.; Garg, D.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-lidar from visual depth estimation:
Bridging the gap in 3d object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8445–8453.

23. You, Y.; Wang, Y.; Chao, W.-L.; Garg, D.; Pleiss, G.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-lidar++: Accurate
depth for 3D object detection in autonomous driving. arXiv 2019, arXiv:1906.06310.

24. Huang, J.; Huang, G. Bevdet4d: Exploit temporal cues in multi-camera 3D object detection. arXiv 2022, arXiv:2203.17054.
25. Lu, C.; van de Molengraft, M.J.G.; Dubbelman, G. Monocular semantic occupancy grid mapping with convolutional variational

encoder-decoder networks. IEEE Robot. Autom. Lett. 2019, 4, 445–452. [CrossRef]
26. Hendy, N.; Sloan, C.; Tian, F.; Duan, P.; Charchut, N.; Xie, Y.; Wang, C.; Philbin, J. Fishing net: Future inference of semantic

heatmaps in grids. arXiv 2020, arXiv:2006.09917.
27. Zou, J.; Zhu, Z.; Huang, J.; Yang, T.; Huang, G.; Wang, X. HFT: Lifting Perspective Representations via Hybrid Feature

Transformation for BEV Perception. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation
(ICRA), London, UK, 29 May–2 June 2023; pp. 7046–7053.

28. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.

29. Can, Y.B.; Liniger, A.; Paudel, D.P.; Van Gool, L. Structured bird’s-eye-view traffic scene understanding from onboard images.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 15661–15670.

30. Wang, Y.; Guizilini, V.C.; Zhang, T.; Wang, Y.; Zhao, H.; Solomon, J. Detr3d: 3D object detection from multi-view images
via 3D-to-2D queries. In Proceedings of the Conference on Robot Learning, Auckland, New Zealand, 14–18 December 2022;
pp. 180–191.

31. Liu, Y.; Yan, J.; Jia, F.; Li, S.; Gao, Q.; Wang, T.; Zhang, X.; Sun, J. Petrv2: A unified framework for 3D perception from multi-camera
images. arXiv 2022, arXiv:2206.01256.

32. Zhou, B.; Krähenbühl, P. Cross-view transformers for real-time map-view semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 13760–13769.

33. Chen, S.; Cheng, T.; Wang, X.; Meng, W.; Zhang, Q.; Liu, W. Efficient and robust 2D-to-bev representation learning via geometry-
guided kernel transformer. arXiv 2022, arXiv:2206.04584.

34. Saha, A.; Mendez, O.; Russell, C.; Bowden, R. Translating images into maps. In Proceedings of the 2022 International Conference
on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 9200–9206.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

53



Citation: Xu, H.; Dong, X.; Wu, W.;

Yu, B.; Zhu, H. A Two-Stage Pillar

Feature-Encoding Network for

Pillar-Based 3D Object Detection.

World Electr. Veh. J. 2023, 14, 146.

https://doi.org/10.3390/

wevj14060146

Academic Editor: Grzegorz

Sierpiński
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Abstract: Three-dimensional object detection plays a vital role in the field of environment perception
in autonomous driving, and its results are crucial for the subsequent processes. Pillar-based 3D object
detection is a method to detect objects in 3D by dividing point cloud data into pillars and extracting
features from each pillar. However, the current pillar-based 3D object-detection methods suffer from
problems such as “under-segmentation” and false detections in overlapping and occluded scenes. To
address these challenges, we propose an improved pillar-based 3D object-detection network with
a two-stage pillar feature-encoding (Ts-PFE) module that considers both inter- and intra-relational
features among and in the pillars. This novel approach enhances the model’s ability to identify the
local structure and global distribution of the data, which improves the distinction between objects in
occluded and overlapping scenes and ultimately reduces under-segmentation and false detection
problems. Furthermore, we use the attention mechanism to improve the backbone and make it focus
on important features. The proposed approach is evaluated on the KITTI dataset. The experimental
results show that the detection accuracy of the proposed approach are significantly improved on the
benchmarks of BEV and 3D. The improvement of AP for car, pedestrian, and cyclist 3D detection are
1.1%, 3.78%, and 2.23% over PointPillars.

Keywords: point cloud; autonomous vehicles; 3D object detection; pillar; LiDAR

1. Introduction

With expanding application scenarios such as autonomous driving, intelligent robotics,
and virtual reality, 3D object-detection technology has emerged as an important research
direction in the realm of computer vision [1]. The main task of point cloud 3D object
detection is to detect various objects, such as cars, pedestrians, and cyclists, from 3D point
cloud data [2]. Unlike traditional image-based object detection, point cloud 3D object
detection needs to deal with disordered point cloud data and consider the 3D information
of the objects [3,4]. Therefore, the key challenge of this task is how to extract the information
concerned, such as the object’s position, size, orientation, and so on, from the point cloud
data [5]. To solve this problem, researchers usually employ deep learning techniques to
build point cloud 3D object-detection models and optimize the performance of the models
by training on a large amount of point cloud data [6,7].

Regarding point cloud representation methods, current 3D object -detection techniques
can be divided into three categories: range image-based, point-based, and voxel-based
methods [8]. The range image-based method is a technique that involves the projection of
point cloud data onto a plane to generate a depth image, which is then utilized for object
detection. This method can process large-scale point cloud data efficiently and be easily
integrated with 2D image-processing algorithms. Nevertheless, at greater distances or lower
resolutions, this method may be prone to inaccuracies [9,10]. The point-based methods,
represented by PointNet [11], directly process the raw data and treat the point cloud
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as a disordered set of points. It processes each point independently, then aggregates the
features of the points to obtain the entire point cloud’s feature representation. The improved
PointNet++ [12] can better manage point cloud local information. However, processing
all point clouds leads to a huge computation complexity and high hardware requirements.
In contrast, the voxel-based method first converts the point cloud data into a 3D voxel
grid form, then processes and extracts the features of each voxel [13]. The pillar-based
method is a special voxel-based method which simplifies voxels further by disregarding
the z dimension, thereby turning the 3D problem into a 2D problem and reducing the
computation complexity to a certain extent. However, it leads to a loss of information, such
as the features of spatial location and relative position of each element [14]. PointPillars [15]
is a typical 3D object-detection network of a pillar-based method which relies solely on
point-wise aggregated features to represent pillar characteristics. This approach fails to
accurately represent the features of the pillar itself and the relationship between pillars
and the entire point cloud. This absence may give rise to several challenges. Firstly, in
the presence of mutually occluded and overlapping objects, it could lead to the under-
segmentation phenomenon, where the pillars of distinct objects are incorrectly classified
as belonging to the same entity [16]. Secondly, these issues could significantly undermine
the accuracy and reliability of object detection and localization, leading to missed or false
detection [17]. Additionally, changes of the relative relationships between the pillars and
the overall point cloud in different datasets or scenarios can lead to the increased instability
of detection results [18]. Therefore, it is crucial to consider the features of the pillar itself
and the relationship between the pillars and the overall point cloud.

In this paper, we propose an improved pillar-based network for 3D object detection
based on pillars. It comprises three essential components: the pillar feature-encoding
module, a backbone consisting of a region proposal network (RPN), squeeze-and-excitation
networks (SeNet) for feature extraction, and a head for 3D boxes’ regression.For pillar
feature encoding, we propose a two-stage pillar feature-encoding (Ts-PFE) module that
considers both inter- and intra-relational features among and in the pillars which can help
the model better understand the spatial location and relative position of each pillar. On one
hand, the model can better identify the local structure and global distribution of the pillars,
thus improving the distinction between objects and reducing the under-segmentation
phenomenon that arises in the presence of mutually occluded and overlapping objects. On
the other hand, more accurate detection and localization can alleviate the issue of missed
and false detections. Moreover, the stability and generalization capabilities of the model in
different datasets or scenarios are enhanced. Additionally, we have incorporated SeNet
into the backbone module for improved performance. This module enhances key features
in pseudo-images and suppresses irrelevant features through attention mechanism, thereby
bolstering the network’s ability to extract important features of objects for detection.

The experimental evaluation on the KITTI dataset demonstrates the effectiveness of
the proposed approach. Specifically, our method achieves significant improvements in
object-detection performance while reducing under-segmentation problems in occluded
and overlapping scenes. Our contributions can be summarized as follows:

• To solve the problem of under-segmentation due to missing features, compared with
other pillar-based approaches that only consider the intra-relational features, we
propose Ts-PFE, a feature-encoding network which considers both inter- and intra-
relational features among and in the pillars. It improves the distinction between objects
and reduces the under-segmentation problems in occluded and overlapping scenes.

• We improved the backbone by integrating SeNet, enhancing key features in pseudo-
images, and suppressing irrelevant information to enhance the network’s ability to
extract important features of objects to be detected. By leveraging the power of SeNet,
the proposed approach exhibits superior performance in object detection compared to
prior works.

• Evaluated on the KITTI dataset, the experiments show that the detection accuracy of
the proposed approach are significantly improved; the improvement of AP for car,
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pedestrian, and cyclist 3D detection are 1.1%, 3.78%, and 2.23% over the baseline. The
results of qualitative evaluation show that the under-segmentation problem is reduced
in the occlusion and overlapping scenes.

2. Related Work

2.1. 3D Object Detection from Point Cloud Based on Voxel/Pillar

In recent years, voxel- and pillar-based methods have been widely developed and ap-
plied. These methods first transform the point cloud into fixed-shaped voxels or pillars, fol-
lowed by feature extraction using 2D/3D convolution, and then implement object-detection
tasks through classification and regression [19]. This approach provides significant compu-
tational advantages over processing each point individually, making it particularly suitable
for real-time applications such as autonomous driving [15]. VoxelNet [13] is among the
pioneering works in this field, which innovatively uses voxel feature encoding (VFE) and
3D convolution to encode and extract features from the voxels. However, the huge number
of voxels lead to a large computation of 3D convolution and a slow inference speed. To
address this issue, SECOND [20] proposed 3D sparse convolution to accelerate the training
and inference process by eliminating the empty voxels. Despite its improved efficiency,
sparse convolution is not deployment friendly. PointPillars [15], instead of using the tradi-
tional voxel-based method, simplify the voxel representation by generating a pseudo-image
that can be processed by 2D convolution neural networks. This approach has efficient
computational performance and became one of the dominant methods in practice. More re-
cently, CenterPoint [21] was proposed, which converts the point cloud into a voxel network,
predicts the object center, size, and orientation at the center of each voxel, and uses a 2D
convolutional network to extract local features, which achieves a good balance between
accuracy and speed, and can also handle small targets with high detection accuracy.

The voxel/pillar-based algorithm, while effective in some regards, has some notable
limitations [19]. First, the uniform voxelization method can result in a loss of point cloud
information and uneven sampling [22]. Secondly, when dealing with some small objects or
dense point cloud, there may be a high rate of false detection and missed detection [23]. In
addition, ignoring the relationship between the local and the global feature can lead to the
under-segmentation issue [24]. To overcome these limitations, several improvements have
been proposed, including improvements to voxelization methods, attention mechanisms,
multi-scale features, and data-enhancement methods. For instance, in SCNet [25], each grid
is divided into smaller sub-grids to preserve more point cloud information and alleviate
the under- and over-segmentation. SA-Det3D [26] proposes two variants of self-attention
for contextual modeling in 3D object detection by adding convolutional features and
self-attentive features to model in 3D object detection. PV-RCNN [27] uses a voxel feature-
encoding network to extract features of voxels, and then fuses the voxel features with point
cloud features, which can better handle objects of different sizes and shapes.

2.2. Attention Mechanisms in Object Detection

As a crucial technique in neural networks, the attention mechanism has been heavily
employed in computer vision, including tasks such as classification, detection, and segmen-
tation [28]. Through this mechanism, the attention of the network is directed to key details
and focusing more on the region or feature of interest, thus improving detection accuracy
and robustness [29].

The attention mechanism has also been widely applied in the field of point cloud
object detection. The commonly used methods are channel attention, spatial attention,
and their combination. Spatial attention allows the network to prioritize information from
certain locations in the point cloud, while channel attention means that the network can
pay more attention to the features of certain channels [30]. The self-attention method [31],
transformer [32], and SeNet [33], etc., are other types of attention mechanisms. Ref. [34]
delves into the role of attention mechanisms in 3D point cloud object detection and shows
that self-attention modules are not preferable in processing 3D point cloud data, and that
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SE and CBAM enable the effectiveness and efficiency of 3D point cloud feature refinement.
In [35], three modified attention mechanisms (SOCA, SOPA, and SAPI) are used to improve
the effectiveness of feature extraction. Ref. [26] proposed two self-attention variants, FSA
and DSA, for contextual modeling in 3D object detection, incorporating convolutional and
self-attentive features in the model. Moreover, the attention mechanism can be used for
point cloud segmentation, as seen in [36], where the network structure is based on the
point-attention mechanism, effectively improving point cloud segmentation performance.

3. Our Approach

In this section, we introduce our approach, the pillar-based 3D object-detection net-
work using a two-stage feature encoding module. The network architecture is illustrated
in Figure 1. It comprises three components: the pillar feature-encoding module, a back-
bone which contains RPN and SeNet for feature extraction, and a head for 3D boxes’
regression.We provide a detailed description of each block in the remainder of this section.

Figure 1. The overall network architecture of the proposed approach. The main components of the
network are a pillar feature-encoding module, a backbone, and a detection head. The raw point cloud
is converted to pillars. The encoder uses the pillars to learn a set of features that can be scattered back
to a 2D pseudo-image for a convolutional neural network. The features from the backbone are used
by the detection head to predict 3D bounding boxes for objects.

3.1. Two-Stage Pillar Feature Encoding

The voxel and pillar encoding approach has significantly impacted the development
of 3D object detection based on point cloud by redefining the organization and processing
of point clouds. By employing aggregated features to characterize voxel and pillar features,
it has substantially reduced computational requirements while increasing operational
speed [13]. However, this approach has a limitation; it only captures local features, failing
to accurately represent the features of the pillar itself and the relationship between pillars
and the entire point cloud [15]. In this paper, we propose a novel two-stage pillar feature-
encoding (Ts-PFE) module as a solution to this issue. It considers both inter- and intra-
relational features among and in the pillars, which can help the model better identify
the local structure and global distribution of the pillars, thus improving the distinction
between objects and reducing the under-segmentation problems in the presence of mutually
occluded and overlapping objects. In addition, more accurate detection and localization can
reduce the problems of missed and false detections. Furthermore, the inclusion of a wider
range of features enhances the model’s expressiveness and generalization capabilities.
As shown in Figure 2, the proposed Ts-PFE module consists of three units: (1) the point
feature-encoding unit, (2) the pillar feature-encoding unit, (3) the feature-fusion unit.
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Figure 2. The Two-stage Pillar Feature Encoding (Ts-PFE) module architecture. It consists of three
units: the point feature-encoding unit, the pillar feature-encoding unit, and the feature-fusion
unit. The point feature encoding is used to obtain the point-wise aggregated features. The pillar
feature encoding is used to obtain the pillar-wise features. Finally, the fusion unit concatenates the
features together.

We first pillarize the point cloud data by considering only the X, Y direction and
ignoring the information in the Z axis direction. Specifically, the point cloud P in 3D space
has a range of L, W, and H along the X, Y, and Z axes, and is divided into a set of pillars of
size vL, vW , and H. Each pillar is represented by v = {pi = [xi, yi, zi, ri] ∈ RN×4}. xi,
yi, and zi denote the coordinates of each point along X, Y, and Z axes, respectively, while ri
represents the laser reflection intensity.

3.1.1. Point Feature Encoding

In this unit, we aggregate the features of the points to represent the features of
the pillars. First, the four-dimensional feature vector of the points is expanded to a
ten-dimensional vector, pn

i = {
[

xi, yi, zi, ri, xc
i , yc

i , zc
i , xp

i , yp
i , zp

i

]
∈ RN×10}. Here,

[xi, yi, zi, ri] represent the coordinates and reflectance of the points, while
[
xc

i , yc
i , zc

i
]

represent the distance to the arithmetic mean of all points in the pillar, and
[

xp
i , yp

i , zp
i

]
is

the offset of each point from the pillar center. Subsequently, the feature is enhanced and
mapped to a higher dimension by an MLP layer network, which is defined as

pm
i = m(pn

i ; wm) (1)

where the function m(·) signifies a stack of multiple MLP layers which contain batch nor-
malization (BN) layers and rectified linear unit (ReLU) layers, wm represents the learnable
weights, and pm

i ∈ RN×D is the point-wise feature. Next, max-pooling is used to aggregate
the features of all points in pillar j into a single-feature vector used to characterize the
information of this pillar. It is given by

pm
j = MAX(pm

i ) (2)

where MAX(·) denotes the max-pooling operation across these points’ features, and
pm

j ∈ RD is the resultant feature vector for the pillar j.
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3.1.2. Pillar Feature Encoding

It is not enough to obtain the features of the pillar aggregated from the points. There-
fore, we utilize the second-stage feature encoding, which is the pillar feature-encoding unit,
to encode the pillar’s inherent features and its relationship with the entire point cloud.

First, we use the arithmetic mean
[

xc
j , yc

j , zc
j

]
of all the points in pillar j to represent

the center of gravity of the pillar, and the center value
[

xp
j , yp

j , zp
j

]
of pillar j as the pillar’s

center. Next, we find the arithmetic mean xc
j , yc

j , zc
j of all points as the center of gravity of

the overall point cloud, and the coordinates xp
j , yp

j , zp
j of the center pillar as the pillar center

of the overall point cloud, and then we can obtain the offset
[

xc
j − xc

j , yc
j − yc

j , zc
j − zc

j

]
from

each pillar to the center of gravity and the offset
[

xp
j − xp

j , yp
j − yp

j , zp
j − zp

j

]
from each

pillar to the pillar center of the overall pillar. At this time, we have the following features:
vn

j = {[xc
j , yc

j , zc
j , xp

j , yp
j , zp

j , xc
j − xc

j , yc
j − yc

j , zc
j − zc

j , xp
j − xp

j , yp
j − yp

j , zp
j − zp

j ] ∈ R12}.
Then, the features are augmented and mapped to a higher dimension by an MLP layer
network. The equation is

vm
j = m(vn

j ; wm) (3)

where the function m(·) is a stack of multiple MLP layers which contain batch normalization
(BN) layers and rectified linear unit (ReLU) layers, wm represents the learnable weights,
and vm

j ∈ RG is the pillar-wise feature, which contains the features of the pillar itself, the
relationship between the pillars, and the overall point cloud.

3.1.3. Feature Fusion

The aforementioned features can be categorized into two types: the former is extracted
from the points and the latter is calculated using the pillar’s own features. They are both
vectors used to characterize the features of the pillar. In this fusion module, we fuse the
two types of features to obtain the complete features of the pillar. Its formula is as follows:

Vc
j = f usion(pm

j ; vm
j ) (4)

where f usion(·) is the feature concatenation function and Vc
j ∈ RD+G is the fused pillar

feature. After obtaining the fused features, we only need to map each pillar to a plane
according to the coordinates of the pillar to obtain a pseudo-image U whose dimension is
H × W × (D + G). For convenience, we consider (D + G) as C.

3.2. Backbone

After obtaining the pseudo-image, the following part is a convolutional network which
is used for feature extraction. We improved the backbone with SeNet, which can highlight
the key information while ignoring the irrelevant information; its structure is as illustrated
in Figure 1. The backbone consists of two parts: one of them is the SeNet and the other is
an RPN connected in series behind.

3.2.1. SeNet

Squeeze-and-excitation networks (SeNet) are a channel-based feature-attention mod-
ule proposed by [37] in 2017. This module enhanced the network’s ability to extract vital
features of the object to be detected by modeling each feature channel, distinguishing the
importance of different channels, and enhancing key features while suppressing irrelevant
information. Incorporating this attention mechanism in practical applications can greatly
improve model performance, enabling it to better capture the details and features in the
image. Therefore, we utilize SeNet to process the pseudo-images obtained from PointPillars
for feature learning and attention weights’ calculation. The resulting weighted features
are then mapped onto the original point cloud data to further enhance the accuracy and
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robustness of object detection. By combining the strengths of PointPillars with SeNet, we
can generate a more expressive and generalizable feature representation.

In the preceding steps, we obtain the feature map U with dimensions H × W × C. Fol-
lowing the feature-map processing transformation, two separate operations are performed.
Firstly, the new feature map U undergoes global average pooling, compressing the height
and width dimensions into a vector of size 1 × 1 × C while preserving channel information,
which we denote as z. To calculate the cth element of z, we use the formula

zc = Fsq(uc) =
1

H × W ∑ H
i=1 ∑ W

j=1uc(i, j) (5)

where Fsq is the compression operation, uc is the feature vector after feature extraction, and i
and j are the positions of the cth element on the corresponding feature map. Through global
average pooling, the input feature map undergoes compression, and output features zc are
obtained to learn feature weights for each channel. Then zc are sequentially passed through
the fully connected layer, the ReLU layer, and sigmoid layers to complete the excitation
and achieve a comprehensive dependency capture between channels, calculated as

s = Fex(z, W)− σ(g(z, W))− σ(W2δ(W1z)) (6)

where W1 and W2 are the two weight matrices to be learned, σ(·) is the sigmoid activation
function, δ(·) is the ReLU activation function, and s is the feature matrix obtained after
the excitation operation. Finally, the obtained feature matrix is weighted with the feature
matrix u. The weighting formula is

x̃ = Fscale(uc, sc) (7)

where x̃ is the final feature matrix obtained by the dot product weighting operation of the
feature matrix uc and sc.

3.2.2. RPN

Similarly to [13], this unit follows a strategy showcased in Figure 1. We employ the
RPN (region proposal network) to process the feature map obtained from the previous step,
aiming to enhance the detection capability of objects across various sizes with multi-scale
receptive field. The unit consists of three convolutional layers, each serving a specific
purpose. The initial layer within each block downsamples the feature map by half, accom-
plished through a convolution operation with a stride size of 2. Subsequently, a series of
convolutions with a stride of 1 are applied, complemented by BN (batch normalization)
and ReLU operations after each convolutional layer. These features from different scales
are then concatenated together and used for the final detection.

3.3. Detection Head

We employ the single shot detector (SSD) [38] to achieve 3D object detection, which ex-
hibits exceptional capabilities in terms of rapid detection speed and real-time performance.
Moreover, it showcases its versatility by enabling various detection head configurations,
allowing for adaptation to specific tasks.

3.4. Loss Function

We use the similar loss function as in [15]. We parameterize a 3D bounding box of the
ground truth as (x, y, z, w, l, h, θ), where (x, y, z) are the center location, and (w, l, h)
and θ represent the size and orientation angle of the bounding box, respectively. The
regression residuals between the ground truth and the anchors are as follows

Δx =
xgt − xa

da , Δy =
ygt − ya

da , Δz =
zgt − za

ha (8)
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Δw = log
wgt

wa , Δl = log
lgt

la , Δh = log
hgt

ha (9)

Δθ = sin(θgt − θa) (10)

where xgt denotes ground truth and xa is the anchor box, with da =
√
(la)2 + (wa)2. The

location loss is denoted as

Lloc = ∑
b∈(x,y,z,w,l,h,θ)

SmoothL1(Δb) (11)

For the classification loss, we use the focal loss [39]

Lcls = −a(1 − p)r log p (12)

where p represents the probability of an anchor. We use the settings of r = 2 and a = 0.25.
Moreover, the heading direction loss Ldir is measured by a softmax classification loss on
discretized directions. Adding up all the losses to the total loss of the whole network, the
total loss function is defined as

L =
1

Npos
(βlocLloc + βclsLcls + βdirLdir) (13)

where Npos is the number of positive anchors. βloc, βcls and βdir are weighting coefficients
for the localization loss, classification loss, and direction loss, respectively. We use the
settings of βloc = 2, βcls = 1, βdir = 0.2.

4. Experiment

4.1. Dataset

All experimental results are evaluated on KITTI’s official evaluation test metrics,
which include both bird’s-eye view (BEV) and 3D. KITTI dataset are divided into easy,
moderate, and hard categories according to object size, occlusion level, and truncation.
The main metric of interest is average precision (AP) with intersection over union (IoU)
thresholds, where a 3D bounding box overlap of 0.7 for cars is considered reasonable,
whereas an overlap of 0.5 is required for pedestrians and cyclists. Notably, the official
KITTI leaderboard is ranked based on performance on the moderate category, with per-
formance being measured as the mean average precision (mAP) on KITTI validation. The
experiments are conducted on the KITTI 3D object-detection benchmark dataset, which
consists of 7481 training samples and 7518 test samples. The KITTI benchmark requires the
detection of specific categories [40], including cars, pedestrians and cyclists. We also follow
the widely used training–validation split, which comprises 3712 training samples and
3769 validation samples.

4.2. Implementation Details

Here, the detection range of the point cloud is [0, 70.4] m, [−40, 40] m, and [−3, 1] m
along the X, Y, Z axes, and we set the X, Y, Z pillar resolution of (0.16, 0.16, 4) m. The
maximum number of points per pillar is 32 and maximum number of pillars is 16,000.
When performing feature encoding, the dimensions of the point-wise feature D and pillar-
wise feature G after MLP are both 32. The proposed approach is based on the PyTorch
framework, with all networks trained on the NVIDIA GTX3090 computing platform. The
model is trained for 160 epochs with an initial learning rate of 2 × 10−3 and decrease by 0.8
every 15 epochs with Adam [41] optimizer.
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4.3. Result

In this unit, we present the evaluation results of the proposed network using Ts-PFE
and the SeNet backbone on the KITTI dataset. Our analysis comprises both quantita-
tive and qualitative assessments, aimed at providing a comprehensive evaluation of the
network’s performance.

4.3.1. Quantitative Evaluation

All detection results are measured using the official KITTI evaluation detection metrics
of both BEV and 3D detection. We use an IoU threshold of 0.7 for the car category and 0.5
for the pedestrian and cyclist categories to calculate an average precision.

Compared with other similar algorithms, the proposed algorithm achieves promising
results. Tables 1 and 2 show the results of comparison under BEV and 3D settings. The
proposed method achieves BEV mAP scores of 84.95%, 53.24%, and 64.86%, and 3D mAP
scores of 76.09%, 47.31%, and 61.30% for the moderate level of car, pedestrian, and cyclist
detection, respectively. In particular, the improvement over PointPillars is 1.1%, 3.78%, and
2.23% under a moderately difficult level of 3D detection for the car, pedestrian, and cyclist
categories, respectively. This improvement can be attributed to the utilization of Ts-PFE,
which effectively captures the relationship between individual pillars and the overall point
cloud, as well as the use of SeNet backbone.

Table 1. Results on the KITTI test BEV detection benchmark (in %). The bold number indicates the
best result in a table.

Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [15] 88.35 86.10 79.83 58.66 50.23 47.19 79.14 62.25 56.00
SECOND [20] 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78
VoxelNet [13] 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

TANet [42] 91.58 86.54 81.19 60.58 51.38 47.54 79.16 63.77 56.21
AVODFPN [43] 88.53 83.79 77.90 58.75 51.50 47.54 68.09 57.48 50.77
FPointNet [44] 88.70 84.00 75.33 58.09 50.22 47.20 75.38 61.96 54.68
HDNET [45] 89.14 86.57 78.32 N/A N/A N/A N/A N/A N/A

PRGBNet [46] 91.39 85.73 80.68 38.07 29.32 26.94 73.09 57.59 51.78
Ours 89.62 84.95 79.53 59.50 53.24 49.13 83.07 64.86 60.74

Table 2. Results on the KITTI test 3D detection benchmark (in %). The bold number indicates the
best result in a table.

Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [15] 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92
SECOND [20] 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90
VoxelNet [13] 77.47 65.11 57.73 39.48 33.69 31.50 61.22 48.36 44.37

TANet [42] 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53
AVODFPN [43] 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61
FPointNet [44] 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39
SATGCN [47] 83.20 76.04 71.17 44.63 37.37 34.92 75.24 61.70 55.32
PRGBNet [46] 83.99 73.49 68.56 34.77 26.40 24.03 67.05 52.15 46.78

Ours 83.52 76.09 73.88 53.99 47.31 42.98 81.23 61.30 57.57

4.3.2. Qualitative Evaluation

In order to qualitatively evaluate the performance of the network, we utilize it to
predict the results on the validation set and visualize it under a 3D view, as shown in
Figures 3 and 4.
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Typical object-detection results are shown in Figure 3, indicating that the proposed
model can accurately detect targets in the scene, even at longer distances or in instances
of occlusion or overlap. Conversely, Figure 4 shows the individual failure examples. For
example, it can be difficult to accurately identify objects that are not labeled in the data, such
as trucks (as seen in Figure 4a). Additionally, certain instances produce missed detections
(as shown in Figure 4b). The model may also mistakenly classify vertical objects such as
poles, garbage cans, or trees as pedestrians or cyclists (as seen in Figure 4c). In some cases,
there may be a slight over-segmentation, where the model detects one object as two (as
seen in Figure 4d).

Figure 3. Qualitative analysis on the KITTI validation dataset. The results are only from LiDAR.
For each sample, the upper part is the image and the lower part is a representative view of the
corresponding point cloud with 3D bounding box.

Figure 4. Failure cases on the KITTI validation dataset. Same visualized setup from Figure 3 but
focusing on several common failure examples. (a). It can be difficult to accurately identify objects that
are not labeled in the data, such as trucks. (b). Certain instances produce missed detections. (c). The
model may also mistakenly classify vertical objects such as poles, garbage cans, or trees as pedestrians
or cyclists. (d). In some cases, there may be a slight over-segmentation, where the model detects one
object as two.

4.4. Ablation Experiments

We conducted some ablation experiments to evaluate the importance and contribution
of each component within the proposed network. These experiments are performed on the
KITTL validation dataset, with PointPillars serving as the baseline.

4.4.1. SeNet Backbone Module Analysis

The results of “with SeNet” in Tables 3 and 4 demonstrate the effect of adding only
the SeNet module. This module serves to focus on key features in the pseudo-images,
which highlights important information while ignoring irrelevant information. The results
in the tables indicate a discernible improvement in performance, with increases of 2.25%
and 1.65% under moderate and hard levels of BEV detection for pedestrian category, as
well as 0.86% and 3.19% improvement under moderate and hard levels of BEV detection
for cyclist category. These findings firmly attest to the beneficial impact of the SeNet
backbone module.
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Table 3. Results on the KITTI test BEV detection benchmark (in %). The bold number indicates the
best result in a table.

Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [15] 88.35 86.10 79.83 58.66 50.23 49.19 79.14 62.25 56.00
withSeNet 90.03 86.35 79.83 58.21 52.48 48.84 79.37 63.11 59.19
withTsPFE 89.50 86.43 79.74 58.29 52.51 49.01 80.79 61.71 59.27
withboth 89.62 84.95 79.53 59.50 53.24 49.13 83.07 64.86 60.74

Table 4. Results on the KITTI test 3D detection benchmark (in %). The bold number indicates the
best result in a table.

Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [15] 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92
withSeNet 83.85 76.09 69.06 52.02 46.97 42.54 76.28 59.14 55.51
withTsPFE 83.36 75.74 68.90 52.64 46.59 42.99 75.98 58.28 54.16
withboth 83.52 76.09 73.88 53.99 47.31 42.98 81.23 61.30 57.57

4.4.2. Ts-PFE Module Analysis

The results of “with Ts-PFE” in Tables 3 and 4 show the effect of integrating only the
Ts-PFE module in the main architecture. By considering both inter- and intra-relational
features among and in the pillars, the Ts-PFE module achieves noteworthy performance
gains across various metrics. Specifically, the improvement is 4.31% under the easy level of
3D detection for the car category, and 3.06% and 1.5% under the moderate and hard level of
3D detection for pedestrian category, respectively. For the cyclist category, we observe an
improvement of 1.24% under the hard level of 3D detection. These findings demonstrate
the crucial role played by Ts-PFE in enhancing the network’s performance.

4.4.3. Ts-PFE and SeNet Backbone Analysis

According to the findings presented in Tables 3 and 4 of “with both”, the impact of
incorporating both SeNet backbone and Ts-PFE is examined. Remarkably, the results reveal
that the performance of the models is consistently improved with the addition of both
modules, surpassing the baseline and outperforming the networks with individual module.

The preceding discussion presents ablation experiments conducted at the data level.
Furthermore, it is feasible to evaluate the network’s performance pre- and post-improvement
through visualization, as shown in Figure 5. We utilize the accompanying figures to com-
pare the visualization outputs, with and without the integration of the improved module.
The baseline network fails to account for the relationship between pillars and the overall
point cloud, which can lead to under-segmentation in case of overlap or occlusion and
missed detection, as shown in the left part of Figure 5a–d. In contrast, due to the application
of Ts-PFE in the proposed network, the relational features will be taken into account to
reduce the occurrence of error cases. As observed in the right portion of Figure 5a–d, the
improved network effectively detects occluded objects.
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Figure 5. Qualitative improvement of the model with Ts-PFE module (without SeNet) over the
baseline PointPillars for 3D detection. The results are shown under BEV in different scenes, with boxes
and arrows indicating key differences for a better comparison. The left part of each scene is the result
of the baseline, and the right part is the result of the proposed approach. (a,c,d) show improvements
for the missed detection problem, and (b) shows improvement for the under-segmentation problem.

5. Conclusions

In conclusion, we have proposed an improved pillar-based 3D object-detection net-
work that incorporates a two-stage pillar feature-encoding (Ts-PFE) module and a backbone
with SeNet. The utilization of the Ts-PFE module as the feature-encoding network in pillar-
based 3D object-detection network greatly enhances the network’s capability to handle
detection tasks under occlusion or overlapping scenes, while the backbone with SeNet
makes the network more focused on key features. The experiments on the KITTI dataset
show that the proposed method achieves superior detection accuracy compared to existing
methods. The improvement of AP for car, pedestrian, and cyclist 3D detection are 1.1%,
3.78%, and 2.23% over the baseline. More importantly, the ablation experiments also show
the significance of the proposed Ts-PFE module for performance improvement. Addition-
ally, the results of qualitative evaluation show that the proposed approach improve the
under-segmentation and missed detection problems in occluded or overlapping scenes.
These findings demonstrate the potential of the proposed approach in improving pillar-
based 3D object detection. However, it should be noted that the proposed method lacks the
evaluation in different levels of occlusion and overlap; further validation experiments are
needed in various occlusion scenarios. Additionally, our evaluation has been limited to
a single dataset, and future work should involve testing on a broader range of datasets to
assess the algorithm’s generalizability.
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Abstract: Intersection scenarios are one of the most complex and high-risk traffic scenarios. Therefore,
it is important to propose a vehicle driving decision algorithm for intersection scenarios. Most of the
related studies have focused on considering explicit collision risks while lacking consideration for
potential driving risks. Therefore, this study proposes a deep-reinforcement-learning-based driving
decision algorithm to address these problems. In this study, a non-deterministic vehicle driving risk
assessment method is proposed for intersection scenarios and introduced into a learning-based intelli-
gent driving decision algorithm. In addition, this study proposes an attention network based on state
information. In this study, a typical intersection scenario was constructed using simulation software,
and experiments were conducted. The experimental results show that the algorithm proposed in this
paper can effectively derive a driving strategy with both driving efficiency and driving safety in the
intersection driving scenario. It is also demonstrated that the attentional neural network designed
in this study helps intelligent vehicles to perceive the surrounding environment more accurately,
improves the performance of intelligent vehicles, as well as accelerates the convergence speed.

Keywords: intelligent vehicle; decision-making; driving safety; deep reinforcement learning; risk
assessment

1. Introduction

Due to the improvement of people’s living standards and economic development, as
well as growing urbanization and transportation needs, the overall trend of car ownership
in various countries around the world is rising. According to the International Energy
Agency (IEA) [1], global car ownership has grown from about 560 million in 2000 to about
1.32 billion in 2020, with China’s car ownership already exceeding 300 million. With
the growth of car ownership, society faces many challenges and problems. One of the
major issues is the increasing frequency of traffic accidents. According to data released
by the World Health Organization’s Global Status Report on Road Safety 2018, more than
1.3 million people worldwide die each year due to traffic accidents, and traffic accidents
are the leading cause of death among children and young people aged 5–29 years of
age [2], and this number is increasing year by year. Among the various driving scenarios,
intersections are one of the most frequent scenarios for traffic accidents due to the complex
traffic environment. According to the German In-Depth Accident Study (GIDAS) and
other organizations, 40% of road injury accidents occur at intersections [3]. Therefore, in
this context, it is important to propose a vehicle driving decision algorithm applicable to
intersection scenarios. The problem of improving traffic safety is complicated by the fact
that drivers have different physical and psychological states that make them perceive and
react to risks differently during the driving process. Automated driving essentially changes
the closed-loop human–vehicle–road system, reducing or minimizing the driver’s influence
in the system and making it more efficient and safer. Therefore, in the current context, the

World Electr. Veh. J. 2023, 14, 79. https://doi.org/10.3390/wevj14040079 https://www.mdpi.com/journal/wevj68



World Electr. Veh. J. 2023, 14, 79

method of replacing the driver with an autonomous driving decision algorithm has become
a hot research topic.

There have been many studies on intersection driving problems [4]; for example,
Li et al. [5] proposed a deep reinforcement learning-based driving decision framework
to build an end-to-end decision framework by convolutional neural networks to derive
driving strategies at intersections without traffic signals using traffic images as input.
Seong et al. [6] proposed an attention-based deep reinforcement learning for driving
decision method that uses local vehicle perception data as input to derive driving strategies
at intersections without traffic signals. Many driving decision methods have attempted to
use various vehicle perception data as input to derive driving strategies. However, driving
strategies using vehicle perception data as input are difficult to apply to natural or more
complex driving environments because vehicle perception data are affected by changes in
the driving environment. Many researchers use vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) technologies to derive driving strategies by sharing information about
the state and environment of individual vehicles at intersections through communication [7].
V2V and V2I technologies can transmit traffic information from intersections to intelligent
vehicles regardless of weather conditions. The research in this study assumes that each
vehicle’s status and environmental information at the intersection is transmitted to the
intelligent vehicle through communication sharing to carry out the research work.

