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sensors

Editorial

Data, Signal and Image Processing and Applications in
Sensors II

Manuel J. C. S. Reis 1,2

1 Engineering Department, University of Trás-os-Montes e Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
mcabral@utad.pt

2 Institute of Electronics and Informatics Engineering of Aveiro (IEETA), 3810-193 Aveiro, Portugal

A vast and ever-growing amount of data in various domains and modalities is readily
available, being the rapid advance of sensor technology one of its main contributor. However,
presenting raw signal data collected directly from sensors is sometimes inappropriate, due
to the presence of, for example, noise or distortion, among others. In order to obtain relevant
and insightful metrics from sensors signals’ data, further enhancement of the sensor signals
acquired, such as the noise reduction in the one-dimensional electroencephalographic (EEG)
signals or colour correction in the endoscopic images, and their analysis by computer-based
medical systems, is needed. The processing of the data in itself and the consequent extraction
of useful information are also vital and included in the topics of this Special Issue, being
this an extension of the first special issue on this subject (https://www.mdpi.com/journal/
sensors/special_issues/signal_sensors, accessed on 15 March 2024).

This second edition of this SI of Sensors aims to showcase progress in the advancement,
assessment, and implementation of algorithms and methodologies for processing data,
signals, and images across diverse sensor types and sensing approaches. Both empirical
and theoretical findings, along with review articles, were taken into account.

The quantity of manuscripts submitted directly indicates the significant interest in this
topic within the research community, with a total of 42 manuscripts received. Among these,
27 papers of high quality were accepted and published, while 15 papers were rejected. As
customary, the Sensors journal upheld its standards by subjecting all submitted manuscripts
to a thorough peer-review process.

In the forthcoming presentation, I will utilize the exact wording of the authors to
effectively convey the contributions of each paper, as well as trying to provide the readers
with a summary of each paper.

Pires et al., in contribution 1, discuss medicine’s evolution towards personalized
care, focusing on cardiovascular diseases. They propose an AI-based system to empower
patients via continuous monitoring and personalized treatment. The system aims to realize
5P (Predictive, Preventive, Participatory, Personalized, and Precision) medicine principles
using data from wearables and smart devices. Key features include learning algorithms for
data analysis, event prediction, alarm generation, and healthy behaviour promotion. It aims
to boost patient engagement and contact with healthcare professionals. Cardiovascular
diseases are highlighted as major causes of disability and death, emphasizing proactive
management. Computational intelligence and device data integration enable efficient
healthcare management, representing a comprehensive approach to disease management.
It is positioned to enhance patient well-being and promote global public health.

Hao et al., in contribution 2, introduced a spectrum correction algorithm, decompo-
sition filtering-based dual-window correction (DFBDWC), for improving target distance
accuracy in frequency modulated continuous wave (FMCW) laser ranging. Traditional
methods face challenges from white Gaussian noise (WGN), spectrum leakage, and the
picket fence effect, yielding unsatisfactory results. DFBDWC employs decomposition fil-
tering and a dual-window approach to effectively mitigate these issues. Experimental
validation demonstrates its superior performance compared to traditional methods discrete

Sensors 2024, 24, 2555. https://doi.org/10.3390/s24082555 https://www.mdpi.com/journal/sensors1
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Fourier transform algorithm, phase demodulation, enhanced cross-correlation, Ratio, Chirp
Z-transform, and enhanced cross-correlation algorithm. DFBDWC significantly reduces the
maximum error from 0.7937 m to 0.0407 m, improving accuracy and frequency resolution
while minimizing the impact of noise and spectrum leakage. Accurate WGN estimation
and effective filtering contribute to its success. Moreover, a double Hann window reduces
spectrum leakage, while utilizing two main spectral lines enhances overall performance.

Gerasimova et al., in contribution 3, propose a novel memristive interface composed
of two FitzHugh–Nagumo electronic neurons connected via a metal–oxide memristive
synaptic device. A hardware–software complex based on a commercial data acquisition
system is developed to record signals from a presynaptic neuron and transmit them to
a postsynaptic neuron through the memristive device. Both numerical simulations and
experiments demonstrate complex dynamics, including chaos and various types of neural
synchronization. The system offers simplicity and real-time performance, with the ampli-
tude of the presynaptic signal leading to potentiation of the memristive device and adaptive
modulation of the postsynaptic neuron output. Due to its stochastic nature, the memris-
tive interface simulates real synaptic connections, holding promise for neuro-prosthetic
applications. The authors investigate the dynamics of two coupled FitzHugh–Nagumo
neuron generators through a metal–oxide memristive device, showcasing stochastic plas-
ticity and various synchronous regimes. The relative compactness and high sensitivity of
the proposed neuro-memristive device make it promising for applications in bio-robotics
and bioengineering.

Fiedler et al., in contribution 4, introduce Simultaneous Face and Person Detection
(SFPD), aiming for real-time detection of faces and persons. Combining these tasks is es-
sential for computer vision applications like face recognition and human–robot interaction.
SFPD employs multi-task learning, addressing the lack of datasets with both annotations
algorithmically. It utilizes a joint convolutional neural network backbone with shared
feature maps and separate detection layers for each task. SFPD doesn’t need auxiliary steps
during training, such as pre-training individual network parts or additional annotations.
Evaluation shows SFPD’s effectiveness in detection performance and speed, achieving
40 frames per second. Comparative analysis demonstrates its superiority in processing
speed, detection performance, or providing both face and person detections. Overall, SFPD
offers a valuable real-time framework for various applications, especially in human–robot
interaction scenarios.

Fuentes et al., in contribution 5, tackle real-time IoT data visualization without costly
hardware. They propose an augmented reality (AR)-based solution using consumer-grade
smartphones. The system enables real-time data visualization from IoT devices via AR, with
added security. Tests confirm the solution’s effectiveness in accessing IoT data, smartphone-
device interactions, and identifying optimized AR markers. Results show the feasibility of
using smartphones for IoT device management in diverse environments. Key contributions
include an architecture for simplified AR IoT data visualization and a functional prototype
validation. Future work may explore an AR marker generator for improved performance
and usability.

Fuentes et al., in contribution 6, tackle Portugal’s aging population issues, especially
in rural areas where elders often face isolation and resource constraints. They propose an
affordable Ambient Assisted Living (AAL) system to monitor elderly activities at home,
respecting their privacy. Using low-cost IoT sensors and computer vision, the system recog-
nizes elderly activities and was successfully tested in a simulated scenario. It enables remote
caregiving, allowing independent living with assistance when needed, while ensuring
privacy. The prototype, utilizing Raspberry Pi Zero W, effectively monitors specific home
areas. Future enhancements may optimize Raspberry Pi processing, incorporate grey areas
to reduce false positives, and introduce automatic alerts for caregivers. Overall, this solution
promises to support independent living for elders, enhancing safety and well-being.

Pilyugina et al., in contribution 7, conducted a study to find effective feature extrac-
tion methods from auditory steady-state responses (ASSR) data to differentiate between
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auditory octave illusion and non-illusion groups. Various feature selection techniques,
including univariate selection, recursive feature elimination, principal component analysis,
and feature importance, were compared. Machine learning algorithms such as linear regres-
sion, random forest, and support vector machine (SVM) were employed to evaluate these
methods. The study revealed that combining univariate selection with SVM achieved the
highest accuracy of 75%, surpassing the 66.6% accuracy obtained without feature selection.
These findings provide a foundation for further research into understanding the mechanism
behind the octave illusion phenomenon and developing automatic classification algorithms
for octave illusions.

Motor imagery (MI)-based brain–computer interfaces (BCIs) are crucial for device
control via brain activity. Despite this, complex inter-communication among brain regions
during motor tasks presents challenges for isolating relevant neural patterns. To tackle
this, Awais et al., in contribution 8, utilized effective brain connectivity measures like
partial directed coherence (PDC) to capture inter-channel/region relationships during
motor imagination. Statistical analysis identified significant connectivity pairs, and four
classification algorithms (SVM, KNN, decision tree, and probabilistic neural network)
predicted MI patterns using PhysioNet EEG data. Results showed the probabilistic neural
network (PNN) classifier with PDC features achieved 98.65% accuracy, highlighting PDC’s
superiority over DTF in classification. Leveraging brain connectivity enhances neural
pattern understanding, advancing BCI applications. Future research might explore graph
theory and optimization for improved real-time BCI applications, especially for those with
motor disabilities.

Bas-Calopa et al., in contribution 9, investigate the impact of low-pressure environ-
ments and high-operating frequencies on visual corona discharges, crucial for understand-
ing arc tracking and insulation degradation in aircraft wiring systems as more electric and
all-electric aircraft become prevalent. Experimentation employs a rod-to-plane electrode
setup across pressure (20–100 kPa) and frequency (50–1000 Hz) ranges relevant to aircraft
applications. A low-cost, high-resolution CMOS imaging sensor is utilized for corona
detection, offering simplicity and sensitivity, while leakage current analysis serves as a
complementary method. Results reveal that corona extinction voltage (CEV) increases
notably with air pressure, while frequency exhibits a lesser effect, causing CEV to decrease
within certain pressure ranges. The CMOS sensor demonstrates sufficient sensitivity for
corona detection in low-pressure environments across various frequencies, offering poten-
tial for insulation system design in modern aircraft. Additionally, the study underscores
the comparable sensitivity between the CMOS sensor and leakage current analysis, with
minor discrepancies diminishing at higher frequencies.

Ebrahimi et al., in contribution 10, investigate the effectiveness of Robust Principal
Component Analysis (PCA) matrix decomposition alongside advanced methods (PCT, PPT,
and PLST) for analyzing pulsed thermography thermal data in carbon fibre-reinforced poly-
mer (CFRP) materials. Using an academic sample with artificial defects, they assess defect
detection and segmentation using CNR and similarity coefficient. Results show significant
CNR improvements with Robust PCA pre-processing, enhancing defect detectability by up
to 164%, 237%, and 80% for different defect types. Pre-processing notably improves CNR
for FBHs and POs, with enhancements ranging from 0.43% to 115.88% and from 13.48%
to 216.63%, respectively. Postprocessing enhances results for FBHs and POs by 9.62% to
296.9% and 16.98% to 92.6%, respectively. Robust PCA enhances defect detectability for
PCT, PPT, and PLST methods, surpassing PLST for 69% of defects. Pre-processing enhances
segmentation potential for all methods, with PLST showing improvements for both pre-
and post-processing. The study concludes that Robust PCA pre-processing substantially
enhances anomaly detection in pulsed thermography for CFRP materials, with implications
for NDT. Further research should extend these techniques to diverse materials for enhanced
practicality in NDT.

Jang et al., in contribution 11, presented a new method for detecting vital signals using
multiple radar systems to reduce signal degradation from body movement. By analyzing
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phase variation in continuous-wave radar signals caused by respiration and heartbeat, the
method employs two adjacent radars with different lines-of-sight to capture correlated
signals, enhancing differences in organ movement asymmetry. Operating at different
frequencies within the 5.8 GHz band and strategically positioned, the radars improve
signal-to-noise ratio during vital signal detection. Experimental results showed 97.8%
accuracy in vital signal detection, even with subjects moving at velocities up to 53.4 mm/s.
The configuration and signal processing method effectively utilize asymmetrical organ
movements, improving signal-to-noise ratio and detection accuracy, especially during body
movement. Extensive testing demonstrated noise reduction in the low-frequency range
and significant enhancements in signal-to-noise ratio and detection accuracy across various
radar angles. Overall, this method offers robust vital signal detection, even in dynamic
environments with substantial body movement.

Maddirala et al., in contribution 12, tackle the issue of eliminating eye-blink artifacts
from single-channel electroencephalogram (EEG) signals, often recorded using portable
EEG devices. These artifacts, stemming from eyelid blinking or eye movements, distort
EEG measurements, impacting brain activity interpretation. Traditional artifact removal
methods are inadequate for single-channel EEG signals, necessitating novel techniques. The
proposed approach combines singular spectrum analysis with continuous wavelet trans-
form and k-means clustering to remove eye-blink artifacts while retaining low-frequency
EEG data. Assessment on synthetic and real EEG datasets validates the method’s supe-
riority over existing techniques. Focused on pre-frontal channel EEG signals, it holds
promise for online applications employing such channels. The study highlights success-
ful artifact removal without sacrificing original EEG information, suggesting potential in
real-time EEG monitoring and classification tasks. Future research should examine the
method’s performance in classification scenarios, anticipating favourable outcomes based
on demonstrated artifact removal effectiveness.

Murtiyoso et al. in contribution 13, proposed integrating AI-based semantic segmen-
tation into photogrammetric workflows to automate semantically classified point cloud
creation. Leveraging deep learning and semantic segmentation advancements, the method
uses pretrained neural networks for automatic image masking and dense image matching.
By starting with semantic classification in the photogrammetric process, the workflow is
streamlined to generate labelled point clouds. Results demonstrate process automation
feasibility, with promising assessments for specific classes like building facades and win-
dows. Emphasizing the advantage of abundant 2D image label data for neural network
training, challenges remain in handling underrepresented classes and optimizing training
data generation. Future research should explore semantic photogrammetry in various
settings, refining training data methods for close-range photogrammetry. Overall, the study
provides a proof of concept for AI integration into photogrammetric tasks, setting the stage
for semantic photogrammetry advancement.

Mohanna et al., in contribution 14, introduced a method to tackle radar shadow ef-
fects in FMCW radars, which hinder target discrimination when one target is in another’s
shadow region. Utilizing CNNs on spectrograms from STFT analysis, the method de-
termines if a target is in another’s shadow. Achieving 92% test accuracy with a 2.86%
standard deviation, it effectively discerns scenarios with one or two targets. Using Mo-
bileNet architecture pretrained on Imagenet, the model attains high accuracy with low
parameters, suitable for real-time use. Future research should test the solution on hard-
ware like Raspberry Pi and extend it for tracking multiple moving targets in cluttered
settings. While supervised learning is effective, an unsupervised approach may be needed
for scenarios with unpredictable classes. Overall, the method offers a promising solution
for mitigating radar shadow effects in FMCW radar, with diverse target detection and
tracking applications.

Manian et al., in contribution 15, propose a semi-supervised method for labelling
and classifying hyperspectral images, addressing the challenge of acquiring ground-truth
data, which is time-consuming and resource-intensive. The method comprises two stages:
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unsupervised and supervised. In the unsupervised stage, image enhancement and clus-
tering generate ground-truth data. The supervised stage involves pre-processing, feature
extraction, and ensemble learning using various machine learning models. The ensemble
method achieves high accuracy, with gradient boosting performing the best. It’s effective
for classifying Lake Erie and Jasper hyperspectral datasets, achieving accuracy rates of
100% and 93.74%, respectively. Additionally, it efficiently detects cloud pixels and water
pollutants, useful for environmental monitoring. The choice of normalization scheme
and number of PCA bands significantly impacts model performance and efficiency. The
method runs significantly faster on cloud servers, making it practical for large-scale image
processing tasks. Overall, the semi-supervised ensemble method presents a robust solution
for hyperspectral image labelling and classification, with applications in environmental
monitoring and remote sensing.

Lee et al., in contribution 16, tackle motion blur in images captured by thermal and
photon detectors. They propose a method to synthesize blurry images from sharp ones
by analyzing thermal detector mechanisms. Their novel blur kernel rendering method
integrates motion blur models with an inertial sensor in the thermal image domain. Evalua-
tion of its accuracy is conducted through thermal image deblurring tasks using a synthetic
blurry image dataset constructed from acquired thermal images, the first to include ground-
truth images in this domain. Through qualitative and quantitative experiments, the authors
demonstrate the superiority of their method over existing techniques. In summary, the
paper analyzes differences between thermal and photon detectors, developing a novel
motion blur model for thermal images and an effective blur kernel rendering method,
validated through rigorous experimentation.

Xiang et al., in contribution 17, introduced a novel approach for multi-sensor data
fusion, crucial for information-aware systems with diverse sensory devices. Their method
integrates the cloud model and an enhanced evidence theory to handle conflicting and
ambiguous data. Quantitative data is converted into qualitative form using the cloud
model to construct basic probability assignments (BPA) for each data source’s evidence. To
resolve conflicts, similarity measures like Jousselme distance, cosine similarity, and Jaccard
coefficient are combined to assess evidence similarity, while Hellinger distance calculates
evidence credibility. Fusion is performed using Dempster’s rule. Experimental results show
superior convergence and precision, achieving up to 100% confidence in correct proposi-
tions. Applied to early indoor fire detection, the method enhances accuracy by 0.9–6.4%
and reduces false alarm rates by 0.7–10.2% compared to traditional methods, validating its
effectiveness. Overall, this strategy offers a robust solution for managing conflicting and
ambiguous data in information-aware systems, with promising applications across various
multi-sensor acquisition systems. Future research should explore its applicability across
different systems and integrate homogeneous and heterogeneous data fusion algorithms to
further enhance accuracy.

Tropea et al., in contribution 18, introduced an automatic recognition system developed
under the SILPI project, aiming to classify stones from quarries in Calabria, Southern Italy.
Their two-stage hybrid approach combines Convolutional Neural Networks (CNNs) for
feature extraction with Machine Learning (ML) for classification. Transfer Learning (TL)
is explored to enhance CNN performance, using pre-trained networks from ImageNet.
The system achieves impressive results in predicting stone classes, excelling in image
recognition tasks. While granite typologies posed challenges, the hybrid model effectively
integrates DL for feature extraction and classical ML algorithms for classification. The
ResNet50 CNN model paired with a k-Nearest Neighbors (kNN) classifier emerges as
the most promising combination, offering high accuracy, efficient CNN parameter usage,
and rapid inference times. Overall, the approach demonstrates the potential for creating
user-friendly tools applicable across various fields, including archaeometry, diagnostics,
and materials sciences, even for users lacking geological expertise.

Rogers et al., in contribution 19, assessed RF measurement accuracy using Kubios
HRV Premium software alongside consumer-grade hardware: Movesense Medical sensor
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single-channel ECG (MS ECG) and Polar H10 HR monitor. GE, RR intervals (from H10),
and continuous ECG (from MS ECG) were collected from 21 participants during cycling
exercises. Results showed strong correlations between reference GE and both H10 and
MS ECG-derived RF. Median values differed statistically but were clinically negligible for
H10 (about 1 breaths/min) and minimal for MS ECG (about 0.1 breaths/min). ECG-based
RF measurement with MS ECG exhibited reduced bias and narrower limits of agreement
than H10. The study concludes that MS ECG with Kubios HRV Premium software closely
tracked reference RF during exercise, suggesting practical utility for endurance exercise.
Additionally, the ECG-centric system outperformed RR interval-derived RF estimation,
accurately capturing RF patterns during exercise ramps. Future studies should explore
these findings across different exercise types and assess artifact and noise impact.

Benitez-Garcia et al., in contribution 20, introduced a new material translation method
using Neural Style Transfer (NST). NST traditionally relies on reference image quality,
which may not yield optimal results. To overcome this, their method incorporates auto-
matic style image retrieval, selecting the ideal reference based on semantic similarity and
distinctive material characteristics. Excluding style information during retrieval signifi-
cantly enhances synthesized results. The method combines real-time material segmentation
with NST to selectively transfer retrieved style image material to segmented object areas.
Evaluation with different NST methods shows effectiveness, validated through human
perceptual study indicating synthesized stone, wood, and metal images are perceived as
real, surpassing photographs. Applications include creating alternate reality scenarios for
users to experience environments with subtly modified objects. Future work should focus
on synthesizing more materials and developing real-time material translation applications.

Dziech et al., in contribution 21, introduced a novel data-embedding technique based
on the Periodic Haar Piecewise-Linear (PHL) transform. They explain the theoretical
basis of the PHL transform and propose a watermarking method that embeds hidden
information in the luminance channel of the original image using coefficients with low
values. The method’s effectiveness is assessed by measuring the visual quality and bit
error rate (BER) of watermarked images with different embedded information lengths.
Additionally, a method for detecting image manipulation is presented. The technique
shows promise for applications in digital signal and image processing, particularly in
scenarios requiring high imperceptibility, low BER, and robust information security, such
as medical image processing. The proposed method offers a high capacity for hidden
information while minimizing image distortion, making it suitable for multimedia systems
and services, especially in medical applications. Further research should focus on enhancing
the method’s robustness against various attacks and exploring its potential applications
across different domains.

The task of temporal action detection (TAD) in untrimmed videos is vital across
various applications, predicting temporal boundaries and action class labels within videos.
Current methods often use stacked convolutional blocks to capture long temporal structures
but struggle with redundant information between frames and varying action durations. To
tackle these issues, He et al., in contribution 22, propose a non-local temporal difference
network with three key modules: chunk convolution, multiple temporal coordination
(MTC), and temporal difference (TD). The CC module divides input sequences into chunks,
extracting features from distant frames simultaneously. The MTC module aggregates
multiscale temporal features without extra parameters, while the TD module enhances
motion and boundary features with temporal attention weights. This approach achieves
state-of-the-art results on ActivityNet-v1.3 and THUMOS-14 datasets, effectively capturing
long-range temporal structures and enhancing TAD accuracy. Discussions underscore TAD
challenges and the importance of efficient network design in modelling complex temporal
relationships while considering video characteristics like varying action durations and
information redundancy.

Conventional methods for repairing old photo damage are often slow and inefficient,
relying on manual or semi-automatic processes that involve laborious marking of damaged
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areas. Fully automatic repair methods lack control over damage detection, posing risks
to preserving historical photos. To overcome these challenges, Kuo et al. propose a deep
learning-based architecture in contribution 23 to automatically detect damaged areas in
old photos. The model accurately marks damaged regions, reducing damage marking
time to less than 0.01 s per photo. By eliminating manual marking, the method enhances
efficiency and preserves photo integrity. The use of residual dense block modules improves
detection accuracy, ensuring preservation of both damaged and undamaged areas without
distortion. Overall, this method provides a more efficient and precise approach to old
photo restoration than existing end-to-end methods.

The study by Christou et al., in contribution 24, explores the influence of window size
on EEG signal classification for diagnosing epilepsy. Automated analysis using machine
learning is essential due to the complexity of EEG waveforms and the sporadic occurrence
of epileptic characteristics. Employing various classifiers, including neural networks and
k-nearest neighbour, EEG data from the University of Bonn dataset are analyzed with
different window lengths. Results reveal that larger window sizes, approximately 21 s,
notably enhance classification accuracy across tested methods. Given epilepsy’s significant
impact, accurate and automated detection methods are crucial. The study underscores the
importance of window size in EEG signal analysis and recommends epochs of 20–21 s for
optimal classification performance.

Sebastião et al., in contribution 25 investigate pain perception by analyzing phys-
iological responses, aiming to complement self-reporting methods in pain assessment.
They recorded various physiological signals, such as ECG, EMG, EDA, and BP, during
a pain-inducing protocol. Results demonstrated significant changes in physiological pa-
rameters during painful periods compared to non-painful ones, including increased heart
rate and decreased PNS influence in ECG data, heightened muscle activity in EMG, and
increased SNS activity in EDA. A novel data collection protocol enabled comprehensive
analysis of ANS reactivity across body systems. The study highlights the importance of
deeper physiological evaluation for understanding pain effects and suggests future research
on multimodal classification for more reliable pain measurements. Limitations include
the brief recording duration, emphasizing the need for longer protocols to explore SNS
influences on the cardiovascular system further.

Wang et al., in contribution 26, introduced a denoising method tailored for partial
discharge (PD) signals in mining cables. The method employs genetic algorithm optimiza-
tion of variational mode decomposition (VMD) and wavelet thresholding to enhance the
signal-to-noise ratio (SNR) by effectively separating PD signals from interference. Initially,
the genetic algorithm optimizes VMD parameters such as the number of modal components
(K) and quadratic penalty factor (α). Subsequently, VMD decomposition generates intrinsic
mode functions (IMF), followed by wavelet threshold denoising of each IMF. The denoised
IMF are then reconstructed to obtain the cleaned PD signal. Simulation and experimental
verification confirm the method’s feasibility and efficacy, highlighting the optimized VMD
parameters’ role in enhancing denoising performance and the synergy between VMD and
wavelet thresholding for noise reduction without compromising transient processes. The
method shows superior denoising ability, especially for PD signals with lower SNR, making
it promising for PD monitoring in mining cables.

Shokouhyan et al., in contribution 27, highlight the significance of neuro-mechanical
time delays in sensorimotor control, particularly in individuals with spinal cord injuries
(SCI), impacting stabilization efficiency and system stability. Estimating these delays in SCI
patients is crucial for designing effective rehabilitation exercises and assistive technologies.
The study aims to estimate muscle onset activation in SCI individuals using four strategies
on electromyography data. Results show that the total kinetic energy operator technique
effectively reduces artifacts compared to classical filtering, while time-frequency techniques
estimate longer delays due to lower frequency movement during seated balance. These
estimated delays can inform sensory-motor control models and aid in designing tailored
exercises and technologies for SCI rehabilitation.
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As can be seen form the summaries presented above, 9 of the published works can be
classified in the field of image and multidimensional signal processing and applications,
11 in the field of signal processing and applications, and 7 in the field of data processing
and applications. Additionally, it is important to highlight the fact that 11 of these works
have direct applications in health related areas.

Last, but not least, I want to extend my personal gratitude to all the authors and
reviewers who have contributed to this Special Issue. The authors deserve recognition
for their innovative ideas and solutions, while the reviewers deserve appreciation for
dedicating their time and offering valuable improvement suggestions. Their outstanding
efforts have enabled Sensors journal to showcase novel and compelling contributions in the
realm of “Data, Signal, and Image Processing and Applications in Sensors II”. I final word
of thanks goes to the Sensors journal’s staff for their continuous support and suggestions.
Thank you to each and every one of you!
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Abstract: Neuro mechanical time delay is inevitable in the sensorimotor control of the body due to
sensory, transmission, signal processing and muscle activation delays. In essence, time delay reduces
stabilization efficiency, leading to system instability (e.g., falls). For this reason, estimation of time
delay in patients such as people living with spinal cord injury (SCI) can help therapists and biome-
chanics to design more appropriate exercise or assistive technologies in the rehabilitation procedure.
In this study, we aim to estimate the muscle onset activation in SCI people by four strategies on EMG
data. Seven complete SCI individuals participated in this study, and they maintained their stability
during seated balance after a mechanical perturbation exerting at the level of the third thoracic
vertebra between the scapulas. EMG activity of eight upper limb muscles were recorded during the
stability. Two strategies based on the simple filtering (first strategy) approach and TKEO technique
(second strategy) in the time domain and two other approaches of cepstral analysis (third strategy)
and power spectrum (fourth strategy) in the time–frequency domain were performed in order to
estimate the muscle onset. The results demonstrated that the TKEO technique could efficiently
remove the electrocardiogram (ECG) and motion artifacts compared with the simple classical filtering
approach. However, the first and second strategies failed to find muscle onset in several trials, which
shows the weakness of these two strategies. The time–frequency techniques (cepstral analysis and
power spectrum) estimated longer activation onset compared with the other two strategies in the time
domain, which we associate with lower-frequency movement in the maintaining of sitting stability.
In addition, no correlation was found for the muscle activation sequence nor for the estimated delay
value, which is most likely caused by motion redundancy and different stabilization strategies in each
participant. The estimated time delay can be used in developing a sensory motor control model of the
body. It not only can help therapists and biomechanics to understand the underlying mechanisms of
body, but also can be useful in developing assistive technologies based on their stability mechanism.

Keywords: spinal cord injury; physiological time delay; Teager–Kaiser Energy Operator;
cepstral analysis; power spectrum; EMG

1. Introduction

During human sensory motor control, different sensory information is sent to the
Central Nervous System (CNS), which processes the data and sends motor commands
to various muscles in order to maintain body stability during activities. However, this
process is affected by time delays, including the feedback delay due to neural transmission,
the motor command delay due to the information process in the CNS [1] and finally an
electromechanical time delay due to muscle activation delays [2]. Estimation of these time
delays is crucial because higher values of total delay induce stabilization performance
degradation leading to system instability [3]. On the other hand, estimating the time delay

Sensors 2023, 23, 1132. https://doi.org/10.3390/s23031132 https://www.mdpi.com/journal/sensors10



Sensors 2023, 23, 1132

can help us to understand the underlying mechanisms of sensory motor control of the
body. Many studies have shown that time delay changes with exercise [4] and is longer in
patients compared with healthy individuals as well as elderly people compared with young
individuals [5,6]. Specifically, time delay estimation allows therapists and biomechanics
to have better insight regarding designing exercise in addition to assistive development
that can be helpful in the rehabilitation process and in improving their performance during
daily activities. Various models or simulations have been developed to figure out the
sensory motor control mechanism. Using incorrect parameter values in the system can
lead to wrong results, interpretation and subsequently wrong rehabilitation decisions or
a nonfunctional assistive device. Physiological time delay is thus a crucial parameter in
modeling sitting stability.

