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Preface

Ensuring food security and satisfying the nutritional needs of a constantly expanding global

population is at the core of modern crop science. Traditional breeding methods have significantly

contributed to agricultural productivity; nevertheless, climate change, evolving pests and diseases,

and sustainable practices require novel approaches to be leveraged. Throughout this reprint,

readers will grip the realm of ’omics’, a repertoire of revolutionizing techniques transforming our

understanding of plant biology and providing unprecedented potential for crop enhancement.

Omics technologies encompass genomics, transcriptomics, proteomics, metabolomics, and

phenomics. Each field provides a unique lens through which the intricate biological processes

underlying plant growth, development, and stress responses can be understood. By integrating data

from these diverse sources, researchers can achieve a holistic view of the molecular networks and

trade-offs underlying crop traits and pave the way for more precise and efficient breeding strategies.

The potential for revolutionizing varietal development through the integration of omics

technology lies in its capacity to provide a comprehensive and dynamic understanding of the very

same foundations of plant biology. It now becomes possible to customize crops for high yields

resilient to environmental challenges and rich in critical nutrients by breaking down trade-offs and

manipulating complex traits at the omics level. Moreover, the application of omics approaches

supports sustainable agricultural practices by enabling the development of crops that require fewer

inputs, such as water, fertilizers, and pesticides.

This reprint offers an exquisite overview of various omics technologies and their applications

in crop improvement. It brings together contributions from leading experts in the field, offering

insights into the latest advancements, methodologies, and case studies. By bridging the gap between

fundamental research and practical applications, this fascinating compilation is a valuable resource

for researchers, breeders, and students.

In the chapters that follow, readers will embark on a fascinating venture towards advances

in plant omics, unveiling the transgressive potential these technologies hold for the future of crop

improvement. As we embrace the era of precision agriculture, integrating omics approaches will

undoubtedly play a pivotal role in meeting the global challenges of food security and sustainability.

Roxana Yockteng, Andrés J. Cortés, and Marı́a Ángeles Castillejo

Editors
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1. Introduction

The growing human population and climate change are imposing unprecedented
challenges on the global food supply [1]. To cope with these pressures, crop improvement
demands enhancing important agronomical traits beyond yield, such as adaptation, re-
sistance, and nutritional value, by pivoting direct and indirect selection approaches [2].
The development of next-generation high-throughput screening technologies, referred
to as ‘omics’, promises to speed up plant trait improvement [3] while producing more
sustainable crops.

Large-scale techniques, such as genomics, transcriptomics, proteomics, metabolomics,
and phenomics, have already provided large datasets for that purpose. Meanwhile, modern
bioinformatic and machine-learning approaches are helping us to process this heteroge-
neous hyper-dimensional data [4] while ultimately understanding the mechanisms behind
agronomic features within the contemporary plant breeding triangle (i.e., genomics vs. phe-
nomics vs. enviromics) [5]. ‘Omics’ datasets are also being generated to study macro-scale
interactions and deepen our knowledge of crop behavior across the microbial [6] and envi-
ronmental [7,8] continua. However, despite these massive technological and computational
developments [4], systemic efforts to integrate ‘omics’ studies to understand biochemical
pathways and cellular networks of crop systems are in their infancy [9], especially in
orphan species [10].

Therefore, this Special Issue envisions offering updated emergent views on large-scale
‘omics’-based approaches. Specifically, the compilation explores the conceptual framework
of the ‘omics’ paradigm [11], the practical uses of multiple ‘omics’ technologies, and their
integration through trans-disciplinary bioinformatics as tools to improve qualitative and
quantitative traits in a diverse panel of crop species.

2. Genomic-Enabled Crop Traceability and Improvement

Genomics is speeding up multiple steps in the breeding scheme (Table 1). For instance,
in the downstream extreme of the breeding pipeline, Campuzano-Duque et al. [12] demon-
strated the utility of high-throughput single nucleotide polymorphism (SNP) genotyping
using SNP arrays to trace varietal purity of single plant selections (SPS). The authors suc-
cessfully assessed the relationships and ancestry of plant selections from three inbreed
origins (one original variety and two additional multi-lines) of forage oat (Avena sativa), and
prioritized SNP candidates to ensure the genetic purity of these varieties. Meanwhile, in a

Agronomy 2023, 13, 1401. https://doi.org/10.3390/agronomy13051401 https://www.mdpi.com/journal/agronomy1
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more upstream introgression-breeding step, Pandit et al. [13] exemplified genomic-assisted
selection within backcrossing schemes. The team pyramided three quantitative trait loci
(QTLs) for submergence tolerance and grain yield in the rice (Oryza sativa) ‘Maudamani’ va-
riety background, sourcing pyramided lines as novel cultivars or potential ‘bridge’ donors
for further backcrossed generations.

Table 1. Collection of 10 studies in the Special Issue ‘Omics Approaches for Crop Improvement’.

Plant Species ‘Omics’ Research Goal Sampling Key Finding Reference

Review

Papaya
(Carica papaya)

Transversal to
‘omics’ and

systems biology

Review omics and
bioinformatics

advances
for Papaya

Diverse cultivars
and germplasm

‘Omics’ improved
ripening, tolerance,

and fruit quality

Zainal-Abidin
et al. [11]

Genomics

Forage Oat
(Avena sativa)

iSelect 6K
Bead-Chip

Evaluate the purity
and relationships

of SPS

AV-25 original, and
AV25-T and

AV25-S multi-lines

SNPs are a suitable
tool to ensure
genetic purity

of oats

Campuzano-Duq
ue et al. [12]

Rice
(Oryza sativa)

Sub1, OsSPL14,
and GW5 QTLs for
tolerance and yield

Pyramid QTLs for
submergence

tolerance and yield

‘Maudamani’
variety

background

Pyramided lines
are useful as
cultivars and

as donors

Pandit et al. [13]

Transcriptomics

Cacao
(Theobroma cacao)

Phylogenetic, gene
structure, and in
silico expression

Report and
characterize

tcGASA genes in
cacao

Cacao reference
genome

tcGASA genes are
target for resistant

cacao varieties
Abdullah et al. [14]

Malvaceae family:
Cacao, cotton, and

jute fiber

Phylogenetic,
synteny, and in

silico expression

Characterize MGT
genes in the

Malvaceae family

T. cacao, Gossypium
hirsutum, and

Corchorus capsularis

MGTs interact with
lipid/cell wall and
photo-protection

Heidari et al. [15]

Rice
(Oryza sativa)

In-house
micro-array and

mGCN

Unveil the
mechanism of

drought tolerance
in ABP57

Drought-tolerant
transgenic

Abp57-OE line

MAPK, IAA and
SA co-determine

tolerance response
Abdullah-Zawa wi

et al. [16]

Proteomics

Faba bean
(Vicia faba)

2DE, MAL-DI-
TOF/TOF, and
zymography

Test leaf proteome
effects to Botrytis

fabae fungus

‘Baraca’
susceptible

genotype, and
resistant BPL710

Chloroplast PSII
protein repair cycle
linked to resistance

Castillejo et al. [17]

Tomato (Solanum
lycopersicum) TMT, HPLC, MS

Identify the effects
of EFI vs. TSI on

roots’ protein level

Seedlings from the
pure tomato

cultivar
‘Ouxiu-201’

EFI induces 513
DAPs adapted

responses in roots
Wang et al. [18]

Phenomics

Bean (Phaseolus
vulgaris) × Tepary

(P. acutifolius)
Multi-locality trials

Assess abiotic
tolerance in inter-
specific crosses

Interspecific
backcross (86)
between beans

and Tepary

Interspecific
backcrosses

pyramid polygenic
tolerance

Burbano-Erazo
et al. [19]

Peanut
(Arachis hypogaea) HTP

Assess
morphological

variation in a CSSL

A total of 26 lines
from a CSSL
population

Chromosome
segment from
CWR sources

variation
Gimode et al. [20]

Table is sorted bottom-up by ‘omics’ and species. ABP: auxin-binding protein, CSSL: chromosome segment
substitution line, CWR: crop wild relatives, DAPs: differentially accumulated proteins, 2DE: two-dimensional gel
electrophoresis, EFI: Ebb-and-flow sub-irrigation, GASA: gibberellic acid-stimulated Arabidopsis, HPLC: high-
performance liquid chromatography, HTTP: high-throughput phenotyping, IAA: indole-3-acetic acid, MALDI-
TOF/TOF: matrix-assisted laser desorption/ionization-time of flight, MAPK: mitogen-activated protein kinase,
mGCN: modular gene co-expression network, MGT: magnesium (Mg) transporter, MS: mass-spectrometry, OE:
overexpressed, SA: salicylic acid, SPS: single plant selections, TMT: tandem mass tag, TSI: top sprinkle irrigation.
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3. Transcriptomic-Based Characterization and Validation

Studies at the genomic-transcriptomic interface prove insightful for gene-oriented
phylogenetics [21], structural mapping [22], and functional characterizations [23]. In this
regard, two studies from this Special Issue merged genome-based gene family screening
with in silico expression analyses. First, Abdullah et al. [14] characterized tcGASA paralo-
gous in cacao (Theobroma cacao) and identified targets to customize fungi-resistant varieties.
Similarly, Heidari et al. [15] described MGT (O-6-Methylguanine-DNA Methyltransferase)
genes also in cacao, and they expanded the search to orthologous in two other species of
the Malvaceae family with economic importance, cotton (Gossypium hirsutum), and jute
fiber (Corchorus capsularis). In silico expression analysis enabled the authors to pinpoint that
MGT targets the network as part of the lipid/cell wall metabolism and photoprotection
pathways. Both studies demonstrate how well consolidated genomic and transcriptomic
resources can be combined in silico to source ad hoc gene and allelic mining.

Transcriptomic screenings are equally informative of functional gene validation and
tissue/environment-conditioned expression profiling. For instance, in rice, Abdullah-
Zawawi et al. [16] used in-house microarray technology to determine the subjacent regula-
tory machinery of drought tolerance in an Abp57-overexpressing transgenic line. The team
recovered the MAPK, IAA, and SA pathways as co-determinants of the stress response.
This way, transcriptomic resources offer detailed mechanistic understating underlying
agronomical relevant phenotypes.

4. Proteomics Meets Orphan Species

Proteomics is a powerful tool that allows the identification of proteins that can be used
as markers in breeding programs. The development of new methodologies, and genomics
and transcriptomics databases has provided a rapid advance in plant proteomics in recent
decades, including orphan species. The gel-free based techniques (shotgun or LC-MSMS),
DDA (data dependent acquisition), and DIA (data-independent acquisition), and targeted
strategies are the most frequently chosen methods.

Identifying proteins and derived prototypic peptides throughout shotgun proteomics
has already lit up feasible paths to improve or select tolerant individuals to abiotic stresses,
such as drought [24] and heavy metal toxicity [25]. By using a DIA strategy, a panel of pep-
tides and proteins has been proposed as putative markers of resistance to Peyronellaea pinodes
in peas [26]. However, classical gel-based proteomics techniques, such as 2DE, remain
the method of choice in many experiments. Castillejo et al. [17] explored the proteomic
consequences of biotic stresses using 2DE-MALDI/TOF MSMS analysis combined with
protease activity assays. The authors evaluated leaf proteome responses to Botrytis fabae
necrotrophic fungus in susceptible and resistant Faba bean (Vicia faba) genotypes, finding
a predominant role in the chloroplast PSII protein repair cycle. More interestingly, these
studies reinforce that proteomics advancements are already permeating orphan species [10],
even in the forestry sector [3].

Meanwhile, in a slightly more studied crop system (Solanum lycopersicum), Wang
et al. [18] traced the effects of ebb-and-flow sub-irrigation (EFI) at roots’ protein level as
compared to top sprinkle irrigation (TSI). The team identified 513 differentially accumulated
proteins between treatments. Overall, these two studies are promising for un-leashing
plant improvements via proteomics. We are looking forward to similar developments in
proteomics and also in metabolomics on non-model crop species [27].

Meanwhile, a more challenging research gap remains open in the long term, regardless
the crop species. An unanswered question until now is how upstream genomic, tran-
scriptomic, proteomic, and metabolomic layers collide and jointly interact across climates
and through time to finally shape downstream multi-dimensional phenomic expression in
the field.

3
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5. Phenomics Leverage Crop Wild Gene pools

A long-standing research gap in phenomic screening is its factual implementation
in crop wild gene pools [28], which typically exhibit more environmentally dependent
trait segregation [29,30]. Fortunately, in this collection, two studies have harnessed crop-
wild diversity through phenomics. First, Gimode et al. [20] studied the morphological
consequences of a chromosome segment in peanuts (Arachis hypogaea) inherited from a
wild relative. The authors demonstrated that this chromosome segment sources valuable
trait variation from the exotic gene pool into the cultivated background. This work is also
outstanding because it sidesteps the main bottlenecks of interspecific crossing, which are
recurrent species incompatibility [31] and polygenic variation [32]. To do so, the study
relied on a panel of chromosome segment substitution lines (CSSL) that narrowed the
introgression to discrete chromosome segments, which are easier to be retained within
the recurrent parental species while conferring the desired phenotypic novelty (by defi-
nition, it would be highly desirable that the substituted chromosome segment matched a
single haplotype block with strong internal linkage disequilibrIum (LD) to avoid spurious
recombination events that may jeopardize its integrity and phenotypic determinism).

Another crop-wild innovation was the one by Burbano-Erazo et al. [19], who utilized
multi-locality phenomics trials to characterize heat and drought tolerance in 86 interspecific
backcross lines between the common bean (Phaseolus vulgaris) × the Tepary bean (P. acutifolius).
The team managed to unlock interspecific adaptive variation, despite the natural incompat-
ibility, throughout ‘bridge’ genotypes (those with comparatively lower incompatibility),
and eventually delivered candidate introgressed lines capable of pyramiding polygenic
abiotic tolerance. Other studies have also aimed to break interspecific barriers between
the two species [33], genomically characterize the hybridization, and re-discover naturally
occurring ecological adaptive variation for drought and heat stresses [34].

Overall, throughout this Special Issue, the works by Pandit et al. [13], Gimode et al. [20],
and Burbano-Erazo et al. [19], respectively illustrated in rice, peanuts, and beans, the feasibility
and power to update classical introgression breeding [35] with modern ‘omics’ approaches,
such as genomics and phenomics. This integration enables guiding more rapidly and with
better precision the pyramiding of exotic variation into elite commercial backgrounds. Alterna-
tives to utilize interspecific genomic variability include grafting [36]. This ancient horticultural
technique capable of physically merging two distinct species can be optimized for desirable
trait variation using genomics [37], transcriptomics [38,39], phenomics, epigenomics [40,41],
and beyond [42–44]. These promising examples amalgamate species diversity via introgres-
sion breeding and grafting, and update it to last-generation high-throughput standards.
They corroborate the utility of ‘omics’ technologies for crop improvement without denying
more classical, yet still very timing, schemes.

So far, the ultimate consequence of the bottom-up genomic, transcriptomic, proteomic,
and metabolomic continuum is the phenotype. However, additional phenotypic modula-
tion may be conferred by the emerging layers of the enviromics [7,8], epigenomics [45], and
soil metagenomics [6] fields, as we envision in the next section.

6. Perspectives

Despite the effort of this Special Issue in compiling a diverse array of ‘omics’ sub-
disciplines for crop improvement (Figure 1), high-throughput screening technologies have
also permeated other promising fields that do not necessarily exhibit prominence in the
present collection. For instance, as introduced in the previous section, scaling phenomics
across the environmental continuum gradient would offer a more accurate prediction
of the G × E interaction as part of the nascent enviromics framework [7,8], which ul-
timately merges [46] multi-environment phenomics screening [47] with genomic-based
prediction [5,48,49]. Similarly, embracing an epigenomic footprint profiling [45] could also
mechanistically disentangle a great proportion of crop phenotypic variance in reaction
norms and plasticity gradients [50] naturally seen across climates [51,52].
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ENVIROMICS

PHENOMICS
[19-20]

PROTEOMICS
[17-18]

GENOMICS
[12-13]

TRANSCRIPTOMICS
[14-16]

METABOLOMICS

ENVIROME

PHENOME

PROTEOME

GENOME

TRANSCRIPTOME

METABOLOME

Envirotype

Phenotype

Protein

Genotype (DNA)

RNA Expression

Metabolite

High-throughput Characterization Technique

Realized Set of 
Markers

Paradigm
Layer

Unitary Target 
Feature

Multi-‘Omics’ Data Integration [11] 
Merging Hyper-Dimensional Heterogeneous Layers via Systems Biology, Machine Leaning, etc.  

SYNTHESIZED ‘OMICS’ APPROACHES FOR CROP IMPROVEMENT  

Figure 1. Synthesized ‘Omics’ Approaches for Crop Improvement. References from this Special Issue
are indicated under Paradigm Layer within square brackets.
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At another level, soil metagenomics on ‘environmental’ DNA [6] is boosting the
retrieval of synergistic microorganisms for agriculture, given a growing sustainability
requirement [53]. Backward ‘omics’ tools are also improving our understanding of crops’
evolution [54,55] and their cultural heritage [56] by updating archeological records [57]
with genomics [58] and phylogenomics [59,60] into modern paleogenomics [61,62].

While heterogeneous ‘omics’ data piles up across sub-disciplines, effective trans-
disciplinary data merging and bioinformatics processing demands revolutionizing open-
source record access [63,64], novel statistical algorithms [65], and unprecedented com-
putational resources [66–68]. Speed breeding [69,70] through ‘omics’-enabled [48,49,71],
systems biology [9,72], and machine learning [4,73] predictions exemplify the promises
of fast-forward customized crop breeding [2,74] by bridging the curse of dimensionality
inherent from multi-‘omics’ data [10,75,76], while matching the modern seed delivery
requirements [77]. This trend of analytical innovation may proceed further into the inflec-
tion point of the artificial general intelligence (AGI) hypothesis [78], eventually enabling
human-unguided ‘omics’-based plant improvement at an unforeseen pace.
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Abstract: Papaya (Carica papaya) is an economically important fruit crop that is mostly planted in
tropical and subtropical regions. Major diseases of papaya, such as the papaya dieback disease
(PDD), papaya ringspot virus (PRSV) disease, and papaya sticky disease (PSD), have caused large
yield and economic losses in papaya-producing countries worldwide. Postharvest losses have
also contributed to the decline in papaya production. Hence, there is an urgent need to secure
the production of papaya for a growing world population. Integration of omics resources in crop
breeding is anticipated in order to facilitate better-designed crops in the breeding programme. In
papaya research, the application of omics and bioinformatics approaches are gradually increased
and are underway. Hence, this review focuses on addressing omics technologies and bioinformatics
that are used in papaya research. To date, four traits of the papaya have been studied using omics
and bioinformatics approaches, which include its ripening process, abiotic stress, disease resistance,
and fruit quality (i.e., sweetness, fruit shape, and fruit size). This review also highlights the potential
of genetics and genomics data, as well as the systems biology approach that can be applied in a
papaya-breeding programme in the near future.

Keywords: bioinformatics; comparative genomics; molecular markers; next-generation sequencing;
omics; papaya

1. Introduction

Papaya (Carica papaya) is one of the tropical fruits that is widely grown in tropical and
subtropical countries such as Australia, Brazil, Malaysia, Thailand, and South America. In
worldwide fruit production, the papaya is ranked in third place after mango and pineapple
fruit production [1]. The papaya has a high nutritional content and medicinal value, which
make it widely planted and globally popular. For instance, the fruit is rich in vitamin A,
vitamin C, folate, potassium, and niacin, and its leaves, stems, and roots are suitable for
alternative medicine [2].

Papaya has nine pairs of chromosomes and is a diploid. The papaya, which has a
genome size of 372 Mb, belongs to the Brassicales order and Caricaceae family. Among
the well-known papaya cultivars in Hawaii are Solo, Sunrise, SunUp, and Rainbow [3],
while Eksotika and Sekaki are well-known cultivars in Malaysia [3]. To date, six papaya
cultivars, namely Eksotika, Eksotika II, Sekaki, Three Pillars, Frangi, and Viorica have been
registered with the Department of Agriculture, Malaysia [4]. Correspondingly, Japan also
produces papaya cultivars, namely Ishigaki Sango and Ishigaki Wondrous [5]; in India, the
well-known papaya cultivars are Co1 and Co2 [3].

As a perennial herb, the breeding cycle of the papaya takes about seven to nine months
until a ripe fruit is produced. The breeding cycle of the papaya is divided into three stages
that are represented by seed germination, flowering, and fruit setting to fruit harvesting
(Figure 1) [6,7]. The papaya seed germinates within two to four weeks after sowing [8].
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Then, after being transplanted, its vegetative state starts to grow into single-stemmed trees,
each bearing a rosette of large, deeply lobed leaves at the apex about two to three months
after transplantation [6–8]. The papaya plant produces its flowers at the age of three to
six months, and produces ripe fruits at seven to nine months [6,7].

Figure 1. The breeding cycle of papaya. DAG denotes day after germination.

Papaya is cultivated in fertile and well-drained soils with a pH of 5.5 to 6.5 [8,9].
Nutrients for the papaya are essential in order to increase the productivity and quality of
papaya production. Nitrogen (N) and phosphorus (P) are essential nutrients during the
early growth of the papaya in order to ensure an optimum growth of foliage, trunks, and
roots, as well as induce higher productivity [10]. Potassium (K) is needed at the papaya
fruiting stage because it is essential for improving the fruit quality (i.e., sweetness and
pulp thickness) [11,12]. Hence, these agronomic aspects are contributed to ensure that
breeding of papaya is successful. The breeding of papaya has produced more papaya
cultivars with desired agronomic traits such as high yield, fruit shape, fruit size, and
sweetness. However, the papaya is easily exposed to pathogens and being infected by
diseases, (i.e., the papaya dieback disease (PDD), papaya ringspot virus (PRSV) disease,
and papaya sticky disease (PSD)), which have resulted in a decline in papaya production.
In addition, high temperature and water stress in papaya plantation are being affected
by climate change, which is a challenge to the papaya industry, especially for its pro-
duction yield [13–15]. The high temperature (i.e., above 35 ◦C) causes flowers to drop
and sex changes in female and hermaphrodite flowers [13]. Although high temperature
(i.e., 28 ◦C) promotes the fast growth of papaya, low pollen viability and early maturation
result in imperfect quality fruits and a low yield [13]. Interestingly, high temperature
coupled with a higher moisture content produces higher total soluble solids (TSS) in pa-
paya [13]. A sufficient amount of water is essential to papaya because it determines the
fruit size and fruit quality [15]. For instance, in dry conditions, the fruits are smaller with a
hard texture when ripe.

One major way to overcome the constraints due to climate change and papaya dis-
eases is by breeding for new and improved papaya that has been enhanced with desired
traits, such as resistance to disease, resistance to abiotic stress, delayed ripening, and
sweetness. Recent trends in crop improvements have shown the integration of omics
approaches (i.e., genomics, transcriptomics, proteomics, and metabolomics) and bioinfor-
matics in breeding programmes [16–19]. The use of omics and bioinformatic approaches in
crop breeding helps to obtain a holistic understanding of the genetic and genomic bases
of the crop, as well as to understand the molecular interaction among genes, proteins,
and metabolites, especially regarding complex traits. Thus, the integration of omics and
bioinformatic approaches in crop-breeding programmes is anticipated to facilitate the
development of climate-resilient crop varieties and efficient germplasm screening, as well
as to accelerate the rate of the genetic gain in a crop [18,19].

To date, papaya-breeding programmes have focused on improving yield and quality,
resistance to abiotic stress condition, resistance to disease, as well as delayed ripening.
Remarkable success has been achieved in the genetic engineering of papaya: the first
transgenic papaya cultivar SunUp developed resistance to papaya ring spot virus (PRSV)
disease [20]. In 2008, the first papaya genome, from the cultivar SunUp, was sequenced
using whole-genome shotgun Sanger sequencing [21]. The papaya cultivar SunUp is a
transgenic papaya and was the first papaya genome sequenced [21]. The SunUp genome
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sequence was annotated, and yielded 27,793 protein-coding transcripts. To date, SunUp has
been used as a reference genome for various comparative genomics analyses of the papaya
genome. Previous efforts have exploited the genome sequences, molecular markers, and
physical and genetic maps for improvement of papaya traits [22–25]. The domestication
and genetics of the papaya have also been discussed [26]; while Dhekney et al. [8] and
Palei et al. [27] have summarised the use of biotechnology tools and the progress of research
that has been conducted on papaya, they have not covered all the omics and bioinformatic
approaches that have been used in the improvement of papaya traits.

Hence, this review paper aims to examine the recent progress of the improvement
of papaya traits using the omics and bioinformatic approaches, and their application in
breeding for new and improved papaya cultivars (Figure 2). Each omics approach is shown
in Figure 2, outlining how most of the generated molecular or omics data are analysed
and visualised using bioinformatics approaches. The integration of systems biology with
the analysed omics data analysis will cater to the identification of molecular markers, as
well as candidate genes, proteins, and metabolites, for application in papaya-breeding
programmes. In this review paper, the future perspective of using omics approaches in
improving the desired papaya traits are also discussed.

Figure 2. A summary of the omics approaches that are used in the improvement of papaya traits. Four traits have been
studied using omics and bioinformatic approaches, including ripening, abiotic stress, disease resistance, and fruit quality.

2. The Role of Bioinformatics in Analysing Omics Data

Bioinformatics is an interdisciplinary field of various research backgrounds that com-
prises biology, computer science, mathematics, and statistics in order to extract, analyse,
integrate, and visualise the biological data that are generated from omics platform tech-
nologies [28]. Several bioinformatics tools and biological databases have been developed
and are accessible to other researchers in similar fields [19,28]. The development of useful
bioinformatics tools is also important for crop breeders in order to inform them of the target
selection of traits effortlessly [19,28]. The continuous effort in building and managing the
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integrated databases would contribute to the translational research in which multiomics
data analysis has become an integral part of systems biology.

Comparative Genomics Analysis of Carica papaya

The completion of the SunUp papaya reference genome sequence provides the oppor-
tunity for researchers to perform a comparative genomics analysis of the papaya genome.
Comparative genomics, which is also known as comparative genome-wide analysis, is
an area of study in which the structure and function of genomes from different species or
varieties are compared [29]. Using computational approaches, the comparison of genomes
and their contents among the cultivars or species enable researchers to identify sequence
features (i.e., genes and proteins) that are conserved among the species [30].

Such examples include the comparative genome-wide analysis of the papaya genome
in order to identify, annotate, and classify the genes into several gene and transcription-
factor families that are associated with abiotic stress [31], disease resistance [24,32], ripen-
ing [33,34], and flower development [35]. The identification and annotation of the selected
gene families in the papaya genome have also provided information on their gene struc-
ture, and phylogenetic tree relationships in relation to orthologs or paralogs from other
species. Consequently, the potential genes and transcription factors were validated to
further investigate their expression patterns under different conditions [31–35].

The papaya is susceptible to multiple pathogens, such as Erwinia mallotivora [36],
ringspot virus [37], and papaya meleira virus (PMeV) [38]. Hence, in order to under-
stand the basis of papaya resistance and susceptibility, the method is to perform a com-
parative genome-wide analysis of the papaya genome. The genome-wide analysis of
papaya sequences has revealed that the papaya has fewer (0.2%) disease-resistance genes
(i.e., nucleotide binding site (NBS)-containing R genes) than Arabidopsis thaliana (0.68%) and
O. sativa (1.38%), which makes conventional breeding for resistance difficult [24]. Similarly,
Praza-Echeverria et al. [32] investigated the potential of NPR1, a pathogenesis-related gene,
in papaya resistance against a pathogen by comparing the NPR1 in Arabidopsis and tomato
genome sequences. This could lead to the application of the identified gene in genetic
engineering for crop improvement.

The understanding of the papaya ripening process is important in order to reduce
the occurrence of postharvest losses in the papaya industry. To improve the ripening trait
in papaya, it is crucial to identify the genes that are responsible for the ripening process.
Coupled with bioinformatics analysis, Liu et al. [33] identified 14 potential SQUAMOSA
protein-binding protein-like (SPL) genes, whereas Xu et al. [34] investigated 18 potential
auxin/indole-3-acetic acid (Aux/IAA) genes in the papaya ripening process. The involve-
ment of SPL and Aux/IAA gene families in the papaya ripening process is not well known.
Hence, these efforts provide an opportunity to understand the roles of auxin-responsive
genes and SPL in the papaya ripening process.

Using the genome sequence of the papaya, the basic helix–loop–helix (bHLH) tran-
scription factors that were associated with abiotic stress were identified [31]. A total of 73
candidate genes from the bHLH family were detected using comparative genome-wide
analysis. The quantitative real time PCT (qRT-PCR) experiment also revealed the role of
candidate bHLHs that might be responsible for abiotic stress responses (i.e., salt, drought,
and cold stresses) in papaya. Using a similar approach, Liu et al. [35] identified 11 potential
genes in the auxin response factor (ARF) transcription factor family, and their role in
papaya flower development.

In summary, a comparative genomics analysis of papaya can be initiated by retrieving
the papaya genome sequence from public databases. To date, five databases can be used to
retrieve the papaya genome sequence; namely, the NCBI (https://ftp.ncbi.nlm.nih.gov/
genomes/all/annotation_releases/3649/100/GCF_000150535.2_Papaya1.0/ accessed on
22 June 2021) [39], PlantGDB [40], Phytozome [41], EnsemblPlants [42], and PLAZA [43].
HMMER [44] and BLAST [45] were developed to perform similarity and homolog sequence
analyses. InterProScan [46], Pfam [47], and SMART [48] tools were designed to identify
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the gene family, motif sequence, and domain association, respectively. PLACE [49] and
PlantCARE [50] are tools that are used for the analysis of cis-regulatory elements and pro-
moter identification of the genes of interest. The Gene Structure Display Server (GSDS) [51]
annotates gene structures; i.e., exon, intron, 3′UTR, and 5′UTR. To construct a phylogenetic
tree, multiple sequence alignment must be performed using the gene sequences containing
the domain or motif of interest as input data. ClustalX [52] and MAFFT [53] are multiple
sequence alignment programmes that are used for aligning the gene sequences, and MEGA
is a tool that is used for constructing a phylogenetic tree [54].

Figure 3 summarises the workflow of the comparative genomics analysis of the papaya
gene families using bioinformatic approaches that are related to disease resistance, ripening,
flower development, and abiotic stress.

Figure 3. Workflow for comparative genomics analysis of the papaya gene families.

3. Application of Omics Technologies in Carica papaya

The suffix ‘omics’ can be described as the screening of the whole molecular data from
a living organism for as genes (genomics), mRNA (transcriptomics), proteins (proteomics),
and metabolites (metabolomics). As seen by the expanding number of publications over
the years, these omics methods, as well as systems and synthetic biology, are becoming
increasingly popular [55]. As compared to other model fruit crops such as the tomato
and grape, the multiomics study of papaya is still in its infancy. However, various omics
data of papaya have been generated from each omics platform, which can lead to the
understanding of the complex phenotypic variations that can facilitate papaya breeding
strategies in the improvement of papaya traits (Table 1) [56].

3.1. Genomics and Molecular Markers

Advancements in next-generation sequencing technology (NGS) have resulted in
the different types of sequencing platforms (i.e., Illumina, PacBio, and Oxford Nanopore
Technologies), which produce high-quality sequences, including longer sequence reads
and fewer sequence error rates [56]. In addition, NGS has offered an affordable cost,
facilitating the sequencing of the genomes of various plant species and cultivars [57]. For
instance, the whole-genome resequencing of the papaya cultivars Eksotika and Sekaki from
Malaysia [58], as well as the Sunset cultivar from Hawaii [59], have been carried out using
the Illumina platform. The whole genome resequencing of papaya cultivars has led to the
identification of a large number of variants that have been annotated into coding genes,
where the identified SNPs could be developed as molecular markers in the application of a
marker-assisted selection of papaya breeding.

The large volumes of data that have been generated using next-generation sequencing
technology have increased the efficiency of the development of molecular markers, such as
simple sequence repeat (SSR) and single nucleotide polymorphism (SNP). SSR and SNP are
types of molecular markers that are widely used to improve the agronomic traits of fruit
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trees [5]. Molecular markers, such as restriction fragment length polymorphism (RFLP),
amplified fragment length polymorphism (AFLP), and random amplified polymorphic
DNA (RAPD), are often limited by low reproducibility, laborious techniques, and time-
consuming processes [60]; using SSR and SNP will greatly expedite the detection by using
a high-throughput genotyping platform.

Previous efforts have identified 116,43 SSRs in the SunUp genome sequence [61]. In
addition, 73 SSRs were found in 25 genes that were related to fruit ripening. A similar
study focused on the development of high polymorphic SSR from the whole-genome
resequencing of Sunrise Solo (Hawaiian cultivar) and RB2 (Australian cultivar) [62]. The
developed SSR markers can be used to differentiate the elite cultivars, and can be used in
papaya breeding selection.

Genomics variants such as SNP and insertion–deletion (InDel) are highly abundant in
plant genomes [63]. Previous efforts have discovered putative SNPs in the genome-wide
analysis of papaya genome resequencing [20,21,48]. Zainal-Abidin et al. [58] sequenced
the genome of the papaya cultivars Eksotika and Sekaki in order to identify and annotate
SNPs. The identified SNPs will be useful for genotyping to develop a papaya SNP panel.
Similarly, the whole-genome resequencing of papaya cultivars such as SunUp (transgenic)
and SunSet (nontransgenic) has identified SNPs, InDels, and structural variations [59].
These variants’ data have been used to perform a comparative genomics analysis between
transgenic and nontransgenic papaya. Recently, Bohry et al. [64] carried out genome-wide
identification of SNP and InDels between the two parental lines of UC10 hybrids, the
Formosa elite lines Sekati and JS-12, using the Illumina MiSeq (Illumina Inc., San Diego,
CA, USA) platform. Interestingly, the putative variants that were located in the ripening-
related genes (RRGs) were suggested to be validated through functional analysis and the
genotyping platform. Subsequently, these candidate SNPs that are associated with RRGs
can be applied in diversity and genetic-mapping studies, as well as for application in
marker-assisted selection (MAS) of papaya.

Recent efforts have been conducted to identify the structural variations (SVs) in the
genomes of 25 wild and 42 cultivated papaya [65]. The SVs (i.e., insertions, deletions,
inversions, transposable elements, and copy number variations) contain relatively long
DNA changes as compared to SNPs and InDels [63,65]. These SV data have been used to
unravel the effect of SVs on the papaya phenotype and its adaptation during the domesti-
cation process [65]. Detailed GO enrichment between the wild and cultivated papaya has
identified genes that are artificially selected during papaya domestication. Environmental
adaptability, sexual reproduction, and essential traits such as pistil development, embry-
onic development, flowering duration, crop yield, pedicel elongation, defence response,
and disease response are all influenced by these genes. This study would facilitate the un-
derstanding of the genes that are involved during the process of papaya domestication, and
provide potential SV data to develop molecular markers in papaya breeding programmes.

The establishment of a bioinformatics pipeline in discovering large genomic variants
(i.e., SNP, InDel) has made it possible to unravel the genomic variants in the papaya genome
from the various cultivars. The identified and annotated SNPs in disease-resistance and
ripening-related genes could be applied in the MAS of the papaya as a tool to aid the
selection process in papaya germplasm, as well as in the study of its genetic diversity.

The genetic map is useful for dissecting the genetic components of complex traits [66].
The first genetic map of papaya was developed between Sunrise Solo x Line UH536, which
comprised 61 RAPD markers and was distributed in 11 linkage groups (LG) [22]. Then,
Deputy et al. [67] developed the genetic map of Kapoho x SunUp that comprised 1498
AFLP in 12 LG; while Chen et al. [23] developed the genetic map of AU9 x SunUp, which
comprised 706 SSR in 12 LGs. Blas et al. identified 14 QTL controlling fruit size and shape
of papaya [68]. However, progress in the development of papaya QTL has been limited
by a lack of genetic and genomic information. Genome-wide identification of SNPs in the
papaya genome sequence has allowed the development of a high-density genetic map.
This approach has been applied for unravelling the fruit quality of papaya, which has been
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developed in the F2 population from the RB2 x Sunrise Solo cross using the genotyping-
by-sequencing approach (GBS) [69]. The highlights include the candidate genes that are
related to the fruit quality traits, such as fruit size, fruit shape, sweetness, length, and
firmness. These QTL data that are associated with the genes, and which are related to the
fruit quality traits, can be used as candidates for gene exploration in the selection of SNPs
and InDels using bioinformatics analysis [64]. Notably, candidate genes with associated
SNP markers represent a valuable resource for the future of strategic selective breeding of
elite papaya cultivars.

Although the genome sequences of papaya cultivars have been determined, no work
has been carried out on the pangenome analysis of C. papaya. Pangenome analysis enables
us to capture the entire set of genes from papaya cultivars, as well as to overcome the
limitations of relying on a single reference genome [70,71]. The identification of SVs can
represent pangenome analysis that would enable us to capture the entire set of genes from
papaya cultivars, as well as to overcome the limitations of relying on a single reference
genome [70,71]. In addition, more new candidate genes (i.e., genes for disease resistance
and ripening) or gene pools can be identified from the wild germplasm and molecular
markers, and these can be developed to screen for resistant varieties in the field [70,71].

3.2. Transcriptomics

The transcriptome is defined as the whole set of transcripts in a cell and the quan-
tification of its specific developmental stage or physiological condition [72]. Hence, tran-
scriptome plays a role in estimating the expression of genes, as well as in deciphering
the regulation of genes in tissues and organs. Unravelling the transcriptome of tissues
and organs of the species that are of interest can be carried out using RNA sequencing
technology (RNA-seq), which has been shown to be highly reproducible and enables the
simultaneous study of expressed gene samples [73–79]. These RNA-seq features have
made RNA-seq experiments widely used in most transcriptome studies, including the
transcriptome analysis of papaya plants.

Previous studies on papaya transcriptomes have focused on the analysis of several
papaya traits, such as drought effects [73], fruit quality [74,75], sex determination [76,77],
and disease mechanisms [78,79] (Table 1). The molecular response of papaya plants can
be observed by analysing the tissue-specific differentially expressed genes (DEGs) using a
gene-enrichment analysis. Gene-enrichment analysis using AgriGO [80] or ShinyGO [81]
provides information on the biological processes that are regulated in response to the
desired traits in papaya.

A transcriptome study of the delayed sticky disease symptoms in papaya has revealed
the involvement of stress-responses genes in tolerance mechanisms at the pre-flowering
stage [79]. In addition, the authors found that the salicylic-activated genes (i.e., PR1, PR2,
PR5, WRKY) contributed to the delayed symptoms, while the activation of candidate
genes such as NPR1, UDP-glucuronosyltransferase (UGT), and ethylene limit salicylic acid
allowed the PSD symptoms to develop. The nutrient transporter gene family (i.e., nitrate,
ammonium, potassium, sodium, phosphate, and sulfate) was the upregulated gene in the
host during the infection, and had been shown to act as sensors for plant immunity [78,79].

Shen et al. [75] used RNA-seq technology to elucidate the fruit-colouration process in
the ripening condition of papaya. A total of 13 candidate genes, including beta-carotene hy-
droxylase (CHYB), carotene ε-monooxygenase (LUT1), violaxanthin de-epoxidase (VDE),
phytoene synthases (PSY1, PSY2), phytoene desaturases (PDS1, PDS2), zeta-carotene desat-
urae (ZDS), lycopene cyclases (CYCB, LCYB1, LCYB2, LCYE), and zeaxanthin epoxidase
(ZEP), were detected in the papaya fruit transcriptome, which showed that these genes
were involved in the carotenoid biosynthetic pathway.

A transcriptome study of the papaya male flower and male-to-hermaphrodite sex-
reversal flower demonstrated the involvement of 1756 differentially expressed genes in sex
determination [76]. Of these, four papaya homologous genes, including three PIN1 and one
PIN3, were found to be upregulated in the male-to-hermaphrodite sexual-reversal flowers.
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In addition, the authors found the phytohormone-biosynthesis and signal-transduction
pathways in the male-to-hermaphrodite sex-reversal flowers. Similarly, Zhou et al. [77]
used RNA-seq technology to investigate the underlying mechanism in DNA methyla-
tion contribution to the male and female flowers. Dissecting the molecular mechanism
that regulates sex expression in the papaya provides valuable resources that facilitate an
understanding of sexual differentiation in the papaya.

In the papaya disease-resistance trait, the transcriptomes of SunUp and Sunset leaves
were sequenced to investigate the expression changes in both of the papaya cultivars, and
were compared to the regulated genes in the resistant and susceptible varieties [78]. This
comparative transcriptomic analysis found that there were few disease-resistance and
hormone-related genes in SunUp, indicating the PRSV resistance in SunUp transgenic
papaya. The finding of this study also provided evidence that genetically modified papaya
is not harmful.

Using transcriptome data, gene clusters can be observed by performing a gene coexpres-
sion network analysis (Figure 4). This analysis identifies gene–gene interaction, regulation
of biological processes, and molecular functions that occur within a cluster of genes. In
a transcriptome study of papaya leaves, sap, and roots that were under mild and severe
drought, several transcription factors (i.e., WRKY, MYB, bHLH) that were commonly linked
to abiotic stress conditions were identified [73]. These transcription factors can be potential
regulators in the leaves and roots of papaya plants under drought-stress conditions.

Figure 4. Schematic representation of the papaya RNA-seq analysis using a bioinformatics approach. The potential genes
and transcription factor can be validated using qRT-PCR detection, which can be applied in precision breeding through
gene editing or marker-assisted selection (MAS).

3.3. Proteomics

The two-dimensional differential gel electrophoresis (2D-DIGE), isobaric-tags for rela-
tive and absolute quantification (iTRAQ), and matrix-assisted laser desorption/ionisation
time-of-flight mass spectrometry (MALDI-TOF/TOF MS) platforms have been widely used
to estimate the expressed and abundance of proteins in plants, animals, and humans [82].
In papaya, the use of a proteomics platform has focused on the ripening process [83,84]
and disease mechanism [85,86] (Table 1).

The use of a proteomics platform to study the underlying mechanism in papaya
fruit ripening was first reported in 2011. Nogueira et al. [83] performed a comparative
proteomic analysis of climacteric and preclimacteric papaya cultivars using the 2D-DIGE
platform. Several proteins that were closely related to metabolic changes (i.e., cell wall,
ethylene biosynthesis, climacteric respiratory burst, stress response, and chromoplast
differentiation) in the ripening papaya were found, suggesting that these candidate proteins
might be involved in the fruit-ripening process. The 2D-DIGE protein analysis, which was
performed in order to identify the differentially expressed proteins during papaya ripening,
also suggested the role of 1-methylcyclopropene (1-MCP) in affecting the fruit-ripening
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process [83]. In addition, several expressed proteins were associated with sugar and cell-
wall metabolism, signalling, defence and stress responses, folding and protein stability, and
ion channels. Proteins related to pectinesterases, SODs, and the dienelactone hydrolase
family deserve further attention, as these proteins might be involved in the ripening
processes [84]. In a proteomic study that was applied to different ripening stages in papaya,
differential accumulated proteins (DAPs) were quantified using HPLC fractionation and
LC-MS/MS [85]. Interestingly, unsaturated fatty acids (i.e., methyl palmitoleate and methyl
alpha-octadecatrienoic) were increased during the ripening, indicating that they might be
associated with volatile formation in papaya fruit.

Rodrigues et al. [86] used 2-DE and DIGE to identify and distinguish proteins that
had accumulated during sticky disease infection, which was caused by the papaya meleira
virus (PeMV). A proteomics study of the compatible reaction of C. papaya cv. Eksotika in
response to E. mallotivora attack was carried out using an iTRAQ mass spectrometry analy-
sis, and showed differentially expressed proteins that were related to metabolic processes,
defence response, and response to stress [87]. Similarly, iTRAQ mass spectrometry was
used to quantify the effector proteins in E. mallotivora, and suggested the type III secretion
system (T3SS) as an important protein that contributed to the bacterial pathogenicity and
virulance [88]. A high-throughput proteomic study using an LC-MS/MS-based label-free
proteomics approach was used to assess the protein expression between PMeV-infected
preflowering C. papaya and control plants [89]. It was suggested that the increased modula-
tion of photosynthesis, the 26S proteasome, and cell-wall remodelling-associated proteins
were involved in the initiation of papaya plant immunity.

In general, identifying differentially expressed proteins provides valuable resources
for selecting essential proteins in improving C. papaya agronomic traits (i.e., disease re-
sistance and ripening). To encourage reproducibility of proteomics data, the MS-based
proteomics data can be uploaded to a public database such as the ProteomeXchange Consor-
tium [90]. This effort adds additional value of the data in efforts towards the improvement
of papaya traits.

3.4. Metabolomics

Metabolomics is the study of small molecules such as metabolites, substrates, and
metabolic production in an organ, tissue, or cell [5]. Metabolomics has been used to identify
and measure differentially expressed metabolites and to gain an insight into biochemical
composition under different environmental conditions [91]. Papaya is rich in secondary
metabolites that serve as a source of nutrients for human health. High-performance liquid
chromatography or gas chromatography tandem mass spectrometry (LC/GC-MS) and
liquid chromatography-quadrupole time-of-flight (LC-QTOF) have been widely used in
studies of plant metabolomics [92]. Determining the standard chemical compounds of
metabolites and their MS spectrum data is essential in a metabolomic-profiling analysis.

Previous studies performed a comparative analysis of metabolites among papaya
cultivars [93,94] (Table 1). The identification of metabolites among these papaya cultivars is
important in order to identify the cultivar with the essential metabolites that are associated
with quality traits (i.e., sweetness and ripening) that subsequently are to be applied in
papaya breeding programmes. For example, carotenoids, tocopherols, and glucosinolates
are highly abundant in papaya, and all of them are sources of antioxidants [95,96]. The
identification of unique metabolites in a papaya cultivar has highlighted the importance of
the chemical marker in authenticating papaya-based food products [94].

Chilling injury is a part of the constraint in maintaining the freshness of papaya,
especially for exported papaya. A study by Wu et al. [97] identified different metabolite
profiles in the papaya peel at a temperature of 4 ◦C. The metabolites were associated with
aroma traits, such as organic acid, amino acids, hexanal, carbonic acid, pentadecyl propyl
ester, and methyl geranate, in papaya peel [97]. The elucidation of the metabolite profile
that involves chilling stress at 4 ◦C can be applied to regulate the storage temperature of
the papaya to prevent chilling injury, and to extend its storage period.
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Apart from the fruit, studies of metabolite profiling in other parts of the papaya, in-
cluding its leaves and seeds, have been conducted to detect the metabolites’ phytomedicinal
properties [98,99]. Papaya leaves are rich in metabolites (i.e., phenolics, flavonoid, saponins,
and tocopherol) that have potential antimicrobial, anticancer, antioxidant, and pesticide
properties [100]. Hence, papaya leaves have been widely used in the pharmacological
industry for drug development.

Metabolomics that has been combined with other high-throughput omics technologies,
such as transcriptomics and proteomics, is referred to as integrated metabolomics, which is
sometimes used in studies that are aimed at understanding metabolism as the phenotype of
genome function [92]. However, little is known on the integration between metabolomics
and transcriptomics to understand the mechanism during the fruit-ripening process. It has
been reported that metabolites (i.e., flavonoids, terpenoids, organic acids, phenolic acids, and
alkaloids) are closely related to the ripening disorder of fruits [101–103]. The elucidation of these
potential metabolites during papaya-ripening processes will provide valuable information for
developing a strategy for postharvest storage and improving the fruit quality.

Table 1. A summary of the recent omics and bioinformatics approaches that are used in the improvement of papaya traits.

Type of Omics
Platform

Traits/Conditions Descriptions Approach Reference

Genomics -
Whole-genome sequences of papaya cultivar

SunUp. Development of first papaya
reference genome sequences.

Whole-genome shotgun
Sanger sequencing [2]

-

Whole-genome resequencing of papaya
cultivars Eksotika and Sekaki to identify

putative SNPs. The identified SNPs between
Eksotika and Sekaki located in genes of

interest could be suggested for validation
using a genotyping platform.

Whole-genome
resequencing using
Illumina HiSeq2000

(Illumina Inc., CA, USA)
and bioinformatic analysis

[58]

-

Whole-genome resequencing of papaya
cultivar SunUp (transgenic) and Sunset

(nontransgenic) to identify SNPs and InDels,
and used in comparing transgenic and

nontransgenic papaya. The identified SNPs
and InDels that were located in high-impact
genes could be applied in marker-assisted

PRSV disease-resistance breeding in papaya.

Whole-genome
resequencing using
Illumina HiSeq2000

(Illumina Inc., CA, USA)
and bioinformatic analysis

[59]

-

Whole-genome resequencing of wild-type
and cultivated papaya to detect structural

variations in papaya, and used in
understanding the process of papaya

domestication.

Whole-genome
resequencing using
Illumina HiSeq2500

(Illumina Inc., CA, USA)
and bioinformatic analysis

[65]

Ripening Gene-based SSR marker development
focusing on genes related to fruit ripening.

Bioinformatics and
genotyping [61]

Polymorphic SSR marker development for
marker-assisted breeding in papaya.

Whole-genome
resequencing using
Illumina HiSeq4000

(Illumina Inc., Foster City,
CA, USA),

bioinformatics, and
genotyping

[62]

Genome-wide identification of SNPs and
InDels using whole-genome resequencing of

two papaya cultivars, namely Sekati and
JS-12. The SNPs that were located in RRGs are

potential SNPs to be converted in PCR
markers, and could be applied in papaya
genetic mapping and diversity studies, as

well as marker-assisted selection.

Whole-genome
resequencing using

Illumina Miseq (Illumina
Inc., Foster City, CA, USA)

[64]
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Table 1. Cont.

Type of Omics
Platform

Traits/Conditions Descriptions Approach Reference

Abiotic
stress

Genome-wide analysis of basic
helix–loop–helix (bHLH) transcription factors.

Candidate bHLH genes that might be
responsible for abiotic stress.

Comparative genomics
and quantitative real-time

PCR (qRT-PCR)
[31]

Disease resistance

Genome-wide analysis of NBS resistance gene
family. Candidate resistance (R) genes

potentially responsible for disease-resistance
mechanism.

Comparative genomics
and quantitative real-time

PCR (qRT-PCR)
[24]

Disease resistance

Genome-wide analysis of NPR1 family.
Candidate pathogenesis-related genes that

might be responsible for a disease-resistance
mechanism.

Comparative genomics
and quantitative real-time

PCR (qRT-PCR)
[32]

Ripening

Genome-wide analysis of SQUAMOSA
promoter binding protein-like gene family in

papaya. Candidate ripening- and
development-related genes.

Comparative genomics
and quantitative real-time

PCR (qRT-PCR)

[33]

Ripening
Genome-wide analysis of Aux/IAA gene

family. Candidate ripening-related genes in
papaya.

Comparative genomics
and quantitative real-time

PCR (qRT-PCR)
[34]

Flower
development

Genome-wide analysis of auxin response
factor (ARF) family genes related to flower

and fruit development in papaya.
Candidate genes related to flower and fruit

development.

Comparative genomics
and Quantitative real-time

PCR (qRT-PCR)
[35]

Transcriptomics Drought tolerance
Coexpression network analysis to identify
genes and transcription factors related to

abiotic stress.

Transcriptome sequencing
using Illumina NextSeq500
(Illumina Inc., Foster City,

CA, USA)
and coexpression network

analysis

[73]

Ripening
mechanism

Identification of potential regulatory genes
during papaya ripening underlying 1-MCP

treatment.

Transcriptome sequencing
using Hiseq Xten (Illumina
Inc., Foster City, CA, USA)

[74]

Fruit colouration Identification of potential TF regulating the
carotenoid biosynthetic pathway.

Transcriptome sequencing
using

Illumina HiSeq2500
[75]

Sex determination
Differential expressed genes in sex

determination of papaya, in
male-to-hermaphrodite and male flowers.

(Illumina Inc., Foster City,
CA, USA)

Transcriptome sequencing
using

Illumina HiSeq2500
(Illumina Inc., Foster City,

CA, USA)

[76]

Disease resistance Identification of disease-resistance genes in
PRSV-resistant and susceptible cultivars.

Transcriptome sequencing
using

Illumina HiSeq2500
(Illumina Inc., Foster City,

CA, USA)

[78]

Disease resistance
Identification of stress-response genes and

nutrient upregulated genes in tolerance
mechanism of papaya sticky disease.

Transcriptome sequencing
using Illumina HiSeq2000
(Illumina Inc., Foster City,

CA, USA)

[79]

Proteomics Ripening
mechanism

Comparative proteomic analysis of
climacteric and preclimacteric papaya

cultivars.
2-DGE and LC-MS/MS [83]
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Table 1. Cont.

Type of Omics
Platform

Traits/Conditions Descriptions Approach Reference

Ripening
mechanism

Differentially expressed proteins during
papaya ripening.

2-DGE and QTRAP hybrid
tandem mass spectrometer [84]

Ripening
mechanism

Differentially accumulated proteins (DAPs)
during papaya ripening. HPLC and LC-MS/MS [85]

Disease
mechanism

Identification of differentially expressed
proteins in healthy and PMev disease leaf

samples in the Golden cultivar.
Metabolism-related proteins were

downregulated, and stress-responsive
proteins were upregulated.

MALDI-TOF-MS/MS and
DIGE/LC-IonTrap-

MS/MS
[86]

Disease
mechanism

Differentially expressed proteins of
compatible reaction between Eksotika papaya

and E. mallotivora
iTRAQ mass spectrometry [87]

Disease
mechanism

Protein expression between PMeV-infected
preflowering C. papaya and control plants

LC-MS/MS-based
label-free proteomics [88]

Metabolomics Fruit
ripening

Comparative analysis of metabolite profiling
between Eksotika and Sekaki cultivars. GC-MS [93]

Fruit
ripening

Profiling analysis of bioactive and volatile
compounds in two papaya cultivars, namely

Sel-42 and Tainung.
HPLC-ESI-MS/MS [94]

Fruit
ripening

Comparative profiling of carotenoids and
volatile in yellow and red flashed between Sui

huang and Sui hong cultivars.
HPLC-ApCI-MS [95]

Fruit
ripening

Identification of genes and metabolites
regulating fruit ripening and softening in

papaya cultivar Suiyou-2.

Transcriptome sequencing
using Illumina Hiseq Xten
(Illumina Inc., Foster City,

CA, USA) and
metabolomics profiling

using HPLC-ESI-MS/MS

[103]

Chilling
injury

Elucidating of primary metabolites and
volatile changes in papaya peel in response to

chilling stress.
GC-MS /MS [97]

Bioactive
properties Metabolite profiling in papaya leaves. UPLC-ESI-MS

and GC-MS/MS [98–100]

4. Future Perspective

The progress of the improvement of papaya traits has been limited due to the lack
of genetic and genomic information on papaya. The outcome of recent omics studies of
papaya plants suggests that there is potential for using these valuable genetic and genomic
resources as a breeding tool to improve the desired traits in papaya. Incorporating omics
data in papaya breeding programmes with a focus on abiotic stress, disease resistance, de-
layed ripening, and sweetness offers a promising strategy for developing high-quality traits
in papaya cultivars without compromising their yields or agronomic traits. A previous
study in Mexico conducted a network analysis of the interaction between viruses in papaya
orchards. This viral metagenomics study, which was coupled with a network analysis,
could contribute to the understanding of the host–pathogen interactions, which would
cater to the management strategies against PRSV and non-PRSV symptoms in papaya [104].
The potential of computational approaches in understanding these biological systems has
been employed in crop improvement. The computational models that were constructed
integrate genome and phenome information, which led to new experimental strategies in
improving crop production [105].

In papaya, pangenome analysis has not received much attention. Using whole-genome
resequencing of papaya cultivars from diverse germplasms enables researchers to perform
pangenome analyses, which would facilitate the identification of core and variable genes in
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various papaya genomes. This effort has been performed in soy bean [106] and B. rapa [107].
A further area of interest is to screen for favourable alleles of diverse resistance genes
sourced from the wild germplasm of papaya.

Another direction in papaya-trait improvement is employing the genome-editing ap-
proach. Functional analysis of candidate genes in the papaya–pathogen system can be per-
formed using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9(Cas9) system. The CRISPR-Cas9 system was successfully applied in
banana [108], apple [109], and kiwifruit [110].