As shown in Figure 1, current intelligent driving decision methods can be categorized
into three types according to the technical approach: rule-based decision methods, risk
assessment-based decision methods, and learning-based decision methods. Among them,
the rule-based decision method, as the most traditional and common method, can meet
most of the regular driving scenarios but lacks flexibility and applicability to deal with
unexpected situations. Therefore, based on this, researchers have proposed an intelligent
driving decision method based on risk assessment. In recent years, with the rapid develop-
ment of machine learning technology, researchers have begun to explore learning-based
decision methods to solve the problem of intelligent driving decision-making. However,
learning-based decision methods lack the consideration of uncertainty problems such as
traffic rules, driving risks, etc. Therefore, this paper integrates risk-assessment-based and
learning-based driving decision methods and proposes an intelligent driving decision
algorithm based on deep reinforcement learning, aiming to derive an autonomous driving
decision strategy with low expected risk and high driving efficiency to meet the driving
challenges in intersection scenarios.

Figure 1. Advantages and disadvantages of different driving decision methods (* The green boxes
represent advantages, and the red boxes represent disadvantages).
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1.1. Rule-Based Decision Methods

The rule-based approach is the most traditional and common approach in driving
decision-making. The rule-based decision-making approach builds a rule base through
regular driving habits and traffic regulations. It develops corresponding driving strategies
based on different driving situations. Furda et al. [8] proposed a method based on Petri
nets and multi-criteria decision-making to solve the problem of real-time decision-making
for autonomous driving. The proposed method obtains a set of feasible alternative driving
decisions through Petri nets and then uses a multi-criteria decision-making method to
select the best automatic driving decision from them. Chong et al. [9] proposed a rule-based
neural network model to simulate the driver’s driving behavior. The proposed method
is based on a fuzzy rule-based neural network model to obtain rules for driver behavior
decisions from the driver’s vehicle trajectory. Li et al. [10] developed a decision model for
automatic driving behavior in emergency situations based on the T-S fuzzy neural network.
The rule-based driving decision method, although able to satisfy regular driving situations,
cannot cope with unexpected unconsidered situations. Therefore, the rule-based driving
decision method lacks a certain degree of flexibility and adaptability [11].

1.2. Risk-Assessment-Based Decision Methods

Decision-making methods based on risk assessment are generally used to determine
driving strategies by assessing the risk profile of the current driving state. Currently,
risk assessment is divided into two main categories: deterministic risk assessment and
uncertainty risk assessment.

Deterministic risk assessment is usually based on multiple parameters in order to derive
from obtaining a numerical value or different risk level regions to represent the risk magnitude.
Hillenbrand J et al. [12] used TTC to assess the risk magnitude to make driving decisions by
tracking information about vehicles in the area associated with the main vehicle lane change
and calculating the time to collision (TTC) between them. Glaser et al. [13], based on the
driving environment using TTC and headway time distance (THW) for risk assessment of
the possible driving behavior of the primary vehicle, ranked the vehicles according to the
risk assessment results to make the best driving strategy. Lee H et al. [14] similarly used the
relative speed and position information between vehicles to calculate the risk coefficients, and
based on this, the acceleration and speed change characteristics of the surrounding vehicles
were taken into account in the risk assessment to help vehicles to make reasonable lane change
decisions. Moreover, there are also many research scholars who establish risk assessment
methods based on different risk factors from different perspectives [15–17].

Uncertainty risk assessment is usually based on mathematical probability models to
represent the degree of risk. Many related studies of risk assessment methods assume that
the state of the surroundings of the autonomous vehicle is constant, but the surrounding
vehicle’s driving state in a realistic environment is uncertain. It is this uncertainty that
makes probabilistic model-based risk assessment methods important. Schubert R et al. [18]
proposed a driving risk assessment method that considers sensor uncertainty, evaluates the
risk of vehicle lane change behavior based on the Bayesian networks, and provides the driver
with suggestions for lane change operations, thus improving the safety and reliability of
vehicle driving. Kim B et al. [19] proposed a probabilistic threat assessment method based on
road traffic information to predict and avoid possible collisions in multi-vehicle traffic. The
proposed collision occurrence probability algorithm follows the basic idea of particle filtering
and implements the numerical calculation of collision probability. Noh S et al. [20] proposed an
automated driving decision framework for highway environments. The framework robustly
assesses the potential risk of a collision for a given highway condition and determines the
appropriate driving strategy for that situation. The proposed risk assessment method takes
into account the uncertainty of the input data and infers the potential crash risk of the driving
environment based on the Bayesian networks. In addition to this, there are probabilistic
model-based risk assessment methods using Markov models, Gaussian processes, and deep
learning [21,22].
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1.3. Learning-Based Decision Methods

With the rapid development of machine learning in recent years, researchers have
started to experiment with learning-based approaches to solve the problem of intelligent
vehicle driving decisions. These approaches are further divided into imitation learning
approaches and reinforcement learning approaches depending on the learning objectives.
In the area of imitation-based learning research, Xu et al. [23] conducted a large-scale
study on driving behavior learning and tested it using the BDDV dataset with image
segmentation as an additional task of the network. The study achieved good accuracy
in action mapping. However, in real driving situations, there are multiple solutions. For
example, when crossing an intersection, there may be multiple ways of driving a vehicle.
Codevilla et al. [24] proposed a conditional imitation learning approach, which inputs
higher-level decision commands as conditions into the imitation learning framework to
derive driving strategies for autonomous vehicles. It has been tested in both simulation and
realistic environments with good results. However, imitation learning-based approaches
usually rely on a large amount of data for training, which is costly to collect on the one
hand. On the other hand, the collected data are usually related to the subjective judgment
of the driver, and therefore, optimal driving decisions are not always obtained.

In recent years, reinforcement learning has been increasingly used for autonomous
driving behavior decision-making. Mircheveska et al. [25] proposed a reinforcement
learning method applying random forests for autonomous driving in highway scenarios.
Mukadam et al. [26] proposed a deep Q-learning-based method to solve the problem of
automatic vehicle lane changing in a multi-lane, multi-vehicle environment. The proposed
method takes the vehicle state and the surrounding environment state as network inputs
and the output is a score of five driving behaviors. Finally, the performance and gener-
alization capability of the algorithm were verified in a SUMO simulation environment.
Hu et al. [27] further proposed a training method based on a multi-intelligent body frame-
work, aiming to obtain a more diverse training environment and to train and validate it
in a lane merging task. The method extends the driving environment to more complex
traffic scenarios by introducing multiple intelligences as agents of other vehicles, thus
improving the diversity and realism of the training data. Bouton et al. [28] proposed a
reinforcement learning method based on probabilistic guarantees to constrain the action
selection of intelligence by using a desired probability specification represented by lin-
ear temporal logic (LTL) to achieve a more realistic training environment at autonomous
driving at intersections involving multiple participants. Most of the current reinforcement
learning is still explored in more idealized lane scenarios, lacking consideration of traffic
rules, driving risks, and other uncertainty issues. Further research is still needed on how
to introduce reinforcement learning into more complex traffic environments and realistic
driving scenarios.

1.4. Contribution

This paper aims to design a risk-aware intelligent driving decision algorithm based on
deep reinforcement learning methods to derive an autonomous driving decision strategy
with low expected risk and high driving efficiency in intersection scenarios. To this end,
this paper integrates risk-based assessment and learning-based driving decision methods.
It introduces a non-deterministic risk assessment method for vehicle driving in the study of
learning-based driving decision methods to address the lack of consideration of uncertainty
issues such as driving risk in learning-based driving decision methods. The research in this
paper constructs an intersection driving scenario in RoadRunner simulation software and
conducts experiments to verify the effectiveness of the proposed method. The main work
of this research paper is as follows.

1. Using a driving simulation platform, a typical intersection driving scenario is estab-
lished and used for training and testing of reinforcement learning for autonomous
driving;
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2. Based on the Bayesian probability theory, this paper proposes a vehicle driving risk
assessment method for intersection driving scenarios and incorporates the method
into a learning-based driving decision method;

3. To improve driving safety, this paper proposes a driving policy learning algorithm
based on state-action value distributed deep q-networks and introduces an attention
network based on state information;

4. This paper is divided into six main sections. Section 1 is an introduction that describes
the research background of this paper and the current state of research on rule-based,
risk assessment, and learning-driving decision methods. Section 2 introduces the
intersection driving scenario constructed by this paper’s research using a driving
simulation platform. Section 3 introduces the vehicle driving risk assessment method
based on the Bayesian probability theory for the intersection scenario proposed in this
paper. Section 4 presents a driving strategy learning algorithm based on state-action
value distributed deep q-networks proposed in this paper, in which the relevant state
space, action space, reward function, and neural network are systematically analyzed
and designed. Section 5 is the experimental design and result analysis of this paper.
Section 6 is the summary and outlook of this paper. This chapter summarizes the
research results and shortcomings and looks toward future work.

2. Simulation Environment

In this paper, we study vehicle driving strategies in intersection scenarios through
deep reinforcement learning methods. As a self-learning method, reinforcement learning
requires an intelligent body to interact continuously with the environment in order to
continuously learn strategies and achieve specific goals. In this paper, we simulated the
vehicle driving environment using the RoadRunner simulation software in MathWorks.
This software can simulate various real-world traffic scenarios and also supports developers
in building custom driving scenarios and interaction behaviors by writing scripts to help
developers test and optimize autonomous driving algorithms and promote the progress
of autonomous driving technologies. As one of the most complex traffic environments
and accident-prone traffic scenarios, intersections also present complex and diverse causes
of traffic accidents, but according to relevant studies, driver error is one of the most
important causes. According to statistics, about 96% of traffic accidents are caused by
driver’s misoperation, such as misunderstanding of traffic signs, negligence, and violation
of traffic rules [29]. Therefore, considering the impact of driver misoperation with other
vehicles in the scenario on the intelligent vehicle, the intersection scenario under study is
assumed to be an unprotected intersection in this paper.

2.1. Experimental Scene Construction

The complexity of an intersection scenario comes from its dense traffic flow and
complex traffic conditions. Therefore, the intersection simulation design requires careful
consideration of various factors. In order to improve the simulation effect of the experiment
and enhance the generalization ability of the intelligent driving strategy obtained from
the training, the intersection scenario designed in this paper is a cross-shaped intersection
connecting eight roads from different driving directions, and each road contains two parallel
sub-lanes in the same direction, as shown in Figure 2. As shown in Figure 2, this paper sets
the starting and ending points of intelligent vehicles according to three path scenarios of the
left turn, straight ahead, and right turn. Other vehicles around are randomly generated in
the lane at a random speed and pass through the intersection. The intelligent vehicle needs
to learn to pass the intersection safely and efficiently in the designed intersection scenario.

This study proposes a hierarchical framework for vehicle motion behavior control
for the intersection scenario. The intelligent drive model (IDM) controls the surrounding
vehicles in the intersection scenario. However, this model only considers the interaction
of vehicles within the same lane. Therefore, this paper studies the need to pay special
attention to avoid lateral collisions with surrounding vehicles when constructing intersec-
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tion scenarios. We used the following simplification strategy in building the scenario to
address this issue: by using a fixed speed model, each surrounding vehicle predicts the
position of its neighboring vehicle in the next 3 s, and when a risk of collision with the
neighboring vehicle is detected, it decides whether to yield or not based on the priority
of the road and the braking performance until the risk of collision is eliminated. Yielding
is essential to traffic law in that it helps ensure safe traffic flow and prevents accidents.
The lower-level model also designs speed and steering controllers that enable surrounding
vehicles to travel according to the target speed given by the upper-level control model and
the target lane.

  
(a) (b) 

Figure 2. Intersection simulation environment: (a) left turn and straight ahead; (b) right turn and
straight ahead.

A hierarchical framework is used for the control of the motion behavior of intelligent
vehicles, with the upper layer being the driving policy managed by the deep reinforcement
learning model and the lower layer being responsible for controlling the controllers for
longitudinal and lateral motion, respectively, which together with the surrounding vehicles
form the entire control system.

2.2. Vehicle Behavior Control

In this study, the driving motions of the intelligent vehicle and its surrounding vehicles
are managed by a hierarchical control framework. The IDM model in the upper layer of the
surrounding vehicle framework manages the longitudinal driving behavior.

In the environment constructed in this paper, the surrounding vehicle uses a simple
model that matches the actual driving behavior, which influences the acceleration and
steering of the vehicle. Among them, the IDM model, as a typical representative of the
microscopic model, is used to achieve collision avoidance following driving. Therefore, the
longitudinal behavior of the surrounding vehicles is controlled by the IDM model, whose
longitudinal acceleration is given by the IDM model [30].

.
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In the equation, v and
.
v represent the travel speed and acceleration of the surrounding

vehicle, respectively; a is the maximum acceleration of the surrounding vehicle; d denotes
the relative distance between the surrounding vehicle and the vehicle in front of it; δ is
the acceleration index; v0 is the desired target speed; and d∗ is the desired target relative
distance. Where d∗ is influenced by the vehicle ahead.
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where d0 represents the safe distance from the vehicle ahead; T represents the driver’s
reaction time; Δv represents the relative speed difference with the vehicle ahead; and b
represents the maximum deceleration rate of the vehicle.

In this paper, the relative velocities and distances in the IDM model are predefined
to induce velocities and accelerations within each time step. The default parameters are
set as follows: maximum acceleration a = 6 m/s2; maximum deceleration b = −5 m/s2;
acceleration index δ = 4; relative safety distance d0 = 10 m from the vehicle in front; and
driver’s reaction time T = 1.5 s.

In the environment constructed in this study, the intelligent driving vehicle motion
control system consists of a decision layer and a control layer. The decision layer uses
deep reinforcement learning algorithms to generate driving decisions based on the input
environmental information to determine the driving behavior of the intelligent vehicle
(including accelerating, decelerating, and maintaining the current state). The control layer
uses the relevant speed controller to realize the intelligent vehicle driving according to
the target speed given by the decision layer. The following mathematical expression can
represent its relevant mathematical model.

vtarget = v + iΔv (3)

where vtarget represents the target driving speed that the intelligent vehicle needs to achieve
through acceleration or braking behavior; v represents the current driving speed of the
intelligent vehicle; i represents the speed variation coefficient, i = 1 when the decision
layer determines the driving behavior as acceleration, i = −1 when deceleration, otherwise,
i = 0; Δv represents the amount of speed variation under intelligent vehicle control, which
is related to the policy frequency of the algorithm to influence the accuracy of intelligent
vehicle control.

The above is the upper framework of the motion behavior control framework for
intelligent vehicles and surrounding vehicles in the environment constructed in this paper;
the upper framework determines the driving behavior, and the lower layer controls the
vehicle driving through the motion controller according to the determined driving behavior.

2.3. Vehicle Motion Control

In the environment constructed in this paper, the framework for controlling the
motion behavior of intelligent vehicles and surrounding vehicles is divided into two
frameworks: the upper and lower. Among them, the lower framework is the vehicle
motion controller, which is responsible for controlling the vehicle motion according to
the driving behavior and target driving speed determined by the upper framework and
the target lane. The motion controller is a longitudinal controller, where the longitudinal
controller uses the control strategy of a proportional–integral–differential controller with
the following mathematical expressions.

a = Kp × (vt − v) + Ki × (
∫

(vt − v)dt) + Kd ×
d(vt − v)

dt
(4)

where a represents the vehicle’s acceleration; v represents the vehicle’s travel speed; vt is
the reference speed; and Kp, Ki, and Kd are the proportional, integral, and differential gains
of the controller, respectively.

In the experimental scenario constructed in this paper, the intelligent vehicle and
the surrounding vehicles realize the driving control of the vehicle through the designed
two-layer control framework. In this experimental environment, the intelligent vehicle will
master how to achieve safe and efficient driving in the designed scenario by continuously
trying and learning.
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2.4. Experimental Scene Setting

In order to increase the diversity of cases in the experimental scenario and enhance
the simulation effect and the generalization of the derived driving strategies, multiple
other surrounding vehicles are set up by the scenario characteristics when constructing
the experimental scenario in this paper; these surrounding vehicles follow the hierarchical
vehicle motion behavior control framework proposed above to drive in the scenario.

The intersection scenario has a high traffic flow density and a more complex traffic
situation scenario. The intersection scenario designed in this paper includes a cross-shaped
intersection and several other surrounding vehicles. The designed intersection connects
eight roads from different driving directions, and each road contains two parallel sub-lanes
in the same direction, roughly ranging from a 50 m × 50 m square area. Specifically, the
intersection scenario designed in this paper includes the following.

1. Intelligent vehicles are generated from the starting point at the beginning of the
simulation at a speed of 7 m/s and travel along the road toward the set end point;

2. In the intersection scenario designed in this paper, two to three surrounding vehicles
are set up at each road bordering the intersection. The peripheral vehicles are gener-
ated and driven at random locations on the road with a random speed in the interval
of [0 m/s, 9 m/s];

3. Considering the characteristics of the intersection scenario and the driving task that
the intelligent vehicle needs to complete, this paper sets the termination conditions
for each round of the intelligent vehicle training process in the intersection scenario
as follows: the intelligent vehicle collides, the intelligent vehicle reaches the endpoint,
or the driving time reaches 30 s.

3. Vehicle Driving Risk Assessment Methods for Intersection Scenarios

Intersection scenarios are among the most complex and high-risk traffic scenarios.
Therefore, it is challenging to propose an evaluation method that can robustly and correctly
assess vehicle driving risk. In this paper, we assume that the intersection scenario under
study is an unprotected intersection and design a vehicle driving risk assessment method
for the intersection scenario based on the Bayesian probability theory, which has good
robustness and applicability.

3.1. Scene Analysis

Intersection scenarios are more complex than other scenarios. However, the structured
characteristics of the road network environment, road markings, and traffic regulations
make it possible to predict the movement patterns of vehicles within intersection scenarios
in advance. For example, by identifying the vehicle’s position on a digital map, the vehicle’s
driving motive can be inferred. Therefore, this research paper determines a limited future
driving path of a vehicle based on its location, intersection geometry, and topological
features by projecting the vehicle in the intersection scene onto a digital map, as shown in
Figure 3. In the figure, a finite set of future paths of the vehicle is given as it passes through
the intersection, and the proposed method uses this finite set to identify potential threats.

When an autonomous vehicle passes through an intersection, it predicts the future
path for all vehicles within the scenario. Furthermore, to achieve the main task of safely
crossing the intersection, the autonomous vehicle pays special attention to the vehicles
with intersection points with its predicted path and refers to them as relevant vehicles.
In this process, the autonomous vehicle identifies the locations of the intersection points
on the path of the relevant vehicles. It pays attention to the kinematic information of the
relevant vehicles. All remaining vehicles are subsequently defined as irrelevant vehicles,
as they do not threaten the autonomous vehicle, so they are not evaluated to improve the
efficiency of the computation. Finally, the information on the relevant vehicles is used
by the autonomous vehicle to evaluate the possibility of a collision when crossing the
intersection in the current motion state.
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Figure 3. Projecting the vehicle onto the digital map.

The potential threat identification schematic in the intersection scenario is shown
in Figure 4. In the figure, yellow, orange, and blue vehicles represent intelligent, related, and
unrelated vehicles, respectively. The intelligent vehicle and related vehicles are represented
by a and ri, respectively, where i denotes the serial number of the related vehicle. The red
area in the figure is the potential collision area, which indicates the area where the relevant
vehicle’s possible future path intersects with the intelligent vehicle’s future path. In the
study, the potential collision regions are denoted by cj, where j denotes the serial number
of the potential collision domain by distance on the future path of the intelligent vehicle. In
addition, each potential collision region cj has a safety line and an end line corresponding
to the intelligent driving vehicle and the related vehicles. In the risk assessment process,
the probability of a two-vehicle collision is evaluated using the time when the intelligent
vehicle and the related vehicle drive into the safety zone and out of the end line. v indicates
the driving speed of the corresponding vehicle.

Figure 4. Potential threat identification.

3.2. Vehicle Driving Risk Evaluation Metrics for Intersection Scenarios

For the intersection scenario, this study uses time to enter (TTE) to evaluate the driving
condition of intelligent vehicles through the intersection scenario. The TTE indicates the
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time that the vehicle continues to travel in its current state of motion from its current
position until it enters the collision zone. The calculation process is as follows.

tTTE
j =

√
2aAVdj + vAV

2 − vAV

aAV
(5)

In the above equation, tTTE
j denotes the TTE value of the intelligent vehicle relative

to the potential collision region cj; aAV denotes the acceleration of the intelligent vehicle;
dj denotes the distance of the intelligent vehicle from its current position along the road
curvature to the safety line corresponding to the potential collision region c; and vAV
denotes the travel speed of the intelligent vehicle. However, the existence of an intersection
region between the future path of the vehicle in question and the future path of the
intelligent driving vehicle does not necessarily mean that a collision will occur between
them. Therefore, assessing the driving risk in the current traffic environment requires using
the kinematic information of the intelligent vehicle and the related vehicle to determine
the possibility of collision in the corresponding potential collision region. In this study, we
use the temporal overlap of intelligent and related vehicles through the potential collision
region to determine whether they will collide in the corresponding potential collision
region. The mathematical expression of this temporal overlap degree is as follows.⎧⎪⎨⎪⎩ ts

j =

√
2ads

j+v2−v

a

te
j =

√
2a(de

j+l)+v2−v

a

(6)

In the above formula, ts
j indicates the time when the vehicle drives into the safety

line corresponding to the potential collision area cj; te
j indicates the time when the vehicle

drives out of the end line corresponding to the potential collision area cj; ds
j is the distance

when the vehicle drives from the current position along the road curvature to the safety line
corresponding to the potential collision area cj; de

j is the distance when the vehicle drives
from the current position along the road curvature to the end line corresponding to the
potential collision area cj; v is the current driving speed of the vehicle; a is the acceleration
of the vehicle; and l is the body length of the vehicle.

By substituting the information of the map, the intelligent vehicle, and the related
vehicles into Equation (6), we can obtain the time intervals [t sAV

j , teAV
j ] and [t sSV

j , teSV
j ] that

the intelligent vehicle and the related vehicles pass in the potential collision region cj. By
analyzing the overlap of these two-time intervals, we can determine whether a collision
occurs between the intelligent vehicle and the vehicle of interest in the potential collision
region cj. According to the different temporal arrangements of tsAV

j , teAV
j , tsSV

j and teSV
j , we

can classify them into six cases, as shown in Figure 5. Except for the cases of 5© and 6©, there
is an overlap of time intervals between the intelligent vehicle and the related vehicle in
passing the potential collision area cj, and the intelligent vehicle needs to make reasonable
driving decisions to avoid the collision. In the cases of 5© and 6©, there is no time interval
overlap between the intelligent vehicle and the related vehicle in passing the potential
collision area cj, and the intelligent vehicle can pass safely.

  

Figure 5. Cont.
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Figure 5. Classification of TTE sequence arrangement in the collision area.

The time overlap between the intelligent vehicle passing through each potential colli-
sion area and the related vehicle passing through the potential collision area is calculated
and analyzed to determine whether a collision will occur in each potential collision area for
the intelligent vehicle. In the case of a collision, the driving risk of the intelligent vehicle
regarding the potential collision region cj is evaluated based on the value of tTTE

j .

3.3. Risk Probability Reasoning

In the intersection scenario, this paper assesses vehicle driving risk by defining three
risk levels associated with tTTE

j values. These three risk levels represent the risk levels
associated with the likelihood of a collision, as shown below.

zj ∈ Z = {Dangerous, Attentive, Sa f e} = {D, A, S} (7)

where zj is defined as a random variable that represents the risk level of the intelligent
vehicle in the potential collision area cj with relevant vehicles. In order to determine the
boundaries of these three risk levels, two thresholds td and ta are defined, which represent
the TTE value thresholds for the “dangerous” and “attentive” risk levels, respectively. Ac-
cording to the international safety standards [31,32] and vehicle tracking performance [33],
TD and TA are defined as 4 s and 7 s, respectively. In addition, to consider the uncertainty
in the driving scenario, we introduce the uncertainty measure σt when constructing the
likelihood function. tTTE

j is defined as follows:

p(tTEE
j |zj = D) �

⎧⎨⎩ exp(− (tTEE
j −td)

2

2σt2 ), for tTEE
j > td

1, otherwise

p(tTEE
j |zj = A) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp(− (tTEE

j −td)
2

2σt2 ), for tTEE
j < td

exp(− (tTEE
j −ta)

2

2σt2 ), for tTEE
j > ta

1, otherwise

p(tTEE
j |zj = S) �

⎧⎨⎩ exp(− (tTEE
j −ta)

2

2σt2 ), for tTEE
j < ta

1, otherwise

(8)

In this paper, based on the assumption that the prior probability of vehicle risk level
P
(
zj
)

follows a uniform distribution, the Bayesian probability theory is used to determine
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the probability distribution of each risk level of an intelligent vehicle for a potential collision
area cj under a given traffic situation, which is calculated as follows.

P(zj|tTEE
j ) =

p(tTEE
j |zj) · p(zj)

∑
zj∈Z

p(zj) · p(tTEE
j |zj)

(9)

This paper uses a numerical approach to measure the degree of the risk level. Precisely,
values 2, 1, and 0 denote the different risk levels. Therefore, this paper defines the risk level
value ε, which is defined as follows.

ε ∈ Z = {Dangerous, Attentive, Sa f e} = {2, 1, 0} (10)

Based on the calculated probability distribution of each risk level of the intelligent
driving vehicle regarding the potential collision area cj and the expected risk level value εcj

of the intelligent driving vehicle regarding the potential collision area cj can be calculated
at the current moment, and the calculation process is as follows:

εcj = ∑
ε∈{2,1,0}

ε · P(zj|tTEE
j ) (11)

In an intersection scenario, the threat to the intelligent vehicle may come from multiple
possible future paths of multiple related vehicles. For example, in Figure 4, the related
vehicle r1 may have multiple future paths before entering the intersection. However, only
the straight-ahead path intersects with the planned path of the intelligent vehicle. Therefore,
the possibility of the future trajectory of the relevant vehicle also needs to be considered
when assessing the driving risk of the intelligent vehicle. In addition, the intelligent vehicle
will pass through each potential collision area in turn when passing through an intersection.
In this process, the level of attention of the intelligent vehicle to each potential collision
area is not equal. In order to measure the overall expected risk level value of the intelligent
vehicle in the intersection scenario, the relevant vehicle trajectory likelihood weight wj and
the recession factor γ are introduced, as follows:

εrisk =

n
∑

j=1
γj−1wjεcj

n
∑

j=1
γj−1wjεmax

(12)

where εrisk represents the overall expected risk level value of the intelligent vehicle in the
intersection scenario. wj represents the future trajectory possibility of the relevant vehicle
corresponding to the potential collision region cj. In this paper, we assume that multiple
future trajectories of the relevant vehicle follow a uniform distribution. γ ∈ [0, 1] is the
attenuation factor used to balance the potential collision region that is about to be passed
and the potential collision region that will be passed in the future—the importance of the
potential collision area. When γ is close to 0, the risk assessment method will pay more
attention to the potential collision areas that are about to pass by; when γ is close to 1, the
risk assessment method will pay more attention to the potential collision areas that are
about to pass by in the future.

4. Intelligent Driving Decision Algorithm Based on Deep Reinforcement Learning

4.1. Deep Q-Network Learning Based on State-Action Value Distribution

Q-learning-based algorithms suffer from the problem of overestimation due to valu-
ation errors, which can lead to a significant bias in the final obtained algorithmic model
and result in degraded algorithm performance. To solve this problem, H. V. Hasselt et al.
proposed the theory of double Q learning and applied it to the Deep Q-Network (DQN)
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learning algorithm [34]. The Double Deep Q-Network (DDQN) learning algorithm solves
the overestimation problem by decoupling the selection of the target Q-value action and the
computation of the target Q-value. Although the DDQN algorithm improves the algorithm
performance by optimizing the computation of the target Q-value, there are still exceptional
cases during the learning process, such as when an intelligent body chooses an action
that may be accompanied by a significant risk to obtain a greater reward return. This
situation is perilous and is manifested in the intelligent vehicle driving strategy learning
process, as the intelligent vehicle may improve driving efficiency by driving dangerously.
Therefore, safety should be considered along with reward maximization in the intelligent
vehicle policy learning process. To this end, this paper uses a state-action value distributed
deep Q-network-based learning algorithm distributional DQN learning algorithm through
which optimal driving strategies for intelligent vehicles are derived.

The distributional DQN learning algorithm aims to improve the estimation of the
distribution of possible rewards, making learning more stable when combined with a
neural network. Specifically, the distributional DQN algorithm transforms the estimation
of Q-values into a probability distribution so that the intelligent body can choose the best
action based on the probability of Q-values for different actions. This change not only
allows the intelligence to effectively perceive the risks present in the environment and
improve the exploration of the environment, it also allows the intelligence to avoid risks
when deciding on actions effectively, and the intelligence is more inclined to choose the
action with a better worst-case scenario rather than just choosing the action with a larger
Q-value. The basic structure of the distributional DQN algorithm used in this paper is
shown in Figure 6.

Figure 6. Framework of the distributional DQN algorithm.

In the distributional DQN algorithm used in this paper, the neural network’s output is
the probability distribution of Q-values for each action, as shown in Figure 7. In the figure,
the x-axis represents the normalized Q-values, and the y-axis represents the probability
that the intelligence achieves the corresponding Q-value after taking action. To model the
Q-value distribution, we use a discrete distribution represented by parameters N ∈ N and
Vmax, Vmin ∈ R. In parameterizing the distribution, the range of Q-value taking [Vmin, Vmax]
is discretized into N branches and divided into N − 1 equal branching sets, and each is
represented as follows:

{zi = Vmin + iΔz; 0 ≤ i < N, Δz =
Vmax − Vmin

N − 1
} (13)
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Figure 7. Example output of expected future earnings in the distributional DQN.

The branch set is fixed, and the neural network outputs the probability that each action
Q-value takes the current branch value. Therefore, the Q-value of each action is calculated
as follows:

Q(st+1, a) =
N−1

∑
i=0

zi pi(st+1, a) (14)

The neural network of the distributional DQN algorithm takes the predicted Q-value
distribution as the output. Accordingly, the training target should be obtained as a distribu-
tion as well. Therefore, the Bellman update for each branch is calculated as follows:

T zi = rt + γzi (15)

After the Bellman update calculation, there may be cases where the distribution takes
values outside the range of the original distribution. In order to obtain the target probability
distribution

(
mj, i = {0, · · · , N − 1}

)
for each branch, the distribution T zi needs to be

projected onto the branch of T zi. The specific procedure is as follows:

ΦT zi =
N−1

∑
j=0

⎡⎣1 −

∣∣∣[T zj
]Vmax

Vmin
− zi

∣∣∣
Δz

⎤⎦1

0

pj (16)

In the distributional DQN algorithm, since both the estimation network and the target
network use the distribution as the output, this paper uses a measure of the similarity
between the two distributions as the loss. Therefore, the loss function of the Distributional
DQN algorithm can be implemented by calculating the cross-entropy term of the Kullback–
Leibler divergence. Precisely, the loss function is calculated as follows:

L = −
N−1

∑
i=0

mi log pi(st, at) (17)

The distributional DQN algorithm has the same structure as the DQN algorithm,
including empirical recall and a separate target network, and uses a sampling process
with an ε-greedy strategy. However, the neural network output of the distributional DQN
algorithm is no longer a Q-value function for each action but a probability distribution
of Q-values for each action. This makes the action selection of the distributional DQN
algorithm based on the ε-greedy strategy of expected Q-values. In the DQN algorithm, the
Q-network is trained with the mean squared deviation as the loss function by finding the
action corresponding to the maximum Q-value in the estimation network. However, the

81



World Electr. Veh. J. 2023, 14, 79

distributional DQN algorithm trains the network with KL divergence as the loss function
by finding the action that corresponds to the best probability distribution of Q values in the
estimation network. This change allows intelligence to use the probability distribution of
Q-values to provide more information in action decision-making. In specific risk scenarios,
the intelligence is more inclined to choose the action with less variance or a better worst-
case scenario rather than just choosing the action with a larger Q value. Such a strategy
allows intelligence to deal with uncertainty more robustly and improve its performance in
risky environments.

4.2. Structure of the Intelligent Driving Decision Algorithm

In this paper, we propose an intelligent vehicle driving decision learning algorithm
based on the deep reinforcement learning method by considering the vehicle driving risk
approach and the Distributional DQN learning algorithm proposed above. The algorithm
consists of three components: a perception layer, a decision layer, and a control layer.
The perception layer fuses information from the intelligent vehicle and the surrounding
environment as input and constructs it as a deep reinforcement learning state space. The
decision layer uses a deep neural network to output driving decision commands. Finally,
the control layer implements the longitudinal control of the intelligent vehicle using a PID
model to control the vehicle according to the decision commands outputted by the decision
layer. Combining the above descriptions, the structure of the intelligent driving decision
algorithm in this paper is shown in Figure 8.

Figure 8. Intelligent driving decision algorithm framework.

4.3. Markov Decision Process for Intelligent Driving

In this study, the driving decision problem of an intelligent vehicle is studied by
describing it as a Markov decision process. In this process, the intelligent vehicle decides its
action at the next time step based on the current state and is rewarded accordingly. For the
driving decision problem in the straight ahead and intersection scenarios, this paper uses
the tuple (S,A, R, γ) to describe its Markov decision process. where s ∈ S is the intelligent
vehicle state space, a ∈ A is the action space, R is a model on immediate rewards r(s, a, s′),
and γ ∈ [0, 1] is a discount factor for delayed rewards, which is used to reduce the weight
of distant rewards when balancing the importance of current and future rewards.

4.4. State Space

This paper proposes a deep-reinforcement-learning-based algorithm for intelligent
vehicle driving decision-making. The algorithm describes the intelligent vehicle driving
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decision problem as a Markov decision process and represents it by a quadratic group
(S,A, R, γ). In the intelligent vehicle driving decision algorithm proposed in this paper, the
state information represents the environmental information perceived by the intelligent
vehicle and the changes caused by its actions. Therefore, the state space designed in this
study contains the location information, driving state information, and environmental
information of the intelligent vehicle and other vehicles around it. Among them, the
joint state information of the autonomous vehicle s0 and the location and driving state
information of the surrounding N other vehicles are represented as follows:

sv = (sk)k∈[0,N], sk = [xk yk vx
k vy

k ax
k ay

k yawk]
T

(18)

where x and y represent the position of the vehicle along the lateral and longitudinal axes
of space, respectively; vx and vy represent the velocity of the vehicle along the lateral
and longitudinal axes of space, respectively; ax and ay represent the acceleration of the
vehicle along the lateral and longitudinal axes of space, respectively; and yaw represents
the direction of vehicle travel.

Using such a representation minimizes the traffic information in the information
representation environment. However, this representation has two problems. First, the
dimensionality of its information vector varies with the number of vehicles present in the
environment, which is detrimental to the approximation of an input function that expects a
constant size. Second, driving decisions trained using this form are affected by the order in
which the information about other states around the scene is arranged. This leads to a lack
of some generalizability of the derived driving strategies. Therefore, when designing the
state space, the filtered state information must be processed to ensure its formal and logical
uniformity to improve the universality of the driving decisions derived in this paper.

In order to ensure the uniformity of the designed state space form and to guarantee the
constant length of the output state information vector, this paper preprocesses the filtered
state information. Specifically, as shown in Figure 9, the map information is gridded, and
the vehicle state information in the environment is represented in the grid as a tensor.
This processing not only ensures the stability of the state space structure but also makes
the intelligent vehicle better perceive the relative position relationships of other vehicles
around. At the same time, to learn a more general driving strategy, the designed state space
must ensure that the state information has logical uniformity. Therefore, this paper takes
the center of the intelligent vehicle as the origin and defines the state information of other
surrounding vehicles as the position information and motion state information relative to
the intelligent vehicle. The specific state information definition is shown in Table 1.

 

Figure 9. Vehicle status information pre-processing process.
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Table 1. Definition of vehicle status information.

Status Information Scope (Unit) Description

xk [−200, 200] (m) Relative distance along the longitudinal axis to the intelligent vehicle

yk [−200, 200] (m) Relative distance along the transverse axis to the intelligent vehicle

vx
k [−40, 40] (m/s) Relative intelligent vehicle travel speed along the longitudinal axis

vy
k [−40, 40] (m/s) Relative intelligent vehicle travel speed along the transverse axis

ax
k [−8, 8] (m/s2) Acceleration of travel along the longitudinal axis relative to the intelligent vehicle

ay
k [−8, 8] (m/s2) Acceleration of travel along the transverse axis relative to the intelligent vehicle

yawk [−π, π] (rad) Vehicle direction of travel

The road information in the state space follows the same formal and logical consistency
described before. Specifically, the process is shown in Figure 10 by representing the road
information in the form of 0 and 1 in the grid to ensure the uniformity and logical uniformity
of the road information in the state space.

Figure 10. Map status information pre-processing process.

In summary, the state space in the study of this paper is the set of the joint state
information of the position information, motion state information, and road information
of the vehicles in the environment, and the state information of the environment at the
moment is represented as follows (Figure 11):

st = {sm, sv} (19)

 

Figure 11. Environment status information.
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4.5. Action Space

As an intelligent vehicle passes through an intersection, the intelligent vehicle can
adjust the throttle and brake operations to accelerate, decelerate, or maintain a constant
speed for safety, depending on the surrounding traffic environment. Therefore, the action
space of the intersection driving decision learning algorithm is defined as three speed-
related operations: acceleration, deceleration, and constant speed driving.