People living with a complete spinal cord injury (SCI) have numerous issues in
stabilizing their body due to a lack of sensory information and joint torques below their
injury level. Specifically, any injury in their lumbar level results in damage to their back and
intervertebral muscles, which are crucial in stabilizing the inherently unstable spine [7,8].
Thus, after an SCI, patients use their upper limbs and head rather than their muscles in
the lumbar level in order to maintain their stability [9]. Therefore, sitting stability will be
the first and most important goal of rehabilitation for them [10]. A better understanding
of the underlying mechanism of sitting stability can be helpful in employing the best
rehabilitation strategy or assistive technologies for SCI people. In addition, several studies
performed multiple experimental tests in the presence of perturbation and developed
different models to estimate joint torques, kinematic variables that can be effective in
identifying the employed stability mechanisms by SCI individuals. Blandeau et al. [11,12]
used a time-delayed 2 DOF H2AT model for sitting stability in SCI people such that the head
and both arms could slide relative to the trunk rotating at the lumbar level. In this study,
the trunk angle and the position of the head and arm center of mass (COM) were estimated
by a nonlinear observer tuned using classical optimization techniques based on Linear
Matrix Inequalities (LMI). Convergence towards the experimental trajectories is therefore
proven using such methodology. In another investigation [13], they designed a nonlinear
PI descriptor observer to estimate the body kinematics and unknown inputs in an H2AT
model. Guerra et al. [14] estimated the inputs in the H2AT model by an application-oriented
control law. This problem resumes in stabilizing an open-loop unstable underactuated
nonlinear system with a time-varying delayed control input, which is a difficult problem to
control, and was solved efficiently in [14]. Furthermore, in another study [15], a new model
was developed for SCI patients to understand the underlying mechanisms of their body
sensory motor control system. However, though these studies developed various models
to understand the stability mechanisms in SCI patients, these models cannot be used to
estimate the time delay value, which is crucial in stabilizing the employed models, and the
stability strategy can be changed with different values of time delay.

Other studies tried to estimate the physiological time delay in healthy people and in
patients by different approaches of simulation, experimental and combined strategies. The
authors of [16] used an experimental protocol and were able to estimate the time delay
between 66 to 99 milliseconds in healthy and lower back pain patients by analyzing the
electrical muscle activity (EMG) in the presence of an external perturbation in both anterior–
posterior and medio-lateral directions in seated balance. Other investigations were also
able to estimate the total physiological time delay by analyzing the EMG data for healthy
controls and patients [17–19] in seated balance and stance balance [4,20,20,21]. Instead
of EMG, other studies estimated longer time delays by focusing on COP and kinematic
data [22,23]. On the other hand, numerous investigations performed data analysis to
estimate the time delay by using multiple clinical data including EMG, center of pressure
or joint torque and kinematic data [24–33].

In addition, several studies [34–40] developed models to estimate not only the time de-
lay but also other parameters such as joint torques, stiffness, damping, etc. In these studies,
a model with multiple unknown parameters was developed in which the parameters were
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determined using experimental trajectories and an optimization approach. Furthermore,
some other investigations used different techniques such as Kalman filter [41], Cepstral
analysis in the time–frequency domain [42] and frequency analysis [43] to estimate the time
delay. Despite the fact that numerous studies estimate the time delay by different signal
processing approaches in healthy and varieties of patients, to the best of our knowledge, no
study was conducted for time delay estimation in SCI people during sitting stabilization.
Therefore, the main motivation of this study is to estimate the physiological time delay
in SCI patients during seated balance through four classical methodologies found in the
literature. Regarding the novelty of this work, to the best of our knowledge, we found no
study in the literature dealing with the following: 1. the time delay estimation in SCI people
during sitting stability and 2. the comparison of various methods for time delay estimation.
The article is organized as follows. Section 2 presents the Materials and Methods section
with participants’ characteristics, data acquisition and experimental protocol. Results and
all estimated values of time delay are shown in the Section 3. In the Section 4, results are
discussed and compared with other studies. Finally, the Section 5 presents perspectives
and closes the paper with a conclusion.

2. Materials and Methods

2.1. Participants

Seven complete SCI subjects (ASIA-A, level of injury above T6) with mean age
39.7 years (SD 12.4) participated in this study. Ethical approval was obtained from the
Research Ethics Committee of the Center for Interdisciplinary Research in Rehabilitation
of Greater Montreal (CRIR-1083-0515R). The participants read and signed the informed
consent form prior to initiating the measurements. Physical characteristics of participants
are shown in Table 1.

Table 1. Physical characteristics of participants.

ID Age Sex Weight (kg) Height (cm) IMC Injury Level ASIA TIC Injury Age (Months)

1 33 F 58.5 162.6 22.1 T6 A 0.5 112
2 33 M 59.9 177.8 18.9 T4 A 0 126
3 35 M 76.2 178 24.0 T6 A 0 147
4 31 F 51.7 157.5 20.8 T6 B 0.5 95
5 44 M 63 165 23.1 T6 A 0.5 161
6 57 M 94.8 185 27.7 T4 A 0.5 185
7 45 F 72.1 168 25.5 T4 A 0 131

2.2. Experimental Protocol

Participants were asked to maintain their sitting stability on a height-adjustable table
without back support with hip and knees flexed to 90◦, feet resting on the floor and
upper limbs flexed to 90◦ at the elbow level. When sitting stability was achieved, a light
destabilizing force was randomly applied at the level of the third thoracic vertebra between
the scapulas. The destabilizing force was generated via an impact with a foam-coated
wooden pole such that a pressure sensor was added on the tip to define the contact instant
(see Figure 1). After one or two familiarization trials with the destabilizing force, each
subject completed a minimum of 11 acquisitions. The start time of the trial was vocally
announced to participants, at which time they rose their arms and maintained their stability
before the perturbation. Their stability was visually evaluated by the examiner, and the
time instant was recorded by a synchronized hand switch. Then, the perturbation was
exerted at a random time, and participants should have regained their stability. Their
status was again visually assessed, and the time instant recorded when they achieved
their stability.
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Figure 1. Experimental setup. The perturbation was applied at the level of the third thoracic vertebra.

The experimental protocol total duration was about one hour. The first half hour
was dedicated to welcoming the subject, receiving his/her agreement for participating in
the experiment and finally installing the EMG. The acquisition lasted for approximately
20 min with up to 1 min break between each acquisition. The last 10 min were dedicated to
instrumentation removing and obtaining feedback from the subject.

2.3. Instruments and Data Acquisition

EMG signals were recorded from the following eight upper limb and trunk muscles:
Deltoid Anterior (DA), Deltoid Posterior (DP), Pectoralis Major Clavicular (PMC), Pectoralis
Major Sternal (PMS), Biceps Brachii (BB), Triceps Brachii (TB), Trapezius Descending
(TD) and Latissimus Dorsi (LD). The skin area was cleaned with alcohol wipes and the
electrodes were attached in pairs with a center-to-center distance of 25 mm, based upon
recommendations reported in the previous literature [44]. After similar skin preparations,
a ground electrode was attached to the anterior aspect of the leg over the tibial bone. The
EMG signals were recorded with a commercially available EMG system (TeleMyo 900,
Noraxon, Scottsdale, Arizona, USA). All EMG signals and hand switch data were sampled
at 1200 Hz.

2.4. Data Analysis

In this study, two strategies in the time domain (first and second strategies) and two
strategies (third and fourth strategies) in the time–frequency domain were used in order to
estimate the time delay in SCI patients by analyzing the EMG data. In addition, the time
between the earliest and latest muscle onset was computed as the range of muscle onset.
All data analyses were performed with Matlab R2022b software.

2.4.1. First Strategy

At first, all EMG signals were analog filtered using a band pass filter between
30 to 500 Hz by 6th order Butterworth filter, rectified and then low-pass filtered at
100 Hz [45]. The mean and standard deviation (SD) of the signal were computed be-
tween 1.5 to 0.5 s immediately before the perturbation. Response onset latencies were
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determined as the time at which the rectified EMG signal exceeded a threshold of 2×SD
above the mean baseline for a period of at least 25 data points [4,46,47]. EMG onset latencies
were computed for all muscles and then the average and SD were calculated for all trials in
all subjects.

2.4.2. Second Strategy (TKEO)

In this strategy, the raw data were first rectified and high pass filtered at 20 Hz by 6th
order Butterworth filter to remove motion and electrocardiogram (ECG) artifacts. Then, the
nonlinear Teager–Kaiser Energy Operator (TKEO) [48] was employed and the data were
filtered again (6th order, zero-phase low-pass filter at 50 Hz) for smoothing the signal. The
TKEO function (T) is defined as below:

T[x(n)] = x2(n)− x(n + 1)x(n− 1) (1)

where x represents the rectified and filtered EMG signal and n the sample value. The onset
of the muscles defined when the mean value of the smoothed signal exceeded a threshold of
the mean plus two standard deviations away from the baseline for more than 25 consecutive
samples [32,49]. The mean and SD of baseline were computed from 1.5 to 0.5 s right before
the perturbation. Eventually, the response latency was defined as the time between the
perturbation instant and onset of each muscle. The response latencies were measured for
all muscles and then averaged, and the standard deviations were calculated for all trials
and participants. For some acquisitions, the threshold of mean ± 2SD of baseline was not
reached by the EMG signal, yielding no onset found. Moreover, when the onset was found
below 20 ms, the delay was considered as not found because it was inconsistent with the
physiological signal.

2.4.3. Third Strategy (Cepstral Analysis)

The feature of neutral delay-differential equations is mainly that the delay of the
neutral part can be detected in the cepstrum of the output signal, which motivated one
study [42] to estimate the delay of the acceleration feedback term in stick balancing tasks on
kinematic data for healthy individuals. Thus, the cepstral analysis was used in this study as
the third strategy for time delay estimation in SCI people. At first, the cepstral transformed
signal of each EMG signal was obtained from the smoothed signals of the second strategy
(TKEO) as shown in equation 2, in which F and F−1 represent Fourier transform and T(n)
is the signal time series after performing the TKEO technique. The frequency domain of
0–0.5 s was examined to find the sharp peaks. The instant of the maximum value was
defined as the response onset and the response delay was identified as the time between
the perturbation instant and response onset for each muscle. Mean and SD of all muscle
onsets were then computed for all trials and subjects.

Cp = F−1{log[F{T(n)}]} (2)

2.4.4. Fourth Strategy (Power Spectrum)

In this approach, the power spectrum analysis was used to estimate the physiological
time delay in SCI patients. The power spectrum of each smoothed signal [43] from the
second strategy (TKEO) was extracted over time and frequency as shown in Equation (3),
where |P( f )|2 equals the energy density function over frequency. It was observed that
most of the signal power is less than 10 Hz, thus the signal power was averaged between
0 to 10 Hz. It was assumed that the instant of power peaks could demonstrate the response
onset. Therefore, the time domain of 0 to 0.5 s was investigated to find the instant of the
maximum value. Eventually, the physiological time delay was defined as the time between
the perturbation instant and when the averaged power signal reaches its maximum value.
Mean and SD of the estimated values were then computed for all trials and participants. In
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addition, in all strategies, the number of estimated muscle onsets higher than 20 ms and
less than 500 ms were found as consistent values with physiological time delay.

E =
∫ ∞

−∞
|T(n)|2dt =

∫ ∞

−∞
|P( f )|2d f (3)

The algorithm of each strategy is shown in the Figure 2.

Figure 2. Flow chart of all four strategies used for time delay estimation.

2.5. Statistical Analysis

For evaluation of the ECG removing artifacts to form the EMG signals, a statistical
metric of the Robust Measures of Kurtosis (KR2) [50–52] was used in this study using the
equation below:

KR2 =
F−1(0.975)− F−1(0.025)

F−1(0.75)− F−1(0.25)
− 2.91 (4)

where F−1 is the inverse cumulative distribution function (quantile function) of the time
series data x. Values F−1 (0.975) =−F−1 (0.025) = 1.96 and F−1 (0.75) =−F−1 (0.25) = 0.6745
were obtained for the standard Gaussian distribution. Thus, KR2 is zero if the data x has
Gaussian distribution. The methods to evaluate statistical characteristics in estimating the
Probability Density Function (PDF) shapes of EMG signals were composed of two stages.
First, the PDF was estimated by kernel smoothing with a Gaussian kernel [53] from all time
points, and this smooth density was discretized to 1001 bins of width 0.01 that partitioned
the range from −1 to +1. Eventually, the average and standard deviation of KR2 were
calculated over all trials and subjects. Spearman and Pearson correlation coefficients were
calculated to evaluate correlation in muscle activation sequence and delay value in all trials
and subjects, respectively [54]. In addition, the hypothesis of distribution in the normal
family was examined for the values of all estimated values for 8 muscles and 4 strategies.
Significant effects of muscles and strategies (8 × 4) were evaluated by a two-way ANOVA
on the dependent variable of estimated time delay. The effect was considered significant if
the p-value was less than 0.05.

3. Results

The EMG signal and power spectrum of one subject are shown in Figures 3 and 4,
respectively, and all dashed lines represent the perturbation instant. During the first 4 s,
the subject keeps his arms down on his lower limbs, which explains the low EMG activity.
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Mean and SD values of all estimated time delays based on four strategies are demonstrated
in Figure 5. The results show that the third and fourth strategies estimated longer time
delays compared with the other strategies in most muscles. In addition, the sequence
of muscle activation is shown by numbers in each column bar of mean value. It is clear
that the sequence of muscle activation changes based on the employed strategies for the
estimation. However, the Trapezius Descending and Deltoid Anterior are activated later
than other muscles during the posture stabilization for each strategy.

The results of Kurtosis robustness analysis are shown in Figure 6. It can be observed
that the TKEO technique could appropriately remove the ECG and motion artifacts in
muscle activities. In contrast, the results for the first strategy showed that the KR2 value
is far from zero as well for the Gaussian distribution, and its value is even closer to the
unfiltered data, which shows less performance in removing ECG and motion artifacts
compared with the TKEO strategy.

Descriptive results of four strategies are shown in Table 2. It can be seen that the first
and second strategies sometimes failed to find the muscle onset. Furthermore, the result
shows that more detections of Latissimus Dorsi onset were found compared with other
muscles in the first and second strategies. On the other hand, the third and fourth strategies
were able to estimate more time delays consistent with the actual physiological value.

Figure 3. Raw and band pass filtered EMG data for one trial of subject number 7. EMG1 to EMG8
represent Deltoid Anterior, Pectoralis Major Clavicular, Pectoralis Major Sternal, Biceps Brachii,
Trapezius Descending, Deltoid Posterior, Latissimus Dorsi and Triceps Brachii, respectively. The
black dashed line represents the perturbation instant.
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Figure 4. Power spectrum for one trial of subject number 7. EMG1 to EMG8 represent Deltoid
Anterior, Pectoralis Major Clavicular, Pectoralis Major Sternal, Biceps Brachii, Trapezius Descending,
Deltoid Posterior, Latissimus Dorsi and Triceps Brachii, respectively. The red dashed line represents
the perturbation instant.
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Figure 5. Estimated muscle onset based on different strategies.

Figure 6. Kurtosis robustness values for both data smoothing techniques and raw data.

Table 2. Descriptive results for all 4 strategies.

Parameters

Muscles
LD * TB * DP * BB * PMC * PMS * TD * DA *

Fi
rs

ts
tr

at
eg

y

Found value 82 79 77 71 72 79 67 65
% out of found 82 100 96.3 93.9 86.6 87.8 96.3 81.7 79.3

Mean value (s) 0.06 0.07 0.11 0.12 0.13 0.14 0.18 0.21
SD (s) 0.06 0.11 0.16 0.16 0.12 0.16 0.15 0.18

Consistent value 61 56 63 63 65 64 58 59
% out of found values 74.4 70.9 81.8 88.7 90.3 81 86.6 90.8
Range of EMG onset (s) 0.245 ± 0.199

Se
co

nd
st

ra
te

gy

Found value 80 79 80 77 75 79 73 75
% out of found 82 97.6 96.3 97.6 93.9 91.5 96.3 89 91.5

Mean value (s) 0.08 0.05 0.07 0.11 0.10 0.1 0.11 0.13
SD (s) 0.07 0.07 0.09 0.17 0.13 0.11 0.14 0.13

Consistent value 70 53 63 64 56 64 58 63
% out of found values 87.5 67.1 78.8 83.1 74.7 81 79.5 84
Range of EMG onset (s) 0.274 ± 0.222
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Table 2. Cont.

Parameters

Muscles
LD * TB * DP * BB * PMC * PMS * TD * DA *

Th
ir

d
st

ra
te

gy

Found value 82 82 82 82 82 82 82 82
% out of found 82 100 100 100 100 100 100 100 100

Mean value (s) 0.24 0.22 0.22 0.22 0.24 0.21 0.24 0.24
SD (s) 0.12 0.15 0.14 0.13 0.14 0.13 0.13 0.13

Consistent value 81 80 81 81 77 79 80 80
% out of found values 98.8 97.6 98.8 98.8 93.9 96.3 97.6 97.6
Range of EMG onset (s) 0.351 ± 0.084

Fo
ur

th
st

ra
te

gy

Found value 82 82 82 82 82 82 82 82
% out of found 82 100 100 100 100 100 100 100 100

Mean value (s) 0.21 0.2 0.21 0.2 0.23 0.24 0.25 0.21
SD (s) 0.12 0.13 0.12 0.13 0.13 0.14 0.14 0.12

Consistent value 78 77 79 79 78 72 75 75
% out of found values 95.1 93.9 96.3 96.3 95.1 87.8 91.5 91.5
Range of EMG onset (s) 0.307 ± 0.125

* LD (Latissimus Dorsi), TB (Triceps Brachii), DP (Deltoid Posterior), BB (Biceps Brachii), PMC (Pectoralis Major
Clavicular), PMS (Pectoralis Major Sternal), TD (Trapezius Descending) and DA (Deltoid Anterior).

Results of ANOVA test are shown in Table 3. Both muscle and strategy main effects
were significant, although their interaction did not show any significant difference.

Table 3. ANOVA analysis result.

Independent Variable Estimated Time Delay

F-value p-value
Main Effect

Muscle 3.79 p < 0.05
Strategy 62.34 p < 0.05

Interaction
Muscle × Strategy 1.23 0.21

In the muscle main effect, the estimated time delay of Triceps Brachii was significantly
different with Deltoid Anterior, Pectoralis Major Clavicular and Trapezius Descending
muscles. Figure 7 presents mean and SD values of all estimated time delays for all muscles
in each strategy. The estimated time delay values by each the first and second strategies are
significantly different compared to the third and fourth strategies.

Figure 7. Mean value of all estimated muscle onsets for each strategy. The * stands for significa-
tive difference.
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4. Discussion

As previously specified, the aim of this study was to estimate the muscle onset acti-
vation in SCI people by EMG data. To the best of our knowledge, no study has evaluated
different EMG signal processing for muscular onset estimation during seated stability
of people living with an SCI. According to our analysis, the first and second strategies
estimated shorter time delays (mean = 130 ms and 90 ms, respectively) compared with
the third and fourth strategies (mean = 230 ms and 220 ms, respectively) in all muscles. It
can be interpreted that third and fourth strategies identify the muscle onset in the time–
frequency domain and estimate it by using frequency analysis. In addition, the power
spectrum showed that the signal power is less than 10 Hz, thus the movement during
stability maintenance occurs in low frequency and it takes more time to reach its peak value.
Furthermore, the first and second strategies failed to find the onset threshold, showing
that the activity of these muscles does not change much compared to the baseline. Hence,
these two strategies may not be appropriate in the estimation of time delay in only the time
domain during seating stability in patients with an SCI. The EMG signal contains both ECG
artifacts and measurement noise. ECG artifacts can affect the first and second strategies
more than the others, because any artifacts within the signal frequency bandwidth can in-
crease the amplitude of the measurement and can be mistakenly identified as muscle onset.
The measurement noise frequency is much higher than the activation signal frequency, thus
the muscle onset can be detected accurately. It seems that the motor control time delay
may be identified better in the time–frequency domain compared with the time domain,
which is more vulnerable to noises and artifacts. Other studies in the literature also used
different multiples of the SD (1, 3 or 4) [17,47,55] to determine the muscle onset, which can
change the value of the time delay. In this regard, the third and fourth strategies may be
appropriate for time delay estimation with less variability in identifying the muscle onset.
However, we found no study estimating the time delay in SCI people, and the results of
this study are consistent with the fact that muscle onset happens earlier than torque or
body angle response [33]. In addition, the results showed that the estimated time delay in
SCI patients is mostly higher compared with healthy individuals [40].

Otherwise, the Kurtosis robustness analysis demonstrated that the TKEO technique
could efficiently remove the ECG and motion artifacts from the EMG signal, thus resulting
in an accurate muscle onset identification. On the other hand, the results have shown
that the first strategy could not remove these artifacts appropriately. Artifacts can then be
detected as muscle onset, leading to an erroneous reading of the data, in particular at the
level of the command–contraction temporality. In addition, the ANOVA test demonstrated
significant differences in each main effect of muscles and strategy on the value of estimated
time delay. Each of the first and second groups were significantly different regarding the
third and fourth strategies, and the value of estimated time delay in the Triceps Brachii
was significantly different compared to the Deltoid Anterior, Pectoralis Major Clavicular
and Trapezius Descending muscles. No Spearman correlation coefficient more than 0.5
was found for the sequence of muscle activation in each pair of different strategies. No
significative Pearson correlation coefficient was found between the different methods.
This can be due to employing different sequence muscle activations for each participant,
resulting in different muscle synergies to compensate for the disruption achieved. There
was no restriction in the arms motion so that everyone could maintain his/her stability
by moving arms in sagittal or axial planes. Thus, it seems rational that no correlation was
found due to motion redundancy. The range of EMG onset mean value was highest for the
third strategy and lowest for the first strategy.

Several limitations should be mentioned. At first, it should be reminded that only
seven persons participated in this study. A high number of repetitive trials were therefore
chosen to cope with this small population. Secondly, the perturbation amplitude may
change the stabilization strategy employed by the participants; for example, a high ampli-
tude of perturbation can be detected at the cortical level where the time delay is shorter
compared with response from CNS. The perturbation amplitude was not normalized in
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this study as performed in [32,49], and this methodological choice was made in our study
to cope with the subjects’ high variability in injury level thus in stabilization performance,
which can change the results. Furthermore, participants did not use specific instructions on
how to stabilize their body during seated balance, which caused variability in upper limb
motion. Last, each participant performed at least 11 trials, which can increase the learning
effect. For future works, the value of the estimated time delay will be used in developing
models of people living with SCI maintaining their sitting stability. Stability analysis will be
studied using a different controller for the CNS. In addition, time delay and other passive
elements of their bodies will be estimated by developing a model so that its trajectory is
optimized using experimental data, which can help us to estimate more accurate values.

5. Conclusions

Two strategies in time domain and two strategies in time–frequency domain were
investigated in this study for time delay estimation for people living with an SCI. The
TKEO technique efficiently reduced the ECG and motion artifacts compared to the classical
filtering approach. However, the first and second strategies failed to find muscle onset
in several trials. Time–frequency techniques of cepstral and power spectrum estimated
longer time delays due to the lower frequency of motion compared with the two other
strategies in the time domain during seated balance. The time–frequency approach appears
as a better option when the EMG signal includes artifacts and noises. No Spearman or
Pearson correlation coefficient was found in the muscle sequence or delay value in each
pair of strategies, which shows each participant used a different strategy and different
sequence of muscle activation in maintaining the seated stability. The estimated time delay
can help therapists and biomechanics to design more appropriate exercise and develop
assistive technologies during or after rehabilitation procedures by better understanding the
underlying mechanism of the body sensorimotor control system.
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Abstract: When the pulse current method is used for partial discharge (PD) monitoring of mining
cables, the detected PD signals are seriously disturbed by the field noise, which are easily submerged
in the noise and cannot be extracted. In order to realize the effective separation of the PD signal and
the interference signal of the mining cable and improve the signal-to-noise ratio of the PD signal, a
denoising method for the PD signal of the mining cable based on genetic algorithm optimization
of variational mode decomposition (VMD) and wavelet threshold is proposed in this paper. Firstly,
the genetic algorithm is used to optimize the VMD, and the optimal value of the number of modal
components K and the quadratic penalty factor α is determined; secondly, the PD signal is decomposed
by the VMD algorithm to obtain K intrinsic mode functions (IMF). Then, wavelet threshold denoising
is applied to each IMF, and the denoised IMFs are reconstructed. Finally, the feasibility of the
denoising method proposed in this paper is verified by simulation and experiment.

Keywords: PD denoising; VMD; wavelet threshold; genetic algorithm; mining cables

1. Introduction

The online monitoring of partial discharge (PD) is considered an effective method for
checking cable insulation defects and identifying potential faults. It has been widely used
in the condition monitoring of power cables [1–3]. At present, the ultra-high frequency
(UHF) method [4] and pulse current method [5] are commonly used for PD measurement.
The center frequency of UHF is 500 MHz. According to different measurement methods, its
bandwidth is more than ten MHz or even several GHz. The measurement frequency of the
pulse current method is relatively low, usually a few kHz to a few hundred kHz. However,
the UHF signal attenuation is serious or even cannot be measured during the transmission
of the PD signal in the cable, so the effect of the UHF method in the PD monitoring of
cables is not ideal. We believe that the pulse current method is more suitable for the PD
monitoring of cables. The pulse current method is mainly subject to noise interference, and
it is difficult to separate from the interference signal. To ensure that the PD signal is not
distorted as much as possible and to improve the signal-to-noise ratio (SNR) of the PD
signal, it is necessary to conduct more in-depth research on the denoising algorithm of the
cable PD signal.

The PD signal has the characteristics of nonlinear, time series non-equilibrium, and
wide frequency band distribution, so it is not easy to effectively denoise the PD signal by
selecting its frequency band. Currently, the empirical mode decomposition (EMD) method
and wavelet threshold method are the main denoising methods for PD [6–8]. The EMD
method recursively detects the local maximum and minimum values in the signal, which
is highly dependent on the extreme point search method. According to the energy rule,
the intrinsic mode function (IMF) with a small order is directly discarded, resulting in
the loss of some valuable signals. The wavelet threshold method can realize the signal
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localization in both time and frequency domains simultaneously, which has good time-
frequency analysis capability. However, the transient process of local projection will be lost
due to the wavelet transform.

In order to solve the shortcomings of EMD and the wavelet threshold method in PD
signal denoising, many scholars have made many improvements to these two methods. A
partial discharge-based novel adaptive ensemble empirical mode decomposition (Novel
Adaptive EEMD, NAEEMD) method is proposed by Tao Jin [9] for noise reduction. After
using EEMD to decompose the PD signal, the method adaptively selects the intrinsic mode
function for noise reduction reconstruction. Jeffery C. Chan [10] proposes a self-adaptive
technique for partial discharge (PD) signal denoising with automatic threshold determi-
nation based on EEMD and mathematical morphology. On the basis of mathematical
morphology, an automatic morphological thresholding (AMT) technique is developed to
form upper and lower thresholds for automatically eliminating the residual noise while
maintaining the PD signals. Ramy Hussein [11] proposes a wavelet-based denoising
method with a new histogram-based threshold function and selection rule. The proposed
threshold estimation technique obtains two different threshold values for each wavelet
sub-band and uses a prodigious thresholding function that conserves the original signal
energy. Jun Zhong [12] proposes a method without human intervention in choosing the
threshold parameters or the decomposition layer numbers.

In 2014, Konstantin Dragomiretskiy proposed Variational Mode Decomposition (VMD)
based on EMD [13]. Compared with EMD, VMD has fewer decomposition layers and rigor-
ous mathematical theory, which improves its robustness against noise interference [14–16].
The VMD method can retain the transient PD process relatively completely, but its ability to
suppress noise is weak. In conclusion, for the PD signal, which is more seriously affected by
the field interference signal, the filtering effects of the above methods are less satisfactory
when used alone.

After analyzing the advantages of VMD and wavelet threshold, a combined denoising
method based on VMD and wavelet threshold is proposed. This method combines the
advantages of VMD’s ability to adaptively adjust the center frequency of each mode and
the excellent time-frequency analysis ability of wavelet threshold method while avoiding
the disadvantages of VMD’s weak noise suppression ability and the transient process of
wavelet threshold loss. At the same time, we use genetic algorithm (GA) to optimize the
number of modal components and quadratic penalty factor in VMD and determine the
two input parameters that can achieve the optimal decomposition of VMD. The structure of
this paper is as follows: Section 2 introduces the basic principles of VMD, GA and wavelet
threshold method; Section 3 describes the specific process of the proposed denoising
algorithm and the process of optimizing the parameters by GA; Section 4 shows the
simulation verification results and the comparison of the denoising effect between the
proposed method and several different methods. In Section 5, the experimental signal
denoising results are described in detail. The conclusion of this paper is given in Section 6.

2. Methods and Principles

2.1. VMD Method

VMD can adaptively and non-recursively decompose the input signal into multiple
IMFs with specific sparse properties. Each IMF has a corresponding center frequency.
During the decomposition process, each mode is continuously evaluated to optimize the
distribution of each IMF and its center frequency.

The VMD algorithm is actually a solution process for a variational problem. It decom-
poses the original signal into K IMFs uk(t), so that the sum of the estimated bandwidths of
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each IMF is minimized, and then, the corresponding constrained variation model can be
expressed as:

min
{uk},{ωk}

{
K
∑

k=1

∥∥∥∂t[[(δ(t) +
j

πt ) ∗ uk(t)]e−jωkt]
∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f

(1)

where {uk} represents the set of all IMFs, {ωk} represents the set of center frequencies
corresponding to the IMF, (δ(t) + j

πt ) ∗ uk(t) is the unilateral frequency spectrum of each
eigenmode, obtained by computing its analytic signal through the Hilbert transform, and f
is the original signal.