5. Conclusions

The use of omics data plays a role as an advanced breeding tool that will enable the
faster and more accurate selection of key consumer-driven traits. Integration of various
high-throughput omics platforms may accelerate the research on papaya crop improvement.
In addition, the application of computational approaches is key in revealing and filling data
gaps, which will be valuable in the designing of new experimentation and measurement
strategies that would result in enhanced papaya quality, as well as the ability of it to be
sustained under various environmental conditions.
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Abstract: Single nucleotide polymorphism (SNP) markers have multiple applications in plant breed-
ing of small grains. They are used for the selection of divergent parents, the identification of genetic
variants and marker-assisted selection. However, the use of SNPs in varietal purity assessment
is under-reported, especially for multi-line varieties from the public sector. In the case of variety
evaluation, these genetic markers are tools for maintaining varietal distinctness, uniformity and
stability needed for cultivar release of multi-line or pure-line varieties of inbred crops. The objective
of this research was to evaluate the purity and relationships of one original (AV-25) and two multi-line
sub-populations (AV25-T and AV25-S) of the inbreeding species, oats (Avena sativa L.). Both sub-
populations could be useful as forages in the central highland region of Colombia (>2000 masl), such
as in the departments of Boyacá and Cundinamarca, even though they were derived from an original
composite mixture widely used in the mountainsides of the southern department of Nariño named
Avena 25. Representative single plant selections (SPS) from the two sub-populations were grown
together with SPS harvests from off-type plants (early and late) and plants from the original AV25
composite mixture, to determine their genetic similarity. Plants were genotyped by DNA extraction
of a plateful of 96 individual plant samples and SNPs were detected for an Illumina Infinium 6K Chip
assay. The data were used for the analysis of genetic structure and population relationships. The
grouping observed based on the genetic data indicated that AV25-T and AV25-S were homogeneous
populations and somewhat divergent in their genetic profile compared to the original AV25-C mix. In
addition, to the two commercial, certified oat varieties (Cajicá and Cayuse) were different from these.
The early and late selections were probable contaminants and could be discarded. We concluded that
the use of SNP markers is an appropriate tool for ensuring genetic purity of oat varieties.

Keywords: composite mix; genetic structure; multi-line variety; single nucleotide polymorphism
markers; varietal purity

1. Introduction

Cultivated oat (Avena sativa L.) is a hexaploid small grain species (2n = 6x = 42) with a
large genome (11.3–14.0 Gb) that originated in the Fertile Crescent region known as the
Near East in western Asia and from there spread around the world [1]. Oats arrived in the
Americas with European conquests and are currently among the most important cereals in
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the world after maize (Zea mays L.), rice (Oryza sativa), wheat (Triticum aestivum), sorghum
(Sorghum bicolor), millets (Panucum, Pennisetum, Setaria spp.) and barley (Hordeum vulgare)
but more popular than rye (Secale cereale). Unlike some of these cereals, oats are confined to
temperate areas in northern latitudes or cool wet climates, such as those in highlands of
the subtropics.

Major producers of oats include Canada, Russia, Finland, Poland and the United
Kingdom in the northern hemisphere, and Australia and Brazil in the southern hemisphere.
In highland (>2000 m above sea level) areas of the Andes, from Bolivia to Colombia,
Ecuador and Peru, oats are used as a fodder source, in pasture, hay or silage, alone or
with forage legumes [2] and is considered a food alternative for the diet of dairy cows to
improve milk production and quality, especially in times of forage shortages by drought or
frost [3].

Molecular markers are well known tools for plant breeding [4] with many methods
developed since the advent of the polymerase chain reaction (PCR), which allowed the
development of easy-to-use genetic assays for varied purposes adaptable to many of the
different stages of genetic improvement of plants and animals [5–7]. These include the
pre-breeding steps of biodiversity analysis, conservation, utilization [6,8], breeding analysis
of the reproductive system of a species, characterization and selection of parents in crossing
plans and monitoring of segregating populations [9]. Markers have been used as genetic
tools for analysis of qualitative and quantitative characters and introgression of genes
from wild species (e.g., [10]). They have also been used successfully in other lines of
plant research, such as phylogeny [8], and the diagnosis of pests or pathogens [11]. In
post-breeding steps, molecular markers are useful for confirming the identity, purity and
homogeneity of varieties and in the tracking of genetically modified organisms (GMOs) [6,9]

In the last decade, single nucleotide polymorphisms (SNPs) have become the most
common type of biallelic sequence-based molecular marker used in plant and animal
genomes [7,12,13]. In addition to having stable inheritance from generation to generation,
SNP markers target loci where only two alleles are observed within a population that arise
from mutations or mismatch repair [9]. The use of SNPs is widespread in genetic studies
of plants, which includes genomic diversity [4,14], construction of linkage maps [15,16],
genomic selection [17,18], population structure analysis [19–21], genetic mapping [5] and
genome–environment associations [22].

The target number of SNPs for a crop depends on its genome size, level of ploidy,
research investments, population stratification and overall linkage disequilibrium pat-
terns [23]. As examples, the capacity of currently available SNP arrays from Illumina go up
to 820,000 (820K) in the large-genome hexaploid wheats (Triticum aestivum), 700K in rice
(Oryza sativa) [4], 487K in triploid apples (Malus domestica) [24], 345K in the dodecaploid
genome of sugar cane (Saccharum officinarum) [25], 90K in octoploid strawberries (Fragaria
vesca) [26] and 58K in tetraploid peanuts (Arachis hypogaeae) [27,28]. Diploid species require
less SNPs for coverage.

In the case of common oats, the first SNP array developed with Illumina technol-
ogy contained 3072 assays and was applied to build a consensus map with 985 mapped
loci [29]. The SNP chip was later expanded to the 6K Illumina oat BeadChip containing
nearly 6000 assays, with a success rate of 86.6% [6,7]. Recently, this SNP array has been
transformed into a 6K BeadChip layout containing 257 Infinium I and 5486 Infinium II
features corresponding to 5743 SNPs.

The goal of this study was to determine the variety purity, plant to plant diversity
and early or late season off-types of a multi-line (composite mix) population of forage oats
(AV25-C) commonly grown in the highlands (>2000 masl) of southern Colombia along with
the diversity of two derived sub-populations (AV25-S and AV25-T) selected for similar
altitudes in central Colombian departments of Boyacá and Cundinamarca by using SNP
fingerprinting based on the Infinium assay and two control genotypes along with selection
of phenological extremes and multi-plant sampling. This is a first use of SNP chips for
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evaluating varietal purity in a forage oat multi-line. We plan to utilize SNPs to determine
the genetic underpinning of the phenotypic variants of cereal oats.

2. Materials and Methods

2.1. Plant Materials Used

The main forage oat (Avena sativa L.) variety used in this study was AV25, a multi-line
population developed in southern Colombia early in the 21st century by the Colombian
Agricultural Research Corporation (AGROSAVIA). As a candidate population for varietal
release in 2014, the multi-line was grown in a plot for foundation seed at the Obonuco
Research Station of AGROSAVIA in Pasto, Colombia (1◦11′56′′ N, 77◦41′44′′ W). For the
next generation, dormancy was broken over a six-month storage period. Then, 100 spike-to-
row selections were established at two field sites in 2015: (1) in the Tibaitatá Experimental
station (near the town of Mosquera in the province of Cundinamarca) and (2) on the
Finca Sutacón near the town of Susacón in the municipality of Paipa (Province Boyacá).
Mass selection across and between rows was applied at each location, resulting in two
new composite sub-populations, called AV25-T and AV25-S from Tibaitatá and Susacón,
respectively. The original mixture: AV25-C (the population from Obonuco) was compared
to the two subpopulations: AV25-T (Tibaitatá selection) and AV25-S (Sutacón selection)
as well as to two off-types selections, namely AV25-P (early selection from Obonuco) and
AV25-Ta (late selection from Obonuco). Two commercial varieties (Cajicá and Cayuse) were
grown as checks.

2.2. Agronomic Locations Used

The grow out was carried out in the second half of 2016 at the Tibaitatá experimental
station where 400 rows each of single plant selections (SPS) from the populations AV25-C,
AV25-T, AV25-S were grown. In addition, 25 SPS rows for each of the off-type oats, AV-
25-P, AV25-Ta and each of the commercial varieties Cajica and Cayuse were established
there. Each row was 4.0 m long, and rows were planted 0.3 m apart. A planting density
of 60 kg seed ha−1 was used, and the fertilizer regime and weed control followed the
recommendation of AGROSAVIA [3], with the goal of obtaining approximately 60 t ha−1

in forage yield. Harvesting was set at stage Z7.0 as in Zadoks et al. [30].

2.3. Leaf Tissue and DNA Extraction

A total of 96 single plant DNA samples were taken from the flag leaves of an equal
number of plants that were selected based on representation of the full SPS plot when they
had reached the heading stage (Z6.0) according to the maturity scale of Zadoks et al. [30].
The leaf samples included 22 plants from AV25-C, 30 each from AV25-T and AV25-S; 4 each
from Cajicá and Cayuse, and 3 each from AV25-P and AV25-Ta. DNA was extracted from
approximately 4 cm of leaf tissue placed in individual 1.5 mL Eppendorf tubes on ice.
These tissue samples were then ground to a powder with liquid nitrogen and a plastic
mortar. The Mo-Bio® kit for plant tissue (PowerPlant® ProDNA Isolation, San Francisco,
CA, USA) was used to obtain DNA from ground leaves. The quantity and quality of the
DNA was evaluated with a NanoDrop® 2000 spectrophotometer (Thermo Fisher Scientific
Inc., Wilmington, DE, USA). Samples with a 260/280 UV wavelength ratio close to 1.8,
and a 260/230 ratio close to 2.0 with a minimum DNA concentration of 50 ng μL−1 were
obtained after dilution.

2.4. SNP Genotyping

The iSelect 6K BeadChip specific to oats [6] was used to evaluate the 96 DNA samples
describe above. The process was carried out in the molecular genetics laboratory at the
Tibaitatá research facility of AGROSAVIA, and the procedure for array hybridization was
according to the Infinium-II assay instructions (Illumina, Inc., San Diego, CA, USA). SNP
genotypes were analyzed with the software GenomeStudio v2011.1 with a GeneCaller set-
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ting of 0.15. Additionally, a quality control process was carried out on the genotyping data,
according to the rules described by Wiggans et al. (2010), using PLINK v1.9 software [31].

2.5. Data Analysis

The ‘genome function’ of the PLINK was used to perform the grouping analysis and
to evaluate diversity patterns. We used a grouping approach based on an identity matrix
estimated from the allelic frequencies. The distance matrix was also calculated and used
for (a) principal component analysis (PCA), and (b) neighbor joining (NJ) dendogram
reconstruction also in PLINK. These analyses allowed the visualization of direct relation-
ships and the grouping of samples from the different varieties, which were later quantified
explicitly by means on an analysis of molecular variance (AMOVA) test.

In addition, the population structure was determined with the ADMIXTURE software
version 1.3.0 [32]. Five independent simulations were run for values from K = 2 to K = 4,
under the parameters established by default (100,000 burn-ins and 200,000 iterations in the
MCMC analysis). The best K value was determined based on the PCA diagrams, AMOVA
analysis, cross-run cluster stability, and with the cross-validation likelihood procedure.
This methodology allowed us to determine the genetic profile of each sample and establish
the degree of purity or admixture of the individual plants. To graph the results of these
analyses, we used R software (R Core Team, 2017).

Based on the optimum level of clustering, pairwise relative divergence (FST) scores,
according to Weir and Cockerham (1984), were computed per marker for each pair of
clusters using customized R scripts. Bidirectional gene flow among pairs of clusters
was also estimated as the number of migrants per generation (Nem) following Beerli
and Felsenstein [33]. Networks depicting pairwise relative divergence and bidirectional
migration rates were drawn using the R package qgraph. Finally, in order to describe genetic
patterns of diversity and identify FST-outlier SNP markers, we further computed per-
marker expected (HE) and observed (HO) heterozygosity, nucleotide diversity as measured
by π (Nei, 1987), Watterson’s theta (θ) estimator [34], and Tajima’s D [35] using the software
Tassel v.5 [36] and customized R scripts. We compared these statistics among them via
Pearson’s correlations (cor.test function), and FST against the π score, using customized R
codes (R Core Team, 2017).

3. Results

3.1. Oat Selections Based on Harvest Date

During the grow-out for AV-25-C, phenotypic variation was observed especially for
days to flowering. About 20% of plants were late flowering (110 days after planting, dap),
34% were early (55 dap) and 46% were intermediate (80 dap). Correspondingly, harvests
were either late (starting at 150 dap), intermediate (135 dap) or early (100 dap). Selections
(Allard, 1967) of off-type plants were harvested and threshed to produce the AV25-P (early)
and AV25-Ta (late) mass selections from the original AV25-C population. Meanwhile,
the AV25-S and AV25-T selections made in Sutacón and Tibaitatá locations also from the
AV25-C composite were made over two years (2015–2017) to be more uniform. These were
both intermediate in phenology, with flowering around 55 dap and harvest around 135 dap
(Table S1).

3.2. Oat SNP Chip Success Rate

The iSelect 6K BeadChip array from Illumina® for oats allowed the genotyping of
4975 SNPs distributed throughout the A. sativa genome as described by Tinker et al. [6].
The initial screen was across the 96 DNA samples representing subsampling of each oat
varietal selection. SNPs were excluded if the call rate was less than 90%, or if they presented
an extreme deviation from a Hardy–Weinberg equilibrium (p-value < 0.01). In addition,
any SNPs that were monomorphic or having a minimum allele frequency (MFA) below
0.05% were removed. After applying these criteria for quality control, 1672 SNP loci were
retained that met the parameters for further analysis. In addition to SNP locus validation,
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there were eight DNA samples which had a call rate lower than 90%, perhaps indicating
worse quality DNA, and were eliminated. These included three lines from AV25-C (13.6%
of total), one from AV25-P (33.3%), one from AV25-S (3.3%) and one from AV25-Ta (33.3%).
The study, therefore had 88 genotype samples for population analysis that were sufficient
for evaluating structure with the main sub-populations (AV25-C, AV25-S and AV25-T),
while noticing trends on the off-types (AV25-P and AV25-Ta). The latter were of less interest
to us because they were not being considered for varietal release as the former were.

3.3. Clustering of Individual Plants

The analysis of the subpopulation structure made it possible to determine that there
was genetic differentiation between the evaluated oat genotypes (Figure 1). With a value of
K = 2, a subgroup with the largest number of genotypes (red bars) corresponded mostly to
the purified selections for AV25-T and AV25-S and some genotypes from the mixed original
population, AV25-C. The other subgroup observed (yellow bars) included the samples of
the commercial varieties, the AV25-P and AV25-Ta plants and some of the AV25-C samples,
mainly those that correspond to the early maturing phenotype. At K = 3 value, there was a
subgroup (yellow color) with a similar genetic profile as at K = 2, including all the samples
of the purified AV25-S and AV25-T genotypes and most but not all the AV25-C samples.
The second group (green color) included commercial varieties and plants with early and
late phenotypes, while the third genetic subgroup (red color) was present only in some of
the AV25-C samples. It is evident that within AV25-C there is a significant degree of mixture
and some late off-type genotypes that were eliminated by mass selection. These results
coincide with field observations, since this cultivar presents plants of different phenologies
(early, intermediate and late). With the K = 4 value, we still found a common genetic profile
for Cayuse and Cajicá and AV25-P and AV25-Ta genotypes.

Figure 1. Genetic structure of 88 plants representing seven forage oat genotypes (A = Cajicá and
Cayuse, commercial varieties), B = AV25-C, the mixed source population, C = AV25-P, the early
selection D = AV25-S, mass selection samples from Sutacón, E = AV25-T mass selection samples from
Tibaitatá and F = AV25-Ta, the late selection. Each individual panel is divided into subgroups coded
in colors based on clustering K-value from 2 to 4 being the number of groups assumed. Length of the
bar segment represents the estimated proportion of sample membership.
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3.4. Principal Component Analysis

Figure 2 shows the principal component analysis for the 88 samples analyzed. The
first two components of the PCA analysis showed three clearly defined groups, with a
compact first group located to the left of the graph (Figure 2a) corresponding to the purified
genotypes of AV25-S (29 genotypes with SNP profiles), all the AV25-T (30 genotypes) and
some of the AV25-C samples (13 genotypes).

Figure 2. Analysis of main components (PCoA) for estimating genetic structure patterns of forage
oat genotypes used in this study: with (a) first two components, (b) first and second components,
and (c) second and third components. The percentage of variation explained by each component is
shown within parenthesis in the label of the corresponding axis. Axes are drawn to the same scale to
make comparisons. Different colors represent groups.

When expanding the area of the graph to the third component (Figure 2b,c), there
was evidence of variation between samples for the AV-25 group: a second group located
in the upper right part of the graph included the AV25-P samples and a single AV25-S
sample. The variation that existed within this group was greater than that evidenced in
the other groups, which suggests a possible mixture with the other genotypes. The third
group identified in the PCA was in the lower right part of the graph with the first two
components (Figure 2a) and corresponded to the samples of commercial varieties and
AV25-P and AV25-Ta, which presented a well-defined, distinct genetic profile.

Different color dots were used to represent the groupings with the majority of the
AV25-S lines in the orange group, the AV25-T lines in the blue group, the AV25-P lines
in the brown group and the AV25-Ta lines in the purple group. The genotypes from the
original mixed sample AV25-C were together with other groups.

The patterns were broadly concordant with the distance-based dendogram using the
neighbor joining algorithm (Supplementary Figure S1) where dots on the tree and in the
PCA were in same grouping colors. Nonetheless, this approach exhibited less resolution at
distinguishing genetic differences among individual plants when compared to the PCA.
An AMOVA test relying on the grouping from the NJ tree and from the PCA indicated
that 63.6% of the genetic variation could be explained by genetic cluster, while 36.4% was
found within genotype (p-value < 0.001). Finally, unsupervised Bayesian clustering allowed
for a more detailed reconstruction of the admixture level within individual plants from
the selections compared to the original population of AV25-C (Supplementary Figure S2).
In K = 2, most AV25-T and AV25-S genotypes grouped together with some samples of
AV25-C. The other group included the samples of the commercial varieties, the AV25-P and
AV25-Ta plants and some of the AV25-C samples, mainly those that corresponded to the
early phenotype.

Given that PCA diagrams, AMOVA analysis, and cross-run cluster stability had
substructure beyond the hierarchical level of K = 2, we explored population stratification
and admixture at two additional K strata. When using a K = 3 value there was a subgroup
with a similar genetic profile to K = 2, which corresponded to all the samples of the purified
AV25-T genotype and most of the AV25-S samples, except for one sample showing a mixed
genetic profile. This group also included AV25-C samples. The second group was made
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up of commercial varieties and plants with extreme phenotypes (early and late), while the
third genetic profile was present only in some of the AV25-C samples. It was evident that
within AV25-C there was a significant degree of admixture, sharing genetic profiles with
the other groups evaluated.

3.5. Relative Divergence and Genetic Patterns of Diversity

Based on the unsupervised genetic clustering described above, pairwise relative
divergence (FST) scores were estimated between groups and ranged from 0.06 to 0.25
(Figure 3a). Pairwise FST scores were higher for all three comparisons of blue and red
clusters against the brown cluster for AV25-P samples and a single AV25-S versus purple
cluster with commercial varieties.

Figure 3. Networks depicting (a) relative divergence scores (FST), and (b) bidirectional gene flow
(computed by migrants per generation, Nem) among four forage oat genetic clusters (circles). Clusters
were determined following the unsupervised clustering approaches of the previous section: where the
orange (1) and blue (2) clusters included samples of the purified genotypes AV25-S (29 lines), AV25-T
(30) and some of the AV25-C samples (13); the purple cluster (3) included samples of commercial
varieties, and AV25-P and AV25-Ta; and the brown cluster (4) included AV25-P samples and a single
AV25-S sample.

Meanwhile, the number of migrants per generation (Nem) ranked from 0.7 to 2.7
(Figure 3b) and was negatively correlated with the FST (r = 0.93, p-value < 0.001). The
width and color intensity of the green lines were proportional to the FST score in the sub-
figure (a), and proportional to number of migrants per generation (Nem) in sub-figure (b).
The thinnest lines in the sub-figure corresponded to Nem values below one. Nem values
above one indicated mixtures.

4. Discussion

Cultivated oat genotypes, whether they are for cereal or fodder, are considered au-
togamous, self-pollinating plants [1]. Therefore, the mixture of genotypes in the original
AV25-C population, uncovered by SNP analysis, show that the forage variety had become
contaminated and was a composite variety with multi-lines of different inbred oat lines.
Phenotypic analysis showed that the most variable feature of this population was pheno-
logical, including flowering and harvest time. The genotypes AV-P and AV-Ta selected from
this population showed that contaminant plant types were part of the composite AV variety
and genotyping showed that this could be related to other varieties grown in Colombia,
such as Cajica and Cayuse, which are both late flowering and maturing. Although the AV
variety was developed in southern Colombia (Obonuco station in Nariño), purification by
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mass selection (MS) was successful in both locations in central Colombia (Tibaitatá station
in Cundinamarca and Sutacón farm in Paipa, Boyacá), producing two sub-populations that
were uniform in SNP fingerprint and in phenological characteristics important for having a
uniform forage crop.

The results of genetic structure analysis coincided with field observations, since the
original multi-line oat cultivar AV25-C presented plants of different phenotypes (early,
intermediate and late). The purification of AV25-S and AV5-T was achieved to a certain
extent as shown by the admixture levels and PCA/dendogram results and given that they
all presented intermediate phenology and no longer included early and late plants. With
the structure K = 4 value, it was still possible to find a common genetic profile of the oat
varieties Cayuse and Cajicá with the early and late mass selections of AV25-P and AV25-Ta.
However, clear differentiation between the AV25-T, AV25-S and AV25-C selections was
not possible, showing that the derived mass selections for the central Colombian sites was
indeed derived from the original composite variety from southern Colombia.

The rapid advances in the development of large-scale genotyping platforms with
the consequent decrease in processing costs have made genotyping with SNP chips an
attractive and practical approach to rapidly characterize genomes and populations [6].
In the short term, these resources have opened the door to mass selection (MS) and the
evaluation of populations. Such processes can also lead to genomic selection (GS) programs
that use genome-wide molecular markers to predict the genetic merit of complex and
quantitative traits in the improvement plant populations [37]. However, these GS breeding
programs are often beyond the capacity of developing country national programs, such
as the one at AGROSAVIA. For example, our budget only allowed one 96-well plate to be
analyzed limiting the sampling for off-types, although providing room for evaluation of
mass selections for the new purified varieties of AV25-S and AV25-T is useful for central
Colombia. Therefore, in our study we emphasized the use of SNP arrays to evaluate varietal
purity in MS derived sub-populations from a forage oat originally from southern Colombia.

The same SNP chip we used here validated SNPs on 1100 genotypes from 6 recombi-
nant inbred line mapping populations [7]. Here we used fewer samples but had almost as
many validated SNP markers as that study with 4950 loci called in our study and 4975 loci
called in that previous study. This was better than some previous testing on pools of various
oat cultivars and lines, which only provided 3500 polymorphic Mendelian loci [38].

We evaluated fewer genotypes but found more SNPs to be successfully called on the
variety AV25-C and the AV25-S and AV25-T subpopulations derived from mass selections.
In addition, our ability to capture outlier SNP markers in our oat population further
endorsed the implementation of indirect polygenic selection strategies for the species in
addition to the uses of SNP chips for multi-or pure-line varietal certification.

The application of SNP technology is already a routine practice in the regulatory
processes of varietal identity and protection of plant breeders’ rights. SNP chips have
been used to strengthen the production of pure seed in other countries. For instance, the
4004 loci SoySNP6K chip (Lee et al., 2016) was used in 858 Glycine max varieties by the
Argentine National Seed Commission to regulate varietal purity. Similar scenarios have
been reported for other grain species: wheat (Triticum aestivum L., Akhunov et al., 2009; [9],
barley (Hordeum vulgare L., [11]), rice (Oriza sativa L., [18]) and quinoa (Chenopodium quinua
Willd, [39]).

Oat selections in Colombia have been classified as early, intermediate and late due to
the long growing period available in the tropical environment where no winter or summer
limits physiological growth. Here we had all three types of oats ranging from the earliest
AV25-P to the latest AV25-Ta. Early oats are characterized by <100 days to time of forage
harvest (Z7.1 stage). Intermediate oats are harvestable for forage at 135 days on average,
and late oats exceed 150 days to be harvested for forage [3]. Days to harvest affects dry
matter production and nutritional value of forage oats [30].

In addition to yield differences, the forage oat varieties showed differences in growth
habit, plant height, stems per plant, and leaves per plant. The use of oats for livestock feed
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is very common in some countries, especially where processing of oatmeal and rolled oats
for human consumption is limited. In some cases, oats are a dual function crop providing a
boiled porridge food for humans and a fodder for animals, such as milk cows and sheep.
Oats used for forage purposes in Colombia are grown in the same way as the cereal grain
that is grown for its seed, but fields of livestock oats are opened up for pasture directly by
animals, often sheep or cattle. On the other hand, the forage oats can be harvested for hay
to supplement dairy cows or for use by the large horse breeding industry.

In Colombia, varietal purity regulations follow an agreement of the Andean Commu-
nity of Nations (adopted by decision 345 and regulatory decree 533 in 1993–1994) called the
Common Regime for Protection of Plant Variety and Breeders’ Rights. The decree assigned
the Colombian Agricultural Institute (ICA) as the national authority for the management
of variety regulations. Likewise, the ICA standardized and implemented phenotypic
evaluation techniques for the identification of cultivars (Valencia et al., 2010). This tech-
nology follows UPOV rules that a new plant variety must be different (D) from any other
well-known variety, sufficiently uniform (U) and stable (S), according to Breeder’s Rights
(Community Plant Variety Office, 2015).

Conventional tests for DUS as outlined above, especially for multi-lines like the variety
used here, make use of morphological characteristics, such as descriptors, and are based
on UPOV’s or national protocols. The reliance on phenotyping alone is problematics, as it
is well known that morphological traits are highly influenced by the environment, which
makes the predictions unreliable [9,25]. The morphological testing should be complemented
using molecular markers, as a biotechnology tool for varietal identity. In the specific case of
the application of SNPs in varietal quality control, the markers are a complementary tool
to the use of morphological descriptors [7] and can give both within variety and between
variety diversity, as found in this study. Its application in variety development programs
among row crops has been successful in corn [40], chickpea (Cicer arietinum, [6]), pigeon
pea (Cajanus cajan, [41]) and canola (Brassica napus, [42]). Here we show the success of
marker fingerprinting in the first study of forage oats in Colombia.

5. Conclusions

Overall, our results showed that SNP marker analysis confirmed that visual selection
for phenology was reliable. SNP genotyping allowed the identification of genetic differ-
ences existing within the original multi-line oat variety AV25. The information on the
mass selected sub-populations AV25-S and AV25-T will facilitate registration [19,38] and
will support plant breeders’ rights through better fingerprinting [42]. Moving forward,
other cultivars might require the implementation of procedures for the purification of
single plant derived lines. The AV25 variety is now a candidate for wider release across
more departments of Colombia. Previous use of the forage variety was limited to the
southern department of Nariño and had become contaminated with off types. However,
now, it has been multiplied in two central highland locations (Susacón and Tibaitatá) for
distribution within other highland regions (>2000 masl) in Boyacá and Cundinamarca
departments. With a better understanding of the population structure for the variety and its
sub-populations we can disseminate the cultivar more widely with greater uniformity. Va-
rietal purity in oats is especially important due to the delayed production of late-maturing
genotypes compared to the mid-season intermediate maturing selections made here. Apart
from the varietal implications of this study, the results of this research also represent an
opportunity to generate new breeding techniques for oats, which might leverage GS for
complex polygenic selection (Heffner et al., 2010) in an improvement program for forage
oats, which would help accelerate a growing dairy industry. For this breeding to be suc-
cessful, it would be necessary to broaden the base population for local oats with novel
genomic and phenotypic resources while developing machine learning predictors [43] to
boost prediction of key yield and adaptive traits (Jannink et al., 2010). The oat SNP chip can
continue to be used for varietal certification of other forage oat cultivars. Similar procedures
would be useful in wheat and barley.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12071710/s1. Table S1: Variation in development for
Avena sativa phenological stages in days after planting (dap) for forage oat selections grown in high-
land Colombia (>2000 masl), including, AV25-P (early), AV25-C/AV25-S/AV25-T (all intermediate)
and AV25-Ta (late) with growth periods as defined by the Zadoks et al. [30] scale. Figure S1: neighbor
joining (NJ) dendogram for genetic clustering among oat genotypes. Dots are colored following same
coding, as shown in Figure 2. Figure S2: Unsupervised genetic clustering of 88 individual plants
from seven forage oat cultivars. Each individual is represented by a single vertical line divided into K
colors, where this is the number of groups; length of the colored segment represents the estimated
proportion of sample membership to a particular group. Bars in K = 4 are colored following Figure 2:
orange and blue dots shown as blue bars for purified genotypes AV25-S (29 samples) and AV25-T
(30 samples) with some of the AV25-C genotypes (13 samples); the bars in brown were AV25-P and a
single AV25-S sample; and purple bars included commercial varieties and AV25-Ta.
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Abstract: Submergence stress due to flash floods reduces rice yield drastically in sensitive varieties.
Maudamani is a high yielding popular rice variety but is highly susceptible to submergence stress.
The selection of progenies carrying Sub1 and GW5 (wide-grain) enhanced the submergence stress
tolerance and grain yield of theMaudamani variety by following the marker-assisted backcross
breeding method. Foreground screening detected 14 BC1F1, 17 BC2F1, and 12 BC3F1 backcross
progenies that carried the target QTLs for submergence tolerance and grain width. Background
screening was performed in the progenies carrying the target QTL and enhanced the recovery of a
recipient parent’s genome by upto 96.875% in the BC3 pyramided line. The BC3F1 plant containing
the highest recipient parent genome content and the target QTLs was self-pollinated. In BC3F2
generation, the target QTLs the Sub1 and GW5 (wide-grain) alleles and recipient parent’s yield
component QTL OsSPL14 were tracked for homozygous states in the progenies. Seven pyramided
lines showed tolerance to submergence for 14 days and higher grain yield than both the parents. The
pyramided lines were similar to the recipient parent for the majority of the studied morphological
and quality traits. The pyramided lines are useful as cultivars and can serve as potential donors for
transfer of Sub1, OsSPL14, Gn1a, GW5 (wide-grain), and SCM2 QTLs.

Keywords: background selection; foreground selection; gene pyramiding; marker-assisted breeding;
submergence tolerance; yield component QTL

1. Introduction

Rice, the golden cereal, sustains life for millions of people around the world. Rice is
important not only as a staple food but also for its association with life in India, which is
seen in its use as worship material for important ceremonies and rituals since ancient time.
Rice provides important compounds, namely carbohydrates, quality proteins, vitamins,
specific oils, many minerals, dietary fiber, and a few phyto-compounds thatprovide added
health benefits [1]. The crop is very unique in its adaptation and cultivation from very high
elevations to below sea level. The crop covers around 160 million hectares of land around
the world. The crop is cultivated as a rainfed crop in about 45% of the total rice cultivated
area [1]. Rice crop provides livelihood to nearly 4 billion people, which constitutes about
55% of the global population. The crop generates about $206 billion global annual earnings,
which is 17% of the total crop value [2]. In recent years, the crop has become highly
affected by the adverse effects of climate change. The higher production from rainfed
rice cultivation is now challenged by the climate change-related yield-reducing factors in
India [3]. About 22 mha of rainfed rice area is cultivated in India, of which 90% is confined
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to the eastern region of the country [4]. Submergence tolerance and high grain yield along
with resistance to major diseases and insect pests should be transferred to a superior variety
to ensure stable production.

Although there has been impressive growth in rice production and productivity
during recent years, still, the demand for rice continues to be higher, projecting upwards in
the future due to the population growth rate being higher than the production increase rate
of rice. Again, in the coming years, the production increase must be harvested under the
adverse effects of climate change. In addition, the future production needs to be obtained
from the least available land with less use of inputs and lower chemical usage and in a
more environmentally friendly manner. The breeding strategy in this investigation focuses
on simultaneous improvement of stress tolerance and yield in rice so as to fulfill future
requirements [4]. Yield potential in a rice variety can be enhanced by pyramiding the
suitable yield component QTLs absent in that variety. Among the yield component traits,
grain number enhancement is controlled by QTLs Gn1a [5], Ghd7 [6], Ghd8 [7,8], APO1 [9],
DEP1 [10,11], DEP2 [12], and DEP3 [13]. An increase in yield is also regulatedby the grain
weight and grain dimension QTLs GW2 [14], GS3 [15], GS5 [16], and GW5 [17,18]. Tiller
is controlled by the QTLs MOC1 [19], LRK1 [20], EP3 [21], and IPA1 [22,23]. High yield
through higher grain filling is controlled by the QTLs GIF1 [11] and FLO [24,25]. Transfer
of these yield component QTLs into a variety lacking these QTLs will be a useful way of
raising the yield potential further in the variety.

Unpredictable and flash floods during rainy season are now a common occurrence
in India, particularly in the eastern region of the country. This is a major cause of yield
reduction in susceptible varieties affected by submergence stress. The Maudamani variety
produces 7 to 9 t/ha normally but harvests upto 11 t/ha grain yield under favorable
conditions. However, total crop failure occurs if the crop is affected by flash flood causing
submergence for more than a week. The submergence tolerance QTL, Sub1, confers
tolerance to submergence for about two weeks [26,27]. Recently, gene-based markers
are available for transfer of Sub1 QTL through marker-assisted breeding. Submergence
tolerance has been improved in many high yielding varieties including Swarna using this
QTL introgression [28–32]. The transfer of Sub1 QTL from Swarna-Sub1 to Maudamani
may contribute negligible undesirable genetic effects from the donor variety as the donor
parent is a popular variety [33].

The yield component QTL, GW5, is associated with reduced grain width and the
effects of the QTL was consistent under multiple environmental conditions. The loss of a
GW5 segment resulted in wide-grain genotypes in most japonica and indica rice [18]. The
donor parent, Swarna-Sub1, developed through the marker-assisted backcross breeding
approach, carries the Sub1 QTL for submergence tolerance [1]. Additionally, the presence
of yield component QTLs Gn1a, GW5, and SCM2 were also confirmed in the parent by
the parental line validation study. Additionally, the recipient parent, Maudamani, a high
yielding super rice variety, showed the presence of yield component QTLs OsSPL14, Gn1a,
and SCM2 via the parental line validation study in this investigation. We report here the
successful development of pyramided lines in a Maudamani background carrying Sub1,
OsSPL14, and GW5 (wide grain) QTLs in a homozygous state for submergence tolerance
and high grain yield.

2. Materials and Methods

2.1. Plant Materials and Breeding Program

The rice variety Swarna-Sub1 carrying Sub1 QTL for submergence tolerance and yield
component QTLs SCM2 and GW5 was used as the donor male parent in a hybridization
program. The recipient parent, Maudamani, is a high yielding variety of eastern India
inbuilt with the yield component QTLs OsSPL14, Gn1a, and SCM2 but shows susceptibility
to submergence stress. The recipient parent was crossed with the donor variety, Swarna-
Sub1, during a dry season in 2014 as per the scheme depicted for the marker-assisted
breeding (Figure 1). The donor and recipient parents were obtained from the gene bank of
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National Rice Research Institute (NRRI), Cuttack, India. One true F1 plant was hybridized
with the recipient parent during the rainy season in 2014 to generate BC1F1 generation
seeds. True hybridity was checked using the direct Sub1 marker, Sub1-A203, and with a co-
dominant marker, RM8300, as well. The BC1F1 seeds were grown, and the progenies were
screened for the target genes, yield component, and submergence tolerance QTLs by using
the established molecular markers (Table 1). The grain size QTL, GW5, is associated with
narrow grained rice, and hence, negative selection was performed to obtain the Maudamani
grain width. In the background selection, progenies of the BC1F1 generation carrying the
two target QTLs were screened using the polymorphic markers. The foreground positive
progenies containing the highest genome content of the recurrent parent was hybridized
with the recipient parent Maudamani to obtain BC2F1 seeds. During the dry season in
2015, BC2F1 seeds were harvested. Among the derived progenies detected with the target
QTLs in BC2F1 generation, those with highest recurrent genome content was again crossed
with the recipient parent during the wet season in 2015 to produce BC3F1 seeds. The
background analysis of BC3F1 progenies was performed during the dry season in 2016.
The BC3F1 plant containing the highest recipient genome content along with two target
QTLs wereselfed in the dry season in 2016. BC3F2 progenies were genotyped to search
for the presence of homozygosity for the target QTLs and recipient parent’s yield QTLs
during the wet season in 2016. The seed increase in the pyramided progenies detected with
homozygous target genes were increased during the dry season in 2017. Evaluations for
agronomic and other traits were performed during the wet seasons in 2017, 2018, and 2019.

Figure 1. Breeding scheme used for transfer of Sub1 and GW5 (wide-grain) for submergence
tolerance and yield component QTLs through marker-assisted backcross breeding into popular
variety, ‘Maudamani’ (Inside the parentheses, number of hybrids/derived progenies were raised in
the generation).
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Table 1. Molecular markers used for screening of yield component QTLs and submergence tolerance during foreground selection.

Sl
No.

Trait QTL Chromosome
Position

(Mb)
Primer Name Primer Sequence Reference

1. High grain
number

Gn1a 1 5.27
Gn1a(F) 5’ TGAGGATGCCGTGGAAGACGA 3’

Ashikari et al. [5]
Gn1a (R) 5’ TTCGTGTTCGCGCAGGACGT 3’

2. Grain width GW2 2 8.11
GW2(F) 5’ CCAATAAAGATGTCCATTCTGTTA 3’

Song et al. [14]
GW2 (R) 5’ GCTCTTCCTGTAACACATATTATG 3’

3. Grain weight GW5 5 27.4
GW5 (F) 5’ GCGTCGTCAGAGGTAGA 3’

Weng et al. [18]
GW5 (R) 5’ GACCTAACCCATCTCATTCCA 3’

4. Strong culm SCM 2 6 27.66
SCM 2 (F) 5’ ATTCAGATCAATAGGTTGAGTGT 3’

Ookawa et al. [33]
SCM 2 (R) 5’ TGCTATGTATATCCTATCGGTTC 3’

5.
Wealthy
Farmers
Panicle

OsSPL14 8 25.27
OsSPL14(F) 5’ CAAGGGTTCCAAGCAGCGTAA 3’

Miura et al. [23]
OsSPL14(R) 5’ TGCACCTCATCAAGTGAGAC 3’

6. Submergence
tolerance Sub1 9

5.9

Sub1-A203(F) 5’ CTTCTTGCTCAACGACAACG 3’

Pradhan et al. [3]
Xu et al. [34]

Septiningsih et al.
[35]

Sub1-A203(R) 5’ AGGCTCCAGATGTCCATGTC 3’

Sub1-BC2(F) 5’ AAAACAATGGTTCCATACGAGAC 3’

Sub1-BC2(R) 5’ GCCTATCAATGCGTGCTCTT 3’

5.7
RM8300(F) 5’ GCTAGTGCAGGGTTGACACA 3’

RM8300(R) 5’ CTCTGGCCGTTTCATGGTAT 3’

2.2. Genomic DNA Isolation, Polymerase Chain Reaction and Marker Analysis

Genomic DNA was isolated following the standard extraction protocol [36]. APCR
reaction was performed following the procedure used in a previous publication [32]. The
information regarding chromosome number, position, and sequence of the primers used
in the polymerase chain reaction are presented in Table 1. Eight gene-specific and tightly
linked markers for the two target QTLs and four recipient QTLs were used in foreground se-
lection (Table 1). These markers information were taken from earlier publications reported
for these target traits [3,5,14,18,23,33,35,36]. A total of 644 publicly available SSR markers
were used for the study of polymorphism between the two parents. The polymorphic
markers detected were used for background selection (Table 2). Agarose gel electrophore-
sis was used to separate the amplification products obtained from PCR reactions. The
images were recorded in a gel documentation system (SynGene, Cambridge, UK). Data
analysis and dendrogram construction were performed following the standard publica-
tions [37–39]. Graphical Geno Types (GGT) Version 2.0 software was used to construct the
genome recovery graph of recipient parent in the pyramided lines based on the SSR marker
data [40].

2.3. Screening for Submergence Tolerance

The BC3F4 generation pyramided lines and parents were transplanted in the screening
tank of ICAR NRRI, Cuttack, at around 3 weeks’ seedling age during the wet seasons in
2018 and 2019. The screening trial was laid out in a randomized complete block design
(RBD) with three replications/entries accommodating a population size of 66 plants/entry.
The experiment materials were transplanted witha spacing of 15 × 20 cm2 by providing
three rows/entry. Two weeks of complete submergence stress upto 1.5 water depth was
maintained in the tank. De-submergence was performed just after completion of the 14-day
stress period, and subsequently, regeneration was assessedone week after de-submergence.
The data recording and scoring the genotypes were collected following the procedures of
earlier publications [1,3].
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Table 2. Polymorphic microsatellite markers obtained between the rice varieties Maudamani and
Swarna-Sub1.

Chromosome
No. of Markers

Tested

No. of
Polymorphic

Markers
Name of Polymorphic Markers

1 48 4 RM11694, RM10346, RM495, RM594

2 40 4 RM1347, RM263, RM521, RM6374

3 40 5 RM14723, RM426, RM1278, RM570,
RM3392

4 40 5 RM1113, RM2416, RM470, RM551,
RM335

5 40 5 RM440, RM430, RM334, RM7452,
RM122

6 60 3 RM20377, RM469, RM225

7 48 4 RM432, RM336, RM429, RM8007

8 96 6 RM337, RGNMS2900A, AUT22718,
RGNMS2866, RGNMS2873, RM23444

9 72 5 RM23668, RM23722, RM257, RM444,
RM201

10 40 5 RM6100, RM258, RM590, RM222,
RM25181

11 40 6 RM1812, RM167, RM1341, RM206,
RM287, RM224

12 40 5 RM235, RM7003, RM20A, RM1337,
RM309

Total 644 57

2.4. Evaluation of the Pyramided Lines for Various Traits

The seedlings of 25-day-old pyramided lines carrying Sub1 and yield QTLs were
transplanted along with the parents during the wet seasons in 2017, 2018, and 2019. A
plot slot size of 12 m2 was provided to each entry, with 40 plants per row, at a spacing
of 15 × 20 cm2, and planted in RBD with three replications in the research farm of NRRI,
Cuttack. The data for ten plants for morpho-quality traits viz., plant height, panicles/plant,
panicle weight (g), number of filled grains, total spikelets, number of primary branches,
secondary branches and number of tertiary branches per panicle, grain length, grain
breadth, 1000-grain weight, milling (%), head rice recovery (%), and amylose content (%)
from each entry and replications were recorded. Plot yield and days to 50% flowering were
recorded on a whole plot basis. The standard protocols published for head rice recovery [41]
and gel consistency [42] were adopted. Amylose content in the grains of the pyramided
and parental lines was estimated following the standard procedures described in an earlier
publication [43]. An analysis of the various morpho-quality traits of the pyramided and
parental lines were analyzed using SAS 2008, version 9.2 [44]. The Principal Component
analysis (PCA) for the pyramided and parental lines was performed by using multivariate
analysis (Past Software version 4.03) data of the 15 morphological traits. A scatter plot was
generated by using two major components: Principal Component 1 (PC1) and Principal
Component 2 (PC2). The Eigen value and percentage of variance were generated by the
interaction of a variance–covariance matrix. The interaction between all morphological
traits was depicted through biplot graph in the matrix. All of the plots and results of PCA
were generated as per a standard procedure following previous publications [45–47].

3. Results

3.1. Development of Improved Lines
3.1.1. Validation of Donor and Recipient Parents for the Target Traits

The target QTLs controlling the traits were validated in the donor and recipient
parents before starting hybridization and selection. The presence of submergence tolerance
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QTL Sub1 and the yield component QTLs Gn1a and GW5 was confirmed in the parent,
Swarna-Sub1 (Figure 1). The recipient parent is a high yielding popular variety. The genetic
basis of high yield was checked by validating the presence of QTLs contributing higher
yield through Gn1a, OsSPL14, and SCM2 in the recipient parent Maudamani. The yield
component QTLs common in both parents were observed to be Gn1a and SCM2 (Figure 2).
The gene-based and tightly linked molecular markers for Sub1 QTL and the direct marker
for the yield component QTL, GW5, were used for validation and tracking of the target
genes in the parental and backcross-derived lines (Table 1). A parental polymorphism
survey was performed by using 644 simple sequence repeats markers covering all of the
chromosomes. A total of 57 polymorphic markers were detected between the two parents
and deployed for background screening (Table 2).

 

Figure 2. PCR amplification of OsSPL14, Gn1a, GW5 and SCM2 gene specific markers for yield component QTLs and the
markers controlling submergence tolerance, Sub1 by deploying Sub1-A203 and Sub1-BC2 in both the parents Maudamani
and Swarna-Sub1. S: Swarna-Sub1; M: Maudamani; L—Molecular weight marker (50 bp plus ladder) are the gel lanes.

3.1.2. Marker-Assisted Selection in BC1F1 Generation

Maudamani was hybridized with ‘Swarna-Sub1′, and 870 F1 seeds were obtained.
The hybridity in F1 plants was confirmed by genotyping the hybrid plants using the Sub1
specific marker. One true F1 plant was crossed with the recipient parent, Maudamani,
and a total of 132 BC1F1 seeds were generated. The backcross generation was grown, and
foreground screening was performed in all of the BC1F1 plants using the two markers for
the QTLs, Sub1 and GW5 (Figure 3).

The screening results of the BC1F1 progenies of the cross revealed the presence of
Sub1 QTL in 78 derivatives detected by the markers A203 and Sub1-BC2 (200 bp and
240 bp). Screening for the presence of GW5 (wide-grain) gene controlling the grain width
and weight identified 14 progenies to carry both traits. Negative selection was performed
for GW5 in order to obtain the Maudamani grain width and weight. The other yield
component QTL desired, OsSPL14, and validated in the recipient parent, Maudamani,
isalso inherited in these progenies. Additionally, the common yield component QTLs
present in both parents namely, Gn1a and SCM2, detected from both parents, are expected
to be in homozygous states in these progenies. Background screening was performed in
the 14 BC1F1 foreground-positive progenies by using 57 SSR markers. Out of these 14
plants, the progeny carrying maximum recipient genome content was selected for the next
backcross. The recipient parent’s genome content in those 14 progenies varied from 64.58
to 81.25% with an average value of 76.26% (Table 3). The backcross derivatives MSS128 and
MSS84showed the highest recurrent genome content of 81.25%. The BC1F1 lines generated
from MSS84 and MSS128 were backcrossed with the recipient parent, Maudamani, to
obtain BC2F1 seeds.
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Figure 3. PCR amplification of markers for submergence tolerance, Sub1 deploying Sub1-A203 and
Sub1-BC2 along with yield QTLs GW5 and OsSPL14 in BC1F1 progenies. L: Molecular weight marker
(50 bp plus ladder) and lanes on the top of the gel indicate BC1F1 progenies.

Table 3. Genotyping of backcross progenies for two QTLs and recovery of recipient parent’s genome in the foreground
positive backcross progenies.

Generation
No. of Plants

Scored

No. of Progenies
Heterozygotes for

2 Target QTLs

Expected %
of Recurrent

Parent Genome
to Selected

Backcross Plants

Average Recipient
Parent Genome

Content (%) in the
Backcross
Progenies

Estimated Maximum %
Genome Recovery of

Recurrent
Parent to Selected

Backcross Progenies

BC1F1 132 14 75.0 76.26 81.25

BC2F1 169 17 87.5 87.74 91.67

BC3F1 144 12 93.25 94.88 96.87

3.1.3. Marker-Assisted Selection in BC2F1 Generation

One hundred and sixty-nine BC2F1 plants were grown in the field for selection. The
target QTLs were tracked by foreground selection using gene-specific and linked markers.
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The genotyping results of 169 BC2F1 progenies showed 93 positive progenies for Sub1
QTL. These 93 positive progenies were checked for the presence/absence of the GW5
(wide-grain) gene using gene-specific markers. Seventeen plants with the desired QTLs
were identified for further background selection (Figure 4). The other yield QTLs OsSPL14
desired from Maudamani, Gn1a and SCM2, from both parents, is also present in those
17 progenies. Background screening for recovery of the recipient parent genome in those
17 identified plants containing the target QTLs ranged from 82.29 to 91.67% with an average
of 87.74% (Table 3). The plant MSS 128-102 showing 91.67% of the Maudamani genome
content was used for the next BC3 back crossing.

 

Figure 4. PCR amplification of gene specific markers for submergence tolerance, Sub1 using Sub1-
A203 and Sub1-BC2 along with yield component QTLs GW5 and OsSPL14 in BC2F1 progenies. L—
Molecular weight marker (50 bp plus ladder) and Lanes on the top of the gel indicate BC2F1 progenies.

3.1.4. Marker-Assisted Selection in BC3F1 and BC3F2 Generations

The BC3F1 seeds were generated by crossing BC2F1 plant no. MSS 128-102 and the
recurrent parent ‘Maudamani’. A total of 144 BC3F1 seeds were generated and raised for
molecular screening by foreground and background selections. The genotyping results
for the target QTL, Sub1, were positive in 87 progenies. Those 87 Sub1 carrier plants were
genotyped for checking the presence/absence of the GW5 QTL. This analysis identified
12 plants positive for GW5 and further genotyped for background screening (Figure 5).
The background analysis using 57 SSR markers in these 12 plants detected 92.7 to 96.875%
recurrent parent’s genome recovery, with an average of 94.88% (Table 3). The highest
recurrent genome containing plant MSS 128-102-97 was selfed, and 31.5g seeds were pro-
duced for further evaluation in BC3F2 generation. Around one third of the selfed seeds
were raised, and 618 BC3F2 plants were subjected to foreground screening, of which seven
plants were identified to be homozygous. Additionally, the yield QTL being inherited from
the Maudamani parent was checked for its homozygous state. In addition, the inheritances
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of yield component QTLs Gn1a and SCM2 from both parents to BC3F2 progenies were
also validated through foreground analysis using gene-specific markers. The genotyping
results of 618 BC3F2 progenies detected seven plants containing three QTLs, namely Sub1,
GW5 (wide-grain), and OsSPL14, along with the yield component QTLs Gn1a and SCM2
in homozygous condition (Figure 6). The seed increase in these seven pyramided lines
was assessed for evaluation in BC3F4 generation for various morphological and quality
traits. Cluster analysis with agro-morphologic and quality traits showed distinct clusters
of Swarna-Sub1, the donor line forming one group (Figure 7A).Additionally, a dendrogram
was generated by using the alleles detected using the SSR markers, which grouped the de-
veloped pyramided and parental lines into two main groups (Figure 7B). Eight genotypes
were accommodated in cluster I along with the recipient parent ‘Maudamani’, while the
donor parent for submergence tolerance and yield component QTL remained in cluster II.
The backcross derived lines in the cluster I were found to form different subclusters based
on the 15 agro-morphologic traits studied but were similarto the recipient parent ‘Mau-
damani’ for the majority of the studied morphological and quality traits. The pyramided
lines MSS 128-102-97-117, MSS128-102-97-601, MSS128-102-97-613, and MSS128-102-97-617
were almost similar in terms of genome recovery among themselves and with recipient
parent ‘Maudamani’ (Figure 7C).

 

Figure 5. PCR amplification of markers for submergence tolerance, Sub1 deploying Sub1-A203 and
Sub1-BC2 along with yield component QTLs Gw5 and OsSPL14 in BC3F1 progenies. L: Molecular
weight marker and lanes on the top of the gel indicate BC3F1 progenies.
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Figure 6. PCR amplification of gene specific markers for submergence tolerance, Sub1 deploying Sub1-
A203 and Sub1-BC2 along with yield component QTLs GW5 and OsSPL14 in BC3F2 progenies. L—
Molecular weight marker (50 bp plus ladder) and lanes on the top of the gel indicate BC3F2 progenies.

 
Figure 7. Seven pyramided lines along with parents in (A) dendrogram showing relatedness based on 16 morphologic and
quality traits; (B) Dendrogram showing the genetic relationship between lines based on 57 microsatellite markers and (C) %
contribution of recurrent genome in the pyramided lines. The numbers indicate the pyramided lines, 1: MSS128-102-97-68;
2: MSS128-102-97-117; 3: MSS128-102-97-335; 4: MSS128-102-97-436; 5: MSS128-102-97-601; 6: MSS128-102-97-613; 7:
MSS128-102-97-617.

48



Agronomy 2021, 11, 1263

3.2. Analysis of Recipient Genome Recovery on the Carrier Chromosomes in the Pyramided Lines

The background analysis for recipient genome recovery and genetic drag linked to
the donor segments were assessed using 57 background and 8 foreground markers. The
markers were carefully selected for all of the chromosomes to obtain maximum coverage in
background screening. The foreground analysis detected seven BC3F2 pyramided lines for
the presence of homozygous target QTLs in the progenies. The Sub1 carrier chromosome 9
showed linkage drag of the donor fragment on both sides of the marker A203 and Sub1-
BC2 in all seven NILs (Figure 8). The GW5 (wide-grain) present on the chromosome 5
showed no drag of the donor segment in all pyramided lines except MSS128-102-97-613 and
MSS128-102-97-335, where a drag was noticed in between RM7452 and RM440 (Figure 8).

(A) (B) (C) 

Figure 8. Analyses of QTLs stacking in carrier chromosomes associated with submergence tolerance
and yield component QTLs in 7 pyramided lines (A) GW5 (wide-grain) yield component QTL present
on chromosome 5 (B) OsSPL14 yield component QTL present on chromosome 8 and (C) Sub1 QTL
on chromosome 9 in the BC3F3 progenies of Maudamani/Swarna-Sub1. The numbers indicate the
pyramided lines, 1: MSS128-102-97-68; 2: MSS128-102-97-117; 3: MSS128-102-97-335; 4: MSS128-102-
97-436; 5: MSS128-102-97-601; 6: MSS128-102-97-613; 7: MSS128-102-97-617.
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3.3. Evaluation of the Pyramided Lines for Submergence Tolerance

Nine genotypes including seven BC3F4 pyramided lines carrying target QTLs were
evaluated under the controlled submergence screening tank for confirmation of the sub-
mergence tolerance trait in the pyramided lines. The test genotypes were exposed to two
weeks of submergence stress. After one week of de-submergence, all seven pyramided
lines showed regeneration ability from 85 to 95% while the donor parent ‘Swarna-Sub1′
showed regeneration of 95% (Figure 9). No regeneration was found in the sensitive parent
‘Maudamani’. The pyramided lines MSS128-102-97-117 and MSS128-102-97-436 had similar
regeneration abilitiesto that of the Swarna-Sub1 parent. Pyramided lines viz., MSS128-102-
97-68, MSS128-102-97-335, MSS128-102-97-601, MSS128-102-97-617, and MSS128-102-97-613
showed regeneration abilities of 90%.

Figure 9. Percent plant regenerated in the pyramided lines carrying Sub1 QTL along with the parents under control
screening facility after one week of de-submergence from 14 days of submergence stress.

3.4. Evaluation of Pyramided Lines for Agro-Morphologic, Yield Components and Grain
Quality Traits

The pyramided lines carrying submergence tolerance and yield component QTLs in
the background of the Maudamani variety were evaluated for various traits during the wet
seasons in 2017, 2018, and 2019. The pyramided lines were compared with both the popular
rice varieties Maudamani and Swarna-Sub1. The recipient parent ‘Maudamani’ produced a
pooled mean grain yield of 8.69 t/ha. The pyramided lines MSS128-102-97-436, MSS128-102-
97-117, MSS128-102-97-617, MSS128-102-97-601, MSS128-102-97-68, and MSS128-102-97-335
produced more yield than the recipient parent Maudamani (Table 4). The pyramided lines
MSS128-102-97-117 and MSS128-102-97-436 produced >9 t/ha grain yield, showing an
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advantage of >5% over the recipient popular variety Maudamani. However, the agro-
morphologic traits of all of the pyramided lines were not similar tothat of the parent,
Maudamani. The target morphologic traits controlled by the yield component QTLs viz.,
no. of primary branches, secondary branches and tertiary branches per panicle, and panicle
weight finally influencing grain yield in the pyramided lines were observed to be almost
similar within each subcluster (Table 4; Figure 10). Much of the grain quality and the
cooking characters of the recipient parent such as milling (%), head rice recovery (%),
kernel length (mm), kernel breadth (mm), kernel length after cooking, gel consistency,
amylose content (%), and alkali spreading value were retained in a few pyramided lines
(Table 4). The placement pattern of the parents and the pyramided lines in the quadrants
of the genotype-by-trait biplot diagram constructed based on 15 agro-morphologic, yield,
and component traits over three years showed similarity among the pyramided lines
(Figure 11). The pyramided lines were found in the first and second quadrants along with
the recipient parent ‘Maudamani’. The pyramided lines closer to each other were almost
similar in grain yield, grain quality, and the other studied parameters (Figure 11). These
genotypes closer to Maudamani are good candidates for further evaluation and release
as cultivars in various parts of the country. The variation observed for the first principal
component was61.7%, while 15.1% was explained for the second component.