4.6. Reward Functions

Reinforcement learning aims to maximize the designed reward function by seeking
a strategy. Therefore, an appropriate reward function must be designed for an intelligent
body that accomplishes a specific task. In this paper, the intelligent vehicle must drive
safely and efficiently in an intersection scenario. To solve the reward sparsity problem,
we decompose the target task of the intelligent vehicle into multiple sub-goal tasks with
appropriate rewards or penalties to ensure that the intelligent vehicle can receive timely
feedback at each time step. Therefore, in this paper, the goal task is decomposed into
the following subgoal tasks: avoid the collision, drive at high speed, and try to ensure
minimum driving risk. Based on this sub-goal task, we define the primary reward function
as follows:

rtotal = λ1rcollision + λ2rrisk + λ3rvelocity (20)

where rcollision denotes the penalty for a collision of an intelligent vehicle; rrisk is the reward
for the driving risk of an intelligent vehicle based on the current traffic environment
assessment; rvelocity is the reward for evaluating the driving efficiency of an intelligent
vehicle; λ1, λ2, and λ3 denote the relative weight coefficients of the reward functions
rcollision, rrisk, and rvelocity in the total immediate reward, respectively.

The penalty function rcollision for a collision of an intelligent vehicle is defined
as follows:

rcollision =

{
1
0

if ego vehicle collides
otherwise

(21)

In order to ensure the safety of intelligent driving vehicles and avoid possible collisions,
intelligent vehicles should assess the risk level of their driving state according to the
surrounding traffic environment and adjust their driving strategies accordingly. Therefore,
this paper designs a reward function rrisk based on the risk assessment of the current
driving state of the intelligent vehicle based on the vehicle driving risk assessment method
based on the Bayesian probability theory proposed in Section 3, defined as follows:

rrisk = 1 − εrisk
εmax

(22)

where εrisk denotes the intelligent vehicle’s expected driving risk level value at the current
time step and εmax denotes the defined maximum risk level value.

In this paper, it is proposed that excessive conservatism should be avoided in the
driving safety of intelligent vehicles because it may not only negatively affect the efficiency
of driving but also cause traffic accidents, delays, and gridlock [35]. Therefore, to maximize
driving efficiency while ensuring safety, this paper designs the reward function rvelocity on
driving efficiency, defined as follows:

rvelocity =

⎧⎪⎨⎪⎩
0 if vx < vmin

1 if vx > vmax
vx−vmin

vmax−vmin
otherwise

(23)

where vx represents the driving speed of the intelligent vehicle in the road direction; vmax
and vmin represent the maximum desired speed and the minimum desired speed of the
intelligent vehicle in the driving scenario studied in this paper, which is set to 9 m/s and
7 m/s, respectively, in this paper.
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The total immediate reward rtotal designed in this paper is the weighted sum of the
reward term λ1rcollision for collision avoidance, the reward term λ2rrisk for driving risk, and
the reward term λ3rvelocity for driving efficiency. Where λ1, λ2, and λ3 are the weighting
coefficients of the three reward terms in the total immediate reward. According to the
above, rcollision takes values between {0, 1}, rrisk takes values in the range of [0, 1], and
rvelocity takes values in the range of [0, 1], so the total immediate reward rtotal takes values in
the range of [λ1, λ2 + λ3]. In deep reinforcement learning, it is beneficial to use normalized
rewards [36]. Therefore, in this paper, the total immediate reward r_total is normalized
from the range of values [λ1, λ2 + λ3] to the range [0, 1] to normalize the total reward value
within each time step as shown below:

r =
rtotal − λ1

λ2 + λ3 − λ1
(24)

In setting the three reward weight coefficients λ1, λ2, and λ3, this paper avoids using
negative values as much as possible to avoid the situation in which the intelligent vehicle
chooses to pre-emptively end a training set by colliding with other vehicles around it to
avoid receiving large negative rewards. In this paper, the weight coefficient of the reward
function for the collision of the intelligent vehicle is set to −1. In addition, this paper
believes that intelligent vehicles should pay more attention to driving risk than driving
efficiency during driving, so the weight coefficients of the reward functions for driving risk
and driving efficiency are set to 0.3 and 0.2, respectively.

4.7. Neural Network Structure

The model in this study consists of a value function network containing an online
Q-value network and a target Q-value network with identical structures. The network’s
input comes from the state space, and the output is the distribution of state-action values.
This paper argues that intelligent vehicles should focus on the vehicles associated with
their driving rather than all the vehicles around them during driving. Therefore, this paper
proposes an attention network based on state information to realize this idea, as shown in
Figure 12. The network introduces a particular attention module consisting of two parts: a
channel attention module and a spatial attention module.

 
Figure 12. Structure of the attention network based on state information.

The attention network designed in this paper uses the state space S ∈ RC×H×W as
input, and the state information in each dimension of the state space is normalized and
processed by the channel attention module Mc ∈ RC×1×1 and the spatial attention module
Ms ∈ R1×H×W , as shown in Figure 13. The attentional process of the designed attentional
network can be summarized as follows.

S → Sn (25)

S′
n = Mc(Sn)⊗ Sn ⊗ Ms(Sn) (26)
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where ⊗ denotes element-by-element multiplication. Sn is the normalized state space.
In this study, the state information of each dimension of the state space S ∈ RC×H×W is
normalized by batch normalization. Mc(Sn) is the output of Sn after the channel attention
module Mc; Ms(Sn) is the final output of Sn after the spatial attention module Ms.

Figure 13. Attention network.

The channel attention module implements the channel attention mechanism by an-
alyzing the relationships between feature channels. Each information dimension in the
state space can be considered a channel, and each channel can be regarded as a feature
extractor. The channel attention module uses the attention mechanism to focus on mean-
ingful information dimensions, thus improving the model’s focus on essential features and
enhancing its expressive power. Woo et al. argue that average and maximum pooling,
which collect information about different object features, leads to more accurate channel
attention [37]. Therefore, in this paper, both averaging and maximum pooling methods
are used with reference to the above research work. The computation process of the two
attention modules is shown in Figure 14, and the two are computed as follows:

Mc(Sn) = σ(MLP(MaxPool(Sn)) + MLP(AvgPool(Sn)))
= σ(W1(W0(Sn

c
max)) + W1(W0(Sn

c
avg)))

(27)

Ms(Sn) = σ( f 3×3([AvgPool(Sn); MaxPool(Sn)]))
= σ( f 3×3([Ss

navg; Ss
nmax]))

(28)

where f 3×3 denotes a convolution operation with a convolution kernel size of 3 × 3.

Figure 14. Attention modules.
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The attention network designed in this paper uses the channel and spatial attention
modules to analyze the state information in the current driving scenario to determine
important information and the surrounding vehicles relevant to their driving. This attention
network helps intelligent driving vehicles understand their surroundings more accurately
and make more effective driving decisions.

5. Results

The algorithms studied in this paper are based on the implementation of PyTorch.
The learning framework and the models are trained using CUDA acceleration techniques.
CUDA is a parallel computing platform and programming model from NVIDIA that can
be used to accelerate high-performance computing applications based on NVIDIA GPUs.
The CUDA platform provides higher parallel computing performance than traditional
CPUs by distributing parallel computing work to the thousands of compute cores in the
GPU to achieve acceleration. All experiments in this chapter are conducted on the same
experimental platform. In this paper, the network is trained using the Adam optimizer,
and the network parameters are updated with the learning rate η. All hyperparameters are
detailed in Table 2.

Table 2. Network training hyperparameters.

Hyperparameter Value

Discount factor γ 0.99
Learning rate η 0.001

Experience replay memory size Mreplay 500,000
Number of empirically collected samples Mbatch 128

Target network update frequency F 10
Number of discrete branch points of Q-value distribution N 51

Q-value range [Vmin, Vmax] [−10, 10]

In this paper, based on the constructed experimental environment and the pre-set ex-
perimental platform, the algorithm is trained and evaluated through the network structure
and parameter settings.

5.1. Algorithm Performance Analysis

In this section, intelligent vehicles are trained to learn through the intersection scenario
designed in this study using the distributional DQN algorithm, DDQN algorithm, and
DQN algorithm, and with all of them using state information-based attention networks.
This paper uses the intersection passing rate and the standardized reward of the intelligent
vehicle in the scenario as quantitative metrics to verify the effectiveness and superior
performance of the driving decision algorithms in this study. Among them, the intersection
passing rate is defined as follows:

throughput rate =
n−9

∑
n

In(throughput = true)
10

(29)

Figure 15 shows the comparison of different quantitative metrics during the training
process for the distributional DQN algorithm, DDQN algorithm, and DQN algorithm. The
vertical axis indicates the specific values of the quantified metrics, and the horizontal axis
indicates the number of episodes in the training process.
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(a) (b) 

Figure 15. Intersection scenario training results: (a) average reward variation for the three methods
during training and (b) intersection pass rate variation for the three methods during training.

As shown in Figure 15, the intelligent vehicle trained with reinforcement learning
showed significant performance improvement in the intersection scenario. In the aspect of
reward value, the intelligent vehicle showed an apparent upward trend during the training
process, and all of them reached a stable state after a period of training; meanwhile, in the
aspect of the intersection passing rate, the intelligent vehicle showed a trend of gradual
improvement during the training process, which indicates that with the training process,
the intelligent vehicle gradually mastered the driving skills of passing the intersection as
the training process progressed.

As can be seen from the curves in Figure 15 regarding the intersection passing rate,
the collision rate curves of the intelligent vehicles using reinforcement learning show a
sudden drop during the rise. The analysis reveals that during the reinforcement learning
training process, the intelligent vehicle cannot fully explore the state-space aspect, so it will
prioritize the decision to increase the driving speed without colliding with the surrounding
vehicles to obtain a higher reward for driving efficiency. In this process, in order to obtain
higher driving efficiency, the intelligent vehicle will lead to frequent collisions. After
this, the intelligent vehicle learns the driving measures it should take when encountering
obstacles by fully exploring the environment. After experiencing the penalty of collisions,
the intelligent vehicle learns the driving skill of avoiding obstacles, which increases the
reward value. The above description shows that the reward function designed in this
study plays an influential guiding role in the training process of driving measures of
intelligent vehicles.

The experimental analysis conducted for the three algorithms in the intersection
scenario shows that the distributional DQN algorithm can converge to the optimal policy
relatively quickly. Specifically, the algorithm converged to the optimal policy at about 970
training rounds, much faster than the other two. Regarding the intersection passing rate,
both algorithms used in this study show a trend of gradually increasing the success rate of
intelligent vehicles passing the intersection. Specifically, after 1910 rounds, the intersection
passing rate of the intelligent vehicles trained with the distributional DQN algorithm
was stable at about 100%. In contrast, the intersection passing rate of the intelligent
vehicles trained with the DDQN algorithm was slightly lower during the training process,
stabilizing at around 80%. In comparison, the intersection passing rate of the intelligent
vehicles trained with the DQN algorithm was around 70%. These experimental results show
that the distributional DQN algorithm performs better in complex intersection scenarios
and can achieve the optimal strategy in a shorter time and a higher intersection passing rate.
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Under the experimental conditions designed in this section, the intelligent vehicles
are trained for 2000 episodes. To further verify the effectiveness of their strategies, we
create an independent test set with 100 episodes and the same environment settings as the
training process. The evaluation of the test set allows us to compare the differences in policy
effectiveness of the intelligent vehicles trained by different algorithms in the intersection
scenario in this section of the experiments. Table 3 shows the differences between the
average driving performance and intersection passing rate scenarios of the intelligent
vehicles using the distributional DQN algorithm, DDQN algorithm, and DQN algorithm
proposed in this paper during the testing process, indicating the relative rate of change.
Specifically, the average passing rate of the intelligent vehicle using the distributional DQN
algorithm proposed in this paper is 98% during the test, which is a 22% improvement
compared to the intelligent vehicle with the DQN algorithm. In addition, in terms of driving
efficiency, the average driving speed of the intelligent vehicle using the distributional DQN
algorithm proposed in this paper is 8.71 m/s during the test, which is 10.39% higher
relative to the intelligent vehicle with the DQN algorithm. The above results reveal that the
driving strategy derived using the distributional DQN algorithm proposed in this paper
has higher driving efficiency and intersection passing success rate than the DDQN and
DQN algorithms.

Table 3. Test results of using different algorithms in the intersection scenario.

Algorithm Passing Rate (%) Relative Rate of Change Δ (%) Average Speed (m/s) Relative Rate of Change Δ (%)

DQN 77 - 7.89 -

DDQN 86 9 ↑ 8.27 4.82 ↑
Distributional DQN 98 22 ↑ 8.71 10.39 ↑

Combining the above, the distributional DQN algorithm proposed in this paper out-
performs the DDQN algorithm and the DQN algorithm, enabling the trained intelligent
vehicles to master the driving strategies in intersection scenarios faster and better. This
research proposes a deep Q-network learning method based on state-action value distri-
bution to derive the best driving strategy for intelligent vehicles in intersection scenarios,
considering driving safety. The algorithm proposed in this paper reconstructs the neural
network to output each state-action’s value probability distribution. This change allows
the algorithm to predict expected returns more accurately than traditional deep Q-network
learning algorithms that rely on individual scalar value predictions and improves learning
stability. As an example, Figure 16 shows the process of finding an action through the state-
action value distribution for each state of the intelligent vehicle trained by the Distributional
DQN algorithm in an intersection scenario, where Ac, Dc, and Keep denote “accelerate,”
“decelerate” and “keep current state”, respectively. In this traffic situation, the intelligent
vehicle selects actions in the following order: Keep, Dc, Ac, and Ac. This further validates
that the proposed algorithm can help the intelligent vehicle avoid risky maneuvers and
make optimal driving decisions in scenarios where there are many uncertainties and risks.

The experimental results show that using deep reinforcement learning algorithms in
intersection scenarios enables intelligent vehicles to learn practical and intelligent driving
decisions. This approach of continuously exploring driving skills using deep reinforcement
learning algorithms using a reward function enables vehicles to learn more diverse driving
skills to deal with complex and random traffic environments and improve as the scenario
changes continuously.
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Figure 16. Intelligent vehicles make driving decisions through state-action value distribution.

5.2. Risk Assessment Method Analysis

The vehicle driving risk assessment method proposed in this paper applies continu-
ous risk assessment values to the reward function to avoid behaviors that may lead the
intelligent vehicle into higher-risk situations during training. This allows the intelligent
vehicle to become aware of driving behaviors that may lead the vehicle into dangerous
situations by penalizing them to different degrees when making driving decisions. How-
ever, even without using risk assessment methods, training an intelligent vehicle with
a reward function based only on collision penalties allows it to learn to avoid collisions
after some time. However, the driving strategy derived from this algorithm tends to put
the intelligent vehicle into a potentially dangerous driving state. Figure 17 shows the
driving risk states per second for successful test sets of intelligent vehicles using the driving
risk assessment method and the deep reinforcement learning driving decision algorithm
without the driving risk assessment method. It can be found that the intelligent vehicles
with driving strategies derived using the risk assessment method maintain a lower risk
state during driving, while the intelligent vehicles without driving strategies derived using
the risk assessment method are always at a higher risk state. In summary, applying risk
assessment methods can more accurately reflect the potential risks of intelligent vehicles in
driving scenarios and help intelligent vehicles find the best driving strategy in the current
driving environment.
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Figure 17. Intersection scenario test results: RA denotes that the algorithm uses a risk assessment
method; 0 denotes that the risk level is safe; 1 denotes that the risk level is attentive; and 2 denotes
that the risk level is dangerous.

5.3. Neural Network Structure Analysis

In this paper, to demonstrate the superiority of the state-information-based attention
network proposed in this paper, we designed experiments using the Distributional DQN
algorithm and a multilayer perceptron (MLP) neural network for reinforcement learning
training in an intersection scenario. In this section, the attention network and MLP network
were trained using the distributional DQN algorithm for reinforcement learning, and a
comparison of their training results is shown in Figure 18. In Figure 18, the horizontal
axis represents the number of episodes during training and the vertical axis represents the
round reward.

  
(a) (b) 

Figure 18. Training results of algorithms using different network structures: (a) using the attention
network and (b) not using the attention network.

The state-information-based attention network proposed in this paper contains a
channel attention module and a spatial attention module, which focus on the practical
information in state space and the spatial location of the practical information, respectively.
The channel attention module can help the intelligent vehicle identify critical state infor-
mation in the current driving scenario, such as relative speed information. In contrast, the
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spatial attention module can help the intelligent car identify which vehicles around it are
of importance to understand the surrounding environment. By analyzing the experimental
results of different network structures, we find that intelligent vehicles using the attention
network algorithm perform better than those using the MLP network algorithm.

The specific performance of the intelligent vehicle during the experiment also proves
that the intelligent vehicle with an attention network based on state information can
complete the driving task more safely in the complex intersection scenario. The specific
performance during the experiments is shown in Figure 18. In this paper, we use green-
width lines to connect the intelligent vehicle with the surrounding vehicles, and the width
of the connecting lines is proportional to the corresponding attention weights. The list on
the right side shows the attention weight ratio for each dimension of state information
output by the attention network. In Figure 19a, the intelligent vehicle has not yet entered
the intersection, the surrounding vehicles 1, 2, 3, and 4 are far away, and the destinations of
these vehicles are not yet precise. Therefore, the intelligent vehicle shows equal attention
to different dimensions of state information and these vehicles. In addition, for vehicles
that do not pose a threat, intelligent vehicles do not assign attention. In Figure 19b, the
direction of travel of vehicles 1 and 2, whose original destinations are uncertain, changes,
showing that vehicle 1 turns left and vehicle 2 goes straight, while vehicles 3 and 4 remain
far away from the intelligent vehicles and their destinations are unclear. Therefore, the
intelligent vehicle pays more attention to vehicles 1 and 2 than vehicles 3 and 4. As the
intelligent vehicle drove into the intersection, the attention level of the attention network
for map information increased. As the relative distance between vehicles 1 and 2 and the
intelligent vehicles on the x-axis gradually decreases, the attention network starts to pay
more attention to the state information in the x-axis direction.

Figure 19. Changes in attention distribution during driving in the intelligent vehicle. (a) The
intelligent vehicle has not yet entered the intersection.; (b) The intelligent vehicle has entered
the intersection.

In summary, this section demonstrates the superiority of attention networks based
on state information through experimental results. Introducing the attention mechanism
makes the algorithm training process more stable, it converges faster, and it improves
intelligence performance.

6. Conclusions

In this paper, a non-deterministic vehicle driving risk assessment method is proposed
for the intersection scenario and introduced into the learning-based intelligent driving
decision algorithm to derive an automated driving decision strategy with low expected
risk and high driving efficiency. According to the analysis of the experimental results, the
proposed algorithm can effectively derive a driving strategy with both driving efficiency
and safety in intersection driving scenarios. The designed risk assessment method can
improve driving safety while ensuring the driving efficiency of the intelligent vehicle. In
contrast, the designed attention neural network helps the intelligent vehicle perceive the
surrounding environment more accurately and identify important information related to its
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driving and the surrounding vehicles, thus improving the training stability of the algorithm,
enhancing the performance of the intelligent body, and accelerating the convergence speed.
The research in this paper is still an exploration of an ideal lane environment, where various
other driving scenarios exist in the actual traffic environment. Therefore, introducing the
idea of transfer learning to transfer knowledge or skills learned in a single scenario to other
environments, or transferring knowledge gained in virtual environments to real scenarios,
will be the direction of continued research in future work.
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Abstract: Lane-level route planning is a critical issue for a lane-level navigation system for au-
tonomous vehicles. Current route-planning methods mainly focus on the road level and applying
them directly to search for lane-level routes results in a reduction in search efficiency. In addition,
previously developed lane-level methods lack consideration for vehicle characteristics and adaptabil-
ity to multiple road network structures. To solve this issue, this study proposes an accelerated and
refined lane-level route-planning algorithm based on a new lane-level road network model. First,
five sub-layers are designed to refine the internal structure of the divided road and intersection areas
so that the model can express multiple variations in road network structures. Then, a multi-level
route-planning algorithm is designed for sequential planning at the road level, lane group level, lane
section level, and lane level to reduce the search space and significantly improve routing efficiency.
Last, an optimal lane determination algorithm considering traffic rules, vehicle characteristics, and
optimization objectives is developed at the lane level to find the optimal lanes on roads with different
configurations, including those with a constant or variable number of lanes while satisfying traffic
rules and vehicle characteristics. Tests were performed on simulated road networks and a real road
network. The results demonstrate the algorithm’s better adaptability to changing road network
structures and vehicle characteristics compared with past hierarchical route planning, and its higher
efficiency compared with direct route planning, past hierarchical route planning, and the Apollo
route-planning method, which can better support autonomous vehicle navigation.

Keywords: lane-level; road network model; route planning

1. Introduction

Navigation systems based on digital maps can help drivers or intelligent vehicles
choose the optimal route given an origin and a destination, and map and route planning are
two major parts of a navigation system [1,2]. The convenience and efficiency of navigation
technology are apparent, especially in complicated road and traffic conditions. Traditional
navigation systems affect driving behavior by notifying a driver using a display and
sound, which requires the driver to process the guidance information further and choose
a trajectory in real time. However, for autonomous vehicles, the navigation system can
provide more detailed guidance if it reaches the lane level, which can significantly relieve
the computational burden and reduce the risk of failure of real-time perception and decision
systems [3]. Lane-level localization is the basis for lane-level navigation. The global
navigation satellite system (GNSS) [4] is used in navigation systems; it can reach the
centimeter level in open areas with real-time kinematic (RTK) [5] technology. When the
signal is blocked, high positioning accuracy can be attained by camera-based [6] or LiDAR-
based [7] feature-matching technology. More details about localization are not discussed
here, but can be found in the literature.
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The map is a foundation for route planning. Traditional route planning only outputs
road-level routes and falls short of providing more delicate route guidance since it is based
on road-level maps, which lack the context of lane information. To meet the needs of lane-
level navigation for autonomous driving, route planning should output routes accurately
to the lane level, which relies on lane-level maps enhanced with lane-level details of the
environment, compared with road-level maps [8].

Many researchers have focused on the lane-level road network model, the mathe-
matical expression used to abstract and simplify an actual lane-level map. On the one
hand, various road network geometric models have been proposed, including polylines [9],
arc splines [10], clothoids [11,12], Cubic Hermite Spline [13], B-spline [14], and piecewise
polynomial curves [15]. They have achieved centimeter-level mapping accuracy. On the
other hand, the logical representation of lane-level road networks is developing rapidly.
In 2007, the DARPA Urban Challenge Road Network Definition File (RNDF) and Mission
Definition File (MDF) were used to define map and mission data [16]. Each road segment
in the map data contained multiple lanes represented by numerous waypoints, and some
waypoints were marked as entries or exits to build connections between the roads. Never-
theless, the model and information in the map files are too concise to express a complex
road environment. Bétaille et al. [12] established a one-way road and lane model for each
road and represented it with a centerline but ignored the intersection model, so the model
was not adapted for lane-level route planning. Jiang K et al. [3] designed a multi-layer
map model for lane-level route planning. However, the model could not express possible
changes in the number of lanes on the road (for example, when a road changes from three
to four lanes), which is a typical road network structure. Several map standards, such as
the Navigation Data Standard (NDS) [17] and OpenDRIVE [18], could be employed for
lane-level route planning. However, the standards store detailed map information, most
of which is not required for a given route-planning task. The direct application of these
standards to lane-level route planning lacks pertinence, flexibility, and efficiency.

Route planning in road networks is usually simplified to the shortest path problem
on a graph. According to whether the edge weights in the road network change with
time, route planning can be divided into two major categories: static route planning and
dynamic route planning. In static route planning, the edge weights do not change with
time, and the key to the problem at this point is how to search for the shortest path on the
graph structure of the road network. The shortest path algorithms applied to static route
planning include Dijkstra’s algorithm [19], Floyd’s algorithm [20], the A* algorithm [21],
the ant colony algorithm [22], and so on. The Dijkstra algorithm and Floyd algorithm
can find the global optimal route, but the number of iterations of the algorithm is high.
The A* algorithm uses a heuristic function to optimize the Dijkstra algorithm, but the
specific degree of optimization is closely related to the selection of the heuristic function.
The ant colony algorithm takes its inspiration from the natural biological environment
and is also known as the bionic intelligence algorithm. In addition, some scholars have
improved the above algorithms, for example, Xu et al. [23]. used a bidirectional search
strategy to improve the traditional A* algorithm as a way to speed up the efficiency of
the search. Lee et al. [24]. used a genetic algorithm to improve the ant colony algorithm
and proposed the IAACO algorithm, which improved the convergence performance and
optimal-solution-finding ability of the algorithm. Jiang et al. [25] proposed an intelligent
optimization algorithm of adaptive ant colony and particle swarm optimization to improve
efficiency. Lan et al. [26] proposed an improved algorithm based on the A* algorithm fused
with the ant colony algorithm to improve the convergence speed compared with the ant
colony algorithm. In dynamic route planning problems, some studies consider real-time
traffic conditions and model the uncertain edge weights [27–29]. The above algorithms
are all considered at the road level. When they are applied directly to the lane level, the
efficiency is greatly reduced due to the large increase in the number of vertices and edges,
especially in the large-scale road network, which makes it challenging to meet the real-time
requirements for autonomous driving. Heuristic rules and hierarchy structures have been
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exploited to realize efficient routing in large networks [30–32]. However, they focus on
road-level maps and do not reach the lane level. On the other hand, more factors should
be considered to plan the optimal lane-level routes, such as whether the routes involving
lane changing and turning operations meet vehicle characteristics and traffic regulations
and how to determine the best lane-level route on a road with a variable number of lanes.
Jiang K et al. proposed a seven-layer map structure and developed a hierarchical route-
searching algorithm to accelerate the planning process [3]. However, for one thing, the
algorithm lacked the adaptability to determine the optimal lanes on a road with variable
lane numbers; for another, the algorithm did not consider minimum allowable distance
constraints for vehicle turns and lane changes, which may lead to unreasonable results.

To sum up, an applicable road network model is needed as a foundation for lane-level
route planning. Specifically, this model should include the necessary traffic elements to
demonstrate lane-level details and express various road network structures while also being
simple enough for practical applications. Then, based on this map model, it is important a
lane-level route-planning method be provided that can improve the efficiency of existing
search algorithms in searching for lane-level routes and can find the optimal lane sequence
in various road network structures while satisfying traffic rules and vehicle characteristics.

The goal of this study is to design a route planning algorithm that is compatible with
existing graph search methods based on the designed multi-layer road network model,
which can find optimal lanes in changing road network structures and further improve
the existing methods’ efficiency when applied to lane-level route planning while also
satisfying traffic rules and vehicle characteristics. This study’s primary research content is
summarized in Figure 1. The main contributions are listed as follows:

1. A new road network model for lane-level route planning is proposed. The model is
divided into the road and intersection areas containing five sub-layers. The model can
express multiple road network structures and can facilitate more flexible, fine-grained,
and efficient route planning.

2. Based on the proposed road network model, an accelerated and refined lane-level
route-planning method is proposed. First, a multi-level route-planning algorithm is
designed for sequential planning at the road level, lane group level, lane section level,
and lane level, reducing the number of nodes and edges traversed and improving
routing efficiency. Then, an optimal lane determination algorithm considering traffic
rules, vehicle characteristics, and optimization objectives is developed to find the
optimal lanes at the lane level. The entire route-planning algorithm can remarkably
improve existing search algorithms’ efficiency in searching lane-level routes and
acquire optimal lanes satisfying traffic rules and vehicle characteristics on roads with
different structures, including those with a constant or variable number of lanes.

 

Figure 1. The main research content of this study.
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The rest of this paper is organized as follows. Section 2 introduces the proposed road
network model. Section 3 details the designed lane-level route-planning algorithm based
on the model. Experiments are performed on simulated road networks and an actual
road network to validate the route-planning algorithm, and the results and discussion are
presented in Section 4. Finally, conclusions are given in Section 5.

2. Lane-Level Road Network Modeling

A new lane-level road network model, which is the foundation of the lane-level route
planning elaborated upon later, is created in this section. The whole model consists of road
and intersection areas containing five sub-layers, which are used to refine the structures of
real roads and intersections. This multi-sub-layer modeling can express multiple variations
in the road network structure and be adapted to the multi-level route-planning algorithm
proposed in a later section.

The road network is expressed as follows:

G = (R, I) (1)

where G represents the complete road network, R describes the road area consisting of a set
of roads {rm}Nr

m=1, and I is the intersection area comprising a group of intersections {im}Ni
m=1.

2.1. Road Area
2.1.1. Road Layer

This article defines a set of lanes in the same direction on one road as a lane group.
When the lanes on the road have two opposite directions, the road has two lane groups; if
there is only a single direction, there is only one lane group. One road r is

r = (LG, qr, f , b) (2)

where LG is a set of lane groups {lgm}
Nlg
m=1, qr represents common road attributes such as

length, class, and type, and f and b indicate the intersection entering and leaving this road.

2.1.2. Lane Group Layer

One lane group in a road can be expressed as

lg = (LS, isequal) (3)

where LS is a set of lane sections {lsm}Nls
m=1, and one lane section is defined as a unit for

which the number of lanes is constant. isequal can be 1 or −1, where 1 means that the
lane group’s direction is the same as the forward direction defined by the road, and −1 is
the opposite.

2.1.3. Lane Section Layer

One lane section in a lane group is

ls = {lm}Nl
m=1 (4)

where {lm}Nl
m=1 is a set of lanes.

2.1.4. Lane Layer

One lane in a lane section can be characterized as

l = (seq, pre, suc, Pgeo, Pattr, q) (5)

where seq denotes the sequence number of l in ls; starting from the lane closest to the road
centerline, the serial number increases from 1 in order. pre and suc define the intersection
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or lane connecting the start and end of l. Pgeo and Pattr are point sets defined in the point
layer. q contains lane attributes such as the width, length and speed limit.

2.1.5. Point Layer

The point layer consists of the geometric control point set Pgeo and the attribute control
point set Pattr on each lane. Pgeo comprises the points characterizing the lane geometry.
Each point pgeo in Pgeo can be expressed as

pgeo = (n, x, y, z) (6)

where n is the serial number of pgeo on the entire lane and x, y, z indicate the X, Y, and Z
coordinates in the ENU coordinate system.

Pattr is a set of points on the lane markings reflecting lane property changes, which
can be represented as

Pattr = (side, {pattr
m}Npattr

m=1 ) (7)

where side can be “left” or “right”, indicating that the lane marking is located on the left or
right side of the lane.

Each point pattr in Pattr can be denoted as

pattr = (x, y, z, s, h, type, lc) (8)

where x, y, z indicate the coordinates in the ENU coordinate system, s is the length from the
start point to this point along the lane, h is the lateral distance of the point relative to the
lane centerline, and type indicates the point type which can take the values “start”, “end”,
“lanechange”, or “typechange”. “start” and “end” represent the start and end of a lane
marking, respectively. “lanechange” or “typechange” indicate that pattr is a demarcation
point where the left or right lane marking type changes or the lane type changes. lc is true
if the interval of the lane marking following this point in the lane direction can allow a lane
change; otherwise, it is false.

A road is taken as an example to illustrate the model in the road area, as shown
in Figure 2; the road whose forward direction points to the right comprises two lane
groups. lg1 and lg2 both have two lane sections, ls1 and ls2. ls1 contains three lanes and ls2
contains four lanes. The left and right lane markings of l3 in ls2 in lg2 are used to illustrate
the attribute control points: according to (8), the right lane marking has two attribute
control points, the start and end points; since the left lane marking type changes, it has
one more control point than the right lane marking, which marks the place where the lane
marking type changes. For each lane marking, combining the value of lc in (8) of attribute
control points, the lane changeable interval can be known, facilitating the refined lane-level
route-planning algorithm.

 

Figure 2. A road used to illustrate the model. The marked numbers are the sequence numbers of lanes.
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2.2. Intersection Area
2.2.1. Intersection Layer

An intersection i is defined as

i = (VR, sig, Pcenter) (9)

where VR represents a set of virtual roads {vrm}Nvr
m=1 that connect roads entering and

leaving i, sig indicates the intersection attributes, such as the number and position of
traffic lights and the junction type, and Pcenter includes the coordinates of the intersection
center point.

2.2.2. Virtual Road Layer

One virtual road vr can be indicated as

vr = (r f , rr, w, VLG) (10)

where r f , rr represent the roads entering or exiting the intersection and w describes the
passage method, including going straight, turning left, turning right, and making a U-turn.

2.2.3. Virtual Lane Group Layer

VLG in (10) contains a set of virtual lane groups {vlgm}
Nvlg
m=1.

One virtual lane group, vlg in VLG, comprises all virtual lanes connecting to the same
lane entering the intersection:

vlg =
(

seq, {vlm}Nvl
m=1

)
(11)

where seq denotes the sequence number of the lane entering the intersection and {vlm}Nvl
m=1

is a set of virtual lanes.

2.2.4. Virtual Lane Layer

One virtual lane vl can be denoted as

vl = (l f , lr, Pvl) (12)

where l f , lr represent the lanes entering or exiting the intersection.

2.2.5. Virtual Point Layer

Pvl in (12) represents the control points approximating the possible turning trajectory
of a vehicle traveling from lane l f to lr. Each point pvl in Pvl can be expressed as

pvl = (n, x, y, z) (13)

where n is the serial number of pvl on the entire virtual lane and x, y, z indicate the X, Y,
and Z coordinates in the ENU coordinate system.

An intersection shown in Figure 3 illustrates the model in the intersection area. The
figure depicts an intersection where four roads join. Each road has two lane groups
represented by broad arrows on both sides of the road centerline, the direction of which
indicates the lane group’s driving direction. Each lane group has only one lane section
containing three lanes. The virtual roads with Road 3 as the entrance road are displayed.
Only one lane entering the intersection is linked with vr1, vr2, or vr3, so there is only one
virtual lane group for them. vr4, connecting Road 3 with Road 2, has two entering lanes;
namely, it has two virtual lane groups. The first virtual lane group vlg1 links with the
middle lane of the lane section on Road 3. The second virtual lane group vlg2 merges with
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the rightmost lane in Road 3: vl1, vl2, and vl3, marked in Figure 3, are three virtual lanes
in vlg2.

 

Figure 3. An intersection used to illustrate the model.

2.3. Comparison with Other Map Models

In light of the preceding, the designed road area accounts for lane groups with different
driving directions. The lane group considers different lane sections to represent changes
in the lane number on real roads, and the change in lane type can be reflected in attribute
control points. The designed intersection area contains virtual roads consisting of virtual
lane groups with many virtual lanes, hierarchically representing the connections within
the intersection. Therefore, the model can express multiple road network structures. The
proposed model’s differences and advantages compared to the existing models are shown
in Table 1.

Table 1. Comparison of the proposed model with other map models.

Existing Map Models
The Proposed Model (Referred to Here as A)’s Differences and Advantages

Compared to Those of the Existing Model (Referred to Here as B)

RNDF A can express possible changes in the number of lanes on one road, but B cannot.

The model proposed by Bétaille et al. [12] A contains the intersection model, but B ignores it, which is a basic requirement for
lane-level route planning.

The model proposed by Jiang K et al. [3] A can express possible changes in the number of lanes on one road, but B cannot.

OpenDRIVE
Compared with B, A defines lane groups and the point layer in the road area. In

addition, the designed intersection area contains five sub-layers that hierarchically
represent the connections within the intersection.

3. Lane-Level Route Planning

This section proposes an accelerated and refined lane-level route-planning method
based on the established road network model. First, a multi-level route-planning algorithm
is proposed and implemented in turn at the road, lane group, lane section, and lane level;
the number of nodes and edges traversed can be decreased significantly to enhance routing
efficiency. Then, at the lane level, an optimal lane determination algorithm considering
traffic rules, vehicle characteristics, and optimization goals is designed to find the optimal
lanes on roads with different configurations, including those with a constant or variable
number of lanes. The route-planning method at each level is discussed in detail.
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3.1. Route Planning at the Road Level

Route planning at the road level is based on the road layer and the virtual road layer,
generating a feasible route with a road or an intersection as a unit. A road-level directed
graph GR can be expressed as follows:

GR = (VR, ER) (14)

where VR and ER are a set of nodes comprising the intersections and edges that include roads.
When the starting point O and end point D are given in GR, many existing graph

search algorithms, such as Dijkstra and A*, can be used at this level. Finally, the result VR
contains an intersection sequence to pass from the start to the end:

VR = (O, i1, . . . , ik, . . . , in, D) (15)

where ik is the kth intersection in the sequence and n is the number of intersections.
Then, the roads between the intersection sequence can be written as

ER = (r0, . . . , rk, . . . , rn) (16)

where r0 and rn are the roads where point O and point D are located, respectively, and rk is
the road between ik and ik+1.

3.2. Route Planning at the Lane Group Level

Route planning at the lane group level is based on the lane group layer and the virtual
lane group layer.

According to the attribute is_equal in (3), the road sequence in ER can be refined into a
result based on lane groups:

ELG = (lgO−1, . . . , lg(k−1)−k, . . . , lgn−D) (17)

where lgO−1 represents the lane group between the origin O and the first intersection, lgn−D
represents the lane group between the nth intersection and the destination D, lg(k−1)−k
indicates the lane group between the (k − 1)th intersection and the kth intersection, and
k = 2, 3, . . . , n.

According to (9) and (10), the intersection sequence in VR can be described based on
virtual lane groups:

VVLG = (VLG1, . . . , VLGk, . . . , VLGn) (18)

where VLGk indicates the set of virtual lane groups in the kth intersection, and k = 1, 2, . . . , n.
Figure 4 displays the route planning from the road level to the lane group level; the

black lines mark the planned route. Suppose the route-planning result at the road level is
the road and intersection sequence from rk to rk+3; at the lane group level, it can be refined
to the lane group sequence from lgk−(k+1) to lg(k+3)−(k+4).

Figure 4. The route planning from the road level to the lane group level.
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3.3. Route Planning at the Lane Section Level

Route planning at the lane section level uses the correspondence between the lane
group layer and the lane section layer. According to (3) and the route-planning result at the
lane group level, the lane sections in the lane group lg(k−1)−k can be written as

LS(k−1)−k = (ls1, . . . , lsk, . . . , lsn) (19)

where lsk is the kth lane section in lg(k−1)−k and n is the number of lane sections. ls1 connects
the previous intersection’s exit and lsn connects the entrance to the next intersection.

