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Preface

This is the printed edition of a Special Issue published in Mathematics. This reprint contains an 
Editorial and 18 research papers. The subjects addressed in this reprint include graphs and networks, 
single- and two-machine scheduling, and goal programming, to name a few.

Finally, my thanks go to all who contributed to the great success of this issue: authors from 12 
countries, many referees from all over the world, and, in particular, the staff of Mathematics for their 
invaluable support during the preparation of this issue. I hope that the readers of this reprint will 
find many fruitful ideas for their own future research in the field of Discrete Optimization.

Frank Werner

Editor
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and Applications
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Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magdeburg, Germany;
frank.werner@ovgu.de

Received: 28 April 2019 ; Accepted: 29 April 2019; Published: 1 May 2019

Discrete optimization is an important area of applied mathematics that is at the intersection of
several disciplines and covers both theoretical and practical aspects. In the call for papers for this
issue, I asked for submissions presenting new theoretical results, structural investigations, new models,
and algorithmic approaches, as well as new applications of discrete optimization problems. Among
the possible subjects, integer programming, combinatorial optimization, optimization problems on
graphs and networks, matroids, scheduling, and logistics were mentioned, to name a few.

In response to the call for papers, 51 submissions have been received, among which, finally,
18 papers have been accepted for this Special Issue, all of which are of high quality, reflecting the
great interest in the area of discrete optimization. This corresponds to an acceptance rate of 35.3%.
The authors of these publications come from 12 different countries: China, Pakistan, the United Arab
Emirates, Saudi Arabia, Belarus, Germany, India, Malaysia, Russia, Taiwan, Turkey, and the USA,
where the authors from the first four countries co-authored more than one paper in this issue. Although
many different aspects of discrete optimization have been addressed by the submissions, among the
accepted papers, there is a major part dealing with graphs and networks. A large part of these papers
deals with topological indices and the domination of graphs. Several of these papers also emphasize
the great importance of graph-theoretic works for practical applications. For this reason, I would
like to draw the attention of the readers also to another future Special Issue planned for the journal
Mathematics entitled “Graph-Theoretic Problems and Their New Applications” with a deadline for
submissions of 31 January 2020.

All submissions have been reviewed, as a rule, by at least three experts in the discrete optimization
area. Next, all published papers in this Special Issue are briefly surveyed in increasing order of their
publication dates. This Special Issue contains both theoretical and practical works in the field of
discrete optimization. We hope that practical operations research workers will find some interesting
theoretical ideas in this Special Issue and that researchers will find new inspirations for future works.

The first accepted paper by Imran et al. [1] studies the chemical graph of an oxide network, and
in particular, it deals with topological indices. The authors compute the total eccentricity, the average
eccentricity, eccentricity-based Zagreb indices, the atom-bond connectivity index, and the geometric
arithmetic index of such a network. In addition, arithmetically-closed formulas for these indices are
given in this paper.

Imran et al [2] deal with the computation of several topological indices and polynomials for line
graphs. In particular, the authors compute the first and second Zagreb indices, the hyper Zagreb
index, multiple Zagreb indices, and Zagreb polynomials of the line graph of wheel and ladder graphs.
To obtain their results, they used the idea of subdivision.

Yang et al. [3] deal with a problem from graph labeling that plays a role in many applications,
e.g., in coding theory, radars, astronomy, or the management of databases. In particular, they discuss
the total edge irregular k labeling, the total vertex irregular k labeling, and the totally irregular total k
labeling of three planar graphs. The authors determine the exact value of the total irregularity strength
of such graphs.

Mathematics 2019, 7, 397; doi:10.3390/math7050397 www.mdpi.com/journal/mathematics
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Tang and Yang [4] deal with an ordered weighted averaging aggregation problem, denoted
as COWA. For the three-dimensional case, they consider two variants: the maximization variant
of the COWA problem with lower bounded variables and the minimization version with upper
bounded variables. They present the optimal solutions theoretically and give also empirical results.
It appears that both the weights and bounds can affect the optimal solution of such three-dimensional
problems. As an interesting future research subject, the authors mention the potential extension of
such investigations to the case of higher dimensions.

Imran et al. [5] deal with the metric dimension of special graphs, which is defined as the minimum
cardinality of a resolving set of the corresponding graph. The authors investigate the cycle, path,
Harary graphs, and their rooted products, as well as their connectivity. It is shown that the metric
dimension of some graphs is unbounded, while for the other investigated graphs, the metric dimension
is either three or four. The paper finishes with the formulation of two open research problems.

Jiang et al. [6] investigate the double Roman domination number, which is the minimum weight
of a double Roman dominating function, of so-called generalized Petersen graphs of the type P(n, 2).
This result is obtained by using a discharging approach. As one conclusion, it turns out that the graph
P(n, 2) is not double Roman for all n ≥ 5, and the authors formulate that it is an interesting problem to
find further Petersen graphs that are double Roman.

Wang et al. [7] deal with multiplicative Zagreb indices. For graphs with n vertices and k cut edges,
the maximum and minimum multiplicative Zagreb indices are determined. In addition, the graphs
with the smallest and largest first and second multiplicative Zagreb indices are provided.

Liu et al. [8] use the concept of the edge version of the metric dimension and doubly-resolving
sets, which is based on the distances of the edges of a graph. The metric dimension can be used,
e.g., in navigation, robotics, or chemistry. The authors apply this concept to a so-called necklace graph,
which is a cubic Halin graph obtained by joining a cycle with all vertices of degree one with a caterpillar
having n vertices of degree three and n + 2 vertices of degree one.

Gür and Eran [9] give an overview on goal programming applied to scheduling and planning
problems arising in service systems. They discuss 143 references from the literature. First, they give
some information for which activities in service systems goal programming is typically used. Then,
they explain the different types of goal programming applied in the literature. The authors also briefly
discuss the methods that are integrated with the goal programming method in the literature. At the
time of writing this Editorial, this is the paper of this Issue with by far the most downloads.

Gao et al. [10] consider another graph-theoretic subject, namely they deal with the extremal
graphs of some topological indices of a graph G with given vertex k-partiteness, which is defined as
the smallest number of vertices, the deletion of which from G yields a k-partite graph. For such graphs,
they characterize the extremal values of the reformulated first Zagreb index, the multiplicative-sum
Zagreb index, the general Laplacian-energy-like index, the general zeroth-order Randic index, and the
modified Wiener index.

Zhang et al. [11] compute the resistance distance in the H-join G of k disjoint graphs. They use
the Laplacian matrix L(G) and the symmetric {1}-inverse of L(G). The authors discuss also some
applications of the results obtained.

Elahi et al. [12] also deal with a subject from chemical graph theory. They consider graphs
containing a commutative ring, which have wide applications, e.g., in robotics, information theory,
physics, or statistics. In their paper, they adopted interdisciplinary methods. They discussed
vertex-based eccentric topological indices, namely the eccentric connectivity index, the total-eccentricity
index, the first Zagreb eccentricity index, the connective eccentric index, the Ediz eccentric connectivity
index, the eccentric connectivity polynomial, and the augmented eccentric index for zero divisor
graphs of a commutative ring. These indices are useful for understanding physical structures like
carbon nanostructures or those in robotics.

Liu et al. [13] consider another problem related, e.g., to chemistry. They deal with the energies
of molecular graphs. In particular, they give closed forms of the distance and adjacency energies of

2



Mathematics 2019, 7, 397

generalized wheel networks, also known as m-level wheels. They also illustrate the dependencies of
the energies on the parameters of the wheel graphs. The results can be useful both for mathematicians
and chemists in industry since generalized wheels can be considered as particular cyclic structures
having a common hub.

Raza et al. [14] characterize graphs having n vertices with fault-tolerant metric dimensions n, n− 1,
and two, which are the non-trivial extremal values of the fault-tolerant metric dimension. By means
of a lemma for tracing a fault-tolerant resolving set from a given resolving set, an upper bound on
the fault-tolerant metric dimension of a graph with a given resolving set is derived. The fault-tolerant
resolvability is investigated for three infinite families of regular graphs.

Liu et al. [15] deal with the fractional metric dimension of a connected graph, which had been
introduced only some years ago in 2012. In particular, they consider a generalized Jahingir graph
Jm,k, the vertices of which can be classified into three categories, namely vertices of degree two
(called minors), three (called majors), and m (called center), and there are km minor vertices, m major
vertices, and one center vertex. They introduce the resolving neighborhood for any possible pair of
vertices in a generalized Jahingir graph. As the main result, the authors determine the fractional metric
dimension of a generalized Jahingir graph for k ≥ 0 and m = 5.

Lu et al. [16] deal with the resistance-Harary index of connected graphs. In particular, they
determine among the set of unicyclic graphs (these are graphs containing exactly one cycle) those
graphs having the second-largest resistance-Harary index and, among the fully-loaded unicyclic
graphs (these are unicyclic graphs such that no vertex with a degree less than three is in the unique
cycle), those with the largest resistance-Harary index.

Gafarov and Werner [17] consider a two-machine job-shop scheduling problem, where each of
n jobs consists of two operations and the processing times of all jobs on each machine are identical.
The objective is to minimize the sum of the completion times. This problem arises also as a special
single-track railway scheduling problem with three stations and constant travel times between any two
adjacent stations. For this problem, the authors give a dynamic programming algorithm of complexity
O(n5) and, in addition, a fast constructive heuristic of complexity O(n3). Computational results are
presented for instances with up to 30 jobs.

Sotskov and Egorova [18] deal with a single-machine scheduling problem with uncertain
processing times, where only lower and upper bounds on the processing times are known.
The objective is to minimize the sum of the completion times. The authors investigate the properties of
the optimality region. They introduce the quasi-perimeter of the optimality region and give a linear
time algorithm for calculating it. Moreover, they present an algorithm for finding the job permutation
with the largest quasi-perimeter of this region. Computational results are given for instances with up
to 5000 jobs, which show that the constructed permutation is close to an optimal job sequence for the
actual processing times of the jobs.

Acknowledgments: As the Guest Editor, I would like to thank all authors for submitting their work to this Special
Issue and also all referees for their support by giving timely and insightful reports. My special thanks go to the
staff of the journal Mathematics for the good and pleasant cooperation during the preparation of this issue.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: We study a single-machine scheduling problem to minimize the total completion time of the
given set of jobs, which have to be processed without job preemptions. The lower and upper bounds
on the job duration is the only information that is available before scheduling. Exact values of the job
durations remain unknown until the completion of the jobs. We use the optimality region for the
job permutation as an optimality measure of the optimal schedule. We investigate properties of the
optimality region and derive O(n)-algorithm for calculating a quasi-perimeter of the optimality set
(i.e., the sum of lengths of the optimality segments for n given jobs). We develop a fast algorithm for
finding a job permutation having the largest quasi-perimeter of the optimality set. The computational
results in constructing such permutations show that they are close to the optimal ones, which can be
constructed for the factual durations of all given jobs.

Keywords: single-machine scheduling; uncertain job durations; total completion time objective;
optimality region

1. Introduction

A lot of real-life scheduling problems involve different forms of uncertainties. For dealing with
uncertain scheduling problems, several approaches have been developed in the literature. In a stochastic
approach, job durations are assumed to be random variables with the specific probability distributions
known before scheduling [1,2]. If there is no sufficient information to determine the probability
distribution for each random duration of the given job, other approaches have to be used [3–5]. In the
approach of seeking a robust schedule [3,6], a decision-maker prefers a schedule that hedges against
the worst-case scenario. A fuzzy approach [7–9] allows a scheduler to find best schedules with respect
to fuzzy durations of the given jobs. A stability approach [10] is based on the stability analysis of
the optimal schedules to possible variations of the job durations. In this paper, we apply the stability
approach to the single-machine scheduling problem with interval durations of the given jobs.

In Section 2, we present settings of the uncertain scheduling problems, the related literature and
closed results. In Section 3, we investigate properties of the optimality region for the job permutation,
which is used for processing given jobs. Efficient algorithms for calculating a quasi-perimeter of the
optimality region are derived in Section 4. In Section 5, we show how to find a job permutation with
the largest quasi-perimeter of the optimality region and develop algorithm for finding an approximate
solution for the uncertain scheduling problem. In Section 6, we report on the computational results for
finding solutions for the tested instances. The paper is concluded in Section 7.

Mathematics 2019, 7, 382; doi:10.3390/math7050382 www.mdpi.com/journal/mathematics
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2. Problem Descriptions, The Related Literature and Closed Results

There is given a set of jobs J = {J1, J2, ..., Jn} to be processed on a single machine. The duration
pi of the job Ji ∈ J can take any real value from the given segment [pL

i , pU
i ], where the inequalities

pU
i ≥ pL

i > 0 hold. The exact value pi ∈ [pL
i , pU

i ] of the job duration remains unknown until the
completion time of the job Ji ∈ J .

Let Rn
+ denote a set of all non-negative n-dimensional real vectors, Rn

+ ⊆ Rn, where Rn is space
of n-dimensional real vectors. The set of all vectors (p1, p2, . . . , pn) = p ∈ Rn

+ of the feasible durations
is presented as the Cartesian product of the segments [pL

i , pU
i ]:

T = [pL
1 , pU

1 ]× [pL
2 , pU

2 ]× . . .× [pL
n , pU

n ] = {p : p ∈ Rn
+, pL

i ≤ pi ≤ pU
i , i ∈ {1, 2, . . . , n}}.

A vector p ∈ T of the job durations is called a scenario. Let S = {π1, π2, . . . , πn!} denote a set of
all permutations πk = (Jk1 , Jk2 , . . . , Jkn) of the given jobs J .

Given a scenario p ∈ T and a permutation πk ∈ S, let Ci = Ci(πk, p) denote the completion
time of the job Ji in the schedule determined by the permutation πk. The criterion ∑ Ci denotes the
minimization of the following sum of the completion times:

∑
Ji∈J

Ci(πt, p) = min
πk∈S

{
∑

Ji∈J
Ci(πk, p)

}
, (1)

where the permutation πt = (Jt1 , Jt2 , . . . , Jtn) ∈ S is optimal. From the equality (1), it follows that
only semi-active schedule [11] may be optimal. Each permutation πk ∈ S determines exactly one
semi-active schedule.

The above uncertain scheduling problem is denoted as 1|pL
i ≤ pi ≤ pU

i |∑ Ci using the three-field
notation α|β|γ [12], where α denotes the processing system, β characterizes conditions for processing
the jobs and γ determines the criterion.

2.1. The Related Literature

If a scenario p ∈ T is fixed before scheduling (i.e., the equality [pL
i , pU

i ] = [pi, pi] holds for each
job Ji ∈ J ), then the uncertain problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci is turned into the deterministic one

1||∑ Ci. In what follows, we use the notation 1|p|∑ Ci to indicate an instance of the deterministic
problem 1||∑ Ci with scenario p ∈ T. Any instance 1|p|∑ Ci is solvable in O(n log n) time [13] due to
the following necessary and sufficient condition for the optimality of the job permutation πk ∈ S.

Theorem 1. The job permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is optimal for the instance 1|p|∑ Ci if and only
if the following inequalities hold:

pk1 ≤ pk2 ≤ . . . ≤ pkn . (2)

If the strict inequality pku < pkv holds, then the job Jku precedes the job Jkv in any optimal job
permutation πk.

Since the scenario p ∈ T is not fixed in the uncertain problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci,
the completion time Ci of the job Ji ∈ J cannot be determined for the permutation πk ∈ S
before completing the job Ji. Thus, the value of the objective function ∑Ji∈J Ci(πt, p) for the
permutation πk remains uncertain until all jobs J have been completed. Since for the uncertain
problem α|pL

i ≤ pi ≤ pU
i |γ, there does not usually exist an optimal schedule for all feasible scenarios p

from the set T, an additional objective or some agreements are used in the literature.
A robust schedule minimizing the worst-case regret has been developed in [3,8,14–18]. For any

permutation πk ∈ S and any feasible scenario p ∈ T, the difference γk
p − γt

p =: r(πk, p) is called the
regret for the permutation πk. In the above notation r(πk, p), the objective function γ is equal to γk

p
for the permutation πk under scenario p and the optimal value of the objective function γ is equal to

6
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γt
p for the optimal permutation πk under scenario p. The value of Z(πk) = max{r(πk, p) : p ∈ T}

is called the worst-case absolute regret. The value of Z∗(πk) = max{ r(πk ,p)
γt

p
: p ∈ T} is called the

worst-case relative regret.
While the deterministic problem 1||∑ Ci is polynomially solvable [13], finding a permutation

πt ∈ S minimizing the worst-case absolute regret Z(πk) or the relative regret Z∗ for the problem
1|pL

i ≤ pi ≤ pU
i |∑ Ci are binary NP-hard even for two possible scenarios {p1, p2} [3,17,19]. Discrete

sets {p1, p2, . . . , pm} of the uncertain scenarios have been investigated in [3,17,19].
The complexity of minimizing the total flow time with continues data T is characterized in [20],

where it is proven that finding a permutation πt ∈ S minimizing the worst-case absolute regret
Z(πk) for the problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci is binary NP-hard. For a special case of this problem,

where all intervals of uncertainty have the same center, it is shown that this problem can be solved in
O(n log n) time if the number of jobs is even, and remains NP-hard if the number of jobs is odd [20].
In [6], a branch-and-bound algorithm was developed for finding a permutation πk minimizing the
absolute regret for the problem 1|pL

i ≤ pi ≤ pU
i |∑ wiCi, where the jobs Ji ∈ J have different weights

wi > 0. The computational experiments showed that the developed algorithm is able to find such a
permutation πk for the instances with up to 40 jobs.

The fuzzy scheduling technique was used in [7–9,21] to develop a fuzzy analogue of dispatching
rules or to solve mathematical programming problems to determine a schedule that minimizes a
fuzzy-valued objective function.

In [22], several heuristics were developed for the problem 1|pL
i ≤ pi ≤ pU

i |∑ wiCi.
The computational experiments including different probability distributions of the job durations
showed that there was at least one heuristic among all performing heuristics with the error 1.1% of the
optimal objective function value ∑ wiCi obtained after completing the given jobs when their factual
durations became known.

In Sections 3–6, we adopt the stability approach [5,10,23–25] to the uncertain problem 1|pL
i ≤

pi ≤ pU
i |∑ Ci with the additional criterion of maximizing a quasi-perimeter of the optimality region

introduced in Section 3.

2.2. The Stability Approach to Single-Machine Scheduling Problems

Let M denote a subset of the set N = {1, 2, . . . , n}. In [23,24], an optimality box for the job
permutation πk ∈ S for the uncertain problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci is defined as follows.

Definition 1. The maximal rectangular box OB(πk, T) = ×ki∈M[l∗ki
, u∗ki

] ⊆ T is called an optimality box for
the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S (with respect to T), if the permutation πk being optimal for the
instance 1|p|∑ Ci with the scenario p = (p1, p2, . . . , pn) ∈ T remains optimal for the instance 1|p′|∑ Ci with
any scenario p′ ∈ OB(πk, T)

⋃{×kj∈N\M[pkj
, pkj

]}. If there does not exist a scenario p ∈ T such that the
permutation πk is optimal for the instance 1|p|∑ Ci, it is assumed that OB(πk, T) = ∅.

In Section 3, we use the following remark for the definition of the optimality segment for the job
Jki
∈ J in the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S.

Remark 1. Any variation p′ki
of the duration pki

of the job Jki
∈ J within the maximal segment [l∗ki

, u∗ki
]

indicated in Definition 1 cannot violate the optimality of the permutation πk ∈ S provided that the inclusion
p′ki
∈ [l∗ki

, u∗ki
] holds. The non-empty maximal segment [l∗ki

, u∗ki
] indicated in Definition 1 with the inequality

l∗ki
≤ u∗ki

and the length u∗ki
− l∗ki

≥ 0 is called an optimality segment for the job Jki
∈ J in the permutation πk.

We denote the optimality segment as follows: [lopt
ki

, uopt
ki

].

If the maximal segment [l∗ki
, u∗ki

] indicated in Definition 1 is empty for the job Jki
∈ J , we say that

this job has no optimality segment in the permutation πk. It is clear that if the job Jki
has no optimality

segment in the permutation πk, then the strict inequality l∗ki
> u∗ki

holds. In [23,24], it is shown that

7
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for calculating the optimality box OB(πk, T), one can calculate the optimality box for the modified
instance 1| p̂L

i ≤ pi ≤ p̂U
i |∑ wiCi, where the segments [pL

i , pU
i ] for the possible job durations pi are

reduced, [ p̂L
i , p̂U

i ] ⊆ [pL
i , pU

i ], based on the following formulas:

wi

p̂L
i
= min

1≤j≤i≤n

{
wj

pL
j

}
,

wi

p̂U
i

= max
1≤i≤j≤n

{
wj

pU
j

}
. (3)

The following theorem has been proven in [24].

Theorem 2. The optimality box for the permutation πk ∈ S for the problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci is equal
to the optimality box for the same permutation πk for the problem 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci with the feasible

segments [ p̂L
i , p̂U

i ], Ji ∈ J , determined in (3).

In [23], it is shown that Theorem 2 remains correct for the problem 1|pL
i ≤ pi ≤ pU

i |∑ wiCi with
the different weights wi > 0 prescribed to the jobs Ji ∈ J .

Following [23,24], the notion of a block for the jobs J is determined for the problem 1|pL
i ≤ pi ≤

pU
i |∑ Ci as follows.

Definition 2. A maximal subset Br = {Jr1 , Jr2 , . . . , Jr|Br |} of the set J , for which the inequality maxJri∈Br pL
ri
≤

minJri∈Br pU
ri

holds, is called a lock. The segment [bL
r , bU

r ], where equalities bL
r = maxJri∈Br pL

ri
and bU

r =

minJri∈Br pU
ri

hold, is called a core of the block Br.

The following claim was proven in [23].

Lemma 1. For the problem 1|pL
i ≤ pi ≤ pU

i |∑ wiCi, the set B = {B1, B2, . . . , Bm} of all blocks can be
uniquely determined in O(n log n) time.

If the job Ji ∈ J belongs to a single block, we say that the job Ji is fixed in this block. We say that
the block Bv is virtual, if there is no fixed job in this block. We say that the job Jk is non-fixed, if the job
Jk ∈ J belongs to two or more blocks and at least one of these blocks is not virtual.

Remark 2. Any permutation πk ∈ S determines a distribution of all non-fixed jobs to the blocks. Due to such
fixings of the positions of the non-fixed jobs, some virtual blocks from the set B may be destroyed for the fixed
permutation πk. Furthermore, the cores of some non-virtual blocks may be increased in the permutation πk.

Each block in the set B has the following properties proven in [23].

Lemma 2. At most two jobs in the block Br ∈ B may have optimality segments in the permutation πk ∈ S.

Lemma 3. If OB(πk, T) 6= ∅, then any two jobs Jv ∈ Br and Jw ∈ Bs, which are fixed in different blocks,
r < s, must be ordered in the permutation πk ∈ S with decreasing left bounds (and right bounds as well) of the
cores of their blocks, i.e., the permutation πk looks as follows: πk = {. . . , Jv, . . . , Jw, . . .}, where the inequality
bL

r < bL
s holds.

In what follows, we assume that all blocks in the set B = {B1, B2, . . . , Bm} are numbered according
to decreasing left bounds of their cores, i.e., the strict inequality bL

v < bL
u implies the strict inequality

v < u. Due to Definition 2, each block Br = {Jr1 , Jr2 , . . . , Jr|Br |} may include jobs of the four types
as follows.

If pL
ri
= bL

r and pU
ri

= bU
r , we say that job Jri is a core job in the block Br. If pL

ri
< bL

r , we say
that job Jri is a left job in the block Br. If pU

ri
> bU

r , we say that job Jri is a right job in the block Br.
Let B∗r denote the set of all core jobs. The set B−r (the set B+

r ) is the set of all left (right) jobs in the

8
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block Br. Some jobs Jri ∈ Br may be left-right jobs in the block Br, since it is possible that condition
B \ {B∗r ∪ B−r ∪ B+

r } 6= ∅ holds.
The jobs Jv and Jw are identical if both equalities pL

v = pL
w and pU

v = pU
w hold. If the set Br ∈ B is a

singleton, |Br| = 1, then the equality Br = B∗r holds. The following theorem was proven in [24].

Theorem 3. For the problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci, any permutation πk ∈ S has an empty optimality box,
OB(πk, T) = ∅, if and only if for each block Br ∈ B, either condition |Br| = |B∗r | ≥ 2 holds or condition
Br = B−r ∪ B+

r holds and all jobs in the set B−r (in the set B+
r ) are identical and both inequalities |B−r | ≥ 2 and

|B+
r | ≥ 2 hold.

The following criterion was proven in [23].

Theorem 4. Let all jobs from the set J be fixed in their blocks from the set B. Then the permutation πk with
the largest optimality box OB(πk, T) may be constructed in O(n log n) time.

The rest of this paper is devoted to an optimality set (it is called an optimality region), which is a
superset of the optimality box OB(πk, T) for the same permutation πk.

3. The Optimality Region

For the permutation πk ∈ S, we formally define the optimality region OR(πk, T) such that the
inclusion OB(πk, T) ⊆ OR(πk, T) holds.

Definition 3. The maximal closed subset OR(πk, T) ⊆ T of the set Rn
+ is called the optimality region for the

permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S (with respect to T) if the permutation πk is optimal for the instance
1|p|∑ Ci with any scenario p = (p1, p2, . . . , pn) ∈ OR(πk, T). If there does not exist a scenario p ∈ T such
that the permutation πk is optimal for the instance 1|p|∑ Ci, it is assumed that OR(πk, T) = ∅.

We demonstrate the above definitions and notions on the instance of the problem 1|pL
i ≤ pi ≤

pU
i |∑ Ci with n = 8 jobs. The segments [pL

i , pU
i ] defining all possible durations of the jobs Ji ∈ J =

{J1, J2, . . . , J8} are given in Table 1. The segments [pL
i , pU

i ] of the job durations are also represented in a
coordinate system in Figure 1 for the permutation π1 = (J1, J2, . . . , J8) ∈ S. The abscissa axis indicates
the segments [pL

i , pU
i ] determining durations of the jobs. The ordinate axis indicates all jobs J . There

are three blocks in this instance. The jobs J1, J2, J3, J4, J5 and J7 belong to the block B1. The segment
[6, 7] is a core of the block B1. The jobs J2, J3, J4, J5, J6 and J7 belong to the block B2. The one-point
segment [8, 8] is a core of the block B2. The jobs J4, J5, J6, J7 and J8 belong to the block B3. The segment
[10, 11] is a core of the block B3. The jobs J2, J3, J4, J5, J6 and J7 are non-fixed jobs. The jobs J1 and J8

are fixed in their blocks.
Due to the optimality criterion (2) for the permutation πk ∈ S given in Theorem 1, one can

distinguish three types of segments for each job Jkr ∈ J , which characterize a possibility for the
permutation πk = (Jk1 , Jk2 , . . . , Jkn) to be optimal, namely:

the segment of optimality [lopt
kr

, uopt
kr

] ⊆ [pL
kr

, pU
kr
];

the segment of conditional optimality [lcopt
kr

, ucopt
kr

] ⊆ [pL
kr

, pU
kr
];

and the segment of non-optimality [lnon
kr

, unon
kr

] ⊆ [pL
kr

, pU
kr
].

The segment of optimality [lopt
kr

, uopt
kr

] for the job Jkr in the permutation πk is formally determined
in Definition 1 and Remark 1.

9
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Table 1. Input data for the instance of the problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci.

i 1 2 3 4 5 6 7 8
pL

i 5 5 6 4 2 8 3 10
pU

i 7 8 9 11 14 11 17 12

-

6

J1

J2

J3

J4

J5

J6

J7

J8

Jobs Ji

2 3 4 5 6 7 8 9 101112 14 17

Durations pi

Figure 1. The segments of non-optimality (double-shaded) and the segments of conditional optimality
(shaded) for the jobs Ji ∈ J in the permutation π1 = (J1, J2, . . . , J8) ∈ S.

The segment of non-optimality for the job Jkr in the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S
is a maximal (with respect to the inclusion) segment [lnon

kr
, unon

kr
] ⊆ [pL

kr
, pU

kr
] such that for any point

p∗kr
∈ (lnon

kr
, unon

kr
), the permutation πk = (Jk1 , Jk2 , . . . , Jkn) cannot be optimal for an instance 1|p∗|∑ Ci

with any scenario p∗ = (. . . , p∗kr
, . . .) ∈ T. Thus, due to the necessary and sufficient condition (2) for

the permutation πk ∈ S to be optimal for the instance 1|p|∑ Ci, we conclude that either there exists a
job Jkv ∈ J such that the inequality r < v holds along with the following condition:

pU
kv

= lnon
kr

< pU
kr
= unon

kr
(4)

or there exists a job Jkw ∈ J such that w < r and the following condition holds:

lnon
kr

= pU
kr
< unon

kr
= pL

kw
. (5)

Furthermore, due to Definition 1, the segment [lnon
kr

, unon
kr

] of non-optimality for the job Jkr in

the permutation πk = (Jk1 , Jk2 , . . . , Jkn) has no common point with the open interval (lopt
kr

, uopt
kr

) of
optimality for the job Jkr :

[lnon
kr

, unon
kr

]
⋂
(lopt

kr
, uopt

kr
) = ∅. (6)

In Figure 1, the segments of non-optimality for all jobs Ji ∈ J in the permutation π1 =

(J1, J2, . . . , J8) are double-shaded.
The segment of conditional optimality for the job Jkr in the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S

is a maximal (with respect to the inclusion) segment [lcopt
kr

, ucopt
kr

] ⊆ [pL
kr

, pU
kr
] such that each point

p∗kr
∈ [lcopt

kr
, ucopt

ki
] does not belong to the open interval of non-optimality, p∗kr

6∈ (lnon
kr

, unon
kr

), and there
exists a job Jkd

∈ J , d 6= r, with the following inclusion: p∗kr
∈ [pL

kd
, pU

kd
]. Thus, one can conclude that

for some points pku ∈ [lcopt
kr

, ucopt
kr

], the permutation πk ∈ S is optimal for the instance 1|p′|∑ Ci, where

p′ = (. . . , pku , . . .) ∈ T, while for other points pkv ∈ [lcopt
kr

, ucopt
kr

], the permutation πk ∈ S cannot be
optimal for the instance 1|p′′|∑ Ci, where p′′ = (. . . , pkv , . . .) ∈ T.

10
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The segment [lcopt
kr

, ucopt
kr

] of conditional optimality for the job Jkr in the permutation πk =

(Jk1 , Jk2 , . . . , Jkn) ∈ S has no common point with the open interval of optimality (lopt
kr

, uopt
kr

) and no
common point with the open interval of non-optimality (lnon

kr
, unon

kr
):

[lcopt
kr

, ucopt
kr

]
⋂
(lopt

kr
, uopt

kr
) = ∅; (7)

[lcopt
kr

, ucopt
kr

]
⋂
(lnon

kr
, unon

kr
) = ∅. (8)

If the segment [lcopt
kr

, ucopt
kr

] of conditional optimality is empty for the job Jkr ∈ J , we say that this
job Jkr has no conditional optimality in the permutation πk.

In Figure 1, all segments of conditional optimality for the jobs Ji ∈ J in the permutation π1 =

(J1, J2, . . . , J8) are shaded.

Remark 3. Due to Theorem 1, for each job Ji ∈ J in the permutation πk ∈ S, there may exist at most one
segment of optimality, at most two segments of conditional optimality and at most two segments of non-optimality.

In Figure 1, job J4 has one segment [4, 6] of non-optimality and one segment of conditional
optimality [6, 11]. Job J5 has two segments of non-optimality [2, 6] and [11, 14] and one segment of
conditional optimality [6, 11].

The following claim is based on Remark 3 and the above definitions of the segments of optimality,
non-optimality and conditional optimality.

Lemma 4. Each segment [pL
kr

, pU
kr
] of possible durations of the job Jkr ∈ J is the union of the segments of

optimality, non-optimality and conditional optimality for the job Jkr in the permutation πk = (Jk1 , Jk2 , . . . Jkn) ∈ S.

We next show that for constructing the optimality region OR(πk, T) for the permutation πk =

(Jk1 , Jk2 , . . . , Jkn) ∈ S, it is sufficient to construct the optimality region for the instance 1| p̂L
i ≤ pi ≤

p̂U
i |∑ Ci with the reduced segments of job durations: [ p̂L

i , p̂U
i ] ⊆ [pL

i , pU
i ]. To construct the reduced

segments for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S, we use the equalities (9) for all jobs Jkr ∈
{Jk1 , Jk2 , . . . , Jkn} = J :

p̂L
kr
= max

1≤j≤r≤n
pL

kj
, p̂U

kr
= min

1≤r≤j≤n
pU

kj
. (9)

We denote T̂ = [ p̂L
1 , p̂U

1 ]× [ p̂L
2 , p̂U

2 ]× . . .× [ p̂L
n , p̂U

n ]. One can prove the following claim similarly
to the proof of Theorem 2 proven in [24].

Theorem 5. The optimality region for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S for the instance 1|pL
i ≤

pi ≤ pU
i |∑ Ci is equal to the optimality region for the same permutation for the instance 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci

with the reduced segments [ p̂L
i , p̂U

i ] of the possible durations of jobs Ji ∈ J determined in (9).

Figure 2 represents the segments of non-optimality and conditional optimality for jobs Ji ∈ J
in the permutation π2 = (J1, J2, J4, J5, J6, J8, J7, J3) ∈ S for the instance 1|pL

i ≤ pi ≤ pU
i |∑ Ci with the

input data T given in Table 1.
From Definition 3 and Theorem 5, one can directly derive the following claim.

Lemma 5. For the instance 1| p̂L
i ≤ pi ≤ p̂U

i |∑ Ci with the reduced segments [ p̂L
i , p̂U

i ], Ji ∈ J , of the
job durations determined in (9), the open interval of optimality (lopt

kr
, uopt

kr
) for the job Jkr in the permutation

πk ∈ S has no common point with the segment [pL
kd

, pU
kd
] of possible durations of any job Jkd

∈ J , d 6= r,
i.e., the following equality holds:

(lopt
kr

, uopt
kr

)
⋂
[pL

kd
, pU

kd
] = ∅. (10)

We next prove a criterion for the extreme case when the equality OR(πk, T) = ∅ holds.

11
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-

6

J1

J2

J4

J5

J6

J8

J7

J3

Jobs Ji

2 3 4 5 6 7 8 9 101112 14 17

Durations pi

Figure 2. The segments of non-optimality (double-shaded) and the segments of conditional optimality
(shaded) for the jobs Ji ∈ J in the permutation π2 = (J1, J2, J4, J5, J6, J8, J7, J3) ∈ S.

Theorem 6. The optimality region OR(πk, T) for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is empty,
if and only if there exists at least one job Jkr ∈ J with the inequality pL

kr
< pU

kr
in the permutation πk, which has

no segment of optimality and no conditional optimality.

Proof. Sufficiency. Let there exist a job Jkr ∈ J in the permutation πk = (Jk1 , Jk2 , . . . , Jkn), which has
no segment of optimality and no conditional optimality. Due to the inequality pL

kr
< pU

kr
and Lemma 4,

the relations [lnon
kr

, unon
kr

] = [pL
kr

, pU
kr
] 6= ∅ hold, and either there exists a job Jkv ∈ J such that r < v and

the condition (4) holds or there exists a job Jkw ∈ J such that w < r and the condition (5) holds.
In the former case, the inequality pkv < pkr holds for each duration pkr ∈ [pL

kr
, pU

kr
] of the job Jkr

and for each duration pkv ∈ [pL
kv

, pU
kv
] of the job Jkv . In the latter case, the inequality pkw > pkr holds

for each duration pkr ∈ [pL
kr

, pU
kr
] of the job Jkr and for each duration pkw ∈ [pL

kw
, pU

kw
] of the job Jkw .

Due to Theorem 1, in both cases the permutation πk cannot be optimal for the instance 1|p|∑ Ci
with any scenario p ∈ T. Hence, the optimality region for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S
is empty: OR(πk, T) = ∅. Sufficiency is proven.

Necessity. We prove necessity by a contradiction. Let the equalityOR(πk, T) = ∅ hold. However,
we assume that there is no job Jkr ∈ J with the inequality pL

kr
< pU

kr
in the permutation πk =

(Jk1 , Jk2 , . . . , Jkn) ∈ S, which has no segment of optimality and no conditional optimality.
Due to Definition 3, the equality OR(πk, T) = ∅ means that there is no scenario p ∈ T such that

the permutation πk is optimal for the instance 1|p|∑ Ci with the scenario p.
However, we show next how to construct a scenario p∗ ∈ T̂ with the inclusion p∗ ∈ OR(πk, T̂).

If the segment [lopt
ki

, uopt
ki

] of optimality of the job Jki
in the permutation πk is not empty, then there

exists a point p∗ki
∈ [lopt

ki
, uopt

ki
]. We choose the value of p∗ki

as the duration of the job Jki
.

If the segment [lopt
kj

, uopt
kj

] of optimality of the job Jkj
in the permutation πk is empty, then due to the

above assumption, the segment [lcopt
kj

, ucopt
kj

] of conditional optimality for the job Jkj
in the permutation

πk is not empty. We choose the value of lcopt
kj

as the duration of the job Jkj
, i.e., p∗kj

= lcopt
kj

. Thus,

we determine the scenario p∗ = (p∗k1
, p∗k2

, . . . , p∗kn
). From the equalities (7) and (8) and Lemma 5 with

the equality (10), it follows that the permutation πk is optimal for the instance 1|p∗|∑ Ci with the
scenario p∗. Thus, p∗ ∈ OR(πk, T̂) and the relations ∅ 6= OR(πk, T̂) = OR(πk, T) hold contradicting
to our assumption that OR(πk, T) = ∅. The proof of Theorem 6 is completed.
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From Theorem 6, one can directly derive the following claim.

Corollary 1. If the condition OR(πk, T) 6= ∅ holds, then the dimension of the optimality region OR(πk, T)
is equal to n.

In Figure 1, there is no job Ji ∈ J in the permutation π1 = (J1, J2, . . . , J8) ∈ S, which has no
segment of optimality and no conditional optimality. Thus, due to Theorem 6, the optimality region
for the permutation π1 ∈ S is not empty, i.e., OR(π1, T) 6= ∅.

In Figure 2, for the segment [lnon
3 , unon

3 ] = [6, 9] of non-optimality for the job J3 in the permutation
π2 = (J1, J2, J4, J5, J6, J8, J7, J3), the following equalities [lnon

3 , unon
3 ] = [6, 9] = [pL

3 , pU
3 ] hold. Thus,

there exists a job J3 = Jkr ∈ J in the permutation π2 = πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S, which has no
segment of optimality and no conditional optimality. Due to Theorem 6, one can conclude that the
optimality region for the permutation π2 = (J1, J2, J4, J5, J6, J8, J7, J3) ∈ S is empty, i.e., OR(π2, T) = ∅.

We next prove a criterion for another extreme case for the optimality region OR(πk, T), namely,
we prove the necessary and sufficient condition for the equality OR(πk, T) = T when the optimality
region is maximally possible.

Theorem 7. The optimality region for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is maximally possible
(i.e., the equality OR(πk, T) = T holds), if and only if for each job Jkr ∈ J in the permutation πk the following
equality holds:

[lopt
kr

, uopt
kr

] = [pL
kr

, pU
kr
]. (11)

Proof. Sufficiency. Let the equality (11) hold for each job Jkr ∈ J in the permutation πk =

(Jk1 , Jk2 , . . . , Jkn).
Due to Definition 1 and Remark 1, the following equalities hold: OB(πk, T) = ×kr∈M[l∗kr

, u∗kr
] =

×kr∈M[lopt
kr

, uopt
kr

] = ×kr∈M[pL
kr

, pU
kr
] = T, where M = {1, 2, . . . , n}. From Definition 1, it follows that

the permutation πk is optimal for the instance 1|p′|∑ Ci with any scenario p′ ∈ OB(πk, T) = T. Thus,
due to Definition 3, we obtain the desired equality OR(πk, T) = T. Sufficiency is proven.

Necessity. Let the equality OR(πk, T) = T hold. However, we assume that there is a job Jkr ∈ J
in the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ Π such that the equality (11) does not hold.

Due to Lemma 4, either there exists a segment of non-optimality [lnon
kr

, unon
kr

] 6= ∅ or a segment

of conditional optimality [lcopt
kr

, ucopt
kr

] 6= ∅ for job Jkr ∈ J in the permutation πk = (Jk1 , Jk2 , . . . , Jkn).
In the former case, the equality (6) holds. In the latter case, the equality (8) holds.

Thus, in both cases, there exists a scenario p∗ = (. . . , p∗kr
, . . .) ∈ T, where p∗kr

∈
(lnon

kr
, unon

kr
)
⋃
(lcopt

kr
, ucopt

kr
) 6= ∅, such that the permutation πk is not optimal for the instance 1|p∗|∑ Ci

with the scenario p∗ ∈ T. Hence, due to Definition 3 we obtain a contradiction OR(πk, T) 6= T with
the above assumption. This contradiction completes the proof of Theorem 7.

In the rest of this paper, we show how to use the above results for solving the uncertain scheduling
problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci approximately.

4. Algorithms for Calculating a Quasi-Perimeter of the Optimality Region for the
Fixed Permutation

We next present Algorithm 1 for testing the equality OR(πk, T) = ∅. If it appears that the
optimality region is not empty for the permutation πk, i.e., OR(πk, T) 6= ∅, then Algorithm 1
constructs an instance 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci with the reduced segments T̂ of possible durations for the

jobs J .

13
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Algorithm 1: Construction of the instance with the reduced segments of possible durations

Input: The segments [pL
i , pU

i ] for all jobs Ji ∈ J ;
the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S.

Output: The reduced segments [ p̂L
i , p̂U

i ] for all jobs Ji ∈ J if OR(πk, T) 6= ∅.

Step 1: Set p̂L
k1

= pL
k1

, tL = pL
k1

, r = 2;
Step 2: IF pU

kr
≥ tL THEN GOTO step 3 ELSE [lnon

kr
, unon

kr
] = [pL

kr
, pU

kr
];

GOTO step 6;
Step 3: IF pL

kr
> tL THEN Set tL = pL

kr
, p̂L

kr
= tL, r := r + 1;

ELSE Set p̂L
kr
= tL, r := r + 1;

Step 4: IF r ≤ n THEN GOTO step 2 ELSE Set p̂U
kn

= pU
kn

, tU = pU
kn

;
Step 5: FOR r = n− 1 to 1 STEP -1 DO

IF pU
kr
< tU THEN Set tU = pU

kr
, p̂U

kr
= tU ELSE Set p̂U

kr
= tU ;

END FOR STOP
Step 6: OR(πk, T) = ∅ STOP.

In steps 1, 2, 3 and 6 of Algorithm 1, the equality OR(πk, T) = ∅ is tested. If OR(πk, T) 6= ∅,
then the problem 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci with the reduced segments T̂ of the feasible durations of the

jobs J is constructed in steps 2–5. It takes O(n) time to realize Algorithm 1.

4.1. A Quasi-Perimeter of the Optimality Region OR(πk, T)

Due to Theorem 5, the optimality region for the permutation πk ∈ S for the problem 1|pL
i ≤ pi ≤

pU
i |∑ Ci coincides with the optimality region for the same permutation πk for the problem 1| p̂L

i ≤
pi ≤ p̂U

i |∑ Ci with the reduced segments T̂ of the feasible durations of the jobs J . Therefore, in what
follows, we consider the problem 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci instead of the problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci.

Definition 4. A maximal permutation sπk
v = (Jkv , Jkv+1 , . . . , Jkmv

), where 1 ≤ v ≤ mv ≤ n and |sπk
v | = mv,

is called a section of the permutation πk ∈ S, if for each real number d ∈ ( p̂L
kv

, p̂U
kmv

), there exists a job Jki
with

i ∈ {v, v + 1, . . . , mv} such that the inclusion d ∈ ( p̂L
ki

, p̂U
ki
) holds. The segment [ p̂L

kv
, p̂U

kmv
] is called a scope of

the section sπk
v . The section sπk

v consisting of a single job, sπk
v = (Jkv), is called a trivial section.

It is clear that for each fixed permutation πk ∈ S, a set of all sections {sπk
1 , sπk

m1+1, . . . , sπk
w } =: S(πk)

is uniquely determined. Note that index w in the last section sπk
w coincides with index w of the job Jkw ,

which is the first job in the section sπk
w = (Jkw , Jkw+1 , . . . , Jkmw

) of the permutation πk.

Remark 4. Definition 4 implies that each job Jki
∈ J either belongs to a single section of the permutation πk

or this job does not belong to any section of the permutation πk. Furthermore, if there exists at least one job
Jki
∈ J , which does not belong to any section from the set S(πk), then this job has no segment of optimality and

no conditional optimality and, due to Theorem 6, the equality OR(πk, T) = ∅ holds.

From Remark 4 and Theorem 6, one can derive the following claim.

Corollary 2. The condition OR(πk, T) 6= ∅ holds if and only if πk = (sπk
1 , sπk

m1+1, . . . , sπk
w ).

If the section sπk
v ∈ S(πk) is trivial, i.e., the equality sπk

v = (Jkv) holds, then [ p̂L
kv

, p̂U
kv
] is a scope of

the section sπk
v . If the section sπk

j ∈ S(πk) is not trivial andOR(πk, T) 6= ∅, then we partition the scope

14
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[ p̂L
kj

, p̂U
kmj

] of the section sπk
j ∈ S(πk) into the maximal (with respect to the inclusion) semi-intervals of

the optimality and conditional optimality:

[ p̂L
kj

, p̂U
kmj

] = [l j
1(s

πk
j ), uj

1(s
πk
j ))

⋃
[l j

2(s
πk
j ), uj

2(s
πk
j ))

⋃
. . .
⋃
[l j

n(j)(s
πk
j ), uj

n(j)(s
πk
j )]. (12)

In the equality (12), the semi-intervals [l j
i (s

πk
j ), uj

i(s
πk
j ) differ one from another in a way such that

for different subsets J j
i = {Jki

, Jki+1
, . . . , Jk

|J j
i |
} of the set of jobs {Jkj

, Jkj+1
, . . . , Jkmj

}, where j ≤ i ≤ mj,

the inclusion [l j
i (s

πk
j ), uj

i(s
πk
j )] ⊆ [ p̂L

kr
, p̂U

kr
] holds for each job Jkr ∈ J

j
i . Let Ĵ j

i = (Jki
, Jki+1

, . . . , Jk
|J j

i |
)

denote a permutation of all jobs from the set J j
i = {Jki

, Jki+1
, . . . , Jk

|J j
i |
}. Note that the permutation Ĵ j

i is

a part of the permutation πk, where index i in the permutation Ĵ j
i coincides with index i of the job Jki

,

which is the first job in the permutation Ĵ j
i .

Let the condition OR(πk, T) 6= ∅ hold. We can calculate a quasi-perimeter of the optimality
region OR(πk, T). We define a quasi-perimeter Per(πk, T) of the optimality region OR(πk, T) as a
sum of all lengths (cardinalities) of the segments (sets) OS(Jkr , πk), where jobs Jkr ∈ J occupy optimal
positions in the permutation πk:

Per(πk, T) =
n

∑
r=1

OS(Jkr , πk). (13)

A sum of the lengths (of the cardinalities) OS(Jkr , πk) for the job Jkr ∈ J in the permutation πk
may be calculated as follows:

OS(Jkr , πk)=(uopt
kr
− lopt

kr
) + OScopt

kr
, (14)

where the value of (uopt
kr
− lopt

kr
) is a length of the segment [lopt

kr
, uopt

kr
] of the optimality for the job

Jkr in the permutation πk. In the equality (14), the value of OScopt
kr

determines a cardinality of the

optimality subset, which is based on a single segment [lcopt
kr

, ucopt
kr

] or on both segments [lcopt
kr

, ucopt
kr

] and

[l(copt)
kr

, u(copt)
kr

] (see Remark 3) of the conditional optimality of the job Jkr in the permutation πk.

To calculate the value of OS(Jkr , πk)=(uopt
kr
− lopt

kr
) +OScopt

kr
, we use the partition (12) of the scope

[ p̂L
kj

, p̂U
kmj

] of the section sπk
j ∈ S(πk) such that the job Jkr belongs to the set J j

i = {Jki
, Jki+1

, . . . , Jk
|J j

i |
}

determined for the section sπk
j , i.e., the inequalities j ≤ r ≤ mj hold. Because of the condition

OR(πk, T) 6= ∅, one can conclude (due to remark 4) that there exists a single section sπk
j containing

the job Jkr . The value of OS(Jkr , πk) may be calculated as follows:

OS(Jkr , πk) = (uopt
kr
− lopt

kr
) + OScopt

kr
= ∑

[l j
i (s

πk
j ),uj

i(s
πk
j )]⊆[ p̂L

kr
,p̂U

kr
]

uj
i(s

πk
j )− l j

i (s
πk
j )

|J j
i |

. (15)

The correctness of the equality (15) follows from the fact that the cardinality OS(Jkr , [l j
i (s

πk
j ), uj

i(s
πk
j )])

of the optimality subset for the job Jkr , which is based on the semi-interval [l j
i (s

πk
j ), uj

i(s
πk
j )) of the

optimality or conditional optimality for the job Jrr , is equal to the following fraction:

OS(Jkr , [l
j
i (s

πk
j ), uj

i(s
πk
j )]) =

uj
i(s

πk
j )− l j

i (s
πk
j )

|J j
i |

, (16)

15



Mathematics 2019, 7, 382

since, due to Theorem 1, a position of the job Jkr may be optimal in the permutation πk ∈ S, only if the
following |J j

i | inequalities (17) hold:





pkr ≤ pkv , if r < v, Jkv ∈ J
j

i ;
pkr ≥ pkd

, if d < r, Jkd
∈ J j

i ;
l j
i (s

πk
j ) ≤ pkr ≤ uj

i(s
πk
j ).

(17)

4.2. How to Calculate a Quasi-Perimeter for the Fixed Permutation

We next demonstrate the above notations and formulas on the calculation of the quasi-perimeter
Per(πk, T) for the permutation πk = π3 = (J5, J1, J2, J3, J4, J6, J8, J7) = (Jk1 , Jk2 , . . . , Jk8) presented in
Figure 3.

-

6

J5

J1

J2

J3

J4

J6

J8

J7

Jobs Ji

2 3 4 5 6 7 8 9 101112 14 17

Durations pi

Figure 3. The segments of optimality, non-optimality (double-shaded) and conditional optimality
(shaded) for the jobs Ji ∈ J in the permutation π3 = (J5, J1, J2, J3, J4, J6, J8, J7) ∈ S.

For the permutation πk = π3, there exists a single section sπk
1 = sπ3

1 = (J5, J1, J2, J3, J4, J6, J8, J7) =

π3, S(π3) = {sπ3
1 } = {π3}, with the scope [ p̂L

k1
, p̂U

k8
] = [ p̂L

5 , p̂U
7 ] = [2, 17]. We obtain the following

partition (12) of the scope [ p̂L
5 , p̂U

7 ]:

[ p̂L
k1

, p̂U
k8
] = [2, 17] = [2, 5) ∪ [5, 6) ∪ [6, 7) ∪ [7, 8) ∪ [8, 9) ∪ [9, 10) ∪ [10, 11) ∪ [11, 12) ∪ [12, 17].

For the obtained nine semi-intervals l1
i (s

π3) in the above partition of the scope [ p̂L
k1

, p̂U
k8
],

the following equalities hold: Ĵ1
1 = (J5), Ĵ1

2 = (J5, J1, J2), Ĵ1
3 = (J5, J1, J2, J3, J4), Ĵ1

4 = (J2, J3, J4),
Ĵ1
5 = (J3, J4, J6), Ĵ1

6 = (J4, J6), Ĵ1
7 = (J4, J6, J8, J7), Ĵ1

8 = (J8, J7), Ĵ1
9 = (J7). Using the equality (14),

we calculate the optimality set OS(Jk1 , πk) = OS(J5, π3) for the job Jk1 = J5 in the permutation
πk = π3 as follows:

OS(Jk1 , πk) = OS(J5, π3) = (uopt
5 − lopt

5 ) + OScopt
5 = (5− 2) + OScopt

5 = 3 +
1
3
+

1
5
= 3

8
15

,

where the value of OScopt
5 is calculated based on the equality (15), namely: OScopt

k1
=

∑[l1
i (s

π3
1 ),u1

i (s
π3
1 )]⊆[ p̂L

k1
,p̂U

k1
]

u1
i (s

π3
1 )−l1

i (s
π3
1 )

|J 1
i |

= 6−5
3 + 7−6

5 = 8
15 .

A cardinality of the optimality set OScopt
5 is illustrated on Figure 4, where the pyramid

PCO{Jk1 [l
1
k1

, u1
k1
)] Ĵ1

1} = PCO{J5[5, 6](J5, J1, J2)} of the optimality subset OScopt
5 for the job J5, which is

based on the semi-interval [5, 6) for the permutation Ĵ1
1 = (J5, J1, J2) that is a part of the permutation

16
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π3. The volume of the pyramid PCO{J5[5, 6](J5, J1, J2)} is determined by the system of inequalities
(17), where πk = π3, Jkr = J31 = J5, J j

i = J 1
1 .

�
�
�
�
�
�
�
�

J
J
J
J
J

Q
Q
Q

QQ

�
�
��

�
�
��

�
�
��

(5, 5, 6) (5, 6, 6)

(5, 6, 5)(5, 5, 5)

(6, 5, 5) (6, 6, 5) = (J5, J1, J2)

(6, 6, 6)(6, 5, 6)

J5

J1

J2

Figure 4. The pyramid PCO{Jk1
[l1

k1
, u1

k1
)] Ĵ1

1} = PCO{J5[5, 6](J5, J1, J2)} of the optimality subset for

the job J5, which is based on the semi-interval [5, 6) for the permutation Ĵ1
1 = (J5, J1, J2) that is a part of

the permutation π3.

Similarly, we can calculate the following values: OS(Jk2 , πk) = OS(J1, π3) =
8

15 , OS(Jk3 , πk) =

OS(J2, π3) = 13
15 , OS(Jk4 , πk) = OS(J3, π3) = 13

15 , OS(Jk5 , πk) = OS(J4, π3) = 1 37
60 , OS(Jk6 , πk) =

OS(J6, π3) = 1 1
12 , OS(Jk7 , πk) = OS(J8, π3) = 3

4 , OS(Jk8 , πk) = OS(J7, π3) = 5 3
4 . Using the

equality (13), we calculate the quasi-perimeter of the optimality region for the permutation π3 as
follows: Per(π3, T) = ∑8

r=1 OS(J3r , π3) = 3 8
15 + 8

15 + 13
15 + 13

15 + 1 37
60 + 1 1

12 + 3
4 + 5 3

4 = 15.
It should be noted that the above quasi-perimeter Per(π3, T) is equal to the length 15 = 17− 2

of the scope [ p̂L
31

, p̂U
38
] = [2, 17] of the single section sπ3

1 of the permutation π3 = sπ3
1 . The following

theorem shows that such an equality is not accidental.

Theorem 8. If the condition OR(πk, T) 6= ∅ holds, one can calculate the quasi-perimeter Per(πk, T) of the
optimality region for the permutation πk ∈ S as follows:

Per(πk, T) = ∑
s

πk
j ∈S(πk)

( p̂U
kmj
− p̂L

kj
), (18)

where ( p̂U
kmj
− p̂L

kj
) is a length of the scope of the section sπk

j ∈ S(πk).

Proof. Due to Corollary 2, the above condition OR(πk, T) 6= ∅ implies the equality πk =

(sπk
j , sπk

mj+1, . . . , sπk
w ). Therefore, the following equality also holds:

Per(πk, T) = ∑
s

πk
j ∈S(πk)

Per(sπk
j , T), (19)

where Per(sπk
j , T) denotes a quasi-perimeter of the optimality region for the section sπk

j . Let OS(J j
i , πk)

denote a quasi-perimeter of the optimality region for the permutation Ĵ j
i = (Jki

, Jki+1
, . . . , Jk

|J j
i |
) of all

jobs from the set J j
i = {Jki

, Jki+1
, . . . , Jk

|J j
i |
}.

For calculating the quasi-perimeter Per(πk, T) of the optimality region OR(πk, T), we will use
a summation of the values OS(Jkr , [l

j
i (s

πk
j ), uj

i(s
πk
j )]) through all jobs Jkr in the permutation Ĵ j

r. Thus,
instead of the formulas (13)–(15), we use the equality (16) and the equalities (20) and (21):

17
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Per(sπk
j , T) =

mj

∑
i=j

OS(J j
i , πk), (20)

OS(J j
i , πk) =

|J j
i |

∑
r=i

OS(Jkr , [l
j
i (s

πk
j ), uj

i(s
πk
j )]). (21)

The equality (20) follows from the above definition of Per(sπk
j , T). The equality (21) follows from

the definition of OS(J j
i , πk). Using the equalities (16) and (21) we obtain

OS(J j
i , πk) =

|J j
i |

∑
r=i

OS(Jkr , [l
j
i (s

πk
j ), uj

i(s
πk
j )]) = |J j

i |
uj

i(s
πk
j )− l j

i (s
πk
j )

|J j
i |

= uj
i(s

πk
j )− l j

i (s
πk
j ). (22)

Using the equalities (20) and (22) we obtain

Per(sπk
j , T) =

mj

∑
i=j

uj
i(s

πk
j )− l j

i (s
πk
j ) = p̂U

kmj
− p̂L

kj
. (23)

Using the equalities (19) and (23) we obtain the desired equality (18) as follows:

Per(πk, T) = ∑
s

πk
j ∈S(πk)

Per(sπk
j , T) = ∑

s
πk
j ∈S(πk)

( p̂U
kmj
− p̂L

kj
).

Theorem 8 is proven.

5. The Largest Quasi-Perimeter of the Optimality Region OR(πk, T) for the Problem
1|p̂L

i ≤ pi ≤ p̂U
i |∑ Ci

We call the permutation πk ∈ S an effective permutation, if this permutation has the largest
quasi-perimeter Per(πk, T) of the optimality region OR(πk, T) among all permutations in the set S.
The following claim follows directly from Theorem 8.

Corollary 3. If the following equality holds:

∑
s

πk
j ∈S(πk)

( p̂U
kmj
− p̂L

kj
) = p̂U

kn
− p̂L

k1
(24)

for the permutation πk ∈ S, then this permutation is effective.

Since the equality (24) holds for the permutation π3 = (J5, J1, J2, J3, J4, J6, J8, J7), one can conclude
that this permutation is effective due to Corollary 3.

We next show how to find an effective permutation πk ∈ S in the general case of the problem
1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci. Similarly to the proof of Theorem 4 given in [23], we can prove the

following claim.

Theorem 9. Let all jobs from the set J be fixed in their blocks from the set B. Then the effective permutation
πk ∈ S may be constructed in O(n log n) time.

Thus, due to Theorem 9, the main problem, which must be solved for the construction of the
effective permutation πk ∈ S, is the optimal distribution of all non-fixed jobs between the effective
sub-permutations of the jobs fixed in the block B1, those fixed in the block B2, and so on, those fixed
in the block Bm. Let J non denote a set of all non-fixed jobs of the set J . The following lemma shows
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that we also need to find optimal positions for some fixed jobs of the set J in the desired effective
permutation πk ∈ S.

Theorem 10. An effective sub-permutation of all jobs, which are fixed in the block Br = {Jr1 , Jr2 , . . . , Jr|Br |} ⊆
B, exists if and only if there is no job Jrd ∈ Br such that the following conditions hold simultaneously:

pL
rd
= min{pL

ri
: Jri ∈ Br} < min{pL

ri
: Jri ∈ Br \ {Jrd}}; (25)

pU
rd
= max{pU

ri
: Jri ∈ Br} > max{pU

ri
: Jri ∈ Br \ {Jrd}}. (26)

Proof. Sufficiency. Let there be no job Jrd ∈ Br such that conditions (25) and (26) hold.
Hence, there exist at least two different jobs Jri ∈ Br and Jrj ∈ Br such that the inequalities

pL
ri
= min{pL

ri
: Jri ∈ Br} and pU

rj
= max{pU

ri
: Jrj ∈ Br} hold. The effective sub-permutation of all jobs,

which are fixed in the block Br = {Jr1 , Jr2 , . . . , Jr|Br |} ⊆ B, looks as follows (Jri , . . . , Jrj), where all jobs
from the set Br \ {Jri , Jrj} are located between jobs Jri and Jrj and their order may be arbitrary.

Necessity. Let there exist a job Jrd ∈ Br such that both conditions (25) and (26) hold.
Hence, an optimal position of the job Jrd is either the first position or the last position in the

effective sub-permutation of all jobs, which are fixed in the block Br = {Jr1 , Jr2 , . . . , Jr|Br |}. This choice
for the job Jrd depends from the positions of other such jobs in the blocks Bl ∈ B \ {Br} in the effective
permutation πk and from the positions of jobs from the set J non in the effective permutation πk.

The following Algorithm 2 is based on Theorem 10.

Algorithm 2: Construction of the effective permutation of the jobs fixed in the block Br

Input: The segments [pL
ri

, pU
ri
] for all jobs from the set J , which are fixed

in the block Br = {Jr1 , Jr2 , . . . , Jr|Br |}, i ∈ {1, 2, . . . , |Br|}.
Output: The effective sub-permutation πBr = (Jr1 , Jr1 , . . . , Jr|Sr |) of the subset

Sr of the set Br, Sr ⊆ Br, which are fixed in the block Br.

Step 1: Find a job Jri such that pL
ri
= min{pL

rj
: j ∈ {1, 2, . . . , |Br|}};

Step 2: Find a job Jrk such that pU
rk
= max{pU

rj
: j ∈ {1, 2, . . . , |Br|} \ {i}};

Step 3: IF pU
rk
≥ pU

ri
THEN πBr = (Jri , . . . , Jrk ), where jobs from the set

Br \ {Jri , Jrk} are ordered arbitrarily, set Sr1 = ∅, Sr2 = ∅, Sr = Br

GOTO step 11;
Step 4: Find a job Jrl such that pL

rl
= min{pL

rj
: j ∈ {1, 2, . . . , |Br|} \ {i}};

Step 5: IF pL
rl
= pL

ri
THEN πBr = (Jrl , . . . , Jri ), where jobs from the set

Br \ {Jrl , Jri} are ordered arbitrarily, set Sr1 = ∅, Sr2 = ∅, Sr = Br

GOTO step 11;
Step 6: Find a job Jro such that pU

ro = max{pU
rj

: j ∈ {1, 2, . . . , |Br|} \ {i, l}};
Step 7: IF pU

ro ≥ pU
rl

THEN πBr = (Jrl , . . . , Jro ), where jobs Br \ {Jrl , Jro , Jri} are
ordered arbitrarily, set Sr1 = {Jri}, Sr2 = ∅, Sr = Br \ {Jri} GOTO step 11;

Step 8: Find a job Jrq such that pL
rq = min{pL

rj
: j ∈ {1, 2, . . . , |Br|} \ {i, l}};

Step 9: IF pL
rq = pL

rl
THEN πBr = (Jrq , . . . , Jrl ), where jobs from the set

Br \ {Jrq , Jrl , Jri} are ordered arbitrarily, set Sr1 = {Jri}, Sr2 = ∅,
Sr = Br \ {Jri} GOTO step 11;

Step 10: πBr = (Jr1 , ..., J|Sr |), where jobs from the set Sr = Br \ {Jri , Jrl} are ordered
arbitrarily, set Sr1 = {Jri}, Sr2 = {Jrl};

Step 11: The obtained sub-permutation πBr is effective STOP.
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The asymptotic complexity of Algorithm 2 is equal to O(n). The set Sr1 is either empty or contains
a single job Jrd ∈ Br for which both conditions (25) and (26) hold. The set Sr2 is either empty or contains
a single job Jrz ∈ Br for which both conditions pL

rz = min{pL
ri

: Jri ∈ Br \ {Jrd}} < min{pL
ri

: Jri ∈
Br \ {Jrd , Jrz}} and pU

rz = max{pU
ri

: Jri ∈ Br \ {Jrd}} > max{pU
ri

: Jri ∈ Br \ {Jrd , Jrz}} hold.
Let J f ix denote a set of all jobs Jrd ∈ Br, which are fixed in their blocks Br ∈ B and both conditions

(25) and (26) hold. The following Algorithm 3 constructs an effective permutation πk ∈ S for the
general case of the problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci.

Algorithm 3: Construction of the effective permutation πk ∈ S

Input: The segments [pL
i , pU

i ] for all jobs Ji ∈ J ;
the effective sub-permutations πBr = (Jr1 , Jr2 , . . . , Jr|Sr |), sets Sr1 and sets Sr2

for all blocks Br ∈ B.
Output: The effective job permutation πk ∈ S.

Step 1: Construct a sub-permutation πp = (. . . , πB1 , . . . , πB2 , . . . , πBm , . . .);
FOR r = 1 to |B| DO

IF Sr2 = ∅ THEN l̂r = pL
r1

, ûr = pU
r|Sr |

ELSE

l̂r = pL
rd

, ûr = pU
rd

, Jrd ∈ Sr2 ;
END FOR

Step 2: Construct sets of jobs J f ix = ∪m
r=1Sr1 , J̃ = J f ix ∪ J non, sort jobs of the set

J̃ = {J f1 , J f2 , . . . , J f|J̃ |} by increasing of the mid-points of the segments

[pL
fi

, pU
fi
], obtain set J̃ = (J f1 , J f2 , . . . , J f|J̃ |);

Step 3: Construct set D = ∪n
i=1(pL

i ∪ pU
i ), sort set D by increasing D = (b1, b2, . . . , bq),

1 ≤ q ≤ 2n, construct intervals Ii = [bi, bi+1], i ∈ {1, 2, . . . , q− 1};
Step 4: Sres = ∅, Nres = ∅, sNumRes = 1, k = 1,

l̂m+1 = max{pU
i : i ∈ {1, 2, . . . , n}}, ûm+1 = max{pU

i : i ∈ {1, 2, . . . , n}};
Step 5: IF k ≤ |J̃ | THEN iNum = 1, bNum = 1, sNum = 1, Sk = ∅, Nk = ∅

ELSE GOTO step 10;
Step 6: FOR j = 1 to q− 1 DO

IF [bj, bj+1]∩ (pL
fk

, pU
fk
) 6= ∅ AND l̂bNum > bj THEN SksNum := SksNum ∪ Ij;

IF ûbNum = bj+1 THEN bNum := bNum + 1;
IF ûbNum−1 = bj+1 AND SksNum 6= ∅ THEN NksNum := bNum− 1,

sNum := sNum + 1;
END FOR

Step 7: s = 1, Stmp = ∅;
FOR i = 1 to sNum− 1 DO

FOR j = 1 to sNumRes DO
Stmps = Sresj ∪ Ski

, Ntmps = (Nresj , Nki
), s := s + 1;

END FOR
END FOR

Step 8: j = 1, Sd = ∅, Nd = ∅;
WHILE j < s DO i = 1;

WHILE i < s DO
IF Stmpi ⊆ Stmpj AND i 6= j AND Stmpj /∈ Sd THEN
Sd := Sd ∪ Stmpi , Nd := Nd ∪ Ntmpi ; i := i + 1;

END j := j + 1;
END Snd := Stmp \ Sd, Nnd := Ntmp \ Nd;

Step 9: Sres = Snd, Nres = Nnd, sNumRes = |Sres|, k := k + 1 GOTO step 5;
Step 10: maxP = 0;

FOR i = 1 to sNumRes DO P = 0;
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FOR EACH Ij IN Sresi DO P := P + bj+1 − bj END FOR;
IF P > maxP THEN maxP = P, maxNum = i END FOR

Step 11: FOR x = 1 to m + 1 DO Sx = ∅ END FOR
FOR k = 1 to |J̃ | DO x = NmaxNumk , Sx := Sx ∪ Jk; END FOR

Step 12: û0 = min{pL
i : i ∈ {1, 2, . . . , n}};

FOR x = 1 to m + 1 DO sort jobs of the set Sx by increasing of the
mid-points of the segments [max{pL

i , ûx−1}, min{pU
i , l̂x}] and obtain

sub-permutation πrx ;
END FOR

Step 13: FOR x = 1 to m DO
IF Sx2 = ∅ THEN πk = (πk, πrx , πBx ) ELSE

IF Sx1 ⊆ Sx THEN πk := (πk, πrx , πBx , Sx2) ELSE
πk := (πk, πrx , Sx2 , πBx );

END FOR
πk := (πk, Sm+1) STOP.

6. Computational Results

In the computational experiments, we tested six classes of hard instances 1|pL
i ≤ pi ≤ pU

i |∑ Ci.
Algorithms 1–3 were coded in C# and tested on a PC with Intel Core (TM) 2 Quad, 2.5 GHz, 4.00 GB
RAM. For all tested instances, inequalities pL

i < pU
i hold for all jobs Ji ∈ J . Table 2 presents

computational results for randomly generated instances of the problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci with n ∈
{50, 100, 500, 1000, 5000, 10,000}.

The segments of possible durations have been randomly generated as follows. An integer center
C of the segment [pL

i , pU
i ] was generated using a uniform distribution in the range [1, 100]. The lower

bound pL
i of the possible duration pi was determined using the equality pL

i = C · (1− δ
100 ), where δ

denotes the maximal relative error of the durations pi due to the given segments [pL
i , pU

i ]. The upper
bound pU

i was determined using the equality pU
i = C · (1 + δ

100 ). For each job Ji ∈ J , the point p
i

was
generated using a uniform distribution in the range [pL

i , pU
i ]. In order to generate instances, where all

jobs J belonged to a single block, the segments [pL
i , pU

i ] of the possible durations were modified as
follows: [ p̃L

i , p̃U
i ] = [pL

i + p− p
i
, pU

i + p− p
i
], where p = maxn

i=1 p
i
.