To transform the above constrained variational problem into an unconstrained vari-
ational problem, the quadratic penalty factor α and the Lagrangian multiplier λ(t) are
introduced, and the extended Lagrangian expression is:

L({uk}, {ωk}, λ) := α
K

∑
k=1

∥∥∥∥∂t[[(δ(t) +
j

πt
) ∗ uk(t)]e−jωk t]

∥∥∥∥2

2

+

∥∥∥∥∥ f (t)−
K

∑
k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

K

∑
k=1

uk(t)

〉
(2)

The alternate direction method of multipliers (ADMM) is used to solve the variational
problem, and the optimal solution of the above function is obtained by iteratively updating
uk

n+1, ωk
n+1 and λn+1. The value problem of uk

n+1 can be expressed as:

un+1
k = argmin

uk∈X
{α

∥∥∥∥∂t[[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt]

∥∥∥∥2

2
+

∥∥∥∥∥ f (t)−
K

∑
i=1,i �=k

ui(t) +
λ(t)

2

∥∥∥∥∥
2

2

} (3)

where ωk and ui �=k represent the latest available update value. Using the Parseval Fourier
equidistant transform, the above equation can be transformed as:

∧
u

n+1

k (ω) =

∧
f (ω)− K

∑
i=1,i �=k

∧
ui(ω) +

∧
λ(ω)

2

1 + 2α(ω−ωk)
2 (4)

According to the same solution process as uk, the solution of the quadratic optimization
problem of the center frequency is shown in Formula (5):

ωn+1
k =

∫ ∞
0 ω

∣∣∣∧uk(ω)
∣∣∣2

dω∫ ∞
0

∣∣∣∧uk(ω)
∣∣∣2

dω

(5)

where
∧
u

n+1

k (ω) is equivalent to the Wiener filtering result of the current residual
∧
f (ω)− K

∑
i=1,i �=k

∧
ui(ω); and ωn+1

k is the center of gravity of the power spectrum of the modal

function.
The VMD algorithm is continuously updated in the frequency domain, and then, the

inverse Fourier transform is performed to obtain the time domain result. The specific
process of the VMD algorithm can be described as follows:

Step 1: Given the number of modal decompositions K and the penalty factor α, initial-

ize {
∧
u1

k}, {
∧

ω1
k}, {

∧
λ1} and n;

Step 2: Update uk and ωk in the frequency domain according to Formulas (4) and (5);
Step 3: Update λ, and its update formula is as follows:

∧
λn+1(ω) =

∧
λn(ω) + τ(

∧
f (ω)−∑

K

∧
un+1

k (ω)) (6)
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Step 4: Given the discrimination accuracy ε, when it is satisfied
∑
k

∥∥∥∥∧un+1
k −∧u

n
k

∥∥∥∥2

2

‖un
k‖2

2

< ε, stop

the iteration and output the IMF {uk}.

2.2. Genetic Algorithm

The genetic algorithm is an optimization algorithm that simulates the natural selection
and genetic evolution of organisms [17–19]. It usually includes three genetic operators:
selection, crossover and mutation. The genetic algorithm is an iterative process; each cycle
is a generation. In the operation, the inheritance is terminated after a specified number
of generations, and then, the optimal chromosome is found among all generations. The
genetic algorithm optimization is performed again if the optimal solution is not found.
When using the genetic algorithm to solve the optimization problem, it mainly needs to
go through six steps: encoding, initial population generation, fitness value evaluation,
selection, crossover, and mutation, so that the population evolves into a new generation
of a better adaptive population. The specific process of the genetic algorithm is shown in
Figure 1.

Start

Encoding and 
population initialization

Assessment of 
individual adaptation

Crossover

The best individual

Whether the 
optimization 

criteria are met

End

Selection

Mutation

Yes

No

 

Figure 1. Genetic algorithm flow.

2.3. Wavelet Threshold Denoising

The basic idea of the wavelet threshold denoising method is that a noisy signal can be
expressed as the superposition of the original signal and the noise obeying the Gaussian
distribution [20,21]. Since the wavelet transform is linear, the wavelet coefficients of the
original signal and the noise can be obtained, respectively, after the noisy signal undergoes
discrete wavelet transform. Based on the fact that the useful signal and the noise have
different statistical properties after the wavelet transform, the original signal’s wavelet
coefficients are larger and more significant than the noise’s. Therefore, an appropriate
threshold λ is found as a criterion for judging whether the decomposed signal is discarded
or not. When the decomposition coefficient is less than the threshold λ, it is considered
that the decomposition coefficient is mainly caused by noise, and the corresponding de-
composition signal should be discarded; when the decomposition coefficient is greater
than the threshold λ, it is considered that the decomposition coefficient is mainly caused
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by the signal, and the corresponding decomposition signal is processed. Then, wavelet
reconstruction is performed to obtain the denoised signal. The specific process of wavelet
threshold denoising is as follows:

Step 1: Select the appropriate wavelet basis function and decomposition level and
perform wavelet decomposition on the noisy signal.

Step 2: Select an appropriate threshold to properly process the wavelet coefficients.
When the decomposed wavelet coefficients are smaller than the selected threshold, it is
considered that the wavelet coefficients are mainly caused by noise and should be set to
zero. When the wavelet coefficients are greater than the selected threshold, it is believed
that the wavelet coefficients are mainly due to the signal.

Step 3: Perform inverse wavelet transform on the processed wavelet coefficients to
obtain a denoising result.

Wavelet transform is a new transform analysis method, which transforms the function
f (t) under the wavelet basis, and its expression is:

WTf (a, τ) = [ f (t), ψa,τ(t)] =
1√
a

∫
R

f (t)ψ∗( t− τ

a
)dt (7)

where ψ(t) is the wavelet basis function; a is the expansion and contraction amount; and τ
is the translation amount. It can be seen from the above formula that the wavelet transform
is actually the integral transform of the function, WTf(a,τ) represents the wavelet coefficient
after the wavelet, and the expression of the inverse transform can be expressed as:

f (t) =
1
cφ

∫ +∞

0

da
a2

∫ +∞

−∞
WTf (u, τ)

1√
a

ψ(
t− τ

a
)dt (8)

When thresholding the wavelet coefficients, there are usually two methods: hard
thresholding and soft thresholding. Hard thresholding is to keep larger coefficients and
zero out smaller coefficients, as shown in Formula (9):

∧
Wj,k =

⎧⎪⎨⎪⎩
Wj,k

∣∣∣Wj,k

∣∣∣ ≥ Thr

0
∣∣∣Wj,k

∣∣∣ < Thr
(9)

Soft thresholding is to set the smaller wavelet coefficients to zero and the larger
coefficients to shrink toward zero, as shown in Formula (10):

∧
Wj,k =

⎧⎪⎨⎪⎩
sgn(Wj,k) ∗ (

∣∣∣Wj,k

∣∣∣− Thr)
∣∣∣Wj,k

∣∣∣ ≥ Thr

0
∣∣∣Wj,k

∣∣∣ < Thr
(10)

where Wj,k represents the wavelet coefficient; Thr represents the threshold.

3. PD Signal Denoising Based on Genetic Algorithm Optimization of VMD and
Wavelet Threshold

3.1. PD Signal Denoising Process

The PD signal has a wide frequency band, and the main frequency is not apparent.
It can be seen from the above basic principles that the VMD method can adaptively de-
compose the PD signal into multiple eigenmodes with center frequencies. It can not only
extract the PD signal from the interference but also preserve the transient process of the PD
signal as much as possible. According to the basic principles of VMD, genetic algorithm
and wavelet threshold, we propose a PD denoising method based on the genetic algorithm
optimization of VMD and wavelet threshold. Firstly, the two input parameters of VMD
are optimized by genetic algorithm, and the optimal parameter value that can make VMD
achieve the best decomposition effect are obtained. Then, K IMFs are decomposed by
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VMD; that is, {u1, u2, . . . , uk}, wavelet threshold denoising is applied to each IMF to obtain
the denoised components of each IMF. Finally, we perform signal reconstruction on the
denoised components of all IMFs. The specific denoising process is shown in Figure 2.

Partial discharge signal 
of mining cable

Parameter optimization 
based on GA-VMD

Wavelet threshold 
denoising for each IMF

VMD signal 
decomposition

Output IMFs {uk}

Output the 
reconfiguration signal 

for each IMF

Obtain the denoised 
Partial discharge signal  

Figure 2. Denoising flow chart of PD signal.

3.2. Optimization of VMD Parameters Based on Genetic Algorithm

From the theory of VMD, it is known that VMD needs to pre-set the number of modal
components K when decomposing the signal. The VMD decomposition results obviously
differ with different settings of the number of modal components. It has been found that
the quadratic penalty factor α in the VMD method also has a large impact on the VMD
decomposition results. However, the number of modal components K and the quadratic
penalty factor α need to be manually set in advance, and the randomness and uncertainty
of the artificial setting will inevitably affect the correctness of the VMD decomposition
result. How to choose the appropriate two input parameters is the premise and key to
accurately decompose the signal by VMD.

Since genetic algorithm is a direct search optimization method generated by evolution
theory and genetic mechanism, it has good global probability search ability. Therefore,
this paper uses genetic algorithm to optimize the two input parameters K and α of VMD
and obtain the optimal value. Input parameters. When the genetic algorithm searches for
the input parameters of the VMD method, an adaptation function needs to be defined in
step 3. The information entropy can well evaluate the sparse characteristic of the signal.
The size of the information entropy reflects the uncertainty of the signal. The larger the
entropy value, the greater the uncertainty of the signal. The entropy value of ej (ej is the
signal sequence after demodulation and decomposition) is the envelope entropy, which
can reflect the sparse characteristic of the original signal. The envelope entropy Ee of the
zero mean signal x(j) (j = 1, 2, . . . , N) can be expressed as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ee = −
N
∑

j=1
ejlgej

ej = a(j)/
N
∑

j=1
a(j)

(11)
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where ej is the normalized form of a(j); and a(j) is the envelope signal of signal x(j) after
Hilbert transform.

In order to search for the global optimal uk component combination, we take the local
minimum envelope entropy value as the fitness value in the whole parameter optimization
process, and we take the minimization of the local minimum envelope entropy value as the
final parameter optimization goal.

4. Simulation Verification and Analysis

4.1. Simulation Results

In the PD monitoring site, various random noise disturbances will be generated in elec-
trical systems such as analog circuits, photoelectric conversion, analog/digital conversion,
and communication lines, which are expressed in the form of Gaussian white noise signals.
The characteristic of white Gaussian noise is that its amplitude is Gaussian distribution N
(0, 1), and its power spectral density is uniformly distributed. In order to simulate the pulse
signal obtained in the field, the original PD pulse signal is superimposed with Gaussian
white noise to obtain a noisy signal. The one-dimensional signal model with noise can
be expressed as: di = fi + εzi, i = 1, 2, . . . , N. Among them, di is the noisy signal, fi is the
“pure” PD pulse signal, zi is Gaussian white noise, ε is the noise level, and N is the signal
length. The PD signal is weak, the signals measured on-site has many noise components,
and the SNR of the signal is very low. Taking a noisy signal with a signal-to-noise ratio
of −2.67 dB as an example, its waveform and spectrum are shown in Figure 3. It can be
seen that the PD signal is submerged in noise, which has a wide frequency range and is
randomly distributed in the frequency band of the PD signal. The spectral characteristics
of the PD signal in the noisy signal are not prominent.
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Figure 3. The waveform of the PD signal with noise and its spectrum.

Figure 4 shows the results of the genetic algorithm for the optimal search of VMD
input parameters, which reflects the plot of the local minimal envelope entropy values of
the simulated signals at different genetic generations. The minimum value of the local
minimal envelope entropy value 0.1307 appears in the 6th generation, and the optimal
input parameter (K, α) = (5, 847) is obtained by the search. Therefore, the number of modal
components K in the VMD method is set to 5, and the quadratic penalty factor α is 847 to
decompose the simulated signal.
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Figure 4. Local minimal envelope entropy values of the simulated signal at different genetic generations.

Figure 5 shows the decomposed eigenmodal components and their corresponding
spectra when K is taken as 5. It can be seen that the peak of the spectrum of mode u2
coincides with the peak of the spectrum of the noise-containing signal, and the peak of the
spectrum of mode u3 coincides with the peak of the noise-containing signal near 2 MHz.
This shows that the VMD decomposition of the noise-bearing signal is the best at this time.
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Figure 5. The decomposed eigenmodal components and their corresponding spectra, when K = 5.

After determining the values of K and α, we perform VMD on the noisy signal. Each
modal component uk obtained after decomposition still contains obvious noise interference,
so it is necessary to perform wavelet threshold denoising on each mode component uk
separately to achieve better denoising effect. After our careful analysis, the db.4 wavelet
is selected as the wavelet base in this paper, the decomposition scale is three layers, and
the threshold value is calculated using the fixed threshold estimation method. In order to
ensure the smoothness of the signal, a soft threshold function is selected for processing.
As shown in Figure 6, the waveforms of each eigenmode uk are shown on the left, and the
corresponding waveforms ck obtained after wavelet thresholding for each eigenmode are
shown on the right.
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Figure 6. Intrinsic mode functions and wavelet threshold denoising signals.

It can be seen from Figure 6 that noise is significantly suppressed in the reconstructed
signal ck obtained by the wavelet decomposition of each eigenmode component uk. In
particular, the PD components in u4 and u5 are completely submerged in the noise, and after
the wavelet threshold decomposition, the PD components in c4 and c5 are obvious. VMD
is characterized by the ability to decompose a broadband signal into a signal consisting
of multiple narrowbands. Therefore, some scholars have achieved the separation of low-
frequency mixed signals or low-frequency noise-laden signals by the selective rounding of
IMFs through VMD. However, the characteristic of the PD signal is that its frequency band
is extremely wide and it is difficult to find a fixed dominant frequency, so the abandonment
of IMFs will lead to the loss of useful signal information. Through the secondary processing
of wavelet threshold denoising, the noise interference is effectively removed, and the useful
signals in each IMFs are preserved to a great extent.

4.2. Comparison of Different Methods

The signal ck processed by wavelet thresholding is reconstructed to obtain the recon-
structed signal based on VMD and wavelet threshold. In order to compare the denoising
ability of the PD denoising method proposed in this paper, the method is compared with
several current mainstream PD denoising methods. Figure 7 shows the reconstructed
signal waveform of the noisy PD signal processed by methods such as VMD, wavelet
threshold, EMD autocorrelation, and VMD and wavelet threshold. Among them, the EMD
autocorrelation method is a denoising method improved by the EMD method, and its de-
noising effect is better than that of the EMD method. It can be seen that the reconstruction
method based on VMD and wavelet threshold is better than the other three methods, and
the transient part of the PD signal is well preserved. The denoising effect of the signal
processed by the wavelet threshold is also significant, but the transient part of the PD signal
is missing more seriously.
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Figure 7. Comparison of four methods of denoising effect (original SNR is −2.673 dB).

Although the denoising ability of various methods can be visualized from Figure 7, in
order to make further quantitative comparisons, we denoise the PD signals with different
SNR values. The correlation coefficient R and root mean square error RMSE are also
introduced as the basis for judging the denoising ability. The detailed calculation formulas
of SNR, R and RMSE are shown in Formulas (12)–(14).

SNR = 10 log 10(
N

∑
i=1

xi
2/

N

∑
i=1

(xi − x′i)
2
) (12)

R =

N
∑

i=1
(xi − xi)(x′i − x′i)√

N
∑

i=1
(xi − xi)

2 · N
∑

i=1
(x′i − x′i)

2
(13)

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x′i)
2 (14)

As can be seen from Table 1, the denoising effect of VMD and the wavelet threshold
method is significantly better than that of the VMD method, EMD autocorrelation method
and wavelet threshold method, especially for signals with smaller SNR values.
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Table 1. Comparison of four ways to suppress the noise effect.

PD
Signal
SNR

VMD
VMD + Wavelet Threshold

Method
EMD Autocorrelation

Method
Wavelet Threshold Method

SNR R RMSE/×10−6 SNR R RMSE/×10−6 SNR R RMSE/×10−6 SNR R RMSE/×10−6

−7 −4.29 0.47 9.66 2.79 0.72 4.28 −1.99 0.45 7.41 −0.01 0.50 5.91
−3 0.10 0.64 5.83 5.60 0.86 3.10 1.54 0.62 4.94 2.93 0.71 4.21
0.1 2.43 0.75 4.46 7.01 0.90 2.63 3.70 0.77 3.85 5.15 0.83 3.26
1 3.21 0.78 4.08 7.71 0.92 2.43 4.19 0.79 3.64 5.76 0.86 3.04
4 5.97 0.87 2.97 8.95 0.95 2.11 6.78 0.89 2.70 8.56 0.93 2.20
9 9.33 0.94 2.01 10.6 0.97 1.74 9.78 0.95 1.91 12.06 0.97 1.47

5. Experimental Signal Analysis

In order to further verify the denoising effect of the denoising method proposed in
this paper on the measured signal, 2.5 kV DC voltage is applied to the 6 kV power cable in
the laboratory, the PD voltage signal is measured by the detection impedance method, and
the signal data obtained from the experiment are processed by Matlab. Figure 8a shows
the waveform of the measured PD signal in the laboratory, and it can be seen that the
PD signal is almost drowned in the noise interference. Figure 8b–e are the signals after
denoising the experimental signals using the VMD method, wavelet threshold method,
EMD autocorrelation method and the method proposed in this paper, respectively.
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Figure 8. Analysis of PD signal obtained in laboratory.
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It can be seen from Figure 8 that the denoising effect of the VMD and wavelet thresh-
old reconstruction method is the best, the PD signal after denoising has no oscillation
phenomenon, and the noise is significantly suppressed. Although the wavelet threshold
method also plays an obvious role in suppressing the noise, it also causes a large amount
of loss in the transient process of the PD signal, which is not conducive to the analysis
of the PD signal later. The EMD autocorrelation method and VMD method have limited
effects on noise suppression, especially the single VMD method has no obvious effect on
noise suppression, and there is still a large number of noise signals. Since the calculation
of SNR, R and RMSE requires the original “pure” signal, and the original “pure” signal
of the experimental signal is unknown, the Noise Rejection Ratio (NRR) before and after
signal denoising is introduced here to measure the denoising effect. NRR characterizes
the prominence of the effective signal after denoising. Table 2 shows the NRR calculation
results of the two methods.

NRR = 10 log 10(σ1
2 − σ2

2) (15)

where σ1
2 and σ2

2 represent the variance of the signal before and after denoising, respec-
tively.

Table 2. Comparison of NRR calculation results.

Denoising Method NRR/dB

VMD method 3.7901

EMD Autocorrelation 4.2705

Wavelet Threshold 4.6294
VMD + Wavelet Threshold 5.3603

From the calculation results of the NRR of each method in Table 2, it can be seen more
intuitively that the NRR of the VMD and wavelet threshold method is the highest, and the
NRR of the single VMD method is the lowest. Through the analysis of the NRR of each
method, the analysis of the denoising effect of each method in this paper can be supported
from another perspective. Combining the results of Figure 8 and Table 2 further proves
that the denoising effect of the method proposed in this paper is significantly better than
the other three methods.

6. Conclusions

The pulse current method is an effective means for monitoring the PD of mining cables.
However, when collecting PD signals, due to the influence of on-site working conditions,
the noise interference is large, and the cable PD signals cannot be effectively extracted.
In order to improve the SNR of the PD signal, this paper proposes a denoising method
of mining a cable PD signal based on the optimization of VMD and wavelet threshold.
Considering that the number of modal components K and the quadratic penalty factor α
have a great influence on the results of VMD, this paper introduces a genetic algorithm to
determine the optimal values of these two parameters, so that VMD can achieve the best
results. Meanwhile, according to the respective characteristics of VMD and the wavelet
threshold method, these two methods are effectively combined to further improve the
denoising effect of a cable local discharge signal. The main conclusions are as follows.

(1) In this paper, by introducing the genetic algorithm, the minimization of the local
minimal envelope entropy value is taken as the optimization goal of VMD parame-
ters. Then, the optimal values of VMD parameters are obtained, which avoids the
situation that the VMD denoising ability is insufficient due to the artificial setting of
the parameter value.

(2) The combined denoising algorithm proposed in this paper combines the advantages
of VMD’s ability to adaptively adjust the center frequency of each mode and the
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excellent time-frequency analysis capability of wavelet threshold. It also avoids the
disadvantages of VMD’s weak noise suppression capability and the loss of transient
processes by wavelet threshold. Through the experimental comparison, it is found
that the method has a more excellent denoising ability, and the filtering performance
is better for PD signals with lower SNR.
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Abstract: Pain is a complex phenomenon that arises from the interaction of multiple neuroanatomic
and neurochemical systems with several cognitive and affective processes. Nowadays, the assessment
of pain intensity still relies on the use of self-reports. However, recent research has shown a connection
between the perception of pain and exacerbated stress response in the Autonomic Nervous System.
As a result, there has been an increasing analysis of the use of autonomic reactivity with the objective
to assess pain. In the present study, the methods include pre-processing, feature extraction, and
feature analysis. For the purpose of understanding and characterizing physiological responses of pain,
different physiological signals were, simultaneously, recorded while a pain-inducing protocol was
performed. The obtained results, for the electrocardiogram (ECG), showed a statistically significant
increase in the heart rate, during the painful period compared to non-painful periods. Additionally,
heart rate variability features demonstrated a decrease in the Parasympathetic Nervous System
influence. The features from the electromyogram (EMG) showed an increase in power and contraction
force of the muscle during the pain induction task. Lastly, the electrodermal activity (EDA) showed
an adjustment of the sudomotor activity, implying an increase in the Sympathetic Nervous System
activity during the experience of pain.

Keywords: autonomic nervous system (ANS); cold pressor task (CPT); pain induction; pain
assessment; physiological signals; signal processing; signal analysis

1. Introduction

Pain is a complex biopsychosocial phenomenon caused by damage or potential dam-
age in the tissues and serves a vital protective function. The International Association for
the Study of Pain revised the definition of pain as: “an unpleasant sensory and emotional
experience associated with, or resembling that associated with, actual or potential tissue
damage” [1]. This revision also specified that (a): pain is always a personal experience
that is influenced by several factors; (b) pain cannot be inferred solely from activity in the
sensory neurons; (c) the concept of pain is learnt throughout an individual life experience;
(d) a person’s report of an experience as pain should be respected; (e) pain serves an
adaptive role but can also cause effects on individual well-being; and (f) the inability to
communicate does not exclude an individual’s capacity to feel pain [1].

In almost every clinical practice, especially in neurological and musculoskeletal prob-
lems [2], pain is a common symptom and an accurate assessment is critical to ensure a
safe and effective management of pain. Currently, the most used standard method to
assess pain is based on self-reports, both in clinical and experimental settings. Despite
subjective, self-reports being generally easy to obtain, requiring practically little to no
equipment, allowing for comprehensive information collection, and exhibiting typically
good reliability [2], these instruments rely on the ability of the individual to process external
information and communicate a response, which may not always be feasible. Moreover,
the use of self-reports from the patient to assess pain may be hazarded by the age, cognitive
condition, and verbal communication capabilities of the patient. In such cases, pain needs
to be assessed by a healthcare provider, which is a more complex and time-consuming
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task, and can be highly challenging due to individual differences in pain expression and
behavior and physiological changes not always being specific to pain.

It is thought that pain exacerbates the autonomic response to stress, a rationale sup-
ported by evidence showing a neuroanatomical overlap between nociceptive and auto-
nomic pathways [3]. For example, studies have shown that the application of pain stimuli
induces significant heart rate acceleration. Therefore, there has been a growing interest in
the use of autonomic reactivity as an objective marker of pain, and several studies have
investigated physiologic variables for this purpose under pain-induced conditions [2,4–6].

The Cold Pressor Task (CPT) is a pain-inducing method that requires individuals
to immerse one hand (or forearm) in cold water for as long as they can tolerate it or
during a fixed period of time. The main advantages of this method rely on its portability,
minimal training to use, and few risks. The primary disadvantage of the CPT is the
significant methodological divergences in its implementation and in the measurement of
pain outcomes, crippling the comparison of results from different studies [4,5,7–9]. There
is increasing information linking the feeling of pain with the Autonomic Nervous System
(ANS). Therefore, several studies have investigated and recorded the alterations of the ANS
with the use of CPT.

Goals and Organization

As pain is mostly assessed through the use of subjective instruments, such as self-
reports relying on a pain-scale, the main goal of the present study was to study and
characterize physiological responses when experiencing pain. For that, a pain-inducing
protocol was implemented on forty-five healthy-volunteer participants, and several phys-
iological signals (electrocardiogram—ECG; two electromyograms—EMG, electrodermal
activity—EDA) were recorded, while, simultaneously, pain was induced through the expo-
sure to cold stimuli. Thus, with this protocol, we analyze the physiological responses of
pain and assess the pain perception through self-reports based on a numerical rating scale
(NRS). This work is organized as follows: Section 2 presents related works with respect
to the ANS reactions associated with induced pain. Section 3 presents the study protocol,
data collection, and methodology for data analysis, while Section 4 presents the obtained
results. Finally, before presenting the conclusions of our study and identifying further
research in Section 6, Section 5 discusses the obtained results regarding the physiological
characterization of pain.

2. Background

There is increasing information linking the feeling of pain with the ANS. Therefore,
several studies have investigated and recorded the alterations of the ANS when participants
are subjected to pain-inducing stimuli.

Concerning cold stimuli to induce pain, the work [4] quantifies the changes in skin
impedance, Heart Rate (HR), and facial skin temperature when healthy volunteers were
subjected to acute pain through a CPT (with water at 0 ◦C). A total of 19 participants were
included in the study. The results showed an increase in all the parameters calculated
during the CPT, in comparison to those calculated during the baseline. However, only the
skin conductance increase was statistically significant. One possible justification for the
minor variation of HR during both conditions (baseline and CPT) may stem from anxiety
felt by some participants before the pain-inducing task.

Ref. [5] analyzed the relation between efferent sympathetic nervous system activity
to skeletal muscle (MNSA) and pain sensation during localized skin cooling. Ten subjects
took part in the study, immersing their right hand in different temperature water baths
for three minutes each. The levels of temperature in the bath range from warm (28 ◦C and
21 ◦C—non-pain inducing) and mid-level (14 ◦C) to cold (7 ◦C and 0 ◦C—pain-inducing).
The participants went in order from the warmest to coldest temperature, with a ten-minute
interval between the recovery three-minute period of the last water tank and the three-
minute baseline of the next. While the study was being performed, the MNSA, Blood
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Pressure (BP), HR, and breathing were continuously recorded. The observations of this
study demonstrated that there was no evident influence on MNSA when the participants
were subjected to non-painful skin cooling. During the hand immersion in ice water, there
was a progressive rise in MSNA as skin temperature started to decrease. However, there
was a more significant peak increase in the MSNA signal during the 0 ◦C immersion
compared to the 7 ◦C. Regarding HR, there was a significant rise during the initial phase of
the 0 ◦C, which was expected. Even so, the HR consistently increased in less painful water
temperatures, although on a smaller scale. As for the BP, there were no significant changes
during the study.

Aiming at studying the relationship between HR and multidimensional aspects of
pain (intensity and unpleasantness) in healthy individuals, 39 healthy volunteers were
subjected to hot water (47 ◦C) hand immersion test for two minutes, while ECG and EDA
were being recorded [10]. Participants also had to rate their perceived pain every 15 s using
a Visual Analogue Scale (VAS). The HR, Heart Rate Variability (HRV) parameters, and Skin
Conductance Level (SCL) were calculated. The study showed a steady rise in pain intensity
and unpleasantness, as well as in HR, with the progression of immersion time. These results
seemed to indicate a rise in sympathetic activity and a drop in parasympathetic activity,
which is in agreement with the usual body reaction to a noxious stimulus. Regarding pain
perception and HR, there seems to exist a greater correlation between HR and pain un-
pleasantness than with pain intensity, suggesting that pain-related autonomic responses are
functionally related to the affective dimension of the experience. However, the correlation
between pain perception and HR indicated a vast difference between genders, with men
presenting much greater values.

In addition, through the use of hot stimulation, Ref. [11] assessed if there was a relation
between sudomotor activity and heat pain perception. To that end, a thermal stimulus
protocol, using a Peltier type contact thermode, was applied to 22 healthy participants while
the EDA was being recorded. The participants also reported their subjective perception of
pain through VAS. During the procedure, the baseline temperature of the thermode started
at 31.5 ◦C. Three different types of stimuli were tested on all the participants on three
different days. The results indicated a positive correlation between changes in sudomotor
activity and pain perception as the mean EDA level and sympathetic skin response were
higher in the pain phases. This was especially verified in quicker temperature slopes. Since
both features are considered reliable indices of emotion, it is conceivable that the increase
in sudomotor activity is also related to an emotional component. After the end of the
pain-inducing protocol, the mean EDA decreased, indicating a drop in sympathetic outflow
when an event responsible for an emotional response is over.

Ref. [2] studied the alterations in the HR, skin conductance, and VAS ratings in
response to noxious stimulus created by calibrated heat stimulus of different intensities,
which range from warm to pain-inducing. The data were analyzed from two different
perspectives: the correlation between the autonomic response and pain intensity in subjects
separately (subject analysis) and the correlation between the average pain intensity and
the autonomic responses to the same temperature in all individuals (group analysis).
The results demonstrated that an increase in pain intensity generated an increase in both
HR and skin conductance. The subject analysis revealed a higher correlation with skin
conductance, leading to a belief that this metric is more sensitive to changes in perception.
However, the magnitude increases of the skin conductance did not significantly correlate
with the magnitude of pain intensity, suggesting that this measure alone does not predict
the absolute level of pain reported by the subject. The opposite was true for HR, as it did
not reliably predict verbal responses to pain on a subject basis but did on the group level.
These differences suggest that, although HR is affected by pain perception, it is a very
noisy measure.

With a protocol of several tests to assess the autonomic function and considering
patients with chronic neck or shoulder pain and control participants, Ref. [12] studied the
differences in responses of muscle blood flow, muscle activity, HRV, and BP. The protocol
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consisted of an initial 15-min rest period and three different tests with a 5-min rest period in
between: the hand grip test (HGT), the cold pressor task (CPT), and the deep breathing test
(DBT). During the rest period, patients showed lower parasympathetic activity compared
to the control group. Blood flow in the trapezius muscle during HGT and CPT was also
lower in patients than in the control group. This result may be the consequence of increased
sympathetic activity leading to a change in blood flow due to an imbalance between
vasoconstriction and dilation in the affected muscle. Finally, it was observed that trapezius
muscle activity in patients was highest during the rest period after static contraction, which
seems to indicate an inability on the part of patients to relax properly after static work.