Then, the whole lane section sequence is

VLS = (LSO−1, . . . , LS(k−1)−k, . . . , LSn−D) (20)

where LSO−1 represents the lane sections between the origin O and the first intersection,
LSn−D represents the lane sections between the nth intersection and the destination D,
LS(k−1)−k indicates the lane sections between the (k − 1)th intersection and the kth inter-
section, and k = 2, 3, . . . , n.

3.4. Route Planning at the Lane Level

Route planning at the lane level aims to find the optimal lanes in a sequence of lane
sections in one lane group. Figure 5 displays route planning from the lane group level to
the lane section level, and then to the lane level. Taking the lane group lg(k+1)−(k+2) as an
example, it can be refined to the lane section sequence from ls1 to ls2 at the lane section
level; at the lane level, the routing result is from l1 to l2. The route planning from the lane
section level to the lane level adopts the optimal lane determination algorithm illustrated
in Figure 6, which is designed as follows:

 
Figure 5. The route planning from the lane group level to the lane section level, and then to the
lane level.

Step i: Referring to the correspondence between the lane section layer and the lane
layer and the route-planning result at the lane section level, the lanes to be selected
are determined.

Step ii: According to the traffic rules indicated by (12), infeasible lanes are screened
out, and feasible lanes in both lsn in LS(k−1)−k entering iK and ls1 in LSk−(k+1) leaving iK
are determined. In other words, for each planned lane group, the lanes conforming to
traffic rules in the first and last lane sections are determined.

Step iii: Vehicle characteristics are considered for the elimination of unreasonable lanes
entering and leaving intersections. For example, a vehicle may not make a U-turn from
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the leftmost lane to the adjacent reverse lane considering the minimum turning radius of
the vehicle.

Step iv: After excluding lanes that do not meet traffic rules and vehicle turning
characteristics, a directed graph is constructed. The lane group displayed in Figure 7 is
taken as an example. Since the lane marking between every two adjacent lanes is dashed,
lane changes can occur between every two adjacent lanes. Figure 8 provides an abstraction
of the directed graph; nodes represent lanes, and edges represent the transitions between
every two lanes. Each node’s cost is the travel cost of driving along a single lane, and the
cost of each edge perpendicular to lanes, such as that between A and B, is the travel cost of
lane changing. These costs’ computing methods, which are not the focus of this study, refer
to the method in Ref. [3]. The cost of each edge parallel to lanes, such as that between A
and D, is zero.

Figure 6. The flowchart of the optimal lane determination algorithm.

Figure 7. A lane group is shown, which comprises three lane sections that contain three, four, and
five lanes, respectively. Each lane is identified by a capital letter from A to L.
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Figure 8. The directed graph abstracted from the lane group shown in Figure 7. The arrows indicate
the travel directions. Two-way arrows represent mutual access; for example, the two-way arrow
between D and E indicates that the vehicle can move from D to E and E to D.

Step v: The lane change intervals can be obtained according to attribute control points
in the point layer. It is necessary to consider whether the lane change interval meets the
minimum allowable length in combination with vehicle characteristic constraints. For
example, if the lane change interval on the right lane marking of lane A is not enough for
lane changing, the edge between A and B is eliminated.

Step vi: According to the predetermined first lane in ls1 and last lane in lsn in Step
ii and Step iii and the constructed directed graph in Step iv and Step v, a graph search
algorithm, such as Dijkstra or A*, is implemented.

Step vii: The result in Step vi needs to be examined because the route can be extended
at the last lane section, and the extended route could not be searched by Step vi. For
example, if the result is route A-B-E-I, the route can be extended to route A-B-E-I-H-I, which
means changing lanes from I to H, and then back to I in the last lane section. The costs of
driving along lane I and driving from lane I to lane H and then back to I are compared. If
the cost of the extended route is lower than that of the original route, the extended route
replaces the result.

Step viii: After Step i–vii, the optimal lanes in each lane group are determined. The
optimal lane sequence in lg(k−1)−k can be expressed as follows:

L(k−1)−k = (l1, . . . , lk, . . . , ln) (21)

where lk is the kth lane in order and n is the number of lanes.
Step ix: The whole lane-level route can be obtained as

VL = (LO−1, . . . , L(k−1)−k, . . . , Ln−D) (22)

where LO−1 represents the lane sequence between the origin O and the first intersection,
Ln−D is the lane sequence between in and the destination D, L(k−1)−k indicates the lane
sequence between ik−1 and ik, and k = 2, 3, . . . , n.

4. Results and Discussion

A road network was first constructed to verify the lane-level routing algorithm using
RoadRunner [33]. This interactive editor allows us to design 3D scenes for simulating and
testing automated driving systems. Then, the OpenDrive file exported from RoadRunner
was imported into SCANeR studio [34] to build an ultra-realistic virtual driving scene.
SCANeR studio is a comprehensive software suite dedicated to automotive and transport
simulation that provides all the tools and models necessary to create an ultra-realistic
virtual world.
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Figure 9 displays a constructed road network consisting of 16 intersections and
24 roads. All roads were bidirectional and comprised two lane groups; each lane group
had one lane section containing three lanes. A green circle shows the host vehicle in the
simulation. All of the road network parameters are given in Table 2. A partially enlarged
intersection and corresponding virtual lanes in the intersection are displayed in Figure 10.

(a) (b) 

Figure 9. The road network and the corresponding driving scene. (a) The road network constructed
by RoadRunner. (b) The driving scene created using SCANeR studio.

Table 2. Road network parameter settings.

Parameter Value

The number of lanes in one lane section 3
The number of lane sections in one lane group 1

The number of lane groups in one road 2
Lane width 3.5 m

Intersection width 24 m
The average speed of each road: vroad (km/h) Randomly chosen from {80, 60, 40}
The average speed of each lane: vlane (km/h) Inner: vroad + 20; middle: vroad; outer: vroad − 20

The traffic rules designed for the lanes Inner: left; middle: forward;
outer: right

(a) (b) 

Figure 10. An intersection and corresponding virtual lanes. (a) An intersection and four connecting
roads are shown. (b) The virtual lanes in the intersection shown in (a) are displayed.
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Figure 11 presents an abstraction of the simulated road network and the planned route
from A to B. There are 16 vertices representing intersections and 24 edges representing
roads. The average road speed is marked next to the road edge. The value on the coordinate
axis shows the length of each edge. Taking the shortest total time as the goal, the route
from vertex A on the lower left to vertex B on the upper right was planned using the
algorithm proposed, and the red lines indicate the planned route. The average speed of the
roads through the planned route is high, and the route meets the shortest time goal at the
road level. The circles on the right side depict the lane-level details inside the indicated
junctions: four roads enter the junction; the arrows represent the lanes’ driving directions,
the dotted lines represent the roads’ centerlines, and the red lines show the planned route
in the junction.

 

Figure 11. Abstraction of the simulated road network. The red lines show the planned route. A and
B are the start and end of the route.

Two junctions are chosen to illustrate the lane-level routing results. At Junction 1, since
a vehicle on the road left of the intersection must turn left when entering the intersection, it
will travel in the inner lane, which meets the traffic regulations; on the other hand, after
leaving the intersection, the inner lane with a high average speed is chosen, which satisfies
the goal of achieving the shortest travel time. Similarly, at Junction 2, the vehicle will
travel straight from the middle lane to the inner lane. This result reveals that the proposed
algorithm based on the map model successfully chose the correct lanes on roads with a
constant number of lanes to meet both the traffic rules and the routing goal; namely, the
algorithm can find the optimal lane-level route in a road network.

Another test is shown in Figure 12, where the route from lane C to lane D is planned.
To illustrate the main route-planning problem in this paper, it is assumed that the minimum
turning radius, which can be estimated according to vehicle characteristics, is 8 m. The
planned route can be obtained using the method in Ref. [3], and this study, it is represented
by the green or red lines. We can see that the route planned by Ref. [3] goes from lane C to
lane D directly; however, the minimum turning radius is larger than the two-lane width,
such that the vehicle cannot directly U-turn from C to D; hence, the result is not feasible. In
contrast, the route developed using the method in this study first includes a U-turn from
C to E and then involves a change of lanes from E to D; although this route has a higher
cost, it fits the vehicle turning characteristics. Therefore, the algorithm in this study can
obtain a reasonable route considering vehicle turning characteristics, meeting the needs of
practical applications.
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Figure 12. The constructed road network includes four roads and an intersection. Each road has six
lanes, each with a width of 3.5 m. The lanes on the left road are represented by A–F. The average
speed on all six lanes is set to be the same. Lane A, B, and C enter the intersection, and Lane D, E,
and F exit. The traffic rules on Lane C allow for left turns and U-turns. The lane-level route from
Lane C to Lane D is demonstrated. The green route is obtained using the method in Ref. [3].

Another road network, displayed in Figure 13, was constructed to verify the optimal
lane determination algorithm at the lane level. The minimum length for lane changing,
considering vehicle characteristics, was set to 10 m, so the interval CD was not available for
a lane change; the interval AB and EF were allowed. The traffic rules designed on Lane 3–5
entering the intersection were left turn, forward and right turn, and forward and right turn,
respectively. The average speeds in Lane 1–5 were 50 km/h, 30 km/h, 30 km/h, 60 km/h,
and 30 km/h, respectively.

Figure 13. The road had two lane sections, ls1 and ls2, containing two and three lanes numbered
from 1 to 5. A–F are attribute control points stored in the point layer, and the dotted line between the
two points indicates that lane changes are allowed.

First, the lanes to be selected were determined according to Steps i–iii of the optimal
lane determination algorithm at the lane level; the lanes chosen from ls1 were Lane 1
and Lane 2, and the lanes chosen from ls2 were Lane 4 and Lane 5. In contrast, Lane 3
was excluded due to the traffic rule. According to Steps iv–v, the directed graph was
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created as shown in Figure 14. Figure 15 illustrates all possible routes. After Step vi,
Route 1 (Lane 1–Lane 4) in Figure 15a was chosen. Then, according to Step vii, Route 2
(Lane 1–Lane 4–Lane 3–Lane 4) in Figure 15a, which was the extended route of Route 1, was
compared with Route 1. Finally, Route 1, with a lower cost than Route 2, was chosen as the
optimal lane-level route. At the same time, the costs of all possible routes were calculated.
By comparison, the cost of Route 1 was the lowest, which verified the correctness of the
optimal lane determination algorithm.

Figure 14. The directed graph of Figure 13.

 
(a) (b) 

Figure 15. (a). Three possible routes with Lane 1 as the start lane. (b). Three possible routes with
Lane 2 as the start lane.

This test demonstrates that the optimal lane determination algorithm could find the
optimal lanes while satisfying traffic rules and vehicle characteristics on roads with a
variable number of lanes. In contrast, the algorithm in Ref. [3] subdivides the road into a
constant number of lanes and lacks the adaptability to this road structure; however, this
road structure may result in the creation of an increased number of possible routes that
need to be considered before one is chosen.

Whether the road has a constant or variable number of lanes, the directed graph can be
constructed at the lane level. For example, if the lane number is constant at three, a simple
directed graph consisting of three vertices and two edges can be constructed; if the road
has a variable number of lanes, a more complex directed graph can be constructed. Then,
the existing graph search algorithm can be applied to find the optimal route. The algorithm
in Ref. [3] did not consider the lane sections as defined in this study, it could not adapt
to the changing internal structure of the road. In addition, the lane change intervals are
not considered in Ref. [3], meaning that the produced route may not be feasible. The tests,
which assign different average speeds to different road and lanes, are mainly conducted to
verify that the proposed algorithm can adapt to road networks with different structures
while meeting the traffic rules and vehicle characteristics. In addition, the goal for the
shortest time is satisfied under relative static conditions. The variable traffic conditions,
which may influence the edges’ costs, are not considered here; however, some existing
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algorithms considering the real-time traffic conditions can be applied at the road level
and lane level and improve the practicability in the actual traffic conditions, which needs
further research in the future.

From the previous section, it can be inferred that the suggested route-planning algo-
rithm can determine the optimal lanes on roads with different configurations, including
those with a constant or variable number of lanes, while satisfying the need for the shortest
time, as well as the requirements for traffic regulations and vehicle characteristics, which
allows the planned route to match the actual vehicle navigation needs.

Next, the increasingly intricate road networks depicted in Figure 16 were built to assess
the algorithm’s efficiency improvement in road networks of different sizes. To confirm the
improved efficiency of our proposed algorithm, we compared the routing time of different
routing algorithms, including direct lane-level route planning using the existing graph
search algorithm, the route-planning method proposed in Ref. [3] and the route-planning
algorithm proposed in this study, in the road networks detailed in Figures 9 and 16.

 
(a) (b) 

Figure 16. Two road networks were constructed, and the length of each road was randomly set. (a) A
road network containing 6 roads in horizontal and vertical directions. (b) A road network containing
21 roads in horizontal and vertical directions.

Direct lane-level route planning searches the lane-level route directly on the road
network. Figure 17 illustrates a road network comprising one road and an intersection.
Following the directed graph abstraction of the road network (Figure 18), the direct routing
can perform the existing graph search algorithm to search the lane-level route.

 
Figure 17. A road (green) with one lane group comprising two lane sections entering an intersection
(orange). The lanes are treated as edges represented as A–G, the start and end nodes of which are
expressed with P.
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Figure 18. The abstracted directed graph. Blue dots represent nodes, and red lines represent edges.

We implemented the algorithms in C++, maintaining consistency in the hardware
setup and data structure and varying the algorithms themselves. To verify the improvement
in efficiency in the proposed algorithm over the existing graph search algorithm, the A*
algorithm was taken as an example. Table 3 compares different routing methods, and the
time saved is relative to the time spent using direct route planning based on A*. Both the
algorithm in this study and the process in Ref. [3] can improve the efficiency compared
with direct route planning; however, the algorithm in this study has higher efficiency for
both small or large networks, and the improvement in efficiency becomes more remarkable
as the scale of the road network grows.

Table 3. Time costs of different routing methods in three simulated road networks with differ-
ent scales.

Number of Lanes Routing Method Time (μs) Time Saved (%)

288
Direct lane-level route planning 61

Lane-level route planning proposed in Ref. [3] 38 37.7
Lane-level route planning in this study 20 67.2

705
Direct lane-level route planning 383

Lane-level route planning proposed in Ref. [3] 77 79.9
Lane-level route planning in this study 35 90.1

10,088
Direct lane-level route planning 7832

Lane-level route planning proposed in Ref. [3] 535 93.2
Lane-level route planning in this study 304 96.1

In this test, the A* algorithm was utilized at the road level in the proposed algorithm,
which is consistent with Ref. [3], so the efficiency difference between this study and Ref. [3]
is brought about by different hierarchical structures. The proposed algorithm directly
eliminates the candidate lanes with different directions through the defined lane groups,
which further reduces the search space compared to the method described in Ref. [3], which
direct maps from roads to lanes, and thus speeds up the search speed. This proposed
method is generally applicable to various road networks and can effectively reduce the
search space of various algorithms, so the algorithm proposed in this paper can effectively
improve the efficiency of existing algorithms when used for lane-level route planning.
Although the test did not consider the changing traffic, which mainly affects the edges’
cost, the search space can also be reduced by the proposed algorithm in real-time changing
traffic conditions, so it can be inferred that the existing algorithms’ efficiency can also be
improved in dynamic traffic conditions. In conclusion, this simulation test validated the
proposed method as having better efficiency in supporting lane-level navigation than the
direct and past hierarchical routing methods.
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The test was also conducted on the physical road network at Changchun, China, to
validate the effectiveness of route-planning algorithm. High-precision point cloud maps
were initially retrieved using the probe vehicle presented in Figure 19. Since LiDAR delivers
a high-resolution 360-degree environment, the entire road geometry can be captured. Based
on the results of the collected LiDAR data, a high-precision point cloud map of the test site
was built first, as shown in Figure 20a, and then a lane-level electronic map was established,
as shown in Figure 20b.

Figure 19. Vehicle for recording mapping data, equipped with RTK-GPS, LiDAR, and cameras.

(a) (b) 

Figure 20. (a) Point cloud map of the test site at Changchun, China. (b) Lane-level electronic map of
the test site at Changchun, China.

The red lines in Figure 21 demonstrate the routing outcome. It is clear that the
proposed method picked the correct lanes to arrive at the destination, demonstrating that
the method can obtain reasonable routes on the physical road network. Table 4 illustrates
the time costs of the Apollo routing method [35] and the proposed algorithm. We can
see that the proposed algorithm improved routing efficiency by 78.0% compared with the
Apollo method, so the proposed algorithm can better meet the real-time requirements of
autonomous driving.

Table 4. Time costs of different routing methods in a real road network.

Number of Lanes Routing Method Time (μs) Time Saved (%)

323
Routing algorithm of Apollo 132

Routing algorithm in this study 29 78.0
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Figure 21. The blue lines represent the lane centerlines in the map demonstrated in Figure 20, and
the red lines highlight the planned route.

5. Conclusions

In this study, which was aimed at providing better support for navigation systems
in autonomous vehicles, an efficient lane-level route-planning algorithm based on a new
lane-level road network model is proposed, which is manifested in the following aspects:

1. A new road network model for lane-level route planning is proposed. The whole
model is divided into the road area and the intersection area, containing five sub-
layers, refining the structures of real roads and intersections. On the one hand,
this multi-sub-layer modeling can express variations in the road network structure;
on the other hand, it facilitates the proposed multi-layer route-planning algorithm,
improving the overall routing efficiency.

2. Based on the proposed road network model, an accelerated and refined lane-level
route-planning method is proposed. First, a multi-layer route-planning algorithm is
designed to plan sequentially at the road level, lane group level, lane section level,
and lane level, resulting in remarkable improvements in routing efficiency, especially
in large-scale road networks. Then, an optimal lane determination algorithm is
developed at the lane level to find the optimal lanes while satisfying traffic rules and
vehicle characteristics. The entire route-planning method can be seen as a framework
compatible with existing algorithms, which means the existing graph search methods
can be applied at the road and lane level to take advantage of the progress of existing
research, and the routing efficiency can be dramatically improved compared to that of
direct route planning using the graph search methods at the lane level. In addition, the
proposed algorithm can better adapt to the changing road network structure and yield
optimal lanes on roads with different configurations, including those with a constant
or variable number of lanes. Tests were performed on simulated road networks and an
actual road network. The results demonstrate the effectiveness, broader adaptability,
and higher efficiency of the proposed algorithm compared with direct route planning,
past hierarchical route planning, and the Apollo route-planning method. In particular,
the efficiency can be improved by up to 96.1% compared with direct route planning
using the graph search methods at the lane level. This study is complementary to
existing studies and better supports autonomous vehicle navigation.

This proposed algorithm can effectively improve the efficiency of existing algorithms
when used for lane-level route planning by reducing the search space. However, it is
more theoretical than practical due to the lack of consideration of the influence of real
driving conditions. Although it can be inferred that the search space can also be reduced
by the proposed algorithm in real-time changing traffic conditions, to increase the utility of
the method in practical navigation applications, further research will consider the traffic
conditions, weather, and other factors that influence the actual travel costs in order to
obtain the optimal route in practice. At the same time, considering these factors increases
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the complexity of routing, and a balance between routing complexity and efficiency will be
considered in the future.
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Abstract: With the development of autonomous driving technology, truck platooning control has
become a reality. Truck platooning can improve road capacity by maintaining a minor headway.
Platooning systems can significantly reduce fuel consumption and emissions, especially for trucks. In
this study, we designed a Platoon-MAPPO algorithm to implement truck platooning control based
on multi-agent reinforcement learning for a platooning facing an on-ramp scenario on highway. A
centralized training, decentralized execution algorithm was used in this paper. Each truck only com-
putes its actions, avoiding the data computation delay problem caused by centralized computation.
Each truck considers the truck status in front of and behind itself, maximizing the overall gain of the
platooning and improving the global operational efficiency. In terms of performance evaluation, we
used the traditional rule-based platooning following model as a benchmark. To ensure fairness, the
model used the same network structure and traffic scenario as our proposed model. The simulation
results show that the algorithm proposed in this paper has good performance and improves the
overall efficiency of the platoon while guaranteeing traffic safety. The average energy consumption
decreased by 14.8%, and the road occupancy rate decreased by 43.3%.

Keywords: truck platoon; reinforcement learning; Platoon-MAPPO algorithm; on-ramp region

1. Introduction

Truck platooning refers to a driving state in which two or more vehicles drive on the
highway, controlling the distance and driving state between the control vehicles to form a
tight vehicle cluster. It uses sensors or communication technologies to obtain information
between adjacent trucks and can autonomously maintain speed or distance. As early as
1996, the European Commission (EC) Information Society Technologies (IST) launched the
CHAUFFEUR project to assess truck platooning [1], which studied either all trucks with
automatic driving, or only the head truck with a human driving. Similar projects have
also been carried out in other countries, such as California PATH, Energy-ITS, KONVOI,
SARTRE, etc. [2–6]. The focus of these projects is mostly on truck control methods, platoon
stability, and the external communication of trucks; all require automatic driving strategies
to control all or some of the trucks in the platoon.

Platooning offers several benefits, one of which is enhancing traffic efficiency. By
keeping smaller gaps between vehicles at the same speed, platooning can increase road
capacity compared with normal traffic flow. Another benefit is improving driving safety.
Trucks in the platoon communicate and coordinate with each other using autonomous
driving control, resulting in smaller speed variations and faster reaction times than human
drivers. A third benefit is reducing the environmental impact. The transportation sector
is a major contributor to energy consumption and greenhouse gas emissions, with road
transport accounting for 72.8% and 73.4%, respectively [7]. Platooning can significantly
lower fuel use and emissions, especially for large vehicles such as trucks.
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Early research projects used sensors to measure the distance from the preceding vehicle
and a lower-level controller to maintain fixed spacing. For instance, refs. [2,4,5] achieved
spacings of 6 m, 10 m, and 4.7 m, respectively. However, this method does not minimize the
total energy consumption when the speed varies, as the platoon might need more energy
to keep the preset spacing. Subsequent research formulated cost functions based on time
and energy consumption and applied optimization and optimal control theory methods to
find optimal solutions [8–11]. However, many methods were not scalable to large platoons,
as the calculation cost increased with the number of vehicles.

In the past decade, there has been a lot of research based on deep learning (DL) to
automate driving tasks as much as possible [12,13]. However, collecting decision-making
and planning datasets for autonomous driving is costly and challenging, as it is hard to
cover complex real-world traffic scenarios.

Reinforcement learning (RL) algorithms have emerged as a promising alternative for
vehicle decision-making, planning, and control problems [14–16]. These algorithms do not
require manual data collection and can adapt to various tasks. Some research has used RL to
achieve autonomous driving for single vehicles [17], but few have applied it to multi-vehicle
cooperative control [18]. This is because treating other vehicles as part of the environment
violates the Markovian property and makes the learning unstable and difficult.

Multi-agent reinforcement learning (MARL) has been explored to control multi-vehicle
behavior in recent studies. For example, ref. [19] only considered optimal strategies for
stop-and-go under flat roads, while [20] applied DQN to vehicle grouping strategies in
road networks. Ref. [21] used Q-learning to find optimal insert points for vehicles entering
fleets.

This paper proposes a Platoon-MAPPO algorithm based on MARL for truck platoon
control in a highway with an on-ramp region, which is the most complex traffic situation
on highways. Existing platoon control methods, such as traditional control methods and
DL-based methods, are not effective in this scenario. The Platoon-MAPPO algorithm has
the following features:

(1) It uses a MAPPO-based algorithm with centralized training and decentralized exe-
cution to control the platoon in the on-ramp area. Each truck only computes its own
action, avoiding the data computation delay caused by centralized calculation.

(2) It considers the driving status of the trucks in front and behind each truck, maximizing
the overall platoon gain and improving the global operational efficiency.

(3) It does not require communication, and it is scalable to any number of vehicles and
communication devices.

Compared with traditional control methods and existing methods based on DL and
RL, Platoon-MAPPO can effectively reduce road occupancy and energy consumption.
Moreover, Platoon-MAPPO is more flexible than existing RL-based methods because
it does not require intra-platoon communication. Additionally, the use of distributed
computing means that the computational cost of each vehicle is independent of the number
of platooning members, making it more practical and avoiding the waste of computing
resources. Traditional algorithms have strong interpretability and can be used as a safety
guarantee to assist Platoon-MAPPO operation.

2. Related Work

Most traditional methods in platooning rely on optimal control theory, which aims
to find the optimal control inputs for each vehicle to achieve certain objectives, such as
fuel efficiency, safety, and comfort. For instance, [8] proposed a serial distributed model
predictive control (MPC) approach that ensured local stability and multi-criteria string
stability for connected automated vehicles. Local stability means that each vehicle can track
its desired speed and position, while multi-criteria string stability means that the errors in
speed and position do not propagate along the platoon. In Ref. [10], a multi-anticipative
controller was devised that enabled an equipped vehicle to use information from its
direct predecessor to predict the behavior of its pre-predecessor. In this way, the vehicle
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can anticipate future actions of the leader vehicle and adjust its own control accordingly.
Subsequently, some methods based on DL and RL emerged, which can learn from data and
experience without relying on explicit models or rules. Ref. [18] was one of the first papers
to apply RL to platooning. The authors in [22] improved the reward function to make the
training more reasonable, but they neglected the behavior of other vehicles and failed to
optimize the overall efficiency of the platoon. In Ref. [23], a platoon control algorithm based
on centralized RL was designed; however, its single-agent training strategy might still
result in unstable training. In Ref. [19], a method based on multi-agent RL was developed,
although the scenario was relatively simple and required communication between platoons.

For highway on-ramps, ref. [24] suggested an optimal trajectory optimization strategy
for connected and automated vehicles to cooperatively perform mainline platooning and
on-ramp merging, in which each platoon could obtain its optimal control input in terms
of fuel consumption. Ref. [25] transformed the complex 2D multi-platoon cooperation
problem into a 1D platoon following control problem and derived an analytical solution
to the optimal control. Ref. [26] proposed a platoon-based hierarchical merging control
algorithm for on-ramp vehicles to achieve automated merging control under a connected
traffic environment. Some studies attempted to use machine learning to enhance the overall
traffic efficiency of highway on-ramps. Ref. [27] presented an RL framework that adaptively
adjusted the intra-platoon gap of an individual platoon member. However, both traditional
and machine learning methods mostly assumed that vehicles were intelligent connected
vehicles that could exchange information freely. However, it is unrealistic to expect all
vehicles on the road to maintain good wireless communication at present. Communication
problems could pose serious risks, such as collisions, delays, or breakdowns. Many studies
have mentioned this issue, such as [28], which presents a summary of the key technologies
and challenges in platooning. Ref. [29] discussed different communication technologies
in the platoon, and further examined security issues related to communication, such as
jamming, spoofing, or hacking.

3. Preliminaries and Methods

3.1. Preliminary Knowledge

RL is learning what to do—how to map situations to actions—so as to maximize a
numerical reward signal [30]. Unlike supervised learning, RL does not require labeled
datasets to train neural networks. Instead, it allows agents to explore their environments
and choose actions based on feedback from the environments to maximize long-term gains.
At each time step, t, the environment provides the current state, st, from the state space, S,
and the agent selects the action at, at ∈ A, based on the observation value, ot, of the state
and its own policy, π(at|ot) , where A is the action space. Then, the environment generates
the reward r(st, at) at this time, and gives st+1 for the next time step. p(st+1|st, at) is called
the state transition probability. When the environment satisfies Markov properties, the
state transition probability is stable, and this process can be described as a Markov decision
process (MDP). After a period of time, the agent will collect a trajectory (st, at, rt, st+1, at+1).
The return, gt = rt + γgt+1, is defined as accumulative discount rewards, where γ is the
discount factor and gt is the return value at time step t. The ultimate goal of RL is to
optimize policy, π, so that E(gt) is maximized as much as possible. This means that agents
will evolve toward the goals expected by designers.

RL can be divided into value-based methods and policy-based methods. Q-learning
is a classic example of value-based methods. It can use dynamic programming to solve
the state values if the environment is a Markov decision process. It can also use Monte
Carlo methods to approximate the state transition values. In actual applications, most
states are continuous variables; therefore, a state-value function, V(st), can be used to fit
the predicted state values more accurately. DQN is a well-known method of this kind.

Policy-based methods were proposed to deal with continuous action space problems.
They directly optimize policy, π, to maximize the expected state values at each state,
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argmax
π

(ES[Vπ(S)]). A3C, TRPO, PPO, and other methods follow this basic principle and

incorporate advanced optimization techniques, especially PPO [31–33].
MARL has attracted more attention than single-agent reinforcement learning (SARL)

in recent years. When the agents cooperate with each other, the optimization goal is to
maximize the total return. Some early studies relied on optimizing independent agents
to maximize the global reward function. Each agent uses a TRPO network structure and
treats other agents as part of the environment. However, this type of algorithm suffers
from non-stationarity problems, because each agent is also part of the environment; this
means that the environmental state transition probabilities change continuously as the
agent policies change, which violates the RL assumptions.

To address this problem, later studies mostly used centralized training decentral-
ized execution (CTDE) algorithms, which significantly improved the MARL performance.
Agents learn their own policy network under the guidance of a centralized feedback
network, and then generate actions independently. Recent studies have applied CTDE
algorithms to continuous action spaces, such as MAPPO [34] and MADDPG [35]. The two
articles share the idea that each critic can obtain all action information. During training, a
critic that can observe the global situation guides actor training, while during inference,
each actor only uses its own local observation value to calculate actions. In MADDPG, the
authors argue that in cooperative and competitive scenarios, CTDE can enable agents to
discover and utilize various information in the environment to produce better strategies
than other algorithms. Additionally, MAPPO achieves excellent performance in multiple
test projects without making significant changes to PPO.

3.2. Methods
3.2.1. Truck Platoon Communication Topology

Figure 1 shows the overall framework of the Platoon-MAPPO. The vehicles that are
not controlled by the truck platoon are called interactive vehicles (IVs), which may affect
the driving status of the truck platoon by traveling in front of it. The trucks in the truck
platoon are called platoon members (PM), with PM0 being the first truck and PMN being
the last one. The other trucks are numbered sequentially from PM1 to PMN−1, and they
can be referred to as PMn collectively.
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Figure 1. Framework of Platoon-MAPPO.

The platoon communication structure can be classified into three types: centralized
communication topology, decentralized communication topology, and hybrid communica-
tion topology. In centralized communication topology, each vehicle only communicates
with the lead vehicle, which is easy to control but may cause high latency problems. In
decentralized communication topology, each vehicle only receives information from the
front vehicle, which has low latency. This study considers using hybrid communication
topology, as shown in the topology diagram. Each truck receives information from both
front and rear vehicles, but not from the environmental vehicle detected by the lead vehi-
cle. Compared with algorithms that only consider the front vehicle’s driving status, this
algorithm is more effective in optimizing the overall performance of the truck platoon.

This communication strategy enables the trucks in the platoon to switch positions,
adjust the number of vehicles, and dynamically select the lead vehicle, enhancing the
applicability and flexibility of the algorithm.

A truck platoon consists of three types of trucks: PM0, PMn, and PMN . This design
enables the platoon length to be scalable and the algorithms to be compatible with any
number of trucks. The training process can simulate the performance of the whole platoon
with any number of trucks. The scalability of the platoon size also enhances the sampling
efficiency, as each interaction with the simulation environment yields more information
about the action-value of the intelligent agents. The algorithmic computation grows linearly
with the platoon size in both training and application phases. Therefore, using distributed
computing, the computational load of each truck remains constant regardless of the platoon
size, which significantly reduces the overall computational burden on the platoon and
avoids computational waste due to changes in the platoon size.

3.2.2. Crucial Elements

Platoon-MAPPO is a stochastic gradient policy algorithm that is trained centrally and
executed distributivity. Each agent observes and acts independently. The reinforce method
is applied to estimate the unknown action value functions, using the actual return from
a collected trajectory as a substitute. PPO introduces an advantage function to stabilize
the training, which is usually defined as the difference between the action value function
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and the state value function. The state value function represents the expected return that
an agent will receive in a certain state. The advantage function can intuitively show how
much better the selected action is than the mean of all actions selected in this state. The
actor, πμ(a

∣∣o) , is a neural network function and the critic, Vθ(s), is another neural network
function. Under the multi-agent architecture, the critic observes the global information, i.e.,
the observations of all agents, and predicts the expected return values for all agents based
on these observations.

(1) Observation and state: the observation value of each truck in the platoon is the part of
the platoon’s overall state that can be observed by the truck. The observation value of
each truck comprises several elements: (a) the type of the truck, which can be PM0,
PMn, or PMN , indicating the position of the truck in the platoon; (b) the relative speed
of the truck with respect to the vehicle in front of it; (c) the relative speed of the truck
with respect to the vehicle behind it; (d) the relative distance between the truck and
the vehicle in front of it; (e) the relative distance between the truck and the vehicle
behind it; (f) the speed of the truck itself; and (g) if the truck is PM0, it also obtains
the relative distance and speed between itself and the IV that is detected within its
detection range. RL algorithms are not suitable for applying batch normalization to
the input values. Therefore, the input values are scaled directly to [−1, 1] according
to their value range. The position identifiers are 0, −1, and 1, representing PM0, PMn,
and PMN , respectively. When the platoon consists of more than three trucks, all the
position identifiers of the middle trucks, PMn, are set to 1. The training process can
accommodate any number of trucks in the platoon.

State refers to various factors that influence driving in traffic environments. As a central-
ized training algorithm, PPO needs to predict the state value function of the entire environment.
Therefore, state values include the observation values of all the trucks in the platoon.

(2) Action: the main application scenario of truck platoon control technology is on high-
ways, where the traffic environment is relatively simple. To minimize the interference
of truck platoons with other human drivers, truck platoons will travel on the rightmost
lane. Therefore, this article focuses on the longitudinal control of truck platoons. After
obtaining the observation values, the decision-making algorithms will determine
the driving force for each truck at each time step. The driving force indicates the
acceleration or deceleration of the truck. When the driving force is positive, it means
that the truck accelerates forward and is bounded by the maximum driving force
value. When the driving force is negative, it means that the truck decelerates.

(3) Reward: autonomous driving is typically a multi-objective optimization problem.
These objectives may encompass various aspects, such as speed, travel time, collision,
regulations, energy consumption, vehicle wear and tear, and passenger experience.
For freight trucks, the main considerations are speed, energy consumption, and safety.
The reward function should reflect the goals that autonomous driving vehicles aim
to pursue, rather than the methods and techniques used to attain these goals. For
instance, adding extra penalties for low speeds to motivate trucks to move forward is
known as reward shaping. Reward shaping may facilitate learning in the early stages,
but may also constrain the performance potential of the algorithm [36]. Therefore,
our reward function only consists of three components: speed, energy consumption,
and safety.

The reward function is as follows:

r = r1max(
vPM

vIV + rε
, 1)− r2D − r3max(Ft, 0) (1)

where r represents the reward at a certain moment, vPM represents the instantaneous speed
of a member of the platoon at a certain moment, vIV represents the instantaneous speed
of IV at a certain moment. rε is added to prevent the denominator from being zero and is
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set to 1 × 10−5. D is the collision penalty term. Ft is the driving force. r1, r2, and r3 are the
coefficients used to adjust the weights of each item.

The reward function defines the objective of optimizing truck platoon driving strate-
gies. The objective of truck platoon driving is efficiency and safety. Efficiency means
enhancing travel speed while reducing energy consumption as much as possible. We aim
to make the speed of truck platoon close to the traffic flow speed. If the traffic flow speed is
fast, the platoon should be incentivized to increase their speed. If the traffic flow speed is
slow, the platoon should not receive extra benefits from high speeds because high speeds
are irrelevant at this time and may pose a risk instead. Therefore, we add a speed reward
in reward function. When vPM < vIV, the reward will be proportional to the speed of the
platoon. When vPM > vIV, no additional rewards will be given.

To ensure that policy optimization is carried out under safe driving conditions, a
collision penalty term, D, is added to reward function. If a collision occurs, this value will
be 1; otherwise, it will be 0.

For electric trucks, driving force size is almost proportional to energy consumption. Let
instantaneous energy consumption be c = cεFt and c be the instantaneous fuel consumption.
cε represents the linear coefficient mapping driving force to energy consumption. When
the driving force equals zero, instantaneous energy consumption also equals zero, so there
are no bias terms in reward function. An energy consumption penalty term was added to
the reward function, and cε was absorbed into r3, i.e.,

J(μ) = ∑
(s,a)

min((
πμ(a

∣∣s)
πμ′(a

∣∣∣s) )Aμ(s, a), clip(
πμ(a

∣∣s)
πμ′(a

∣∣∣s) , 1 − ε, 1 + ε)Aθ(s, a)) (2)

Algorithm 1 shows the training process of the algorithm; we used the Monte Carlo
method to estimate the action value function, and calculated the advantage function A
from it. ε is a hyperparameter that controls the size of the clipping term.

Algorithm 1: Platoon-MAPPO

Initialize actor network, πμ(a
∣∣o) , and critic network, Vθ(s), with weights μ and θ

Initialize batch size B, iterative step α,β, and done = 0
for episode = 0, 1, 2, . . . until convergence do

while not done do

initialize actor and critic states
for all agents i, perform

at,mean
i, at,std

i = π(oi
t; μ)

Sampling at
i from normal distribution N(at,mean

i, a2
t,std

i
)

vt
i = V(st; θ)

end for

Send at to the simulation environment, obtain [rt, st+1, ot+1]
Save [st, ot, at, rt, st+1, ot+1]

Compute the advantage function, At, and return, Rt
end for

for for k = 0, . . ., PPO epoch perform

Compute J(μ)
Update network parameters using the gradient method
μk+1 ← μk + α∇μ Jμk

(μ)

θk+1 ← θk − β∇θ(Rt − Vθ(st))
2

end for

4. Simulation

4.1. Simulation Platform

Traffic simulation is the application of computer technology to mimic real traffic
systems, which can virtually reproduce realistic traffic scenarios at low cost. RL algorithms
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depend on vehicles to learn the optimal driving strategies in traffic environments. This also
implies that it is infeasible to train vehicle strategies in real traffic environments. Therefore,
we established a road simulation environment in SUMO. SUMO is an open-source micro-
continuous traffic simulation platform widely used in traffic research. SUMO enables users
to construct various types of road networks and define basic parameters and behaviors
of vehicles. It also provides interfaces for third-party programs, allowing algorithms to
interact directly with the simulation environment.