Since the inclusion p ∈ [ p̃L
i , p̃U

i ] holds, each constructed instance contained a single block, |B| = 1.
The maximum absolute error of the uncertain durations pi, Ji ∈ J , is equal to maxn

i=1(pU
i − pL

i ),
and the maximum relative error of the uncertain durations pi, Ji ∈ J , is not greater than 2δ%. We say
that these instances belong to class 1.

Three distribution laws were used in our computational experiments to determine the factual
durations of the jobs. If inequality pL

i < pU
i holds, then the factual duration of the job Ji becomes

known only after completing the job Ji.
We call the uniform distribution as the distribution law with number 1, the gamma distribution

with the parameters α = 9 and β = 2 as the distribution law with number 2, and the gamma distribution
with the parameters α = 4, and β = 2 as the distribution law with number 3. In each instance of class 1,
for generating the factual durations for different jobs of the set J , the number of the distribution law
was randomly chosen from the set {1, 2, 3}. We solved 15 series of the randomly generated instances
from class 1. Each series contained 10 instances with the same combination of n and δ.

In the computational experiments, we answered the question of how large the obtained relative

error ∆ =
γk

p∗−γt
p∗

γt
p∗
· 100% of the value γk

p∗ of the objective function γ = ∑n
i=1 Ci was for the effective

permutation πk with respect to the actually optimal objective function value γt
p∗ calculated for the

factual durations p∗ = (p∗1 , p∗2 , . . . , p∗n) ∈ T, which were known after completing all the jobs.
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The number n of jobs in the instance is given in column 1 in Table 2. The half of the maximum
possible errors δ of the random durations (in percentage) is given in column 2. Column 3 gives the
average error ∆ for the effective permutation πk. Column 4 presents the average CPU-time in seconds.
The smallest errors, average errors, largest errors for the tested series of the instances are presented in
the last rows of Table 2.

Table 2. Computational results for randomly generated instances with a single block (class 1).

n δ (%) ∆ CPU-Time (s)

1 2 3 4

50 1 0.088066 0.028202
50 5 0.29217 0.028702
50 10 0.451719 0.027502
100 1 0.083836 0.040702
100 5 0.25303 0.040202
100 10 0.442234 0.038802
500 1 0.090923 0.162809
500 5 0.268353 0.160009
500 10 0.446225 0.162509

1000 1 0.09579 0.309918
1000 5 0.266479 0.310618
1000 10 0.443648 0.312518
5000 1 0.097144 1.196568
5000 5 0.264383 1.531488
5000 10 0.455035 1.556389

10,000 1 0.094943 3.103378
10,000 5 0.265045 3.073576
10,000 10 0.452539 2.993571

Minimum 0.083836 0.027502
Average 0.269454 0.837637

Maximum 0.455035 3.103378

In the second part of our computational experiments, Algorithms 1–3 were applied to randomly
generated instances from other classes 2–6 of the problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci. We randomly

generated non-fixed jobs J1, J2, . . . , Js, which belong to blocks B1, B2, . . ., Bm of the randomly generated
n− s fixed jobs. The lower bound pL

i and the upper bound pU
i on the feasible values of pi ∈ R1

+ of the
durations of the fixed jobs, pi ∈ [pL

i , pU
i ], were generated as follows.

We determined a bound of blocks [b̃L
i , b̃U

i ] for generating the cores of the blocks [bL
i , bU

i ] ⊆
[b̃L

i , b̃U
i ] and for generating the segments [pL

i , pU
i ] for the durations of |Bi| jobs from all blocks Bi,

i ∈ {1, 2, . . . , m}, [bL
i , bU

i ] ⊆ [pL
i , pU

i ] ⊆ [b̃L
i , b̃U

i ].
Each instance in class 2 or in class 3 had a single non-fixed job Jv, whose bounds were determined

as follows: pL
Jv
≤ b̃L

1 ≤ b̃U
1 < b̃L

2 ≤ b̃U
2 < b̃L

3 ≤ b̃U
3 ≤ pU

Jv
. Classes 2 and 3 of the solved instances differed

one from another by the numbers of non-fixed jobs and the distribution laws used for choosing the
factual durations of the jobs J .

Each instance from classes 4 and 5 had two non-fixed jobs. In each instance from classes 2, 4,
5 and 6, for generating the factual durations for the jobs J , the numbers of the distribution laws
were randomly chosen from the set {1, 2, 3}, and they were indicated in column 4 in Table 3. In the
instances of class 6, the cores of the blocks were determined in order to generate different numbers of
non-fixed jobs in different instances. The numbers of non-fixed jobs were randomly chosen from the
set {2, 3, . . . , 8}.

The numbers n of the jobs are presented in column 1 in Table 3. Column 2 represents the number
|B| of blocks in the solved instance and column 3 the number of non-fixed jobs. The distribution laws
used for determining the factual durations of the jobs are indicated in column 4 in Table 3. Column 6
presents average numbers λ of the maximal number of the variants of the non-dominated distributions
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of the jobs J f ix ∪ J non in the effective permutation πk while it was constructed on the iterations
of Algorithm 3. Each solved series contained 10 instances with the same combination of n and the
other parameters. The obtained smallest, average and largest values of ∆ for each series of the tested
instances are presented in column 5 in Table 3 at the end of series.

Table 3. Computational results for randomly generated instances from classes 2–6.

n |B| |J non| Laws ∆ Average λ CPU-Time (s)

1 2 3 4 5 6 7

Class 2

50 3 1 1,2,3 0.54205 4 0.16921
100 3 1 1,2,3 0.281253 4 0.305017
500 3 1 1,2,3 0.177597 4 0.952555
1000 3 1 1,2,3 0.121447 4 1.561289
5000 3 1 1,2,3 0.111056 4 9.481842

10,000 3 1 1,2,3 0.105322 4 18.933383

Minimum 0.105322 4 0.16921
Average 0.223121 4 5.233883

Maximum 0.54205 4 18.933383

Class 3

50 3 1 1 0.575038 4 0.098006
100 3 1 1 0.284279 4 0.334319
500 3 1 1 0.132735 4 0.647537
1000 3 1 1 0.114245 4 1.389479
5000 3 1 1 0.160372 4 9.290531

10,000 3 1 1 0.149278 4 12.189497

Minimum 0.114245 4 0.098006
Average 0.235991 4 3.991562

Maximum 0.575038 4 12.189497

Class 4

50 3 2 1,2,3 0.670408 6.5 0.408923
100 3 2 1,2,3 0.402251 6.2 0.791245
500 3 2 1,2,3 0.084687 6.2 3.866421
1000 3 2 1,2,3 0.084137 6.4 8.715098
5000 3 2 1,2,3 0.066305 6.2 35.98006

10,000 3 2 1,2,3 0.061258 6.2 78.877412

Minimum 0.061258 6.2 0.408923
Average 0.228174 6.3 21.43986

Maximum 0.670408 6.5 78.877412

Class 5

50 5 2 1,2,3 0.498197 16.2 0.969455
100 5 2 1,2,3 0.157349 15 2.035616
500 5 2 1,2,3 0.069192 15 6.832491
1000 5 2 1,2,3 0.059916 15 13.53107
5000 5 2 1,2,3 0.045986 15 86.01118

10,000 5 2 1,2,3 0.047765 15 129.1963

Minimum 0.045986 15 0.969455
Average 0.146401 15.2 39.762685

Maximum 0.498197 16.2 129.1963
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Table 3. Cont.

n |B| |J non| Laws ∆ Average λ CPU-Time (s)

1 2 3 4 5 6 7

Class 6

50 2 2–4 1,2,3 1.086983 3.9 0.496728
100 2 2–4 1,2,3 0.839207 4 0.945754
500 2 2–6 1,2,3 0.843448 3.8 4.976885
1000 2 2–8 1,2,3 0.874078 3.6 13.604478
5000 2 2–8 1,2,3 0.790634 3.7 71.244575

10,000 2 2–8 1,2,3 0.768925 3.7 153.430476

Minimum 0.768925 3.6 0.496728
Average 0.867212 3.8 40.783149

Maximum 1.086983 4 153.430476

7. Concluding Remarks

The uncertain scheduling problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci attracts the attention of the researchers
since this problem is applicable in real-life scheduling and is commonly used in many multiple-resource
scheduling systems, where one of the available machines is the bottleneck and uncertain machine.
The optimal scheduling decisions allow the plant to reduce the costs of productions due to a better
utilization of the available machines.

In Sections 2–5, we used a notion of the optimality region of a job permutation πk and proved
useful properties of the optimality region OR(πk, T). We investigated the permutation πk with the
largest quasi-perimeter of the optimality region. Using these properties, we derived algorithms for
constructing a job permutation πk with the largest quasi-perimeter of the optimality region OR(πk, T).

From the computational experiments, it follows that the effective permutation πk is close to the
optimal permutation, which can be determined after completing all jobs when their durations became
known. We tested classes 1–6 of the problems 1|pL

i ≤ pi ≤ pU
i |∑ Ci. The minimal, average and

maximal errors ∆ of the objective function values were 0.045986, 0.313658 and 1.086983, respectively,
for the effective permutations.

An attractive direction for a further research is a generalization of the obtained results to the
problem 1|pL

i ≤ pi ≤ pU
i |∑ wiCi, where the given jobs may have different weights. It is also useful to

find precedence constraints on the set of jobs such that the effective job permutation may be constructed
similarly to Section 5.
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Abstract: In this paper, we consider a two-machine job-shop scheduling problem of minimizing
total completion time subject to n jobs with two operations and equal processing times on each
machine. This problem occurs e.g., as a single-track railway scheduling problem with three stations
and constant travel times between any two adjacent stations. We present a polynomial dynamic
programming algorithm of the complexity O(n5) and a heuristic procedure of the complexity O(n3).
This settles the complexity status of the problem under consideration which was open before and
extends earlier work for the two-station single-track railway scheduling problem. We also present
computational results of the comparison of both algorithms. For the 30,000 instances with up to
30 jobs considered, the average relative error of the heuristic is less than 1%. In our tests, the practical
running time of the dynamic programming algorithm was even bounded by O(n4).

Keywords: scheduling; total completion time; job-shop

1. Introduction

We consider a two-machine job-shop scheduling problem. Each job j ∈ N = {1, 2, . . . , n} consists
of two operations, i.e., we have nj = 2 according to [1]. The operation Oj,a is processed on the machine
Ma and its processing time is equal to a. The operation Oj,b is processed on the machine Mb and its
processing time is equal to b, where a, b ∈ Z+ and a < b. For simplicity of the subsequent consideration,
we use both notations a and Ma, where a is a descriptor in Ma and a is the processing time of any job
on this machine.

Let Nab be the subset of jobs j, for which operation Oj,a precedes operation Oj,b and let Nba be
the subset of jobs j, for which operation Oj,b precedes operation Oj,a. Moreover, denote nab = |Nab|
and nba = |Nba|. Thus, we have n = nab + nba. Please note that the parameter nj is different from
nab and nba. The parameter nj is often used in publications on job-shop scheduling to denote the
number of operations of job j, and we use nab, nba to denote the numbers of jobs with the two possible
technological routes. A schedule Π is uniquely determined by two permutations πMa and πMb

of the operations of the set Nab
⋃

Nba. Let Cj,x(Π) be the completion time of operation Oj,x and
Sj,x(Π) = Cj,x(Π)− x, x ∈ {a, b} be the starting time of the operation in the schedule Π.

For the two-machine job-shop scheduling problem of minimizing total completion time subject
to given processing times, the objective is to find an optimal schedule Π∗ that minimizes the total
completion time, i.e.,

∑
j∈Nab

Cj,b + ∑
j∈Nba

Cj,a. (1)

We denote this problem by J2|nj = 2, pj1 = a, pj2 = b|∑ Cj according to the traditional three-field
notation α|β|γ for scheduling problems proposed by Graham et al. [2], where α describes the machine

Mathematics 2019, 7, ; doi:10.3390/math7030301 www.mdpi.com/journal/mathematics

26



Mathematics 2019, 7,

environment, β gives the job characteristics and further constraints, and γ describes the objective
function. Please note that, without loss of generality, we can restrict to the case a < b since the case
a = b can be trivially solved in constant time.

Our motivation to deal with this problem with an open complexity status is as follows:

• it has a theoretical significance as a special case of the classical job-shop scheduling problem with
two machines with another objective function than the makespan considered by Jackson in the
well-known paper from 1956 [3];

• it has also practical significance as a particular sub-problem e.g., arising in railway scheduling.

Namely, the following single-track railway scheduling problem (STRSP) can be reduced to this
problem. In the STRSP, there is a single track between the stations A and C and a middle station B
between stations A and C. Trains go in both directions. Each of the sub-tracks AB and BC can process
only one train at a time. At the station B, a train can pass other trains, and at all stations there are
enough parallel tracks to deposit trains. A single-track network can be seen as a bottleneck portion
for any type of railway network topology. Furthermore, almost all national railway networks have
sections, where there is a single-track between some stations. For some countries (e.g., USA, Australia),
a significant part of the network is single-track. For multi-track networks such a single-track segment
can be considered as a bottleneck, in which the traffic capacity is restricted.

In this paper, we present a new polynomially solvable case for the two-machine job-shop problem
with minimizing total completion time based on dynamic programming [4]. At the same time, this
extends an existing polynomial algorithm for the two-station single-track railway scheduling problem
from [5] to the case of three stations. In addition, we present a fast polynomial heuristic of lower
complexity which is able to construct near-optimal solutions.

The rest of this paper is organized as follows. A brief literature review is given in Section 2.
In Section 3, some properties of the problem are presented which are the base for the dynamic
programming algorithm. Polynomial exact and heuristic solution procedures for this problem are
presented in Section 4. Some results of numerical experiments are presented in Section 5. Finally,
concluding remarks are given in Section 6.

2. Literature Overview

The problem J2|nj = 2, pj1 = a, pj2 = b|Cmax of minimizing the makespan (maximal completion
time) can be solved in constant time by Jackson’s algorithm [3]. In an optimal schedule, on the machine
Ma, first all operations Oi,a, i ∈ Nab, are processed and then all operations Oj,a, j ∈ Nba. On the
machine Mb, first all operations Oj,b, j ∈ Nba, are processed and then all operations Oi,b, i ∈ Nab.
However, the problem J2||Cmax without the restriction to at most two operations per job and arbitrary
processing times is already NP-hard [1].

Moreover, when minimizing total completion time, only very special unit-time problems can be
polynomially solved (see e.g., [1]). Even the two-machine unit-time problems J2|pjk = 1, rj ≥ 0|∑ Cj
with release dates rj, J2|pjk = 1|∑ wjCj with job weights wj or the three-machine problem J3|pjk =

1|∑ Cj are already NP-hard (see [1]). Two-machine job shop scheduling problems with unit processing
times and nj > 2 operations per job, where the even operations are processed on one machine and the
odd operations on the other one are considered in [6,7]. The scheduling problem to minimize total
completion time is considered in [8].

Some results on parallel machine and single machine scheduling problems with unit and equal
processing times of the jobs are presented in [9,10]. Single machine problems are equivalent to the
special case of a two-machine job shop scheduling problem with nj = 2, pj1 = a, pj2 = b, where a
is sufficiently small so that it can be disregarded. These problems without precedence relations are
known to be polynomially solvable, except the problem 1|rj ≥ 0, pj = p|∑ wjTj the complexity status
of which is open. An additional motivation of our research is the search for an NP-hard job scheduling
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problem with equal processing times which is most close to single machine job scheduling problems
with equal processing times without precedence relations and preemptions.

As previously mentioned, the problem under consideration is closely related to a particular
single-track railway scheduling problem. Often such problems are considered in the case of
maintenance of one track of a double-track line. For example, the French railway company SNCF
develops such models to produce a new transport schedule in the event of an incident on one of
the double-track line sections [11]. The work on single-track railway scheduling problems (STRSP)
goes back to the 1970s, with the initial publication [12]. A recent literature review on the single-track
railway scheduling problem can be found, e.g., in [13]. A short survey on the STRSP with several
stations, where trains are able to pass each other, is presented in [14]. In [5], a single-track railway
scheduling problem with two stations and several segments of the track is considered. In [15], train
scheduling problems are modeled as job-shop scheduling problems with blocking constraints. Four
MIP formulations are developed for the problem of minimizing total tardiness, and a computational
study is made on hard instances with up to 20 jobs (trains) and 11 machines (tracks or track sections).
Blocking constraints make the job-shop scheduling problem very hard from a practical point of view.
In [16], a complex neighborhood for the job-shop scheduling problem with blocking and total tardiness
minimization has been developed and tested on benchmark instances from the literature. Further
algorithms for general railway scheduling problems have been given for instance in [17–19] and
for job-shop scheduling problems with blocking in [20,21]. The blocking job-shop with rail-bound
transportation has also been discussed in [22]. Please note that for a small railway network with only a
few stations and enough parallel tracks at each station, the blocking constraint can be skipped as in
our three-station case.

In this paper, we deal with an exact dynamic programming approach. For some further recent
general approaches for the solution of different types of single and multiple criteria scheduling
problems, the interested reader is referred to [23–29] which highlight the importance of developing
advanced scheduling approaches. This concerns both the identification of new polynomially solvable
problems as well as new MILP models and metaheuristic or hybrid algorithms.

3. Properties of the Problem J2|nj = 2, pj1 = a, pj2 = b|∑ Cj

In this section, we present and prove in Lemmas 1–3 some basic properties of the problem. While
Lemma 1 characterizes the structure of partial solutions, Lemmas 2 and 3 are used in the proof of
the subsequent Theorem 1 which is the foundation of the dynamic programming algorithm given
in Section 4.

Without loss of optimality, we can restrict to schedules, where the operations Oj,a are processed in
the same order as the operations Oj,b, j ∈ Nab(Nba). Then we can schedule the jobs from each subset
according to increasing numbers. To distinguish the jobs from the sets Nab and Nba, the jobs from the
set Nba are overlined, i.e., we have Nab = {1, 2, . . . , nab} and Nba = {1, 2, . . . , nba}.

In an active schedule, a job cannot be started earlier without violating the feasibility. Without loss
of optimality, we consider active schedules only.

It is obvious that there is only a single case when an idle time on the machine Mb arises. It can be
immediately before time Ci,a = Si,b, i ∈ Nab, i.e., when for the job i ∈ Nab, the completion time of the
short operation (with processing time a) is equal to the starting time of the long one (with processing
time b). The same holds for an idle time on the machine Ma. An idle time can be immediately before
time Cj,b = Sj,a, j ∈ Nba.

Lemma 1. In any active schedule, the starting times of the operations belong to the set

Θ = {xa + yb|x, y ∈ Z, x, y < nab + nba}. (2)
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Proof. We consider the possible starting time Si,a of operation Oi,a in an active schedule. Let in the
interval [t1, Si,a), x1 operations be processed on the machine Ma without idle time and let there be an
idle time immediately before t1. Then there is a job j1 for which Cj1,b = Sj1,a = t1. Let in the interval
[t2, Cj1,b], y1 operations be processed on the machine Mb without an idle time and let there be an idle
time immediately before t2. Then there is a job i1 for which Ci1,a = Si1,b = t2. For an illustration,
see Figure 1.

1y  operations2y  operations

2x  operations 1x operations

i

Figure 1. Illustration for the proof of Lemma 1.

By continuing this consideration, we have

Si,a = (x1 + x2 + x3 + . . . )a + (y1 + y2 + . . . )b. (3)

Lemma 2. In any optimal schedule, we have S1,a = S1,b = 0, i.e., the starting times of the first operations of
the first job from each subset are equal to 0.

Proof. It is obvious that in each active schedule S1,a = 0 for O1,a ∈ Nab.
Next, we show that the lemma holds for the first job 1 ∈ Nba. Let in a schedule Π, this does not

hold. The operation sequence for machine Ma is (Oi1,a, Oi2,a, π1, O1,a, π2), where in the partial sequence
π1 there are k1 operations and i1, i2 ∈ Nab. The operation sequence for machine Mb is (π3, O1,b, π4),
where in the partial sequence π3 there are k2 ≥ 1 operations (see Figure 2).
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Figure 2. Illustration for the proof of Lemma 2.

Then for the schedule Π′ with the operation sequence (Oi1,a, Oi2,a, O1,b, π1, π2) for machine Ma

and the operation sequence (O1,b, π3, π4) for machine Mb, we increase the completion times for the
operations Oi,b ∈ π3 on the value (b− a), and we decrease the completion time of the operation O1,a
on the value

C1,a(Π)− C1,a(Π
′) = (max{a + (k2 + 1)b, (2 + k1)a}+ a)− 3a ≥ (k2 + 1)b− a. (4)

Let Ci2,a = 2a > b, then the completion times of the operations from π2 and π4 are not increased. Thus,
the total completion time is decreased on a value greater than or equal to

(k2 + 1)b− a− (b− a)k2 ≥ b. (5)

An analogous proof can be presented for the case 2a ≤ b. The lemma is true for the first job from the
set Nba.
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Lemma 3. In any active schedule Π at each time t, where an operation Oi,a, i ∈ Nab, is such that t ≤ Ci,a(Π),
the number of short operations completed is greater than or equal to the number of long operations completed.

Proof. The proof is done by induction. We consider the completion times t of the first, . . . , (k− 1)-th
and k-th operations processed on the machine Mb. The lemma holds for t equal to the completion time
of the first operation processed on the machine Mb, i.e., t = C1,b = b.

Let the lemma hold for t equal to the completion time of the (k− 1)-th operation processed on the
machine Mb. Moreover, there are l, l ≥ k− 1, operations completed on the machine Ma before t. Let
τ, τ ≤ t, be the completion time of the last operation completed on the machine Ma before time t.

Let t′, t′ ≥ t + b, be the completion time of the k-th operation processed on the machine Mb.
Then, in the interval [τ, t′], at least one operation can be processed on the machine Ma and thus, at
time t′, the number of short operations completed is greater than or equal to the number of long
operations completed.

Theorem 1. In any optimal schedule, there is no idle time on the machine Mb before the last operation from the
set Nba, i.e., before the time Snba ,a.

Proof. The proof is done by induction. First, we show that the theorem holds for the first job from the
set Nba and then for the next jobs j ∈ Nba. If for an operation Oj,b, j ∈ Nba, in a schedule Π, there is
an idle time before the time Sj,b(Π) on the machine Mb, then we construct a modified schedule Π′,
where the operations Oj,a and Oj,b are shifted to an earlier time so that the idle time is vanished and
total completion time decreases.

If a ≤ 1
2 b, then in any active schedule, there is no idle time on the machine Mb, since for any

operation Oi,a, i ∈ Nab, i > 1, we have Ci,a < Si,b. Next, we consider the only remaining case a > 1
2 b.

According to Lemma 2, the theorem holds for the first job 1 ∈ Nba. Let the theorem hold for the
job j− 1 ∈ Nba, and we consider the next job j ∈ Nba. Let there exist an idle time before the time Sj,a in
a schedule Π. We prove that this idle time is before the time Sj,b as well. We do this by contradiction.
Let there exist a schedule Π with Cj,b < Ci,a = Si,b and there is an idle time on the machine Mb in
the interval (t, Si,b). We have Cj,b ≤ t and Sj,a ≥ Si,b (see Figure 3). In this case, at time t, the number

(i− 1 + j) of long operations completed is greater than the number (i− 1 + j− 1) of short operations
completed which is a contradiction to Lemma 3. So, assume that we have a schedule Π, where the
operation sequences are:

for machine Ma : (π1, Oj−1,a, Oi,a, Oi+1,a, π2, Oj,a, π3),

for machine Mb : (π4, Oi−1,b, Oi,b, Oi+1,b, π5, Oj,b, π6),

(see Figure 3). In the schedule Π, the last operation completed before the idle time is Oi−1,b ∈ Nab
according to the assumption made above that there is no idle time before operation Oj−1,a. Operation
Oj−1,a is processed immediately before operation Oi,a since Si,a > Si−1,b.

Assume that there are k1 short operations processed between the operations Oi,a and Oj,a in Π
and k2 long operations processed between the times Si,b and Sj,b. It is easy to show that there is no idle
time between the times Si,b and Sj,b.

Denote ∆1 = Si−1,b − Sj−1,a and ∆2 = Ci−1,b − Si,b (see Figure 1). We have 2a = ∆1 + b + ∆2.
Then a > ∆1 + ∆2, otherwise

∆1 + b + ∆2 ≥ a + b,

i.e., 2a ≥ a + b and a ≥ b, which is false. As a consequence, we get

b > a > ∆1 + ∆2.
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Figure 3. Illustration for the proof of Theorem 1.

Let us consider a schedule Π′, where the operation sequences are

for machine Ma : (π1, Oj−1,a, Oi,a, Oj,a, Oi+1,a, π2, π3),

for machine Mb : (π4, Oj,b, Oi−1,b, Oi,b, Oi+1,b, π5, π6),

(see Figure 1).
If in the schedule Π′, there is an idle time ∆3 between the times Ci,b and Si+1,b, then

∆3 = Ci+1,a(Π′)− Ci,b(Π
′)

= (Cj−1,a(Π) + 4a)− (Cj−1,a(Π) + ∆1 + 3b)

= 4a− (∆1 + 3b)

= 2(b + ∆1 + ∆2)− (∆1 + 3b)

= ∆1 + 2∆2 − b < ∆2.

It is easy to show that there is no idle time on the machine Mb between the time Ci+1,b and the first
operation in π5 in the schedule Π′. Then for all operations in the sequences π3 and π6, the completion
times are not increased.
Now, we increase the completion time:

on b for operation Oi−1,b
on b− ∆2 for operation Oi,b
on b− ∆2 + ∆3 for the k2 − 1 operations {Oi+1,b}

⋃
π5

We decrease the completion time of the operation Oj,a on the value

Cj,a(Π)− Cj,a(Π
′) = (Cj−1,a(Π) + 2a + max{k1a, (k2 + 1)b}+ a)− (Cj−1,a(Π) + 3a) ≥ (k2 + 1)b.

Thus, we decreased the total completion time on a value greater than or equal to

(k2 + 1)b− (b + b− ∆2 + (b− ∆2 + ∆3)(k2 − 1)) = k2∆2 − (k2 − 1)∆3 > 0.

So, the theorem holds for job j.

4. Solution Algorithms for the Problems J2|nj = 2, pj1 = a, pj2 = b|∑ Cj

In this section, we first present a fast polynomial heuristic and then a polynomial dynamic
programming algorithm which is based on Theorem 1. The problem under consideration can be solved
approximately by the following polynomial heuristic, which includes 3 major steps.
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Heuristic H:

1. Construct a schedule Π according to Jackson’s algorithm.
2. Consider one by one the operations Oj,a for j = 1, 2, . . . , nba. Shift the operation Oj,a to the earliest

position in the sequence, where the total completion time is not increased in comparison to the
currently best schedule obtained.

3. Consider one by one the operations Oi,b for i = 1, 2, . . . , nab. Shift the operation Oi,b to the earliest
position in the sequence, where the total completion time is not increased in comparison to the
currently best schedule obtained.

Each of the steps 2 and 3 needs O(n3) operations since for each operation, we consider O(n)
positions and O(n) operations are needed to compute the total completion time of the modified
schedule. So, the running rime of the algorithm is O(n3).

Next, we present an idea of an exact dynamic programming algorithm (DP). In the first step of
Algorithm DP, we construct an active schedule that contains only jobs from the set Nab. Then, in each
stage j = 1, 2, . . . , nba, we compute all possible states t = (ia, ib, Cj,b, Cj,a), where

• operation Oj,a, j ∈ Nba, is processed between the operations Oia ,a and Oia+1,a, ia, ia + 1 ∈ Nab and

after all operations Oj′ ,a, j′ < j, j′ ∈ Nba,
• operation Oj,b, j ∈ Nba, is processed between the operations Oib ,b and Oib+1,b, ib, ib + 1 ∈ Nab and

after all operations Oj′ ,b, j′ < j, j′ ∈ Nba.

For each state t, the total completion time TCTt of the operations Oi,b, i ∈ {1, 2, . . . , ib}, and the
operations Oj′ ,a, j′ ∈ {1, 2, . . . , j}, is saved.

If for two states t = (ia, ib, Cj,b, Cj,a) and t̆ = (ia, ib, C̆j,b, C̆j,a), we have

Cj,b ≤ C̆j,b, Cj,a ≤ C̆j,a and TCTt ≤ TCTt̆,

then the state t̆ can be excluded from the further considerations.
According to Theorem 1, we have Cj,b = (ib + j)b. Thus, the state is uniquely defined by the

vector (ia, ib, Cj,a). Please note that only states with ia ≥ ib are considered. The states obtained at stage
j are used to compute the states in the next stage. After the last stage, for each state t = (ia, ib, Cj,a), we
schedule the remaining operations Oi,a, i = ia + 1, . . . , nab, and Oi,b, i = ib + 1, . . . , nab, and add to the
value TCTt the value ∑nab

i=ib+1 Ci,b. Then we choose the best solution.

The value Cj,a and TCTt can be computed in constant time. For that, in the previous stage j− 1,

for a state t̂ = (îa, îb, Ĉj−1,a), we saved the value Ĉîb+1,a. Let us compute the state t = (ia, ib, Cj,a) from
the state t̂. For the state t, the values Cîa+1,a and Cia ,a are computed in constant time. Then the value

∑ib
i=îb+1

Ci,b can be computed in constant time according to the values Ĉj−1,a and Ĉîb+1,a. There can be
only an idle time on the machine Mb before operation Oîb+1,b but such a state can be excluded from
consideration according to Theorem 1. Then, according to Cib ,b, the value Cj,b can be computed in
constant time. Finally, the value Cj,a according to the times Cj,b and Cia ,a and the value Cib+1,a can be
computed in constant time.

Theorem 2. The problem J2|nj = 2, pj1 = a, pj2 = b|∑ Cj can be solved by Algorithm DP in O(n5) time.

Proof. According to Lemma 1, there are no more than O(n2) possible values Cj,a. Then there are no

more than O(n4) possible states t = (ia, ib, Cj,a) at the stage j, and each state is computed in constant

time. Since there are O(n) stages, the running time of Algorithm DP is O(n5).
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5. Computational Results

In this section, we present some results of a numerical experiment, where we investigate the
relative error of the heuristic algorithm H and the number of states considered in Algorithm DP.
We generated the instances as follows. For each n ∈ {5, 10, 15, 20, 25, 30}, we generated 5000 instances
with b ∈ [3, 50], a ∈ [1, b− 1], yielding in total 30000 instances. For each instance, both the exact and
the heuristic algorithms were used.

In Table 1, we present the results for 30 randomly selected instances, namely five for each value
n ∈ {5, 10, 15, 20, 25, 30}, where the main goal is to report the relative error of the heuristic presented
in this paper. In columns 1–4, we present the job numbers nab and nba as well as the processing
times a and b. In column 5, we give the optimal total completion time value TCT-DP obtained by
Algorithm DP. In column 6, we present the maximal number MN of states remaining in the list at a
stage. In column 7, we present the number DIF = nabnba(nab + nba)−MN, which is given to show
that the maximal number of states remaining in the list is less than n3. In column 8, we give the total
completion time value TCT-H obtained by the heuristic. Finally, column 9 displays the percentage
deviation PD of the heuristic from the optimal function value.

Table 1. Detailed results with Algorithm DP and Heuristic H for 30 randomly selected instances.

nab nba a b TCT-DP MN DIF TCT-H PD
1 2 3 4 5 6 7 8 9

instance data DP H
2 3 13 15 264 6 24 275 4.2
2 3 34 48 822 5 25 842 2.4
3 2 9 11 188 11 19 197 4.8
3 2 24 49 783 5 25 783 0.0
1 4 16 25 439 2 18 439 0.0
5 5 10 17 985 16 234 997 1.2
2 8 39 41 2567 11 149 2604 1.4
3 7 12 19 1129 7 203 1139 0.9
8 2 40 44 2624 75 85 2752 4.9
1 9 1 24 1329 2 88 1329 0.0
4 11 17 25 3187 16 644 3214 0.8
9 6 41 43 5499 222 588 5718 4.0
12 3 31 37 4553 155 385 4808 5.6
9 6 14 17 2132 134 676 2212 3.8
13 2 3 5 606 59 331 618 2.0
2 18 6 21 4518 3 717 4518 0.0
18 2 11 16 3383 156 564 3484 3.0
1 19 2 4 878 2 378 878 0.0
12 8 26 28 6140 491 1429 6352 3.5
3 17 10 27 5840 5 1015 5840 0.0
6 19 14 16 5466 138 2712 5526 1.1
21 4 29 40 13,123 490 1610 13,476 2.7
21 4 17 20 6581 597 1503 6848 4.1
18 7 22 25 8302 798 2352 8602 3.6
12 13 39 42 14,157 671 3229 14,553 2.8
5 25 38 47 22,805 59 3691 22,921 0.5
16 14 13 21 9947 219 6501 10,022 0.8
21 9 26 30 14,208 1097 4573 14,624 2.9
4 26 19 21 10,259 82 3038 10,310 0.5
10 20 7 12 5720 59 5941 5738 0.3

In Table 2, we present some results for all 30,000 considered instances. In column 1, we give
the number n of jobs. In columns 2 and 3, we present the average values MN and DIF, respectively,
for Algorithm DP. For Heuristic H, we present in column 4 the average values PD and column 5
displays the percentage of instances PO solved by the heuristic optimally. We also emphasize that the
average relative error over all 30,000 instances is 0.85%.
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Table 2. Average results with Algorithm DP and Heuristic H for the 30,000 instances.

n Average MN Average DIF Average PD PO

1 2 3 4 5

DP H

5 4.33 23.17 1.05 67.3
10 15.43 183.57 1.04 63.44
15 37.61 523.39 0.87 59.66
20 87.52 1158.48 0.85 58.14
25 156.83 2843.17 0.74 56.1
30 202.54 4834.46 0.53 58.12

Aver 84.04 1594.37 0.85 60.46

Moreover, we can state that the maximal relative error of Heuristic H among all 30,000 instances
is 6.9% which has been obtained for an instance with nab = 3, nba = 2, a = 17, b = 23. For this
instance, the optimal objective function value is 384 and the total completion time computed by the
heuristic is 401. Moreover, the maximal number of states saved to the state list in a stage is 32,811
which has been obtained for an instance with nab = 20, nba = 10, a = 47, b = 49. In addition, if a
state t = (ia, ib, Cj,a) has been written to the list and later a state t = (ia, ib, Cj,a) is computed, where
Cj,a ≤ Cj,a and TCTt ≤ TCTt, then the state t is deleted from the list. The maximal number of states in
the list left after considering all states is 1743. So, there is a large difference between the number of
states considered and the number of states remaining in the list.

According to the previous results, we can also present the following conjecture.

Conjecture 1. There are only O(n3) states that have to be considered at each stage.

As a consequence of the above conjecture, the running time of an advanced DP algorithm could
be reduced to O(n4).

6. Concluding Remarks

In this paper, some properties of the scheduling problem J2|nj = 2, pj1 = a, pj2 = b|∑ Cj were
considered which arises for instance in a single-track railway scheduling problem with three stations.
A polynomial time solution algorithm of the complexity O(n5) and a heuristic algorithm of the
complexity O(n3) were presented. In the numerical experiments with the 30000 instances, the running
time of the dynamic programming algorithm was even bounded by the order O(n4). Moreover, in our
tests, the average relative error of the polynomial heuristic was only 0.85%.

The two-machine job-shop problem of minimizing the makespan was considered in the pioneering
work by Jackson. This result is now considered as a classical one in the scheduling theory.
An interesting open question is whether there exists an NP-hard job-shop scheduling problem with
equal processing times on each machine and other objective functions without precedence relations
and preemptions, or whether such problems are also polynomially solvable.
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Abstract: The Resistance-Harary index of a connected graph G is defined as RH(G) =

∑
{u,v}⊆V(G)

1
r(u,v) , where r(u, v) is the resistance distance between vertices u and v in G. A graph

G is called a unicyclic graph if it contains exactly one cycle and a fully loaded unicyclic graph is
a unicyclic graph that no vertex with degree less than three in its unique cycle. Let U (n) and U(n) be
the set of unicyclic graphs and fully loaded unicyclic graphs of order n, respectively. In this paper,
we determine the graphs of U (n) with second-largest Resistance-Harary index and determine the
graphs of U(n) with largest Resistance-Harary index.

Keywords: Resistance-Harary Index; resistance distance; unicyclic graphs; fully loaded
unicyclic graphs

1. Introduction

The topological index is the mathematical descriptor of the molecular structure, which can
effectively reflect the chemical structure and properties of the material. The famous Wiener index
W(G) (also Wiener number) introduced by H. Wiener, is a topological index of a molecule, defined as
the sum of the lengths of the shortest paths between all pairs of vertices, i.e., W(G) = ∑

{u,v}⊆V(G)
d(u, v)

in the chemical graph representing the non-hydrogen atoms in the molecule.In 1993, Klein and
Randić [1] defined a new distance function named resistance distance on the basis of electrical network
theory replacing each edge of a simple connected graph G by a unit resistor. Let G be a simple
connected graph with vertices set V = {v1, v2, · · · , vn}. The resistance distance between the vertices
vi and vj, denoted by r(vi, vj) (if more than one graphs are considered, we write rG(vi, vj) to avoid
confusion), is defined to be the effective resistance between the vertices vi and vj in G. If the ordinary
distance is replaced by resistance distance in the expression for the Wiener index, one arrives at the
Kirchhoff index [1,2]

K f (G) = ∑
{u,v}⊆V(G)

r(u, v),

which has been widely studied [3–12].
Another distance-based graph invariant index named Harary index was introduced independently

by Plavšić et al. [13] and by Ivanciuc et al. [14] in 1993 for the characterization of molecular graphs.
The Harary index H(G) is defined as

H(G) = ∑
{u,v}⊆V(G)

1
d(u,v) ,

Mathematics 2019, 7, 201; doi:10.3390/math7020201 www.mdpi.com/journal/mathematics
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which is the sum of reciprocals of distances between all pairs of vertices of G. For more related results
to Harary index, please refer to [15–22]. In 2017, Chen et al. [23,24] introduced a new graph invariant
reciprocal to Kirchhoff index, named Resistance-Harary index, as

RH(G) = ∑
{u,v}⊆V(G)

1
r(u,v) .

To understand the results and concepts, we introduce some definitions and notions. All of the
graphs considered in this paper are connected and simple. A graph G is called a unicyclic graph if it
contains exactly one cycle, simply denoted as G = U(Cl ; T1, T2, · · · , Tl), where Cl is the unique cycle
with vertices v1v2 · · · vl , Ti is a tree rooted at vi, 1 ≤ i ≤ l. A fully loaded unicyclic graph is a unicyclic
graph with the property that there is no vertex with degree less than three in its unique cycle. Let Sl

n
denote the graph obtained from cycle Cl by adding n− l pendant edges to a vertex of Cl . Let U (n; l)
be the set of unicyclic graphs with n vertices and the unique cycle Cl and U (n) be the set of unicyclic
graphs with n vertices. Let U(n; l) be the set of all fully loaded unicyclic graphs with n vertices and the
unique cycle Cl , and U(n) be the set of unicyclic graphs with n vertices. Let Sn and Pn be the star and
the path on n vertices, respectively.

In this paper, we improve the results of the recent paper (Chen et al. [23]) and we determine
the largest Resistance-Harary index among all unicyclic graphs. Additionally, we determine the
second-largest Resistance-Harary index among all unicyclic graphs and determine the largest
Resistance-Harary index among all fully loaded unicyclic graphs and characterize the corresponding
extremal graphs, respectively.

2. Preliminaries

In this section, we introduce some useful lemmas and two transformations. Let RG(u) =

∑
u∈V(G)\{u}

1
rG(u,v) , then RH(G) = 1

2 ∑
u∈V(G)

RG(u). Let Cg = v1v2 · · · vgv1 be the cycle on g vertices

where g ≥ 3. By Ohm’s law, for any two vertices vi, vj ∈ V(Cg) with i < j, one has

rCg(vi, vj) =
(j−i)(g+i−j)

g .

By a simple calculation, we can obtain the Resistance-Harary index of Cg, which is

RH(Cg) = ∑
u∈V(Cg)

1
2 RCg(v) = g

g−1
∑

i=1

1
i .

Lemma 1 ([1]). Let x be a cut vertex of a connected graph G and let a and b be vertices occurring in different
components which arise upon deletion of x. Then,

rG(a, b) = rG(a, x) + rG(x, b).

Definition 1 ([23]). Let v be a vertex of degree p + 1 in a graph G, such that vv1, vv2, . . . , vvp are pendent
edges incident with v, and u is the neighbor of v distinct from v1, v2, . . . , vp. We form a graph G′ = σ(G, v) by
deleting the edges vv1, vv2, . . . , vvp and adding new edges uv1, uv2, . . . , uvp. We say that G′ is a σ-transform
of the graph G (see Figure 1).

u v u vH H

G G '

v1
v2

vp

v1
v2

vp

Figure 1. The σ-transform at v.
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Lemma 2 ([23]). Let G′ = σ(G, v) be a σ-transform from the graph G, d(u) ≥ 1 described in Figure 1.
Then, RH(G′) ≥ RH(G), with equality holds if and only if G is a star with v as its center.

Definition 2 ([23]). Let u, v be two vertices in a graph G, such that u1, u2, · · · , us are pendents incident with u
and v1, v2, · · · , vt are pendents incident with v in G0 ⊆ G, respectively. G

′
and G

′′
are two graphs β transformed

from G, such that G
′
= G− {vv1, vv2, · · · , vvt}+ {uv1, uv2, · · · , uvt}, G

′′
= G− {vv1, vv2, · · · , vvs}+

{uv1, uv2, · · · , uvs}, (see Figure 2).

G0

G0

G0

G

G'

G''

u

u

v

v

vu

1

s

v1

vt

u1
u2

us+t
v1
v2

vs+t

u

u

Figure 2. The β-transform.

Lemma 3 ([23]). Let G
′
, G
′′

be the graphs transformed from the graph G, d(u) ≥ 1 described in Figure 2.
Then, RH(G) < RH(G

′
), or RH(G) < RH(G

′′
).

Corollary 1 ([23]). Let G be a connected graph with u, v ∈ V(G). Denote by G(s; t) the graph obtained
by attaching s > 1 pendent vertices to vertex u and t > 1 pendent vertices to vertex v. Then, we have
RH(G(1, s + t− 1)) > RH(G) or RH(G(s + t− 1, 1)) > RH(G).

Lemma 4. The function f (x) = 2(k−1)
(x+1)(k−1)−x2 − 1

x+1 − 1
k−x − 2

k−2 for k ≥ 3 and 1 ≤ x ≤ k−1
2 is

strictly decreasing.

Proof. By simple calculation,

f
′
(x) =

2(1− k)(k− 2x− 1)
(k(x + 1)− x2 − x− 1)2 −

1
(k− x)2 +

1
(x + 1)2

= (k− 2x− 1)
( 2(1− k)
(k(x + 1)− x2 − x− 1)2 +

(k + 1)
(x + 1)2(k− x)2

)
,

Let g(x) =
( 2(1−k)
(k(x+1)−x2−x−1)2 +

(k+1)
(x+1)2(k−x)2

)
, then we have g

′
(x) = 2(k+1)

(x+1)2(k−x)3 − 2(k+1)
(x+1)3(k−2)2 −

4(k−1)(k−2x−1)
(−kx+(1−k)+x2+x)3 < 0 since 1 ≤ x ≤ k−1

2 and g(1) = 2(1−k)
4k2−12k+9 −

k+1
4k2−8k+4 < 0 since k ≥ 3. Thus,

g(x) < 0, since 1 ≤ x ≤ k−1
2 . It follows that f

′
(x) < 0, since 1 ≤ x ≤ k−1

2 and k ≥ 3, thus implying the
conclusion of the theorem.

3. Main Results

By Lemmas 2 and 3, we claim that RH(G) ≤ RH(Sg
n) if G ∈ U (n; g). Next, we will

determine the graphs in U (n) with the largest Resistance-Harary index and the second-largest
Resistance-Harary index.
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3.1. The Largest Resistance-Harary Index

Theorem 1. If G ∈ U (n), then

max
G∈U (n)

{RH(G)} =





RH(Cn) i f n ≤ 7,
RH(S5

8) i f n = 8,
RH(S4

n) i f 9 ≤ n ≤ 15,
RH(S3

n) i f n ≥ 16.

Proof. Let H = G− Cg, by the definition of Resistance-Harary index, one has,

RH(Sg
n) = ∑

{u,v}⊆V(G)

1
r(u, v)

= ∑
{u,v}⊆V(Cg)

1
r(u, v)

+ ∑
{u,v}⊆V(H)

1
r(u, v)

+ ∑
u∈V(Cg),v∈V(H)

1
r(u, v)

= g
(

1 +
1
2
+

1
3
+ · · ·+ 1

g− 1

)
+

1
4
(n− g)(n + 3− g)

+g(n− g)
( 1

2g− 1
+

1
3g− 4

+ · · ·+ 1
g2 − (g− 1)2

)
.

Similarly,

RH(Sg−1
n ) = (g− 1)

(
1 +

1
2
+

1
3
+ · · ·+ 1

g− 2

)
+

1
4
(n + 1− g)(n + 4− g)

+(g− 1)(n + 1− g)
( 1

2g− 3
+

1
3g− 7

+ · · ·+ 1
(g− 1)2 − (g− 2)2

)
.

Further, by the symmetry of Cg, one has,

4 = RH(Sg−1
n )− RH(Sg

n)

= (g− 1)(n + 1− g)
( 1

2g− 3
+

1
3g− 7

+ · · ·+ 1
(g− 1)2 − (g− 2)2

)

+
1
2
(n− g)− g(n− g)

( 1
2g− 1

+
1

3g− 4
+ · · ·+ 1

g2 − (g− 1)2

)

−
(

1 +
1
2
+

1
3
+ . . . +

1
g− 1

)

= (n− g)
{[ ( g− 1

2g− 3
+

g− 1
3g− 7

+ . . . +
g− 1

2g− 3

)

︸ ︷︷ ︸
g−2

+
1
2

]
(1)

−
( g

2g− 1
+

g
3g− 4

+ . . . +
g

2g− 1︸ ︷︷ ︸
g−1

)}
+ (g− 1)

( 1
2g− 3

+
1

3g− 7

+ . . . +
1

(g− 1)2 − (g− 2)2

)
−
(

1 +
1
2
+

1
3
+ . . . +

1
g− 1

)
.

To explore the relationship between4 and parameters g, we first discuss the part of the first brace
of Equation (1). Let

Θ1 =
[( g− 1

2g− 3
+

g− 1
3g− 7

+ . . . +
g− 1

2g− 3

)
+

1
2

]
−
( g

2g− 1
+

g
3g− 4

+ . . . +
g

2g− 1

)
,
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then

Θ1 =





(
g−1

2g−3 −
g

2g−1

)
+
(

g−1
3g−7 −

g
3g−4

)
+ . . . +

(
g−1

2g−3 −
g

2g−1

)

+ 1
2 − 4

g+4 > 0, if g ≥ 4 and g is even,(
g−1

2g−3 −
g

2g−1

)
+
(

g−1
3g−7 −

g
3g−4

)
+ . . . +

(
g−1

2g−3 −
g

2g−1

)

+ 1
2 −

4g
(g+2)2−5 > 0, if g ≥ 5 and g is odd.

Next, we consider the rest of Equation (1). Let

Θ2 = (g− 1)
( 1

2g− 3
+

1
3g− 7

+ . . . +
1

(g− 1)2 − (g− 2)2

)
−
(

1 +
1
2
+

1
3
+ . . . +

1
g− 1

)
.

(i) If g is even, then

Θ2 = (g− 1)
g−2

∑
i=1

1
(i + 1)(g− 1)− i2

−
g−1

∑
i=1

1
i

=

g−2
2

∑
i=1

2(g− 1)
(i + 1)(g− 1)− i2

−
( g−2

∑
i=1

1
i + 1

+ 1
)

=

g−2
2

∑
i=1

2(g− 1)
(i + 1)(g− 1)− i2

−
[ g−2

2

∑
i=1

( 1
i + 1

+
1

g− i

)
+
( 2

g− 2
+

2
g− 2

+ . . . +
2

g− 2

)

︸ ︷︷ ︸
g−2

2

]

=

g−2
2

∑
i=1

[ 2(g− 1)
(i + 1)(g− 1)− i2

− 1
i + 1

− 1
g− i

− 2
g− 2

]
.

By Lemma 4, the function

F(x) =
2(g− 1)

(x + 1)(g− 1)− x2 −
1

x + 1
− 1

g− x
− 2

g− 2

is a monotonically decreasing function on [1, g−1
2 ]. Thus, when x = g−2

2 , F(x) get the minimum value

F(
g− 2

2
) =

8(g− 1)
g2 + 2g− 4

− 2
g− 2

− 2
g
− 2

g + 2
,

since
g→ ∞, F(

g− 2
2

)→ 2
g
> 0.

Actually, by simple calculation, we have F(x) > 0 when g ≥ 8, it follows that Θ2 > 0 when g ≥ 8.
(ii) Using the same argument as Equation (1), we can check that if g is an odd integer, Θ2 > 0 for

all g ≥ 8.
Comparing Θ1 and Θ2, it is easy to see that

RH(Sg
n) < RH(Sg−1

n ),

since g ≥ 8. For g = 3, 4, . . . , 7, we calculate RH(S3
n), RH(S4

n), RH(S5
n), RH(S6

n), RH(S7
n) and compare

the values. We have
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RH(S3
n) = RH(C3) + ∑

x,y∈V(G\C3)

1
r(x, y)

+ ∑
x∈V(G),y∈V(C3)

1
r(x, y)

=
1
20

(5n2 + 9n + 18),

RH(S4
n) = RH(C4) + ∑

x,y∈V(G\C4)

1
r(x, y)

+ ∑
x∈V(G),y∈V(C4)

1
r(x, y)

=
1
84

(21n2 + 33n + 148).

Then,

RH(S3
n)− RH(S4

n) =
2n
35
− 181

210
.

Thus, we can get {
RH(S3

n) < RH(S4
n) i f n ≤ 15,

RH(S3
n) > RH(S4

n) i f n ≥ 16.

In a similar way, by calculating RH(S5
n), RH(S6

n), and RH(S7
n) and comparing the values, we can

get the following set of inequalities,





RH(S3
n) < RH(S4

n) < · · · < RH(Sn−1
n ) < RH(Sn

n) i f n ≤ 7,

RH(S3
n) < RH(S7

n) < RH(S6
n) < RH(S4

n) < RH(S5
n) i f n = 8,

RH(S7
n) < RH(S3

n) < RH(S6
n) < RH(S5

n) < RH(S4
n) i f n = 9,

RH(S7
n) < RH(S6

n) < RH(S3
n) < RH(S5

n) < RH(S4
n) i f n = 10,

RH(S7
n) < RH(S6

n) < RH(S5
n) < RH(S3

n) < RH(S4
n) i f 11 ≤ n ≤ 15,

RH(S7
n) < RH(S6

n) < RH(S5
n) < RH(S4

n) < RH(S3
n) i f n ≥ 16.

(2)

To sum up, we can get RH(Cn) has the largest value 343
20 if n ≤ 7, RH(S5

n) has the largest value
923
44 if n = 8, RH(S4

n) has the largest value 1
84 (21n2 + 33n + 148) if 9 ≤ n ≤ 15 and RH(S3

n) has the
largest value 1

20 (5n2 + 9n + 18) if n ≥ 16. The proof is completed.

In [23], the unique element of U (n) with the largest Resistance-Harary index is determined.
Herewith, we point out some minor errors in [23]. These do not affect the validity of the final result
of [23] but deserve to be corrected. We list the error as follows and we give a counterexample.

Theorem 2. [23] Let G ∈ U (n), then we have RH(G) ≤ 1
20 (n

2 + 9n + 18) with equality holding if and only
if G ∼= S3

n for n ≥ 9 and G ∼= Cn for n ≤ 8.

Counterexample

If n = 9, according to Theorem 2 in [23], the largest Resistance-Harary index is HR(S3
9) = 25.2000.

However, HR(S4
9) = 25.5476, HR(S3

9) < HR(S4
9), is a contradiction. If n = 8, according to

the Theorem 2 in [23], the result is RH(C8) = 20.7429 has the largest value. However,
RH(S5

8) = 20.9773, RH(C8) < RH(S5
8), is a contradiction. Actually, according to our Theorem 1,

we have HR(S4
9) > HR(S3

9) if n = 9 and RH(S5
8) > RH(C8) if n = 8. Obviously, the result is

consistent with our theorem.
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3.2. The Second-Maximum Resistance-Harary Index

By Lemmas 2 and 3 and Equation (2) of the proof of Theorem 1, we can conclude that for n ≥ 16 G
which has the second-largest Resistance-Harary index in U (n) and those must be one of the graphs
G1, G2, and G3(S4

n), as shown in Figure 3.

v1 v1 v1

G1 G2 G3(    )Sn 
4

Figure 3. The graphs G1, G2 and G3.

Theorem 3. If G ∈ U (n), let max∗{RH(G)} denote the second-largest Resistance-Harary index of graph
G, then

max∗
G∈U (n)

{RH(G)} =





RH(Sn−1
n ) i f n ≤ 7,

RH(S4
n) i f n = 8,

RH(S5
n) i f n = 9, 10,

RH(S3
n) i f 11 ≤ n ≤ 15,

RH(S4
n) i f n ≥ 16.

Proof. (i) For n ≥ 16.
Case 1. Let H1 be the common subgraph of S3

n and G1. Thus, we can view graphs S3
n and G1 as

the graphs depicted in Figure 4.
Then, we have

RH(S3
n) = RH(H1) +

1
2
+ 2 ∑

x∈H1

1
1 + r(x, v1)

= RH(H1) +
1
2
+ 2
[
1 +

n− 5
2

+
6
5

]
,

RH(G3) = RH(H1) + 1 + ∑
x∈H2

1
1 + r(x, v1)

+ ∑
x∈H2

1
2 + r(x, v1)

= RH(H1) + 1 +
(

1 +
6
5
+

n− 5
2

+
1
2
+

n− 5
3

+
3
4

)
.

Therefore, we can get the difference

RH(S3
n)− RH(G1) =

n
6
− 23

60
.

43



Mathematics 2019, 7, 201

H1 H1

Sn3 G1
Figure 4. The graphs S3

n and G1.

Case 2. Let H2 be the common subgraph of S3
n and G2. Thus, we can view graphs S3

n and G2 as
the graphs depicted in Figure 5.

Then, we have

RH(S3
n) = RH(S3

n) + ∑
x∈H2

1
1 + r(x, v1)

= RH(H2) +
[
1 +

n− 4
2

+
6
5

]
,

RH(G2) = RH(H2) + ∑
x∈H2

1
1 + r(x, v2)

= RH(H2) +
[
1 +

3(n− 4)
8

+
6
5

]
.

Therefore, we can get the difference

RH(S3
n)− RH(G2) =

n
8
− 1

2
.

H2 H2v1

v2

Sn 3 G2

Figure 5. The graphs S3
n and G2.

Case 3. Let H3 be the common subgraph of S3
n and G3. Thus, we can view graphs S3

n and G3 as
the graphs depicted in Figure 6.

44



Mathematics 2019, 7, 201

Then, we have

RH(S3
n) = RH(H3) + RH(S3

4) + ∑
x∈H3,y∈S3

4

1
r(x, y)

= RH(H3) +
67
10

+
27(n− 4)

10
,

RH(G3) = RH(H3) + RH(C4) + ∑
x∈H3,y∈C4

1
r(x, y)

= RH(H3) +
22
3

+
37(n− 4)

14
.

Therefore, we can get the difference

RH(S3
n)− RH(G3) =

2n
35
− 181

210
.

By the above expressions for the Resistance-Harary index of G1, G2 and G3, we immediately have
the desired result.

H3

C3 C4

v1 v1

 Sn
3

H3

G3

Figure 6. The graphs S3
n and G3.

(ii) For 9 ≤ n ≤ 15.
By the same arguments as used in (i), we conclude that the possible candidates having the

second-largest Resistance-Harary index must be one of the graphs G4, G5, G6, G7(S5
n) (as shown in

Figure 7) and S3
n.

v3 v3 v3

G4 G7G5

v3

G6

Figure 7. The graphs G4 − G7.

Let H4, H5, H6 denote the common subgraphs of S4
n and G4 − G7, respectively. Thus, we can view

graphs G4 − G7 as the graphs depicted in Figure 8.
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H4 H5 H5 H6

C5

v3

v3

v5

v4

G4 G7G6G5 (    )5
nS

Figure 8. The graphs G4 − G7.

Then, in a similar way, we have




RH(S4
n)− RH(G4) =

n
6 − 193

462 ,
RH(S4

n)− RH(G5) =
3n
22 − 15

22 ,
RH(S4

n)− RH(G6) =
n
6 − 5

6 ,
RH(S4

n)− RH(G7) =
85n
693 − 2921

2772 .

Therefore, we have HR(G4) < HR(G6) < HR(G5) < HR(G7). In connection with Equation (2),
we have G7(S5

n) < S3
n if 11 ≤ n ≤ 15, so for 11 ≤ n ≤ 15, S3

n is the second largest. For n = 9, 10,
in connection with Equation (2), we have S5

n is the second largest.
(iii) For n ≤ 7 and n = 8.
In connection with Equation (2), we have Sn−1

n , S4
n is the second largest, respectively.

The result follows.

4. Application

Now, we give a specific application of formation mentioned in the Section 3. Fully loaded graphs
as a special class of unicyclic graphs also have some special properties about Resistance-Harary
index. In this section, we determine the largest Resistance-Harary index among all fully loaded
unicyclic graphs.

By a sequence of α and β transformations to a fully loaded graph G, we can obtain a new graph,
denoted by Ql

n, which is obtained by attaching a pendent edge to each vertex of the unique cycle Cl and
attaching n− 2l + 1 pendent edges to a vertex of Cl . Then, by Lemma 2 and Corollary 1, we arrive at,

Theorem 4. G ∈ U(n; g), then RH(G) ≤ RH(Qg
n).

Next, we determine the graph in U(n) with the largest Resistance-Harary index.

Theorem 5. If G ∈ U(n), then

max
G∈U(n)

{RH(G)} =





RH(Q3
n) i f n ≤ 7,

RH(Q4
n) i f n = 8, 9,

RH(Q3
n) i f n ≥ 10.

Proof. Using a similar way as in Section 3.2, we can conclude that the unicyclic graphs with n ≥ 16 in
Figure 9 have the second largest or third largest Resistance-Harary index.
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1 2

1211

109876

543

1413

Figure 9. The graphs with second maximal or third maximal Resistance-Harary index.

Only one graph Q3
n is fully loaded (Graph 9 in Figure 9). Thus, Q3

n has the largest
Resistance-Harary index among all fully loaded graphs with n ≥ 16. For n ≤ 15, from Lemmas 2 and
3 we can conclude that the fully loaded graph with largest Resistance-Harary index must be one of the
five situations Q3

n, Q4
n, Q5

n, Q6
n, Q7

n.
For completeness of the proof, we list all possible values as follows. For n ≤ 7, there is only one

situation Q3
7 with n = 7 and Q3

6 with n = 6, so we begin at n = 8.

Case 1. n = 8.

RH(Q3
8) = 19.625, RH(Q4

8) = 20.026.

Then, max
G∈U(n)

{RH(G)} = RH(Q4
8).

Case 2. n = 9.

RH(Q3
9) = 24.075, RH(Q4

9) = 24.229.

Then, max
G∈U(n)

{RH(G)} = RH(Q4
9).

Case 3. n = 10.

RH(Q3
10) =29.025, RH(Q4

10) = 28.933, RH(Q5
10) = 28.866.

Then, max
G∈U(n)

{RH(G)} = RH(Q3
10).

Case 4. n = 11.

RH(Q3
11) =34.475, RH(Q4

11) = 34.136, RH(Q5
11) = 33.725.

Then, max
G∈U(n)

{RH(G)} = RH(Q3
11).

Case 5. n = 12.

RH(Q3
12) =40.425, RH(Q4

12) = 39.840, RH(Q5
12) = 39.085, RH(Q6

12) = 38.563.

Then, max
G∈U(n)

{RH(G)} = RH(Q3
12).

Case 6. n = 13.

RH(Q3
13) =46.875, RH(Q4

13) = 46.043, RH(Q5
13) = 44.944, RH(Q6

13) = 44.003.
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Then, max
G∈U(n)

{RH(G)} = RH(Q3
13).

Case 7. n = 14.

RH(Q3
14) =53.825, RH(Q4

14) = 52.747, RH(Q5
14) = 51.303,

RH(Q6
14) =49.942, RH(Q7

14) = 49.987.

Then, max
G∈U(n)

{RH(G)} = RH(Q3
14).

Case 8. n = 15.

RH(Q3
15) =61.275, RH(Q4

15) = 59.950, RH(Q5
15) = 58.163,

RH(Q6
15) =56.382, RH(Q7

15) = 54.946.

Then, max
G∈U(n)

{RH(G)} = RH(Q3
15).

The proof is completed.

5. Conclusions

This paper focuses on Resistance-Harary index in unicyclic graphs. Let U (n) and U(n) be the set
of unicyclic graphs and fully loaded unicyclic graphs, respectively. Here, we first give a more precise
proof about the largest Resistance-Harary index among all unicyclic graphs, then determine the graph
of U (n) with second-largest Resistance-Harary index and apply this way to fully loaded unicyclic
graphs determine the graph of U(n) with largest Resistance-Harary index.
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Abstract: Arumugam and Mathew [Discret. Math. 2012, 312, 1584–1590] introduced the notion of
fractional metric dimension of a connected graph. In this paper, a combinatorial technique is devised
to compute it. In addition, using this technique the fractional metric dimension of the generalized
Jahangir graph Jm,k is computed for k ≥ 0 and m = 5.

Keywords: resolving neighbourhood; Fractional metric dimension; generalized Jahangir graph

1. Introduction and Preliminaries

In this paper, G = (V(G), E(G)) is a finite, undirected, connected and simple graph of order
|V(G)| and size |E(G)|. For any two vertices u, v ∈ V(G), the distance d(u, v) is the length of a shortest
path u ∼ v in G. For graph theoretic terminology, we refer to [1–3].

An ordered set of vertices, we mean a set W = {w1, w2, . . . , wk} on which the ordering
(w1, w2, . . . , wk) has been imposed. For an ordered subset W = {w1, w2, . . . , wk} of V(G), we refer to
the k-vector (ordered k-tuple) r(v|W) = (d(v, w1), d(v, w2), . . . , d(v, wk)) as the (metric) representation
of v with respect to W. The set W is called a resolving set for G if r(u|W) = r(v|W) implies that
u = v for all u, v ∈ V(G). Hence, if W is a resolving set of cardinality k for a graph G of order
n, then the set {r(v|W) : v ∈ V(G)} consists of n distinct k-vectors. A vertex x ∈ V(G) is said to
resolve {u, v} ⊆ V(G) in G if d(u, x) 6= d(v, x). The collection of all such x in V(G) is called resolving
neighbourhood of the pair {u, v}, denoted by R{u, v}. Explicitly, R{u, v} = {x ∈ V(G) : d(u, x) 6=
d(v, x)}. Let Vp denote the collection of all (|V(G)|

2 ) pairs of vertices of G. Then for each x ∈ V(G) the
set R{x} = {{u, v} ∈ Vp : d(u, x) 6= d(v, x)} is called resolvent neighbourhood of x.

Definition 1 ([4]). Let G = (V(G), E(G)) be a connected graph of order n. A function f : V(G) → [0, 1]
is called a resolving function (RF) of G if f (R{u, v}) ≥ 1 for any two distinct vertices u, v ∈ V(G),
where f (R{u, v}) = ∑

x∈R{u,v}
f (x). A resolving function g of a graph G is minimal (MRF) if any

function f : V(G) → [0, 1] such that f ≤ g and f (v) 6= g(v) for at least one v ∈ V(G) is not
a resolving function of G. Then, the fractional metric dimension of the graph G is dim f (G) = min{|g| :
g is a minimal resolving function of G}, where |g| = ∑

v∈V(G)
g(v).

In [5,6], Slatter introduced the notion of resolving set of a connected graph under the term locating
set. Harary and Melter in [7], independently discovered these concepts and termed them as the metric
dimension of graph. Resolving sets enjoy their several applications in various areas of computer
sciences such as network discovery and verification [8], robot navigation [9], mastermind game [10],
coin weighing problem [11], integer programming [12] and drug discovery [13]. The problem of

Mathematics 2019, 7, 100; doi:10.3390/math7010100 www.mdpi.com/journal/mathematics
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finding metric dimension of a graph as an integer programming problem (IPP) has been introduced
by Chartrand et al. [13], and independently by Currie and Oellermann [12]. As a further refinement,
Currie and Oellermann [8] devised the notion of fractional metric dimension as the optimal solution
of the linear relaxation of the IPP. An equivalent formulation for the fractional metric dimension of
a graph has been proposed by Fehr et al. [14] as follows:

Suppose V = {v1, v2, . . . , vn} and Vp = {s1, s2, . . . , s(n
2)
}. Let A = (aij) be the (n

2)×n matrix with
aij = 1 if sivj ∈ E(R(G)) and 0 otherwise, where 1 ≤ i ≤(n

2) and 1 ≤ j ≤ n. The IPP of the metric
dimension is given by;

Minimize f (x1, x2, . . . , xn) = x1 + x2+, . . . ,+xn subject to Ax̄ ≥ 1̄, where x̄ = (x1, x2, . . . , xn)T ,
xi ∈ {0, 1} and 1̄ is the (n

2)×1 column vector with all entries as 1.
The optimal solution of the aforementioned linear programming relaxation, with replacement

xi ∈ {0, 1} by 0 ≤ xi ≤ 1 gives the fractional metric dimension of G, represented by dim f (G).
The optimal solution of the dual of this LPP is referred to as the metric independence number of
G (mi f (G)). Therefore, the duality and weak duality theorem in linear programming implies that
mi(G) ≤ mi f (G) = dim f (G) ≤ dim(G), as discussed by Arumugam and Mathew in [4]. For further
details of the duality and weak duality theorem, we refer to [15].

In [16], Ali et al. introduced the generalized Jahangir graph as follows:

Definition 2. The generalized Jahangir graph Jm,k, for m ≥ 3, k ≥ 1, is a graph on m(k + 1) + 1
vertices i.e., a graph consisting of a cycle Cm(k+1) with one additional vertex which is adjacent to m
vertices of Cm(k+1) at distance k + 1 to each other on Cm(k+1). The vertex set of Jm,k is V(Jm,k) =

{u, u0, u1, ..., um−1}
⋃{v1

i , v2
i , ..., vk

i |i = 0, 1, ..., m− 1} with |V(Jm,k)| = n = m(k + 1) + 1.

The vertices of the generalized Jahangir graph Jm,k can be classified into three different types.
The vertices of degree 2, 3 and m are respectively named as minors, major and center. The generalized
Jahangir graph Jm,k have km minor vertices, m major vertices and one center vertex. In this article,
we have discussed results for m = 5, shown in Figure 1. For k = 1, the generalized Jahangir graph Jm,k
is the Jahangir graph J2m, for m ≥ 4, discussed by Tomescu et al. in [17].
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Figure 1. Generalized Jahangir graph J5,k.

Arumugam and Mathew [4] formally introduced the notion of fractional metric dimension
and discussed some fundamental results. The fractional metric dimension of the cartesian product,
hierarchical product, corona product, lexicographic product and comb product of connected graphs,
see [18–21]. YI [22] computed the fractional metric dimension of permutation graphs. Mainly,
Arumugama et al. [4] studied the graphs whose fractional metric dimension graphs equals half

51



Mathematics 2019, 7, 100

of their orders and Feng et al. [23] investigated the fractional metric dimension of vertex transitive
and distance regular graphs. This motivated us to devise a criterion to compute fractional metric
dimension of those graphs which are neither vertex transitive and distance regular graphs nor their
fractional metric dimension is half of their orders. In particular, the criterion is applied to compute
fractional metric dimension of the generalized Jahangir graph Jm,k for k ≥ 0 and m = 5.

The paper is organized as follows: Section 1 is for introduction and preliminaries and in Section 2,
the resolving neighbourhood of each possible pair of the vertices of the generalized Jahangir graph
Jm,k for k ≥ 0 and m = 5 are obtained. The main results are included in Section 3. Finally, the paper is
concluded with some future prospects in Section 4.

2. Resolving Neighbourhoods of the Generalized Jahangir Graph Jm,k for k ≥ 0 and m = 5

The possible pairs of vertices of the generalized Jahangir graph Jm,k for k ≥ 1 and m = 5 are
majors with majors, major with minors, center with majors, center with minors, and minors with
minors. In this section, the resolving neighbourhoods for each pair of vertices of Jm,k k ≥ 0 and m = 5
are classified.

Lemma 1. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then

|Ri| = |R{vk
i−1, v1

i }| =
{

k + 4 if k ≡ 0 (mod 2)
k + 3 if k ≡ 1 (mod 2).

Moreover, ∪4
i=0Ri = {v1

i , v2
i , ..., vk

i |i = 0, 1, ..., m− 1} and β́ = | ∪4
i=0 Ri| = 5k.