Ref. [13] evaluated the changes in the ANS in patients with fibromyalgia through CPT.
A total of 38 women participated in this study, of which 23 were patients with fibromyalgia.
At the beginning and end of CPT, the pain was assessed with a numerical scale, and a
thermographic recording of the forearm was measured. The physiological measurements
considered included BP and pulse rate. It was observed that participants with fibromyalgia
had a lower resistance to the stimulus of cold water. These observations may thus be related
to the abnormal functioning of the ANS and, therefore, abnormal perception of pain and/or
suffering from ischemia more rapidly.

Considering 13 physiological parameters derived from the HR, breath rate (BR), gal-
vanic skin response (GSR), and facial surface electromyogram, the authors of [14] proposed
artificial neural network classifiers to distinguish between no, mild, and moderate/severe
acute pain. A group of 30 healthy volunteers was subjected to thermal and electrical pain
stimulation, and pain was self-reported using VAS. The results show that HR, GSR, and BR
were better correlated to pain intensity variations than facial muscle activities. The authors
also concluded that the use of multiple physiological parameters for pain classification was
revealed to be advantageous, especially in the classification of mild pain category since
data from this category overlapped greatly with the other two categories.

Ref. [15] goes beyond the analysis of machine learning recognition models for pain
assessment based on physiological and behavioral data. It also proposes a framework for
feature extraction methods that allows a fair comparison of the performances of feature
extraction and feature learning approaches. The authors concluded that simple feature
engineering approaches, relying on features extracted from the signals based on expert
knowledge, lead to better performances than deep learning approaches and that more
complex deep learning architectures do not necessarily outperform simpler ones. However,
although comparing five different approaches evaluated on two databases, the major
drawback of this work relies on the use of the EDA signal only. Thus, further research
should be endeavored by including other physiological data and by considering data fusion
approaches to increase the performance of the pain classification models.

3. Materials and Methods

This section describes the protocol for data collection and presents the methods applied
for analyzing the body response during the induction of pain through cold pain stimuli
implemented as a CPT. The different methods used to analyze the data were implemented
in Matlab R2021a (MATLAB R2021a and Simulink R2021a) [16].

3.1. Data Collection

Aiming to study the physiological changes that pain provokes, 45 participants were
subjected to a pain-inducing protocol (CPT), while, simultaneously, physiological signals,
namely ECG, EMG, and EDA, were being collected. This study was approved by the Ethics
and Deontological Council of the University of Aveiro (number 09-CED/2019).

All the participants were recruited from the local community, they were healthy, did
not suffer from any disease that causes chronic pain, did not present any mental illness or
neurological disorder, and, lastly, could comprehend and answer to self-report measures.
As explained before, we studied a total of 45 participants, 27 male and 18 female, with ages
between 21 and 59 (33 ± 11 years old).
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To perform the CPT, two specially designed tanks were used. These were produced
to be able to sustain the water at the desired temperature. The physiological data were
collected with the Biosignalsplux® Explorer tool kit, with a sampling frequency of 1000 Hz.
A total of four sensors were used to record the signals, two EMG sensors, one ECG sensor,
and one EDA sensor. The ECG was collected with a triode configuration: two electrodes
were placed on the right and left side of the participant’s ribcage, and a reference electrode
was placed above the pelvic bone (as shown in Figure 1A). The EMG sensors, with a bipolar
configuration, were placed in the trapezius and triceps muscles of the non-dominant arm
(as observed in Figure 1B). Since there was no built-in reference electrode, one, serving for
both EMG signals, was placed in the clavicle (Figure 1A). The EDA sensor, which also had
a bipolar configuration, was collected on the dominant hand (as indicated in Figure 1C).
Additionally, to mark the different epochs, a handheld switch directly connected to the hub
was used. After collection, the raw ECG, EDA, and EMG signals were converted to micro-
volts (mV), according to the information provided in the Biosignalsplux sensor datasheets
( https://support.pluxbiosignals.com/wp-content/uploads/2021/10/biosignalsplux-E
lectrocardiography-ECG-Datasheet.pdf; https://support.pluxbiosignals.com/wp-content
/uploads/2021/10/biosignalsplux-Electromyography-EMG-Datasheet.pdf; https://supp
ort.pluxbiosignals.com/wp-content/uploads/2021/11/Electrodermal_Activity_EDA_Dat
asheet.pdf). Lastly, the BP was measured at three different moments during the study,
with the resource of an upper arm blood pressure monitor that was placed on the bare
upper dominant arm of the participant. Participants also had to self-report their level of
pain at different moments, using a 0–10 level NRS. With zero score standing for no pain,
one to three scores for light pain, four to six scores for moderate pain, seven to nine scores
for severe pain, and, finally, a 10 score for the worst pain imaginable.

Figure 1. Illustration of the placement sites for the different electrodes (A) ECG electrodes plus
reference electrode of the EMG; (B) EMG electrodes on the trapezius and triceps muscle plus BP
monitor; and (C) EDA electrodes.

All the information regarding the study was given to the participants, and the respec-
tive informed consent was obtained. At the beginning of the procedure, the participants had
to respond to the instrument for data collection regarding their age, gender, and health sta-
tus, thus ensuring that they complied with the inclusion criteria. That same data collection
sheet was later used to fill out their pain level.

The protocol started with a five-minute baseline recording, where the participant
had to be seated, at a comfortable position, with their arm close to their body, trying to
avoid movements. Afterwards, participants were asked to immerse the non-dominant
hand and forearm inside the warm water tank (with temperature 37 ◦C± 1 ◦C) for two
minutes, to ensure that all the participants started the CPT with similar skin temperatures.
Before the end of this task, the level of pain, with an NRS, was assessed. Afterward,
for the induction of pain, the participants immersed the arm into the cold-water tank
(with temperature 7 ◦C ± 1 ◦C) and the CPT started. If the participant was unable to
withstand the CPT for the whole two minutes, they could withdraw their hand from the
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cold tank. In this case, the participant was advised to notify their wish to remove the arm
from the tank and, before doing so, to report their current pain level and the level of the
maximum pain experienced during the CPT. If the participant was able to withstand the
entire CPT, the current and maximum pain levels were reported at the two-minute mark.
Right after removing the arm, the participants reported again the pain level, and the BP
was measured. The participant transferred the arm back to the warm water tank for two
minutes of immersion. Next, the hand and forearm were dried, and, while seated in a
comfortable position, a five-minute rest period, similar to the initial baseline, commenced.
At the three-minute point during this rest period (around five minutes after the end of the
CPT), they were asked to give their current pain level and to report the maximum level of
pain they felt in retrospect.

The scheme of the implemented protocol is shown in Figure 2.

Figure 2. Representation of the different steps of the experimental procedure, with further indication
of the moments where pain was self-reported and the BP measured. ECG, EDA, and EMG were
continuously recorded throughout the study.

3.2. Data Analysis

After acquiring the raw ECG, EMG, and EDA signals, they had to be pre-processed.
The ECG was filtered considering the frequencies between 0.5 Hz and 40 Hz. The EMG
was filtered to remove the interference of the powerline, and high-passed at 10 Hz. Lastly,
the EDA signals were low-pass filtered at 10 Hz.

After the pre-processing step, the data were normalized according to the baseline
epoch, which corresponds to the first five minutes of this study. The feature extraction
was performed using the Neurokit2 ( https://neuropsychology.github.io/NeuroKit/) in
Python. After the data were processed, it was divided into epochs according to the pressing
of the triggers. The five epochs created are the five-minute baseline recording (Baseline),
the first two-minute recordings of the hand and arm in the warm water tank (WarmWater1),
the CPT recording, the two-minute recordings of the warm water tank for the second time
(WarmWater2), and, finally, the last five minute rest (Rest).

Afterward, statistical analysis was performed to investigate differences in the extracted
features in several epochs. As all of the features failed to be normally distributed, the differ-
ences between the five different epochs were evaluated with the non-parametric Friedmann.
When a significant difference was found between the five epochs, the Wilcoxon signed-rank
test, with Bonferroni correction, was performed to evaluate which epochs were significantly
different from each other.

4. Results

Six of the 45 original volunteers had to be taken out of the study, as the participants
did not fulfill all the protocol. As such, a total of 39 individuals were used in this study.

The felt pain was assessed through self-report at four moments. On the first pain
evaluation, at the end of the WarmWater1, no participant reported pain (NRS = 0). On the
second assessment, at the end of the CPT, the average value for the pain of the participants
reported using the 0–10 level NRS, at that exact moment, was 6.85 ± 2.23.
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After removing the arm from the water, the level of pain decreased around a 1.5 score,
with participants reporting a mean of 5.37 ± 2.55. At the final assessment, participants
reported their current level of pain and tried to recall their maximum. For the current level
of pain, only three participants reported a low level of pain (NRS = 1). As with respect
to the recall of the maximum level of pain, participants reported 7.37 ± 2.19. In general,
women reported higher levels of pain when compared to men.

4.1. ECG Processing and Analysis

Regarding ECG features, the HR was computed and the maximum and minimum
values of each ECG cycle were calculated, R peaks and S peaks, respectively. Afterward,
for each epoch, the averages of those were computed.

With respect to the HRV features, and due to the different lengths of the epochs and
the short term of the CPT epoch, only the following features were considered: RMSSD,
pNN50 (time-domain features), and SampEn (nonlinear feature). The description of the
used features is presented in Table 1.

Table 1. Description of the extracted ECG features.

Feature Description

Mean HR Number of beats per minute (mean)
R peaks Maximum value of the ECG cycles (upward deflections)
S peaks Minimum value of the ECG cycles (downward deflections)
RMSSD Root Mean Square of Successive Differences between normal heartbeats. It is

a reflection of the beat-to-beat difference in the HR and is used to estimate the
alteration of the HRV caused by the vagus nerve.

pNN50 Percentage of successive RR intervals that are greater than 50 ms, associated with
the Parasympathetic Nervous System (PNS) activity

SampEn Measures the regularity and complexity of a given signal. Smaller values indicate
a regular and predictable signal

Figure 3 represents the results for the normalized mean HR. It is clear that the most
prominent boxplot is the CPT, being the epoch with the higher HR values, showing a
response to the stress caused by the pain. Observing the matrix statistical results, there is
a statistically significant difference between the mean HR during the CPT and from the
remaining epochs. From the obtained results, there appears to be no difference between the
Baseline and the WarmWater1, and between the Baseline and the Rest. However, the same
was not verified with respect to the Baseline and the second tank of warm water, which
may be the reflex of the pain induced during the CPT.

Figure 4 regards the maximum value of the ECG cycles, which correspond to the
R-peaks, showing a median value increase for the normalized R-peak amplitude from the
Baseline to the WarmWater1, with little variation of the dispersion. This increase is about
7.7% from the Baseline to the WarmWater1. However, this is followed by a decrease of
2.55% during the CPT. The median, rises, once again, reaching its peak with an increase
of about 6% during the WarmWater2. The amplitude returns to near its original value
during the Rest period. Although slight, there seems to be a reaction when the participants
placed their hands on the water. However, there is no significant difference between the
non-pain-inducing and pain-inducing water temperatures on the maximum amplitude
of the ECG cycles. The statistical analysis corroborates this, as it did not show any inter-
epochs significant differences, with the exception of the WarmWater2 for the Baseline and
the Rest, the epochs with the highest and lowest amplitude values, respectively. These
results suggest that the maximum ECG amplitude is not a suitable feature to examine the
presence of pain in an individual when subjected to CPT.
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Figure 3. Boxplot of mean HR values for each epoch (left) and respective p-values between different
epochs, with Bonferroni correction (right). The � stands for outliers.

Figure 4. Boxplot for the mean maximum ECG cycle values (left) and respective matrix of calculated
p-values between different epochs, with Bonferroni correction, for the (right).

Another ECG feature studied was the minimum value of the ECG cycles, which
corresponds to the S-peak. Figure 5 shows a decrease of the median value from the
Baseline to the WarmWater1, followed by a decrease from this epoch to the CPT. After the
pain-inducing procedure, the minimum amplitude of the ECG cycles gradually increased.
The statistical analysis for this feature shows that the CPT had significant differences from
all the other epochs, being statistically more significant with the Baseline and Rest periods.
There were no significant differences between the Baseline and Rest. Finally, regarding
WarmWater1 and WarmWater2, there was, also, no significant difference between them.
Nevertheless, both had statistically significant differences from the other groups.

Figure 6 shows the RMSSD results. Looking at the graph, the epoch with the lowest
values is the CPT. As for the other epochs, the RMSSD values are higher. However,
the Baseline and, especially, the WarmWater1 appear, in general, to have slightly lower
levels when compared to the Rest and WarmWater2 epochs. Finally, analyzing the p-values
obtained by the Wilcoxon test, there is only a significant difference between the CPT and
the WarmWater1 and between the CPT and the following epochs.

Figure 7 displays the pNN50 results. In accordance with the findings of the RMSSD,
the epoch with the lowest pNN50 values was the CPT. In this epoch, the participant with the
highest pNN50 had less than 40% of their heartbeats longer than 50 ms. Overall, the median
values in each epoch seem to be similar. Even so, the epoch with the lowest median was
the CPT (7.7%), with a 0.9% difference when compared to the Baseline and 2.4% compared
with the WarmWater1 and Rest, while the WarmWater2 was the epoch with the highest
median pNN50 (11.4%). There seems to be a consistent positive skewness on the boxplots,
which means that the values of the upper quartile are more dispersed. This may be due to
natural differences between the participants. Along with the protocol, there is a general
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increase of values from the Baseline to the WarmWater1, followed by a decrease during the
CPT and a subsequent rise during the WarmWater2 and Rest epochs, indicating a recovery
after the CPT. Unlike the previous features, there was no significant statistical difference
shown between the epochs.

Figure 5. Boxplot for the mean minimum ECG cycles (left) and respective matrix of calculated p-
values between different epochs, with Bonferroni correction, for the (right). The � stands for outliers.

Figure 6. Boxplot of RMSSD values for each epoch (left) and respective p-values between different
epochs, with Bonferroni correction (right). The � stands for outliers.

Figure 7. Boxplot of pNN50 values for each epoch. The � stands for outliers.

Finally, the regularity and complexity of each epoch are presented in Figure 8, through
the SampEn values. The epoch with the lowest value was the CPT. Another interesting
observation is the results in the WarmWater2, which had generally higher values and a
noticeable increase in the median value, which implies less predictability. Looking at the
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Baseline and WarmWater1, both have equal median values (1.45). However, the values
showed greater dispersion on the latter, which denotes greater behavioral differences in
participants when compared to the former epoch. Lastly, the Rest epoch had a similar
mean value to the two initial epochs and smaller dispersion, suggesting that, overall,
the participants were able to recover after the CPT. The statistical analysis (Figure 8—right)
only indicates a statistically significant difference between the CPT and the remaining
epochs, with the exception of the Rest.

Figure 8. Boxplot of SampEn values for each epoch (left) and respective p-values between different
epochs, with Bonferroni correction (right). The � stands for outliers.

4.2. EMG Processing and Analysis

With respect to the EMG signal, the features described in Table 2 were analyzed.

Table 2. Description of the extracted EMG features.

Features Description

RMSE and RMSA Root Mean Square for Electromyogram and Amplitude, respectively. Re-
lated to the constant force and not-fatiguing contractions of the muscles.

VAR Variance. It allows for expressing the power of the EMG signal.

Figure 9 represents the Root Mean Square (RMS) of the electromyogram (RMSE), which
is usually associated with the force a muscle exerts. It is clear that there is a progression
in the RMSE values for the trapezius muscle from the Baseline, where the muscle was at
rest, until the CPT when the participant has its forearm placed in cold water, experiencing
pain, which was then followed by a steady decrease as the participant returned to rest.
This suggests that the increase in the not fatiguing muscle contraction during CPT was,
presumably, to endure the pain. Focusing on the boxplots, another interesting observation
is near to no dispersion of the values during the non-painful epochs indicating a stable
behavior from all the participants during these periods. The greater dispersion during
the CPT may be due to different individual responses in reaction to pain. Concerning
this muscle, the statistical analysis further demonstrates a significantly different behavior
during the painful stimuli (CPT) in comparison with all the remaining epochs, especially
with the Baseline and Rest epochs. On the contrary, the RMSE values for the triceps muscle
did not indicate any type of evolution during the study, except for an increase in the Rest
epoch. As for the statistical analysis, there were no significant differences between the
values on the CPT and the other epochs, except for the Rest. These results are putting
forward that the RMSE is not an adequate feature to study the triceps contraction force,
and may be hypothesized that the trapezius is a better muscle to study the effects of pain
on the body caused by the CPT.
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Figure 9. Boxplot of RMSE for the trapezius and triceps muscle (left) with respective statistical analy-
sis with p-values, with Bonferroni correction, for the trapezius (bottom left) and triceps (bottom right).
The � stands for outliers.

Figure 10 represents the RMS of the amplitude (RMSA). The results show a general
increase in the values from the baseline to the CPT on both muscles. This implies that there
was an increase in the contraction force from the Baseline, where both muscles were relaxed,
to the CPT, where they were subjected to the cold-painful stimulus. On both muscles,
the values decreased during the WarmWater2 and Rest, evidencing that the muscle was
able to recover. Regarding the trapezius, the results present very little dispersion between
the values during the non-painful epochs. For the triceps, the same is true for the Baseline
and Rest epochs.

Concerning the results of the CPT, it is visible that the triceps had, overall, higher
RMSA values. Nevertheless, its median value is not only lower than the median of the
trapezius, but it is also more similar to the values obtained in WarmWater1 and WarmWa-
ter2, seemingly indicating that there was a great dispersion in results among the partici-
pants, with half of them not showing a significant reaction in the presence of the cold-painful
stimulus, while the opposite was true for the remaining half of the participants. As for
the trapezius muscle, a greater dispersion is also observable, especially from the median
upwards. There is also observable greater dispersion, especially from the median upwards,
and compared with the remaining epochs, presents a higher median.

For the trapezius, there are significant differences between the CPT and all the other
epochs, supporting a change in the behavior of the trapezius contraction during the painful
stimulus. It is also noticeable differences between the Rest and Warmwater1. The RMSA
of the triceps also seems to validate that assumption, as there are significant differences
between the CPT and the Baseline and between the CPT and the Rest.
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Figure 10. Boxplot of RMSA for the trapezius and triceps muscle (top) with respective statisti-
cal analysis with p-values, with Bonferroni correction, for the trapezius (bottom left) and triceps
(bottom right). The � stands for outliers.

Figure 11 presents the variance (VAR) results, of both muscles, for the different epochs
(the values for the Baseline are close to one due to the normalization). The WarmWater1
shows an almost identical behavior between the two muscles. Even so, the trapezius does
appear to have slightly higher values (both with and without considering the outliers)
and a median marginally greater value. For the cold water, the data show a reaction
to pain, with an increase in the variance. This was especially visible in the trapezius,
which had overall considerable higher values, both in the maximum values (excluding
outliers) and in the median value (18.06 mV), which is almost double the median of the
triceps (9.95 mV). Although there are changes in the variance of the EMG from both
muscles, the trapezius showed a more acute reaction to pain than the triceps. After the
CPT, there was a decrease, showing a recovery from the pain. The variance is slightly
lower relative to the WarmWater1, meaning that, before the beginning of the painful
stimulus, the participants applied more power onto their muscles, giving further evidence
that participants demonstrated apprehension at the beginning of the CPT. Nonetheless,
there are some observed outliers, especially on the trapezius, whose values are closely
similar to the ones observed on the CPT. This demonstrates that not all participant’s
musculoskeletal systems could recover immediately after the painful stimulus. During the
Rest period, the variance roughly returned to values near one, similar to the Baseline, with a
slightly higher level of dispersion observed on the trapezius. The statistical analysis for the
trapezius shows, as in previous EMG features, very significant differences between the CPT
and all the remaining epochs. As for the other epochs, only WarmWater1 and WarmWater2
showed no significant differences from each other. For the triceps, there is a significant
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difference between the CPT and the other epochs, except for the WarmWater2, which may
indicate a slightly longer recovery period of this muscle.g y g y p

Figure 11. Boxplot of VAR for the trapezius and triceps muscle (top) with respective statistical
analysis, with p-values, with Bonferroni correction, for the trapezius (bottom left) and triceps
(bottom right). The � stands for outliers.

4.3. EDA Processing and Analysis

With respect to the EDA signal, the number of SCR (Skin Conductance Response) peaks
for each epoch was added up to identify the epoch with larger sympathetic activation.
Furthermore, EDA indexes of the sympathetic nervous system (EDASymp) were also
calculated based on the findings of [17], who argue that dynamics of the sympathetic
component of the EDA signal are represented in the frequency band of 0.045–0.25 Hz.

Table 3 presents a brief description of these features.

Table 3. Description of the extracted EDA features.

Features Description

SCR peaks The number of SCR peaks (cumulative calculation of SCR peaks for each partici-
pant and epoch averaged and normalized by time in seconds).

EDASymp Indexes of the sympathetic nervous system for the frequency band of 0.045–
0.25 Hz [17].

Figure 12 (left) represents the mean sum of SCR peaks that occurred on a given epoch.
Since the epochs varied greatly in length time, the results had to be normalized by time (in
seconds). SCR peaks arise from a response to a stimulus. Considering the bar chart and the
statistical analysis, it is apparent that the values reached their highest point during the CPT
and exhibited statistically significant differences from all the other epochs. These results
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suggest that the EDA signals of the participants were sensitive to the pain induced by the
CPT. As for the remaining epochs, they registered, as expected, fewer peaks, with values
pre and post-CPT being relatively similar and with no significant statistical differences
between them. The Baseline and WarmWater1, nevertheless, have slightly higher values,
which seems to be consistent with what was already hypothesized, regarding the general
anticipation of the participants before the CPT.

Figure 12. Bar chart of SCR peaks per second with corresponding standard deviation (left); p-values
between different epochs, with Bonferroni correction (right).

The results for the EDASymp are presented in Figure 13. The results show that, overall,
although with great levels of dispersion, the epoch with the highest values is the CPT,
which seems to support the evidence that the sympathetic outflow increased when the
participants were induced into pain.

As for the statistical analysis, it shows that the only significant statistical differences
were between the CPT and both Baseline and WarmWater2 epochs. This sustains that the
CPT did induce some changes in the sudomotor activity of the participants, in comparison
with their initial state.

Figure 13. Boxplot of EDASymp values (left) and respective p-values between different epochs,
with Bonferroni correction (right). The � stands for outliers.

Figure 14 represents the evaluation of the systolic and diastolic BP values throughout
the study. From the first measurement (before the CPT) to the second measurement (right
after the CPT), the systolic and diastolic BP had an increase of 6% and 7%, respectively.
In the third BP measurement, five minutes after the ending of the CPT, both systolic and
diastolic values returned to their original values. This shows that the participants were
able to recover to their initial state, which is supported by the results of the statistical
analysis, revealing no significant differences between the first and third BP measurements
and significant differences between both the CPT and previous measurements and the CPT
and after measurements.
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Figure 14. Systolic and diastolic BP values (mean ± level of confidence) (left). Statistical differences
between the BP measurements and p-values, with Bonferroni correction, for systolic (upper right)
and diastolic (bottom right).

5. Discussion

For the study of induced pain, the different physiological systems analyzed seemed
to respond in accordance with what was hypothesized. On the ECG, the results on the
meanHR were similar to what was described in previous literature [2–4,14,18], and is most
likely a result of the increased sympathetic outflow on the body. As for the RMSSD, an HRV
metric, which is an estimation of the vagally mediated changes, demonstrated a decrease
in the parasympathetic outflow to the cardiovascular system during the pain-inducing
task. The RMSSD also showed lower values for the two epochs before the CPT, when
compared to those that preceded it. This may be a result of a higher level of anxiety felt by
the participants before being subjected to pain. The statistical analysis also corroborates
this conjecture, as there were no significant differences observed between the Baseline and
CPT. The SampEn, which measures the regularity of the signal, demonstrated that the pain
induced by the CPT caused a reaction in the participants that lead to a more consistent
heartbeat pattern in their cardiac system. The WarmWater2 presented higher values, which
implies less predictability and may be attributed to the recovery time that the body needed
to return to the initial state by decreasing its HR. Lastly, the mean amplitude of S-peaks
showed a progressive decrease in values until the CPT, followed by a progressive increase
in the latter epochs. The statistical analysis for this feature also endorsed that there was a
response in the S-waves of the ECG to the pain. In general, the results for the ECG features
show that the cardiac system seems to react to the cold-painful stimulus. However, it must
be pointed out that the RMSSD, the only time-domain HRV metric analyzed, can only
contribute to the observation of the PNS, which means that it is not possible to conclude if
the reaction observed on the ECG signal is due to the activation of the Sympathetic Nervous
System (SNS) or, simply, due to the suppression of the PNS.

The [19] concluded that, when in a state of stress, due to the decrease in parasympa-
thetic activity and increase in sympathetic, the energy will move from the cardiac system
into the muscle. An overall analysis of the results for the EMG signal discloses that there
was a reaction on part of the musculoskeletal system to the cold pain stimulus. As the
RMSA, which is the representation of the non-fatiguing force, both muscles showed greater
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median values and large dispersion for the CPT epoch—thus corroborating the premise of
reaction on the ANS due to the presence of pain, more evident for the trapezius. The statis-
tical analysis shows that the Baseline presents significant differences with all the remaining
epochs, indicating that, during the Rest, the muscle did not recover to its original state.
The VAR, a representation of the power, also conveys a response of the muscle to the in-
duced pain, showing that the trapezius had a more acute reaction to the pain. For this study,
in general, the trapezius seemed to be a consistently more stable source of information in
comparison with the triceps. In addition, and according to study [19], our findings indicate
an increase in the SNS reactivity, earlier in the procedure, which was further augmented
during the CPT intensifying the activity recorded on the EMG.

Overall, the results for the EMG features validate the previous research in the area [15,19]:
firstly, the RMSA, where both muscles showed a well-marked of value boxplots for the
CPT epoch, thus corroborating the premise of reaction on the ANS due to the presence of
pain. The statistical analysis shows that the Baseline presents significant differences with
all the remaining epochs, indicating that, during the Rest, the muscle did not recover to the
original state, whereas the triceps show differences between the baseline and the remaining
epochs, except for the Rest period, indicating that it was able to recover.

For the EDA, it is noticeable that there was a response in the sudomotor activity of
the participants when subjected to the painful stimulus. Comparing both time domain
and frequency domain analysis, the former yielded better results, especially when taking
into account the statistical results. Since the EDA features only measure the SNS, it can
be concluded that, indeed, this system was activated during the pain induction task
(CPT), in accordance with related works reported [4]. Finally, the BP shows statistically
significant differences between consecutive measurements, which is in agreement with the
literature [18,20,21].

Overall the results of this study are similar to what was reported in related
works [2–4,14,15,18–21]. Nonetheless, this investigation goes further than previous lit-
erature, since it uses a higher number of physiological data, and, thus, a deep analysis of
the effects of pain in the body.

6. Conclusions and Further Research

A new data collection protocol for induced pain is described and evaluated in the
present work. For that, four different signals (ECG, EMG, EDA, and BP) were collected.
The major innovation in this protocol was the use of a wider range of signals, which allowed
for a broader analysis of the ANS reactivity on the various body systems.

Under this study, a deep evaluation of physiological data was performed, and, thus,
a more concrete analysis of the effects of pain in the body was provided.

From the ECG, a significant increase in the HR and a decrease in the PNS activity were
observed, based on the HRV metrics calculated, as a result of the cold-painful stimulus.
Furthermore, the ECG also suffered a change in its amplitude, which was particularly
noticeable in the S-wave evaluation.

The EMG, recorded both on the trapezius and triceps muscles, also showed changes
brought on by the pain-inducing protocol—mainly an increase in amplitude during the
CPT, in comparison with the other resting periods. Moreover, the results on the trapezius
muscles seemed to indicate that the stabilization of the values after an initial increase was
crucial to withstanding the painful stimulus for the participants who completed the CPT.

Both time and frequency domain features on the EDA demonstrated an increase in the
values during the CPT and hence an increase in the SNS.

Finally, the BP shows statistically significant differences between consecutive measure-
ments, which is in accordance with the literature.

Since this study uses a variety of physiological signals, future work should be con-
cerned with the study of the signals interrelation in the process of pain and devoted to
multimodal classification providing further reliable measurements of pain. Moreover,
a setback in this study is the short length of time recordings of the CTP, which hindered the
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study of the majority of HRV metrics. Thus, a protocol with an increased length of the CPT
would allow the investigation into the influence of the SNS on the cardiovascular system.
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Abstract: Electroencephalography is one of the most commonly used methods for extracting infor-
mation about the brain’s condition and can be used for diagnosing epilepsy. The EEG signal’s wave
shape contains vital information about the brain’s state, which can be challenging to analyse and
interpret by a human observer. Moreover, the characteristic waveforms of epilepsy (sharp waves,
spikes) can occur randomly through time. Considering all the above reasons, automatic EEG signal
extraction and analysis using computers can significantly impact the successful diagnosis of epilepsy.
This research explores the impact of different window sizes on EEG signals’ classification accuracy
using four machine learning classifiers. The machine learning methods included a neural network
with ten hidden nodes trained using three different training algorithms and the k-nearest neighbours
classifier. The neural network training methods included the Broyden–Fletcher–Goldfarb–Shanno
algorithm, the multistart method for global optimization problems, and a genetic algorithm. The
current research utilized the University of Bonn dataset containing EEG data, divided into epochs
having 50% overlap and window lengths ranging from 1 to 24 s. Then, statistical and spectral features
were extracted and used to train the above four classifiers. The outcome from the above experiments
showed that large window sizes with a length of about 21 s could positively impact the classification
accuracy between the compared methods.