To make the platoon control strategy more compatible with the demands of realistic
situations, a dynamic and variable traffic environment was constructed that aligns with the
actual platoon control algorithm.

Slopes affect the acceleration and deceleration capabilities of trucks, and have a
significant effect on the fuel consumption and safety performance of platoons. Some
studies have evaluated the energy consumption of truck platooning under different slope
conditions; the results show that the road slope has a considerable impact on the energy
consumption of truck platooning [37]. Therefore, when devising energy saving driving
strategies for truck platooning, the impact of road slope must be taken into account. A
normal highway slope is within 5%; thus, the road slope was set to α ∈ [−0.05, 0.05], α
denotes the tangent value.

The interference that platooning encounters varies depending on the traffic flow state.
The most influential vehicle for platooning is the individual vehicle (IV) in front of it. The
speed of an IV may fluctuate when it cruises or accesses ramps in real-world traffic scenarios.
Moreover, surrounding vehicles may alter their speed more frequently in unstable traffic
flow. These situations require platooning to adjust accordingly; otherwise, it may increase
energy consumption and pose safety risks.

We considered two scenarios of traffic flow in ramp areas. In the first case, there
were vehicles accessing ramps in front of the IV, and the IV adopted the IDM-following
strategy. In the second case, the IV accessed ramps in front of the platoon, and the platoon
faced disturbance from vehicles that suddenly appeared. To simulate these scenarios, we
assumed that the platoon could only observe ramp vehicles when they were 50 m away
from the ramp entrance. Ramp vehicles entered the main road at random speeds before
the platoon reached the ramp, and then accelerated to the speed limit after entering the
main road. We set a 3 km long road with a truck queue starting at an interval of 30 m and
a speed of 20 m/s at the beginning of the road. The maximum speeds of the PM and IV
were 25 km/h and 27.6 km/h, respectively. IVs started at random positions within one
hundred meters in front of the truck fleet with the same initial speed. To simulate different
traffic conditions for the platoon, IVs first cruised at a stable speed and then randomly
decelerated to a lower value to simulate interference from ramps in real traffic scenarios.
Finally, they accelerated to the maximum speed limit to simulate free-flowing traffic.

4.2. Longitudinal Dynamics of Trucks

Trucks have more degrees of freedom, which makes it extremely complex to establish
an accurate dynamic model. However, this article focuses on decision-making planning
algorithms; dynamic modeling is not its main concern. Moreover, too complex models
may hinder the subsequent simulations. This article studies scenarios for straight or
approximately straight regions of highways, establishing a simplified longitudinal truck
dynamics model. This model takes into account the main factors affecting vehicle operation,
so that it does not deviate from reality. Compared with sophisticated models, simplified
models are adequate to verify the effectiveness of the algorithm.
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An electric truck experiences force while driving:

Ft = Ff + Fw + Fi + Fj
Ff = mg cos ω( fa + fbvc)
Fw = 0.5aDCDUρvc

2

Fi = mg sin ω
Fj = mac
Fbmax = ϕbmg cos ω + mg sin ω

(3)

where Ft is the traction force required by the truck, which consists of four parts: rolling
resistance force Ff , air drag force Fw, gravity force Fi, and acceleration provided by the
vehicle Fj; fa and fb are rolling resistance coefficients; and ac is the acceleration of the truck.

When the truck platoon is moving, the air resistance experienced by trucks in the
platoon will be significantly reduced. Therefore, it was necessary to modify the actual
wind resistance coefficient, CD, of the truck. Studies [38] have shown that the overall air
resistance coefficient decreases as the distance between vehicles decreases, and a method
for modifying the air coefficient, aD, has been proposed.

aD =

{
0.7231(xPM0 − xPM1 − l)0.0919 f or PM0

0.2241(xPMn − xPMn−1 − l)0.1369 + 0.5016 f or PMn
(4)

When calculating aD for PM0, (xPM0 − xPM1 − l) is the distance between PM1 and the
first PM0, and when calculating aD for PMn, (xPMn − xPMn−1 − l) is the distance between
PMn and the previous PMN−1. The values of parameters in formula (3) and (4) are shown
in Table 1.

The neural network comprises fully connected network layers and activation function
layers. The actor network outputs normal distributions at,mean and at,std. We observed that
using two independent networks to output them separately improves the performance.
Hence, we set up two identical actor networks with fully connected network layers in the
middle; each layer had 64, 128, 128, 64, 64 neurons. The dimensions of the first and last
layers matched those of the observation and action.

Table 1. Truck longitudinal dynamics parameter settings.

Parameter Value Description

mg 200,000 N Gravity of truck
l 17 m Length of truck
fa 0.0041 Rolling resistance coefficient
fb 0.000025 Rolling resistance coefficient
ϕb (0.3, 0.6) Adhesion factor of truck
CD 0.564 Air resistance coefficient of truck
U 5.8 m2 Front projection area of truck
ρ 1.2258 kg/m3 Density of air
ω [−0.05, 0.05] Road slope
vc [0 m/s, 25 m/s] Velocity of truck

Furthermore, we employed the IDM [39] model and the CACC [40] control method as
the baselines to control the platoon behavior, and compared them with the platoon-MAPPO
algorithm. IDM is a well-established traffic flow simulation model; it can emulate the
driving behavior of human drivers in traffic flow. CACC is a widely used control method
for autonomous vehicle following, which enables cooperative driving by communicating
with the preceding vehicle.

5. Results

We performed five simulation experiments with different initial random seeds. Figure 2
shows the training results.
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Figure 2. Return curve.

We set up a simple test scenario to intuitively demonstrate the effectiveness of the
Platoon-MAPPO algorithm. The IV initially accelerates to 15 m/s. At 20 s, it decelerates to
5 m/s to simulate the interference from a ramp. After 15 s, it accelerates again to 25 m/s.
All vehicles have an initial speed of 10 m/s and a maximum acceleration of 1 m/s2. The
PM0 is 40 m away from the IV. The platoon consists of 10 trucks, and the initial headway
distance within the convoy is 30 m. The test lasts for 1000 s.

We plotted a spatiotemporal map for each truck, as depicted in Figure 3, which shows
the positional changes of the truck over time. We also plotted a heatmap of the speed value
of each truck at each moment in Figure 4, to show the speed changes of all trucks in the
fleet more intuitively. In the test, the PM0 first observes the speed change of the IV. When
the IV changes its speed, the PM0 reacts first and then passes it on to each subsequent
truck. To observe the reaction speed of each truck, we counted the reaction time difference
according to the moment when the speed of each vehicle crosses 10 m/s. The reaction time
differences during deceleration for IDM, CACC, and Platoon-MAPPO are 14 s, 9.2 s, and
4.1 s, respectively. The platoon reaction time of Platoon-MAPPO is significantly shorter
than that of IDM and CACC.

Under IDM and CACC, the speed changes cause traffic oscillations that propagate
through the entire fleet and have a lasting impact on the fleet. Especially for IDM, after
experiencing an interference, the inter-vehicle distance keeps increasing. However, Platoon-
MAPPO can effectively filter traffic oscillations. From the heatmap, we can see that the
rear trucks in the fleet have smaller speed changes than the front trucks, which indicates
that they can reduce energy consumption through smoother acceleration. Smoother speed
changes reduce energy consumption in acceleration and smaller headway reduces overall
air resistance of the fleet. In this test, based on IDM and CACC’s energy consumption as a
benchmark, Platoon-MAPPO reduces energy consumption by 14.8% and 32.7%.

More specifically, under the same simulation duration, the last truck of Platoon-
MAPPO travels the longest distance, followed by CACC and then ordinary IDM. This
indicates that our proposed model has the highest overall travel speed and does not suffer
from significant speed reduction due to energy saving needs.

Table 2 shows average traction forces and their components for each control strategy
in this test scenario. Traction force is an approximate linear function of energy consumption
for electric trucks; therefore, we can compare energy consumption accordingly.
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Figure 3. Spatiotemporal map for each truck.

Table 2. Traction force composition.

Control Strategy Ft (N) Fw (N) Fj (N) Ff (N)

IDM 7368 562 5690 1115
CACC 8334 712 6464 1157

Platoon-MAPPO 6278 643 4480 1155

For CACC, its control strategy may aim for higher instantaneous speed, but often,
increasing instantaneous speed does not reduce travel time. Figure 4 shows that CACC
did not eliminate traffic oscillations in this test scenario. The speed oscillations in the front
of the platoon propagate to the rear, causing unnecessary acceleration and deceleration
of the rear trucks. This may explain its higher energy consumption. At the same time,
Platoon-MAPPO’s Fw is also higher than IDM’s because Platoon-MAPPO has a higher
average speed. However, the platoon effectively filters traffic oscillations and has the least
unnecessary acceleration and deceleration, resulting in the smallest Fj.

As mentioned above, the Platoon-MAPPO algorithm can be applied to truck platoons
of any number of trucks. Another significant feature of platoons is that they reduce road
occupancy and improve road capacity. To verify the effect of different numbers of vehicles
on platoons, we simulated the fleet length as a variable based on the previous test. We set
the minimum number of trucks in the fleet to 3 and the maximum to 20. We repeated the
previous test and counted the length of the fleet occupying the road. Figure 5 shows the
distance from the head of the PM0 truck to the tail of the PMN truck at each time step.
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Figure 4. Heatmap of platoon speed.

Figure 5. Platoon length.
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Green, orange, and purple represent IDM, CACC, and Platoon-MAPPO control strate-
gies, respectively. The shaded area represents the fleet length when there are 3 to 20 trucks.
The dark line in the middle represents the average value. The two red lines represent the ratios
of road space saved by Platoon-MAPPO compared with IDM and CACC at each time step.

The initial platoon lengths of IDM, CACC, and Platoon-MAPPO were identical. During
the acceleration phase, the fleet lengths of IDM and CACC increased gradually due to the
lag effect of truck acceleration. The trucks that accelerated earlier had higher speeds and
covered longer distances in a given time, resulting in an increased gap between the trucks
until the leading truck encountered an obstacle or a speed limit and stopped accelerating.
In contrast, the platoon length of Platoon-MAPPO decreased during this phase because
Platoon-MAPPO enabled each truck to have a very low reaction delay and a small safe
distance under cooperative control, allowing the rear trucks to accelerate slightly more
than the front trucks at low speeds until they reached an optimal gap, as shown in Figure 5.
During the deceleration phase, the platoon lengths of IDM and CACC changed dramatically
compared with Platoon-MAPPO’s due to the lag effect. During the re-acceleration phase,
the fleet lengths of IDM and CACC increased significantly as the speed increased, and this
change was proportional to the number of vehicles in their platoons; more trucks led to a
faster increase in platoon length (see Figure 5 for the upper and lower bounds of the shaded
area). The platoon length of Platoon-MAPPO was relatively stable and increased slowly
with the speed increase, but it was not significantly affected by the number of vehicles in
their fleets. The higher the number of vehicles, the higher the instantaneous speed; thus,
Platoon-MAPPO saved more road space. In this test scenario, Platoon-MAPPO reduced
the occupied road space by averages of 43.3% and 34.2% compared with IDM and CACC,
respectively, with maximum reductions of 58.2% and 35.7%, respectively.

We tested the Platoon-MAPPO algorithm in various dynamic traffic scenarios to
further evaluate its adaptability. Based on the previous test scenario, we set the target speed
value for IV deceleration as a variable with the same range of values as in the training
process. For quantitative analysis, we selected five values within the range and used each
value as a test scenario and measured the energy consumption. Figure 6 shows some cases
extracted from the test scenarios with target speed values of 5 km/h and 10 km/h for IV
deceleration, and road slopes of 0 and 0.03. Each control strategy can extract four curves,
represented by different linear gray curves. To facilitate observation and analysis, we also
plotted the mean energy consumption ratio values of IDM, CACC, and Platoon-MAPPO
with green, yellow, and blue curves, respectively. The horizontal axis in the figure is the
number of trucks in the platoon, and the vertical axis is the energy consumption ratio. The
energy consumption ratio was calculated by taking the maximum total energy consumption
value in the test scenario as a benchmark and comparing other energy consumption values
with this maximum value. This eliminated the linear relationship coefficient between
traction force and energy consumption.

Platoon-MAPPO consistently exhibited the lowest energy consumption in various
scenarios. The energy consumption of all three control strategies decreased with the
increase in the number of vehicles in their platoon. This was especially noticeable in IDM,
which might be because IDM’s control strategy could effectively reduce traffic oscillations,
while CACC’s excessive pursuit of instantaneous speed made its acceleration change too
sensitive, leading to high energy consumption. In the dynamic traffic scenarios tested,
Platoon-MAPPO’s energy consumption was reduced by an average of 3.3% compared with
IDM, with a maximum reduction of 4.0%.

Acceleration and climbing are extremely energy-consuming for trucks. For instance,
when the slope was 0.02, the truck speed was 10m/s, and the acceleration was 0.5 m/s2, the
rolling resistance force, the air drag force, the gravity force, and the force providing vehicle
acceleration accounted for 5.8%, 1.2%, 34.9%, and 58.1% of the total force, respectively.
Therefore, the air resistance has a very small effect during acceleration or climbing. When
the slope and the acceleration were both zero and the speed was 20 m/s with an acceleration
of 0.5 m/s2, the rolling resistance force and the air drag force accounted for 59.5% and
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40.5% of the total force, respectively. In high-speed uniform motion on flat roads, the air
resistance has a very high share but its absolute value is not large. Therefore, in dynamic
traffic scenarios, Platoon-MAPPO’s advantage over IDM may not seem obvious, but this is
actually because large numerical values that are hard to reduce through control strategies
mask the efforts to reduce additional consumption.

Figure 6. Energy consumption of the platoon.

6. Conclusions

Platoon-MAPPO is a truck platooning control algorithm based on MARL that can
achieve efficient and safe platooning in highway ramp regions. Platoon-MAPPO adopts
a centralized training and decentralized execution framework, allowing each truck to act
independently without relying on a central controller, making the allocation of computing
resources more concise. For the driving status of each truck in the platoon, each truck
only refers to the driving status of the front and rear trucks, without requiring internal
communication within the platoon or with the road network. This makes it easier for the
truck’s driving strategy to maximize the overall interests of the platoon; this architecture
can greatly improve the flexibility of the platoon formation compared with architectures
that rely on communication and centralized computing.

According to the experimental results, Platoon-MAPPO reduced average energy
consumption and road occupancy by 14.8% and 32.7%, respectively, compared with uncon-
trolled IDM models and CACC control methods. From the experimental results, it can be
seen that this method significantly filters traffic oscillations, greatly reduces meaningless
acceleration and deceleration, and maintains driving speed while reducing energy con-
sumption. Compared with IDM and CACC, Platoon-MAPPO has a faster overall speed
at lower energy consumption. At the same time, Platoon-MAPPO can maintain a smaller
headway distance, which not only reduces energy consumption, but also significantly
reduces road occupancy. Compared with IDM and CACC, Platoon-MAPPO’s road oc-
cupancy is reduced by 43.3% and 34.2% on average, and up to maximums of 58.2% and
35.7%, respectively. Therefore, in conclusion, Platoon-MAPPO can significantly improve
the energy efficiency of truck platoons and improve road capacity.

Platoon-MAPPO benefits from a good basic model and reward function design, achiev-
ing good performance in experiments. However, similarly to general DL algorithms, RL
cannot guarantee reasonable output results for all inputs, which is one of the reasons why
learning-based algorithms have not yet been widely used in vehicle control fields. To
address this issue, future research can start from two aspects: one is to use traditional
methods to assist in the real-time monitoring of unsafe behavior; the other is to improve
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the interpretability of RL models and train them in more comprehensive and diverse traffic
scenarios to improve robustness.
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Abstract: The coordinated control method of Unmanned Electric Formula Racing (UEFC) was studied
to improve the handling stability of UEFC. The UEFC’s mechanical structure, which is based on the
driving system and transmission system, was designed. In accordance with mechanical structure of
the designed racing car, a seven-degree of freedom mathematical model of the UEFC was established.
In accordance with the built mathematical model of racing car, the lateral controller of racing car
was designed by using a fuzzy neural network method. The longitudinal controller of the racing car
was designed by using the method of incremental PID control, and the coordination controller of
the racing car was designed by combining the lateral controller and the longitudinal controller so as
to realize the lateral and longitudinal coordination control of the UEFC. The experimental results
showed that the output parameters such as yaw rate, vehicle speed and heading angle were slightly
different from the expected output. It was confirmed that the research method can enhance the
handling stability of the UEFC.

Keywords: unmanned; electric equation; racing cars; coordination control; PID control

1. Introduction

Unmanned platforms include unmanned aerial vehicles, unmanned boats, unmanned
submersibles and ground unmanned vehicles. Unmanned ground vehicles are also called
autonomous ground vehicles and autonomous ground mobile robots. With the rapid
development of advanced smart sensors, fast response actuators, high-performance ECUs,
advanced control strategies, computer-based network technology, radar technology, mobile
communication technology and other advanced technologies, intelligent driving vehicles
have stepped from conceptualization to production [1]. With the fast growth of social
productivity and automobile technology, the number of cars is increasing progressively
year after year, and the traffic problem of traditional drivers driving cars is also increasing.
Unmanned technology and unmanned vehicles are the developmental result of the human
automobile industry [2], which represents the highest technical level in the field of automo-
bile research [3], and it is also the future development trend of automobiles. In addition,
with the advancement of conventional unmanned vehicle technology, the unmanned trend
of formula car is increasingly obvious. The longitudinal control system, which is one of
the key technologies of unmanned racing, is the basis for the realization of unmanned
formula racing [4]. Thus, the design of control methods with high stability and reliability is
of great significance.

Vehicle motion control technology is the most key technology for unmanned intel-
ligent vehicle at this stage, and it is the basis to realize stable, reliable and autonomous
driving of vehicles. Motion control involves unmanned vehicle dynamics theory and is an
important content of unmanned vehicle technology [5]. In accordance with environmental
information obtained by the vehicle perception layer, the vehicle acceleration, braking,
steering and other systems are under automatic control. So, the vehicle is controlled to
drive in accordance with desired path. Unmanned vehicle motion control can be either
longitudinal or lateral control. Additionally, these two types are different and correlated.
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Lateral control, in essence, refers to the control of the unmanned vehicle’s steering angle,
mainly considering the safety and stability of controlled vehicle [6]. Longitudinal control
mainly refers to the control of unmanned vehicle’s speed and distance. The purpose is to
make the controlled vehicles drive at the expected speed or maintain the expected distance.
Unmanned vehicle is a highly integrated nonlinear system [7]. There are many interactive
and restrictive factors between lateral and longitudinal control systems. Therefore, the
design of lateral or longitudinal control system cannot satisfy an unmanned vehicle’s actual
driving requirements alone. During actual driving of the vehicle, various driving condi-
tions need to take into account the lateral and longitudinal movements [8]. For example,
the direction and speed of the vehicle need to be controlled at the same time in sharp
corners, overtaking, parking alongside and other situations. Most unmanned vehicles
only combine lateral and longitudinal control without coupling them, and do not take
into account the interaction between lateral and longitudinal dynamics and kinematics.
Therefore, the control effect is not ideal. During driving of an unmanned vehicle, there
is a complex and strong coupling relationship between longitudinal direction and lateral
direction [9]. The whole vehicle is a highly nonlinear motion constraint system, and its
model and environment have uncertainty and measurement inaccuracy, which makes the
lateral and longitudinal control more complex. Designing the lateral control or longitudinal
control system of intelligent vehicle cannot satisfy the intelligent vehicle’s driving needs
alone. Simple working conditions should be designed to move laterally and longitudinally
at the same time, so that actions such as overtaking, pulling over and so on can be carried
out. Most vehicle control systems are synthesized based on the simultaneous loading of
lateral and longitudinal independent controllers [10]. However, since the interaction of
lateral and longitudinal dynamics is not considered in the dynamic modeling, and such a
vehicle control effect is not necessarily the same as that in the independent control.

Numerous scholars have carried out intensive research and achieved certain results.
Research shows that most control methods need high-precision vehicle models or complex
optimization algorithms to optimize the controller. Ge L and his team used MPC to directly
solve the longitudinal and lateral coupling control problems, and used convex optimization
methods to solve the reference value problem of predictive control. Additionally, they
proposed a systematic method to prevent the reference value from exceeding the feasible
region. The research results showed that the algorithm could solve the lateral and longi-
tudinal disturbance problems. Because longitudinal and lateral coupling constraints are
considered, the algorithm has better tracking accuracy and high-speed stability [11]. Wang,
Y and their team proposed an integrated algorithm for longitudinal and lateral trajectory
planning and tracking control based on vehicle to vehicle communication. The algorithm
includes two levels: trajectory planning and path tracking control. A three-step nonlinear
method of multi input and multi output is proposed to design longitudinal and lateral path
tracking controllers. Finally, the stability of the closed-loop system is strictly proved based
on Lyapunov function, and the effectiveness of the algorithm is verified through a high
fidelity full vehicle model on the veDYNA (Vehicle dynamics) platform [12]. To sum up,
the research on the control algorithm of driverless vehicles has made certain achievements.
The control system of driverless vehicles is not just composed of a simple longitudinal
and lateral independent control system. To have sufficient practical value in practical
projects, it is necessary to consider the interaction between the longitudinal and lateral
directions of vehicles. The lateral and longitudinal control can improve the path tracking
ability of the driverless car. The previous lateral and longitudinal control only considered
the parameters that affect each other between the lateral control and longitudinal control
directions. Additionally, it did not take into account the actual working conditions.

Therefore, based on the study of lateral and longitudinal control, this paper proposes
a lateral and longitudinal control method that takes into account various actual working
conditions of a driverless car. It aims to improve the path tracking control effect of driverless
cars. The research contribution is as follows: (1) the proposal of driverless electric formula
racing is to promote the development of driverless control technology. (2) It is proposed that
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the driverless control method considering horizontal and vertical directions can achieve
intelligent control of driverless racing through coordinated control, which is of great
significance to the development of driverless technology. (3) In addition, the performance
of driverless control technology is verified with the help of driverless electric formula racing,
which provides ideas for the intelligent development of transportation. Additionally, the
innovation points in this study are (1) a lateral controller based on a fuzzy neural network;
(2) a racing longitudinal controller based on an incremental PID; (3) the coordination
controller of the transverse and longitudinal direction of the racing car is proposed; (4) the
effectiveness of the controller is verified by simulation experiments.

The main contents of this study are shown in Figure 1. Firstly, the mechanical structure
of UEFC is briefly introduced, and then the mathematical model of UEFC is analyzed. At
the same time, the lateral controller based on the fuzzy neural network and the longitudinal
controller of the racing car based on incremental PID are proposed. Then, the lateral and
longitudinal controllers of UEFC are proposed according to the abovementioned research.
Finally, the proposed research methods are verified and analyzed by experiments.

Figure 1. Main contents of this study.

2. Materials and Methods

2.1. Introduction to UEFC’s Mechanical Structure

On the basis of the electric formula racing car, the driverless electric formula racing
car is composed of environment sensing system and wire control mechanism. The whole
car conforms to the vehicle system dynamics. The environment awareness system consists
of a series of sensors and processors such as cameras, laser radars, GPS/INS, etc. These
components are responsible for sensing the environment around the racing track and the
real-time status of the racing car. At the same time, these components are responsible for
planning the corresponding reference path through algorithms. The control by wire system
is composed of steering by wire, drive by wire and brake by wire. The vehicle controller is
used to coordinate and control the executive components of the wire control system. The
vehicle controller receives the data from the perception system and processes it to get the
control command. According to the command, each part of the wire control system makes
corresponding actions to complete the tracking control of the car. In order to improve
the path tracking accuracy of the car, this chapter introduces a hardware structure and
software structure of the car. At the same time, this chapter analyzes the role of each part
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as well as the design and calculation process for the research of driverless car’s control
strategy. The hardware structure of the unmanned system is composed of sensing sensor,
wire control mechanism, processor, controller, etc. Perceptual data processing, mapping
and planning, and control constitute the software structure of the unmanned system. At the
same time, in order to ensure the accuracy and stability of the driverless car in the lateral
and longitudinal control, the vehicle dynamics model, tire model, motor model, etc. are
built. Figure 2 shows the mechanical structure of UEFC [13].

Figure 2. Mechanical structure of UEFC.

By obtaining and storing the racing point cloud information through the cone barrel,
the perceptual data processes the point cloud information from the LiDAR acquisition cone
barrel, and uses the point cloud filtering algorithm to filter and identify the target cone
barrel point cloud. The camera collects the cone barrel color information, and uses the
depth learning mode to accurately identify the target cone barrel color. The joint calibration
algorithm of LiDAR and camera is designed independently. The 3D LiDAR point cloud
data is mapped to the image through the internal and external parameter transformation
matrix through timestamp matching, and finally the data fusion between the two sensors
is realized.

The drive-by-wire drive system of driverless racing car is partially driven by two inde-
pendent motors, which can improve the controllability of the racing car. The torque output
of each motor can be controlled separately according to the actual working conditions to
improve the dynamic performance of the racing car. The vehicle controller sends the torque
command calculated by the algorithm to the motor controller through CAN communication
to realize the drive-by-wire control of the driverless racing car. For steering-by-wire, on the
basis of ensuring the original mechanical steering, a drive motor is added in the middle of
the steering shaft to realize steering-by-wire. In order to facilitate the disassembly of the
brake drive system and integrate the assembly, the brake drive motor mounting frame is
designed. Two connecting rods are used between the motor and the brake pedal to transmit
the torque of the motor so that the brake pedal can rotate and brake. There is an empty
stroke structure between the motor and the drive connecting rod. When the driver steps
on the brake, the drive connecting rod rotates relative to the empty stroke of the motor,
ensuring that it is not interfered by the motor. The motor and connecting rod are connected
with flat keys, and the two connecting rods are connected with bolts. When the motor
brakes, the connecting rod is connected with the motor rotates, which drives the brake
pedal to rotate for braking. After braking, the brake pedal is reset under the action of the
brake master cylinder.
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This research is the basis of the longitudinal and transverse controller’s design. In
order to have a better understanding of the driverless car, its structural design is given.
Considering the control accuracy and complex working conditions of the driverless car,
three degree of freedom dynamics model of the whole car is used, and the tire model of the
car is established.

2.2. Mathematical Model of UEFC

As the track is smooth and dry asphalt pavement, and no driver is allowed to sit in the
car when the car is driverless. No in-depth study is made on the suspension system that
affects the ride comfort of the car [14]. According to the above analysis, when modeling
the vehicle dynamics, the plane motion of the car is mainly considered in two directions,
namely, lateral and yaw motion. Therefore, a three-degree-of-freedom vehicle monorail
dynamics model is established.

(1) Lateral motion

m
( .
υy + υxω

)
= Fy f r cos δ +

(
Fx f r + Fx f 1

)
sin δ + Fy f 1 + Fyr1 + Fyrr (1)

(2) Longitudinal motion

m
( .
υx + υyω

)
= Fx f r cos δ + Fxr1 − m

(
Fx f r + Fx f 1

)
sin δ + Fxrr (2)

(3) Yaw motion

I
.

ω = d
2

(
Fy f 1 + Fy f r

)
sin δ − bFy f 1 − Fyrr + a

(
Fy f 1 + Fy f r

)
+ d

2

(
Fx f r + Fx f 1

)
(Fxrr + Fxr1) cos δ + a

(
Fx f 1 + Fx f r

)
sin δ

(3)

(4) Rotational movement of four wheels

Jεωε = Tdij − RεTbij − FzijRε (4)

In the formulas, m refers to the vehicle mass; δ refers to the front wheel angle; I refers
to the inertia moment of the vehicle; a and b refer to the distance from the front axis and rear
axis of the vehicle to the mass center respectively; υx refer to the longitudinal speed; υy refer
to the lateral velocity; ω refers to the yaw rate. Fx f 1, Fx f r, Fxr1, Fxrr, Fy f 1, Fy f r, Fyr1 and Fyrr
respectively refer to the front right, front left, rear right and rear left tire force components
along the lateral direction; d refers to the track width of left and right wheels (given that
the front and rear wheels’ track widths are equal); Jε refers to the rolling inertia moment of
the wheel; ωε refers to the angular velocity of the wheel; Tbij refers to the braking torque of
the wheel (i = f , r refers to the front wheel and rear wheel, j = l, r refers to the left wheel
and right wheel, the same below); Tdij is the rear wheel drive torque; Fzij is the wheel’s
longitudinal force; Rε and is the wheel’s rolling radius.

In the actual process, the tire structure is more complex, and the dynamic character-
istics are nonlinear. The steering characteristics and driving stability of the racing car are
closely related to the nonlinear characteristics of the tire. Therefore, appropriate tire model
plays a key role in establishing vehicle model and conducting dynamic simulation, i.e., real
vehicle control.

The magic tyre formula has the characteristics of unity, convenient fitting and high
fitting accuracy. Besides, its parameters can be easily determined. Therefore, the formula is
widely accepted by researchers and engineers in the automotive industry. The empirical tire
model based on the magic formula is adopted in this paper, as shown in Formula (5) [15].

Y(x) = D sin{C arctan[Bx − E(Bx − arctan(Bx))]} (5)

In Formula (4): Y is the output variable, which can be represented by the longitudinal
force Fl or the lateral force Fc or the return moment Mz; x is the input variable, which can
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be determined by the tire side slip angle α or longitudinal slip ratio s; B. C, D and E are
stiffness factor, shape factor, peak factor and curvature factor, respectively.

2.3. Lateral Controller Based on Fuzzy Neural Network
2.3.1. Torque Control Layer

The stability of UEFC can be evaluated with the deviation of yaw rate and the deviation
of the centroid side deflection angle. The smaller deviation will lead to stable control better.
The yaw moment control layer adopts fuzzy neural network algorithm. A five layer fuzzy
neural network is adopted [16]. The input layer includes the deviation e(γ) of yaw rate and
the deviation e(β) of centroid side deflection angle. The output layer is the yaw moment
Mz f , and the membership functions of the input and output layers are Gaussian functions.
By comparing the yaw moment Mz f with the maximum yaw moment Mzmax provided
by the ground, the final yaw moment Mz is obtained for controlling the UEFC. Fuzzy
neural network can quickly and effectively calculate the optimal parameters of membership
function by learning the relationship between input variables e(γ), e(β) and output variable
Mz f . Additionally, 30 fuzzy rule statements can be generated to form the fuzzy rules of the
controller. During the driving of the UEFC, the fuzzy neural network controller will apply
a yaw moment to the UEFC to make the vehicle drive stably [17]. If the torque exceeds the
torque limit of the ground acting on the wheel, the wheel will slip excessively, so the yaw
moment needs to be limited. The maximum yaw moment that the ground can provide is
shown in Formula (6).

Mzmax = B
(

Fz f r + Fzrr − Fz f 1 − Fzr1

)
(6)

In Formula (6), B is the track width; Fz f r, Fzrr, Fz f 1, Fzr1 are the longitudinal force of
the right front, rear wheels, the left front and rear wheels respectively. In accordance
with comparison between the yaw moment output by the fuzzy neural network and the
maximum yaw moment that can be provided by the ground, the smaller moment is selected
as the final yaw moment Mz, and the expression is as follows:

Mz = min
(

Mz f , Mzmax

)
(7)

2.3.2. Distribution of Torque and Control Layer of Slip Rate

To distribute the torque to the driving wheel, the distribution of torque and the control
layer of slip rate receive the expected torque and the yaw torque output by the yaw control
layer. Additionally, it should take into account the factors of motor failure and driving
wheel slip ratio. In case of motor failure, the driving wheels on both sides will output
different torques, which will lead to difficult tracking or even out of control [18]. If the slip
rate of the vehicle is too large, it is easy to cause the vehicle out of control and accidents.
Therefore, the factors of motor failure and slip rate should be considered in the torque
distribution strategy to ensure the vehicle’s stable driving.

(1) Torque distribution and restraint

To ensure the vehicle’s stability, a target yaw moment Mz is used to control the driving
wheel torque. In the process of turning, the tire on the same side as the steering wheel is
called the inside wheel, which turns differently and is interchangeable inside and outside.
As for tires, the side facing the outside of the vehicle body is the outside of the tyres. It is
controlled by increasing ΔT for the outer wheel and decreasing ΔT for the inner wheel. ΔT
is calculated as follows:

ΔT = Mz × R/B (8)

In Formula (8), R refers to the racing car’s tire radius.
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Considering the limitation of the maximum torque of the motor, the expected torque
of the driving wheels on both sides is shown in Formula (9).

T1 =

{
Treq/2 − ΔT

(
if Treq/2 − ΔT ≤ T1_max

)
T1_max

(
if Treq/2 − ΔT > T1_max

) (9)

T2 =

{
Treq/2 − ΔT

(
if Treq/2 − ΔT ≤ T2_max

)
T2_max

(
if Treq/2 − ΔT > T2_max

) (10)

Ti_max =

{
Tmax (n ≤ nr; i = 1, 2)

Pmax/n (n > nr; i = 1, 2)
(11)

In the formula, T1 and T2 represent the actual output torque of internal and external
motors respectively; T1_max and T1_max respectively indicate the maximum torque that the
inner and outer sides of the motor can output at this time; nr refers to the motor’s rated
speed; n refers to the motor’s actual speed.

(2) Motor failure

In case of failure, the motor will send a fault code to the motor controller. According
to different fault levels, the motor fault factor ξ needs to be designed to restrict the torque
of the driving wheel and prevent damage to the motor and driver. The range of fault factor
ξ is [0, 1]; 0 indicates that the motor has the highest fault level: the motor fails and needs to
be stopped immediately; 1 indicates that the motor has no fault and operates normally. The
fault level of the motor is judged by the fault code sent by the motor encoder to the motor
controller. Under the constraint of motor fault factor, the output torque of inner and outer
drive wheels is

Ti ≤ ξiTi_max (12)

(3) Slip rate control

In accordance with actual conditions of road, set the target slip rate to [0.06, 0.22]. The
slip ratio s of the tire on the ground can be expressed by Formula (13).

s =

{
Rvωt

v − 1 (v > Rωt, v �= 0)
1 − v

Rωt
(v ≤ Rωt, v �= 0)

(13)

In Formula (13), R is the wheel radius, ω is the wheel rotation angle speed, v is the tire
speed. When the slip rate of the motor exceeds the slip rate set by the logic, the torque PID
control of the motor will be started, and the difference of slip rate is taken as the input to
adjust the motor torque output.

Sgoal =
Smin + Smax

2
(14)

In the formula, Smin and Smax respectively are the minimum value and the maximum
value of the target slip rate range; Sgoal is the target slip rate representing the actual slip
rate. In the algorithm of PID control, the motor torque after adjustment is

ΔTi = kp

(
Si − Sgoal

)
+ ki

∫ (
Si − Sgoal

)
dt + kd

d
(

Si − Sgoal

)
dt

(15)

In the formula, kp, ki and kd respectively are proportional coefficient, integral coeffi-
cient and differential coefficient. The UEFC’s final torque output is as follows:{

Tin = T1 + ΔT1
Tout = T2 + ΔT2

(16)
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In Formula (16), Tin and Tout are the torques of the inner and outer wheels of the
UEFC, respectively.

The basic structure of the fuzzy controller is shown in Figure 3.

Figure 3. Structure of the fuzzy controller.

2.4. Longitudinal Controller of Racing Car Based on Incremental PID

In essence, the UEFC’s longitudinal control is a speed control system, which aims to
track the expected speed through the control of acceleration and deceleration. In accordance
with deviation between the vehicle’s expected speed and its actual speed, the main control
principle of longitudinal control is to obtain the ideal acceleration and deceleration control
quantity. Then, it must be input into the corresponding controller for execution. The
longitudinal control of racing car includes the switching control of acceleration control
system, braking control system and acceleration and deceleration system. Therefore, this
research introduces the incremental PID control method, which is a basic form of digital PID
control algorithm and a control algorithm for PID control. This can be achieved through
the increment of control quantity (the difference between the current control quantity and
the last control quantity). The longitudinal control structure of racing car on the basis of
incremental PID is presented in Figure 4 [19].

Figure 4. Incremental PID longitudinal control of the racing car.

The longitudinal control of the driverless car is mainly the control of car’s longitudinal
axis direction. It generally includes the control of the car’s displacement, longitudinal speed
and acceleration. When the car is running on a straight track, it needs to increase its speed
and decelerate before entering the curve. Therefore, in order to make the car complete the
race quickly and stably, it needs to adjust the longitudinal speed in real time according
to the track conditions. As a nonlinear system, driverless car brings many difficulties to
the design of longitudinal controller, and it is difficult to ensure its control accuracy and
robustness. The longitudinal control principle of the driverless car is to control and adjust
the torque of the driving system in real time. At the same time, it should indirectly control
the speed and acceleration of the car, and realize the tracking and control of the expected
speed of the driverless car.

PID control, which is a classical control technology in modern control, has advantages
including simple structure, reliable operation, good stability, convenient parameter ad-
justment and so on. In accordance with deviation of the controlled system, PID control
combines the integral coefficient I, proportional coefficient Pas well as differential coef-
ficient D linearly to control the controlled object. r(t) and c(t) are used to represent the
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expected output and actual output, respectively. The calculation formula of PID control
algorithm is shown as follows:

u(t) = Kp

[
r(t)− c(t) +

1
Ki

∫ t

0
[r(t)− c(t)]dt + KDd[r(t)− c(t)]/dt

]
(17)

In the formula, Kp refers to the proportional adjustment coefficient; Ki refers to the
integral adjustment coefficient; KD refers to the differential time constant.