Proof. The resolving neighborhood of {vk
i−1, v1

i } for k ≡ 0 (mod 2) is R{vk
i−1, v1

i } = {v
j
i−1| k2 − 1 ≤

j ≤ k}⋃{vj
i |1 ≤ j ≤ k

2 + 2} with |Ri| = k + 4. Similarly, the resolving neighborhood of {vk
i−1, v1

i } for

k ≡ 1 (mod 2) is R{vk
i−1, v1

i } = {v
j
i−1| k−1

2 ≤ j ≤ k}⋃{vj
i |1 ≤ j ≤ k−1

2 + 2} with |Ri| = k + 3.
Also in both cases, ∪4

i=0Ri = {v1
i , v2

i , ..., vk
i |i = 0, 1, ..., m− 1} and hence β́ = | ∪4

i=0 Ri| = 5k.

In the following lemma resolving neighbourhoods of the center vertex with major vertices in J5,k
are computed.

Lemma 2. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{u, ui}| and
|R{u, ui} ∩ (∪4

i=0Ri)| ≥ |Ri|.

Proof. For k ≡ 0 (mod 2), the resolving neighbourhood R{u, ui} is V(J5,k) − {v
k
2
i−1, v

k
2+1
i } with

|R{u, ui}| = 5k + 4 > k + 4 = |Ri| and R{u, ui} ∩ (∪4
i=0Ri) = ∪4

i=0Ri) − {v
k
2
i−1, v

k
2+1
i }. Therefore,

|R{u, ui} ∩ (∪4
i=0Ri)| = 5k − 2 > |Ri|. Similarly, for k ≡ 1 (mod 2), R{u, ui} = V(J5,k) with

|R{u, ui}| = n > k + 3 = |Ri| and R{u, ui} ∩ (∪4
i=0Ri) = ∪4

i=0Ri). Therefore, |R{u, ui} ∩ (∪4
i=0Ri)| =

5k = |Ri|. This completes the proof.

In the following lemma resolving neighbourhoods of center vertex with minor vertices in J5,k
are computed.

Lemma 3. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{u, vj
i}| and

|R{u, vj
i} ∩ (∪4

i=0Ri)| ≥ |Ri|.
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Proof.

Case 1: (When k ≡ 0 (mod 2))

Since, R{u, v1
i } = V(J5,k)− {vk−t

i−1|0 ≤ t ≤ k
2 − 1}⋃{ui} with |R{u, v1

i }| = 4k + k
2 + 5 > k + 4 =

|Ri| and R{u, v1
i } ∩ (∪4

i=0Ri) = ∪4
i=0Ri − {vk−t

i−1|0 ≤ t ≤ k
2 − 1}. Therefore, |R{u, v1

i } ∩ (∪4
i=0Ri)| =

4k + k
2 .Now for 1 ≤ j ≤ k

2 , the resolving neighbourhood R(u, vj
i) = V(J5,k)− {v

k−4
2

i } with |R{u, vj
i}| =

5k + 5 > k + 4 = |Ri|. Also, R{u, vj
i} ∩ (∪4

i=0Ri) = ∪4
i=0Ri − {v

k−4
2

i } and therefore, |R{u, vj
i} ∩

(∪4
i=0Ri)| = 5k + 5 > |Ri|.

Case 2: (When k ≡ 1 (mod 2))

Since, R{u, v1
i } = V(J5,k)− {vt

i−1| k+1
2 ≤ t ≤ k}⋃{ui, v

k+3
2

i } with |R{u, v1
i }| = 3k + 3k+1

2 + 3 >

k + 3 = |Ri| and R{u, v1
i } ∩ (∪4

i=0Ri) = ∪4
i=0Ri − {vt

i−1| k+1
2 ≤ t ≤ k}⋃{v

k+3
2

i }. Therefore, |R{u, v1
i } ∩

(∪4
i=0Ri)| = 4k + k−1

2 − 1 > |Ri|. Now for 3 ≤ j ≤ d k
2e& j is odd, the resolving neighbourhood

R(u, vj
i) = V(J5,k)− {v

k+1
2

i , v
k+5

2
i } with |R{u, vj

i}| = 5k + 4 > k + 3 = |Ri|. Also, R{u, vj
i} ∩ (∪4

i=0Ri) =

∪4
i=0Ri −{v

k+1
2

i , v
k+5

2
i } and therefore, |R{u, vj

i} ∩ (∪4
i=0Ri)| = 5k− 2 > |Ri|. Finally, for 2 ≤ j ≤ d k

2e & j

is even, R{u, vj
i} = V(J5,k), and the case is easy to see. This completes the proof.

In the following lemma resolving neighbourhoods of the pair of major vertices in J5,k are computed.

Lemma 4. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{ui, ui+p}| and
|R{ui, ui+p} ∩ (∪4

i=0Ri)| ≥ |Ri| for p = 1, 2.

Proof. The symmetry of the generalized Jahangir graph J5,k allows us to discuss only the
following case:

Case 1: (When k ≡ 0 (mod 2) and p = 1)

Since, R{ui, ui+1} = V(J5,k)− {u, ui+2, ui+3, ui+4}
⋃{vr

i+1, vs
i+2, vs

i+3, vt
i+4, | k+4

2 ≤ r ≤ k, 1 ≤ s ≤
k, 1 ≤ t k−2

2 } with |R{ui, ui+1}| = 2(k + 2) > k + 4 = |Ri| and R{ui, ui+1} ∩ (∪4
i=0Ri) = ∪4

i=0Ri −
{vr

i+1, vs
i+2, vs

i+3, vt
i+4, | k+4

2 ≤ r ≤ k, 1 ≤ s ≤ k, 1 ≤ t ≤ k−2
2 }. Therefore, |R{ui, ui+1} ∩ (∪4

i=0Ri)| =
2k + 2 > |Ri|.
Case 2: (When k ≡ 1 (mod 2) and p = 1)

Since, R{ui, ui+1} = V(J5,k)− {u, ui+2, ui+3, ui+4}
⋃{v

k+1
2

i , vr
i+1, vs

i+2, vs
i+3, vt

i+4, | k+3
2 ≤ r ≤ k, 1 ≤

s ≤ k, 1 ≤ t ≤ k−1
2 } with |R{ui, ui+1}| = 2(k + 1) > k + 4 = |Ri| and R{ui, ui+1} ∩ (∪4

i=0Ri) =

∪4
i=0Ri − {v

k+1
2

i , vr
i+1, vs

i+2, vs
i+3, vt

i+4, | k+3
2 ≤ r ≤ k, 1 ≤ s ≤ k, 1 ≤ t ≤ k−1

2 }. Therefore, |R{ui, ui+1} ∩
(∪4

i=0Ri)| = 2k > |Ri|.
Case 3: (When k ≡ 0 (mod 2) and p = 2)

Since, R{ui, ui+2} = V(J5,k) − {u, ui+1, ui+3, ui+4}
⋃{vr

i , vs
i+1, vr

i+2, vt
i+3, vs

i+4| k+4
2 ≤ r ≤ k, 1 ≤

s ≤ k−2
2 , 1 ≤ t ≤ k} with |R{ui, ui+2}| = 2(k + 3) > k + 4 = |Ri| and R{ui, ui+2} ∩ (∪4

i=0Ri) =

∪4
i=0Ri − {vr

i , vs
i+1, vr

i+2, vt
i+3, vs

i+4| k+4
2 ≤ r ≤ k, 1 ≤ s ≤ k−2

2 , 1 ≤ t ≤ k}. Therefore, |R{ui, ui+2} ∩
(∪4

i=0Ri)| = 2(k + 2) > |Ri|.
Case 4: (When k ≡ 1 (mod 2) and p = 0)

Since, R{ui, ui+2} = V(J5,k) − {u, ui+1, ui+3, ui+4}
⋃{vr

i , vs
i+1, vr

i+2, vt
i+3, vs

i+4| k+3
2 ≤ r ≤ k, 1 ≤

s ≤ k−1
2 , 1 ≤ t ≤ k} with |R{ui, ui+2}| = 2(k + 2) > k + 4 = |Ri| and R{ui, ui+2} ∩ (∪4

i=0Ri) =

∪4
i=0Ri − {vr

i , vs
i+1, vr

i+2, vt
i+3, vs

i+4| k+3
2 ≤ r ≤ k, 1 ≤ s ≤ k−1

2 , 1 ≤ t ≤ k}. Therefore, |R{ui, ui+2} ∩
(∪4

i=0Ri)| = 2(k + 1) > |Ri|.
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In the following lemma resolving neighbourhoods of major vertices with minor vertices in J5,k
are computed.

Lemma 5. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{ui, vj
i+p}| and

|R{ui, vj
i+p} ∩ (∪4

i=0Ri)| ≥ |Ri| for p = 0, 1, 2.

Proof.

Case 1: (When k ≡ 0 (mod 2) and p = 0)

For 1 ≤ j ≤ k − 2 , the resolving neighbourhood R{ui, vj
i} = V(J5,k)− {v

j
2
i } and R{ui, vj

i} =

V(J5,k)− {v
k+j+3

2
i } for j is even and odd respectively. Also, |R{ui, vj

i}| = 5k + 5 > k + 4 > |Ri| and

|R{ui, vj
i} ∩ (∪4

i=0Ri)| = 5k − 1 > |Ri|. Now R{ui, vk−1
i } = V(J5,k) − {ui+1, vj

i+1|1 ≤ j ≤ k
2} and

R{ui, vk
i } = V(J5,k)− {v

k
2
i , v

k
2+1
i+1 }, therefore, |R{ui, vk−1

i }| = 9k+10
2 > |Ri|, |R{ui, vk

i }| = 5k + 4 > |Ri|,
|R{ui, vk−1

i } ∩ (∪4
i=0Ri)| = 5k− k

2 > |Ri| and |R{ui, vk
i } ∩ (∪4

i=0Ri)| = 5k− 2 > |Ri|.
Case 2: (When k ≡ 0 (mod 2) and p = 1)

In this case, the resolving neighbourhoods are R{ui, v1
i+1} = V(J5,k)−{v

k
2+1
i , v

k+4
2

i+1}, R{ui, v2
i+1} =

V(J5,k) − {ui, vj
i | k+4

2 ≤ j ≤ k}, R{ui, vj
i+1}k−2

j=3 = V(J5,k) − {v
j−2

2
i+1} for even j, R{ui, vj

i+1}k−2
j=3 =

V(J5,k) − {v
k+j+3

2
i+1 } for odd j, R{ui, vk−1

i } = V(J5,k) − {ui+2, vj
i+2|1 ≤ j ≤ k

2} and R{ui, vk
i } =

V(J5,k)− {v
k
2−1
i+1 , v

k
2+1
i+2 }. Therefore, |R{ui, vj

i+1}k−2
j=3 | = 5k + 5 > 5k + 4 = |R{ui, v1

i+1}| = |R{ui, vk
i }| >

4k + k
2 + 6 = |R{ui, v2

i+1}| > 4k + k
2 + 5 = |R{ui, vk−1

i }| > k + 4 = |Ri|. Also, |R{ui, vj
i+1}k−2

j=3 ∩
(∪4

i=0Ri)| = 5k− 1 > 5k− 2 = |R{ui, v1
i+1} ∩ (∪4

i=0Ri)| = |R{ui, vk
i+1} ∩ (∪4

i=0Ri)| > 4k + k
2 + 1 =

|R{ui, v2
i+1} ∩ (∪4

i=0Ri)| > 4k + k
2 = |R{ui, vk−1

i+1 } ∩ (∪4
i=0Ri)| > |Ri|.

Case 3: (When k ≡ 0 (mod 2) and p = 2)

In this case, the resolving neighbourhoods are R{ui, v1
i+2} = V(J5,k)−{v

k
2
i+1, v

k
2+2
i+2 }, R{ui, v2

i+2} =
V(J5,k) − {ui+2, vj

i+1| k2 + 1 ≤ j ≤ k}, R{ui, vj
i+2}

k
2
j=3 = V(J5,k) − {v

k+j+3
2

i+2 } for odd j and

R{ui, vj
i+2}k−2

j=3 = V(J5,k) − {v
j−2

2
i+2} for even j. Therefore, |R{ui, vj

i+2}
k
2
j=3| = 5k + 5 > 5k + 4 =

|R{ui, v1
i+2}| > 4k + k

2 + 5 = |R{ui, v2
i+2}| > k + 4 = |Ri|. Also, |R{ui, vj

i+2}
k
2
j=3 ∩ (∪4

i=0Ri)| =
5k− 1 > 5k− 2 = |R{ui, v1

i+2} ∩ (∪4
i=0Ri)| > 4k + k

2 = |R{ui, v2
i+2} ∩ (∪4

i=0Ri)| > |Ri|.
Case 4: (When k ≡ 1 (mod 2) and p = 0)

In this case, R{ui, vj
i} = V(J5,k) − {v

j
2
i , v

k+j+3
2

i } for even j ∈ {2, . . . , k − 3}, R{ui, vj
i} = V(J5,k)

for odd j ∈ {3, . . . , k − 2} and R{ui, vk−1
i } = V(J5,k) − {ui+1, v

k−1
2

i , vj
i+1|1 ≤ j ≤ k+1

2 }. Therefore,

in each of the above cases |R{ui, vj
i}| = 5k + 4, 5k + 6, 4k + k+7

2 respectively, is greater than |Ri|.
Also each of |R{ui, vj

i}k−3
j=2 ∩ (∪4

i=0Ri)| = 5k− 2, for even j, |R{ui, vj
i}k−2

j=3 ∩ (∪4
i=0Ri)| = 5k for odd j

and |R{ui, vk−1
i } ∩ (∪4

i=0Ri)| = 5k− 2 are greater than |Ri| = k + 3.

Case 5: (When k ≡ 1 (mod 2) and p = 1)

In this case, R{ui, vj
i+1} = V(J5,k) for odd j ∈ {1, . . . , k}, R{ui, v2

i+1} = V(J5,k) −
{ui+1, vj

i , v
k+5

2
i+1 | k+3

2 ≤ j ≤ k}, R{ui, vj
i+1} = V(J5,k) − {v

j−2
2

i+1, v
k+j+3

2
i+1 } for even j ∈ {4, . . . , k − 3}

and R{ui, vk−1
i+1 } = V(J5,k) − {ui+2, v

k−3
2

i+1 , vj
i+2|1 ≤ j ≤ k+1

2 }. Therefore, in each of the above

cases |R{ui, vj
i+1}| = 5k + 6, 4k + k+9

2 , 5k + 4, 4k + k+7
2 respectively, is greater than |Ri| = k + 3.
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Also each of |R{ui, vj
i+1}2

j=1 ∩ (∪4
i=0Ri)| = 5k, for odd j, |R{ui, vk

i+1} ∩ (∪4
i=0Ri)| = 4k + k−1

2 ,

|R{ui, vj
i+1}k−2

j=4 ∩ (∪4
i=0Ri)| = 5k− 2 for even j and |R{ui, vk−1

i+1 } ∩ (∪4
i=0Ri)| = 5k + k−3

2 are greater
than |Ri| = k + 3.

Case 6: (When k ≡ 1 (mod 2) and p = 2)

In this case, R{ui, vj
i+2} = V(J5,k) for odd j ∈ {1, . . . , k−1

2 }, R{ui, v2
i+2} = V(J5,k) −

{ui+2, vj
i+1, v

k+5
2

i+2 | k+1
2 ≤ j ≤ k} and R{ui, vj

i+2} = V(J5,k)− {v
j−2

2
i+2, v

k+j+3
2

i+2 } for even j ∈ {4, . . . , k−1
2 }.

Therefore, in each of the above cases |R{ui, vj
i+2}| = 5k + 6, 4k + k+7

2 and 5k + 4 respectively, is greater

than |Ri| = k + 3. Also each of |R{ui, vj
i+2}k

j=1 ∩ (∪4
i=0Ri)| = 5k, for odd j, |R{ui, v2

i+2} ∩ (∪4
i=0Ri)| =

4k + k+3
2 and |R{ui, vj

i+1}k−2
j=4 ∩ (∪4

i=0Ri)| = 5k− 2 for even j are greater than |Ri| = k + 3.

In the following lemma resolving neighbourhoods of each pair of minor vertices in J5,k
are computed.

Lemma 6. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{vr
i , vj

i+l}| and

|R{vr
i , vj

i+l} ∩ (∪4
i=0Ri)| ≥ |Ri| for l = 0, 1, 2.

Proof.

Case 1: When k ≡ 0 (mod 2):

Case 1.1: For r = 1 and 0 ≤ l ≤ 1

Here, R{v1
i , vk−2

i } = V(J5,k)− {ui+1, vs
i+1|1 ≤ s ≤ k

2}, R{v1
i , vk−1

i } = V(J5,k)− {v
k
2
i , v

k+2
2

i+1} and
R{v1

i , vk
i } = V(J5,k)− {u, ui+2, ui+3, ui+4, vs

i+1, vt
i+2, vt

i+3, vp
i+4, | k+4

2 ≤ s ≤ k, 1 ≤ t ≤ k, 1 ≤ p ≤ k−2
2 }.

Also, |R{v1
i , vk−2

i }| = 9k
2 + 5 > k + 4 = |Ri|, |R{v1

i , vk−1
i }| = 5k + 4 > |Ri| and |R{v1

i , vk
i }| =

2k + 4 > |Ri|. Now |R{v1
i , vk−1

i } ∩ (∪4
i=0Ri)| = 5k− 2 ≥ |R{v1

i , vk−2
i } ∩ (∪4

i=0Ri)| = 9k
2 > |R{v1

i , vk
i } ∩

(∪4
i=0Ri)| = 2k− 6 > |Ri|.

Case 1.2: For r = 1, 0 ≤ l ≤ 2 and 2 + 2d l
2e ≤ j ≤ k− 3

R{v1
i , vj

i+l} = V(J5,k)− {v
k+j+4

2
i+l } for even j and 0 ≤ l ≤ 2, R{v1

i , vj
i} = V(J5,k)− {v

j+1
2

i } for odd j

and R{v1
i , vj

i+l} = V(J5,k)−{v
j−3

2
i+l } for odd j and 1 ≤ l ≤ 2. Also, |R{v1

i , vj
i+l}| = 5k+ 5 > k+ 4 = |Ri|.

Now |R{v1
i , vj

i+l} ∩ (∪4
i=0Ri)| = 5k− 1 > |Ri|.

Case 1.3: For r = 1 and 1 ≤ l ≤ 2

Here, R{v1
i , v1

i+1} = V(J5,k) − {u, ui+1, ui+2, ui+3, ui+4, vs
i+1, vt

i+2, vt
i+3, vp

i+4| k+6
2 ≤ s ≤

k, 1 ≤ t ≤ k, 1 ≤ p ≤ k−2
2 }, R{v1

i , v1
i+2} = V(J5,k) − {u, ui+1, ui+3, ui+4, vs

i , vt
i+1,

vs
i+2, vp

i+3, vt
i+4| k+6

2 ≤ s ≤ k, 1 ≤ t ≤ k−2
2 , 1 ≤ p ≤ k}, R{v1

i , v2
i+1} = V(J5,k) − {v

k+4
2

i , v
k+6

2
i+1 |k > 4},

R{v1
i , v2

i+2} = V(J5,k) − {v
k
2
i+1, v

k+6
2

i+2 |k > 4}, R{v1
i , v2

i+1} = V(J5,k) − {ui+2, vk
i , v1

i+2, v2
i+2|k = 4},

R{v1
i , v2

i+2} = V(J5,k) − {ui+3, v2
i+1, v1

i+3, v2
i+3|k = 4},R{v1

i , v3
i+1} = V(J5,k) − {ui+1, vr

i | k+6
2 ≤ r ≤

k, k > 4}, R{v1
i , v3

i+2} = V(J5,k) − {ui+2, vr
i+1| k+6

2 ≤ r ≤ k, k > 4}, R{v1
i , v3

i+1} = V(J5,k) −
{ui+1, v3

i+2|k = 4}, R{v1
i , v3

i+2} = V(J5,k) − {ui+2, v1
i+1, v2

i+1, v3
i+3|k = 4}. Also, |R{v1

i , v2
i+l |k >

4}| = |R{v1
i , v3

i+1|k = 4}| = 5k + 4 > |R{v1
i , v2

i+l}k=4| = |R{v1
i , v3

i+2|k = 4}| = 5k + 2 >

|R{v1
i , v3

i+l |k > 4}| = 4k + k
2 + 7 > |R{v1

i , v1
i+2}| = 2k + 8 > |R{v1

i , v1
i+l}| = 2k + 5 > |Ri| = k + 4.

Now |R{v1
i , v3

i+1|k = 4}∩ (∪4
i=0Ri)| = 5k− 1 >, |R{v1

i , v2
i+1|k > 4}∩ (∪4

i=0Ri)| = |R{v1
i , v2

i+2|k >

4} ∩ (∪4
i=0Ri)| = 5k − 2 > |R{v1

i , v2
i+1|k = 4} ∩ (∪4

i=0Ri)| = |R{v1
i , v2

i+2|k = 4} ∩ (∪4
i=0Ri)| =

|R{v1
i , v3

i+2|k = 4} ∩ (∪4
i=0Ri)| = 5k− 3 > |R{v1

i , v3
i+1|k > 4} ∩ (∪4

i=0Ri)| = 9k
2 + 2 > |R{v1

i , v1
i+2} ∩

(∪4
i=0Ri)| = 2k + 6 > |R{v1

i , v1
i+1} ∩ (∪4

i=0Ri)| = 2k + 3 > |Ri| = k + 4. Similarly, it can be done for
2 ≤ r ≤ k.
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Case 2: When k ≡ 1 (mod 2):

The proof is same as of case 1.

3. Fractional Metric Dimension of the Generalized Jahangir Graph Jm,k for k ≥ 0 and m = 5

In this section, the fractional metric dimension of the generalized Jahangir graph Jm,k for k ≥ 0 and
m = 5 is computed. Before achieving the main result a combinatorial criterion to compute fractional
metric dimension of a graph is devised in Lemma 7. The criteria is then used in main theorems of
this section.

Lemma 7. Let R = {Ri, R̄j|i ∈ I &j ∈ J} be the collection of all pair wise resolving sets of G = (V, E) such
that |Ri| = α < |R̄j| and |R̄j ∩ (∪Ri)| ≥ α. Then

dim f (G) =
β

∑
t=1

1
α

,

where, β(G) = | ∪i∈I Ri|.

Proof. Define a function g : V → [0, 1] defined by

g(v) =
{

1
α if v ∈ ∪Ri
0 if v ∈ V −∪Ri.

Then g is indeed a minimal resolving function for G. Since |Ri| = α < |R̄j| and |R̄j ∩ (∪Ri)| ≥ α,
therefore, assigning zero to all v ∈ R̄j − ∪Ri is required to attain minimum possible weight of |g|.
Consequently, zero is assigned to all v ∈ V − ∪Ri. Therefore, computing summation of 1

α over all

v ∈ ∪Ri gives dim f (G) =
β

∑
t=1

1
α

Theorem 1. The fractional metric dimension of the generalized Jahangir graph Jm,k for 0 ≤ k ≤ 3 and m = 5 is

dim f (Jm,k) =





3
2 if k = 0

5
2 if k = 1

15
8 if k = 2

5
2 if k = 3.

Proof.

Case 1: When k = 0;

The resolving neighbourhood of all possible pairs of vertices in V(J5,0) are R{ui, ui+1} =

{ui, ui+1, ui+2, ui+4}, R{ui, ui+2} = {ui, ui+2, ui+3, ui+4} and R{u, ui} = {u, ui, ui+2, ui+3}. Hence,
α = |R{u, v}| = 4 for all u, v ∈ V(J5,0). Also,

⋃4
i=0 R{ui, ui+1}

⋃⋃4
i=0 R{ui, ui+2}

⋃⋃4
i=0 R{u, ui} =

V(J5,0). Therefore, from Lemma 7 dim f (J5,0) = ∑6
i=1

1
4 = 3

2 .

Case 2: When k = 1;

The resolving neighbourhood of any pair of consecutive major vertices ui, ui+1 in V(J5,1) is
R{ui, ui+1} = {ui, ui+1, v1

i−1, v1
i+1} and

⋃4
i=0 R{ui, ui+1} = V(J5,1) − {u0}. It is indeed easy to

see that |R{ui, ui+1}| = 4 ≤ |R{u, v}| and |R{ui, ui+1}| = 4 ≤ |R{u, v} ∩ (∪4
i=0R{ui, ui+1})| for

any pair of vertices u, v in V(J5,1) such that u 6= ui and v 6= ui+1. Therefore, from Lemma 7
dim f (J5,1) = ∑10

i=1
1
4 = 5

2 .
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Case 3: When k = 2;

The resolving neighbourhood of any pair of consecutive major vertices ui, ui+1 in V(J5,2)

is R{ui, ui+1} = {ui, ui+1, v1
i−1, v2

i−1, v1
i , v2

i , v1
i+1, v2

i+1} and the resolving neighbourhood of
the pair of minors v2

i−1, v1
i in V(J5,2) is R{v2

i−1, v1
i } = {ui−1, ui+1, v2

i−2, v1
i−1, v2

i−1, v1
i , v2

i , v1
i+1}.

Also,
⋃{⋃4

i=0 R{ui, ui+1},
⋃4

i=0 R{v2
i−1, v1

i }} = V(J5,1) − {uo}. It is indeed easy to see that
|R{ui, ui+1}| = |R{v2

i−1, v1
i }| = 8 ≤ |R{u, v}| and |R{ui, ui+1}| = |R{v2

i−1, v1
i }| = 4 ≤ |R{u, v} ∩

(
⋃{⋃4

i=0 R{ui, ui+1},
⋃4

i=0 R{v2
i−1, v1

i }})| for any pair of vertices u, v in V(J5,2) such that either u 6= ui

and v 6= ui+1 or u 6= v2
i−1 and v 6= v1

i . Therefore, from Lemma 7 dim f (J5,2) =
15
∑

i=1

1
8 = 15

8 .

Case 4: When k = 3;

The resolving neighbourhood of the pair of minors v2
i−1, v1

i in V(J5,3) is R{v2
i−1, v1

i } =

{v1
i−1, v2

i−1, v3
i−1, v1

i , v2
i , v3

i }. Also,
⋃4

i=0 R{v3
i−1, v1

i } = V(J5,3)− {u, u0, u1, u2, u3, u4}. It is indeed easy
to see that |R{v3

i−1, v1
i }| = 6 ≤ |R{u, v}| and |R{v3

i−1, v1
i }| = 6 ≤ |R{u, v} ∩ (

⋃4
i=0 R{v3

i−1, v1
i })|

for any pair of vertices u, v in V(J5,3) such that u 6= v3
i−1 and v 6= v1

i . Therefore, from Lemma 7

dim f (J5,3) =
15
∑

i=1

1
6 = 5

2 .

Remark 1. In [4], Arumugam and Mathew computed fractional metric dimension of the wheel graph Wn as
3
2 for n = 6. It is to be noted that the graph W6 is a special case of the generalized Jahangir graph Jm,k for
m = 5, k = 0. Also, the fractional dimension dim f (Jm,k) =

3
2 for m = 5, k = 0 computed above is in consensus

with [4].

Theorem 2. The fractional metric dimension of the generalized Jahangir graph Jm,k for k ≥ 4 and m = 5 is

dim f (Jm,k) =





5k
k+4 if k ≡ 0 (mod 2)

5k
k+3 if k ≡ 1 (mod 2).

Proof. In view of Lemma 1,

|Ri| = |R{vk
i−1, v1

i }| =
{

k + 4 if k ≡ 0 (mod 2)
k + 3 if k ≡ 1 (mod 2).

and β́ = | ∪4
i=0 Ri| = 5k. Also from Lemma 2 to Lemma 6 , |R{vk

i−1, v1
i }| ≤ |R{x, y}| for all x, y ∈ V(J5,k)

such that x 6= vk
i−1 and y 6= v1

i . Therefore, from the criteria given in Lemma 7, the fractional metric of
J5,k is given as follows:

dim f (J5,k) =
β

∑
t=1

1
|Ri|

.

Here, β = β́ = 5k. This implies

dim f (J5,k) =
5k

∑
t=1

1
|R{vk

i−1, v1
i }|

.

Hence,

dim f (J5,k) =

{
5k

k+4 if k ≡ 0 (mod 2)
5k

k+3 if k ≡ 1 (mod 2).

This completes the proof.

Theorem 3. The fractional metric dimension of the generalized Jahangir graph Jm,k is 5
2 for m = 5, k = 4 and

25
8 for m = 5, k = 5.
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Proof. Clear from Theorem 2.

4. Conclusions

In this paper, a combinatorial criteria is developed to compute fractional metric dimension of
a connected graph. The criteria is applied to compute fractional metric dimension of the generalized
Jahangir graph Jm,k for k ≥ 0 and m = 5. The problem to investigate the fractional metric dimension of
the generalized Jahangir graph Jm,k for k ≥ 0 and m > 5 is still open.
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Abstract: In this paper, we consider fault-tolerant resolving sets in graphs. We characterize n-vertex
graphs with fault-tolerant metric dimension n, n− 1, and 2, which are the lower and upper extremal
cases. Furthermore, in the first part of the paper, a method is presented to locate fault-tolerant
resolving sets by using classical resolving sets in graphs. The second part of the paper applies
the proposed method to three infinite families of regular graphs and locates certain fault-tolerant
resolving sets. By accumulating the obtained results with some known results in the literature,
we present certain lower and upper bounds on the fault-tolerant metric dimension of these families
of graphs. As a byproduct, it is shown that these families of graphs preserve a constant fault-tolerant
resolvability structure.

Keywords: resolving set; fault-tolerant resolving set; extended Petersen graphs; anti-prism graphs;
squared cycle graphs
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1. Introduction

In 1975, Slater [1] introduced the concept of a resolving set and its minimality within the graph,
known as the metric dimension. Independently, Harary and Melter [2] proposed the same concept
by explaining its diverse applicability. The research on this graph-theoretic parameter is excelling,
and hundreds of manuscripts have been published from both theoretic and applicability perspectives.
By considering its applicability perspective, the metric dimension significantly possesses many
potentially diverse applications in different areas of science, social science, and technology. Next, we
discuss applications of the metric dimension in other scientific disciplines.

The emergence and diversity of metric dimension applications prevail in many scientific areas,
such as the navigation of robots in robotics [3], determining routing protocols geographically [4], and
telecommunication [5]. The vertex–edge relation in graphs and its equivalence to the atom–bond
relation derive many applications in chemistry [6]. Network discovery and its verification [5] is another
area in which interesting applications of the metric dimension emerge. Based on its importance in
other scientific areas, it is natural to study the mathematical properties of this parameter. Next, we
review some literature on the mathematical significance of this graph-theoretic parameter.

Various families of graphs of mathematical interest have been studied from the metric dimension
perspective. Here, we mention some of the important work: the metric dimension of certain families

Mathematics 2019, 7, 78; doi:10.3390/math7010078 www.mdpi.com/journal/mathematics
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of distance-regular graphs, such as Grassmann graphs [7] and Johnson graphs [8], which have
been studied by Bailey and others. The metric dimension of Kneser graphs was also studied by
Bailey at al. [8]. Graphs of group-theoretic interest, such as Cayely digraphs [9] and Cayley graphs
generated by certain finite groups [10], have also been studied from the metric dimension viewpoint.
The metric dimension and resolving sets of product graphs, such as the Cartesian product of graphs [11]
and categorical product of graphs [12], have also been investigated. Certain infinite families generated
from wheel graphs have been studied by Siddiqui et al. [13]. The metric dimension of rotationally
symmetric convex polytopes (resp. convex polytopes produced by wheel-related graphs) has been
studied by Kratica et al. [14] (resp. Imran et al. [15]). The question of whether or not the metric
dimension is a finite number was answered in [16]. They showed this result by constructing some
infinite families of graphs possessing infinite metric dimension. Similar to many other graph-theoretic
parameters, the computational complexity of the metric dimension problem was investigated in [17].

Metric dimension has also been generalized and extended by providing more mathematical
rigorous general concepts, such as the k-metric dimension. Hernando et al. [18] introduced another
concept: fault tolerance in resolvability, which tolerates the removal of any arbitrary vertex and
preserves the resolvability status of the underlying set. By considering the vertices in a resolving
set as the location for loran/sonar stations, we can say that the location of any such vertex is
distinctly measured by its vertex distances from the site of the stations. From this perspective,
a fault-tolerant (unique) resolving set is the one which still preserves the property of a resolving
set when neglecting any station at a uniquely determined location of a vertex in the resolving set.
Consequently, fault-tolerant resolving sets enhance the applicability of classical resolving sets in graphs.
In addition, this shows that the fault-tolerant metric dimension possesses applicative superiority over
the metric dimension.

Chartrand [19] investigated certain applications by referring to components of a metric basis as
sensors. From the fault-tolerant resolvability point of view, if some sensor is lacking in performance
and does not convey information efficiently, the system will not have enough information process in
order to tackle the thief/intruder/fire, etc. A fault-tolerant resolving set from this perspective deals
with this problem by conveying the information efficiently when one of the sensors does not catch
the intruder. It turns out that fault tolerance in resolvability has applicative superiority over classical
resolvability in graphs. In other words, the fault-tolerant metric dimension has application wherever
the metric dimension is applicable. Nevertheless, fault-tolerant resolving sets have not received much
attention from researchers. The fault-tolerant metric dimension of certain interesting graphs possessing
chemical importance was studied in [20]. Recently, Raza et al. [21,22] considered certain rotationally
symmetric convex polytopes and studied their fault-tolerant metric dimension and binary-locating
dominating sets. The reader is referred to [23] for consideration of fault-tolerant resolvability as an
optimization problem and its applicative perspective. We also refer the reader to [24–28] for a study of
other interesting graph-theoretic parameters having potential applications in chemistry.

Based on the importance of fault-tolerant resolvability from both mathematical and applicative
perspectives as discussed above, it is natural to study the mathematical properties of fault-tolerant
resolving sets in graphs. In this paper, we study the fault-tolerant resolvability in graphs.
We characterize the graphs with fault-tolerant metric dimension n, n − 1, and 2, which are the
non-trivial extremal values of the fault-tolerant metric dimension. We utilize a lemma to trace a
fault-tolerant resolving set from a given resolving set. This results in proving a non-trivial upper
bound on the fault-tolerant metric dimension of a graph with a given resolving set. We study the
fault-tolerant resolvability for three infinite families of regular graphs and show some upper and lower
bounds on their fault-tolerant metric dimension.
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2. Preliminaries

This section defines the terminologies and explains the undefined terms from the previous section.
We also provide an overview of basic results in the literature which are used in subsequent sections.
Notations and graph-theoretic concepts were taken from Bondy and Murty [29].

A graph is an ordered pair Γ = (V, E), where V is considered to be the vertex set and E is called
the edge set. Γ is called finite if V is finite; it is said to be simple if it does not contain any loop and
parallel edges; it is called undirected if its edges do not possess direction; and it is called connected
if any two vertices in it are connected by a path. The length of the shortest path between two given
vertices is called the distance between them. For u, v ∈ V, the distance between u and v is usually
denoted as du,v.

For two arbitrary vertices x and y, a vertex u is said to resolve the pair x, y if it satisfies du,x 6= du,y.
If this resolvability condition is satisfied by a number of vertices composing a subset R ⊆ V, i.e.,
any pair of vertices in the graph is resolved by at least one vertex in R, then L is said to be a resolving
set. The idea behind this definition goes back to Harary and Melter [2], who showed that this concept
naturally arises from communication networks. The minimum cardinality of a resolving set in a given
graph is said to be the metric dimension. It is usually denoted by β(G). A resolving set in which
the number of elements is β is called the metric basis. For an ordered subset R = (x1, x2, . . . , xr),
the R-coordinate/code/representation of vertex u in V is CR(u) = (du,x1 , du,x2 , . . . , du,xr ). In these
terms, L is said to be a resolving set of Γ if any two vertices in Γ have distinct codes or distance vectors.

Chartrand et al. [6] determined all the connected graphs with metric dimension 1. Let Pν be the
ν-vertex path graph.

Theorem 1. [6] A connected graph has metric dimension 1 if and only if it is the path graph.

They also showed that a graph having metric dimension 2 cannot possess K3,3 and K5 as its
subgraphs. Let Kν be the complete graph on ν vertices. They also classified the connected graphs
possessing metric dimension ν− 1.

Theorem 2. [6] A connected ν-vertex graph has metric dimension ν− 1 if and only if it is the complete graph.

Let Γ ∪Ω denote the disjoint union of two graphs Γ and Ω. The join of two graphs Γ and Ω,
symbolized as Γ + Ω, is obtained by joining any vertex of Γ to all the vertices of Ω and vice versa.
Graphs having ν vertices sharing the metric dimension ν− 2 are classified in the following result.

Theorem 3. [6] A connected ν-vertex graph Γ with ν ≥ 4 shares the metric dimension ν− 2 if and only if
Γ ∈ {Ks + Kt (s ≥ 1, t ≥ 2), Ks,t (s, t ≥ 1), Ks + (K1 ∪ Kt) (s, t ≥ 1)}.

A fault-tolerant resolving set is a resolving set in which the removal of an arbitrary vertex
maintains the resolvability. The idea of a fault-tolerant resolving set (also known as resilient) has
been widely investigated in networked systems; see, for example, [30,31]. The fault-tolerant metric
dimension and fault-tolerant metric basis are defined similarly as metric dimension. We denote the
fault-tolerant metric dimension of graph Γ by β′(Γ).

A family of graphs on ν vertices is said to possess a constant (resp. bounded)
resolvability/fault-tolerant resolvability structure if the metric dimension/fault-tolerant metric
dimension does not depend on the parameter ν (resp. is a function of ν). Note that our definition of
a constant/bounded metric/fault-tolerant metric dimension could be different from the one in the
literature. In view of Theorem 1, path graphs are a family of graphs with a constant metric dimension.
On the other hand, in view of Theorem 2, complete graphs provide a family of graphs possessing a
bounded resolvability structure.
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In a path graph, there exists a unique fault-tolerant metric basis comprising the initial and terminal
vertices. Thus, we obtain β′(Pn) = 2. Hernando et al. [18] showed that the tree T in Figure 1 has
β(T) = 10 and β′(T) = 14. The set P = (1, 2, 3, 4, . . . , 10) (resp. Q = P ∪ {y, v, r, s}) forms the metric
basis (resp. fault-tolerant metric basis) of T.

1 2 3

5

4

6

7
8

9

10

w

x y

z

r

u v t

1s 2s 3s

4s 5s 6s

s

T

Figure 1. The tree example from Hernando et al. [18].

Javaid et al. proved the following lemma, which shows an alternative way to trace a fault-tolerant
resolving set in a graph.

Lemma 1. [32] A resolving set R of graph Γ is fault-tolerant if and only if any arbitrary pair of vertices of Γ is
resolved by at least two vertices of R.

Proof. Let R be a fault-tolerant resolving set of G. Assume contrarily that two vertices x and y of G are
resolved by a single vertex r ∈ R. Then, R \ {r} is not a resolving set since both x and y have the same
codes with respect to r ∈ R. This raises a contradiction to the assumption that R is a fault-tolerant
resolving set of G.

Now, we assume that every pair of vertices of G is resolved by at least two vertices of R.
Then, R \ {r} for any r ∈ R is a resolving set by definition. This shows the lemma.

Hernando et al. [18] showed the following upper bound on β′ in terms of β.

Theorem 4. [18] The upper bound β′(Γ) ≤ β(Γ)
(
1 + 2× 5β(Γ)−1) holds for any arbitrary graph.

The following result demonstrates that the difference between the two parameters β and β′ can
be increasingly large enough.

Theorem 5. [32] There always exists a graph Γ for which β′(Γ) ≥ β(Γ) + p holds for any integer p.

From this, we can also note that, with the defining structures of β and β′, we can have β′(Γ) ≥
β(Γ) + 1. In the next section, we discuss graphs which hold equality in this lower bound.

3. Main Results

This section contains the main result presented in this paper.
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3.1. Some Characterizations

In this subsection, we prove some characterization results on extreme values of the fault-tolerant
metric dimension of graphs. These results are the fault-tolerant metric dimension analogs of
Theorems 1–3, where similar results on the metric dimension of graphs are obtained. Note that
from the interpretation of the fault-tolerant metric dimension of a graph Γ with n vertices, we have
2 ≤ β′(Γ) ≤ n.

In the following result, graphs with fault-tolerant metric dimension 2 are characterized.

Theorem 6. A graph has β′(Γ) = 2 if and only if it is the path graph.

Proof. First, we assume that Γ ∼= Pn. By Theorem 1, we obtain β(Γ) = 1. By the definition of the
fault-tolerant metric dimension, it is noted that

β′(Γ) ≥ β(Γ) + 1. (1)

By inserting β(Γ) = 1 in Equation (1), we get β′(Γ) ≥ 2. Let R′ = {a, b} ⊆ V(Γ), where a and b are
the vertices with degree one in Γ. Clearly, R′ is a resolving set in Γ. Note that both R′ \ {a} and R′ \ {b}
are also resolving sets in Γ, because any vertex of degree one resolves the path graph. This implies that
R′ is a fault-tolerant resolving set of Γ, and thus, β′(Γ) ≤ 2. By combining two inequalities, we obtain
β′(Γ = Pn) = 2.

Conversely, suppose that Γ is a graph with fault-tolerant metric dimension 2. Since both β(Γ) and
β′(Γ) are positive integers, by Equation (1), we get β(Γ) < β′(Γ). By implying β′(Γ) = 2, we obtain
β(Γ) < 2, which indicates that β(Γ) = 1. By Theorem 1, we find that the only graphs with metric
dimension 1 are the path graphs. This implies that Γ ∼= Pn.

In the next theorem, we characterize the equality in β′(Γ) ≤ n, where Γ is an n-ordered graph.

Theorem 7. An n-vertex connected graph has β′(Γ) = n if and only if it is the complete graph Kn.

Proof. Let Γ be an n-ordered complete graph. Then, by Theorem 2, we have β(Γ) = n− 1. By putting
this in Equation (1), we get β′(Γ) ≥ n. Let R′ = V(Γ); for some c ∈ V(Γ), the set R′ \ {c} is a resolving
set, because any collection of n − 1 vertices of Γ resolve Γ completely. Thus, R′ is a fault-tolerant
resolving set of Γ, and thus, β′(Γ) ≤ n. By combining these two cases, we obtain β′(Γ) = n.

Conversely, suppose that Γ is a graph with fault-tolerant metric dimension n. From Equation (1),
we have β(Γ) < β′(Γ), which shows that β(Γ) ≤ n− 1. In Theorem 2, it is shown that equality holds
in β(Γ) ≤ n− 1 if and only if Γ = Kn. This shows that equality holds in β(Γ) ≤ β′(Γ)− 1 = n− 1.
This implies that Γ is a complete graph on n vertices.

In the next theorem, graphs with fault-tolerant metric dimension n− 1 are characterized.

Theorem 8. Let Γ be a graph with order n ≥ 4. Then, β′(Γ) = n − 1 if and only if Γ = Ks,t (s, t ≥ 1),
Γ = Ks + Kt (s ≥ 1, t ≥ 2) and Γ = Ks + (K1 ∪ Kt) (s, t ≥ 1).

Proof. Let Γ1 = Ks,t (s, t ≥ 1), Γ2 = Ks + Kt (s ≥ 1, t ≥ 2), and Γ3 = Ks + (K1 ∪ Kt) (s, t ≥ 1). Assume
that Γ belongs to one of the three infinite families Γi, i = 1, 2, 3. Then, by Theorem 3, β(Γ) = n− 2.
By using this in Inequality (1), we get β′(Γ) ≥ n− 1. Since Γ is not a complete graph, by Theorem 7, we
obtain β′(Γ) < n. This implies that β′(Γ) ≤ n− 1. Now, we combine the two inequalities to achieve
β′(Γ) = n− 1.

Conversely, when we let Γ be a graph with fault-tolerant metric dimension n − 1, by using
Equation (1), β′(Γ) ≥ β(G) + 1 implies

β(Γ) ≤ n− 2. (2)
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By Theorem 3, equality holds in Equation (2) if Γ ∈ {Γ1, Γ2, Γ3}, if n ≥ 4. This implies that
the equality holds in β(Γ) ≤ β′(Γ)− 1, and thus, for n ≥ 4, Γ ∈ Γi for i = 1, 2, 3. This completes
the proof.

By Theorems 6–8, if Γ is a graph with Γ /∈ {Pn, Kn, Γ1, Γ2, Γ3}, then 3 ≤ β′(Γ) ≤ n− 2. Next, we
focus on the graphs for which 3 ≤ β′(Γ) ≤ n− 2.

3.2. Relation between Resolving Sets and Fault-Tolerant Resolving Sets of Graphs

In Theorem 4, Hernando et al. [18] showed that the fault-tolerant metric dimension is bounded
by a function of metric dimension. They also showed a relation between a resolving set and a
fault-tolerant resolving set for an arbitrary graph. Now, let N(w) (resp. N[w]) represent the open
and close neighborhood of a vertex w ∈ V(Γ), where N(w) := {u ∈ V(Γ) | uw ∈ E(Γ)} and
N[w] := {w} ∪ N(w).

Lemma 2. [18] Let R be a resolving set of graph Γ. For all w ∈ R, let T(w) := {x ∈ V(Γ) : N(w) ⊆ N(x)}.
Then, R′ := ∪w∈R(N[w] ∪ T(w)) is a fault-tolerant resolving set of Γ.

Now, the following lemma will help us to obtain upper bounds on the fault-tolerant metric
dimension of a given graph. It uses R in a graph to produce a fault-tolerant resolving set within
it. In view of Lemma 2, for a given resolving set R of a graph Γ, finding the set R′ to evaluate the
corresponding fault-tolerant resolving set seems tedious due to the calculation of the set T(w) for a
vertex w ∈ R. Raza et al. [21] further simplify this lemma so that one does not have to check every
vertex x of Γ to verify whether or not it belongs to T(w) for some w ∈ R. Now, for vertices x and y
in Γ, we let λ(x, y) be a set of common neighbors of these vertices and, for some Q ⊂ V(Γ), let λ(Q)

be the set of common neighbors of each vertex in Q. The following lemma is a key result for finding
upper bounds on the fault-tolerant metric dimension of a given graph.

Lemma 3. [21] For a graph Γ, let R be a distinguishing or resolving set, and R′ := ∪w∈R
(

N[w] ∪ λ(N(w))
)
.

Then, β′(G) ≤| R′ |.

Proof. Let R be a resolving set of graph Γ. For v ∈ R, let T(v) := {x ∈ V(Γ) : N(v) ⊆ N(x)}. Then, for
any x ∈ T(v), we notice that d(x, v) = 2 (see Figure 2).

N(v)

N(x)

v x
x
x

x

T(v)

Figure 2. A depiction of the proof of Lemma 3.

Moreover, for y, z ∈ N(v), we obtain λ(y, z) = x for some x ∈ T(v). This implies that T(v) =
λ
(

N(v)
)
\ {v} for any v ∈ R. Now, by Lemma 2, R′ := ∪v∈R(N[v] ∪ T(v)) is a fault-tolerant resolving

set of Γ. Since v is contained in N[v], then, for any v ∈ R,

N[v] ∪ T(v) = N[v] ∪ λ
(

N(v)
)
.
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This shows the lemma.

We use Lemma 3 in later subsections to calculate upper bounds on the fault-tolerant metric
dimension for certain families of regular graphs.

3.3. Extended Petersen Graphs

The extended Petersen graph P(n), n ≥ 3, has a vertex set

V = {z1, z2, . . . zn, y1, y2, . . . yn}

and an edge set
E = {zizi+1, ziyi, yiyi+2|with indices taken as modulo n}.

The extended Petersen graph P(n) is a special case of the generalized Petersen graphs which were
first studied by Watkins [33].

We studied the problem of the fault-tolerant metric dimension of the extended Petersen graph.
The set {z1, z2, . . . , zn} prompts a cycle in P(n), with zkzk+1 (1 ≤ k ≤ n) and ykyk+2 (1 ≤ k ≤ n), with
indices taken modulo n, as edges. For even n, {y1, y2, . . . , yn} induces two cycles, again with edges
ykyk+2 (1 ≤ k ≤ n), with indices taken modulo n. For example, P(5) is the standard Petersen graph.
For the sake of simplicity, we denote the cycle induced by {z1, z2, . . . , zn} as the outer cycle and the
cycle induced by {y1, y2, . . . , yn} as the inner cycle or cycles.

The following result was shown by Javaid et al. [34].

Proposition 1. [34] Let Γ be the extended Petersen graph P(n) with n ≥ 5; then, β(Γ) = 3.

They also showed the following:

Proposition 2. [34] P(n), the extended Petersen graph, can be classified as a family of graphs with a constant
metric dimension.

In this section, we present our main results. We derive the upper as well as lower bounds on
the fault-tolerant metric dimension of the extended Petersen graph P(n). Note that Claim 1 in the
following result was essentially shown in Proposition 1.

Theorem 9. Let Γ be the extended Petersen graph P(n); then,

4 ≤ β′(Γ) ≤
{

10, i f n ≡ 0( mod 2) with n ≥ 8;
12, i f n ≡ 1( mod 2) with n ≥ 11.

Proof. Let Γ be the extended Petersen graph P(n), with n ≥ 4.

Case 1: When n ≡ 0( mod 2) with n ≥ 8.
Claim 1: Resolving set R of order 3 exists in Γ.

Based on the location of basis elements in Γ, we further divide this case into two subcases.

Subcase 1.1: When n ≡ 0( mod 4).

It can be written as n = 4`, 2 ≤ ` ∈ Z+. We prove that R = {y1, y2, y3} resolves V(Γ). In order
to show that R resolves vertices of V(Γ), we first represent the vertices in Γ with respect to R \ {y3}.
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Indeed, the vertices y1 and y2 distinguish the inner cycle vertices and a few of the outer cycle vertices.
The vertices in the outer cycle are represented by CR\{y3}(z1) = (1, 2), CR\{y3}(z2) = (2, 1),

CR\{y3}(z2k) =

{
(k + 1, k), 2 ≤ k ≤ `;
(2`− k + 2, 2`− k + 2), `+ 1 ≤ k ≤ 2`.

CR\{y3}(z2k+1) =

{
(k + 1, k + 1), 1 ≤ k ≤ `;
(2`− k + 1, 2`− k + 2), `+ 1 ≤ k ≤ 2`− 1.

In the inner cycle,

CR\{y3}(y2k) =

{
(k + 2, k− 1), 2 ≤ k ≤ `;
(2`− k + 3, 2`− k + 1), `+ 1 ≤ k ≤ 2`.

and

CR\{z3}(y2k+1) =

{
(k, k + 2), 1 ≤ k ≤ `;
(2`− k, 2`− k + 3), `+ 1 ≤ k ≤ 2`− 1.

From the above discussion, it is clear that there are no two vertices with the same representation
in the inner cycle. However, in the outer cycle, CR\{y3}(z3+k) = CR\{y3}(zn−k) for k = 0, 2, . . . , 2`− 2.
Vertex y3 distinguishes these pairs with the same representation as d(y3, z3+k) = b 3+k

2 c 6= d(y3, zn−k) =

b 3+k
2 c+ 2 for k = 0, 2, . . . , 2`− 4 and d(y3, z2`+2) = d(y3, z2`+1)+ 1. This shows that R resolves vertices

of Γ, which means β(Γ) ≤ 3 when n ≡ 0( mod 4).

Subcase 1.2: When n ≡ 2( mod 4).

It can be written as n = 4`+ 2, 2 ≤ ` ∈ Z+. In this case, again, R = {y1, y2, y3} resolves V(Γ).
In order to show that R resolves the vertices of V(P(n)), we first represent the vertices in Γ with respect
to R \ {y3}. Again, it is clear that the vertices y1 and y2 distinguish the inner and outer cycle vertices.
Note that for the outer cycle, we have CR\{y3}(z1) = (1, 2), CR\{y3}(z2) = (2, 1),

CR\{y3}(z2k) =

{
(k + 1, k), 2 ≤ k ≤ `+ 1;
(2`− k + 3, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.

and

CR\{y3}(z2k+1) =

{
(k + 1, k + 1), 1 ≤ k ≤ `;
(2`− k + 2, 2`− k + 3), `+ 1 ≤ k ≤ 2`.

In the inner cycle,

CR\{y3}(y2k) =

{
(k + 2, k− 1), 2 ≤ k ≤ `+ 1;
(2`− k + 4, 2`− k + 2), `+ 2 ≤ k ≤ 2`+ 1.

and

CR\{y3}(y2k+1) =

{
(k, k + 2), 1 ≤ k ≤ `;
(2`− k + 1, 2`− k + 4), `+ 1 ≤ k ≤ 2`.

Again, in this case, it is clear for the inner cycle that there are no two vertices with the same
representation. However, for the outer cycle, CR\{y3}(z3+k) = CR\{y3}(zn−k) for k = 0, 2, . . . , 2`− 2.
Note that the pairs with the same representations are distinguished by y3 since d(y3, z3+k) = b 3+k

2 c 6=
d(y3, zn−k) = b 3+k

2 c+ 2 for k = 0, 2, . . . , 2`− 2. This shows that R resolves the vertices of Γ, which
means β(Γ) ≤ 3, when n ≡ 2( mod 4).

Claim 2: When n ≥ 8, the cardinality of the fault-tolerant resolving set in Γ is 10.
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We can write n = 4`, ` ≥ 2, ` ∈ Z+. Note that, for this, R = {y1, y2, y3} is a resolving set of Γ.
We show that Γ has a fault-tolerant resolving set of cardinality 10.

As seen from Figure 3, it can be observed that N[y1] = {y1, y3, yn−1, z1}, N[y2] = {y2, y4, yn, z2},
and N[y3] = {y1, y3, y5, z3}. Moreover, we find that λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(y3)) = ∅. Thus,
by using Lemma 3, we find that R′ = {y1, y2, y3, y4, y5, yn−1, yn, z1, z2, z3} is a fault-tolerant resolving
set of Γ. Thus, a fault-tolerant resolving set of Γ with cardinality 10 exists when n ≥ 8.

Case 2: When n ≡ 1( mod 2) with n ≥ 11.

Based on the location of basis elements in Γ, we further divide this case into two subcases.

Subcase 2.1: When n ≡ 1( mod 4).
Claim 1: Γ has a resolving set R of order 3.

In this case, we can write n = 4`+ 1, 1 ≤ ` ∈ Z+. It can be seen that {y1, y2, z3} is a resolving
set for the standard Petersen graph P(5). For P(9), we see that W = {y1, y2, z4} is a resolving set.
Now, we show that, for n ≥ 9, R = {y1, y2, z2`−1} resolves the vertices of Γ, where n ≡ 1( mod 4).
In order to show this, first we present representations of the vertices with respect to R \ {z2`−1}.
The representations of the vertices in the outer cycle are CR\{z2`−1}(z1) = (1, 2), CR\{z2`−1}(z2) = (2, 1),

CR\{z2`−1}(z2k) =





(k + 1, k), 2 ≤ k ≤ `;
(k, k), k = `+ 1;
(2`− k + 2, 2`− k− 3), `+ 2 ≤ k ≤ 2`.

and

CR\{z2`−1}(z2k+1) =

{
(k + 1, k + 1), 1 ≤ k ≤ `;
(2`− k + 2, 2`− k + 2), `+ 1 ≤ k ≤ 2`.

Now, the representations of the vertices in the inner cycle are

CR\{yz2`−1}(y2k) =





(k + 2, k− 1), 2 ≤ k ≤ `− 1;
(k + 1, k− 1), k = `;
(k− 1, k− 1), k = `+ 1;
(k− 3, k− 1), k = `+ 2;
(2`− k + 1, 2`− k + 4), `+ 3 ≤ k ≤ 2`.

and

CR\{z2`−1}(y2k+1) =





(k, k + 2), 1 ≤ k ≤ `− 1;
(k, k + 1), k = `;
(k, k− 1), k = `+ 1;
(2`− k + 3, 2`− k + 1), `+ 2 ≤ k ≤ 2`.

From the above discussion, it is clear that R \ {z2`−1} distinguishes all but the following vertices.
(i) z3+k and zn−k for i = 0, 2, . . . , 2` − 6. (ii) z2`−1 and z2`+5 and y2`+2. (iii) z2`+1 , z2`+2, and
z2`+3. (iv) y2`−1 and y2`+4. (v) y2` and y2`+5. (vi) z2` and y2`+3. (vii) y2`+1 and z2`+4. It is
easy to see that vertices with the same representation in the outer cycle are at different distances
from z2`−1.d(z2`−1, z2`+5) = 5 and d(z2`−1, y2`+2) = 3, d(z2`−1, y2`−1) = 1 and d(z2`−1, y2`+4) = 4,
d(z2`−1, y2`) = 2 and d(z2`−1, y2`+5) = 4, d(z2`−1, z2`) = 1 and d(z2`−1, y2`+3) = 3, d(z2`−1, y2`+1) = 2
and d(z2`−1, z2`+4) = 5. The above discussion shows that R is a resolving set for V(Γ) when
n ≡ 1( mod 4). Hence, β(Γ)) ≤ 3 for n ≡ 1( mod 4).

Claim 2: Γ has a fault-tolerant resolving set of cardinality 12 when n ≥ 11.

We can write n = 4`+ 1, ` ≥ 3 and ` ∈ Z+. Note that, in this case, R = {y1, y2, z2`−1} is a resolving
set of Γ. We prove here that Γ has a fault-tolerant resolving set of cardinality 12. From Figure 3,
it can be observed that N[y1] = {y1, yn−1, yn, z1}, N[y2] = {y2, y4, yn, z2} and N[z2`−1] =
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{z2`−2, z2`−1, z2`, y2`−1}. Moreover, we find that λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(z2`−1)) = ∅.
Thus, by using Lemma 3, we find that R′ = {y1, y2, y3, y4, y2`−1, yn−1, yn, z1, z2, z2`−2, z2`−1, z2`} is a
fault-tolerant resolving set of Γ. Thus, there exists a fault-tolerant resolving set of Γ with cardinality 12.

Subcase 2.2: When n ≡ 3( mod 4).
Claim 1: Resolving set R of order 3 in Γ exists.

We can write n = 4` + 3, 1 ≤ ` ∈ Z+. It is not difficult to see that U = {y1, y2, z3} resolves
V(P(7)). For n ≡ 3( mod 4) and n ≥ 11, we show that R = {y1, y2, z2`+1} resolves V(Γ = P(n)).
Representations of the vertices in the outer cycle are CR\{z2`+1}(z1) = (1, 2), CR\{z2`+1}(z2) = (2, 1),

CR\{z2`+1}(z2k) =

{
(k + 1, k), 2 ≤ k ≤ `+ 1;
(2`− k + 3, 2`− k + 4), `+ 2 ≤ k ≤ 2`+ 1.

and

CR\{z2`+1}(z2k+1) =

{
(k + 1, k + 1), 1 ≤ k ≤ `+ 1;
(2`− k + 3, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.

Now, in the inner cycle,

CR\{z2`+1}(y2k) =





(k + 2, k− 1), 2 ≤ k ≤ `;
(k, k− 1), k = `+ 1;
(k− 2, k− 1), k = `+ 2;
(2`− k + 2, 2`− k + 5), `+ 3 ≤ k ≤ 2`+ 1.

and

CR\{z2`+1}(2k+1) =





(k, k + 2), 1 ≤ k ≤ `;
(k, k), k = `+ 1;
(2`− k + 4, 2`− k + 2), `+ 2 ≤ k ≤ 2`+ 1.

Again, in this case, R \ {z2`+1} distinguishes all the vertices in Γ except the following vertices:
(i) z3+i and zn−i for i = 0, 2, . . . , 2`− 4. (ii) z2`, y2`+2. (iii) z2`+1, z2`+5, and y2`+3. (iv) y2`+4 and z2`+6.
It is easy to see that vertices with same representation in the outer cycle are at different distances
from z2`+1.d(z2`+1, z2`) = 1, d(z2`+1, y2`+2) = 2 and d(z2`+1, z2`+5) = 4, d(z2`+1, y2`+3) = 2 and
d(z2`+1, y2`+4) = 3, d(z2`+1, y2`+6) = 5. The above discussion shows that R is a resolving set for V(Γ)
when n ≡ 3( mod 4) and n ≥ 11. Hence, β(Γ) ≤ 3 for n ≡ 3( mod 4).

Claim 2: Γ has a fault-tolerant resolving set of cardinality 12 with n ≥ 11.

We can write n = 4`+ 3, ` ≥ 2, ` ∈ Z+. Note that, in this case, R = {y1, y2, z2`+1} is a resolving
set of Γ.

We show that Γ has a fault-tolerant resolving set of cardinality 12.
From Figure 3, it can be observed that N[y1] = {y1, y3, yn−1, z1}, N[y2] =

{y2, y4, yn, z2}, and N[z2`+1] = {z2`, z2`+1, z2`+2, y2`+1}. Moreover, we find that
λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(z2`+1)) = ∅. Thus, by using Lemma 3, we find that R′ =

{y1, y2, y3, y4, yn−1, yn, y2`+1, z1, z2, z2`, z2`+1, z2`+2} is a fault-tolerant resolving set of Pn,2. Thus,
a fault-tolerant resolving set of Pn,2 with cardinality 12 exists.

By using Proposition 1, the above discussion, and Inequality (1), we find that β′(Γ) ≥ 4.

As a consequence of Theorem 9, we have the following corollary. It provides a fault-tolerant
metric dimension analog of Proposition 2.

Corollary 1. The extended Petersen graph P(n) is a family of graphs with a constant fault-tolerant
metric dimension.
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Proof. By Theorem 9, we have

4 ≤ β′
(

P(n)
)
≤
{

10, i f n ≡ 0( mod 2) with n ≥ 8;
12, i f n ≡ 1( mod 2) with n ≥ 11.

This implies that the fault-tolerant metric dimension of P(n) does not depend on the defining
parameter n. Thus, by definition, P(n) is a family of graphs with a constant fault-tolerant
metric dimension.

In view of Lemma 3 and Proposition 1, we find enough reasoning to propose the following
conjecture on the greatest lower bound of the fault-tolerant metric dimension for the extended Petersen
graph P(n).

Conjecture 1. Let Γ be the extended Petersen graph P(n); then,

β′(Γ) ≥
{

10, i f n ≡ 0( mod 2) with n ≥ 8;
12, i f n ≡ 1( mod 2) with n ≥ 11,

and thus, we have

β′(Γ) =

{
10, i f n ≡ 0( mod 2) with n ≥ 8;
12, i f n ≡ 1( mod 2) with n ≥ 11.

Figure 3. (a) The extended Petersen graph P(5), (b) The extended Petersen graph P(6).

3.4. Anti-Prism Graphs

The cross product of a cycle Cn and P2 is actually called a prism, usually denoted by D(n). In [11],
it was shown that

β(Pm2Cn) =

{
2, if n is odd;
3, if n is even.

This implies that

β(D(n)) =

{
2, if n is odd;
3, if n is even.

By applying Equation (1) and Theorem 4 to the prism graph D(n), we find the following result.
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Proposition 3. The prism graph D(n) has a constant fault-tolerant metric dimension.

We investigate fault-tolerant resolvability in the anti-prism graphs. The anti-prism A(n) [35] is
a 4-regular graph. It is the octahedron for n ≥ 3. For n ≥ 3, the anti-prism A(n) consists of an inner
cycle y1, y2, . . . , yn, an outer cycle z1, z2, . . . , zn, and a set of n spokes ykzk and yk+1zk, k = 1, 2, . . . , n,
with indices taken as modulo n. Thus, |V(A(n))| = 2n and |E(A(n))| = 4n.

Javaid et al. [34] showed the following result.

Proposition 4. [34] Let Γ be the anti-prism graph A(n) with n ≥ 3; then, β(Γ) = 3.

They also showed the following:

Proposition 5. [34] The anti-prism graph A(n) has a constant metric dimension.

In this section, we present the main results, and, for the anti-prism graph A(n), the upper and
lower bounds on the fault-tolerant metric dimension are proved. Note that Claim 1 in the following
result was essentially shown in Proposition 4.

Theorem 10. Let Γ be the anti-prism graph A(n), with n ≥ 10; then, 4 ≤ β′(Γ) ≤ 14.

Proof. Let n = 2` or n = 2`+ 1 for even or odd n, respectively.

Claim 1: A resolving set R of order 3 exists in Γ.

Based on the location of basis elements in G, we divide this in two cases.

Case 1: When n is even, n = 2`, with ` ≥ 3.

For n ≥ 6, there exists a resolving set R of cardinality 3. R = {z1, z3, z`+1} is a resolving set.
Representation of the vertices in the outer cycle with respect to {z1, z3} is as follows. As we can see,
CR\{z`+1}(z2) = (1, 1); in general, the representations of the vertices in the outer cycle are

CR\{z`+1}(zk) =





(k− 1, k− 3), 4 ≤ k ≤ `+ 1;
(n− k + 1, k− 3), k = `+ 2,k = `+ 3;
(n− k + 1, n− k + 3), `+ 4 ≤ k ≤ n.

Representations of the vertices in the inner cycle are CR\{z`+1}(y1) = (1, 3), CR\{z`+1}(y2) = (1, 2),
CR\{z`+1}(y3) = (2, 1). In general,

CR\{z`+1}(yk) =





(k− 1, k− 3), 4 ≤ k ≤ `+ 1;
(`, `− 1), k = `+ 2;
(`− 1, `), k = `+ 3;
(n− k + 2, n− k + 4), `+ 4 ≤ k ≤ n.

Case 2: For odd n, n = 2`+ 1 with ` ≥ 3. Then,

CR\{z`+1}(yk) =





(k− 1, k− 3), 4 ≤ k ≤ `+ 2;
(`, `), k = `+ 3;
(n− k + 2, n− k + 4), `+ 4 ≤ k ≤ n.

From the above discussion, we can see there are few vertices with the same representation yk,zk,
with 4 ≤ k ≤ `+ 1; for even and odd n, y1,zn and ys+1,zs with `+ 3 ≤ s ≤ n− 1 and `+ 4 ≤ s ≤ n− 1,
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respectively. In order to distinguish the pairs with the same vertices, we take y`+1 in the outer and
inner cycle. Representation in the outer cycle is

d(y`+1, zs) =

{
`− s + 1, 1 ≤ s ≤ `;
s− `− 1, `+ 2 ≤ s ≤ n.

Now, representation in the inner cycle is

d(y`+1, yk) =





`− k + 2, 1 ≤ k ≤ `;
1, s = `+ 1;
k− `− 1, `+ 2 ≤ k ≤≤ n.

Also, d(z`+1, y1) = n − `. So, from the above discussion, we see that z`+1 distinguishes the
vertices of Γ. Hence, R = {z1, z3, z`+1} is a resolving set of Γ. This shows that β(Γ) ≤ 3.

Claim 2: There exists a fault-tolerant resolving set of cardinality 14 in Γ.

Γ contains a resolving set R of order 3. We show that Γ has a fault-tolerant resolving
set of 14. Now, we can see from Figure 4 that N[z1] = {z1, z2, zn, y1, y2}, N[z3] =

{z2, z3, z4, y3, y4}, and N[z`+1] = {z`, z`+1, z`+2, y`+1, y`+2}. Moreover, we find that λ(NΓ(z1)) =

λ(NΓ(z2)) = λ(NΓ(z`+1)) = ∅. Thus, by using Lemma 3, we find that R′ =

{y1, y2, y3, y4, z1, z2, z3, z4, y`+1, y`+2, z`, z`+1, z`+2, zn}. Thus, there exists a fault-tolerant resolving
set of Γ with cardinality 14 when n ≥ 10.

By using Proposition 4, the above discussion, and Inequality (1), we find that β′(Γ) ≥ 4.

Figure 4. The anti-prism graph A3.

As a result of Theorem 10, we present the following corollary. It provides a fault-tolerant metric
dimension analog of Proposition 5.

Corollary 2. The anti-prism graph A(n) has a constant fault-tolerant metric dimension.

Proof. By Theorem 10, we have 4 ≤ β′
(

A(n)
)
≤ 14. This implies that the fault-tolerant metric

dimension of A(n) does not depend on the defining parameter n. Thus, by definition, A(n) is a family
of graphs with a constant fault-tolerant metric dimension.

In view of Lemma 3 and Proposition 4, we propose the following conjecture on the greatest lower
bound on the fault-tolerant metric dimension for the anti-prism graph A(n).
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Conjecture 2. Let Γ be an anti-prism graph A(n) and n ≥ 10; then, β′(Γ) ≥ 14, and thus, β′(Γ) = 14.

3.5. Squared Cycle Graphs

Javaid et al. [32] proved that the fault-tolerant metric dimension of cycle graphs is 3.

Lemma 4. Let Γ be the cycle graph Cn, where n ≥ 3. Then, β′(Γ) = 3.

In the subsequent section, we study fault-tolerant resolvability of squared cycle graphs, which are
somewhat of an extension of cycle graphs. The squared cycle graph S(n) is a 4-regular graph of order
n, with V(S(n)) = {y1, y2, . . . , yn}. For each k (1 ≤ k ≤ n), we join yk to yk+1, yk+2 and to yk−1, yk−2.
If we cyclically arrange the vertices y1, y2, . . . , yn, then each vertex yk is adjacent to the 2 vertices that
immediately follow yk and 2 vertices that immediately precede yk. Thus, S(n) is a four-regular graph.
In Figure 5, we depict the squared cycle graph S(n) for n = 8 and n = 9. Note that the squared cycle
graph is a special case of the Harary graph H(m, n), with m = 4.

Figure 5. (a) The squared cycle graph S(8), (b) the squared cycle graph S(9).

Javaid et al. [34] showed the following result.