Keywords: EEG; seizure detection; window size; neural network; genetic algorithm; k-nearest
neighbours

1. Introduction

Epilepsy is the most common condition affecting the central nervous system, where
80% of the patients are citizens from developing or middle-income countries [1]. Besides
the young population, it can also occur in the elderly population (people over 65 years
old) [2]. Epilepsy has a severe economic impact in terms of healthcare needs. It causes
premature deaths and can lead to lost work productivity. Considering all the above reasons,
it is an essential topic in the biomedical sciences [1,3].

Epilepsy is a chronic brain disease characterized by seizures affecting all age groups.
It causes recurrent seizures, ranging from one episode per year to several episodes per
day. There is a distinction between epilepsy and seizures since not all seizures are epileptic
fits. The main characteristic of epilepsy is that it is responsible for triggering unprovoked
recurrent seizures caused by chronic abnormal bursts of electrical discharges in the brain [4].
This process is called “epileptogenesis” and makes epilepsy highly unpredictable. Other
types of seizure disorders can be activated by various causes, which can be measured,
including stroke, tumours, and other space-occupying lesions. Secondary or symptomatic
epilepsy is epilepsy caused due to an underlying abnormality of the structure of the brain
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and is the type of epilepsy where preventive measures can be applied according to various
causes. It can be noted that more than 60% of the cases lack a definitive cause. This epilepsy
type is called primary or idiopathic epilepsy and is not preventable but can be treated using
antiepileptic medicines [3,5].

The occurrence of epileptic seizures is due to a malfunction in the brain, which triggers
a sudden excessive electrical discharge in a group of cells in the brain’s cerebral cortex. This
malfunction causes motor function abnormalities, resulting in tonic–clonic muscle spasms.
The vast and abrupt energy surge triggered by the brain’s neurons is the cause of epileptic
seizures, which show differences in their properties. Seizures range from a few seconds to
severe, generalized, and prolonged convulsions, leading to dangerous and life-threatening
situations. Seizures’ characteristics depend on the specific brain region involved, the extent
of the abnormal electrical discharge and its spread [3,6].

The limited knowledge regarding the human brain creates a challenge in understand-
ing the properties of a brain with epilepsy. The disease’s temporary symptoms include
mindfulness loss, minor (almost undetectable) abnormalities in movement, mild muscle
twitching, and abnormalities in visual, auditory, and gustatory senses and mood. The
epileptic seizures start and finish unexpectedly, without involving interference from the
external environment, and it is possible to remain unnoticed. For this reason, detecting and
measuring epileptic seizures is a challenging task [3,7].

Seizure occurrence is not always connected to epilepsy since, statistically, 10% of the
world population will have one seizure during their life [3]. These nonepileptic seizure
types can be caused by chemical imbalances. If two or more seizures occur without a
specific reason, it may have been caused due to epilepsy. In case of epileptic seizures, the
patient can start receiving antiepileptic medicines to improve their safety and quality of
life. The unpredictable nature of epileptic seizures can be a severe life-threatening cause
(e.g., if they are triggered while driving a car or swimming). The most common method for
diagnosing epilepsy is an electroencephalogram (EEG) signal analysis. EEG signals reflect
the brain’s electrical activity at a given timestamp [3].

An EEG can record the electrical brain activity using a series of electrodes placed on
the patient’s scalp. Brain abnormalities that are not related to epilepsy can be analysed by
studying EEG signals. Soikkeli et al. [8] investigated the generalized slowing of the EEG in
patients with Parkinson’s disease. Wieser et al. [9] studied Creutzfeldt–Jakob disease using
EEG signals while Neto et al. [10] conducted a regularized linear discriminant analysis of
EEG features taken from patients with dementia [3]. Overall, EEG has been used for the de-
tection and quantification of many neurological diseases [11] or conditions [12] or cognitive
states such as stress induction [13,14], thus becoming a significant tool for neurologists.

The study of epileptic seizures analyses EEG signals received before and during
the seizures, which contain patterns that differentiate them from those recorded in a
nonepileptic person. The identification of epileptic seizures is made by observing the
EEG data. For this reason, an EEG signal analysis approach which provides information
regarding the brain’s condition must be applied [3].

This paper explores the impact of the window size on classifying epileptic short-term
EEG signals using four machine learning methods. The machine learning methods used
were a single-layer neural network (SLNN) with ten hidden nodes, trained using three
different training algorithms, and the k-nearest neighbours (K-NN) classifier [15]. The
neural network training methods were the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [16], the multistart algorithm for global optimization problems proposed by [17],
and the modified genetic algorithm (GA) proposed by Tsoulos [18].

This paper is structured into six main sections, starting with an “Introduction”, which
explains the significance of epilepsy, the importance of EEG for its diagnosis, and includes
a short description of the research’s motivation. The “Related Work” section contains
existing work regarding automated methods for diagnosing epilepsy. The “Methods”
section presents four machine learning methods for exploring the window size’s effect
on classifying epileptic short-term EEG signals. The “Results” section analyses the four
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machine learning algorithms’ results presented above using different window types applied
to the University of Bonn epilepsy database [19]. The following two sections contain the
“Discussion” and “Conclusion”. Finally, the “Methods” section describes each machine
learning method used to explore the window size effect on classifying epileptic short-term
EEG signals.

2. Related Work

Existing seizure detection works include the method proposed by Naghsh-Nilchi and
Aghashahi [20]. The proposed approach was based on two eigensystem pseudospectral
estimation methods: eigenvector and multiple signal classification for time-domain EEG
signal pseudospectrum estimation. The pseudospectrum was partitioned into sub-bands,
each having a smaller frequency. Then, a feature extraction stage was applied to produce
the input to a multilayer perceptron (MLP). The MLP classified the input vectors into three
classes: normal, interictal and ictal. Tzallas et al. [21] compared various time–frequency
(t-f) analysis methods for categorizing epileptic seizures EEG segments. A three-stage
analysis was utilized, starting with the t-f analysis and a power spectrum density (PSD)
calculation from each EEG segment. The next stage involved the extraction of a feature set
by measuring the signal segment fractional energy on specific t-f windows. In contrast, the
third stage was the categorization (normal and epileptic) of the EEG segment using artificial
neural networks (ANNs). Martinez-del Rincon et al. [22] used an EEG analysis system for
automatic epilepsy seizure detection that could exploit EEG data’s underlying nonlinear
nature. Hassan and Subasi [23] addresses the automated seizure detection problem using
single-channel EEG signals. The EEG signal segments were initially decomposed using
the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
signal processing model. The training and testing data were formed by extracting six
spectral moments from the CEEMDAN mode functions, which were entered as inputs
to the linear programming boosting (LPBoost) classifier. Juarez-Guerra et al. [24] used a
wavelet analysis system for identifying epilepsy seizures from EEG signals. The proposed
system utilized the discrete wavelet transform (DWT) and the maximal overlap discrete
wavelet transform (MODWT) for extracting a feature set. This set was entered as input to
an ANN, which performed the classification task. Hossain et al. [25] used a CNN for feature
learning from raw EEG data to detect seizures on an open-access EEG epilepsy dataset
from the Boston Children’s Hospital [26]. The proposed model extracted spectral and
temporal features from EEG epilepsy data and utilized them to learn the overall structure
of a seizure that was less sensitive to variations. Nicolaou and Georgiou [27] explored the
use of permutation entropy (PE) as a feature for automatic epilepsy seizure detection. Their
method utilized a support vector machine (SVM) for the binary classification task and was
based upon the observation that the PE dropped during a seizure. Shoeb and Guttag [28]
presented a method utilizing an SVM to construct patient-specific classifiers that could use
EEG signals from patients’ scalps to detect the onset of epileptic seizures. Guo et al. [29]
proposed an EEG-based method for automatic epileptic seizure detection, which utilized
the approximate entropy features derived from the multiwavelet transform. These features
were introduced as input data to an ANN for classifying the EEG signals as epileptic or
nonepileptic. Subasi [30] decomposed EEG signals into their frequency sub-bands using
a wavelet transform. Then, these sub-bands were introduced as input to an ANN for
classification into two categories (epileptic and nonepileptic). Moreover, this research
developed and compared classifiers based on feedforward error backpropagation ANNs
and dynamic wavelet networks. The comparison was made to test their accuracy in EEG
signals classification. Ghosh-Dastidar et al. [31] combined the mixed-band wavelet-chaos
methodology [32,33] with a principal component analysis (PCA)-enhanced cosine radial
basis function neural network classifier for classifying EEG signals into three categories
(healthy, ictal, and interictal). Guo et al. [34] proposed a method for automatic epileptic
seizure detection. This method utilized line length features based on a wavelet transform
multiresolution decomposition and introduced them as input to an ANN for classifying
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the EEG signals into two categories (healthy or epileptic). Hassan et al. [35] proposed an
automated epilepsy diagnosis system based on a tuneable-Q factor wavelet transform and
bootstrap aggregating. Finally, the general-purpose method proposed by Tsoulos et al. [36]
utilized genetic programming to create ANNs. The proposed method could infer the
ANN’s architecture and estimate the optimal number of neurons for each given problem.

3. Materials and Methods

This research studied the four machine learning methods that are analysed in the
Methods section for exploring window size’s effect on classifying epileptic short-term
EEG signals.

The well-established epileptic database from the University of Bonn was used for the
evaluation, since it is the most used database from the published databases. The Bonn
database consists of 5 groups of recordings namely Z-O-N-F-S. The Z and O datasets
consist of EEG recordings of healthy, nonepileptic participants with closed and open eyes,
respectively. The N, F, and S subsets include intracranial EEG recordings acquired from
five epileptic patients, during presurgical examination. Specifically, the N subset includes
parts of interictal recordings originating from the epileptic zone of the opposite hemisphere,
while the O subset includes parts of EEG recordings obtained from the epileptic zone. The
S subset includes 100 intracranial EEG recordings, obtained from the epileptogenic zone
during epileptic activity. The epileptogenic zone was the hippocampus and no further
patient data were provided.

For the classification task, all 5 subsets of the Bonn database were used, for a 5-class
Z-O-N-F-S problem. Each group consisted of 100 single-channel recordings with 23.6 s
duration and all recordings were used for the training and testing. Before the experiment, a
low-pass FIR filter at 40 Hz was applied to all recordings, and then the recordings were
split into datasets of different time window lengths. The examined window lengths were
1–24 s (24 s being in fact 23.6 s).

For each examined window length, a set of extracted univariate and spectral features
were calculated to create a feature vector. Specifically, the following time-domain features
were extracted: mean, median, variance. Moreover, a fast Fourier transform was employed
to transform the signal into the frequency domain and the spectrum amplitude of four EEG
bands was calculated. The EEG bands were:

• Alpha band (8–12 Hz)
• Beta band (12–25 Hz)
• Theta band (4–8 Hz)
• Delta band (1–4 Hz)

The following subsections analyse the machine learning methodologies that were
tested for the classification of the 5-class problem and the evaluation of the time window
length. Particularly, Sections 3.1–3.3 analyse the optimization techniques used to optimize
the hyperparameters of a 10-layer multilayer perceptron neural network. Section 3.4
analyses the last classification methodology, k-nearest neighbours (kNN).

3.1. The BFGS Method

The BFGS algorithm is a quasi-Newton approach utilizing a new updating formula
which has become very popular and has been subjected to numerous modifications. Quasi-
Newton methods are used to solve unconstrained optimization problems [16,37–41].

An unconstrained optimization problem can be described by using Equation (1):

min
x∈Rn

f (x) (1)
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In this formula, Rn denotes an n-dimensional Euclidean space while f : Rn → R is
continuously twice differentiable. The update formula of BFGS is defined in Equation (2)
where sk and yk are the step vectors, and g is used to denote the gradient for Equation (1).

sk
de f
= xk+1 − xk

yk = gk+1 − gk
(2)

The BFGS method is considered the best among all quasi-Newton based methods. The
updating formula for BFGS takes the form shown in Equation (3).

Bk+1 = Bk +
ykyT

k
yT

k sk
− BksksT

k Bk

sT
k Bksk

(3)

In this formula, the Bk symbol denotes the Hessian approximation at xk, and the matrix
Bk+1 is generated by (3) to satisfy the following secant formula:

Bk+1sk = yk (4)

The above secant formula is considered an approximation of the Newton relation. The
secant can be fulfilled if sT

k yk > 0, which is called the curvature condition and ensures that
the BFGS updating matrix shown in (3) is positive definite [16]. Unconstrained optimization
problems are solved using an iterative procedure. Equation (5) defines the iterative formula
for quasi-Newton methods.

xk+1 = xk + akdk (5)

In this formula, the term ak defines the step size while dk defines the search direc-
tion. The step must be a positive number in order f (x) to be able to reduce sufficiently,
while both ak and dk must be chosen carefully for an efficient search line. The step size
can be calculated by using various formulas divided into two main categories (exact or
inexact line search). An ideal choice would be the exact line choice defined by the formula
ak = arg min( f (xk + akdk)), a > 0 but it is computationally intensive to define this value.
The reason behind this problem is that it requires a large number of evaluations for the
objective function f and its gradient g. The inexact line search has a number of formulas
proposed by different researchers, including the formulas of Armijo [42], Wolfe [43,44],
and Goldstein [45] with the first one being the easiest one to implement. The Armijo search
line formula is defined in (6).

f (xk)− f (xk + akdk) ≥ −σakgT
k dk (6)

Given s > 0, λ ∈ (0, 1), σ ∈ (0, 1) and ai = max{s, sλ, sλ2, . . . } such that k =
0, 1, 2, 3, . . . , the reduction in f should be proportional to both the step size and direc-
tional derivative gT

k dk [16].
The search directions are important for determining the f value, and the quasi-Newton

methods can be defined using the following equation.

dk = −B−1
k gk (7)

In this formula, Bk is a nonsingular symmetric approximation matrix of the Hessian
defined in (3). The initial matrix B0 is an identity matrix updated by an update formula.
When d1 is defined from the above formula and Bk is a positive definite matrix, then
dT

k = −gT
k B−1

k gk < 0, which makes dk a descent direction. Algorithm 1 describes the
iterative process of the BFGS algorithm [16].
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Algorithm 1 : The BFGS Algorithm

1: Having a starting point x0 and B0 = In. Set the values for s, β, and σ.
2: End if ‖g(xk+1)‖ < 10−6.
3: Calculate the search direction using Formula (7).
4: Calculate the difference sk = xk+1 − xk and yk + gk+1 − gk.
5: Update Bk by (3) in order to obtain Bk+1.
6: k = k + 1.
7: Go to step 2.

The current research uses the BFGS variant proposed by Powell [46]. The main
advantage of Powell’s methodology is that the step along the search direction is not
restricted by constraints having small residuals, which significantly increases efficiency,
specifically the nearly degenerate constraints.

3.2. The Multistart Method

The multistart method described in Algorithm 2 is a two-phase stochastic black-
box global optimization approach consisting of a global and a local phase. In black-box
optimization problems, no known structure can be used, and the problem can be formulated
by minimizing, for example, a continuous function f over a compact set S ⊆ Rn. Due to
the nature of stochastic problems where the outcome is random, it is particularly suitable
for black-box optimization problems. Another characteristic of these approaches is that
they require little to no assumptions about the optimization problem. On the other hand,
they can only provide a probabilistic convergence guarantee in the best-case scenario [47].

In the first phase of a two-phase method, many randomly sampled points in the feasi-
ble region are used to evaluate the function. In the second phase, a local search procedure
is applied to each sample point mentioned above, yielding various local optima. Amongst
all local optima, the best one forms the resulting estimation of the global optimum [17,47].

Algorithm 2 : The Multistart Algorithm

1: i = 0 and X∗ = .
2: Take a random sample x from S.
3: Start a deterministic local search process at x and conclude at a local minimum x∗.
4: Check if a new minimum is found.
5: x∗ /∈ X∗ then
6: i ← i + 1.
7: x∗i = x∗.
8: X∗ ← X∗ ∪ {x∗i }.
9: end.
10: If ending criteria have been met, terminate the process.
11: Go to step 2.

3.3. The Modified GA Method

GAs are global optimization methods based on Charles Darwin’s theory of natural
evolution. A GA begins with a pool of candidate solutions, which are the artificial equiv-
alent of chromosomes in biological organisms. Then, these chromosomes are evolved
in an iterative process using the selection, crossover, and mutation genetic operations.
The process is continued until the termination criterion is reached, or the algorithm con-
verges to the best chromosome, which can be the optimal or a suboptimal solution of the
problem [18].

The real-coded GA proposed by Kaelo and Ali [48] can be seen in Algorithm 3. In
this algorithm, the problem is to find the global minimum of the following unconstrained
optimization problem.

minimize f (x) subject to x ∈ Ω (8)
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where f (x) : Ω ⊂ Rn → R is a continuous real-valued function and x is an n-dimensional
continuous variable vector. The term Ω denotes a box or other region which is easy to
sample. The xopt point is the global minimizer of f if fopt = f (xopt) ≤ f (x), ∀x ∈ Ω. At
each iteration of the algorithm (generation), the candidate points set S is updated which
new chromosomes (offspring) created by the reproduction process (crossover and mutation)
of the algorithm [18,48].

Algorithm 3 : The Real-Coded GA

1: Create N random points in Ω from the uniform distribution.
2: Store the points in set S.
3: iter = 0.
4: Evaluate each chromosome using its function value.
5: If the termination criteria are achieved, stop the GA.
6: Select m ≤ N parents from S.
7: Create m offspring using the selected parent chromosomes of the previous step.
8: Mutate the offspring with probability pm.
9: Remove the m worst chromosomes and replace them with the offspring.
10: Create a trial point x̃. If f (x̃) ≤ f (xh) where xh is the current worst point in S,

then replace xh with x̃.
11: iter = iter + 1.
12: Go to step 4.

The real-coded GA starts by creating the initial population in the first two lines,
followed by the initialization of the generation counter. The following step evaluates the
population. In step 5, the GA checks if the termination criteria have been achieved and
terminates the algorithm. The termination is done when | fh − f1| ≤ e or the maximum
number of iterations has been reached. The term fh denotes the function value of the most
optimal chromosome in the population, while fh denotes the function value of the least
optimal chromosome in the population. If the termination criteria have not been achieved,
the evolution process continues. In step 6, the selection of two parent chromosomes
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) for the reproduction process is done using the
tournament selection [49] mechanism. Step 7, creates the offspring using the equations
shown in (9)

x̃l = aixi + (1− ai)yi
ỹl = aiyi + (1− ai)xi

(9)

where ai ∈ [−0.5, 1.5] [50]. The mutation procedure in step 8 follows the formula depicted
in (10).

x′i =
{

xi + Δ(iter, ri − xi), t = 0
xi − Δ(iter, xi − li), t = 1

(10)

In this formula, t is a random number taking the values 0 or 1, iter is the current
generation and Δ(iter, y) = y(1− r(1−

iter
ITERMAX )) with r ∈ [0, 1] and ITERMAX being the

maximum allowed number of generations. Step 9 replaces the m worst chromosomes in
the population with the offspring. Step 10 is the local technique that creates trial points
to replace the least optimal points in the population. Using the following equation, this
technique initially selects a random point y from S and creates a trial point x̃i.

x̃i = (1 + γi)xl,i − γiyi, i = 1, . . . , n (11)

where γi ∈ [−0.5, 0.5] and xl,i is the ith component of the most optimal chromosome xl . The
technique ends by replacing the least optimal point xh in S with x̃, if f (x̃) ≤ f (xh) [18,48].

The current paper used the modifications proposed by Tsoulos [18]. These mod-
ifications include a novel stopping rule, a new mutation operator, and a local search
procedure application. This procedure is applied to the most optimal chromosome xl every
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Kls generations, with Kls being a constant that defines the frequency of the applied local
search procedure.

3.4. The K-NN Classifier

The K-NN algorithm is one of the simplest and oldest classification algorithms [15].
It has a set containing n samples Dn = {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ Rd are the
vectors containing the features and Yi ∈ {ω1, ω2, . . . , ωM} are the labels which correspond
to each class. The K-NN algorithm categorizes a new input pattern x into the class of its
nearest neighbour in the n training examples. The identification of the closest class is made
using the Euclidean distance (although other distance metrics can be used) [51,52]. The
K-NN method can be seen in Algorithm 4.

Algorithm 4 : The K-NN Algorithm

1: Classify (X, Y, x).
2: for i = 1 to n do
3: Calculate the Euclidean distance dE(Xi, x).
4: end.
5: Compute set I having the indices for the k smallest distances dE(Xi, x).
6: Return majority label for Yi where i ∈ I.

4. Results

The current research investigated the role of the window size in epilepsy EEG signal
analysis by running a series of experiments using the database from the University of
Bonn [19]. The tests were performed using a 10-fold cross-validation and are visualized in
Table 1 and Figure 1.

Figure 1. Flowchart of the proposed methodology.

All experiments were repeated 30 times with the window size ranging from 1 to
24 s. The number in each method’s cell represents the average classification accuracy of
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the test set for each window size (1–24 s). The accuracy for one fold was defined as the
number of correctly classified instances divided by the total number of instances, as seen in
Formula (12).

accuracy =
correctly classi f ied instances

total number o f instances
(12)

The accuracy was calculated by estimating the average value over all folds and then
calculating the average value over all experiment runs. The SLNN used for training in the
Broyden–Fletcher–Goldfarb–Shanno (BFGS), multistart and modified genetic algorithm
(GA) methods had ten hidden neurons, and in every iteration of the multistart approach, a
BFGS method was used to optimize the weights. Finally, the k-nearest neighbours (K-NN)
method with K = 2 was used.

In the experimental results depicted in Table 1, the bold fonts describe the time window
that achieved the highest accuracy for each methodology.

Table 1. Experimental Results expressed in classification accuracy for the four algorithms employed
regarding time windows ranging from 1 to 24 s. BFGS stands for Broyden–Fletcher–Goldfarb–Shanno
algorithm. GA stands for genetic algorithm, K-NN stands for k-nearest neighbours.

Epoch (s) BFGS Multistart GA K-NN

1 s 56.86% 57.68% 56.91% 68.9%
2 s 65.06% 65.56% 65.06% 75.14%
3 s 69.7% 69.57% 69.01% 76.66%
4 s 72.62% 70.53% 70.06% 76.99%
5 s 75.69% 73.46% 71.96% 77.89%
6 s 74.63% 76.37% 75.44% 79.53%
7 s 74.76% 75.84% 74.43% 79.1%
8 s 76.06% 75.55% 74.95% 78.41%
9 s 76.25% 77.64% 76.5% 79.88%
10 s 76.96% 77.12% 76.38% 80.05%
11 s 76.42% 79.01% 77.2% 79.08%
12 s 76.55% 78.26% 77.06% 79.84%
13 s 77.04% 78.04% 76.05% 78.56%
14 s 77.81% 78.26% 77.13% 79.01%
15 s 79.75% 78.98% 78.41% 78.68%
16 s 77.35% 80.98% 78.59% 79.52%
17 s 77.7% 78.05% 77.82% 79.92%
18 s 78.5% 79.24% 78.10% 79.92%
19 s 80.7% 79.71% 78.47% 79.49%
20 s 80.92% 81.59% 80.78% 80.00%
21 s 80.92% 81.23% 81.06% 79.25%
22 s 80.04% 80.88% 81.00% 81.17%
23 s 80.69% 80.88% 80.89% 78.88%
24 s 80.25% 80.43% 79.98% 79.04%

It is seen that the window size dramatically impacted the accuracy values since when
the window had a size of 20–21 s, the accuracy had its highest value and decreased when
the window size gradually increased or decreased. The multistart method obtained the
highest accuracy with a window size between 20 and 21 s (81.59%). Regarding the BFGS
algorithm, the highest accuracy was achieved at with 20-s and 21-s time windows (80.92%),
while the GA methodology achieved the highest accuracy when the time window was 21 s
(81.06%). Finally, the K-NN algorithm achieved its best accuracy scores with a 22-s time
window (81.17%).

Table 2 illustrates other standard evaluation measures for the K-NN algorithm, namely
the area under the ROC, the area under the PRC, and the kappa statistic. The results of this
table are in agreement with Table 1, with the 20–21-second time windows achieving the
best performances at every evaluation metric.
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Table 2. Area under the ROC, area under the PRC, and kappa statistic regarding the classification
performance of the K-NN algorithm.

Epoch (s) AOC PRC k-Stat

1 s 78.91% 48.6% 62.21%
2 s 79.89% 50.2% 68.74%
3 s 80.68% 50.1% 75.23%
4 s 86.44% 53.3% 71.95%
5 s 85.92% 56.8% 74.62%
6 s 85.45% 54.0% 76.38%
7 s 83.21% 58.1% 77.55%
8 s 87.21% 60.9% 77.19%
9 s 87.17% 61.8% 80.02%
10 s 86.57% 64.3% 78.84%
11 s 90.89% 64.2% 83.40%
12 s 90.49% 64.8% 82.32%
13 s 89.04% 68.1% 82.14%
14 s 88.88% 68.3% 82.85%
15 s 86.22% 70.4% 79.94%
16 s 85.45% 70.1% 80.15%
17 s 85.92% 73.6% 82.15%
18 s 84.70% 73.0% 84.29%
19 s 86.07% 74.7% 85.42%
20 s 92.22% 78.5% 85.49%
21 s 92.51% 76.5% 83.26%
22 s 88.70% 77.3% 82.44%
23 s 82.28% 75.7% 83.51%
24 s 88.37% 73.7% 80.00%

5. Discussion

The current article investigated the time window size’s impact on EEG signal clas-
sification for epilepsy detection. The experimental part utilized three neural networks
trained using three different algorithms (BFGS, multistart, modified GA) and the K-NN
classifier. The experiments were repeated 30 times, and the average classification accuracy
was reported.

The primary outcome from the experimental results summarized in Table 1 was that
the window size in epilepsy EEG signals significantly impacted the classification accuracy
of the compared methods. It was shown that for more accurate results, the window size
must be between 20 and 21 s. Another significant outcome was the mixed results regarding
the method which managed to get the best accuracy for each window size. There was
no clear winning method for all window sizes, but the results varied when the window
size changed.

An appropriate window length selection is crucial for machine learning methodologies
on signal data (such as EEG). Too small time windows may fail to capture each condition’s
signal characteristics. For example, a very small time window in an epilepsy methodology
may result in not being able to capture the complete seizure waveforms. On the other side,
too large time windows may capture signal properties of two different situations (such as
ictal state and interictal state), thus negatively affecting the classification performance. The
proposed study can be utilized in future methodologies that propose a classification scheme
for EEG epilepsy detection problems. Our study’s resulting optimal window length agreed
with another study proposed by Tzimourta et al. [53]. This study evaluated the optimal
window length using different classification algorithms (naive Bayes, MLP, support vector
machines, and decision trees) and found that 21-s windows achieved the best accuracy
results. Moreover, our results suggested that the 20–21-s windows achieved the best
performance. These findings agreed with Thangavel et al. [54], who classified epileptic
signals using different features and examined different window lengths, concluding that
the 20-s time window generated some of the best performance results.
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However, some limitations regarding our methodology should be mentioned. One of
them is the restricted length of the recordings, which did not allow exploring time windows
larger than 24 s. To alleviate this limitation, a future extension of this methodology that
incorporates longer EEG recordings from other publicly available databases should be
performed. Furthermore, no wavelet transformations were used for the feature extraction
step, as well as a limited number of machine learning algorithms were used (neural
networks and K-NN), limiting the ability to generalize these findings to all automatic EEG
epilepsy detection methodologies.

6. Conclusions

Epilepsy has attracted much attention from the research community because it can
affect various people ranging from very young to the elderly. It can also have a serious
economic impact on healthcare needs; it can cause premature deaths and lead to lost work
productivity. Consequently, much scientific effort has been made to propose machine
learning methodologies that perform automatic epilepsy detection from EEG signals. These
methodologies commonly perform epoching of the time signals to produce the experiment’s
training and test set. Thus, the window size in the signal decomposition is significant for
detecting subtle changes in the EEG recording. This study evaluated the optimal time
window length for four classification algorithms: three neural networks trained using the
BFGS, multi-start and modified GA methods and the K-NN approach. Time windows
from 1 to 24 s were explored and examined regarding the classification accuracy of the four
algorithms. The epoching of 20–21 s achieved the best classification performance.
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Abbreviations

The following abbreviations are used in this manuscript:

EEG electroencephalogram
K-NN k-nearest neighbours
BFGS Broyden–Fletcher–Goldfarb–Shanno
SLNN single-layer neural network
GA genetic algorithm
BCI brain–computer interface
MLP multilayer perceptron
t-f time frequency
PSD power spectrum density
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ANNs artificial neural networks
CEEMDAN complete ensemble empirical mode decomposition with adaptive noise
LPBoost linear programming boosting
DWT discrete wavelet transform
MODWT maximal overlap discrete wavelet transform
PE permutation entropy
SVM support vector machine
CSI combined seizure index
PCA principal component analysis
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Abstract: Most methods for repairing damaged old photos are manual or semi-automatic. With these
methods, the damaged region must first be manually marked so that it can be repaired later either
by hand or by an algorithm. However, damage marking is a time-consuming and labor-intensive
process. Although there are a few fully automatic repair methods, they are in the style of end-to-end
repairing, which means they provide no control over damaged area detection, potentially destroying
or being unable to completely preserve valuable historical photos to the full degree. Therefore, this
paper proposes a deep learning-based architecture for automatically detecting damaged areas of old
photos. We designed a damage detection model to automatically and correctly mark damaged areas
in photos, and this damage can be subsequently repaired using any existing inpainting methods. Our
experimental results show that our proposed damage detection model can detect complex damaged
areas in old photos automatically and effectively. The damage marking time is substantially reduced
to less than 0.01 s per photo to speed up old photo recovery processing.