 

Figure 10. Panicle photographs of 2 parents and 7 pyramided lines evaluated in BC3F4 generation during wet season,
2018. M: Maudamani, S: Swarna-Sub1 and the numbers in the figure indicate the pyramided lines, 1: MSS128-102-97-68;
2: MSS128-102-97-117; 3: MSS128-102-97-335; 4: MSS128-102-97-436; 5: MSS128-102-97-601; 6: MSS128-102-97-613; 7:
MSS128-102-97-617.
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Figure 11. Genotype-trait biplot diagram of 7 pyramided lines carrying Sub1 and GW5 (wide-grain) allele along with
the parents for the first two principal components. DFF—Days to 50% flowering; PH—Plant height; PN—Panicles/plant;
TW—1000-grain weight; Milling (%); HRR—Head rice recovery (%); AC—Amylose content (%); NPB—Number of primary
branches/panicle; NSB—Number of secondary branches/Panicle; NTB—number of tertiary branches/Panicles; GL—Grain
length; GB—Grain breadth, and YLD—plot yield.

4. Discussion

The inclusion of marker-aided selection increases the accuracy in transfer of the target
genes/QTLs into a recipient variety in a backcross breeding program. In the present
marker-assisted breeding program, we successfully developed pyramided lines showing
submergence tolerance and yield component QTL in the high yielding background of
Maudamani without altering the main features of the recipient variety. Here, the QTLs
were transferred simultaneously into the popular variety. In addition, it was possible to
reduce the breeding duration for developing a variety compared to the classical backcross
breeding approach. In this breeding program, three backcrosses and one selfing generation
were utilized to transfer the target QTLs into the popular variety. The desired traits
that were lacking in the popular variety could be improved in less time and with more
precision. Such examples of variety development by precise transfer of genes and with a
shorterduration through marker-assisted breeding are available in rice crop [29,30,48–51].

Previous reports of many successful gene transfer and pyramiding cases have been
published in rice crop [47–60]. This study of QTL pyramiding for submergence tolerance
and yield component QTLs is clearly different from earlier gene pyramiding work. Ear-
lier gene stacking publications on bacterial blight resistance with submergence tolerance
transfer into rice varieties, namely improved Lalat and improved Tapaswini, have been
published [58,59]. However, here, yield improvement and submergence tolerance through
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gene pyramiding is a typical example of gene stacking. Other publications using MAB
breeding are mostly for the development of cultivars through pyramiding of resistance
genes for insects and diseases in rice [48,49,52–58].

In this investigation, the presence of the OsSPL14, Gn1a, and SCM2 yield QTLs
were detected in the popular variety Maudamani while Gn1a, SCM2, and GW5 were
confirmed in the variety Swarna-Sub1. These two varieties are good sources of yield
component QTLs in indica rice. The yield component QTL OsSPL14 showed negative
regulation for tiller/panicle number per plant in rice. In our study, OsSPL14 is present in a
homozygous state in Maudamani and produces low to moderate tiller numbers (average,
8.86/plant). However, Swarna-Sub1 lacks this QTL and produces high tiller numbers
(average, 13.93/plant). As expected, the pyramided lines also showed similar trends in
tiller no./plant to that of the recipient parent, Maudamani, but different from that of
Swarna-Sub1 (i.e., not a higher tiller number). The current pyramided lines will serve
as potential sources of QTLs containing Sub1+ OsSPL14+ Gn1a + gw5 + SCM2 and may
be suitable as cultivars. The research results of a mapping study of Gn1a QTL indicated
the source of the grain-number controlling trait from a japonica variety, Habataki [5].
The presence of SCM2 provides non-lodging to the rice culm, and the japonica variety
Habataki was the source for the QTL [33]. Similarly, the donor line for high panicle
branching was from the ST-12 variety. The yield QTL GW5 is responsible for grain width
and weight [15,61,62]. A 1212 bp deletion is responsible for enhanced grain width and
weight, whereas the presence of it reduces the grain width, thereby making it a narrow
grain [18]. Now, the pyramided lines in a Maudamani background carrying five yield
QTLs along with submergence tolerance genes are much better and potential sources for
transfer to indica rice rather than from different japonica varieties.

Work on gene pyramiding for the transfer of various traits in rice has been published
earlier [48,52–55,60]. By using this precision breeding for transfer of target traits, pyramids
containing Sub1+ OsSPL14+ Gn1a + gw5 + SCM2 QTLs along with recipient parents’
genome of >95% in the pyramided lines was possible. The undesirable drag expected from
the donor genome may come from theselection of additional unlinked loci in backcross
generations [51]. In our investigation, such effects were detected in the elite pyramided
lines while transferring the Sub1 QTL into the Maudamani background. The graphical
representation of genotyping data as seen in the diagram constructed for the pyramided
lines showed the linkage drag on the chromosome carrying the target QTLs (Figure 5). This
region was previouslyreported to be a recombination hotspot [18]. However, no linkage
drag was observed on the chromosome 8 carrying OsSPL14 as the QTL was inherited from
the recipient parent and was not from the donor parent. Less linkage drag from donor
parents was also reported by earlier researchers assessingmarker-assisted breeding in rice
using more background markers [49,54,55]. Here, the donor parent was a popular variety,
and hence, the drag may not show any undesirable effects in the developed pyramided
lines (Figure 5). Similar findings in other publications suggest the use of an improved
variety as the donor results in less or no undesirable drag compared to the wild and
landraces source [49–51].

A few elite pyramided lines hadimportant features similar to the recipient parent
though variation was seen among the pyramided lines. The dendrogram drawn based on
the studied traits indicated grouping of the pyramided and parental lines into main three
clusters with similarity within the clusters (Figure 7A). All of the pyramided lines and
recipient parents were observed in quadrants I and II in the biplot diagram drawn based
on the 15 morpho-quality traits, indicating minor variations among the lines (Figure 11).
An evaluation of the pyramided lines for yield and quality traits showed higher yieldsin
pyramided lines MSS128-102-97-436, MSS128-102-97-117, MSS128-102-97-617, MSS128-102-
97-601, MSS128-102-97-68, and MSS128-102-97-335 than the recipient parent (Table 4). The
transfer of traits and achieving similar or better yield in the pyramided lines were also
reported earlier in a few gene-pyramiding publications [48,49,52–57].
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The biplot diagram places the six pyramided lines closer to each other, while the
donor parent is quite far away and placed in a separate quadrant. This shows resemblance
among the pyramided and recipient lines and no undesirable drag from the donor parent
during transfer of the target genes into the pyramided lines. The performance of a few
pyramided lines was better than the recipient parent in yield, quality, and morphological
traits (Table 4). The analysis of background genotyping results showed higher recovery of
the recipient parent’s genome in a few pyramided lines than the expected value in various
backcross generations. Again, it revealed that transfer of Sub1 and the yield component
QTLs into one genetic background may not show antagonistic effects for yield and other
traits [1,48,54,56].

5. Conclusions

The pyramided lines MSS128-102-97-436, MSS128-102-97-117, MSS128-102-97-617,
MSS128-102-97-601, MSS128-102-97-68, and MSS128-102-97-335 showed higher yield and
submergence tolerance than the recipient parent Maudamani. The higher yield obtained in
the pyramided lines might be due to an accumulation of additional yield QTLs, and no
yield penalty happened due to these QTLs. In addition, the elite pyramided lines in the
background of the popular variety ‘Maudamani’ may serve as potential donors of QTLs
possessing Sub1+ OsSPL14+ gw5 + SCM2 in future breeding programs. Moreover, a few
promising pyramided lines may be released as cultivars for flood-prone target regions
in the country. Much of the grain quality and thecooking characteristics of the recipient
parents such as milling %, head rice recovery %, kernel length (mm), kernel breadth (mm),
kernel length after cooking, gel consistency, amylose content (%), and alkali spreading
value were retained in few pyramided lines. The quality features of the popular rice variety
Maudamani remained unchanged along with high grain yield. This study established
the application of marker-assisted selection for transferring abiotic stresses tolerance and
enhancing yield in rice.
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Abbreviations

BC1F1 Backcross generation 1
BC2F1 Backcross generation 2
BC3F1 Backcross generation 3
GC Gel consistency
QTL Quantitative trait loci
MSS Maudamani Swarna-Sub1
Sub1 Submergence tolerance
RBD Randomized block design

References

1. Pradhan, S.K.; Pandit, E.; Pawar, S.; Baksh, S.Y.; Mukherjee, A.K.; Mohanty, S.P. Development of flash-flood tolerant and durable
bacterial blight resistant versions of mega rice variety ‘Swarna’ through marker-assisted backcross breeding. Sci. Rep. 2019,
9, 12810. [CrossRef] [PubMed]

2. Food and Agriculture Organization. Food and Agriculture Organization of the United Nations. Rice Mark. Monit. 2017, 20, 1–38.
3. Pradhan, S.K.; Barik, S.R.; Sahoo, J.; Pandit, E.; Nayak, D.K.; Pani, D.R.; Anandana, A. Comparison of Sub1 markers and their

combinations for submergence tolerance and analysis of adaptation strategies of rice in rainfed lowland ecology. Comptes Rendus
Biol. 2015, 338, 650–659. [CrossRef]

4. Pradhan, S.K.; Chakraborti, M.; Chakraborty, K.; Behera, L.; Meher, J.; Subudhi, H.N.; Mishra, S.K.; Pandit, E.; Reddy, J.N. Genetic
Improvement of Rainfed Shallow-lowland Rice for Higher Yield and Climate Resilience. In Rice Research for Enhancing Productivity,
Profitability and Climate Resilience; Pathak, H., Nayak, A.K., Jena, M., Singh, O.N., Samal, P., Sharma, S.G., Eds.; ICAR-National
Rice Research Institute: Cuttack, India, 2018; pp. 107–121. Available online: https://icar-nrri.in/wp-content/uploads/2019/02/
Rice_Research_book_nrri.pdf (accessed on 19 May 2021).

5. Ashikari, M.; Sakakibara, H.; Lin, S.; Yamamoto, T.; Takashi, T.; Nishimura, A.; Angeles, E.R.; Qian, Q.; Kitano, H.; Matsuoka, M.
Cytokinin oxidase regulates rice grain production. Science 2005, 309, 741–745. [CrossRef]

6. Ikeda, K.; Ito, M.; Nagasawa, N.; Kyozuka, J.; Nagato, Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box
protein, regulates meristem fate. Plant J. 2007, 51, 1030–1040. [CrossRef]

7. Wang, E.; Wang, J.; Zhu, X.; Hao, W.; Wang, L.; Li, Q.; Zhang, L.; He, W.; Lu, B.; Lin, H.; et al. Controlofricegrain-
fillingandyieldbyagenewithapotentialsignatureofdomestication. Nat. Genet. 2008, 40, 1370–1374. [CrossRef]

8. Huang, X.; Qian, Q.; Liu, Z.; Sun, H.; He, S.; Luo, D.; Xia, G.; Chu, C.; Li, J.; Fu, X. Natural variation at the DEP1 locus enhances
grain yield in rice. Nat. Genet. 2009, 41, 494–497. [CrossRef]

9. Xue, W.; Xing, Y.; Weng, X.; Zhao, Y.; Tang, W.; Wang, L.; Zhou, H.; Yu, S.; Xu, C.; Li, X.; et al. Natural variation in Ghd7is an
important regulator of heading date and yield potential in rice. Nat. Genet. 2008, 40, 761–767. [CrossRef] [PubMed]

10. Wei, X.; Xu, J.; Guo, H.; Jiang, L.; Chen, S.; Yu, C.; Zhou, Z.; Hu, P.; Zhai, H.; Wan, J. DTH8 suppresses flowering in rice, influencing
plant height and yield potential simultaneously. Plant Physiol. 2010, 153, 1747–1758. [CrossRef] [PubMed]

11. Yan, W.H.; Wang, P.; Chen, H.X.; Zhou, H.J.; Li, Q.P.; Wang, C.R.; Ding, Z.H.; Zhang, Y.S.; Yu, S.B.; Xing, Y.Z.; et al. A major QTL,
Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 2011, 4, 319–330.
[CrossRef]

12. Yuki, A.; Keiko, M.; Tsuyu, A.; Izumi, K.; Masahiro, Y.; Hidemi, K.; Yukimoto, I. The SMALL AND ROUND SEED1 (SRS1/DEP2)
gene is involved in the regulation of seed size in rice. Genes Genet. Syst. 2010, 85, 327–339.

13. Qiao, Y.L.; Piao, R.H.; Shi, J.X.; Lee, S.I.; Jiang, W.Z.; Kim, B.K.; Lee, J.; Han, L.; Ma, W.; Koh, H.J. Fine mapping and candidate
gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor. Appl. Genet. 2011,
122, 1439–1449. [CrossRef] [PubMed]

14. Song, X.-J.; Huang, W.; Shi, M.; Zhu, M.-Z.; Lin, H.-X. A QTL for rice grain width and weight encodes a previously unknown
RING-type E3 ubiquitin ligase. Nat. Genet. 2007, 39, 623–630. [CrossRef] [PubMed]

15. Fan, C.; Xing, Y.; Mao, H.; Lu, T.; Han, B.; Xu, C.; Li, X.; Zhang, Q. GS3, a major QTL for grain length and weight and minor
QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 2006, 112, 1164–1171.
[CrossRef] [PubMed]

16. Li, Y.; Fan, C.; Xing, Y.; Jiang, Y.; Luo, L.; Sun, L.; Shao, D.; Xu, C.; Li, X.; Xiao, J.; et al. Natural variation in GS5 plays an important
role in regulating grain size and yield in rice. Nat. Genet. 2011, 43, 1266–1269. [CrossRef] [PubMed]

17. Shomura, A.; Izawa, T.; Ebana, K.; Ebitani, T.; Kanegae, H.; Konishi, S.; Yano, M. Deletion in a gene associated with grain size
increased yields during rice domestication. Nat. Genet. 2008, 40, 1023–1028. [CrossRef]

18. Weng, J.; Gu, S.; Wan, X.; Gao, H.; Guo, T.; Su, N.; Lei, C.; Zhang, X.; Cheng, Z.; Guo, X.; et al. Isolation and initial characterization
of GW5, a major QTL associated with rice grain width and weight. Cell Res. 2008, 18, 1199–1209. [CrossRef]

19. Li, X.; Qian, Q.; Fu, Z.; Wang, Y.; Xiong, G.; Zeng, D.; Wang, X.; Liu, X.; Teng, S.; Hiroshi, F.; et al. Control of tillering in rice.
Nature 2003, 422, 618–621. [CrossRef]

20. Zha, X.; Luo, X.; Qian, X.; He, G.; Yang, M.; Li, Y.; Yang, J. Over-expression of the rice LRK1 gene improves quantitative yield
components. Plant Biotechnol. J. 2009, 7, 611–620. [CrossRef]

56



Agronomy 2021, 11, 1263

21. Piao, R.; Jiang, W.; Ham, T.-H.; Choi, M.-S.; Qiao, Y.; Chu, S.-H.; Park, J.-H.; Woo, M.-O.; Jin, Z.; An, G.; et al. Map-based cloning
of the ERECT PANICLE 3 gene in rice. Theor. Appl. Genet. 2009, 119, 1497–1506. [CrossRef]

22. Jiao, Y.; Wang, Y.; Xue, D.; Wang, J.; Yan, M.; Liu, G.; Dong, G.; Zeng, D.; Lu, Z.; Zhu, X.; et al. Regulation of OsSPL14 by OsmiR156
defines ideal plant architecture in rice. Nat. Genet. 2010, 42, 541–544. [CrossRef] [PubMed]

23. Miura, K.; Ikeda, M.; Matsubara, A.; Song, X.-J.; Ito, M.; Asano, K.; Matsuoka, M.; Kitano, H.; Ashikari, M. OsSPL14 promotes
panicle branching and higher grain productivity in rice. Nat. Genet. 2010, 42, 545–549. [CrossRef]

24. Qiao, Y.; Lee, S.-I.; Piao, R.; Jiang, W.; Ham, T.-H.; Chin, J.-H.; Piao, Z.; Han, L.; Kang, S.-Y.; Koh, H.-J. Fine mapping and candidate
gene analysis of the floury endosperm gene, FLO(a), in rice. Mol. Cells 2010, 29, 167–174. [CrossRef] [PubMed]

25. She, K.-C.; Kusano, H.; Koizumi, K.; Yamakawa, H.; Hakata, M.; Imamura, T.; Fukuda, M.; Naito, N.; Tsurumaki, Y.; Yaeshima,
M.; et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 2010, 22,
3280–3294. [CrossRef] [PubMed]

26. Xu, K.; Mackill, D.J. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 1996, 2, 219–224.
[CrossRef]

27. Chen, M.; Presting, G.; Barbazuk, W.B.; Goicoechea, J.L.; Blackmon, B.; Fang, G.; Kim, H.; Frisch, D.; Yu, Y.; Sun, S.; et al. An
integrated physical and genetic map of the rice genome. Plant Cell 2002, 14, 537–545. [CrossRef]

28. Neeraja, C.N.; Maghirang-Rodriguez, R.; Pamplona, A.; Heuer, S.; Collard, B.C.; Septiningsih, E.M.; Vergara, G.; Sanchez, D.; Xu,
K.; Ismail, A.M.; et al. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl.
Genet. 2007, 115, 767–776. [CrossRef]

29. Iftekharuddaula, K.M.; Newaz, M.A.; Salam, M.A.; Ahmed, H.U.; Mahbub, M.A.A.; Septiningsih, E.M.; Collard, B.C.Y.; Sanchez,
D.L.; Pamplona, A.M.; Mackill, D.J. Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11,
the rainfed lowland rice mega variety of Bangladesh. Euphytica 2011, 178, 83–97. [CrossRef]

30. Manivong, P.; Korinsak, S.; Siangliw, J.L.; Vanavichit, A.; Toojinda, T. Marker-assisted selection to improve submergence tolerance,
blast resistance and strong fragrance in glutinous rice. Thai J. Genet. 2014, 7, 110–122.

31. Khush, G.S.; Mackill, D.J.; Sidhu, G.S. Breeding Rice for Resistance to Bacterial Leaf Blight; IRRI: Manila, Philippines, 1989; pp. 207–217.
32. Pradhan, S.K.; Pandit, E.; Pawar, S.; Naveenkumar, R.; Barik, S.R.; Mohanty, S.P.; Nayak, D.K.; Ghritlahre, S.K.; Rao, D.S.; Reddy,

J.N.; et al. Linkage disequilibrium mapping for grain Fe and Zn enhancing QTLs useful for nutrient dense rice breeding. BMC
Plant Biol. 2020, 20, 57. [CrossRef]

33. Ookawa, T.; Hobo, T.; Yano, M.; Murata, K.; Ando, T.; Miura, H.; Asano, K.; Ochiai, Y.; Ikeda, M.; Nishitani, R.; et al. New
approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 2010, 1, 132.
[CrossRef]

34. Xu, K.; Xu, X.; Fukao, T.; Canlas, P.; Maghirang-Rodriguez, R.; Heuer, S.; Ismail, A.M.; Bailey-Serres, J.; Ronald, P.C.; Mackill, D.J.
Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 2006, 442, 705–708. [CrossRef]

35. Septiningsih, E.M.; Pamplona, A.M.; Sanchez, D.L.; Neeraja, C.N.; Vergara, G.V.; Heuer, S.; Ismail, A.M.; Mackill, D.J. Development
of submergence tolerant rice cultivars: The Sub1 locus and beyond. Ann. Bot. 2009, 103, 151–160. [CrossRef]

36. Dellaporta, S.L.; Wood, J.; Hicks, J.B. A plant DNA mini preparation: Version II. Plant Mol. Biol. Rep. 1983, 1, 19–21. [CrossRef]
37. Pavalíce, A.; Hrda, S.; Flegr, J. Free Tree—freeware program for construction of phylogenetic trees on the basis of distance data

and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol. (Pragua)
1999, 45, 97–99.

38. Hampl, V.; Pavlicek, A.; Flegr, J. Construction and bootstrap analysis of DNA fingerprinting based phylogenetic trees with the
freeware program FreeTree: Application to trichomonad parasites. Int. J. Syst. Evol. Microbiol. 2001, 51, 731–735. [CrossRef]

39. Page, R.D. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 1996, 12, 357–358.
[PubMed]

40. Van Berloo, R. GGT: Software for display of graphical genotypes. J. Hered. 1999, 90, 328–330. [CrossRef]
41. Tan, Y.F.; Li, J.X.; Yu, S.B.; Xing, Y.Z.; Xu, C.G.; Zhang, Q. The three important traits for cooking and eating quality of rice grains

are controlled by a single locus in an elite rice hybrid, Shanyou63. Theor. Appl. Genet. 1999, 99, 642–648. [CrossRef]
42. Cagampang, G.B.; Perez, C.M.; Juliano, B.O. A gel consistency test for eating quality of rice. J. Sci. Food Agric. 1973, 24, 1589–1594.

[CrossRef]
43. Juliano, B.O. Rice quality screening with the Rapid ViscoAnalyser. In Applicntions of the Rapid ViscoAnalyser; Walker, C.E., Hazelton,

J.L., Eds.; Newport Scientific: Sydney, Australia, 1996; p. 19.
44. SAS Institute Inc. Statistical Analysis System, version 9.2.; SAS Institute Inc.: Cary, NC, USA, 2008.
45. Pandit, E.; Tasleem, S.; Nayak, D.K.; Barik, S.R.; Mohanty, D.P.; Das, S.; Pradhan, S.K. Genome-wide association mapping

reveals multiple QTLs governing tolerance response for seedling stage chilling stress in Indica rice. Front. Plant Sci. 2017, 8, 552.
[CrossRef]

46. Pandit, E.; Panda, R.K.; Sahoo, A.; Pani, D.R.; Pradhan, S.K. Genetic relationship and structure analyses of root growth angle for
improvement of drought avoidance in early and mid-early maturing rice genotypes. Rice Sci. 2020, 27, 124–132. [CrossRef]

47. Pradhan, S.K.; Pandit, E.; Pawar, S.; Bharati, B.; Chatopadhyay, K.; Singh, S.; Dash, P.; Reddy, J.N. Association mapping reveals
multiple QTLs for grain protein content in rice useful for biofortification. Mol. Genet. Genom. 2019, 294, 963–983. [CrossRef]

48. Pradhan, S.K.; Nayak, D.K.; Mohanty, S.; Behera, L.; Barik, S.R.; Pandit, E.; Lenka, S.; Anandan, A. Pyramiding of three bacterial
blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 2015, 8, 19. [CrossRef]

57



Agronomy 2021, 11, 1263

49. Sundaram, R.M.; Vishnupriya, M.R.; Biradar, S.K.; Laha, G.S.; Reddy, G.A.; Rani, N.S.; Sarma, N.P.; Sonti, R.V. Marker assisted
introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 2008, 160, 411–422. [CrossRef]

50. Pradhan, S.K.; Nayak, D.K.; Pandit, E.; Behera, L.; Anandan, A.; Mukherjee, A.K.; Lenka, S.; Barik, D.P. Incorporation of bacterial
blight resistance genes into lowland rice cultivar through marker assisted backcross breeding. Phytopathology 2016, 6, 710–718.
[CrossRef]

51. Nayak, D.K.; Pandit, E.; Mohanty, S.; Barik, D.P.; Pradhan, S.K. Marker assisted selection in back cross progenies for transfer of
bacterial leaf blight resistance genes into a popular lowland rice cultivar. Oryza 2015, 52, 163–168.

52. Sonti, R.V. Bacterial leaf blight of rice: New insights from molecular genetics. Curr. Sci. 1998, 74, 206–212.
53. Sanchez, A.C.; Brar, D.S.; Huang, N.; Li, Z.; Khush, G.S. Sequence tagged site markers-assisted selection for three bacterial blight

resistance genes in rice. Crop Sci. 2000, 40, 792–797. [CrossRef]
54. Singh, S.; Sidhu, J.S.; Huang, N.; Vikal, Y.; Li, Z.; Brar, D.S.; Dhaliwal, H.S.; Khush, G.S. Pyramiding three bacterial blight

resistance genes (xa-5, xa-13 and Xa-21) using marker-assisted selection into indica rice cultivar PR-106. Theor. Appl. Genet. 2001,
102, 1011–1015. [CrossRef]

55. Perez, L.M.; Redona, E.D.; Mendioro, M.S.; Vera Cruz, C.M.; Leung, H. Introgression of Xa4, Xa7 and Xa21 for resistance to
bacterial blight in thermo-sensitive genetic male sterile rice (Oryzasativa L.) for the development of two-line hybrids. Euphytica
2008, 164, 627–636. [CrossRef]

56. Dokku, P.; Das, K.M.; Rao, G.J.N. Pyramiding of four resistance genes of bacterial blight in Tapaswini, an elite rice cultivar,
through marker-assisted selection. Euphytica 2013, 192, 87–96. [CrossRef]

57. Pradhan, S.K.; Nayak, D.K.; Pandit, E.; Barik, S.R.; Mohanty, S.P.; Anandan, A.; Reddy, J.N. Characterization of morpho-quality
traits and validation of bacterial blight resistance in pyramided rice genotypes under various hotspots of India. Aust. J. Crop. Sci.
2015, 9, 127–134.

58. Das, G.; Rao, G.J.N. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar.
Front. Plant Sci. 2015, 6, 698. [CrossRef] [PubMed]

59. Das, G.; Rao, G.J.; Varier, M.; Prakash, A.; Prasad, D. Improved Tapaswini having four BB resistance genes pyramided with six
genes/QTLs, resistance/tolerance to biotic and abiotic stresses in rice. Sci. Rep. 2018, 8, 2413. [CrossRef] [PubMed]

60. Pradhan, S.K.; Barik, S.R.; Nayak, D.K.; Pradhan, A.; Pandit, E.; Nayak, P.; Das, S.R.; Pathak, H. Genetics, Molecular Mechanisms
and Deployment of Bacterial Blight Resistance Genes in Rice. Crit. Rev. Plant Sci. 2020, 39, 360–385. [CrossRef]

61. Mohanty, S.P.; Kumbhakar, S.; Pandit, E.; Barik, S.R.; Mohanty, D.P.; Nayak, D.K.; Singh, N.R.; Pradhan, S.K. Molecular screening
of yield component QTLs for strong culm, grain number and grain width using gene specific markers in indica-tropical japonica
derived rice lines. Oryza 2016, 53, 136–143.

62. Mohapatra, S.; Pandit, E.; Mohanty, S.P.; Barik, S.R.; Pawar, S.; Nayak, D.K.; Subudhi, H.N.; Das, L.; Pradhan, S.K. Molecular and
phenotypic analyses of yield components QTLs in IR64 backcross progenies and popular high yielding rice varieties of India.
Oryza 2018, 55, 271–277. [CrossRef]

58



agronomy

Article

The GASA Gene Family in Cacao (Theobroma cacao,
Malvaceae): Genome Wide Identification and
Expression Analysis

Abdullah 1,*, Sahar Faraji 2, Furrukh Mehmood 1, Hafiz Muhammad Talha Malik 3, Ibrar Ahmed 3,

Parviz Heidari 4,* and Peter Poczai 5,6,7,*

Citation: Abdullah; Faraji, S.;

Mehmood, F.; Malik, H.M.T.; Ahmed,

I.; Heidari, P.; Poczai, P. The GASA

Gene Family in Cacao (Theobroma

cacao, Malvaceae): Genome Wide

Identification and Expression

Analysis. Agronomy 2021, 11, 1425.

https://doi.org/10.3390/

agronomy11071425

Academic Editors: Roxana Yockteng,

Andrés J. Cortés and María

Ángeles Castillejo

Received: 30 May 2021

Accepted: 14 July 2021

Published: 16 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University,
Islamabad 45320, Pakistan; furrukhmehmood@gmail.com

2 Department of Plant Breeding, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources
University (SANRU), Sari 4818166996, Iran; sahar.faraji@rocketmail.com

3 Alpha Genomics Private Limited, Islamabad 45710, Pakistan; hafiz.talhamalik@gmail.com (H.M.T.M.);
iaqureshi_qau@yahoo.com (I.A.)

4 Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
5 Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
6 Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65,

FI-00065 Helsinki, Finland
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Abstract: The gibberellic acid-stimulated Arabidopsis (GASA/GAST) gene family is widely distributed
in plants and involved in various physiological and biological processes. These genes also provide
resistance to abiotic and biotic stresses, including antimicrobial, antiviral, and antifungal. We are
interested in characterizing the GASA gene family and determining its role in various physiological
and biological process in Theobroma cacao. Here, we report 17 tcGASA genes distributed on six
chromosomes in T. cacao. The gene structure, promoter region, protein structure and biochemical
properties, expression, and phylogenetics of all tcGASAs were analyzed. Phylogenetic analyses
divided tcGASA proteins into five groups. Among 17 tcGASA genes, nine segmentally duplicating
genes were identified which formed four pairs and cluster together in phylogenetic tree. Differential
expression analyses revealed that most of the tcGASA genes showed elevated expression in the seeds
(cacao food), implying their role in seed development. The differential expression of tcGASAs was
recorded between the tolerant and susceptible cultivars of cacao, which indicating their possible role
as fungal resistant. Our findings provide new insight into the function, evolution, and regulatory
system of the GASA family genes in T. cacao and may suggest new target genes for development of
fungi-resistant cacao varieties in breeding programs.

Keywords: gibberellic acid-stimulated Arabidopsis (GASA); gene expression; phylogenetics; Phytoph-
thora megakarya; abiotic stresses; biotic stresses; Theobroma cacao; malvaceae

1. Introduction

Theobroma cacao L. belongs to the family Malvaceae [1]. This is an economically
important tree and grows in up to 50 countries located in the humid tropics [2]. Theobroma
cacao L. seeds are enclosed in pods and are used for chocolate production, confectionery, and
cosmetics [3]. This plant is adapted to high humidity areas, and is therefore predisposed to
various fungal diseases [4,5]. Pod rot, or black rod, is caused by the Phytophthora species
of fungus (P. megakarya, P. palmivora, and P. capsici), leading to 20–30% loss in yield and
10% death of trees [4]. The elucidation of the whole genome is helping to understand
the genetic bases of biotic and abiotic stresses [2]. The availability of the high-quality
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chromosome-level genome assembly of Theobroma cacao [2,6] provides quality resources for
the characterization of various gene families to elucidate the role of different gene families
in cacao development. However, to the best of our knowledge, few gene families such
as WRKY [7], sucrose synthase [8], Stearoyl-acyl carrier protein desaturase [9], sucrose
transporter [10], and NAC [11] have been elucidated in Theobroma cacao.

The gibberellic acid-stimulated Arabidopsis (GASA/GAST) gene family is widely dis-
tributed in plants and performs various functions [12,13]. GAST1 was the first gene
identified among the GASA family’s genes in tomato [14]. GASA proteins are comprised of
three domains, including a signal peptide of up to 18–29 amino acids at the N-terminal,
hydrophilic and high variable regions of up to 7–31 amino acids in the center, and a
conserved domain at the C-terminal of up to 60 amino acids which mostly includes
12 cysteine residues [15–17]. The C-terminal domain is the characteristics of all iden-
tified GASAs [12,15,16,18]. These cysteine-rich peptides play a vital role in various plant
processes. Their roles have been stated in organ development [19], lateral root develop-
ment [20], stem growth [21], cell division [22,23], fruit ripening and development [24],
flowering time [12,18,21], seed development [13,22], and bud dormancy [25]. The detailed
expression analyses of various tissues of Arabidopsis, tomato, rice, soybean, and apple
showed the tissue-specific expression of the GASA genes [12,15,18]. For example, GASA
genes in tomato, including Solyc11g011210, Solyc12g089300, and Solyc01g111075, showed
high expression at the fruit-ripening stage, whereas Solyc03g113910, Solyc01g111075,
Solyc06g069790, and Solyc12g042500 showed high expression level at the flowering stage [15].
Moreover, some studies also showed the contrast effect of GASA proteins. For instance,
AtGASA4 promotes flowering [22], while AtGASA5 induces the opposite effect [21].

The GASA genes also play crucial roles in response to various biotic, abiotic, and
hormone-related stresses. For instance, a member of the GASA gene family, GmSN1, over-
expressed and enhances virus resistance in Arabidopsis and soybean [26]. Similarly, a
high expression level of CcGASA4 was reported in citrus leaves after infection with Citrus
tristeza virus [27]. The antimicrobial properties of various proteins of the GASA family
have also been reported [28–30]. The antifungal activity of the GASA proteins has been
reported in almost all tissues of potato, including root, tubers, leaves, stem, stolon, axillary
bud, and flowers [28–30]. Similarly, the antifungal activity of GASA members has been
found in Arabidopsis, tomato, Alfalfa, and Jujuba [16,31–33]. The GASAs also showed
resistance to various abiotic stresses, such as salt and drought [34]. The induction of
GASA4 and GASA6 has been reported in Arabidopsis by growth hormones such as auxin,
brassinosteroids (BR), gibberellic acid (GA), and cytokinin. In contrast, repression has been
stated by stress hormones including salicylic acid (SA), abscisic acid (ABA), and jasmonic
acid (JA) [31]. The expression pattern and evolutionary relationships of GASA genes were
studied in Arabidopsis [16], apple [12], common wheat [35], grapevine [13], soybean [18],
and potato [36].

Here, we are interested in characterizing the GASA gene family and providing data
about the expression analyses of this gene family specifically regarding fungus-related
diseases. To the best of our knowledge, we are the first to provide data of GASAs related
to their distribution in genome, chemical properties, subcellular localization, and cis-
regulatory elements of promoter regions in cacao. We also explored the roles of GASA
genes in various abiotic and biotic stresses. This helps us to identify GASAs that show high
expressions against infections of fungus Phytophthora megakarya.

2. Materials and Methods

2.1. Identification of GASA Genes in the Genome of Theobroma cacao and Analyses for Conserved
GASA Domain

We retrieved the GASA family’s protein sequences from The Arabidopsis Information
Resource (TAIR10) database (ftp://ftp.arabidopsis.org). We used them as a query in BLAST
for the identification of GASA genes in the Theobroma cacao genome, with an expected value
of E−10. The GASA genes were identified in the latest version of the Theobroma cacao
genome (Theobroma cacao Belizian Criollo B97-61/B2) [6] and retrieved protein sequences,
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coding DNA sequences (CDS), genomics, and promoter sequence (1500 bp upstream of
gene). The retrieved protein sequences were further analyzed for the presence of the
GASA domain using the CDD database, available online: https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi (accessed on 24 November 2020), of the National Center for
Biotechnology Information (NCBI). All the sequences that showed the presence of the
conserved GASA domain were selected for further analyses, whereas all the proteins with
an absent/truncated domain were discarded.

2.2. Chromosome Mapping and Characterization of Physiochemical Properties

The position of each gene, including chromosome number and position on chromo-
some, was noted. All the genes were renamed according to the location of the chromosome
and their position, as shown in Table 1. The MapChart software [37] through Ensemble was
used to show the position of each tcGASA gene along the position of the chromosome. Var-
ious physiochemical properties, including length of the protein, molecular weight (MW),
isoelectric point (PI), instability index, and the grand average of hydropathy (GRAVY),
were determined using the ExPASy tool [38]. The subcellular localization of GASA genes
was also predicted using the BUSCA webserver [39].

Table 1. List of the identified GASA genes and their characteristics in Theobroma cacao.

Gene Locus
ID

Gene ID Location
Length
(Amino
Acid)

MW
(kDa)

PI
Instability

Index
GRAVY

Subcellular
Localization

Tc01v2_t001590 tcGASA01 1: 830,757–831,466 105 11.18 8.93 Unstable −0.023 Extracellular space

Tc01v2_t005890 tcGASA02 1: 3,268,900–3,269,687 107 11.44 8.98 Unstable −0.057 Extracellular space

Tc02v2_t009150 tcGASA03 2: 5,635,674–5,636,363 90 9.90 9.01 Stable −0.054 Extracellular space

Tc02v2_t021110 tcGASA04 2: 30,717,916–30,719,013 106 11.91 9.21 Unstable −0.195 Extracellular space

Tc04v2_t000240 tcGASA05 4: 270,172–272,304 320 33.92 9.83 Unstable −0.750 Extracellular space

Tc04v2_t006890 tcGASA06 4: 15,324,400–15,325,648 106 11.83 9.32 Unstable −0.343 Extracellular space

Tc04v2_t009440 tcGASA07 4: 19,321,294–19,322,037 95 10.37 9.26 Unstable −0.072 Extracellular space

Tc04v2_t016520 tcGASA08 4: 26,297,870–26,298,743 123 13.42 8.27 Unstable −0.026 Plasma membrane

Tc04v2_t016530 tcGASA09 4: 26,301,782–26,302,647 95 10.62 8.88 Unstable −0.251 Extracellular space

Tc05v2_t012230 tcGASA10 5: 25,218,365–25,220,141 114 12.76 9.46 Unstable 0.327 Extracellular space
Tc08v2_t003650 tcGASA11 8: 1,941,175–1,942,036 102 10.92 6.67 Stable −0.031 Extracellular space

Tc08v2_t003660 tcGASA12 8: 1,943,144–1,944,201 100 10.57 8.66 Unstable 0.004 Extracellular space

Tc08v2_t007890 tcGASA13 8: 4,555,655–4,556,418 88 9.64 9.32 Stable −0.062 Extracellular space

Tc08v2_t014670 tcGASA14 8: 15,650,553–15,651,438 102 10.98 8.72 Unstable −0.164 Extracellular space

Tc08v2_t014680 tcGASA15 8: 15,651,664–15,652,892 92 10.01 8.90 Stable −0.148 Extracellular space

Tc08v2_t014690 tcGASA16 8: 15,653,408–15,654,378 110 12.13 9.64 Unstable −0.263 Extracellular space

Tc09v2_t020100 tcGASA17 9: 30,243,952–30,245,432 112 12.32 9.46 Unstable −0.252 Extracellular space

2.3. Gene Structure and Promoter Region Analyses

We analyzed CDS sequences for exons–introns within all tcGASA genes using the
Gene Structure Display Server, available online: http://gsds.cbi.pku.edu.cn (accessed
on 26 November 2020). PlantCare [40] was used to study cis-regulatory elements in the
1500 bp promoter region.

2.4. Prediction of Post-Translational Modifications of GASA Proteins

The phosphorylation site of the GASA proteins was predicted by the NetPhos 3.1
server [41] with a potential value >0.5. N-glycosylation sites were predicted using the
NetNGlyc 1.0 server [42] with default parameters.

2.5. Phylogenetic and Conserved Motif Analyses

The phylogenetic relationship of the GASA genes of T. cacao was inferred with GASA
genes of six other species, including Arabidopsis thaliana, Gossypium raimondii, Vitis vinifera,
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Oryza sativa, Brachypodium distachyon, and Zea mays. A similar approach, which was given
for the identification of GASA genes in Theobroma cacao, was employed for the identification
of the genes of all other species. Clustal Omega [43] was used for multiple alignment of
the protein sequences of all species. The unrooted neighbor-joining tree was drawn using
MEGA X [44] and visualization of the tree was improved by using an interactive tree of
life (iTOL) [45]. The conserved motif distribution into GASA proteins was performed
using MEME v5.3.0 server [46]. We searched for a maximum number of five motifs with a
minimum width of motif 6 and a maximum width of motif 30.

2.6. Gene Duplications and Estimation of Ka/Ks Values

The identity of >85% in nucleotide sequences of genes is considered a sign of dupli-
cation [47]. Hence, we aligned DNA coding sequences using Clustal Omega [43], and
the extent of the identity of the genes with each other was determined using Geneious
R8.1 [48]. Gene duplication events, as compared to other species, were determined using
the MCScan v0.8 program [49] through the Plant Genome Duplication Database.

The selection pressure on GASA genes was determined by calculating non-synonymous
(Ka) and synonymous (Ks) substitutions and the ratio of non-synonymous to synonymous
substitutions (Ka/Ks) using DnaSP v6 software [50]. The time divergence and duplication
were assessed by a synonymous mutation rate of λ substitutions per synonymous site
per year as T = (Ks/2λ) (λ = 6.5 × 10−9) × 10−6 [51]. The synteny relationships of GASA
genes among the orthologous pairs of T. cacao-O. sativa, T. cacao-A. thaliana, T. cacao-Zea
mays, T. cacao-B. distachyon, T. cacao-G. raimondii, and T. cacao-Vitis vinifera at both gene and
chromosome levels were visualized using Circos software [52].

2.7. Three-Dimensional Protein Modeling and Molecular Docking

We used iterative template-based fragment assembly simulations in I-TASSER [53]
to build three-dimensional protein structures of GASAs after selection of best models by
the 3D-refine program [54]. We also used P2Rank in the PrankWeb software [55] and
the CASTp tool [56] to analyze the refined structure of GASA proteins to predict protein
pockets and cavities. Finally, PyMOL [57] was used to visualize results.

2.8. In Silico Expression Analysis of GASA Genes through RNA-seq Data

The publicly available RNA-seq data related to the cacao genome were employed
for expression assays to measure GASA family members in multiple tissues and during
various biotic and abiotic stimuli exposure. The RNA-seq data of cacao inoculated with
Phytophthora megakarya for 0 h (0 h), 6 h, 24 h, and 72 h in susceptible cultivar Nanay
(NA32) and fungal resistant cultivar Scavina (SCA6) were downloaded from GEO DataSets
under accession number GSE116041 [58]. The comparison of susceptible cultivar NA32 and
fungal resistant cultivar SCA6 was performed to determine differentially expressed genes
within both cultivars and to identify those genes that are specifically induced in fungal
resistant cultivar SCA6. These data were log2 transformed to generate heatmaps via the
TBtools package [59]. Furthermore, the expression levels of GASA genes for tissue specific
expression and under multiple abiotic stresses, including cold, osmotic, salt, drought, UV,
wounding, and heat, have been detected in the Arabidopsis orthologous genes for tcGASAs
(SAMEA5755003 and PRJEB33339).

3. Results

3.1. Identification of GASA Genes and Their Distributions on Chromosomes within Genomes

We detected 17 GASA genes in the genome of T. cacao distributed on six chromosomes
out of ten. These genes were named from tcGASA1 to tcGASA17 based on their distribution
on chromosomes starting from chromosome 1. When two or more genes were present on
the same chromosome, then the gene present at the start of a chromosome was named
first (Table 1 and Figure 1). Six genes were distributed on chromosome 8 and five genes
were distributed on chromosome 4. Chromosome 1 and chromosome 2 each contained
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two genes, whereas chromosome 5 and chromosome 9 contained one gene each. These
data showed the unequal distribution of tcGASA genes within the cacao genome. The
location of each gene on the chromosome is mentioned in Table 1, as well as the start and
end. Moreover, the sequences of genes, proteins, coding regions, and promoter regions are
provided in Table S1.

Figure 1. Location of tcGASA genes on the chromosome in Theobroma cacao. Each gene is shown with a gene identification
number along with the number given to each gene in the current study. The pairs of segmentally duplicated genes are
shown with same color.

3.2. Protein Length, Molecular Weight, and Isoelectric Point of tcGASA Proteins

In the current study, tcGASAs were characterized based on their physiochemical
properties (Table 1). The identified tcGASA proteins were low molecular weight proteins
ranging in length from 88 (tcGASA13) to 320 (tcGASA05) amino acids with molecular
weight (MW) ranging from 9.64 to 33.92 kDa. Except for tcGASA05 and tcGASA08, with
molecular weights of 13.42 kDa and 33.92 kDa, respectively, the MW of all other tcGASAs
was found to be less than 13 kDa. The isoelectric point also showed similarities among
tcGASA and suggested the alkaline nature of the proteins. Except for tcGASA11, which
has an isoelectric point of 6.67, all other tcGASA proteins have isoelectric points of more
than 8, ranging from 8.27 to 9.83.

3.3. Analyses of Instability Index, GRAVY, and Subcellular Localization of tcGASA Proteins

The instability index provides information about the stable and non-stable features
of proteins in the various biochemical processes. The instability index indicated 4 stable
tcGASAs including tcGASA03, tcGASA11, tcGASA13, and tcGASA15, as well as 13 unstable
tcGASAs (Table 1). The positive value of GRAVY indicates its hydrophobic nature, whereas
the negative value indicates the hydrophilic nature of proteins. The GRAVY value was
recorded as negative for sixteen tcGASA proteins ranging from −0.75 to −0.023, but as
positive (0.004) for tcGASA12 (Table 1). Hence, the data indicate the hydrophilic nature of
most tcGASA proteins. Subcellular localization provides information about the function
of proteins. Based on BUSCA, we predicted extracellular localization of tcGASA proteins,
except for tcGASA08, which localized in the plasma membrane (Table 1).

3.4. tcGASA Proteins 3D Structure Analyses and Post-Translational Modifications

The predicted 3D structure of all tcGASA proteins showed that these proteins contain
β sheets, α helices, random coils, and extended strands. The random coils were the
most abundant and were more extensive than α helices, while the β sheets were the least
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(Figure 2). In addition, the active sites of GASA proteins were predicted in their structure.
The proline, cysteine, lysine, serine, and threonine amino acids were more predicted, as
the binding sites in all candidate GASA proteins in cacao (Figure 2). GASAs were diverse
based on predicted 3D structure and pocket sites, indicating that they could have various
functions. In the present study, the post-translational modifications of tcGASAs were
predicted in terms of phosphorylation and glycosylation (Figure 3, Table S2). We predicted a
total of 224 potential phosphorylation events on amino acids serine, threonine, and tyrosine
within tcGASA proteins. Most of the phosphorylation events were predicted related to
serine (92) followed by threonine (86) and then by tyrosine (46). Among tcGASA proteins,
most of the phosphorylation sites (57 sites) were predicted in tcGASA05, whereas in other
proteins, phosphorylation events ranged from 9 to 14 sites. Three tcGASA, including
tcGASA10, tcGASA15, and tcGASA17, were also identified with a potential glycosylation
site (Table S2).

 

Figure 2. Distribution of ligand-binding sites in predicted 3D structure of tcGASA proteins. The distribution of the major
protein pocket sites in ligand regions are highlighted in the predicted 3D structure of tcGASA proteins.
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Figure 3. Prediction of post translational modifications based on phosphorylation and glycosylation site of tcGASA proteins.
The red circle indicates the predicted glycosylation sites, and one glycosylation site was predicted each in tcGASA10,
tcGASA14, and tcGASA16.

3.5. Phylogenetic Analyses of tcGASA Proteins

The phylogenetic inference of ninety-nine GASA-protein sequences from seven species
(mentioned in methodology), including 17 sequences of tcGASA, resolved into five groups
(Figure 4). The GASA proteins of cacao showed high variations and were distributed into
all five groups. Group I include only one sequence tcGASA16 (Tc08v2_t014690). Group II
was confined to five protein sequences including tcGASA01 (Gene ID: Tc01v2_t001590),
tcGASA04 (Tc02v2_t021110), tcGASA05 (Tc04v2_t000240), tcGASA11 (Tc08v2_t003650),
and tcGASA12 (Tc08v2_t003660). Group III comprised two sequences—tcGASA14 (Tc08v2_
t014670) and tcGASA15 (Tc08v2_t014680). Group IV included tcGASA02 (Tc01v2_t005890),
tcGASA03 (Tc02v2_t009150), and tcGASA13 (Tc08v2_t007890). Group V consisted of six
protein sequences, including tcGASA06 (Tc04v2_t006890), tcGASA07 (Tc04v2_t009440),
tcGASA08 (Tc04v2_t016520), tcGASA09 (Tc04v2_t016530), tcGASA10 (Tc05v2_t012230), and
tcGASA17 (Tc09v2_t020100). The tcGASA04 (Tc02v2_t021110) shared a node with one of the
protein sequences of Vitis vinifera, whereas the other 16 proteins showed close relationships
with the sequences of another species of family Malvaceae (Gossypium raimondii).
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Figure 4. The phylogenetic inference of tcGASA proteins along with protein sequences of six other species. Each sequence
is presented with its gene number. The start of each sequence contained code for the species as: Tc: Theobroma cacao; AT:
Arabidopsis thaliana; B456: Gossypium raimondii; VIT: Vitis vinifera; Os: Oryza sativa; BRADI: Brachypodium distachyon; Zm:
Zea mays.

3.6. Gain and Loss of Intron(s) and Conserved Motifs

We also determined numbers of introns–exons within the genes and motifs in protein
sequences. We drew a separate phylogeny of the tcGASA genes of T. cacao to find out the
extent to which genes that cluster together are similar in term of introns numbers and
pattern, and in terms of protein number and pattern. Each phylogenetic group was shown
with different colors for clarity (Figure 5a). The analyses of genomic sequences showed
the absence of intron in one gene, presence of one intron in five genes, two introns in
eleven genes, and three introns in one gene (Figure 5b). Genes clustered together showed
differences in their number and in intron–exon distributions (Figure 5a,b). Five motifs
were revealed in tcGASA. Four motifs (1–4) were distributed in all tcGASAs, whereas a
fifth motif was limited to Tc04v2_t016520 (tcGASA08), Tc05v2_t012230 (tcGASA10), and
Tc09v2_t020100 (tcGASA17) (Figure 5c). The motifs of proteins that clustered together
within the phylogenetic tree presented similarities in the distribution of motifs to some
extent (Figure 5a,c).
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Figure 5. The phylogenetic analyses in comparison to introns–exons in genes and motifs in the protein sequence of tcGASAs.
Phylogeny tree of tcGASAs (a), introns–exons distribution in tcGASA genes (b), and conserved motifs distribution in
tcGASA proteins (c).

3.7. Duplications, Divergence, and Synteny among GASA Genes

We analyzed the paralogous relationships among the GASA genes within cacao and
analyzed the orthologous relationships of GASA genes by comparing them with the other
six species (mentioned in methodology). Segmental duplications were found in nine
GASA genes that were paired into four groups as: tcGASA02-tcGASA03-tcGASA13; tc-
GASA08-tcGASA09; tcGASA10-tcGASA17; and tcGASA14-tcGASA15 (Table 2) (as shown
with similar colors in Figure 1). The analyses of synonymous and non-synonymous
substitutions revealed that high purifying selection pressure exists on these genes after
duplication. The analyses of divergence time indicated that the event of duplication of
these pairs occurred 50 MYA to 204 MYA (Table 2). The synteny analyses with GASAs
of other species showed high resemblance and identified orthologous genes among T. ca-
cao and compared species (Figure 6). The 17 GASA genes in cacao showed the syntenic
relationship with 7 and 11 ortholog genes in the Arabidopsis and Gossypium raimondii,
respectively (Figure 6a,b). Moreover, tcGASAs had the syntenic relationship with 7, 5, 4,
and 7 GASA genes from Vitis vinifera, Oryza sativa, Brachypodium distachyon, and Zea mays,
respectively (Figure 6c–f). Interestingly, Os05g0432200, as a rice-GASA, and a GASA gene
of Brachypodium, BRADI.2g24320v3, showed most syntenic blocks with tcGASAs.

Table 2. Gene duplications, synonymous and non-synonymous substitutions and time of divergence.

Gene 1 Gene 2
Duplication

Type
Ka Ks Ka/Ks p-Value

Divergence
Time (MYA)

tcGASA02 tcGASA03 Segmental 0.2679 2.6607 0.1007 1.04 × 10−6 204.67

tcGASA02 tcGASA13 Segmental 0.1708 2.2495 0.0759 2.52 × 10−8 173.04

tcGASA08 tcGASA09 Segmental 0.1515 0.6514 0.2325 1.30 × 10−6 50.11

tcGASA10 tcGASA17 Segmental 0.283 1.0283 0.2752 3.28 × 10−5 79.1

tcGASA14 tcGASA15 Segmental 0.3234 0.7971 0.4058 1.46 × 10−8 61.32
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Figure 6. Synteny analysis of GASA genes. The syntenic blocks of cacao GASA genes are compared
with six other species, including Arabidopsis thaliana (a), Gossypium raimondii (b), Vitis vinifera (c),
Oryza sativa (d), Brachypodium distachyon (e), and Zea mays (f).

3.8. Promoter Regions Analysis

The analyses of cis-regulatory elements in promoter regions revealed the presence of
binding sites for key transcription factors related to light-responsive elements (48.88%),
hormone-responsive elements (25.40%), stress-related elements (19.06%), growth-response
elements (5.40%), and DNA- and protein-related binding sites (1.26) (Figure 7a). Regu-
latory sides were found for various hormones such as auxin, salicylic acid, abscisic acid,
gibberellin, and methyl jasmonate (MeJA) (Figure 7b). Similarly, regulatory elements
were identified for drought, elicitor, anaerobic induction, low temperature, and plant
defense/stress (Figure 7c). The complete detail of each element, along with sequence and
function is provided in Table S3.
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Figure 7. Distribution of cis-regulatory elements into promoter regions of tcGASA genes. Classifi-
cation of identified regulatory elements based on function, such as light, hormone, growth, stress,
and binding domain excluding the TATA box and CAAT box (a). Distribution of different types
of hormone-related cis-regulatory elements (b). Distribution of cis-regulatory elements related to
various types of environmental stresses (c).

3.9. In-Silico Tissue-Specific Expression of tcGASA Genes

We evaluated the expression of orthologous tcGASAs in various tissues to evaluate
their role in the functions of T. cacao (Figure 8a). Differential expression was noted for
tcGASA genes in various tissues of cacao. Five genes, including tcGASA02, tcGASA03,
tcGASA08, tcGASA09, and tcGASA13, showed high expression in the beans (food part of
cacao). In addition, tcGASA16 showed a high expression in leaves and entire seedlings.
However, tcGASA02 and tcGASA03 were significantly downregulated in leaves compared
to beans. In-silico expression results showed that tcGASA12 and tcGASA17 were less
induced in pistil tissues.
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Figure 8. Expression analyses of orthologous tcGASA genes in Arabidopsis. Expression profile in different types of tissues
(a), and in response to various abiotic stresses (b).

3.10. Expression Analyses of tcGASAs in Abiotic and Biotic Stresses

We explicated the role of tcGASAs under various abiotic stress by analyzing ortholo-
gous genes of Arabidopsis (Figure 8b). The orthologous genes of tcGASA01, tcGASA05,
tcGASA12, and tcGASA14 showed an upregulation in response to wound healing and the
orthologs of tcGASA05 were more expressed in response to cold stress. The expression of
orthologous GASA genes in Arabidopsis was less induced in response to drought and UV
stresses. The tcGASA01 and tcGASA14 were highly upregulated in response to osmotic
pressure and salt stress, while tcGASA016 and tcGASA17 were downregulated.

3.11. Expression Analyses of tcGASAs in Biotic Stress (P. megakarya)

The role of tcGASAs against P. megakarya was accessed using RNA-seq data of cacao
inoculated with P. megakarya for 0 h, 6 h, 24 h, and 72 h in susceptible cultivar Nanay (NA32)
and fungal resistant cultivar Scavina (SCA6) (Figure 9a,b). In susceptible cultivar, tcGASA12
and tcGASA13 as early responses were upregulated after 6 h of inoculation while tcGASA12
was more expressed after 72 h (Figure 9a). The expression patterns of tcGASAs were
different in fungal resistant cultivar Scavina, whereas most genes were induced after 72 h
of incubation of P. megakarya (Figure 9b). Moreover, tcGASA03, tcGASA05, and tcGASA13
were more upregulated in response to fungi treatment after 72 h of incubation in resistant
cultivar Scavina (Figure 9b). Four genes, tcGASA01, tcGASA08, tcGASA09, tcGASA15,
were not expressed. Probably, they are induced at specific conditions or at a specific step
of growth and development. The analyses showed differential expression of tcGASAs
expression under biotic stress of fungus P. megakarya in SCA6 and NA32 (Figure 10). The
tcGASA03, tcGASA05, tcGASA06, tcGASA16, and tcGASA17 showed high expression after
24 h of inoculation and tcGASA03, tcGASA04, and tcGASA13 more expressed after 72 h in
SCA6. This showed their possible role for fungal resistance. The tcGASA05, tcGASA12,
and tcGASA14 also showed high expression in SCA6 but these genes also showed high
expression in NA32. Hence, these may not be involved in resistance to fungus.

70



Agronomy 2021, 11, 1425

 
Figure 9. Expression analyses of tcGASA genes in cacao plants under inoculation with P. megakarya after 0 h, 6 h, 24 h, and
72 h. Nanay (NA-32) susceptible cultivar (a), Scavina (SCA6) tolerant cultivar (b). The expression analysis is presented after
log2 transformation. The strong appearance of the blue color is linked to downregulation of genes whereas the strong red
color indicates upregulation of genes.