Proposition 6. [34] For n ≡ 0, 2, 3( mod 4), let Γ be the squared cycle graph S(n) with n ≥ 5. Then,
β(Γ) = 3.

They also showed the following:

Proposition 7. [34] For a positive integer n, the squared cycle graph S(n) is a family of graphs with a constant
metric dimension.

The following is the main result of this section. Note that Claim 1 in the following result was
essentially shown in Proposition 6.

Theorem 11. Let Γ be the squared cycle graph S(n); then,

β′(Γ) ≤
{

7, i f n ≡ 0, 2, 3( mod 4) with n ≥ 7;
12, i f n ≡ 1( mod 4) with n ≥ 13,
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and

β′(Γ) ≥
{

4, i f n ≡ 0, 2, 3( mod 4) with n ≥ 5;
δ, i f n ≡ 1( mod 4) with n ≥ 5.

where

δ =

{
4, i f β(Γ) > 2;
5, i f β(Γ) > 3.

Proof. Let Γ be the squared cycle graph S(n). We show the following claims to complete the proof.

Claim 1: There exists a resolving set R of order 3 in Γ.
Case 1: When n ≡ 0, 2, 3( mod 4) with n ≥ 7.

Based on the location of basis elements in Γ, we further divide this case into three subcases.

Subcase 1.1: When n ≡ 0( mod 4).

We can write n = 4`, ` ∈ Z+. We prove that R = {y1, y2, y3} resolves V(Γ). In order to show that
R resolves vertices of V(Γ), the representation of the vertices of V(Γ) with respect to the resolving set
is given.

CR(y2k) =





(k, k− 1, k− 1), 2 ≤ k ≤ `;
(`, `, `), k = `+ 1;
(2`− k + 1, 2`− k + 1, 2`− k + 2), `+ 2 ≤ k ≤ 2`.

and

CR(y2k+1) =

{
(k, k, k− 1), 2 ≤ k ≤ `;
(2`− k, 2`− k + 1, 2`− k + 1), `+ 1 ≤ k ≤ 2`− 1.

From the above discussion, it is shown that all vertices have a distinct representation for
n ≡ 0( mod 4), so β(G) ≤ 3.

Subcase 1.2: When n ≡ 2( mod 4).

It can be written as n = 4`+ 2, ` ∈ Z+.

CR(y2k) =

{
(k, k− 1, k− 1), 2 ≤ k ≤ `+1;
(2`− k + 2, 2`− k + 2, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.

and

CR(y2k+1) =





(k, k, k− 1), 2 ≤ k ≤ `;
(`, `+ 1, `), k = `+ 1;
(2`− k + 1, 2`− k + 2, 2`− k + 2), `+ 2 ≤ k ≤ 2`.

Again, all vertices in Γ have a distinct representation, which shows that β(Γ) ≤ 3 when
n ≡ 2( mod 4).

Subcase 1.3: When n ≡ 3( mod 4).

We can write n = 4`+ 3, ` ∈ Z+.

CR(y2k) =

{
(k, k− 1, k− 1), 2 ≤ k ≤ `+1;
(2`− k + 2, 2`− k + 3, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.

and

CR(y2k+1) =

{
(k, k, k− 1), 2 ≤ k ≤ `+ 1;
(2`− k + 2, 2`− k + 2, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.
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Once again, we can see that all vertices in Γ have a distinct representation, which shows that
β(Γ) ≤ 3 when n ≡ 3( mod 4).

Claim 2: Γ has a fault-tolerant resolving set of cardinality 7 when n ≥ 7.

We can write n = 4`, ` ≥ 2, ` ∈ Z+. Note that, in this case, R = {y1, y2, y3} is a resolving set
of Γ. We show that Γ is the graph in which there exists a fault-tolerant resolving set of cardinality 7.
From Figure 5, it can be observed that N[y1] = {y1, y2, y3, yn−1, yn}, N[y2] = {y1, y2, y3, y4, yn}, and
N[y3] = {y1, y2, y3, y4, y5}. Moreover, we find that λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(y3)) = ∅. Thus,
by using Lemma 3, we find that R′ = {y1, y2, y3, y4, y5, yn−1, yn} is a fault-tolerant resolving set of Γ.
Thus, it is shown that a fault-tolerant resolving set of Γ with cardinality 7 exists when n ≥ 7.

Claim 1: There exists a resolving set R of order 4 in Γ.
Case 1: When n ≡ 1( mod 4).

Now, we can write n = 4`+ 1, ` ∈ Z+.

CR(y2k) =





(k, k− 1, k− 1), 2 ≤ k ≤ `;
(`, `, `), k = `+ 1;
(2`− k + 1, 2`− k + 2, 2`− k + 2), `+ 2 ≤ k ≤ 2`.

and

CR(y2k+1) =





(k, k, k− 1), 2 ≤ k ≤ `;
(`, `, `), k = `+ 1;
(2`− k + 1, 2`− k + 1, 2`− k + 2), `+ 2 ≤ k ≤ 2`.

For n ≡ 1( mod 4), the vertices y2`+2 and y2`+3 have the same representation. In order to have
distinct representations, we add y2`+2 to the resolving set R. Now, R′ = {y1, y2, y3, y2`+2} resolves
V(Γ). So, it is shown that β(Γ) ≤ 4 for n ≡ 1( mod 4).

Claim 2: When n ≥ 13, Γ has a fault-tolerant resolving set of cardinality 12. It can be written
n = 4` + 1, ` ≥ 3, ` ∈ Z+. Now, for this, R = {y1, y2, y3, y2`+2} is a resolving set
of Γ. We show that Γ has a fault-tolerant resolving set of cardinality 12. From Figure 5,
it can be observed that N[y1] = {y1, y2, y3, yn−1, yn}, N[y2] = {y1, y2, y3, y4, yn}, N[y3] =

{y1, y2, y3, y4, y5}, and N[y2`+2] = {y2`, y2`+1, y2`+2, y2`+3, y2`+4}. Moreover, we find that
λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(y3)) = λ(NΓ(y2`+2)) = ∅. Thus, by using Lemma 3, we find
that R′ = {y1, y2, y3, y4, y5, yn−1, yn, y2`, y2`+1, y2`+2, y2`+3, y2`+4} is a fault-tolerant resolving set of Γ.
Thus, Γ is the graph in which there exists a fault-tolerant resolving set of cardinality 12 when n ≥ 13.
In view of Lemma 3 and Proposition 1, we find enough reasoning to propose the following conjecture
on the lower bound of the fault-tolerant metric dimension for the squared cycle graph S(n).

From the above discussion, Inequality, and Proposition 6, we find that

β′(Γ) ≥
{

4, i f n ≡ 0, 2, 3( mod 4) with n ≥ 5;
δ, i f n ≡ 1( mod 4) with n ≥ 5.

where

δ =

{
4, i f β(Γ) > 2;
5, i f β(Γ) > 3.

Because of Theorem 11, the following corollary is presented. It provides a fault-tolerant metric
dimension analogous to Proposition 7.

Corollary 3. The squared cycle graph S(n) is a family of graphs with a constant fault-tolerant metric dimension.
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Proof. By Theorem 11, we have

β′
(
S(n)

)
≤
{

7, i f n ≡ 0, 2, 3( mod 4) with n ≥ 7;
12, i f n ≡ 1( mod 4) with n ≥ 13,

and

β′(Γ) ≥
{

4, i f n ≡ 0, 2, 3( mod 4) with n ≥ 5;
δ, i f n ≡ 1( mod 4) with n ≥ 5.

where

δ =

{
4, i f β(Γ) > 2;
5, i f β(Γ) > 3.

This implies that the fault-tolerant metric dimension of S(n) does not depend on the defining
parameter n. Thus, by definition, S(n) is a family of graphs with a constant fault-tolerant
metric dimension.

In view of Lemma 3 and Proposition 6, the following conjecture is proposed.

Conjecture 3. Let Γ be the squared cycle graph S(n) such that n ≡ 0, 2, 3( mod 4), with n ≥ 7.
Then, β′(Γ) ≥ 7; thus, we have β′(Γ) = 7.

4. Concluding Remarks

This paper investigates the fault-tolerant metric dimension of graphs. We present certain
characterizations of graphs with some extreme values of the fault-tolerant metric dimension. A method
is presented to calculate the upper bounds on the fault-tolerant metric dimension of graphs. We
study fault-tolerant resolvability in three non-finite families of regular graphs and show that they
are the families of graphs with a constant fault-tolerant metric dimension. The following remark
shows a comparison between the upper bound produced by our method and the upper bound by
Hernando et al.

Remark 1. Note that the upper bound on the fault-tolerant metric dimension provided by Theorem 4 is always
crude. For example, if Γ ∈ {P(n), A(n)} or S(n), with n ≡ 0, 2, 3( mod 4), then by using β(Γ) = 3 in
Theorem 4, we obtain β′(Γ) ≤ 153, which is not interesting. In view of this fact, Lemma 3 always gives a much
better bound on β′(Γ).

Recently, Raza et al. [36] studied the fault-tolerant metric dimension of hexagonal, honeycomb,
and hex-derived networks. See [37] for a study of hexagonal and honeycomb networks. We conclude
the paper with some open problems.

Problem 1. In view of the characterizations of graphs with fault-tolerant metric dimension 2 and n− 1, the
following open problems are proposed.

(i) Characterize n-ordered graphs with fault-tolerant metric dimension 3.
(ii) Characterize n-ordered graphs with fault-tolerant metric dimension n− 2.

We also propose the following open problems:

(i) Study the fault-tolerant metric dimension of other interesting families of the regular graph, such as the
prism graphs, and the generalized Petersen graphs P(n, m), m > 2.

(ii) Investigate the fault-tolerant metric dimension of strongly regular graphs, such as the square grid graphs
and the triangular graphs.

(iii) In view of Raza et al. [36], study the fault-tolerant resolvability in other direct and multiplex interconnection
networks, such as the butterfly and Benes networks.
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(iv) Study the applicability of fault-tolerant resolvability in the optimal flow control of multiplex interconnection
networks; see, for example, [38–40] for a through study on multiplex networks.
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Abstract: Energies of molecular graphs have various applications in chemistry, polymerization,
computer networking and pharmacy. In this paper, we give general closed forms of distance and
adjacency energies of generalized wheel networks Wn,m. Consequently, we give these results for
classical wheel graphs. We also give pictorial dependencies of energies on the involved parameters
m ≥ 3 and n.
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1. Introduction

Energy is referred to as the sum of absolute values of any operator. In quantum chemistry, the
solutions of the Schrodinger equation is approximately reduced to the evaluation of eigenvalues
and corresponding eigenvectors of the Hamiltonian operator. Often, Hamiltonian operators are
approximately expressed as

H = αI + βA(G), (1)

where α and β are the empirical constants of Huckel molecular orbital theory and A(G) is the adjacency
matrix of the Huckel graph constructed for the π-electron network of conjugated hydro-carbons [1].
In this way, characteristic polynomials entered the arena of chemical graph theory. It has also attracted
keen interest even from pure mathematicians due to the interesting problems that originate from
the mathematical structures and their symmetries involved. The ordinary energy of the graph is
defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. This graph
invariant is very closely connected to a chemical quantity known as the total π-electron energy of
conjugated hydro-carbon molecules. In recent times, analogous energies are being considered, based on
eigenvalues of a variety of other graph matrices associated to the graph [1–4]. In [5], authors computed
incidence energy of a graph. In [6], authors computed general forms of energies of non-regular graphs.

Gutman introduced this idea of the energy of a graph in 1978 in the context of Mathematics [4];
however, inspiration for his definition seems to emerge from the popular Huckel molecular orbital
theory. Huckel’s technique enabled scientific experts to predict energies related to p-electron orbitals
for a unique class of particles. The basic idea behind this is the Hamiltonian operator, which is a basic
linear combination of certain orbitals [7,8]. It is somewhat less known than the one Heilbronner et al.
developed, a model resulting in a fact that the roots of the characteristic polynomial of the line graph of
the molecular graph are in a linear manner related to the s-electron energy levels of the corresponding

Mathematics 2019, 7, 43; doi:10.3390/math7010043 www.mdpi.com/journal/mathematics
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saturated hydrocarbon [7,8], where these molecular graphs have vertices of both carbon and hydrogen
atoms. Its popularity among mathematical chemists came from the fact that the Hamiltonian matrix
of the Huckel molecular orbital theory is a simple linear function of the adjacency matrix of the
corresponding molecular graph G. Thus, each π-electron energy level is a linear function of the
corresponding zero of the characteristic polynomial of G [9]. In addition, under certain sensible
presumptions about the particle, its “aggregate π electron energy” can be composed as the sum of the
total eigenvalues of this graph.

Since the definition of energy for a graph in [4] is rather strange, not many mathematicians appear
to be pulled by the definition. However, with the passage of time, the idea became powerful and in the
previous decade enthusiasm for graph energy has expanded resulting in numerous different forms [3].
In 2006, Gutman and Zhou defined the Laplacian energy of a graph [10]. The authors of [11,12]
discussed distance energy of a graph based on the idea of distance matrix associated with the graph.
Nikiforov et al. computed some energies of non-regular graphs [13]. In [14], the authors discussed
signless Laplacian energies of some finite graphs. In [15], the author discussed graph theoretical
analyses in analyzing the changes in interactions between solvent and solute. In [16,17], the authors
computed some asymptotic Laplacian and incidence energies of lattice.

Let G be a graph having vertex set V(G) and edge set E(G) denoted by G = (V, E). A Graph
G = (V, E) is said to be connected if there is a connection between any pair of vertices in G. The number
of vertices in a graph represents its order, the number of edges represents its size, and the number of
edges connected to a single vertex represents the degree of that vertex denoted as du. The distance
matrix associated to a graph is defined as the square matrix D = [dab] where dab consists of all graph
distances from vertex va to vertex vb. An n× n matrix M for a graph having order n, called an adjacency
matrix, can be associated to the graph as,

[Mab] =

{
1 p1 7→ p2

0 otherwise

}

The roots of a characteristics polynomial are the eigenvalues of a matrix associated to a graph.
In most cases, the associated matrices are real and symmetric so eigenvalues are necessarily real-valued
numbers. The collection of all eigenvalues of graph G forms the spectrum of G. Spectral properties
of graphs have been widely studied. If G is not connected, then the energy of a graph is the sum of
energies of its connected components. If a graph is connected, then its distance and adjacency energies
are defined as the sum of the absolute values of associated eigenvalues. Energy of some non-regular
graphs and Laplacian energy of a simple graph are discussed in [14,18].

In the current article, we want to find closed expressions for distance and adjacency energies of
generalized wheel graphs, also known as m-level wheel, Wn,m. An m-wheel graph Wn,m is a graph
obtained from m copies of cycles Cn and one copy of vertex v, such that all vertices of every copy of Cn

are adjacent to v. Thus, Wn,m has nm + 1 vertices, i.e., the center and n-rim vertices, and has diameter 2.
Figure 1 is an example of m-wheel graph W12,m.

Vertices that lay on the same cycle Cn and adjacent to central vertex are termed as rim vertices.
This graph can be considered as generalization of classical wheel graph Wn. Figure 2 is another instance
of m-wheel graph, W3,4.

This m-wheel network is an extension of the classical wheel graph W1,n. Figure 3 is an example of
wheel graph W6.

The wheel graph has been used in different areas such as the wireless sensor networks and the
vulnerability of networks [19]. The wheel graph has many good properties. From the standpoint of
the hub vertex, all elements, including vertices and edges, are in its one-hop neighborhood, which
indicates that the wheel structure is fully included in the neighborhood graph of the hub vertex. Wheel
and related graphs are extensively studied recently. In [20], the authors computed partition dimension
and connected partition dimension of wheel graphs and showed that, for n ≥ 4, [(2n)]

1
3 ≤ pd(G) ≤
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2[n
1
2 ] + 1. In [21], the authors gave an algorithm to compute average lower two-domination number

and also computed this number for some wheel related graphs. In [22], authors computed the metric
dimension of generalised wheel. In [23], Zafar et al. generalized the above results to multi-level wheel
and obtained that for every n ≥ 4, [(2nm)]

1
3 ≤ pd(Wn,m) ≤ 2[nm

1
2 ] + 1.

Figure 1. An m-level wheel, W12,m.

Figure 2. W3,4.

Figure 3. W6.
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2. Main Results

In this section, we give some results on distance and adjacency energies of wheel related
graphs Wn,m.

Theorem 1. The distance energy of the wheel graph Wn,m is given by

ED(Wn,m) = 2(mn− 2 +
√

m2n2 − 3mn + 4), (2)

where m ≥ 3 and n ≥ 1.

Proof. Let A be adjacency matrix of cycle graph Cm given by

A =




0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0




where aij = 1 for |i− j| = 1 or m− 1 and aij = 0 otherwise.
Generally, the m-cycle has adjacency spectrum

Spec(Cm) = 2 cos(
2π j
m

) where j = 0, 1, 2, ...n− 1.

The distance matrix of wheel graph Wn,m obtained by joining of m-vertex cycle Cm and Kn can be
given as,

Cm×m =




0 J1×m J1×m . . . J1×m
Jm×1 [A + 2Ā]m×m Tm×m . . . Tm×m

Jm×1 Tm×m [A + 2Ā]m×m . . . Tm×m

. . . . . . .

. . . . . . .

. . . . . . .
Jm×1 Tm×m Tm×m . . . Tm×m

Jm×1 Tm×m Tm×m . . . [A + 2Ā]m×m




where
J1×m =

(
1 1 . . . 1

)
,

Tm×m =




2 2 . . . 2
2 2 . . . 2
. . . . . .
. . . . . .
. . . . . .
2 2 . . . 2




,
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and

A + 2A =




0 1 2 2 . . . 1 1
1 0 1 2 . . . 2 1
2 1 0 1 . . . 2 1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
1 2 2 2 . . . 0 1
1 1 1 1 . . . 1 0




.

We get the distance spectrum of Wn,m by using binomial series and adjacency spectrum of cycle graph.
Thus, we get,

specD(Wn,m) =

(
mn− 2±

√
m2n2 − 3mn + 4 −4 −(λi + 2)

1 n− 1 n

)
f or i = 2, 3, ..., m,

where λi are the eigenvalues of the adjacency matrix of cycle graph.
Since λi > 0 for all i = 2, 3, ..., p, by using the definition and summing up the eigenvalues,

we arrive at the desired result of distance energy, which is ED(Wn,m) = 2(mn− 2+
√

m2n2 − 3mn + 4).

Theorem 2. The adjacency energy of the wheel graph Wn,m is given by

EA(Wn,m) = 4n− 2 + 2
√

nm + 1 (3)

where m is even.

Proof. Let A be adjacency matrix of cycle graph Cm.

A =




0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0




where aij = 1 if |i− j| = 1 or m− 1 and aij = 0 otherwise.
Generally, the m cycles has adjacency spectrum.

Spec(Cm) = 2 cos(
2π j
m

) where j = 0, 1, 2, ...n− 1.
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Then, the adjacency matrix of wheel graph Wn,m obtained by joining of m-vertex cycle Cm and Kn

can be given as,

Tm×m =




0 J1×m J1×m . . . J1×m
Jm×1 [B]m×m [0]m×m . . . [0]m×m

Jm×1 [0]m×m [B]m×m . . . [0]m×m

. . . . . . .

. . . . . . .

. . . . . . .
Jm×1 [0]m×m [0]m×m . . . [0]m×m

Jm×1 [0]m×m [0]m×m . . . [B]m×m




,

where
J1×m =

(
1 1 . . . 1

)
,

and

Bm×m =




0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0




.

We get the following adjacency spectrum of Wn,m by using binomial series and adjacency
spectrum of a cycle graph.

specA(Wn,m) =

(
−2 2 1±

√
mn + 1 λi

n n− 1 1 n

)
, f or i = 3, 4, ..., m,

where λi are the eigenvalues of the adjacency matrix of cycle graph.

As λi > 0 for all i = 2, 3, ..., p, by using the definition and summing up the eigenvalues, we arrive
at the desired result of adjacency energy, EA(Wn,m) = 4n− 2 + 2

√
nm + 1.

Theorem 3. Distance energy of wheel graph W3,m is

ED(W3,m) = 2(3m− 2 +
√

9m2 − 9m + 4) (4)

Proof. As a classical wheel is a special case of generalized wheels for n = 3, the proof follows
immediately from the first result.

Theorem 4. Adjacency energy of wheel graph W3,m is

EA(W3,m) = 10 + 2
√

3m + 1 (5)

Proof. As a classical wheel is a special case of generalized wheels for n = 3, the proof follows
immediately from the second result.

Conclusion and Analysis

In the current article, we compute general forms of distance and adjacency energies of multi-level
wheels, which are the extension of classical wheel graph. In the attached figure, dependencies of
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distance energies on the parameters m and n are given. Figure 4 represents the trends of distance
energies with change in m and n. The first part is a 3D plot showing the trends of distance energies
with change in m and n.

Figure 5 represents increasing behaviour of distance energy with respect to n while keeping m
constant. The three different colored lines correspond to three different values of m.

Figure 6 shows that, with the rise in m and n, the values of adjacency energies rise. It is the 3D
plot showing trends with changes in both m and n.

Figure 7 represents behaviour of adjacency energy with respect to n while keeping m constant.
The three different colored lines correspond to three different values of m.

Figure 4. View of distance energy of Wn,m.

m=6
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m=18

10 15 20 25

500

1000
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E

Figure 5. Distance energy of Wn,m while keeping m constant.

Figure 6. View of adjacency energy of Wn,m.
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26 28 30 32 34 36
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Figure 7. Adjacency energy of Wn,m while keeping m constant.

In this paper, we compute closed forms of distance and adjacency energies of generalized wheels
and particularize these for classical wheels. These results are helpful for mathematicians and chemists
working in industry as generalized wheels can be considered as particular cyclic structures having a
common hub.
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Abstract: Chemical graph theory is a branch of mathematical chemistry which deals with the
non-trivial applications of graph theory to solve molecular problems. Graphs containing finite
commutative rings also have wide applications in robotics, information and communication theory,
elliptic curve cryptography, physics, and statistics. In this paper we discuss eccentric topological
indices of zero divisor graphs of commutative rings Zp1 p2 × Zq, where p1, p2, and q are primes.
To enhance the importance of these indices a construction algorithm is also devised for zero divisor
graphs of commutative rings Zp1 p2 ×Zq.

Keywords: topological index; zero divisor graphs; commutative ring

MSC: 05C12; 05CO5; 05C90

1. Introduction

A single number that can be utilized to depict properties of the graph of a molecule is known as
a topological descriptor for that graph. There are different topological descriptors that have found
a number of applications in theoretical science. Topological descriptors are numerical parameters
of a graph that characterize its topology and are usually graph-invariant. Topological descriptors
are utilized within the improvement of quantitative structure-activity connections (QSARs) and
quantitative structure-property connections (QSPR) in which the organic movement or other properties
of atoms are connected with their chemical structure. Topological descriptors are utilized in
QSPR/QSAR. These days, there exists a variety of topological descriptors that have some applications
in chemistry, physics, robotics, statistics, and computer networks. The topological descriptors deal with
the distance among the vertices in a graph are “distance-based topological indices”. Other topological
descriptors that deal with the degree of vertices in graph are “degree-based topological indices”.
The Wiener index is the first distance based topological index and it has eminent applications in
chemistry. Wiener index is based on topological distance of vertices within the individual graph,
the Hosoya index is calculated by checking of non-incident edges in a graph, the energy and the
Estrada index are based on the range of the graph, the Randic connectivity index is calculated utilizing
the degrees of vertices. For further detail about other indices [1–9] can be explored.

2. Definitions and Notations

Let G be a connected graph with vertex and edge sets V(G) and E(G), respectively. A numerical
quantity related to a graph that is invariant under graph automorphisms is topological index or

Mathematics 2018, 6, 301; doi:10.3390/math6120301 www.mdpi.com/journal/mathematics
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topological descriptor. For a graph G, the degree of a vertex v is the number of edges incident with
v and denoted by d(v). The maximum degree of a graph G, denoted by ∆(G), and the minimum
degree of a graph, denoted by δ(G), are the maximum and minimum degree of its vertices. The sum of
degree of all vertices u which are adjacent to vertex v is denoted by S(v). The distance between the
vertices u and v of G is denoted by d(u, v) and it is defined as the number of edges in a minimal path
connecting them.

Connectivity descriptors are important among topological descriptors and used in various fields
like chemistry, physics, and statistics. Let x1, x2 ∈ V(G), the distance d(x1, x2) between x1 and x2,
be defined as the length of any shortest path in G connecting x1 and x2. In mathematical, eccentricity
is defined as:

e(u) = max{d(u, v) : ∀ v ∈ V(G)} (1)

In 1997 eccentric connectivity index was introduced by Sharma [10]. By using eccentric
connectivity index, the mathematical modeling of biological activities of diverse nature is done.
The general formula of eccentric connectivity index is defined as:

ξ(G) = ∑
v∈V

dv e(v) (2)

where e(v) is the eccentricity of vertex v in G. Some applications and mathematical properties of
eccentric connectivity index can be found in [11–14]. The total eccentricity index is the sum of
eccentricity of the all the vertex v in G. Total eccentricity index is introduced by Farooq and Malik [15],
which is defined as:

ζ(G) = ∑
v∈V

e(v) (3)

The first Zagreb index of a graph G is studied in [16] based on degree and the new version of
the first Zagreb index based on eccentricity was introduced by Ghorbani and Hosseinzadeh [17],
as follows:

The eccentric connectivity polynomial is the polynomial version of the eccentric-connectivity
index which was proposed by Alaeiyan, Mojarad, and Asadpour [18] and some graph operations can
be found in [19]. The eccentric connectivity polynomial of a graph G is defined as:

ECP(G, x) = ∑
v∈V

d(v)xe(v) (4)

Gupta, Singh and Madan [20] defined the augmented eccentric connectivity index of a graph G
as follows:

ξac(G) = ∑
v∈V

M(v)
e(v)

(5)

where M(v) denotes the product of degrees of all vertices u which are adjacent to vertex v.
Some interesting results on augmented eccentric connectivity index are discussed in [21,22].
Another very relevant and special eccentricity based topological index is connective eccentric index.
The connective eccentric index was defined by Gupta, Singh, and Madan [20] defined as follows:

ξC(G) = ∑
v∈V

d(v)
e(v)

(6)
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Ediz [23,24] introduced the Ediz eccentric connectivity index and reverse eccentric connectivity
index of graph G, which is used in various branches of sciences, molecular science, and chemistry etc.
The Ediz eccentric connectivity index and reverse eccentric connectivity index are defined as:

Eζ(G) = ∑
v∈V(G)

S(v)
e(v)

(7)

Reζ(G) = ∑
v∈V(G)

e(v)
S(v)

(8)

where S(v) is the sum of degrees of all vertices, u, adjacent to vertex v, e(v) is the eccentricity of v.
Let R be a commutative ring with identity and Z(R) is the set of all zero divisors of R. G(R) is

said to be a zero divisor graph if x, y ∈ V(G(R)) = Z(R) and (x, y) ∈ E(G(R)) if and only if x.y = 0.
Beck [25] introduced the notion of zero divisor graph. Anderson and Livingston [26] proved that G(R)
is always connected if R is commutative. Anderson and Badawi [27] introduced the total graph of R as:
There is an edge between any two distinct vertices u, v ∈ R if and only if u + v ∈ Z(R). For a graph G,
the concept of graph parameters have always a high interest. Numerous authors briefly studied the
zero-divisor and total graphs from commutative rings [28–32]. Similar problems were investigated
in [33,34].

Let p1, p2, and q be prime numbers, with p2 > p1 and Γ(Zp1 p2 ×Zq) being zero divisor graph of
the commutative rings Zp1 p2 ×Zq. In this paper, we investigate the eccentric topological descriptors
namely, eccentric connectivity index, total eccentric index, first Zagreb eccentricity index, connective
eccentric index, Ediz eccentric index, eccentric connectivity polynomial, and augmented eccentric
connectivity index of zero divisor graphs Γ(Zp1 p2 × Zq). Now onward, we use G as a zero divisor
graph of the commutative rings Zp1 p2 ×Zq.

3. Methods

In this paper, we adopted interdisciplinary methods by combining algorithmic approach
for graph construction and outcome of algorithm are aligned with eccentric topological
indices. For prime numbers p1, p2, q with p2 > p1, we consider the commutative ring
R = Zp1 p2 × Zq with usual addition and multiplication. The zero divisor graph G = Γ(Zp1 p2 × Zq)

associated with ring R is defined as: For a ∈ Zp1 p2 , b ∈ Zq, (a, b) 6∈ V(G) if and
only if a 6= kp1, a 6= sp2 for k = 1, 2, · · · , p2 − 1, s = 1, 2, · · · , p1 − 1 and y 6= 0.
Let J = {(a, b) 6∈ V(G) : a 6= kp1, a 6= sp2, k = 1, 2, · · · , p2 − 1, s = 1, 2, · · · , p1 − 1 & y 6= 0},
then |J| = (p1 p2 − p1 − p2 + 1)(q − 1). The elements of the set J are the non zero divisors of R.
Also (0, 0) ∈ Zp1 p2 ×Zq is a non zero divisor. Therefore, |J|+ 1 = (p1 p2 − p1 − p2 + 1)(q− 1) + 1 are
the total number of non zero divisors of R and the total number of elements of R are p1 p2q. Hence,
p1 p2q− (p1 p2 − p1 − p2 + 1)(q− 1) + 1 = (p1 + p2 − 1)(q− 1) + p1 p2 − 1 are the total number of
zero divisors. This implies that |V(G)| = (p1 + p2 − 1)(q− 1) + p1 p2 − 1. We can construct the zero
divisor graph of commutative ring R = Zp1 p2 ×Zq by the following algorithm:

Input: p1, p2 and q are three prime numbers.
Output: ordered pairs for zero divisor.
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Algorithm 1 ZeroDivisorGraph( p1, p2, q)

1: if (p1 < p2)
2:
3: for x1← 0 to p1× p2
4:
5: for y1← 0 to q
6:
7: if (x1 6= 0 OR y1 6= 0)
8:
9: createGraph( x1, y1, p1, p2, q)

Algorithm 2 createGraph (x1, y1, p1, p2, q)

1: for x2← x1 to p1× p2
2:
3: for y2← y1 to q
4:
5: if (x1 6= x2 AND y1 6= y2)
6:
7: if (x1 6= 0 OR y1 6= 0)
8:
9: k1 = 0

10:
11: else
12:
13: k1 = x1× x2
14:
15: if (y1 6= 0 OR y2 6= 0)
16:
17: k2 = 0
18:
19: else
20:
21: k2 = y1× y2
22:
23: if (k1 mod p1 = 0 AND k1 mod p2 = 0 AND k2 = 0)
24:
25: return x1, y1, x1, y2

Outcomes of above algorithm, the degree of each vertex (a, b) ∈ V(G) can be depicted
mathematically in the following cases:

Case 1: If a = 0 and any b ∈ Zq \ {0}, then each such type of vertex (0, b) is adjacent to the
vertices (a′, 0) for every a′ ∈ Zp1 p2 \ {0}. Hence the degree of each vertex (0, b) is p1 p2 − 1.

Case 2: If a = kp1, k = 1, 2, · · · , p2 − 1 and b = 0, then each such type of vertex (a, 0) is adjacent
to the vertices (0, b), (a′, 0)& (a′, b′) for every b′ = {1, 2, · · · , q− 1}, and a′ = sp2, s = 1, 2, · · · , p1 − 1.
Hence the degree of each vertex (a, 0) is q− 1 + p1 − 1 + (p1 − 1)(q− 1) = p1q− 1. Similarly, if a =

sp2, s = 1, 2, · · · , p1 − 1 and b = 0, then the degree of each such type of vertices (a, 0) is p2q− 1.
Case 3: If a ∈ Zp1 p2 \ {0, kp1, sp2 with k = 1, 2, · · · , p2 − 1, s = 1, 2, · · · , p1 − 1} and b = 0,

then each such type of vertex (a, 0) is adjacent with only (0, b′) for every b′ ∈ Zq \ {0}. Hence the
degree of each vertex (a, 0) is q− 1.

Case 4: If a = kp1, k = 1, 2, · · · , p2 − 1 and b ∈ Zq \ {0}, then each such type of vertex (a, b) is
adjacent with only (a′, 0) for every a′ = sp2, s = 1, 2, · · · , p1 − 1 . Therefore, the degree of each vertex
(a, b) is p1 − 1. Similarly, if a = sp2, s = 1, 2, · · · , p1 − 1 and b ∈ Zq \ {0}, then degree of each such
type of vertices (a, b) is p2 − 1.

From the above discussion and our convenance, let us partitioned the vertex set of G based one
their degrees as follows:

V1 ={(0, x) : x ∈ Zq, x 6= 0}
V2 ={(x, 0) : x = kp1, k = 1, 2, . . . , p2 − 1}
V3 ={(x, 0) : x = sp2, s = 1, 2, . . . , p1 − 1}
V4 ={(x, 0) : x ∈ Zp1 p2 \ {0}, x 6= kp1, x 6= sp1, k = 1, 2, . . . , p2 − 1, s = 1, 2, . . . , p1 − 1}
V5 ={(x, y) : x = kp1, k = 1, 2, . . . , p2 − 1, y ∈ Zq \ {0}}
V6 ={(x, y) : x = sp2, s = 1, 2, . . . , p1 − 1, y ∈ Zq \ {0}}
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This shows that V(G) = V1∪V2∪V3∪V4∪V5∪V6. It is easy to see that |V1| = q− 1, |V2| = p2− 1,
|V3| = p1 − 1, |V4| = (p1 − 1)(p2 − 1), |V5| = (p2 − 1)(q− 1), and |V1| = (p1 − 1)(q− 1).

4. Main Results

Let dU(u) denote the degree of a vertex u in U and d(U, V) denotes the distance between the
vertices of two sets U and V. In the following theorem, we determined the eccentricity of the vertices
of G.

Theorem 1. Let G be the zero divisor graph of the commutative ring R, then the eccentricity of the vertices of
G is 2 or 3.

Proof. From case 1, the vertices of the set V1 are at distance 1 with the vertices of the sets V2, V3, & V4

i.e., d(V1, V2) = d(V1, V3) = d(V1, V4) = 1. From Case 4, the vertices of the sets V2 and V3 are adjacent
with the vertices of the sets V6 and V5, respectively. This implies that d(V1, V5) = d(V1, V6) = 2.
The distance between any two different vertices of the set V1 is also 2. Therefore the eccentricity of the
vertices of set V1 is 2, i.e., e(V1) = 2. Similarly, it is easy to see that e(V2) = e(V3) = 2.

As d(V1, V2) = d(V1, V3) = d(V1, V4) = 1 and d(V1, V5) = d(V1, V6) = 2. This implies that
d(V4, V5) = d(V4, V1) + d(V1, V5) = 3. This shows that e(V4) = 3. Similarly, it is easy to calculate that
e(V5) = e(V6) = 3. This completes the proof.

Summarizing the above cases, partition of vertices and their cardinality and Theorem 1 in Table 1.

Table 1. The representation of vertices, their degree, eccentricity, and frequency of the vertices in G.

Representatives of Vertices Degree Eccentricity Frequency
V1 p1 p2 − 1 2 q− 1
V2 p1q− 1 2 p2 − 1
V3 p2q− 1 2 p1 − 1
V4 q− 1 3 (p1 − 1)(p2 − 1)
V5 p1 − 1 3 (p2 − 1)(q− 1)
V6 p2 − 1 3 (p1 − 1)(q− 1)

In the following theorem, we determined the eccentric connectivity index of the graph G.

Theorem 2. Let p1 < p2, q be prime numbers, then eccentric connectivity index of graph G is ξ(G) =

p1 p2(15q− 11)− (p1 + p2)(11q− 7) + 7q− 3.

Proof. By using the degree of each vertex partition and corresponding their eccentricity from Table 1
in the Equation (2), we obtain:

ξ(G) = ∑
v∈V

dv e(v)

=2(p1 p2 − 1)(q− 1) + 2(p1q− 1)(p2 − 1) + 2(p2q− 1)(p1 − 1)

+3(p1 − 1)(p2 − 1)(q− 1) + 3(p1 − 1)(p2 − 1)(q− 1) + 3(p1 − 1)(p2 − 1)(q− 1)

After simplification, we get:
ξ(G) = p1 p2(15q− 11)− (p1 + p2)(11q− 7) + 7q− 3.
This completes the proof.

The eccentricity of the vertices and their frequency is given in the Table 1 of the graph G, by putting
these values and after simplification we obtain the following two corollaries.

Corollary 1. Let p1 < p2, q be prime numbers, then the total-eccentricity index of G is given by
ζ(G) = 3(p1 p2 + p1q + p2q + 1)− 4(p1 + p2 + q).
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Corollary 2. Let p1 < p2, q be prime numbers, then the first Zagreb eccentricity index of G is given by
M1
∗(G) = 9(p1 p2 + p1q + p2q)− 14(p1 + p2 + q) + 15.

Theorem 3. Let p1 < p2, q be prime numbers, then the connective eccentric index of graph G is ξC(G) =

(p1 − 1)(p2 − 1)(q− 1) + 2 + p1 p2(3q−1)−(p1+p2+1)(q+1)
2 .

Proof. By using the values of degrees and their eccentricity in the Equation (6), we obtain the following:

ξC(G) = ∑
v∈V

d(v)
e(v)

=
(p1 p2 − 1)(q− 1)

2
+

(p1q− 1)(p2 − 1)
2

+
(p2q− 1)(p1 − 1)

2

+
(p1 − 1)(p2 − 1)(q− 1)

3
+

(p1 − 1)(p2 − 1)(q− 1)
3

+
(p1 − 1)(p2 − 1)(q− 1)

3

=(p1 − 1)(p2 − 1)(q− 1) + 2 +
p1 p2(3q− 1)− (p1 + p2 + 1)(q + 1)

2
.

After simplification, we get
ξC(G) = (p1 − 1)(p2 − 1)(q− 1) + 2 + p1 p2(3q−1)−(p1+p2+1)(q+1)

2 .
This completes the proof.

Theorem 4. Let p1 < p2, q be prime numbers, then the Ediz eccentric connectivity index of graph G is
Eζ(G) = 9(p1−1)(p2−1)(q−1)+8[(p1−1)(p2q−1)+(p2−1)(p1q−1)+(p1 p2−1)(q−1)]

6 .

Proof. S(v) is the sum of degrees of all vertices u which are adjacent to vertex v. Calculate the values
of S(v) with the help of Table 1. The eccentricity of each vertex is also given in Table 1. Putting these
vales in Equation (7), we obtain the following:

Eζ(G) = ∑
v∈V(G)

S(v)
e(v)

=
(p1 − 1)(p2 − 1)(q− 1) + (p1 − 1)(p2q− 1) + (p2 − 1)(p1q− 1)

2

+
(p1 − 1)(p2 − 1)(q− 1) + (p1 − 1)(p2q− 1) + (q− 1)(p1 p2 − 1)

2

+
(p1 − 1)(p2 − 1)(q− 1) + (p2 − 1)(p1q− 1) + (q− 1)(p1 p2 − 1)

2

+
(q− 1)(p1 p2 − 1)

3
+

(p1 − 1)(p2q− 1)
3

+
(p2 − 1)(p1q− 1)

3

After simplification, we get
Eζ(G) = 9(p1−1)(p2−1)(q−1)+8[(p1−1)(p2q−1)+(p2−1)(p1q−1)+(p1 p2−1)(q−1)]

6 .
This completes the proof.

Theorem 5. Let p1 < p2, q be prime numbers, then the eccentric connectivity polynomial of graph G is
ECP(G, x) = (3p1 p2q− p1 p2 − p1q− p1 − p2q− p2 − q + 3)x2 + 3(p1 − 1)(p2 − 1)(q− 1)x3.

Proof. By using the degree of each vertex partition and their corresponding eccentricities from Table 1
Equation (4), we obtain:
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ECP(G, x) = ∑
v∈V

d(v)xe(v)

=(p1 p2 − 1)(q− 1)x2 + (p1q− 1)(p2 − 1)x2

+(p2q− 1)(p1 − 1)x2 + (p1 − 1)(p2 − 1)(q− 1)x3

+(p1 − 1)(p2 − 1)(q− 1)x3 + (p1 − 1)(p2 − 1)(q− 1)x3

=(3p1 p2q− p1 p2 − p1q− p1 − p2q− p2 − q + 3)x2

+3(p1 − 1)(p2 − 1)(q− 1)x3.

After simplification, we get
ECP(G, x) = (3p1 p2q− p1 p2 − p1q− p1 − p2q− p2 − q + 3)x2 + 3(p1 − 1)(p2 − 1)(q− 1)x3.
This completes the proof.

Theorem 6. Let p1 < p2, q be prime numbers, then augmented eccentric connectivity index

of graph G is ξac(G) = (p1−1)(p2−1)(p1 p2−1)q−1+(p1−1)(q−1)(p1q−1)p2−1+(p2−1)(q−1)(p2q−1)p1−1

3 +
(p1−1)p2q−q−p2+2(p1q−1)p2−1(p1 p2−1)q−1+(p2−1)p1q−p1−q+2(p1 p2−1)q−1(p2q−1)p1−1

2 +
(q−1)p1 p2−p1−p2+2(p1q−1)p2−1(p2q−1)p1−1

2 .

Proof. M(v) is the product of degrees of all vertices u which are adjacent to vertex v. Calculate the
values of M(v) with the help of Table 1. The eccentricity of each vertex is also given in the Table 1.
Putting these vales in Equation (5), we obtain the following:

ξac(G) = ∑
v∈V

M(v)
e(v)

=
(p1 − 1)(p2 − 1)(p1 p2 − 1)q−1

3
+

(p1 − 1)(q− 1)(p1q− 1)p2−1

3

++
(p2 − 1)(q− 1)(p2q− 1)p1−1

3

+
(p1 − 1)(p1 − 1)(p1−1)(q−1)(p1q− 1)p2−1(p1 p2 − 1)q−1

2

+
(p2 − 1)(p2 − 1)(p2−1)(q−1)(p1 p2 − 1)q−1(p2q− 1)p1−1

2

+
(q− 1)(q− 1)(p1−1)(p2−1)(p1q− 1)p2−1(p2q− 1)p1−1

2

After simplification, we get

ξac(G) = (p1−1)(p2−1)(p1 p2−1)q−1+(p1−1)(q−1)(p1q−1)p2−1+(p2−1)(q−1)(p2q−1)p1−1

3 +
(p1−1)p2q−q−p2+2(p1q−1)p2−1(p1 p2−1)q−1+(p2−1)p1q−p1−q+2(p1 p2−1)q−1(p2q−1)p1−1

2 +
(q−1)p1 p2−p1−p2+2(p1q−1)p2−1(p2q−1)p1−1

2
This completes the proof.

If p1, p2 and q are prime numbers with p1 = p2 = p, then Ahmad et al. [35] determined the
vertex-based eccentric topological indices of zero divisor graph of the commutative ring Zp2 × Zq

as follows:

Theorem 7 ([35]). Let p, q be prime numbers. If G(R) is the zero divisor graph of the commutative ring
R = Zp2 ×Zq, then

• ξ(G(R)) = 10p2q− 8p2 − 11pq + 5p + q + 3.
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• ζ(G(R)) = 3p2 + 3pq− 4p− q− 1
• M1

∗(G(R)) = 9p2 + 9pq− 14p− 5q + 1.
• ξC(G) = (p−1)(10pq−7p+q−7)

6

• ξac(G(R)) = ( p−1
3 + (q−1)p2−p

2 )(pq− 2)p−1(q− 1) + ( p
3 + p(p−1)(q−1)(pq−2)p−2

2 )(p2 − 1)q−1(p− 1).

5. Conclusions

In this paper, we discussed the vertex-based eccentric topological indices, namely eccentric
connectivity index, total-eccentricity index, first Zabreb eccentricity index, connective eccentric index,
Ediz eccentric connectivity index, eccentric connectivity polynomial, and augmented eccentric index for
zero divisor graphs of commutative rings Zp1 p2 ×Zq where p1, p2 and q are primes. These indices are
helpful in understanding the characteristics of different physical structures like carbon nanostructures,
hexagonal belts and chains, Fullerence and Nanocone, structure-boiling point, and the relationships of
various alkanes. They can be used in estimating and trouble shooting computer network problems
regarding distance, speed, and time. They can also be helpful in developing efficient physical structure
in robotics.
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Abstract: In view of the wide application of resistance distance, the computation of resistance
distance in various graphs becomes one of the main topics. In this paper, we aim to compute
resistance distance in H-join of graphs G1, G2, . . . , Gk. Recall that H is an arbitrary graph with
V(H) = {1, 2, . . . , k}, and G1, G2, . . . , Gk are disjoint graphs. Then, the H-join of graphs G1, G2, . . . , Gk,
denoted by

∨
H{G1, G2, . . . , Gk}, is a graph formed by taking G1, G2, . . . , Gk and joining every vertex

of Gi to every vertex of Gj whenever i is adjacent to j in H. Here, we first give the Laplacian
matrix of

∨
H{G1, G2, . . . , Gk}, and then give a {1}-inverse L(

∨
H{G1, G2, . . . , Gk}){1} or group inverse

L(
∨

H{G1, G2, . . . , Gk})# of L(
∨

H{G1, G2, . . . , Gk}). It is well know that, there exists a relationship
between resistance distance and entries of {1}-inverse or group inverse. Therefore, we can easily
obtain resistance distance in

∨
H{G1, G2, . . . , Gk}. In addition, some applications are presented in

this paper.

Keywords: graph; Laplacian matrix; resistance distance; group inverse

1. Introduction

Throughout this paper, “G is a graph” always means that “G is a simple and undirected graph”.
Moreover, we denote a graph G by G = (V(G), E(G)), where V(G) = {v1, v2, . . . , vn} is the vertex set
and E(G) = {e1, e2, . . . , em} is the edge set of G. Associated with a graph G, some matrices characterize
the structure of G, such as the adjacency matrix A(G), which is an n× n matrix with entry aij = 1 if
vi and vj are adjacent in G, and aij = 0 otherwise, the diagonal matrix D(G) with diagonal entries
dG(v1), dG(v2), . . . , dG(vn) and the Laplacian matrix L(G), which is D(G) − A(G). Let In denote
the unit matrix of order n, 1n be the all-one column vector of dimension n and Jn×m be the all-one
n×m-matrix. For more detail, one can refer to [1,2] for the definitions and notions in the paper.

It is rather clear that, from some given graphs, a big graph arises by the help of graph operations,
such as the Cartesian product, the Kronecker product, the corona graph, the neighborhood corona
graph and subdivision-vertex join and subdivision-edge join of graphs (see [3–7]). Furthermore,
following [8], from an arbitrary graph H of order k and graphs G1, G2, . . . , Gk, we obtain a new graph
called H-join of graphs G1, G2, . . . , Gk, which is denoted by

∨
H{G1, G2, . . . , Gk}, for detail:

Definition 1. Let H be an arbitrary graph with V(H) = {1, 2, . . . , k}, and G1, G2, . . . , Gk be disjoint graphs
of orders n1, n2, . . . , nk. The H-join of graphs G1, G2, . . . , Gk, which is denoted by

∨
H{G1, G2, . . . , Gk}, is a

graph formed by taking G1, G2, . . . , Gk and joining every vertex of Gi to every vertex of Gj whenever i is adjacent
to j in H. Particularly,

∨
H{G1, G1, . . . , G1} is denoted by H

⊙
G1.

Example 1. Let Pn and Cn be a path and a cycle with n vertices. Then,
∨

P3
{P3, P1, P2}, P3

⊙
P2 and C3

⊙
P3

are as follows (Figures 1 and 2).

Mathematics 2018, 6, 283; doi:10.3390/math6120283 www.mdpi.com/journal/mathematics

97



Mathematics 2018, 6, 283

1 2 3

1

2

3

4

5

6

P3

P1 P2P3

1 3

P2 P2P2

2 4

5

6

Figure 1.
∨

P3
{P3, P1, P2} and P3

⊙
P2.
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Figure 2. C3
⊙

P3.

As we know, the length of a shortest path between vertices vi and vj, which is denoted by
dij, is the conventional distance. However, it does not apply to some practical situations, such as
electrical network. Thus, based on electrical network theory, Klein and Randić introduced a new
distance called resistance distance ([9]). The resistance distance between vertices vi and vj is denoted
by rij, and, in fact, rij is the effective electrical resistance between vi and vj if every edge of G is
replaced by a unit resistor. In view of its practical application, resistance distance was widely explored
by many authors. One of the main topics in the study of resistance distance is to determine it in
various graphs. For example, from [10], one would know that how rij can be computed from the
Laplacian matrix of the graph; in [11], authors gave the resistance distance between any two vertices
of a wheel and a fan; in [3], authors obtained formulae for resistance distance in subdivision-vertex
join and subdivision-edge join of graphs; recently, in [12], authors gave the resistance distance in
corona and the neighborhood corona graphs of two disjoint graphs. Except for the above, one can refer
to [13–20] for more information.

Motivated by the study of resistance distance and graph operations, a natural question arises:
what is the resistance distance in

∨
H{G1, G2, . . . , Gk}? In fact, this paper focuses on this question, gives

resistance distance in H-join of graphs G1, G2, . . . , Gk and finally presents some applications.

2. Preliminaries

Recall that, for a matrix M, a {1}-inverse of M, which is always denoted by M{1}, is a matrix
X such that MXM = M. For a square matrix M, the group inverse of M, which is denoted by M#,
is the unique matrix X such that the following hold: (1)MXM = M; (2)XMX = X; (3)MX = XM.
It is well-known that M# exists if and only if rank(M)=rank(M2). Therefore, A# exists and it is a
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{1}-inverse of A, whenever A is a real symmetric. In fact, assume that A is a real symmetric matrix and
U is an orthogonal matrix (i.e., UUT = UTU = I), such that A = UTdiag{λ1, λ2, · · · , λn}U, where
λ1, λ2, · · · , λn are eigenvalues of A. Then, A# = UTdiag{ f (λ1), f (λ2), · · · , f (λn)}U, where

f (λi) =

{
1/λi, if λi 6= 0,

0, if λi = 0.

Note that the Laplacian matrix L(G) of a graph G is real symmetric. Thus, L(G)# exists. For more
detail about the group inverse of the Laplacian matrix of a graph, see [21].

Lemma 1 ([3,22]). Let L =

(
L1 L2

LT
2 L3

)
be the Laplacian matrix of a connected graph. Assume that L1 is

nonsingular. Denote S = L3 − LT
2 L−1

1 L2. Then,

(1)

(
L−1

1 + L−1
1 L2S#LT

2 L−1
1 −L−1

1 L2S#

−S#LT
2 L−1

1 S#

)
is a symmetric {1}-inverse of L.

(2) If each column vector of L2 is 1 or a zero vector, then

(
L−1

1 0
0 S#

)
is a symmetric {1}-inverse of L.

In order to compute the inverse of a matrix, the next lemma is useful.

Lemma 2 ([3]). Let M =

(
A B
C D

)
be a nonsingular matrix. If A and D are nonsingular, then

M−1 =

(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
,

where S = D− CA−1B is the Schur complement of A in M.

One of the important applications of group inverse L(G)# or {1}-inverse L(G){1} is based on the
following fact, which gives the formulae for resistance distance.

Lemma 3 ([3]). Let G be a connected graph and (L(G))ij be the (i, j)-entry of the Laplacian matrix L(G). Then,

rij(G)=(L(G){1})ii+ (L(G){1})jj− (L(G){1})ij− (L(G){1})ji

= (L(G)#)ii + (L(G)#)jj − 2(L(G)#)ij.

3. Main Results

Now, we turn to compute resistance distance in H-join of graphs G1, G2, . . . , Gk. Denote G =∨
H{G1, G2, . . . , Gk}. Keeping Lemma 3 in mind, we only need to compute the group inverse L(G)# or

a {1}-inverse L(G){1}.
First, we give the Laplacian matrix L(G) of G.

Theorem 1. Let H be an arbitrary graph with V(H) = {1, 2, . . . , k}, and Gi be the disjoint graph of order ni
(i = 1, 2, . . . , k). Assume that the adjacency matrix of H is A(H) = (aij)k and

A(H)(n1, n2, . . . , nk)
T = (m1, m2, . . . , mk)

T .

Denote G =
∨

H{G1, G2, . . . , Gk}, and label the ni vertices of Gi with

V(Gi) = {vn1+···+ni−1+1
i , vn1+···+ni−1+2

i , . . . , vn1+···+ni−1+ni
i }.
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Then, V(G) = {v1
1, . . . , vn1

1 , . . . , vn1+···+ni−1+1
i , . . . , vn1+···+ni−1+ni

i , . . . , vn1+···+nk−1+1
k , . . . , vn1+···+nk−1+nk

k },
and the Laplacian matrix L(G) of G is




L(G1) + m1 In1 0 · · · 0
0 L(G2) + m2 In2 · · · 0
...

...
. . .

...
0 0 · · · L(Gk) + mk Ink



−




a11 Jn1×n1 a12 Jn1×n2 · · · a1k Jn1×nk

a21 Jn2×n1 a22 Jn2×n2 · · · a2k Jn2×nk
...

...
...

ak1 Jnk×n1 ak2 Jnk×n2 · · · akk Jnk×nk




.

Proof. Clearly, all of the diagonal matrix D(G), the adjacency matrix A(G) and the Laplacian
matrix L(G) are partitioned k × k-matrixes, whose (ij)-entry is a ni × nj-matrix. We proceed via
the following steps:

(1) The diagonal matrix D(G) of G.

Obviously, the degree increment of V(Gi) depends on the i-th line (ai1 ai2 · · · aik) of A(H).
For detail, if aij = 1, j = 1, 2, · · · , k, then every vertex of Gj is joined to every vertex of Gi, that
is, the increment of each vertex in V(Gi) is aijnj. Otherwise, that is aij = 0, the increment is zero,
which can also be written by aijnj. In general, the degree increment of each vertex of V(Gi) is

ai1n1 + ai2n2 + · · ·+ aiknk = mi.

Consequently, the diagonal matrix of G is

D(G) =




D(G1) + m1 In1 0 · · · 0
0 D(G2) + m2 In2 · · · 0
...

...
. . .

...
0 0 · · · D(Gk) + mk Ink




.

(2) The adjacency matrix A(G) of G.

Similarly, the i-th line of the partitioned matrixes A(G) also relies on (ai1 ai2 · · · aik). Assume that
aij = 1. Then, every vertex of Gj is joined to every vertex of Gi. Thus, the (ij)-entry of A(G) is Jni×nj ,
which is aij Jni×nj . If aij = 0, then there is no edge between V(Gi) and V(Gj), that is, the (ij)-entry of
A(G) is zero. However, in this case, we can also denote it by aij Jni×nj . Note that the above holds for
i = j. Therefore, the adjacency matrix of G is

A(G) =




A(G1) 0 · · · 0
0 A(G2) · · · 0
...

...
. . .

...
0 0 · · · A(Gk)




+




a11 Jn1×n1 a12 Jn1×n2 · · · aik Jn1×nk

a21 Jn2×n1 a22 Jn1×n2 · · · a2k Jn2×nk
...

...
...

ak1 Jnk×n1 ak2 Jnk×n2 · · · a2k Jnk×nk




.

(3) The Laplacian matrix L(G) of G.

With respect to the above results, the Laplacian matrix L(G) of G is the Theorem 1.

According to Theorem 1 and Lemma 1, we finally obtain a symmetric {1}-inverse of L(G).

Theorem 2. Let H be an arbitrary connected graph with V(H) = {1, 2, . . . , k}, and Gi be disjoint
connected graph of order ni (i = 1, 2, . . . , k). Assume that A(H) = (aij)k and A(H)(n1, n2, . . . , nk)

T =

(m1, m2, . . . , mk)
T . Denote G =

∨
H{G1, G2, . . . , Gk}. Then, the following matrix

(
L−1

1 + L−1
1 L2S#LT

2 L−1
1 −L−1

1 L2S#

−S#LT
2 L−1

1 S#

)
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is a symmetric {1}-inverse of L(G), where

L1 = L(G1) + m1 In1 ;

L2 = −(a12 Jn1×n2 a13 Jn1×n3 · · · a1k Jn1×nk );

L3 = diag{L(G2) + m2 In2 , . . . , L(Gk) + mk Ink} − (aij Jni×nj)i,j=2,3,...,k;

S = L3 − LT
2 L−1

1 L2

= diag{L(G2) + m2 In2 , . . . , L(Gk) + mk Ink} − ((aij + ai1a1js)Jni×nj)i,j=2,3,...,k

= L3 − ((ai1a1js)Jni×nj)i,j=2,3,...,k

= L3 − sBBT .

Here, s=1T
n1

L−1
1 1n1 and BT =

(
a121T

n2
a131T

n3
· · · a1k1T

nk

)
.

Proof. Note that all of H and G1, G2, . . . , Gk are connected. Thus, it is easy to show that G is connected.
By Theorem 1, we have the Laplacian matrix L(G) of G. In order to give a {1}-inverse of L(G) with

the help of Lemma 1, we further divide L(G) into blocks L(G) =

(
L1 L2

LT
2 L3

)
, where

L1 =L(G1) + m1 In1 − a11 Jn1×n1 = L(G1) + m1 In1 ;

L2 =− (a12 Jn1×n2 a13 Jn1×n3 · · · a1k Jn1×nk );

L3 =




L(G2) + m2 In2 · · · 0
...

. . .
...

0 · · · L(Gk) + mk Ink


−




a22 Jn2×n2 · · · a2k Jn2×nk
...

...
ak2 Jnk×n2 · · · akk Jnk×nk


 .

Note that LT
2 =




−a12 Jn2×n1

−a13 Jn3×n1
...

−a1k Jnk×n1




. Thus, we have

LT
2 L−1

1 L2 =




a12 Jn2×n1

a13 Jn3×n1
. . .

a1k Jnk×n1




L−1
1 (a12 Jn1×n2 a13 Jn1×n3 · · · a1k Jn1×nk )

=




a12a12 Jn2×n1 L−1
1 Jn1×n2 · · · a12a1k Jn2×n1 L−1

1 Jn1×nk

a13a12 Jn3×n1 L−1
1 Jn1×n2 · · · a13a1k Jn3×n1 L−1

1 Jn1×nk
...

...
a1ka12 Jnk×n1 L−1

1 Jn1×n2 · · · a1ka1k Jnk×n1 L−1
1 Jn1×nk




.
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Since Jni×n1 L−1
1 Jn1×nj = sJni×nj , where s = 1T

n1
L−1

1 1n1 ∈ R, we have

LT
2 L−1

1 L2 = s




a12a12 Jn2×n2 · · · a12a1k Jn2×nk

a13a12 Jn3×n2 · · · a13a1k Jn3×nk
...

...
a1ka12 Jnk×n2 · · · a1ka1k Jnk×nk




= s




a121n2

a131n3
...

a1k1nk




(a121T
n2

a131T
n3

. . . a1k1T
nk
).

Assume that B is a column vector of dimension n2 + n3 + · · ·+ nk satisfying

BT =
(

a121T
n2

a131T
n3

. . . a1k1T
nk

)
.

Therefore, S = L3 − LT
2 L−1

1 L2 has three forms:

S = diag{L(G2) + m2 In2 , . . . , L(Gk) + mk Ink} − ((aij + ai1a1js)Jni×nj)i,j=2,3,...,k

= L3 − s(ai1a1j Jni×nj)i,j=2,3,...,k

= L3 − sBBT .

By Lemma 1, we know that Theorem 2 holds.

Recall that the Kronecker product A⊗ B ([23]) of two matrices A = (aij)m×n and B = (bij)p×q

is an mp× nq-matrix obtained from A by replacing every element aij by aijB. As an application of
Theorem 2, we easily obtain a symmetric {1}-inverse of L(H

⊙
G).

Corollary 1. Let H be an arbitrary connected graph with k vertices and G be a connected graph with n vertices.

Assume that A(H) =

(
01×1 H2

HT
2 H3

)
and nA(H)1n = nD(H)1n = (m1, m2, . . . , mk)

T. Then, the

following matrix (
L−1

1 + L−1
1 L2S#LT

2 L−1
1 −L−1

1 L2S#

−S#LT
2 L−1

1 S#

)

is a symmetric {1}-inverse of L(H
⊙

G), where

L1 = L(G) + m1 In;

L2 = −H2 ⊗ Jn×n;

L3 = Ik−1 ⊗ L(G) + diag{m2, . . . , mk} ⊗ In − H3 ⊗ Jn×n;

S = L3 − LT
2 L−1

1 L2

= L3 − s(HT
2 ⊗ 1n)(H2 ⊗ 1T

n )

= L3 − s(HT
2 H2)⊗ Jn×n.

Here, s = 1T
n L−1

1 1n.

4. Some Applications

Now, we give a specific application of formation mentioned in the Section 2. Let A be a real
symmetric such that λ1, λ2, · · · , λn−1, 0 are eigenvalues of A and 0 is a simple eigenvalue. Assume that
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A is a real symmetric and U is an orthogonal matrix such that A = UTdiag{λ1, λ2, · · · , λn−1, 0}U.
Then, A# = UTdiag{ 1

λ1
, 1

λ2
, · · · , 1

λn−1
, 0}U.

Example 2. Compute resistance distance in G =
∨

P3
{P3, P1, P2} (see Figure 1).

Step 1. We label the vertices P3 = {v1
1, v2

1, v3
1}, P1 = {v4

2}, P2 = {v5
3, v6

3}. Then,

V(G) = {v1
1, v2

1, v3
1, v4

2, v5
3, v6

3}.

Note that A(P3)




3
1
2


 =




0 1 0
1 0 1
0 1 0







3
1
2


 =




1
5
1


 . Thus, the Laplacian matrix of G is

L(G) =




L(P3) + I3 0 0
0 L(P1) + 5I1 0
0 0 L(P2) + I2


−




03×3 J3×1 03×2

J1×3 01×1 J1×2

02×3 J2×1 02×2


 =

(
L1 L2

LT
2 L3

)
,

where L1 = L(P3) + I3 =




2 −1 0
−1 3 −1
0 −1 2


, L2 = −(J3×1 03×2) =



−1 0 0
−1 0 0
−1 0 0


 and

L3 =

(
L(P1) + 5I1 −J1×2

−J2×1 L(P2) + I2

)
=




5 −1 −1
−1 2 −1
−1 −1 2


 .

Step 2. L−1
1 =

1
8




5 2 1
2 4 2
1 2 5


 and so s = 1T

3 L−1
1 13 = 3. By Theorem 2, B =




1
0
0


 and

S =




2 −1 −1
−1 2 −1
−1 −1 2


 . By the formula at the beginning of this section, S# =

1
9




2 −1 −1
−1 2 −1
−1 −1 2


 .

Furthermore, −L−1
1 L2S# =

1
9




2 −1 −1
2 −1 −1
2 −1 −1


 and L−1

1 L2S#LT
2 L−1

1 =
2
9

J3×3.

Step 3. By Lemma 1 or Theorem 2,




1
8




5 2 1
2 4 2
1 2 5


+

2
9

J3×3
1
9




2 −1 −1
2 −1 −1
2 −1 −1




1
9




2 2 2
−1 −1 −1
−1 −1 −1


 1

9




2 −1 −1
−1 2 −1
−1 −1 2







is a

{1}-inverse of L(G).
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Step 4. In view of Lemma 3, the matrix whose (i, j)-entry is the resistance distance rij between
vertices vi and vj is 



0
5
8

1
5
8

31
24

31
24

5
8

0
5
8

1
2

7
6

7
6

1
5
8

0
5
8

31
24

31
24

5
8

1
2

5
8

0
2
3

2
3

31
24

7
6

31
24

2
3

0
2
3

31
24

7
6

31
24

2
3

2
3

0




.

Example 3. Assume that G = P3
⊙

P2 (see Figure 1). Then, the Laplacian matrix of G is

L(G) =




L(P2) + 2I2 0 0
0 L(P2) + 4I2 0
0 0 L(P2) + 2I2


−




02×2 J2×2 02×2

J2×2 02×2 J2×2

02×2 J2×2 02×2


 .

From Theorem 2, we have that the matrix




1
16

(
7 3
3 7

)
1
16

(
1 1 −1 −1
1 1 −1 −1

)

1
16




1 1
1 1
−1 −1
−1 −1




1
48




7 −1 −3 −3
−1 7 −3 −3
−3 −3 9 −3
−3 −3 −3 9







is

a {1}-inverse of L(G).
Thus, the matrix whose (i, j)-entry is rij is




0
1
2

11
24

11
24

3
4

3
4

1
2

0
11
24

11
24

3
4

3
4

11
24

11
24

0
1
3

11
24

11
24

11
24

11
24

1
3

0
11
24

11
24

3
4

3
4

11
24

11
24

0
1
2

3
4

3
4

11
24

11
24

1
2

0




.

Example 4. Assume that G = C3
⊙

P3 (see Figure 2). Then, the Laplacian matrix of G is
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L(G) =




L(P3) + 6I3 0 0
0 L(P3) + 6I3 0
0 0 L(P3) + 6I3


−




03×3 J3×3 J3×3

J3×3 03×3 J3×3

J3×3 J3×3 03×3


 .

Based on Theorem 2, the matrix




A
1

27
J3×3 03×3

1
27

J3×3 B 03×3

03×3 03×3 S#


 is a {1}-inverse of L(G), where

A = B =




31
189

1
27

4
189

1
27

4
27

1
27

4
189

1
27

31
189




, S# =




17
189

−1
27

−10
189

−1
27

2
27

−1
27

−10
189

−1
27

17
189




.

Thus, the matrix whose (i, j)-entry is rij is




0
5

21
2
7

16
63

5
21

16
63

16
63

5
21

16
63

5
21

0
5

21
5
21

2
9

5
21

5
21

2
9

5
21

2
7

5
21

0
16
63

5
21

16
63

16
63

5
21

16
63

16
63

5
21

16
63

0
5

21
2
7

16
63

5
21

16
63

5
21

2
9

5
21

5
21

0
5

21
5
21

2
9

5
21

16
63

5
21

16
63

2
7

5
21

0
16
63

5
21

16
63

16
63

5
21

16
63

16
63

5
21

16
63

0
5

21
2
7

5
21

2
9

5
21

5
21

2
9

5
21

5
21

0
5

21

16
63

5
21

16
63

16
63

5
21

16
63

2
7

5
21

0




.

5. Conclusions

This paper focuses on resistance distance in H-join of graphs G1, G2, . . . , Gk. Let G be H-join
of graphs G1, G2, . . . , Gk. Here we first give the Laplacian matrix L(G) of G. Then we compute a
symmetric {1}-inverse of L(G). Note that there exists a relationship between resistance distance and
entries of {1}-inverse. So we can easily obtain resistance distance in G.
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Abstract: The vertex k-partiteness of graph G is defined as the fewest number of vertices
whose deletion from G yields a k-partite graph. In this paper, we characterize the extremal
value of the reformulated first Zagreb index, the multiplicative-sum Zagreb index, the general
Laplacian-energy-like invariant, the general zeroth-order Randić index, and the modified-Wiener
index among graphs of order n with vertex k-partiteness not more than m.

Keywords: topological index; vertex k-partiteness; extremal graph

1. Introduction

All graphs considered in this paper are simple, undirected, and connected. Let G be a graph with
vertex set V(G) = {v1, · · · , vn} and edge set E(G) = {e1, · · · , em}. The degree of a vertex u ∈ V(G)

is the number of edges incident to u, denoted by dG(u). The distance between two vertices u and v is
the length of the shortest path connecting u and v, denoted by dG(u, v). The complement of G, denoted
by G, is the graph with vertex set V(G) = V(G) and edge set E(G) = {uv : uv /∈ E(G)}. A subgraph
of G induced by H, denoted by 〈H〉, is the subgraph of G that has the vertex set H, and for any two
vertices u, v ∈ V(H), they are adjacent in H iff they are adjacent in G. The adjacency matrix of G is a
square n× n matrix such that its element aij is one when there is an edge from vertex ui to vertex uj,
and zero when there is no edge, denoted by A(G). Let D(G) = diag(d1, d2, · · · , dn) be the diagonal
matrix of vertex degrees of G. The Laplacian matrix of G is defined as L(G) = D(G)− A(G), and the
eigenvalues of L(G) are called Laplacian eigenvalues of G, denoted by µ1, · · · , µn with µ1 ≥ · · · ≥ µn.
It is well known that µn = 0, and the multiplicity of zero corresponds to the number of connected
components of G.

A bipartite graph is a graph whose vertex set can be partitioned into two disjoint sets U1 and
U2, such that each edge has an end vertex in U1 and the other one in U2. A complete bipartite graph,
denoted by Ks,t, is a bipartite graph with |U1| = s and |U2| = t, where any two vertices u ∈ U1 and
v ∈ U2 are adjacent. If every pair of distinct vertices in G is connected by a unique edge, we call G a
complete graph. The complete graph with n vertices is denoted by Kn. An independent set of G is a set
of vertices, no two of which are adjacent. A graph G is called k-partite if its vertex-set can be partitioned
into k different independent sets U1, · · · , Uk. When k = 2, they are the bipartite graphs, and k = 3
the tripartite graphs. The vertex k-partiteness of graph G, denoted by vk(G), is the fewest number
of vertices whose deletion from G yields a k-partite graph. A complete k-partite graph, denoted by
Ks1,··· ,sk , is a k-partite graph with k different independent sets |U1| = s1, · · · , |Uk| = sk, where there is
an edge between every pair of vertices from different independent sets.