Keywords: deep learning; damage area detection; damaged old photo

1. Introduction

Old photos can often contain various levels of damage caused by human improper
storage or environmental factors that deteriorate the integrity of photos. Fortunately, digital
image processing technology can be applied to recover the content of these photos to its
original state. The existing recovery methods for damaged old photos can be divided
into non-automatic and automatic processes according to whether human intervention is
required. The non-automatic methods can be further subdivided into manual and semi-
automatic methods. Manual recovery is made through a variety of image editing tools,
such as Photoshop or GIMP [1], to recover damaged photos based on user knowledge. The
semi-automatic method manually marks the damaged areas on the photos and then applies
the inpainting methods [2,3] to recover the contents of these locations. The mentioned
works focused on the design of repair methods. For example, Li et al. [2] modified the
confidence computation, strategy matching, and filling scheme to improve the inpainting
method. Zhao et al. [3] proposed an inpainting model based on the generative adversarial
network (GAN) and gated convolution [4]. With their methods, in addition to the damaged
photos as the input, additional damage masks should be specified before inputting into the
model. Non-automatic methods, while providing good recovery results, require physically
marking the damaged areas in the photos, taking a lot of time and effort.

The automatic method does not have the aforementioned problems as it does not re-
quire any additional information in the process of restoring damaged old photos. Works [5,6]
have used deep learning techniques to develop automatic methods that can be applied to a
wider variety of photo content and types of damage. Wan et al. [5] designed a model based
on the architecture of variational autoencoder (VAE) [7]. They used an encoder model to
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first obtain the feature vectors representing the input photo in the latent space, then used
the latent restoration network to remove the damage and noisy components embedded
in the feature vectors, and finally the feature vectors were reverted back to the recovered
photo. Liu et al. [6] designed two modules: latent class-attribute restoration (LCR) and
dynamic condition-guided restoration (DCR). LCR first analyzes the four class attributes of
smoothness, clarity, connectivity, and completeness in the photo to repair the global defects
and then uses multiple DCRs in series to process the local defects to restore the details in
the photo. Although the automatic method can reduce the processing time for restoring
damaged old photos, the results generated are not satisfactory. For example, in [5,6], some
textures and objects were removed from the recovered photos because they were mistakenly
treated as noise or damage, and some undamaged areas in the photos were also modified,
which is undoubtedly a problem for preserving the integrity of the photo content.

In order to improve these shortcomings, we propose a method by which to automati-
cally detect damaged areas in old photos and use the detection results to guide inpainting
methods to automatically recover the original content of these areas. In general, dam-
aged area detection involves finding damaged areas in objects, such as steel structures [8],
murals [9], photos [10,11], frescoes [12], and pavements [13–19], through algorithms. The
methods for detecting damaged areas can be divided into traditional algorithms and deep
learning algorithms depending on the development method.

Damage detection methods [9–12] were developed using traditional image processing
techniques. Jaidilert et al. [9] used seeded region growing [20] and morphology to detect
cracks. Bhuvaneswari et al. [10] combined a bilateral filter and Haar wavelet transform to
detect scratch damage in images. The Hough transformation was used in [11] to detect line
cracks in images. Cornelis et al. [12] believed that the luminance value of cracks is low, so
the top-hat transformation of morphology was used to find cracks with a low luminance
value. The damage detection methods mentioned above are not effective in detecting
irregular damage areas and can only detect simple damage with limited accuracy, which
may affect their subsequent repair performance.

In deep learning-based algorithms, although there are a few fully automatic repair
methods [5,6] as mentioned previously, they are in the style of end-to-end repairing, which
means that it is not easy to have control over the detection of damaged areas, potentially
destroying or being unable to completely preserve valuable historical photos to the full
degree. We note that although the image content is different between worn-out old photos
and pavement crack images, the damage types are similar and both include mainly irregular
cracks, so we review and discuss the related literature on pavement crack detection as
well. König et al. [13] replaced standard convolutional blocks with residual blocks and
added an attention gating mechanism to preserve spatial correlation in the feature map and
suppress gradients in unrelated regions. Yang et al. [14] proposed a feature pyramid and
hierarchical boosting network (FPHBN) to fuse features of different sizes. Lau et al. [15]
used a pre-trained ResNet-34 to enhance the feature extraction capability of the network,
while Liu et al. [16] used the dilated convolution approach to make the area of the receptive
field wider.

It is mentioned in [17] that the ratio between cracked and non-cracked pavement
is very imbalanced, often leading to poor network segmentation results and the failure
of network training for crack detection, and a similar problem exists in our task. The
solution to the imbalance between the cracked and non-cracked data can be adjusted
by either the data set [15,17,18] or the loss function [15,16,19]. The dataset adjustment
strategy breaks the picture into smaller blocks, such as 48 × 48, 64 × 64, or even multiple
block sizes [15] for the training model, and then picks the proper ratio of cracked and
non-cracked blocks for training to reduce the dataset imbalance problem. For example,
Zhang et al. [17] used cracked blocks only as the training set for their crack-patch-only
(CPO) supervised adversarial learning. Jenkins et al. [18] set the specific ratio between
cracked and non-cracked blocks in the training set to place more weight on cracked blocks.
As for the loss function, most works use binary cross-entropy (BCE) as a loss function
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for semantic segmentation-like applications, but this function is weak in handling the
imbalanced dataset issue. As a consequence, Lau et al. [15] replaced BCE functions with
dice coefficients to evaluate the correctness of the detected areas. Liu et al. [16] further
combined the BCE functions and the dice coefficients. Cheng et al. [19] applied distance
weight to improve the original binary cross entropy. Existing deep learning-based road
crack detection algorithms can work on more complex and diverse damage than can
traditional algorithms. However, since there are many differences between the content
of road images and old photos, it is not possible to use the road crack detection method
directly, so we need to develop a method suitable for detecting damage in old photos.

To summarize the main contributions of our work, unlike other literature approaches
where the content of some intact areas is changed during repair, our way of recovering
damaged old photos ensures no alteration of intact areas during repair to preserve photo
integrity and fidelity. Since the existing methods for detecting image damage are not
satisfactory, in this paper an automatic damage detection method is proposed for the
recovery of old damaged photos to save time and effort. The advantage of our work is
that our detection result enables the possibility of combining any subsequent inpainting
methods to repair the photo, which is not possible using existing automatic end-to-end
repairing methods.

2. Proposed Method

Our recovery processing of damaged old photos is divided into two parts, as shown in
Figure 1. In the detection model (MD), the model input is an old damaged photo (Idamaged)
and the model output is a damaged area mask (Mask). The Idamaged and the Mask are then
exported to the inpainting method (MR) to generate the repaired photo (IRepaired), where
the MR can be any existing method.

Mask = MD

(
Idamaged

)
(1)

IRepaired = MR

(
Mask, Idamaged

)
(2)

 
Figure 1. Flow chart of our architecture to automatically repair damaged old photos. By feeding an old
damaged photo into our damage detection network, we can generate a damaged area mask. To restore
the photo, the damaged photo and the mask are fed together into an arbitrary inpainting algorithm.

Figure 2 shows the architecture of our damaged detection model is derived from
U-Net [21]. The first half is an encoder that extracts the image features, while the second
half restores the image to its original size by up-sampling and uses the sigmoid function to
find out the map of pixel damage probabilities. The advantage of using U-Net is its ability
to capture features at different scales, which are important for old photo damage detection
and allow the model to more accurately identify damage in different shapes and sizes.
Another merit of U-Net is the ability to concatenate features of the encoder into the decoder,
allowing the model to train without losing the features obtained in the shallow network.
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Figure 2. Architecture of the damage detection model.

In order to improve the ability to extract features, we replaced the original convolu-
tional layers of U-Net with residual dense blocks (RDBs) [22]. This block is a combination
of a residual block [23] and a dense block [24]. The residual block uses a skip connection to
combine the input of the block with the output of the block, thus increasing the stability of
the model training and the speed of convergence. The dense block continuously passes
all the shallow features of the block to the deeper layers, thus making full use of the in-
formation from the shallow features. The RDB retains these advantages to improve the
performance of the whole model. The original convolution layers at each scale used in
U-Net would gradually lose its shallow feature information, but this problem was solved
when we adopted RDB. In this way, it is possible to use more information from the area
surrounding the damage for damage detection.

Since there is no open dataset of damaged old photos available for use, we collected
photos from the Internet and marked the damaged areas in the images by ourselves. These
photos consisted mainly of portraits, buildings, and natural scenery, with their sizes ranging
from 129 × 317 to 797 × 1131 pixels. To generate ground truths, we manually marked
the damaged areas of the collected photos using the image editing tool GIMP [1]. The
transparency function of the GIMP layer feature makes marking damaged areas in photos
easier and more precise. Figure 3 shows examples of photos from our collected dataset as
well as the corresponding marked ground truth. We collected a total of 170 old damaged
photos and manually labeled them, 123 of which were for the training set, 18 for the test set,
and the remaining 29 for the validation set. On account of the limited number of photos in
the data collection, the data augmentation technique was used to increase the dataset size
via horizontal flipping and the 90-, 180-, and 270-degree rotation of photos.

  
(a) (b) 

Figure 3. Dataset for damage detection: (a) old damaged photo; (b) corresponding marked ground truth.

Because there are more undamaged old photos on the Internet, in order to further
extend the training dataset we collected and used these undamaged photos, along with
a collection of damage-like textures, to synthesize artificial damaged photos. Compared
to Figure 4a we can see some differences between the artificially damaged photo and the
old real damaged photo. The real damaged area of an old photo is composed of complex
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multitoned contents, not just simple good or bad, but our synthesized damaged photo only
uses a single color to represent damage. We treated this difference as a type of damage to
improve the generalizability of the model.

 

 

(a) (b) 

Figure 4. Real damaged photos and damaged photos synthesized by texture mask: (a) real damaged
photo; (b) our synthesized damaged photo.

The model parameters are initialized using the MSRA initialization method [25] in
the experiments, and the optimizer is the Adam optimizer with β1 =0.9, β2 =0.999. The
initial learning rate of the model is set to 0.0001, and every 1000 epochs are multiplied by
0.1 to train a total of 2000 epochs. The training patch size 48 × 48, which is commonly
used in pavement crack detection, is less appropriate for our task. The main reason for
this is that most cracked pavement images only have a black background and a few white
cracks, whereas old cracked photos have more complex content, such as portraits, objects,
buildings, and so on. Therefore, we partitioned the photos of the training set into patches of
100 × 100 pixels in size to account for more context to improve the performance, and in our
experiment, larger patch sizes than this did not result in any additional performance gain.
We also controlled the ratio of patches with damaged areas to patches without damage at
8:2 in training.

The loss function was balanced cross entropy. The main reason for employing balanced
cross entropy was to compensate for the imbalance between intact and damaged areas. It
modified the original binary cross entropy with the ratio of the two categories, giving more
weight to the fewer damaged areas and less weight to the more numerous intact areas as
shown in (3) where N is the total number of pixels in training blocks, αi is the weight of the
intact areas, yi denotes whether the ith pixel belongs to the intact category in the ground
truth, and p(i) is the model’s prediction of the probability that the ith pixel belongs to the
intact areas.

Ldetection = − 1
N

N

∑
i=1

αi · yi · log(p(i)) + (1− αi) · (1− yi) · log(1− p(i)), (3)

3. Experiment Result

In our experiment, model training and testing were carried out on a computer
equipped with an Intel i5-2400 CPU and an NVIDIA 2070 8GB GPU. To assess the model
performance of damage detection, we adopted the evaluation methods commonly used
in image segmentation and pavement crack segmentation, including precision, recall, F1-
measure, and precision-recall curve (PR curve), as our evaluation metrics. Precision is
the percentage of the results identified as damaged areas that are actually damaged. The
percentage of true damaged areas detected is represented by recall. The F1 measure con-
siders both precision and recall. Since the ground truth is created by manual marking and
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each person has different damage marking criteria, we adopted the regional precision and
recall proposed in [26], which considers the detection result correct as long as it is within
five pixels of the manual marking results, to compensate for the ground truth credibility
problem caused by manual marking errors.

3.1. Comparison of Various Modules

In this section, we first evaluate the performance of our damage detection model
on old photos by testing the performance of U-Net barebones combined with various
modules. We compared the results of our proposed method with three methods, including
the original U-Net architecture, the U-Net architecture with a residual block module, and
the U-Net architecture with a dense block module. Figure 5 and Table 1 show the results in
terms of the PR curve, precision, recall, and F1-measure, which show that our proposed
approach outperformed all other module combinations. Figure 6 depicts the visual outcome
of using various modules to detect damage. It can be seen that our proposed method is
capable of detecting more subtle damage as well as the damage border. The more complete
the detection, particularly along the damage border, the more it can assist us in repairing
damage without affecting the repair result.

 

Figure 5. The PR curve of U-Net with various modules.

Table 1. The recall, precision, and F1 measure of different modules.

Structure Recall Precision F1 Measure

U-Net 0.857 0.802 0.817
U-Net with residual block 0.876 0.833 0.846

U-Net with dense block 0.903 0.843 0.866
U-Net with RDB (proposed) 0.911 0.847 0.873

3.2. Comparison of Different Detection Methods

Next, we compare our method with other methods in the literature. We disassembled
the damage detection part from the whole end-to-end work [5] and compared it to our
method. Since there are so few existing deep learning-based damage detection methods for
old photos, we also compared the results of pavement crack detection models [16,18,19] that
have been retrained using our dataset to work on old photo damage detection. The results
of the PR curve are shown in Figure 7. The best recall, precision, and F1 measure values for
each method are shown in Table 2. The comparison results show that our detection effect is
the best.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. The detection results of different modules: (a) the old damaged photo; (b) labeled ground
truth of damaged areas; (c) the detection result of U-Net; (d) the detection result of U-Net with
residual block; (e) the detection result of U-Net with dense block; (f) our proposed detection result of
U-Net with RDB.

 

Figure 7. The PR curve of different methods, including [5,16,18,19], and our proposed method.

Table 2. The recall, precision, and F1 measure of different methods.

Method Recall Precision F1 Measure

Wan et al. [5] 0.845 0.837 0.831
Liu et al. [16] 0.832 0.767 0.785

Jenkins et al. [18] 0.838 0.734 0.763
Cheng et al. [19] 0.839 0.763 0.784

Our proposed method 0.911 0.847 0.873
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Figure 8 compares the visual results of the proposed method with those detected by
other methods. It can be seen that our proposed method of detecting damage in the photo
was more accurate, especially in the detection border denoted inside the yellow boxes. By
contrast, the methods proposed by [16,18,19] failed to completely detect the damage in the
image, and [5] often labeled undamaged areas as damage, such as around the tip of the
nose in Figure 8.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. The results of different detection methods, with yellow boxes indicating areas of perfor-
mance difference: (a) the old damaged photo; (b) the result of Wan et al. [5]; (c) the result of Liu
et al. [16]; (d) the result of Jenkins et al. [18]; (e) the result of Cheng et al. [19]; (f) the result of our
proposed method.

As shown the Table 3, we also compared the number of parameters and computation
speed with these methods [5,16,18,19] where the size of the test photos was 512 × 512.
Jenkins et al. [18] and Cheng et al. [19] used the same model framework, but the model was
trained using different strategies. Therefore, they have the same number of parameters and
running time. Table 3 shows that both our detection models and those of [5] are fast as both
lower to the scale of 10−3 s, but our model is much lighter as our number of parameters is
only about one-sixteenth of all the other methods.

Table 3. Parameter and run time.

Method Parameter Computation Time (s)

Our proposed method 2.3 M 0.0084
Wan et al. [5] 37 M 0.0042
Liu et al. [16] 31.38 M 0.0122

Jenkins et al. [18] 33.24 M 0.0162
Cheng et al. [19] 33.24 M 0.0162
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3.3. Combination with Inpainting Methods

Next, we present our results regarding practical application. We used [4,27,28] as
the inpainting method in the subsequent process to repair actually damaged photos. The
repair results using actually damaged photos are shown in Figures 9c–e and 10c–e, which
demonstrate the results of our damage detection followed by different inpainting meth-
ods [4,27,28]. We can see in Figure 9c that Yu [27] failed to repair the cheeks and mouth in
our detected area. Repair to damaged areas by gated convolution [4] is generally blurred as
shown in Figure 9d. Figure 10c,d shows that deformation of the collar edge occurred after
restoration. In general, the results of partial convolution [28] as shown in Figures 9e and 10e
are more satisfactory compared to other inpainting methods [4,27]. This demonstrates
that our architecture can be combined with any inpainting method, but we suggest that
partial convolution [28] will achieve better results. In Figures 9b and 10b, we also com-
pare our method with the end-to-end method [5], which integrates damage detection and
repairs in one stage. Although [5] looks to have been effective in repairing the damaged
areas, there are some color distortion problems with unfaithful tonal changes and a loss of
texture in the image, such as in the cheeks as shown in Figure 9b. We can see that there
are unrestored damaged areas and missing window frame details marked in the red box
in Figure 10b. Thus, combining our architecture with the inpainting method [4,27,28] in
contrast to [5] provides better results without affecting content in the undamaged regions
in the recovery results.

   

(a) (b)  (c)  

  

(d) (e) 

Figure 9. Results of different restoration methods on the damaged photo: (a) the old damaged photo;
(b) the result of Wan et al. [5]; (c) the result of ours + Yu et al. [27]; (d) the result of ours + gated
convolution [4]; (e) the result of ours + partial convolution [28].
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(a) (b) (c) 

 

  
 (d) (e) 

Figure 10. Results for different restoration methods on the damaged photo: (a) the old damaged
photo; (b) the result of Wan et al. [5]; (c) the result of ours + Yu et al. [27]; (d) the result of ours + gated
convolution [4]; (e) the result of ours + partial convolution [28].

There will still be cases where our approach may fail. For example, if the model
encounters a mixture of various complex damage, as shown in Figure 11, it becomes
difficult to distinguish the damaged areas, resulting in partial detection and incomplete
repair results. To deal with such a complex pattern of damage, future studies could
investigate and apply the concept of directional clues in damage patterns [29–31] to aid in
crack damage detection.

   

(a) (b) (c) 

Figure 11. The case of failure detection: (a) damaged photo; (b) result of damage detection; (c) result
of damage restoration.
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4. Conclusions

Most restoration methods for damaged old photos require the manual marking of
damaged areas for restoration, which is quite inefficient. Therefore, we proposed a damage
detection model for old photos. Our method can detect damaged areas automatically
without manual marking, which significantly reduces repair time. The detection results
can be optionally screened and flexibly combined with any powerful inpainting method to
fully automatically recover the content of the photos. We analyzed various block modules
to design the detection model and found that the residual dense block (RDB), which
combines the advantages of residual block and dense block, can effectively improve model
detection capability. When compared to other detection algorithms, our method can
detect damaged areas more accurately. We demonstrated the restoration of damaged old
photos by combining our detection results with three different inpainting methods. In
our restoration results, both the damaged and undamaged areas of the photos did not
suffer from color tone changes, color distortion, or texture loss. Our method can better
preserve the integrity of photos than can the existing end-to-end method, which alters the
undamaged areas of photos.
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Abstract: As an important part of video understanding, temporal action detection (TAD) has wide
application scenarios. It aims to simultaneously predict the boundary position and class label of
every action instance in an untrimmed video. Most of the existing temporal action detection methods
adopt a stacked convolutional block strategy to model long temporal structures. However, most of
the information between adjacent frames is redundant, and distant information is weakened after
multiple convolution operations. In addition, the durations of action instances vary widely, making it
difficult for single-scale modeling to fit complex video structures. To address this issue, we propose a
non-local temporal difference network (NTD), including a chunk convolution (CC) module, a multiple
temporal coordination (MTC) module, and a temporal difference (TD) module. The TD module
adaptively enhances the motion information and boundary features with temporal attention weights.
The CC module evenly divides the input sequence into N chunks, using multiple independent
convolution blocks to simultaneously extract features from neighboring chunks. Therefore, it realizes
the information delivered from distant frames while avoiding trapping into the local convolution.
The MTC module designs a cascade residual architecture, which realizes the multiscale temporal
feature aggregation without introducing additional parameters. The NTD achieves a state-of-the-art
performance on two large-scale datasets, 36.2% mAP@avg and 71.6% mAP@0.5 on ActivityNet-v1.3
and THUMOS-14, respectively.

Keywords: temporal action detection; deep learning; convolutional neural networks; computer
vision; video understanding

1. Introduction

With the wide application of image content understanding technology and the rapid
growth of video data, video content understanding has attracted the attention of both
industry and academia. It has application requirements in many scenarios, such as security
surveillance, precision medicine, and video audits. One of the pressing needs is under-
standing human action within videos. Previous work tackled it as a pure action recognition
task. In recent years, action recognition technology has made great achievements. However,
action recognition requires trimmed videos with only action instances. In actual scenarios,
most video data are unlabeled. Temporal action detection (TAD) can predict temporal
boundaries (start/end) as well as action categories in an untrimmed video. Therefore, as an
upstream task of video content analysis, TAD has become one of the bottlenecks that needs
to be broken through.

In addition to the content information, the video also has contextual relevance, which
requires modeling long-range temporal structures. The usual practice is to stack 1D
convolutions. However, the original video has the following characteristics: (1) the duration
of different actions varies widely; (2) information redundancy between neighboring frames;
and (3) the information is weakened in the long-distance delivery. How to design an
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efficient network to model long-range temporal relationships while taking into account the
above problems is the key to further improve the performance of a TAD task. In recent
years, many works have tried to solve these problems, but most of them only consider one
or two aspects.

To model long-range temporal dependencies, the commonly used methods are the
stacked 1D temporal convolutions [1–3] and transformer [4–6]. However, limited by
the kernel size, the former method can only capture the local scope context information,
neither can learn the relationship between frames with distant temporal intervals, and it
cannot establish the relationship between instances. Due to the redundant information of
adjacent frames in a video, this method is prone to fall into local traps. With the success
of transformers in object detection [7,8] and NLP [9,10], part work has migrated the self-
attention mechanism to the temporal action detection task. The attention mechanism
can learn the relationship between each frame and other frames one-to-one, avoiding
the distance limitation of a 1D convolution. Because the length of the action instances
is much smaller than the length of the video, such methods not only perform a lot of
invalid computations but may also introduce irrelevant information. Therefore, neither the
global nor the local scope can effectively model complex temporal dependencies. To solve
this problem, we propose a chunk convolution (CC). Specifically, each chunk consists of
three independent, traditional 1D temporal convolutions with fixed intervals, which not
only enlarges the temporal receptive field but also alleviates the redundancy problem.
In addition, a multi-branch strategy is adopted, where each branch handles a specific
redundancy rate to be compatible with redundancy rate changes.

Similar to object detection, temporal action detection also belongs to the category of
visual detection, which is to locate and classify potential objects. Object detection aims to
generate bounding boxes in an image (2D), while temporal action detection aims to predict
the boundary locations of action instances in a temporal sequence (1D). Therefore, most
of the current methods for processing a temporal multiscale are migrated from an image
multiscale. Considering that it is difficult to find a specific receiving field that balances all
scales, TAL-Net [11], A2net [12], and DCAN [13] borrow the idea of an anchor in object
detection, which consists of K-convolution blocks with parallel structures. Each block has a
different kernel size, corresponding to a different temporal receiver field. The responses
of all blocks are fused to provide finer-grained features. Due to the unsatisfactory effect
of a large-size convolution kernel, such methods are not scalable enough. Inspired by
res2net [14] and Xception [15], we propose a cascade residual architecture to process the
temporal multiscale issue. Specifically, the module consists of several parallel branches,
and each branch contains two 1D convolutions with kernel sizes of 1 and 3, respectively.
Except for the first branch, the output features of the former branch are added with the
input features as the input of this branch. Each time features pass through a branch, its
temporal receptive field will expand once. Finally, the features from all the branches
are concatenated along the temporal dimension to aggregate the features with different
temporal receptive fields.

Among all the features, motion information and boundary features undoubtedly play
an important role in precise locating. Some work [16,17] uses an optical flow to represent the
motion information. However, as the network deepens, the motion information will weaken
over a long-range delivery. In order to address the issues, we propose a temporal difference
(TD) module. Concretely, the temporal-level action confidences are firstly calculated across
the full sequence, where the scores represent the attention weights. These weights are
then used to produce motion-sensitive weights. Finally, we utilize multiplication between
the original feature and motion-sensitive weights to enhance the discriminability of the
features. In this way, the network has the ability to adaptively discover and enhance
the features of motion-sensitive locations. We proposed an NTD network that achieves a
new state-of-the-art performance on two large-scale datasets, ActivityNet-v1.3 [18] and
THUMOS-14 [19].
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2. Related Work

Temporal action detection aims to classify and localize action instances in an untrimmed
video as precisely as possible. The existing approaches can be divided into three main
types: anchor-based, anchor-free, and the bottom–up method.

Anchor-based methods rely on manually pre-defined K anchors with different scales.
The early anchor mechanism is a window anchor. The S-CNN [20] uses sliding windows to
generate multiple candidate regions and then uses a binary classification network to identify
a possible action instance. The TURN [21] and CTAP [22] first generate multiscale candidate
regions at each temporal position and then use temporal regression to refine boundary
positions. The window mechanism can cover all action instances, thus avoiding missed
detection. However, the disadvantages are also obvious, generating a large number of
redundant regions and the boundaries are imprecise. Inspired by a faster-rcnn [23] in object
detection, the R-C3D [24] predicts the relative offsets and corresponding classification scores
of K-different scales at each temporal position. Considering that the duration of the action
instance varies more dramatically than the target in an image, the TAL-Net [11] proposes
to align the temporal receiving field of the anchor with the corresponding temporal span.
Manually defining the scales limits the ability to handle complex variations. The GTAN [25]
introduces nonlinear temporal modeling, cascades multiple feature maps with different
temporal resolutions, and learns a Gaussian kernel for each temporal position to predict
the relative offset. The PBRNet [26] cascades three detection modules; the first module
generates coarse results and subsequent modules further the boundary position.

Inspired by the successful application of the anchor-free detector in object detection,
many methods adopt the anchor-free method, which directly predicts the boundary po-
sition without manually specifying the proposal scale. The AFSD [27] proposes a purely
anchor-free framework that directly predicts the distance of the boundary (start and end)
from each temporal position. However, the predicted proposal relies heavily on local
information and does not make full use of context relations. In order to model long-range
context, some current works, such as the RTD-Net [5] and TadTR [28], regard video as a
temporal sequence and introduce a self-attention transformer structure. Because using
the attention mechanism in the whole sequence is inefficient and will introduce irrelevant
noise interference, ActionFormer [4] proposed a local attention mechanism that limits the
attention range within a fixed window. Considering the anchor base and anchor free have
the advantages of stability and flexibility, respectively, the A2net [12] integrates these two
methods into one framework to achieve complementary advantages.

Bottom–up methods mainly focus on evaluating “probabilities”. The SSN [29] directly
predicts the binary action probabilities for each frame in the video. Then, continuous
frames with high action probabilities are grouped by the watershed algorithm to generate
candidate proposals. The BSN [30], BMN [31], and BSN++ [32] predict the probabilities of
being a start/end/action for each frame and then adopt a boundary-matching strategy to
match pairs of start and end, generating candidate proposals with a flexible duration. These
approaches fail to take full advantage of contextual information by focusing only on the
confidence of isolated frames; this makes it sensitive to noise and prone to generating false
positives and incomplete action instances. The BU-MR [33] exploits potential constraints
between frame-level probabilities to provide more complementary information. The P-
GCN [34] and G-TAD [35] take the proposals generated by the BSN as input and then use
a graph convolution to explore the semantic relationships between proposals, providing
more clues to facilitate boundary refinement.

3. Approach

3.1. Chunk Convolution

Given a sequence X ∈ RC×T , we evenly divide X into N = T/(ω + k) chunks, where k,
C, and T denote kernel size, feature dimension, and temporal length, respectively, and ω is
a manually set parameter used to adjust the chunk size. The j-th position of the i-th chunk
can be represented as (i, j), where i ∈ [1, N], j ∈ [1, ω + k]. When extracting features at
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position (i, j), the difference from traditional 1D convolution is that in addition to applying
standard 1D convolution here, 1D convolution block is also applied to adjacent chunks
(i− 1, j) and (i + 1, j), respectively. Three convolution blocks form a chunk convolution,
and the outputs of all convolution blocks are fused by summation as the output of the
chunk convolution. To facilitate implementation, we transform the temporal dimension
from 1D to 2D, X ∈ RC×T → X′ ∈ RC×N×(ω+k), (ω + k) represents the temporal length
of each chunk, and N represents the number of chunks. In order to keep the feature
dimension constant, the operation of padding 0 around X′ is adopted, X′ ∈ RC×N×(ω+k)

→ X′′ ∈ RC×(N+2)×(ω+k+2). Then, we apply 2D convolution to X′′ as we did for extracting
image features.