The proportional regulation coefficient Kp in the PID control algorithm mainly regu-
lates the system’s response speed, eliminates the error at the fastest speed, and makes the
controlled quantity reach the expected value of the system [20,21]. The integral adjustment
coefficient Ki is mainly to remove the steady-state error. The value of Ki corresponds to the
speed of removing the system’s steady-state error. The differential adjustment coefficient
Kd is mainly used to improve the system’s dynamic characteristics and keep the system
deviation changing to the set point at all times.

The incremental PID controller has advantages including simple structure and small
influence range on the system in case of failure. Additionally, the incremental PID control
is selected as the control algorithm for the UEFC’s longitudinal control. The calculation
formula of incremental PID controller is as follows:

Δu = Kp[e(k)− e(k − 1)] + Kie(k) + Kd[e(k)− 2e(k − 1)] (18)

In Formula (18), Δu refers to the opening control increment of the electronic accelerator
pedal; e(k) refers to the velocity deviation at the k-th sampling; e refers to the deviation
between the expected speed and the actual speed. The incremental PID control takes
the speed deviation input at the k-th and k − 1-th sampling times as the independent
variable. The incremental PID control compares the size, change direction and change
frequency of the speed deviation during the last three sampling times. Additionally, the
incremental PID control grasps the change trend of the UEFC’s speed at the next time.
Through parameters Kp, Ki and KD, the system error is rapidly reduced so that the UEFC’s
actual speed approaches the expected one, and finally reaches the target value stably.

Fuzzy PID adaptive controller is an intelligent algorithm that combines fuzzy control
and PID control, and can adjust PID parameters online through empirical fuzzy rules. The
input of the controller is error e and error change rate ec. The fuzzy controller adjusts the
changes of the three parameters of PID online according to the experience rules accumulated
in the past [22]. Then, the adjusted three changes Kp, Ki and KD are added to the previously
set initial value of the PID controller to obtain the final output, as shown in Equation (19).⎧⎨⎩

Kp = Kp0 + ΔKp
Ki = Ki0 + ΔKi
KD = KD0 + ΔKD

(19)

Among them, Kp, Ki and KD are the initial parameters set by the PID controller, and
ΔKp, ΔKi and ΔKD are the transformation values set according to the fuzzy control rules.
The characteristics of fuzzy controller can make up for the defects of traditional PID. It does
not need to establish an accurate model of the controlled object, but only need to convert
the previously accumulated experience into corresponding control rules for control. The
fuzzy adaptive PID controller is more flexible, and usually has more obvious advantages
for the object with large nonlinearity and time variation.

According to the difference between the expected and the actual speed as well as the
difference change rate, fuzzy PI control is to correct the values of Kp and Ki so as to realize
the purpose of online real-time adjustment of the proportional value P and integral value
I. Therefore, the rule selection basis is as follows: when the speed error |e| is large, select
a larger Kp value to obtain a larger driving torque value. When |e| and |ec| values are
moderate, select smaller Ki and appropriate Kp to obtain moderate driving torque. When
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|e| is very small. In order to prevent over control of the speed, the Kp value output is zero,
that is, the fuzzy controller does not intervene.

2.5. Lateral and Longitudinal Controller of UEFC

When either the UEFC’s lateral control system or its longitudinal control system
acts alone, UEFC cannot operate perfectly and the needs of various race tracks cannot
be met. Due to the strong coupling relationship between the lateral and longitudinal
control of the UEFC, a coordination controller is built to improve the lateral control effect.
The coordination controller is built for combining the lateral control and longitudinal
control to achieve the coordination control of the UEFC. The input parameter of the lateral
control is the longitudinal speed, and that of the longitudinal control is the lateral position
deviation. The lateral and longitudinal parameters are constrained by each other. In
accordance with the analysis UEFC’s working conditions, the corresponding coordination
law is established. In addition, the parameters are adjusted to achieve the lateral and
longitudinal coordination control. The overall structure of lateral and longitudinal control
of UEFC is shown in Figure 5.

Figure 5. Coordinated control of lateral control and longitudinal control.

The coordination control of UEFC calculates the additional driving torque in accor-
dance with actual position and lateral deviation of the racing car, and judges whether the
racing car needs to accelerate or decelerate so as to realize the lateral and longitudinal
coordination control of UEFC.

The longitudinal controller based on fuzzy PI is coupled. Through analyzing various
working conditions of the car in the actual race, the lateral and longitudinal control laws
are summarized, and the lateral and longitudinal control method of the driverless car is
constructed. Compared with reference [23], after the longitudinal control being added, the
tracking effect of the car on the path was significantly improved. The car performs well in
different curves, and the frequency and amplitude of the swing were also reduced a lot.
This shows that the fuzzy PI adaptive controller is suitable for the longitudinal control of
an unmanned car.

In case of a lateral position deviation, if the reference path is too far from the position,
it should be properly decelerated to make the UEFC track the reference path under the
action of lateral control. In case of a lateral position deviation between the reference path
and the car, if the car approaches the reference path, it should be properly accelerated to
make the car quickly track the reference path [22–24]. The coordination control process of
UEFC is as follows:

(1) It should judge whether the UEFC has a lateral deviation. Where the lateral
deviation ΔY is more than a certain value γ, judge the ϕ angle. It is the included angle
between the vehicle speed direction v1 and the prediction range edge with the radius r at
the intersection of the reference path. v1 is taken as the fixed axis. If the angle between
vehicle speed v and v1 is formed by ϕ clockwise, the positioning is positive, while the
counterclockwise is negative.

(2) It should determine which side the car is on. When the car is on the left side with
regular and tends to be far away from the reference path, the car should reduce its speed,
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that is, reduce its driving torque. When the car is on the right side with regular ϕ and
tends to approach the reference path, it should speed up, that is, increase its driving torque.
When it is on the left side with negative ϕ, if the car tends to approach the reference path,
it should speed up, that is, increase its driving torque. When it is on the right side with
negative ϕ, if the car tends to approach the reference path, it should slow down, that is,
reduce its driving torque.

γ represents the threshold for judging whether there is overlarge lateral deviation. In
the case that the lateral deviation ΔY < γ, it is deemed that the car has carried out tracking
of the reference path and the control is not involved. In the case that the lateral deviation
ΔY < γ, it is deemed that the car lateral deviation to certain extent, and the controller
should intervene for reducing the lateral deviation. The lateral deviation ΔY calculates an
additional driving torque T1 through the PID controller, and then judges whether the target
driving torque T needs to add or subtract the additional driving torque in accordance with
coordination controller so as to finally realize the lateral control and longitudinal control.

3. Results

To verify the designed mechanical structure of the UEFC and the effectiveness of
the coordination control method, the experimental analysis was conducted by the MAT-
LAB/SIMULINK software. The coordinated control of the controller was carried out in
Simulink. The parameters of the control model were coupled through the coordinated
control module, so that the parameters in the joint controller were mutually constrained.
The simulation model is the UEFC lateral and longitudinal coordination control model
proposed in this study, and the basic parameters are as follows: the vehicle mass is 1620 kg;
the distance from the mass center to the front axle is 1.35 m; the distance from the mass
center to the rear axle is 1.43 m; the inertia moment is 2480 kg/m2; the wheel radius of the
racing car is 0.355 m and the height of the mass center is 0.565 m.

The corner input of UEFC is shown in Table 1.

Table 1. Racing steering wheel angle input.

Time/s Steering Wheel Angle/Deg

0 0
1 20
2 40
3 20
4 0
5 −20
6 −40
7 −20
8 0

In accordance with steering wheel input of UEFC in Table 1, the angle for UEFC was
input to check the coordination control performance of the proposed method.

This method is used to coordinate and control the longitudinal and lateral control
changes of UEFC when the vehicle is running. The vehicle coordinated control results
of the proposed method were compared with those of UEFC under lateral control and
longitudinal control. Among them, “Expected output” is the reference standard path. The
lateral and longitudinal control tracking comparison results of the car are shown in Figure 6.

In Figure 6, the results of UEFC path tracking under different control modes are
compared. Because the linear approximate expression of the tire is used in the process of
simplifying the dynamic model, the side slip angle of the tire is also required to be limited
so as to ensure that the force on the tire is in the linear region during driving.
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(a) 

(b) 

Figure 6. Comparison results of racing position tracking. (a) Lateral position. (b) Longitudinal position.

In the lateral control, the output of the front wheel angle is controlled, and the steering
motor drives the steering mechanism to achieve the change of the front wheel angle.
Therefore, the limit position of the steering mechanism and the responsiveness of the
steering motor need to be considered at the same time. The angle of front wheels turning
from the middle position to the leftmost limit position and the rightmost limit position, as
well as the turning angle of the steering motor, were obtained from the real vehicle test. It
is defined that turning left is counterclockwise and the angle is negative, turning right is
clockwise and the angle is positive and turning the steering motor 110◦ corresponds to a
front wheel angle of 30◦. The continuous working speed of the steering motor is 50 r/min,
so when the front wheel rotates 30◦, the steering motor works for 0.4 s.

According to the comparison results, the deviation between UEFC’s actual driving
path and its reference path is large and swings unsteadily when under the lateral control
only. Only when the UEFC’s speed is controlled longitudinally is the deviation reduced,
but there is still a significant deviation. When the proposed method is used to coordinate
and control the UEFC laterally and longitudinal control, the car can track the reference
path well. In Figure 5, further analysis of the experimental results shows that when only
lateral control is adopted do the lateral position and longitudinal position of UEFC deviate
greatly. During longitudinal control, the position deviation of the UEFC is maintained
between the two control methods. When the proposed method is used for lateral control
and longitudinal control of UEFC, the position deviation of UEFC is significantly reduced.
The abovementioned experimental results indicate that the coordination control by this
method can greatly cut down the path tracking deviation of UEFC.
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Three methods are used for the control of the UEFC’s heading angle. The results are
shown in Figure 7.

Figure 7. Results of heading angle control.

Figure 7 is a comparison of heading angle control results of UEFC under three control
modes. When there is only lateral control, the course of the UEFC changes more frequently.
It can be seen that the UEFC swings seriously when tracking the reference path. When the
longitudinal control is adopted for the UEFC, the variation range of heading angle of the
UEFC is significantly reduced. When the method in this paper is used for lateral control and
longitudinal control of UEFC, the heading angle of UEFC can track the reference heading
angle well, and UEFC can track the expected path of the experiment well.

Under the condition of constant speed, driverless racing cars can basically track the
reference path through the control of the lateral controller, but there will be instability in
the starting and turning places. The racing cars swing back and forth on both sides of the
reference path. The swing amplitude and frequency vary at different speeds. When the
speed is higher, the swing amplitude is greater. When the swing frequency is lower, the
car’s actual heading angle can basically track the ideal heading angle. However, when
the speed increases, the range of the racing car’s heading angle will increase. At the same
time, the difference between the ideal heading angle and the racing car’s heading angle
will become larger. By comparison, when the speed increases, the change frequency of
the front wheel angle of the car increases. The lateral position can basically be maintained
within the constraint range. There are some deficiencies in the lateral control of a given
speed. It is necessary to control the longitudinal direction of the car accordingly to improve
the control effect.

After longitudinal control is added and the lateral and longitudinal directions are
decoupled, the car can track the reference path well. Additionally, the unstable situation is
much less than that in Section 3, where there is only lateral control. The course tracking
error is reduced a lot; under the condition of longitudinal control, the lateral position
deviation is maintained between −0.4 m and 0.3 m, which can be maintained within the
comfortable distance defined in Section 3. The deviation is smaller than that of only lateral
control. With the participation of longitudinal control, the speed is adjusted accordingly
under different path curvature. In order to achieve a better tracking effect, it is necessary to
couple the lateral control with the longitudinal control.

Three methods are used to control the front wheel angle of UEFC. The results are
shown in Figure 8.
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Figure 8. Control results of front wheel angle.

The experimental results in Figure 8 show that compared with the other two methods,
the difference between the front wheel angle of the UEFC controlled by the proposed
method and the expected output front wheel angle is small. In addition, the coordination
control of UEFC can be realized using this method so as to keep the UEFC in an ideal
running state. If the lateral control and longitudinal control are used alone, the change
of the front wheel angle of the output is quite different from the expected output. The
coordination control performance of the proposed method is significantly better than that
under the lateral control and longitudinal control alone. The UEFC’s front wheel angle
controlled by this method can control car steering in a favorable way, thus ensuring the car
stability in path tracking.

Three methods are used for the control of the UEFC’s speed. The results are shown
in Figure 9.

Figure 9. The results of vehicle speed control.

Figure 9 shows the speed tracking comparison diagram of UEFC under three control
modes. When the lateral control or longitudinal control method is used alone to control the
UEFC, the car speed is quite different from the expected output speed. When using the
lateral or the longitudinal control of the proposed method alone to control the UEFC, the
actual car speed is consistent with the reference car speed on the whole.

Three methods are used for the control of the UEFC’s yaw rate, and the control results
are shown in Figure 10.
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Figure 10. Yaw rate control results.

The comparison of yaw rate control results of UEFC in Figure 10 shows that the yaw
rate of UEFC is very close using this method for coordination control of UEFC. It is verified
that this method has coordination control performance and can ensure a yaw rate running
within the expected range. To sum up, the coordination control method adopted in the
proposed method has superior control performance for UEFC. This method can enhance
the UEFC’s path tracking effect, which is feasible.

4. Discussion

This paper studied the coordination control method of UEFC, and realized the coor-
dination control of the mechanical structure of UEFC through combining lateral control
and longitudinal control of UEFC. Unmanned vehicle technology is the achievement of
the highly intelligent development of modern vehicles. It brings together the technologies
of multiple disciplines, such as network and communication, sensing and detection and
electronics and control.

The simulation results showed that the car can basically track the reference path at
different constant vehicle speeds. Although the lateral deviation increased slightly with
the increase of vehicle speed, the car always followed the reference path under the action
of the lateral controller. Additionally, it remained within the constraint range of trajectory
tracking error, indicating the feasibility of model predictive control for lateral control. This
study assumes conditions similar to the real road conditions. To test in this and verify
the tracking performance of the lateral controller under variable speed conditions, the
corresponding reference speed was set according to the curvature of the reference path.
In order to ensure the real-time adjustment of the speed, a longitudinal controller based
on fuzzy PI was designed. The simulation results showed that the car can adjust the
speed and track the reference speed in real time according to the track conditions. At the
same time, the feasibility of the lateral controller was demonstrated. When designing the
lateral and longitudinal integrated control system, the lateral controller needs the vehicle
speed as the input of racing state information. Additionally, the longitudinal controller
needs the lateral deviation as the reference value, so the longitudinal speed and lateral
deviation were taken as the coupling points of the lateral and longitudinal control system.
At the same time, this study analyzed the actual multiple working conditions of the car
and formulating the coordinated control law. The longitudinal controller based on fuzzy
PI control strategy was coupled with the lateral controller based on model predictive
control strategy. Through analyzing the various working conditions of the car in the actual
competition process, the lateral control and longitudinal control laws were summarized,
and the lateral and longitudinal control of the driverless car was constructed. By using
Carsim and MATLAB/Simulink software, a joint simulation model was built. Additionally,
the simulation test of longitudinal and lateral coordinated control was completed. The
simulation results showed that under the role of the coordinated controller, the lateral
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tracking effect was significantly improved. There was no unstable swing state, the reference
path could be tracked smoothly, and the lateral deviation remained within the set constraint
range. The longitudinal speed control can track the reference speed and adjust it in real
time according to the track and car status. Therefore, the lateral and longitudinal control
proposed in this paper can eliminate the interaction between lateral and longitudinal
control. This model can meet the requirements of lateral and longitudinal control, and
conduct comprehensive control safely, stably and quickly so as to ensure the independent
driving of the car.

5. Conclusions

This paper investigated the mechanical structure coordination control method of
UEFC, designed a mechanical structure of UEFC, and studied the coordination control
method for the designed UEFC. The coordination control method of UEFC proposed in this
paper enhances the handling stability of UEFC when turning at a high speed. Experiments
showed that this method can realize the coordination control performance of UEFC. When
the vehicle turns and changes lanes at high speed, the coordination control strategy can
effectively control the lateral stability of UEFC, which improves the state response and
handling stability of car of UEFC.
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Abstract: Automated vehicles, predicted to be fully electric in future, are expected to reduce road
fatalities and road traffic emissions. The lane departure warning system, an important feature of
automated vehicles, utilize lane detection and tracking algorithms. Researchers are constrained to test
their lane detection algorithms because of the small publicly available datasets. Additionally, those
datasets may not represent differences in road geometries, lane marking and other details unique
to a particular geographic location. Existing methods to develop the ground truth datasets are time
intensive. To address this gap, this study proposed a framework for an interpolation approach for
quickly generating reliable ground truth data. The proposed method leverages the advantage of the
existing manual and time-slice approaches. A detailed framework for the interpolation approach
is presented and the performance of the approach is compared with the existing methods. Video
datasets for performance evaluation were collected in Melbourne, Australia. The results show that the
proposed approach outperformed four existing approaches with a reduction in time for generating
ground truth data in the range from 4.8% to 87.4%. A reliable and quick method for generating
ground truth data, as proposed in this study, will be valuable to researchers as they can use it to test
and evaluate their lane detection and tracking algorithms.

Keywords: lane detection algorithm; electric vehicle; custom database; image processing; advanced
driver assistance systems

1. Introduction

Traffic crashes are increasing and becoming one of the critical issues worldwide with
the rapid development of expressways and the growth of motor vehicle numbers. In recent
years, automated ground vehicles have emerged as an essential component of intelligent
transportation systems (ITS). Further, automated vehicles, predicted to be fully electric in
future, will reduce road traffic emissions. A fully automated vehicle will drive people to
their destination without any shared control with the driver, including controlling safety-
critical tasks. It is necessary to integrate computers, controls, communications, and different
automation technologies in ITS in order to improve transportation safety, throughput, and
efficiency, while lowering energy consumption and environmental impact [1]. The car
communicates with the driver, the surroundings, and the infrastructure. These interactions
are enhanced in intelligent cars by sensing, sharing information, and actuating different
primary or secondary driving activities. The Advanced Driving Assistant Technology
(ADAS) system is the foundation of ITS. The primary goal of ADAS systems is to enhance
road safety, reduce traffic congestion, and increase driving comfort by increasing various
ADAS features [2].

Nowadays, most automobile advances are driven by embedded technologies and
software solutions that identify potentially unsafe driving scenarios. It is argued that ADAS
may reduce human driving mistakes [3]. One key breakthrough in the automotive industry
is the advent of electric cars, which presents various potentials for ADAS development, but
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also many obstacles. Much research is being conducted in automated vehicles to develop
enhanced ADAS to provide safety to drivers. Lane detection and tracking have been critical
features of ADAS for safe driving and avoiding accidents.

Automated ground vehicle control systems can be divided into three components:
environment prediction and planning; decision-making; and vehicle motion control. Ve-
hicle motion control is separated into two categories: longitudinal motion control and
lateral motion control. Longitudinal motion control is also known as longitudinal velocity
tracking control, and it is a critical component of an intelligent driving control system [4].
Several control algorithms have been applied to longitudinal velocity tracking control. The
longitudinal controller controls the vehicle speed, while the lateral controller controls the
lateral offset and relative heading between the planned trajectories and the vehicle. The
controller design challenge is addressed using a mathematical model that describes both
lateral and longitudinal motions. The controller would ensure that the vehicle follows a
speed profile while automatically regulating the vehicle speed to maintain a safe distance
from the preceding vehicle [5]. A mixture of lane maintaining and overtaking in the left
and right scenarios is utilized to test the controllers, which provide excellent tracking and
comfort preservation [6,7].

Ground truth data in the context of computer vision involves a series of images, a set of
labels on the images, and establishing a model for object recognition, including the number,
location, and relationships of important characteristics, among other things (environmental
factors). Depending on the complexity of the challenge, the labels are placed manually or
automatically using image analysis.

The lane departure warning system (LDWS) utilizes lane detection and tracking algo-
rithms and is now an important feature of ADAS or automated vehicles. The availability
of high-quality datasets is important for developing new computer vision algorithms. In
the literature, lane detection algorithms are usually classified under three categories: the
model-based approach; a features-based approach; and a learning-based approach [8].
Learning-based approaches, on the one hand, require a large amount of ground truth data
during their training process, whereas high-quality data are required for a detailed and
equal assessment and comparison of other methods. Datasets and benchmark evaluations,
which allow us to quantify progress in lane detection and tracking systems, have stimu-
lated much innovation in the computer vision and machine learning fields. Some data
types, such as camera images or depth images in indoor scenarios, are relatively simple
to obtain with high precision. Low-cost sensors that can quickly produce a large amount
of data are available for such image modalities. Manual user annotation can be used to
obtain other ground truth data, such as object annotations or multiclass pixel-wise image
annotations [8].

There are many large-scale datasets available for the performance evaluation of an
algorithm of optical flow and object detection [9]. There are very few extensive dataset
available for lane detection and tracking algorithms with a high-quality dataset of outdoor
scenes, especially in the case of degraded lane markings. High-precision dense videos and
huge annotated images are required to test an algorithm in ADAS. One way to obtain a
large high-precision dataset is the ground truth dataset, which can be collected by mounting
a camera and other equipment at the front of the vehicle. This is a time-consuming and
costly procedure unless the ground truth data can be generated in a reasonable time. Other
types of ground truth data, such as outdoor depth images and optical flow, are also rare to
pull out. Stereo cameras and laser scanners may provide depth information, but they are
either inaccurate or provide very sparse data.

Objective and Scope of the Study

This study aims to develop high-precision ground truth data based on an interpola-
tion approach, which takes advantage of the existing manual and time-slice approaches.
Researchers are constrained in testing their lane detection algorithms because of the low
number of publicly available datasets. Additionally, those datasets may not represent differ-
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ences in road geometries, lane marking, and other details unique to a particular geographic
location. Researchers have developed a few procedures for collecting ground truth (custom)
datasets, but it is time-consuming to generate high-precision data to test the algorithm.
Therefore, to address this knowledge gap, this study develops an interpolation approach to
quickly generate high-precision data for testing and evaluating the performance of lane
detection and tracking algorithm.

This study provides methodological advancement in terms of quickly generating
ground truth data (i.e., data with annotations added to them), which researchers can then
use for testing lane detection algorithms. Without ground truth annotation, lane detection
algorithms cannot be trained and tested. At the present time, researchers are constrained
in testing their lane detection algorithms because of the low number of publicly available
datasets. Further, the generation of ground truth annotation is mainly limited to a time-
consuming and less reliable manual approach. In the manual approach, annotation depends
on the user’s skill or judgement; thus, the performance of lane annotation varies from
person to person. For example, if two people with varied experience perform the manual
approach, the annotation result may differ. This is one of the limitations we overcome with
our proposed approach, besides the reduction in time for annotation.

Since ground truth annotation is a crucial step before testing lane detection algo-
rithms, any method that can overcome the disadvantages of the time-consuming task of
manual annotation is a methodological advancement. With our proposed semiautomatic
interpolation-based framework for generating ground truth annotation, researchers can
quickly make a reliable dataset to be ready for training and testing lane detection algo-
rithms. Interpolation is a method by which related known values are used to estimate an
unknown value or set of values. We have defined finite number rows and identified the
unknown value through an interpolation approach to connect a smooth line or curve on the
images by connecting these points. Our proposed approach allows researchers to quickly
generate a variety of reliable ground truth datasets that they can deploy to test their lane
detection algorithms for different road geometries, lane marking, and other details unique
to a particular geographic location. Video datasets for performance evaluation of our pro-
posed approach are collected in Melbourne, Australia. The performance of the proposed
approach is tested by comparing results with other existing approaches (including manual
annotation as a benchmark) to demonstrate the superiority of our proposed approach.

The structure of the paper is organized as follows. Section 2 presents a literature review
on related works for the generation of ground truth data, a comparison of existing datasets,
and approaches to develop ground truth data. It is followed by Section 3, which explains the
data collection procedure adopted for this study and the proposed interpolation approach
framework. Section 4 discusses the proposed approach’s advantage over other existing
approaches. Finally, conclusions and recommendations for future works are presented.

2. Literature Review

The following subsections discuss related work on generating ground truth or custom
data, and the comprehensive analysis of available datasets. Data used for lane detection and
tracking and the evaluation of algorithms are explained, along with existing approaches to
develop ground truth data.

2.1. Related Work to a Generation of Ground Truth Data

Veit et al. [10] used the ROMA dataset to test a number of feature extractors for road
markings. With camera details and ground truth for the lane markers, the ROMA dataset
offer high-quality color images. The total length of its image sequence is below 20 s. In ad-
dition, it appears that the dataset is compiled from a set of random images that would make
it inappropriate to test lane marking that combines algorithms with lane tracking. Never-
theless, datasets are also available that contain image sequences for testing. For instance,
while driving on local city roads, Leibe et al. [11], Wanf et al. [12], and Brostow et al. [13]
generated image sequences with different scenarios. Although the recorded image content
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of the dataset had a fluctuation in illumination, different lane marking and surfaces, and the
neighboring vehicles, the overall length of the image content is less than 10 min. In addition,
ground truth files are not provided, which is this dataset’s main drawback. While the
dataset generated by Aly et al. [14] contains a ground truth file, scenes are not included in
sequences of the image on the recorded videos on the highway. The PESTS2001 dataset [15]
included image sequences of a highway, whereas the dataset from Sivaraman et al. [16]
generated image sequences of a street and highway. Unfortunately, both datasets have com-
promised image quality by applying lossy compressions such as JPEG and MPEG-4. Finally,
the datasets by Santos et al. [17], Lim et al. [18], and EISATS [19], provide a comprehensive
collection of images that would be ideal for lane marking testing. The images in [17–19]
display variations in the types of illumination, traffic flow conditions, road texture, and
lane marking, that reflect the conditions. In addition, in these datasets, the total length
of the sequence is more than 10 min, and even the camera parameters that are required
for generating camera models are also given. These datasets are applicable for different
applications, except for lane detection. Consequently, files containing ground truth data
are unavailable, so objective analysis may not be obtained. In addition, testing algorithms
on the dataset listed in [16–18] appear to measure their finding based on visual inspection,
and may be biased. A dataset containing a large amount of image data along with ground
truth is required to make a systematic, objective evaluation.

2.2. Comprehensive Analysis of the Available Dataset

The development of lane detection and tracking for ADAS is of great interest to
the automotive society. However, access to resources is extremely restricted because of
the significant commercial involvement in this area of research. Data that are used for
assessment and research is one of the most valuable tools. Compared to areas of study
such as face detection or the identification of optical characters (OCR), where labeled
and structured datasets are often available for training and testing, there appear to be no
such tools for lane detection and tracking. The issue caused by the absence of common
datasets is that it is difficult to currently compare available lane detection algorithms easily.
Additionally, the lack of common testing data make verifying other implementation results
difficult. In this scenario, one of the viable solutions is to enforce each algorithm and its
performance verification. However, the sheer quantity of algorithms that have already been
published in journals and conferences makes this challenge difficult to achieve. Table 1
shows a comparison of different dataset features available in the existing literature for
lane detection, including CU Lane [20], Caltech [21], NEXET [22], DIML [23], KITTI [24],
TuSimple [25], UAH [26], and BDD100K [27].

Table 1. Comparison among different lane datasets.

Sr. No
CU Lane

[20]
Caltech

[21]
NEXET

[22]
DIML

[23]
KITTI

[24]
TuSimple

[25]
UAH
[26]

BDD100K
[27]

Sequences More than 55
hrs videos 4 clips Not

available
Not

available
22 se-

quences
7000 se-
quences

500 min
videos

100,000
videos

Images 133,235 1225 50,000 470 14,999 140,000 N/A 120,000,000

Multiple cities - -
√ √

-
√ √

-

Multiple weathers -
√ √ √

- -
√ √

Multiple times of day
√ √ √ √

- -
√ √

Multiple scene types
√ √ √ √ √ √ √ √

Multiple cameras
√

-
√ √ √

- -
√

Multiple street - -
√ √ √

-
√ √

Labelled streets -
√ √ √

-
√ √ √

Note:
√

: Item under “Sr. No” column is included, and -: Item under “Sr. No” is excluded.
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Researchers have used improvised datasets in terms of visual content to explore
multitask learning for a self-driving car. In earlier decades, researchers were constrained
because of a small set of datasets available for research. However, recently, Berkeley Deep
Drive, University of California, Berkeley, developed the BDD100K dataset, consisting of
100K driving videos with diverse scene types for researchers. A dataset for structure has
been covered in BDD100K according to different types of lanes, such as lane category, lane
direction, lane continuity, and drivable area. In the lane category, the following types of
lane markings have been covered with annotation: road curb, double white lanes, double
yellow lanes, double other, single white lanes, single yellow lines, and other single and
crosswalks. Additionally, parallel lanes and vertical lanes are annotated in the lane direction.
Annotated images with full and dashed lanes are covered in lane continuity, and derivable
and alternative types of lanes come under the drivable area.

Based on the review of studies on lane detection and tracking [8,9], and the summary
of datasets presented in Table 1, it can be observed that there are limited datasets in the
literature that researchers have used to test lane detection and tracking algorithms. It was
also observed that there are a lack of specific datasets from Australian roads.

In future, more datasets may be available for researchers as this field continues to grow,
especially with the development of fully automated electric vehicles. The verification of the
performance of the algorithms for lane detection and tracking system is carried out based
on the ground truth dataset. Ground truth data require a collection of images and a set of
labels on the image in the context of computer vision and models for object recognition.
The number, position, and relationships of key characteristics need to be included. Labels
are added to the image either automatically or manually, depending on the complexity
of the problem. The label set includes interesting points, the corners of lane boundaries
and descriptors of features. Using a range of machine learning methods, a model can be
trained, and the detected characteristics can be fed into a classifier at run time to calculate
the correspondence between detected characteristics and modeled features.

2.3. Approaches for Developing Ground Truth Data

There are four popular approaches to developing ground truth data, as briefly de-
scribed below:

(1) Manual approach
This method is transparent, straightforward, and often used to generate accurate

ground truth. It is conducted as follows:

• The user can manually annotate the lane markings of the left lane’s boundary at
various points in an image.

• Same steps are repeated for the right lane boundary.
• All the steps are repeated for the video clip.
• Finally, the ground truth is generated and saved in the file.

This approach, however, has two issues: it is a slow procedure, and it requires proper
details to annotate a single curve in an image, which can take up a lot of time. Gaps between
two dashed lines are not annotated, because the lane boundary is difficult to estimate in
these areas [28].

(2) Time-slice approach
By stacking an empty image with a row of pixels from frames in the video collection,

a time-sliced (TS) image is produced. To further explain, each frame of a video set with F
frames can be considered as an image with M × N dimensions [29].

(3) E-NET approach
In a study by [30], 168 images with a resolution of 1024 × 1280 pixels and normal RGB

channels are included in the complete dataset. Around five to seven mast cells make up
each image. About 40% of all cells have connected boundaries and appear to be near to one
another. Images were divided into 240 × 560 tile segments, in accordance with the size of
the neural networks. An expert manually segmented the dataset using the ground truth.
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The complete dataset was divided into test and validation parts at a ratio of 74:51, with the
samples being randomly shuffled [30].

(4) Automated test approach
The automatic data-labeling method for creating crack ground truths (GTs) within

concrete images is presented in this approach [31]. The primary technique entails producing
first-round GTs, pretraining a model based on deep learning, and producing second-round
GTs. A learning-based crack detection model can be trained in a self-supervised way using
the generated second-round GTs of the training data. After being retrained using the
second set of GTs, the deep learning-based model that was previously trained is successful
at detecting cracks. This method’s primary purpose is the suggestion of an automated GT
generating approach for pixel-level fracture detection model training [31].

3. Proposed Framework

In this work, we have proposed a framework for generating a ground truth dataset
that can be used for testing lane detection algorithm. Our proposed approach leverages
the advantages of manual and time-slice approaches through the interpolation approach.
While the philosophy of the interpolation approach is applicable to all types of roads, we
have used linear interpolation for straight roads and cubic spline interpolation for curved
roads. The linear interpolation is the straight line connecting the two known positions,
shown in Figure 1a. The equation of slopes gives the value of y along the straight line for x
in the interval:

y∗ − y∗1
y∗2 − y∗1

=
x∗ − x∗1
x∗2 − x∗1

(1)

 
(a) (b) 

Figure 1. The concept of linear interpolation (a) and cubic spline interpolation (b).

y∗ = linear interpolation values.
x∗ = independent variable.
x∗1 & x∗2 = values of the function at one point.
y∗1 & y∗2 = values of the function at another point.
Cubic spline interpolation is a mathematical approach for creating new points within

the boundary of a given collection of points, shown in Figure 1b. These new points are
function values of an interpolation function composed of numerous cubic piecewise poly-
nomials. The cubic spline is the function S(x) with given properties S(x)[xi, xi + 1] = Si(x).

On the basis of the interpolation principle, the ground truth dataset was developed
based on the videos obtained using monocular camera image sequences of traffic scenes
in Melbourne, Australia. We have used the Driving Scenario Designer app (available in
MATLAB R2021a) and MATLAB tools to annotate images.

It is difficult to estimate lane boundaries in the gaps, and to address this challenge,
we have selected user-annotated points to specify a maximum number of rows close to
each other. Then, we created cubic interpolation in these annotated points to get a smooth
curve because lane markings are not straight everywhere (for straight roads, we used linear
interpolation), so the controller can predict the lane boundaries based on the optimization.
In this way, we can generate a dataset for lane detection and tracking algorithms in arbitrary
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scenarios with different traffic flow conditions. Finally, a comparison of the performance of
the proposed approach with other existing methods is conducted.

3.1. The Requirement of Ground Truth Dataset

The image data and the metadata are required to formulate a full dataset. The image
data must consist of a series of image sequences captured at a speed of over 20 km/h while
driving. Additionally, the time between the end of one sequence and the start or second
recording is suggested to be a minimum of 2 min. This prevents the image data from being
a collection of random images in the dataset. The criteria for the dataset from captured
images are the following:

1. Duration of sequences: each recorded image sequence must have a length of at least
20 s. This approach will help test algorithms to use a frame-to-frame detection consistency.

2. Color: recorded image must be in 24-bit RGB format.
3. Uncompressed storage: recorded image sequence must store in a lossless format.

There are two reasons for putting this provision in place. Some researchers have used
real-time systems for research, in this case, real-time systems analyze files directly
from the camera. So, the dataset’s images must represent the camera’s performance.
Lossy compression creates artefacts of the compression and damage image quality.

4. Image format: to provide sufficient detail of the road surface, image must be at least
(480 * 640) resolution.

5. Camera parameters: information about the intrinsic and extrinsic camera’s parameters
should be provided for camera models to be recreated. Focal length, the field of view,
and image format, are among the intrinsic parameters. The extrinsic parameters
include the ground plane’s yaw, pitch, roll, and the height of the optical center of
the sensor.

6. Lane marking: lanes are on straight and curving paths, with solid and dashed lane
markers. They are the most common lane markers on roads in Australia. They must
be present in the image details. The image details must also include images where
lane markers are missing, to test for false positives.

7. Type of road: captured image data must include scenes from both streets and motorways.
8. Illumination effect: scenes in images that have various lighting changes, such as a

vehicle driving via tunnels, under bridges, under shadows, etc., during the day time,
night-time, and cloudy conditions. Data should be recorded to reflect variation in the
levels of ambient light.

9. Weather condition: recorded image must include the weather condition, such as dry,
rain, or snow.

10. Traffic flow condition: image must give traffic flow situations, such as heavy traffic,
modern traffic, and light traffic, etc.

11. The ground truth describes the lane boundaries of the road in curve form, and these
requirements are implemented by the shape of the roads and the position of the curve
identified on the road. Curves identified on the lane boundaries should be smooth,
and they must exhibit no visible kinks in their lane boundaries.

12. Generated curve must be at the center of the lane makers: if there are double lane
markers, it should be between two lines. The curve must start at the top of the Region
of Interest (ROI) and extend to the bottom of the image, along the lane boundary, after
specifying a ROI.

13. In the presence of either solid or dashed markers, the lane boundary curve must
be given.

3.2. Data Collection

To generate the ground truth datasets, we collected video clips covering more than
120 km of distance, including day and night, and under different weather conditions in four
suburbs (Bundoora, Heidelberg, Kew, and Brighton) of Melbourne, Australia. Additionally,
it includes both unstructured (no clear lane markings) and structured roads (clear lane

156



World Electr. Veh. J. 2023, 14, 48

markings). Some videos were taken during the day time in Bundoora, Heidelberg, and Kew,
with structured and unstructured roads, while some videos were collected in Brighton
during the night. The parameters of the lens of the monocular camera used for data
collection are shown in Table 2. We used this camera system because the ultracompact
set provides a range of CMOS image sensors. The camera allows some image processing
features, such as gamma correction and color interpolation, to plot a smooth curve with
connecting points. The parameters of the lens are shown in Table 2.

Table 2. Parameters of the lens used in the camera.

Attribute of Lens Parameters of Lens

Name of the company Optics
Model number 60-255

Focal length 5-55(Mm)
Aperture F1.3-1.6 C

Sensor Not available
Working distance 800-1000(Mm)

Lens design Back surface

For creating a ground truth dataset, it includes the following steps:
Model design: the model explains the structure of the objects, such as intensity, count,

and location, and the relationship between a group of scale-invariant feature transform
(SIFT) features. The model should be properly adjusted to the problem and image knowl-
edge in order to yield significant outcomes.

Training dataset: in order to work with the model, this set was collected and labelled,
and includes both positive and negative images and different features. Negatives include
images and attributes that are intended to generate false matches on the lanes [32].

Test set: several images are collected for testing against the training set to predict the
accurate match for the model.

Classifier design: this is designed to meet the speed and accuracy of the application
objectives, including data organization and model search optimizations.

Training and testing: this dataset was collected to verify a group of images against
ground truth [33].