Figure 10. Venn diagram to represent differential expression in susceptible cultivar Nanay (32) and tolerant Cultivar (SCA6)
of cacao under inoculation with P. megakarya after 0 h (a), 6 h (b), 24 h (c), 72 h (d). The downregulated genes are missing
after 0 h (a) and up-regulated genes are missing after 24 h (c). Thus, the data are not shown.
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4. Discussion

In the current study, we identified 17 tcGASAs and analyzed their genomic distribu-
tions and chemical properties. RNAseq data analyses explicated their possible roles in bean
development (food of cacao), various abiotic stresses, and the biotic stress of P. megakarya.

Cacao is an economically important plant, and its seeds are used for chocolate, and it is
also the main source of income for 40–50 million farmers [2,3]. Despite this importance, up
to the best of our knowledge, five gene families, WRKY [7], sucrose synthase [8], Stearoyl-
acyl carrier protein desaturase [9], sucrose transporter [10], and NAC [11] are studied in
cacao. The role of the NAC family was not explained in abiotic and biotic stresses. The
GASA family’s role was reported in plant development, function regulation, and biotic
and abiotic stresses, as mentioned in the introduction (vide infra). Cacao production is also
affected by various biotic and abiotic stresses. In the current study, we focused on the GASA
gene family in cacao. We identified 17 GASA genes, which were unequally distributed
on six chromosomes among ten. The GASA proteins have low molecular weight with
conserved GASA and cysteine domains. Our findings are in agreement with previous
studies that revealed that GASA genes mostly exist in lower numbers, have low molecular
weight, and are unequally distributed on chromosomes within genomes as reported for
rice, 9 GASA genes [15], 14 genes in Grapevine [13], 15 genes in Arabidopsis [12], and 19
genes in tomato [15]. However, a somewhat high number of GASA have also reported,
such as in apple, 26 genes [12], and 37 genes in soybean [18]. The number of introns were
variable in tcGASA within genes that cluster together in phylogeny. The loss and gain of
introns occurs in the course of evolution within protein-coding genes of the plants and is
also reported within the GASA of other plant species [13,18,60–62].

The tcGASAs were predicted to be alkaline, hydrophilic, and mostly unstable proteins.
However, we also detected four stable proteins: tcGASA03, tcGASA11, tcGASA13, and
tcGASA15. The stability demonstrates the lifetime of proteins related to cellular enzymatic
reactions [62]. Hence, these four proteins may play extensive roles in various enzymatic
activities. The data of subcellular localization also provide insight into the function of
proteins [63]. Apart from tcGASA08 (which localizes to the plasma membrane), other
proteins locate in the extracellular space. Extracellular localization of GASA proteins
in several plants has also been reported previously [15,18,21]. Localization of GASA
proteins in the plasma membrane, cytoplasm, and the nucleus has also been described.
The variations in subcellular localization may occur due to various factors, such as protein–
protein interaction and post-translational modifications [36,64]. The prediction of 3D
structure and pocket site of proteins can provide valuable information about protein
function based on ligand-binding sites [65,66]. In the present study, the cysteine, proline,
lysine, leucine, serine, and threonine were frequently predicted as the key binding residues
in the structure of GASA proteins, in which proline, serine, and leucine are known as the
amino acid residues associated with responses to environmental stimuli [65,67].

Post-translational modifications are processes of chemical modifications of proteins
and they produce diversity in structure and function, including subcellular localiza-
tion, protein–protein interaction, and regulating enzyme activity by allosteric phenom-
ena [36,68,69]. We predicted phosphorylation sites in all tcGASA, ranging in number from
7 to 57. The phosphorylation of proteins is also vital for cell signaling, regulation of various
protein mechanisms, and as a substrate for various kinases [70–72]. It could be of interest to
further study the function and structure of tcGASA proteins using tandem mass spectrom-
etry (MS/MS), and CRISPR/Cas9 genome editing along with transcriptomic analysis of
transgenic lines. Similarly, glycosylation is also an abundant and varied modification that
plays an essential role in the biological and physiological functions of a living organism [73].
We detected glycosylation sites on the N-terminal of tcGASA10, tcGASA14, and tcGASA16.
These tcGASAs may play significant roles in plant function and regulations.

We performed the phylogenetic analyses of tcGASAs with GASA of 6 other species. We
also included Gossypium raimondii, a closely related species from the plant family Malvaceae.
The phylogenetic analyses distributed GASA proteins into 5 groups and the tcGASAs were

72



Agronomy 2021, 11, 1425

also distributed into all five groups. Tc08v2_t01469 (tcGASA16) was the only protein which
grouped with Arabidopsis, while other tcGASAs showed sister relationships with GASA of
Gossypium. The cacao belongs to the basal group, whereas Gossypium belongs to the crown
group of the family Malvaceae [74,75], but the close phylogenetic relationships of proteins
of these two species support their family-level relationship. The motifs and exon–intron
analyses showed variations within proteins that cluster together in phylogeny. This shows
that GASA of some groups may have evolved during evolution, which led to variations in
motifs and introns in some groups. The same was observed in GASA of other species and
has also been reported for other gene families [13,18,76,77]. GASAs in a phylogenetic group
showed different expression patterns, indicating that GASAs are controlled by various
regulatory systems. These findings also show that some other processes are related to the
function of proteins instead of their close phylogenetic relationships. A similar observation
was reported in Nicotiana tabacum L. [72]. However, some studies also proposed that the
closely related proteins on a phylogenetic tree have a similar function [78,79].

The tandem and segmental duplicated genes play an important role in evolution,
domestication, functional regulation, and biotic and abiotic stresses [80–84]. We deter-
mined segmental duplication of nine genes that form four groups as: tcGASA02-tcGASA03-
tcGASA13, tcGASA08-tcGASA09, tcGASA14-tcGASA15, and tcGASA10-tcGASA17. These
gene pairs were present in the same group within the phylogenetic tree. Similar results were
reported in genome-wide analyses of GASAs in soybean [18]. A previous study also pro-
posed that segmentally duplicated genes also showed similar functions and stable expres-
sions. [18,85]. In the current study, each pair of segmentally duplicated genes did not agree
with the previous finding. In biotic stress of fungus (P. megakarya), tcGASA08-tcGASA09
and tcGASA10-tcGASA17 showed similar expression that tcGASA08 and tcGASA09 both
did not express while tcGASA10-tcGASA17 both are less regulated/down-regulated genes.
The other two pairs tcGASA02-tcGASA03-tcGASA13 and tcGASA14-tcGASA15 showed a
different expression, as some genes were found down-regulated while some genes were
found up-regulated (Figure 9). These findings suggest that segmentally duplicated pairs
may also perform different functions, and functional analyses of each segmentally dupli-
cated gene can provide authentic information about their roles in various physiological and
biochemical processes. Moreover, our study, along with the previous report [18], suggests
that genes within the same groups have more chances of segmental duplication events
among them. The Ka/Ks < 1 indicates that purifying selection pressure exists on the GASA
genes after duplication, as reported previously [13]. We also observed mostly purifying
selection pressure on tcGASAs, including duplicating genes (Table S1).

The cis-acting regulatory elements involved in transcription of regulation genes are
induced through independent signal transduction pathways under biotic and abiotic
stresses [72,86]. We observed several key cis-regulating elements in response to light,
hormones, stresses, and growth in the promoter site of tcGASAs. The cis-regulating
elements for drought, anerobic induction, low temperature, and plant defense were also
evident. The existence of diverse cis-regulating elements in promoter regions indicates
their roles in the regulation of the tcGASAs and different pathways of cacao. Further study
such as using the CRISPR/Cas genome-editing system and T-DNA can shed light on the
roles of these cis-regulating elements.

Different strategies are used to develop cacao cultivars that produce food in high
quantities and are resistant to abiotic and biotic stresses [4]. Here, we studied the role of
GASA genes in cacao development and in protection against biotic and abiotic stresses.
Tissue-specific expression was observed for tcGASAs, which showed their role in the devel-
opment and functional regulation of cacao. Up to eight tcGASAs were highly expressed in
the cacao bean, which is the food part used for making chocolate. This high expression
may reveal the conserved function of these genes in the development of the bean and
cacao flavor. Gene expression analysis of tcGASA genes in cacao beans in disease resistance
(bulk) and disease susceptibility (fine flavor cacao) could be of interest [87,88]. The role of
tcGASAs was also stated in the development of grapevine seeds [13]. Further data based on
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cloning can provide new insight into their roles in bean development. Expression analyses
of the orthologous genes of Arabidopsis also indicated the role of GASA genes in various
abiotic stresses, including drought, which significantly affects the growth of cacao [89].
Hence, these genes may also be important to produce drought-resistant cultivars. Expres-
sion analyses also provide insight into the gene’s function in response to biotic stresses [72].
The black rod disease of genus Phytophthora caused up to 20–25% loss (700,000 metric tons)
to the world cacao production annually. In some regions, the Phytophthora caused losses of
30–90% of the crops [90]. Here, we explored the function of tcGASAs based on RNAseq data
against black rod causing pathogen P. megakarya and observed highly expressed tcGASA
genes in plants inoculated at 24 h and 72 h in the tolerant cultivar SCA6 as compared to
susceptible cultivar NA32. These data indicate that tcGASAs respond to fungus. Hence,
the complete characterization of these upregulated genes can provide target genes for
the development of resistant cultivars to the disease of genus Phytophthora to enhance
the production of cacao for the welfare of not only farmers involved in cacao cultivation,
but also for the welfare of all humanity to provide high-quality delicious chocolate with
quality nutrition.

In conclusion, our study provides new insight into the identification, characterization,
and expression of the GASA genes in the Theobroma cacao plant. Expression analyses
revealed the role of the GASA genes in seed development. Our findings reveal that
tcGASAs are diverse based on their structure and regulatory systems, indicating that they
are involved in various cellular pathways related to development and stress responses.
Furthermore, our result indicates that the GASA genes could be related to resistance against
the fungus Phytophthora megakarya, which causes significant losses to cacao production
each year. Our study may be helpful for the generation of cultivars that are resistant to the
fungus of the genus Phytophthora. The present work, as an in-silico study, revealed many
aspects of structural, regulatory systems, and expression of GASA gene family members
in cacao. However, it is necessary to evaluate the expression of these genes in different
tissues of sensitive and fungus-resistant clones of cacao. We also suggest using new
techniques such as CRISPR/Cas genome-editing to determine the function and interactions
of cacao-GASAs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11071425/s1, Table S1: The complete detail of each sequence of Theobroma cacao
analyzed in current study including protein sequences, coding sequences, genomic sequences, and
promoter regions, Table S2. Phosphorylation and glycosylation sites in GASA proteins, Table S3.
Cis-regulatory elements in promoter regions of tcGASA.
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Abstract: Magnesium (Mg) is an element involved in various key cellular processes in plants.
Mg transporter (MGT) genes play an important role in magnesium distribution and ionic balance
maintenance. Here, MGT family members were identified and characterized in three species of the
plant family Malvaceae, Theobroma cacao, Corchorus capsularis, and Gossypium hirsutum, to improve
our understanding of their structure, regulatory systems, functions, and possible interactions. We
identified 18, 41, and 16 putative non-redundant MGT genes from the genome of T. cacao, G. hirsutum,
and C. capsularis, respectively, which clustered into three groups the maximum likelihood tree. Several
segmental/tandem duplication events were determined between MGT genes. MGTs appear to have
evolved slowly under a purifying selection. Analysis of gene promoter regions showed that MGTs
have a high potential to respond to biotic/abiotic stresses and hormones. The expression patterns of
MGT genes revealed a possible role in response to P. megakarya fungi in T. cacao, whereas MGT genes
showed differential expression in various tissues and response to several abiotic stresses, including
cold, salt, drought, and heat stress in G. hirsutum. The co-expression network of MGTs indicated that
genes involved in auxin-responsive lipid metabolism, cell wall organization, and photoprotection
can interact with MGTs.

Keywords: magnesium transporter; comparative analysis; Malvaceae; Theobroma; Gossypium; Corchorus;
expression analysis; gene structure; phylogenetic analysis

1. Introduction

Magnesium (Mg) is a critical bimetal that regulates biochemical processes and pro-
vides stability to membranes in plants [1,2]. Magnesium acts as a cofactor for polymerase,
kinase, and H+-ATPase, which are necessary for synthesizing proteins and nucleic acid
and for generating energy [3,4]. It is also required to maintain cation–anion homeostasis
in the cell [5]. Various types of adverse effects have been reported in plants during Mg
deficiency, including a reduction in photosynthesis, macromolecule synthesis, and plant
growth and development [6–8]. Therefore, plants have developed an efficient transport
system for absorption, storage, and Mg translocation [2]. The Mg transporter (MGT) gene
family, also known as MRS2 or CorA, has an important role in the aforementioned es-
sential functions [9,10]. Members of the MGT family are defined by two transmembrane
domains in which a tripeptide motif GMN (glycine–methionine–asparagine) occurs at the
C-terminal domain of the first transmembrane [11,12]. MGTs are expressed in root tissues
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of plants that are more involved in up taking Mg (such as MGT1 in rice and MGT6 in
Arabidopsis), transferring Mg from root to shoot (such as MGT9 in Arabidopsis), homeosta-
sis by maintaining ionic balance (such as MGT10 in Arabidopsis), and accumulation and
translocation of Mg within, for instance, the vacuole of the cell (such as MGT2 and MGT3
in Arabidopsis) [11,13–16]. These genes are also crucial for pollen mitosis and pollen intine
formation [15,17,18].

MGT genes also respond to changes in elemental concentration in soil, i.e., MGT genes
showed high expression due to aluminum (Al) toxicity in acidic soil. In Arabidopsis and in
maize, Al-tolerant genotypes were observed to have a high capacity for Mg uptake and
accumulation [9,19]. The transformation and expression of Arabidopsis MGT1 in Nicotiana
benthamiana increased uptake of Mg and reduced toxicity of Al in transgenic lines [20]. In
contrast, the knockout of MGT1 in rice reduced tolerance to salt and was linked to a high
content of sodium in shoot tissues [21]. The MGT genes are also important for plant adap-
tation to changing Mg status in soil [13]. Genes of the MGT family have been identified
and characterized in several plant species, including Arabidopsis [22], rice [11], maize [9],
pear [23], citrus [24], rapeseed [25], wild sugarcane [26], and tomato [27]. The plant family
Malvaceae is one of the largest dicot families with 244 genera and 4225 species [28]. The
family includes significant economic plant species, such as cotton (Gossypium) and jute
(Corchorus) are important for fiber, whereas cacao (Theobroma cacao L.) is important for
chocolate production [29,30]. Besides, the seed of Theobroma cacao contained 290 mg/100
g magnesium which is 4–5 time more than pea, corn, white wheat, and rice, and is in-
cluded among the richest magnesium containing sources [31]. The cotton is considered
as a white gold due to its industrial importance and in the world 25 million tons cotton
are produce annually of worth of 600 billion dollars [32]. This important plant effected
from Magnesium deficiency [33,34] whereas jute is the second most important natural fiber
in terms of global consumption after cotton and specifically important in some countries
such as Bangladesh [35]. Therefore, the comparative analysis and determining role of the
MGT family can provide quality information about the gene structure, variation etc. To
date, none of the studies, to the best of our knowledge, focuses on characterization of
the MGT gene family despite the availability of nuclear genomes for the species of family
Malvaceae [36,37] with the advancement of sequencing technologies. Here, we aim to: (i)
identify and characterize MGT genes within three species of Malvaceae, including T. cacao,
C. capsularis, and G. hirsutum, (ii) study evolutionary patterns and phylogenetic relation-
ships, and (iii) determine roles of MGTs in growth and development of Malvaceae species.

2. Materials and Methods

2.1. Identification and Characterization of MGT Genes in T. cacao, C. capsularis, and G. hirsutum

The homologs of Arabidopsis MGT proteins, MGT7 (AT5G09690), CorA-like family
protein (AT1G29820), MRS2-1 (AT1G16010), MRS2-10 (AT1G80900), NIPA7 (AT4G38730),
NIPA1 (AT3G23870), and NIPA5 (AT4G09640), were BLAST with an expected value of
E−10 in Ensembl Plants [38] for T. cacao and Corchorus capsularis, and in cotton genome
database [39] for Gossypium hirsutum to identify MGT genes and retrieve protein sequences,
coding sequences, genomic sequences, and promoter regions for various analyses following
a previous approach [40]. The non-redundant protein sequences were selected based on
CDD search (https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, accessed on 24
November 2020). The ProtParam program [41] was used to determine molecular weight
(MW) and isoelectric points (pI), TMHMM Server version 2.0 [42] to predict transmembrane
domains, and CELLO2GO [43] to determine the location of MGT proteins in the cell.
PlantCARE [44] was used to analyze promoter regions.

2.2. Phylogenetic Inference, Conserved Protein Motifs, and Gene Structure

The protein sequences of T. cacao, C. capsularis, and G. hirsutum aligned in Geneious
R8.1 [45] using ClustalW [46] and analyzed in IQ-tree for construction of a maximum likeli-
hood phylogenetic tree under default parameters and 1000 bootstrap replications [47–49].
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The Best-fit model JTT+G4 was chosen according to Bayesian Information Criterion using
jModelTest 2 [50] and was employed to find relationship among genes. Finally, the iTOL,
Integrative Tree of Life version 4 [51], was used for the improvement of tree representa-
tion. The MEME (Multiple Em for Motif Elicitation) server [52] was used to identify the
conserved protein motifs in MGT. The gene structure of each MGT gene was constructed
using the Gene Structure Display Server [53].

2.3. Gene Duplications and Synteny Analysis

The MGT genes with more than 85% identity in each species were selected as du-
plicated genes [54]. Then, the location diagram of duplicated genes in cacao and G. hirsutum
were constructed using TBtools [55]. In addition, the synonymous (Ks) and non-synonymous
(Ka) of each duplicated gene pair were calculated by DnaSP version 6 software [56]. Fi-
nally, the time of divergence of duplicated genes was determined using the following
equation: T = (Ks/2λ) × 10−6 [57], where λ is substitutions per synonymous site per year
and λ = 6.5 × 10−9. Moreover, the synteny relationship diagrams of MGT genes among
the orthologous pairs of T. cacao–G. hirsutum and T. cacao–C. capsularis were created using
Circos software [58].

2.4. Structure Analyses of MGT Proteins

The transmembrane and three-dimensional structures of the candidates of MGT sub-
groups MRS2, NIPA, and CorA proteins in T. cacao, G. hirsutum, and C. capsularis were
predicted using the Phyre2 server [59], whereas docking analysis was performed to predict
the ligand-binding regions (pocket sites) using DeepSite [60] and CASTp [61] tools and
finally constructed in PyMOL [62].

2.5. Expression Analysis of TcMGTs and GhMGTs Using RNA-Seq Data

The publicly available RNA-seq data of cacao transcriptome with accession number
GSE116041 [63] were used to find a possible differential expression of cacao MGTs con-
cerning a fungi disease caused by Phytophthora megakarya after inoculation of the different
time courses of 0 h, 6 h, 24 h, 48 h, and 72 h in two contrasting cultivars: Nanay (NA-32)
as a susceptible cultivar and Scavina (SCA-6) as a fungal-resistant cultivar. Finally, the ex-
pression patterns of TcMGTs were illustrated in heatmaps based on log2 transformed using
TBtools [55]. Furthermore, the expression profile of GhMGTs in various tissues (ovule, fiber,
anther, bract, filament, leaf, pental, root, sepal, stem, and torus) and in response to various
abiotic stresses (cold, heat, salt, and drought) was retrieved from available RNA-seq data
of the cotton genome database (https://cottonfgd.org/, accessed on 9 March 2021) under
project PRJNA490626 using the gene ID of each gene of the newly assembled genome as
query [64]. The expression of GhMGTs in various tissues was analyzed and represented as
a heatmap based on percentage expression of each gene using TBtools [55], while the data
of abiotic stresses were analyzed and represented in heatmap after log2 transformation
through TBtools [55].

3. Results

3.1. Sequence and Structure of MGT Genes

Altogether 18, 41, and 16 putative non-redundant MGT genes were identified from
the genomes of T. cacao, G. hirsutum, and C. capsularis, respectively. All sequences (genomic,
amino acids, coding sequences) of identified MGT genes are shown in Table S1. MGTs were
characterized based on their sequences structure (Table S2) and three MGT sub-groups,
including MRS2, NIPA, and CorA, were recognized according to the specific domain
distribution (Table S2). Our findings revealed that MGTs in the three studied plant species
are diverse in sequence length, molecular weight (MW), isoelectric point (pI), and exon
number (Table S2). For instance, protein length varied from 321 amino acids (aa) to 632 aa
in T. cacao, from 210 aa to 474 aa in G. hirsutum, and from 262 aa to 2417 aa in C. capsularis
(Table 1). In addition, the predicted MW ranged from 32.75 kDa to 70.91 kDa in T. cacao,
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from 32.66 kDa to 53.95 kDa in G. hirsutum, and from 29.82 kDa to 268.42 kDa in C. capsularis
(Table 1). Moreover, the pI of MGTs was between 4.48 and 8.57 in T. cacao, between 4.76
and 9.57 in G. hirsutum, and between 4.79 and 8.60 in C. capsularis (Table 1). Based on pI
value, 75% of MGTs in C. capsularis, 56% in T. cacao, and 49% in G. hirsutum were predicted
to be acidophilic proteins (Table S2). In addition, the prediction of subcellular localization
illustrated that most MGTs are located in the endomembrane or the plasma membrane
(Table S2). The exon number of MGT genes varied between 4 and 15 in T. cacao and G.
hirsutum, while the exon number varied between 4 and 21 in C. capsularis (Table 1).

Table 1. Summary of MGT properties in the three plant species Theobroma cacao, Gossypium hirsutum,
and Corchorus capsularis.

Organism
Gene

Number

Gene
Length

(bp)

Protein
Length

(aa)
MW (KDa) pI

Exon
Number

T. cacao 18 1212–2632 321–632 32.75–70.91 4.48–8.57 4–15
G. hirsutum 41 633–1425 210–474 32.66–53.95 4.76–9.57 4–15
C. capsularis 16 789–7254 262–2417 29.82–268.42 4.79–8.60 4–21

3.2. Phylogenetic Analysis and Classification of the MGT Gene Family

A phylogenetic tree of MGT proteins was constructed, comprising 18 TcMGT proteins
from T. cacao, 41 GhMGTs from G. hirsutum, and 16 CcMGTs from C. capsularis. The
MGT proteins clustered into three groups (groups I, II, and III) that group III included
three sub-groups, 3a, b, and c (Figure 1). Six MGTs, including a CorA of Jute, namely
CcMGT08, a MRS2 protein from cacao, namely TcMGT03, and four MRS2 proteins of cotton,
namely GhMGT11, GhMGT12, GhMGT32, and GhMGT33, with similar structure contained
11 exons and were located in group I (Figure 1a,b). In addition, five MGT proteins were
located in group II and four CorA proteins, namely TcMGT01, TcMGT16, CcMGT02, and
CcMGT16, clustered in group III-a. In addition, 16 MRS2 proteins along with two CorA
proteins were located in group III-b and all NIPA-type proteins were located in group
III-c (Figure 1a,b). In addition, MGTs were analyzed based on distribution of conserved
motifs in their protein sequence. Thirty-five conserved motifs were identified, and MGTs
from group III showed more diversity than other groups (Figure 2). Motifs 12, 5, 18, 7, 10,
and 2, frequently observed in MGTs and NIPA proteins, illustrated different patterns of
conserved motif distribution. Moreover, CorA proteins also showed various conserved
motifs (Figure 2).
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Figure 1. The phylogenetic tree of MGT proteins (a) and gene structure of MGT genes (b) of Theobroma cacao, Gossypium
hirsutum, and Corchorus capsularis. The start of each gene name for the species is as follows: Tc: Theobroma cacao; Gh:
Gossypium hirsutum; Cc; Corchorus capsularis.
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Figure 2. Conserved motif distribution in MGT proteins of Theobroma cacao, Gossypium hirsutum, and Corchorus capsularis.

3.3. Duplication Events and Synteny Analysis

The TcMGT genes were mapped onto 5 of 10 chromosomes in the cacao genome
(Figure 3a), while GhMGTs were distributed over 22 of 26 chromosomes in the G. hirsu-
tum genome (Figure 3b). Due to the incomplete physical map of the C. capsularis plant,
the mapping of CcMGT genes is not provided. In the cacao genome, chromosome 2 en-
compassed the most significant number of TcMGTs, with five genes, while in G. hirsutum
genome, the most significant number of GhMGTs were located on chromosomes A04 and
D01 (Figure 3). In addition, the duplication events of MGT genes in selected plant species
were investigated. Eight segmental duplication gene pairs were identified between 12
TcMGT genes of cacao (Figure 3a and Table S3). Tandem duplication events seemed to occur
on chromosome 6 between three TcMGT genes of cacao, including, TcMGT013, TcMGT14,
and TcMGT15 (Figure 3a). In addition, four segmental duplication events were predicted
for the TcMGT03 gene (Table S3). Notably, a duplication event occurred around 10 MYA
between two CorA- like genes in cacao, namely TcMGT01 and TcMGT16. In addition, five
segmental duplication gene pairs were recognized between CcMGT genes, and a tripli-
cation event was predicted between CcMGT05 and CcMGT06, CcMGT07, and CcMGT04
(Table S3). According to the Ka/Ks ratio, the first duplication was approximately 103 million
years ago (MYA) between CcMGT05 and CcMGT04. The most duplication events were
observed between GhMGT genes in the G. hirsutum genome, with 22 segmental duplication
gene pairs. Moreover, four GhMGT genes, namely GhMGT02, GhMGT05, GhMGT23, and
GhMGT26, had a common ancestor and probably the first duplication event occurred
approximately 68 MYA between GhMGT23 and GhMGT26 (Table S3). The intraspecies
synteny of MGT genes was constructed between T. cacao and G. hirsutum and between
T. cacao and C. capsularis (Figure 4). The 18 TcMGT genes in T. cacao illustrated 15 and 16
syntenic block relationships with MGT genes in G. hirsutum and C. capsularis, respectively
(Figure 4a,b). Interestingly, TcMGT genes of cacao showed more syntenic relationships
with GhMGTs of D-genome than A-genome.
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Figure 3. Location of MGT genes on the chromosome in Theobroma cacao (a), and Gossypium hirsutum (b). The duplicated
genes are connected using blue lines.

Figure 4. Synteny analysis of MGT genes. The syntenic blocks of cacao MGTs are constructed with Gossypium hirsutum (a),
and Corchorus capsularis (b).

3.4. Protein Structure and Docking Analysis

The 3D structures of all candidates of three types of MGTs, namely NIPA, MRS2,
and CorA, were predicted in T. cacao, G. hirsutum, and C. capsularis (Figure S1). Nine α-
helices were observed in the predicted 3D structure of NIPAs in three studied plants, while
fewer α-helices were predicted in the structure of MRS2 and CorA proteins (Figure S1).
Furthermore, nine transmembrane helices with eight pores were predicted in the structure
of NIPAs in three plants, while in candidate MRS2 proteins two transmembrane helices
were observed in all studied plant species. However, both N-terminal and C-terminal of
candidate MRS2 proteins from T. cacao and C. capsularis were predicted in the extracellular
part, while in G. hirsutum, both N- and C-terminal were observed in the cytoplasmic part.
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In the candidate CorA protein, three transmembrane helices were predicted in G. hirsutum,
and two transmembrane helices were predicted in T. cacao and C. capsularis (Figure 5).

 

Figure 5. Predicted transmembrane helices in sub-groups of MGTs, namely NIPA, MSR2, and CorA, in Theobroma cacao,
Gossypium hirsutum, and Corchorus capsularis.

Moreover, pocket sites of MGT proteins related to the active binding site were pre-
dicted in structures of candidate proteins. The results illustrated that sub-groups of MGT
proteins are different based on the residues present in predicted pocket sites (Figure 6).
Phenylalanine (PHE) amino acid was frequently observed in binding sites of NIPA proteins
from T. cacao and G. hirsutum, while in C. capsularis isoleucine (ILE) and lysine (LYS) were
more often observed in pocket sites. In candidate MRS2 proteins, proline (PRO), PHE, glu-
tamine (GLN), asparagine (ASN), glutamic acid (GLU), and glycine (GLY) were frequently
predicted in T. cacao as binding sites, while in G. hirsutum tyrosine (TYR), leucine (LEU),
GLU, GLY, and GLN were more repeated in pocket sites. In addition, LEU residue was
highly observed as a key binding site in candidate CcMGT of C. capsularis. In candidate
CorA proteins, GLU amino acid was more often predicted in pocket sites of T. cacao and G.
hirsutum, while PHE was frequently observed in pocket sites of candidate CorA protein in
C. capsularis.
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Figure 6. Docking analysis of candidates of sub-groups of MGTs, namely NIPA, MSR2, and CorA, in Theobroma cacao,
Gossypium hirsutum, and Corchorus capsularis.

3.5. Distribution of Cis-Regulatory Elements in Promoter Region of MGT Genes

The promoter regions of MGTs in three plant species, comprising T. cacao, G. hirsutum,
and C. capsularis, were analyzed and compared based on type and frequency of cis-regulatory
elements. All recognized elements were classified into five groups: hormone-responsive ele-
ments, stress-responsive elements, light-responsive elements, growth-responsive elements,
and binding sites of transcription factors. Our results revealed that MGT’ promoters con-
tain cis-regulatory elements related to stress response (Figure 7 and Table S4). In addition,
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all stress-responsive elements were grouped in six classes related to drought, wounding,
anaerobic, low temperature, biotic stress, and general stresses. However, cis-regulatory ele-
ments responsive to low temperature, anaerobic stresses, and biotic stresses were observed
most often in the promoter region of TcMGT genes (Figure 7b). In addition, regulatory
elements related to response to abscisic acid (ABA), salicylic acid (SA), auxin, gibberellin
(GA), and methyl jasmonate (MeJA) were observed among hormone-responsive elements
(Figure 7b,f,i). We found that MGT genes might be more frequently induced in response to
ABA hormone.

 
Figure 7. Proportion of cis-regulatory elements in promoter regions of MGT genes. Identified cis-regulatory elements were
classified as hormone-responsive elements (REs), stress REs, growth REs, light REs, and transcription factor (TF) binding
site in Theobroma cacao (a), Gossypium hirsutum (d), and Corchorus capsularis (g). Proportion of cis-regulatory elements related
to stress responsiveness in Theobroma cacao (b), Gossypium hirsutum (e), and Corchorus capsularis (h). Proportion of different
groups of hormone-related cis-regulatory elements in Theobroma cacao (c), Gossypium hirsutum (f), and Corchorus capsularis (i).

3.6. Expression Profile of TcMGT Genes

The expression levels of TcMGTs were also provided in response to P. megakarya after
0 h, 6 h, 24 h, and 72 h after infection using available RNA-seq data of two contrasting geno-
types: T. cacao Nanay (fungal-susceptible cultivar) and Scavina (fungal-resistant cultivar)
(Figure 8a,b). According to expression heatmaps, most TcMGT genes were less induced by
a fungal infection, P. megakarya. A NIPA gene, TcMGT02, showed an upregulation after 48 h
of fungal infection in both cultivars (Figure 8). In addition, two MRS2 genes, TcMGT18 and
TcMGT12, were more expressed after 72 h in the fungal-resistant cultivar (Figure 8b).
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Figure 8. Expression profile of TcMGT genes in response to P. megakarya inoculation after 0 h, 6 h, 24 h, and 72 h. Nanay
(NA-32) is the susceptible cultivar (a) and Scavina (SCA6) is the tolerant cultivar (b). The type of TcMGT protein sub-group
is highlighted using different colors.

3.7. Expression Profile of GhMGT Genes

The expression profile of GhMGT genes was investigated in different tissues of G.
hirsutum and under abiotic stresses, including cold, heat, drought, and salinity (Figure 9).
The results illustrated that GhMGTs are involved in early and late responses to abiotic
stresses (Figure 9a). For instance, a MRS2 gene, GhMGT32, showed an upregulation in re-
sponse to the temperature stresses of cold and heat after one hour (Figure 9a). Furthermore,
GhMGT24, as a NIPA gene, was more upregulated in response to all studied abiotic stresses
after 6 and 12 h. In addition, the expression profile of GhMGT genes showed that six MRS2
genes, i.e., GhMGT12, GhMGT33, GhMGT06, GhMGT41, GhMGT13, and GhMGT20, are
more expressed after 24 h of drought and salt stress. In the first hours of heat stress, NIPA
genes are more expressed than MRS2 genes in cotton. In addition, CorA- like genes of
GhMGT35 and GhMGT14 showed more upregulation in response to drought and salt stress.
Expression levels of GhMGTs were also evaluated in different tissues and organs of G.
hirsutum (Figure 9b). The results show that GhMGTs were expressed in different organs for
the proper distribution of magnesium throughout the cotton plant. In root tissues, NIPA
genes are more expressed, while in leaf and torus tissues, MRS2 genes are more expressed
(Figure 9b). Furthermore, two CorA-like genes showed high expression in filament tissues.
In addition, most GhMGTs are expressed in ovule tissues in 10 days post-anthesis (DPA)
(Figure 9b).
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Figure 9. Expression profile of GhMGT genes in response to abiotic stresses, including cold, heat, drought, and salt stress
(a), and in different tissues of cotton (b). The type of GhMGT protein sub-group is highlighted using different colors.

3.8. Co-Expression Network of MGT Genes

A co-expression network of TcMGTs was formed using their orthologs in the diploid
model plant, Arabidopsis (Figure 10). All nodes in the co-expression network of MGTs were
classified into four groups (I to IV) (Figure 10). In group I, three auxin-responsive genes,
namely SAUR4, 7, and 12, two genes affecting lipid metabolism, PLC genes, two genes
involving in disease resistance-responsive, namely AT4G38700 and AT2G21110, and CYP21-
1 affecting protein folding showed high co-expression scores with MGT genes. In group II,
a protein phosphatase 2C, AT2G20050, was found with high co-expression with three MGT
genes. In group III, MGT genes showed high co-expression with AT5G42070, a hypothetical
protein, RPL15 (ribosomal protein), AT2G23390 (acyl-CoA protein), and CH1. In group IV,
high co-expression connections were observed between MGT genes and genes involving
in cell wall organization/modification processes such as S2LB, AGM1, AGM2, EXPA13,
GXM2, GXM1, and QRT1. In addition, LrgB involved in response to water deprivation
and MHX encoding a mg/proton exchanger showed string co-expression with MGTs.
Gene ontology (GO) analysis illustrated that the biological processes, including mg ion
transporter, photoprotection, and cell wall pectin biosynthetic process, xylan biosynthetic
process, and chloroplast organization, were significantly enriched based on all nodes of
co-expression networks of MGTs.
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Figure 10. Co-expression networks of MGT genes based on the model plant Arabidopsis thaliana. Thickness and color
intensity of each edge indicate the value of co-expression between two genes.

4. Discussion

Cocoa (Theobroma cacao L.) is an economical plant due to its wide use in producing
chocolate, a popular commodity worldwide. Scientific research is underway to better
understand the genome and metabolomes of this plant. In addition, several gene families,
including GASA [40], sucrose transporter [65], WRKY [66], NAC [67], desaturase [68], and
sucrose synthase [69], have been investigated and characterized in cacao. Due to the im-
portant role of magnesium ions in regulating plant growth and development, magnesium
transporters (MGTs) have been investigated in cacao, upland cotton (Gossypium hirsutum),
and white jute (Corchorus capsularis). We characterized 18 putative non-redundant MGT
genes in cacao (TcMGTs) along with 41 MGTs in G. hirsutum (GhMGTs), and 16 MGTs
from the genome of C. capsularis (CcMGTs). In previous studies, 62 MGTs in Camelina
sativa [12], 41 MGTs in Triticum turgidum [12], 12 MGTs in Zea mays [70], 16 MGTs in Pyrus
bretschneideri [23], 36 MGTs in Brassica napus [25], 12 MGTs in Fagaria vesca [27], and 8 MGTs
in Poncirus trifoliata [24] were characterized. The number of MGTs is probably correlated
with polyploidy events and genome size [12,71]. The prediction of the pI value of MGT
proteins illustrated that CcMGTs are more acidophilic proteins than TcMGTs and GhMGTs,
indicating that CcMGTs are mostly active under acidic conditions (pI < 6.50). This can be
related to the optimal growing environment of white jute.

According to the phylogenetic analysis, MGT family members from T. cacao, G. hir-
sutum, and C. capsularis can be classified into three groups, and CcMGTs showed close
relationships to TcMGTs. However, the MGT family proteins of Arabidopsis and rice were
divided into five clusters based on phylogenetic analysis [11,72]. In the current study, MRS2
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sub-group proteins showed more diversity than the other two sub-groups, indicating that
NIPA and CorA genes may be derived from MRS2 genes during the process of evolution.
In addition, more MGT genes were identified in cotton, which is due to polyploidy in G.
hirsutum. The analysis of gene structure showed that TcMGTs and GhMGTs contained 4 to
15 exons, while CcMGTs contained 4 to 21 exons. This suggests that under evolution events
more insertions and deletions of introns occurred in MGT genes, especially in CcMGTs.
In addition, the first duplication event was estimated to occur approximately 103 MYA
between CcMGT05, as a MRS2 gene, and CcMGT04, as a NIPA gene.

Several segmental/tandem duplication events were estimated to occur between
TcMGTs. Notably, a gene cluster of three MRS2/TcMGT genes, namely TcMGT013, TcMGT14,
and TcMGT15, was observed in chromosome 6, providing an avenue for further molecular
investigations in cacao. In addition, the Ka/Ks ratios in most duplicated genes were less
than one, suggesting that MGTs have evolved slowly under a purifying selection [54,71].
The comparisons between structures of MGT proteins revealed that NIPA proteins include
the conserved structures with more transmembrane regions. More transmembrane regions
could indicate a more important role for the NIPA protein group in transport of magnesium
within the plant cell [12]. However, the transmembrane structure of MSR2 and CorA
proteins in T. cacao and C. capsularis is highly conserved, while these proteins possess
a different transmembrane structure in G. hirsutum, which may affect the ability of the
magnesium transmembrane transport process [73,74]. Moreover, sub-groups of MGTs in
the three studied plants showed diversity in the predicted pocket sites in the 3D structure.
Overall, our findings suggest that PHE, GLU, LEU, GLY, and ILE, as the key binding sites,
are associated with the function and interaction of MGTs in response to environmental
stimuli and changes in ion/Mg concentration [54,75,76].

Magnesium transporters as well as other ion transporters are not only involved in
response to Mg concentrations, but also their activity can be affected by changes in envi-
ronmental conditions [10,12]. Analysis of gene promoter regions is one of the strategies
to predict the response of target genes to various environmental factors [77,78]. MGT
genes have a high potential to respond to stresses, both biotic and abiotic, as well as ABA
based on the distribution of corresponding cis-regulatory elements in the promoter region.
However, investigations that are more molecular are needed to confirm their functions.
The black rod disease caused by the genus Phytophthora is a production limiting factor,
reducing cacao production by around 20–25% [79]. On the other hand, expression studies
of genes in beans of bulk cultivars, like disease resistance and fine flavor cocoa (disease
susceptibility), may be of interest [80,81]. In the current study, the expression level of
TcMGT genes was investigated using RNA sequencing data responses to P. megakarya
in two contrasting cultivars of T. cacao, susceptible and fungal-resistant cultivars. Two
TcMGTs, i.e., TcMGT12 and TcMGT18, were identified as P. megakarya responsiveness genes
by their upregulation specifically in the cacao-tolerant cultivar. These may be a good target
for further molecular studies related to introducing the new cocao-resistant cultivars with
high-quality, delicious chocolate. Furthermore, the expression profile of GhMGTs suggested
that MGT genes are involved in response to abiotic stresses such as temperature stresses
(cold and heat stress), drought, and salinity stress. Nevertheless, GhMGTs can be expressed
in different plant tissues to regulate Mg homeostasis. Previous studies have indicated
that MGT genes are associated with maintaining ion homeostasis in plant tissues during
adverse conditions [20,21].

Mg transporter genes via affecting Na+ transporters and K+ transporters (HKTs) can
improve salinity tolerance in plant species [82]. In addition, MGTs have been speculated
to regulate the downstream pathways related to response to abiotic stresses by interact-
ing with Ca2+ sensors [83]. Our findings revealed that the MGT duplicated gene pair
could have diverse expression patterns, suggesting that these genes probably under some
modifications or insertion/deletion in their sequence, CDS, or promoter regions have
received novel functions [71,84]. Modifications, such as gains and losses of cis elements in
promoters between duplicated gene pairs, e.g., parent and daughter genes, could occur
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after duplication events, affecting the expression levels [85,86]. By constructing a network
of co-expression genes, it is possible to identify other molecular pathways in which target
genes are involved to gain a better understanding of the function of genes [54,87]. In this
study, MGT genes showed diverse co-expressions with genes involved in auxin-responsive
processes, lipid metabolism, cell wall organization, photoprotection, and chloroplast orga-
nization. Magnesium is a critical element of chlorophyll, affecting photosynthesis rate and
biomass production [88,89]. Overall, MGTs appear to be involved in various pathways to
control plant growth and development and response to adverse conditions.

5. Conclusions

A genome-wide analysis of MGT family genes was performed in the genomes of
Theobroma cacao, Corchorus capsularis, and Gossypium hirsutum. Our findings provide insight
into certain aspects of the sequence structure, evolutionary events, regulatory systems,
and function of MGT genes in three species of Malvaceae. Furthermore, our results show
that MGTs are involved in diverse cellular pathways, and they can interact with proteins
associated with growth and development as well as with response to environmental stimuli.
Further functional-molecular analyses are required to improve our understanding of the
role of MGTs in cacao resistance to stress and to increase the quality of chocolate.
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Abstract: Auxin receptor plays a significant role in the plant auxin signalling pathway in response
to abiotic stress. Recently, we found that transgenic rice overexpressing ABP57 had higher drought
tolerance than the wild-type cultivar, MR219, due to the fact of its enhanced leaf photosynthetic rate
and yields under drought stress. We performed a microarray study on this line to investigate the
underlying mechanisms contributing to the observed phenotype. After microarray data filtering,
3596 genes were subjected to modular gene co-expression network (mGCN) development using
CEMiTool, an R package. We identified highly related genes in 12 modules that could act to specific
responses towards drought or any of the abiotic stress types. Gene set enrichment and overrep-
resentation analyses for modules extracted two highly upregulated modules that are involved in
drought-related biological processes such as transmembrane transport of metal ions and response to
oxidative stress. Finally, 123 hub genes were identified in all modules after integrating co-expression
information with physical interaction data. In addition, the interplay of significant pathways between
the metabolism of chlorophyll and flavonoid and the signalling pathways of MAPK, IAA, and SA
inferred the concurrent involvement of stress tolerance response. Collectively, our findings seek new
future directions for breeding strategies in rice tolerant improvements.

Keywords: transcriptomics; co-expression network; modular analysis; drought stress; hub gene;
Abp57; rice improvement; bioinformatics

1. Introduction

Rice (Oryza sativa L.) is one of the primary staple food sources that contributes to
over 20% of the daily calorie intake of more than 3.5 billion people. Hence, considerable
effort has been made to ensure a sufficient rice yield supply to meet the rising population’s
demand. However, a recent study suggested that rice’s global average yield improvement
is still far behind the required rate to achieve the projected global demands by 2050 [1].
The slower pace of yield improvement is partly due to the diminishing returns to further
intensification of irrigated rice systems [2]. In addition, the growing competition for water
resources from other crops and industrialisation have also limited the expansion of irrigated
rice areas.

In contrast to irrigated rice systems, which have almost achieved the full genetic
potential of the high-yielding rice cultivars, the yield of rainfed rice remains low and
inconsistent. This indicates an enormous upside potential for the yield of rice grown under
a rainfed ecosystem. Numerous studies have pointed out that frequent occurrences of
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drought and the lack of drought-tolerant high-yielding rice cultivars are two of the major
factors contributing to the suboptimal rice production in rainfed ecosystems [3,4]. Therefore,
the development of drought-tolerant high-yielding rice is of paramount importance to
ramping up the production of rainfed rice.

Auxin is a phytohormone that functions as a major coordinator in virtually all of the
biological processes in plant growth and development. These biological processes include
a plant’s tropic response towards gravity and light, organ patterning, cell differentiation,
seed dormancy, and vascular development [5]. Recent mounting evidence shows that auxin
may also play a role in plant response to drought stress. Much of the evidence comes from
the realisation that the gene expression of many auxins-related genes was significantly
altered under drought conditions. In rice, an expression analysis on 31 rice indole-3-acetic
acid (OsIAA) genes showed that more than 15 were upregulated under drought stress [6].
In addition, a genome-level microarray analysis in rice also demonstrated that more than
204 auxin-responsive genes exhibited altered expression under desiccation conditions [7].
Given the response of auxin-related genes towards drought stress, numerous studies
have been conducted to overexpress these genes in various plant species to enhance their
drought tolerance. In potatoes, the overexpression of YUCCA6, a flavin monooxygenase of
tryptophan-dependent auxin biosynthetic pathways, has resulted in elevated endogenous
auxin levels and enhanced drought resistance [8]. In addition, the overexpression of auxin-
related genes, such as OsPIN3t, TLD1/GH3.13, and OsIAA6, have also been found to confer
higher tolerance of rice towards drought conditions [9–11]. Taken together, auxin-related
genes show great potential to be utilised in the attempt to develop rice cultivar with
drought tolerance.

Auxin-binding protein (ABP) is a family of low-abundance proteins that bind re-
versibly to auxin with high specificity and affinity. Owing to their auxin-binding properties,
ABP has long been suggested to function as an auxin receptor, mediating diverse cellular
responses in response to different endogenous auxin levels. ABP57 is a 57 kDa ABP that
was first isolated from the soluble protein fraction of the shoot of rice (Oryza sativa L.)
seedlings by Kim et al. (1998) [12]. An in vitro experiment has proven that ABP57 functions
by activating plasma membrane H+-ATPase through direct interaction in response to the
concentration of auxin [13]. In contrast to the classical ABP1, ABP57 appears insensitive to
naphthaleneacetic acid (NAA) despite having a very high binding affinity with IAA [14].
Numerous overexpression studies have shown that a higher expression level of OsAbp57
can lead to increased seed size, faster seed germination, and seedling growth [15]. Recently,
we found that transgenic rice overexpressing ABP57 had higher drought tolerance than
wild-type cultivar, MR219, due to the fact of an enhanced leaf photosynthetic rate and yields
under drought stress [16]. We performed a microarray study on this line to investigate the
underlying mechanisms contributing to the observed phenotype.

Co-expression is a well-known biological network technique in predicting the gene
function using a myriad of transcriptomics data from RNA sequencing or microarrays
technology by connecting the genes based on their similar expression profiles [17,18].
Through the guilt-by-association principle, genes with similar mRNA expression profiles
across the tissue, treatment, or developmental stage are predicted to share a similar function
and are regulated via similar transcription factors [17,19]. The co-expression relationship
can be represented as a network graph that connects nodes (i.e., co-expressed genes) by
edges, indicating correlation-based evidence between genes. A group of nodes that are
highly interactive with one another is known as a module. Within a module, genes with
high connectivity are defined as hub genes. Modules are usually enriched to discover a
set of co-expressed genes that are overrepresented in a similar biological process (i.e., gene
function such as plant defence or signal transduction), molecular function (i.e., gene activity
such as protein kinase or catalytic activity), and cellular component (i.e., gene location such
as the cell wall or chloroplast). This information would be essential for understanding
the function of a gene and on how genes are produced and operate during response to
drought in rice.
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In the present study, an assessment of the morpho-physiological traits exhibited by
transgenic rice overexpressing OsAbp57 grown under two watering regimes was performed
to identify the possible traits that may contribute to the drought tolerance of transgenic rice.
In addition, a microarray analysis was also conducted to identify differentially expressed
genes in the transgenic plant compared to its parental line, MR219, under normal conditions.
Here, we performed a modular gene co-expression network (mGCN) analysis of this in-
house microarray dataset to examine the co-expressed gene modules, evaluate the module
activity between samples of MR219 and transgenic rice overexpressing OsAbp57 (Abp57-OE),
and enrich a set of co-expressed gene modules to associate them with a particular function,
activity, and cellular location. In this study, we represented the phenotypic class of MR219
and transgenic rice as wild-type (WT) and overexpressing OsAbp57 (Abp57-OE), respectively.
To grasp an understanding of the transcriptional activity of overexpressed OsAbp57 under
drought conditions, we integrated protein–protein interaction (PPI) information into the
constructed modules to identify the most connected genes (i.e., hubs) within the network
that may play a function as a critical regulator in response to drought stress. Finally, we
conducted an expression analysis on a few selected genes to investigate their role in rice
drought tolerance.

2. Materials and Methods

2.1. Sample Preparation and RNA Extraction

The T3 seeds of Abp57-overexpressing rice (OE) were obtained from our previous
Agrobacterium-mediated transformation study [20] and were cultivated on MS media for ten
days along with MR219 (WT) seed as a control. Each WT and Abp57-OE group consisted
of three biological replicates. Total RNA was isolated from seedling tissues of Abp57-OE
and WT using TRIzol reagent (Life Technology, Waltham, MA, USA), followed by DNase
treatment via Ambion TURBOTM to eliminate DNA contamination. The quality of the
extracted RNA was measured using NanoDrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) in which samples with a concentration of 1.8 to 2.1
(A260/A280) were considered. We determined the integrity of the extracted RNA using
a Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). All samples with an RNA
Integrity Number (RIN) of 8.0 to 10.0 were subjected to microarray analysis.

2.2. Gene Expression Profiling, Differentially Expressed Genes (DEGs), and Enrichment Analyses

Gene expression profiling was conducted on the three replicates of seedling tissues of
WT and Abp57-OE using Affymetrix Rice (Chinese Build) Gene 1.0 ST Array that consists of
41,770 transcripts (Affymetrix Inc., Santa Clara, CA, USA). The CEL file was imported into
Affymetrix Expression ConsoleTM Software to check for quality control of raw data and data
normalisation following the manufacturer’s protocol. The robust multiarray analysis (RMA)
method was applied to ensure that the relative log expression signal (RLE) was comparable
between samples. The microarray experiment was then previously deposited into the NCBI
by Tan et al. (2017) [21] and is accessible through the NCBI GEO DataSets (DOI: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99055, accessed on 1 June 2017) [22].

The CHP files resulting from normalisation for DEGs analysis were then imported
into the Transcriptome Analysis Console (TAC) software version 3.1 (Applied Biosystems,
Foster City, CA, USA), following the manufacturer’s specifications. Using TAC, a statistical
method of one-way analysis of variance (ANOVA) was utilised to obtain the DEGs of WT
and Abp57-OE with default parameters: a fold change > |2| and an ANOVA p-value < 0.05.
One-way ANOVA was calculated based on F = Mean sum of square between group
(MSB)/Mean sum of square within group (MSW), where F follows an F distribution with
degrees of freedom between group (df) = K – 1 and within group (DFw) = N – K. K repre-
sents the number of groups, and N is the total number of observations across all groups.

For the MSB formula, MSB = ∑(Xi ∑ Xt)2/K ∑ 1; where Xi is the mean of group
i, and Xt = mean of all observations (all observations from all groups are combined to
form a single group, and the mean is subsequently calculated). For the MSW formula,
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SSW = ∑(Xij − Xj)2/N − K; where Xij is an observation within group j, and Xj = mean of
group j. Thus, overall, F = MSW/MSB = (∑(Xi − Xt)2/K − 1)/(∑(Xij − Xj)2/N − K).

For functional annotation of DEGs, we searched against several databases, including
the National Center for Biotechnology Information version 236 (NCBI; https://www.ncbi.
nlm.nih.gov, accessed on 15 March 2020) [23], UniProt version 2020_04 (https://www.
uniprot.org, accessed on 15 March 2020) [24], Rice Genome Annotation Project version
7.0 (RGAP; http://rice.plantbiology.msu.edu/, accessed on 15 March 2020) [25], The Rice
Annotation Project Database version 1.0 (RAP-DB; https://rapdb.dna.affrc.go.jp, accessed
on 15 March 2020) [26], and the Beijing Genomics Institute Rise Information System version
1.0 (BGI-RIS; http://rise.genomics.org.cn/, accessed on 15 March 2020) [27]. The Gene
Ontology (GO) terms were analysed with the Singular Enrichment Analysis (SEA) pro-
gram available on AgriGO version 2.0 (http://bioinfo.cau.edu.cn/agriGO/, accessed on
15 March 2020) [28] with the Affymetrix Genome Array (GPL2025) as background. Genes
with 2-fold expression levels and p-values < 0.05 were used for SEA analysis.

2.3. Expression Analyses of Randomly Selected Expressed Genes by qRT-PCR

Six genes were randomly selected for further investigation to validate the reliability of
the microarray data as follows: ATPF1G (Os07g0513000), OsCAO1 (Os10g0567400), OsEno5
(Os06g0136600), OsCPS4 (Os04g0178300), NAS1 (Os03g0307300), and CHI (Os12g0115700).
Total RNA was extracted from one-week-old seedlings of MR219 using TRIzol reagent (Life
Technology, Waltham, MA, USA) and then subjected to DNase treatment using Ambion
TURBOTM DNase (Thermo Fischer Scientific, Waltham, MA, USA). The total RNA was
reverse-transcribed into first-strand cDNA with a Maxima First Strand cDNA synthesis kit
(Thermo Fisher Scientific, Waltham, MA, USA). An equal amount of cDNA was used as the
template for PCR amplification using SYBR Green Master Mix (Thermo Fisher Scientific,
Waltham, MA, USA). Genes of interest were amplified using the specific primers listed in
Supplementary Materials Table S1. The relative expression level of an individual gene was
determined using the ΔΔ Ct calculation [29]. The housekeeping genes U6 and UBQ5 were
used as an internal control. One-way ANOVA was then performed to assess DEGs with a
p-value < 0.05. The expression level of DEGs was later compared with gene profiling data
to determine the validity of the microarray data.

2.4. Construction of Gene Co-Expression Network Modules

To further support the reliability of our Abp57-OE microarray data in drought, the co-
expression module analysis was carried out using the CEMiTool R package version 1.20 [30].
The published microarray dataset, under the accession number GSE99055, was employed
as a discovery set [21]. In this study, the correlation method of Pearson was selected to
transform the gene expression matrix (m × n) into an adjacency matrix, where m denotes
as genes and n represents the samples. A soft-threshold power (β) selection algorithm was
executed based on a scale-free topology criterion to construct an adjacency matrix, later
associated with the relationship between co-expression modules. The adjacency matrices
were transformed using the best threshold determined based on the “scale-freeness” of the
constructed network generated by the default function of CEMiTool. Unsigned network
analysis was conducted to infer whether modules represented general processes of drought
stress or any stress-related responses in transgenic rice overexpressing OsAbp57. The
dissimilarity threshold of 0.8 was employed as a cut-off for hierarchical clustering by
the agglomerative method, where genes with common expression levels were grouped
into clusters. The following criteria were used to build the network module: coefficient
of determination for linear regression fit, R2 (R2 > 0.8); the number of gene modules
(min_ngen) > 20; threshold similarity of eigengene (diss_thresh > 0.8); the number of
high-connectivity genes in each module, hub genes (n = 5).
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2.5. Gene Set Enrichment and Overrepresentation Analysis of Modules

The gene set analysis was performed for each module using the mean rank method
implemented in the Fast Gene Set Enrichment Analysis (FSGEA) R package to identify
modules of interest from constructed gene co-expression network [31]. The activity of the
modules was evaluated by determining which modules were upregulated or downregu-
lated in the samples of the wild-type MR219 and the OsAbp57 overexpressing lines. The size
of the gene set was generated by default in a range between 15 and 1000. To enrich the asso-
ciated function for each module, the hypergeometric distribution test (overrepresentation
analysis) was performed using the clusterProfiler R package [32]. The Gene Ontology (GO)
annotation of gene modules was retrieved and downloaded from Phytozome version 12.0
(https://phytozome.jgi.doe.gov/, accessed on 10 April 2021) [33]. The significance cut-off
of p-value < 0.05 was used to assign overrepresented biological process (BP), molecular
function (MF), and cellular component (CC) of genes within modules.