H = W ∗ X′′, H ∈ RC×N×(ω+k) (1)

where ∗ represents the convolution operation, W ∈ RC×C×K×K is the convolution kernel.
Subsequently, the temporal dimension of H is restored from 2D to 1D, H ∈ RC×N×(ω+k) →
YCC ∈ RC×T , whose dimensions are consistent with the input features. Taking into account
videos with various redundancy rates, we parallelize multiple branches with different
chunk sizes to extract features simultaneously. In our experiments, the chunk size between
d ∈ {4, 7, 9}, and the kernel size of all 1D convolutions is 3. It is easy to conclude that the
dilate rates of the three branches are 1, 4, and 6, and the corresponding temporal receptive
fields are 11, 17, and 21, respectively. The output of all branches is aggregated by max
operation along the temporal dimension.

3.2. Multiple Temporal Coordination

A simple and effective strategy to extend the temporal receiving field is to stack multi-
ple 1D convolutional layers. However, the duration of the action instances in the videos
vary significantly. We adopt a split–transform–merge approach to deal with multiscale
problems. As shown in Figure 1, given an input feature Z ∈ RC×T , we feed it into four
branches with identical structure. Each branch is composed of a 1D convolution with
kernel size 1, followed by a 1D convolution with kernel size 3. The relationship between
adjacent branches is transformed from parallel to cascade through residual connections.
Thus, the output can be expressed as:

Fi = W3 ∗ (W1 ∗ Z), i = 1; (2)

Fi = W3 ∗ (W1 ∗ (Z + Fi−1)), i = 2, 3, 4 (3)

where ∗ represents the convolution operation, W1 and W3 denote the 1D convolution with
kernel sizes of 1 and 3, respectively. Here, Z is the input features and Fi−1 is the output
features from the previous branch. The operation Z + Fi−1, i ∈ [2, 4] is implemented by
element-wise addition, where Z and Fi−1 have equal dimensions. Each convolution opera-
tion is followed by a nonlinear activation function Relu, which is omitted for simplifying
formula. The function W1 is used to learn the residual mapping, and W3 is used to expand
the temporal receptive field.Obviously, after the feature passes through a branch, the tem-
poral receptive field will be enlarged one time. Moreover, except for the first branch, each
branch aggregates the feature information from former branch. Therefore, this module
not only expands the temporal receptive field but also aggregates features of different
receptive field. The output of this module is a multiscale temporal feature set {F1, F2, F3, F4}.
Compared with the input feature Z, its temporal receptive field is enlarged by one, two,
three, or four times, respectively. Finally, we adopted MAX operation along the temporal
dimension on the set S to generate multiscale temporal features.

YMTC = MAX([F1, F2, F3, F4]), Fi ∈ RC×T , YMTC ∈ RC×T (4)
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Figure 1. Overview of our proposed NTD. NTD first transforms the raw video into a sequence of
clip features. Then, the clip features sequentially go through three modules. CC module, delivering
information over long distances. MTC module, aggregating multiscale temporal features. TD module,
adaptively enhancing motion information and boundary features. Finally, the encoded features pass
through the temporal feature pyramid module, and the prediction head is responsible for generating
detection results.

3.3. Temporal Difference

There is no doubt that among all features, boundary features and motion information
play a particularly important role in the accurate localization of action instance. However,
the boundary points of action instances are relatively sparse, and motion information
delivered from distant frames are weakened. Therefore, in order to solve the problem
of information weakening caused by stacking convolution layers, it is necessary to find
motion-sensitive temporal locations, and then enhance its features. We will implement it
in two steps, squeeze and excitation. As depicted in Figure 1, given an input sequence
V ∈ RC×T , in order to generate the temporal attention weights, we first consider using
squeeze-channel operations. Specifically, stacking three 1D convolution layers, transform
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the feature dimension from V ∈ RC×T to G ∈ R1×T . The first convolutional layer is used to
reduce channel dimensions from C to C/r, r is set 4 in our work. Aims to capture long-range
information, we followed a 1D convolution layer to extend receiving field, which set the
kernel size as 7 and step size is 1 in our paper. The last 1D convolutional layer squeezes
the channel dimensions into one. In addition, each convolutional layer is followed by an
activation function Relu. In this way, we obtain temporal attention weights G ∈ R1×T for
each temporal position.

G′ = σ(conv1 ∗V), G′ ∈ RC/r×T (5)

G′′ = σ(conv7 ∗ G′), G′′ ∈ RC/r×T (6)

G = σ(conv1 ∗ G′′), G ∈ R1×T (7)

where ∗ denotes convolution operation, σ refers to the Relu function, conv1 and conv7
indicate the 1D convolution whose kernel size is 1 and 7, respectively. We follow the
squeeze operation with an excitation operation which aims to salient the boundary features.
In practice, the attention weights between adjacent temporal location vary significantly,
and this location can be approximately confirmed as a motion-sensitive position. It is
achieved by feeding the attention weights into two independent branches, average pooling
and max pooling, respectively. Among them, the difference calculation of the two branches
can be formulated as:

S = δ(MAX(G)− AVG(G)), S ∈ R1×T (8)

Here, δ represents the activation function Sigmoid, MAX and AVG denote max pool-
ing and average pooling along the temporal dimension, respectively. Finally, the purpose
of this module is to enhance boundary features and motion information; a straightforward
way is to rescale features V ∈ RC×T with the attention weights S ∈ R1×T .

Y = V@S, Y ∈ RC×T (9)

where @ refers to temporal-wise multiplication between the scalar S and feature V.

4. Training and Inference

4.1. Training

Before the encoded features are fed into the prediction layer, it goes through a six-
level temporal feature pyramid module to be compatible with multiscale action instances.
The hierarchical architecture is responsible for generating feature set M = {m1, m2, · · · , m6}
with varying temporal resolutions. Precisely, we adopt the 1D convolution with stride
s = 2 (except for the first level) to decrease the temporal length of each level. Our prediction
layer consists of two independent lightweight convolutional networks for classification
and regression, and both branches are implemented by three consecutive 1D convolutional
with kernel size 3. Our network outputs the predicted result yt = (pi

t, ds
t , de

t) for every
moment t across all pyramid levels. pi

t ∈ {0, 1}c
1 is the probability of action categories

(c pre-defined categories). de
t � 0 and ds

t � 0 are the distance from the current moment
t to boundary. ds

t and de
t are valid if time t falls within the range of any action instances;

otherwise, they are not counted as loss. In practice, the proportion of the background
in the video is much higher than that of the foreground. To alleviate the imbalance,
we adopt focal loss [36] as our classification loss function. According to the predicted
classification score pt = (s0, s1, · · · , sc), the total classification loss can be calculated using
the following formula:

Lcls =
1
T

T

∑
t=0

c

∑
i=0
−αi

t

(
1− pi

t

)γ
log

(
pi

t

)
(10)
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pi
t =

{
si if yi

t = 1, i = 0, 1, 2, · · · , c
1− si otherwise, i = 0, 1, 2, · · · , c

(11)

αi
t =

{
α if yi

t = 1, i = 0, 1, 2, · · · , c
1− α otherwise, i = 0, 1, 2, · · · , c

(12)

In the above, class label yt ∈ Rc (c pre-defined categories), yi
t ∈ {0, 1}. γ and α are

manually specified hyper-parameters, which are set to 2 and 0.25, respectively, in our paper.
We use temporal Intersection over Union (tIoU) as the loss function for regression of the
distance between the predicted instance φ̂i =

(
ψ̂i, ξ̂i

)
and the corresponding ground truth

φi = (ψi, ξi), and only the foreground moment that falls into an action instance is selected.
The formula can be expressed as:

Lreg =
1

Tp
∑

i
I(yi ≥ 1)

(
1− |φ̂i ∩ φi|

|φ̂i ∪ φi|
)

(13)

where TP represents the number of foreground moments, the indicator function I(yi � 1)
is used to indicate whether the temporal location t ∈ [1, N] falls within the range of any
ground truth.The total loss function employed during training is defined as follows:

L = Lcls + Lreg (14)

4.2. Inference

At inference stage, we directly input the feature sequences into the network. Our
prediction layer outputs the predicted result yt = (pi

t, ds
t , de

t) for every moment t across all
pyramid levels. For each moment t in the j-th pyramid level, the predicted action instance
is denoted as

at
j = arg max

(
pi

t

)
, st

j = t− ds
t , et

j = t + de
t (15)

where st
j and et

j are the left and right boundaries of an action instance, and at
j is the category

score. Next, in order to remove the highly overlapping action instances, we aggregate the
candidate action instances from all positions together, perform Soft-NMS [37], and obtain
the final result.

5. Experiments

5.1. Datasets

We conduct the experiment on two popular benchmark datasets, ActivityNet-v1.3 [18]
and THUMOS-14 [19], for the TAD task. THUMOS-14 collected videos of human daily ac-
tivities, including 20 categories. The training and testing set contain 200 and 212 untrimmed
videos, respectively. The average temporal length of the videos in the dataset is 4.4 min,
each video contains more than 15 action instances, each instance has an average duration of
5 s, and more than 70% of the moments belong to the background. These action instances
are densely distributed and disordered within the video, making it extremely challenging
to perform TAD on this dataset. ActivityNet-v1.3 contains around 10 K, 5 K, and 5 K videos
in the training, testing, and validation sets. As a larger dataset with 200 action categories,
the average temporal length is 2 min, each video contains an average of 1.7 action instances,
and each instance has an average duration of 48 s.

5.2. Evaluation Metrics

To compare with previous TAD methods, we adopt mean average precision (mAP) to
evaluate our NTD network on both datasets. On THUMOS-14, the temporal Intersection-
over-Union (tIoU) thresholds are selected from {0.3, 0.4, 0.5, 0.6, 0.7}. On Activitynet-v1.3,
the tIoU thresholds are chosen from {0.5, 0.75, 0.95}. According to the official evaluation
metrics, THUMOS-14 pays more attention to the performance on mAP@0.5, and Activitynet-
v1.3 focuses on the results on mAP@avg [0.5:0.05:0.95].
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5.3. Feature Extraction and Implementation Details

On THUMOS14, following [4,12], we adopt two-stream inflated 3D ConvNet (I3D [38])
module which pre-trained on Kinetics-400 [39] to extract spatial-temporal features from raw
video. We sample 16 consecutive RGB and optical flow with the overlap rate of 75% as clips.
Then, feed clip into I3D network and extract features of dimension 1024 × 2 at the first
fully connected layer. Finally, the two-stream features are concatenated along the temporal
dimension (1024D × 2 =⇒ 2048D). We use Adam [40] to optimize the network, setting
the batch size, initial learning rate, total epoch number as 2, 1× 10−4, 35, respectively. We
visualize four instances predicted by our model on this dataset and compare them with the
corresponding ground truth in Figure 2.

On Activitynet v1.3, following [4,12], we use R(2+1)D [41] pre-trained on TSP [42] to
extract features. We sample 16 consecutive RGB with non-overlapping as clips. We use
linear interpolation to rescale the feature sequence to a fixed length of 128. We use Adam to
optimize the network, setting the batch size, initial learning rate, total epoch number as 16,
1× 10−3, 15, respectively.

Our model is implemented based on PyTorch 1.1, Python 3.8, and CUDA 11.6. We
conduct experiments with one NVIDIA GeForce RTX 3090 GPU, Intel i5-10400 CPU and
128 G memory.

Figure 2. Qualitative Results. Visualize ground truth and corresponding predicted instances
on THUMOS-14.

87



Sensors 2022, 22, 8396

6. Results

6.1. Comparison with State-of-the-Art Methods

We compare the NTD with several state-of-the-art temporal action detection methods
on the THUMOS-14 dataset. As shown in Table 1, the performances at different tIoU thresh-
olds (mAP@tIoU) vary from 0.3 to 0.7 as well as an average mAP [0.3:0.1:0.7] (mAP@avg).
In comparison, our proposed NTD outperforms the other methods at all thresholds. In par-
ticular, under the official evaluation index mAP@0.5, our method achieves 71.6%, exceeding
the concurrent state-of-the-art work of ActionFormer [4] by a large margin 6.0% (71.6%
vs. 65.6%). We also achieve a state-of-the-art performance with an average mAP of 66.8%
([0.3:0.1:0.7]).

On the ActivityNet-v1.3 database, our model also achieves a competitive result, sig-
nificantly outperforming the recent representative works, the AES [43], ActionFormer [4],
BCNet [44], and RCL [1]; the performers are shown in Table 2. Our model achieves
a 54.4% mAP@0.5, outperforming all of the previous methods. With an average mAP
([0.5:0.05:0.95]), our method reaches 36.3% which is 0.7% higher than the recent state of
the art 35.6% by ActionFormer. This improvement is significant because the results are
averaged over many tIoU thresholds, including those that are tight, such as tIoU = 0.95.

Table 1. Comparison with state of the art (THUMOS-14). We report the precision at different tIoU
thresholds (mAP@tIoU) as well as average mAP in [0.3:0.1:0.7] (mAP@avg). The best results are
in bold.

Method Year Backbone 0.3 0.4 0.5 0.6 0.7 AVG

S-CNN [20] CVPR-2016 DTF 36.3 28.7 19.0 10.3 5.3 19.9
TURN [21] ICCV-2017 Flow 44.1 34.9 25.6 - - -
R-C3D [24] ICCV-2017 C3D 44.8 35.6 28.9 - - -

BSN [30] ECCV-2018 TSN 53.5 45.0 36.9 28.4 20.0 36.8
TAL-Net [11] CVPR-2018 I3D 53.2 48.5 42.8 33.8 20.8 39.8
GTAN [25] CVPR-2019 P3D 57.8 47.2 38.8 - - -
P-GCN [34] ICCV-2019 TSN 60.1 54.3 45.5 33.5 19.8 42.6
BMN [31] ICCV-2019 TSN 56.0 47.4 38.8 29.7 20.5 36.8

A2Net [12] TIP-2020 I3D 58.6 54.1 45.5 32.5 17.2 41.6
G-TAD [35] CVPR-2020 TSN 54.5 47.6 40.2 30.8 23.4 39.3
BU-MR [33] ECCV-2020 TSN 53.9 50.7 45.4 38.0 28.5 43.3
VSGN [45] ICCV-2021 TSN 66.7 60.4 52.4 41.0 30.4 50.2
CSA [46] ICCV-2021 TSN 64.4 58.0 49.2 38.2 27.8 47.5

AFSD [27] CVPR-2021 I3D 67.3 62.4 55.5 43.7 31.1 52.0
MUSES [47] ICCV-2021 I3D 68.3 63.8 54.3 41.8 26.2 50.9

RefactorNet [16] CVPR-2022 I3D 70.7 65.4 58.6 47.0 32.1 54.8
ActionFormer [4] 2022 I3D 75.5 72.5 65.6 56.6 42.7 62.6

RCL [1] CVPR-2022 TSN 70.1 62.3 52.9 42.7 30.7 51.7
AES [43] CVPR-2022 SF R50 69.4 64.3 56.0 46.4 34.9 54.2

BCNet [44] AAAI-2022 I3D 71.5 67.0 60.0 48.9 33.0 56.1

NTD (Ours) I3D 82.7 78.7 71.6 58.3 42.8 66.8

The excellent performance demonstrates the effectiveness and generalizability of our
proposed method for the TAL. This indicates that modeling long-range temporal context
dependence while taking into account multiscale and motion information enhancement
can improve the ability of the network to model complex video structures.
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Table 2. Comparison with state of the art (ActivityNet-1.3). We report the precision at tIoU = 0.5,
0.75, and 0.95 (mAP@tIoU) as well as average mAP in [0.5:0.05:0.95] (mAP@avg). The best results are
in bold.

Method Year 0.5 0.75 0.95 AVG

TAL-Net [11] CVPR-2018 38.2 18.3 1.3 20.2
BSN [30] ECCV-2018 46.5 30.0 8.0 30.0

GTAN [25] CVPR-2019 52.6 34.1 8.9 34.3
BMN [31] ICCV-2019 50.1 34.8 8.3 33.9

BC-GNN [48] ECCV-2020 50.6 34.8 9.4 34.3
G-TAD [35] CVPR-2020 50.4 34.6 9.0 34.1

TCANet [49] CVPR-2021 52.3 36.7 6.9 35.5
BSN++ [32] AAAI-2021 51.3 35.7 8.3 34.9
MUSES [47] CVPR-2021 50.0 35.0 6.6 34.0

ActionFormer [4] 2022 53.5 36.2 8.2 35.6
BCNet [44] AAAI-2022 53.2 36.2 10.6 35.5

AES [43] CVPR-2022 50.1 35.8 10.5 35.1
RCL [1] CVPR-2022 51.7 35.3 8.0 34.4

NTD (Ours) 54.4 37.4 8.2 36.2

6.2. Ablation Study of MTC Module

In response to the problem that the duration of different actions varies widely, we
design the multiple temporal coordination (MTC) module. In our experiments, different
numbers of branches were tried, and the results are listed in Table 3. By comparing the first
to sixth rows of the table, we can observe that with the increase in branches, the performance
continues to improve. The best results, 71.6% mAP@0.5 and 66.8% mAP@avg, were
obtained when the number of branches is four. However, the fifth and sixth rows show
that using more branches does not achieve a better performance. In the last two rows,
we also show the effectiveness of different feature fusion strategies between branches.
By comparison, the MAX operation works best. This benefits from the feature selectivity
of the MAX function, which improves the saliency of the feature maps within the regions.
With each additional branch, the equivalent temporal receptive field will be enlarged one
time. A multi-branch cross-scale association is beneficial to capture the multiscale feature
information, but the scale span is significantly different, which will affect the stability of
the module to capture local features.

Table 3. Ablation Study (impact of MTC module). Comparing the effects of different branch numbers
and fusion strategies between branches on THUMOS-14, measured by mAP@tIoU at different
thresholds and the average mAP (mAP@avg) [0.3:0.1:0.7].

Number Strategy 0.3 0.4 0.5 0.6 0.7 AVG

6 MAX 81.3 77.3 69.9 59.4 43.2 66.2
5 MAX 81.2 77.3 70.0 58.2 44.4 66.2
4 MAX 82.7 78.7 71.6 58.3 42.8 66.8
3 MAX 81.7 77.8 71.2 60.0 44.9 67.1
2 MAX 81.6 78.0 70.5 57.7 43.2 66.2
1 MAX 81.0 77.0 69.4 59.0 43.8 66.1
4 AVG 81.9 77.9 69.8 57.2 42.7 65.9
4 Conv1D 81.8 77.3 70.1 58.9 44.4 66.5

6.3. Ablation Study of TD Module

We study the effects of a temporal receptive field (convolution kernel size) for the
TD module on THUMOS-14, as shown in Table 4. Comparing the first to third rows, it
shows that the TD benefits more from larger kernel sizes (K = 7 vs. K = 3). However,
as the convolution kernel continues to expand, the mAP@0.5 drops by more than 1%. We
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also compared the effect of the max pooling size on the results when computing attention
weights, and the results show that a smaller size (S = 3) performs better. Larger convolution
kernels mean that the TD can capture the contextual information in a longer temporal range,
thus mitigating random noise interference. However, an excessively large convolution
kernel will smooth the difference between neighboring features.

Table 4. Ablation Study (impact of TD module). Comparing the effects of convolution kernel size (K)
and max pooling size (S) on THUMOS-14, measured by mAP@tIoU at different thresholds and the
average mAP (mAP@avg) [0.3:0.1:0.7].

K S 0.3 0.4 0.5 0.6 0.7 AVG

3 3 82.1 77.5 71.2 58.0 43.3 66.4
5 3 82.1 78.4 71.3 59.6 43.4 66.9
7 3 82.7 78.7 71.6 58.3 42.8 66.8
9 3 81.1 77.3 70.5 57.7 44.4 66.2

11 3 81.6 77.2 70.6 58.3 43.8 66.3
7 5 81.9 77.9 70.2 58.1 43.4 66.3
7 7 81.2 77.3 70.5 58.4 43.7 66.2

6.4. Ablation Study of CC Module

We compare the performances of the aggregating chunk convolution features with
different dilation rates, and the results are shown in Table 5. As can be observed, aggregat-
ing chunk convolutional features with a larger dilation rate generally yields a higher mAP.
However, as the dilation rate continues to increase, it resulted in a performance degradation.
In addition, we also compared the replacement of the ordinary 1D convolution with a
dilated 1D convolution and did not obtain a better performance. This shows that taking
into account different redundancy rates helps to improve the generalization of the model,
but an excessive dilation rate hinders the capture of adjacent information, resulting in
insufficient features information.

Table 5. Ablation Study (impact of CC module). Comparing the effect of chunk convolutions with
different dilation rates (D). DC represents dilated convolution, SC represents standard convolution,
measured by mAP@tIoU at different thresholds and the average mAP (mAP@avg) [0.3:0.1:0.7].√

indicate the selected dilation rate.

SC DC D = 1 D = 3 D = 6 D = 9 D = 13 0.3 0.4 0.5 0.6 0.7 AVG
√ √

81.7 77.5 70.9 58.5 43.3 66.4√ √ √
82.1 78.0 70.3 57.6 43.4 66.3√ √ √ √
82.7 78.7 71.6 58.3 42.8 66.8√ √ √ √ √
81.7 77.2 69.7 57.9 42.6 65.8√ √ √ √ √ √
81.4 77.8 70.8 58.7 43.2 66.4√ √ √ √
82.1 77.9 70.5 58.5 43.9 66.6

6.5. Ablation Study of Combination Strategies

In order to verify the effect of the three independent modules working together, the
CC, MTC, and TD, we tried a variety of combination strategies, and the results are listed
in Table 6. Obviously, the best performance is achieved when the combined strategy is
CC→MTC→ TD. Compared with the three-paths parallel mode, its performance exceeds
at least 1.2% (mAP@0.5). In addition, it also has at least a 0.9% (mAP@0.5) advantage
compared with other series combination strategies. This suggests that the optimal strategy
is to take three steps. The CC module not only establishes long-range context dependencies
but also effectively alleviates the local information redundancy. The MTC module and the
following lightweight TD module are responsible for providing multiscale information
and enhanced motion information. The three modules work together to better model the
complex video structure.
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Table 6. Ablation Study (impact of combination strategies). Comparing the effects of different com-
bined strategies, measured by mAP@tIoU at different thresholds and the average mAP (mAP@avg)
[0.3:0.1:0.7].

Strategy 0.3 0.4 0.5 0.6 0.7 AVG

CC→MTC→ TD 82.7 78.7 71.6 58.3 42.8 66.8
CC→ TD→MTC 81.9 77.7 70.3 57.6 42.5 66.0
TD→ CC→MTC 81.8 77.8 70.4 58.3 42.5 66.2
TD→MTC→ CC 81.7 77.6 70.0 56.8 43.2 65.8
MTC→ TD→ CC 81.9 78.1 70.7 57.7 43.5 66.4
MTC→ CC→ TD 82.2 77.6 70.4 58.7 43.7 66.5

Stack (avg) 82.2 77.9 70.4 57.8 43.5 66.3
Stack (max) 82.0 77.7 70.1 58.2 43.7 66.3

Cancat 81.1 76.9 69.8 58.3 44.0 66.0

6.6. Qualitative Results

Figure 2 visualizes the localization results and predicted categories of four action in-
stances on THUMOS14 and compares the predicted results (green) with the corresponding
GT (yellow). These instances include short (first and second), medium (third), and long
(fourth) durations. It can be observed that the middle (third) and long (fourth) instances
were correctly localized. However, the boundary positions of the short-duration instances
(first and second) were imprecise. The reason lies in two aspects: the motion of a short
instance changes rapidly, and the lack of contextual relevance makes it difficult to provide
sufficient clues for the prediction layer. In addition, relative to the long instance, its IoU is
extremely sensitive to the offset, so it is easy to be judged as a negative sample.

7. Conclusions

In this paper, we introduce a novel network for the temporal activity detection (TAD)
task in untrimmed videos. Our proposed model consists of three modules that process
input features in a serial manner. Specially, the input features are first passed through
the CC module to reduce the redundant content while capturing long-range contextual
information. Then, the output features of the previous step are processed by the MTC to
aggregate the multiscale local features. Finally, the aggregated features are input to the TD
module to enhance the weakened motion information and boundary features. Benefiting
from the complementarity of three independent modules, our model outperforms the
state-of-the-art methods by a big margin on two large-scale benchmarks, ActivityNet-
v1.3 and THUMOS-14. Extensive experiments demonstrate the generalization ability and
effectiveness of our approach.

Discussions: Temporal action detection is still an extremely challenging task, where
the complexity of the video structure is an important factor. So far, it is still unclear how
to effectively model complex temporal structures. The video has contextual relevance,
which requires modeling long-range temporal structures. The usual practice is to stack
1D convolutions. However, the original video has the following characteristics: (1) the
duration of different actions varies widely; (2) information redundancy between neighbor-
ing frames; and (3) the information is weakened in the long-distance delivery. According
to the above characteristics, we designed the MTC, CC, and TD modules, respectively.
The experimental results show that each module can help to improve the performance
of the model. In addition, the video also has the characteristics of overlap, nonlinearity,
spatio-temporal correlation, an inconsistent motion rate, and sparse boundary points. How
to design an efficient network to model long-range temporal relationships while taking
into account the video characteristics is the key to further improve the performance of the
TAD task.
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Abstract: The paper presents a novel data-embedding method based on the Periodic Haar Piecewise-
Linear (PHL) transform. The theoretical background behind the PHL transform concept is introduced.
The proposed watermarking method assumes embedding hidden information in the PHL transform
domain using the luminance channel of the original image. The watermark is embedded by modi-
fying the coefficients with relatively low values. The proposed method was verified based on the
measurement of the visual quality of an image with a watermark with respect to the length of the
embedded information. In addition, the bit error rate (BER) is also considered for different sizes
of a watermark. Furthermore, a method for the detection of image manipulation is presented. The
elaborated technique seems to be suitable for applications in digital signal and image processing
where high imperceptibility and low BER are required, and information security is of high importance.
In particular, this method can be applied in systems where the sensitive data is transmitted or stored
and needs to be protected appropriately (e.g., in medical image processing).

Keywords: watermarking; image protection; PHL transform; data embedding; multimedia systems

1. Introduction

There is a large number of areas where the security of multimedia content is crucial for
ensuring privacy and citizens’ rights in general. Digital watermarking is an efficient and
versatile technical means for embedding secret information into multimedia objects, such
as still images, videos, and audio files. An example of such secret, sensitive information can
be medical data related to patients. Watermarking technology can assure protection of the
digital content against unauthorized access, tampering, sensitive information disclosure,
or copyright infringement. Methods based on watermarking may be also used for such
applications as steganography and pseudonymization of private data. A graphic or audio
file marked in this way can help locate websites or FTP servers where these files are
unlawfully shared. As a result, a digital watermark now has high hopes for an effective
fight against fraud.

The efficient watermark should be characterized by the following features: Impercep-
tibility—the watermark should be imperceptible to the human eye, and the inserted infor-
mation should not deteriorate the visual quality of an original image. Robustness—the
watermark is detectable even after the original image transformation and is difficult to be
removed. Consideration of local image properties—the watermark is inserted with varying
intensity in different areas, depending on the characteristics of the area (e.g., brightness)
Watermark decoding method—the watermark can be read based on the watermarked
image only, without the need to verify against the original image.

Image watermarking can be performed in the spatial or transform domain. Spatial
domain methods usually result in direct modifications of image data, such as color bands,
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and brightness. The common method for embedding a watermark in the spatial domain
is the Least Significant Bit (LSB) method where the secret information is inserted into
the original image by modifying or replacing the least significant bits of pixels. On the
other hand, transform-based techniques rely on changing spectral factors in the domain
of a specific transform. To retrieve the image with an embedded watermark one needs to
perform the corresponding inverse transform operation. Watermarks embedded in the
transform domains are typically more reliable in comparison with the watermarks inserted
in the spatial domain [1,2].

The most widely used transforms used in digital watermarking include discrete
cosine transform (DCT) [3–6], discrete wavelet transforms (DWT) [7,8] and discrete Fourier
transform (DFT) [9,10]. Combination of different transform methods can be implemented,
(e.g., DCT and DWT transform) [11–13]. Additionally, transform-based techniques can be
used jointly with other methods, such as, (e.g., singular value decomposition (SVD) [14] or
discrete fractional random transform (DFRNT)) [2]. There are also new approaches that
apply novel types of transforms that are orthogonal and can be parameterized [15].

In [16], Yan et al. presented a data hiding scheme based on LSB modification in the
Piecewise-Linear Haar transform for audio signals. Yang et al. in [17] proposed a reversible
data hiding method dedicated to images using symmetrical histogram expansion also in
the domain of this transform.

However, Periodic Haar Piecewise-Linear (PHL) transform is only mentioned in the
literature with regard to image compression tasks [18].

For obvious reasons medical images are private to the patient and authorized medical
personnel and should be protected from unauthorized viewers. One method to protect
such images is using cryptography including traditional symmetric cryptosystems and
biometrics [19–21]. Digital content, in particular this related to medical images, is more
and more often protected by a combination of tools, such as encryption and watermarking.
As defined in [22] encryption algorithms can be considered as an “a priori” protection
mechanism since once data is decrypted, it is no longer protected. A complement to “a
priori” mechanism is “a posteriori” protection, which can be provided by watermarking.

Apart from unauthorized access to sensitive content, another potential threat to medi-
cal multimedia content is possible manipulations. Existing, widely available, image editing
software and image altering tools allow us to easily manipulate a digital image nowadays.
Studies of various image manipulation detection techniques are available in the literature.
Numerous image forgeries that can be performed on the image and different image manip-
ulation detection and localization methods were presented in [23]. Image manipulation
can also concern biomedical sciences where the use of images to depict laboratory results
is widely disseminated. Results published in [24] have shown an alarming level of image
manipulation in the published record. A dedicated tool was used to detect some of the most
common misbehaviors, running tests on a random set of papers and the full publishing
record of a journal.