A topological index is a numerical value that can be used to characterize some properties of
molecule graphs in chemical graph theory. Recently, many researchers have paid much attention to
studying different topological indices. Dimitrov [1] studied the structural properties of trees with
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minimal atom-bond connectivity index. Li and Fan [2] obtained the extremal graphs of the Harary
index. Xu et al. [3] determined the eccentricity-based topological indices of graphs. Hayat et al. [4]
studied the valency-based topological descriptors of chemical networks and their applications.
Let G + uv be the graph obtained from G by adding an edge uv ∈ E(G). Let I(G) be a graph invariant,
if I(G + uv) > I(G) (or I(G + uv) < I(G), respectively) for any edge uv ∈ E(G), then we call I(G)

a monotonic increasing (or decreasing, respectively) graph invariant with the addition of edges [5].
Let Gn,m,k be the set of graphs with order n and vertex k-partiteness vk(G) ≤ m, where 1 ≤ m ≤ n− k.
In [5–7], the authors have researched several monotonic topological indices in Gn,m,2, such as the
Kirchhoff index, the spectral radius, the signless Laplacian spectral radius, the modified-Wiener index,
the connective eccentricity index, and so on. Inspired by these results, we extend the parameter of
graph partition from two-partiteness to arbitrary k-partiteness. Moreover, we study some monotonic
topological indices and characterize the graphs with extremal monotonic topological indices in Gn,m,k.

2. Preliminaries

The join of two-vertex-disjoint graphs G1, G2, denoted by G = G1 ∨ G2, is the graph obtained
from the disjoint union G1 ∪ G2 by adding edges between each vertex of G1 and each of G2. It is to say
that V(G) = V(G1) ∪V(G2) and E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V(G1), v ∈ V(G2)}.

The join operation can be generalized as follows. Let F = {G1, · · · , Gk} be a set of vertex-disjoint
graphs and H be an arbitrary graph with vertex set V(H) = {1, · · · , k}. Each vertex i ∈ V(H) is
assigned to the graph Gi ∈ F.

The H-join of the graphs G1, · · · , Gk is the graph G = H[G1, · · · , Gk], such that V(G) =
k⋃

j=1
V(Gj) and:

E(G) =
k⋃

j=1

E(Gj)
⋃
(
⋃

ij∈E(H)

{uv : u ∈ V(Gi), v ∈ V(Gj)}).

If H = K2, the H-join is the usual join operation of graphs, and the complete k-partite graph
Ks1,··· ,sk can be seen as the Kk-join graph Kk[Os1 , · · · , Osk ], where Osi is an empty graph of order
si, 1 ≤ i ≤ k.

For U ⊆ V(G), let G −U be the graph obtained from G by deleting the vertices in U and the
edges incident with them.

Lemma 1. Let G be an arbitrary graph in Gn,m,k and I(G) be a monotonic increasing graph invariant.

Then, there exists k positive integers s1, · · · , sk satisfying
k
∑

i=1
si = n − m, such that I(G) ≤ I(Ĝ) holds

for all graphs G ∈ Gn,m,k, where Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]) ∈ Gn,m,k, with equality holds if and only if
G ∼= Ĝ.

Proof. Choose Ĝ ∈ Gn,m,k with the maximum value of a monotonic increasing graph invariant such that
I(G) ≤ I(Ĝ) for all G ∈ Gn,m,k. Assume that the k-partiteness of graph Ĝ is m′, then there exists a vertex
set U of graph Ĝ with order m′ such that Ĝ −U is a k-partite graph with k-partition {U1, · · · , Uk}.
For 1 ≤ i ≤ k, let si be the order of Ui; hence, n =

k
∑

i=1
si + m′.

Firstly, we claim that Ĝ − U = Kk[Os1 , · · · , Osk ]. Otherwise, there exists at least two vertices
u ∈ Usi and v ∈ Usj for some i 6= j, which are not adjacent in Ĝ. By joining the vertices u and v, we get

a new graph Ĝ + uv, obviously, Ĝ + uv ∈ Gn,m,k. Then, I(Ĝ) < I(Ĝ + uv), which is a contradiction.
Secondly, we claim that U is the complete graph Km′ . Otherwise, there exists at least two vertices

u, v ∈ U, which are not adjacent. By connecting the vertices u and v, we arrive at a new graph Ĝ + uv,
obviously, Ĝ + uv ∈ Gn,m,k. Then, we have I(Ĝ) < I(Ĝ + uv), a contradiction again.

Using a similar method, we can get Ĝ = Km′ ∨ (Kk[Os1 , · · · , Osk ]).
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Finally, we prove that m′ = m. If m′ ≤ m− 1, then
k
∑

i=1
si = n− m′ ≥ n− m + 1 > n− m ≥ k;

thus,
k
∑

i=1
si > k. Without loss of generality, we assume that s1 ≥ 2. By moving a vertex u ∈ Os1

to the set of U and adding edges between u and all the other vertices in Os1 , we get a new graph
G̃ = Km′+1 ∨ (Kk[Os1−1, Os2 , · · · , Osk ]). It is easy to check that G̃ ∈ Gn,m,k has s1 − 1 edges more than
the graph Ĝ. By the definition of the monotonic increasing graph invariant, we get I(Ĝ) < I(G̃),
which is obviously another contradiction.

Therefore, Ĝ is the join of a complete graph with order m and a complete k-partite graph with
order n−m. That is to say Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]).

The proof of the lemma is completed.

Lemma 2. Let G be an arbitrary graph in Gn,m,k and I(G) be a monotonic decreasing graph invariant.

Then, there exists k positive integers s1, · · · , sk satisfying
k
∑

i=1
si = n − m, such that I(G) ≥ I(Ĝ) holds

for all graphs G ∈ Gn,m,k, where Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]) ∈ Gn,m,k, with equality holds if and only
if G ∼= Ĝ.

3. Main Results

In this section, we will characterize the graphs with an extremal monotonic increasing (or
decreasing, respectively) graph invariant in Gn,m,k. Assume that n−m = sk + t, where s is a positive
integer and t is a non-negative integer with 0 ≤ t < k.

3.1. The Reformulated First Zagreb Index, Multiplicative-Sum Zagreb Index, and k-Partiteness

The first Zagreb index is used to analyze the structure-dependency of total π-electron energy on
the molecular orbitals, introduced by Gutman and Trinajstć [8]. It is denoted by:

M1(G) = ∑
uv∈E(G)

(dG(u) + dG(v)),

which can be also calculated as:
M1(G) = ∑

u∈V(G)

dG(u)2.

Todeschini and Consonni [9] considered the multiplicative version of the first Zagreb index in
2010, defined as:

Π1(G) = ∏
u∈V(G)

dG(u)2.

For an edge e = uv ∈ E(G), we define the degree of e as dG(e) = dG(u) + dG(v) − 2.
Millic̆ević et al. [10] introduced the reformulated first Zagreb index, defined as:

M̃1(G) = ∑
e∈E(G)

dG(e)2 = ∑
uv∈E(G)

(dG(u) + dG(v)− 2)2.

Eliasi et al. [11] introduced another multiplicative version of the first Zagreb index, which is called
the multiplicative-sum Zagreb index and defined as:

Π∗1(G) = ∏
uv∈E(G)

(dG(u) + dG(v)).

They are widely used in chemistry to study the heat information of heptanes and octanes. For some
recent results on the fourth Zagreb indices, one can see [12–17].

109



Mathematics 2018, 6, 271

Lemma 3. Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then M̃1(G) < M̃1(G + uv).

Lemma 4. Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then Π∗1(G) < Π∗1(G + uv).

Note that s1, · · · , sk are k positive integers with
k
∑

i=1
si = n−m.

Theorem 1. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). By moving one vertex from the
part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]). If s1 − 1 ≥ s2 + 1,
then M̃1(G̃) > M̃1(Ĝ).

Proof.By the definition of the reformulated first Zagreb index M̃1(G), we can calculate as follows:

M̃1(Ĝ) =
m(m− 1)

2
(2n− 4)2 +

k

∑
i=1

msi(2n− si − 3)2 + ∑
1≤i<j≤k

sisj(2n− si − sj − 2)2.

Therefore,

M̃1(G̃)− M̃1(Ĝ) = m(s1 − 1)(2n− s1 − 2)2 + m(s2 + 1)(2n− s2 − 4)2

+ (s1 − 1)(s2 + 1)(2n− s1 − s2 − 2)2 −ms1(2n− s1 − 3)2

−ms2(2n− s2 − 3)2 − s1s2(2n− s1 − s2 − 2)2

+
k

∑
i=3

(s1 − 1)si(2n− s1 − si − 1)2 +
k

∑
i=3

(s2 + 1)si(2n− s2 − si − 3)2

−
k

∑
i=3

s1si(2n− s1 − si − 2)2 −
k

∑
i=3

s2si(2n− s2 − si − 2)2

= (s1 − s2 − 1)[(5n + 3p− 12)p + (n + p− 2)2

+ (7n + 8m− 12)
k

∑
i=3

si + (
k

∑
i=3

si)
2 +

k

∑
i=3

si(3
k

∑
i=3

si − 4si)

= (s1 − s2 − 1)[(n− 2)2 + (7n− 16)m + 4m2

+ (7n + 8m− 12)
k

∑
i=3

si + 4(
k

∑
i=3

si)
2 − 4

k

∑
i=3

s2
i ]

> (s1 − s2 − 1)[(n− 2)2 + (4n− 8)m + 4m2]

= (s1 − s2 − 1)(n− 2 + 2m)2 > 0.

Note that we have n− m = sk + t = (k − t)s + t(s + 1), where s is a positive integer and t is
a non-negative integer with 0 ≤ t < k. For simplicity, we write Km ∨ (Kk[{k − t}Os, {s}Os+1]) =

Km ∨ (Kk[Os, · · · , Os︸ ︷︷ ︸
k−t

, Os+1, · · · , Os+1︸ ︷︷ ︸
t

]). Then, the extremal value and the corresponding graph of the

reformulated first Zagreb index M̃1(G) can be shown as follows.

Theorem 2. Let G be an arbitrary graph in Gn,m,k. Then:

M̃1(G) ≤ m(m− 1)
2

(2n− 4)2 + m(n−m)(6n− 3s− 11)

+ 2(n−m)(n−m− s)(n− s− 1)2

+ t(s + 1)[−6(n− s− 1)2 + n + 2m(5− 2n + s) + (t− 2)(s + 1)],
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with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Proof. By Lemmas 1, 3, and Theorem 1, the extremal graph having the maximum reformulated first
Zagreb index in Gn,m,k is the graph Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]).
Then, we obtain that:

M̃1(Ĝ) =
m(m− 1)

2
(2n− 4)2 + (k− t)ms(2n− s− 3)2

+ tm(s + 1)(2n− s− 4)2 +
t(t− 1)

2
(s + 1)2(2n− 2s− 4)2

+
(k− t)(k− t− 1)

2
s2(2n− 2s− 2)2 + t(k− t)s(s + 1)(2n− 2s− 3)2

=
m(m− 1)

2
(2n− 4)2 + m(n−m)(6n− 3s− 11)

+ 2(n−m)(n−m− s)(n− s− 1)2

+ t(s + 1)[−6(n− s− 1)2 + n + 2m(5− 2n + s) + (t− 2)(s + 1)].

Theorem 3. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). If s1 − 1 ≥ s2 + 1, by moving
one vertex from the part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]).
Then, Π∗1(G̃) > Π∗1(Ĝ).

Proof. By the definition of the multiplicative-sum Zagreb index Π∗1(G), it is easy to see that:

Π∗1(Ĝ) = (2n− 2)
m(m−1)

2 Πk
i=1(2n− si − 1)msi Π1≤i<j≤k(2n− si − sj)

sisj .

Hence,

Π∗1(G̃)

Π∗1(Ĝ)
= (2n− s1 − s2)

(s1−s2−1) 2n− s2 − 2
2n− s1 − 1

am(s1−1)bms2

Πk
i=3c(s1−1)si Πk

i=3ds2si Πk
i=3(

2n− s2 − si − 1
2n− s1 − si

)si

> (ab)ms2 Πk
i=3(cd)s2si ,

where a = 2n−s1
2n−s1−1 , b = 2n−s2−2

2n−s2−1 , c = 2n−s1−si+1
2n−s1−si

, d = 2n−s2−si−1
2n−s2−si

.
By a simple calculation, we have:

(2n− s1)(2n− s2 − 2)− (2n− s1 − 1)(2n− s2 − 1) = s1 − s2 − 1 > 0,

(2n− s1 − si + 1)(2n− s2 − si − 1)− (2n− s1 − si)(2n− s2 − si) = s1 − s2 − 1 > 0.

Therefore, Π∗1(G̃)

Π∗1(Ĝ)
> 1.

Theorem 4. Let G be an arbitrary graph in Gn,m,k. Then:

Π∗1(G) ≤ (2n− 2)
m(m−1)

2 (2n− s− 1)ms(k−t)(2n− s− 2)m(s+1)t

(2n− 2s)
s2(k−t)(k−t−1)

2 (2n− 2s− 2)
(s+1)2t(t−1)

2 (2n− 2s− 1)s(s+1)t(k−t),

with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).
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Proof. By Lemmas 1, 4, and Theorem 3, the extremal graph having the maximum multiplicative-sum
Zagreb index in Gn,m,k should be the graph Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]). We get that,

Π∗1(Ĝ) = (2n− 2)
m(m−1)

2 (2n− s− 1)ms(k−t)(2n− s− 2)m(s+1)t

(2n− 2s)
s2(k−t)(k−t−1)

2 (2n− 2s− 2)
(s+1)2t(t−1)

2 (2n− 2s− 1)s(s+1)t(k−t).

3.2. The General Laplacian-Energy-Like Invariant and k-Partiteness

The general Laplacian-energy-like invariant (also called the sum of powers of the Laplacian
eigenvalues) of a graph G is defined by Zhou [18] as:

Sα(G) =
n−1

∑
i=1

µα
i ,

where α is an arbitrary real number.
Sα(G) is the Laplacian-energy-like invariant [19], and the Laplacian energy [20] when α = 1

2
and α = 2, respectively. For α = −1, nS−1(G) is equal to the Kirchhoff index [21], and α = 1, 1

2 S1(G)

is equal to the number of edges in G. For some recent results on the general Laplacian-energy-like
invariant, one can see [22–25].

Lemma 5. [18] Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then Sα(G) > Sα(G + uv) for α < 0,
and Sα(G) < Sα(G + uv) for α > 0.

Lemma 6. [26] If µ1 ≥ · · · ≥ µi−1 ≥ µi = 0 are the Laplacian eigenvalues of graph G and µ′1 ≥ · · · ≥
µ′j−1 ≥ µ′j = 0 are the Laplacian eigenvalues of graph G′, then the Laplacian eigenvalues of G ∨ G′ are:

i + j, µ1 + j, µ2 + j, · · · , µi−1 + j, µ′1 + i, µ′2 + i, · · · , µ′j−1 + i, 0.

It is well known that Laplacian eigenvalues of the complete graph Kp are 0, p, · · · , p, and Laplacian
eigenvalues of Op are 0, 0, · · · , 0. Then, the Laplacian eigenvalues of Ks1,s2 = Os1 ∨ Os2 are s1 +

s2, s2, · · · , s2, s1, · · · , s1, 0, where the multiplicity of s2 is s1 − 1 and the multiplicity of s1 is s2 − 1.
The Laplacian eigenvalues of Ks1,s2,s3 = Ks1,s2 ∨ Os3 are s1 + s2 + s3, s1 + s2 + s3, s2 + s3, · · · , s2 +

s3, s1 + s3, · · · , s1 + s3, 0, where the multiplicity of s2 + s3 is s1 − 1 and the multiplicity of s1 + s3 is
s2 − 1.

By induction, we have that the Laplacian eigenvalues of Ks1,··· ,sk are
k
∑

i=1
si, · · · ,

k
∑

i=1
si,

k
∑

i=1
si −

s1, · · · ,
k
∑

i=1
si − s1, · · · ,

k
∑

i=1
si − sk, · · · ,

k
∑

i=1
si − sk, 0, where the multiplicity of

k
∑

i=1
si is k − 1 and the

multiplicity of
k
∑

i=1
si − sj is sj − 1, for 1 ≤ j ≤ k.

From Lemma 6 and the above analysis, we obtain the following lemma.

Lemma 7. Let Ĝ be a graph of order n, and the join of a complete graph with order m and a complete
k-partite graph with order n− m i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). Then, the Laplacian eigenvalues of Ĝ
are n, · · · , n, n− s1, · · · , n− s1, · · · , n− sk, · · · , n− sk, 0, where the multiplicity of n is m + k− 1 and the
multiplicity of n− sj is sj − 1, for 1 ≤ j ≤ k.

Theorem 5. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). If s1 − 1 ≥ s2 + 1, by moving
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one vertex from the part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]).
Then, Sα(G̃) < Sα(Ĝ) for α < 0, and Sα(G̃) > Sα(Ĝ) for 0 < α < 1.

Proof. By the definition of the general Laplacian-energy-like invariant Sα(G) and Lemma 7,
we conclude that:

Sα(Ĝ) = (m + k− 1)nα +
k

∑
i=1

(si − 1)(n− si)
α.

Therefore:

Sα(G̃)− Sα(Ĝ) = (s1 − 2)(n− s1 + 1)α + s2(n− s2 − 1)α

− (s1 − 1)(n− s1)
α − (s2 − 1)(n− s2)

α

= (s1 − 2)[(n− s1 + 1)α − (n− s1)
α]

+ (s2 − 1)[(n− s2 − 1)α − (n− s2)
α] + (n− s2 − 1)α − (n− s1)

α.

For α < 0, we have:

Sα(G̃)− Sα(Ĝ) < (s1 − 2)[(n− s1 + 1)α − (n− s1)
α] + (s2 − 1)[(n− s2 − 1)α − (n− s2)

α]

< (s1 − 2)[(n− s1 + 1)α − (n− s1)
α + (n− s2 − 1)α − (n− s2)

α]

= (s1 − 2)[ f (n− s1)− f (n− s2 − 1)],

where f (x) = (x + 1)α − xα, f ′(x) = α(x + 1)α−1 − αxα−1 > 0.
Then, f (n− s1) < f (n− s2 − 1), and Sα(G̃) < Sα(Ĝ).
For 0 < α < 1, we have:

Sα(G̃)− Sα(Ĝ) > (s1 − 2)[(n− s1 + 1)α − (n− s1)
α] + (s2 − 1)[(n− s2 − 1)α − (n− s2)

α]

> (s2 − 1)[(n− s1 + 1)α − (n− s1)
α + (n− s2 − 1)α − (n− s2)

α]

= (s2 − 1)[ f (n− s1)− f (n− s2 − 1)],

where f (x) = (x + 1)α − xα, f ′(x) = α(x + 1)α−1 − αxα−1 < 0.
Then, f (n− s1) > f (n− s2 − 1), and Sα(G̃) > Sα(Ĝ).

Theorem 6. Let G be an arbitrary graph in Gn,m,k. Then,
for α < 0, Sα(G) ≥ (m + k− 1)nα + (k− t)(s− 1)(n− s)α + ts(n− s− 1)α,
for 0 < α < 1, Sα(G) ≤ (m + k− 1)nα + (k− t)(s− 1)(n− s)α + ts(n− s− 1)α,
with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Proof. By Lemmas 1, 2, and Theorem 5, the extremal graph having the extremal value of the general
Laplacian-energy-like invariant in Gn,m,k should be the graph Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]), then we can verify that
Sα(Ĝ) = (m + k− 1)nα + (k− t)(s− 1)(n− s)α + ts(n− s− 1)α.

3.3. The General Zeroth-Order Randić Index and k-Partiteness

The general zeroth-order Randić index is introduced by Li [27] as:

0Rα(G) = ∑
u∈V(G)

(dG(u))α,

where α is a non-zero real number.
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0Rα(G) is the inverse degree [28], the zeroth-Randić index [29], the first Zagreb index [30], and the
forgotten index [31] when α = −1, α = − 1

2 , α = 2, and α = 3, respectively. For some recent results on
the general zeroth-order Randić index, one can see [32–34].

Lemma 8. Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then 0Rα(G) >0Rα(G + uv) for α < 0,
and 0Rα(G) <0Rα(G + uv) for α > 0.

Theorem 7. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). If s1 − 1 ≥ s2 + 1, by moving
one vertex from the part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]).
Then, 0Rα(G̃) <0Rα(Ĝ) for α < 0, and 0Rα(G̃) >0Rα(Ĝ) for 0 < α < 1.

Proof. By the definition of the general zeroth-order Randić index 0Rα(G), we have:

0Rα(Ĝ) = m(n− 1)α +
k

∑
i=1

si(n− si)
α

Then,

0Rα(G̃)−0 Rα(Ĝ) = (s1 − 1)(n− s1 + 1)α − s1(n− s1)
α

+ (s2 + 1)(n− s2 − 1)α − s2(n− s2)
α

= (n− s2 − 1)α − (n− s1)
α

+ (s1 − 1)[(n− s1 + 1)α − (n− s1)
α] + s2[(n− s2 − 1)α − (n− s2)

α].

For α < 0, we have:

0Rα(G̃)−0 Rα(Ĝ) < (s1 − 1)[(n− s1 + 1)α − (n− s1)
α + (n− s2 − 1)α − (n− s2)

α]

= (s1 − 1)[ f (n− s1)− f (n− s2 − 1)],

where f (x) = (x + 1)α − xα, f ′(x) = α(x + 1)α−1 − αxα−1 > 0. Then, f (n − s1) < f (n − s2 − 1),
0Rα(G̃) <0 Rα(Ĝ).

For 0 < α < 1, we have:

0Rα(G̃)−0 Rα(Ĝ) > s2[(n− s1 + 1)α − (n− s1)
α + (n− s2 − 1)α − (n− s2)

α]

= s2[ f (n− s1)− f (n− s2 − 1)],

where f (x) = (x + 1)α − xα, f ′(x) = α(x + 1)α−1 − αxα−1 < 0.
Then, f (n− s1) > f (n− s2 − 1), Rα(G̃) > Rα(Ĝ).

Theorem 8. Let G be an arbitrary graph in Gn,m,k. Then,
for α < 0, 0Rα(G) ≥ m(n− 1)α + (k− t)s(n− s)α + t(s + 1)(n− s− 1)α,
for 0 < α < 1, 0Rα(G) ≤ m(n− 1)α + (k− t)s(n− s)α + t(s + 1)(n− s− 1)α,
with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Proof. By Lemma 8 and Theorem 7, in view of Lemmas 1 and 2, the extremal graph having the
extremal value of the general zeroth-order Randić index in Gn,m,k should be the graph Km ∨ (Kk[{k−
t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]). By a simple calculation, we have
0Rα(Ĝ) = m(n− 1)α + (k− t)s(n− s)α + t(s + 1)(n− s− 1)α.
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3.4. The Modified-Wiener Index and k-Partiteness

The modified-Wiener index is defined by Gutman [35] as:

Wλ(G) = ∑
u,v∈V(G)

dλ
G(u, v),

where λ is a non-zero real number.

Lemma 9. Let G be a graph with u, v ∈ V(G). If uv ∈ E(G), then Wλ(G) < Wλ(G + uv) for λ < 0,
and Wλ(G) > Wλ(G + uv) for λ > 0.

Theorem 9. Let Ĝ be a graph of order n > 2, and the join of a complete graph with order m and a complete
k-partite graph with order n−m in Gn,m,k, i.e., Ĝ = Km ∨ (Kk[Os1 , · · · , Osk ]). If s1 − 1 ≥ s2 + 1, by moving
one vertex from the part of Os1 to the part of Os2 , we get a new graph G̃ = Km ∨ (Kk[Os1−1, Os2+1, · · · , Osk ]).
Then, Wλ(G̃) > Wλ(Ĝ) for λ < 0, and Wλ(G̃) < Wλ(Ĝ) for λ > 0.

Proof. By the definition of the modified-Wiener index Wλ(G), we have the following result.

Wλ(Ĝ) =
m(m− 1)

2
+

k

∑
i=1

si(si − 1)
2

2λ +
k

∑
i=1

msi + ∑
1≤i<j≤k

sisj

Then,

Wλ(G̃)−Wλ(Ĝ) =
(s1 − 1)(s1 − 2)

2
2λ +

(s2 + 1)s2

2
2λ + m(s1 − 1)

+ m(s2 + 1) + (s1 − 1)(s2 + 1) +
k

∑
i=3

(s1 − 1)si +
k

∑
i=3

(s2 + 1)si

− s1(s1 − 1)
2

2λ − s2(s2 − 1)
2

2λ −ms1 −ms2 − s1s2 −
k

∑
i=3

s1si −
k

∑
i=3

s2si

= (s1 − s2 − 1)(1− 2λ).

For λ > 0, we have Wλ(G̃) < Wλ(Ĝ). For λ < 0, we have Wλ(G̃) > Wλ(Ĝ).

Theorem 10. Let G be an arbitrary graph in Gn,m,k. Then,
for α < 0, Wλ(G) ≤ 1

2 [m(m− 1) + (n−m)(n + m− s)− (s + 1)t + s(n−m + t− k)2λ],
for α > 0, Wλ(G) ≥ 1

2 [m(m− 1) + (n−m)(n + m− s)− (s + 1)t + s(n−m + t− k)2λ],
with the equality holding if and only if G ∼= Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Proof. By Lemma 9 and Theorem 9, in view of Lemmas 1 and 2, the extremal graph having the extremal
value of the modified-Wiener index in Gn,m,k should be the graph Km ∨ (Kk[{k− t}Os, {s}Os+1]).

Let Ĝ = Km ∨ (Kk[{k− t}Os, {s}Os+1]). Consequently, we have that:

Wλ(Ĝ) =
m(m− 1)

2
+ (k− t)

s(s− 1)
2

2λ + t
s(s + 1)

2
2λ + tm(s + 1) + (k− t)ms

=
1
2
[m(m− 1) + (n−m)(n + m− s)− (s + 1)t + s(n−m + t− k)2λ].

4. Conclusions

In this paper, we consider connected graphs of order n with vertex k-partiteness not more than
m and characterize some extremal monotonic graph invariants such as the reformulated first Zagreb
index, the multiplicative-sum Zagreb index, the general Laplacian-energy-like invariant, the general
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zeroth-order Randić index, and the modified-Wiener index among these graphs, and we investigate
the corresponding extremal graphs of these invariants.
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12. Borovićanin, B.; Furtula, B. On extremal Zagreb indices of trees with given domination number.
Appl. Math. Comput. 2016, 279, 208–218. [CrossRef]

13. Gao, W.; Jamil, M.K.; Farahani, M.R. The hyper-Zagreb index and some graph operations. J. Math. Anal. Appl.
2017, 54, 263–275. [CrossRef]
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Abstract: Background: People want to be able to evaluate different kinds of information in a good way.
There are various methods that they develop in such situations. Among the optimization methods,
the goal programming method is often used when there are multiple objectives that decision makers
want to accomplish. Because scheduling and planning problems have multiple objectives that are desired
to be achieved, the goal programming method helps the researcher in contradictory situations between
these goals. Methods: This study includes, examines, and analyzes recent research on service scheduling
and planning. In the literature, service scheduling and planning studies have been examined using goal
programming method from past to today. Results: The studies are detailed according to the type of
goal programming, according to scheduling types, the purpose used in the studies, and the methods
integrated with the goal programming. There are 142 studies in Emerald, Science Direct, Jstor, Springer,
Taylor and Francis, Google Scholar, etc. databases that are examined in detail. For readers, diversification
has been made to facilitate the identification of these studies and a detailed overview has been presented.
Conclusion: As a result of the study, studies with the goal programming in the literature have been seen.
The readers’ perspectives for planning and scheduling are discussed.

Keywords: goal programming; scheduling and planning; service system

1. Introduction

Even at any time in everyday life, people may be faced with situations that need to be decided.
Deciding is to choose the most appropriate option among many. Optimal results may not always be
obtained when a comparison is made between options. Some of the aims may conflict with each other,
while others may be proportional to each other. However, too many factors may need to be ignored in
order to achieve an optimal solution. Multi-criteria decision making is the decision-making tool to
choose the best option among multiple criteria. One of the multi-criteria decision-making methods,
the goal programming method, is a method that helps decision-makers when more than one criterion
is concerned. By trying to reduce complexity problems, it is tried to reach the determined aims as
much as possible. The goal programming method, which is an extension of linear programming, is a
commonly used method in the literature. The difference of the goal programming method from the
linear programming is to consider many objectives at the same time [1].

There are many purposes in production and service systems that are required to be realized,
and there are many factors that affect these goals. In production systems, it is planned in what order
and when to do jobs on machines. In service systems, this definition of planning differs and varies for
each sector. Each task defined in production systems represents activities that transform a piece and
add value to it. In service systems, this activity generally involves people. So, the resources needed
can take many different forms and basically all serve humanity. In the service systems, these resources
are varied in the health environment such as operating rooms, polyclinics, surgeons and else in
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the transportation such as airline, ship, train, passenger, pilot, or general reservation, course-exam
programs. In this system, where there are so many varieties, scheduling and planning are very
important. There are many factors that affect scheduling and planning activities. Taking these factors
into account, synchronizing the use of different resource types is very difficult in real life. For decision
makers, multi-criteria decision-making methods that can take into account multiple objectives that
are influenced by various factors are at the forefront. Among these methods, the goal programming
method, which is frequently used in the literature and has a high efficiency in order to reach the
desired results, is an effective tool. As an extension of linear programming, the goal programming
method allows flexibility in performing many purposes in planning and scheduling studies. Therefore,
it is mostly preferred by the researchers in the literature. The researchers provide solutions for each
scheduling and planning activities in the service sector by using the goal programming method using
different performance criteria [2].

When literature studies related to goal programming method are examined; Tamiz et al. [3]
examined the literature on two types of goal programming methods. They analyzed the application
areas of these 70 studies. Tamiz et al. [4] presented a detailed analysis of the literature on the goal
programming method. They emphasized to application areas in order to guide future work by looking
from a general point of view. Jones et al. [5] presented a review of 280 studies on goal programming
over a period of ten years. By determining the goal programming method as a keyword, they analyzed
the application areas of the studies within the ten-year period. Azmi et al. [6] focused on portfolio
selection and examined the work done with goal programming in this respect. They talked about the
factors that affect portfolio selection in their studies and they included applications that can be worked
on for readers. Colapinto et al. [7] focused on a topic rather than examining the goal programming
method from a general point of view like other studies. In financial portfolio management, they have
examined applications related to goal programming. They have categorized countries, years and so
on, and talked about the importance of the subject and its relation to goal programming.

This study intends to examine in detail the studies related to scheduling and planning with goal
programming method in service systems. This is the first study to analyze the scheduling and planning
studies of the goal programming method which is frequently preferred by the researchers in the
literature according to our studies. In addition, unlike other studies in the literature, we have classified
the studies according to scheduling and planning types. We have believed that the contributions
obtained as a result of the examinations made may be useful for readers who wish to conduct research
in these areas. By putting together, the extensive literature covered in detail, the studies have been
reflected the extent that readers can understand. Goal programming, scheduling, and planning
keywords in Emerald, Science Direct, Jstor, Springer, Taylor and Francis, and Google Scholar databases
are scanned while the literature is being searched. The results of the review of 142 studies are compiled.

All of the studies include all the studies that can be achieved as much as the day-to-day study of the
first year of the goal programming method being used in the literature. Although the number of studies
in the years that the first definition of the goal programming method was made is very small, the number
of studies done in recent years has increased [5]. The majority of the studies examined is varied after
2000. With the development of technology and the changing needs of people, planning, and scheduling
activities in service systems have also been shaped and differentiated according to needs. Especially in
the last decade, these activities have increased and are expected to become even more diverse.

The review structure of this study is basically based on the combination of scheduling and
planning activities of the goal programs. This work, which is more specifically structured to allow
readers to easily access the information they seek, is divided into 5 sections. Section 2 provides
information on which scheduling and planning activities the goal programming method is used
for. In Section 3, the types of goal programming that are frequently used in the literature are given.
The mathematical formulations of these methods are given to give technical information to the reader.
In Section 4, it is mentioned what methods are integrated with the goal programming method in the
literature. In Section 5 the information obtained in the investigation is interpreted.
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2. Goal Programming According to Types of Scheduling and Planning Activities

Planning and scheduling is an effective tool for decision making in production and service systems.
The mechanism to control the sequence of tasks to be performed manually or automatically can be
defined as scheduling [2]. Scheduling and planning studies are carried out according to the determined
goals and constraints in order to balance the load in a system and ensure that the existing resources
are distributed evenly. Mathematical or heuristic methods are used to allocate these jobs to limited
resources. This balanced distribution of resources enables businesses to optimize their objectives
and reach their goals. Scheduling and planning activities differ in terms of process and service
processes, although they are defined as an alignment of tasks and balance of resources. Scheduling and
scheduling activities in manufacturing systems are specified as machining or hand-machining in a
specific sequence of orders that will be driven to the market in a business environment. Works can
be delayed when machines are busy, when machine breakdowns occur, when processing times are
longer than planned, when capacities are inadequate. In such cases, detailed scheduling of the tasks
or tasks planned to be done helps to increase the efficiency of the processes and ensure continuous
control. In manufacturing systems, it is aimed to optimize the allocation of resources based on stock
levels, demands, and resource requirements [8].

In scheduling and planning activities in service systems, there are many different problems.
Though basically the same as the planning and scheduling function in the manufacturing environment,
detailed information systems and decision-making functions are included in service systems.
Differences between manufacturing systems and service systems also affect scheduling and planning
activities. While the number of resources is kept constant in the production process of a job in manufacturing
systems, the number of resources in service systems can change with time. Such variability affects the
objective function. For this reason, planning and scheduling activities in service systems are related to
capacity management and productivity management [2]. Scheduling and planning activities in service
systems have many field applications. It is applied in many different subjects such as manpower scheduling,
reservation scheduling, nurse scheduling, personnel scheduling, shift scheduling, transportation systems
scheduling, and course scheduling. The goal programming method in the literature has been used in
a wide variety of fields in service systems. Table 1 shows the applications in the service sector where
researchers use the goal programming method.

Table 1. Studies by scheduling and planning types.

Course scheduling [9–11]

Financial planning [12,13]

Tour scheduling [14–16]

Shift scheduling [17–22]

Menu planning [23,24]

Manpower planning [25–30]

Maintenance scheduling [31,32]

Urban planning [33–38]

Other [39–55]

Personnel
Nurse scheduling [56–74]
Staff scheduling [75–87]
Examiner scheduling [88,89]

Advertisement
Media planning [90–92]
Advertisement planning [93]
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Table 1. Cont.

Agriculture
Agriculture planning [94–96]
Harvest planning [97–101]
Land planning [102–105]
Forest planning [106–108]

Transportation
Transportation planning [109–112]
Passenger scheduling [113]

Waste
Waste planning [114]
Solid waste management planning [115]

Healthcare
Master Surgical Scheduling [116–120]
Health planning [121]
Polyclinic schedules [122]

Energy [123–130]

As shown in Table 1, scheduling and planning activities in service systems vary widely in the literature.
With this diversity being too much, the work that a particular inland destination programming method is
used to is limited. Nurse scheduling and staff scheduling studies under the heading of personnel appear to
be frequently addressed in the literature. Increasing the quality of service provided to customers in service
systems is a priority goal. It is also important to increase staff satisfaction in order to provide this service
quality at the top level. Taking into consideration the preferences of the staff in working conditions and
creating the schedules according to this, causes performance increases. Louly et al. [76], who draw attention
to this point and improves productivity with the program they have created, has developed a mathematical
model with goal programming. They aimed to create an optimized cyclic program by combining the staff
preferences and operating constraints. The flexibility of the goal programming method is an alternative
tool for many constraint and objective problems. In a set of work models, soft constraints provide the
convenience of developing solutions to these goals and boundaries. At the same time, the excess of the
work load on the staff, the staff can tire and reduce the motivation to work. Therefore, the retirement of the
staff must be distributed equally. The equal division of staff effort means that the work load of all the staff
is balanced. Todovic et al. [79] have developed a methodology to be able to allocate this workload in a
balanced way.

In the nurse scheduling problem, which is another type of personnel scheduling, basically,
the same goals are sought. Providing patient satisfaction at the top level in health care units is linked to
ensuring a high level of employee satisfaction. Careful and productive work by healthcare professionals
has vital preventive measures. However, it is seen that there is motivation and loss of performance on
the staff through wrong and unfair schedules. Azaiez et al. [56–58] developed a mathematical model
for fairness of these schedules and plans by addressing the nurse scheduling problem.

In Table 1, very different application areas are covered by the researchers. While some areas
have become the focus of researchers’ interest, some studies have remained limited in the literature.
In the studies under the other title; the authors of [40] in the planning of information resources for
strategic planning in health systems, the authors of [43] in strategic planning for human resources
in health systems, the authors of [44] in a basketball league game schedule, the authors of [47] for
pre-scheduling in wind power, and the authors of [55] in mine planning used goal programming.
When we look at the studies, it is pointed out that real life problems contain too many limitations.
It seems that it is very difficult to transfer all of these constraints to mathematical models. At this point,
the goal programming method that will soften most constraints, which will help most situations, is at
the forefront. Many objectives can be achieved by allowing deviations from these constraints with
the goal programming method. In the future, researchers should focus on the work in the areas that
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need to use the goal programming method. They should develop alternative approaches to real-life
problems by replicating the limited applications of existing studies.

3. Goal Programming Types

There are many purposes to be realized in the problems encountered in everyday life. These aims
can be contradictory to each other as well as in the same direction. In such cases, researchers resort to
multi-criteria programming methods in order to achieve the objectives simultaneously. One of these
methods, Goal Programming, was first described by Charnes et al. [131] in 1961. Decision makers have
a hard time developing complex mathematical approaches when there are conflicts of interest or lack of
knowledge in complex situations. To reach the desired values for each goal, it is necessary to extend the
mathematical approaches to include multiple objectives. In such decision problems, decision makers
want to achieve their goals as much as possible. All these concerns place the goal programming method
within the multi-criteria programming paradigm [132,133]. There are three different goal programming
methods used by researchers in the literature. Although Lexicographic Goal Programming and
Weighted Goal Programming are frequently used, Chevyshev Goal Programming, also known as
Minmax Goal Programming, is another less commonly used method.

Extensions of the goal programming method include extended goal programming, interval goal
programming, lexicographic extended goal programming, and lexicographic Minmax goal programming
methods (minimize the maximum deviation between goals). The extended goal programming method
is used when decision makers wish to consider the number of goals reached. Researchers benefit from
the flexibility of the expanded goal programming method to bring together the philosophies underlying
the problems. They talk about the ability to produce solutions that fully reflect the basic criteria of
the problems [134]. Another variant of this method is the lexicographic extended goal programming
method [135]. Interval goal programming method minimizes the weighted sum of unwanted deviation
variables within a given set of ranges [136]. The lexicographic Minmax goal programming method
(minimize the maximum deviation between goals) represents the preferences of researchers more accurately
in certain situations [137].

Researchers use these methods when the classical goal programming approach is not sufficient.
In the multi-choice goal programming method developed in cases where the current goal formulation
is not solved, multi-choice aspiration situations are taken into consideration. These multi-choice
aspiration levels may be present in decision-making. It allows decision makers to determine multi
aspiration levels for yield “higher/better” and “less/better” problems at aspiration levels [138].
While expressing these levels, there are difficulties in understanding the multiplicative terms of
binary variables. To overcome these challenges, Chang et al. [139] proposed a revised multi-choice goal
programming method. In this method, the multiplicative values of binary variables are not included.
This leads to more efficient use and understanding of this method. In the proposed new method, it is
also possible to direct the relations between the goals in problems involving multiple goals. At the
same time, the goal programming method has been diversified according to in the case of fuzzy and
uncertainty. Table 2 lists the studies in which the goal programming method is used in the fuzzy state.
Table 3 also shows the use of the goal programming method in uncertain situations.

Table 2. Studies by fuzzy conditions.

Fuzzy [11,27,29,36,38,42,48,49,67,88,104,111,112,115]

Non-fuzzy [9,10,12–26,28,30–35,39–41,43–47,50–66,68–87,89–103,105–110,113,114,116–122]

Table 3. Studies by Uncertainty Status.

Stochastic
Chance-Constraint [47,93]
Stochastic [37,84,107]

Deterministic [9–36,38–46,48–83,85–92,94–116,118–122]
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Tables 2 and 3 show that there is a limited number of fuzzy and stochastic studies. Uncertainty
situations vary according to the problems researchers address. Most researchers are doing solutions
under hypotheses in their work. However, even if the number is small, it seems that they are taken
into account in their uncertainties.

3.1. Lexicographic Goal Programming

In some cases, decision-makers may be faced with prioritizing the solution options to achieve
their goals. In other words, in order to optimize mathematical approaches in the problems encountered,
it is the status of ranking among the objectives in the model. According to this approach, priority
structure is mentioned among the preferences. Each component in the objective function represents the
deviation variables of the goals placed at the priority level to which it corresponds. Then, according to
these priorities, the model is solved, and the result obtained from each priority is added to run the
next priority on the model. This resolution continues until the last priority is executed. This is defined
as sequential reduction of each priority. The mathematical formulation of priority goal programming
is as follows [137,140]:

LEXMINa =
[
∑ i∈h1

(
αi.d−i + βi.d+i

)
, . . . , ∑ iεhr

(
αi.d−i + βi.d+i

)
, . . . , ∑ iεhQ

(
αi.d−i + βi.d+i

)]
(1)

subject to
fi(x) + d−i − d+i = bii ∈ {1, . . . , q}, i ∈ hr, r ∈ {1, . . . , Q} (2)

d−i , d+i ≥ 0. (3)

The expressions in the given mathematical model, hr represents the cluster index with the goals
at the r. priority level, αq and βq represents the weight factors for the d+q and d−q deviation values,
fs(x) represents the goal constraint. αi = wi/ki if d−i is unwanted, otherwise αi = 0 and βi = wi/ki if
d+i is unwanted, otherwise βi = 0. The parameters wi and ki are the weights reflecting preferential
and normalizing purposes attached to the achievement of the ith goal. Each component in the
objective function minimizes unwanted deviation variables in the goals placed at the level of priority
it corresponds to.

The basic logic in priority goal programming starts with giving priorities to the identified goals.
Then the model continues with resolving the goals with each priority one by one. The deviation
variables d+q and d−q in the goal constraints are defined as the difference between the achievement
level in reaching the goals set by the decision makers and the actual level. If a goal value is below
a desired level, a negative deviation is reached, and a positive deviation occurs if a desired value is
reached. Deviation variables cannot have a value less than zero. Any variance that is undesirable to be
minimized is given a zero value. In Table 4, there are scheduling, and planning studies made using the
lexicographic goal programming method in the literature.

Table 4. Studies in the literature according to lexicographic goal programming and weighted goal
programming method.

Lexicographic goal programming [9,17,21,24,36,42,43,52,60,64,69,93,94,116–118,122]

Weighted goal programming [10,19,22,35,38,40,56,57,75,77,86,100,108]

In some problems, the results of the solution are affected by the decisions of the decision makers.
When there is an importance level among the objectives, it is necessary to prioritize the objectives.
Sungur et al. [17,24,36] have identified priority levels among goals using the lexicographic goal
programming method in their work. In lexicographic goal programming, decision-makers may not
achieve the desired level of satisfaction at the specified goals. In this point, priority is given to the most
important goals and the solution process is going on. Lexicographic goal programming is used when
decision-makers cannot achieve relative importance of their goals by weight.
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3.2. Weighted Goal Programming

When decision-makers’ demands are determined precisely, a certain weight is given to the
objectives. In the objective function, this weighted sum of deviations is minimized. The deviation
variables of the goals have different relative weight in the objective function. Weighted goal
programming also makes an effort to achieve multiple goals at the same time. Weighted goal
programming is used for problems that cannot be prioritized among goals and can be measured
by weighting goals where all goals are same important. The mathematical formulation of weighted
goal programming is as follows [137,141]:

Minz = ∑ k
i (αid−i + βid+i ) (4)

subject to
fi(x) + d−i − d+i = bi, i = 1 . . . Q, x ∈ Cs. (5)

In the weighted goal programming, the basic logic is to minimize the sum of the deviations
of each goal weighted relative importance weights. Expressions in the given mathematical model;
fi(x) represents a linear function of x, the attainment of bi represents the desired goal value, d−i ,
d+i represents the deviation values in the negative and positive directions from the goal values,
Cs represents a set of constraints in linear programming. αi = wi/ki if d−i is unwanted, otherwise
αi = 0 and βi = wi/ki if d+i is unwanted, otherwise βi = 0. The parameters wi and ki are the
weights reflecting preferential and normalizing purposes attached to the achievement of the ith
goal. For decision makers, the weight of each goal may be different. If a goal value is below a
desired level, a negative deviation is reached, and a positive deviation occurs if a desired value is
reached. Deviation variables cannot have a value less than zero. Any variance that is undesirable to
be minimized is given a zero value. Table 4 contains the scheduling and planning studies using the
weighted goal programming method in the literature.

Looking at the studies in Table 4, it appears that decision makers have weighted on the goals
in the decision-making process. Since these weights are factors that affect the goals in some studies,
various methods are integrated. [10,19,56–77] used weighted goal programming method in their
studies. Weighted goal programming, which minimizes the weighted sum of the deviations in the
goals, can balance the opposites between goals.

3.3. Chebyshev Goal Programming

Weighted goal programming and lexicographic goal programming methods are often preferred
by the researchers in the literature. However, Chebyshev Goal Programming method, known as
Minmax goal programming, is less common in the literature. Although it is not used very often, it has
a theoretically important structure. In the Chebyshev goal programming method, there is a tendency
to minimize the maximum deviation between goals, rather than the minimization of the priority of
deviations or weighted summation of the deviations. In the model, the goals are shown separately and
there is no prioritization among the goals.

In this method, first proposed by the authors of [142] in 1976, the objective function consists only
of the distance parameter giving the minimization of the maximum deviation [143]. The mathematical
formulation of the Chebyshev goal programming method is as follows [137]:

Min D (6)

subject to
(αini + βi pi)− D ≤ 0 (7)

fi(x) + d−i − d+i = ti, i ∈ {1, . . . , q} (8)

d+i , d−i ≥ 0 x ∈ F. (9)
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In the given mathematical model expressions, d+i and d−i represents deviations in the positive and
negative direction from the i goal. If the positive direction deviation is d+i for any value greater than
zero and the negative direction deviation takes the value “0” for d−i , the value of the objective function
is greater than the goal value. Similarly, for any value greater than zero in the negative direction
deviation is d−i , if the deviation variable d+i in the positive direction has a value of “0”, the objective
function value is smaller than the goal value. ti is the target level for the ith goal, x is vector of
decision variables, F is feasible set of constraints, D is a maximum deviation. In this goal programming
approach, the maximum deviation D is minimized. Therefore, is called Minmax goal programming.

In this method, normalization process is performed because there are different units among
the goals. Methods such as percent normalization, Euclidean normalization, total normalization,
and Zero-one normalization are recommended for normalization. The first and important difference
between the other goal programming methods is the phasing of the maximum discovery. The general
effect of this punishment is to provide a balance between the levels of the goals, rather than reducing
the sum to the minimum if possible. When considering real-life problems, decision-makers can use it
to define needs as balancing in many applications.

4. Goal Programming According to Integrated Method

In the goal programming method which allows flexibility in the solution process, the goals are
transferred with the model goal constraints. In the model of decision makers, the optimal value of the
objective function is sought in the solution allowed by the system and goal constraints. In other words,
the desired solution is determined according to the area of the desired goals. In the literature, goal
programming method is mostly used alone in scheduling and planning studies. However, in recent
years it has been integrated with various methods and started to be used. Traditional goal programming
methods use simplex-based optimization techniques in the solution process. As the number of factors
to consider in the problem structure increases, the difficulty and complexity of the problem also
increase. The work integrated with the heuristic methods in the literature facilitates the solution
process of the difficult models that cannot be solved by traditional methods. Table 5 shows the studies
integrated with the goal programming in the scheduling and planning studies in the literature.

Table 5. The studies integrated with goal programming.

Multi-Criteria Decision Making
Analytic Hierarchy Process [10,40,75,77,86,130]
Analytic Network Process [22,57]

Heuristic Methods
Particle Swarm Optimization [29]
Annealing Simulation [111]

Other Methods
Data Envelopment Analysis [50,130]
Benchmarking [51]

Not Integrated
Only Goal Programming [9,11–21,23–28,30–39,41–49,52–56,58–74,76–85,87–110,112–122]

As can be seen from Table 5, the number of studies related to the methods in which the goal
programming method is integrated is very limited. The factors that make the solution process difficult
can cause the inclusion of the stochastic functions in the studies. For such complicated situations,
researchers can increase the effectiveness of the goal programming method by increasing the variety
and application area of the models.

In the literature, the goal programming method is often integrated with multi-criteria
decision-making methods so that decision makers can weight their goals. The analytical hierarchy
process method seems to be preferred. Decision makers first identify the factors that influence goals.
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Then, comparisons are made according to the hierarchical structure or interactions among these factors.
According to these comparisons, factors are weighted. Kırış [10] in the course scheduling, [40] in
planning information sources in health systems, Güler et al. [75] in planning anesthesia patients,
used the analytic hierarchy process method. Hamurcu et al. [22] in staff scheduling, Bağ et al. [57]
nurse scheduling used the analytical network process method.

Shahnazari-Shahrezaei et al. [29] have integrated particle swarm optimization with the goal
programming method. They have considered the preferences of the employees of the problem type they
deal with, and they have developed an algorithm for the complexity of the problem. The performance
of the schedules created with this algorithm has been verified. The performance of the schedule
created with this algorithm has been verified. During the studies, the effectiveness of the approaches
developed by integrating the goal programming method with different methods is being increased.
By evaluating the performance of these integrations and approaches, researchers can create more
effective schedules in future work.

The goal programming method integrated with methods such as AHP is the solution to the problems
experienced in the ongoing weighting situations. In this section, researchers can be interpreted that
the researchers have recently turned towards these integrations. According to this evaluation, it is
predicted that such integrations will increase. These integrations are composed of potential study topics
for future researchers.

5. Conclusions

There are many factors and constraints that decision-makers consider in planning and scheduling
study in production and service systems. In line with these constraints and limits, there are many
objectives that need to be realized at the same time. Since it is impossible to transfer such real-life
problems entirely to modeling, researchers are developing solutions algorithms under various
assumptions. Optimization of scheduling and planning studies in these systems is tried to be
achieved by multi-criteria programming models that simultaneously satisfy conflicting objectives.
Today, service systems that operate with the idea of developing technology and meeting the growing
desire of consumers face many limitations. Many approaches are being developed to cope with these
limitations. Various studies are being carried out in order to be able to cope with these limiting
conditions as well as to achieve the determined aims. The goal programming method, which is a
multi-criteria programming model, is an effective tool for solving these complex situations. It offers
an optimal solution for problems with two or more aims. At the same time, contradictory goals are
also included in the modeling. Due to the complicated structure of the problem, sometimes it is faced
to there is no solution in the processes with linear programming methods. The goal programming
method is used by decision makers as a tool to help with such problems.

In this study, studies about planning and scheduling studies in service systems are examined.
We have been researched studies from the first definition of the goal programming method to the
today. Goal programming, scheduling, and planning keywords in Emerald, Science Direct, Jstor,
Springer, Taylor and Francis, and Google Scholar databases are scanned while the literature is being
searched. The studies examined are listed under various headings according to scheduling types,
goal programming types, goal programming with integrated methods. The contributions of these
studies to the literature and readers are mentioned. The theoretical structure of the goal programming
method is discussed, and technical information is provided to the readers. For researchers, a systematic
structure of these studies has been established. This structure makes it easier for readers to focus on
the topics they are researching. In addition, the studies listed according to scheduling and planning
types help the readers to navigate to which areas. Comprehensible lists have been created with the
tables presented in this study and accessibility has been facilitated.

It can be seen from the planning and scheduling studies made by the goal programming method
that the researchers have applied in a wide range of fields. However, there are a limited number of
applications in these areas. Researchers are trying to achieve many goals at the same time by taking
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advantage of the flexibility of the goal programming method. But as with every method, there is a
lack of this method. All limitations and restrictions on real life problems are not reflected in the model.
Even though it is an indirect way, there are contradictions between goals and these limitations make
solution difficult. For this reason, there are various assumptions in studies. In applications performed
with the goal programming method, researchers can be satisfied with the results of the solution as much
as possible. However, this satisfaction is not always fully realized. For this reason, researchers can make
different researches in order to get desired results by going to different approaches. At the same time,
in spite of this diversity in scheduling types, it is possible to make an interpretation that developing
technology and application fields may have changed if there are so few studies. So, as technology
develops, demands and needs change. For this reason, while some areas of service systems are at
the foreground, some areas remain behind. The areas shaped according to these desires and needs,
the researchers also directed the same direction.

The goal programming method is a method that can allow flexibility on the objectives in decision
problems. At this point, researchers can take a look at the different areas of application taking into
account other studies in this study. Researchers can build models that offer solutions to different
problems. The basis of these models can be taken from other studies presented as a reference in this
study. Based on changing technology, it can adapt these studies to today’s problems and extend the
performance criteria mentioned here. Thus, it can become a source of research for different studies.
In addition, the goal programming method helps researchers to achieve the closest successful outcome
as possible to various goals and constraints. It makes it possible for researchers to reach multiple goals
that conflict with their preferences.

The goal programming method is presented as an effective method to researchers by prioritizing
or weighting among the objectives. However, it is foreseen that there may be some points where this
advantageous situation becomes a disadvantage. Researchers may find it difficult to prioritize or
weight their intended objectives. At this point, they should establish a decision support system for these
purposes. This method, which is one of the most suitable tools for researchers for real life problems,
may not provide a solution for some problems in polynomial time. In these challenging situations faced
by the researchers, it is recommended to continue by making assumptions. In some cases, the problem
sufficiently stretched by deviations can be supported by assumptions. Another difficult situation faced
by researchers is that sometimes not all goals are accessible. In this case, the researchers can accept the
most satisfactory result. Another alternative for difficult-to-solve problems is the integration of goal
programming and meta-heuristic algorithms. Utilizing such advances in the solution phase is a good
opportunity to achieve goals of the problem.

The subjects surrounding the determination and sensitivity of the solutions in the goal
programming method are one of the other areas that can be developed for researchers. Furthermore,
unlike the classical formulation, which is insufficient in the solution processes, researchers have
developed various extensions of the goal programming method. It is necessary to test the robustness
of the solutions offered by the new formulations developed and to determine how the model result
will react in variable and parameter variability.

In the study, theoretical information about the frequently used types of the goal programming
method in the literature is given and the basic steps of the modeling structure are mentioned. In the
studies examined, decision makers use different types according to their importance levels in the
goals they set. Some goals are at a more important level in the problem, while others can stay in the
background more than others. In this case, the decision makers either prioritize or weight the objectives.
Researchers can use different methods integrated with the goal programming method in their work
when they are weighing. When weighting is done, it has generally been seen that multi-criteria
decision-making methods are utilized. The factors that are effective on the goals weighted and
integrated to the solution with multi-criteria decision-making methods. With the other methods used
in the integration, the productivity of the planning and scheduling is improved, and their performance
is evaluated.
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Often, in manual planning and schedules, the incentive to use the goal programming method
needs to be increased. It is thought that these planning and schedules should be made more systematic.
The flexibility and effectiveness of the goal programming method needs to be exploited. In changing
areas of application, researchers can use this method to transfer many objectives to the objective
function. Thus, they can carry out contradictory purposes together with misconceptions. At the
same time, by integrating the goal programming method with different methods, the efficiency can
be increased, and the performance of the solution results can be improved. With the quality of the
programs made, decision-makers can achieve satisfactory results.
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Abstract: Consider an undirected and connected graph G = (VG, EG), where VG and EG represent
the set of vertices and the set of edges respectively. The concept of edge version of metric dimension
and doubly resolving sets is based on the distances of edges in a graph. In this paper, we find the
edge version of metric dimension and doubly resolving sets for the necklace graph.

Keywords: necklace graph; resolving sets; edge version of metric dimension; edge version of doubly
resolving sets

1. Introduction and Preliminaries

Let G be a connected, simple and undirected graph consisting of nonempty finite sets VG of
vertices and EG of edges. The order of a graph G is |VG| and |EG| is the size of G. The number of
vertices joining to v, where v ∈ VG is called a degree of that vertex and written as dv. ∆(G) is the
maximum degree in a graph G.

For any two vertices x, y ∈ VG, the distance d(x, y) is the length of a shortest path between x
and y. Let R = {r1, r2, . . . , rl} ⊂ VG be an ordered set and let x ∈ VG, then r(x, R) representation of x
with respect to R is the l-tuple

(
d(x, r1), d(x, r2), . . . , d(x, rl)

)
. R is said to be a resolving set if different

vertices of G have different representations with respect to R. The minimum number of vertices in a
resolving set is called a basis for G and the cardinality of the basis is known as the metric dimension of
G, represented by dim(G). For R = {r1, r2, . . . , rl} ⊂ VG, the ith component of r(x, R) is 0 if and only if
x = ri. Hence, to prove that R is a resolving set it is enough to show that r(x, R) 6= r(y, R) for each
pair x 6= y ∈ VG\R.

The following lemma is very helpful for determining resolving set for dim(G):

Lemma 1. Let R be a resolving set for a simple connected graph G and x, y ∈ VG. If d(x, r) = d(y, r) for all
vertices r ∈ VG\{x, y}, then {x, y} ∩ R 6= ∅.

The idea of resolving sets and metric dimension was presented by Slater in [1] and also by Hararay
and Melter in [2]. Metric dimension is applied in different branches of navigation [3], robotics [3],
chemistry [4], and network discovery and verification. It is well-known in [5] that computing the
metric dimension of a graph is an NP-hard problem. Metric dimension has been deeply elaborated in
surveys [6,7]. The line graph L(G) of a graph G is defined as, the graph whose vertices are the edges of
G, with two adjacent vertices if the corresponding edges share the common vertex in G. Also, metric
properties of line graphs were studied to a great extent in [8–18]. The line graph of a graph G is helpful
to find edge distances using the same technique of finding vertex distances of the graph G.

Mathematics 2018, 6, 243; doi:10.3390/math6110243 www.mdpi.com/journal/mathematics
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The concept of edge metric dimension was set up by Kelenc, Tratnik and Yero in [19] in 2016.
They computed the edge metric dimension of different families of graphs and showed edge metric
dimension i.e., edim(G) can be less, equal to or more than dim(G). They also showed computing
edim(G) is NP-hard in general. Since in literature edge metric dimension exists and that is entirely
different from edge metric dimension defined in [20], so we renamed edge metric dimension proposed
in [20] as an edge version of metric dimension. The edge version of metric dimension is defined as:

Definition 1.

1. The edge distance dE( f , g) between two edges f , g ∈ EG is the length of a shortest path between vertices f
and g in the line graph L(G).

2. If dE(e, f ) 6= dE(e, g), then the edge e ∈ EG is said to resolve two edges f and g of EG.
3. Suppose that RE = { f1, f2, . . . , fk} ⊂ EG is an ordered set and e is an edge of EG, then rE(e, RE) the edge

version of representation of e with respect to RE is the k-tuple
(
dE(e, f1), dE(e, f2), . . . , dE(e, fk)

)
.

4. If different edges of G have different edge version of representations with respect to RE, then the set RE is
said to be a an edge version of resolving set of G.

5. The edge version of the metric basis of G is basically an edge version of the resolving set having minimum
cardinality. The cardinality of the edge version of metric basis is represented by dimE(G), and is called the
edge version of metric dimension of G.

In literature the edge version of metric dimension is known for few classes of graphs. Bounds of
an edge version of metric dimension are also known and these bounds are given in the next theorem:

Theorem 1 ([21]). If G is a connected graph with |VG| ≥ 5, then

dlog2∆(G)e ≤ dimE(G) ≤ |VG| − 2.

Table 1, represents all those graphs for which the edge version of metric dimension is known.
In the table Pn, Cn and Kn represent the path graph, the cycle graph and the complete graph on n
vertices respectively. W1,n = K1 + Cn is a wheel graph on n + 1 vertices, Ks,t is a complete bipartite
graph on s + t vertices and for n ≥ 2, Bn = (k1, k2, . . . , kn) is a bouquet of circles C1, C2, . . . , Cn with a
cut-vertex where ki is the number of vertices of Ci (1 ≤ i ≤ n). Also Sn represents the n-sunlet graph
and Dn is the prism graph on 2n vertices.

Table 1. Edge version of the metric dimension of graphs.

G dimE G
Pn 1 [4]
Cn 2
Kn n− 1 [6]

Ks,t

{
b 2(s+t−1)

3 c if s ≤ t ≤ 2s;
t− 1 if t ≥ 2s.

[22]

W1,n





3 if n = 3, 4;
4 if n = 5;
n− d n

3 e if n ≥ 6.
[23]

Bn 2n− 1 [23]

Sn

{
2 if n is even;
3 if n is odd. [20]

Dn 3 [20]
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Caceres et al. define the notion of a doubly resolving set in [22]. The doubly resolving sets
present a valuable source for finding upper bounds of the metric dimension of graphs. Let the
vertices a and b of the graph G with order |VG| ≥ 2 doubly resolve vertices c and d of the graph G if
d(c, a)− d(c, b) 6= d(d, a)− d(d, b). A subset D of vertices doubly resolves G if every two vertices in G
are doubly resolved by some two vertices of D. Moreover, in G there do not exist any two different
vertices having the same difference between their corresponding metric coordinates with respect
to D. A doubly resolving set with minimum cardinality is called the minimal doubly resolving set.
The minimum cardinality of a doubly resolving set for G is represented by ψ(G). In case of some
convex prism, hamming and polytopes graphs, the minimal doubly resolving sets have been obtained
in [24–26] respectively.

Clearly, every doubly resolving set is a resolving set, which implies dim(G) ≤ ψ(G) for all graphs
G. Also, if a and b doubly resolve c and d, then d(c, a)− d(d, a) 6= 0 or d( f , b)− d(g, b) 6= 0, and thus a
or b resolve c and d, this shows that a doubly resolving set is also a resolving set.

Ahmed et al. in [27] proposed the idea of minimal edge version of doubly resolving sets of graph
G, based on the distances of the edges of graph G which is defined as follows:

Definition 2.

1. The edges f and g of the graph G with size |EG| ≥ 2 are supposed to edge doubly resolve edges f1 and f2 of
the graph G if dE( f1, f )− dE( f1, g) 6= dE( f2, f )− dE( f2, g) in G.

2. Let DE = {e1, e2, . . . , ek} be an ordered set of the edges of G. If any two edges e 6= f ∈ EG are doubly
resolved by any two edges of set DE in G, then the set DE ⊂ EG is said to be an edge version of doubly
resolving set of G. The minimum cardinality of an edge version of doubly resolving set of G is represented
by ψE(G).

Note that every edge version of a doubly resolving set is an edge version of a resolving set,
which implies dimE(G) ≤ ψE(G)) for all graphs G.

In this paper we compute the edge version of metric dimension and doubly resolving set for the
necklace graph. At the end, we conclude that edge version of metric dimension and doubly resolving
set are independent of choice of n.

2. The Edge Version of Metric Dimension for Nen

The necklace graph (see Figure 1) denoted by Nen [28] is a cubic Halin graph [29] obtained by
joining a cycle with all vertices of degree 1 of a caterpillar (also called a comb) having n vertices of
degree 3 and n + 2 vertices of degree 1, denoted by x0, x1, . . . , xn+1 and y1, y2, . . . , yn, respectively.
We have VNen

= {x0, . . . , xn+1, y1, . . . , yn} and ENen
= F ∪ H ∪ K, where F = { f1, f2, . . . , fn+1},

H = {h1, h2, . . . , hn+1} and K = {g1, g2, . . . , gn+1}. The necklace graph is 3-regular graph with constant
metric dimension, which is computed in [30] given below:

dim(Nen) =

{
2 if n is even ;
3 if n is odd.
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Figure 1. The necklace graph Nen .

For the edge version of metric dimension of the necklace graph, we have to construct a line graph
L(Nen) of Nen with n ≥ 2. (see Figure 2).

Figure 2. The line graph of a necklace graph: L(Nen ).

Theorem 2. The edge version of metric dimension of Nen is 3 for n ≥ 2.

Proof. Let l = b n
2 c. For n = 2 and 3, consider the set RE = { f1, fn, fn+1} ⊂ ENen

, then the edge version
of representation of each edge of Nen with respect to RE is given below:

The edge version of representation of the edges fp ∈ F with respect to RE is:

rE( fp, RE) =





(0, n− 1, 2) i f p = 1;

(p− 1, |n− p|, n− p + 1) i f 2 ≤ p ≤ n;

(2, l, 0) i f p = n + 1.
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The edge version of representation of the inner edges hp ∈ H with respect to RE is:

rE(hp, RE) =





(p, n− p, n− p + 1), i f 1 ≤ p ≤ n− 1;

(n, 1, 1), i f p = n;

(1, l + 1, 1), i f p = n + 1.

The edge version of representation of the edges gp ∈ K with respect respect to RE is:

rE(gp, RE) =





(1, n, 2), i f p = 1;

(p, 2, n− p + 2), i f 2 ≤ p ≤ n;

(2, l + 1, 1), i f p = n + 1.

For n ≥ 4, take a set RE = { f1, fl , fn} ⊂ ENen
, we will show that RE is an edge version of resolving

set for Nen .
The edge version of representation of the edges fp ∈ F with respect to RE is:

rE( fp, RE) =





(p− 1, l − p, p + 2) i f 1 ≤ p ≤ l − 1;

(p− 1, |l − p|, n− p) i f l ≤ p ≤ l + 2;

(n− p + 3, |l − p|, |n− p|) i f l + 3 ≤ p ≤ n;

(2, l + 1, 1), i f p = n + 1.

The edge version of representation of the inner edges hp ∈ H with respect to RE is:

rE(hp, RE) =





(p, l − p, p + 3), i f 1 ≤ p ≤ l − 2;

(p, |l − p|+ 1, n− p), i f l − 1 ≤ p ≤ l + 1;

(n− p + 3, |l − p|+ 1, n− p), i f l + 2 ≤ p ≤ n− 1;

(3, |l − n|+ 1, 1), i f p = n;

(1, l, 2), i f p = n + 1.

The edge version of representation of the edges gp ∈ K with respect respect to RE is:

rE(gp, RE) =





(p, l − p + 1, p + 2), i f 1 ≤ p ≤ l − 1;

(p, 2, n− p + 1), i f l ≤ p ≤ l + 1;

(n− p + 3, p− l + 1, n− p + 1), i f l + 2 ≤ p ≤ n− 1;

(3, n− l + 1, 2), i f p = n;

(2, l + 1, 2), i f p = n + 1.

From the above representations it is clear that no two edges of Nen have the same edge version of
representations, which implies RE is the edge version of resolving set and hence dimE(Nen) ≤ 3. Next,
we have to show that dimE(Nen) ≥ 3. Suppose on the contrary that dimE(Nen) = 2, then we have the
following possibilities:

1. Let two edges h1 and hp from the edge set H with 2 ≤ p ≤ l + 1. For RE = {h1, hp} ⊂ ENen
,

we have rE( f1, RE) = rE(g1, RE) = (1, p), a contradiction.
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2. Now suppose that both edges are from the edge set F. Suppose without loss of generality
that RE = { f1, fp} ⊂ ENen

, where 2 ≤ p ≤ l + 1. Then, rE(g1, RE) = rE(hn+1, RE) = (1, p),
a contradiction.

3. Now suppose that both edges are from the edge set K. Suppose without loss of generality that
RE = {g1, gp} ⊂ ENen

, where 2 ≤ p ≤ l + 1. Since rE( f1, RE) = rE(hn+1, RE) = (1, p), so we have
a contradiction.

4. If one edge belongs to the set F and the second edge is from H, without loss of generality we
can take RE = { f1, hp} ⊂ ENen

with 1 ≤ p ≤ l. For 2 ≤ n ≤ 5, we have rE(gn+1, RE) =

rE( fn+1, RE) = (2, 3) for p = 1 and rE(gn+1, RE) = rE( fn+1, RE) = (2, n− 1) for p = 2. For n ≥ 6,
we have rE( fn, RE) = rE(gn, RE) = (3, p + 3), a contradiction.

5. If one edge belongs to the set G and the second edge is from H. i.e. RE = {g1, hp} ⊂ ENen
.

This case is similar to (4).
6. If one edge belongs to the set F and the second edge is from K, then we have the following five

subcases:
(a) Let RE = { f1, g1} ⊂ ENen

. For 2 ≤ n ≤ 5, we have rE(h1, RE) = rE(hn+1, RE) = (1, 1).
For n ≥ 6 and l + 4 ≤ p ≤ n + 1, we have rE(gp, RE) = rE( fp, RE) = (n − p + 3, n − p + 3),
a contradiction.
(b) If RE = { f1, gp} ⊂ ENen

and 2 ≤ p ≤ l + 1, then we have rE(g1, RE) = rE(h1, RE) = (1, p− 1),
a contradiction.
(c) Let RE = {g1, fp} ⊂ ENen

with 2 ≤ p ≤ l + 1. This case is similar to 6 (b).
(d) Let RE = { f2, gp} ⊂ ENen

with 1 ≤ p ≤ l. For 2 ≤ n ≤ 5 and p = 1, we have r( f1, RE) =

rE(h1, RE) = (1, 1) and when p = 2, then rE(h1, RE) = rE(h2, RE) = (1, 1). For n ≥ 6, we have
rE( fn, RE) = rE(hn, RE) = (4, p + 2), a contradiction.
(e) Let RE = {g2, fp} ⊂ ENen

. This case is similar to 6 (e).