2.6. Identification and Validation of Hub Genes

The hub genes were determined by identifying genes with higher connectivity within
the modules. The hub genes were ranked based on the top 10 genes within the network
modules. For instance, if the module size was 200, then 20 genes with the largest number
of connectivity could be considered hub genes [34]. Integration between co-expression
information and protein–protein interactions (PPIs) may help discover important hubs in
the module. The rice PPI dataset from the STRING database version 11.5 was retrieved by
the Cytoscape plug-in, StringApp version 1.7.0 [35,36], using the list of gene modules as
search queries with the default confidence cut-off of 0.4 and above. A single protein with
no interaction was discarded, and only interactions with evidence of known interaction
(i.e., curated databases and experimentally determined) were kept for further analysis.
Module graphs for gene-encoded protein networks from the rice PPI dataset on STRING
were constructed by merging PPI information to visualise gene interaction in co-expression
modules and identify potential hubs.

2.7. KEGG Pathway Mapping Analysis

Each module was used to conduct pathway mapping analysis using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) Mapper tool version 4.3 (https://www.genome.
jp/kegg/mapper.html, accessed on 1 June 2021) [37]. The KEGG Orthology identifier
(KO ID) for genes was retrieved from the Phytozome v12 database using the BioMart
tool [33,38]. All genes in each module were then categorised into the following KEGG
pathways: (i) metabolism, (ii) genetic, (iii) environmental information processing, (iv) cel-
lular processes, and (v) organismal systems. The interactions between hub genes were then
manually connected as red arrows on the pathway maps.

3. Results

3.1. Global Gene Expression Profiling of the Abp57-OE Line

To gain insight into the transcriptional changes triggered by the OsAbp57 overexpres-
sion, a global gene expression analysis on WT and transgenic line (Abp57-OE) grown under
normal conditions was performed through DNA microarrays. The microarray data analysis
revealed that a total of 131 genes (90 upregulated and 41 downregulated) were differentially
expressed (fold change > 2, p-value < 0.05) in transgenic lines as compared to MR219. The
reliability of the microarray data was then assessed by quantitative real-time PCR on six
randomly selected DEGs, and the differences were validated (Figure 1). The expression
level of DEGs was largely consistent with the microarray result, implying that the data
were highly reliable.
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Figure 1. qPCR validations on six randomly selected DEGs. The bar plot represents the mean ±
standard error for two biological replicates and three technical replicates. The difference in gene
expression between the control (WT) and Abp57-OE was determined by a one-way ANOVA method
with a cut-off p-value < 0.05. The error bars indicate the standard error.

Gene Ontology (GO) enrichment analysis revealed that response to stimulus, home-
ostasis process, transport, oxidation-reduction, lipid metabolic process, and biosynthetic
process were among the significantly altered biological processes in transgenic rice. Mean-
while, for molecular function, DEGs were enriched considerably in metal ion binding, ATP
binding, ion transmembrane transporter activity, antiporter activity, peroxidase activity,
electron carrier activity, and catalytic activity. For cell components, we identified that the
DEGs were significantly regulated in the membrane, chloroplast, and vacuole. The result
of the GO enrichment analysis is summarised in Table 1.

Table 1. Functional classification of the differentially regulated genes (DEGs) in OsAbp57-
overexpressing transgenic rice. GO term enrichment analysis was performed using the AgriGO
analysis tool—Single Enrichment Analysis (http://bioinfo.cau.edu.cn/agriGO/analysis.php, ac-
cessed on 15 March 2020). The GO enrichment of biological process (B), molecular function (F), and
cellular component (C) was generated based on a false discovery rate (FDR) and adjusted p-value
cut-off of 1.0 × 10−5.

GO Term Ontology Description Number of DEGs FDR

GO:0050896 P Response to stimulus 32 2.20 × 10−24

GO:0051234 P Establishment of localisation 30 6.00 × 10−21

GO:0051179 P Localisation 30 6.00 × 10−21

GO:0006810 P Transport 29 4.60 × 10−20

GO:0009987 P Cellular process 51 8.40 × 10−18

GO:0009607 P Response to biotic stimulus 14 8.50 × 10−18

GO:0006811 P Ion transport 17 3.20 × 10−16

GO:0008152 P Metabolic process 47 1.70 × 10−15

GO:0006950 P Response to stress 17 5.80 × 10−12

GO:0042592 P Homeostatic process 10 1.00 × 10−11

GO:0051704 P Multi-organism process 10 2.30 × 10−10

GO:0003824 F Catalytic activity 50 6.30 × 10−14

GO:0022857 F Transmembrane transporter activity 17 7.60 × 10−14

GO:0005488 F Binding 48 2.60 × 10−12

GO:0015075 F Ion transmembrane transporter
activity 13 2.60 × 10−12

GO:0005215 F Transporter activity 17 5.00 × 10−11

GO:0022891 F Substrate-specific transmembrane
transporter activity 13 5.00 × 10−11

GO:0046872 F Metal ion binding 25 6.60 × 10−11

GO:0043167 F Ion binding 25 1.20 × 10−10

GO:0043169 F Cation binding 25 1.20 × 10−10

GO:0022892 F Substrate-specific transporter activity 13 2.80 × 10−10
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3.2. Modular Gene Co-Expression Analyses of the OsAbp57-OE Line

To further support the reliability of our Abp57-OE microarray data in drought stress,
we performed the mGCN analysis. In total, 41,770 genes across six samples were used to
construct an mGCN to determine key modules of drought-tolerant transgenic rice, OsAbp57-
OE. In Figure 2A, the dendrogram demonstrates the clustering of six samples, whereby the
samples were clustered based on wild-type samples (turquoise) and OsAbp57-OE samples
(red). Using the default parameters, the soft-threshold value (β) of 14 was selected by a
scale-free topology fit (R2) of 0.824, indicating the best threshold for a scale-free network
model (Figure 2B). A total of 13 co-expressed modules containing 3596 genes (i.e., M1 to
M12, including one noncorrelated module, M13) were identified using the dissimilarity
threshold of 0.8 as a hierarchical clustering cut-off. Module M1 holds the highest number
of co-expressed genes (2004), followed by other modules in the following order, and the
smallest number of genes (41) was discovered in M11 and M12. Of these, only 11 co-
expressed modules (M2 to M12) with a p-value less than 0.05 were subjected to significant
module activity. All module enrichment plots discovered in co-expression analysis were
shown to be upregulated in the class of OsAbp57-OE samples (OE) compared with the
wild-type samples (WT), except for module M6 of Abp57-OE, which featured a general
downregulation when compared with the WT sample (Figure 2C). The upregulation in
Abp57-OE class and downregulation in WT class has suggested the sensitivity of transgenic
rice, OsAbp57, towards drought stress.

Figure 2. CEMiTool outputs for the OsAbp57-OE line microarray dataset. (A) Clustering dendrogram
of genes based on the expression profiles. The turquoise colour indicates MR219, and the red colour
represents the OsAbp57-OE line. (B) Scale-free topology (R2) and mean connectivity to identify the
soft-threshold power (β) between 1 and 20. The scale-freeness of the network was determined at
a soft threshold of 14, above the R2 threshold of 0.8. (C) Gene set enrichment analysis for module
activity of the OsAbp57-OE line (OE) and MR219 (WT). The size and colour of the modules represent
the normalised enrichment score (NES). All modules were upregulated in OE except M6, with
downregulation in OE and upregulation in WT.

In OE, modules M2 (OE; NES = 3.39; WT; NES = −3.46) and M3 (OE; NES = 3.58;
WT; NES = −3.63) featured strong upregulation and downregulation in module activity
(Figure 2C). The enrichment analysis of each module demonstrated that co-expressed genes
in modules M2 and M3 were involved in GO terms transmembrane transport including
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metal ion transport and response to oxidative stress (Figure 3A,B). Module M2 was enriched
in defence response (adjusted p = 0.30099; 11/1117 genes), cell redox homeostasis (adjusted
p = 0.37956; 10/1117 genes), and proteolysis (adjusted p = 0.3183; 51/1117 genes). How-
ever, genes in module M3 were involved in the fatty acid biosynthetic process (adjusted
p = 0.88612; 18/1117 genes) and signal transduction (adjusted p = 0.88612; 13/1117 genes).
Overall, other modules were also strongly enriched in response to oxidative stress, such as
modules M4, M5, M7, M8, M10, and M11 (Supplementary Materials Table S2).

 

Figure 3. Bar graph for the top ten GO terms enriched between genes in modules (A) M2 and (C) M3,
respectively, and gene sets from the Phytozome database. The dashed line represents the -log10
adjusted p-value of 0.01. Interaction network of modules (B) M2 and (D) M3. The top ten hubs’
colours are shown based on the originality of hubs present in the CEMiTool co-expression module
(blue) or rice PPI dataset (red) on the STRING database.

3.3. Hub Genes’ Identification in OsAbp57-OE Associated with Drought Stress

A hub gene is a high-degree gene in the module and is presumed to be a vital candidate
that controls other genes in the network. The top 10 most connected genes in each module
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were determined using the abovementioned methods. We identified 123 hub genes in
12 modules (i.e., M1 to M12). Detailed information on the hub genes of each module is
listed in Supplementary Materials File S1. The hub gene analysis discovered 15 origin hubs,
which were initially found in the CEMiTool module, including UGDH and ONI3 in module
M1; KINUA, TPR, and ABC-1 in M2; HRZ2 in M3; SUPM1 and BAK1 in M5; AAO2 and
4CL1 in M7; PEPC-2 and NPR5 in M10; PPR and OAT in M11; OsMutY in M12. Moreover,
we found that origin hubs associated with drought stress mechanisms were upregulated in
the network, particularly HRZ2 in response to Fe3+ starvation and JA-mediated signalling
pathway, AAO2 in response to water distress, and OAT in various responses to abiotic
stress tolerance such as to water distress, osmotic and salt stress, hormonal stimuli of ABA,
JA, BR, and IAA.

Figure 3B,D demonstrate the gene network for interesting modules M2 and M3,
respectively. We discovered several upregulated genes in enriched OsAbp57-OE modules
M2 and M3 such as HSP70, KINUA, TPR, ABC-1, PK, Os01g0655500, PRR1, MDH, HRZ2,
TIG, PTR, PRF1, and KAR (Table 2). Interestingly, the Gene Ontology annotation shows
that some hub genes are significantly involved in stress-related biological processes, for
instance, in response to the metal ion, Cd2+ (i.e., HSP70), Fe3+ starvation and JA-mediated
signalling pathway (i.e., HRZ2), and reactive oxygen species (ROS) (i.e., MDH), including
PRR1, are reported to play a role in the phosphorelay signal transduction system and the
regulation of circadian rhythm, PK in glycolysis, KAR in elongation of fatty acid, and TIG
and PTR in transport function of protein and oligopeptide, respectively. However, although
several defence-related biological processes have been reported through the GO annotation,
the potential mechanisms underlying the regulation of drought tolerance genes by OsAbp57
are not well understood. A further experiment must be conducted to determine how these
hub genes may navigate the function of defence during drought conditions in rice.

Table 2. Hub genes from interesting modules M2 and M3.

Probe ID Gene ID Gene Name Description Gene Ontology Trait Ontology Log2FC Up or Down

16381052 Os01g0100700 RPS5-1 40S ribosomal
protein S5-1

Defence response to fungus,
response to H2O2, ABA, salt

stress, water deprivation

Oxidative stress, sheath
blight disease resistance,

drought and salt tolerance,
ABA sensitivity

0.04197709 Down

16388768 Os01g0686800 RACK1A
WD

repeat-containing
protein

Shoot and root development,
seed germination, circadian
rhythm, detection of redox
state, defence response to

fungus, ET- and
SA-activated signalling
pathway, SA-mediated

signalling pathway,
photoperiodism, response to

SA, ET, salt stress,
H2O2, and Cd2+

ABA content, blast
disease, disease resistance,

ET sensitivity,
photoperiod sensitivity,

salt tolerance

0.0606787 Down

16391508 Os01g0840100 HSP70 Heat shock protein
Hsp70 Response to Cd2+ and stress – 0.09918908 Up

16454811 Os02g0797400 MCM5 MCM family
protein Cell cycle, DNA replication – 0.0735361 Down

16444532 Os02g0805200 PCNA Proliferating cell
nuclear antigen

Regulation of DNA
replication, double-stranded

break repair, response to
gamma ray, DNA damage

stimulus, UV, radiation,
and H2O2

UV light sensitivity 0.0467894 Down

16457043 Os03g0152900 KINUA Kinesin-like
protein KIN-UA

Microtubule-based
movement – 0.13444718 Up

16471736 Os03g0308800 TPR
Tetratricopeptide-

like helical domain
containing protein

RNA processing, regulation
of translation – 0.1440686 Up

16484814 Os04g0598200 RPL12 60S ribosomal
protein L12

Translation, ribosomal large
subunit assembly, defence

response to bacterium,
response to heat, cold, SA,

JA, H2O2, and water
deprivation

Heat, cold & drought
tolerance, JA sensitivity,
bacterial blight disease

resistance, oxidative stress

0.1768968 Down

16545101 Os08g0117200 RPS13 40S ribosomal
protein S13

Translation, defence
response to fungus, response

to water deprivation, salt
stress, ABA, H2O2

Drought & salt tolerance,
oxidative stress, sheath

blight disease resistance,
ABA sensitivity.

0.93240096 Down
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Table 2. Cont.

Probe ID Gene ID Gene Name Description Gene Ontology Trait Ontology Log2FC Up or Down

16545104 Os08g0117300 RPS13 40S ribosomal
protein S13 Translation – 0.0503529 Down

16551132 Os09g0250700 ABC-1 ABC-1 domain
containing protein. – – 0.1204065 Up

16414285 Os10g0466700 RPL17 60S ribosomal
protein L17 Translation – 0.0262824 Down

16417752 Os11g0216000 PK Pyruvate kinase
family protein Glycolysis – 0.09241819 Up

16388283 Os01g0655500 Os01g0655500
Protein kinase, core
domain containing

protein.
Protein phosphorylation – 0.27208653 Up

16442445 Os02g0618200 PRR1

Two-component
response

regulator-like PRR1
(Pseudo-response

regulator 1)

Phosphorelay signal
transduction system,

regulation of circadian
rhythm

– 0.10612373 Up

16477082 Os03g0773800 MDH Malate
dehydrogenase

Response to ROS, metabolic
processes of malate and
carbohydrate, cell redox
homeostasis, TCA cycle

– 0.11776116 Up

16503455 Os05g0143800 GH3.6

GH3
auxin-responsive
promoter domain
containing protein

Response to IAA, light
stimulus, salt stress Salt tolerance 0.2140365 Down

16501757 Os05g0551000 HRZ2

Hemerythrin
motif-containing

RING- and
Zn-finger protein2

Response to Fe3+ starvation,
JA-mediated signalling

pathway
Fe3+ sensitivity 0.24291249 Up

16513254 Os06g0308000 TIG Trigger factor-like
protein

Protein folding and
transport – 0.09959792 Up

16411623 Os10g0111700 PTR POT family protein,
peptide transporter Oligopeptide transport – 0.20793006 Up

16407843 Os10g0323600 PRF1 Profilin A
Cytoskeleton organisation,

sequestering of actin
monomers

– 0.16372392 Up

16420775 Os11g0106700 FER1 FERRITIN 1

Response to Fe3+, Zn2+,
H2O2, ABA, bacterdium and

cold; leaf and flower
development; Fe3+ transport

and homeostasis;
photosynthesis

– 0.1615892 Down

16430188 Os12g0106000 FER2 FERRITIN 2

Response to Fe3+, Zn2+, Cu2+,
H2O2, cold, bacterium, ABA;
leaf and flower development;

Fe3+ transport and
homeostasis; photosynthesis

Temperature response
trait, Cu2+ sensitivity 0.1529454 Down

16427113 Os12g0242700 KAR Beta-ketoacyl
reductase Fatty acid elongation – 0.48300481 Up

To validate the hub gene, Figure 4 demonstrates the interaction network for all hub
gene modules: M1 to M12. The network consisted of 125 nodes and 584 edges of which
14 were identified as single nodes. Figure 4B showed β-ketoacyl reductase (KAR),
a fatty acid biosynthetic gene, which was highly upregulated in OsAbp57-OE. We
found that stress-related hub genes, including HSP70, HRZ2, and MDH, significantly
interacted with other upregulated hub genes (Figure 4B). For instance, HSP70 with
EF2; PK, PPR, and MDH, HRZ2 with Os01g0655500; and MDH with CFR, ACP, ACP-1,
ACP3, ppc4, PK, cytME2, HSP70, and PPR1. Several downregulated genes were also
identified to interact with HSP70 and MDH, suggesting its potential negative regulation
of drought responses in OsAbp57-OE.
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Figure 4. Interaction network for all hub genes in OsAbp57-OE: (A) modules M1–M12; (B) stress-
related hub genes: (i) MDH, (ii) HSP70, and (iii) HRZ2.

3.4. Pathway Mapping Analysis of OsAbp57-OE

The number of genes from network modules M1 to M12 was assigned according
to their presence in the KEGG pathway maps. The pathway maps are categorised into
metabolism, organismal systems, cellular processes, and environmental and genetic
information processing. The modules M1 to M11 demonstrated active involvement
in metabolism (Supplementary File S2). Genes with a putative function in cellular
processes were absent in modules M5 to M7, M9, M10, and M12, including the absence
of environmental information processing in M4, M5, M7 to M9, and M12, organis-
mal systems in M7 to M12, and genetic and environmental processing in M3, M4,
M8, and M10. The hub genes showed high participation in the genetic information
process (30 genes) and metabolism (29 genes) including participation in the environ-
mental information process (4 genes), cellular processes (3 genes), and organismal
systems (2 genes) (Figure 5A). In addition, integration with protein–protein interaction
data validated the correlation of hubs between the pathway maps. The hubs under
the phenylpropanoid biosynthesis were correlated to the porphyrin and chlorophyll
metabolism map in module M7 (Figure 5B).
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Figure 5. Pathway mapping analysis of OsAbp57-OE. (A) Classification of hub genes in the modular
network into five main pathway maps: cellular processes, environmental information processing,
genetic information processing, and organismal systems; (B) interaction between M7 hubs in the
porphyrin and chlorophyll metabolism pathway, and phenylpropanoid biosynthesis maps are repre-
sented with red lines.

No correlation of hubs within other modules was identified between the pathway
maps. Pathway analysis of several hubs under plant hormone signal transduction showed
interaction with the MAPK signalling pathway map. Two hubs of GH3 in M3 and M6,
GH3.6 and GH3.11 under plant hormone signal transduction for plant growth, showed
interplay to disease resistance NPR5 and stress-tolerant response CatC under the MAPK
signalling pathway map (Figure 6).
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Figure 6. Interaction between hub genes in MAPK signalling pathway and plant hormone signal
transduction maps. Interaction is represented in red lines.

4. Discussion

In the present study, we demonstrated that the overexpression of an auxin-binding
protein, OsAbp57, can enhance the drought tolerance of a popular Malaysian rice cultivar,
MR219. A comparative analysis of drought tolerance among two OsAbp57 overexpressing
lines and MR219 revealed a much delayed drought-induced leaf senescence in OsAbp57
overexpressing lines compared to MR219. Numerous previous studies have reported that
delayed drought-induced leaf senescence is one of the important traits that can enhance
the tolerance of a plant toward drought stress [8,39,40]. This has been further supported
by Liu et al. (2016) [41], who reported that transgenic rice with accelerated drought-
induced senescence exhibited higher sensitivity to drought stress than its nontransgenic
parental line.

Further examination of the physio-morphological traits also revealed that the per-
formance of both OsAbp57 overexpressing lines was superior to MR219 in most of the
traits evaluated under both watering regimes. We noticed that the root dry weight of
OsAbp57 overexpressing exhibited the greatest responsiveness towards drought conditions.
Compared to its counterparts grown under the normal condition, the root dry weight of
OsAbp57 overexpressing lines grown under drought conditions and the root weight of both
OsAbp57 overexpressing lines grown under drought conditions exhibited more than 47%
of increments (OE1: 47%; OE2: 52%). Being the primary organ involved in plant water
uptake and the first organ to perceive drought stress, the root traits have long been known
as one of the determining factors in plant productivity under drought stress [42]. This is
particularly true for the plant species employing drought avoidance mechanisms, such as
rice. Previous studies on rice have also reported that the root mass and length are good
predictors of rice yield under drought due to improved contact between the root and the
shrinking soil water [43]. Therefore, higher responsiveness of the root weight of OsAbp57
overexpressed in response to drought stress may be one of the factors contributing to the
drought resistance of transgenic rice, which allows the transgenic plant to avoid a drastic
reduction of plant water potential despite a shortage of soil moisture.
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Although OsAbp57 overexpressing lines exhibited a higher drought tolerance than
MR219, we also observed that the overexpression of OsAbp57 led to approximately a
23–48% reduction in the leaf photosynthetic rate compared to MR219. This implies that
the OsAbp57 overexpression may have a negative effect on the photosynthetic activities of
rice. Suboptimal performance of transgenic rice under well-irrigated conditions has also
been reported in many previous studies. One of the examples was the transgenic plant
overexpressing OsPYL/RCAR5 [44], whereby the overexpression had resulted in dwarf
phenotype and yield reduction. In addition, the transgenic plant overexpressing OsNAC6
produced shoot growth retardation under control conditions [45]. Therefore, employing
drought-inducible promoters may avoid the adverse effects imposed by the overexpression
of OsAbp57 under well-irrigated conditions.

Our transcriptome data showed that OsAbp57 regulated redox metabolism in rice. The
overexpressing of OsAbp57 led to changes in redox activity and increased iron ion uptake
in transgenic rice. Iron is essential for plant growth, but excess Fe2+ can generate ROS
via the Fenton reaction. These results signified the involvement of ROS metabolism in
plants. OsAbp57 has been proven to bind to IAA and directly activate plasma membrane
H+-ATPase. These findings agree with previous studies, whereby plant growth and devel-
opment activities governed by auxin are closely associated with ROS. The application of
auxin to cells rapidly induced ROS generation. Although ROS caused considerable cellular
damage, these molecules are also important signalling molecules for stress tolerance. The
possibility of utilising a gene involved in Fe2+ homeostasis in establishing drought-tolerant
rice has been demonstrated by a recent journal. According to the author, the expression of
the nicotianamine biosynthetic genes (OsNAS1 and OsNAS2) was upregulated significantly
in several drought-tolerant transgenic rice. Previous ChIP-seq analysis showed that Os-
NAS1 and OsNAS2 are the direct targets of a stress-responsive transcription factor called
OsNAC6, which is necessary for drought response. The overexpression of OsNAS1 and
OsNAS2 has also demonstrated the importance of the accumulation of NA for drought
tolerance in rice [46].

The ROS in plants must be kept at a safe level to avoid cellular damage and death.
Previous studies showed that drought stress would lead to a burst of different ROS in
different cellular compartments, such as mitochondria, chloroplast, and peroxisome [47].
Increasing evidence indicates that enhanced production of ROS may play a role in plant
stress signalling, which can facilitate plants to perceive stress levels in different organs.
However, the unregulated production of ROS is detrimental to the cell. Therefore, an
increase in ROS production must be accompanied by upregulation of the ROS scavenging
system. Our microarray data shows that biosynthesis of flavonoids was upregulated in
transgenic rice overexpressing OsAbp57. Flavonoid has solid antioxidative properties by
reducing the production and quenching ROS, especially those derived from photosynthetic
apparatus. This is done through several mechanisms, such as suppression of singlet
oxygen, inhibiting enzymes that generate ROS, and chelate ions of transition metals that
may catalyse ROS production.

Decreased plant height and increased branching are essential characteristics for rice
crop improvement and are also part of a plant’s acclimatisation strategy to diminish stress
exposure (stress-induced morphogenic responses, SIMRs). The interactive network of
auxin, ROS, and antioxidants has been proposed to form a redox signalling module that
links plant development and environmental cues. According to Xia et al. (2020) [48],
OsWUS plays a significant function in tiller development and weak apical dominance, and
the loss of OsWUS function influenced rice plant morphology. Furthermore, auxin response
is significantly enhanced due to the inhibition of auxin-associated gene ASP1, a physical
interactor of OsWUS that suppressed the formation of tiller buds in OsWUS loss-of-function
mutant, decreased culm number 1 (dc1).

Our results showed that overexpression of OsAbp57 enhanced drought tolerance in
transgenic rice. This might be due to the altered auxin homeostasis in the plant. Previ-
ous studies indicated that endogenous and exogenous auxin positively regulated ROS
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metabolism and antioxidant activity. Likewise, transgenic potato overexpressing AtYUC6
(member of the YUCCA family of flavin-containing monooxygenase) showed high auxin
and enhanced drought-tolerant phenotype through a regulated ROS homeostasis [8]. En-
hanced ROS production or ROS signalling is also associated with various abiotic stresses,
such as drought, salt stress, oxidative stress, UV-radiation stress, and heavy metal stress.
The disturbed ROS homeostasis during stress conditions could act as a signal to activate
a stress response pathway, such as mitogen-activated protein kinase (MAPK) cascades.
Moreover, our microarray analysis also showed downregulation of gibberellin biosynthesis
activity. According to Zawaski and Busov (2014) [49], gibberellin (GA) catabolism and
repressive signalling mediate shoot growth inhibition and physiological adaptation in
response to drought. The transgenic plants with GA-deficiency or GA-insensitive dis-
played more excellent resistance to drought. In addition, GA-deficiency in response to
Fe homeostasis could also lead to dwarfism of the shoot, where Fe-deficient causes foliar
chlorosis and decreased leaf biomass. The concentrations of Fe and CHL, an indicator of Fe
status, were higher in the leaves of dwarfed transgenic rice [50].

The modular co-expression network (mGCN) constructed based on our microarray
data, showed strong upregulation of module activity in OsAbp57. Modules M2 and M3 refer
to transmembrane transport, which significantly adjusts water scarcity by allocating various
molecules through the root, stomata, and cuticle [51]. Although the transport of several
metal ions, including K+, Na+, and Cl-, has been reported to be critical in counteracting
drought stress [51], the role of Fe3+ transport in rice is still not well understood. In fact, the
presence of Fe causes the activation of reactive oxygen species (ROS) scavenging enzymes,
such as catalase and peroxidase, which are known to regulate the expression of the stress-
responsive gene to confer tolerance to environmental stress [52,53]. Also, GSEA revealed
promising insights into the tolerance mechanisms of OsAbp57 against drought. For instance,
the activity of most of the modules, which are associated with oxidative stress, suggests an
intense regulation of ROS and ROS-mediated signalling pathways during drought. Our
mGCN study revealed the dynamics of genes involved in drought tolerance due to the
possible increase of reactive oxygen species (ROS) levels when oxidative stress is induced
during water depletion. This leads to redox homeostasis, thus activating redox-dependent
signalling that could initiate the adaptive plant response. To escape such water scarcity,
membrane transport will take place to transfer molecules, metal ions, and water in the
context of root response to drought. However, further experiments are much needed to
assess the importance of Fe3+ transport during a water shortage.

Integration of mGCN with protein–protein interaction (PPI) data revealed the putative
involvement of OsAbp57 hubs in drought stress tolerance. Interestingly, the origin hub
that is unlikely present in the PPI data has shown to be upregulated under drought stress.
Under drought conditions, Fe micronutrients play a key role in enhancing stress tolerance
as it produces assimilates [52]. HRZ2 functions to negatively regulate the response of
Fe deficiency and activate JA signalling at the early stages of Fe sufficiency [54,55]. The
OsAbp57 tolerance of Fe-sufficient conditions may have incurred as manifest in module M3
by origin hub HRZ2, which was reported previously to increase the expression of genes
involved in Fe uptake and translocation in the HRZ-knockdown shoots and roots [56]. The
other predicted origin hub, AAO2, is specifically expressed in shoot and shows drastic
changes in transcript accumulation under drought and salinity stress [57].

Meanwhile, OAT, controlled by a stress-responsive transcription factor, SNAC2, con-
fers good tolerance to drought and osmotic stress through activation of ROS-scavenging
enzymes and ABA-mediated pathways [58]. The regulation of origin hubs identifies new
potential genes that may have functioned to increase drought tolerance in OsAbp57. The
presence of MDH and PK further explains the possible occurrence of carbohydrate synthesis
and glycolysis, respectively [59,60]. In contrast, TIG, a distant FKBP family, contains a
targeting region that binds to ribosomes and helps to determine the subcellular localisation
of mature protein during water deficit [61]. The presence of PTR infers the oligopeptide
transport events [62] and explains possibilities for nutrient uptake and transport in rice,
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such as nitrogen and arsenic [63,64]. In rice, PRR1, a component of the circadian clock, plays
a vital role in regulating the photoperiod of flowering response. However, a recent study
by Wei et al. (2021) [65] reported that PRR73 positively regulated salt tolerance by co-joint
with HDAC10 to repress the transcription of Na+ transporter HKT2;1 in transgenic rice.

We noticed several important hubs physically interacting with each other based on the
PPI data. From the interesting modules, we discussed the results based on the upregulated
hub associated with drought stress and hub interaction between the pathway maps.

In module M2, HSP70 functions in protein folding and preventing DNA degradation
or fragmentation under stressed and unstressed conditions [66,67]. We found HSP70 to
be upregulated in OsAbp57, considering this gene confers drought stress tolerance by
maintaining the protein structure or DNA of the plant cell. The interaction of HSP70
with MDH and PK, which are involved in carbohydrate synthesis and glycolysis, may be
regarded as a crucial trait for plant-life-sustaining activities. Drought causes changes in
sucrose and amino acid content, which was revealed by an increased phosphoenolpyruvate
carboxylase (PEPC) expression in starch and sucrose metabolism [68]. In poplar, the PPR
gene may be involved in environmental adaptation as it was confirmed to respond to cold,
salinity, and JA conditions [69] and under drought in Arabidopsis [70]. In M3, the interacted
genes, HRZ2 and Os01g0655500, are related in function. As HRZ2 plays a dominant role in
Fe uptake and translocation, Os01g0655500, a protein kinase-containing domain gene, is
regulated in response to Fe deficiency and excess [71]. Among the MDH neighbours, ACP
may suggest an essential role in type II fatty acid synthesis and mitochondrial protection
against drought stress [72]. In mitochondrial protection, ACP has been identified as a
transmitter for nutrient status concerning mitochondria biogenesis [73]. We found ACPs,
including ACP1 and ACP3, were upregulated in OsAbp57, which has previously been
reported to improve salt tolerance through alterations of fatty acid composition and control
the concentration of Na+/K+ [74]. In addition, by scavenging ROS at higher concentrations
of Na+, another interesting hub, CFR, may enable the protection of chloroplasts from
chlorophyll degradation and photodamage of photosystem II [75].

Of all interesting hubs, the flavonoid biosynthesis pathway seems to be functionally
correlated to porphyrin and chlorophyll metabolism through the correlation between 4CL1
and NOL genes. The relationship between these two pathways is likely to co-exist during
adverse environmental conditions that cause leaf colour to shift due to changes in pigment
ratios. In a study by Shen et al. (2018) [76], the synergistic effect of flavonoid reduction
and porphyrin and chlorophyll enhancement resulted in a change in the leaf colour of tea
plants. Hub genes encoding proteins of the MAPK signalling pathway were also associated
with plant hormone signal transduction maps. Upon water scarcity or drought conditions,
the accumulation of ABA and H2O2 activates the MAPK signalling pathway, thereby
promoting the catalase activity, which is responsible for maintaining the optimal level
of H2O2 in plant cells [77]. Our findings found that GH3 genes (i.e., GH3.11 and GH3.6)
were involved in plant growth and development via the IAA signal transduction pathway.
However, a GH3 family gene, GH3-2, modulated ET-IAA crosstalk to confer drought and
cold tolerance in rice [78]. The interplay of the SA signal transduction pathway with the
MAPK signalling pathway and IAA signal transduction pathway inferred the possible
event of combined biotic and abiotic stresses. Abiotic stress weakens plant immunity and
enhances plant susceptibility to pathogenic organisms [79].

5. Conclusions

This work provided new insight into the emergence of drought tolerance in OsAbp57.
We presented a solid integration study that can analyse transcriptomics data to discover
potential candidates for the drought-responsive gene via modular gene correlations. In-
tegration of our present results and the literature search portrayed the hub gene function
of mGCN involved in important biological processes associated with drought stress tol-
erance. We demonstrated possible hub genes underpinning potential drought tolerance
by increased reactive oxygen species (ROS) level at the state of water depletion, therefore
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causing the occurrence of metal ion transport, redox homeostasis, and activation of redox-
dependent signalling that may trigger the adaptive response in rice. The hub genes also
link the chlorophyll and flavonoid metabolism pathways and feature the interplay between
the MAPK signalling pathway with IAA and SA signal transduction pathways. These
concurrent events might have occurred in OsAbp57 due to the effect of colour changes in
plant cells, stimulated by 4CL and NOL genes, and the possible occurrence of combined
stresses activated by GH3, CATC, and NPR genes through the pathogenic susceptibility
via weakened immunity during drought stress. The hub genes discovered in our mGCN
are crucial in rice breeding strategies to enhance yield and produce drought-tolerant rice
varieties. Some of the hub genes and pathways indicated in this study are established can-
didates associated with drought stress, confirming the functional validity of these findings.
However, other poorly investigated genes could necessitate novel mechanisms in OsAbp57,
worthwhile of further investigations in future research.
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Abstract: Chocolate spot, which is caused by the necrotrophic fungus Botrytis fabae, is a major
foliar disease occurring worldwide and dramatically reducing crop yields in faba bean (Vicia faba).
Although chemical control of this disease is an option, it has serious economic and environmental
drawbacks that make resistant cultivars a more sensible choice. The molecular mechanisms behind
the defense against B. fabae are poorly understood. In this work, we studied the leave proteome in two
faba bean genotypes that respond differently to B. fabae in order to expand the available knowledge
on such mechanisms. For this purpose, we used two-dimensional gel electrophoresis (2DE) in
combination with Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF/TOF). Univariate
statistical analysis of the gels revealed 194 differential protein spots, 102 of which were identified by
mass spectrometry. Most of the spots belonged to proteins in the energy and primary metabolism,
degradation, redox or response to stress functional groups. The MS results were validated with
assays of protease activity in gels. Overall, they suggest that the two genotypes may respond to
B. fabae with a different PSII protein repair cycle mechanism in the chloroplast. The differences in
resistance to B. fabae may be the result of a metabolic imbalance in the susceptible genotype and
of a more efficient chloroplast detoxification system in the resistant genotype at the early stages
of infection.

Keywords: Botrytis fabae; faba bean; resistance; proteomic analysis; photosystem II repair cycle

1. Introduction

By virtue of its high nutritional value, faba bean (Vicia faba L.) is an important food
legume for human consumption and livestock feeding [1]. In fact, it is regarded as an excel-
lent protein crop on the basis of its ability to provide nitrogen inputs into temperate agricul-
tural systems, and also because of its increased yield potential and nitrogen-fixing capacity
relative to other grain legumes [2,3]. Faba bean is the fourth most widely grown cool season
grain legume (pulse) globally after pea (Pisum sativum), chickpea (Cicer arietinum) and lentil
(Lens culinaris) (FAOSTAT 2019; https://www.fao.org, accessed on 15 September 2021).
However, its yield is greatly affected by some environmental conditions, including biotic
and abiotic stresses [3,4].

The necrotrophic fungus Botrytis fabae Sard. (teleomorph: Botryotinia fabae Lu & Wu)
causes chocolate spot, which is one of the most destructive diseases for faba bean plants
worldwide [5,6]. Infected plants exhibit chocolate-colored lesions on aboveground parts
and, especially, on leaves. The disease, which starts in bean crops where inoculum is
present in residues from previous years or in contaminated seeds [7], may be especially
aggressive under high humidity and temperature conditions. Such conditions can lead to
extensive necrosis of plant tissues and severe damage, and can also favor the spread of the
pathogen to other plants [8]. Prolonged favorable conditions for B. fabae growth can result
in considerable economic crop losses through reduced grain yields and quality [9]. The
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severity of chocolate spot epidemics can be mitigated with integrated disease management
strategies, such as the use of clean seeds, crop rotations, lower planting densities, appli-
cation of fungicides and selection of more resistant plant varieties [6,10]. Although some
germplasm accessions have shown moderate to high levels of resistance [11], resistant
cultivars adapted to different cultivation areas are scarcely available.

As a necrotrophic pathogen, B. fabae must kill and decompose host cells in order to
feed on them. The fungus can infect plants via a variety of mechanisms mediated by lytic
enzymes, toxins, stress-induced reactive oxygen species (ROS), necrosis-secreted proteins
and a wide variety of secondary metabolites [12–16]. On the other hand, plants can stop
the progression of the fungus by using constitutive or infection-induced mechanisms.
Such mechanisms can be of the physical (cuticle and cell wall) [17,18] or chemical type
(phytoanticipins and phytoalexins) [19], but can also involve induction of pathogenesis-
related proteins or defensins, or accumulation of antimicrobial compounds [20,21].

Plants are known to accumulate ROS in response to necrotrophic fungi [22–27] and
faba bean cultivars have been found to respond to B. fabae with differential ROS accumula-
tion, lipid peroxidation and enzymatic ROS scavenging activity [28]. Recently, enhanced
functionality in photosystem II (PSII), probably resulting from ROS accumulation in re-
sponse to short-time exposure to B. cinerea, was reported in tomato plants [27]. However,
little is known about the specific molecular mechanisms by which plants respond to
B. fabae. A transcription factor (TF) analysis of the response of M. truncatula to B. fabae and
B. cinerea [29] revealed some TFs to be involved in differential responses and others to be
responsible for resistance to the two pathogens.

To our knowledge, few omics studies have focused on plant responses to Botrytis. As
confirmed by using mutants at the transcriptomic level, Arabidopsis thaliana and tomato
possess some genes whose expression is related to B. cinerea resistance. Such defense-
related genes include some encoding PR protein 1 (PR1), β-1,3-glucanase and subtilisin-like
protease, and other proteins involved in secondary metabolite synthesis (reviewed in [15]),
but still others are involved in responses to abiotic stresses, such as signaling hormone
pathways, which affect photosynthesis, and protein synthesis and transport [15,30,31].
Even fewer proteomics studies have addressed plant–Botrytis interactions [32,33] and most
have focused on the pathogen B. cinerea (reviewed in [15]). Thus, Marra et al. used 2DE
coupled to Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF) analysis [32] to
examine the interaction of beans with B. cinerea and Trichoderma. They found pathogenesis-
related proteins and other disease-related factors, such as potential resistance genes, to
be seemingly associated with interactions with both the pathogen and Trichoderma. In
addition, a shotgun proteomic study of B. cinerea-infected tomato fruit at different ripening
stages identified a substantial number of proteins responsible for pathogenicity (mainly PR
and disease resistance proteins, proteases and peroxidases), as well as others protecting the
fruit from the oxidative stress response by the host [33].

In the absence of a reference genome assembly for Vicia faba owing to its enormous size
(13 Gbp) and complexity (e.g., abundance of transposable elements), high-throughput meth-
ods, such as transcriptome analysis, have proved efficient for enriching genomic resources
(reviewed in [1]). However, only limited DNA sequence data from reported transcriptome
datasets have been made available on public databases [34]. Using high-throughput omic
technology can no doubt help expand existing knowledge of the plant–pathogen interaction
and provide a basis for developing improved crop breeding programs. The main aim of
this work was to go deeper into the knowledge of the molecular mechanisms underlying
the defense against B. fabae in faba bean. For this purpose, we studied the leave proteome
in two faba bean genotypes that respond differently to B. fabae by using two-dimensional
gel electrophoresis (2DE) in combination with (MALDI-TOF/TOF) mass spectrometry
(MS). Some results of the MS analysis were validated by assays of protease activity in gels.
Overall, the results suggest that the key to stopping the spread of the pathogen onto leaves
is mainly a regulatory ROS production mechanism occurring in the chloroplast.
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2. Materials and Methods

2.1. Plant Material and Sample Collection

Two faba bean genotypes known to exhibit a contrasting response to B. fabae were
used, namely: Baraca as susceptible genotype and BPL710 as resistant genotype [10,35].
Seeds of the two genotypes were grown in 1 L pots filled with a (1:1) sand–peat mixture
under controlled conditions: (20 ± 2) ◦C, 12 h dark/12 h light photoperiod and a photon
flux density of 150 μmol m−2 s−1.

A total 27 plants per genotype were used, with leaves being sampled from
12 inoculated plants and 12 uninoculated (control) plants of each. Three other plants were
inoculated and were used to score disease symptoms. Plants were inoculated according to
Villegas-Fernandez et al. [35], with B. fabae local monosporic isolate (Bf-CO-05) being grown
on Petri dishes containing V8 medium and spores suspended at a 4.5 × 105 spores/mL
concentration in a glucose/water solution (1.2% w/v). Three-week-old plants were then
sprayed with the suspension at a rate of 1.5 mL/plant and incubated in a growth chamber
at a relative humidity above 95% in the dark. By contrast, control (uninoculated) plants
were sprayed with a glucose solution containing no spores. Disease symptoms were evalu-
ated after restoring the photoperiod 24 h later but keeping the relative humidity above 90%.
Evaluations were done two and six days after inoculation (dai). Disease severity (DS) was
calculated by visual estimation of the proportion of plant surface covered with chocolate
spots, with estimates being corrected by increasing the weight of the aggressive lesions by
50% with the formula DS = (% nonaggressive lesions) + 1.5 × (% aggressive lesions). The
results thus obtained were analyzed statistically with the software Statistix 8 (Analytical
Software, Tallahassee, FL, USA). Data were subjected to the arcsin

√
x transformation

in order to offset evaluation bias and to increase normality in their distribution prior to
analysis of variance (ANOVA).

Faba leaves for proteomic analyses were collected at two different times while both
control and inoculated plants were still under incubation in the dark [35]. Sampling was
done 6 h post-inoculation (hpi)—an early time at which no symptoms were apparent—
and then 12 hpi—when the earliest symptoms of chocolate spots became macroscopically
visible. All of the leaves from six individual plants (three biological replicates from two
plants each) per condition (treatment and sampling time) were collected, frozen in liquid
nitrogen and stored at −80 ◦C until protein extraction.

2.2. Protein Extraction and Gel Electrophoresis

Faba leaves samples (ca. 0.5 g fresh weight) from three independent replicates per
treatment, sampling time and genotype were crushed with liquid nitrogen in a precooled
mortar to obtain a fine powder. Proteins were extracted into TCA–phenol [36] and the
resulting pellets were resuspended in a solubilization buffer containing 7 M urea (Merck,
Kenilworth, NJ, USA), 2 M thiourea (Sigma–Aldrich, St. Louis, MI, USA), 2% (w/v) CHAPS
(Sigma–Aldrich), 2% (v/v) Bio-Lyte 3–10 carrier ampholytes (BioRad, Hercules, CA, USA),
2% (w/v) DTT (Sigma–Aldrich) and Bromophenol Blue traces (Sigma–Aldrich). Protein
concentrations were determined with the Bradford assay (BioRad) and proteins were then
separated in 2D electrophoresis gels.

For 2DE analysis, 18-cm IPG DryStrips (Amersham Biosciences, Amersham, UK) were
used with nonlinear pH gradients over the range 3–10. Strips were rehydrated passively
for 6 h and then actively at 50 V for a further 6 h with 300 μL of sample buffer containing
an amount of 400 μg of protein. Strips were loaded onto a PROTEAN IEF System (BioRad),
focused at 20 ◦C with an increasing linear voltage and equilibrated according to Castillejo
et al. [37]. They were then transferred onto vertical slabs of 10% SDS polyacrylamide gels.
Electrophoresis runs were done at 30 V at 15 ◦C for 30 min, and then at 60 V for about 14 h
until the dye front reached the bottom of the gel. The gels were loaded with broad-range
molecular markers (Bio-Rad) and, after electrophoresis, stained with Coomassie Brilliant
Blue G-250 [38].

119



Agronomy 2021, 11, 2247

2.3. Image Acquisition and Statistical Analysis

Gels were scanned with the Molecular imager FX ProPlus Multi-imager system
(BioRad) and the images thus obtained (Supplementary Figure S1) were analyzed with the
software PDQuest Advanced v. 8.0.1 (BioRad), using 10 times the background signal as
the presence threshold for spots. The quantitative data gathered from the spots in each gel
(viz., normalized spot volumes given as individual spot intensity/normalization factor)
were used to designate differences when comparing gel images. A multivariate statistical
analysis of the entire data set was performed by using the web-based software tool NIA
array [39]. Those spots showing significant differences (p ≤ 0.05) in intensity, exhibiting a
minimum change of ±2 and being consistently present among replicates were selected for
further MS/MS analysis.

2.4. Protein Identification by Mass Spectrometry (MALDI-TOF/TOF)

Differential gel spots were excised for digestion with trypsin [40] and peptide frag-
ments from digested proteins were analyzed by mass spectrometry. For that purpose,
peptides were crystallized in an α-cyano-4-hydroxycinnamic acid matrix and subjected
to MALDI-TOF/TOF analysis over the m/z range 800–4000 by using a 4800 Proteomics
Analyzer (Applied Biosystems, Foster City, CA, USA) at an accelerating voltage of 20 kV.
Spectra were internally calibrated against peptides from trypsin autolysis (M + H+ = 842.509,
M + H+ = 2211.104) and the five most abundant peptide ions in each spectrum were used
for fragmentation analysis to elucidate peptide sequences. A combined peptide mass
fingerprinting (PMF)/tandem mass spectrometry (MS + MSMS) search was performed by
using the software GPS Explorer™.5 (Applied Biosystems) over the nonredundant NCBInr
database restricted to Viridiplantae taxonomy in combination with the MASCOT search
engine (Matrix Science, London; http://www.matrixscience.com accessed on 15 September
2019). The following parameters were allowed: a minimum of two peptides matches and a
single trypsin miscleavage, and peptide modifications by carbamidomethylcysteine and
methionine oxidation. The maximum tolerance for peptide mass matching was limited to
20 ppm. The score level and a minimum of four peptides per protein were chosen as PMF
confidence parameters. Proteins were characterized in functional terms against the NCBInr
database (https://www.ncbi.nlm.nih.gov/guide/proteins/, accessed on 15 October 2021).
In addition, BLAST analysis (tblastn) was performed for all the identified proteins using
the reference transcriptome Vicia faba RefTrans v2 (2017), with 37,378 sequences deposited
in Pulse Crops Database (https://www.pulsedb.org/, accessed on 15 October 2021). Only
matches with an expectation (E) value of ≤ 1 × 10−6 were considered. Mass spectrometry
analyses were conducted at the Proteomics Facility of the Central Research Support Service
(SCAI) of the University of Córdoba (Spain).

2.5. Zymography

Proteins from leaves (200 mg of frozen powdered tissue) were extracted with a mixture
of 200 mM TrisHCl at pH 7.4, 3% (w/v) insoluble polyvinylpolypyrrolidone (PVPP), 10%
(v/v) glycerol, 5 mM diethiothreitol (DTT) and 0.25% (v/v) Triton X-100. Samples were
allowed to stand on ice for at least 10 min and were then centrifuged at 16,000× g at 4 ◦C
for 30 min, with the proteins present in the supernatant then being quantified with the
Bradford assay [41].

SDS-PAGE slabs containing 0.1% gelatin and 9% acrylamide were analyzed according
to Heussen and Dowdle [42]. Thus, samples containing 100 μg of protein were diluted
with a nondenaturing Laemmli buffer [62.5 mM TrisHCl, 10% (v/v) glycerol, 0.001% (w/v)
Bromophenol Blue] and loaded onto 1 mm thick gel slabs for electrophoresis at 50 V at
4 ◦C for 30 min, with the voltage being raised to 80 V until the front reached the end of the
gel. The gels were loaded with Spectra Multicolor Broad Range Protein Ladder (Thermo
Scientific). After electrophoresis, gels were incubated in 2.5% (v/v) Triton X-100 at room
temperature under constant agitation for 30 min to remove SDS. They were then washed
with distilled water three times to remove Triton X-100 and incubated in a proteolysis
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buffer (100 mM citrate buffer, Na2HPO4/citric acid pH 6.8, 4 mM DTT and 10 mM cysteine)
under constant agitation at 35 ◦C overnight. Proteolysis was stopped by transferring the
gels to a solution containing 0.1% (w/v) Coomassie Brilliant Blue R-250 [43]. Finally, the
gels were destained in a solution containing 40% methanol and 10% acetic acid until clear
bands formed over a dark blue background.

3. Results

3.1. Disease Assessment

As can be seen in Figure 1, twelve hpi symptoms of B. fabae infection were already
visible in the susceptible genotype (Baraca), but not in the resistant genotype (BPL710).
Analyses of variance of the DS results revealed that the Baraca genotype was strongly
affected both 2 and 6 dpi (average DS 23.9 and 52.5, respectively). On the other hand, the
BPL710 genotype was highly resistant (ANOVA p ≤ 0.05) in both samplings (average DS
11.6 and 14.6, respectively) (Figure 1; Supplementary Figure S2).

Figure 1. Contrasting response to B. fabae infection of three-week-old faba bean plants of Baraca
(susceptible genotype) and BPL710 (resistant genotype) 12 h after inoculation.

3.2. Two-Dimensional Gel Electrophoresis and MSMS Analysis

Image analysis with the software PDQuest allowed, on average, 224 individual protein
spots to be detected (Figure 2a; Supplementary Table S1). In addition, a hierarchical
clustering analysis clearly separated the genotypes into two clusters (Figure 2b), thus
confirming the reproducibility of the experiment. Principal component analysis (PCA)
allowed 194 differential protein spots from the entire dataset to be identified by comparing
genotypes (susceptible and resistant) and treatments (uninoculated and inoculated) in both
samplings (6 and 12 hpi) (Figure 2c). The first two principal components (PCs) jointly
explained 70% of the total variability in the data, PC1 separating genotypes. The PCs for
individual genotypes explained 74% and 86% of variability in the susceptible and resistant
genotype, respectively (Figure 2d,e). In both cases, samples clustered by sampling times.
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Figure 2. Typical Coomassie Brilliant Blue 2DE gel results for the susceptible genotype. (a) Den-
drogram showing hierarchical clustering of experimental conditions. (b) Two-dimensional biplots
showing associations between all experimental conditions in both genotypes (c), or independent
genotypes (d,e), as generated by principal component analysis (PCA). Dendrogram and PCA data
were obtained from average values under each set of experimental conditions: Susceptible (S) and
resistant (R) genotypes; control (C) and B. fabae inoculated (I); 6 hpi (1) and 12 hpi (2).

Spots were classified as variable if they met the following criteria: (a) being consis-
tently present or absent in the three replicates under each set of experimental conditions;
(b) exhibiting at least a two-fold change in abundance ratio; and (c) exhibiting statistically
significant differences (p ≤ 0.05) between genotypes or treatments. A total of 129 protein
spots were thus selected for MALDI-TOF/TOF analysis.

3.3. Protein Identification and Abundance Pattern Analysis

A protein search against the Viridiplantae index in the nonredundant NCBI database
was performed and a total of 102 proteins were thus identified with high confidence
(Table 1; Supplementary Figure S3), 70% of which matched legume species. Most of the
proteins met the confidence identification criteria [viz., a score higher than 70 and at least
four peptides per protein except for three spot proteins (viz., SSP 2802, 5002 and 11, which
should be considered with caution)]. The proteins thus identified belonged to the main
functional groups of energy and primary metabolism [photosynthesis (30) and other energy
metabolism (6), carbohydrate (12) and amino acid metabolism (9)], followed by proteins of
degradation (10), redox and response to stress groups (8) (Figure 3a).
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Figure 3. Functional groups of differential proteins. (a) Proteins up- or down-accumulating in response to B. fabae inoculation
as grouped by functional category. (b) Susceptible (S) and resistant (R) genotype; control (C) and B. fabae inoculated (I);
6 hpi (1) and 12 hpi (2).

Figure 3b compares treatments, genotypes and sampling times. The susceptible genotype
(S) showed the largest number of changes in proteins in response to inoculation, but mainly
in those of the primary and energy metabolism groups (Figure 3b). In fact, a strikingly large
number of degradation proteins showed changes in S genotype in response to inoculation that
were not observed in the resistant genotype (R). The group of degradation proteins comprised
ten proteases, namely: three cell division proteases ftsH chloroplastic (gi|17865463), two
ATP-dependent Clp proteases (gi|461753), two Clp proteases (gi|4105131, gi|461753), one
ubiquitin-specific protease 5 (gi|257050978), one zinc dependent protease/FTSH protease
8 (gi|84468324) and one serine-type endopeptidase (gi|270342123). Interestingly, most of the
identified proteases were significantly increased in response to inoculation in the susceptible
genotype but, as revealed by the heat map (Figure 4a, Table 1), none was in the resistant
genotype. A comparison of the uninoculated leaf proteome revealed a much greater number
of proteins of the energy metabolism and protein degradation groups in R than in S, mainly
in the first sampling (Figures 3b and 4a). In addition, these functional groups were increased
in control S plants in the second sampling.

Figure 4. (a) Hierarchical clustering of proteases identified by MALDI-TOF analysis based on protein abundance as
determined by 2DE. Susceptible genotype (S) and resistant genotype (R); control (C) and B. fabae inoculated (I); 6 hpi (1)
and 12 hpi (2). (b) Zymogram of proteases in faba leaves separated by SDS-PAGE bearing gelatin under nondenaturing
conditions. Arrowheads denote differential bands between genotypes or treatments.
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3.4. Protease Gel Activity

The results of the protease gel activity assay confirmed those previously obtained
by MS. Protease bands corresponding to high molecular weights (~90 to 120 kDa) were
stronger in inoculated plants of the susceptible genotype in both samplings, coinciding with
the molecular weight of some proteases identified by MALDI-TOF (viz., Clp proteases, SSPs
1802, 2801, 2804, 3803; and Ubiquitin-specific-processing protease 8, SSP 2802) (Figure 4b;
Supplementary Figure S4). Gel activity assay also exposed a strong band at 40 kDa not
changing substantially with the specific conditions and potentially corresponded to the
serine-type endopeptidase identified by MS analysis (SSP 2101). In any case, the most strik-
ing result was the presence of two well-defined protease bands at high molecular weights
(140–250 kDa) that were especially strong in the resistant genotype (and, particularly, in
the second sampling). The area of the protease activity bands were estimated using Im-
ageJ software (ImageJ.JS (imjoy.io)), and the data are presented in Supplemental Figure S5.
Since activity gels were used under native conditions and 2DE-MS analyses conducted
under denaturing conditions, these bands may well correspond to protein complexes not
identified with the denaturing gels.

4. Discussion

Botrytis fabae is a necrotrophic plant pathogen causing chocolate spot, which is one of
the most devastating diseases for faba bean production worldwide [5,6]. The mechanism
by which plants counteract infection by this pathogen is of great agronomic interest. ROS
production (especially H2O2 induction by Botrytis) is known to occur in a wide variety of
plants [23,25–27] and to be one of the earliest plant responses to fungal infection [22,24].
Botrytis fabae reportedly increases lipid peroxidation, and the levels of ROS and antioxidant
enzymes (superoxide dismutase, catalase and ascorbate peroxidase), substantially in faba
bean [28]. In fact, ROS were found to accumulate rapidly in leaf tissue of a resistant cultivar
at early stages of infection, but more markedly and over longer periods at later stages in its
susceptible counterpart [28].

4.1. The Role of Chloroplasts as Redox Sensors Eliciting an Acclimatory Response to
Stressing Conditions

ROS accumulation at an early stage of infection is triggered by plasma membrane-
bound NADPH oxidases and typically occurs in the apoplast [44]. However, chloroplastic
and peroxisomal ROS production have been reported to contribute to plant immunity as
well [45,46]. Although ROS can also be produced by other organelles (notably peroxisomes
and mitochondria), the chloroplast is possibly a major source. Some proteins in the
chloroplast are involved in cross-talk with the cytosol and nucleus to govern the outcome
of defense signaling [47]. Besides triggering ROS signals, chloroplasts can perceive, mediate
or even amplify ROS signals originating in the apoplast [48]. In addition, there is evidence
that the role of chloroplastic ROS production in coordinating cell death or modulating
defense outputs is highly specific in targeting various types of invading pathogens. Thus,
some chloroplastic components may be specific targets for microbial effector molecules,
which suggest that chloroplasts communicate through these target molecules to elicit ROS
production in the apoplast, presumably to contain spread of the lesion [49].

Chloroplast-derived ROS has been shown to play a role in plant resistance against
B. cinerea [27,50]. Thus, histochemical analysis revealed ROS accumulation in tomato
leaves 24 h after application of B. cinerea spores. A defense response accompanied by an
improvement in photosystem II (PSII), possibly triggered by ROS upon short-time exposure,
was observed. However, the relatively increased time of exposure to these molecules made
them harmful to PSII functionality [27,51]. In addition, H2O2 levels in strawberry leaves
were found to correlate positively with disease severity, and to be influenced by both leaf
age and light quality [52].