Table 3 illustrates various road traffic environment features captured in the video data,
collected in Melbourne, while Figure 2 summarizes the overall data collection process to
postprocessing and evaluation.

Table 3. Road traffic environment features captured in the video data collection.

Features Clip 1 Clip 2 Clip 3 Clip 4 Clip 5

Weather condition Cloudy Heavy rain in the
night-time Sunny Cloudy Heavy rain in the

day time

Road surface Rough surface Rough surface Smooth Smooth Rough

Color of lane marking White White White White White

Traffic situation Modern Modern Light Light Light

Speed 60 km/h 68 km/h 70 km/h 64 km/h 66 km/h

Number of frames 14 17 21 25 11

Type of lane marking Dash Solid Dash and solid Dash and solid Dash and solid

Timing Day time Night-time Day time Evening Day

Location Heidelberg Brighton Bundoora Bundoora Kew

Structured and
unstructured roads Yes Yes Yes Yes Yes

Clothoid roads Yes Yes Yes Yes Yes
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Figure 2. Summary of the procedure adopted to develop ground truth data.

3.3. Proposed Interpolation Approach

The proposed interpolation approach is a quick and effective technique for processing
reliable ground truth data. One of the benefits of this method over the manual approach
is that interpolation values give the spatiotemporal representation of the video clip; as a
result, annotations can be carried out rapidly and with better accuracy.

We have divided this interpolation approach into three major steps.
Step 1:

In stage 1, we define a finite number of rows in which the boundary of the lane is
annotated. These rows are shown in Figure 3. It is important to define at least three rows
or more for producing a smooth curve of the lane boundaries for a good result. First,
we started by defining only two rows, but noticed it was not of sufficient accuracy. So,
we tested with three, or more than three rows (mostly three to four rows) using linear
interpolation (for straight roads) or cubic spline interpolation (for curved roads).

Figure 3. Defining a finite number of rows (four rows in this case) in the image.
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It is to be noted that, in Figure 3, other markups, such as cars, signals, etc., are also
shown. This is because we want to demonstrate (as a sample) how ground truth annotation
for lane findings can be applied to a supervised lane detection and tracking algorithm,
which also need to detect surrounding obstacles and objects to avoid a collision.

Step 2:

This stage is made up of two substages put within a frame. The specification of each
substage is provided below.

1. Annotations: an interpolation image is generated by filling an empty image (with-
out annotation) in the video clip with rows of image pixels. The sliced image, which is
initially an empty image, is then generated with dimensions F × N, where F is the video
clip’s frame count, and each image has dimension M × N in the video clip. The sliced
image has dimensions of F × N as F copies of N pixels wide, unlike the images in the video
clip. We have used 240 × 640 image size in this study. In the empty image, rows will be
specified. The row corresponds to the sliced image row to simplify the nomenclature in
this explanation, while the row is a row in the image in the video clip. Next, in the image,
we specify the row from which pixels will be copied. Then, a single row of pixels from each
image of the video clip is copied to a specific row in the empty image by using a loop. To
elaborate, from the first image in the video clip (Figure 3), row = 300, 400, and 500. The first
row of the sliced image is copied. Then, from the row = 300, 400, and 500 in time-sliced, the
second image in the video clip is copied to the second-row image. Likewise, row = 300 from
the F, the image will be copied to the F row in the time-sliced. The rows of pixels appear to
be stacked in the time-sliced image since they are sequentially copied and positioned. The
generated time-slice image is shown in Figure 4, where rows are copied from the image on
the left to the sliced image on the right.

Figure 4. Connecting specified rows via interpolation to generate a smooth curve.

2. Interpolation: in this step, we first annotate a few points in the time-sliced image
at the center of the left lane marker. Then, we perform curve fitting to link the points by
interpolation (Figure 4). Instead of the nearest neighbor or linear interpolation, cubic spline
interpolation is used here. It produces a smooth curve between the points, as shown in
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Figure 4. In the interpolation image, curve fitting estimates lane marker positions between
the annotated points (p1, p2, p3, along the yellow line), as shown in Figure 4.

Step 3:

At the end of stage 2, in each image of the video clip, we have lane boundary points
in four rows. However, it will not create a smooth curve by simply connecting the four
positions with straight lines. Therefore, again we use interpolation. However, this time, in
each image, interpolation is performed across the rows, as shown in Figure 5.

Figure 5. Generating ground truth annotation.

To elaborate, we have selected three points on the left lane boundary. The interpolation
of the cubic spline binds the four rows and defines the position of the lane boundary on
rows 300–500 at the same time, as shown in Figure 4. The cubic spline results in a smooth
curve from r [0] to r [4] for the left lane boundary in the image.

Similarly, this procedure is carried out for the right lane boundary and then repeated
for all the images in the video clip. Figure 4 displays the position on rows 300–500 for
image 1 of the left and right lane boundaries. Furthermore, a sample interpolation image is
shown in Figure 5 above this image, and two observations can be made:

1. Solid lane markers observed as a straight line;
2. Dashed lane markers observed small vertical strips.

Figure 6 summarizes the three steps involved in the interpolation approach. The XML
file generated from the proposed interpolation approach is presented in the Appendix A
(Figure A1).

160



World Electr. Veh. J. 2023, 14, 48

Figure 6. Summary of steps involved in the interpolation approach.

4. Discussion

The proposed approach focuses on interpolation to automate user-annotated points
and, therefore, speed up the process of generating ground truth data. A reliable and quick
method for generating ground truth data will be of immense importance to researchers
as they can use it to test and evaluate their lane detection and tracking algorithms. We
compared the performance (time taken to process and generate the ground truth data) of
our proposed method with other existing methods: manual [28], time-slice [29], E-Net [30],
and automated test [31], and the results are shown in Table 4. For comparison, we used
different video clips with various duration, as shown in Table 4. All clips have solid
and dashed lane markings. On average, from Table 4, it can be seen that our proposed
interpolation approach took less time (5.78 min) as compared to other existing methods,
such as the manual (46 min), time-slice (6.07 min), E-NET (6.35 min) and automated
tests (6.97 min). This is a reduction of 87.4%, 4.8%, 8.9%, and 17.1%, respectively, in
the processing time. When implementing lane marker classification in different weather
conditions, the challenge is with ROI selection since the necessary image characteristics
could be influenced by weather conditions, such as rain. While the proposed interpolation
approach outperformed previous approaches in all environments, some extra time was
needed for rainy conditions, compared to other normal days. For example, as compared
to normal weather (sunny and dry: clip 3), it took around 16 s longer to extract the lane
marker features and obtain interpolation values between defined rows in heavy rain at
night-time (clip 2), and around 9 s longer in heavy rain during the day time (clip 5).

As interpolated values are obtained in our proposed approach, it has the capability
to define the exact location of the lane boundaries. Further, the interpolation approach is
not restricted to any specific lane marking, and road structure and weather conditions do
not influence the ground truth dataset. The selection of an appropriate number of rows
for interpolation may be a limitation, but can be overcome with the experience. At this
stage of understanding, we believe that our proposed interpolation approach will provide
a better result for testing the lane detection and tracking algorithm. This may explain why
our approach is suitable for all types of lane marking. Table 4 shows the comparison of the
interpolation approach with other approaches.
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Table 4. Comparison of the proposed interpolation approach with other approaches.

Clip and
Duration

Duration for Processing (mins)

Manual
Approach

Interpolation
Approach

E-NET
Automated Test

Approach
Time-Slice
Approach

Clip 1
[1 min] 47 5.00 6.00 8.00 6.01

Clip 2
[1.12 min] 41 4.56 5.00 7.32 5.00

Clip 3
[1.19 min] 53 7.00 7.30 6.53 7.09

Clip 4
[1.43 min] 44 6.37 6.70 7.00 8.00

Clip 5
[1.36 min] 45 6.00 6.78 6.04 7.04

Average 46 5.78 6.35 6.97 6.07

Standard
Deviation 4.48 0.99 0.88 0.74 1.15

5. Conclusions

This study developed an interpolation approach for quickly generating reliable ground
truth data. The proposed method takes advantage of the existing manual and time-slice
approaches. The interpolation approach has been developed in three different steps: define
a finite number of rows; find interpolation values; and create a smooth curve by connecting
interpolation values. The system can be used to quickly produce large numbers of high-
quality camera images, depth and optical flow videos, and textual annotations at the
pixel level.

Furthermore, the proposed framework enables the creation of ground truth data for
complex driving scenarios, which could be useful in developing lane detection and tracking
systems for advanced driver assistance systems, or for testing algorithms for automated
vehicles. Other applications of this proposed framework could be the determination of
visual odometry, and the detection of motion models and scenes. Further, due to the
semiautomatic nature of the proposed approach, the user can annotate each image by
clicking a mouse button. Future work may explore combining data acquired from the
front and rear cameras to determine the vehicle’s position on the road, and identify lane
detection and tracking.
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Appendix A

Figure A1. XML file generated from the proposed interpolation approach.
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Abstract: Electric vehicles are widely adopted globally as a sustainable mode of transportation.
With the increased availability of onboard computation and communication capabilities, vehicles
are moving towards automated driving and intelligent transportation systems. The adaption of
technologies such as IoT, edge intelligence, 5G, and blockchain in vehicle architecture has increased
possibilities towards efficient and sustainable transportation systems. In this article, we present a
comprehensive study and analysis of the edge computing paradigm, explaining elements of edge AI.
Furthermore, we discussed the edge intelligence approach for deploying AI algorithms and models
on edge devices, which are typically resource-constrained devices located at the edge of the network.
It mentions the advantages of edge intelligence and its use cases in smart electric vehicles. It also
discusses challenges and opportunities and provides in-depth analysis for optimizing computation
for edge intelligence. Finally, it sheds some light on the research roadmap on AI for edge and AI
on edge by dividing efforts into topology, content, service segments, model adaptation, framework
design, and processor acceleration, all of which stand to gain advantages from AI technologies.
Investigating the incorporation of important technologies, issues, opportunities, and Roadmap in
this study will be a valuable resource for the community engaged in research on edge intelligence in
electric vehicles.

Keywords: electric vehicles; artificial intelligence; edge intelligence; cloud computing; edge computing;
internet of things; deep neural networks; energy efficiency; autonomous vehicles

1. Introduction

Four prominent technology trends are playing a pivotal role in driving innovation
within the automotive industry: autonomous driving, connected vehicles, electric vehi-
cles, and shared mobility. Electric Vehicles (EVs) are rapidly gaining ground in intelligent
transportation systems (ITS) owing to their low driving costs and minimal carbon emis-
sions [1–3]. Artificial Intelligence (AI) stands out as a critical component in enhancing
the sophistication of EVs. ITS encompasses a range of technologies, including automa-
tion, computers, controls, and communication, all geared towards improving the safety,
efficiency, energy efficiency, and environmental friendliness of transportation. The rise
of Autonomous Vehicles (AV) introduces challenges in the realm of intelligent decision-
making, often perceived as incomprehensible to humans. Such a lack of transparency
impedes the widespread acceptance of AV technology within society. In the case of self-
driving cars, AI systems face the dual challenge of making real-time and secure decisions
while also providing explanations for those decisions, a necessity to comply with legal
requirements in various jurisdictions.

A significant portion of AI solutions relies on cloud computing for data storage and
algorithmic processing. Hence, the cloud-based Internet of Things (IoT) platform is es-
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sential for autonomous vehicles, and cloud computing encounters several challenges, as
highlighted by existing research [4]. The surge in interconnected devices necessitates effi-
cient data processing and robust decision-making within strict latency constraints. Despite
the efficiency and speed of our networks, transporting the massive volume of information
spawned by these devices to the cloud for investigation and storage is impractical. The
transfer of such vast data over cloud networks introduces overheads that diminish through-
put, escalate energy consumption, increase network traffic, and incur additional costs. The
heterogeneous nature of data produced by a large number of IoT sensors and devices in
AVs further complicates cloud processing [5].

The cloud’s complexity is exacerbated by the diverse and real-time data streams
from numerous AVs, significantly increasing the workload on the cloud infrastructure.
In response to these challenges, edge computing emerges as a solution to a distributed
computation model deployed in nearby proximity to the data source. By deploying an
Edge Intelligence (EI) model, the inference computing of AVs can experience substantial
improvements in accuracy and latency. This shift toward edge computing addresses
the limitations posed by centralized cloud processing and aligns with the demands of
processing diverse, real-time data from interconnected devices in AVs. The increasing
demands of autonomous driving have brought together machine learning, explicitly AI
and Mobile Edge Computing (MEC), giving rise to edge intelligence (EI) or edge AI. This
convergence aims to enhance various routine activities [6–8] significantly. The core aim
of edge intelligence is to orchestrate the collaboration among numerous edge devices and
servers to handle data spawned in close vicinity. Simultaneously, AI seeks to replicate
intelligent human behavior in devices and machines by learning from data. The fusion of
AI and edge intelligence is a logical progression due to the evident overlap between these
two technologies, collectively referred to as edge intelligence.

With AV’s perspective, edge intelligence plays a crucial role by enabling the AV to
recognize its backgrounds precisely. This is achieved by offloading the data to additional
powerful edge server situated at the base station. The substantial volume of information
spawned and offloaded to the edge necessitates robust AI algorithms for precise processing,
thereby giving rise to the integration of edge intelligence. Consequently, the inference
processing capabilities of AVs can be significantly enhanced by installing an edge intelli-
gence model to enhance precision and reduce latency. Nevertheless, the research on edge
intelligence is still in its early stages equally in academia and industries. The exploration
of this field encounters notable challenges related to transmission, computation within
restricted bandwidth, data safety, confidentiality concerns, and energy utilization [9,10].
These hurdles underline the complexity and evolving nature of edge intelligence, indicating
the need for further exploration and innovative solutions in the integration of AI and edge
computing for autonomous systems. The research journey for this study started with the in
depth understanding of six levels of edge intelligence. The analysis focused on four pivotal
components essential for enhancing the efficiency of edge intelligence: edge caching, edge
training, edge interpretation, and edge offloading. Subsequently, the devised techniques
for optimizing these components were examined. The document provides an outline of the
applications of edge intelligence in electric smart vehicles. Finally, it discusses the hurdles
and prospects related to the adoption of edge intelligence in electric vehicles, enhancements
in performance, and emerging directions for future research.

The rest of the paper is organized as follows: In Section 2, we have discussed edge
intelligence paradigms, which describe strategies for training and inference on cloud or
edge. The advantages and applications of edge intelligence are presented in Section 3. Edge
intelligence presents more intriguing opportunities but encounters numerous challenges
during its implementation. Section 4 elaborates on challenges and opportunities in edge
intelligence. Section 5 presents in-depth analysis of artificial intelligence-based solutions
for optimizing the computation of edge intelligence. Architectural layers in the Roadmap
for edge intelligence are discussed in detail in Section 6. Lastly, the paper is concluded in
Section 7. The organization of the paper is illustrated in Figure 1.
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Figure 1. Organization of the paper.

2. Edge Intelligence Paradigms

Edge Intelligence (EI) is the execution of AI algorithms on edge devices using data
generated on those devices and on sensor nodes [11,12]. This approach often involves
high-performance AI chips but has limitations. It increases energy consumption as well
as cost and is inappropriate for aged devices having restricted computation capabilities.
However, it is essential to recognize that this narrow definition of EI does not fully leverage
the potential of the technology. Recent studies have shown that for Deep Neural Network
(DNN) models, an amalgamation of edge and cloud computing can reduce latency and
energy consumption compared to local implementations [13–15]. EI should encompass
a broader concept, utilizing available data and resources across various levels, as shown
in Figure 2, from end nodes and edge devices to cloud data centers, for optimizing the
training and inference of DNN models. These levels include:

• L0_Cloud Intelligence: Complete DNN model training and interpretation in the cloud.
• L1_Cloud-Edge Cooperation and Cloud Training: Train the deep neural network-

based model (DNNM) in the cloud, then perform inference in collaboration with the
edge, partly offloading new additional data to the cloud.

• L2_In-Edge Cooperation and Cloud Training: Train the DNNM in the cloud but
perform interpretation at the edge, potentially offloading data on edge devices or else
on the adjacent devices.

• L3_On-Device Interpretation and Cloud Training: Train the DNNM in the cloud but
perform on end nodes for interpretation with partly data offloading from cloud to
end nodes.

• L4_Cloud–Edge Co-training and Interpretation: Both training and interpretation of
the DNNM model occur in cooperation between the cloud and edge.

• L5_All In-Edge: Both training and interpretation of the DNNM take place at the edge
environment.

• L6_All On-Device: Both training and interpretation of the DNNM occur exclusively
on the end node.
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Figure 2. Six leveled ratings for edge intelligence.

The location for training and inferencing at each level is presented in Table 1.

Table 1. Training and Inferencing Location.

Level Location Training Inferencing

Level 0 Coud Intelligence Cloud Cloud

Level 1 Cloud-edge Co-inference Cloud Cloud-edge

Level 2 In-Edge Co-inference Cloud Edge & adjacent devices

Level 3 On-device Inference Cloud Edge

Level 4 Cloud-edge Co-training Cloud-edge Cloud-edge

Level 5 All In-edge Edge & adjacent devices Edge & adjacent devices

Level 6 All On-device Edge Device Edge Device

The choice of EI level depends on various factors, including latency, energy efficiency,
privacy, and WAN bandwidth cost, making it application-dependent. Four crucial elements
of edge intelligence are edge caching, edge training, edge interpretation, and edge offload-
ing, and their subclasses are shown in Figure 3. These elements are elaborated further in
this section.
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Figure 3. Elements of Edge Intelligence.

2.1. Edge Caching

Edge caching involves storing information generated by edge devices, sensors, and
IoT devices closer to users to enhance performance and lower latency. This technique
can reduce computational complexity and interpretation time, storing raw sensor data or
previous computation results for reuse. Various caching methods have shown significant
latency improvements [16–19].

2.1.1. Cache Deployment

Cache elements are deployed at edge or end entities such as macro base stations, micro
base stations, and end nodes.

• Caching at Macro Base Stations

Broader coverage and substantial cache size are the characteristics of macro base
stations. A macro base station typically covers a radius of approximately 500 m [20].

• Caching at Micro Base Stations

Micro base stations refer to a group of low-energy access points with a coverage span
ranging from 20 to 200 m, including microcells, picocells, and femtocells [21]. By deploying
small base stations or hot spots in strategic locations enhances the overall experience. This
improvement is attributed to advantages like efficient spatial spectrum reuse, resulting in
benefits such as higher end rates [22,23].

• Caching at Devices

Utilizing device-level caching takes advantage of the storage capacity within end
devices, which can optimize local transmission and computing redundancy. Additionally,
they have the capability to retrieve the desired contents or computing outcomes through
nearby devices via device-to-device (D2D) transmission. [24,25]. However, this approach
could be better for IoT as most of the end nodes in IoT are resource-constrained nodes
having very low onboard memory, limited computational capability, and, most importantly
battery, battery-operated.

2.1.2. Cache Replacement

In practical situations, the allocation of requests for cache access changes over time,
and new content is continuously generated. Therefore, it is crucial to update caches peri-
odically. This updating process is referred to as cache replacement. Various conventional
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strategies for cache replacement have been suggested, including first-in-first-out (FIFO),
least frequently used (LFU), least recently used (LRU), and its modifications. [26]. The
comparison of edge caching placement is shown in Table 2.

Table 2. Cache placement locations comparison.

Cache Locations MBSs SBSs Devices

Coverage Range 500 m 20~200 m 10 m

Cache Size Larger Intermediate Smaller

Number of Users Massive Smaller Fewer

Topology Structure Stable Alters Vaguely Alters Significantly

Redundancy Capability Higher Medium Lower

Computing Power Higher Medium Lower

2.2. Edge Training

Edge training allows devices to learn patterns from cached edge data. It can occur
on an edge server or device and includes independent training and collaborative training
strategies. Collaborative training involves multiple devices and requires communication
updates, posing challenges to data privacy and security. Various factors related to edge
training are discussed in this section.

2.2.1. Training Architecture

The training framework relies on the computational capabilities of both edge devices
and servers. If a singular edge device or server possesses adequate power, it can employ
the identical training structure as a centralized server, performing the training on a single
device. Conversely, when the device or server lacks such capabilities, cooperation with
other devices becomes imperative. This results in the emergence of two types of training
frameworks: individual training, which entails executing training tasks on a lone edge
device or server, and cooperative training, where limited devices and servers work together
to execute training tasks.

A prevalent example of a cooperative training framework is the master-slave model,
as illustrated by federated learning [27]. In federated learning, a server involves numerous
devices and delegates training tasks individually. Another form of cooperative training ar-
chitecture is peer-to-peer, where participants are regarded as equals in the training process.

2.2.2. Training Acceleration

The emphasis is on expediting training at the edge, with some initiatives [28,29]
exploring transfer learning to enhance training speed. Transfer learning involves utilizing
features learned from previous models, resulting in a significant reduction in learning time.
In a cooperative training approach, edge devices have the capability to acquire from one
another, thereby enhancing overall knowledge proficiency. A framework known as Recycle
ML employs cross-modal transmission to expedite the training of neural networks along
mobile platforms throughout the diverse sensory system. Federated learning can also be
employed to hasten model training on distributed edge devices, particularly in scenarios
where labeled data is insufficient [30].

2.2.3. Training Optimization

Training optimization involves streamlining the training procedure to attain specific
goals, viz., minimizing energy consumption, enhancing precision, preserving secrecy, main-
taining security, and more. The critical factors involved in optimization are communication
frequency, communication cost, privacy, and security issues.
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• Communication Frequency

Communication Frequency is a crucial aspect of federated learning, where the ex-
change of information among edge devices and the cloud server plays a vital role. This
operation involves update uploading through edge devices to the cloud server and down-
loading the combined updates from the distributed model to local models. Given the
potential for erratic network conditions in edge devices, it is essential to minimize up-
date cycles.

• Communication Cost

Besides the frequency of communication, another factor influencing the efficiency of
communication among edge devices and the central server is the cost of communication.
Minimizing communication costs has the potential to save bandwidth substantially and
enhance overall communication efficiency.

• Privacy and Security Issues

Upon catching updates from edge devices, the central server is tasked with aggregating
these updates to construct unified updates for the distributed universal model. The concern
arises that malicious hackers may scrutinize the updates, posing a threat to the privacy
of participating edge users. To address this, an aggregation process is implemented to
combine updates from all edge devices, rendering individual updates indiscernible by the
central server [31]. More precisely, every edge device transmits encrypted updates to the
server. The server later combines these encrypted updates. The counteraction of masks
occurs when enough edge devices are involved. Consequently, the server gains the ability
to unveil the aggregated update by unmasking it. Throughout this aggregation process,
exclusive updates remain unscrutinized, and the server can solely approach the combined
unmasked updates, thereby efficiently safeguarding the secrecy of participants.

The conventional deep learning approaches for classification and regression lack the
ability to account for model uncertainty.

2.3. Edge Interpretation

Edge interpretation occurs during the use of the trained model for computing output
on edge devices and servers. However, many deep learning algorithms are designed
for high-performance hardware and are not suitable for edge environments. Challenges
include designing models for edge deployment and accelerating edge inference for real-
time responses. These issues can be addressed through new model designs or model
compression techniques.

2.3.1. Model Design

The primary emphasis in model design revolves around creating neural network
architectures that are lightweight and appropriate for execution on edge devices with lower
hardware demands. This process involves either automated generation of the optimal
architecture by machines or manual design by humans.

• Architecture Search

Exploration in architecture search is a thriving research field with broad applications
in the future. A recent notable advancement in this area is differentiable architecture search
(DARTS) [32], which offers the potential to substantially decrease reliance on hardware.
DARTS relies on the constant easing of architecture description and employs gradient
descent for the process of hunting for architecture.

• Design by Experience

The experience-driven design employs two distinct strategies. The initial approach
involves the use of comprehensive detachable convolutions, which are utilized to construct
a streamlined DNN known as MobileNets. This design specifically caters to the needs
of mobile and embedded devices [33]. Another method employed is group convolution,
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which serves as an alternative means to diminish computation costs during the process of
designing architecture.

2.3.2. Model Compression

Model compression seeks to reduce the dimensions of a model, enhance energy
efficiency, and accelerate inference on edge devices with a restricted number of resources,
all without compromising precision. The five important methods to model compression
are lower Rank approximation, knowledge distillation, compact layer design, parameter
quantization, and network pruning [34].

• Lower Rank Approximation

The fundamental concept behind low-rank approximation involves the replacement
of high-dimensional kernels by the low-rank convolutional kernel multiplication.

• Knowledge Refinement

It relies on transfer learning, wherein a smaller NN is trained employing distilled
data by initiating a large model. The large, intricate model is known as the mentor model,
whereas the more compacted model is described as the student model. The student model
gains advantages by assimilating knowledge from the teacher network.

• Designing Condensed Layers

In DNN, when weight values approach zero, computational resources are inefficiently
utilized. A key strategy to address this issue involves creating a condensed layer in NN,
excellently minimizing resource utilization such as memory and computation power. Chris-
tian and colleagues suggest addressing this by incorporating sparseness and substituting
the entirely linked layers in GoogLeNet. In Residual-Net, an alternative approach is taken
by replacing entirely linked layers through global regular merging to decrease resource
demands. Substituting a large convolutional layer with several smaller and more compact
layers can efficiently decrease the parameter count and subsequently lower computa-
tional requirements.

• Network Pruning

The fundamental concept behind network pruning involves the removal of less signifi-
cant parameters, recognizing that not all parameters play a crucial role in extremely accurate
DNN. As a result, associations between lower weights are eliminated, transforming a heavy
network into a sparser one.

• Parameter Quantization

Achieving high performance in neural networks does not always require highly
precise parameters, particularly when those parameters are unnecessary. Research has
demonstrated that a relatively smaller quantity of parameters suffice for reconstructing a
complete network.

2.3.3. Interpretation Acceleration

The primary concept behind accelerating models in interpretation is to decrease the
runtime of interpretation on edge devices and achieve instantaneous replies for precise
applications based on NN, all deprived of modifying the architecture of the trained model.
There are two main categories of acceleration: hardware and software acceleration. The
software acceleration approach is centered on enhancing resource management, pipeline
structure, and compiler optimization.

• Hardware Acceleration

Methods for hardware acceleration concentrate on parallelizing inference tasks across
accessible hardware, including CPU, GPU, and DSP. In recent times, the potency of mobile
devices has seen a notable rise. A growing number of mobile platforms now feature GPUs.
Given that mobile CPUs are less apt for deep neural network computations, leveraging
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embedded GPUs becomes a viable strategy to distribute computing tasks and expedite the
inference process.

• Software Acceleration

Software acceleration primarily centers on enhancing resource allocation, refining
pipeline design, and optimizing compilers. Methods for software acceleration aim to
optimize the utilization of limited resources to achieve faster performance, but this can
sometimes result in a reduction in accuracy in specific scenarios.

2.4. Edge Offloading

It is a distributed computation paradigm that furnishes computation services for edge
caching, training, and interpretation. It allows tasks to be processed in cloud servers when
edge hardware lacks capability. Four offloading strategies exist, including device-to-cloud
(D2C), device-to-edge server (D2E), device-to-device (D2D), and hybrid offloading, each
with its adaptiveness and resource utilization.

• D2C Offloading Strategy

In the D2C offloading strategy, devices transfer input data, such as audio or images, to
a cloud server. Powerful computers perform high-accuracy inference using a large neural
model, and the outputs are sent backward via the identical network. However, it has some
primary drawbacks. Mobile devices need to communicate large volumes of information
to the cloud, creating a bottleneck in the overall process [35]. The execution is reliant
on internet connectivity. The transmitted information from mobile devices might inhibit
users’ personal information, such as personal photos, making it susceptible to attacks by
mischievous hacks while the interpretation on the cloud server [36]. Various considerations,
including energy efficiency, latency, and privacy, can guide the design of model partitioning
and layer scheduling in this context.

• D2E Offloading Strategy

In contrast to D2C offloading, which involves transferring inferencing to a central
server in the cloud, D2E offloading shifts inferencing to an Edge server. An Edge server, in
this context, denotes robust servers that are physically close to mobile devices and possess
greater processing power than typical edge devices.

• D2D Offloading Strategy

In the strategy of Device-to-Device (D2D) offloading, devices like smartwatches are
connected to smartphones or home gateways and have the capability to delegate model
interpretation tasks to more influential connected devices. Binary decision-based offloading
and partial offloading exist in this context. Binary decision offloading involves deciding
upon the execution of the task locally or offloading it. On the other hand, partial offloading
entails breaking down the interpretation task into various subtasks and offloading a handful
of them to connected devices.

• Hybrid Offloading

The hybrid computing framework efficiently leverages cloud services, edge computing,
and mobile devices in a comprehensive approach. Distributed Deep Neural Networks
(DDNNs) derived from this holistic computing architecture represent a hybrid offloading
technique that strategically allocates portions of a DNN across a distributed computing
hierarchy [36]. The collective training of these segments occurs in the cloud and aims to
reduce communication and resource usage on edge devices. During the interpretation
phase, individual edge devices perform local computations, and the resultant outputs are
combined to generate the final results.

3. Edge Intelligence: Advantages and Applications

In recent times, there has been a noticeable trend towards enhanced intelligence in
various aspects of life, ranging from smartwatches to automobiles, agriculture to industrial
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processes, and even urban environments, and additionally benefiting from the general
benefits of edge intelligence, like reduced latency and bandwidth consumption. Edge
intelligence can help enterprises make quicker data-driven decisions responding to the
requirements of their clients. Reduced storage requirements in edge intelligence led to
improved operational cost savings for enterprises.

3.1. Advantages

• Enriching AI with Richer Data and Application Scenarios:

Recent advancements in deep learning have been driven by four factors: algorithms,
hardware, data, and application scenarios. Data plays a pivotal role in enhancing AI
performance. As IoT grows, vast quantities of information will be spawned at the edge,
challenging cloud-based processing due to bandwidth constraints. Edge intelligence ad-
dresses this challenge by enabling low-latency data processing closer to the data source,
potentially boosting AI performance. Edge intelligence and AI counterparts one another
technically and also with regard to application and adoption [37].

• Key Infrastructure for AI Democratization:

AI has made significant strides in digital products and services, from online shopping
to self-driving cars. Major IT companies envision democratizing AI, making it accessible to
everyone and everywhere. Edge intelligence is well-suited to this goal and offers diverse
application scenarios. Thus, Edge intelligence serves as a crucial enabler for ubiquitous
AI [38].

• Popularizing Edge Intelligence with AI Applications:

Edge intelligence is already bringing about significant transformations across various
industries, such as manufacturing, energy, healthcare, agriculture, logistics, and trans-
portation. [39–41]. Real-time video analytics, built on computer vision, emerges as a killer
application for Edge intelligence due to its high computational demands, bandwidth
requirements, privacy concerns, and low-latency needs [42]. Multiple benefits of Edge
intelligence have created a path for expanded progression in the near future [43].

3.2. Applications of Edge Intelligence for Electric Vehicles

Gartner anticipates a significant surge in the adoption of edge intelligence use cases
in the coming years. The projection is that by 2024, over fifty percent of the potential
enterprises will have implemented a minimum of six edge intelligence use cases. This
marks a remarkable expansion in comparison with the scenario in 2019, in which merely
one percent of larger enterprises had very few edge intelligence deployments. Presently,
some key applications of edge computing include:

3.2.1. Smart Vehicles

An intelligent vehicle is defined as a vehicle with computing capabilities, storage,
and communication facilities that enables learning from its environment and making
conclusions consequently. Sensors and multi-interface cards are used for equipping vehicles
inside and outside. The increasing prevalence of smart vehicles endowed with onboard
wireless devices and sensors like radar and lidar has led to a focus on efficient management
and transportation applications. The goal is to improve traffic flow by reducing travel time
and preventing jamming.

Smart vehicles possess a range of novel features, including information exchange
and location info. These functionalities assist specialized applications, such as security
communication and warnings. Vehicles inside a Vehicular Edge Computing (VEC) system
typically have onboard wireless devices, particularly Onboard Units (OBUs). During
disaster alarm schemes, sensors play a crucial role in verifying if airbags were deployed
during an accident.
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3.2.2. Smart Vehicle Services

Smart vehicles offer a diverse range of services. Some key services, such as assisted
driving, autonomous vehicles, platooning, and parking solutions, are discussed below.

• Assistant Driving

In contemporary times, vehicles such as cars, buses, and trains are designed with the
capability to convey valuable information, including details about accidents, road closures,
and traffic congestion. This is achieved through the integration of sensors, actuators,
and processors, enhancing safety and navigation for these vehicles. The data on traffic
patterns, made available by these intelligent features, can prove advantageous for all types
of organizations [44]. Intelligent vehicles are categorized into five layers by the National
Highway Traffic Safety Administration [45].

• Autonomous Vehicles

As smart vehicles progress towards autonomous driving, establishing robust connec-
tivity amongst smart vehicles becomes imperative. Vehicular networks, on the rise due
to this evolution, play a pivotal role in shaping intelligent transportation systems and
smart cities. These systems are anticipated to support a spectrum of advanced applications,
ranging from road safety and enhanced traffic efficiency to automated driving and seamless
admittance to Internet facilities [46,47].

The global acceptance of automated vehicles has sparked a transformation in the
automobile sector. Nevertheless, challenges such as invulnerability, fidelity, and secrecy
persist in realizing completely automated vehicle editions. Notably, the susceptibility of
automated vehicles to security threats is a concern; a single attack on the software of an
Autonomous Vehicle (AV) could lead to multiple mishaps. Additionally, interconnected
systems on the Internet face risks of unauthorized access, presenting unknown threats.
Vehicle design addresses safety-critical issues by enabling the vehicle to anticipate and
respond to potential dangers while continuously monitoring road conditions throughout
the journey. The assumption in the design is that the driver provides the destination or
navigation. However, it may not be in regulation throughout the excursion, emphasizing
the role of automated vehicular systems in ensuring safe operations [48]. While automated
vehicular systems differ from connected vehicular technology, they share some similarities.

• Platoon

A platoon refers to a cluster of smart vehicles equipped with driving assistant schemes
in which one vehicle follows another. The formation of a platoon involves several vehicles
driven by technology, interconnected through shared communication. This collaborative
driving concept, known as platooning, has become feasible because of the advancement
of technologies. These technologies, fortified with sensors and actuators, enable modern
vehicles to engage in cooperative platooning.

Cooperative platooning offers significant advantages, particularly in improving the
fuel efficacy of heavy vehicles. By anticipating speed changes, the vehicles within a
platoon can maintain a steady speed, leading to enhanced fuel efficiency. Since carbon
dioxide emissions are directly linked to fuel consumption, cooperative platooning has the
indirect effect of reducing environmental pollution. Additionally, this form of platooning
contributes to the improvement of road safety. In emergencies, messages are transmitted to
all vehicles in a platoon, triggering appropriate actions by the automated system [49].

• Smart Parking

In metropolitan regions, the number of vehicles parked in parking lots is substantial,
distributed across various locations such as street parking and outer parking. Unlike
moving vehicles, parked vehicles remain stationary for extended periods. Although they
do not transport info from location to location, parked vehicles equipped with wireless
communication devices and rechargeable batteries as part of Smart Street Vehicles (SSVs)
serve as communication infrastructures with unique characteristics. This allows parked
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SSVs to transmit information among themselves and also link to neighboring moving
SSVs, functioning as static backbones to enhance communication amongst vehicles. The
number of parked vehicles in a parking slot and their duration of stay are critical factors
influencing their role as communication infrastructures [50]. Collaboration among parked
SSVs, particularly in parking lots, enables the execution of heavy computation tasks under
favorable communication conditions. Individual vehicles, constrained by limited resources,
may struggle to meet substantial computation demands. Parked SSVs address this challenge
by providing powerful and underutilized computation resources, efficiently accomplishing
allocated tasks in less time. This environment can be likened to tiny data centers capable of
handling intricate tasks that require significant computational capability.

3.2.3. Smart Vehicle Applications

The emergence of Vehicular Edge Computing (VEC) and the utilization of smart
vehicles as infrastructures have paved the way for a multitude of associated vehicular
applications. These applications span various domains, including driving safety, Aug-
mented Reality (AR), infotainment services, and video streaming. Particularly in scenarios
wherever higher computational processing is essential, VEC networks plays a crucial role
in accelerating computing processes, in this manner curtailing delays. For instance, in
the event of an accident, quick computations are needed to formulate solutions such as
rescheduling traffic lights and efficiently dissipating a large traffic backlog. Meeting such
demands places an exceptional requirement on computational resources [51]. In this con-
text, applications are categorized into two groups: safety and non-safety. VEC proves to be
supportive of both types of applications, as discussed below:

• Safety Applications

It emphasizes enhancing security by minimizing the likelihood of accidents. These
applications monitor the driving environment and alert drivers to potentially harmful
situations to prevent accidents. One such application involves the use of a Global Cam-
era Sensor mounted at a traffic monitoring signal, capable of detecting movement in its
region by recognizing number plates within the detection field. This sensor records the
location and vehicle number, sending this information to the local edge server. A smart
Local Camera Sensor (LCS) positioned at the front of the vehicle observes the driver’s
activities. The LCS issues warning messages to the driver for such activities, aiding in
accident prevention. Repetitive warnings at appropriate times help drivers avoid haz-
ardous situations and ensure their safety. The LCS is equipped to generate these warning
messages and, later broadcasting a specific number, informs the edge server about any
interrupting activities involving the vehicle. This report involves activity evidence and
vehicle identification [52–56].

Context-aware systems are also employed, utilizing information related to the user
to adapt operations based on environmental conditions. Context-aware applications ad-
just their operations according to the user’s context, sensing information specific to the
environment. These applications involve Context Acquisition, Processing, and Acting [57].
Leveraging contextual knowledge allows the generation of concise, context-aware informa-
tion, reducing the radio resource requirements for transmission. Users can extract coveted
content from the context using suitable decoders and big-data analytics techniques such as
Natural Language Processing (NLP) [58,59].