All the above possibilities lead to a contradiction. Hence, there is no edge version of resolving set
of cardinality 2 for edges ENen

, which implies that dimE(Nen) = 3.

3. The Minimal Edge Version of Doubly Resolving Sets for Nen

The minimum doubly resolving set for the necklace graph Nen has been discussed in [31]. In this
section, we determine minimal edge version of doubly resolving sets for the necklace graph. Define
Sj(hn+1) = {g ∈ ENen

: dE(hn+1, g) = j} be the set of edges in Nen at edge distance j from edge hn+1.
The Table 2 can be easily formulated for Sj(hn+1) and it will be used to get the edge distances between
two arbitrary edges in ENen

.

Table 2. Sj(hn+1) for Nen .

n j Sj(hn+1)
1 {g1, f1, gn+1, fn+1}

2 ≤ j ≤ t {gj, f j, gn+2−j, fn+2−j, hj−1, hn+2−j}
2t(t ≥ 2) t + 1 {ht, ft+1, gt+1}

2t + 1(t ≥ 2) t + 1 {ht, ft+1, gt+1}

By the symmetry of the necklace graph Nen , it is clear that dE( f j, fs) = dE(gj, gs) =

dE(hn+1, fs−j) = dE(hn+1, gs−j) for s > j
For n = 2t

dE(gj, fs) =





dE(hn+1, g|s−j|) + 1 if |j− s| ≤ t, 1 ≤ j, s ≤ n ;
dE(hn+1, g|s−j|) if |j− s| > t, 1 ≤ j, s ≤ n ;
dE(hn+1, gs) if j = s = 1, or n + 1 ;
dE(hj, gj+2) if 1 < j = s < n ;
dE(hn+1, fn) if j = s = n .
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For n = 2t + 1

dE(gj, fs) =





dE(hn+1, g|s−j|) if s > j ;
dE(hn+1, gs) if j = s = 1, or n + 1 ;
dE(hj, gj+2) if 1 < j = s < n ;
dE(hn+1, fn) if j = s = n .

Lemma 2. ψE(Nen) = 3, whenever n = 2t, t ≥ 2.

Proof. The Table 3 represents the vectors of edge version of representations of Nen with respect to
DE = { f1, ft+1, fn+1}

Table 3. Vectors of edge version of representations of Nen , n = 2t.

j Sj(hn+1) DE = { f1, ft+1, fn+1}
0 hn+1 (1, t + 1, 1)
1 g1 (1, t + 2, 2)

f1 {0, t, 2}
gn+1 {2, t + 1, 1}
fn+1 {2, t, 0}

2 ≤ j ≤ k gj {j, t + 2− j, j + 1}
f j {j, t + 1− j, j + 1}

gn+2−j {n− j + 3, j− t, n− j + 2}
fn+2−j {n− j + 3, |t + 1− j|, n− j + 1}
hj−1 {j, t + 1− j, j + 2}

hn+2−j {n− j + 3, t− j, n− j + 1}
ht {t, 1, t}

ht+1 {t + 1, 1, t + 1}
fk+1 {t, 0, t}
gt+1 {t + 1, 2, t + 1}

It can be verified that for each j ∈ {1, 2, 3, . . . , t + 1}, no two edges f , g ∈ Sj(hn+1) exist such
that rE( f , DE)− rE(g, DE) = 0 holds. Also for any j, s ∈ {1, 2, 3, . . . , t + 1}, there do not exist any two
edges f ∈ Si(wn+1) and g ∈ Sj(hn+1) such that rE( f , DE)− rE(g, DE) = i− j. So, DE = { f1, ft+1, fn+1}
becomes the minimal edge version of doubly resolving set for n = 2t, t ≥ 2 and therefore the
Lemma 2 holds.

Lemma 3. ψE(Nen) = 3 whenever, n = 2t + 1, t ≥ 2.

Proof. As we know that dimE(Nen) ≤ ψE(Nen) holds. Now the Table 4 represents the vectors of edge
version of representations of Nen with respect to DE = { f1, fn, ht+1}.

Table 4 shows that for j ∈ {1, 2, 3, . . . , t + 1} there do not exist two edges f , g ∈ Sj(hn+1) such
that the following condition rE( f , DE)− rE(g, DE) = 0 holds. Also, for any i, j ∈ {1, 2, 3, . . . , t + 1},
there do not exist any two edges f ∈ Si(hn+1) and g ∈ Sj(hn+1) such that rE( f , DE)− rE(g, DE) = i− j.
So, DE = { f1, fn, ht+1} becomes the minimal edge version of doubly resolving set for n = 2t + 1, t ≥ 2
and therefore the Lemma 3 holds.
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Table 4. Vectors of edge version of representations of Nen , for n = 2t + 1.

j Sj(hn+1) DE = { f1, fn, ht+1}
0 hn+1 (1, 2, t + 2)
1 g1 (1, 3, t + 1)

f1 {0, 3, t + 1}
gn+1 {2, 2, t + 1}
fn+1 {2, 1, t + 1}

2 gn {j + 1, 2, t + 2− j}
hn {j + 1, 1, t + 3− j}

2 ≤ j ≤ t gj {j, j + 2, t + 2− j}
f j {j, j + 2, j}

gn+1−j {j + 1, j− 1, t− j + 2}
fn+2−j {j + 1, j− 2, t− j + 2}
hj−1 {j− 1, j + 2, j}

hn+1−j {j + 1, j− 2, t− j + 3}
t + 1 ft+1 {t, t, 1}

gt+1 {t + 1, t + 1, 1}
ft+2 {t + 1, t− 2, 1}
gt+2 {t + 2, t + 1, 1}
ht+2 {t + 2, t− 1, 2}

Note: A counting technique determines that ψE(Nen) = 3 for n = 2 and 3. The sets { f1, f2, f3}
and { f1, f3, h2} are the minimal edge version of doubly resolving sets for Ne2 and Ne3 respectively.
When Lemma 2 and Lemma 3 is combined, then the following main theorem is formulated.

Theorem 3. Let Nen be the necklace graph. Then ψE(Nen) = 3 for n ≥ 2.

4. Conclusions

In this paper, we have extended the notion of metric dimension to the edge version of metric
dimension for the necklace graph Nen which is the least cardinality over all edge versions of resolving
sets. We also calculated the minimal edge version of doubly resolving sets for Nen . It is interesting
to consider the necklace graph because its edge version of metric dimension and the minimal edge
version of doubly resolving set are independent of parity of n. In previous work on necklace graphs,
(see [30,31]) resolving sets were based on vertices and distances were calculated between vertices only.
While, in this paper edges have been considered for getting resolving sets and distances have been
calculated between edges. Finally, we get dimE(Nen) = ψE(Nen) = 3 for every n.
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Abstract: Given a (molecular) graph, the first multiplicative Zagreb index Π1 is considered to be
the product of squares of the degree of its vertices, while the second multiplicative Zagreb index
Π2 is expressed as the product of endvertex degree of each edge over all edges. We consider a set
of graphs Gn,k having n vertices and k cut edges, and explore the graphs subject to a number of cut
edges. In addition, the maximum and minimum multiplicative Zagreb indices of graphs in Gn,k are
provided. We also provide these graphs with the largest and smallest Π1(G) and Π2(G) in Gn,k.

Keywords: cut edge; graph transformation; multiplicative zagreb indices; extremal values

1. Introduction

Within the areas of theoretical chemistry and mathematics, the structure invariant is an important
tool to study the quantitative molecular properties [1]. One type of the most classical topological
molecular expression is called as Zagreb indices M1 and M2 [2]. This information can be used as
qualitative levels for integral π-electron energy of the conjugated molecules. In the view of successful
considerations on the applications on Zagreb indices [3], Todeschini et al., (2010) [4–6] introduced
the multiplicative Zagreb indices of molecular graphs, denoted by Π1 and Π2 the multiplicative
Zagreb indices. (Multiplicative) Zagreb indices are employed as molecular expressions in quantitative
structure–property relationships and quantitative structure–activity relationships [7,8].

Mathematicians have been interested in the information of Zagreb indices about the upper and
lower bounds for special (chemical) graphs, as well as corresponding areas of determining their
extremal graphs [9–23]. In addition to a plenty of applications for the usage of Zagreb indices in
theoretical chemistry, there are many studies for multiplicative Zagreb indices, which attracted one of
the focus of interests in physics and graph theory. Borovićanin et al. [24] investigated upper bounds on
Zagreb indices of noncyclic graphs with given domination number. Wang and Wei [6] determined the
maximal and minimal values of multiplicative Zagreb indices in the extended noncyclic graph, k-trees.
In some graph classes, Liu and Zhang provided some upper bounds for Π1-index and Π2-index
of graphs subject to structure parameters [25]. Xu and Hua [26] explored a common method to
characterize the bounds of 0, 1, 2-cyclic graphs. Iranmanesh et al. [27] gave these indices for a type of
chemical molecules, specific dendrimers. Kazemi [28] found interesting extremal values for related
moments and probability generating functions in random trees. The graphs subject to a given number

Mathematics 2018, 6, 227; doi:10.3390/math6110227 www.mdpi.com/journal/mathematics
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of cut edges (or vertices) are intriguing in extremal mathematics [29–33]. It is a natural observation that
trees having largest and smallest multiplicative Zagreb indices have been considered as interesting
topics [27,34,35].

In view of mentioned outcomes, we continue this way and study multiplicative Zagreb indices of
graphs subject to a given number of cut edges. In addition, the maximum and minimum of Π1(G) and
Π2(G) of graphs in Gn,k subject to fixed number of cut edges are provided. Lastly, the corresponding
graphs with the largest and smallest multiplicative Zagreb indices in Gn,k are determined.

2. Preliminaries

Denote by G = (V(G), E(G)) a simple undirected connected graph of vertex number n and edge
number m with vertex set V = V(G) and edge set E = E(G). For w ∈ V(G), N(w) denotes the
neighbors of w, that is, N(w) = {v| wv ∈ E(G)}, and d(w) = |N(w)| is the degree of w. The Zagreb
indices [3] of a connected graph are given by

M1(G) = ∑
u∈V(G)

d(u)2 and M2(G) = ∑
uv∈E(G)

d(u)d(v).

The first multiplicative Zagreb index Π1 = Π1(G) and the second multiplicative Zagreb index
Π2 = Π2(G) [4,5] of any graph G are considered as

Π1(G) = ∏
u∈V(G)

d(u)2 and Π2(G) = ∏
uv∈E(G)

d(u)d(v) = ∏
u∈V(G)

d(u)d(u).

A vertex of degree one is called pendent vertex. The supporting vertex is a vertex in a graph
which is incident to at least one pendent vertex. A pendent edge is an edge connecting a pendent vertex
and a supporting vertex. If G1, G2, · · · , Gl with l ≥ 2 share a common vertex v, then G1vG2v · · · vGl
denote the graph with edge set E(G1) ∪ E(G2) ∪ · · · ∪ E(Gl) and V(G1) ∩V(G2) ∩ · · · ∩V(Gl) = {v}.
For u1 ∈ V(G1) and us ∈ V(G2), if P = u1u2 · · · us is a path, then denote this graph by G1PG2 or
G1u1u2 · · · usG2 in which P is called an internal path. By deleting a vertex or an edge, the resulting
graph has at least two components, and this vertex or edge is called a cut. If G has no cut vertex, then
G is 2-connected. A block is 2-connected, and an endblock has not more than two cut vertices. G1

∼= G2

means that G1 is isomorphic to G2. As usual, Pn, Kn, Sn and Cn are a path, a clique, a star and a cycle on
n vertices, respectively. The cyclomatic number c(G) of a graph G is defined as m− n + 1. In particular,
if c(G) = 0, 1 and 2, then G will be trees, unicyclic graphs and bicyclic graphs, respectively. If c(G) ≥ 1,
then G has at most n− 3 cut edges. Thus, we suppose that G contains 1 ≤ k ≤ n− 3 cut edges in our
following discussion.

Let Gn,k be the set of the connected graphs with k ∈ [1, n− 3] cut edges, and Ec = {e1, e2, · · · , ek}
be a set of cut edges of the graph G ∈ Gn,k. Then Ec can be considered as two categories, which
are the pendent edges and nonpendent edges (or internal paths of length 1). G− Ec contains some
2-connected graphs and isolated vertices. Denote by KS

n (or KP
n , respectively) a graph obtained by

identifying (connecting to, respectively) the nonpendent vertex of a star Sk+1 (or a pendent vertex of a
path Pk, respectively) to a vertex of Kn−k (see Figure 1). In addition, let CS

n (or CP
n , respectively) be a

graph obtained by identifying (connecting to, respectively) the nonpendent vertex of a star Sk (or a
pendent vertex of a path Pk, respectively) to a vertex of Cn−k.

In our work, we may use some terminologies and notations of these textbooks of graph theory
(see [36,37]). By elementary processes, the following results are not hard.

Proposition 1. If s(l) = l
l+t is a function for t > 0, then s(l) is an increasing function in R.

Proposition 2. If k(l) = ll

(l+t)l+t is a function for t > 0, then k(l) is a decreasing function in R.
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Figure 1. KS
n , KP

n , CS
n and CP

n .

Based on the concepts of Π1(G) and Π2(G) and the fact that adding edges increases the degrees,
we have

Lemma 1. Suppose that G = (V, E) is a connected graph and i = 1, 2.

(i) If u, v are not adjacent in G, then Πi(G + uv) > Πi(G).

(ii) If uv ∈ E(G), we have Πi(G− e) < Πi(G).

Lemma 2 yields the following result.

Lemma 2. Suppose that G = (V, E) is a 2-connected graph with i = 1, 2.

(i) If Πi(G) is maximal, then G ∼= Kn.

(ii) If Πi(G) is minimal, then G ∼= Cn.

Lemma 3. Let C1, C2 be cycles, and Ps = u1u2 · · · us be an internal path of G = C1PsC2 such that u1 ∈ V(C1)

and us ∈ V(C2). Assume that u1v1, u1v2 ∈ E(C1) and usw1, usw2 ∈ E(C2) such that v1 6= v2 and w1 6= w2.
Let G′ = G− {u1v2, usw1, usw2}+ {v2w2, u1w1}. Then Πi(G) > Πi(G′) with i = 1, 2.

Proof. By the graph operations from G to G′, we have dG′(us) = 1 < dG(us) = 3. For v ∈ V(G)−{us},
dG(v) = dG′(v). Then Πi(G) > Πi(G′) with i = 1, 2, and we complete the proof.

Lemma 4. Let G1PmG2 and G1G2Pm be graphs (see Figure 2), in which Pm is a path, and G1, G2 are connected.
Then Π1(G1PmG2) ≥ Π1(G1G2Pm) and Π2(G1PmG2) ≤ Π2(G1G2Pm).

Proof. Let dG1PmG2(u) = x and dG1PmG2(v) = y. Then dG1G2Pm(u) = x + y− 1. From the formulas of
multiplicative Zagreb indices, we obtain

Π1(G1PmG2)

Π1(G1G2Pm)
=

x2y2

(x + y− 1)212 =

( x
x+y−1

1
1+(y−1)

)2

.
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Since x ≥ 1, y ≥ 1, and by Proposition 1, we have Π1(G1PmG2) ≥ Π1(G1G2Pm). Note that

Π2(G1PmG2)

Π2(G1G2Pm)
=

xxyy

(x + y− 1)(x+y−1)11
=

xx

(x+y−1)(x+y−1)

11

(1+y−1)(1+y−1)

.

By x ≥ 1 and Proposition 2, we have Π2(G1PmG2)
Π2(G1G2Pm)

≤ 1, that is, Π2(G1PmG2) ≤ Π2(G1G2Pm). Thus,
this completes the proof.

From Lemma 4, if we have an internal path, then we can move out it. By keeping this process, we
have the useful lemma below.

Lemma 5. Let GT be a graph by identifying a vertex of a tree T (not Sn) to a vertex u of G, and GS be a graph
by attaching |E(T)| pendent edges to u (see Figure 3). Then Π1(GT) > Π1(GS) and Π2(GT) < Π2(GS).

Figure 2. G1PmG2 and G1G2Pm.

Figure 3. GT and GS.

Lemma 6. Let u (v, respectively) be a vertex in G, and u1, u2, . . . , us be the endvertices of pendent path
P1, P2, · · · , Ps (v1, v2, . . . , vt be the endvertices of P′1, P′2, · · · , P′t , respectively). Set uu′i ∈ E(Pi) with 1 ≤ i ≤ s,
and vv′j ∈ E(P′j ) with 1 ≤ j ≤ t. Let G′ = G−

{
uu′i
}
+
{

vu′i
}

with 1 ≤ i ≤ s, G′′ = G− {vv′j}+ {uv′j}
with 1 ≤ j ≤ t and |V(G0)| ≥ 3 (see Figure 4). Then either Π1(G) ≥ Π1(G′) and Π2(G) ≤ Π2(G′), or
Π1(G) > Π1(G

′′
) and Π2(G) < Π2(G

′′
).
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Figure 4. G, G′ and G′′.

Proof. Let dG(u) = x, dG(v) = y. By the constructions of G′ and G′′ , we have dG′(u) = dG(u)− s =
x − s, dG′(v) = dG(v) + s = y + s, dG′′(u) = dG(u) + t = x + t and dG′′(v) = dG(v) − t = y − t.
Combining with the concepts of multiplicative Zagreb indices, we have

Π1(G)

Π1(G′)
=

x2y2

(x− s)2(y + s)2 =
( y

y+s )
2

( x−s
(x−s)+s )

2 ,

Π2(G)

Π2(G′)
=

xxyy

(x− s)x−s(y + s)y+s =

yy

(y+s)y+s

(x−s)x−s

xx

=

yy

(y+s)y+s

(x−s)x−s

[(x−s)+s](x−s)+s

,

Π1(G)

Π1(G′′)
=

x2y2

(x + t)2(y− t)2 =
( x

x+t )
2

( y−t
(y−t)+t )

2
,

Π2(G)

Π2(G′′)
=

xxyy

(x + t)x+t(y− t)y−t =

xx

(x+t)x+t

(y−t)y−t

yy

=

xx

(x+t)x+t

(y−t)y−t

[(y−t)+t](y−t)+t

.

If x− s ≤ y, by Propositions 1 and 2, we can obtain that Π1(G) ≥ Π1(G′) and Π2(G) ≤ Π2(G′).
If x − s− 1 ≥ y, then x ≥ y + s + 1 > y− t. Propositions 1 and 2 yield that Π1(G) > Π1(G′′) and
Π2(G) < Π2(G′′). Thus, the lemma is proved.

Lemma 7. Let P1 = u1u2 · · · us and P2 = v1v2 · · · vt be two pendent paths of G with s, t ≥ 2 and d(us) =

d(vt) = 1 (see Figure 5). Let G′ = G− v1v2 + usv2. Then Π1(G) < Π1(G′) and Π2(G) > Π2(G′).

Figure 5. G and G′.

Proof. Note that d(u1) ≥ 3, d(v1) ≥ 3. From the expressions of multiplicative Zagreb indices, we have

Π1(G)

Π1(G′)
=

d(us)2d(v1)
2

dG′(us)2dG′(v1)2 =

( 1
2

d(v1)−1
d(v1)

)2

.
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By Proposition 1, we have Π1(G)
Π1(G′)

< 1, that is, Π1(G) < Π1(G′).

Π2(G)

Π2(G′)
=

d(us)d(us)d(v1)
d(v1)

dG′(us)
dG′ (us)dG′(v1)

dG′ (v1)
=

( 11

22

(d(v1)−1)d(v1)−1

d(v1)
d(v1)

)2

.

By Proposition 2, we have Π2(G)
Π2(G′)

> 1, that is, Π2(G) > Π2(G′).
Thus, this completes the proof.

3. Graphs with Smallest Multiplicative Zagreb Indices in Gn,k

We begin to determine the graphs having the smallest Π1(G) and Π2(G) in Gn,k.

Theorem 1. Let G be a graph in Gn,k with 1 ≤ k ≤ n− 3. Then

Π1(G) ≥ 4n−k−1(k + 2)2,

where the equality holds if and only G ∼= CS
n , respectively.

Proof. Choose a graph G ∈ Gn,k such that the value of Π1(G) is as small as possible. Let Ec be a cut
edge set of G and B1, B2, · · · , Bk+1 be the components of G− Ec. We first do some graph operations by
previous lemmas. By Lemma 2, we have Bi is a cycle or an isolated vertex. Lemma 3 implies that G
has a unique cycle. By Lemma 5, all cut edges in G are pendent edge. By Lemma 6, all pendent edges
share a common supporting vertex, that is, G ∼= CS

n . Thus, this completes the proof.

Theorem 2. Assume that G is a graph in Gn,k for 1 ≤ k ≤ n− 3. We have

Π2(G) ≥ 27 ∗ 4n−2,

where the equality holds if and only G ∼= CP
n .

Proof. Let G ∈ Gn,k be a graph such that Π2(G) is minimal. Let Ec be a cut edge set of G and
B1, B2, · · · , Bk+1 be the components of G− Ec. By Lemma 2, we have Bi is a cycle or an isolated vertex.
Lemma 3 implies that G has a unique cycle. By Lemma 7, there is only one pendent path in G. Thus
G ∼= CP

n , and we prove this theorem.

4. Graphs with Largest Multiplicative Zagreb Indices in Gn,k

We proceed to consider graphs with the largest Π1(G) and Π2(G) in Gn,k in this section.

Theorem 3. If G is a graph in Gn,k for 1 ≤ k ≤ n− 3, we have

Π1(G) ≤ 4k−1(n− k− 1)2(n−k−1)(n− k)2,

where the equality holds if and only G ∼= KP
n .

Proof. Denote by a graph G ∈ Gn,k such that Π1(G) is maximal. Set Ec to be a cut edge set of G and
B1, B2, · · · , Bk+1 the components of G− Ec. By Lemma 2, we have Bi is a clique of size at least 3 or an
isolated vertex. Next we start with the following claims.

Claim 1. Every two cliques of size at least 3 do not share a common vertex.

Proof of Claim 1. We prove it by a contradiction. Assume there are at least two blocks B1, B2 sharing
a common vertex v0 in G such that |B1|, |B2| ≥ 3. Choose v1 ∈ V(B1), v2 ∈ V(B2) and v1, v2 6= v0.
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Let G′ = G + v1v2. By Lemma 1, Π2(G′) > Π2(G), that is a contradiction to the assumption of G. The
claim is proved.

We introduce a graph transformation that is used in the rest of our proof.

Claim 2. Let Kn1 and Kn2 be two farthest endblocks of Kn1 G0Kn2 such that v11 ∈ V(Kn1) ∩ V(G0) and
vl1 ∈ V(Kn2) ∩ V(G0) (see Figure 6). If d(v11) = n1 ≥ 3 and d(vl1) = n2 ≥ 3, then Π1(Kn1 G0Kn2) <

Π1(Kn1+n2−1G0).

Figure 6. G and G′.

Proof of Claim 2. Let V(Kn1) = {v11, v12, · · · , v1n1} and V(Kn2) = {vl1, vl2, · · · , vln2}. Denote by
G = Kn1 G0Kn2 and G′ = G− {vl1vli, i ≥ 2}+ {vliv1j, i ≥ 2, j ≥ 1} = Kn1+n2−1G0. From concepts of
multiplicative Zagreb indices, one may obtain that

Π1(G)

Π1(G′)
=

(
d(v11)d(v12)d(v13) · · · d(v1n1)d(vl1)d(vl2)d(vl3) · · · d(vln2)

d′(v11)d′(v12)d′(v13) · · · d′(v1n1)d
′(vl1)d′(vl2)d′(vl3) · · · d′(vln2)

)2

=

(
n1n2(n1 − 1)n1−1(n2 − 1)n2−1

(n1 + n2 − 1)(n1 + n2 − 2)n1+n2−2

)2

≤
(

n1n2(n1 − 1)n1−1(n2 − 1)n2−1

(n1 + n2 − 2)n1+n2−1

)2

.

Let f (x) = xn2(x−1)x−1(n2−1)n2−1

(x+n2−2)x+n2−1 . Then we take a derivative of ln( f (x)) as 1
x + ln(x − 1) + 1−

ln(x + n2 − 2)− x+n2−1
x+n2−2 < 1

x + ln(x− 1)− ln(x + n2 − 2) ≤ 1
x + ln(x− 1)− ln(x + 1), by n2 ≥ 3.

Set g(x) = 1
x + ln(x − 1) − ln(x + 1). Note that g′(x) = x2+1

x2(x2−1) > 0 and limx→∞g(x) =

limx→∞ln( (x−1)e
1
x

x+1 ) = 0, by L’ Hospital’s Rule. Thus, g(x) < 0, that is, the function f (x) is decreasing.
We have

Π1(G1)

Π1(G2)
≤ 3n2(3− 1)3−1(n2 − 1)n2−1

(3 + n2 − 2)3+n2−1 =
12 ∗ n2 ∗ (n2 − 1)n2−1

(n2 + 1)2(n2 + 1)(n2 + 1)n2−1 .

Since 12 ≤ (n2 + 1)2 and n2 < n2 + 1, then Π1(G1)
Π1(G2)

< 1. This completes the proof of Claim 2.

Claim 3. If Π1(G) is maximal, then there exists exactly one path in G.

Proof of Claim 3. We prove it by contradictions. Assume that there are at least two paths P1 =

u1u2 · · · us, P2 = v1v2 · · · vl with d(u1), d(v1) ≥ 3. We consider three cases that Pi is either a pendent
path or an internal path with i = 1, 2.

Case 1. d(us) = d(vl) = 1.
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Proof of Case 1. By Lemma 7, there is another graph G′ ∈ Gk
n such that Π1(G) < Π1(G′), which is a

contradiction to the choice of G.

Case 2. d(us) = 1, d(vl) ≥ 3.

Proof of Case 2. Let G′′ = G− {v1v2, u1u2}+ {v1u2, v2us}. Note that

Π1(G)

Π1(G′′)
=

d(u1)
2d(us)2

dG′′(u1)2dG′′(us)2 =

( 1
2

d(u1)−1
d(u1)

)2

.

Since d(u1) ≥ 3, by Proposition 1, we have Π1(G) < Π1(G′′), that is a contradiction to
the choice of G.

Case 3. d(us) ≥ 3, d(vl) ≥ 3.

Proof of Case 3. By Case 2, there does not exist any pendent paths in G. Then every cut edge is in an
internal path. By choosing two farthest endblocks and Claim 2, there is another graph G′′′ such that
Π1(G′′′) > Π1(G), which contradicts that Π1(G) is maximal. This completes the proof of Case 3.

Therefore, G contains a unique clique of size at least 3 and the unique path is a pendent path.
Thus G ∼= KP

n , and this completes the proof.

Theorem 4. Let G be a graph in Gn,k with 1 ≤ k ≤ n− 3. Then

Π2(G) ≤ (n− 1)n−1(n− k− 1)(n−k−1)2
,

where the equality holds if and only G ∼= KS
n .

Proof. Pick a graph G ∈ Gn,k such that Π2(G) is as large as possible. Denote by Ec a cut edge set
of G and B1, B2, · · · , Bk+1 be the components of G− Ec. By Lemma 2, we have Bi is a clique of size
at least 3 or an isolated vertex. By Lemma 4, if two blocks are connected by a path, then they share
a common vertex.

Claim 4. There is a unique block B such that |B| ≥ 3.

Proof of Claim 4. We prove it by a contradiction. Assume that there are at least two blocks B1, B2

sharing a common vertex v0 in G such that |B1|, |B2| ≥ 3. Choose v1 ∈ V(B1) and v2 ∈ V(B2) and
v1, v2 6= v0. Let G′ = G + v1v2. By Lemma 1, Π2(G′) > Π2(G) and this claim is proved.

By Lemmas 5 and 6, we have G ∼= KS
n , and this completes the proof.
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Abstract: A double Roman dominating function (DRDF) f on a given graph G is a mapping from
V(G) to {0, 1, 2, 3} in such a way that a vertex u for which f (u) = 0 has at least a neighbor labeled 3
or two neighbors both labeled 2 and a vertex u for which f (u) = 1 has at least a neighbor labeled 2
or 3. The weight of a DRDF f is the value w( f ) = ∑u∈V(G) f (u). The minimum weight of a DRDF on
a graph G is called the double Roman domination number γdR(G) of G. In this paper, we determine
the exact value of the double Roman domination number of the generalized Petersen graphs P(n, 2)
by using a discharging approach.

Keywords: double Roman domination; discharging approach; generalized Petersen graphs

1. Introduction

In this paper, only graphs without multiple edges or loops are considered. For two vertices u and
v of a graph G, we say u ∼ v in G if uv ∈ E(G). For positive integer k and u, v ∈ V(G), let d(u, v) be
the distance between u and v and Nk(v) = {u|d(u, v) = k}. The neighborhood of v in G is defined to
be N1(v) (or simply N(v)). The closed neighborhood N[v] of v in G is defined to be N[v] = {v} ∪N(v).
For a vertex subset S ⊆ V(G), we denote by G[S] the subgraph induced by S. For a positive integer
n, we denote [n] = {1, 2, · · · , n}. For a set S = {x1, x2, · · · , xn}, if xi = xj for some i and j, then S is
considered as a multiset. Otherwise, S is an ordinary set.

For positive integer numbers n and k with n at least 2k + 1, the generalized Petersen graph P(n, k)
is a graph with its vertex set {ui|i = 1, 2, · · · , n} ∪ {vi|i = 1, 2, · · · , n} and its edge set the union of
{uiui+1, uivi, vivi+k} for 1 ≤ i ≤ n, where subscripts are reduced modulo n (see [1]).

A subset D of the vertex set of a graph G is a dominating set if every vertex in V(G) \ D has
at least one neighbor in D. The domination number, denoted by γ(G), is the minimum number of
vertices over all dominating sets of G.

There have been more than 200 papers studying various domination on graphs in the literature [2–6].
Among them, Roman domination and double Roman domination appear to be a new variety of
interest [3,7–15].

A double Roman dominating function (DRDF) f on a given graph G is a mapping from V(G)

to {0, 1, 2, 3} in such a way that a vertex u for which f (u) = 0 has at least a neighbor labeled 3 or
two neighbors both labeled 2 and a vertex u for which f (u) = 1 has at least a neighbor labeled 2 or 3.
The weight of a DRDF f is the value w( f ) = ∑u∈V(G) f (u). The minimum weight of a DRDF on a graph
G is called the double Roman domination number γdR(G) of G. A DRDF f of G with w( f ) = γdR(G)

is called a γdR(G)-function. Given a DRDF f of G, we denote E f
{x1,x2} = {uv ∈ E(G)|{ f (u), f (v)} =

{x1, x2}}. A graph G is a double Roman Graph if γdR(G) = 3γ(G).

Mathematics 2018, 6, 206; doi:10.3390/math6100206 www.mdpi.com/journal/mathematics
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In [7], Beeler et al. obtained the following results:

Proposition 1 ([7]). In a double Roman dominating function of weight γdR(G), no vertex needs to be assigned
the value one.

By Proposition 1, we now consider the DRDF of a graph G in which there exists no vertex assigned
with one in the following.

Given a DRDF f of a graph G, suppose (V f
0 , V f

2 , V f
3 ) is the ordered partition of the vertex set of G

induced by f in such a way that V f
i = {v : f (v) = i} for i = 0, 2, 3. It can be seen that there is a 1-1

mapping between f and (V f
0 , V f

2 , V f
3 ), and we write f = (V f

0 , V f
2 , V f

3 ), or simply (V0, V2, V3). Given a
DRDF f of P(n, 2) and letting wi ∈ {0, 2, 3} for i = 1, 2, 3 with w1 ≥ w2 ≥ w3, we write Vw1w2w3

j =

{x ∈ V(P(n, 2))| f (x) = j, {w1, w2, w3} = { f (x1), f (x2), f (x3)}}, where N(x) = {x1, x2, x3}.
Now, we will use f (·) = q+ to represent the value scope f (·) ≥ q for an integer q. We say a path

t1t2 · · · tk is a path of type c1 − c2 − · · · − ck if f (ti) = ci for i ∈ [k]. Let H be a subgraph induced by
five vertices s1, s2, s3, s4, s5 with s1 ∼ s2, s2 ∼ s3, s3 ∼ s4, s3 ∼ s5 satisfying f (s3) = 0 and f (s1) = a,
f (s2) = b, f (s4) = c, f (s5) = d for some a, b, c, d ∈ {0, 2, 3}, then we say H is a subgraph of type
a− b− 0−c

−d.
Let W be a subgraph induced by four vertices s1, s2, s3, s4 with s1 ∼ s2, s2 ∼ s3, s2 ∼ s4, satisfying

f (s1) = a, f (s2) = 0, f (s3) = b and f (s4) = c for some a, b, c ∈ {0, 2, 3}, then we say W is a subgraph
of type a− 0−b

−c .
In the graph P(n, 2), we will denote the set of vertices of {ui, vi} with L(i). For a given DRDF f of

P(n, 2), let w f (L(i)) denote the weight of L(i), that is w f (L(i)) = ∑u∈V(L(i)) f (u). Let Bi={L(i−2), L(i−1),

L(i), L(i+1), L(i+2)}, where the subscripts are taken modulo n. We define w f (Bi) =
2
∑

j=−2
w f (L(i+j)), and:

f (Bi) = f

(
ui−2 ui−1 ui ui+1 ui+2
vi−2 vi−1 vi vi+1 vi+2

)
.

Motivation: Beeler et al. [7] put forward an open problem about characterizing the double Roman
graphs. As an interesting family of graphs, the domination and its variations of generalized Petersen
graphs have attracted considerable attention [1,16]. Therefore, it is interesting to characterize the
double Roman graphs in generalized Petersen graphs. In this paper, we focus on finding the double
Roman graphs in P(n, 2).

2. Double Roman Domination Number of P(n, 2)

2.1. Upper Bound for the Double Roman Domination Number of P(n, 2)

Lemma 1. If n ≥ 5, then:

γdR(P(n, 2)) ≤
{
d 8n

5 e, n ≡ 0 (mod 5),
d 8n

5 e+ 1, n ≡ 1, 2, 3, 4 (mod 5).

Proof. We consider the following five cases.

Case 1: n ≡ 0 (mod 5).

Let:

P5 =

[
2 0 2 0 0
0 0 0 2 2

]
.

Then, by repeating the pattern of P5, we obtain a DRDF of weight 8k of P(5k, 2), and the upper
bound is obtained.
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Case 2: n ≡ 1 (mod 5).

If n = 6, let:

P6 =

[
0 2 0 2 0 0
2 0 0 0 2 3

]
.

Then, the pattern P6 induces a DRDF of weight 11 of P(6, 2), and the desired upper bound
is obtained.

If n ≥ 11, let:

P11 =

[
2 0 2 0 0 2 2 0 2 0 0
0 0 0 2 2 0 0 0 0 3 2

]
.

Then, by repeating the leftmost five columns of the pattern of P11, we obtain a DRDF of weight
8k + 3 of P(5k + 1, 2), and the desired upper bound is obtained.

Case 3: n ≡ 2 (mod 5).

If n = 7, let:

P7 =

[
2 0 2 0 0 3 0
0 0 2 2 0 0 2

]
.

Then, the pattern P7 induces a DRDF of weight 13 of P(7, 2), and the desired upper bound
is obtained.

If n ≥ 12, let:

P12 =

[
2 0 2 0 0 2 0 3 0 2 0 0
0 0 0 2 2 0 2 0 0 0 2 2

]
.

Then, by repeating the leftmost five columns of the pattern of P12, we obtain a DRDF of weight
8k + 6 of P(5k + 2, 2), and the desired upper bound is obtained.

Case 4: n ≡ 3 (mod 5).

If n ≥ 8, let:

P8 =

[
2 0 2 0 0 2 0 0
0 0 0 2 2 0 2 2

]
.

Then, by repeating the leftmost five columns of the pattern of P8, we obtain a DRDF of weight
8k + 6 of P(5k + 3, 2), and the desired upper bound is obtained.

Case 5: n ≡ 4 (mod 5).

If n ≥ 9, let:

P9 =

[
2 0 2 0 0 3 0 0 0
0 0 0 2 2 0 0 3 2

]
.

Then, by repeating the leftmost five columns of the pattern of P9, we obtain a DRDF of weight
8k + 8 of P(5k + 4, 2), and the desired upper bound is obtained.

2.2. Lower Bound for Double Roman Domination Number of P(n, 2)

Lemma 2. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then, w f (Bi) ≥ 4.

Proof. Since ui, vi, ui+1 and ui−1 need to be double Roman dominated by vertices in Bi, we have
w f (Bi) ≥ 3. Now, we will show that w f (Bi) 6= 3. Otherwise, it is clear that f (ui) = 3, and f (x) = 0
for any x ∈ Bi \ {ui}. Since vi±1, ui±2 and vi±2 need to be double Roman dominated, we have
f (ui±3) = f (vi±3) = f (vi±4) = 3. Now, we can obtain a DRDF f ′ from f by letting f ′(ui−2) = 2,
f ′(ui−3) = 0 and f ′(v) = f (v) for v ∈ V(P(n, 2)) \ {ui−2, ui−3}. Then, we have w( f ′) < w( f ), a
contradiction (see Figure 1). Therefore, w f (Bi) ≥ 4.
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Figure 1. Construct a function f ′ from f used in Lemma 2.

Lemma 3. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then, for any i ∈ [n], it is impossible that
f (vi−1) = f (vi) = f (vi+1) = 3 and f (x) = 0 for any x ∈ Bi \ {vi−1, vi, vi+1}.

Proof. Suppose to the contrary that f (vi−1) = f (vi) = f (vi+1) = 3 and f (x) = 0 for x ∈ Bi \
{vi−1, vi, vi+1}. Then, we have f (ui±3) = 3. Now, we can obtain a DRDF f ′ from f by letting
f ′(ui−1) = 2, f ′(vi−1) = 0 and f ′(v) = f (v) for v ∈ V(P(n, 2)) \ {vi−1, ui−1}. Then, we have
w( f ′) < w( f ), a contradiction (see Figure 2).

Figure 2. Construct a function f ′ from f in Lemma 3.

Lemma 4. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then, for each x ∈ V000
3 , there exists a neighbor y

of x such that y ∈ V320
0 ∪V330

0 ∪V322
0 ∪V332

0 ∪V333
0 , or equivalently, it is impossible that for any x ∈ V000

3 ,
f (z) = 0 for any z ∈ N2(x).

Proof. Suppose to the contrary that there is a vertex x ∈ V000
3 such that y ∈ V300

0 for every neighbor y
of x. Now, it is sufficient to consider the following two cases.

Case 1: x = ui for some i.
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In this case, we have f (ui) = 3 and f (x) = 0 for x ∈ Bi \ {ui}. Then, we have w f (Bi) = 3 < 4,
contradicting Lemma 2.

Case 2: x = vi for some i.

In this case, since ui±1 and ui±2 need to be double Roman dominated, we have f (vi±1) = 3 and
f (ui±3) = 3. By Lemma 3, such a case is impossible.

Discharging procedure: Let f be a DRDF of P(n, 2). We set the initial charge of every vertex x be
s(x) = f (x). We use the discharging procedure, leading to a final charge s′, defined by applying the
following rules:

R1: Each s(x) for which s(x) = 3 transmits 0.8 charge to each neighbor y with y ∈ V300
0 transmits

0.6 charge to each neighbor y with y ∈ V320
0 ∪V330

0 ∪V322
0 ∪V332

0 ∪V333
0 .

R2: Each s(x) for which s(x) = 2 transmits 0.4 charge to each neighbor y with y ∈ V0.

Proposition 2. If n ≥ 5, then γdR(P(n, 2)) ≥ d 8n
5 e.

Proof. Assume f is a γdR-function of P(n, 2). We use the above discharging procedure. Now, it is
sufficient to consider the following three cases.

Case 1: By Lemma 4, there exists a vertex z with f (z) ≥ 2 for some z ∈ N2(x), for any x ∈ V000
3 .

Therefore, by rule R1, for each v ∈ V000
3 , the final charge s′(v) is at least 3− 0.6− 0.8− 0.8 = 0.8. For

each v ∈ V3 \V000
3 , then the final charge s′(v) is at least 3− 0.8− 0.8 = 1.4.

Case 2: By rule R2, for each v ∈ V2, the final charge s′(v) is at least 2− 0.4− 0.4− 0.4 = 0.8.

Case 3: For each v ∈ V300
0 , the final charge s′(v) is 0.8 by rule R1. For each v ∈ V0 \ V300

0 , the final
charge s′(v) is at least 0.8 by rules R1 and R2.

From the above, we have:

s′(v) ≥ 0.8 for any v ∈ P(n, 2). (1)

Hence, w( f ) = ∑
v∈V(P(n,2))

s(v) = ∑
v∈V(P(n,2))

s′(v) ≥ 0.8 × 2n = 8n
5 . Since w( f ) is an integer,

we have w( f ) ≥ d 8n
5 e.

By using the above discharging rules, we have the following lemma immediately, and the proof
is omitted.

Lemma 5. Let f be a γdR-function of P(n, 2) with n ≥ 5. If we use the above discharging procedure for f on
P(n, 2), then:

(a) if there exists a path P of type 2− 2− 2, or type 2+ − 3, or type 2− 2− 0− 3, or type 3− 0− 2+ −
0 − 3 − 0 − 2+ − 0 − 3, or type 3 − 0 − 2+ − 0 − 3 − 0 − 3, or type 3 − 0 − 3 − 0 − 3, or type
2+ − 0− 3− 0− 3− 0− 2+ or a subgraph P of type 3− 0−3

−3, then ∑v∈V(P)(s′(v)− 0.8) ≥ 1.
(b) if there exist a path P1 of type 2− 2 and a path P2 of type 2+− 0− 3, then ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥
1.

(c) if there exists a subgraph H of type 2− 2− 0−2
−2, then ∑v∈V(H)(s′(v)− 0.8) ≥ 1.2.

(d) if there exist a path P of type 3− 0− 3, together with a subgraph H of type 2+ − 0− 3− 0− 2+ or type
3− 0−2+

−2+ , then ∑v∈V(P)∪V(H)(s′(v)− 0.8) ≥ 1.
(e) if there exist three paths P1, P2, P3 of type 3− 0− 3, then ∑v∈V(P1)∪V(P2)∪V(P3)

(s′(v)− 0.8) ≥ 1.2.

Lemma 6. Let f be a γdR-function of P(n, 2) with weight d 8n
5 e, then there exists no edge uv ∈ E(P(n, 2)) for

which uv ∈ E f
{2,2} ∪ E f

{2,3} ∪ E f
{3,3}.
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Proof. First, we have:

γdR(P(n, 2)) = w( f ) = d8n
5
e ≤ 8n + 4

5
=

8n
5

+ 0.8,

and so:

w( f )− 8n
5
≤ 0.8.

We use the above discharging procedure for f on P(n, 2), and similar to the proof of Proposition 2,
we have:

w( f ) = ∑
v∈V(P(n,2))

s′(v),

and so:

∑
v∈V(P(n,2))

(s′(v)− 4
5
) ≤ 0.8 (2)

By Lemma 5a and Equation (2), we have that there exists no edge uv ∈ E f
{2,3} ∪ E f

{3,3}.

Now, suppose to the contrary that there exists an edge uv ∈ E f
{2,2}, and it is sufficient to consider

the following three cases.

Case 1: f (ui) = f (ui+1) = 2.

We have f (ui−1) = f (ui+2) = f (vi+1) = f (vi) = 0. Otherwise, there exists a path P of type
2− 2− 2 or type 2+ − 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Since ui+2 needs to be double Roman dominated, we have { f (ui+3), f (vi+2)} = {0, 2}. Otherwise,
f (x) = 3 for some x ∈ {ui+3, vi+2} or f (ui+3) = f (vi+2) = 2.

If f (x) = 3 for some x ∈ {ui+3, vi+2}, there exists a path P of type 2− 2− 0− 3. By Lemma 5a,
we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

If f (ui+3) = f (vi+2) = 2, there exists a subgraph H of type 2− 2− 0−2
−2. By Lemma 5c, we have

∑v∈V(H)(s′(v)− 0.8) ≥ 1.2, contradicting Equation (2).
Now, it is sufficient to consider the following two cases.

Case 1.1: f (vi+2) = 2, f (ui+3) = 0.

To double Roman dominate vi+1, we have f (vi+3) ≥ 2 or f (vi−1) ≥ 2. First, we have f (vi+3) 6= 3
and f (vi−1) 6= 3. Otherwise, uiui+1vi+1vi+3 or uiui+1vi+1vi−1 is a path P of type 2 − 2 − 0 − 3.
By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Now, we have that it is impossible f (vi+3) = f (vi−1) = 2. Otherwise, the set
{ui, ui+1, vi+1, vi+3, vi−1} induces a subgraph H of type 2 − 2 − 0−2

−2. By Lemma 5c, we have
∑v∈V(H)(s′(v)− 0.8) ≥ 1.2, contradicting Equation (2).

Therefore, we have { f (vi+3), f (vi−1)} = {0, 2}. Now, it is sufficient to consider the following
two cases.

Case 1.1.1: f (vi+3) = 2, f (vi−1) = 0.

Since vi−1 and ui−1 need to be double Roman dominated, we have f (vi−3) = 3, f (ui−2) = 2+.
Then, there exists a path P1 of type 2− 2 and a path P2 of type 2+ − 0− 3. By Lemma 5b, we have
∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 1.1.2: f (vi+3) = 0, f (vi−1) = 2.

Since ui+3 and vi+3 need to be double Roman dominated, we have f (ui+4) = f (vi+5) = 3.
Then, there exist a path P1 of type 2 − 2 and a path P2 of type 3 − 0 − 3. By Lemma 5b,
∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).
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Case 1.2: f (vi+2) = 0, f (ui+3) = 2.

Since vi+2 needs to be double Roman dominated, we have f (vi+4) = 3. Then, there exist a
path P1 of type 2− 2 and a path P2 of type 2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1,
contradicting Equation (2).

Case 2: f (vi) = f (ui) = 2.

We have f (ui±1) = f (vi±2) = 0. Otherwise, there exists a path P of type 2− 2− 2 or type 2+ − 3.
By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Since ui+1 needs to be double Roman dominated, we have { f (ui+2), f (vi+1)} = {0, 2}. Otherwise,
by Lemma 5a or Lemma 5c, we obtain a contradiction with Equation (2).

Now, we consider the following two subcases.

Case 2.1: f (vi+1) = 2, f (ui+2) = 0.

Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 3. Then, there exist a
path P1 of type 2− 2 and a path P2 of type 2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1,
contradicting Equation (2).

Case 2.2: f (vi+1) = 0, f (ui+2) = 2.

Since vi+1 needs to be double Roman dominated, we have f (x) = 3 for some x ∈ {vi+3, vi−1} or
f (vi+3) = f (vi−1) = 2. If f (x) = 3 for some x ∈ {vi+3, vi−1}, there exist a path P1 of type 2− 2 and a
path P2 of type 2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).
If f (vi+3) = f (vi−1) = 2, then by Lemma 5b,c, we have ui−2 = 0. Since ui−2 needs to be double

Roman dominated, we have f (ui−3) = 3. Then, there exist a path P1 of type 2− 2 and a path P2 of type
2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 3: f (vi+1) = f (vi−1) = 2.

We have f (ui±1) = f (vi±3) = 0. Otherwise, there exists a path P of type 2− 2− 2 or type 2+ − 3.
By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Since ui needs to be double Roman dominated, we have f (ui) = 2 or f (vi) = 3.

Case 3.1: f (ui) = 2, f (vi) = 0.

By Lemma 5b,c and Equation (2), we have f (ui±2) = 0. Since vi needs to be double Roman
dominated, we have { f (vi−2), f (vi+2)} = {0, 2}. Considering isomorphism, we without loss of
generality assume f (vi+2) = 2 and f (vi−2) = 0. Since ui−2 needs to be double Roman dominated,
f (ui−3) = 3. Then, there exist a path P1 of type 2− 2 and a path P2 of type 2− 0− 3. By Lemma 5b,
∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 3.2: f (ui) = 0, f (vi) = 3.

By Lemma 5a and Equation (2), we have f (vi±2) = 0. Since ui+1 needs to be double Roman
dominated, we have f (ui+2) = 2. Then, there exist a path P1 of type 2− 2 and a path P2 of type
2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).
Therefore, the proof is complete.

Lemma 7. Let f be a γdR-function of P(n, 2) with weight d 8n
5 e, v ∈ V000

3 and S = {x|x ∈ N2(v), f (x) ≥ 2},
then 1 ≤ |S| ≤ 2.

Proof. We use the above discharging procedure for f on P(n, 2). By Lemma 4, we have |S| ≥ 1.
Now, suppose to the contrary that |S| ≥ 3. By rules R1 and R2 and Equation (1), we have:

∑
v∈V(P(n,2))

(s′(v)− 4
5
) ≥ ∑

x∈N[v]∪N2(v)
(s′(x)− 4

5
) ≥ 1,
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contradicting Equation (2).

Lemma 8. If n ≥ 5 and f is a γdR-function of P(n, 2) with f (ui) = 3 for some i ∈ [n], then w( f ) ≥ d 8n
5 e+ 1.

Proof. Suppose to the contrary that there exists a γdR-function f with w( f ) = d 8n
5 e such that f (ui) = 3

for some i ∈ [n]. By Lemma 6, we have f (vi) = f (ui±1) = 0. Let S = {x|x ∈ N2(v), f (x) ≥ 2}.
By Lemma 7, we have |S| ∈ {1, 2}. Therefore, we just need to consider the following two cases.

Case 1: |S| = 1.

We may w.l.o.g assume that { f (ui−2), f (vi−1), f (vi−2)} ={0, 0, 2} or {0, 0, 3} and f (vi+1) =

f (vi+2) = f (ui+2) = 0. Since ui+2, vi+2 need to be double Roman dominated, we have f (ui+3) =

f (vi+4) = 3, and thus, f (vi+3) = 0. Since vi+1 needs to be double Roman dominated, we have
f (vi−1) = 3. Thus, f (ui−2) = f (vi−2) = 0. Since ui−2, vi−2 need to be double Roman dominated,
we have f (ui−3) = f (vi−4) = 3. Then, there exist three paths P1, P2, P3 of type 3− 0− 3. By Lemma 5e,
we have ∑v∈V(P1)∪V(P2)∪V(P3)

(s′(v)− 0.8) ≥ 1.2, contradicting Equation (2).

Case 2: |S| = 2.

It is sufficient to consider the following cases.

Case 2.1: S ⊆ {vi−1, vi−2, ui−2} and f (vi+1) = f (vi+2) = f (ui+2) = 0.

Since ui+2, vi+2 need to be double Roman dominated, we have f (ui+3) = f (vi+4) = 3. Then,
there exist a path P of type 3− 0− 3, and a subgraph H of type 2+ − 0− 3− 0− 2+ or type 3− 0−2+

−2+ .
By Lemma 5d, we have ∑v∈V(P)∪V(H)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 2.2: S = {s1, s2}, s1 ∈ {vi−1, vi−2, ui−2} and s2 ∈ {vi+1, vi+2, ui+2}.
First, we have f (vi±1) = 0. Otherwise, we may without loss of generality assume that f (vi+1) ≥ 2.

Since ui+2, vi+2 need to be double Roman dominated, we have f (ui+3) = f (vi+4) = 3. Then, there
exist a path P of type 3− 0− 3, and a path H of type 2+ − 0− 3− 0− 2+. By Lemma 5d, we have
∑v∈V(P)∪V(H)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Then, since vi+1, vi−1 need to be double Roman dominated, we have f (vi+3) = f (vi−3) = 3.
By Lemma 6, we have f (ui+3) = f (ui−3) = 0. Since ui±2 need to be double Roman dominated,
we have ( f (ui−2), f (vi−2)) ∈ {(0, 3), (2, 0), (3, 0)} and ( f (ui+2), f (vi+2)) ∈ {(0, 3), (2, 0), (3, 0)}.

It is impossible that f (vi+2) + f (ui+2) = 3 and f (vi−2) + f (ui−2) = 3. Otherwise, there exists a
path P of type 3− 0− 3− 0− 3 or a subgraph P of type 3− 0−3

−3. By Lemma 5a, we have ∑v∈V(P)(s′(v)−
0.8) ≥ 1, contradicting Equation (2).

It is impossible f (ui±2) ≥ 2. Otherwise, there exists a path P of type 3− 0− 2+ − 0− 3− 0−
2+ − 0− 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Then, we may without loss of generality assume that f (ui+2) = 2 and f (vi−2) = 3. Then, there
exists a path P of type 3− 0− 2− 0− 3− 0− 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1,
contradicting Equation (2).

Lemma 9. If n ≥ 5 and f is a γdR-function of P(n, 2) with f (vi) = 3 for some i ∈ [n], then w( f ) ≥ d 8n
5 e+ 1.

Proof. Suppose to the contrary that there exists a γdR-function f with w( f ) = d 8n
5 e such that f (vi) = 3

for some i ∈ [n]. By Lemma 6, we have f (ui) = f (vi±2) = 0. Let S = {x|x ∈ N2(v), f (x) ≥ 2}.
By Lemma 7, we have 1 ≤ |S| ≤ 2, and we just need to consider the following two cases.

Case 1: |S| = 1.

We may without loss of generality assume that { f (ui−1), f (ui−2), f (vi−4)}={0, 0, 2} or {0, 0, 3}
and f (ui+1) = f (ui+2) = f (vi+4) = 0. Since ui+1 and ui+2 need to be double Roman dominated,
we have f (vi+1) = f (ui+3) = 3, contradicting Lemma 8.
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Case 2: |S| = 2.

Now, it is sufficient to consider the following two cases.

Case 2.1: S ⊆ {ui−1, ui−2, vi−4} and f (ui+1) = f (ui+2) = f (vi+4) = 0.

Since ui+1, ui+2 need to be double roman dominated, we have f (vi+1) = f (ui+3) = 3,
contradicting Lemma 8.

Case 2.2: S = {s1, s2}, where s1 ∈ {ui−1, ui−2, vi−4} and s2 ∈ {ui+1, ui+2, vi+4}.
By Lemma 8, f (uk) 6= 3 for each k ∈ {1, 2, · · · , n}, and thus, { f (ui+1), f (ui+2), f (ui−2),

f (ui−1)} = {0, 2}.
Then, we have f (vi+4) = f (vi−4) = 0. Otherwise, f (vi+4) 6= 0 or f (vi−4) 6= 0. By symmetry,

we may assume without loss of generality that f (vi+4) 6= 0. Thus, we have f (ui+1) = f (ui+2) = 0.
Since ui+1, ui+2 need to be double Roman dominated, we have f (vi+1) = f (ui+3) = 3, contradicting
Lemma 8.

Now, it is sufficient to consider the following three cases.

Case 2.2.1: f (ui+1) = f (ui−1) = 2.

By Lemma 6, we have f (ui±2) = f (vi±1) = 0.
Since ui+2 needs to be double Roman dominated and by Lemma 8, we have f (ui+3) = 2. Since vi+1

needs to be double Roman dominated, we have f (vi+3) ≥ 2. Thus, there exists an edge e ∈ E f
{2,2+},

a contradiction with Lemma 6.

Case 2.2.2: f (ui+2) = f (ui−2) = 2.

By Lemma 6, we have f (ui±3) = f (ui±1) = 0.
Since ui+1, ui−1 need to be double Roman dominated, we have f (vi±1) = 2. Thus, there exists an

edge e ∈ E f
{2,2}, a contradiction with Lemma 6.

Case 2.2.3: f (ui+1) = f (ui−2) = 2.

By Lemma 6, we have f (ui−3) = f (vi+1) = f (ui+2) = 0.
Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 2. By Lemma 6, we have

f (vi+3) = f (ui+4) = 0. Since ui+4 needs to be double Roman dominated and by Lemma 8, we have
f (ui+5) = 2. Since vi+3 needs to be double Roman dominated, we have f (vi+5) ≥ 2. Thus, there exists
an edge e ∈ E f

{2,2+}, a contradiction with Lemma 6.

Lemma 10. Let n ≥ 5 and n 6≡ 0 (mod 5). If f is a γdR-function of P(n, 2), then w( f ) ≥ d 8n
5 e+ 1.

Proof. Suppose to the contrary that w( f ) = d 8n
5 e. By Lemmas 8 and 9, we have |V3| = 0. Now,

we have:

Claim 1. |V2 ∩ N(v)| = 2 for any v ∈ V(P(n, 2)) with f (v) = 0.

Proof. Suppose to the contrary that there exists a vertex v ∈ V(P(n, 2)) with f (v) = 0 and |V2 ∩
N(v)| = 3. We consider the following two cases.

Case 1: v = ui for some i ∈ [n].

Since |V2 ∩ N(v)| = 3, we have f (ui−1) = f (ui+1) = f (vi) = 2. By Lemma 6, we have f (ui±2) =

0, f (vi±1) = 0 and f (vi±2) = 0. Since vi+1 needs to be double Roman dominated, we have f (vi+3) = 2.
Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 2. Since vi+3ui+3 ∈ E f

{2,2},
contradicting Lemma 6.

Case 2: v = vi for some i ∈ [n].
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Since |V2 ∩ N(v)| = 3, we have f (vi−2) = f (vi+2) = f (ui) = 2. By Lemma 6, we have f (ui±1) =

f (ui±2) = f (vi±4) = 0. Since ui+1 needs to be double Roman dominated, we have f (vi+1) = 2.
Since ui−1 needs to be double Roman dominated, we have f (vi−1) = 2. Since vi+1vi−1 ∈ E f

{2,2},
contradicting Lemma 6.

We assume without loss of generality that f (ui) = 2. By Lemma 6, we have f (ui−1) = 0, f (vi) = 0
and f (ui+1) = 0. Since vi needs to be double Roman dominated, we assume without loss of generality
that f (vi−2) = 2. By Claim 1, we have f (vi+2) = 0. Since f (vi−2) = 2, together with Lemma 6,
we have f (ui−2) = 0. Since ui−1 needs to be double Roman dominated, we have f (vi−1) = 2. Then,
by Lemma 6, we have f (vi+1) = 0. Since vi+2 needs to be double Roman dominated, we have
f (ui+2) = 2. That is to say, we have:

f (Bi) = f

(
ui−2 ui−1 ui ui+1 ui+2
vi−2 vi−1 vi vi+1 vi+2

)
=

(
0 0 2 0 2
2 2 0 0 0

)
.

By repeatedly applying Claim 1 and Lemma 6, f (x) can be determined for each x ∈ Bi+5, and
we have f (Bi) = f (Bi+5). It is straightforward to see that w( f ) = d 8n

5 e only if n ≡ 0 (mod 5),
a contradiction.

3. Conclusions

By Lemma 1, Proposition 2 and Lemma 10, we have

Theorem 1. If n ≥ 5, then:

γdR(P(n, 2)) =

{
d 8n

5 e, n ≡ 0 (mod 5),
d 8n

5 e+ 1, n ≡ 1, 2, 3, 4 (mod 5).

Remark 1. Beeler et al. [7] proposed the concept of the double Roman domination. They showed that 2γ(G) ≤
γdR(G) ≤ 3γ(G). Moreover, they suggested to find double Roman graphs.

In [17], it was proven that:

Theorem 2. If n ≥ 5, then γ(P(n, 2)) = d 3n
5 e.

Therefore, we have that P(n, 2) is not double Roman for all n ≥ 5.
In fact, there exist many double Roman graphs among Petersen graph P(n, k). For example,

in [12], it was shown that P(n, 1) is a double Roman graph for any n 6≡ 2 (mod 4). Therefore, it is
interesting to find other Petersen graphs that are double Roman.
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Abstract: Let G = (V, E) be a connected graph and d(x, y) be the distance between the vertices x and
y in G. A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector of
distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set
of G and is denoted by dim(G). In this paper, Cycle, Path, Harary graphs and their rooted product
as well as their connectivity are studied and their metric dimension is calculated. It is proven that
metric dimension of some graphs is unbounded while the other graphs are constant, having three or
four dimensions in certain cases.

Keywords: metric dimension; basis; resolving set; cycle; path; Harary graphs; rooted product
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1. Introduction

In a connected graph G(V, E), where V is the set of vertices and E is the set of edges,
the distance d(u, v) between two vertices u, v ∈ V is the length of shortest path between them.
Let W = {w1, w2, ..., wk} be an order set of vertices of G and let v be a vertex of G. The representation
r(v|W) of v with respect to W is the k-tuple (d(v, w1), d(v, w2), d(v, w3), ..., d(v, wk)}, where W is called
a resolving set [1] or locating set [2] if every vertex of G is uniquely identified by its distances from the
vertices of W, or equivalently, if distinct vertices of G have distinct representations with respect to W.
A resolving set of minimum cardinality is called a basis for G and cardinality is the metric dimension
of G, denoted by dim(G) [3]. The concept of resolving set and metric basis have previously appeared
in the literature [4–6].

For a given ordered set of vertices W = {w1, w2, ..., wk} of a graph G, the ith component of
r(v|W) is 0 if and only if v = wi. Thus, to show that W is a resolving set it suffices to verify that
r(x|W) 6= r(y|W) for each pair of distinct vertices x, y ∈ V(G) \W.

Motivated by the problem of uniquely determining the location of an intruder in a network,
the concept of metric dimension was introduced by Slater in [2,7] and studied independently by
Harary and Melter in [5]. Application of this invariant to the navigation of robots in networks are
discussed in [8] and application to chemistry is discussed in [1], while application to the problem of

Mathematics 2018, 6, 191; doi:10.3390/math6100191 www.mdpi.com/journal/mathematics

165



Mathematics 2018, 6, 191

pattern recognition and image processing, some of which involve the use of hierarchical data structures,
are given in [6].

Let F be a family of connected graphs. If all graphs in F have the same metric dimension, then F
is called a family with constant metric dimension [9]. A connected graph G has dim(G) = 1 if and only
if G is a path [1], cycle Cn have metric dimension 2 for every n ≥ 3, also honeycomb networks [10]
have metric dimension 3.

Metric dimension is a parameter that has appeared in various applications of graph theory, as diverse
as pharmaceutical chemistry [1,11], robot navigation [8,12] and combinatorial optimization [13], to name
a few. A chemical compound can be represented by more than one suggested structure but only one of
them, which expresses the physical and chemical properties of compound, is acceptable. The chemists
require mathematical representation for a set of chemical compounds in a way that gives distinct
representations to distinct compounds. As described in [1,11], the structure of chemical compounds
can be represented by a labeled graph whose vertex and edge labels specify the atom and bond types,
respectively. Thus, a graph theoretic interpretation of this problem is to provide representations for the
vertices of a graph in such a way that distinct vertices have distinct representations. This is the subject
of the papers [1,6,14–17].

Other families of graphs with unbounded metric dimension are regular bipartite graphs [4], wheel
graph and jahangir graph [18].

Our main aim of this paper is to compute the metric dimension of graphs obtained from the
rooted product graphs. For this purpose, we need the following definitions.

Definition 1 ([19]). A rooted graph is a graph in which one vertex has been distinguished as the root.
Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions
that allow multiple roots.

Definition 2 ([20]). Let H be a labelled graph on n vertices. Let G be a sequence of n rooted graphs G1, G2, ...Gn.
The graph H(G) obtained by identifying the root of Gi with the ith vertex of H. The graph H(G) is called the
rooted product of H by G.

Definition 3 ([19]). The Harary graph Hm,n is defined as follows and depicted in Figure 1:

Case 1. m is even. Let m = 2r, then H2r,n is constructed as follows: It has vertices 0, 1, . . . , n − 1 and
two vertices i and j are joined if i− r ≤ j ≤ i + r (where addition is taken modulo n).

Case 2. m is odd and n is even. Let m = 2r + 1, then the H2r+1,n is constructed by first drawing H2r,n and
then adding edges joining vertex i to vertex i + (n/2) for 1 ≤ i ≤ n/2.

Case 3. m, n are odd. Let m = 2r + 1, then H2r+1,n is constructed by first drawing H2r,n and then adding
edges joining vertex 0 to vertices (n− 1)/2 and (n + 1)/2 and vertex i to vertex i + (n + 1)/2 for
1 ≤ i ≤ (n− 1)/2.

Figure 1. (a) The Harary graph H6,8; (b) The Harary graph H5,10; (c) The Harary graph H3,7.
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2. The Rooted Product of Harary Graphs with Cycle Graph

Suppose Ci
3, 1 ≤ i ≤ n , Ci

4, 1 ≤ i ≤ n and Ci
5, 1 ≤ i ≤ n be n copies of C3, C4and C5 having

vertices {vj
i , 1 ≤ i ≤ n, 1 ≤ j ≤ 3}, {vj

i , 1 ≤ i ≤ n, 1 ≤ j ≤ 4} and {vj
i , 1 ≤ i ≤ n, 1 ≤ j ≤ 5}

respectively and {v1, v2, v3, ..., vn} be the set of vertices of Hm,n. By definition of rooted product
{vj

i , 1 ≤ i ≤ n, 1 ≤ j ≤ 3}, {vj
i , 1 ≤ i ≤ n, 1 ≤ j ≤ 4} and {vj

i , 1 ≤ i ≤ n, 1 ≤ j ≤ 5} will be sets of
vertices of Hm,n(C3),Hm,n(C4) and Hm,n(C5) respectively with indices taken modulo n. After rooted
product, it is considered that all the cycles share {v1

i , 1 ≤ i ≤ n} with Hm,n.
More preciously, the graphs Hm,n(C3), Hm,n(C4) and Hm,n(C5) are the rooted product of Harary

graphs Hm,n by cycles C3, C4 and C5 respectively.
Now we present our main results on metric dimension of Hm,n(C3), Hm,n(C4) and Hm,n(C5).

Theorem 1. If G1
∼= Hm,n(C3), then there exists a resolving set W of G1 such that

{v2
i ; 1 ≤ i ≤ n} ⊆W(G1), {v3

i ; 1 ≤ i ≤ n} 6⊆W(G1),

|W(G1)| ≥ n.

Proof. As d(v2
i , v1

i ) = d(v3
i , v1

i ), ∀, 1 ≤ i ≤ n

and d(v2
i , vj

k) = d(v3
i , vj

k), ∀, 1 ≤ i, k ≤ n, k 6= i and j = 1, 2, 3.

⇒ either v2
i ∈W(G1) or v3

i ∈W(G1).

To minimize the cardinality of W(G1), we can say without loss of any generality:

{v2
i ; 1 ≤ i ≤ n} ⊆W(G1) and {v3

i ; 1 ≤ i ≤ n} * W(G1).

⇒ |W(G1)| > n.
This conclude the proof.

Theorem 2. If G1
∼= Hm,n(C3) and W be a minimum resolving set of G1 then |W(G1)| = n.

Proof. From Theorem 1, we have |W(G1)| > n. Now to prove the reverse inequality, i.e., |W(G1)| ≤ n,
we proceed as follows:

If we take {v1
i , v3

i ; 1 ≤ i ≤ n} ∩W = φ, then W is also resolving set.

By Theorem 1, v2
i ∈W for all 1 ≤ i ≤ n and d(v2

i , v1
i ) 6= d(v2

i , v1
k), ∀ 1 ≤ i, k ≤ n, i 6= k.

⇒ r(v1
i |W) 6= r(v1

i |W), ∀ 1 ≤ i, k ≤ n, i 6= k.

As v2
i ∈W ⇒ v2

i+1 ∈W and d(v2
i+1, v1

i ) 6= d(v2
i+1, v3

i ), ∀ 1 ≤ i ≤ n

⇒ r(v1
i |W) 6= r(v3

i |W), ∀, 1 ≤ i ≤ n,

r(v1
i |W) 6= r(v2

i |W) as {v2
i ; 1 ≤ i ≤ n} ⊆W

also r(v3
i |W) 6= r(v2

i |W) as {v2
i ; 1 ≤ i ≤ n} ⊆W
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d(v3
i , v2

i ) 6= d(v3
k , v2

i ), ∀, 1 ≤ i, k ≤ n, i 6= k.

⇒ r(v3
i |W) 6= r(v3

k |W), ∀, 1 ≤ i, k ≤ n, i 6= k.

So we conclude that W \ {v1
i ; 1 ≤ i ≤ n} is also the resolving set. This shows that |W(G1)| ≤ n.

Hence, the required result is proved.

Theorem 3. If G2 ∼= Hm,n(C4), then there exists a resolving set W of G2 such that

{v2
i ; 1 ≤ i ≤ n} ⊆W(G2), {v4

i ; 1 ≤ i ≤ n} * W(G2), |W(G2)| ≥ n

Proof. As d(v2
i , v1

i ) = d(v4
i , v1

i ), ∀, 1 ≤ i ≤ n

and d(v2
i , vj

k) = d(v4
i , vj

k), ∀, 1 ≤ i, k ≤ n, k 6= i and j = 1, 2, 3.

⇒ either v2
i ∈W(G2) or v4

i ∈W(G2).

To minimize the cardinality of W(G2), we can say without loss of any generality:

{v2
i ; 1 ≤ i ≤ n} ⊆W(G2) and {v4

i ; 1 ≤ i ≤ n} * W(G2).

⇒ |W(G2)| > n.
This conclude the proof.

Theorem 4. If G2 ∼= Hm,n(C4) and W be a minimum resolving set of G2 then |W(G2)| = n.

Proof. From Theorem 3, |W(G2)| > n. Now to prove the reverse inequality, i.e., |W(G2)| ≤ n,
we proceed as follows:

If we take {v1
i , v3

i , v4
i ; 1 ≤ i ≤ n} ∩W = φ then W is also resolving set.

By theorem 3, v2
i ∈W for all 1 ≤ i ≤ n

and d(v2
i , v1

i ) 6= d(v2
i , v1

k), ∀, 1 ≤ i, k ≤ n, i 6= k.