Through photosynthesis, chloroplasts play a central role as redox sensors of environ-
mental conditions by eliciting acclimatory or stress-defense responses [53,54]. In chloro-
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plasts, chaperone systems refold proteins after stress, while proteases degrade misfolded
and aggregated proteins that cannot be refolded [55]. A study on Arabidopsis thaliana
demonstrated a major role of Hsp70 chaperones and Clp proteases in the folding and
degradation of misfolded or damaged proteins under variable stress conditions in the
chloroplast [55]. Caseinolytic proteases (Clps) function as molecular chaperones and confer
thermotolerance to plants. The results of a differential gene expression analysis of Clps
in wheat suggest a potential role in cold, salt and biotic stresses, and confirm the previ-
ously reported role in thermotolerance [56]. ClpATPases class I (ClpB/HSP100 and ClpC)
function in assembly and disassembly with protein complexes, acting together with the
HSP70/DnaK chaperone system to remodel denatured protein aggregates [57]. On the
other hand, plant ClpC proteins act as stromal molecular chaperones in importing and
protecting unfolded newly synthesized proteins, which are responsible for maintaining
homeostasis [58–61].

In the present work two ATP-dependent Clp, two ClpC proteases and three Hsp70
(one as Chaperone DnaK) were found to be considerably increased in the susceptible
genotype in response to inoculation. This result suggests that the chloroplast may respond
to B. fabae inoculation by triggering a mechanism to repair damaged proteins. The previous
proteins were highly represented at the constitutive level in resistant uninoculated plants,
which may represent a temporary advantage in response to the pathogen.

4.2. Homeostatic Control as a Dynamic Regulation Mechanism for Energy and Redox Status in
Response to Botrytis fabae

Enhanced photosystem II (PSII) functionality at the early stages of pathogen infection
may be responsible for the increased sugar production required to strengthen the response
by inducing defense genes [27,62]. However, B. cinerea has been reported to use large
amounts of soluble sugars to grow on tomato leaves [63].

Nonphotochemical chlorophyll fluorescence quenching (NPQ) is the key photoprotec-
tive process used by plants to dissipate excess light energy as heat and preserve photosyn-
thesis as a result [64–67]. A substantial increase in NPQ was observed in tomato leaflets
up to 6 h after application of a B. cinerea spore suspension; the increase, however, was
followed by a decrease down to control levels [27]. This outcome suggests an imbalance
between energy supply and demand, resulting in increased ROS production similarly as in
photoinhibition, causing damage in chloroplast and eventual cell death (necrosis) [68].

On physiological grounds, Clp and FtsH proteases are believed to play major roles
in chloroplast protein homeostasis. Thus, FtsH (filamentation temperature sensitive H)
proteases are membrane-bound ATP-dependent zinc metalloproteases involved in the
biogenesis of thylakoid membranes and quality control in the PSII repair cycle [69]. ROS
production and PSII photodamage are linked to the high turnover rate of the D1 reaction
center protein, which is degraded and replaced with de novo synthesized protein in the so-
called “PSII repair cycle” [70]. FtsH proteases are among the many components mediating
coordinated turnover in D1. In addition, there is evidence that programmed inhibition
of the PSII repair cycle through specific downregulation of protease activity may provide
plants with a mechanism to elicit ROS production and cell death upon infection [71].

In parallel to the recognition of ROS as key signaling molecules, antioxidant enzymes
and ROS scavenging, scientists have accepted their potential involvement in fine-tuning
defense reactions. In chloroplasts, the antioxidants ascorbate and glutathione contribute
chemically to ROS quenching. In addition, H2O2 can be detoxified by ascorbate perox-
idases (APX), peroxiredoxine (PRX) or glutathione peroxidase (GPX), reviewed in [72],
as confirmed by a study on Gentiana triflora which suggested that PRXQ plays a role in
mediating responses against the necrotrophic fungus B. cinerea [73].

The proteomic analysis conducted in this work revealed that three proteins identified
as chloroplastic cell division protease FtsH, and a zinc dependent protease/FTSH protease
8, were highly represented in the susceptible genotype in response to B. fabae inoculation.
The same proteins were better represented constitutively in the resistant genotype in the
first sampling. In addition, a monodehydroascorbate reductase I, an L-ascorbate peroxidase
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and a thioredoxin peroxidase were also better represented in both genotypes in response
to inoculation in the first sampling. Zymogram analysis confirmed the results of the MS
analysis, where differences in the activity bands at the molecular weights of the proteins
identified by 2DE-MS were observed. In addition, inoculated and uninoculated plants
of the resistant genotype exhibited some activity bands at very high molecular weights
(140–250 kDa) that were not clearly observed in the susceptible genotype. This result can be
ascribed to differences in the experimental conditions, which were native in the zymograms
and denaturing in the 2DE-MS analysis.

Consistent with the results obtained in this work, a recent study on tomato plants re-
vealed H2O2 production and enhanced photosystem II functionality 30 min after
B. cinerea inoculation. The effect, which lasted 4 h, was suggestive of a tolerant response;
however, increasing the length of exposure led to plant damage [27] by fully inhibiting
PSII functionality at the application spot and nearby. This was probably a time-dependent
hormetic response, suggesting a positive biological response whose effect might be reversed
upon extended exposure [27,67].

5. Conclusions

Based on the proteins identified in this study (Clp and Hsp70, together with FstH
proteases and ROS proteins) and their increased levels upon inoculation with B. fabae,
a signaling response mechanism based on ROS production in the chloroplast may be
elicited by the fungus. This mechanism appears to be harmful to PSII in the susceptible
genotype by effect of its being associated with lengthy exposures to high ROS levels. The
differential response of the two genotypes can be ascribed to a metabolic imbalance in the
susceptible genotype not observed in the resistant genotype and confirming that the latter
retains normal metabolism under stress. On the other hand, there is evidence that the two
genotypes differ in chloroplast detoxification system, the resistant genotype exhibiting
a more efficient PSII repair mechanism at the early stages of infection. Further research
is required in any case to ascertain whether the ROS dose or exposure time (hormesis) is
associated with the differential V. faba phenotypes.
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Abstract: Ebb-and-flow subirrigation (EFI) is a water-saving and environmentally friendly irrigation
method that can effectively improve water use efficiency and promote plant growth. In this study, we
elucidated the effects of ebb-and-flow subirrigation on the protein levels in tomato roots in comparison
with top sprinkle irrigation (TSI) and used an integrated approach involving tandem mass tag (TMT)
labeling, high-performance liquid chromatography (HPLC) fractionation, and mass-spectrometry
(MS)-based analysis. A total of 8510 quantifiable proteins and 513 differentially accumulated proteins
(DAPs) were identified, of which the expressions of 283 DAPs were up-regulated, and 230 DAPs were
down-regulated in the EFI vs. TSI treatment comparison. According to proteomic data, we performed
a systematic bioinformatics analysis of all the identified proteins and DAPs. The DAPs were most
significantly associated with the terms ‘metabolic process’, ‘anchored component of membrane’,
‘oxidoreductase activity’, ‘phenylpropanoid biosynthesis’, and ‘biosynthesis of secondary metabolites’
according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment
(KEGG) analysis. The 272 DAPs were classified into 12 subcellular components according to their
subcellular localization. Furthermore, the activities of SOD, POD, CAT, GR, and APX in tomato
roots were remarkably increased under EFI, while the MDA content was decreased compared with
TSI. Correlation analysis among activities of enzymes and their related DAPs showed that 30 DAPs
might be responsible for the regulation of these enzymes. The results showed that ebb-and-flow
subirrigation could induce a series of DAPs responses in tomato roots to be adapted to the new mode
of water supply.

Keywords: irrigation; root-softening; antioxidant; ebb-and-flow; tandem mass tag; HPLC-MS

1. Introduction

Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is a greenhouse
vegetable crop native to Peruvian and Mexican regions [1,2]. It is a rich source of natural
antioxidants, including flavonoids; carotenoids (mainly lycopene and β-carotene); and
vitamins A, B, and C [3–7]. Vegetable production in the greenhouse demands high fertilizer
and water inputs in order to achieve better yield and superior-quality produce [8–11].
The top sprinkle irrigation system (TSI) is a common irrigation strategy for greenhouse
vegetable production that is not regarded as ecologically friendly since significant amounts
of water and nutrients are usually wasted and may runoff/leach, damaging surface and
groundwater systems [12–14]. Besides, the seedlings around the hole plate grow poorly
due to water shortage, resulting in inconsistent seedling height [15–17].

An evolved form of the continuous floating system, the ebb-and-flow irrigation (EFI)
system was originally developed to grow tobacco (Nicotiana tabacum L.) plants in order to
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increase field survival and reduce transplant shock. It is now being used to grow a large
number of commercial vegetables in China, Japan, the United States, and other developing
countries [18]. It has many advantages, such as root moisture optimization, water saving,
and fertilizer saving compared to top sprinkler irrigation [19–21]. Metal wires ≈ 0.20 m
are used to suspend the seedling trays above the concrete floor. Every two to three days,
the irrigation water is brought up to the level of the trays, held there for 15 to 45 min,
and then returned to the main reservoir until the next irrigation. In this system, water
or nutrient solution is transported to the plant root through the bottom of the cultivation
container by capillary action of the cultivation medium, which can effectively avoid the
edge or umbrella effect and improve plant uniformity [18,22,23]. A number of studies
in subirrigation, which have been primarily carried out with ornamental species, have
demonstrated that the concentration of the nutrient solution can be reduced by up to 50%
when compared to nutrient solutions for top sprinkle irrigation, with no adverse effects on
plant growth or quality [10,24]. Subirrigation systems improved the uniformity and quality
of bell pepper (Capsicum annum L.) and tomato (S. lycopersicum L.) if grown with minimal
nutrient and drought stress [25–27].

Different irrigation methods cause differences in root growth [28]. However, water-
logging and anaerobic respiration over an extended period of time result in the buildup
of aldehydes, as well as an increase in reactive oxygen species (ROS), which finally leads
to cell death and plant senescence [29,30]. Plant hormones may accumulate or degrade
quickly if the gaseous exchange is hampered, and this can alter plant waterlogging tol-
erance [31,32]. When plants are under waterlogging or drought stress, the activities of
protective enzymes in plants change dynamically [33,34]. In a recent study, the activities
of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and other protective
enzymes in the roots of sesame seedlings increased at the initial stage of flooding and
decreased significantly with the extension of the water stress time [35,36].

A novel tandem-mass-spectrometry (MS)-based tandem mass tag (TMT) labeling strat-
egy has been used in quantitative proteomics in recent years [37–39]. Therefore, we used a
TMT-based quantitative proteomics approach to identify differentially accumulated pro-
teins (DAPs) in tomato roots under ebb-and-flow subirrigation so as to provide a theoretical
basis for the popularization and application of ebb-and-flow irrigation technology.

2. Materials and Methods

2.1. Plant Source, Experimental Design, and Irrigation Treatments

The experiment was conducted at the experimental farm of Wenzhou Vocational
College of Science and Technology, Wenzhou, China (28◦05′39.5′′ N 120◦30′55.2′′ E) from
15 August 2019 to 19 September 2019. The pure line tomato cultivar ‘Ouxiu 201’ (round-
shaped fruit with regular leaves) was obtained from Institute of Vegetable Science, Wenzhou
Academy of Agricultural Sciences, Wenzhou, China. Tomato seeds were sown in seedlings
trays (540 mm × 280 mm) with 50 plugs (each having volume of 55 mL with upper and
lower diameters of 48 and 18 mm, respectively). Seedling trays were purchased from
Taizhou Longji Plastics Co., Ltd., Taizhou, China. Seedling plugs were filled with growing
media containing peat, vermiculite, and perlite (3:1:1), which were obtained from Hangzhou
Lin’an Jindalu Industrial Technology Co., Ltd., Hangzhou, China. The pH, EC, and organic
matter of the growing media were 6.34, 0.87 ms·cm−1, and 95.4%, respectively. The ebb-
and-flow irrigation system (patent no. ZL201520333950.6) used in the experiment was
developed by Wenzhou Academy of Agricultural Sciences, Wenzhou, China. It contained a
nursery frame, a number of ebb-and-flow trays horizontally placed on the nursery frame,
and a water or nutrient solution circulation device (Figure 1).

Tomato seedling trays were placed on ebb-and-flow irrigation (EFI) seedling raising
system [40], as well as on simple beds for top sprinkle irrigation (TSI) water treatment. The
top sprinkle irrigation was carried out by manually holding the watering can. There was no
fertilizer applied during the experiment. Six seedling trays were used for this experiment,
each being considered as a replication of different irrigation treatments, i.e., EFI and TSI.
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Each irrigation treatment had 3 repetitions with 50 plants in each repeat. The experiment
was a completely randomized design (CRD).

Figure 1. Lateral (A) and top (B) view of ebb-and-flow nursery raising system. 1—nursery
frame; 2—ebb-and-flow tray; 3—water reservoir; 4—disinfection equipment; 5—inlet main pipe;
6—drainage branch pipe; 7—drainage hole; 8—filtering parts; 9—inlet branch pipe; 10—five-way
connector; 11—drainage main pipe.

2.2. Enzymes’ Activity Assay

Thirty-five days after sowing, root samples (0.5 g) were collected from ten randomly
selected seedlings from each replication of each irrigation treatment and quickly frozen in
liquid nitrogen. Then, 1 mL of 0.1 M phosphoric acid buffer (pH = 7) was added into frozen
root samples, ground, and homogenized in an ice bath. The final volume of 5 mL was made
by adding 0.1 M phosphoric acid buffer (pH = 7), and 2 mL was taken and centrifuged
at 10,000 rpm for 10 min. The supernatant was obtained as the crude extract of enzyme
solution [41] and stored at 4 ◦C for further analysis.

The activity of superoxidase dismutase (SOD; EC 1.15.1.1) was assayed using a
xanthine–xanthine oxidase system [42]. The change in absorbance was read at 560 nm.
Peroxidase (POD; EC 1.11.1.7) activity was determined using a previously described
method [43]. The change in absorbance was read at 470 nm for 4 min. Catalase (CAT;
EC 1.11.1.6) activity was assayed as described previously [44]. The reaction was initiated
with the enzyme extract. The decrease in absorbance (due to decomposition of H2O2) at
240 nm was recorded for 1 min. Ascorbate peroxidase (APX; EC 1.11.1.11) activity was mea-
sured as previously described by Nakano and Asada [45]. The absorbance was measured
at 290 nm for 1 min. The activity of glutathione reductase (GR; EC 1.6.4.2) was measured
using the method earlier described by Cakmak et al. [46]. The decrease in absorbance was
recorded for 1 min at 340 nm due to NADPH oxidation.

2.3. Protein Extraction, TMT Labeling, and Data Analysis

Total proteins were extracted from the EFI and TSI root tissues of tomato with three bi-
ological replicates (each containing 500 mg roots) using the cold acetone method [47]. Next,
the tryptic peptides of each sample were labeled through tandem mass tags (TMT) using a
TMT kit (Novogene Bio Technology Co., Ltd., Nanjing, China) according to the manufac-
turer’s protocol, and TSI1, TSI2, TSI3, EFI1, EFI2, and EFI3 were labeled with 126, 127 N,
128 N, 129 N, 130 N, and 131 tags, respectively. Then, they were fractionated by high-pH
reverse-phase HPLC using a C18 column (Waters BEH C18 4.6 × 250 mm, 5 μm) on a Rigol
L3000 HPLC system. These peptides were further used for proteomic analysis. Proteome
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analysis for the fractionated peptides was performed using a liquid chromatography–mass
spectrometry (LC-MS) system. Briefly, these peptides were performed using an EASY-
nLCTM 1200 UHPLC system (Thermo Fisher Scientific Co., Ltd., Shanghai, China) coupled
with a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific Co., Ltd., Shanghai,
China) operating in the data-dependent acquisition (DDA) mode. A total of 1 μg sample
was injected into a home-made C18 Nano-Trap column (2 cm × 75 μm, 3 μm). Peptides
were separated in a home-made analytical column (15 cm × 150 μm, 1.9 μm) using a linear
gradient elution. The separated peptides were analyzed by Q Exactive HF-X mass spectrom-
eter (Thermo Fisher Scientific Co., Ltd., Shanghai, China), with ion source of Nanospray
Flex™, spray voltage of 2.3 kV, and ion transport capillary temperature of 320 ◦C. Full scan
range from 350 to 1500 m/z with resolution of 60,000 (at 200 m/z), automatic gain control
(AGC) target value of 3 × 106, and a maximum ion injection time of 20 ms were used. The
top 40 precursors of the highest abundant in the full scan were selected and fragmented by
higher-energy collisional dissociation (HCD) and analyzed in MS, where resolution was
30,000 (at 200 m/z) for 6 plex, the automatic gain control (AGC) target value was 5 × 104,
the maximum ion injection time was 54 ms, the normalized collision energy was set as 32%,
the intensity threshold was 1.2 × 105, and the dynamic exclusion parameter was 20 s.

The resulting spectra from each run were searched separately against protein se-
quences library (Solanum_lycopersicum.SL3.0.pep.all.fasta, 34,429 sequences) database by
the search engines: Proteome Discoverer 2.2 (PD 2.2, Thermo). The searched parameters
were set as follows: mass tolerance for precursor ion was 10 ppm, and mass tolerance for
product ion was 0.02 Da. Carbamidomethyl was specified as fixed modifications, oxidation
of methionine (M) and TMT plex were specified as dynamic modification, and acetyla-
tion and TMT plex were specified as N-Terminal modification in PD 2.2. A maximum of
2 mis-cleavage sites were allowed. The principal component analysis (PCA) was used to
evaluate the relationship among 6 samples. T-test was used to compare the differentially
accumulated proteins (DAPs). Proteins with fold change (FC) > 1.5 or <0.67 and p ≤ 0.05
were considered as DAPs. Notably, the protein quantification was calculated with the
median ratio of its corresponding unique peptides and then normalized by taking the
median of all quantified proteins.

2.4. Data Analysis

Data regarding antioxidant enzymes were subjected to Student’s t-test using Mi-
crosoft Excel (ver. 2016). Correlation between antioxidant enzymes’ activities and their
metabolism-related proteins was determined with Pearson (n) method using IBM SPSS soft-
ware (ver. 17.0) and visualized through a heatmap using TBtools software (ver. 0.6655) [48].
Principal components analysis (PCA) was performed using SIMCA-P (version 11.5) soft-
ware. Gene Ontology (GO) functional analysis was conducted using the InterProScan
program against the non-redundant protein database (including Pfam, PRINTS, ProDom,
SMART, ProSite, PANTHER) [49], and the databases of COG (Clusters of Orthologous
Groups) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used to analyze
the protein families and pathways. DAPs were used for volcanic map analysis and en-
richment analysis of GO and KEGG [50]. Subcellular localizations of DAPs were pre-
dicted using WoLF PSORT (https://wolfpsort.hgc.jp/ (accessed on 14 January 2022),
Loctree 3 (https://rostlab.org/services/loctree3/ (accessed on 14 January 2022), TargetP
(http://www.cbs.dtu.dk/services/TargetP/ (accessed on 16 January 2022), and SignalP
(http://www.cbs.dtu.dk/services/SignalP/ (accessed on 16 January 2022) [51–54].

3. Results

3.1. Primary Quantitative Proteome Analysis

Based on the TMT experiment, a total of 337,532 spectra were identified from tomato
roots. Moreover, 61,531 peptides, 50,462 unique peptides, and 8510 proteins were detected
from 93,451 known spectra (Figure 2A). The protein molecular weight data (Figure 2B)
showed that 82.28% of the total proteins were 10–80 kDa in size, and the average molecular
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weight was 8.25–274.25 kDa. In addition, about 91% of proteins’ sequence coverage was
less than 40% (Figure 2C). The length of most peptides was between 7 and 25 amino acids
(aa) (Figure 2D), accounting for 97.29% of the total, of which peptides with a length of
8–12 aa were relatively large.

Figure 2. Quality control (QC) validation of mass spectrometer (MS) data. (A) Basic statistical
data of MS results. (B) Molecular weight distribution of proteins. (C) Proteins’ sequence coverage.
(D) Length distribution of all identified phosphorylated peptides.

To assess the reproducibility of proteomic data, the coefficient of variation of replicates
was determined. Proteins having a 20 percent coefficient of variation accounted for more
than 90% of detected proteins (Figure 3A), indicating that the data were credible. EFI and
TFI data were cleanly differentiated in a PCA model based on six samples (Figure 3B).
PCA1 was responsible for 75.26 percent of the variability, whereas PCA2 was responsible
for 13.98 percent.

3.2. Effect of EFI Treatment on the Global Proteome of Tomato Seedlings

The identified proteins and DAPs of tomato roots under ebb-and-flow subirriga-
tion were grouped into three GO categories (biological process, cellular component, and
molecular functions) (Figure 4A, Table S1). We can see that in the biological process (BP),
586 identified proteins (including 160 DAPs) were involved in the oxidation-reduction
process, 357 proteins (12 DAPs) were involved in protein phosphorylation, and 288 proteins
(25 DAPs) were involved in metabolic process. In the cellular component, 278 identi-
fied proteins (including 9 DAPs) were involved in integral components of the membrane,
251 proteins (18 DAPs) were involved in membrane synthesis, and 169 proteins (2 DAPs)
were involved in the nucleus. In the molecular functions category, 903 identified proteins
(including 30 DAPs) were involved in protein binding, 765 proteins (30 DAPs) were in-
volved in ATP binding, whereas 356 identified proteins (12 DAPs) were involved in protein
kinase activity.

139



Agronomy 2022, 12, 1880

Figure 3. Scatter plot of CV (coefficient of variation) distribution and PCA (principal component
analysis) of all samples using quantified proteins. (A) CV cumulative curve of two treatments.
(B) Two-dimensional scatter plot of PCA distribution of all samples.

Figure 4. The GO (A) and KEGG (B) annotation of all identified proteins and DAPs (EFI vs. TSI). All
proteins were classified by GO terms based on three categories: molecular function (MF), cellular
component (CC), and biological process (BP).

According to KEGG annotation, 4724 identified proteins were grouped into 5 KO
categories (i.e., cellular processes, environmental information processing, genetic infor-
mation processing, metabolism, and organismal systems) (Figure 4B, Table S2). A to-
tal of 246 identified proteins (including 16 DAPs) were involved in cellular processes,
147 proteins (11 DAPs) were involved in environmental information processing, 1083 pro-
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teins (41 DAPs) were involved in genetic information processing, 3159 proteins (271 DAPs)
were involved in metabolism, and 89 proteins (2 DAPs) were involved in organismal systems.

According to the COG database, 5258 identified proteins were categorized into
25 categories (Figure 5A). The largest group was of general function prediction only (608);
followed by translation, ribosomal structure, and biogenesis (559); post-translational mod-
ification, protein turnover, and chaperones (522); signal transduction mechanisms (476);
carbohydrate transport and metabolism (456); amino acid transport and metabolism (308);
lipid transport and metabolism (306); secondary metabolites’ biosynthesis, transport, and
catabolism (270); and energy production and conversion, followed by post-translation (255).

Figure 5. Categorization of all identified proteins with respect to COG annotation (A) and subcellular
localization (B).

The subcellular location prediction and classification statistics for all identified proteins
are shown in Figure 5B, and all identified proteins were classified into 12 subcellular
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components according to their subcellular localizations, including 670 proteins in the
cytoplasm (19.36%), 627 in the nucleus (18.12%), 544 in the cell membrane (15.73%), 387 in
the chloroplast (11.19%), and 363 in the mitochondrion (10.49%).

3.3. Enrichment Analysis of DAPs

The expression profiles of the DAPs in six samples are presented through a heat map
(Figure 6A). A total of 513 DAPs were identified with a fold-changes (FC) > 1.5 or <0.67
and p ≤ 0.05 (Table S1). Among the DAPs, 283 were up-regulated, and 280 were down-
regulated (Figure 6B).

Figure 6. Effect of ebb-and-flow subirrigation strategy on proteome expressions of DAPs in tomato
roots. (A) Expression profiles of the DAPs response to ebb-and-flow subirrigation. (B) Volcano plot
of DAPs. (C) The numbers of up- and down-regulated proteins in the EFI treated plants compared to
the TSI.

We completed an enrichment study of DAPs utilizing GO enrichment, KEGG path-
ways, and subcellular localization to see whether they were highly enriched in particular
functional categories. The GO term meeting this requirement was determined as the GO
term highly enriched in different proteins, using p ≤ 0.05 as the threshold. With 222 GO
terms, the 355 DAPs were divided into 3 groups: biological process (BP), cellular compo-
nent (CC), and molecular function (MF). GO enrichment analysis showed that the metabolic
process, single-organism process, and single-organism metabolic process were the most
dominant BP terms with 195, 145, and 118 DAPs, respectively. Similarly, microtubule and
the anchored component of the membrane were the major CC terms with 3 and 2 DAPs,
respectively, while ion binding, oxidoreductase activity, and metal ion binding were the
dominant MF terms with 58, 57, and 55 DAPs, respectively (Figure 7A).

The 180 DAPs were divided into different KEGG pathways, with 13 of them being
enriched (p ≤ 0.05). KEGG pathway enrichment revealed that 93, 71, 23, and 19 DAPs
were linked to metabolic pathways, secondary metabolite production, phenylpropanoid
biosynthesis, and protein processing in the endoplasmic reticulum, respectively (Figure 7B).

The 272 DAPs were classified into 12 subcellular components according to their
subcellular localizations, including 56 proteins in the cytoplasm (20.59%), 49 in the cell
membrane (18.01%), 25 in the cell wall (9.19%), 21 in the vacuole (7.72%), and 26 in the
endoplasmic reticulum (9.56%) (Figure 7C).
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Figure 7. GO enrichment analysis (A) and KEGG enrichment analysis (B) and subcellular localizations
(C) of DAPs in tomato roots under ebb-and-flow subirrigation.

3.4. Activities of Antioxidant Enzymes in Tomato Roots under Ebb-and-Flow Subirrigation

The activities of SOD, POD, CAT, APX, and GR in tomato roots under ebb-and-flow
irrigation were significantly higher than those under top sprinkler irrigation, increasing
by 12.99%, 16.98%, 18.25%, 46.51%, and 28.18%, respectively, while the content of MDA
decreased significantly by 6.39% (Figure 8).

3.5. Correlation between Antioxidant Enzymes’ Activities and Their Metabolism-Related Proteins

The correlation between antioxidant enzymes’ activities (i.e., SOD, POD, CAT, GR,
APX) and MDA content and their metabolism-related proteins in the roots of tomato
seedlings grown under ebb-and-flow irrigation and top sprinkle irrigation was analyzed
(Figure 9). The SOD and CAT activity was significantly (p ≤ 0.05) and positively correlated
with 11 SlPOD (Solyc10g076240.2.1, Solyc04g071900.3.1, Solyc01g105070.3.1, Solyc09g07270
0.3.1, Solyc09g007520.3.1, Solyc01g006300.3.1, Solyc11g018805.1.1, Solyc05g050870.3.1,
Solyc01g015080.3.1, Solyc01g101050.3.1, and Solyc05g050890.2.1), 1 SlCAT Solyc12g094620.2.1,
and 2 glutathione S-transferase proteins (Solyc09g011550.3.1 and Solyc08g066850.3.1). The
POD activity was significantly (p ≤ 0.05) and positively associated with 7 proteins related
to peroxidase biosynthesis (Solyc10g076240.2.1, Solyc02g092580.3.1, Solyc01g105070.3.1,
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Solyc05g046010.3.1, Solyc11g018805.1.1, Solyc01g101050.3.1, and Solyc05g050890.2.1), while
1 protein related to glutathione S-transferase synthesis (Solyc09g011550.3.1).

Figure 8. Effect of ebb-and-flow (EFI) irrigation and top sprinkle irrigation (TSI) on the activities of
SOD (A), POD (B), CAT (C), GR (D), APX (E), and MDA content (F) of tomato roots. * and ** represent
significance at p ≤ 0.05 and p ≤ 0.01, respectively.

Similarly, the GR activity was also significantly (p ≤ 0.05) correlated with 13 proteins
related to peroxidase and glutathione S-transferase biosynthesis (i.e., Solyc10g076240.2.1,
Solyc04g071900.3.1, Solyc01g105070.3.1, Solyc05g046010.3.1, Solyc09g072700.3.1, Solyc09g0
07520.3.1, Solyc01g006300.3.1, Solyc11g018805.1.1, Solyc05g050870.3.1, Solyc01g101050.3.1,
Solyc05g050890.2.1, Solyc09g011550.3.1, and Solyc08g066850.3.1). Thus, the activities of
antioxidant enzymes were positively correlated with the expressions of their metabolism-
related proteins.
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Figure 9. The heat map showing Pearson (n) correlation between antioxidant enzymes’ activities and
their metabolism-related proteins. Color codes: red—higher correlation; blue—lower correlation.

4. Discussion

In order to deeply understand the mechanism of ebb-and-flow subirrigation behind
promoting seedling growth, the proteomic changes of tomato roots under two irriga-
tion treatments were studied through the TMT-based quantitative proteomics method.
A total of 513 DAPs were identified, of which 283 were up-regulated and 230 were
down-regulated (Figure 7).

4.1. DAPs Participated in Carbohydrates and Energy Metabolism

Carbohydrates are essential for plants to maintain their life activities and are the
main energy source for plants under abiotic stress [55]. In this experiment, it was found
that ebb-and-flow irrigation treatment changed the proteomic expressions of 27 DAPs
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related to energy metabolism. These DAPs were enriched into six major carbohydrate
metabolism-related KEGG pathways (Table S3), namely, amino sugar and nucleotide
sugar metabolism (ko00520), pyruvate metabolism (ko00620), glycolysis/gluconeogenesis
(ko00010), galactose metabolism (ko00052), starch and sucrose metabolism (ko00500), and
pentose and glucuronate interconversions (ko00040). There were eight DAPs involved
in the glycolysis/gluconeogenesis pathway, of which six were up-regulated under EFI
treatment, including aldehyde dehydrogenase (NAD+), alcohol dehydrogenase class-p,
pyruvate decarboxylase, and L-lactate dehydrogenase. The results showed that ebb-and-
flow irrigation increased the expression of carbohydrate-metabolism-related proteins in
tomato roots, enhanced carbohydrate metabolism, promoted energy production in root
cells, and ultimately promoted root growth [56,57]. Studies have shown that SS (sucrose
synthase) in different plants was not only involved in sucrose accumulation [58,59] but
also closely related to the growth status of plants under biological and abiotic stress [60].
Moreover, enzymes related to starch or sucrose metabolism accumulate more under drought
conditions [61]. In this experiment, the proteins related to sucrose synthase and beta
glucosidase were up-regulated under ebb-and-flow subirrigation.

4.2. DAPs Participated in Stress Resistance and Defense Response

A large number of reactive oxygen species (ROS) are produced in the plant body
due to various stress conditions [62]. Plants have evolved to form a series of complex
defense systems to deal with the impact of the adverse environment so as to protect cells
from excessive ROS. Under ebb-and-flow irrigation, 30 DAPs related to stress and defense
changed, including 17 up-regulated and 13 down-regulated DAPs (Table S4). These DAPs
are mainly enriched in KEGG pathways, including phenylpropane biosynthesis (ko00940),
ascorbic acid and aldarate metabolism (ko00053), glutathione metabolism (ko00480), and
peroxisome (ko04146). The accumulation of POD and GST (glutathione S-transferase)
in tomato roots was also increased (Figure 9), indicating that the increase in enzymatic
activity of the antioxidant system under ebb-and-flow subirrigation was an important
protective method of removing or reducing ROS accumulation. Relevant studies showed
that under drought stress, the accumulation of GST in alfalfa ‘Longzhong’ roots also
increased, protecting cells from oxidative stress [63].

Previous studies showed that the proteomic expression of CAT- and POD-metabolism-
related proteins changed significantly under drought, high temperatures, and other stresses [64].
In this experiment, it was found that multiple DAPs encoding CAT and POD (i.e., Solyc12g0
94620.2.1, Solyc04g071900.3.1, Solyc01g105070.3.1, Solyc05g046010.3.1, Solyc03g044097.1.1,
Solyc09g072700.3.1, Solyc09g007520.3.1, Solyc01g006300.3.1, and Solyc11g018805.1.1) were
up-regulated, which was consistent with the higher activity of CAT and POD in tomato
roots under ebb-and-flow irrigation (Figure 9). The DAPs related to the APX were also
up-regulated. APX reduces the accumulation of hydrogen peroxide in plants through
the ascorbic acid metabolic pathway [65]. Studies have shown that the levels of related
proteins encoding APX change under heat stress, light stress, and water stress [66]. In
this study, DAPs encoding APX and its analogs (Solyc11g062440.2.1, Solyc09g007270.3.1)
were up-regulated so as to improve their activity in active oxygen metabolism. Under
drought stress, the expression of proteins involved in phenylpropane metabolism also
changes, such as cinnamyl alcohol dehydrogenase (CAD), peroxidase, and s-adenosine-l-
methionine involved in lignin synthesis [67]. In this experiment, DAPs involved in phenyl-
propanoid biosynthesis (Solyc05g050870.3.1, Solyc01g015080.3.1, Solyc04g080760.3.1) and
glutathione metabolism (Solyc09g01150.3.1, Solyc09g011620.1.1, Solyc12g011300.2.1, and
Solyc09g074850.3.1) were also up-regulated. In general, stress-related proteins can elimi-
nate ROS in time by promoting the activity of the antioxidant system so as to maintain the
high vitality of tomato seedlings.
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4.3. DAPs Participated in Amino Acid Metabolism

Amino acids are important proteins for plant growth, development, and response to
various stresses [68,69]. Studies have shown that the abundance and expression of proline-,
aspartate-, tryptophan-, and lysine-related proteins are severely influenced under drought
or heat stress [70]. In the current study, 22 DAPs participated in the metabolic pathway of
a variety of amino acids (Table S5), including tryptophan metabolism (ko00380); valine,
leucine, and isoleucine degradation (ko00280); lysine degradation (ko00310); arginine and
proline metabolism (ko00330); histidine metabolism (ko00340); beta-alanine metabolism
(ko00410); tyrosine metabolism (ko00350); cysteine and methionine metabolism (ko00270);
alanine, aspartate, and glutamate metabolism (ko00250); glycine, serine, and threonine
metabolism (ko00260); and the biosynthesis of amino acids (ko01230). Aldehyde dehy-
drogenase (NAD +) was the main enzyme involved in lysine catabolism. The expres-
sions of aldehyde-dehydrogenase-metabolism-related proteins were down-regulated in
tomato roots under ebb-and-flow subirrigation. Similarly, asparagine synthase (glutamine-
hydrolysing) was the main enzyme involved in asparagine synthesis, which was up-
regulated in TSI, indicating that drought caused by TSI promotes the formation of as-
paragine from aspartic acid and glutamine to adapt to the drought stress. The up-regulated
expression of threonine dehydratase and hydroxy-methyl-glutaryl-COA synthase in EFI
may increase the biosynthesis of valine, leucine, and isoleucine, which can promote tomato
root system development and secondary metabolism.

4.4. DAPs Participated in Plant Hormones and Secondary Metabolism

Plant hormones widely participate in the physiological process of plant growth and
development [71] and play an important role in plant response to various environmental
and biological stresses [72]. Studies have shown that GH3 family proteins influence the
activity of amide synthase, which catalyzes the combination of free indoleacetic acid (IAA)
and amino acids so as to inactivate it [73]. The IAA is released through the hydrolysis of
IAA amide hydrolase to maintain the homeostasis of IAA in cells [74,75]. Abscisic acid
(ABA) plays an important role in regulating seed germination [76], plant growth [77], and
the response to stress [78]. In the present study, 79 DAPs were enriched in a large number of
secondary-metabolism-related pathways, mainly including phenylpropanoid biosynthesis
(ko00940); the biosynthesis of secondary metabolites (ko01110); cutin, suberine, and wax
biosynthesis (ko00073); terpene main chain biosynthesis (ko00900), etc. (Table S6). It was
identified that the auxin-responsive GH3 gene family showed down-regulated expression in
EFI compared with TSI. Moreover, the synthesis of IAA was not inhibited, which promoted
the normal growth of tomato roots. Additionally, it was identified that the related proteins
of the ABA receptor PYR/PTL family showed down-regulated expressions under EFI,
indicating that the synthesis of ABA was inhibited under the ebb-and-flow treatment so
that the normal growth of tomato roots could not be inhibited.

5. Conclusions

In the present study, a TMT-based proteomic method was used to investigate changes
in protein levels in roots of tomato seedlings grown under ebb-and-flow subirrigation and
top sprinkle irrigation. In total, 8510 proteins and 513 DAPs were identified in tomato
roots. The bioinformatic analysis revealed that these DAPs were involved in energy
production and conversion, metabolic processes, the anchoring component of microtubule
and membrane, oxidoreductase activity, and response to stimuli. The KEGG enrichment
showed that the DAPs were enriched in 51 KEGG pathways, of which phenylpropane
biosynthesis and secondary metabolite biosynthesis were the most significant pathways.
The important pathways containing DAPs related to stress response were further divided
into five categories, i.e., carbohydrate and energy metabolism, stress resistance and defense
response, amino acid metabolism, plant hormones, and secondary metabolism. Ebb-and-
flow subirrigation could significantly activate the expressions of proteins related to stress
defense and ROS detoxification in tomato roots, which could effectively maintain the
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balance of protein processing and degradation and enhance the ability of ion, electron, and
protein transport across membranes and cell wall regulation so as to promote root growth.
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Abstract: Heat and drought are major stresses that significantly reduce seed yield of the common bean
(Phaseolus vulgaris L.). In turn, this affects the profitability of the crop in climatic-vulnerable tropical
arid regions, which happen to be the poorest and in most need of legume proteins. Therefore, it is
imperative to broaden the sources of heat and drought resistance in the common bean by examining
closely related species from warmer and drier environments (i.e., Tepary bean, P. acutifolius A. Gray),
while harnessing such variation, typically polygenic, throughout advanced interspecific crossing
schemes. As part of this study, interspecific congruity backcrosses for high temperature and drought
tolerance conditions were characterized across four localities in coastal Colombia. Genotypes with
high values of CO2 assimilation (>24 μmol CO2 m−2 s−1), promising yield scores (>19 g/plant), and
high seed mineral content (Fe > 100 mg/kg) were identified at the warmest locality, Motilonia. At
the driest locality, Caribia, one intercrossed genotype (i.e., 85) and the P. acutifolius G40001 control
exhibited sufficient yield for commercial production (17.76 g/plant and 12.76 g/plant, respectively).
Meanwhile, at southernmost Turipaná and Carmen de Bolívar localities, two clusters of genotypes
exhibited high mean yield scores with 33.31 g/plant and 17.89 g/plant, respectively, and one genotype
had an increased Fe content (109.7 mg/kg). Overall, a multi-environment AMMI analysis revealed
that genotypes 13, 27, 82, and 84 were environmentally stable with higher yield scores compared to
the Tepary control G40001. Ultimately, this study allows us to conclude that advanced common bean
× Tepary bean interspecific congruity backcrosses are capable of pyramiding sufficient polygenic
tolerance responses for the extreme weather conditions of coastal Colombia, which are likely to
worsen due to climate change. Furthermore, some particular recombination events (i.e., genotype
68) show that there may be potential to couple breeding for heat and drought tolerance with Fe
mineral biofortification, despite a prevalent trade-off, as a way to fight malnutrition of marginalized
communities in tropical regions.

Keywords: polygenic adaptation; abiotic stress tolerance; congruity backcrosses; germplasm charac-
terization; plant genetic resources; multi-local analysis; AMMI model; ecophysiology; biofortification;
Caribbean coast of northern South America
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1. Introduction

The common bean (Phaseolus vulgaris L.) is an important food resource and economic
income source for farmers around the world [1]. Due to its multiple nutritional components,
this species also represents a relevant crop for food security of the poorest. Biofortification
efforts have leveraged this potential by offering cultivars with increased Fe content as an
alternative to reduce mineral deficiencies [2]. However, an antagonistic effect of the genetic
improvement process for drought (and potentially heat) stress tolerance with mineral
content has been reported [3], likely jeopardizing long-term intrinsic mineral content
properties [4]. In order to minimize this trade-off, germplasm’s screening must reinforce
recombinant adaptive phenotypes in concert with high mineral content. Promoting a
dual strategy like this promises to diminish the negative impacts of climatic variability
on common bean cropping systems, while boosting their mineral content. This would
eventually contribute to reduce the production losses in underfed semiarid regions affected
by hydric deficit and high temperatures [5].

Drought and heat wave events are becoming more frequent and extreme since the
last few decades, particularly in the world’s tropics [6]. In South America, the predictions
of temperature increase account for 1.5 ◦C with several heat waves already recorded [7].
This evidences the need to speed up breeding alternatives to reduce the negative impact of
climatic events on agriculture and food security, mainly in regions with strong periods of
drought during the year, such as the Caribbean coast of northern South America.

In particular, common bean yield losses due to drought and heat waves in the region
may be close to 70% [4]. However, breeding efforts face major bottlenecks to obtain
genotypes with good adaptability to adverse abiotic conditions [8] due to the polygenic
nature of the tolerant phenotypes. A strategy to develop cultivars with these attributes
requires efficiently harnessing genetic resources from other genepools of closely related
species typically adapted to heat and drought [9]. The Tepary bean (P. acutifolius A. Gray)
is an annual autogamous bean from northwest Mexico [10,11], domesticated near the arid
border with the USA, and with a strong preference for hot [12] and dry environments [13,14].
Thanks to this natural adaptation, the Tepary bean is the most heat tolerant among the
five cultivated species of the genus Phaseolus. Despite this, the Tepary bean nowadays
has limited relevance as a modern crop when compared with the more susceptible, yet
commercially accepted, common bean. In order to bridge this gap, we envision using the
Tepary bean as donor of alleles to boost drought and heat tolerance in common bean.

Previous works have set the basis to explore the potential of the Tepary bean as an
exotic donor by overcoming the phylogenetic distance between the two species, and the
naturally low levels of interspecific introgression [15]. For instance, the common bean has
been backcrossed with Tepary donors with a relatively good rate of viability [16,17]. Yet,
these efforts were unable to pyramid target alleles for heat/drought tolerance, partly due
to its complex quantitative genetic inheritance [14]. A promise avenue to overcome this
limitation is to rely on advanced interspecific congruity backcross generations [18], as a
base population to select for heat tolerance [15]. This is because backcrossing alternately
to both parents, as the congruity scheme does, can more efficiently leverage selection of
complex polygenic adaptive phenotypes, which is typically more suited for Mendelian
traits of simpler genetic architecture [19].

Therefore, the goal of this study was to assess heat and drought tolerance in in-
terspecific congruity backcrosses between common and Tepary beans. First, we aimed
quantifying yield components across 86 advanced interspecific lines at four localities in
coastal Colombia, where heat and drought waves are frequent and extreme. Second, we
envisioned condensing all trials in a multi-locality genotype × environment (G × E) model
to examine genotype stability of the best-adapted genotypes. We also addressed the physi-
ological basis of heat stress adaptation in the locality with the most extreme heat events
(Motilonia) as a first step to deepen our understanding on the tolerance phenotype.
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2. Materials and Methods

2.1. Interspecific Congruity-Backcross Lines

A total of 86 interspecific congruity-backcross lines between the common bean (P.
vulgaris) and Tepary bean (P. acutifolius) were considered as part of this study, in addi-
tion of the G40001 P. acutifolius control. They correspond to the third generation (and
beyond) of congruity backcrosses (detailed pedigree in Table S1). Therefore, it is expected
that they partly behave as stable lines with still some potential for further segregation.
These genotypes were bred to high temperature and drought conditions by the bean pro-
gram of the Alliance Bioversity–CIAT (International Center for Tropical Agriculture), and
transferred to AGROSAVIA after ATM subscription. All lines were examined to address
genotypic differences in phenological and agronomic performance at four localities in
coastal Colombia.

2.2. Multi-Locality Field Trials

The study was conducted in four localities of the Colombian Caribbean region corre-
sponding to the following AGROSAVIA’s stations: Motilonia Research Station (Codazzi,
province of Cesar), Caribia Research Station (Sevilla, province of Magdalena), Carmen de
Bolívar Research Station (Carmen de Bolívar, province of Bolívar), and Turipaná Research
Station (Cereté, province of Córdoba). Motilonia and Caribia belong to the dry Caribbean
sub-region, respectively being the warmest and driest localities, while Carmen de Bolívar
and Córdoba were representatives of the humid Caribbean sub-region. Soil fertility (i.e.,
in terms of P, Ca, Mg, and K in mg/kg. N and Fe content in the soil are to be included as
part of future screenings), and other properties of the study areas are described in Table
S2, as recorded during the production cycle of 2020. The bioclimatic variation at these
sub-regions offers contrasts in soil type, precipitation, season durability, maximum and
minimum temperature difference, and light quality, all of which are known to affect beans’
agronomical performance. Differences between dry and humid Caribbean sub-regions
oscillated (1) between 23 ◦C and 25 ◦C (average of 23.7 ◦C) and 33 ◦C and 36.3 ◦C (average
of 33 ◦C) for average minimum and maximum temperatures, between (2) 70% and 80%
(average of 80%) for relative humidity, and between (3) 482 mm and 700 mm (average of
591 mm) for precipitation during the rainy season, respectively. Hence, environmental
conditions at the localities were differential. Table S3 depicts temperature and precipitation
variables for each locality during the crop cycle of July–October 2020.

2.3. Experimental Design

The study employed a completely randomized block design (CRBD) with three rep-
etitions at each locality. The experimental unit per treatment (genotypes) was a plot of
four m2 with a conventional spatial arrangement of one row spaced at 0.8 m and 0.25 m
between plants (13 plants per genotype). A total of 72 genotypes germinated and succeed
to growth until scoring in Motilonia, 16 in Caribia, 61 in Turipaná, and 87 in Carmen de
Bolívar. Missing genotypes were indicative of mal-adaptation at each locality.

2.4. Phenotyping

The following yield traits, standard for the common bean [20], were measured at
the end of the cycle at each locality, NS: average number of seeds per pod, NP: number
of pods per plant, YLP: yield per plant (g/plant), PB: filled pod weight (g), SB: seed
weight (g), VB: vegetative biomass (g), WS: weight of 100 seeds, and DF: days to flowering.
Content of minerals Fe and Zn was quantified for plants with a sufficient number of
seeds (minimum 100 g) following the Elemental Analysis by Energy Dispersive X-ray
fluorescence (EDXRF) protocol of the Nutritional Quality Laboratory at Alliance Bioversity–
CIAT (Palmira, Colombia). Due to the COVID-19 contingency, mineral quantification was
only possible at Motilonia, Carmen de Bolívar, and Caribia. For Turipaná, a very high
pressure of soil pathogens was also observed, so the amount of seed required for the
analysis was insufficient.
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Detailed ecophysiological measures were possible at Motilonia for the following
variables, (1) E: transpiration, (2) A: net photosynthetic rate, (3) Ca: CO2 (in the chamber),
(4) Ci: internal leaf CO2, (5) gs: stomata conductance, (6) LT: internal leaf temperature,
and (7) VPD: vapor pressure deficit. These measures were gathered using the LI-6800
portable photosynthesis system from 8:00–11:00 am. Additional compound parameters
were computed as follows, (8) iWUE: instantaneous water use efficiency was measured
as the relation A/E, (9) inWUE: intrinsic efficiency of water use computed as the relation
A/gs, and (10) iCE: instantaneous carboxylation efficiency was measured as the relation
A/Ci [21]. Measurements were made on three plants per genotype on a fully expanded
leaf from the upper third part of the plant. Measurements were carried out between the
pre-flowering and flowering of the genotypes. The LI-6800 equipment was calibrated for
the local conditions through light and CO2 curves, obtaining the appropriate range of
photosynthetically active radiation (PARi) of 1500 μmol of photons m−2s−1, and a reference
CO2 of 400 μmol CO2 mol−1. Calibration curves were done on the P. acutifolius control
genotype G40001.

2.5. Statistical Analyses

Analyses of variance (ANOVA) were performed for the examined traits individually
at each locality after checking for normality and considering genotypes as factors in the
statistical software SAS enterprise Guide 8.3. A hierarchical grouping analysis was also
carried out to determine the diversity in the studied genotypes for yield traits using the
hclust function with Ward’s agglomeration method in the R software (R Core Team). The
Factoextra [22] and NbClust [23] packages were further used to determine the optimum
number of clusters (Figure S1).

In order to assess differences among clusters, Tukey’s comparison of means was per-
formed (p-value < 0.05) after checking for normality using R’s library agricolae. Additionally,
principal component (PCA) and Pearson’s correlation analyses were carried out using R’s
libraries factoextra and FactoMineR [24]. Missing data were imputed when it did not exceed
10% using the mice library [25] from the same software.

Finally, in order to explore the extent of stability and phenotypic adaptability, pre-
vious results were further contrasted via the estimation of phenotypic stability for nine
overlapping lines among localities within an AMMI analytical framework. The AMMI
model used the routine proposed by [26]. It combined the analysis of variance (ANOVA)
to estimate the main effects of G and E, with the principal components analysis (PCA) as a
proxy for the G × E interaction, as follows (Equation (1)):

Yij = μ + Gi + Ej + Σλk αik δjk + Rij + ε (1)

where Yij corresponded to the value of the ith genotype in the jth environment, μ was
the overall mean, Gi was the deviation of the ith genotype from the overall mean, Ej was
the deviation of the jth environment from the overall mean, λk was the singular value
for PC axis k, αik and δjk, respectively, were the principal component’s scores for axis k of
the ith genotype and jth environment, and Rij and ε were the residual and error terms,
respectively.

Stable genotypes for each environment were selected by the AMMI biplot, in which
scores of the first principal component (CP1) were plotted against the phenotypic means
of genotypes and environments. Specifically, CP1 scores close to zero in the y-axis were
considered as stable genotypes. Specific genotype–environment adaptability was inferrered
from the x-axis, where the means of genotypes and environments were jointly plotted.

This combined analysis was carried out in order to select the best interspecific lines
adapted to the target climates at the Caribbean coastal sub-regions of Colombia given two
different resolutions: (1) broad adaptation, applicable for genotypes stable across multiple
environments, and (2) narrow adaptation, in which specific genotypes outperformed the
rest in a single locality but not across all environments.
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3. Results

3.1. Phenotypic and Physiological Variability of Interspecific Lines Per Locality

Interspecific lines characterized across four localities (i.e., Motilonia, Caribia, Turipaná,
and Carmen de Bolívar) showed a statistical differential response, mainly for parameters
associated with yield (Table 1). These trends are detailed per locality in the next subsections.
Since Motilonia and Carmen’s replicates also exhibited differences, uncontrolled variability
is discussed in light of local-scale heterogeneity.

Table 1. One-site analysis of variance for the common bean (P. vulgaris) × Tepary bean (P. acutifolius)
interspecific congruity backcross lines.

Yield Trait

Motilonia
(72 Genotypes)

Caribia
(16 Genotypes)

Turipaná
(61 Genotypes)

Carmen
(87 Genotypes)

Rep Gen Rep Gen Rep Gen Rep Gen

NS 0.4801 <0.0001 0.1 0.52 0.28 0.0177 <0.0001 <0.0001
NP < 0.0001 <0.0001 0.14 0.38 0.4 0.001 <0.0001 0.005
YLP < 0.0001 <0.0001 0.04 0.46 0.07 0.04 <0.0001 <0.0001
PB < 0.0001 <0.0001 0.09 0.38 NA NA 0.052 0.242
SB < 0.0001 <0.0001 0.46 NA NA NA <0.0001 <0.0001
VB 0.8546 <0.0001 0.13 0.16 0.03 0.06 <0.0001 <0.0001
WS NA NA 0.08 0.4 0.2398 0.42 0.2497 0.001
DF 0.7666 <0.0001 NA NA 0.08 0.262 0.442 0.122

p-value for repetition (Rep) and genotype (Gen). NS: Average number of seeds per pod, NP: number of pods per
plant, YLP: yield per plant (g/plant), PB: pod biomass (g), SB: seed biomass (g), VB: vegetative biomass (g), WS:
weight of 100 seeds, and DF: days to flowering.

3.2. Motilonia (Warmest Dry Caribbean Savanna Sub-Region)

At the Motilonia locality, genotypes had a variable ecophysiological behavior since all
ecophysiological parameters shown statistically significant differences, indicating that at
least one genotype is different (Table 2).

Table 2. Analysis of variance for ecophysiological parameters among the common bean × Tepary
bean interspecific congruity-backcross lines at Motilonia (warmest dry Caribbean sub-region).

Parameter Units Repetitions Effect Genotype Effect

A μmol CO2 m−2 s−1 0.8126 <0.0001
Ca μmol mol−1 0.3461 <0.0001
Ci μmol CO2 mol−1 0.4298 <0.0001
gs mol H2O m−2 s−1 0.4597 <0.0001

VPD kPa 0.2497 <0.0001
E mmol H2O m−2 s−1 0.9013 <0.0001

Tleaf ◦C 0.2881 <0.0001
iWUE NA 0.6131 <0.001

inWUE NA 0.184 <0.001
iCE NA 0.4277 <0.001

p-value for repetition and genotype factors. E: transpiration, A: net photosynthetic rate, Ca: Ambient CO2 (in the
chamber), Ci: internal leaf CO2, gs: stomatal conductance, E: transpiration, Tleaf: internal leaf temperature, VPD:
vapor pressure deficit, iWUE: instantaneous water use efficiency, inWUE: intrinsic efficiency of water use, and
iCE: instantaneous carboxylation efficiency.

Three clusters were identified according to their productive response (Figure 1a), with
cluster 1 being the one with the highest average yield, followed by cluster 2, and finally
cluster 3 with the lowest values (Figure 1b). Population variance was mainly explained
by dimension 1 (37.5%), 2 (20.4%) and 3 (15.3%). Variables with greater contribution at ex-
plaining variability were mostly ecophysiological and performance parameters (Figure 1c,
darker vectors). Performance variables like NP, YLP, PB, NS, SB, VB, gs, A, and iCE
presented an inverse relationship with variables such as VPD, Ca, LT, and WS.
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Figure 1. Yield and physiological responses of interspecific congruity-backcross lines at Motilonia
(warmest dry Caribbean sub-region). (a) Clustering of genotypes for yield parameters. (b) Yield and
physiological behavior of genotypes. (c) Principal component analysis of genotypes. (d) Pearson’s
correlation analysis for key traits. NS: average number of seeds per pod, NP: number of pods per
plant, YLP: yield per plant (g/plant), PB: pod biomass (g), SB: seed biomass (g), VB: vegetative
biomass (g), DF: days to flowering, WS: weight of 100 seeds (g), Fe: iron content (mg/kg), Zn: Zinc
content (mg/kg), E: transpiration, A: Net photosynthetic rate, Ca: Ambient CO2 (in the chamber),
Ci: internal leaf CO2, gs: stomatal conductance, LT: internal leaf temperature, VPD: vapor pressure
deficit, iWUE: instantaneous water use efficiency, inWUE: intrinsic efficiency of water use, and iCE:
instantaneous carboxylation efficiency. *: p > 0.05, **: p > 0.01: ***: p > 0.001. G40001 control as 87.

Pearson correlation analysis corroborated statistically significant correlations among
the performance-related parameters (i.e., NS, NP, YLP, PB, SB, VB, and WS), as well as
with some ecophysiological parameters (i.e., A, iWUE, gs, and iCE). In short, with higher
A, iWUE, gs, and iCE, performance also increased (Figure 1d). In terms of physiological
parameters, some correlations were particularly relevant, such as the inverse correlation
between E and iWUE (as expected because the E term is the denominator). This result
agreed with the ecophysiological behavior of the bean plant since greater transpiration,
generated by greater gs, implied having less efficient use of water. Last, a direct correlation
between Fe and Zn was found. Zn had a negative correlation with yield parameters
(Figure 1d).
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Regarding the physiological parameter of greatest interest, A, it was found that some
genotypes carried out an efficient assimilation of CO2 with a lower amount of Ci, involving
low VPD and greater water use efficiency. It was also evident through a significant inverse
correlation that the higher gs allowed to cool and reduced the temperature of the leaf,
implying lower VPD and higher iCE. The inWUE, iWUE, and iCE indices were generally
positively correlated (Figure 1).