• Non-safety Applications

Applications of Vehicular Edge Computing (VEC) extend beyond safety services to
include the development of non-safety applications, such as multimedia services like
video streaming, Augmented Reality (AR), and infotainment. The surge in streaming
applications has notably contributed to a significant portion of network traffic, particularly
in IoT communication, where video streaming plays a pivotal role [60]. This is particularly
evident in smartphone applications like video crowdsourcing [61]. The Internet of Vehicles
(IoV) supports various applications, including intelligent transportation systems and mobile
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multimedia. In IoV, users connect their mobile devices to the internet to access multimedia
content from remote servers. However, maintaining Quality of Service (QoS) becomes
challenging, given factors like jitter, buffering, throughput, and transmission delays in video
streaming applications, exacerbated by the high mobility of vehicles in IoV. A proposed
solution in [62] introduces distributed reliable real-time streaming in vehicular cloud-fog
networks. A utility function is utilized to improve QoS and fairness in resource reservation
among mobile devices, considering content provision for streaming and the number of
tokens for content reservation from service providers, edge, and cloud. Mobile devices in
the network query their probable location, the amount of data for streaming, and required
tokens for content provisioning, facilitating effective reservation of streaming content from
computing service providers and enhancing streaming utility reliability.

Addressing the parking lot monitoring issue, [63] proposes an edge computing-based
scheme where each vehicle uploads street contents collected by the camera for video
analytics. This enables ParkMaster to estimate precise locations and track parked vehicles
using information from the vehicle’s camera, GPS, and inertial sensors.

Augmented Reality (AR) is an evolving multimedia application that seamlessly inte-
grates real scenes into virtual scenes, overlaying virtual content onto the real environment
to enhance traditional image information. AR can improve traffic awareness for vehicles or
pedestrians near drivers, with the head-up display (HUD) reducing distractions and en-
hancing driving safety. An exploration of the HUD-based navigation system with AR-based
content is detailed in [64], illustrating its potential for safety and convenience services [65].
A novel application, walk navigation, utilizes a camera and GPS for a car navigation system
with AR technology, providing real-time navigation without compromising safety. The
device’s camera output is analyzed by an edge computing application to overlay viewed
objects with AR content. Given the intricate storage and processing demands of AR, VEC
is considered the optimal solution to meet the specific requirements of AR applications in a
vehicular network, including mobility, location awareness, and low latency.

Although edge intelligence presents more intriguing opportunities compared to cloud
computing, organizations encounter numerous challenges during its implementation. Op-
portunities and challenges associated with edge intelligence are discussed in the next section.

4. Challenges and Opportunities for Edge Intelligence

Edge intelligence is yet in its early stages, and currently, there is yet to be an established
framework to strengthen it. Such frameworks must encounter specific requisites, including
the ability to develop applications for instantaneous processing on edge nodes. While
existing cloud computing frameworks can handle data exhaustive purposes, enabling in-
stantaneous data treatment at the network edge remains an area of ongoing research [66–69].
Moreover, we must gain a deep understanding of installing application capabilities on edge
nodes, including strategies for workload placement, policies for connecting to edge nodes,
and management of distinct node types when deploying applications at the edge.

4.1. Challenges

To create such a framework, five key research challenges spanning the hardware,
middleware, and software layers are identified.

4.1.1. Enabling Generic Computing on Edge Nodes

In principle, the concept of Edge intelligence involves utilizing various nodes linking
the edge device and the cloud. For illustration, base stations are equipped with specialized
Digital Signal Processors (DSPs) designed to manage specific tasks. Nevertheless, in
practical terms, base stations might not be ideal for handling critical assignments due to the
fact that DSPs are not devised for versatile computation tasks. Furthermore, the situation
remains uncertain since these nodes may not be able to execute additional computations
along with the primary functions.
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Research is underway to enhance the computing capabilities of edge nodes to assist
generic tasks. For instance, it is possible to upgrade a wireless home router to handle
added tasks [70]. Intel’s Smart Cell Platform17 utilizes virtualization to accommodate
supplementary tasks. An alternative solution involves exchanging specific DSPs with
equivalent generic CPUs, although it demands substantial investment.

Cutting-edge AI techniques like neural networks have shown great potential in solv-
ing various challenges using remarkable precision. Nevertheless, this often arises at the
expense of higher computation and memory demands. As a result, NN typically executes
these algorithms on high-powered GPUs, which consume significant power. In contrast,
embedded processors and DSPs propose a more power-efficient remedy and are capable of
fixed-point processes [71]. To make neural networks functional for deployment on mobile
devices, we need less complex CNN models that can execute on embedded processors
without sacrificing precision. Additionally, it is essential to enhance both the efficacy of the
inherent processes executed by neural networks and their overall structure to make them
more suitable for resource-competent procedures.

4.1.2. Exploring Edge Node Discovery

The exploration of resources and services within a distributed computing environ-
ment is an established field. It is accomplished in both tightly and loosely connected
setups through various techniques integrated into monitoring tools [72,73] and service
brokerages [74,75]. These methods, like benchmarking, create the foundation for yielding
decisions about allocating tasks to highly suitable resources to enhance performance.

Nevertheless, the challenge arises when we aim to control the capability of the net-
work’s edge. In a decentralized cloud configuration, discovering appropriate nodes ne-
cessitates mechanisms that go beyond manual intervention due to the sheer number of
available devices at this level. Additionally, such mechanisms should accommodate diverse
devices from diverse generations and adapt to prevailing workloads like newly added
exhaustive machine learning tasks. Benchmarking methods must rapidly communicate
the attainability and capabilities of resources. It is also desirable for them to handle node
failures consistently and independent recovery.

In this context, the conventional methods used in the cloud for discovering edge nodes,
such as resource management and task scheduling, face limitations:

• Resource Management

It entails guaranteeing an ample supply of resources within the edge network, as
exemplified in smart parking setups in which sensor data is seamlessly and dependably
transmitted to edge devices [76]. Essential components of resource management include
dynamic load balancing [77] and the creation of platforms for resource allocation [78].
Nevertheless, addressing on-demand resource requirements, fluctuating workloads, and
data streams originating from diverse devices across extensive geographical areas may
require making trade-offs between computing power and communication speed [79].

• Resource Management and Task Scheduling

Edge devices exhibit numerous models, diverse hardware architectures, various op-
erating systems, and inconsistent creation environments. Established edge intelligence
platforms struggle to effectively incorporate and administer such diverse edge devices,
particularly when it comes to supporting AI workloads. Managing and orchestrating
AI workloads, which have distinct characteristics compared to web loads, is a pressing
challenge. Consequently, Edge intelligence platforms must introduce novel resource per-
ceptions tailored to the challenges of AI workloads, including GPU support, capability
extension, and task dependence handling.

• Customized AI Algorithms

While model compression preserves to foster AI execution on the edge, usually leads
to a deficit of model precision. Static model compression methods fail to amend the
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dynamical hardware configurations and loads of edge nodes. Thus, there is a growing
need for dynamic compression methods tailored to the complex conditions of edge nodes.
Additionally, current model-splitting techniques utilize the hierarchical constitution of
deep learning models. Future research should focus on developing partitioning methods
tailored to the specific characteristics of AI applications.

Furthermore, data availability presents another formidable challenge for edge devices
attempting to process raw data for edge training. The usability of data is crucial, and
raw data captured from edge devices often cannot be directly used for model training
and inference due to potential bias. While federated learning offers a partial solution,
the synchronization of training procedures across devices and communication remains a
challenging aspect. In conclusion, discovering and effectively utilizing edge nodes in a
decentralized cloud setup poses unique challenges that necessitate innovative approaches
beyond traditional cloud-based methods.

4.1.3. Dividing and Delegating Discovery

The advancement of distributed computation environments leads to the creation of var-
ious methods for dividing tasks to be implemented in numerous geographical localities [80].
One instance is the partitioning of workflows to be executed in different places [81]. Task
splitting is typically conveyed obviously using a semantic or administration tool. However,
using edge nodes for offloading computations presents the challenge of efficiently dividing
computational assignments inevitably, deprived of essentially compelling appropriate
definitions of the competencies or locations of edge nodes.

With the increasing global demand for mobile applications, mobile devices face grow-
ing constraints such as limited resources and reduced battery life. Mobile fog architectures
have been discussed in the context of mobile cloud computing and code offloading mecha-
nisms. Existing investigations have predominantly depended on simulation techniques
for examining task offloading. However, this methodology has limitations because it can-
not accurately depict the authentic characteristics of AI workloads in industrial settings.
AI algorithms utilized in diverse industrial sectors exhibit distinct model structures and
processing steps.

Consequently, when devising a task offloading algorithm, it is crucial to customize the
offloading strategy to align with the processing steps of the AI application and its model
structure. Current research is transitioning towards a synergy between cloud and Edge
intelligence. In the future, the emphasis may pivot towards cooperative computing among
edge nodes, where multiple edge nodes can collect information from various perspectives,
contributing to heightened analysis and decision-making capabilities.

4.1.4. Unwavering Quality of Service and User Experience

The value delivered by edge nodes can be measured using Quality of Service (QoS),
while Quality of Experience (QoE) assesses the quality experienced by users. In the realm of
Edge intelligence, a critical principle to embrace is the avoidance of overburdening nodes
with computationally demanding tasks [82,83]. The difficulties lie in ensuring that these
nodes maintain high throughput and reliability while accommodating surplus workloads
from data centers or other edge devices. Even though an edge node is fully utilized,
users of edge devices and data centers rightfully expect a baseline stage of service. For
instance, overloading a base station can negatively impact the service given to connected
edge devices. It is imperative to have a comprehensive understanding of peak usage
hours for edge nodes so that tasks can be effectively divided and organized in a versatile
manner. While an administration framework could be beneficial, it also advances concerns
associated with supervising, scheduling, and rescheduling at all levels.

Collaborative training is also an important task to be considered. Edge intelligence
employs two AI training methods; distributed training and federated learning. In dis-
tributed machine learning, data analysis tasks are performed on nodes that create data,
with models and data exchanged among different nodes [84,85]. Google has introduced
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federated learning as a privacy-preserving technique, which has found applications in
sensitive areas like healthcare and finance. Federated learning and distributed training
are distinct. Generally, distributed training emphasizes utilizing data at the network’s
edge, whereas federated learning places a greater emphasis on safeguarding data privacy.
When dealing with diverse edge devices that vary in computing power and communica-
tion protocols, adapting models and ensuring serviceability poses challenges. The same
methods may yield different learning outcomes when applied to different device clusters.
Establishing robust, flexible, and secure synchronization between edge devices, servers,
and cloud resources at both hardware and software levels is of utmost importance. There
are significant research opportunities in developing a standardized API/IO interface for
edge learning across various ubiquitous edge devices.

4.1.5. Utilizing Edge Nodes Safely and Publicly

Hardware assets held by data centers, supercomputing facilities, and private entities
using virtualization have the potential to be repurposed to provide computing services as a
utility. This approach involves assessing the associated risks for both providers and users,
ultimately enabling pay-as-you-go computing. Consequently, a competitive market has
emerged, offering a multitude of options to cater to computing consumers while adhering
to Service Level Agreements (SLAs) [86].

Nevertheless, when contemplating the use of alternative devices like switches, routers,
and base stations as publicly accessible edge nodes, several challenges must be confronted.
Firstly, there’s a necessity to clearly delineate and communicate the associated risks for
both public and private organizations owning these devices and those planning their de-
ployment. Secondly, it is imperative to ensure that the primary function of the device,
such as a router managing internet traffic, remains unaltered when repurposed as an Edge
intelligence node. Thirdly, realizing multi-tenancy on edge nodes demands technology that
prioritizes security; for instance, containers, which are potentially lightweight technology
for edge nodes, must exhibit more robust security features [87]. Fourthly, a baseline level
of service must be assured for users of the edge node. Lastly, diverse factors like work-
loads, computation, data location and transfer, maintenance costs, and energy expenses
need consideration when formulating appropriate pricing models for facilitating access to
edge nodes.

The significance of data privacy and security cannot be overstated. Artificial Intelli-
gence (AI) serves as an effective tool in identifying malicious attacks and preventing privacy
breaches. However, edge devices face constraints in computing resources, presenting a
substantial challenge in designing lightweight and efficient AI algorithms suitable for Edge
intelligence (EC).

4.2. Opportunities

Despite the difficulties that arise in the implementation of Edge intelligence, several
promising opportunities exist. We have identified five such opportunities.

4.2.1. Establishing Standards, Benchmarks, and a Marketplace

The practical realization and public accessibility of Edge intelligence hinge on the clear
articulation of duties, associations, and consequences among all involved parties. Various
efforts have been made to define cloud standards, including those by organizations such as
the National Institutes of Standards and Technology (NIST) in 2021, the IEEE Standards
Association, the International Standards Organization (ISO), the Cloud Standards Customer
Council (CSCC), and the International Telecommunication Union (ITU). However, these
standards must now be revisited to account for added stakeholders, such as public and
private organizations that acknowledge edge nodes, to address the communal, legitimate,
and moral aspects of edge node utilization. This is undeniably a complex task that de-
mands devotion and investment from both public and private organizations as well as
academic institutions.
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The implementation of standards relies on the ability to benchmark the performance
of edge nodes beside established metrics. Benchmarking efforts for the cloud have been
undertaken by organizations like the Standard Performance Evaluation Corporation (SPEC)
and several academic scientists. In an environment as unpredictable as the cloud, bench-
marking presents substantial difficulties. Benchmarking edge nodes will pose even greater
challenges but will open up additional opportunities for research.

Utilizing edge nodes becomes an enticing prospect when duties, associations, and
consequences are well-defined. Much like a cloud marketplace, the creation of an Edge
intelligence marketplace offering a heterogeneity of edge nodes on a pay-as-you-go basis
is reasonable. Research is needed to establish Service Level Agreements (SLAs) for edge
nodes and develop pricing models to facilitate the creation of such a marketplace.

4.2.2. Frameworks and Languages

There are numerous possibilities for running applications within the cloud paradigm.
Besides widely used programming languages, there’s a diverse range of offerings available
for deploying cloud-based applications. In scenarios where resources beyond the cloud are
utilized, such as running a bioinformatics workload on the public cloud with data sourced
from a private database, a typical approach involves the use of workflows. Research has
extensively explored software frameworks and toolkits for creating extensive workflows in
a distributed environment [88]. However, as edge nodes capable of supporting general-
purpose computing become more prevalent, the development of new frameworks and
toolkits becomes necessary.

The potential applications of edge analytics are expected to vary significantly from
established workflows, which have mainly been explored in scientific fields such as bioinfor-
matics [89] or astronomy [90]. As edge analytics becomes relevant in user-driven scenarios,
the current frameworks may not be well-suited for representing edge analytics workflows.
The programming model created to leverage the capabilities of edge nodes should be capa-
ble of handling task and data-level parallelism while executing workloads across various
hierarchical levels of hardware.

Additionally, the programming language that supports this model should take into
account the diverse hardware landscape and resource capacities present in the workflow.
In cases where edge nodes are highly specific to a particular vendor, the frameworks
supporting the workflow must be adaptable. This level of complexity goes beyond that of
existing models designed to make cloud computing accessible.

4.2.3. Utilizing Lightweight Libraries and Algorithms

In contrast to large servers, edge nodes face limitations in supporting resource-
intensive software due to hardware constraints. For instance, consider a small cell base
station equipped with Intel’s T3K Concurrent Dual-Mode system-on-chip (SoC). This de-
vice typically features a 4-core ARM-based CPU and limited memory, making it inadequate
for executing complex data processing tools like Apache Spark. Apache Spark demands
a minimum of 8 CPU cores and 8 gigabytes of memory for optimal performance. In the
context of edge analytics, there is a need for lightweight algorithms capable of performing
reasonable machine learning or data processing tasks [91].

One example of a lightweight library is Apache Quarks, which can be utilized on
compact edge devices such as smartphones to enable real-time data analytics. However,
Quarks primarily supports basic data processing functions, such as filtering and windowed
aggregations, which may not suffice for advanced analytical tasks like context-aware
recommendations. There is a demand for machine learning libraries that consume less
memory and disk space, benefiting data analytical tools designed for edge nodes.

TensorFlow is another framework to consider, supporting deep learning algorithms
and heterogeneous distributed systems, although its potential for edge analytics remains to
be explored.
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AI algorithms play a pivotal role in extracting valuable insights from big data. Never-
theless, the information extracted by existing algorithms is somewhat limited. In the case
of supervised learning, manual data labeling can introduce unknown errors. Furthermore,
the future data acquisition systems for smart medical applications will predominantly rely
on wearable devices. The rapid analysis and response to collected data on these wearables
present a significant challenge in terms of energy supply. Balancing the accuracy and
lightweight nature of AI models is an area that warrants further investigation.

4.2.4. Micro Operating Systems and Virtualization

Research into micro-operating systems or microkernels presents a potential avenue
for addressing challenges associated with deploying applications on diverse edge nodes.
These nodes, unlike traditional servers, typically have limited resources. Therefore, it is
essential to optimize the general-purpose computing environment at the edge by conserv-
ing resources. Advantages such as rapid deployment, shorter boot-up times, and resource
isolation are highly desirable [92]. Initial studies suggest that mobile containers, which dis-
tribute device hardware functions among multiple virtual devices, can offer performance
comparable to native hardware [93]. Container technologies, such as docker, are advanc-
ing and enabling swift application deployment on various platforms. However, further
research is needed to establish containers as a suitable method for deploying applications
on edge nodes.

Virtualization plays a vital role in the evolution of IT technologies, enabling the
simultaneous operation of multiple operating systems or numerous applications on a single
server [94]. Its key function is to diminish the reliance on physical servers, leading to
substantial reductions in power consumption and cooling costs. The growing prevalence of
IoT, mobile devices, and sensors has amplified the requirement for remote data centers [95].
Consequently, there exists an opportunity to relocate applications and intelligence from
the cloud to the edge network. This transition can usher in a new type of virtualization
at the edge, wherein a physical server can provide adaptable and dedicated storage and
cache resources.

4.2.5. Energy Efficiency

The rapid proliferation of edge devices in urban areas has worsened the global energy
crisis and the issue of global warming. One potential method to mitigate this problem
involves harnessing renewable energy sources to power these edge devices. Given that
these devices are dispersed throughout the city, adopting distributed renewable energy
generators can significantly reduce the reliance on conventional energy sources. However,
this approach is not without its challenges. It must address issues like minimizing the
use of conventional energy while ensuring the uninterrupted operation of edge devices
and establishing a complementary power system for various edge devices [96,97]. In the
context of an Energy Internet system, the energy router, which serves as a control center,
requires a certain level of computational capacity [98]. Hence, a plausible avenue for future
research is to explore the integration of energy routers with edge intelligence.

5. AI Solutions for Optimizing Computation of Edge Intelligence

As discussed, major problems in computing for edge Intelligence are computing
offload, resource allocation, privacy, and security. Enhancement in conventional approaches
or hybridization can help improve and optimize computing, resource allocation, privacy,
and security for Edge Intelligence. A detailed review of the techniques proposed by the
researchers to address these objectives is presented in Table 3.
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Table 3. Summary of Solutions for Optimizing Computing for Edge Intelligence.

Problem Addressed Objective Technique/Algorithm Details of Technique/Algorithm

Computing offloading
optimization

Reduction in
energy consumption
and latency.

Deep Reinforcement
Learning (DRL) based
offloading scheme [99]

Lack of prior familiarity with transmission delay and
energy consumption models reduces the complexity
of the state space by employing Deep Reinforcement
Learning (DRL) to augment the understanding speed.
Additionally, consider the Energy Consumption (EC)
scenario involving energy harvesting.

Deep Reinforcement Learning
(DRL) based computing
offloading algorithm [100]

Utilizes a Markov decision process for the portrayal
of computational offloading, employing Deep
Reinforcement Learning (DRL) to acquire insights
into network dynamics.

A hybrid approach based on
Q-function breakdown and
double DQN [101]

Utilized a double deep Qnetwork for the attainment
of optimal computing offloading in the absence of
prerequisite, employed a novel function
approximator founded deep neural network (DNN)
model which is designed to address
high-dimensional state spaces.

Reinforcement learning
utilizing neural network
architectures [102]

A continuous-time Markov decision process with an
infinite horizon and average rewards is employed to
model the optimization issue. Additionally, a novel
value function approximator is introduced to
address the challenges posed by high-dimensional
state spaces.

Optimization of the
hardware structure for
edge devices

Binary Weight
Convolutional Neural
Network based
Algorithm [103]

Static random-access memory (SRAM) is designed
for binary weight convolutional neural networks
(CNNs) with the aim of minimizing memory data
output, facilitating parallel implementation of
CNN operations.

Approach based on DNN
and FPGA [104]

Expeditor for weed species categorization utilizes a
binarized deep neural network, which is employed
on field programmable gate arrays (FPGA).

Reduction in energy
consumption

Distributed Deep
Learning based offloading
technique [105]

Built a model by adding the cost of varying local
implementation assignments in the cost function.

Reduction in latency

DL based
Smart-Edge-CoCaCo [106]

An approach based on joint optimization of wireless
communication, combined filter caching and
computation offloading, is developed to reduce
the latency.

A heuristic offloading
technique [107]

Using electronic communication networks to
estimate the distance between origin and destination,
along with heuristic searching, to identify the most
effective scheme for reducing the communication lag
of deep learning tasks.

Cooperative Q-learning [108] Noticeable improvement in the searching pace of the
conventional Q-learning approach.

TD learning involves a
method that incorporates
post-decision states and
utilizes a semi-gradient
descent approach [109]

Utilized approximate dynamical planning as a
strategy to tackle the difficulties established by the
curse of dimensionality.

Online Reinforcement
Learning [110]

Unique arrangements of state transitions are
designed to address the difficulties raised by the
curse of dimensionality. Moreover, it takes into
account the energy-harvesting aspect of
Edge intelligence.
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Table 3. Cont.

Problem Addressed Objective Technique/Algorithm Details of Technique/Algorithm

Security of Edge
Intelligence

Hypergraph clustering [111]
Improves the identification rate by modeling the
association among edge nodes and DDoS through
hypergraph clustering.

Extreme Learning
Machine [112]

Demonstrate quicker convergence rates and
enhanced generalization capabilities of the Extreme
Learning Machine classifier compared to the
majority of traditional algorithms.

Distributed Deep
Learning [113]

Eases the load of training the model while enhancing
its accuracy.

An algorithm based on
restricted Boltzmann
machines [114]

Enhances the ability to identify unfamiliar attacks
through the incorporation of active learning features.

Deep PDS-Learning [115]
Accelerate the training process by incorporating
supplementary details, such as the energy
consumption of edge devices.

Resource allocation
optimization

Actor-critic RL [116]

Introduced an additional Deep Neural Network
(DNN) for expressing a parameterized stochastic
policy, aiming to enhance both performance and
convergence speed. Additionally, incorporated a
natural policy gradient approach to mitigate the risk
of local convergence.

DRL-based resource
allocation scheme [117]

Enhanced the Quality of Service (QoS) through the
integration of supplementary SDN

Multi-task DRL [118]

Modifies the final layer of a Deep Neural Network
(DNN) responsible for estimating the Q-function
to accommodate action spaces with
increased dimensions.

Privacy protection

Generative adversarial
networks (GAN) [119]

An algorithm for objective perturbation and another
for output perturbation, both ensuring adherence to
the principles of differential privacy.

Edge Sanitizer: A deep
inference framework [120]

Proposes maximum utilization of data while
ensuring privacy protection.

Deep Q-learning [121]
Generate trust values through uncertain reasoning
and prevent local convergence by regulating the
learning rate.

Other ways to reduce
energy consumption

Control device
operational condition

DRL-based joint mode
selection and resource
management approach [122]

Minimizes energy consumption in the medium and
long term by managing the communication mode of
the operator apparatus and regulating the active
state of processors.

Merging into
energy Internet

Model-based DRL [123] Solves the energy supply issue of the multi-access
edge server.

Reinforcement Learning [124] A fog computing device operating on energy
generated from a renewable source.

Minimax-Q learning [125] Gradually learns the optimal strategy by raising the
spectral efficiency throughput.

Online learning [126] Minimized bandwidth utilization by selecting the
server with the highest reliability.

Multiple Artificial Intelligence
based algorithms [127]

Developed a mechanism for selecting AI algorithms
intelligently to choose the most suitable algorithm
for a given task.

6. Architectural Layers in the Roadmap for Edge Intelligence

The architectural layers in the Roadmap for edge intelligence, distinguishing between
two main directions, viz. AI for the edge and AI on the edge as shown in Figure 4. Using
a bottom-up strategy, our focus in Edge intelligence research is on dividing efforts into
topology, content, and service segments, all of which stand to gain advantages from AI
technologies. Conversely, a top-down method dissects AI research on the edge into model
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adaptation, framework design, and processor acceleration. Prior to exploring AI for the
edge and AI on the edge as distinct entities, it is essential to establish a shared objective,
termed Quality of experience (QoE), which consistently takes precedence. The detailed
discussion of QoE, AI for the edge, and AI on the edge is discussed further in this section.

Figure 4. The architectural layers in the Roadmap.

6.1. Quality of Experience

We believe that QoE should be tailored to specific applications and should be estab-
lished by contemplating multiple criteria: performance, cost, privacy (security), efficiency,
and reliability.

• Performance

Performance criteria differ between AI for the edge and AI on the edge. In the case
of the former, performance metrics are tailored to specific problems. For instance, it
might encompass metrics like the successful offloading ratio in computation offloading
challenges or the efficient optimization of revenue and hiring costs for base stations in
service placement issues. On the other hand, for the latter, performance primarily centers
around training loss and inference accuracy, both critical for AI models. Despite the
transition from cloud clusters to a system integrating devices, edge, and cloud, these
criteria continue to be significant.
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• Cost

Cost considerations generally encompass computation cost, communication cost,
and energy consumption. Computation cost indicates the need for computing resources,
including factors like CPU cycle frequency and allocated CPU time. Communication
cost deals with the resource requirements for communication, considering aspects like
power, frequency band, and access time, with a focus on minimizing delays arising from
the allocation of computation and communication resources. Energy consumption is
particularly crucial, especially for mobile devices with restricted battery capacity. The
importance of cost reduction cannot be overstated, as Edge intelligence holds the potential
for substantial decreases in delay and energy consumption, simultaneously addressing
critical challenges in realizing 5G capabilities.

• Privacy and Security

With growing apprehensions about data leaks, safeguarding privacy has gained sig-
nificant attention. Consequently, Federated Learning has emerged as a solution involving
the aggregation of local machine-learning models from distributed devices while actively
preventing data leakage [128]. Security is intricately linked with privacy preservation and
holds implications for the resilience of middleware and edge systems.

• Efficiency

Whether in the realm of AI for the edge or AI on the edge, achieving high efficiency
is paramount to achieving outstanding performance with minimal overhead. The pursuit
of efficiency is crucial for the improvement of existing algorithms and models, especially
in the context of AI on the edge. Numerous strategies, including model compression,
conditional computation, and asynchronous algorithms, have been suggested to enhance
the efficiency of training and inference processes for deep AI models.

• Reliability

System reliability plays a pivotal role in ensuring the continuous operation of Edge
intelligence over specified durations, a critical element for user experience. In the domain of
edge intelligence, system reliability holds particular importance for AI on the edge. This is
especially true when considering that model training and inference frequently take place in
a distributed and synchronized manner, and local users may encounter obstacles related to
wireless network congestion when attempting to complete model uploads and downloads.

6.2. Edge Intelligence/Intelligent Edge Computing

The Roadmap, as illustrated in Figure 4, pertains to AI for Edge intelligence, which we
refer to as intelligent edge computing (IEC). AI offers potent tools for addressing intricate
challenges in learning, planning, and decision-making. We adopt a bottom-up approach to
categorize the primary concerns in Edge intelligence into three layers: topology, content,
and service.

• Topology

In terms of topology, our attention is directed towards orchestrating edge sites (OES)
and wireless networking (WN). Within our framework, an edge site is defined as a micro
data center hosting deployed applications and connected to a small-cell base station (SBS).
OES focuses on the deployment and configuration of wireless telecom equipment and
servers. Notably, recent years have seen a surge in interest surrounding the management
and automation of unmanned aerial vehicles (UAVs). These UAVs, equipped with a small
server and access point, can be viewed as mobile edge servers with exceptional maneu-
verability. Consequently, numerous studies explore scheduling and trajectory planning
challenges with the aim of minimizing UAV energy consumption.

For instance, Chen et al. [129] investigated power consumption by caching popular
content based on predictions, introducing a conceptor-based echo state network (ESN)
algorithm to learn user mobility patterns. Leveraging this efficient machine learning
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technique, their algorithm significantly outperforms benchmarks in terms of transmission
power and user satisfaction. On the other hand, WN encompasses data acquisition and
network planning. The former focuses on swiftly acquiring data from widely distributed
sources at edge devices, while the latter concentrates on network scheduling, operation,
and management. Fast data acquisition involves elements such as multiple access, radio
resource allocation, and signal encoding/decoding. Network planning explores efficient
management through protocols and middleware.

Significantly, recent years have witnessed a rising trend in intelligent networking,
utilizing AI technologies to construct intelligent wireless communication mechanisms.
As an example, Zhu et al. [130] proposed learning-driven communication, exploiting the
synergy between communication and learning in edge systems.

• Content

The focus lies on several vital aspects, including data provisioning, service provision-
ing, service placement, service composition, and service caching. In the realms of data and
service provisioning, resources can be drawn from remote cloud data centers and edge
servers. Recent initiatives have concentrated on developing lightweight Quality of Service
(QoS) aware service-based frameworks. Alternatively, shared resources may originate from
mobile devices with suitable incentive mechanisms in place.

Service placement complements service provisioning and delves into the location and
method of deploying complex services on potential edge sites. In recent times, numerous
studies have approached service placement from the perspective of application service
providers (ASPs). For instance, Chen et al. [131] endeavored to deploy services within a
limited budget on fundamental communication and computation infrastructure. Subse-
quently, they applied the multi-armed bandit (MAB) theory, a branch of reinforcement
learning, to optimize service placement decisions.

Service composition involves the selection of candidate services for composition,
taking into account energy consumption and Quality of Experience (QoE) for mobile end
users. This domain presents opportunities for leveraging AI technologies to generate more
effective service selection strategies. Service caching, akin to service provisioning, revolves
around designing a caching pool to store frequently accessed data and services. It can also
be explored in a cooperative manner, offering research prospects for applying multi-agent
learning to enhance QoE in large-scale Edge intelligence systems.

• Services

Regarding services, our focus is on computation offloading, user profile migration,
and mobility management. Computation offloading addresses the load balancing of var-
ious computational and communication resources, involving edge server selection and
frequency spectrum allocation. Recent research has concentrated on dynamically managing
radio and computational resources for multi-user, multi-server Edge intelligence systems,
utilizing Lyapunov optimization techniques. Computation offloading decisions are also
being optimized through Deep Q-Network (DQN), modeling the problem as a Markov
Decision Process (MDP) to maximize long-term utility performance, encompassing the
aforementioned Quality of Experience (QoE) indicators.

User profile migration involves adjusting the location of user profiles, encompassing
configuration files, private data, and logs, as mobile users are constantly on the move.
User profile migration is often intertwined with mobility management. For instance, the
JCORM algorithm, proposed in [132], optimizes computation offloading and migration
through cooperative networks, presenting research opportunities for the application of
more advanced AI technologies to enhance optimality.

Mobility management, viewed through the lens of statistics and probability theory, is
another area of interest. There is a notable inclination toward realizing mobility manage-
ment with the assistance of AI.
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6.3. AI on the Edge (AIE)

The right side of the Roadmap focuses on AI on edge, referred to as AIE, involving
the study of implementing AI model training and inference on the network edge. This area
is categorized into four research endeavors: framework design, model training, inference
and adaptation, conditional computation, and processor acceleration. Given that model
adaptation builds upon existing training and inference frameworks, the initial focus will be
on introducing framework design.

• Framework Design

Framework design aims to establish improved training and inference architecture for
the edge without altering existing AI models. Researchers strive to create new frameworks
for both model training and model inference.

• Model Training

Presently, the predominant frameworks for model training are largely distributed, with
the exception of those based on knowledge distillation. Distributed training frameworks
can be categorized based on data splitting and model splitting methods [133]. Data splitting
involves master-device, helper-device, and device-device splitting, differing in how training
samples are sourced and how the global model is aggregated. Model splitting involves
separating neural network layers onto various devices, relying on complex pipelines.
Knowledge distillation-based frameworks may or may not be decentralized, utilizing
transfer learning technologies to enhance the accuracy of shallower student networks [119].
This process entails training a basic network on a standard dataset and transferring the
learned features to student networks, which are then trained on their respective datasets by
multiple mobile end devices. There is significant potential for exploration in knowledge
distillation-based frameworks for model training at the edge.

The leading approach in model training is Federated Learning, designed to preserve
privacy while training Deep Neural Networks (DNNs) in a distributed manner [134]. It
trains local models on multiple clients, optimizing a global model by averaging trained
gradients. Due to limited resources in edge nodes, training a comprehensive model there is
impractical, making distributed training more feasible. However, coordination between
edge nodes becomes essential. The challenge lies in optimizing the global gradient from
distributed local models. Regardless of the learning algorithms used, stochastic gradient
descent (SGD) plays a crucial role in model training. Edge nodes utilize SGD to update
local gradients based on their datasets, sending updates to a central node for global model
enhancement. Balancing model performance and communication overhead is critical.
Selective transmission of local gradients showing significant improvements can ensure
global model performance while reducing communication overheads, preventing network
congestion caused by simultaneous transmissions from all edge nodes.

• Model Inference

While splitting a model during training poses challenges, it is a preferred method
during model inference. Model splitting, or partitioning, serves as a framework for model
inference, and various techniques, including model compression, input filtering, early
exit, etc., are adaptations from existing frameworks. A well-described example of model
inference on the edge can be found in reference [129], where a Deep Neural Network (DNN)
is divided into two parts, each processed collaboratively. The computationally intense
segment operates on the edge server, while the other part functions on the mobile device.
The challenge lies in determining the optimal layer to split and when to exit the intricate
DNN while maintaining inference accuracy.

• Model Adaptation

Model adaptation is a process that fine-tunes existing training and inference frame-
works, particularly in the context of Federated Learning, to better suit Edge intelligence.
While Federated Learning can potentially operate on the edge, its traditional version de-
mands significant communication efficiency, as complete local models are transmitted back
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to the central server. Consequently, many researchers are concentrating on developing
more efficient model updates and aggregation policies. Their endeavors aim to minimize
costs, enhance robustness, and ensure system performance. Approaches to achieving
model adaptation include techniques such as model compression, conditional computation,
algorithm synchronization, and comprehensive decentralization.

Model compression exploits the inherent sparsity structure of gradients and weights.
Potential strategies encompass quantization, dimensional reduction, pruning, precision
downgrading, components sharing, and cutoff, among others. Implementation methods
involve techniques like Singular Value Decomposition (SVD), Huffman coding, Principal
Component Analysis (PCA), and similar approaches.

• Conditional Computation

Conditional computation serves as an alternative approach to reduce computations by
selectively disabling less crucial calculations in Deep Neural Networks (DNNs). Feasible
methods include component shutdown, input filtering, early exit, and results caching.
This concept can be likened to block-wise dropout [135,136]. Additionally, random gossip
communication can help reduce unnecessary calculations and model updates. Asynchro-
nization in algorithms aims to aggregate local models asynchronously, mitigating the
inefficiency and lengthy synchronous steps of model updates in Federated Learning. Thor-
ough decentralization involves eliminating the central aggregator to prevent potential data
leaks and address issues stemming from the central server’s malfunction. Strategies for
achieving complete decentralization encompass blockchain technologies, game-theoretical
approaches, and similar methods.

• Process Acceleration

Processor acceleration aims to optimize the structure of DNNs, specifically targeting
the frequently used computation-heavy multiply-and-accumulate operations for improve-
ment. Strategies for enhancing DNN computations on hardware involve various methods,
such as Creating specialized instruction sets for DNN training and inference, developing
highly parallel computing paradigms, and implementing near-data processing to bring
computation closer to memory. Highly parallelized computing paradigms can be catego-
rized into temporal and spatial architectures. Temporal architectures like CPUs and GPUs
can be accelerated by reducing the number of multiplications and increasing throughput.
Spatial architectures, on the other hand, can be accelerated by enhancing data reuse with
data flows.

7. Conclusions

Autonomous vehicles represent a significant milestone in the latest wave of techno-
logical advancements, serving as a crucial indicator of technological evolution. AVs can
significantly contribute to decreasing traffic accidents and enhance road safety by eliminat-
ing hazardous driving behaviors like fatigued driving. This article extensively examines
the essential technologies indispensable for realizing autonomous vehicles, highlighting
the interconnections between these technologies and the development of AVs. Edge intel-
ligence, a fusion of AI and edge computing, plays a pivotal role in empowering vehicles
to make intelligent decisions swiftly. The critical components of edge intelligence include
edge caching, edge training, edge inference, and edge offloading are well evaluated and
analysed in this research. Efficient deployment of cache is essential to make optimal use of
both base station and device resources, and it is crucial to optimize the cache replacement
strategy to enhance overall performance. In the context of edge training, the focus lies on
collaborative training, accelerating and optimizing communication frequency and costs,
all while maintaining a high standard of security and privacy. While AutoML techniques,
specifically architectural search, play a role in edge interpretation, human expertise remains
vital for designing optimal models. Techniques such as knowledge distillation and prun-
ing are employed to achieve model compression. Leveraging a distributed computation
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paradigm through edge offloading can significantly improve both model training and
interpretation performance.

The efficient deployment of AI to the network’s edge hinges on improving the efficacy
of AI algorithms with limited computing and energy resources, necessitating the design
of lightweight AI models. Beyond the significance of individual technologies, this study
also delves into the challenges that must be overcome and the areas that require reinforce-
ment. Investigating the incorporation of important technologies, issues, opportunities, and
roadmap in this study will be a valuable resource for the community engaged in research
on edge intelligence in EV.
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