⇒ r(v1
i |W) 6= r(v1

k |W), ∀, 1 ≤ i, k ≤ n, i 6= k.

and r(v1
i |W) 6= r(v2

i |W) ∀ 1 ≤ i ≤ n, by definition of resolving set.

d(v2
i , v1

i ) 6= d(v2
i , v4

i ), ∀, 1 ≤ i ≤ n.

⇒ r(v1
i |W) 6= r(v4

i |W), ∀, 1 ≤ i ≤ n.

As v2
i ∈W for all 1 ≤ i ≤ n⇒ v2

i+1 ∈W.

d(v2
i+1, v3

i ) 6= d(v2
i+1, v1

i ), ∀ 1 ≤ i ≤ n.

⇒ r(v1
i |W) 6= r(v3

i |W), ∀, 1 ≤ i ≤ n.

r(v2
i |W) 6= r(v2

k |W), ∀, 1 ≤ i, k ≤ n,i 6= k, by definition of resolving set.
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r(v2
i |W) 6= r(v3

k |W), ∀, 1 ≤ i, k ≤ n,i 6= k, by definition of resolving set.

r(v2
i |W) 6= r(v4

k |W), ∀, 1 ≤ i, k ≤ n,i 6= k, by definition of resolving set.

As d(v2
i , v3

i ) 6= d(v2
i , v3

k), ∀ 1 ≤ i, k ≤ n, i 6= k.

⇒ r(v3
i |W) 6= r(v3

k |W), ∀, 1 ≤ i, k ≤ n, i 6= k.

d(v2
i , v3

i ) 6= d(v2
i , v4

i ), ∀, 1 ≤ i ≤ n.

⇒ r(v4
i |W) 6= r(v3

i |W), ∀, 1 ≤ i ≤ n.

d(v2
i , v4

i ) 6= d(v2
i , v4

k), ∀, 1 ≤ i, k ≤ n, i 6= k.

⇒ r(v4
i |W) 6= r(v4

k |W), ∀, 1 ≤ i, k ≤ n, i 6= k.

⇒ representation of all the vertices is unique if {v1
i , v3

i ; 1 ≤ i ≤ n} * W(G2)

In addition, from theorem 3, {v4
i ; 1 ≤ i ≤ n} * W(G2) and {v2

i ; 1 ≤ i ≤ n} ⊆W(G2).

Hence W = {v2
i ; 1 ≤ i ≤ n} is the minimum resolving set of G2. This shows that |W(G2)| = n.

Theorem 5. If G3 ∼= Hm,n(C5), then there exists a resolving set W of G3 such that

{v2
i ; 1 ≤ i ≤ n} ⊆W(G3) and |W(G3)| ≥ n.

Proof. As d(v2
i , vj

k) = d(v5
i , vj

k), ∀, 1 ≤ i, k ≤ n, i 6= k and 1 ≤ j ≤ 5.

and d(v2
i , v1

i ) = d(v5
i , v1

i ), ∀, 1 ≤ i ≤ n.

d(v2
i , v3

i ) 6= d(v5
i , v3

i ), ∀, 1 ≤ i ≤ n,

d(v2
i , v4

i ) 6= d(v5
i , v4

i ) ∀ 1 ≤ i ≤ n.

⇒ For all 1 ≤ i ≤ n, r(v2
i |W) = r(v5

i |W), ∀, resolving sets W in which

{v2
i , v3

i , v4
i , v5

i } ∩W = φ.

and For all 1 ≤ i ≤ n, r(v3
i |W) = r(v4

i |W), ∀, resolving sets W in which

{v2
i , v3

i , v4
i , v5

i } ∩W = φ.

To make the representation unique, we can say {v2
i , v3

i , v4
i , v5

i } ∩W 6= φ. Without loss of any
generality we can assume that {v2

i ; 1 ≤ i ≤ n} ⊆W(G3)⇒ |W(G3)| ≥ n. This concludes the proof.
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Theorem 6. If G3 ∼= Hm,n(C5) and W be a minimum resolving set of G3 then |W(G3)| = n.

Proof. From Theorem 5, |W(G3)| > n. Now to prove the reverse inequality, i.e., |W(G3)| ≤ n,
we proceed as follows:

If we take {v1
i , v3

i , v4
i , v5

i ; 1 ≤ i ≤ n} ∩W = φ, then W is also resolving set.

By Theorem 5, v2
i ∈W for all 1 ≤ i ≤ n

and d(v2
i , v1

i ) 6= d(v2
i , v1

k), ∀, 1 ≤ i, k ≤ n, i 6= k.

⇒ r(v1
i |W) 6= r(v1

k |W), ∀, 1 ≤ i, k ≤ n, i 6= k.

and r(v1
k |W) 6= r(v2

i |W) ∀, 1 ≤ i, k ≤ n by definition of resolving set.

d(v1
i , v2

i+1) 6= d(v3
i , v2

i+1), ∀, 1 ≤ i ≤ n.

and d(v1
i , v2

i ) 6= d(v3
k , v2

i ), ∀, 1 ≤ i, k ≤ n and i 6= k.

r(v1
i |W) 6= r(v3

k |W) ∀ 1 ≤ i, k ≤ n.

As d(v1
i , v2

i ) 6= d(v4
k , v2

i ), ∀, 1 ≤ i, k ≤ n.

⇒ r(v1
i |W) 6= r(v4

k |W), ∀, 1 ≤ i, k ≤ n.

As d(v1
i , v2

i ) 6= d(v5
k , v2

i ), ∀, 1 ≤ i, k ≤ n.

⇒ r(v1
i |W) 6= r(v5

k |W), ∀ 1 ≤ i, k ≤ n.

r(v2
i |W) 6= r(vj

k|W) ∀ 1 ≤ i, k ≤ n , 1 ≤ j ≤ 5, by definition of resolving set.

As d(v3
i , v2

i ) 6= d(v3
k , v2

i ), ∀, 1 ≤ i, k ≤ n i 6= k.

⇒ r(v3
i |W) 6= r(v3

k |W), ∀, 1 ≤ i, k ≤ n i 6= k.

d(v3
i , v2

i ) 6= d(v4
k , v2

i ), ∀, 1 ≤ i, k ≤ n.

⇒ r(v3
i |W) 6= r(v4

k |W), ∀, 1 ≤ i, k ≤ n.

d(v3
i , v2

i ) 6= d(v5
k , v2

i ), ∀, 1 ≤ i, k ≤ n.

⇒ r(v3
i |W) 6= r(v5

k |W), ∀, 1 ≤ i, k ≤ n.

As d(v4
i , v2

i ) 6= d(v4
k , v2

i ), ∀, 1 ≤ i, k ≤ n i 6= k.

⇒ r(v4
i |W) 6= r(v4

k |W), ∀, 1 ≤ i, k ≤ n i 6= k.

d(v4
i , v2

i+1) 6= d(v5
i , v2

i+1), ∀, 1 ≤ i ≤ n.
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and d(v4
i , v2

i ) 6= d(v5
k , v2

i ), ∀, 1 ≤ i, k ≤ n and i 6= k.

r(v4
i |W) 6= r(v5

k |W) ∀, 1 ≤ i, k ≤ n.

d(v5
i , v2

i ) 6= d(v5
k , v2

i ), ∀, 1 ≤ i, k ≤ n i 6= k.

⇒ r(v5
i |W) 6= r(v5

k |W), ∀, 1 ≤ i, k ≤ n i 6= k.

Hence W \ {v1
i , v3

i , v4
i , v5

i ; 1 ≤ i ≤ n} is the resolving set.
This shows that |W(G3)| = n.

3. The Rooted Product of Harary Graphs with Path Graph

The graph H4,n(Pm) is the rooted product of Harary graph H4,n by path Pm, see Figure 2. To construct
the graph H4,n(C3)

c we first construct rooted product of Harary graph H4,n by cycle C3 as shown in
Figure 3a and then connect the remaining two vertices of each rooted C3 with both neighboring C3 as
shown in Figure 3b.

The graphs H4,n(Pm) and H4,n(C3)
c are an important class of graphs, which can be used in the

design of local area networks [18].
Now we present our main results on metric dimension of H4,n(Pm) and H4,n(C3)

c.To calculate
metric dimension of H4,n(C3)

c, H4,n(Pm) and (P2 × Pk)(C4)
c we need the following result of

khuller et al. [8].

Figure 2. The graph H4,8(P3).

Theorem 7. Let G be a graph with minimum metric dimension 2 and let {u, v} ⊂ V be the metric basis in G.
Then the following statements are true:

(a) There is a unique shortest path between u and v.
(b) The degree of each u and v is at most 3.

Theorem 8. For G ∼= H4,n(C3)
c, where H4,n be a 4-regular Harary graph with n ≥ 5 and C3 is the cycle of

length 3; then we have dim(G) = 3 when n ≡ 0, 1, 3(mod4) and dim(G) ≤ 4 otherwise.
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Figure 3. (a) The graph of H4,10(C3); (b) The graph of H4,10(C3)
c.

Proof. Case-I when n ≡ 0 (mod4) i.e., n = 4k, k ≥ 2 and k ∈ N.

be the resolving set of G then r(v1
2|W) = (1, 2, 1),

r(v1
3|W) = (1, 1, 1),r(v1

4|W) = (2, 1, 2),r(v1
6|W) = (2, 1, 3),r(v1

7|W) = (1, 1, 3),

r(v1
8|W) = (1, 2, 2),r(v2

1|W) = (1, 3, 2),r(v2
2|W) = (1, 3, 1),r(v2

4|W) = (2, 2, 1),

r(v2
5|W) = (3, 1, 2),r(v2

6|W) = (3, 1, 3),r(v2
7|W) = (2, 2, 4),r(v2

8|W) = (2, 2, 3),

For n = 12 let W = {v1
1, v1

4, v1
7} be the resolving set of G then

r(v1
2|W) = (1, 3, 1),r(v1

3|W) = (1, 2, 1),r(v1
5|W) = (2, 1, 1),r(v1

6|W) = (3, 1, 1),

r(v1
8|W) = (3, 1, 2),r(v1

9|W) = (2, 1, 3),r(v1
10|W) = (2, 2, 3),r(v1

11|W) = (1, 2, 3),

r(v1
12|W) = (1, 3, 2),r(v2

1|W) = (1, 4, 3),r(v2
2|W) = (1, 4, 2),r(v2

3|W) = (2, 3, 2),

r(v2
4|W) = (2, 3, 1),r(v2

5|W) = (3, 2, 1),r(v2
6|W) = (3, 2, 2),r(v2

7|W) = (4, 1, 2),

r(v2
8|W) = (4, 1, 3),r(v2

9|W) = (3, 2, 3),r(v2
10|W) = (3, 2, 4),r(v2

11|W) = (2, 3, 4),

r(v2
12|W) = (2, 3, 3).

For n ≥ 16 let W = {v2
1, v2

4, v2
2k+2} be the resolving set of G then

r(v1
2i|W) =





(i + 1, i− 1, k + 2− i) 1 ≤ i ≤ k
(i− 1, i− 1, 1) i = k + 1
(2k + 1− i, 2k + 3− i, i− k) k + 2 ≤ i ≤ 2k

r(v1
2i+1|W) =

{
(i + 1, i, k + 1− i) 2 ≤ i ≤ k
(2k + 1− i, 2k + 2− i, i− k + 1) k + 1 ≤ i ≤ 2k− 1
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r(v2
2i|W) =

{
(i + 1, i, k + 3− i) 4 ≤ i ≤ k− 1
(2k + 2− i, 2k + 4− i, i + 1− k) k + 3 ≤ i ≤ 2k− 1

r(v2
2i+1|W) =

{
(i + 2, i, k + 2− i) 3 ≤ i ≤ k− 1
(2k + 2− i, 2k + 3− i, i + 1− k) k + 2 ≤ i ≤ 2k− 2

r(v1
1|W) = (1, 2, k + 1),r(v1

2|W) = (2, 2, k + 1),r(v1
3|W) = (2, 1, k),

r(v2
2k|W) = (k + 1, k, 2),r(v2

2k+1|W) = (k + 2, k, 1),r(v2
2k+3|W) = (k + 1, k + 1, 1),

r(v2
2k+4|W) = (k, k + 2, 2),r(v2

4k|W) = (1, 4, k + 1),r(v2
4k−1|W) = (2, 4, k),

r(v2
2|W) = (1, 2, k + 2),r(v2

3|W) = (2, 1, k + 1),r(v2
5|W) = (4, 1, k).

Since distinct vertices have distinct representation, dim(G) ≤ 3 in this case. However, by
Theorem 1 no two vertices can resolve G into distinct representation so dim(G) > 2. Hence dim(G) = 3.

Case-II when n ≡ 1 (mod4) i.e., n = 4k + 1, k ∈ N.

For n = 5 let W = {v2
1, v2

4, v1
4} be the resolving set of G then r(v1

1|W) = (1, 3, 1),

r(v1
2|W) = (2, 2, 1),r(v1

3|W) = (3, 1, 1),r(v1
5|W) = (1, 2, 1),r(v2

2|W) = (1, 2, 2),

r(v2
3|W) = (2, 1, 2),r(v2

5|W) = (1, 1, 1).

For n ≥ 9 let W = {v2
1, v2

4, v1
2k+1} be the resolving set of G then

r(v1
2i|W) =

{
(i + 1, i− 1, k + 1− i) 2 ≤ i ≤ k
(2k + 2− i, 2k + 3− i, i− k) k + 2 ≤ i ≤ 2k

r(v1
2i+1|W) =

{
(i + 1, i, k− i) 1 ≤ i ≤ k− 1
(2k + 1− i, 2k + 3− i, i− k) k + 2 ≤ i ≤ 2k

r(v2
2i|W) =

{
(i + 1, i, k + 2− i) 4 ≤ i ≤ k
(2k + 3− i, 2k + 4− i, i− k) k + 2 ≤ i ≤ 2k− 1

r(v2
2i+1|W) =

{
(i + 2, i, k + 1− i) 3 ≤ i ≤ k
(2k + 2− i, 2k + 4− i, i− k + 1) k + 2 ≤ i ≤ 2k− 1

r(v1
2k+2|W) = (k + 1, k, 1),r(v1

2k+3|W) = (k, k + 1, 1),r(v1
2|W) = (2, 2, k),

r(v1
1|W) = (1, 2, k),r(v2

2k+2|W) = (k + 2, k + 1, 1),r(v2
2k+3|W) = (k + 1, k + 1, 2),

r(v2
4k|W) = (2, 3, k),r(v2

4k+1|W) = (1, 3, k),r(v2
2|W) = (1, 2, k + 1),

r(v2
3|W) = (2, 1, k),r(v2

5|W) = (4, 1, k− 1),r(v2
6|W) = (4, 2, k− 1).

Since distinct vertices have distinct representation, dim(G) ≤ 3 in this case. However, by
Theorem 1 no two vertices can resolve G into distinct representation so dim(G) > 2. Hence dim(G) = 3.
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Case-III when n ≡ 3 (mod4) i.e., n = 4k + 3, k ∈ N.

For n = 7 let W = {v2
1, v2

6, v2
7} be the resolving set of G then r(v1

1|W) = (1, 2, 2),

r(v1
2|W) = (2, 3, 2),r(v1

3|W) = (2, 2, 3),r(v1
4|W) = (3, 2, 2),r(v1

5|W) = (2, 1, 2),

r(v1
6|W) = (2, 1, 1),r(v1

7|W) = (1, 2, 1),r(v2
2|W) = (1, 3, 2),r(v2

3|W) = (2, 3, 3),

r(v2
4|W) = (3, 2, 3),r(v2

5|W) = (3, 1, 2).

For n = 11 let W = {v2
1, v2

4, v1
7} be the resolving set of G then

r(v1
1|W) = (1, 2, 3),r(v1

2|W) = (2, 2, 3),r(v1
3|W) = (2, 1, 2),r(v1

4|W) = (3, 1, 2),

r(v1
5|W) = (3, 2, 1),r(v1

6|W) = (4, 2, 1),r(v1
8|W) = (3, 3, 1),r(v1

9|W) = (2, 4, 1),

r(v1
10|W) = (2, 3, 2),r(v1

11|W) = (1, 3, 2),r(v2
2|W) = (1, 2, 4),r(v2

3|W) = (2, 1, 3),

r(v2
5|W) = (4, 1, 2),r(v2

6|W) = (4, 2, 2),r(v2
7|W) = (4, 3, 1),r(v2

8|W) = (4, 4, 1),

r(v2
9|W) = (3, 4, 2),r(v2

10|W) = (2, 4, 2),r(v2
11|W) = (1, 4, 3).

For n ≥ 15 let W = {v2
1, v2

6, v2
2k+5} be the resolving set of G then

r(v1
2i|W) =

{
(i + 1, i− 2, k + 3− i) 3 ≤ i ≤ k + 1
(2k + 3− i, 2k + 5− i, i− k− 1) k + 4 ≤ i ≤ 2k + 1

r(v1
2i+1|W) =

{
(i + 1, i− 1, k + 3− i) 2 ≤ i ≤ k
(2k + 2− i, 2k + 5− i, i− k− 1) k + 3 ≤ i ≤ 2k + 1

r(v2
2i|W) =

{
(i + 1, i− 1, k + 4− i) 5 ≤ i ≤ k + 1
(2k + 4− i, 2k + 6− i, i− k− 1) k + 4 ≤ i ≤ 2k

r(v2
2i+1|W) =

{
(i + 2, i− 1, k + 4− i) 4 ≤ i ≤ k
(2k + 3− i, 2k + 6− i, i− k) k + 4 ≤ i ≤ 2k

r(v1
2k+3|W) = (k + 1, k, 2),r(v1

2k+4|W) = (k + 1, k, 1),r(v1
2k+5|W) = (k, k + 1, 1),

r(v1
2k+6|W) = (k, k + 1, 2),r(v1

1|W) = (1, 3, k + 1),r(v1
2|W) = (2, 3, k + 1),

r(v1
3|W) = (2, 2, k + 2),r(v1

4|W) = (3, 2, k + 1),r(v2
2k+3|W) = (k + 2, k, 2),

r(v2
2k+4|W) = (k + 2, k + 1, 1),r(v2

2k+6|W) = (k + 1, k + 2, 1),

r(v2
2k+7|W) = (k, k + 2, 2),r(v2

4k+2|W) = (2, 5, k),r(v2
4k+3|W) = (1, 5, k + 1),

r(v2
2|W) = (1, 4, k + 2),r(v2

3|W) = (2, 3, k + 2),r(v2
4|W) = (3, 2, k + 2),

r(v2
5|W) = (4, 1, k + 2),r(v2

7|W) = (5, 1, k + 1),r(v2
8|W) = (5, 2, k).
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Since distinct vertices have distinct representation, dim(G) ≤ 3 in this case. However, by theorem
1 no two vertices can resolve G into distinct representation so dim(G) > 2.

Hence dim(G) = 3.

Case-IV when n ≡ 2(mod4) i.e., n = 4k + 2, k ∈ N.

For n = 6 let W1 = {v1
1, v2

1, v1
5} be the subset of V(G) and r(v1

2|W1) = (2, 1, 2),

r(v1
3|W1) = (2, 1, 1),r(v1

4|W1) = (2, 2, 1),r(v1
6|W1) = (1, 1, 1),r(v2

2|W1) = (1, 1, 2),

r(v2
3|W1) = (2, 2, 2),r(v2

4|W1) = (3, 2, 2),r(v2
5|W1) = (2, 2, 1),r(v2

6|W1) = (1, 2, 1),

since r(v2
5|W1) = r(v1

4|W1)⇒W = W1 ∪ {v1
4} is the resolving set of G.

⇒ dim(G) ≤ 4

For n = 10 let W1 = {v2
1, v2

4, v2
8} be the subset of V(G) and r(v1

1|W1) = (1, 2, 3),

r(v1
2|W1) = (2, 2, 3),r(v1

3|W1) = (2, 1, 3),r(v1
4|W1) = (3, 1, 3),r(v1

5|W1) = (3, 2, 2),

r(v1
6|W1) = (3, 2, 2),r(v1

7|W1) = (3, 3, 1),r(v1
8|W1) = (2, 3, 1),r(v1

9|W1) = (2, 3, 2),

r(v1
10|W1) = (1, 3, 2),r(v2

2|W1) = (1, 2, 4),r(v2
3|W1) = (2, 1, 4),r(v2

5|W1) = (4, 1, 3),

r(v2
6|W1) = (4, 2, 2),r(v2

7|W1) = (4, 3, 1),r(v2
9|W1) = (2, 4, 1),

r(v2
10|W1) = (1, 4, 2).

since r(v1
5|W1) = r(v1

6|W1)⇒W = W1 ∪ {v1
5} is the resolving set of G.

⇒ dim(G) ≤ 4

For n ≥ 14 let W = {v2
1, v2

4, v2
2k+4} be the subset of V(G) then

r(v1
2i|W) =

{
(i + 1, i− 1, k + 3− i) 2 ≤ i ≤ k
(2k + 2− i, 2k + 4− i, i− k− 1) k + 3 ≤ i ≤ 2k + 1

r(v1
2i+1|W) =

{
(i + 1, i, k + 2− i) 1 ≤ i ≤ k
(2k + 2− i, 2k + 3− i, i− k) k + 2 ≤ i ≤ 2k

r(v2
2i|W) =

{
(i + 1, i, k + 4− i) 4 ≤ i ≤ k
(2k + 3− i, 2k + 5− i, i− k) k + 4 ≤ i ≤ 2k

r(v2
2i+1|W) =

{
(i + 2, i, k + 3− i) 3 ≤ i ≤ k
(2k + 3− i, 2k + 4− i, i− k) k + 3 ≤ i ≤ 2k− 1

r(v1
2k+2|W) = (k + 1, k, 2),r(v1

2k+3|W) = (k + 1, k + 1, 1),
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r(v1
2k+4|W1) = (k, k + 1, 1),r(v1

1|W1) = (1, 2, k + 1),r(v1
2|W1) = (2, 2, k + 1),

r(v2
2k+2|W1) = (k + 2, k + 1, 2),r(v2

2k+3|W1) = (k + 2, k + 1, 1),

r(v2
2k+5|W1) = (k + 1, k + 2, 1),r(v2

2k+6|W1) = (k, k + 2, 2),r(v2
4k+1|W1) = (2, 4, k),

r(v2
4k+2|W1) = (1, 4, k + 1),r(v2

2|W1) = (1, 2, k + 2),r(v2
3|W1) = (2, 1, k + 2),

r(v2
5|W1) = (4, 1, k + 1),r(v2

6|W1) = (4, 2, k + 1). since r(v1
2k+1|W1) = r(v1

2k+2|W1) ⇒
W = W1 ∪ {v1

2k+1} is the resolving set of G.

⇒ dim(G) ≤ 4. This complete the proof.

Theorem 9. For G ∼= H4,n(Pm) where H4,n be a 4-regular Harary graph with n ≥ 5 and Pm is the path of
length m− 1; then we have dim(G) = 3 when n ≡ 0, 2, 3(mod4) and dim(G) ≤ 4 otherwise.

Proof. Case-I when n ≡ 0(mod4) i.e., n = 4k, k ≥ 2 and k ∈ N.
Let W = {v1

1, v1
2, v1

2k+1} be the resolving set of G then

r(vj
2i|W) =

{
(i + j− 1, i + j− 2, k− i + j) 2 ≤ i ≤ k, 1 ≤ j ≤ m
(2k− i + j, 2k− i + j, i− k + j− 1) k + 1 ≤ i ≤ 2k, 1 ≤ j ≤ m

r(vj
2i+1|W) =

{
(i + j− 1, i + j− 1, k− i + j− 1) 1 ≤ i ≤ k− 1, 1 ≤ j ≤ m
(2k− i + j− 1, 2k− i + j, i− k + j− 1) k + 1 ≤ i ≤ 2k− 1, 1 ≤ j ≤ m

For 2 ≤ j ≤ m,r(vj
1|W) = (j− 1, j, k + j− 1),

r(vj
2|W) = (j, j− 1, k + j− 1),r(vj

2k+1|W) = (k + j− 1, k + j− 1, j− 1).

Since distinct vertices have distinct representation, dim(G) ≤ 3 in this case. Now we prove that
dim(G) 6= 2 when n ≡ 0(mod4). Since every vertex that lies on cycle has degree 5, by Theorem 1 we
shall take the vertices on pendents uncommon to the cycle when |W| = 2. Without loss of generality
we can say

W = {v2
1, v3

1} and W = {v2
1, v2

i }, 2 ≤ i ≤ 2k + 1 represent all possible cases in which |W| = 2 and
in each case the following contradictions arise.
Take W = {v2

1, v3
1} then r(v1

2/W) = r(v1
4k|W) = (2, 3) a contradiction.

Take W = {v2
1, v2

2i}, 1 ≤ i ≤ k then r(v1
2k+1|W) = r(v1

2k+2|W) = (k + 1, k + 2− i) a contradiction.

Take W = {v2
1, v2

2i+1}, 1 ≤ i ≤ k− 1 then r(v1
2i+2|W) = r(v1

2i+3|W) = (i + 2, 2) a contradiction.

Take W = {v2
1, v2

2k+1}, then r(v1
2k|W) = r(v1

2k+2|W) = (k + 1, 2) a contradiction.

hence dim(G) = 3.

Case-II when n ≡ 2(mod4) i.e., n = 4k + 2, k ∈ N.
Let W = {v1

1, v1
3, v1

2k+3} be the resolving set of G then

r(vj
2i|W) =

{
(i + j− 1, i + j− 2, k− i + j + 1) 2 ≤ i ≤ k + 1, 1 ≤ j ≤ m
(2k− i + j + 1, 2k− i + j + 2, i− k + j− 2) k + 2 ≤ i ≤ 2k + 1, 1 ≤ j ≤ m
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r(vj
2i+1|W) =

{
(i + j− 1, i + j− 2, k− i + j) 2 ≤ i ≤ k, 1 ≤ j ≤ m
(2k− i + j, 2k− i + j + 1, i− k + j− 2) k + 2 ≤ i ≤ 2k, 1 ≤ j ≤ m

For 2 ≤ j ≤ m, r(vj
1|W) = (j− 1, j, k + j− 1),r(vj

2|W) = (j, j, k + j),

r(vj
3|W) = (j, j− 1, k + j− 1),r(vj

2k+3|W) = (k + j− 1, k + j− 1, j− 1).

Since distinct vertices have distinct representation, dim(G) ≤ 3 in this case. Now we prove that
dim(G) 6= 2 when n ≡ 2(mod4). Since every vertex lies that on cycle has degree 5, by theorem 1 we
shall take the vertices on pendents uncommon to the cycle when |W| = 2. Without loss of generality
we can say

W = {v2
1, v3

1} and W = {v2
1, v2

i }, 2 ≤ i ≤ 2k + 1 represent all possible cases in which |W| = 2 and
in each case the following contradictions arise. Take W = {v2

1, v3
1} then r(v1

2|W) = r(v1
4k+2|W) = (2, 3) a

contradiction.

Take W = {v2
1, v2

2}, then r(v1
3|W) = r(v1

4k+2|W) = (2, 2) a contradiction.

Take W = {v2
1, v2

2i}, 2 ≤ i ≤ k + 1 then r(v1
2k+3|W) = r(v1

2k+4|W) = (k + 1, k + 3 − i)
a contradiction.

Take W = {v2
1, v2

2i+1}, 2 ≤ i ≤ k− 1 then r(v1
2i+2|W) = r(v1

2i+3|W) = (i + 2, 2) a contradiction.

Take W = {v2
1, v2

2k+1} then r(v1
2k|W) = r(v1

2k+3|W) = (k + 1, 2) a contradiction.

hence dim(G) = 3.

Case-III when n ≡ 3(mod4) i.e., n = 4k + 3, k ∈ N.

Let W = {v1
1, v1

2, v1
2k+2} be the resolving set of G then

r(vj
2i|W) =

{
(i + j− 1, i + j− 2, k− i + j) 2 ≤ i ≤ k, 1 ≤ j ≤ m
(2k− i + j + 1, 2k− i + j + 2, i− k + j− 2) k + 2 ≤ i ≤ 2k + 1, 1 ≤ j ≤ m

r(vj
2i+1|W) =

{
(i + j− 1, i + j− 1, k− i + j) 1 ≤ i ≤ k, 1 ≤ j ≤ m
(2k− i + j + 1, 2k− i + j + 1, i− k + j− 1) k + 1 ≤ i ≤ 2k + 1, 1 ≤ j ≤ m

For 2 ≤ j ≤ m, r(vj
1|W) = (j − 1, j, k + j),r(vj

2|W) = (j, j − 1, k + j − 1), r(vj
2k+2|W) =

(k + j, k + j− 1, j− 1) .
Since distinct vertices have distinct representation, dim(G) ≤ 3 in this case. Now we prove that

dim(G) 6= 2 when n ≡ 2 (mod4). Since every vertex that lies on cycle has degree 5, by Theorem 1 we
shall take the vertices on pendents uncommon to the cycle when |W| = 2. Without loss of generality
we can say:

W = {v2
1, v3

1} and W = {v2
1, v2

i }, 2 ≤ i ≤ 2k + 2 represent all possible cases in which |W| = 2 and
in each case the following contradictions arise. Take W = {v2

1, v3
1} then r(v1

2|W) = r(v1
4k+3|W) = (2, 3)

a contradiction.

Take W = {v2
1, v2

2}, then r(v1
3|W) = r(v1

4k+3|W) = (2, 2) a contradiction.
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Take W = {v2
1, v2

2i}, 2 ≤ i ≤ k + 1 then r(v1
2i−1|W) = r(v1

2i−2|W) = (i, 2) a contradiction.

Take W = {v2
1, v2

2i+1}, 1 ≤ i ≤ k then r(v1
2i+2|W) = r(v1

2i+3|W) = (i + 2, 2) a contradiction.

hence dim(G) = 3.

Case-IV when n ≡ 1(mod4) i.e., n = 4k + 1, k ∈ N.
Let W = {v1

1, v1
2, v1

2k+2, v1
2k+3} be the resolving set of G then

r(vj
2i|W) =

{
(i + j− 1, i + j− 2, k− i + j, k− i + j + 1) 2 ≤ i ≤ k, 1 ≤ j ≤ m
(2k− i + j, 2k− i + j + 1, k− i + j + 2, k− ij + 2) k + 2 ≤ i ≤ 2k, 1 ≤ j ≤ m

r(vj
2i+1|W) =

{
(i + j− 1, i + j− 1, k− i + j, k− i + j) 1 ≤ i ≤ k, 1 ≤ j ≤ m
(2k− i + j, 2k− i + j, k− i + j + 3, k− i + j + 2) k + 2 ≤ i ≤ 2k, 1 ≤ j ≤ m

For 2 ≤ j ≤ m, r(vj
1|W) = (j− 1, j, k + j− 1, k + j− 1),

r(vj
2|W) = (j, j− 1, k + j− 1, k + j− 1),r(vj

2k+2|W) = (k + j− 1, k + j− 1, j− 1, j),

r(vj
2k+3|W) = (k + j− 1, k + j− 1, j, j− 1). Since distinct vertices have distinct representation so

dim(G) ≤ 4 in this case. This complete the proof.

4. The Rooted Product of Ladder Graph with Cycle Graph

To construct the graph G ∼= (P2 × Pk)(C4)
c we first construct rooted product of ladder graph

(P2 × Pk) by cycle C4 as shown in Figure 4a and then connect each rooted C4 with both neighboring C4

as shown in Figure 4b.

Figure 4. (a) The graph of (P2 × P5)(C4); (b) The graph of (P2 × P5)(C4)
c.

Theorem 10. For G ∼= (P2 × Pk)(C4)
c where C4 be a cycle of length 4 and Pk is the path of length k − 1;

then we have dim(G) = 3.

Proof. When n = 2k, k ∈ N let W = {a1
1, a1

k , a1
n} be the resolving set of G then

r(a1
i |W) =

{
(i− 1, i, k− i) 2 ≤ i ≤ k− 1
(2k− i + 1, 2k− i, i− k) k + 1 ≤ i ≤ 2k− 1
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r(a2
i |W) =

{
(i− 1, i, k− i + 1) 2 ≤ i ≤ k
(2k− i + 2, 2k− i + 1, i− k) k + 2 ≤ i ≤ 2k

r(a3
i |W) =

{
(i− 1, i, k− i + 2) 3 ≤ i ≤ k
(2k− i + 3, 2k− i + 2, i− k) k + 2 ≤ i ≤ n

r(a2
1|W) = (1, 1, k),r(a2

k+1|W) = (k, k, 1),r(a3
1|W) = (2, 2, k + 1), r(a3

2|W) = (2, 2, k),r(a3
k+1|W) =

(k, k + 1, 2).
Since distinct vertices have distinct representation, dim(G) ≤ 3. Now we prove that dim(G) 6= 2.

Since all vertices have degree either 4 or 5 except a3
i , by theorem 1 we can say W = {a3

1, a3
i }, 2 ≤ i ≤ n

and W = {a3
n, a3

i }, 1 ≤ i ≤ n− 1 represent all possible cases in which |W| = 2 and in each case the
following contradictions arise.

take W = {a3
1, a3

2} then r(a1
n|W) = r(a1

1|W) = (2, 2), a contradiction.

take W = {a3
1, a3

3} then r(a1
n−1|W) = r(a1

n|W) = (2, 3), a contradiction.

take W = {a3
1, a3

i },4 ≤ i ≤ k + 1 then r(a1
n|W) = r(a1

1|W) = (2, 2), a contradiction.

take W = {a3
1, a3

k+2} then r(a1
k+1|W) = r(a3

k+3|W) = (k, 2), a contradiction.

take W = {a3
1, a3

i },k + 3 ≤ i ≤ n then r(a1
k |W) = r(a2

k+1|W) = (k + 1, i− k) a contradiction.

take W = {a3
n, a3

i },1 ≤ i ≤ k− 1 then r(a1
k+1|W) = r(a2

k+2|W) = (k− 1, k + 3− i), a contradiction.

take W = {a3
n, a3

k} then r(a1
k−1|W) = r(a3

k−1|W) = (k− 1, 2), a contradiction.

take W = {a3
n, a3

k+1}then r(a1
k |W) = r(a3

k |W) = (k, 2), a contradiction.

take W = {a3
n, a3

k+2}then r(a1
k+1|W) = r(a3

k+3|W) = (k− 1, 2), a contradiction.

take W = {a3
n, a3

i },k + 3 ≤ i ≤ n− 1 then r(a1
k |W) = r(a2

k+1|W) = (k, i− k), a contradiction.

So dim(G) ≥ 3. Combining both inequalities, we get dim(G) = 3. This conclude the proof.

5. Conclusions

In the foregoing section, graphs H4,n(C3)
c, (P2 × Pk)(C4)

c and Hm,n(Ci) for i = 3, 4, 5 are
constructed. It is proven that metric dimension of H4,n(C3)

c and (P2 × Pk)(C4)
c is either three or four

in certain cases but the family of graphs Hm,n(C3) for i = 3, 4, 5 have unbounded metric dimension.
This section is closed by raising the following open problems.

Open Problem 1. Determine the metric dimension of H4,n(C3) and (P2 × Pk)(C4).
Open Problem 2. Determine the metric dimension of Hm,n(Cn).
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Abstract: A single constrained ordered weighted averaging aggregation (COWA) problem is of
considerable importance in many disciplines. Two models are considered: the maximization COWA
problem with lower bounded variables and the minimization COWA problem with upper bounded
variables. For a three-dimensional case of these models, we present the explicitly optimal solutions
theoretically and empirically. The bounds and weights can affect the optimal solution of the
three-dimensional COWA problem with bounded variables.

Keywords: constrained ordered weighted averaging aggregation problem; mixed integer linear
programming; bounded variables

1. Introduction

An ordered weighted averaging (OWA) operator [1] is a general class of parametric aggregation
operators that appears in many research fields such as decision making [2–6], fuzzy system [7,8],
statistics [9–11], risk analysis [12] and others [13,14]. For more details, see Carlsson and Fullér [15],
Emrouznejad and Marra [16] and Yager et al. [17]. A constrained OWA aggregation problem
(COWA) attempts to optimize the OWA aggregation problem with multiple constraints. Yager [18]
developed a mixed integer linear programming problem to solve a single COWA problem. Later,
Carlsson et al. [19] proposed an algorithm to solve the single constrained OWA optimization problem
for any dimensions. Furthermore, Coroianu and Fullér [20] presented an explicitly optimal solution
for the single COWA problem with any constraint coefficients. In addition, there are other important
references [21–27] dedicated to constrained OWA optimization problem with multiple constraints.
However, the decision variables are usually bounded for the most practical problems. Recently,
Chen and Tang [28] proposed a three-dimensional COWA problem with lower bounded variables.
This paper presents the explicitly optimal solutions for the three-dimensional COWA problem with
bounded variables. Two models are considered. One is a maximizing three-dimensional constrained
OWA aggregation problem with lower bounded variables (3COWAL). The other is a minimizing
three-dimensional constrained OWA aggregation problem with upper bounded variables (3COWAU).

The organization of this paper is as follows. Section 2 briefly reviews the COWA problem.
For maximizing 3COWAL, there are two parameters (w1, w2, w3) and (l1, l2, l3) that affect the optimal
solution types. We discuss the optimal solution behaviors in Section 3 for w1 ≥ w2 ≥ w3 and Section 4
for l1 ≥ l2 ≥ l3. Section 5 analyzes the optimal solution behaviors of minimizing 3COWAU. Finally,
some concluding remarks are presented.

Mathematics 2018, 6, 172; doi:10.3390/math6090172 www.mdpi.com/journal/mathematics
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2. Constrained OWA Aggregation Problem

An OWA operator of dimension n is a mapping F : Rn → R that has an associated weighting
vector W = (w1, w2, . . . , wn) satisfying

w1 + w2 + . . . + wn = 1, 0 ≤ wi ≤ 1, i = 1, 2, . . . , n

and such that

G(x1, x2, . . . , xn) =
n

∑
i=1

wiyi (1)

with yi being the ith largest of {x1, x2, . . . , xn}. For simplicity, we will denote this expression as
F(y1, y2, . . . , yn).

Consider the following single COWA problem:

Max WTY, s.t. ITX ≤ 1, X ≥ 0, (2)

where the column vectors X, Y, W and I are

X =




x1

x2
...

xn




, Y =




y1

y2
...

yn




, W =




w1

w2
...

wn




, I =




1
1
...
1




.

By introducing the (n− 1)× n matrix

G =




−1 1 0 0
0 −1 1 0

· · · 0 0
0 0

...
. . .

...
0 0 0 0 · · · −1 1




and the column binary vectors Zi ∈ {0, 1}n, i = 1, 2, . . . , n, Yager [18] transformed the nonlinear
programming single COWA problem (2) to the following mixed integer linear programming
problem (MILP):

Max WTY, s.t. ITX ≤ 1, GY ≤ 0, yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1,
ynI − X ≤ 0, ITZi ≤ n− i, i = 1, 2, . . . , n− 1, Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1, X ≥ 0,

(3)

where M is a very large positive number. To reduce the multiple solutions of the MILP (3), Chen and
Tang [28] introduced the following constraints:

Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2.

Then, the more efficient MILP of a single COWA problem is as follows:

Max WTY, s.t. ITX ≤ 1, GY ≤ 0, yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1, ynI − X ≤ 0,
ITZi ≤ n− i, i = 1, 2, . . . , n− 1, Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2, Zi ∈ {0, 1}n,

i = 1, 2, . . . , n− 1, X ≥ 0.
(4)

3. Maximizing a Three-Dimensional Constrained OWA Aggregation Problem with Lower
Bounded Variables for w1 ≥ w2 ≥ w3

It is fairly common in practical optimization problems that the decision variables are usually
bounded. A typical decision variable xi is bounded from below by li and from above by ui,
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where li ≤ ui. Sections 3 and 4 analyze the maximization COWA problem with the lower bound
constraints. Section 5 analyzes the minimization COWA problem with the upper bound constraints.
Chen and Tang [28] proposed the following COWAL:

Max WTY, s.t. ITX ≤ 1, GY ≤ 0, , yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1,
ynI − X ≤ 0, ITZi ≤ n− i, i = 1, 2, . . . , n− 1, Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2, Zi ∈ {0, 1}n,

i = 1, 2, . . . , n− 1, X ≥ L,
(5)

where the lower bounded vector

L =




l1
l2
...

ln




.

The lower bounded vector can be transformed into the zero vector by using the standard
transformations X′ = X− L. The COWAL is as follows:

Max WTY, s.t. ITX′ ≤ 1− IT L, GY ≤ 0, yiI − X′ −MZi ≤ L, i = 1, 2, . . . , n− 1,
ynI − X′ ≤ L, ITZi ≤ n− i, i = 1, 2, . . . , n− 1, Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2, Zi ∈ {0, 1}n,

i = 1, 2, . . . , n− 1, X′ ≥ 0.
(6)

If 1− IT L < 0, then the COWAL has no feasible solution. If 1− IT L = 0, then X′ = 0 is the
unique optimal solution, so X = L. The following will discuss the case that 1− IT L > 0.

Consider the 3COWAL for the case of

l1 + l2 + l3 ≤ 1. (7)

Two parameters (w1, w2, w3) and (l1, l2, l3) are considered in 3COWAL. This section discusses
3COWAL with

w1 ≥ w2 ≥ w3. (8)

There are six permutations of (l1, l2, l3). First, consider the case of

l1 ≥ l2 ≥ l3. (9)

At optimality, the first constraint of model (6) becomes

x′1 + x′2 + x′3 = 1− l1 − l2 − l3. (10)

There are three types (A, B, C) of (x′1, x′2, x′3) according to the number of zero components.
The number of zero components of first type A is two. The possible values of (x′1, x′2, x′3) are

(1− l1 − l2 − l3, 0, 0), (0, 1− l1 − l2 − l3, 0) and (0, 0, 1− l1 − l2 − l3).

For the case of (x′1, x′2, x′3) = (1− l1 − l2 − l3, 0, 0), we have

(x1, x2, x3) = (1− l2 − l3, l2, l3)

and
(y1, y2, y3) = (1− l2 − l3, l2, l3), (l2, 1− l2 − l3, l3), (l2, l3, 1− l2 − l3),

(1− l2 − l3, l3, l2), (l3, 1− l2 − l3, l2) or (l3, l2, 1− l2 − l3).

Consider (y1, y2, y3) = (l2, 1− l2 − l3, l3), so l2 ≥ 1 − l2 − l3 ≥ l3, implying 2l2 + l3 ≥ 1.
From Label (7), it follows that l2 ≥ l1, in contradiction to assumption (9). The same contradiction
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is also for (y1, y2, y3) = (l2, l3, 1− l2 − l3), (1− l2 − l3, l3, l2), (l3, 1− l2 − l3, l2) and (l3, l2, 1− l2 − l3).
Therefore, for (x′1, x′2, x′3) = (1− l1 − l2 − l3, 0, 0), the reasonable candidate for the optimal solution
is (y1, y2, y3) = (1− l2 − l3, l2, l3). For cases of (0, 1− l1 − l2 − l3, 0) and (0, 0, 1− l1 − l2 − l3),
the reasonable candidates of (y1, y2, y3) are shown in Table 1.

Table 1. The possible values of (x′1, x′2, x′3), (x1, x2, x3) and (y1, y2, y3) for 3COWAL with l1 ≥ l2 ≥ l3.

(x′1, x′2, x′3) (x1, x2, x3) (y1, y2, y3)

A-1 (1− l1 − l2 − l3, 0, 0) (1− l2 − l3, l2, l3) (1− l2 − l3, l2, l3)
A-2 (0, 1− l1 − l2 − l3, 0) (l1, 1− l1 − l3, l3) (1− l1 − l3, l1, l3), (l1, 1− l1 − l3, l3)
A-3 (0, 0, 1− l1 − l2 − l3) (l1, l2, 1− l1 − l2) (1− l1 − l2, l1, l2), (l1, 1− l1 − l2, l2), (l1, l2, 1− l1 − l2)

B1-1 ( 1−2l1−l3
2 , 1−2l2−l3

2 , 0) ( 1−l3
2 , 1−l3

2 , l3) ( 1−l3
2 , 1−l3

2 , l3)

B1-2 ( 1−2l1−l2
2 , 0, 1−l2−2l3

2 ) ( 1−l2
2 , l2, 1−l2

2 ) ( 1−l2
2 , 1−l2

2 , l2)

B1-3 (0, 1−l1−2l2
2 , 1−l1−2l3

2 ) (l1, 1−l1
2 , 1−l1

2 ) (l1, 1−l1
2 , 1−l1

2 )

B2-1 (l3 − l1, 1− l2 − 2l3, 0) (l3, 1− 2l3, l3)
B2-2 (1− l1 − 2l3, l3 − l2, 0) (1− 2l3, l3, l3)
B2-3 (l2 − l1, 0, 1− 2l2 − l3) (l2, l2, 1− 2l2)
B2-4 (1− l1 − 2l2, 0, l2 − l3) (1− 2l2, l2, l2) (1− 2l2, l2, l2)
B2-5 (0, l1 − l2, 1− 2l1 − l3) (l1, l1, 1− 2l1) (l1, l1, 1− 2l1)
B2-6 (0, 1− 2l1 − l2, l1 − l3) (l1, 1− 2l1, l1) (l1, l1, 1− 2l1)

C (1/3− l1, 1/3− l2, 1/3− l3) (1/3, 1/3, 1/3) (1/3, 1/3, 1/3)

In Table 1, there are six candidates for optimal solution (y1, y2, y3) for type A. Among these six
candidates, we will show that the largest objective function F(Y) = w1y1 + w2y2 + w3y3 is that of
(y1, y2, y3) = (1− l2 − l3, l2, l3). Before we prove this result in detail, we present a well-known fact.

Theorem 1. For (x1, x2 . . . , xn), (x′1, x′2 . . . , x′n), sk = ∑k
i=1 xi and s′k = ∑k

i=1 x′i , k = 1, 2, . . . , n, if sk ≥ s′k,
k = 1, 2, . . . , n, then for all (w1, w2, . . . , wn) with wk ≥ wk+1, k = 1, 2, . . . , n− 1, we have

∑n
i=1 wixi ≥∑n

i=1 wix′i .

Comparing the objective function value of (y1, y2, y3) = (1− l2 − l3, l2, l3) with that of
(1− l1 − l3, l1, l3), we get that

s1 = 1− l2 − l3 ≥ s′1 = 1− l1 − l3,

s2 = 1− l3 ≥ s′2 = 1− l3,

s3 = 1 ≥ s′3 = 1.

It implies that the most favorable value of the objective function is that with (1− l2 − l3, l2, l3).
A similar argument shows that F(1− l2 − l3, l2, l3) is larger than those of (l1, 1− l1 − l3, l3),
(1− l1 − l2, l1, l2), (l1, 1− l1 − l2, l2) and (l1, l2, 1− l1 − l2). Therefore, the optimal solution for type A
is (1− l2 − l3, l2, l3).

For the one zero component of (x′1, x′2, x′3), the possible values are

(x′1, x′2, 0), (x′1, 0, x′3) and (0, x′2, x′3).

At optimal, the possible values of x′1, x′2 and x′3 with at least one x′i = 0, i = 1, 2, 3 satisfy

x′1 + l1 = x′2 + l2, x′1 + l1 = x′3 + l3 or x′2 + l2 = x′3 + l3.

We choose x′i + li = x′j + lj for type B1, and x′i + li = lk or x′j + lj = lk, i 6= j 6= k, i, j, k = 1, 2, 3,
for type B2. A similar argument shows that all possible candidates for optimal solutions (y1, y2, y3) are
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(
1− l3

2
,

1− l3
2

, l3), (
1− l2

2
,

1− l2
2

, l2), (l1,
1− l1

2
,

1− l1
2

)

for type B1, and
(1− 2l2, l2, l2), (l1, l1, 1− 2l1)

for type B2. The largest objective function value is that with ( 1−l3
2 , 1−l3

2 , l3) for type B1 and
(l1, l1, 1− 2l1) for type B2. Furthermore, F( 1−l3

2 , 1−l3
2 , l3) ≥ F(l1, l1, 1− 2l1). Therefore, the optimal

solution for type B is ( 1−l3
2 , 1−l3

2 , l3).
Type C is the nonzero components. From Label (10), it follows that

(x′1, x′2, x′3) = (1/3− l1, 1/3− l2, 1/3− l3), (x1, x2, x3) = (1/3, 1/3, 1/3) and
(y1, y2, y3) = (1/3, 1/3, 1/3).

Therefore, there are six candidate optimal solutions for type A, five candidate optimal solutions
for type B and one candidate optimal solution for type C. Detailed results of (x′1, x′2, x′3), (x1, x2, x3),
(y1, y2, y3), F(y1, y2, y3) and condition for 3COWAL with l1 ≥ l2 ≥ l3 are presented in Table 2.
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The largest objective function value is that of A1(1− l2 − l3, l2, l3) for type A, B1( 1−l3
2 , 1−l3

2 , l3) for
type B and C(1/3, 1/3, 1/3) for type C. A similar argument shows that

F(A1) ≥ F(B1) and F(A1) ≥ F(C).

Therefore, for the case of w1 ≥ w2 ≥ w3, the optimal solution for l1 ≥ l2 ≥ l3 is A1. Similarly,
the optimal solutions of the remaining five permutations l1 ≥ l3 ≥ l2, l2 ≥ l1 ≥ l3, l2 ≥ l3 ≥ l1,
l3 ≥ l1 ≥ l2 and l3 ≥ l2 ≥ l1 can be derived. Detailed optimal solutions are described as follows.

Theorem 2. For w1 ≥ w2 ≥ w3 and l1 + l2 + l3 ≤ 1, the optimal solution of 3COWAL is as follows:

(y∗1 , y∗2 , y∗3) =





(1− l2 − l3, l2, l3), if l1 ≥ l2 ≥ l3
(1− l2 − l3, l3, l2), if l1 ≥ l3 ≥ l2
(1− l1 − l3, l1, l3), if l2 ≥ l1 ≥ l3
(1− l1 − l3, l3, l1), if l2 ≥ l3 ≥ l1
(1− l1 − l2, l1, l2), if l3 ≥ l1 ≥ l2
(1− l1 − l2, l2, l1), if l3 ≥ l2 ≥ l1.

(11)

4. Maximizing Three-Dimensional Constrained OWA Aggregation Problem with Lower Bounded
Variables for l1 ≥ l2 ≥ l3

This section considers the optimal solution behaviors for 3COWAL with l1 ≥ l2 ≥ l3. The main
result is described as follows.

Theorem 3. For l1 ≥ l2 ≥ l3 and l1 + l2 + l3 ≤ 1, the optimal solution Y∗ of 3COWAL is as follows.

(1) For w1 ≥ w2 ≥ w3 or w1 ≥ w3 ≥ w2, the optimal solution is A1(1− l2 − l3, l2, l3).
(2) For w2 ≥ w1 ≥ w3, the optimal solution Y∗ is

i f 2l1 + l3 ≥ 1, then Y∗ = A3(l1, 1− l1 − l3, l3) else Y∗ = B1 (
1− l3

2
,

1− l3
2

, l3).

(3) For w2 ≥ w3 ≥ w1, the optimal solution Y∗ is

i f 2l1 + l3 ≥ 1, then Y∗ = A3(l1, 1− l1 − l3, l3).

else i f w3 ≤ 1/3 then Y∗ = B1 (
1− l3

2
,

1− l3
2

, l3);

else i f l1 ≥ 1/3, then Y∗ = B5(l1, l1, 1− 2l1) else Y∗ = C(1/3, 1/3, 1/3).

(4) For w3 ≥ w1 ≥ w2, the optimal solution Y∗ is

i f l1 + 2l2 ≥ 1, then Y∗ = A6(l1, l2, 1− l1 − l2).

else i f w1 ≥ 1/3 then Y∗ = B4 (1− 2l2, l2, l2);

else i f l1 ≥ 1/3 then Y∗ = B3(l1,
1− l1

2
,

1− l1
2

) else Y∗ = C(1/3, 1/3, 1/3).

(5) For w3 ≥ w2 ≥ w1, the optimal solution Y∗ is

i f l1 + 2l2 ≥ 1, then Y∗ = A6(l1, l2, 1− l1 − l2).

else i f l1 ≥ 1/3, then Y∗ = B3(l1,
1− l1

2
,

1− l1
2

) else Y∗ = C(1/3, 1/3, 1/3).
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Proof. There are six permutations of (w1, w2, w3). From Theorem 2, for w1 ≥ w2 ≥ w3, the optimal
solution is A1(1− l2 − l3, l2, l3). Similarly, the optimal solution also is A1 for w1 ≥ w3 ≥ w2.

We now consider the case that w2 ≥ w1 ≥ w3. From Table 2, all of the twelve candidates are
divided into two categories to obtain optimal solution: (I) A1, A3, A4, A5, A6 and C; (II) A2, B1, B2, B3,
B4 and B5. We will show that the largest objective function value is that of A3 (l1, 1− l1 − l3, l3) for
category I.

Comparing the objective function value of A3 with that of A1, from Theorem 1, since w2 ≥ w1 ≥ w3,
we have to compare s1 = y2, s2 = y1 + y2 and s3 = y1 + y2 + y3 with those of s′1 = y′2, s′2 = y′1 + y′2
and s′3 = y′1 + y′2 + y′3. From

s1 = 1− l1 − l3 ≥ s′1 = l2,

s2 = 1− l3 ≥ s′2 = 1− l3,

s3 = 1 ≥ s′3 = 1,

the comparison results imply that A3 is superior to A1. Similarly, F(A3) is larger than those of A2,
A5, A6 and C. Therefore, the optimal solution for category I is A3. A similar argument shows that the
optimal solution for category II is B1 ( 1−l3

2 , 1−l3
2 , l3). From the conditions of A3 and B1 displayed in

Table 2, the optimal solution for w2 ≥ w1 ≥ w3 is A3 for 2l1 + l3 ≥ 1, and B1 for 2l1 + l3 ≤ 1.
Similarly, for w2 ≥ w3 ≥ w1, w3 ≥ w1 ≥ w2 and w3 ≥ w2 ≥ w1, the optimal solutions can be

derived. �

We next present two numerical experiments to evaluate the optimal solutions of 3COWAL with
l1 ≥ l2 ≥ l3.

Tables 3 and 4 entries correspond to a pair (S, W) and give the number of different instances of
(l1, l2, l3, w1, w2, w3) satisfying type of candidate solution (S) and weight (W). The adopted measure
is the number of instances. From Table 2, we adopt twelve types of candidate solutions and six
permutations of weight. More precisely, S ∈ {A1, A2, A3, A4, A5, A6, B1, B2, B3, B4, B5, C },
W ∈ { w1 > w2 > w3, w1 > w3 > w2, w2 > w1 > w3, w2 > w3 > w1, w3 > w1 > w2, w3 > w2 > w1},
li ∈ {−lb,−0.9,−0.8, . . . , lb} and wi ∈ {0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3.

The value of bound lb is lb =1 for Table 3 and lb =2 Table 4. For each weight, the instances
(l1, l2, l3, w1, w2, w3) of 3COWAL are 8744 for lb = 1 and 57,464 for lb = 2. The total instances of
3COWAL are 397,248. An examination of Tables 3 and 4 reveals that the largest number of instances
is A1 for w1 > w2 > w3 and w1 > w3 > w2, B1 for w2 > w1 > w3 and w2 > w3 > w1, and B3 for
w3 > w1 > w2 and w3 > w2 > w1. Among all the instances of 3COWAL, the zero number is A2, A4,
A5 and B2. Therefore, A1, B1 and B3 are superior in the number of the instances, while A2, A4, A5 and
B2 are inferior ones for 3COWAL with l1 ≥ l2 ≥ l3.
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5. Minimizing Three-Dimensional Constrained OWA Aggregation Problem with Upper Bounded
Variables

Consider the minimizing COWAU problem described as follows:

Min WTY, s.t. ITX ≥ 1, GY ≤ 0, yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1, ynI − X ≤ 0,
ITZi ≤ n− i, i = 1, 2, . . . , n− 1, Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2, Zi ∈ {0, 1}n,

i = 1, 2, . . . , n− 1, X ≤ U
(12)

where the column vector

U =




u1

u2
...

un




.

Using the standard transformations X′ = U − X, these lead to the following model

Min WTY, s.t. ITX′ ≤ ITU − 1, GY ≤ 0, yiI + X′ −MZi ≤ U, i = 1, 2, . . . , n− 1,
ynI + X′ ≤ U, ITZi ≤ n− i, i = 1, 2, . . . , n− 1, Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2,

Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1, X′ ≥ 0.
(13)

If ITU − 1 < 0, we conclude that the COWAU has no feasible solutions. If ITU − 1 = 0,
then X′ = 0 is the unique optimal solution, so X = U.

This section considers 3COWAU for

ITU − 1 = u1 + u2 + u3 ≥ 1. (14)

Similar analyses to Sections 3 and 4 can be derived. The results are described as follows.
At optimality, the first constraint of the model (13) becomes

x′1 + x′2 + x′3 = u1 + u2 + u3 − 1. (15)

There are three types (A′, B′, C′) of (x′1, x′2, x′3) according to the number of zero components.
For 3COWAU with

u1 ≥ u2 ≥ u3, (16)

there are six candidate optimal solutions for type A′, seven candidate optimal solutions for type B′

and one candidate optimal solution for type C′. Detailed results of (x′1, x′2, x′3), (x1, x2, x3), (y1, y2, y3),
F(y1, y2, y3) and condition are presented in Table 5.
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Theorem 4. For 3COWAU with u1 ≥ u2 ≥ u3 and w1 ≥ w2 ≥ w3, the smallest objective function value is that
of (y1, y2, y3) = A′1(1− u2 − u3, u2, u3) for type A′, B′1( 1−u3

2 , 1−u3
2 , u3) for type B′ and C′(1/3, 1/3, 1/3)

for type C′.

For 3COWAU with u1 ≥ u2 ≥ u3, the optimal solutions of different permutations of weight are
described as follows.

Theorem 5. For 3COWAU with u1 ≥ u2 ≥ u3 and u1 + u2 + u3 ≥ 1, the optimal solution Y∗ is described
as follows.

(1) For w1 ≥ w2 ≥ w3, the optimal solution Y∗ is

i f u3 ≥ 1/3, then Y∗ = C′( 1
3 , 1

3 , 1
3 ) else i f 2u2 + u3 ≤ 1

then Y∗ = A′1(1− u2 − u3, u2, u3) else Y∗ = B′1( 1−u3
2 , 1−u3

2 , u3).

(2) For w1 ≥ w3 ≥ w2, the optimal solution Y∗ is

i f 2u2 + u3 ≤ 1, then Y∗ = A′1 (1− u2 − u3, u2, u3).

else i f w3 ≥ 1/3, then Y∗ = B′7 (u2, u2, 1− 2u2);

else i f u3 ≤ 1/3, then Y∗ = B′1(
1− u3

2
,

1− u3

2
, u3) else Y∗ = C′(

1
3

,
1
3

,
1
3
).

(3) For w2 ≥ w1 ≥ w3, the optimal solution Y∗ is

i f u1 + 2u3 ≤ 1, then Y∗ = A′4 (u1, 1− u1 − u3, u3).

else i f w1 ≤ 1/3, then Y∗ = B′4 (u1,
1− u1

2
,

1− u1

2
);

else i f u3 ≤ 1/3, then Y∗ = B′6(1− 2u3, u3, u3) else Y∗ = C′(
1
3

,
1
3

,
1
3
).

(4) For w2 ≥ w3 ≥ w1, the optimal solution Y∗ is

i f u1 + 2u3 ≤ 1, then Y∗ = A′4(u1, 1− u1 − u3, u3) else Y∗ = B′4(u1,
1− u1

2
,

1− u1

2
).

(5) For w3 ≥ w1 ≥ w2 and w3 ≥ w2 ≥ w1, the optimal solution is A′6(u1, u2, 1− u1 − u2).

To compare the optimal solution behaviors of maximizing 3COWAL with those of
minimizing 3COWAU, the performance is shown in Figure 1. The first bar corresponds
to the number of optimal solutions of maximizing 3COWAL and second to the
minimizing 3COWAU, where the weight type W[i] denotes the ith component of
W = {w1 > w2 > w3, w1 > w3 > w2, w2 > w1 > w3, w2 > w3 > w1, w3 > w1 > w2, w3 > w2 > w1}.
The number of optimal solutions of W[i], i = 1, 2, . . . , 6, for maximizing 3COWAL is the same as that
of W[6 − i] for minimizing 3COWAU. Therefore, the numbers of optimal solutions for maximizing
3COWAL are same as those of minimizing 3COWAU but in reverse order. The correspondence
between the optimal solution of these two mathematical models is worthy of future research.
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Figure 1. The number of optimal solutions for maximizing 3COWAL and minimizing 3COWAU.

We perform two numerical experiments to evaluate the optimal solution behaviors of 3COWAU
with u1 ≥ u2 ≥ u3.

Tables 6 and 7 give the number of different instances (u1, u2, u3, w1, w2, w3) satisfying type of
candidate solution (S) and weight (W). More precisely,

S ∈
{

A′1, A′2, . . . , A′6, B′1, B′2, . . . , B′7, C′
}

,
W ∈ {w1 > w2 > w3, w1 > w3 > w2, w2 > w1 > w3, w2 > w3 > w1, w3 > w1 > w2, w3 > w2 > w1},

ui ∈ {−ub,−0.9,−0.8, . . . , ub} and wi ∈ {0, 0.1, 0.2, . . . , 1}i = 1, 2, 3.

The value of bound ub is ub = 1 for Table 6 and ub = 2 Table 7. For each weight, the number
of the instances of 3COWAU is 8744 for ub = 1 and 57,464 for ub = 2. The total instances of
3COWAU are 397,248. From Tables 6 and 7, the largest number of instances is B′1( 1−u3

2 , 1−u3
2 , u3) for

w1 > w2 > w3, A′1 (1− u2 − u3, u2, u3) for w1 > w3 > w2, A′4 (u1, 1− u1 − u3, u3) for w2 > w1 > w3

and w2 > w3 > w1, and A′6(u1, u2, 1− u1 − u2) for w3 > w1 > w2 and w3 > w2 > w1. We also notice
that the number of instances is zero for A′2, A′3, A′5, B′2, B′3 and B′5. Therefore, A′1, A′4, A′6 and
B′1 are the best candidates, while A′2, A′3, A′5, B′2, B′3 and B′5 are inferior ones for 3COWAU with
u1 ≥ u2 ≥ u3.
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6. Conclusions

This paper presents the optimal solutions for both maximizing 3COWAL and minimizing
3COWAU. For maximizing 3COWAL with l1 ≥ l2 ≥ l3, there are six candidate optimal solutions for
type A, five candidate optimal solutions for type B and one candidate optimal solution for type C.
Theoretically and empirically, the largest number of instances is A1 (1− l2 − l3, l2, l3) for w1 > w2 > w3

and w1 > w3 > w2, B1 ( 1−l3
2 , 1−l3

2 , l3) for w2 > w1 > w3 and w2 > w3 > w1, and B3 (l1, 1−l1
2 , 1−l1

2 )

for w3 > w1 > w2 and w3 > w2 > w1. For minimizing 3COWAU with u1 ≥ u2 ≥ u3, there are
six candidate optimal solutions for type A′, seven candidate optimal solutions for type B′ and one
candidate optimal solution for type C′. The largest number of instances is B′1 ( 1−u3

2 , 1−u3
2 , u3) for

w1 > w2 > w3, A′1 (1− u2 − u3, u2, u3) for w1 > w3 > w2, A′4 (u1, 1− u1 − u3, u3) for w2 > w1 > w3

and w2 > w3 > w1, and A′6 (u1, u2, 1− u1 − u2) for w3 > w1 > w2 and w3 > w2 > w1. Therefore,
the best candidate optimal solutions are A1, B1 and B3 for maximizing 3COWAL with l1 ≥ l2 ≥ l3,
and A′1, A′4, A′6 and B′1 for minimizing 3COWAU with u1 ≥ u2 ≥ u3.

Extending the analysis to high dimensions is worthy of future research in addition to analysis of
the correspondence between the optimal solution of maximizing 3COWAL and minimizing 3COWAU.
Thus, the analysis of maximizing COWAL and minimizing COWAU is a subject of considerable
ongoing research.
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Abstract: The field of graph theory plays a vital role in various fields. One of the important areas in
graph theory is graph labeling used in many applications such as coding theory, X-ray crystallography,
radar, astronomy, circuit design, communication network addressing, and data base management.
In this paper, we discuss the totally irregular total k labeling of three planar graphs. If such labeling
exists for minimum value of a positive integer k, then this labeling is called totally irregular total k
labeling and k is known as the total irregularity strength of a graph G. More preciously, we determine
the exact value of the total irregularity strength of three planar graphs.

Keywords: total edge irregularity strength; total vertex irregularity strength; total irregularity
strength; planar graph

MSC: 05C12; 05C78; 05C90

1. Introduction

All graphs considered here are finite, undirected, without loops or multiple edges. Denote by
V(G) and E(G) the set of vertices and the set of edges of a graph G, respectively. Let |V(G)| = n and
|E(G)| = m.

A labeling of a graph is any mapping that sends some set of graph elements to a set of numbers
or colors. Graph labeling provides valuable information used in several application areas (see [1]). It is
interesting to consider labeling the elements of the graph by the elements of a finite field.

For a graph G, we characterize a labeling ζ : V ∪ E→ {1, 2, . . . , k} to be total k-labeling. A total
k-labeling is characterized to be an edge irregular total k−labeling of the graph G if for each two
distinct edges rs and r′s′ their weights φ(r) + φ(rs) + φ(s) and φ(r′) + φ(r′s′) + φ(s′) are distinct. In
addition, total k-labeling is characterized to be a vertex irregular total k-labeling of the graph G if for
each two distinctive vertices r and s their weights wt(r) and wt(s) are distinct. Here, the weight of a
vertex r in G is the sum of the label of r and the labels of all edges incident with the vertex r. The least
k for which the graph G has an edge irregular total k−labeling is called the total irregularity strength
of G, represented by tes(G). Analogously, the minimum k for which the graph G has a vertex irregular
total k−labeling is called the total vertex irregularity strength of G, denoted by tvs(G).

Mathematics 2018, 6, 150; doi:10.3390/math6090150 www.mdpi.com/journal/mathematics

197



Mathematics 2018, 6, 150

Chartrand et al. [2] introduced two graph invariants namely irregular assignments and the
irregularity strength. Baca et al. [3] modified these graph invariants and introduced the concept of
total edge irregularity strength and total vertex irregularity strength for a graph G. A simple lower
bound for tes(G) and tvs(G) of a (p, q)—graph G in terms of maximum degree ∆(G) and the minimum
degree δ(G), determine in the following theorems.

Theorem 1. [3] Let G be a finite graph with p vertices, q edges and having maximum degree ∆ = ∆(G),
the upper square brackets represent the ceiling function, and then

tes(G) ≥ max
{⌈

q + 2
3

⌉
,
⌈

∆ + 1
2

⌉}

Theorem 2. [3] Let G be a finite graph with p vertices, q edges, minimum degree δ = δ(G) and maximum
degree ∆ = ∆(G), the upper square brackets represent the ceiling function, and then

⌈ p + δ

∆ + 1

⌉
≤ tvs(G) ≤ p + ∆− 2δ + 1

In [4], Ivančo and Jendrol’ posed the following conjecture:

Conjecture 1. [4] Let G be a finite graph with p vertices, q edges, different from K5 with minimum degree
δ = δ(G), maximum degree ∆ = ∆(G), the upper square brackets represent the ceiling function, and then

tes(G) = max
{⌈

q + 2
3

⌉
,
⌈

∆ + 1
2

⌉}

In [5], Nurdin et al. posed the following conjecture:

Conjecture 2. [5] Let G be a connected graph having ni vertices of degree i(i = δ, δ + 1, δ + 2, . . . , ∆), where δ

and ∆ are the minimum and the maximum degree of G, respectively. Moreover, the upper square brackets
represent the ceiling function, and then

tvs(G) = max

{⌈
δ + nδ

δ + 1

⌉
,
⌈

δ + nδ + nδ+1

δ + 2

⌉
, . . . ,

⌈ δ +
∆
∑

i=δ
ni

∆ + 1

⌉}
.

Conjecture 1 has been shown for complete graphs and complete bipartite graphs [6,7], for
hexagonal grid graphs [8] , for toroidal grid [9], for generalized prism [10], for strong product of
cycles and paths [11], for categorical product of two cycles [12], for zigzag graphs [13] and for strong
product of two paths [14].

Conjecture 2 has been verified for for circulant graphs [15].
Combining both total edge irregularity strength and total vertex irregularity strength notions,

Marzuki et al. [16] introduced a new irregular total k-labeling of a graph G, which is required to be at
the same time both vertex and edge irregular as follows:

Definition 1. A total labeling φ : V ∪ E → {1, 2, . . . , k} is called totally irregular total k-labeling
of G if every two distinct vertices u and v in V(G) satisfy wt(u) 6= wt(v), and every two distinct
edges u1u2 and v1v2 in E(G) satisfy wt(u1u2) 6= wt(v1v2), where wt(u) = φ(u) + ∑

uv∈E(G)
φ(uv) and

wt(u1u2) = φ(u1) + φ(u1u2) + φ(u2). The minimum k for which a graph G has a totally irregular total
k-labeling is called the total irregularity strength of G, denoted by ts(G).
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Marzuki, et al. [16] gave a lower bond of ts(G) as follows:

For every graph G, ts(G) ≥ max{tes(G), tvs(G)} (1)

Ramdani and Salman [17] showed that the lower bound in Equation (1) for some cartesian product
graphs is tight. Besides that, they determined the total irregularity strength of cycles and paths. For
more details, see [18–20]. In [21], Ahmad et al. found the exact value of total irregularity strength of
generalized Petersen graph.