Regarding differences among genotypes, it was found that the cluster with the highest
yield (cluster 1) also presented the highest values for other parameters such as NS, NP, PB,
SB, A, gs, and iCE. However, it presented the lowest values for WS and VPD. Similarly,
the genotypes grouped in cluster 2 also showed high values for NS, A, gs and iCE, and
low Ca. Hence, besides presenting high values in variables related to yield and biomass
production, the ecophysiological behavior of cluster 1 also indicated a positive relationship
between higher yield and CO2 assimilation, being an attribute of interest for adaptation in
the Caribbean conditions of coastal Colombian (Table 3).

Table 3. Comparisons of means for yield components and physiological traits among clusters of
interspecific congruity-backcross lines in Motilonia (dry Caribe).

Trait Unit Cluster 1 Cluster 2 Cluster 3

NS Seeds 2.57 a 2.16 a 1.73 b

NP Pods 20.27 a 9.21 b 2.78 c

YLP g/plant 19.72 a 9.05 b 2.73 c

PB G 5.18 a 2.49 b 0.76 c

SB G 21.36 a 9.05 b 2.68 c

VB G 183.49 154.63 130.13
WS g/100 seeds 25.46 a,b 23.03 b 28.89 a

DF Days 36.3 34.96 32.92
E mmol H2O m−2 s −1 0.012 0.013 0.012
A μmol CO2 m−2 s−1 24.29 a 23.52 a 20.15 b

Ca μmol mol−1 358.51 b 358.41 b 364.04 a

Ci μmol CO2 mol−1 284.55 286.45 289.25
gs mol H2O m−2 s−1 0.73 a 0.72 a,b 0.60 b

LT ◦C 35.66 35.99 36.11
VPD kPa 1.98 b 2.10 a,b 2.29 a

iWUE NA 2035.99 1819.60 1698.78
inWUE NA 35.28 33.76 35.33

iCE NA 0.08 a 0.08 a 0.07 b

footer NS: average number of seeds per pod, NP: number of pods per plant, YLP: yield per plant (g/plant), PB:
pod biomass (g), SB: seed biomass (g), VB: vegetative biomass (g), WS: weight of 100 seeds, DF: days to flowering,
E: transpiration, A: Net photosynthetic rate, Ca: Ambient CO2 (in the chamber), Ci: internal leaf CO2, gs: stomatal
conductance, LT: internal leaf temperature, VPD: vapor pressure deficit, iWUE: instantaneous water use efficiency,
inWUE: intrinsic efficiency of water use and iCE: instantaneous carboxylation efficiency. Different letters denote
significant differences determined by Tukey’s test (α ≤ 0.05).

On the contrary, cluster 3 presented the lowest values for performance traits and
biomass production. In addition, regarding the physiological parameters, it was also
evident that the VPD value was the highest. This indicated that, the higher the score of
this parameter, the greater the impact on other physiological processes, and therefore the
overall productive capacity (Table 3). In addition, cluster 3 also presented the lowest values
for the variables A, gs, iWUE and iCE, and the highest for Ca and Ci.

Some of the genotypes that experienced interesting behavior at the warmest locality
of Motilonia merged key physiological parameters, outstanding mineral content, and good
productive responses (Table 4, despite some cases of inverse relationship between yield
and Fe content reinforced this well-known trade-off).
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Table 4. The common bean × Tepary bean interspecific congruity-backcross lines selected according
to yield and Fe content in the locality of Motilonia (dry Caribbean sub-region). G40001 was used as
control from the P. acutifolius genepool, and therefore is presented in the first row.

Selection
Criteria

Cluster Genotype YLP WS Fe Zn

1 G40001 31.43 13 66.8 24.3
1 82 28.96 28.6 56.2 26.7
1 48 20.55 50 - -
1 17 19.03 23.2 94.35 28.8
1 81 17.7 27 - -
1 5 17.04 23.3 82.1 44.9
1 16 16.78 23.3 83.1 41.5
1 3 16.47 22.34 87.8 37.4

Yield 1 18 15.07 24.7 79.2 45.4
1 27 14.18 19.2 79.5 41.2
2 1 13.34 25.2 80.0 30.4
2 84 13.26 24.5 - -
2 85 12.14 27 61.7 31.6
2 9 11.69 19.8 103.75 50.1
2 6 11.69 27 61.9 25.4
2 39 10.9 38 - -
2 23 10.73 23.8 66.1 34.1
2 13 10.02 25.6 82.5 31.6

2 9 11.69 19.8 103.75 50.1
3 12 3.14 27.5 111.25 40.45
2 26 6.29 19.9 103.5 44.25

Fe content 3 64 1.96 27 102.6 60.25
3 76 1.32 25.2 118.3 56.15
3 77 2.08 29.2 120.5 53.6
3 80 3.79 23 107.7 52.25

footer YLP: yield (g/plant), WS: weight of 100 seeds (g), and Fe: iron and Zn: Zinc content (mg/kg).

Taking into account that seed size is a paramount commercial trait, some other geno-
types were also chosen targeting this variation, specifically: genotype 35 (cluster 2) pre-
sented a yield of 5.18 g/plant, a WS of 41.72 g/100 seeds, and Fe and mineral content of 72.30
and 30.60 mg/kg; genotype 38 (cluster 3) had YLP of 3.07 g/plant and WS of 50 g/100 seeds;
genotype 45 (cluster 3) had a YLP of 1.72 g/plant and a WS of 46 g/100 seeds; and finally
genotype 36 (cluster 3) presented a YLP of 2.08 g/plant and a WS of 43.50 g/100 seeds.
These multiple selection criteria also targeted Fe content higher than 100 mg/kg given that
some recombinant genotypes may offer potential for biofortification, despite the prevailing
inverse relationship between Fe content and yield.

3.3. Caribia (Driest Caribbean Sub-Region)

At this locality two clusters were identified for yield components (Figure 2a). Overall,
the genotypes presented low yield, possibly due to the environmental conditions of the
region (e.g., high relative humidity that may stimulate the presence of soil pathogens).
Only two genotypes, the G40001 control from the P. acutifolius genepool and 85, presented
high yield value. Still, other genotypes might also be considered of interest in this locality,
such as 84, 86, 28, 13 and 49. However, none of the genotypes exceeded the commercially
desirable weight of 40 g/100 seeds. The genotype that came closest to this value was
genotype 85 with 38 g/plant, which was also the second genotype with the highest yield.
None of these genotypes exceeded the value of 100 mg/kg in Fe content.

159



Agronomy 2021, 11, 1978

Figure 2. Yield responses of interspecific congruity-backcross lines at Caribia (driest Caribbean sub-region). (a) Clustering of
genotypes considering yield parameters. (b) Yield and physiological behavior of studied genotypes. (c) Principal component
analysis in the characterized genotypes. (d) Pearson’s correlation analysis for the studied traits. NS: average number of
seeds per pod, NP: number of pods per plant, YLP: yield per plant (g/plant), PB: pod biomass (g), SB: seed biomass (g), VB:
vegetative biomass (g), WS: weight of 100 seeds (g), Fe: iron (mg/kg), Zn: Zinc (mg/kg). *: p > 0.05, **: p > 0.01: ***: p > 0.001.
P. acutifolius control G40001 is abbreviated as 87.

When analyzing the relationship between the performance variables, it was found
that the variability of the population was mainly explained by the first two components
with 49% and 19.2%, respectively. A positive relationship was observed between the
variables associated with yield, such as PB, SB, NP, YLP, and NS. However, the contents
of Fe and Zn had an inverse behavior against those parameters, and to a lesser extent the
variables WS and WB (Figure 2c). Pearson’s correlations made it possible to corroborate
these relationships between variables, showing that the yield components had a positive
correlation among them. The correlations between Fe and Zn content with some yield
parameters were negative, indicating an inverse behavior (Figure 2d).

In the clustering analysis, it was found that cluster 1 was made up of 75% of the
genotypes, and was statistically different from cluster 2, which was the one that presented
the highest values for all variables, as detailed in Table 5.

Table 5. Comparisons of means between clusters at locality of Caribia (dry Caribe).

Parameter Unit Cluster 1 Cluster 2

NP Pods 10.29 b 22.37 a

YLP g/plant 3.17 b 9.53 a

PB G 9.37 b 24.32 a

SB G 4.98 b 11.82 a

VB G 21.78 b 45.28 a

footer NP: number of pods per plant, YLP: yield per plant (g/plant), PB: pod biomass (g), SB: seed biomass (g),
VB: vegetative biomass (g). Different letters denote significant differences determined by Tukey’s test (α ≤ 0.05).
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Given the selection criteria applied to this locality, only two genotypes presented yield
scores that were above the desired threshold: control genotype G40001 from the P. acutifolius
genepool (cluster 2) with YLP of 17.76 g/plant, WS of 12.28 g/100 seeds, Fe of 63.80 mg/kg,
and Zn of 22.40 mg/kg; and genotype 85 (cluster 2), with YLP of 12.76 g/plant, WS of
38.41 g/100 seeds, Fe of 71.30 mg/kg, and Zn of 35.20 mg/kg.

3.4. Turipaná (Humid Caribbean Sub-Region)

In the Turipaná locality, four clusters were found when considering the main perfor-
mance parameters, as indicated in Figure 3. The largest cluster was the second, including
up to 62.29% of the characterized interspecific genotypes, followed by clusters 4, 3, and 1,
with 26.22%, 8.19%, and 3.27%, respectively (Figure 3a). The variability of the population
was mostly explained by component 1 (46.7%) and component 2 (19.4%, Figure 3c). The
yield (YLP) and its components (NP and NS) were positively related and provided the
greatest contribution to explain the variability of the population.

Figure 3. Yield responses of interspecific congruity-backcross lines at Turipaná (humid Caribbean
sub-region). (a) Clustering of genotypes considering yield parameters. (b) Yield and physiological
behavior of studied genotypes. (c) Principal component analysis in the characterized genotypes.
(d) Pearson’s correlation analysis for the studied traits. NS: average number of seeds per pod, NP:
number of pods per plant, YLP: yield per plant (g/plant), WS: weight of 100 seeds (g), VB: vegetative
biomass (g), DF: days to flowering. *: p > 0.05, ***: p > 0.001. G40001 control as 87.
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Relationships among performance parameters were corroborated with Pearson’s
linear correlations, in which these traits presented direct and significant correlations
(p-value < −0.05, Figure 3d). Finally, when comparing the clusters, it was found that
the highest yield was obtained within cluster 1, followed by cluster 3, for the variables
NS, NP, and YLP. On the contrary, cluster 2 presented the lowest values for these same
parameters (Table 6).

Table 6. Comparisons of means for yield components among clusters of interspecific congruity-
backcross lines in Turipaná (humid Caribbean sub-region).

Cluster Units Cluster 1 Cluster 3 Cluster 4 Cluster 2

NS Seeds 6.20 a 4.55 b 3.07 c 2.09 d

NP Pods 103.17 a 35.73 b 3.07 c 2.09 d

YLP g/plant 33.31 a 22.59 b 9.22 c 2.81 d

NS: average number of seeds per pod, NP: number of pods per plant, YLP: yield per plant (g/plant). Different
letters denote significant differences determined by Tukey’s test (α ≤ 0.05).

In this way, the genotypes that presented the highest yield scores, and that belonged
to clusters 1, 3, and 4, were chosen and ranked, as shown in Table 7.

Table 7. Interspecific congruity-backcross lines selected according to yield per plant above 10 g in
Turipaná (humid Caribbean sub-region). G40001 was used as control from the P. acutifolius genepool.

Cluster Genotype NS NP YLP VB WS DF

1 G40001 5.90 106.35 44.06 100.27 11.32 52.67
3 85 4.50 25.50 30.65 91.00 20.10 48.00
3 17 4.20 50.00 23.50 33.67 16.50 52.67
1 13 6.50 100.00 22.57 72.00 17.77 48.00
3 83 4.10 38.50 21.80 43.00 25.76 55.00
3 27 4.90 40.00 20.00 15.00 19.50 44.50
3 82 5.07 24.67 17.00 37.00 21.56 48.00
4 86 2.78 32.33 16.04 37.67 21.49 60.67
4 19 3.11 16.33 13.67 17.67 18.39 62.00
4 34 3.07 31.67 12.70 22.33 17.09 57.33
4 84 2.57 16.00 12.50 11.00 15.00 48.00
4 72 4.30 25.00 11.00 33.00 18.61 55.00
4 75 2.90 27.00 10.67 126.33 17.52 48.00
4 6 3.47 38.33 10.30 42.00 15.39 48.00

NS: average number of seeds per pod, NP: number of pods per plant, YLP: yield per plant (g/plant), VB:
Vegetative biomass (g), WS: weight of 100 seeds (g), DF: days to flowering.

On the other hand, given the importance of grain weight, genotype 68 presented a
good WS of 43.82 g/100 seeds, although in terms of NS had a modest score of 2.90 (besides
a NP of 22.50, YLP of 9.00 g/plant, GV of 39.50, and DF of 51.50).

3.5. Carmen de Bolívar (Humid Caribbean Sub-Region)

In Carmen de Bolívar cluster 1 was the most numerous with 44.82% genotypes, cluster
2 with 36.78%, and cluster 3 with 18.39% (Figure 4a). Population variability was mainly
explained by component 1 (46.4%) and 2 (17.46%). It was also found that most of the yield
components were related, except for DM, DF, WS, Fe and Zn, which presented an opposite
response to the rest of the parameters (Figure 4c). This was corroborated with Pearson’s
correlations (Figure 4d), in which a high inverse correlation was found between YLP and
WS (p-value < −0.01), indicating that the genotypes with the highest yield had low grain
weight (i.e., higher yield was obtained at the expense of WS).
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Figure 4. Yield responses of interspecific congruity-backcross lines at Carmen de Bolívar (humid Caribbean sub-region).
(a) Clustering of genotypes considering yield parameters. (b) Yield and physiological behavior of genotypes. (c) Principal
component analysis across genotypes. (d) Pearson’s correlation among traits. NS: average number of seeds per pod, NP:
number of pods per plant, YLP: yield per plant (g/plant), PB: pod biomass (g), SB: seed biomass (g), VB: vegetative biomass
(g), WS: weight of 100 seeds (g), Fe: iron (mg/kg), Zn: Zinc (mg/kg). *: p > 0.05, **: p > 0.01: ***: p > 0.001. P. acutifolius
control G40001 is abbreviated as 87.

In addition, other statistically significant correlations of interest were found, although
with lower Pearson’s correlation scores. Specifically, positive correlations between Zn and
VB, and between Fe and VB, suggested that plants with higher VB might accumulate higher
content of Zn and Fe in the grain.

On the contrary, a low negative correlation was found between WS and Fe. This trend
suggested that the grains with the highest weight had the lowest Fe content, as expected
due to the prevailing trade-off between yield and nutrition. A high and positive correlation
was also found between Fe and Zn.

Cluster 3 presented the highest values for NS, NP, YLP, SB, and VB, and the lowest
values for WS and DM. Regarding these latter two traits, cluster 1 was the one with
the highest scores (Table 8). It was expected that genotypes with the lowest yield could
reach the highest grain weight, possibly due to more photo-assimilate accumulation on
less grains.
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Table 8. Comparisons of means between clusters of interspecific congruity-backcross lines, as
assessed at Carmen de Bolívar (humid Caribbean sub-region).

Cluster NS NP YLP SB VB WS DM

1 3.46 c 18.84 c 5.98 c 5.99 c 57.60 b 36.18 a 76.11 a

2 4.51 b 23.34 b 11.61 b 11.61 b 67.13 b 30.35 b 72.70 b

3 5.25 a 34.39 a 17.89 a 16.91 a 87.86 a 28.11 b 72.37 b

NS: average number of seeds per pod, NP: number of pods per plant, YLP: yield per plant (g/plant), SB: seed
biomass (g), VB: vegetative biomass (g), WS: weight of 100 seeds (g), DM: days to maturation. Different letters
denote significant differences as by the Tukey’s test (α ≤ 0.05).

The genotypes selected by yield mainly belonged to clusters 3 and 2, in decreasing
order, as indicated in Table 9. Of these groups, only genotypes 77 and 64 presented high
values for minerals. Some additional genotypes of interest were identified considering
weight of seeds.

Table 9. The common bean × Tepary bean interspecific congruity-backcross lines selected for yield,
seed weight, and seed Fe in the locality of Carmen de Bolívar (humid Caribbean sub-region). G40001
was used as control from the P. acutifolius genepool.

Criteria Cluster Genotype YLP WS Fe Zn

3 G40001 27.12 29.47
3 21 21.12 26 71.5 36.9
3 86 20.96 27.33 64.4 36.8
3 82 20.15 28.33 53.1 34.2
3 84 20.07 28.33 58 30.9
3 81 19.77 30.33 70.3 44.4
3 5 19.11 27.67 62 38
3 72 18.7 28.67 83.6 41
3 83 17.43 26 67.9 32.9
3 9 16 26 79.2 45.5
3 63 15.79 32 92.25 48.4
3 67 15.76 33 81.8 51.2
3 7 15 29 77.5 42
3 18 14.9 24.67 66.4 33.6
3 25 13.37 24 56.3 31.6
3 11 11 29 73.6 43.9
2 43 16.48 35.67 70.2 28.4
2 62 15.13 31 76.6 42.4
2 80 14.78 32.67 90.55 41.7
2 77 14.75 29.42 109.7 58.4
2 40 14.61 44 66.6 27

Yield 2 79 13.96 26.25 99.9 56.3
2 29 13.91 40.67 63.1 29.7
2 17 13.52 24.89 70.3 35.2
2 85 12.72 28 53.5 35.9
2 73 12.57 30.33 82.3 46.3
2 26 12.23 25.33 74.9 35
2 69 12.03 33.67 92 46.8
2 41 11.99 48.33 64.4 34.1
2 16 11.95 28.67 64.6 35.8
2 13 11.9 26 75.1 45
2 36 11.81 47.02 73.5 33.5
2 28 11.7 26.03 56.4 35.4
2 24 11.35 25 61.1 32.1
2 65 11.02 29.33 93.15 58.7
2 23 10.92 25.62 62.6 35.5
2 19 10.72 25 72.3 40.4
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Table 9. Cont.

Criteria Cluster Genotype YLP WS Fe Zn

2 22 10.62 24.33 82.2 39
2 64 10.34 30 101.1 50.4
2 3 10.14 27.7 71.4 38.1
2 71 10.09 30.67 92.65 46.4

1 45 9.42 41 65.4 39.2
1 56 9.03 47.87 74 38.4
1 35 8.24 44 74.3 39.5
1 47 8.15 46.75 74.3 37.4

WS 1 37 7.36 40.04 61.7 41.9
1 49 7.09 39.78 74.7 33.1
1 50 7.02 41.42 96.5 33.9
1 48 6.76 40.89 65.8 37.9
1 53 6.58 39.91 57.8 37.5

1 14 7.68 23.49 101.4 50.2
Fe content 1 78 7.52 25.33 104.4 57

2 6 8.4 28.66 99.45 41.6
2 76 7.44 27 106.05 57.9

YLP: yield per plant (g/plant), WS: weight of 100 seeds (g), Fe: iron (mg/kg), Zn: Zinc (mg/kg).

Finally, mineral content was also accounted as selection criterion for some genotypes
in order to advance future biofortification outcomes in the presence of increasing heat and
drought constrains.

3.6. Phenotypic Stability

The interspecific congruity-backcross lines with the highest yield and the best stability
across localities were identified in a panel of nine genotypes that grew and produced in all
four environments. Remaining genotypes were interpreted as mal-adapted.

The selection criterion for phenotypic stability was based on distance from the origin to
the first component (ASV) in the standard AMMI analysis, which meant that the genotypes
with the lowest stability index value (YSI) were discarded (Table 10, Figure 5).

Table 10. Stability index with AMMI statistics for yield per plant in nine common bean × Tepary
bean interspecific congruity-backcross lines evaluated across four localities in the Caribbean coast of
Colombia. G40001 (P. acutifolius) was used as control.

Genotypes ASV YSI rASV rYSI
Square

Root
Yield

(g/plant)

13 1.08 10 5 5 3.26 12.14
27 0.94 10 4 6 3.17 11.54
28 1.1 14 6 8 2.61 7.43
68 0.80 12 3 9 2.10 5.62
82 1.43 11 8 3 3.83 17.32
84 0.74 6 2 4 3.51 13.22
85 1.69 11 9 2 3.88 17.06

G40001 0.12 2 1 1 5.13 28.16
9 1.36 14 7 7 2.76 8.89

ASV: AMMI stability value, YSI: stability index value, rASV: ranking ASV, rYSI: ranking.
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Figure 5. AMMI analysis for nine interspecific congruity-backcross lines evaluated across four
localities in the Caribbean region of Colombia. (a) Main components (CPs) for yield per plant.
(b) Biplot of main component 1 (CP1) against yield per plant. Arrows depicts localities 1: Caribia, 2:
Motilonia, 3: Turipaná, 4: Carmen de Bolívar. P. acutifolius control G40001 is abbreviated as 87.

The AMMI analysis showed that the first component explained 59.3% of the variance
due to G × E interaction for total yield, while the second component explained 33.3%.
Therefore, the selection of a single multiplicative term of the AMMI model was sufficient
to explain a large proportion of the relevant data [27]. The genotypes closest to the
origin point in the AMMI biplot were those with little contribution to the interaction
effects, and therefore more stable. Among those, genotypes 13, 27, 82, and 84 were more
stable (i.e., broad adaptation) with higher yields, compared to the G40001 P. acutifolius
control. Genotypes 68, 84, 85, and the P. acutifolius G40001 control, respectively located
closer to localities Caribia, Motilonia, Turipaná and Carmen de Bolívar, suggesting narrow
adaptation [28] to such specific environments in the dry and humid Caribbean sub-regions
of Colombia.

Heat and drought events were likely more extreme in the former (i.e., Motilonia,
Turipaná), while severe drought was presumably preponderant in the latter (i.e., Turipaná
and Carmen de Bolívar). In short, this AMMI approach allowed selecting four stable
genotypes across environments, and four additional genotypes with narrow adaptations to
specific sites [29–32]. Furthermore, the AMMI analysis made possible a straightforward
interpretation of the results using a biplot. This enabled improving the precision of the
G × E interaction, since it eliminated the error around phenotypic stability parameters
generated by the effect of some environments on particular genotypes [30].
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4. Discussion

Across all four localities, the P. acutifolius control genotype G40001 presents the best
performance, evidencing its ability to adapt to the different conditions in coastal Colombia.
This behavior is consistent with extensive reports that mention the potential of the species
P. acutifolius to grow and produce in warm arid and semi-arid conditions [13,14]. In addi-
tion, this study reveals that genotypes from advanced interspecific congruity backcrosses
with this species exhibit promising responses to extreme conditions in Coastal Colombia,
suggesting the inheritance of polygenic adaptation across interspecific boundaries. Yet,
selection of elite genotypes may also be guided at each locality with the aim to identify
genotypes with particular narrow adaptability.

Looking back into the pedigree of the elite interspecific lines, key donors include the
SER, SEF, HTA, GGR, and SMG genotypes (i.e., general combining ability due to the addi-
tive parental breeding values), as well as the progenies from the crosses among G 40119, G
40264, G 40036, DAA 9, SAR, SAB, SEF, RAB, SMR 180, ALB 74, INB 841, SMC 199, and
DAB 295 (i.e., specific combining ability due to relative non-additive performance of partic-
ular crosses). Hence, genotypes resulting from the Alliance Bioversity–CIAT bean breeding
program show potential as parental donors for interspecific crosses [33–36], or even as
cultivars themselves, in the face of heat and drought stresses in coastal Colombia [37].
In this way, this works offers novel perspectives to harness, via advanced interspecific
schemes, the highly contrasting diversity present at beans’ germplasm, while bridging
major bottlenecks to breed traits of interest in the face of climate change.

Currently, the Tepary bean represents an important genetic resource to improve
resistance to heat and drought stresses, which are the most limiting factors in common
bean [12]. Throughout this research, we have demonstrated the potential of this species
to contribute outstanding trait scores via interspecific congruity backcrosses with the
common bean. This approach offers new scopes to utilize the conserved bean variation to
strength the sustainability of the common bean crop in hot semiarid and arid conditions
in tropical regions [38]. Such hybrid breeding strategy is necessary to leverage the over-
dominance of genetic variation previously locked within species because the genomic
architecture [9,39] conferring thermotolerance in the Tepary bean [40] likely differs from
the one in the common bean [41]. Specifically, GWAS (Genome Wide Association Studies)
and candidate gene approaches have unveiled complex genomic architectures for drought
tolerance, subjected to rampant divergent selection and limited cross-species standing
variation [42–45]. Similarly, the genetic basis of heat tolerance, as inferred in common
bean from GEA (Genome–Environment Association) scans and candidate genes [46,47],
only holds partially in the Tepary bean [9]. In short, the Tepary bean could help bridging
long-standing gaps in the breeding of common bean for drought and heat tolerance,
due to the interspecies mosaic in genetic determination mechanisms for these abiotic
stresses. Specifically, the Tepary bean may offer promising [47], accessible, and novel
genetic pathway sources of resistance [48], targeting tropical geographical regions with
prolonged periods of intense heat and drought events [49].

Additionally, our research also invites consideration of the feasibility to simultaneously
breeding for drought tolerance and adaptation to low soil fertility, such as via line 68 (a.k.a.,
SMG8). This interspecific backcross recombinant is particularly outstanding because it
breaks a prevalent inverse relationship between Fe content and yield, pervasively observed
across the common bean × Tepary bean congruity backcross families. The fact that some
interspecific recombination events break intrinsic trait correlations evidences the potential
to mitigate phenotypic trade-offs by taking advantage of cross-species variability. In order
to achieve a more integrative view on the interaction among various trait types, oncoming
trials must select promissory interspecific lines after considering further localities in the
Caribbean region of Colombia experiencing combined restrictive environments (e.g., high
water limitation and low soil quality).
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Moreover, this study reinforces the potential of interspecific congruity backcrosses
between exotic donors of adaptation and more susceptible elite genepools. Congruity
schemes perform multiple alternating backcrosses [8,15,18,50], allowing for a better reten-
tion of the exotic phenotype while overcoming the hybrid sterility, genotype incompatibility,
and embryo abortion typically found in simpler backcrosses [9]. As shown here, congruity
backcross pedigrees behave equally well for the introgressive breeding of polygenic quan-
titative adaptation [51] (i.e., heat/drought stress tolerance [17]). Therefore, this scheme
brings a realistic pathway to efficiently unlock polygenic adaptation, and effectively utilize
hidden variation from tolerant landraces, related crop species, and well-adapted crop wild
genepools [9].

Yet, we must recognize the pilot nature of the present study when it comes to the
physiological basis of the heat and drought tolerance phenotypes. Even though we carried
out ambitious enviromics’ multi-locality trials of interspecific crosses, typically regarded as
of low viability, more efforts are required to bridge the gap between yield and physiological
components during stress responses. In addition, unexplained variation among replicates
was evidenced for Motilonia and Carmen de Bolívar in the single-locality analysis. This is
possibly due to some intrinsic factors such as intra-family segregation, spatial variability of
the soil, or variation of the edaphic microbiota due to high temperature and low organic
matter content (i.e., below 2%, which has been reported as a condition that can affect the
site-specific response of bean yield [52]).

Local-scale spatial variability is undeniably regarded as a major driving force in
various cropping systems [53–55]. Fortunately, the effect of soil heterogeneity in the
statistical analysis of bean trials is starting to be recognized by the workflow that the
Alliance Bioversity–CIAT has carried out as part of the bean genetic improvement program.
Specifically, a novel platform called Mr. Bean is undergoing testing in order to better
handle local-scale spatial information [56], and will certainly prove useful for future
trials. Meanwhile, as part of future projects, we aim extending time-seriated physiological
screening from the warmest Motilonia locality to more mild climates in coastal Colombia
such as Turipaná and Carmen de Bolívar, where heat is predicted to become more intense
and frequent in the oncoming years. Beyond this, it would also be desirable to better
control for the effect of specific microbiological activity on the performance parameters.
Envisioning novel spatial analysis and experimental designs would help minimizing the
impact of uncontrolled intra-genotype variability, even at the G × E interface. These trans-
disciplinary approaches are ultimately needed to gather a more mechanistic understating
of the tolerance response across the environmental continuum, specifically concerning
traits’ trade-offs.

5. Perspectives

After having assessed adaptation in advanced common bean × Tepary bean interspe-
cific congruity backcrosses through four localities in coastal northwest South America, the
study of G × E interaction would require to better account for the inter-annual variability.
We aim addressing this perspective in the years to come by validating and extending in
time the key predictions from the present study. Future field trials will have to be explicitly
contrasted with the current analysis of the 2020 production cycle, which was typically
heat and warm for coastal Colombia (therefore serving as a standard condition to capture
adaptive variation for heat and drought).

Furthermore, the use of parental Tepary beans may also confer resistance to soil
pathogens as part of future introgressive breeding schemes. This expectation is due to
the ability of common bean × Tepary bean interspecific lines to survive in localities with
presumably high incidence of biotic stresses, such as Caribia. After all, some common
bean parental genotypes are derived from selection schemes carried out by the Alliance
Bioversity–CIAT at the locality of Santander de Quilichao (province of Cauca), where the
pressure of soil pathogens is high and similar to the one observed in some regions of
coastal Colombia.
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Other interspecific lines examine here might also exhibit future potential to introgress
resistance to bean common mosaic virus (BCMV). This is the case of lines 84 and 86 (a.k.a.,
SEF 16 and SEF 54), both with red seed coat color, as well as the pure 118 line (a.k.a.,
SER118), developed by the breeding program of Escuela Agrícola Panamericana Zamorano
(EAP) in Honduras. Yet, these expectations remain speculative at the studied localities in
Coastal Colombia. Hence, future studies must carry out detailed characterizations of in
situ biotic pressures at these localities, as a key step to deepen our understanding on the
role of hybrid breeding for biotic stress resistance in bean species. These studies must be
envisioned within the framework of the plant disease triangle (PDT), which postulates that
any plant disease is the result of the interaction between a host’s genotype, the biotic stress,
and their unique environmental combination.

Another necessary next step will involve exploring the underlying genomic basis of
drought and heat tolerance across the species boundary via high-throughput sequencing [9].
First, genomic diversity and signatures of selection for heat and drought tolerance may
be explored by tracing back changes in the allelic and haplotype frequencies across the
available interspecific congruity-backcross genealogies that made part of this study [15].
Theoretical expectations are that selection signatures of introgressive breeding will be
enriched in (i) key underlying regions of the tolerance adaptive phenotype [18], as well
as on (ii) low recombining regions in high linkage disequilibrium that are more prone
to lineage sorting (i.e., genetic drift) [57] and linked selection due to smaller effective
population size [58,59].

Second, more explicit additive models such as GWAS mapping [60], and polygenetic
genomic prediction (GP) will respectively enlighten the genomic architecture of drought
and heat tolerance in Phaseolus beans, while improving predictions of the genomic estimated
breeding values (GEBVs) in yet to be established congruity-backcross hybrid seedlings
(i.e., genomic-assisted backcrossing–GABC) [60]. Given the complex nature of the heat and
drought tolerances, it is foreseen that the GP and GABC approaches would outperform
GWAS-type modeling [61], without meaning that the latter will be incapable to capture
variants with moderate effects segregating at medium frequencies, still useful to boost more
traditional and scalable marker-assisted backcrossing (MABC) initiatives [62]. Merging
these approaches will eventually insight into molecular evolution and pre-breeding under
heat and drought stresses [12], both at the yield and ecophysiological levels [63].

6. Conclusions

This research explored the yield, ecophysiology, and mineral content of Tepary and
common bean interspecific congruity-backcross lines in four localities with contrasting
conditions at the Caribbean region of Colombia. Mineral content of the grain in terms of Fe
and Zn was carried out completely in three localities, while ecophysiological responses were
recorded in one location as a pilot proxy to intermingle yield and physiological responses
at extreme heat and drought conditions. Genotypes obtained by interspecific congruity
backcrosses emphasize the importance of conserving and utilizing agrobiodiversity as
part of the pre-breeding for adaptation to heat and drought conditions. Inter-specific
backcrosses 13, 27, 82, and 84 showed desirable adaptation, yield scores, and stability
across all four localities, close to the Tepary bean’s G40001 control genotype. Yet, selection
for narrow adaptation is also feasible because some interspecific lines exhibited good
responses in terms of yield and mineral content per locality.

In the same way, as part of the characterization of ecophysiological parameters, it
was possible to identify how the cluster of genotypes with the best performance also
presents the highest scores for assimilation of CO2 and WUE. Therefore, parameters related
to gas exchange may be used as indirect selection indices (i.e., proxy traits to speed-up
breeding [64,65]). In order to unveil this potential, we recommend continuing with high-
throughput phenotypic characterizations of target yield, ecophysiological and mineral
content parameters in an extended panel of interspecific congruity-backcross lines.
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Last but not least, expanded field trials across contrasting agroecological regions must
procure including localities beyond dry and humid coastal northwest South America, as
part of an ambitious enviromic [66] approach [67]. A multi-climate enviromic perspec-
tive offers opportunities to better optimize G × E arrangements for yield components
and biofortification initiatives in the face of novel antagonistic abiotic and biotic inter-
actions unleashed by climate change. This initiative will ultimately enable selecting for
heat/drought tolerant [68,69] parents and new recombinants [70], hopefully by breaking
the long-standing genetic trade-off between yield and Fe biofortification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11101978/s1, Table S1. Genealogy of 86 interspecific congruity-backcross lines,
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cycle in four regions of coastal Colombia. Table S2. Localities’ description and soil fertility scores in
coastal Colombia. Table S3. Climate variables, temperature (minimum, maximum and average), and
precipitation at the four localities in coastal Colombia during the crop cycle July-October 2020. Figure
S1. Optimal number of clusters at (a) Motilonia, (b) Caribia [in (c) Caribia genotypes with only one
repetition due to early mortality], (d) Turipaná, and (e) Carmen de Bolívar localities as determined
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Abstract: We deployed field-based high-throughput phenotyping (HTP) techniques to acquire trait
data for a subset of a peanut chromosome segment substitution line (CSSL) population. Sensors
mounted on an unmanned aerial vehicle (UAV) were used to derive various vegetative indices as well
as canopy temperatures. A combination of aerial imaging and manual scoring showed that CSSL 100,
CSSL 84, CSSL 111, and CSSL 15 had remarkably low tomato spotted wilt virus (TSWV) incidence,
a devastating disease in South Georgia, USA. The four lines also performed well under leaf spot
pressure. The vegetative indices showed strong correlations of up to 0.94 with visual disease scores,
indicating that aerial phenotyping is a reliable way of selecting under disease pressure. Since the
yield components of peanut are below the soil surface, we deployed ground penetrating radar (GPR)
technology to detect pods non-destructively. Moderate correlations of up to 0.5 between pod weight
and data acquired from GPR signals were observed. Both the manually acquired pod data and GPR
variables highlighted the three lines, CSSL 84, CSSL 100, and CSSL 111, as the best-performing lines,
with pod weights comparable to the cultivated check Tifguard. Through the combined application
of manual and HTP techniques, this study reinforces the premise that chromosome segments from
peanut wild relatives may be a potential source of valuable agronomic traits.

Keywords: peanut; phenomics; high-throughput phenotyping; ground penetrating radar; tomato
spotted wilt virus; leaf spot; pod weight

1. Introduction

A key challenge in peanut breeding is increasing the genetic diversity of the crop.
Unlike their wild relatives, cultivated varieties have severely limited variation as a result
of their genetic heritage and the process of domestication [1]. What is now recognized as
cultivated peanut arose from the hybridization of two wild species, namely A. duranensis
and A. ipaensis. Spontaneous doubling of the chromosomes of the hybrid resulted in
tetraploid A. hypogaea [2,3]. The resultant ploidy barrier restricted the ability of cultivated
peanut to exchange genetic material with the wilds. This limitation was further enforced
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by the process of human selection and domestication [4,5]. Consequently, peanuts are
under the constant threat of biotic pressures, such as insects and diseases, as well as abiotic
stresses, such as drought, which are exacerbated by the effects of climate change. In
contrast, because of their diversity, wild peanut relatives are more adaptable since they
have maintained genes that enable them to cope with these pressures. This makes them
precious sources of diversity for cultivated peanut [6–9].

One of the ways that breeders sought to harness genetic diversity from the wild was
by creating a chromosome segment substitution line (CSSL) population [1]. This was
achieved by crossing the two known diploid ancestors of peanut to result in a diploid
hybrid. The genome of the hybrid was doubled to form a synthetic tetraploid, essentially
recreating the allotetraploid ancestor of cultivated peanut [10]. The synthetic allotetraploid
was crossed with Fleur 11, a cultivated variety of peanut that is popularly grown in West
Africa. Subsequent judicious selection resulted in a population comprised of 122 individual
lines. Each line is genetically similar to the cultivated variety; however, the selection was
made such that each line retained a small segment of the synthetic genome. Therefore, each
line is distinguished by the portion of the synthetic genome it contains, while at the same
time, the whole genome of the wild tetraploid is captured in the entire population [1]. The
CSSL population, thus, constitutes a critical peanut genetic resource, with the potential to
enable understanding of the basis of genetic variation in peanut.

High-resolution genetic characterization of wild introgressions in this population has
been achieved previously, made possible by taking advantage of technological improve-
ments and reduced costs, which have made it easier to obtain genotype data. These factors
have enabled peanut researchers to achieve the phenomenal feat of releasing high-quality
whole genome sequences of the tetraploid species [11], as well as the A and B genome
progenitors of cultivated peanut [12]. Other genetic resources, including two high-quality
SNP arrays [13–16], a reference transcriptome [17] as well as a comprehensive genomics
database [18], have ensured the graduation of peanut from an orphan crop status [19].

Despite the ease of access and routine deployment of high-throughput genotyping,
peanut phenotyping is mostly carried out at low throughput. Typically, this involves study-
ing single plants in controlled environments such as greenhouses and growth chambers,
or in small field plots for traits such as disease resistance. At the same time, it is often
necessary to harvest plants destructively and at fixed growth stages. Greenhouse and
growth chamber conditions fail to capture the true attributes of the plants since, when they
are grown in the field, they behave differently at the various growth stages and as a result
of competition for water, nutrients, and sunlight [20–22]. Additional drawbacks of such
manual phenotyping include the fact that it is time-consuming, labor and cost intensive,
and prone to human error and biases. This phenotyping challenge forms a bottleneck in the
peanut breeding pipeline that curtails the full exploitation of available genetic and genomic
resources for association studies.

A practical way of alleviating this bottleneck is the use of phenomics, or high-
throughput phenotyping (HTP), a novel approach that is increasingly finding applica-
tion in plant breeding research. It combines cutting-edge technologies such as spectroscopy,
noninvasive imaging, and high-performance computing to capture phenotypic data at high
resolution and throughput to address breeding problems [22]. HTP involves the use of
equipment that can facilitate the collection of large quantities of high-quality data in a short
period, thus availing the possibility of linking genotype data with phenotype data of equal
throughput obtained in a “real world” environment. Field-based HTP, in particular, enables
the accurate measurement of plant growth, architecture, and performance non-destructively
and in the complexity of their true environment [22–24]. Such phenomic approaches can
facilitate the effective use of genetic data to discover novel variations that could improve
the quality and yield of crops [25].

Two commonly used field HTP techniques in studying crop plants involve remote
sensing using visible light cameras (RGB) and multispectral cameras. These are typically
borne on unmanned aerial vehicles (UAV) and can be useful for evaluating plant biotic
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and abiotic stress, plant vigor and phenology, soil characterization, and field mapping [26].
Examples of studies utilizing such techniques include studying the response to nitrogen
and fertilizer treatment in maize [27,28], evaluation of water and nitrogen use efficiency in
rice [29,30], and evaluation of pest pressure and yield estimation in soybean [31,32].

In peanut, UAV-based remote sensing has been used to acquire data on NDVI, canopy
temperature, and RGB images to discriminate between various varieties based on yield
under drought and late leaf spot pressure [33,34]. An attempt was made to derive canopy
spectral signatures for predicting pod maturity, though without significant success [35].
Patrick et al. [36] experimented with various multispectral indices to determine the best
one for detecting TSWV and settled on NDRE, which detected TSWV as early as 93 days
into the season. Sarkar et al. [37] used a digital camera mounted on a UAV to successfully
evaluate leaf wilting for irrigation triggering using indices derived from red–blue–green
images. Manual and UAV-based HTP were compared for their utility to assess key traits
in the US mini-core collection by Sarkar et al. [38]. The study showed good correlations
between NDVI and RGB indices with traits such as plant height, lateral growth, leaf wilting,
thrips damage, and yield, suggesting that vegetative indices could be used as surrogates
for trait selection. Bagherian et al. [39] combined the use of aerial hyperspectral imaging
with machine learning to predict biomass, pod count, and yield. Correlations of up to 0.73
were observed between measured biomass and its prediction.

Of equal novelty is the use of ground penetrating radar (GPR) for belowground
studies. GPR works by emitting electromagnetic waves into the ground and detecting the
waves that are reflected back to a detector. This enables the detection and rendering of 3D
images of belowground biomass [40]. GPR has been effectively used for the non-destructive
study of belowground biomass, especially for trees under various soil conditions [41], in forest
systems [42], tree intercropping systems [43], and other agroforestry systems [44,45]. However,
its application in studying fine belowground biomass, characteristic of agricultural crops,
has been limited [46].

Most studies of the application of GPR to belowground phenotyping have used image
analysis and image-thresholding analysis to extract GPR features, which are then correlated
to crop characteristics such as biomass [40,46]. Dobreva et al. [47] demonstrated the limita-
tions of this approach for the assessment of peanut yield. Specifically, it was demonstrated
that the information about peanut yield is located within narrow vertical strips of the
radargram. Moreover, due to the sensitivity of the GPR signal to soil heterogeneity, apply-
ing the same approach to a different geographic site or even to the same geographic site
with different soil moisture conditions results in a different depth from which maximum
peanut information can be detected. A frequency-based approach to agricultural GPR in-
volves transforming the radar information from the time to the frequency domain. Agbona
et al. [48] demonstrated the application of Fourier transform to belowground phenotyping
of cassava. The advantage of this implementation is that a larger vertical portion of the
radargram can be analyzed, which eliminates the need to determine the narrow vertical
location of maximum peanut yield if image thresholding is applied. It is also expected
that this approach is less sensitive to the specific soil conditions of different geographic
sites. Peanut is a geocarpic plant that flowers aboveground but sets seed belowground [49],
and, therefore, the most important biomass of peanut is below the ground. Consequently,
the phenotyping of peanut pods requires a destructive harvest. This makes peanut an
important candidate for the development of non-destructive belowground phenotyping
techniques such as GPR.

Thus, the peanut CSSL population was an ideal candidate for deploying HTP tech-
niques to bridge the genotype-phenotype gap. In this study, we incorporated HTP into
the screening of a subset of the CSSLs that exhibited contrasting morphological attributes
for canopy and belowground traits. Initially, the objective was to capture morphological
diversity inherent in the population as a result of the differences in their genetic composi-
tion. However, as serendipity would have it, increased tomato spotted wilt disease and
leaf spot pressure afforded the opportunity to evaluate the performance of the lines under
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disease pressure. Aerial images were collected and correlated with manual disease ratings.
In addition, GPR was used to evaluate pod weight prior to harvest.

2. Materials and Methods

A subset of 26 lines from a CSSL population originally developed by [1] was used for
this study. In addition, Fleur 11, the cultivated parent, as well as Tifguard and Florunner,
which are morphologically distinct from the CSSLs, were also planted as adapted high-
yielding leaf spot and TSWV-resistant checks for a total number of 29 lines. Two field trials
were conducted with the lines planted in May 2018 at the University of Georgia Tifton
Campus’ Bowen and Gibbs farms, with the soil type being Tift loamy sand (fine-loamy,
kaolinitic, thermic Plinthic Kandiudults). The experimental setup in each field was RCBD,
with three replicates in each field except for CSSL 15, which had 2 replicates in both fields,
and CSSL 100, which had 2 replicates at Gibbs due to seed shortage. Each 3 m long plot
had two rows with the seeds sown with a spacing of 7 cm between seeds. Normal cultural
practices, including scheduled pesticide and fungicide application and irrigation, were
followed. Ratings for mid-season TSWV were recorded at approximately 80 days after
planting (DAP) for both fields, as well as RGB and thermal aerial imaging. At the end of
the season (110 DAP), ratings for leaf spot were carried out on both fields, while TSWV
was rated on the Gibbs farm only. For TSWV, the ratings entailed assessing canopy TSWV
symptoms on a scale of 0 to 10, with 0 being no symptoms observed and 10 being the
presence of symptoms in the entire plot. An immunostrip assay was carried out to confirm
the presence of TSWV in susceptible lines and its absence in lines that were asymptomatic.
Leaf spot ratings were carried out without making a distinction between early and late leaf
spot on a scale of 1, indicating no leaf spot symptoms, to 10, indicating complete defoliation
and plant death. Thermal and multispectral images were collected on the same day that
TSWV rating was undertaken. All cameras used for aerial imaging were mounted on a
3 DR Solo quadcopter.

GPR data were collected at 117 DAP, which was 1 day before plot inversion. The
GPR imaging system was an experimental prototype consisting of an array of 7 antennas
developed by IDS GeoRadar systems. Both rows in each of the 85 plots were scanned at
Gibbs farm; however, only 49 of the 86 plots had both rows scanned at Bowen, with the
rest having only single rows scanned. Post-harvest, manual data was collected by taking
the total pod weight of each plot.

Analysis

Indices derived from RGB images were the Visible Atmospherically Resistant Index
(VARI), Green Vegetation Index-R (GRV), and Green Leaf Index (GLI). Multispectral indices
were the Chlorophyll Index-RE (CIRE), Difference Vegetation Index (DVI), Green Nor-
malized Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index
(NDVI), Normalized Green (NG), Optimized Soil Adjusted Vegetation Index (OSAVI),
Ratio Vegetation Index (RVI), Soil Adjusted Vegetation Index (SAVI), and Triangular Vege-
tation Index (TVI). Canopy temperature depression (CTD, a measure of the temperature
difference between the canopy and the surrounding area) was derived from the thermal
images. Collected images were stitched using the photogrammetry software Pix4D (Prilly,
Switzerland) and resulted in whole-field orthomosaics. ArcGIS [50] was used for further
downstream analysis. Briefly, the various indices were calculated to extract data from
the RGB, multispectral, and thermal orthomosaics. Boundaries were manually drawn to
delineate each plot in the fields with appropriate buffering to ensure no overlap between
plots. Pixels outside the plot boundaries were eliminated. Within the plots, thresholds
of pixels representing soil were manually determined using the identity function and
eliminated. Canopy pixels were averaged to derive quantitative data for each line. CTDs
were calculated by subtracting the average plot temperature value from the air tempera-
ture which was obtained for each field from the University of Georgia Weather Network
(www.weather.uga.edu, accessed on 20 March 2023).
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GPR data were processed using the Python software platform GPR-Studio (Hays,
pers. Comm.). Data from channel 3 were used for downstream signal processing. To
begin with, the radargrams were split into plots based on electronic markers that had been
incorporated into the images at the time of GPR acquisition. In an ideal HTP setting, the
radargrams should be split into plots using the electronic markers alone, but in this study,
each agricultural plot was examined manually, and the markers adjusted to ensure that all
plots were of the same length. The radargrams were also subset vertically to remove the
top and bottom portions of the radargram. Specifically, the analysis was performed on the
portion of the radargram that started at pixel row 160 and for a depth of 200 pixel rows.

Three GPR processing pipelines were tested. In the first pipeline, no processing was
applied other than the vertical subset of the radargram. In the second and third pipelines,
subset radargrams were filtered with Kirchoff migration and a migration window of 5
and 35, respectively. Migration focuses the signal, and a migration window refers to the
width around each sample that is used to perform the migration, with a small window
corresponding to a smaller effect of the migration. The output of the three pipelines was
subjected to discrete Fourier transformation (DFT), and similar to Agbona et al. [48], the
results of the DFT were averaged for each agricultural plot. Raw data following processing
with the three pipelines and application of DFT are available in Tables S1–S3. The GPR
features were derived from the power of the Fourier coefficients for specific frequency bins.
The features were within the frequency ranges of 1–13, with each frequency delineated to
7 sub-frequencies (such that frequency 1 contained sub-frequencies 1, 1.143, 1.286, 1.429,
1.571,1.714, and 1.857, and so on) for a total of 91 features per single row scanned. The
7 sub-frequencies were combined to derive one variable per frequency by a trapezoidal
approximation of the area under the sub-frequency curve (AUFC) using the formula:

AUFC =
n−1

∑
i=1

di + di+1

2
× (si+1 − si) (1)

where di is the value of DFT at the ith observation, si is sub-frequency at the ith observation,
and n is the total number of observations. The AUFC variables were regarded as the
quantitative data points representing belowground pod variation for the population. The
variables were labeled by prefixing the pipeline and suffixing the frequency from which
it was derived; for example, p1_freq_1 was the variable for the first frequency of pipeline
1. Thirteen variables were derived for each pipeline to yield a total 39 quantitative GPR
variables.

All aerial, belowground, and manual quantitative data were analyzed using R [51].
The partitioning of variance was carried out using mixed model linear regression with the
lmerTest package [52] in R with FDR used for multiple hypothesis correction. Trait sum-
maries and correlations were derived from the obtained coefficients. Where appropriate,
broad sense heritability was obtained by calculating the ratio of genetic variance to the total
variance. For statistically significant traits (p < 0.05), lines that were significantly different
from Fleur 11 (p < 0.05) were determined by running a Dunnett’s multiple comparison
test [53]. The relative effects of introgression on the traits were calculated by taking the
difference between the coefficients of each line and Fleur 11 and getting the percentage
relative to Fleur 11 ((CSSL−Fleur 11)/Fleur 11) × 100). Pearson correlation was used to
investigate the relationship between the HTP data and the appropriate manual data.

3. Results

3.1. Manual Phenotyping

Ratings for TSWV were produced in the middle and at the end of the season. Due
to more severe leaf spot incidence at the Bowen farm, it was not possible to accurately
collect TSWV data at the end of the season. For mid-season TSWV, there were significant
differences among the lines with no interaction between the fields. Late-season ratings at
the Gibbs farm also revealed significant differences between the lines (Tables 1 and S4).
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The line with the best rating mid-season was CSSL 100, which outperformed the cultivated
check Tifguard. CSSL 111 was ranked third, while Fleur 11 ranked last (Table 2). End-season
data from Gibbs showed that CSSL 100 was still the best-ranked within the population;
however, Tifguard outperformed it (Figure 1 and Table 2). Overall, the best-performing
CSSL lines under TSWV pressure were CSSL 100, CSSL 84, CSSL 15, and CSSL 111.

Table 1. Summary statistics for manually collected traits and spectral indices for the chromosome
segment substitution line (CSSL) population.

Name a Field Significance Mean Min Max Fleur 11 SE b Heritability c

Leaf spot late-season Bowen *** 5.39 2.55 7.33 6.17 0.273 0.64

Leaf spot late-season Gibbs *** 5.00 3.00 7.00 6.36 0.212 0.57

TSWV mid-season Bowen *** 2.11 −0.12 4.67 4.67 0.243 0.57

TSWV mid-season Gibbs *** 2.89 0.67 5.33 5.00 0.219 0.40

TSWV late-season Gibbs *** 4.98 1.00 8.17 5.67 0.354 0.48

Pod weight (g) Bowen *** 688.64 414.00 1320.00 498.00 45.189 0.54

Pod weight (g) Gibbs *** 898.82 540.67 1610.00 705.33 44.817 0.74

GLI Bowen *** 0.17 0.14 0.19 0.14 0.002 0.37

GLI Gibbs *** 0.18 0.15 0.20 0.15 0.002 0.74

GRV Bowen *** 0.13 0.11 0.16 0.11 0.003 0.56

GRV Gibbs *** 0.15 0.13 0.16 0.13 0.002 0.70

VARI Bowen *** 0.19 0.16 0.26 0.16 0.006 0.72

VARI Gibbs *** 0.22 0.19 0.28 0.20 0.004 0.76

Mid CTD Bowen NS −9.29 −10.62 −8.37 −9.74 0.076 0.00

Mid CTD Gibbs NS −10.79 −11.53 −10.10 −11.28 0.076 0.03

End CTD Bowen *** −9.14 −11.01 −6.76 −10.30 0.178 0.22

End CTD Gibbs *** −10.31 −11.36 −9.01 −10.91 0.093 0.25

CIRE Bowen *** −0.56 −0.73 −0.47 −0.48 0.015 0.55

CIRE Gibbs *** −0.59 −0.70 −0.46 −0.48 0.012 0.69

DVI Bowen *** 0.31 0.22 0.45 0.23 0.013 0.64

DVI Gibbs *** 0.35 0.27 0.43 0.28 0.008 0.65

GNDVI Bowen *** 0.70 0.62 0.82 0.66 0.010 0.78

GNDVI Gibbs *** 0.73 0.68 0.81 0.69 0.006 0.62

NDVI Bowen *** 0.71 0.59 0.86 0.63 0.014 0.66

NDVI Gibbs *** 0.76 0.67 0.84 0.69 0.008 0.64

NG Bowen *** 0.13 0.08 0.15 0.14 0.004 0.76

NG Gibbs *** 0.12 0.09 0.14 0.13 0.002 0.66

OSAVI Bowen *** 0.60 0.47 0.76 0.50 0.015 0.65

OSAVI Gibbs *** 0.65 0.55 0.74 0.57 0.009 0.64

RVI Bowen *** 7.37 4.05 14.88 4.62 0.579 0.76

RVI Gibbs *** 8.72 5.63 13.26 6.04 0.384 0.73

SAVI Bowen *** 0.49 0.37 0.65 0.40 0.016 0.64
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Table 1. Cont.

Name a Field Significance Mean Min Max Fleur 11 SE b Heritability c

SAVI Gibbs *** 0.54 0.44 0.63 0.46 0.009 0.65

TVI Bowen *** 18.62 13.08 27.34 13.73 0.814 0.61

TVI Gibbs *** 21.33 15.94 25.99 16.84 0.504 0.65

NS: p > 0.05; *** p ≤ 0.001. a Abbreviations for names: TSWV—tomato spotted wilt virus, GLI—Green Leaf Index,
GRV—Green Vegetation Index-Red, VARI—Visible Atmospherically Resistant Index, CTD—canopy temperature
depression, CIRE—Chlorophyll Index-Red Edge, DVI—Difference Vegetation Index, GNDVI—Green Normalized
Difference Vegetation Index, NDVI—Normalized Difference Vegetation Index, NG—normalized green, OSAVI—
Optimized Soil Adjusted Vegetation Index, RVI—Ratio Vegetation Index, SAVI—Soil Adjusted Vegetation Index,
TVI—Triangular Vegetation Index; b standard error; c broad-sense heritability.

Table 2. Rankings for the chromosome segment substitution lines (CSSLs) based on manually
collected data for both Bowen and Gibbs fields.

Sample
TSWV
(MS)

Rank TSWV
(MS)

TSWV
(LS)

Rank
TSWV (LS)

Leaf Spot
Rank Leaf

Spot
Pod

Weight (g)
Rank Pod

Weight

CSSL 009 4.67 28 7.33 27 6.00 19 681.67 22

CSSL 010 3.50 21 8.17 29 6.17 20 705.67 18

CSSL 013 3.17 18 6.50 24 6.42 24 805.33 7

CSSL 014 2.67 13 6.33 22 5.25 9 747.67 9

CSSL 015 1.26 4 3.50 6 4.25 6 589.83 27

CSSL 022 3.83 27 7.83 28 6.42 25 732.00 11

CSSL 025 3.50 23 5.67 16 6.67 27 702.67 19

CSSL 027 3.67 26 6.67 25 6.50 26 681.67 21

CSSL 031 2.17 8 4.00 7 5.67 13 696.00 20

CSSL 044 2.33 12 4.83 11 5.83 15 713.33 16

CSSL 051 2.17 9 5.00 13 5.83 16 717.67 15

CSSL 053 3.00 16 4.50 9 5.75 14 512.67 29

CSSL 055 2.33 10 4.33 8 5.00 7 547.33 28

CSSL 056 3.67 25 4.67 10 6.25 22 666.33 23

CSSL 058 3.33 20 6.17 19 6.83 28 725.33 13

CSSL 060 2.33 11 6.17 18 5.33 11 828.33 6

CSSL 061 3.17 19 7.00 26 6.92 29 709.00 17

CSSL 062 2.83 14 5.33 14 5.92 18 661.33 24

CSSL 069 3.67 24 6.17 20 5.25 10 832.33 5

CSSL 084 1.33 5 3.17 4 4.17 5 1465.00 1

CSSL 100 0.41 1 2.00 2 3.33 2 994.10 4

CSSL 111 1.00 3 3.50 5 3.75 3 1299.33 2

CSSL 112 3.00 15 4.83 12 5.58 12 728.00 12

CSSL 113 3.17 17 6.50 23 5.83 17 722.33 14

CSSL 115 1.67 6 6.33 21 5.17 8 743.67 10

CSSL 121 3.50 22 5.67 15 6.17 21 645.67 25

Fleur 11 4.83 29 5.67 17 6.25 23 601.67 26

Florunner 1.83 7 2.67 3 3.83 4 802.00 8

Tifguard 0.50 2 1.00 1 3.25 1 1014.67 3

MS: mid-season; LS: late-season.
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Figure 1. Manually collected end-season tomato spotted wilt virus (TSWV) scores for the chromosome
segment substitution lines (CSSLs) showing multiple lines with a lower disease rating than Fleur 11,
highlighted in blue. Adapted checks are highlighted in purple. The data were collected at Gibbs farm
at 110 DAP.