Example 1. For illustration, the concept of the totally irregular total k-labeling, we give an example from
our recent paper [21] in which we show the totally irregular total 10-labeling for generalized Petersen graph
P(9, 2) (see Figure 1).
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Figure 1. A totally irregular total 10—labeling for P(9, 2).

The weights for all vertices and the weights for all edges under the totally irregular total
10-labeling are given in Figure 2.

Now, from Figure 2, it is easy to check that edge weights are different and represented by blue.
On the other hand, the vertex weights are different and represented by black.

In this paper, we investigate the total irregularity strength of planar graphs.
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Figure 2. The weights of vertices and edges for P(9, 2).
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2. The Planar Graph Tn

Siddiqui introduced the planar graph Sn in [22] and computed the tes(Sn), tvs(Sn). The planar
graph Tn (see Figure 3) is obtained from the planar graph Sn by adding new edges xiyi+1 and having
the same vertex set. The planar graph Tn has

V(Tn) = {xi; yi; zi; 1 ≤ i ≤ n}

E(Tn) = {zizi+1; yiyi+1 : 1 ≤ i ≤ n} ∪ {xiyi; yizi; xiyi+1; yi+1zi : 1 ≤ i ≤ n}

Clearly, the planar graph Tn has 3n vertices and 6n edges. More preciously, we call the cycle
induced by {zi : 1 ≤ i ≤ n} the inner cycle, cycle induced by {yi : 1 ≤ i ≤ n} the outer cycle, and the
set vertices {xi : 1 ≤ i ≤ n}, the outer vertices. All subscripts are taken under modulo n. In the next
theorem, we determine the total irregularity strength of the planar graph Tn.
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Figure 3. The planar graph Sn and Tn.

Theorem 3. Let Tn, n ≥ 3 be a planar graph. Then, ts(Tn) =
⌈

6n+2
3

⌉
.

Proof. Since |E(Tn)| = 6n, from Theorem 1, tes(Tn) ≥
⌈

6n+2
3

⌉
. In addition, Tn has n vertices of degree

2, n vertices of degree 4, and n vertices of degree 6; thus, from Theorem 2, we get tvs(Tn) ≥ d 2n+2
4 e.

From Equation (1), we get ts(Tn) ≥
⌈

6n+2
3

⌉
. Now, we show that ts(Tn) ≤

⌈
6n+2

3

⌉
. For this, we define a

total labeling φ from V(Tn) ∪ E(Tn) into
{

1, 2, . . . ,
⌈

6n+2
3

⌉}
and compute the vertex weight and edge

weights in the following way.

Let k = d 6n+2
3 e. For 1 ≤ i ≤ n, we have

φ(xi) = φ(yi) = i, φ(zi) = k, φ(xiyi) = 1, φ(yiyi+1) = k + 1− i, φ(yizi) = n + 1, φ(yi+1zi) = k,
wt(xiyi) = 2i + 1, wt(xiyi+1) = 2i + 2, wt(yizi) = k + n + 1 + i, wt(yi) = k + 5n + 8− i,

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
n + 1, for i = n

wt(yiyi+1) =

{
k + 2 + i, for 1 ≤ i ≤ n− 1
k + 2, for i = n
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φ(zizi+1) =





k + 1− i, for 1 ≤ i ≤ n− 3
n + 3, for i = n− 2
n + 4, for i = n− 1
n + 1, for i = n, n is even
n + 2, for i = n, n is odd

wt(yi+1zi) =

{
2k + 1 + i, for 1 ≤ i ≤ n− 1
2k + 1, for i = n

wt(zizi+1) =





3k + 1− i, for 1 ≤ i ≤ n− 3
2k + 5 + i, for n− 2 ≤ i ≤ n− 1
2k + 2 + i, for i = n, n is odd
2k + 1 + i, for i = n, n is even

wt(xi) =

{
2 + i, for 1 ≤ i ≤ n− 1
2n + 2, for i = n

wt(zi) =





3k + 2n + 2, for i = 1, n is even
3k + 2n + 3, for i = 1, n is odd
2k + 5n + 6− 2i, for 2 ≤ i ≤ n− 3
2k + 4n + 7− i, for n− 2 ≤ i ≤ n

Now, the weight of the edges and vertices of Tn under the labeling φ are distinct. It is easy to
check that there are no two edges of the same weight and there are no two vertices of the same weight.
Thus, φ is a totally irregular total k−labeling. We conclude that ts(Tn) = d 6n+2

3 e, which complete the
proof.

3. The Planar Graph Rn (Pentagonal Circular Ladder)

In [23], Bača defined the prism Dn (Circular ladder) for n ≥ 3. It is a cubic graph which can
be defined as the cartesian product P2 × Cn on a path on two vertices with a cycle on n vertices.
Prism Dn, n ≥ 3 is considered of n−cycle y1, y2, y3, . . . , yn, an inner n−cycle x1, x2, x3, . . . , xn, and a
set of n spokes yizi, i = 1, 2, . . . , n, |V(Dn| = 2n, |E(Dn| = 3n. The planar graph (pentagonal circular
ladder) Rn (see Figure 4) is obtained from the graph of prism Dn by adding a new vertex xi between yi
and yi+1, for i = 1, 2, 3, .., n. The planar graph (pentagonal circular ladder) Rn has

V(Rn) = {xi; yi; zi : 1 ≤ i ≤ n}

E(Rn) = {zizi+1; 1 ≤ i ≤ n} ∪ {xiyi; yizi; xiyi+1; 1 ≤ i ≤ n}
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Figure 4. The planar graph Rn(Pentagonal Circular Ladder).
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For our purpose, we call the cycle induced by {zi : 1 ≤ i ≤ n} the inner cycle, and the cycle
induced by {yi : 1 ≤ i ≤ n} ∪ {xi : 1 ≤ i ≤ n} the outer cycle. All subscripts are taken under modulo
n. In the next theorem, we determine the total irregularity strength of the planar graph Rn.

Theorem 4. Let Rn, n ≥ 4 be a planar graph. Then, ts(Rn) =
⌈

4n+2
3

⌉
.

Proof. Since |E(Rn)| = 4n, from Theorem 1, tes(Rn) ≥
⌈

4n+2
3

⌉
. In addition, Rn has n vertices of

degree 2, 2n vertices of degree 3; thus, from Theorem 2, we get tvs(Tn) ≥ d 3n+2
4 e. From Equation (1),

we get ts(Rn) ≥
⌈

4n+2
3

⌉
. Now, we show that ts(Rn) ≤

⌈
4n+2

3

⌉
. For this, we define a total labeling φ

from V(Rn) ∪ E(Rn) into
{

1, 2, . . . ,
⌈

4n+2
3

⌉}
and compute the vertex weight and edge weights in the

following way.

Let k = d 4n+2
3 e and 1 ≤ i ≤ n.

For n = 4, we have,

φ(xi) = i, φ(yi) = i, φ(zi) = k, φ(xiyi) = 1, φ(x1y2) = 1, φ(x2y3) = 1, φ(x3y4) = 1, φ(x4y1) = 6,
φ(y1z1) = 5, φ(y2z2) = 2, φ(y3z3) = 4, φ(y4z4) = 4, φ(zizi+1) = 2+ i, wt(xiyi) = 1+ 2i, wt(x1y2) = 4,
wt(x2y3) = 6, wt(x3y4) = 8, wt(x4y1) = 11, wt(x1) = 3, wt(x2) = 4, wt(x3) = 5, wt(x4) = 11,
wt(y1) = 13, wt(y2) = 6, wt(y3) = 9, wt(y4) = 10, wt(z1) = 20, wt(z2) = 15, wt(z3) = 19,
wt(z4) = 21,

For n = 5, we have,

φ(xi) = i, φ(yi) = i, φ(zi) = k− 1, φ(xiyi) = 1, φ(x1y2) = 1, φ(x2y3) = 1, φ(x3y4) = 1, φ(x4y5) = 1,
φ(x5y1) = 6, φ(y1z1) = 5, φ(y2z2) = 5, φ(y3z3) = 5, φ(y4z4) = 5, φ(y5z5) = 8, φ(z1z2) = 3,
φ(z2z3) = 4, φ(z3z3) = 5, φ(z4z4) = 7, φ(z5z5) = 8, wt(xiyi) = 1 + 2i, wt(xiyi+1) = 2 + 2i, wt(x1) = 3,
wt(x2) = 4, wt(x3) = 5, wt(x4) = 6, wt(x5z) = 12, wt(y1) = 13, wt(y2) = 9, wt(y3) = 10, wt(y4) = 11,
wt(y5) = 15, wt(z1) = 23, wt(z2) = 19, wt(z3) = 21, wt(z4) = 24, wt(z5) = 30,

For n = 7, we have,

φ(yi) = i, φ(z1) = 8, φ(z2) = 9, φ(z3) = 10, φ(z4) = 11, φ(z5) = 12, φ(z6) = 13, φ(z7) = 14,
φ(z8) = 14, φ(z9) = 14, φ(z10) = 14, φ(z1z2) = 7, φ(z2z3) = 7, φ(z3z4) = 7, φ(z4z5) = 7, φ(z5z6) = 7,
φ(z6z7) = 12, φ(z7z8) = 13, φ(z8z9) = 14, φ(z9z10) = 12, φ(z10z1) = 12, wt(z1) = 41, wt(z2) = 37,
wt(z3) = 38, wt(z4) = 39, wt(z5) = 40, wt(z6) = 46, wt(z7) = 53, wt(z8) = 55, wt(z9) = 54,
wt(z10) = 52, φ(yizi) = k,

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
4, for i = n

wt(xi) =

{
2 + i, for 1 ≤ i ≤ n− 1
26, for i = n

wt(yi) =





30, for i = 1
n + 7 + i, for 2 ≤ i ≤ n− 1
31, for i = n

φ(xiyi) =

{
1, for 1 ≤ i ≤ n− 1
k− n + 2, for i = n

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
k, for i = n
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wt(xiyi) =

{
1 + 2i, for 1 ≤ i ≤ n− 1
22, for i = n

wt(xiyi+1) =

{
2 + 2i, for 1 ≤ i ≤ n− 1
21, for i = n

wt(yizi) =

{
2i + 2k− 2(n−1)

3 − 1, for 1 ≤ i ≤ k
2

2k + 1 + i, for k+2
2 ≤ i ≤ n

wt(zizi+1) =





2n + 2 + 2i, for 1 ≤ i ≤ 5
4n− 1, for i = 6
k + 2n + i, for i = 7, 8
4n, for i = 9
3n + 4, for i = 10

For n = 10 , we have,

φ(yi) = i, φ(z1) = 6, φ(z2) = 7, φ(z3) = 8, φ(z4) = 9, φ(z5) = 10, φ(z6) = 10, φ(z7) = 10, φ(z1z2) = 5,
φ(z2z3) = 5, φ(z3z4) = 5, φ(z4z5) = 10, φ(z5z6) = 10, φ(z6z7) = 8, φ(z7z1) = 8, wt(x1) = 3,
wt(x2) = 4, wt(x3) = 5, wt(x4) = 6, wt(x5z) = 7, wt(x6z) = 8, wt(x7) = 19, wt(y1) = 22, wt(y2) = 14,
wt(y3) = 15, wt(y4) = 16, wt(y5) = 17, wt(y6z) = 18, wt(x7) = 23, wt(z1) = 29, wt(z2) = 27,
wt(z3) = 28, wt(z4) = 34, wt(z5) = 40, wt(z) = 38, wt(z7) = 36, φ(yizi) = k,

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
6, for i = n

φ(xiyi) =

{
1, for 1 ≤ i ≤ n− 1
k− n + 2, for i = n

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
k, for i = n

wt(xiyi) =

{
1 + 2i, for 1 ≤ i ≤ n− 1
16, for i = n

wt(xiyi+1) =

{
2 + 2i, for 1 ≤ i ≤ n− 1
15, for i = n

wt(yizi) =

{
2i + 2k− 2n

3 − 1, for 1 ≤ i ≤ k+2
2

2k + i, for k+4
2 ≤ i ≤ n

wt(zizi+1) =





2n + 2 + 2i, for 1 ≤ i ≤ k
2 − 2

3n + 4 + i, for k+2
2 ≤ i ≤ n− 2

k + 2n + 4, for i = n− 1
k + 2n, for i = n

For n ≥ 6 and n 6= 7, 10, we have φ(yi) = i, φ(yizi) = k,

φ(xiyi) =

{
1, for 1 ≤ i ≤ n− 1
k− n + 2, for i = n

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
k, for i = n
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Case 1. when n ≡ 0 (mod 3)

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
k−3

2 , for i = n

φ(zi) =

{
k− 2n

3 − 1 + i, for 1 ≤ i ≤ k+1
2

k, for k+3
2 ≤ i ≤ n

φ(zizi+1) =





k+1
2 for 1 ≤ i ≤ k+1

2 − 2
n + 2, for i = k+1

2 − 1
k− n + i, for k+1

2 ≤ i ≤ n− 1
k− 1, for i = n

wt(xi) =

{
i + 2, for 1 ≤ i ≤ n− 1
3k− 5n

3 , for i = n

wt(yi) =





2k + 2, for i = 1
4(k− n)− 1 + i, for 2 ≤ i ≤ n− 1
2k + 3, for i = n

wt(zi) =





7(k+1)
2 − 2n

3 − 4, for i = 1
3k− 2n

3 + i, for 2 ≤ i ≤ k−3
2

5(k+1)
2 + n− 1, for i = k−1

2
3k + 2 + i, for k+1

2 ≤ i ≤ k+3
2

4(k− 1)− 2n + 3 + 2i, k+5
2 ≤ i ≤ n− 1

4k− 2, for i = n

wt(xiyi) =

{
2i + 1, for 1 ≤ i ≤ n− 1
2k− 2n

3 , for i = n

wt(xiyi+1) =

{
2i + 2, for 1 ≤ i ≤ n− 1
2k− 2n

3 − 1, for i = n

wt(yizi) =

{
2i + 2k− 2n

3 − 1, for 1 ≤ i ≤ k+1
2 − 1

2k + i, for k+1
2 ≤ i ≤ n

wt(zizi+1) =





2n + 2 + 2i, for 1 ≤ i ≤ k+1
2 − 2

3n + 3 + i, for k+1
2 − 1 ≤ i ≤ n− 1

k + 2n + 1, for i = n

Case 2. when n ≡ 1 (mod 3)

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
k− (2n+1)

3 − 1, for i = n

φ(zi) =

{
k− 2n+1

3 + i, for 1 ≤ i ≤ k
2

k, for k
2 + 1 ≤ i ≤ n

φ(zizi+1) =





k
2 , for 1 ≤ i ≤ k

2 − 2
n + 2, for i = k

2 − 1
k− n + 1 + i, for k

2 ≤ i ≤ n− 1
k− 2, for i = n
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wt(xi) =

{
i + 2, for 1 ≤ i ≤ n− 1
3k− 5n+1

3 + 1, for i = n

wt(yi) =





2k + 2, for i = 1
4(k− n) + i, for 2 ≤ i ≤ n− 1
2k + 3, for i = n

wt(zi) =





7k
2 − 2n+1

3 − 1, for i = 1
3k− 2n+1

3 + i, for 2 ≤ i ≤ k
2 − 2

5k
2 + n + 1, for i = k

2 − 1
3k + 3 + i, for k

2 ≤ i ≤ k
2 + 1

4k− 2n + 1 + 2i, for k
2 + 2 ≤ i ≤ n− 1

4k− 2, for i = n

wt(xiyi) =

{
2i + 1, for 1 ≤ i ≤ n− 1
2k− 2n+1

3 + 1, i = n.

wt(xiyi+1) =

{
2i + 2, 1 ≤ i ≤ n− 1
2k− 2n+1

3 , for i = n

wt(yizi) =

{
2i + 2k− 2n+1

3 , for 1 ≤ i ≤ k
2

2k + i, for k
2 + 1 ≤ i ≤ n

wt(zizi+1) =





2n + 2 + 2i, for 1 ≤ i ≤ k
2 − 2

3n + 3 + i, for k
2 − 1 ≤ i ≤ n− 1

k + 2n, for i = n

Case 3. when n ≡ 2 (mod 3)

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
k−4

2 , for i = n

φ(zi) =

{
k− 2n+2

3 − 1 + i, for 1 ≤ i ≤ k+2
2

k, for k+4
2 ≤ i ≤ n

φ(zizi+1) =





k
2 + 1, for 1 ≤ i ≤ k

2 − 1
n + 2, for i = k

2
k− n− 1 + i, for k

2 + 1 ≤ i ≤ n− 1
k, for i = n

wt(xi) =

{
i + 2, for 1 ≤ i ≤ n− 1
3k− 5n+5

3 + 1, for i = n

wt(yi) =





2k + 2, for i = 1
4(k− n)− 2 + i, for 2 ≤ i ≤ n− 1
2k + 3, for i = n

wt(zi) =





7k
2 −

2(n+1)
3 + 1, for i = 1

3k− 2(n+1)
3 + 1 + i, for 2 ≤ i ≤ k

2 − 1
5k
2 + n + 2, for i = k

2
3k + 2 + i, for k

2 + 1 ≤ i ≤ k
2 + 2

4k− 2n− 1 + 2i, for k
2 + 3 ≤ i ≤ n− 1

4k− 2, for i = n
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wt(xiyi) =

{
2i + 1, for 1 ≤ i ≤ n− 1
2k + 2n+2

3 , for i = n

wt(xiyi+1) =

{
2i + 2, for 1 ≤ i ≤ n− 1
2k− 2n+2

3 − 1, for i = n

wt(yizi) =

{
2i + 2k− 2n+2

3 − 1, for 1 ≤ i ≤ k
2

2k + i, for k
2 + 1 ≤ i ≤ n

wt(zizi+1) =





2n + 2 + 2i, for 1 ≤ i ≤ k
2 − 1

3n + 3 + i, for k
2 ≤ i ≤ n− 1

k + 2n + 2, for i = n

The weight of the edges and vertices under the labeling φ are distinct. It is easy to check that there
are no two edges of the same weight and there are no two vertices of the same weight. Thus, φ is a
totally irregular total k−labeling. We conclude that ts(Rn) = d 4n+2

3 e, which complete the proof.

4. The Planar Graph Qn

In [23], Bača defined the planar graph (pentagonal circular ladder) Rn. The planar graph Qn

(see Figure 5) is obtained from the planar graph (pentagonal circular ladder) Rn by adding new edges
yiyi+1, ziwi, wiwi+1. The planar graph Qn has

V(Qn) = {xi; yi; zi; wi : 1 ≤ i ≤ n}

E(Qn) = {yiyi+1; wiwi+1; zizi+1; xiyi; xiyi+1; yizi; ziwi : 1 ≤ i ≤ n}

The planar graph Qn has 4n vertices and 7n edges. For our purpose, we call the cycle induced
by {wi : 1 ≤ i ≤ n} the inner cycle, the cycle induced by {zi : 1 ≤ i ≤ n} the middle cycle, the cycle
induced by {yi : 1 ≤ i ≤ n} the outer cycle, and the set of vertices {xi : 1 ≤ i ≤ n} the set of outer
vertices. The subscript n + 1 must be replaced by 1.

x x

x1

x

x

yz
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y

yy

y

x

y

z

z z1
n-2

n-1 n

n-1
n

n-3
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n-2

n

1

2

2

3

2

3
z w3

w2

wn-2

wn-1

wn w1

x4

x3

y4y
n-3

z4
n-3z w4wn-3

Figure 5. The planar graph Qn.

Theorem 5. Let Qn, n ≥ 4 be a planar graph. Then, ts(Qn) =
⌈

7n+2
3

⌉
.

Proof. Since |E(Qn)| = 7n, from Theorem 1 tes(Qn) ≥
⌈

7n+2
3

⌉
. In addition, Qn has n vertices of degree

2, n vertices of degree 3, n vertices of degree 4 and n vertices of degree 5; thus, from Theorem 2, we get

tvs(Qn) ≥ d 4n+2
6 e. From Equation (1), we get ts(Qn) ≥

⌈
7n+2

3

⌉
. Now, we show that ts(Qn) ≤

⌈
7n+2

3

⌉
.
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For this, we define a total labeling φ from V(Qn) ∪ E(Qn) into
{

1, 2, . . . ,
⌈

7n+2
3

⌉}
and compute the

vertex weight and edge weights in the following way.

Let k = d 7n+2
3 e and 1 ≤ i ≤ n,

φ(xi) = i, φ(yi) = i, φ(zi) = k, φ(xiyi) = 1, wt(xiyi) = 1 + 2i, wt(xiyi+1) = 2 + 2i,
wt(yizi) = 4n + 2 + i, wt(yiyi+1) = 2n + 2 + i, wt(wiwi+1) = 3n + 2 + i,

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
n + 1, for i = n

φ(yiyi+1) =

{
2n + 1− i, for 1 ≤ i ≤ n− 1
2n + 1, for i = n

φ(wiwi+1) =

{
i, for 1 ≤ i ≤ n, n is even
i + 1, for 1 ≤ i ≤ n, n is odd

wt(xi) =

{
2 + i, for 1 ≤ i ≤ n− 1
2n + 2, for i = n

Case 1. when n ≡ 0 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3n
2 + 1, φ(yizi) =

5n
3 + 1, φ(zizi+1) =

4n
3 + i, wt(zizi+1) = 2k + 4n

3 + i, wt(zi) =
53n

6 + 3 + i,
wt(wi) =

11n
3 + 2 + i,

φ(ziwi) =

{
7n
6 + 1, for i = 1

13n
6 + 2− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8n

3 + 2, for i = 1
k + 11n

3 + 3− i, for 2 ≤ i ≤ n

wt(yi) =





20n
3 + 5, for i = 1

17n
3 + 6− i, for 2 ≤ i ≤ n− 1

17n
3 + 6, for i = n

Case 2. when n ≡ 1 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3(n−1)

2 + 2, φ(yizi) =
5(n−1)

3 + 3, φ(zizi+1) =
4(n−1)

3 + 2 + i, wt(zizi+1) = 2k + 4(n−1)
3 + 2 + i,

wt(zi) =
53(n−1)

6 + 14 + i, wt(wi) =
11(n−1)

3 + 8 + i,

φ(ziwi) =

{
7(n−1)

6 + 3, for i = 1
13(n−1)

6 + 5− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8(n−1)

3 + 5, for i = 1
k + 11(n−1)

3 + 7− i, for 2 ≤ i ≤ n

wt(yi) =





20(n−1)
3 + 12, for i = 1

17(n−1)
3 + 12− i, for 2 ≤ i ≤ n− 1

17(n−1)
3 + 12, for i = n

Case 3. when n ≡ 2 (mod 6) and 1 ≤ i ≤ n
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φ(wi) =
3(n−2)

2 + 4, φ(yizi) =
5(n−2)

3 + 4, φ(zizi+1) =
4(n−2)

3 + 2 + i, wt(zizi+1) = 2k + 4(n−2)
3 + 2 + i,

wt(zi) =
53(n−2)

6 + 19 + i, wt(wi) =
11(n−2)

3 + 9 + i,

φ(ziwi) =

{
7(n−2)

6 + 3, for i = 1
13(n−2)

6 + 6− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8(n−2)

3 + 7, for i = 1
k + 11(n−2)

3 + 10− i, for 2 ≤ i ≤ n

wt(yi) =





20(n−2)
3 + 18, for i = 1

17(n−2)
3 + 17− i, for 2 ≤ i ≤ n− 1

17(n−2)
3 + 17, for i = n

Case 4. when n ≡ 3 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3(n−3)

2 + 5, φ(yizi) =
5(n−3)

3 + 6, φ(zizi+1) =
4(n−2)

3 + 4 + i, wt(zizi+1) = 2k + 4(n−3)
3 + 4 + i,

wt(zi) =
53(n−3)

6 + 30 + i, wt(wi) =
11(n−3)

3 + 15 + i,

φ(ziwi) =

{
7(n−3)

6 + 5, for i = 1
13(n−3)

6 + 9− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8(n−3)

3 + 10, for i = 1
k + 11(n−3)

3 + 14− i, for 2 ≤ i ≤ n

wt(yi) =





20(n−3)
3 + 25, for i = 1

17(n−3)
3 + 23− i, for 2 ≤ i ≤ n− 1

17(n−3)
3 + 23, for i = n

Case 5. when n ≡ 4 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3(n−4)

2 + 7, φ(yizi) =
5(n−4)

3 + 8, φ(zizi+1) =
4(n−4)

3 + 6 + i, wt(zizi+1) = 2k + 4(n−4)
3 + 6 + i,

wt(zi) =
53(n−4)

6 + 40 + i, wt(wi) =
11(n−4)

3 + 17 + i,

φ(ziwi) =

{
7(n−4)

6 + 6, for i = 1
13(n−4)

6 + 11− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8(n−4)

3 + 13, for i = 1
k + 11(n−4)

3 + 18− i, for 2 ≤ i ≤ n

wt(yi) =





20(n−4)
3 + 32, for i = 1

17(n−4)
3 + 29− i, for 2 ≤ i ≤ n− 1

17(n−4)
3 + 29, for i = n

Case 6. when n ≡ 5 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3(n−5)

2 + 8, φ(yizi) =
5(n−5)

3 + 9, φ(zizi+1) =
4(n−5)

3 + 6 + i, wt(zizi+1) = 2k + 4(n−5)
3 + 6 + i,

wt(zi) =
53(n−5)

6 + 46 + i, wt(wi) =
11(n−5)

3 + 22 + i,

φ(ziwi) =

{
7(n−5)

6 + 7, for i = 1
13(n−5)

6 + 13− i, for 2 ≤ i ≤ n
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wt(ziwi) =

{
k + 8(n−5)

3 + 15, for i = 1
k + 11(n−5)

3 + 21− i, for 2 ≤ i ≤ n

wt(yi) =





20(n−5)
3 + 38, for i = 1

17(n−5)
3 + 34− i, for 2 ≤ i ≤ n− 1

17(n−5)
3 + 34, for i = n

The weight of the edges and vertices of Sn under the labeling φ are distinct. It is easy to check that there are
no two edges of the same weight and there are no two vertices of the same weight. Thus, φ is a totally irregular
total k−labeling. We conclude that ts(Qn) = d 7n+2

3 e, which completes the proof.

5. Conclusions

In this paper, we discus the total edge irregular k labeling, total vertex irregular k labeling and
totally irregular total k labeling of planar graphs. We provide exact result of total irregularity strength
ts for the planar graph Tn, the planar graph Rn (Pentagonal Circular Ladder) and the planar graph
Qn. In the future, we are interested in computing the total irregularity strength ts for the other planar
graphs.
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Abstract: A topological index is a number related to the atomic index that allows quantitative
structure–action/property/toxicity connections. All the more vital topological indices correspond to
certain physico-concoction properties like breaking point, solidness, strain vitality, and so forth,
of synthetic mixes. The idea of the hyper Zagreb index, multiple Zagreb indices and Zagreb
polynomials was set up in the substance diagram hypothesis in light of vertex degrees. These indices
are valuable in the investigation of calming exercises of certain compound systems. In this paper,
we computed the first and second Zagreb index, the hyper Zagreb index, multiple Zagreb indices and
Zagreb polynomials of the line graph of wheel and ladder graphs by utilizing the idea of subdivision.

Keywords: hyper Zagreb index; first and second Zagreb index; multiple Zagreb indices; Zagreb
polynomials; line graph; subdivision graph; tadpole; wheel; ladder

1. Introduction

Chemical graph theory is a branch of mathematical chemistry in which we apply apparatuses
of the graph hypothesis to display the substance numerically. This hypothesis contributes noticeably
to the synthetic sciences. A sub-atomic diagram is a straightforward limited graph in which
vertices mean that the atoms and edges indicate concoction bonds in hidden compound structure.
A topological index is actually a numerical amount related to the concoction constitution indicating
the connection of the substance structure with numerous physio-synthetic properties, compound
reactivity, and organic action. A decade ago, the diagram hypothesis found extensive use in research.
The graph hypothesis has given physicists a variety of valuable apparatuses, such as topological files.
Cheminformatics is a new subject that is a mix of science, arithmetic, and data science. It ponders
quantitative structure–movement (QSAR) and structure–property (QSPR) connections that are utilized
to anticipate the natural exercises and properties of synthetic mixes.

A graph G with vertex set V and edge set E are associated if there exists a connection between
any combination of vertices in G. A network is just a connected diagram having no various edges
and no self loops. For a graph G, the level of a vertex v is the quantity of edges occurrence to v and is
indicated by ξ(v).

A topological list Top(G) of a graph G is a number with the property that for each chart H
isomorphic to G, Top(H) = Top(G). The idea of the topological file originated from the work

Mathematics 2018, 6, 137; doi:10.3390/math6080137 www.mdpi.com/journal/mathematics
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done by Wiener [1], while at the same time, he was aiming to determine the breaking point of
paraffin. He named this list as the way number. Later on, the way number was renamed as the Wiener
index. The Wiener list is the first and most concentrated topological list, both from hypothetical and
applications perspectives, and is characterized as the aggregate of separations between all sets of
vertices in G (see [2] for details).

I. Gutman and N.Trinajstic [3] introduced the first and second Zagreb indices based on the degree
of vertices as:

M1(G) = ∑
r1r2∈E(G)

[ξ(r1) + ξ(r2)], (1)

M2(G) = ∑
r1r2∈E(G)

[ξ(r1)× ξ(r2)]. (2)

In 2013, Shirdel et al. [4] introduced the “hyper Zagreb index” as:

HM(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]2. (3)

M. Ghorbani and N. Azimi defined [5] multiple Zagreb indices as:

PM1(G) = ∏
r1r2∈E(G)

[ξ(r1) + ξ(r2)], (4)

PM2(G) = ∏
r1r2∈E(G)

[ξ(r1)× ξ(r2)]. (5)

The properties of PM1(G), PM2(G) indices for some chemical structures have been studied in [6].
The first Zagreb polynomial M1(G, x) ) and second Zagreb polynomial M2(G, x) are defined as:

M1(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)+ξ(r2)], (6)

M2(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)×ξ(r2)]. (7)

There is now extensive research activity on HM(G), PM1(G), PM2(G) indices and M1(G, x),
M2(G, x) polynomials. See [7–9] for details.

2. Applications of Topological Indices

A ago, graph hypothesis had found an amazing use in research. Compound graph speculation
has given researchers a variety of important gadgets (e.g., topological files). The Zagreb index is a
topological descriptor that is related to a considerable measure of fabricated attributes of the particles,
and has been discovered parallel to setting up the limit and Kovats constants of the particles [10].
The particle bond arranged hyper Zagreb index has a superior relationship with the security of direct
dendrimers, besides the expanded medication stores and for setting up the strain criticalness of
cycloalkanes [11–15]. To relate with certain physico-mix properties, different Zagreb indices have
particularly needed insightful control over the farsighted essentialness of the dendrimers [16,17].
The first and second Zagreb polynomials were found to aid in the calculation of the aggregate
π-electron imperativeness of the particles inside particular brutal verbalizations [18,19].

3. Topological Indices for Line Graph of Subdivided Graph L(S(G))

The subdivision graph [20] S(G) is the diagram acquired from G by supplanting every one of
its edges by a way of length 2, or equivalently, by embedding an extra vertex into each edge of G.
The line diagram of the chart G, composed L(G), is the basic diagram whose vertices are the edges
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of G, with e f ∈ E(L(G)) when e and f have a typical end point in G. Likewise, the line chart of the
subdivided diagram is indicated by L(S(G)).

The tadpole graph Tn,k is the diagram acquired by joining a cycle diagram Cn to a way of length k.
By beginning with a disjoint association of two charts G1 and G2 and including edges joining every
vertex of G1 to that of G2, one gets the whole G1 + G2 of G1 and G2. The total Cn + K1 of a cycle
Cn and a solitary vertex is alluded to as a wheel chart Wn+1 with arrange n. The Cartesian product
G1 × G2 of charts G1 and G2 is a diagram with vertex set V1 ×V2, and two vertices r1, s1 and r2, s2 are
nearby in G1 × G2 if and only if either r1 = r2 and s1s2 ∈ E2, or s1 = s2 and r1r2 ∈ E1. The stepping
stool diagram Ln is given by Ln = K2 × Pn, where Pn is the way of length n. It is along these lines
proportionate to the framework chart G2,n. The diagram acquired by means of this definition resembles
a stepping stool, having two rails and n rungs between them.

In 2011, Ranjini et al. figured the unequivocal articulations for the Schultz lists of the subdivision
diagrams of the tadpole, wheel, steerage, and stepping stool charts. They additionally contemplated the
Zagreb records of the line diagrams of the tadpole, haggle charts with subdivision in [21,22]. Ali et al. [23]
registered the topological lists for the line diagram of the sparkler chart, and Sardar et al. [24] computed
the topological files of the line diagrams of Banana tree and Firecracker diagrams. Ahmad et al. [25]
discuss the m-polynomials and degree-based topological indices for the line graph of the Firecracker
graph. Soleimani et al. [26] discuss the topological properties of nanostructures. In 2015, Su and Xu
figured the general aggregate availability records and co-lists of the line diagrams of the tadpole and
haggle charts with subdivision in [27]. Nadeem et al. [28,29] registered ABC4 and GA5 records of the
line charts of the tadpole, wheel, stepping stool, 2D−lattice, nanotube, and nanotorus of TUC4C8[p, q]
diagrams.

3.1. Zagreb Indices and Zagreb Polynomials of the Line Graph of the Tadpole Graph Tn,k

Theorem 1. Let R be the line graph of the tadpole graph Tn,k. Then

M1(R) = 8n + 8k + 12,

M2(R) = 8n + 8k + 23,

HM(R) = 32n + 32k + 96,

PM1(R) = 3× 4(2n+2k−6) × 53 × 63,

PM2(R) = 2× 4(2n+2k−6) × 63 × 93,

M1(R, x) = x3 + (2n + 2k− 6)x4 + 3x5 + 3x6,

M2(R, x) = x2 + (2n + 2k− 6)x4 + 3x6 + 3x9.

Proof. The subdivision diagram of Tn,k and the related line chart R appear individually in Figure 1a,b.
The subdivision chart S(Tn,k) contains 2n + 2k edges, so its line diagram contains 2n + 2k vertices,
out of which 3 vertices are of degree 3 and one vertex is of degree 1. The rest of the 2n + 2k− 4 vertices
are all of degree 2. It is easy to see that the aggregate number of edges of R is 2n + 2k + 1. The edge set
E(R) separates into our edge segments in view of degrees of end vertices:
E12
(

R
)
=
{

r1r2 ∈ E
(

R
)
| ξ(r1) = 1, ξ(r2) = 2

}
,

E22
(

R
)
=
{

r1r2 ∈ E
(

R
)
| ξ(r1) = 2, ξ(r2) = 2

}
,

E23
(

R
)
=
{

r1r2 ∈ E
(

R
)
| ξ(r1) = 2, ξ(r2) = 3

}
,

E33
(

R
)
=
{

r1r2 ∈ E
(

R
)
| ξ(r1) = 3, ξ(r2) = 3

}
.
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Figure 1. (a) Subdivision graph of the tadpole graph Tn,k; (b) Line graph of the subdivision graph
of (Tn,k).

These four partitions of the edge set correspond to their degree sum of neighbors of end vertices.
The number of edges in E12

(
R
)

is 1, in E22
(

R
)

there are 2n + 2k − 6, in E23
(

R
)

there are 3, and in
E33
(

R
)

there are 3. Now, using Equations (1)–(7), we have

M1(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]
,

M1(R) = ∑
r1r2∈E12(R)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E22(R)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E23(R)

[
ξ(r1) + ξ(r2)

]

+ ∑
r1r2∈E33(R)

[
ξ(r1) + ξ(r2)

]

= 3|E12(R)|+ 4|E22(R)|+ 5|E23(R)|+ 6|E33(R)|
= 3(1) + 4((2n + 2k− 6)) + 5(3) + 6(3) = 8n + 8k + 12,

M2(G) = ∑
r1r2∈E(G)

[
ξ(r1)× ξ(r2)

]

M2(R) = ∑
r1r2∈E12(R)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E22(R)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E23(R)

[
ξ(r1)× ξ(r2)

]

+ ∑
r1r2∈E33(R)

[
ξ(r1)× ξ(r2)

]

= 2|E12(R)|+ 4|E22(R)|+ 6|E23(R)|+ 9|E33(R)|
= 2(1) + 4((2n + 2k− 6)) + 6(3) + 9(3) = 8n + 8k + 23,

HM(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]2,

HM(R) = ∑
r1r2∈E12(R)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E22(R)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E23(R)

[
ξ(r1) + ξ(r2)

]2

+ ∑
r1r2∈E33(R)

[
ξ(r1) + ξ(r2)

]2

= 9|E12(R)|+ 16|E22(R)|+ 25|E23(R)|+ 36|E33(R)|
= 9(1) + 16(2n + 2k− 6) + 25(3) + 36(3) = 2n + 32k + 96,

PM1(G) = ∏
r1r2∈E(G)

[ξ(r1) + ξ(r2)],

PM1(R) = ∏
r1r2∈E12(R)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E22(R)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E23(R)

[
ξ(r1) + ξ(r2)

]

× ∏
r1r2∈E33(R)

[
ξ(r1) + ξ(r2)

]

= 3|E12(R)| × 4|E22(R)| × 5|E23(R)| × 6|E33(R)| = 3× 4(2n+2k−6) × 53 × 63,
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PM2(G) = ∏
r1r2∈E(G)

[ξ(r1)× ξ(r2)],

PM2(R) = ∏
r1r2∈E12(R)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E22(R)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E23(R)

[
ξ(r1)× ξ(r2)

]

× ∏
r1r2∈E33(R)

[
ξ(r1)× ξ(r2)

]

= 2|E12(R)| × 4|E22(R)| × 6|E23(R)| × 9|E33(R)| = 2× 4(2n+2k−6) × 63 × 93,

M1(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)+ξ(r2)],

M1(R, x) = ∑
r1r2∈E1(R)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E2(R)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E3(R)

x[ξ(r1)+ξ(r2)]

+ ∑
r1r2∈E4(R)

x[ξ(r1)+ξ(r2)]

= ∑
r1r2∈E1(R)

x3 + ∑
r1r2∈E2(R)

x4 + ∑
r1r2∈E3(R)

x5 + ∑
r1r2∈E4(R)

x6

= |E12(R)|x3 + |E22(R)|x4 + |E23(R)|x5 + |E33(R)|x6 = x3 + (2n + 2k− 6)x4 + 3x5 + 3x6,

M2(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)×ξ(r2)],

M2(R, x) = ∑
r1r2∈E1(R)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E2(R)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E3(R)

x[ξ(r1)×ξ(r2)]

+ ∑
r1r2∈E4(R)

x[ξ(r1)×ξ(r2)]

= ∑
r1r2∈E1(R)

x2 + ∑
r1r2∈E2(R)

x4 + ∑
r1r2∈E3(R)

x6 + ∑
r1r2∈E4(R)

x9

= |E12(R)|x2 + |E22(R)|x4 + |E23(R)|x6 + |E33(R)|x9 = x2 + (2n + 2k− 6)x4 + 3x6 + 3x9.

Theorem 2. Let H be the line graph of the wheel graph Wn+1. Then

M1(H) = n3 + 27n,

M2(H) =
n4 − n3 + 6n2 + 72n

2
,

HM(H) = 2n4 − n3 + 6n2 + 45n,

PM1(H) = 64n × (3 + n)n × (2n)
(

n2−n
2

)
,

PM2(H) = 94n × (3n)n × nn2−n,

M1(H, x) = 4nx4 + nx3+n +
(n2 − n

2

)
x2n,

M2(H, x) = 4nx9 + nx3n +
(n2 − n

2

)
xn2

.

Proof. The subdivision chart of wheel Wn+1 and the relating line diagram H appear separately in
Figure 2a,b. The line chart H contains 4n vertices, of which 3n vertices are of degree 3 and the others
are of degree n. It is simple to determine that the aggregate number of edges in the line diagram H are
n2 + 9n

2
. To demonstrate the above proclamation, the edge set E(H) isolates into three edge segments

in light of the degrees of end vertices:
E33
(

H
)
=
{

r1r2 ∈ E
(

H
)
| ξ(r1) = 3, ξ(r2) = 3

}
,

E3n
(

H
)
=
{

r1r2 ∈ E
(

H
)
| ξ(r1) = 3, ξ(r2) = n

}
,
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Enn
(

H
)
=
{

r1r2 ∈ E
(

H
)
| ξ(r1) = n, ξ(r2) = n

}
.

Figure 2. (a) Subdivision graph of wheel graph Wn+1; (b) Line graph of the subdivision graph of the
wheel graph Wn+1.

These three partitions of the edge set correspond to their degree sum of neighbors of end vertices.

The number of edges in E33
(

H
)

are 4n, in E3n
(

HG
)

there are n, and in Enn
(

H
)

there are
n2 − n

2
. Now,

using Equations (1)–(7), we have:

M1(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]
,

M1(H) = ∑
r1r2∈E33(H)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E3n(H)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈Enn(H)

[
ξ(r1) + ξ(r2)

]

= 6|E33(H)|+ (3 + n)|E3n(H)|+ 2n|Enn(H)|

= 6(4n) + (3 + n)(n) + 2n
(n2 − n

2
)
= n3 + 27n,

M2(G) = ∑
r1r2∈E(G)

[
ξ(r1)× ξ(r2)

]
,

M2(H) = ∑
r1r2∈E33(H)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E3n(H)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈Enn(H)

[
ξ(r1)× ξ(r2)

]

= 9|E33(H)|+ 3n|E3n(H)|+ n2|Enn(H)|

= 9(4n) + 3n(n) + n2(n2 − n
2

)
=

n4 − n3 + 6n2 + 72n
2

,

HM(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]2,

HM(H) = ∑
r1r2∈E33(H)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E3n(H)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈Enn(H)

[
ξ(r1) + ξ(r2)

]2

= 9|E33(H)|+ (3 + n)2|E3n(H)|+ 4n2|Enn(H)|

= 9(4n) + n(3 + n)2 + 4n2
(n2 − n

2

)
= 2n4 − n3 + 6n2 + 45n,

PM1(G) = ∏
r1r2∈E(G)

[ξ(r1) + ξ(r2)],

PM1(H) = ∏
r1r2∈E33(H)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E3n(H)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈Enn(H)

[
ξ(r1) + ξ(r2)

]

= 6|E33(H)| × (3 + n)|E3n(H)| × 2n|E3(H)|

= 64n × (3 + n)n × (2n)
(

n2−n
2

)
,
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PM2(G) = ∏
r1r2∈E(G)

[ξ(r1)× ξ(r2)],

PM2(H) = ∏
r1r2∈E33(H)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E3n(H)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈Enn(H)

[
ξ(r1)× ξ(r2)

]

= 9|E33(H)| × (3n)|E3n(H)| × (n2)|Enn(H)|

= 94n × (3n)n × nn2−n,

M1(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)+ξ(r2)],

M1(H, x) = ∑
r1r2∈E1(H)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E3n(H)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈Enn(H)

x[ξ(r1)+ξ(r2)]

= ∑
r1r2∈E1(H)

x6 + ∑
r1r2∈E2(H)

x3+n + ∑
r1r2∈E3(H)

x2n

= |E33(H)|x6 + |E3n(H)|x3+n + |Enn(H)|x2n

= 4nx4 + nx3+n +
(n2 − n

2

)
x2n,

M2(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)×ξ(r2)],

M2(H, x) = ∑
r1r2∈E1(H)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E3n(H)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈Enn(H)

x[ξ(r1)×ξ(r2)]

= ∑
r1r2∈E1(H)

x9 + ∑
r1r2∈E2(H)

x3n + ∑
r1r2∈E3(H)

xn2

= |E33(H)|x9 + |E3n(H)|x3n ++|Enn(H)|xn2

= 4nx9 + nx3n +
(n2 − n

2

)
xn2

.

Theorem 3. Let Pn be the line graph of the ladder graph Ln of order n. Then,

M1(Pn) = 154n− 76,

M2(Pn) = 81n− 132,

HM(Pn) = 324n− 524,

PM1(Pn) = 46 × 54 × 6(9n−20),

PM2(Pn) = 46 × 64 × 9(9n−20),

M1(Pn, x) = 6x4 + 4x5 + (9n− 20)x6,

M2(Pn, x) = 6x4 + 4x6 + (9n− 20)x9.

Proof. The subdivision diagram of the stepping stool chart Ln and the comparing line chart Pn appear
in Figure 3a,b, respectively. The quantity of vertices in the line chart Pn are 6n − 4, among which 8
vertices are of degree 2 and the rest of the 6n − 12 vertices are of degree 3. It is simple to process
that the aggregate number of edges in the line chart Pn is 9n − 10. To demonstrate the above
proclamation, the edge set E(Pn) isolates into three edge parcels in light of the degrees of end vertices:
E22
(

Pn
)
=
{

r1r2 ∈ E
(

Pn
)
| ξ(r1) = 2, ξ(r2) = 2

}
,

E23
(

Pn
)
=
{

r1r2 ∈ E
(

Pn
)
| ξ(r1) = 2, ξ(r2) = 3

}
,

E33
(

Pn
)
=
{

r1r2 ∈ E
(

Pn
)
| ξ(r1) = 3, ξ(r2) = 3

}
.
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Figure 3. (a) Subdivision graph of the ladder graph Ln; (b) Line graph of the subdivision graph of the
ladder graph Ln.

These three partitions of the edge set correspond to their degree sum of neighbors of end vertices.
The number of edges in E22

(
Pn
)

are 6, in E23
(

Pn
)

there are 4, and in E33
(

Pn
)

there are 9n− 20. Now,
using Equations (1)–(7), we have:

M1(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]
,

M1(Pn) = ∑
r1r2∈E22(Pn)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E23(Pn)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E33(Pn)

[
ξ(r1) + ξ(r2)

]

= 4|E22(Pn)|+ 5|E23(Pn)|+ 6|E33(Pn)|
= 4(6) + 5(4) + 6(9n− 20) = 154n− 76,

M2(G) = ∑
r1r2∈E(G)

[
ξ(r1)× ξ(r2)

]
,

M2(Pn) = ∑
r1r2∈E22(Pn)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E23(Pn)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E33(Pn)

[
ξ(r1)× ξ(r2)

]

= 4|E22(Pn)|+ 6|E23(Pn)|+ 9|E33(Pn)|
= 4(6) + 6(4) + 9(9n− 20) = 81n− 132,

HM(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]2,

HM(Pn) = ∑
r1r2∈E22(Pn)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E23(Pn)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E33(Pn)

[
ξ(r1) + ξ(r2)

]2

= 16|E22(Pn)|+ 25|E23(Pn)|+ 36|E33(Pn)|
= 16(6) + 25(4) + 36(9n− 20) = 324n− 524,

PM1(G) = ∏
r1r2∈E(G)

[ξ(r1) + ξ(r2)],

PM1(Pn) = ∏
r1r2∈E22(Pn)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E23(Pn)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E33(Pn)

[
ξ(r1) + ξ(r2)

]

= 4|E22(Pn)| × 5|E23(Pn)| × 6|E33(Pn)| = 46 × 54 × 6(9n−20),

PM2(G) = ∏
r1r2∈E(G)

[ξ(r1)× ξ(r2)],

PM2(Pn) = ∏
r1r2∈E22(Pn)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E23(Pn)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E33(Pn)

[
ξ(r1)× ξ(r2)

]

= 4|E22(Pn)| × 6|E23(Pn)| × 9|E33(Pn)| = 46 × 64 × 9(9n−20),
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M1(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)+ξ(r2)],

M1(Pn, x) = ∑
r1r2∈E1(Pn)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E2(Pn)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E3(Pn)

x[ξ(r1)+ξ(r2)]

= ∑
r1r2∈E1(Pn)

x4 + ∑
r1r2∈E2(Pn)

x5 + ∑
r1r2∈E3(Pn)

x6

= |E22(Pn)|x4 + |E23(Pn)|x5 ++|E33(Pn)|x6 = 6x4 + 4x5 + (9n− 20)x6,

M2(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)×ξ(r2)],

M2(Pn, x) = ∑
r1r2∈E1(Pn)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E2(Pn)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E3(Pn)

x[ξ(r1)×ξ(r2)]

= ∑
r1r2∈E1(Pn)

x4 + ∑
r1r2∈E2(Pn)

x6 + ∑
r1r2∈E3(Pn)

x9

= |E22(Pn)|x4 + |E23(Pn)|x6 ++|E33(Pn)|x9 = 6x4 + 4x6 + (9n− 20)x9.

4. Conclusions

In this paper we determined first and second Zagreb record, Hyper Zagreb index, first numerous
Zagreb index, second different Zagreb index, and Zagreb polynomials of the line chart of tadpole and
haggle diagrams by utilizing the idea of subdivision.

In the past couple of decades, investigations of the topological indices in view of end-vertex
degrees of edges have seen a significant increase. The issue of determining the estimations of some
outstanding degree-based topological indices is completely addressed for the line diagram of the
subdivision graphs. This provides a path forward in this field of research. Also, in future we are
intrigued to register these records for the line diagrams of some outstanding graphs.
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Abstract: Graph theory has much great advances in the field of mathematical chemistry.
Chemical graph theory has become very popular among researchers because of its wide applications
in mathematical chemistry. The molecular topological descriptors are the numerical invariants of a
molecular graph and are very useful for predicting their bioactivity. A great variety of such indices
are studied and used in theoretical chemistry, pharmaceutical researchers, in drugs and in different
other fields. In this article, we study the chemical graph of an oxide network and compute the total
eccentricity, average eccentricity, eccentricity based Zagreb indices, atom-bond connectivity (ABC)
index and geometric arithmetic index of an oxide network. Furthermore, we give analytically closed
formulas of these indices which are helpful in studying the underlying topologies.
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MSC: 05C12, 05C90

1. Introduction

Graph theory is a branch of mathematics that has a lot of applications in computer science,
electrical systems (network), interconnected systems (network), biological networks, and in chemistry.
Chemical graph theory is the rapidly developing zone among chemists and mathematicians. Chemical
graph theory helps us to predict the certain physico-chemical properties of chemical compounds by
just considering their pictorial representations [1,2].

Cheminformatics is a comparatively new subject, which is a combination of chemistry,
mathematics and information science. There is a considerable usage of graph theory in theoretical and
computational chemistry. Chemical graph theory is the topology branch of mathematical chemistry
which implements graph theory to mathematically model chemical occurrences. There has been a
lot of research in this area in the last few decades. A few references are given that demonstrate the
significance of graph theory in Mathematical Chemistry [3,4].

Let G = (V, E) be a graph, where V is a non-empty set of vertices and E is a set of edges. Chemical
graph theory applies graph theory to the mathematical modeling of molecular phenomena, which is
helpful for the study of molecular structures. The manipulation and examination of chemical structural
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information is made conceivable by using molecular descriptors. A great variety of topological indices
are studied and used in theoretical chemistry by pharmaceutical researchers. In chemical graph theory,
there are many topological indices for a connected graph, which are helpful in the study of chemical
molecules. This theory has had a great effect in the development of chemical science.

If p, q ∈ V(G), then the distance d(p, q) between p and q is defined as the length of any shortest
path in G connecting p and q. Eccentricity is the distance of vertex u from the farthest vertex in G.
In mathematical form,

ε(u) = max{d(u, v)|∀ u ∈ V(G)}. (1)

The total eccentricity index is introduced by Farooq et al. [5], which is defined as,

ζ(G) = ∑
v∈V(G)

ε(v). (2)

where ε(v) represents eccentricity of vertex v.
The average eccentricity avec(G) of a graph G is the mean value of eccentricities of all vertices of

a graph, that is,

avec(G) =
1
n ∑

v∈V(G)

ε(v). (3)

The average eccentricity and standard deviation for all Sierpiński graphs Sn
p is established by [6].

The extremal properties of the average eccentricity, conjectures and Auto graphicx, about the average
eccentricity are obtained by [7]. The bounds on the mean eccentricity of a graph, and also the change
in mean eccentricity when a graph is replaced by a subgraph, is established by [8]. For trees with fixed
diameter, fixed matching number and fixed number of pendent vertices, the lower and upper bounds
of average eccentricity are found by [9].

The “eccentricity based geometric-arithmetic (GA)” index of a graph G is defined as [10],

GA4(G) = ∑
uvεE(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

. (4)

Further results regarding the average eccentricity index and eccentricity-based geometric-arithmetic
index can be found in [11]. A new version of the ABC index is introduced by Farahani [12] which is
defined as,

ABC5(G) = ∑
uv∈E(G)

√
ε(v) + ε(u)− 2

ε(v) · ε(u) . (5)

Imran et al. computed the eccentricity based ABC index and eccentricity based geometric-arithmetic
index for copper oxide in [13]. Gao et al. calculated the result about the eccentric ABC index of linear
polycene parallelogram benzenoid in [14].

In 2010, D. Vukičević et al. and in 2012, Ghorbani et al. proposed some new modified versions of
Zagreb indices of a molecular graph G [15,16]. The first Zagreb eccentricity index is defined as:

M∗1(G) = ∑
uv∈E(G)

[ε(u) + ε(v)]. (6)

The second Zagreb eccentricity index is defined as:

M∗∗1 (G) = ∑
v∈V(G)

[ε(v)]2. (7)
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The third Zagreb eccentricity index is defined as:

M∗2(G) = ∑
uv∈E(G)

ε(u)ε(v). (8)

So, in this article, we extend the study of chemical graph theory to compute the total eccentricity,
average eccentricity, eccentricity-based Zagreb indices, ABC index and geometric arithmetic index of
oxide network. Furthermore, we give the exact result of these indices which are helpful in studying
the underlying topological properties of oxide networks.

2. Applications of Topological Indices and Motivation

The ABC index provides a very good correlation for the stability of linear alkanes as well as the
branched alkanes and for computing the strain energy of cyclo alkanes [17–20]. To correlate with
certain physico-chemical properties, the GA index has much better predictive power than the predictive
power of the Randic connectivity index [21–23]. The first and second Zagreb index were found to
occur for computation of the total π-electron energy of the molecules within specific approximate
expressions [24].

Since degree based topological indices are useful to analyzed the chemical properties of
different molecular structures. So motivated by this idea, we focus on eccentricity based topological
indices. As eccentricity based topological indices are used as an important tool to the prediction
of physico-chemical, pharmacological and toxicological properties of a compound directly from
its molecular structure. This analysis is known as the study of the quantitative structure–activity
relationship (QSAR) [25].

3. Methods

To compute our results, we use the method of combinatorial computing, vertex partition method,
edge partition method, graph theoretical tools, analytic techniques, degree counting method and sum
of degrees of neighbours method [26,27]. Moreover, we use Matlab (MathWorks, Natick, MA, USA)
for mathematical calculations and verifications (see https://en.wikipedia.org/wiki/MATLAB). We
also use the maple software (Maplesoft, McKinney, TX, USA) for plotting these mathematical results
(see https://en.wikipedia.org/wiki/Maple_(software)).

4. Oxide Network

Oxide networks play a vital role in the study of silicate networks. If we delete silicon vertices
from a silicate network, we get an oxide network OXn (see Figure 1). An n-dimensional oxide network
is denoted as OXn. The number of vertices in Oxide network are 9n2 + 3n and number of edges are
18n2. An Oxide network OXn with n = 5 is depicted in Figure 1.

4.1. Construction of Oxide Network OXn Formulas

• To prove our main results, we make a partition of vertices of the oxide network OXn for (n-levels)
based on eccentricity of each vertex in two sets. The set V1 contains those vertices which have the
eccentricity ε(u) = 2k + 1, and the number of vertices in set V1 are 6(2m− 1), 1 ≤ m ≤ n. The set
V2 contain those vertices which have the eccentricity ε(u) = 2k + 2, and the number of vertices
in set V2 are 6m, 1 ≤ m ≤ n. Also, the variable k represents the distance between two vertices,
which helps us to make this vertex partition. Also, k represents the range of the total number of
vertices with that eccentricity. More preciously, Table 1 represents the vertex partition of Oxide
network for (n-levels) based on eccentricity of each vertex.
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• Now we make a partition of edges of an oxide network for (n-levels) based on eccentricity
of end vertices in three sets. The set E1 contain those edges which have the eccentricities
(ε(u), ε(v)) = (2k + 1, 2k + 1), n ≤ k ≤ 2n − 1 and the number of edges in set E1 are
6(2m− 1), 1 ≤ m ≤ n. The set E2 contain those edges which have the eccentricities (ε(u), ε(v)) =
(2k + 1, 2k + 2), n ≤ k ≤ 2n− 1, and the number of edges in set E2 are 12m, 1 ≤ m ≤ n. The set E3

contain those edges which have the eccentricities (ε(u), ε(v)) = (2k + 2, 2k + 3), n ≤ k ≤ 2n− 1,
and the number of edges in set E3 are 12m, 1 ≤ m ≤ n. Also k represent the range of total number
of pairs with that eccentricity. More preciously Table 2 represents the edge partition of oxide
network for (n-levels) based on eccentricity of end vertices.

Figure 1. An oxide network OXn with n = 5.

Table 1. Vertex partition of oxide network for (n-levels) based on eccentricity of each vertex.

ε(u) Number of Vertices Range of k Range of m and n Sets

2k + 1 6(2m− 1) n ≤ k ≤ 2n− 1 1 ≤ m ≤ n, n ≥ 1 V1
2k + 2 6m n ≤ k ≤ 2n− 1 1 ≤ m ≤ n, n ≥ 1 V2

Table 2. Edge partition of oxide network for (n-levels) based on eccentricity of end vertices.

(ε(u), ε(v)) Number of Edges Range of k Range of m and n Sets

(2k + 1, 2k + 1) 6(2m− 1) n ≤ k ≤ 2n− 1 1 ≤ m ≤ n, n ≥ 1 E1
(2k + 1, 2k + 2) 12m n ≤ k ≤ 2n− 1 1 ≤ m ≤ n, n ≥ 1 E2
(2k + 2, 2k + 3) 12m n ≤ k ≤ 2n− 2 1 ≤ m ≤ n− 1, n > 1 E3

4.2. Main Results for Oxide Network

In this section, we computed the close formulae of certain topological indices for this network.
Here we find the analytically closed results of total eccentricity index, average eccentricity index,
eccentricity based Zagreb indices, eccentricity based geometric arithmetic and atom-bond connectivity
indices for oxide networks.
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Theorem 1. Let OXn, for all n ∈ N, be the oxide network, then the total eccentricity index ζ of OXn is

ζ(OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{6mk + 4m− 2k− 1}.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
Using the vertex partitioned from Table 1 and Equation (2), we have computed the total eccentricity

index as:

ζ(G) = ∑
v∈V(G)

ε(v)

ζ(OXn) = ∑
v∈V1(G)

ε(v) + ∑
v∈V2(G)

ε(v)

=
n

∑
m=1

2n−1

∑
k=n

6(2m− 1) · (2k + 1) +
n

∑
m=1

2n−1

∑
k=n

6m · (2k + 2)

= 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1) · (2k + 1) + m · (2k + 2)}

After an easy simplification, we get

ζ(OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{6mk + 4m− 2k− 1}.

Theorem 2. Let OXn, for all n ∈ N, be the oxide network, then the average eccentricity index avec of OXn is

avec(OXn) =
2

3n2 + n

n

∑
m=1

2n−1

∑
k=n
{6mk + 4m− 2k− 1}.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
Using the vertex partitioned from Table 1 and Equation (3), we have computed the average

eccentricity index of oxide network avec(OXn) as:

avec(G) =
1
n ∑

v∈V(G)

ε(v)

avec(OXn) =
1
n ∑

v∈V1(G)

ε(v) +
1
n ∑

v∈V2(G)

ε(v)

avec(OXn) =
1

9n2 + 3n
{

n

∑
m=1

2n−1

∑
k=n

6(2m− 1) · (2k + 1) +
n

∑
m=1

2n−1

∑
k=n

6m · (2k + 2)}

After an easy simplification, we get

avec(OXn) =
2

3n2 + n

n

∑
m=1

2n−1

∑
k=n
{6mk + 4m− 2k− 1}.
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Theorem 3. Let OXn for all n ∈ N, be the oxide network, then the first Zagreb eccentricity index M∗1(OXn) is

M∗1(OXn) = 12
n

∑
m=1

2n−1

∑
k=n
{8mk + 5m− 2k− 1}+ 12

n−1

∑
m=1

2n−2

∑
k=n

m(4k + 5).

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
Using the vertex partitioned from Table 2 and Equation (6), we have computed first Zagreb

eccentricity index M∗1(OXn) as:

M∗1(G) = ∑
uv∈E(G)

[ε(u) + ε(v)]

M∗1(OXn) = ∑
uv∈E1(G)

[ε(u) + ε(v)] + ∑
uv∈E2(G)

[ε(u) + ε(v)] + ∑
uv∈E3(G)

[ε(u) + ε(v)]

=
n

∑
m=1

2n−1

∑
k=n

6(2m− 1)(2k + 1 + 2k + 1) +
n

∑
m=1

2n−2

∑
k=n

12m(2k + 1 + 2k + 2)

+
n−1

∑
m=1

2n−2

∑
k=n

12m(2k + 2 + 2k + 3)

= 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1)(4k + 2) + 2m(4k + 3)}+ 12

n−1

∑
m=1

2n−2

∑
k=n

m(4k + 5).

After some simplification, we obtain

M∗1(OXn) = 12
n

∑
m=1

2n−1

∑
k=n
{8mk + 5m− 2k− 1}+ 12

n−1

∑
m=1

2n−2

∑
k=n

m(4k + 5).

Theorem 4. Let OXn for all n ∈ N, be the oxide network, then the second Zagreb eccentricity index
M∗∗1 (OXn) is

M∗∗1 (OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{2m(6k2 + 8k + 3)− (2k + 1)2}.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
The general formula of second Zagreb eccentricity index is

M∗∗1 (G) = ∑
v∈V(G)

[ε(v)]2.

M∗∗1 (G) = ∑
v∈V1(G)

[ε(v)]2 + ∑
v∈V2(G)

[ε(v)]2.

By using the values from Table 1 , we have

M∗∗1 (OXn) =
n

∑
m=1

2n−1

∑
k=n

6(2m− 1) · (2k + 1)2 +
n

∑
m=1

2n−1

∑
k=n

6m · (2k + 2)2.

M∗∗1 (OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1) · (2k + 1)2 + 4m · (k + 1)2}.
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After some simplification, we obtain

M∗∗1 (OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{2m(6k2 + 8k + 3)− (2k + 1)2}.

Theorem 5. Let OXn for all n ∈ N, be the oxide network, then the third Zagreb eccentricity index M∗2(OXn) is

M∗2(OXn) = 12
n

∑
m=1

2n−1

∑
k=n
{2m(8k2 + 8k + 3)− (4k2 + 2k + 1)}+ 24

n−1

∑
m=1

2n−2

∑
k=n

m(2k + 3)(k + 1).

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
The general formula of third Zagreb eccentricity index is

M∗2(G) = ∑
uv∈E(G)

[ε(u) · ε(v)].

M∗2(G) = ∑
uv∈E1(G)

[ε(u) · ε(v)] + ∑
uv∈E2(G)

[ε(u) · ε(v)] + ∑
uv∈E3(G)

[ε(u) · ε(v)]

By using the values from Table 2, we have

M∗2(OXn) =
n

∑
m=1

2n−1

∑
k=n

6(2m− 1)(2k + 1) · (2k + 1) +
n

∑
m=1

2n−1

∑
k=n

12m(2k + 1) · (2k + 2)

+
n−1

∑
m=1

2n−2

∑
k=n

12m(2k + 2) · (2k + 3).

M∗2(OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1)(2k + 1)2 + 2m(4k2 + 4k + 2k + 2)}+ 24

n−1

∑
m=1

2n−2

∑
k=n

m(k + 1)(2k + 3).

After some simplification, we obtain

M∗2(OXn) = 12
n

∑
m=1

2n−1

∑
k=n
{2m(8k2 + 8k + 3)− (4k2 + 2k + 1)}+ 24

n−1

∑
m=1

2n−2

∑
k=n

m(2k + 3)(k + 1).

Theorem 6. Let OXn for all n ∈ N, be the oxide network, then the geometric-arithmetic index GA4(OXn) is

GA4(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{2m− 1
2

+ 2m
√
(2k + 1)(2k + 2)

(4k + 3)

}

+ 24
n−1

∑
m=1

2n−2

∑
k=n

m

√
(2k + 2)(2k + 3)

4k + 5
.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
The general formula of eccentricity based geometric arithmetic index is

GA4(G) = ∑
uvεE(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

.
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GA4(G) = ∑
uvεE1(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

+ ∑
uvεE2(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

+ ∑
uvεE3(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

Using the edge partitioned from Table 2, we have the following computations

GA4(OXn) =
n

∑
m=1

2n−1

∑
k=n

6(2m− 1) · 2
√
(2k + 1) · (2k + 1)
2k + 1 + 2k + 1

+
n

∑
m=1

2n−1

∑
k=n

12m · 2
√
(2k + 1) · (2k + 2)
2k + 1 + 2k + 2

+
n−1

∑
m=1

2n−2

∑
k=n

12m · 2
√
(2k + 2) · (2k + 3)
2k + 2 + 2k + 3

.

GA4(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{
(2m− 1)

√
(2k + 1)2

4k + 2
+ 2

√
(2k + 1) · (2k + 2)

4k + 3

}

+ 24
n−1

∑
m=1

2n−2

∑
k=n

m
√
(2k + 2) · (2k + 3)

4k + 5
.

After some simplification, we obtain

GA4(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{2m− 1
2

+ 2m
√
(2k + 1)(2k + 2)

(4k + 3)

}

+ 24
n−1

∑
m=1

2n−2

∑
k=n

m

√
(2k + 2)(2k + 3)

4k + 5
.

Theorem 7. Let OXn for all n ∈ N, be the oxide network, then the atom-bond connectivity index
ABC5(OXn) is

ABC5(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{ (2m− 1)
√

k
2k + 1

+ m

√
4k + 1

(2k + 1)(2k + 2)

}

+ 12
n−1

∑
m=1

2n−2

∑
k=n

m

√
4k + 3

(2k + 2)(2k + 3)
.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
The general formula of eccentricity based atom-bond connectivity index is

ABC5(G) = ∑
uvεE(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) .

ABC5(G) = ∑
uvεE1(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) + ∑
uvεE2(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) + ∑
uvεE3(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) .
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Using the edge partitioned from Table 2, we have the following computations

ABC5(OXn) =
n

∑
m=1

2n−1

∑
k=n

6(2m− 1)

√
2k + 1 + 2k + 1− 2
(2k + 1) · (2k + 1)

+
n

∑
m=1

2n−1

∑
k=n

12m

√
2k + 1 + 2k + 2− 2
(2k + 1) · (2k + 2)

+
n−1

∑
m=1

2n−2

∑
k=n

12m

√
2k + 2 + 2k + 3− 2
(2k + 2) · (2k + 3)

.

ABC5(OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1)

√
4k

(2k + 1)2 + 2m

√
4k + 1

(2k + 1) · (2k + 2)
}

+ 12
n−1

∑
m=1

2n−2

∑
k=n

m

√
4k + 3

(2k + 2) · (2k + 3)
.

After some simplification, we obtain

ABC5(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{ (2m− 1)
√

k
2k + 1

+ m

√
4k + 1

(2k + 1)(2k + 2)

}

+ 12
n−1

∑
m=1

2n−2

∑
k=n

m

√
4k + 3

(2k + 2)(2k + 3)
.

5. Comparisons and Discussion

For the comparison of these indices numerically for OXn, we computed all indices for different
values of m, k. Now, from Table 3, we can easily see that all indices are in increasing order as the
values of m, k are increasing. The graphical representations of the all indices for OXn are depicted in
Figures 2–8 for certain values of m, k.

Figure 2. The graphically representation of total eccentricity index ζ of OXn.
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Table 3. Numerical computation of all indices for OXn.

[m, k] ζ(G) avec(G) M∗
1 (G) M∗∗

1 (G) M∗
2 (G) GA4(G) ABC5(G)

[1, 1] 42 1.9 1416 2568 2014 112.5 315.4
[2, 2] 162 3.5 4188 5478 4352 279.9 645.3
[3, 3] 354 5.6 8304 10,523 9300 446.7 987.4
[4, 4] 618 8.4 13,764 14,587 11,248 613.6 1125.6
[5, 5] 956 10.5 16,898 16,325 13,654 842.3 1356.4
[6, 6] 1242 14.5 19,652 19,876 16,324 1023.3 1586.7

Figure 3. The graphically representation of the average eccentricity index avec of OXn.

Figure 4. The graphically representation of the first Zagreb eccentricity index M∗1 (OXn).
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Figure 5. The graphically representation of the second Zagreb eccentricity index M∗∗1 (OXn).

Figure 6. The graphically representation of the third Zagreb eccentricity index M∗∗1 (OXn).

Figure 7. The graphically representation of the geometric-arithmetic index GA4(OXn).
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Figure 8. The graphically representation of the atom-bond connectivity index ABC5(OXn).

6. Conclusions

In this paper, we computed the total eccentricity index ζ(OXn), average eccentricity index
avec(OXn), eccentricity-based Zagreb indices M∗1(OXn), M∗∗1 (OXn) and M∗2(OXn), atom-bond
connectivity index ABC5(OXn) and geometric arithmetic index GA4(OXn) of the oxide network
OXn. So these indices are useful to analyzed the physico-chemical, pharmacological and toxicological
properties of the oxide network OXn.
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