Leaf spot was rated at the end of the season at both Gibbs and Bowen farms. The
data revealed significant differences among the lines with no interaction between the fields
(Tables 1 and S4). Overall, the best lines were CSSL 100 and CSSL 111, which were just
below Tifguard, while CSSL 84 and CSSL 15 were third and fourth and ranked below the
other check variety, Florunner (Figure 2 and Table 2).

Figure 2. Manual leaf spot scores for the chromosome segment substitution lines (CSSLs) showing
multiple lines with a lower disease rating than Fleur 11, highlighted in blue. Adapted checks are
highlighted in purple. The data were collected from both Gibbs and Bowen farms at 110 DAP.
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Pod weight data showed significant differences between the lines with some interac-
tion between the fields (Tables 1 and S4). Overall, the best lines were CSSL 84 and CSSL
111, which performed better than the checks. CSSL 100 was the third best, ranking just
below Tifguard (Figure 3 and Table 2). From Gibbs, the order of the top-ranked lines was
CSSL 84, CSSL 111, and CSSL 100, followed in the fourth rank by Tifguard. At Bowen,
CSSL 84 and CSSL 111 were at the top, followed by Florunner and Tifguard, with CSSL
100 falling to the seventh rank (Table S5). This could be attributed to the fewer number
of seeds available for planting that resulted in two reps planted at Bowen for CSSL 100.
Comparison of introgression lines showed consistently superior performance of CSSL 84
and CSSL 111 in both fields, with CSSL 100 being significantly different from Fleur 11 only
at Gibbs. The analysis also highlighted CSSL 69 as having a superior pod weight relative to
Fleur 11, but only at Gibbs (Table S6).

Figure 3. Pod weight for the chromosome segment substitution lines (CSSLs) showing multiple lines
with a superior performance relative to Fleur 11, highlighted in blue. Adapted checks are highlighted
in purple. The data were collected from both Gibbs and Bowen farms after harvest.

3.2. Aerial Phenotyping

A total of 14 traits that included 3 RGB indices, 9 multispectral indices and 2 canopy
temperature traits were derived from aerial images. RGB images were acquired in the
middle of the season, and the derived indices showed significant differences between the
genotypes with significant line-by-field interaction for VARI and GRV (Table S4). GLI
had some correlation with late-season TSWV at the Gibbs location (R of 0.53) but not
significantly with any other traits. At Gibbs, VARI had a correlation of −0.78 with mid-
season TSWV, which became increasingly negative to −0.92 with end-season TSWV and
−0.83 with leaf spot (Table 3). At Bowen, the correlations were −0.8 for mid-season TSWV
and −0.88 for leaf spot. At Gibbs, the correlation of GRV with mid-season TSWV, end-
season TSWV, and leaf spot was −0.82, −0.85 and −0.79, respectively. At Bowen, the
correlations were −0.75 for mid-season TSWV and −0.83 for leaf spot. The two indices also
correlated well with pod weight, especially at Bowen, where the correlation was 0.82 and
0.81 for VARI and GRV, respectively (Table 3).
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Table 3. Correlations between red green blue (RGB) indices and manually collected data.

Trait Spectrum Formula Citation Field
Pod

Weight
TSWV
(MS)

TSWV
(LS)

Leaf Spot
(LS)

Visible Atmospherically
Resistant Index (VARI) RGB (G − R)/(G

+ R − B) [54] Bowen 0.82 −0.8 NA −0.88

Visible Atmospherically
Resistant Index (VARI) RGB (G − R)/(G

+ R − B) [54] Gibbs 0.6 −0.78 −0.92 −0.83

Green Vegetation
Index-R (GRV) RGB (G − R)/(G

+ R) [55] Bowen 0.81 −0.75 NA −0.83

Green Vegetation
Index-R (GRV) RGB (G − R)/(G

+ R) [55] Gibbs 0.58 −0.82 −0.85 −0.79

Green Leaf Index (GLI) RGB
(G × 2 − R
− B)/(G ×
2 + R + B)

[56] Bowen 0.01 −0.02 NA 0.16

Green Leaf Index (GLI) RGB
(G × 2 − R
− B)/(G ×
2 + R + B)

[56] Gibbs −0.18 0.14 0.53 0.40

MS: mid-season; LS: late-season.

Mid-season CTD showed no significant differences between the lines (Table 1). There
were significant differences among the lines for end-season CTD with no sample-by-field
interaction (Tables 1 and S4). There was a strong correlation between end-season CTD and
leaf spot (R = −0.82) and some correlation with end-season TSWV at Gibbs (−0.63). For
pod weight, the correlation was 0.82 at Bowen and 0.65 at Gibbs (Table 4).

Table 4. Correlations between multispectral indices and manually collected data.

Trait Spectrum Formula Citation
Leaf
Spot

TSWV a Pod Weight
Gibbs

Pod Weight
Bowen

Chlorophyll Index-RE (CIRE) Multispectral IR/(RE − 1) [57] −0.95 −0.80 0.43 0.84

Difference Vegetation Index
(DVI) Multispectral IR − R [58] −0.95 −0.85 0.45 0.84

Green Normalized Difference
Vegetation Index (GNDVI) Multispectral (IR − G)/(IR + G) [59] −0.92 −0.94 0.49 0.81

Normalized Green (NG) Multispectral G/(IR + R + G) [60] 0.92 0.94 0.52 0.80

Ratio Vegetation Index (RVI) Multispectral IR/R [61] −0.93 −0.90 0.55 0.84

Normalized Difference
Vegetation Index (NDVI) Multispectral (NIR − R)/(NIR + R) [62] −0.93 −0.86 0.49 0.81

Optimized Soil Adjusted
Vegetation Index (OSAVI) Multispectral (1 + 0.16)(IR −

R)/(IR + R + 0.16) [63] −0.94 −0.85 0.48 0.82

Soil Adjusted Vegetation Index
(SAVI) Multispectral (1 + 0.5)(IR − R)/(IR

+ R + 0.5) [64] −0.95 −0.85 0.47 0.83

Triangular Vegetation Index
(TVI) Multispectral 0.5 × (120 × (IR − G)

– 200 × (R − G)) [65] −0.95 −0.83 0.45 0.83

End season canopy temperature
depression Thermal NA NA −0.82 −0.63 0.65 0.82

a Data for Gibbs late-season.

The multispectral indices were all significantly different, without interaction, and
generally showed strong correlations with the disease scores (Tables 4 and S4). For leaf
spot, CIRE, DVI, SAVI, and TVI were best correlated with an R of 0.95. In the case of TSWV
ratings which were only collected at Gibbs, the best correlations were derived from GNDVI
and NG with an R of 0.94. The range of correlations with pod weight were 0.43–0.55 at
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Gibbs and 0.8–0.84 at Bowen. Consistent with the strong correlations, the indices ranked
the lines comparably with the manual data (Table S5).

Generally, the mean of most traits was comparable to the value of Fleur 11 (Table 1) and
varied from the cultivated checks, Florunner and Tifguard, which had better performance
than the population. This was expected, since the CSSLs have the genetic background of
Fleur 11. For the agronomic traits studied, the broad sense heritabilities were comparable
between fields and ranged from 0.4 for mid-season TSWV to 0.74 for pod weight at Bowen.
This is indicative of significant and reliable genetic influence on trait variations, a fact also
attested by the low standard errors of the trait means. The lowest heritability for significant
traits was 0.2 for end-season CTDs, while the rest of the indices, with the exception of GLI
at Bowen, had generally high heritabilities. Since the genetic background of the population
is known to be uniform, any variation is hypothesized to be a result of introgression effects
from wild chromosome segments.

Multicomparison testing was carried out to evaluate how the individual lines differ
from Fleur 11 in the different traits (Table S6). It was evident that the three lines, CSSL 84,
CSSL 100, and CSSL 111, were the most outstanding in all traits, with the introgressions
making them clearly distinct from Fleur 11.

3.3. Belowground Phenotyping

The initial output of a GPR scan is a radargram of the reflected waveform over time,
known as a B Scan. The various pipelines for signal processing resulted in the conversion
of the B Scans to 13 variables of quantitative data for each pipeline that could be evaluated
as proxies for manually collected pod weight data (Table S7). The GPR variables showed
significant differences between the genotypes at Bowen. However, the opposite observation
was made for Gibbs, as the variables did not show significant differences between the
genotypes (Table 5).

Table 5. Summary of GPR variables that showed significant correlations with pod weight.

GPR
Variable

Pipeline Field
Significance

of GPR
Variable

Mean Max Min SE
Fleur

11
Correlation

Significance of
Correlation with

Pod Weight

p1_freq_1 1 Bowen * 0.37 0.459 0.254 0.009 0.35 −0.512 **

p2_freq_1 2 Bowen * 0.37 0.464 0.259 0.009 0.35 −0.512 **

p3_freq_1 3 Bowen * 0.34 0.438 0.222 0.010 0.32 −0.518 **

p1_freq_1 3 Gibbs NS 0.29 0.352 0.246 0.0038 0.35 −0.391 *

p2_freq_1 2 Gibbs NS 0.29 0.350 0.247 0.0038 0.35 −0.407 *

p3_freq_1 3 Gibbs NS 0.23 0.266 0.206 0.0026 0.27 −0.453 *

p3_freq_3 3 Gibbs NS 0.07 0.077 0.063 0.0007 0.07 −0.405 *

p3_freq_4 3 Gibbs NS 0.06 0.071 0.057 0.0006 0.07 −0.420 *

p3_freq_5 3 Gibbs NS 0.06 0.068 0.054 0.0006 0.06 −0.409 *

p3_freq_6 3 Gibbs NS 0.06 0.066 0.053 0.0006 0.06 −0.449 *

p3_freq_7 3 Gibbs NS 0.06 0.066 0.054 0.0005 0.06 −0.432 *

p3_freq_8 3 Gibbs NS 0.06 0.065 0.053 0.0005 0.06 −0.440 *

p3_freq_9 3 Gibbs NS 0.06 0.064 0.052 0.0006 0.06 −0.428 *

p3_freq_10 3 Gibbs NS 0.06 0.064 0.051 0.0006 0.06 −0.411 *

p3_freq_11 3 Gibbs NS 0.06 0.064 0.051 0.0006 0.06 −0.430 *

p3_freq_12 3 Gibbs NS 0.06 0.064 0.052 0.0006 0.06 −0.409 *

p3_freq_13 3 Gibbs NS 0.06 0.065 0.052 0.0006 0.06 −0.437 *

NS: p > 0.05; * p ≤ 0.05; ** p ≤ 0.01.

Considerable correlations were observed between the coefficients of GPR variables and
those of manual pod weight of the genotypes. At Bowen, three variables had significant
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correlations (p < 0.05). The variables corresponded to frequency one of pipeline one
(p1_freq_1, R = −0.512), pipeline two (p2_freq_1, R = −0.512), and pipeline three (p3_freq_1,
R = −0.516) (Figure 4a–c). Similarly, at Gibbs, the variable representing the first frequency
for the pipelines had a significant correlation with pod weight (p < 0.05) with values of
R = −0.391, R = −0.407 and R = −0.453 for p1_freq_1, p2_freq_1, and p3_freq_1, respectively
(Figure 4d,e). However, at Gibbs, contrary to the observation at Bowen, all frequency
variables derived from pipeline three, with the exception of frequency 2, also had significant
correlations with pod weight at p < 0.05 and R between −0.449 and −0.405 (Table 5).

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Correlation between pod weight and GPR variables extracted from frequency 1 using
pipeline 1 (a), pipeline 2 (b), pipeline 3 (c), at Bowen and pipeline 1 (d), pipeline 2 (e), pipeline 3 (f),
at Gibbs.
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The ranking capacity of the variables with significant correlations were evaluated
by comparing their ability to rank the top and bottom ten genotypes in comparison to
manual pod weight (Figure 5 and Table S8). For Bowen, frequency one of all three pipelines
captured five of the top genotypes while pipeline one and two captured six of the bottom
genotypes and pipeline three captured five of the bottom genotypes. Among the top
genotypes detected by all pipelines were the cultivated checks, Florunner (ranked first)
and Tifguard (ranked third), as well as CSSL 84 (ranked second). CSSL 111 was ranked
seventh by pipelines one and two, and eleventh by pipeline three, while CSSL 100 had an
intermediate rank for all pipelines. Curiously, the lowest-performing CSSL 55 was ranked
among the top ten at rank four for all pipelines. At Gibbs, frequency one of pipelines one
and two captured four of the top genotypes, while pipeline three captured five. For the
bottom ranks, frequency one of pipelines one and two captured five, and pipeline three
captured seven of the bottom genotypes. The rest of the frequencies of pipeline three that
had significant correlations performed marginally worse than frequency one, capturing
four of the top genotypes (except frequency seven, which captured five) and three of the
bottom genotypes (except frequency four, which captured two). This indicated that, similar
to Bowen, the first frequency is sufficient for detecting pod weight. All three pipelines
ranked among the top for the cultivated check Tifguard (ranked first by pipelines one and
two, and seventh by pipeline 3), CSSL 100 (ranked second by all three pipelines), and CSSL
84 (ranked third by pipeline one and two and five by pipeline 3), while CSSL 111 had an
intermediate rank.

(a) 

Figure 5. Cont.
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(b) 

Figure 5. Comparison of the ability of the GPR variables to rank the lines relative to pod weight at
Bowen (a) and Gibbs (b). Levels above the blue dashed line highlight lines ranked among the top 10
by pod weight, while levels below the red dashed line highlight lines ranked among the bottom 10 by
pod weight.

4. Discussion

Since the cultivated background of the population, Fleur 11, is a Spanish variety
predominantly grown in West Africa, there was little expectation that the CSSLs would
have agronomic performance similar to those of runner varieties that are highly adaptable
in Georgia. The genotypes Tifguard and Florunner were used as adapted runner-type
checks. Tifguard is a high-yield cultivar with field resistance to TSWV [66], while Florunner
is high-yielding but susceptible to TSWV [67,68]. Both genotypes are susceptible to early
and late leaf spot. TSWV causes spotted wilt disease in peanut and was first reported in
the US in 1974 [69]. The virus is transmitted by thrips and leads to drastic losses of yield on
infected peanut plants [70,71]. In the 1980s and 1990s, severe epidemics that resulted in
yield losses of up to USD 40 million were reported in Georgia alone by Bertrand [72], cited
in Srinivasan et al. [73]. The use of insecticides to control thrips does not provide sufficient
protection against TSWV [74]. This means that the primary strategy for combating the
disease is by using cultivars with genetic resistance. Examples of released TSWV-resistant
cultivars include Southern Runner [75], Georgia Green [76], Georgia-06G [77], Tifguard [66],
and Georgia-09B [78].

Of equally devastating consequences to peanut production are leaf spot diseases.
These are classified into early leaf spot, caused by Passalora arachidicola (Hori) U. Braun
(syn. Cercospora arachidicola) and late leaf spot, caused by Nothopassalora personata (Berk. &
M.A. Curtis) U. Braun, C. Nakash., Videira & Crous (syn. Cercosporidium personatum) [79].
The two are distinguishable by the color and location of the lesions that they form. ELS
typically forms brown lesions on the adaxial (upper) side of the leaves, while LLS forms
black lesions on the abaxial (under) side of the leaves [79]. While the diseases can co-occur
in the field, the onset of ELS is usually earlier in the season, while for LLS, it is later
in the season [80,81]. Management of both diseases is primarily by the costly, regular
application of fungicides [82,83]. As with TSWV, sources of genetic resistance for both
leaf spots are available, which when used in combination with optimum management
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practices lead to reduced costs and losses. Georganic is a cultivar with resistance to leaf
spot. Georganic and Tifrunner, both of which were derived from PI 203396, also have
resistance to TSWV [84,85]. The most widely utilized source of genetic resistance to leaf
spot was from the wild diploid Arachis cardenasii, that was introduced into A. hypogaea
via the hexaploid route to interspecific hybridization [86]. From these introgression lines,
GP-NC WS 16, which is resistant to multiple diseases such as ELS, Cylindrocladium black
rot (CBR), Sclerotinia blight (SB), and TSWV, was developed [87]. This line has been used
as the source of resistance to several populations, including the peanut nested association
mapping (NAM) population [88]. Other leaf spot-resistant cultivars derived from the A.
cardenasii resistance source are the Indian cultivars ICGV 87165 [89] and GPBD 4 [9,90], as
well as the Brazilian cultivar IAC Sempre Verde [91].

4.1. Performance of the CSSLs under TSWV and Leaf Spot Pressure

The occurrence of both TSWV and leaf spot diseases provided the opportunity to
evaluate the CSSL population for the diseases. CSSL 100, CSSL 84, CSSL 15, and CSSL 111
had superior performance relative to Fleur 11 and the rest of the CSSLs. This indicated that
wild chromosome segments conferred some level of disease protection for these lines. Their
performance was comparable to that of the resistant check Tifguard. Paradoxically, this
good performance was also comparable to that of the notoriously susceptible Florunner.
However, qualitative assays of the root tips of the resistant CSSLs and Fleur 11 using
immunostrips confirmed that the absence of typical canopy chlorosis was due to the
absence of TSWV in the resistant lines [69]. The CSSLs, being Spanish varieties, have a
short growing cycle of fewer than 120 days, in contrast to the runner checks that mature at
140 days. With more days of observation, the contrast between the two runner checks and
CSSLs may have been more apparent, though the possibility of reduced disease pressure
in the year of study cannot be ruled out. However, for these CSSLs, the combination of
disease resistance and shorter growing cycle were sufficient to provide adequate protection
against TSWV in the Georgia growing environment.

At the time of rating, both early and late leaf spot were observed in the field, with
ELS being predominant. As such, the leaf spot rating did not distinguish between the two
diseases. The same four lines were superior to Fleur 11 and the rest of the CSSLs, with
their performance comparable to Tifguard and Florunner. Under the management practices
employed, it was clear that the superior CSSLs had genetic-based suppression of leaf spot.
Previously, [A. ipaensis X A. duranensis]4X, which is the source of introgressions for the
CSSLs, was observed to have late leaf spot resistance. BC1F5 lines derived from crossing
this allotetraploid to IAC-886, a derivative of the leaf spot susceptible Florunner, were
shown to have resistance to LLS [92,93]. Our results suggest that, indeed, wild derived
introgressions may have conferred some level of leaf spot resistance to these lines.

4.2. Evaluation of TSWV and Leaf Spot using Vegetative Indices

Strong correlations were observed between disease scores and various image-based
vegetative indices. Among the RGB indices, VARI and GRV, which were derived from
mid-season ratings, were able to accurately estimate TSWV and leaf spot disease at the end
of the season. VARI was designed to remotely estimate the vegetation fraction of canopies
with less sensitivity to differences in atmospheric conditions [54]. The index is closely
associated with the leaf pigment components, chlorophyll, and carotenoids [94]. It has
been used to study green biomass in maize [95], to discriminate between water stress and
nitrogen stress in maize [96], and in harvest date optimization in soybean [97]. The GRV
index was a modification of VARI and, thus, it had a similar performance with slightly
greater sensitivity than VARI. These indices were derived from RGB images taken by a
GoPro digital camera. Their informativeness and ability to select the best lines (Table S5)
show that, together with the availability of low-cost UAVs, they may be a convenient way
to deploy HTP for disease phenotyping by exploiting electromagnetic radiation within the
visible range.
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Multispectral indices are derived from the canopy reflectance of specific wavelengths
in the near-infrared (NIR; 750–1350 nm) as opposed to visible (350–750 nm) regions of the
electromagnetic spectrum [98]. Their informativeness is premised on the fact that healthy
vegetation absorbs visible light while strongly reflecting NIR. On the contrary, vegetation
in poor health absorbs most of the NIR (Mullan, 2012). Spectral indices take advantage of
these properties and typically depends on the maximization of differences between the red
wavelengths and NIR wavelengths to indicate plant health [98,99]. Examples include the
simplest index, known as the ratio vegetative index (RVI) [61], and the most widely used
NDVI [62]. While maintaining the same principles, other indices have been developed
by modifying parameters to increase their sensitivity to various physiological properties
of plants [100]. An example of this is the incorporation of the green channel into NDVI
to form GNDVI [59]. Another example is increasing the reflectance of leaf chlorophyll by
incorporating red edge (RE) in the index, as in the case of CIRE, which is a modification of
the simple index, RVI [61]. Examples of other modifications include adjustments to correct
for soil background in indices such as SAVI [64] and its optimized form, OSAVI [63].

Taking these relationships into consideration, it is no surprise that all the multispectral
indices we used were comparable with each other and had very strong correlations with
the manual disease ratings. Essentially, the indices were detecting the state of the canopy
health and not necessarily discriminating between the two diseases nor determining the
underlying pathophysiology. The superior CSSLs that were previously not known to have
resistance were ranked high by all the indices, showing their sufficiency in phenotyping
for this population. All the same, we considered GNDVI to be a representative index for
multispectral phenotyping of the population in this study (Figure 6).

Figure 6. Correlations of green normalized difference vegetative index (GNDVI), one of the multi-
spectral indices used with leaf spot rated at Gibbs and Bowen, and tomato spotted wilt virus TSWV,
rated at Gibbs.

The four lines with significantly superior pod weight compared to Fleur 11 showed
that introgressions from the wild could be used to improve this important economic trait.
In fact, CSSL 69 has been demonstrated to have beneficial introgressions that increase pod
and seed size and is a source for pyramiding 100-seed weight QTLs [101]. However, intro-
gressions that conferred protection from the disease were also responsible for the improved
performance. This is apparent, especially considering that CSSL 69 had significantly higher
pod weight than Fleur 11 at Gibbs, but its disease susceptibility reduced its performance
relative to the other three. At Bowen, because of the higher disease pressure, its pod weight
performance was reduced to normal. It was impressive that the pod weight of the un-
adapted CSSLs with a Spanish background were comparable to those of the high-yielding
Tifguard and Florunner. A factor that may have reduced the pod weight of the checks was
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the earlier harvest time. Hence the pod-filling process may not have been complete, leading
to reduced weight. Even with that taken into account, the performance of the CSSLs is no
less impressive. The RGB, multispectral, and CTD indices correlated strongly with pod
weight, particularly at Bowen, where the leaf spot pressure was more severe. This points
more to a relationship between plant health and pod weight rather than the ability to select
for pod weight based on the indices.

4.3. Use of GPR for Pre-Harvest Pod Weight Phenotyping

This is among the first research demonstrating the use of GPR as a peanut phenotyping
tool, and the first evaluation of peanut belowground biomass using a frequency-based
analysis. Preharvest evaluation of belowground biomass is an area of interest in peanut
research. While canopy traits are important due to the pervasiveness of a plethora of
foliar diseases, the geocarpic nature of peanut makes belowground phenotyping an area
of particular importance. So far, any subsurface evaluation of traits such as white mold,
root system architecture, and most importantly, yield and its components, has necessitated
destructive digging of the plants at the end of the season. This study implemented a
potentially revolutionary technique in studying peanut pod traits prior to harvest.

GPR technology has been used extensively as a noninvasive way to detect a coarse large
structure belowground biomass, primarily tree roots, with considerable success [102–104].
However, its application for fine biomass structure detection, which would be ideal for
agricultural research, has been limited by the fact that such structures are typically below
the detection threshold of commonly used GPR frequencies, which are typically in the
500–1500 MHz range [105–107]. Still, the technology has been applied in root phenotyp-
ing of crops such as winter wheat and energy cane, though rather than describing root
architecture, root cohort parameters such as biomass and density were studied [46,107].
An important case where it was used was the study of the root bulking rate of cassava, a
crop whose economic potential is stored belowground. In this case, GPR detection was
sufficient, with a correlation of up to 0.65 [48] and 0.79 with the ability to discriminate
between varieties [40].

Like cassava, the economic yield component of peanut is situated belowground, since
after flowering, the peanut develops a peg that grows downwards, penetrates the soil,
and elongates sideways to form the pods. Pod formation occurs in the pod zone, a region
that is approximately 4 cm below the surface and hence shallower than the root zone.
This made the choice of a GPR system with a high central frequency antenna (1800 MHz)
appropriate for this study, since higher frequencies promise higher radar resolution at
shallow depths [107]. The resultant radargrams were processed using three different
pipelines to derive quantitative data from the reflectance of GPR frequencies ranging from
1–13 GHz for association with pod weight. The features were grouped into 13 variables,
each representing a frequency band, such that variable 1 represented frequencies within
1 GHz and so on.

These variables yielded useful information that could be related to the belowground
biomass properties of the population, suggesting that GPR had potential utility for the non-
destructive preharvest HTP of peanut. Statistical analysis of the variables showed disparity
in the performance of GPR between the Gibbs and Bowen fields. This may be attributed to
the more intense disease pressure at Bowen, particularly leaf spot. This may have resulted
in severe penalties, as observed by the more intense inverse correlation between pod weight
and late-season leaf spot at Bowen than at Gibbs (R = −0.79 and R = −0.47, respectively).
Hence, the variation in GPR-detectable biomass may have been more pronounced at Bowen
than at Gibbs. It is also worth considering that the soil condition differences between the
two fields may have contributed to the difference in results. While standardization of
the GPR processing pipeline would be ideal for the automation and applicability of the
technology across different geographic sites, with respect to the current implementation,
optimization of the processing pipelines for each specific site may be required.
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For all three analysis pipelines used to derive quantitative GPR features, variable one,
corresponding to the seven frequency bands within 1 GHz was the most informative. This
was within expectation since the central frequency of the GPR system used was 1.8 GHz.
The comparable performance of the three pipelines indicated that either was sufficient
for GPR processing with only a slight bias for pipeline three. Combining the features by
calculating the area under the frequency curve for the DFTs was also an effective way to
derive variables from GPR output that could be implemented into a breeder’s analysis
protocol similar to other conventional data. Linear regression of these variables yielded
coefficients that correlated relatively well with the coefficients of manual pod weight data.
Specifically, there was a negative correlation between the GPR features based on Fourier
transform and pod weight. The amplitude of the Fourier coefficients is typically related to
greater or smaller GPR signal variability at the specified frequency. With this assumption,
the negative correlations reported in this study imply that smaller GPR signal variability is
associated with greater peanut pod weight for these frequencies. A plot with more pods
belowground may mean a greater clustering of peanut pods with less soil in between
the peanut pods and thus the smaller GPR signal variability, as opposed to a plot with
fewer pods where more soil is present between the peanut pods resulting in greater signal
variability. Since this is the first application of a frequency-based GPR analysis to peanut
pod weight assessment, our interpretations are only based on the results of this study.
Image thresholding analysis demonstrated a negative correlation to GPR features based on
the mean of the signal amplitude and positive correlations based on the standard deviation
of the signal amplitude [47].

The R values of up to −0.51 compare well with the R = 0.65 and 0.79 observed in
cassava [40,48], considering the much smaller belowground biomass characteristic of
peanut. Despite the moderate correlations, the variables gave reasonable ranking by pod
weight for the population when compared with the manual data, with the top CSSLs and
check varieties consistently featuring at the top. A sticking anomaly was the observation
of CSSL 55, which has a lower pod weight among the top genotypes based on GPR ranks,
which contributed to lowering the correlations. This may be attributed to the fact that
GPR detects reflections of electromagnetic frequencies that are converted to an image from
which the volumetric mass is estimated as pod weight. On the other hand, the manual
pod weight measures only mass. Generally, genotypes with bigger pod sizes tend to have
more pod weight mass; however, this is not always the case since other factors, such as
the number of pods per plant, pod filling, and maturity at harvest, also affect the final
pod weight. An example is CSSL 100, which generally has smaller pods but is among the
best-performing genotypes by weight. With more research towards the improvement of
GPR methods and analysis for fine biomass detection, it is conceivable that belowground
HTP will be adopted with higher frequency in peanut research.

5. Conclusions

The findings of this study highlight novel phenomic approaches by which the peanut
breeding pipeline can maintain and improve its current state. Examination of the CSSL
population shows that alleles from peanut wild relatives can confer agronomically beneficial
traits to the cultivated. The use of both aerial and belowground phenomic techniques
has the potential to radically transform the peanut breeding pipeline by increasing the
speed and precision of phenotype data acquisition. These techniques will facilitate the
identification and speedy release of novel and better-adapted peanut varieties, hence
improving the process of peanut breeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13051223/s1. Table S1: GPR DFT raw data based
on pipeline 1 for all plots; Table S2: GPR DFT raw data based on pipeline 2 for all plots; Table S3:
GPR DFT raw data based on pipeline 3 for all plots; Table S4: Summary analysis of interactions
between samples and field for manually collected data and spectral indices; Table S5: Ranking of the
chromosome segment substitution lines (CSSLs) based on Green Normalized Difference Vegetation
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Index (GNDVI), Visible Atmospherically Resistant Index (VARI), and Green Vegetation Index-R
(GRV). The indices generally rank the lines similarly to the manual data, showing their capacity for
selection in this population; Table S6: The effects of introgressions on the traits that were manually
collected. Lines with significant introgression effects are presented. For TSWV late season, CSSL 10,
CSSL 84, and CSSL 111, which are not statistically significant, are highlighted because of their high
numeric effects. The introgression effects were calculated as percentages relative to the cultivated
Fleur 11; Table S7: Summary statistics of all GPR variables; Table S8: Comparison of CSSL ranking
ability between manual pod weight data and GPR variables that showed significant correlations with
pod weight at Bowen and Gibbs. The CSSLs are ranked based on pod weight performance. The
ranking by the GPR variables is indicated in the respective columns for each variable. Green font
indicates the top 10 CSSLs as ranked by pod weight, while purple font indicates the bottom 10 CSSLs
as ranked by pod weight.

Author Contributions: Conceptualization, D.G. and P.O.-A.; methodology, D.G., Y.C., W.P. and B.T.;
software, H.R.-G., I.D. and D.H.; formal analysis, D.G., I.D. and H.R.-G.; resources, C.C.H., D.F., W.P.,
D.H. and P.O.-A.; data curation, D.G. and I.D.; original draft preparation, D.G.; supervision, P.O.-A.;
funding acquisition, P.O.-A. and D.H. All authors have read and agreed to the published version of
the manuscript.

Funding: The project was funded by the USAID Feed the Future Innovation Lab for Peanut and the
NSF BREAD PHENO: High Throughput Phenotyping Early Stage Root Bulking in Cassava using
Ground Penetrating Radar.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Jason Golden, Shannon Atkinson, Betty Tyler,
and Kathy Marchant for their technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fonceka, D.; Tossim, H.-A.; Rivallan, R.; Vignes, H.; Lacut, E.; de Bellis, F.; Faye, I.; Ndoye, O.; Leal-Bertioli, S.C.M.; Valls, J.F.M.;
et al. Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL
mapping for plant morphology. PLoS ONE 2012, 7, e48642. [CrossRef] [PubMed]

2. Seijo, J.G.; Lavia, G.I.; Fernández, A.; Krapovickas, A.; Ducasse, D.; Moscone, E.A. Physical mapping of the 5S and 18S-25S rRNA
genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae).
Am. J. Bot. 2004, 91, 1294–1303. [CrossRef] [PubMed]

3. Moretzsohn, M.C.; Gouvea, E.G.; Inglis, P.W.; Leal-Bertioli, S.C.M.; Valls, J.F.M.; Bertioli, D.J. A study of the relationships of
cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers.
Ann. Bot. 2013, 111, 113–126. [CrossRef]

4. Kochert, G.; Stalker, T.; Gimenes, M.; Galgaro, L.; Lopes, C.R.; Moore, K. RFLP and cytogenetic evidence on the origin and
evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am. J. Bot. 1996, 83, 1282–1291. [CrossRef]

5. Foncéka, D.; Hodo-Abalo, T.; Rivallan, R.; Faye, I.; Sall, M.; Ndoye, O.; Fávero, A.P.; Bertioli, D.J.; Glaszmann, J.-C.; Courtois,
B.; et al. Genetic mapping of wild introgressions into cultivated peanut: A way toward enlarging the genetic basis of a recent
allotetraploid. BMC Plant Biol. 2009, 9, 103. [CrossRef]

6. Hopkins, M.S.; Casa, A.M.; Wang, T.; Mitchell, S.E.; Dean, R.E.; Kochert, G.D.; Kresovich, S. Discovery and Characterization of
Polymorphic Simple Sequence Repeats (SSRs) in Peanut. Crop Sci. 1999, 39, 1243. [CrossRef]

7. Varshney, R.K.; Mahendar, T.; Aruna, R.; Nigam, S.N.; Neelima, K.; Vadez, V.; Hoisington, D.A. High level of natural variation in
a groundnut (Arachis hypogaea L.) germplasm collection assayed by selected informative SSR markers. Plant Breed. 2009, 128,
486–494. [CrossRef]

8. Stalker, H.T.; Tallury, S.P.; Ozias-Akins, P.; Bertioli, D.; Bertioli, S.C.L. The value of diploid peanut relatives for breeding and
genomics. Peanut Sci. 2013, 40, 70–88. [CrossRef]

9. Stalker, H.T. Utilizing wild species for peanut improvement. Crop Sci. 2017, 57, 1102–1120. [CrossRef]
10. Fávero, A.P.; Simpson, C.E.; Valls, J.F.M.; Vello, N.A. Study of the evolution of cultivated peanut through crossability studies

among Arachis ipaensis, A. duranensis, and A. hypogaea. Crop Sci. 2006, 46, 1546–1552. [CrossRef]
11. Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Gao, D.; Seijo, G.; Leal-Bertioli, S.C.M.; Ren, L.; Farmer, A.D.; Pandey,

M.K.; et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat. Genet. 2019, 51, 877–884. [CrossRef]
[PubMed]

12. Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.S.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al.
The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48,
438–446. [CrossRef]

192



Agronomy 2023, 13, 1223

13. Clevenger, J.; Chu, Y.; Chavarro, C.; Agarwal, G.; Bertioli, D.J.; Leal-Bertioli, S.C.M.; Pandey, M.K.; Vaughn, J.; Abernathy, B.;
Barkley, N.A.; et al. Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in Peanut. Mol.
Plant 2017, 10, 309–322. [CrossRef] [PubMed]

14. Pandey, M.K.; Agarwal, G.; Kale, S.M.; Clevenger, J.; Nayak, S.N.; Sriswathi, M.; Chitikineni, A.; Chavarro, C.; Chen, X.;
Upadhyaya, H.D.; et al. Development and evaluation of a high density genotyping “Axiom-Arachis” Array with 58 K SNPs for
accelerating genetics and breeding in groundnut. Sci. Rep. 2017, 7, 40577. [CrossRef] [PubMed]

15. Clevenger, J.P.; Korani, W.; Ozias-Akins, P.; Jackson, S. Haplotype-based genotyping in polyploids. Front. Plant Sci. 2018, 9, 564.
[CrossRef]

16. Korani, W.; Clevenger, J.P.; Chu, Y.; Ozias-Akins, P. Machine learning as an effective method for identifying true single nucleotide
polymorphisms in polyploid plants. Plant Genome 2019, 12, 180023. [CrossRef]

17. Clevenger, J.; Chu, Y.; Scheffler, B.; Ozias-Akins, P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front.
Plant Sci. 2016, 7, 1–18. [CrossRef]

18. Ozias-akins, P.; Cannon, E.K.S.; Cannon, S.B. Genomic Resources for Peanut Improvement. In The Peanut Genome; Compendium of
Plant Genomes Book Series; Varshney, R., Pandey, M., Puppala, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 69–91.
[CrossRef]

19. Ozias-Akins, P. The orphan legume genome whose time has come: Symposium highlights from the american peanut research
education society annual meeting. Peanut Sci. 2013, 40, 66–69. [CrossRef]

20. Svensgaard, J.; Roitsch, T.; Christensen, S. Development of a mobile multispectral imaging platform for precise field phenotyping.
Agronomy 2014, 4, 322–336. [CrossRef]

21. De Witt, C. On Competition; 66.8.; Versl.; Landbouwk Underz: Wagenigen, The Netherlands, 1960.
22. Furbank, R.T.; Tester, M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644.

[CrossRef]
23. Chen, D.; Neumann, K.; Friedel, S.; Kilian, B.; Chen, M.; Altmann, T.; Klukas, C. Dissecting the phenotypic components of crop

plant growthand drought responses based on high-throughput image analysis w open. Plant Cell 2014, 26, 4636–4655. [CrossRef]
[PubMed]

24. Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [CrossRef] [PubMed]
25. Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal dynamics of maize plant growth, water use, and leaf water content using

automated high throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 625–632. [CrossRef]
26. Olson, D.; Anderson, J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in

agriculture. Agron. J. 2021, 113, 971–992. [CrossRef]
27. Cheng, Q.; Xu, H.; Fei, S.; Li, Z.; Chen, Z. Estimation of maize LAI using ensemble learning and UAV multispectral imagery

under different water and fertilizer treatments. Agriculture 2022, 12, 1267. [CrossRef]
28. Rodene, E.; Xu, G.; Delen, S.P.; Zhao, X.; Smith, C.; Ge, Y.; Schnable, J.; Yang, J. A UAV-based high-throughput phenotyping

approach to assess time-series nitrogen responses and identify trait-associated genetic components in maize. Plant Phenome J.
2022, 5, e20030. [CrossRef]

29. Jiang, R.; Sanchez-Azofeifa, A.; Laakso, K.; Wang, P.; Xu, Y.; Zhou, Z.; Luo, X.; Lan, Y.; Zhao, G.; Chen, X. UAV-based partially
sampling system for rapid NDVI mapping in the evaluation of rice nitrogen use efficiency. J. Clean. Prod. 2021, 289, 125705.
[CrossRef]

30. Jin, H.; Köppl, C.J.; Fischer, B.M.C.; Rojas-Conejo, J.; Johnson, M.S.; Morillas, L.; Lyon, S.W.; Durán-Quesada, A.M.; Suárez-Serrano,
A.; Manzoni, S.; et al. Drone-based hyperspectral and thermal imagery for quantifying upland rice productivity and water use
efficiency after biochar application. Remote Sens. 2021, 13, 1866. [CrossRef]

31. Alabi, T.R.; Abebe, A.T.; Chigeza, G.; Fowobaje, K.R. Estimation of soybean grain yield from multispectral high-resolution UAV
data with machine learning models in West Africa. Remote Sens. Appl. Soc. Environ. 2022, 27, 100782. [CrossRef]

32. Marston, Z.P.D.; Cira, T.M.; Hodgson, E.W.; Knight, J.F.; MacRae, I.V.; Koch, R.L.; Rondon, S. Detection of stress induced by
soybean aphid (Hemiptera: Aphididae) using multispectral imagery from unmanned aerial vehicles. J. Econ. Entomol. 2020, 113,
779–786. [CrossRef]

33. Balota, M.; Oakes, J. Exploratory use of a UAV platform for variety selection in peanut. In Autonomous Air and Ground Sensing
Systems for Agricultural Optimization and Phenotyping; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series; International Society for Optics and Photonics: Washington, DC, USA, 2016; Volume 9866, p. 98660F. [CrossRef]

34. Balota, M.; Oakes, J. UAV remote sensing for phenotyping drought tolerance in peanuts. In Autonomous Air and Ground Sensing
Systems for Agricultural Optimization and Phenotyping II; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series; International Society for Optics and Photonics: Washington, DC, USA, 2017; Volume 10218, p. 102180C. [CrossRef]

35. Abd-El Monsef, H.; Smith, S.E.; Rowland, D.L.; Abd El Rasol, N. Using multispectral imagery to extract a pure spectral canopy
signature for predicting peanut maturity. Comput. Electron. Agric. 2019, 162, 561–572. [CrossRef]

36. Patrick, A.; Pelham, S.; Culbreath, A.; Corely Holbrook, C.; De Godoy, I.J.; Li, C. High throughput phenotyping of tomato spot
wilt disease in peanuts using unmanned aerial systems and multispectral imaging. IEEE Instrum. Meas. Mag. 2017, 20, 4–12.
[CrossRef]

37. Sarkar, S.; Ramsey, A.F.; Cazenave, A.B.; Balota, M. Peanut leaf wilting estimation from RGB color indices and logistic models.
Front. Plant Sci. 2021, 12, 713. [CrossRef]

193



Agronomy 2023, 13, 1223

38. Sarkar, S.; Oakes, J.; Cazenave, A.B.; Burow, M.D.; Bennett, R.S.; Chamberlin, K.D.; Wang, N.; White, M.; Payton, P.; Mahan, J.;
et al. Evaluation of the U.S. peanut germplasm mini-core collection in the Virginia-Carolina region using traditional and new
high-throughput methods. Agronomy 2022, 12, 1945. [CrossRef]

39. Bagherian, K.; Puhl, R.B.; Bao, Y.; Zhang, Q.; Sanz-Saez, A.; Chen, C.; Dang, P. Phenotyping agronomic traits of peanuts using
UAV-based hyperspectral imaging and deep learning. In Proceedings of the ASABE 2022 Annual International Meeting, Houston,
TX, USA, 17–20 July 2022. [CrossRef]

40. Delgado, A.; Hays, D.B.; Bruton, R.K.; Ceballos, H.; Novo, A.; Boi, E.; Selvaraj, M.G. Ground penetrating radar: A case study for
estimating root bulking rate in cassava (Manihot esculenta Crantz). Plant Methods 2017, 13, 65. [CrossRef]

41. Butnor, J.R.; Doolittle, J.A.; Kress, L.; Cohen, S.; Johnsen, K.H. Use of ground-penetrating radar to study tree roots in the
southeastern United States. Tree Physiol. 2001, 21, 1269–1278. [CrossRef]

42. Butnor, J.R.; Doolittle, J.A.; Johnsen, K.H.; Samuelson, L.; Stokes, T.; Kress, L. Utility of ground-penetrating radar as a root biomass
survey tool in forest systems. Soil Sci. Soc. Am. J. 2003, 67, 1607. [CrossRef]

43. Borden, K.A.; Isaac, M.E.; Thevathasan, N.V.; Gordon, A.M.; Thomas, S.C. Estimating coarse root biomass with ground penetrating
radar in a tree-based intercropping system. Agrofor. Syst. 2014, 88, 657–669. [CrossRef]

44. Borden, K.A.; Thomas, S.C.; Isaac, M.E. Interspecific variation of tree root architecture in a temperate agroforestry system
characterized using ground-penetrating radar. Plant Soil 2017, 410, 323–334. [CrossRef]

45. Borden, K.A.; Anglaaere, L.C.N.; Adu-Bredu, S.; Isaac, M.E. Root biomass variation of cocoa and implications for carbon stocks in
agroforestry systems. Agrofor. Syst. 2019, 93, 369–381. [CrossRef]

46. Liu, X.; Dong, X.; Xue, Q.; Leskovar, D.I.; Jifon, J.; Butnor, J.R.; Marek, T. Ground penetrating radar (GPR) detects fine roots of
agricultural crops in the field. Plant Soil 2018, 423, 517–531. [CrossRef]

47. Dobreva, I.D.; Ruiz-Guzman, H.A.; Barrios-Perez, I.; Adams, T.; Teare, B.L.; Payton, P.; Everett, M.E.; Burow, M.D.; Hays, D.B.
Thresholding analysis and feature extraction from 3D ground penetrating radar data for noninvasive assessment of peanut yield.
Remote Sens. 2021, 13, 1896. [CrossRef]

48. Agbona, A.; Teare, B.; Ruiz-Guzman, H.; Dobreva, I.D.; Everett, M.E.; Adams, T.; Montesinos-Lopez, O.A.; Kulakow, P.A.; Hays,
D.B. Prediction of root biomass in cassava based on ground penetrating radar phenomics. Remote Sens. 2021, 13, 4908. [CrossRef]

49. Simpson, C.E. Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci. 1991, 18, 22–26. [CrossRef]
50. ESRI. ArcGIS Desktop; Environmental Systems Research Institute: Redlands, CA, USA, 2011.
51. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2021.
52. Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017,

82, 1–26. [CrossRef]
53. Dunnett, C.W. A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 1955, 50,

1096–1121. [CrossRef]
54. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens.

Environ. 2002, 80, 76–87. [CrossRef]
55. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.

[CrossRef]
56. Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing

impacts on wheat. Geocarto Int. 2001, 16, 65–70. [CrossRef]
57. Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops.

Geophys. Res. Lett. 2005, 32. [CrossRef]
58. Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Rem. S 1977, 43,

1541–1552.
59. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS.

Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]
60. Sripada, R.P.; Heiniger, R.W.; White, J.G.; Weisz, R. Aerial color infrared photography for determining late-season nitrogen

requirements in corn. Agron. J. 2005, 97, 1443–1451. [CrossRef]
61. Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [CrossRef]
62. Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with erts. NASA Spec

Publ. 1974, 351, 309–317.
63. Baret, F.; Jacquemoud, S.; Hanocq, J.F. The soil line concept in remote sensing. Remote Sens. Rev. 1993, 7, 65–82. [CrossRef]
64. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
65. Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for

estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [CrossRef]
66. Holbrook, C.C.; Timper, P.; Culbreath, A.K.; Kvien, C.K. Registration of ‘Tifguard’ Peanut. J. Plant Regist. 2008, 2, 92. [CrossRef]
67. Anderson, W.F.; Holbrook, C.C.; Culbreath, A.K. Screening the peanut core collection for resistance to tomato spotted wilt virus.

Peanut Sci. 1996, 23, 57–61. [CrossRef]
68. Knauft, D.A.; Gorbet, D.W. Genetic diversity among peanut cultivars. Crop Sci. 1989, 29, 1417. [CrossRef]

194



Agronomy 2023, 13, 1223

69. Culbreath, A.K.; Todd, J.W.; Brown, S.L. Epidemiology and management of tomato spotted wilt in peanut. Annu. Rev. Phytopathol.
2003, 41, 53–75. [CrossRef] [PubMed]

70. Culbreath, A.K.; Todd, J.W.; Demski, J.W. Productivity of florunner peanut infected with tomato spotted wilt virus. Peanut Sci.
1992, 19, 11–14. [CrossRef]

71. Culbreath, A.K.; Todd, J.W.; Gorbet, D.W.; Brown, S.L.; Baldwin, J.; Pappu, H.R.; Shokes, F.M. Reaction of peanut cultivars to
spotted wilt. Peanut Sci. 2000, 27, 35–39. [CrossRef]

72. Bertrand, P.F. 1997 Georgia plant disease loss estimates. Univ. Ga. Coop. Ext. Pub. Pathol. 1998, 81, 98–107.
73. Srinivasan, R.; Abney, M.R.; Culbreath, A.K.; Kemerait, R.C.; Tubbs, R.S.; Monfort, W.S.; Pappu, H.R. Three decades of managing

Tomato spotted wilt virus in peanut in southeastern United States. Virus Res. 2017, 106, 203–212. [CrossRef] [PubMed]
74. Todd, J.W.; Culbreath, A.K.; Brown, S.L. Dynamics of vector populations and progress of spotted wilt disease relative to insecticide

use in peanuts. Acta Hortic. 1996, 431, 483–490. [CrossRef]
75. Gorbet, D.W.; Norden, A.J.; Shokes, F.M.; Knauft, D.A. Registration of ‘Southern Runner’ peanut. Crop Sci. 1987, 27, 817.

[CrossRef]
76. Branch, W.D. Registration of ‘Georgia Green’ peanut. Crop Sci. 1996, 36, 806. [CrossRef]
77. Branch, W.D. Registration of ‘Georgia-06G’ peanut. J. Plant Regist. 2007, 1, 120. [CrossRef]
78. Branch, W.D. Registration of “Georgia-09B” peanut. J. Plant Regist. 2010, 4, 175–178. [CrossRef]
79. Smith, H.D.; Littrell, H.R. Management of peanut foliar diseases with fungicides. Am. Phytopathol. Soc. 1980, 64, 356–361.
80. Chu, Y.; Holbrook, C.C.; Isleib, T.G.; Burow, M.; Culbreath, A.K.; Tillman, B.; Chen, J.; Clevenger, J.; Ozias-Akins, P. Phenotyping

and genotyping parents of sixteen recombinant inbred peanut populations. Peanut Sci. 2018, 45, 1–11. [CrossRef]
81. Chu, Y.; Chee, P.; Culbreath, A.; Isleib, T.G.; Holbrook, C.C.; Ozias-Akins, P. Major QTLs for resistance to early and late leaf spot

diseases are identified on chromosomes 3 and 5 in peanut (Arachis hypogaea). Front. Plant Sci. 2019, 10, 883. [CrossRef] [PubMed]
82. Woodward, J.E.; Brenneman, T.B.; Kemerait, R.C.; Smith, N.B.; Culbreath, A.K.; Stevenson, K.L. Use of resistant cultivars

and reduced fungicide programs to manage peanut diseases in irrigated and nonirrigated fields. Plant Dis. 2008, 92, 896–902.
[CrossRef]

83. Woodward, J.E.; Brenneman, T.B.; Kemerait, R.C.; Culbreath, A.K.; Smith, N.B. Management of peanut diseases with reduced
input fungicide programs in fields with varying levels of disease risk. Crop Prot. 2010, 29, 222–229. [CrossRef]

84. Holbrook, C.C.; Culbreath, A.K. Registration of “Tifrunner” peanut. J. Plant Regist. 2007, 1, 124. [CrossRef]
85. Holbrook, C.C.; Culbreath, A.K. Registration of “Georganic” Peanut. J. Plant Regist. 2008, 2, 10–3198. [CrossRef]
86. Company, M.; Stalker, H.T.; Wynne, J.C. Cytology and leafspot resistance in Arachis hypogaea x wild species hybrids. Euphytica

1982, 31, 885–893. [CrossRef]
87. Tallury, S.P.; Isleib, T.G.; Copeland, S.C.; Rosas-Anderson, P.; Balota, M.; Singh, D.; Stalker, H.T. Registration of two multiple

disease-resistant peanut germplasm lines derived from Arachis cardenasii Krapov. & W.C. Gregory, GKP 10017. J. Plant Regist.
2014, 8, 86–89. [CrossRef]

88. Holbrook, C.C.; Isleib, T.G.; Ozias-Akins, P.; Chu, Y.; Knapp, S.J.; Tillman, B.; Guo, B.; Gill, R.; Burow, M.D. Development and
phenotyping of recombinant inbred line (RIL) populations for peanut (Arachis hypogaea). Peanut Sci. 2013, 40, 89–94. [CrossRef]

89. Moss, J.P.; Singh, A.K.; Reddy, L.J.; Nigam, S.N.; Subrahmanyam, P.; McDonald, D.; Reddy, A.G.S. Registration of ICGV 87165
peanut germplasm line with multiple resistance. Crop Sci. 1997, 37, 1028. [CrossRef]

90. Gowda, M.; Motagi, B.; Naidu, G.; Diddimani, S.; Sheshagiri, R. GPBD 4: A spanish bunch groundnut genotype resistant to rust
and late leaf spot. Int. Arachis Newsl. 2002, 22, 29–32.

91. Godoy, I.J.; Santos, J.F.; De Carvalho Moretzsohn, M.; Rocha, A.; Moraes, A.; Michelotto, M.D.; Bolonhezi, D.; Nakayama, F.;
Soares De Freitas, R.; Bertioli, D.J.; et al. ‘IAC SEMPRE VERDE’: A wild-derived peanut cultivar highly resistant to foliar diseases.
Crop Breed. Appl. Biotechnol. 2022, 22, e41252232. [CrossRef]

92. Leal-Bertioli, S.C.M.; Godoy, I.J.; Santos, J.F.; Doyle, J.J.; Guimarães, P.M.; Abernathy, B.L.; Jackson, S.A.; Moretzsohn, M.C.;
Bertioli, D.J. Segmental allopolyploidy in action: Increasing diversity through polyploid hybridization and homoeologous
recombination. Am. J. Bot. 2018, 105, 1053–1066. [CrossRef] [PubMed]

93. Bertioli, D.J.; Seijo, G.; Freitas, F.O.; Valls, J.F.M.; Leal-Bertioli, S.C.M.; Moretzsohn, M.C. An overview of peanut and its wild
relatives. Plant Genet. Resour. Characterisation Util. 2011, 9, 134–149. [CrossRef]

94. Galvão, L.S.; Roberts, D.A.; Formaggio, A.R.; Numata, I.; Breunig, F.M. View angle effects on the discrimination of soybean
varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion data. Remote Sens. Environ. 2009,
113, 846–856. [CrossRef]

95. Sakamoto, T.; Gitelson, A.A.; Wardlow, B.D.; Arkebauer, T.J.; Verma, S.B.; Suyker, A.E.; Shibayama, M. Application of day and
night digital photographs for estimating maize biophysical characteristics. Precis. Agric. 2012, 13, 285–301. [CrossRef]

96. Perry, E.M.; Roberts, D.A. Sensitivity of narrow-band and broad-band indices for assessing nitrogen availability and water stress
in an annual crop. Agron. J. 2008, 100, 1211–1219. [CrossRef]

97. Meng, J.; Xu, J.; You, X. Optimizing soybean harvest date using HJ-1 satellite imagery. Precis. Agric. 2015, 16, 164–179. [CrossRef]
98. Mullan, D. Spectral radiometry. In Physiological Breeding: Interdisciplinary Approaches to Improve Crop Adaptation; Reynolds, M.,

Pask, A., Mullan, D., Eds.; CIMMYT: Batan, Mexico, 2012; pp. 69–80.
99. Araus, J.; Casadesus, J.; Bort, J. Recent tools for the screening of physiological traits determining yield. In Application of Physiology

in Wheat Breeding; Reynolds, M., Ortiz-Monasterio, J., McNab, A., Eds.; CIMMYT: Batan, Mexico, 2001; pp. 59–77.

195



Agronomy 2023, 13, 1223

100. Zarco-Tejada, P.J.; Morales, A.; Testi, L.; Villalobos, F.J. Spatio-temporal patterns of chlorophyll fluorescence and physiological
and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance.
Remote Sens. Environ. 2013, 133, 102–115. [CrossRef]

101. Tossim, H.A.; Nguepjop, J.R.; Diatta, C.; Sambou, A.; Seye, M.; Sane, D.; Rami, J.F.; Fonceka, D. Assessment of 16 peanut (Arachis
hypogaea L.) CSSLs derived from an interspecific cross for yield and yield component traits: QTL validation. Agronomy 2020, 10,
583. [CrossRef]

102. Guo, L.; Chen, J.; Cui, X.; Fan, B.; Lin, H. Application of ground penetrating radar for coarse root detection and quantification: A
review. Plant Soil 2013, 362, 1–23. [CrossRef]

103. Butnor, J.R.; Samuelson, L.J.; Stokes, T.A.; Johnsen, K.H.; Anderson, P.H.; González-Benecke, C.A. Surface-based GPR underesti-
mates below-stump root biomass. Plant Soil 2016, 402, 47–62. [CrossRef]

104. Yeung, S.W.; Yan, W.M.; Hau, C.H.B. Performance of ground penetrating radar in root detection and its application in root
diameter estimation under controlled conditions. Sci. China Earth Sci. 2015, 59, 145–155. [CrossRef]

105. Hirano, Y.; Dannoura, M.; Aono, K.; Igarashi, T.; Ishii, M.; Yamase, K.; Makita, N.; Kanazawa, Y. Limiting factors in the detection
of tree roots using ground-penetrating radar. Plant Soil 2008, 319, 15–24. [CrossRef]

106. Pauli, D.; Chapman, S.C.; Bart, R.; Topp, C.N.; Lawrence-Dill, C.J.; Poland, J.; Gore, M.A. The quest for understanding phenotypic
variation via integrated approaches in the field environment. Plant Physiol. 2016, 172, 622–634. [CrossRef]

107. Liu, X.; Dong, X.; Leskovar, D.I. Ground penetrating radar for underground sensing in agriculture: A review. Int. Agrophys. 2016,
30, 533–543. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

196



MDPI
Grosspeteranlage 5

4052 Basel
Switzerland

www.mdpi.com

Agronomy Editorial Office
E-mail: agronomy@mdpi.com

www.mdpi.com/journal/agronomy

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-1493-0