Currently, image tampering detection can be also realized with the use of Convolu-
tional Neural Networks [25]. Image protection and manipulation detection are extremely
relevant in all applications where the sensitive data is transmitted from the imaging sensor
to a remote destination where it is further processed and analyzed [26]. Such protection can
be realized in aerial photography, area monitoring, and satellite imagery [27]. The same
applies to medical applications of remote sensing where electromagnetic radiation is most
commonly the sensing medium and the sensors of diagnostic devices, which are exterior
to the body of a patient, can detect various features of human tissues in a noninvasive
way [28].

The paper is organized as follows. The next section is dedicated to Periodic Haar
Piecewise-Linear Transform. Section 3 introduces a new method for data embedding.
Section 4 presents the potential application of the proposed algorithm for the detection
of image manipulations. In Section 5 the experimental results are presented and the
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comparison between the proposed solution and the DCT approach is discussed. Finally,
Section 6 contains the conclusions and future work.

2. Periodic Haar Piecewise-Linear PHL Transform

This section covers the most important theoretical aspects related to Periodic Haar
Piecewise-Linear (PHL) transform. The thorough description and further information are
presented in detail in [29]. The Haar functions are defined by the following formulas:

har(0, t) = 1 for t ∈ (−∞, ∞), usually T = 1 (1a)

har(i, t) =

⎧⎪⎪⎨⎪⎪⎩
2

k−1
2 for [ i

2k−1 − 1] ≤ t < [
i+ 1

2
2k−1

]

−2
k−1

2 for [ i+ 1
2

2k−1 − 1] ≤ t < [ i+1
2k−1 − 1]

0 otherwise

(1b)

where 0 < k < log2 N, 1 ≤ i ≤ 2k.
In turn, the PHL functions can be calculated by performing the integration of these

Haar functions. It can be realized by using the below formulas:

PHL(0, t) = 1 t ∈ (−∞, ∞) (2a)

PHL(1, t) = [
2
T

t+mT∫
mT

har(1, τ)dτ] +
1
2

(2b)

PHL(i + 1, t) =
2k+1

T

t+mT∫
mT

har(i + 1, τ)dτ (2c)

where i = 1, 2, ..., N − 2; k = 1, 2, ..., log2 N − 1; m = 0, 1, 2, ...;
k—index of group of PHL functions;
m—number of period.
Figure 1 depicts the derivatives (in distributive sense) of Haar functions. The PHL

functions are linearly independent but they do not satisfy the orthogonality condition.

2.1. One-Dimensional PHL Transform

To perform forward and inverse PHL transform, the following matrix equations can
be used:

a. Forward transform

[C(N)] = [− 1
2k+1 ][PHL(N)][X(N)] (3)

b. Inverse transform
[X(N)] = [IPHL(N)][C(N)] (4)

where [C(N)]—vector of PHL coefficients (PHL spectrum);
[X(N)]—vector of sampled signal;
[PHL(N)]—matrix of forward transform;
[IPHL(N)]—matrix of inverse transform;
[− 1

2k+1 ]—diagonal matrix of normalization.

[− 1
2k+1 ] = diag[1,− 1

21 ,− 1
22 (2 times),− 1

23 (4 times), ..., ,− 1
2k (2

k−1 times)] (5)

The first row of the forward transform matrix consists of number one at the first
position and the remaining elements are equal to zero. Other rows are composed of
derivatives (in a distributive sense) of periodic Haar functions. The matrix for the inverse
transform [IPHL(N)] is constructed in such a way that particular rows consist of PHL
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function values calculated for the same argument. For instance, the [PHL(N)] and [IPHL(N)]
matrices, for N = 8, are presented below:

[PHL(8)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
2 0 0 0 −2 0 0 0√
2 0 −2

√
2 0

√
2 0 0 0√

2 0 0 0
√

2 0 −2
√

2 0
2 −4 2 0 0 0 0 0
0 0 2 −4 2 0 0 0
0 0 0 0 2 −4 2 0
2 0 0 0 0 0 2 −4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

[IPHL(8)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 1

4

√
2

2 0 2 0 0 0
1 1

2

√
2 0 0 0 0 0

1 3
4

√
2

2 0 0 2 0 0
1 1 0 0 0 0 0 0
1 3

4 0
√

2
2 0 0 2 0

1 1
2 0

√
2 0 0 0 0

1 1
4 0

√
2

2 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

In this case, according to Equation (5), the diagonal matrix of normalization takes the
following form:

[− 1
2k+1 ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0 0
0 0 − 1

4 0 0 0 0 0
0 0 0 − 1

4 0 0 0 0
0 0 0 0 − 1

8 0 0 0
0 0 0 0 0 − 1

8 0 0
0 0 0 0 0 0 − 1

8 0
0 0 0 0 0 0 0 − 1

8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

It can be observed that:

[− 1
2k+1 ][PHL(8)][IPHL(8)] = [I(N)] (9)

where [I(N)] is the identity matrix.

2.2. Two-Dimensional PHL Functions and Transform

The 2D PHL transform can be formulated in the following way:

a. Forward transform

[C(Nx, Ny)] = [− 1
2ky+1 ][PHL(Ny)][F(Nx, Ny)][PHL(Nx)]

T [− 1
2kx+1 ]

T (10)

b. Inverse transform

[F(Nx, Ny)] = [IPHL(Ny)][C(Nx, Ny)][IPHL(Nx)]
T (11)

where [F(Nx, Ny)]—matrix of 2D signal;
[C(Nx, Ny)]—matrix of coefficients (2D PHL spectrum);
[PHL(Ny)], [PHL(Nx)]—matrices of 1D PHL forward transform;
[IPHL(Ny)], [IPHL(Nx)]—matrices of 1D PHL inverse transform;
[− 1

2ky+1 ], [− 1
2kx+1 ]—diagonal matrices of normalization.
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The non-periodic Haar Piecewise-Linear Transforms have an order (N + 1) while the
PHL Transforms have an order (N). Due to this fact, PHL transforms can be applied in digital
signal and image processing since the data usually has a dimension that is a power of 2.

Figure 1. Set of PHL functions for N = 8.

99



Sensors 2022, 22, 8106

3. Data Embedding in PHL Spectrum

The watermarking approach, presented in this paper, is based on inserting secret
information in the PHL transform domain. The method assumes that the PHL spectrum is
calculated only for the luminance channel of the given image, representing its grayscale
version. To speed up the computations, the forward transform operation is performed
on smaller subimages, i.e., blocks with the size: 8 × 8 pixels, using Equation (10) and the
matrices (6) and (7).

As a result, after performing the above process to the input signal, we get its spectral
coefficients in the PHL domain. Typically, a limited number of these coefficients carry most
of the signal energy [30,31].

The PHL transform may be used for image compression purposes [32]. In this task, the
spectral coefficients that are above a given threshold are kept while the remaining ones are
set to zero. Following this approach, our method assumes embedding of the watermark by
modification of the coefficients having relatively low values. To perform this operation, the
PHL coefficients are split into channels. Each channel groups the spectral coefficients with
the same indices from each block processed in the forward transform step. This way, we
obtain 64 PHL transform channels. The study of a set of various images and their spectra
indicates that the top-left channel cumulates most of the signal energy. It is well depicted
in Figure 2 which shows the PHL spectrum coefficients after grouping into 64 channels.

For the testing purpose and the presentation of the image manipulation detection
method in the following section, the Optical Coherence Tomography (OCT) images, having
the resolution of 1536 × 496 pixels, were used [33]. The OCT is a non-invasive imaging
examination that uses light waves to take cross-section pictures of the human retina. One
sample image of this type is shown in Figure 3. The tests show that the blocks: 37–39, 45–47,
and 53–55, marked in Figure 4, should be usually selected for the process of inserting secret
information. This conclusion is based on the analysis of spectra of diverse images with
varying content and characteristics. For the selection of the best channel for watermark
embedding, the mean of all absolute values from each block is calculated. The channel
with the lowest mean is chosen as the first candidate for the subsequent data embedding
operation. To increase the capacity of the watermark, other blocks can be selected afterward,
considering their mean values sorted in ascending order.

Figure 2. PHL spectrum coefficients grouped into channels.
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Figure 3. Sample OCT image.

Figure 4. Blocks selected for data embedding.

The selected channel coefficients are replaced with the consecutive bits of the message
that is to be hidden in the image. Subsequently, the channel coefficients need to be relocated
back to their previous positions. The final step is the inverse PHL transform of the modified
image spectrum that results in the image with an inserted watermark. The stages of the
whole embedding process are presented in Figure 5.

For the recovery of the embedded information, the same steps as previously need
to be performed—the forward transform, the grouping of PHL coefficients, and finally
extracting information from the selected channel or channels.

The selection of nine blocks for watermark embedding can be performed adaptively,
as described previously, or arbitrarily. In this way, the chosen order can be used as an
additional key at the watermark extraction phase.
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Figure 5. Block diagram for the base process of watermark embedding.

4. Image Manipulation Detection

The information embedded as a watermark can be used to detect potential manipula-
tions of the image. It would be beneficial if the hidden message could somehow describe
the content of the image so that later, during the recovery phase, it could be compared with
a newly generated description for the watermarked image. In case these two descriptions
differ significantly, it could be stated that the watermarked image has been tampered with.

In this paper, as a method for image description, MPEG-7 Edge Histogram descrip-
tor (EHD) has been selected. It is a visual texture descriptor that captures the spatial
distribution of five types of edges in an image: vertical, horizontal, two diagonals, and
non-directional edge. It is created by dividing an input image into 16 (4 × 4) blocks, which
is depicted in Figure 6. For each block, a histogram of all the above-mentioned types
of edges is calculated. Therefore, it consists of 4× 4× 5 = 80 values that compose this
descriptor [34].
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Figure 6. Blocks for which EHD descriptor is calculated.

In the first stage, the Edge Histogram descriptor is calculated for the given image. Its
values are binarized to create a message bitstream which is then embedded into the image.

To detect potential manipulation of the watermarked image, it is necessary to calculate
the EHD descriptor again and compare it with the one recovered from the watermark. The
particular steps for image manipulation detection are shown in Figure 7.

Figure 7. Block diagram for image manipulation detection process.

When the difference between particular values of both descriptors is significant, one
can determine that the image has been modified. Furthermore, since the EHD descriptor
returns 5 values for each of the 16 blocks, the proper analysis of differences at the given
positions can precisely indicate which of these 16 blocks have been tampered with. This is
presented in Figure 8. A sample tampered image is presented in Figure 8a and the image
with selected blocks that have been modified is shown in Figure 8b.
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(a) (b)

Figure 8. Result of image manipulation detection. (a) Tampered watermarked image. (b) Detected
regions where the image has been manipulated.

To obtain better precision for image manipulation detection the image can be initially
divided into smaller sub-images which are then further processed following the same steps
as in the previous example. In such a way, the blocks that are identified to have been
tampered with are of smaller dimensions. This is depicted in Figure 9.

(a) (b)

Figure 9. Result of image manipulation detection with greater precision. (a) Tampered watermarked
image. (b) Detected regions with greater precision.

5. Experimental Results

The verification of the proposed algorithm is performed by measuring of Peak Signal to
Noise Ratio (PSNR), which represents the visual quality of a watermarked image in relation
to the total size of a watermark. Additionally, to consider the human visual system (HVS),
Structural Similarity (SSIM) metric [35] and Universal Quality Image (UQI) index [36] are
measured to assess the quality of the image with an embedded watermark. Furthermore,
the bit error rate (BER) is also analyzed, for different lengths of the hidden message. The
measurements of these ratios were performed for watermarks inserted in DCT and PHL
transform domains so that the performance of both approaches may be compared. For test
purposes, a random bit stream is used as a watermark message. The tests were carried out
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in a MATLAB environment. The referenced DCT method originates from the one described
in [3].

For test purposes, 23 images from ‘Images 4k’ dataset [37] have been selected. The
dataset contains 2057 files. The test images were selected in such a way that they represent
different visual characteristics, i.e., low and high contrast and brightness as well as various
color distributions. The dimensions of the images were reduced by half to 1920 × 1080 size
so that the calculations and the watermark embedding process are speeded up.

The relation between the PSNR ratio and the length of a hidden bit stream is presented
in Figure 10. It can be observed that a perceptual quality of an image with a watermark in-
serted in the PHL spectrum is consistently better than in the case of a watermark embedded
in the DCT domain. It is assumed that the PSNR above 35 dB indicates that the two images
being compared are visually identical, with no perceptual loss of quality [38]. Therefore,
both techniques provide satisfying results as far as the imperceptibility of a watermark is
concerned, for the size of a watermark exceeding even 100,000 bits.

Figure 10. Relation between PSNR ratio and the watermark capacity (PHL vs. DCT).

SSIM is a quality assessment metric based on the visual changes in local structure
and contrast between two images. It provides a good approximation of human visual
perception. The metric values can range from 0 to 1, where 1 indicates perfect similarity [35].
The relation between SSIM and the total size of a watermark is presented in Figure 11. The
results measured for the PHL method are slightly better than the ones achieved in the DCT
approach. However, both methods according to this metric provide satisfying results.

UQI index is designed to model image distortion as a combination of three factors:
loss of correlation, luminance distortion, and contrast distortion. Although it does not
employ any human visual system model, it was proved to be consistent with subjective
quality assessment [36]. UQI index can vary between −1 and 1, where value 1 indicates
no distortion present in the image. The relation between UQI and the length of a hidden
message is presented in Figure 12.

The relation between the BER ratio and the size of a watermark is shown in Figure 13.
It can be noticed that both methods guarantee a low bit error rate (<0.1%) for the watermark
size ranging from 5000 to 105,000 bits. Therefore, both solutions are useful when a limited,
but still, in most applications, sufficient, amount of information needs to be hidden in
an image.
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Figure 11. Relation between SSIM metric and the watermark capacity (PHL vs. DCT).

Figure 12. Relation between UQI index and the watermark capacity (PHL vs. DCT).

Figure 13. Relation between BER ratio and the watermark capacity (PHL vs. DCT).
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6. Conclusions and Future Work

We have presented a new watermarking scheme that is based on inserting a message
bitstream in the PHL transform domain. The method offers a high capacity for hidden
information and simultaneously satisfies the initial requirements of low image distortion
and high accuracy during the watermark recovery stage. Therefore, it is a promising
technique that can be used in a wide range of multimedia systems and services with
emphasis put on medical applications where the aforementioned conditions need to be met.
In addition, a method for the detection of image manipulation has been presented.

Further investigations will cover potential enhancements so that the method could
be robust to various types of attacks. Finally, we plan to apply our solution in many
applications in the upcoming future.
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Abstract: The field of Neural Style Transfer (NST) has led to interesting applications that enable us
to transform reality as human beings perceive it. Particularly, NST for material translation aims to
transform the material of an object into that of a target material from a reference image. Since the
target material (style) usually comes from a different object, the quality of the synthesized result
totally depends on the reference image. In this paper, we propose a material translation method based
on NST with automatic style image retrieval. The proposed CNN-feature-based image retrieval aims
to find the ideal reference image that best translates the material of an object. An ideal reference image
must share semantic information with the original object while containing distinctive characteristics
of the desired material (style). Thus, we refine the search by selecting the most-discriminative images
from the target material, while focusing on object semantics by removing its style information. To
translate materials to object regions, we combine a real-time material segmentation method with
NST. In this way, the material of the retrieved style image is transferred to the segmented areas
only. We evaluate our proposal with different state-of-the-art NST methods, including conventional
and recently proposed approaches. Furthermore, with a human perceptual study applied to 100
participants, we demonstrate that synthesized images of stone, wood, and metal can be perceived as
real and even chosen over legitimate photographs of such materials.

Keywords: material translation; neural style transfer; instance normalization; human perception of
materials

1. Introduction

Since the introduction of AlexNet [1] in the early 2010s, Convolutional Neural Net-
works (CNNs) have become the central pillar of computer vision. Over the next decade,
the field gradually shifted from engineering features to designing CNN architectures. This
success is attributed to more efficient graphics processing units (GPUs), new regulariza-
tion techniques, and data augmentation methods to generate more training samples by
deforming the available datasets. CNN architectures are now leading the performance
of almost all computer vision tasks, such as detection, segmentation, and recognition of
different types of objects and regions in images and videos [2,3]. On the other hand, in 2016,
Gatys et al. [4] first studied how to use CNNs for applying painting styles to natural images.
They demonstrated that is possible to exploit CNN feature activation to recombine the con-
tent of a given photo and the style of artwork. Specifically, a pre-trained CNN architecture
is used to extract content and style features from each image. Subsequently, the resultant
image is optimized by minimizing the features’ distance iteratively. This work opened up
the field of Neural Style Transfer (NST), which is the process of rendering image content in
different styles using CNNs [5].

NST has led to interesting applications that enable transforming the reality that human
beings perceive, such as photo editing, image colorization, makeup transfer, material
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translation, and more [6–9]. In particular, material translation aims to transform the
material of an object (from a real photograph) into a target material synthesized from the
reference image (from now on, just called the style image). Consequently, the generated
images can change the human perception of the objects, as shown in Figure 1. In these
examples, objects made from light materials such as fabric or wood can be perceived as
heavy materials, such as metal. Further, this technique can be combined with Augmented
Reality (AR) and Virtual Reality (VR) devices to develop applications that generate alternate
reality experiences.

Figure 1. Examples of material translation results. Metal objects translated from different original
materials: wood, fabric, glass, plastic, fabric, and stone (content image in red). From left to right
and top to bottom, respectively.

An important issue of material translation is that the quality of the synthesized results
totally depends on the chosen style image. For example, Figure 2 shows the results of
material translation from plastic to paper using three different style images. From this
figure, we can see that although the style images clearly show characteristics of paper,
not all translation results can be recognized as paper toys. It is worth noting that the
translation has to be localized only in the object region, keeping the background unaltered.
Therefore, both problems need to be tackled to achieve realistic results that can challenge
the perception of original objects.

Figure 2. Examples of material translation (plastic → paper) using different style images (right
corner of each generated result). The first picture shows the content image (blue), and the last is the
generated image using our proposed framework (red).

In general, we can summarize three crucial aspects to achieve realistic results for
material translation. The chosen style image must be able to (i) represent the target material
clearly and (ii) share semantic information with the original object (similarity with the
content image). Moreover, (iii) the original object must be segmented to maintain the
background. Taking into account these aspects, in this paper we propose a material
translation method based on NST and automatic style image retrieval. In this way, we
cover the problems related to style image selection, i.e., (i) and (ii). Furthermore, we apply
real-time material segmentation as a postprocessing step to fulfill (iii).

Our material translation method is defined as follows. In order to select an ideal style
image, we firstly refine the search process by automatically choosing the most discriminative
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candidate images from each material class available. Secondly, we propose to remove the
style information using instance normalization whitening (IN [10]) from the query (content)
and the refined images (style) of the desired material. Thus, the final search is performed
using normalized CNN features extracted from the VGG19 network [11]. Finally, to trans-
late materials to object regions, we combine semantic segmentation with NST. Specifically,
we obtain pseudo labels with a weakly supervised segmentation (WSS) framework [12] to
train a real-time material segmentation model [13]. Thus, we can efficiently segment target
regions (objects) to translate the material of the retrieved style image.

In this paper, we employ ten different material classes shared in two publicly available
datasets: Flickr Material Database (FMD [14]) and the Extended-FMD (EFMD [15]). Some
examples from these datasets are shown in Figure 3. We quantitatively evaluate our work
on different metrics, including: Inception Score (IS), Frechet Inception Distance (FID),
classification accuracy, and segmentation performance. Qualitatively, we show examples of
synthesized images that can be evaluated by visual inspection. Furthermore, we conduct
a human perceptual study to evaluate the realism of the generated results. The study
is designed to analyze the capacity to fool human perception by translating the original
materials of target objects. One hundred participants strictly evaluated image triplets
from the same material, where two were real photographs, and one was translated from
a different original material. Participants are asked to choose the image that they think
does not belong to the mentioned material (strict question). Thus, if they do not pick the
synthesized image, it means that the translated results are real enough to fool human
perception. The results of our study indicate that using our NST-based approach, it is
possible to generate images that can be recognized as real even over legitimate photographs,
especially for objects made of stone, wood, or metal.

Figure 3. Example images from the ten material classes used in this paper. Each row depicts images
from the same class, from top to bottom: fabric, foliage, glass, leather, metal, paper, plastic, stone,
water, and wood.
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In our previous work [16], we tested an image retrieval method for improving material
translation and found that NST is better than GAN-based generation models for material
translation. Therefore, in this paper, we focus the analysis on the cutting-edge NST methods,
including conventional [4,17–19] and recent approaches [20–22].

In summary, in this work, we extend our workshop paper [16] findings. Hence,
the novel contributions of this paper are threefold:

• We propose a single-material translation framework based on real-time material
segmentation and neural style transfer with automatic style image retrieval.

• We evaluate our proposed method with state-of-the-art (SOTA) NST methods, in-
cluding Gatys [4], Johnson’s [17], AdaIN [18], WCT [19], LST [20], MetaStyle [21],
and STROTSS [22].

• We present a human perceptual study applied to 100 participants to evaluate the
capacity of our generated results to fool the human perception of objects with
translated materials.

2. Related Work

Neural Style Transfer methods can be divided in two groups: image-optimization-
based and model-optimization-based [5]. The seminal work of Gatys et al. [4] is part of
the first group, since the style transfer is built upon an iterative image optimization in the
pixel space. Specifically, the content is defined by features extracted from multiple layers
of pre-trained CNN, and the style is by terms of the Gram matrix of features extracted
from another set of layers. Recently, Style Transfer by Relaxed Optimal Transport and
Self-Similarity (STROTSS [22]) was proposed as an alternative to Gatys team’s work. In
this approach, the style is defined as a distribution over features extracted by CNN, and the
distance is measured between these using an approximation of the earth mover’s distance.
Further, the content is defined by using local self-similarity descriptors. With these original
representations of content and style, STROTSS overcame the results of Gatys, which was
for a long time considered the gold standard due to its visual quality [5].

To enable faster stylization, the second group of works trains Conv–Deconv Networks
using content and style loss functions to approximate the results in a single forward pass.
This method was first introduced by Johnson et al. with the well-known perceptual loss
function [17]. An important drawback of Johnson’s approach is that an independent
model must be trained for each single style image. Therefore, some approaches aim
to train one single model to transfer arbitrary styles [18–20]. Huang and Belongie [18]
propose adaptive instance normalization (AdaIN) to achieve real-time performance. AdaIN
transfers channel-wise statics between content and style, which are modulated with affine
parameters (trainable). Concurrently, Li et al. [19] propose a pair of whitening and coloring
transformations (WCT) to achieve the first style learning-free method. In the same line,
Linear Style Transfer (LST) [20] is proposed as an arbitrary style transfer that learns the
transformation matrix with a feed-forward network and presents general solutions to the
linear transformation approaches (such as AdaIN and WCT). It is known that usually
arbitrary style transfer models come at the cost of compromised style transfer quality
compared to single-style model methods [5]. To overcome this issue, the recent MetaStyle
approach [21] formulates NST as a bi-level optimization problem, which is solvable by
meta-learning methods. MetaSttyle combines arbitrary style representation learning with
only a few post-processing update steps to adapt to a fast approximation model with quality
comparable to that of image-optimization-based methods. A more recent approach called
IFFMStyle [23] introduced invalid feature filtering modules (IFFM) to an encoder–decoder
architecture for filtering the content-independent features in the original and generated
images. In this way, IFFMStyle is able to transfer the style of a collection of images rather
than selecting a single style image. On the other hand, Total Style Transfer [24] resolves
the limitation of transferring the scale across style patterns of a style image by utilizing
intra/inter-scale statistics of multi-scaled feature maps. The process is achieved by a single
decoder network using skip-connections to efficiently generate stylized images. It is worth
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noting that all mentioned methods from both groups can be applied to material translation.
Hence, we test our framework with different SOTA NST methods to find the most suitable
approach for our task.

3. Proposed Method

Matsuo et al. [9] proposed combining conventional NST [4] with a weakly semantic
segmentation (WSS) approach [25] to achieve realistic material translation results. Therefore,
we build upon Matsuo’s framework and extend it as follows: (1) we propose automatic
image retrieval rather than manually finding the ideal style image; (2) we employ a real-time
semantic segmentation model trained with pseudo labels generated with a SOTA WSS
method; and (3) we analyze different SOTA NST approaches since we previously found
that NST-based strategies usually generate more realistic results than the GAN-based
methods [16]. Figure 4 illustrates our proposed inference process for material translation
focused on a single object (wood → foliage). As an input, we take the content image
and the label of the target material. Our main contribution resides in the style image
retrieval process, where we propose to apply IN whitening to remove the style information
and retrieve the ideal style image based on its semantic similarity with the content image.
Subsequently, in the material translation stage, we apply the NST approach to synthesize
the material of the content image using the retrieved style. At the same time, we apply
semantic segmentation on the content image to get the foreground mask depicting the
material region that will be translated. Finally, the output is generated by combining
synthesized and content images using the foreground mask. In the following subsections,
we describe both of the main stages: Style Image Retrieval and Material Translation.

Figure 4. General overview of our proposal for material translation using style image retrieval.

3.1. Style Image Retrieval

We build our image retrieval process upon two key ideas: search refinement and style
removal from CNN features. For search refinement, we assume that the ideal style image
must reflect essential characteristics from its material while showing apparent differences
from others. Therefore, to refine the style image search to the most discriminative samples,
we train a CNN model to classify all possible style images from the target material to auto-
matically choose the samples with the highest score (defined by a classification threshold
Thcl f ). Since this classification model is crucial to define high-quality candidates, we choose
the robust CNN architecture of InceptionV3 [26]. Subsequently, we automatically choose
the possible style images that present the widest area of the target material. To do so, we
define the relative material area as the division of the material region by the image size,
and we choose the samples with the most extensive regions using an area threshold Tharea.
Note that the material region is depicted by the provided pixel annotation of the dataset or
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is automatically detected by a semantic segmentation model. Then, the style image search
is refined to the best-scored images with more extensive material regions from the target
material. In practice, we set Thcl f and Tharea both to 0.99, so that the number of refined
images drops to about 16% of samples per material. Figure 5 shows some examples of
possible ideal style images that satisfy our designed requirements.

Figure 5. Fixed style images per material selected from the best-scored samples and the widest
material regions. From left to right and top to bottom: fabric, foliage, glass, leather, metal, paper,
plastic, stone, water, and wood.

Equally important, we employ instance normalization (IN) whitening for style re-
moval, which was originally proposed to remove instance-specific contrast information
from input images [10]. Huang et al. [27] experimentally proved that the distance between
VGG [11] features of two samples is more domain-invariant when using IN whitening
(experiment details on the supplementary material of [27]). In other words, the features of
two images with the same content and different styles (domain) are closer in the euclidean
space than those from the same style but with different contents. That is what we seek
in our style image retrieval process: to find the most similar style image based on its content
(semantic) by excluding its style information. Therefore, we build the style-free image retrieval
on a VGG19, replacing all batch normalization (BN) layers with non-parametric IN. The
formal definition of the IN is as follows:

ytijk =
xtijk − μti√

σ2
ti + ε

, (1)

where x ∈ RT×C×W×H is an input tensor; xtijk denotes the tijk-th element, where k and
j span spatial dimensions, i corresponds to the feature map (output from the current
convolutional layer), and t is the index of the image in the batch; ε is an arbitrarily small
constant used for numerical stability, and μti and σ2

ti, respectively are the per-instance mean
and standard deviation, given by:
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where H and W represent the height and width of the feature map, respectively. It is worth
noting that, different from the conventional IN layer, we exclude the affine parameters.
That’s why we call this process “whitening”.

We L2-normalize the VGG-features from the fc7 layer before using the euclidean
distance to evaluate the similarity between the content (query) and the possible style image.
Finally, the image with the lowest distance is retrieved (ideal style image). Note that we
search only within the refined images from the target material, making the retrieval process
very efficient. Figure 6 shows examples of the retrieved images from different materials by
using IN or BN. As can be seen, the IN version retrieves style-free images that can be useful
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for material translation. Meanwhile, BN retrieves images that show apparent similarities to
the content image (including color and style).

Figure 6. Retrieved results from our proposal using IN (top) and BN (bottom). From left to right:
content image (stone); results of fabric, foliage, and wood materials.

3.2. Material Translation with NST

In order to design a robust and efficient material segmentation model, we first obtain
pseudo labels of object regions with a WSS approach; then, we train a real-time fully
supervised semantic segmentation. Subsequently, material translation is achieved in three
steps: (1) material translation with NST using the ideal style image; (2) real-time semantic
segmentation of the content image; and (3) style synthesis to the segmented regions. Each
sub-process is described below.

3.2.1. Real-Time Material Segmentation

Since pixel annotation labels (semantic labels) are costly to acquire, WSS directly
attacks the problem by generating segmentation labels of images given their image-level
class labels. Particularly, Ahn and Kwak [12] propose to learn Pixel-level Semantic Affinity
(PSA) from class activation maps (CAMs) [28] of a multi-label CNN network. The so-
called AffinityNet predicts semantic affinity between a pair of adjacent image coordinates,
and semantic propagation is done by a random walk. The training of AffinityNet is
only supervised by the initial discriminative part segmentation (using CAMs), which is
incomplete as a segmentation annotation but sufficient for learning semantic affinities
within small image areas. Hence, we train AffinityNet with the Extended-FMD dataset,
which contains image-level class labels only. As a result, we obtain coarse material region
labels from the complete dataset (10,000 images), enough to train and fine-tune a case-
specific semantic segmentation model.

On the other hand, Harmonic Densely Connected Network (HarDNet) [13] deals with
real-time performance, an important issue of semantic segmentation methods. HarDNet
achieves SOTA results by using harmonic densely connected blocks (HarDBlocks) instead of
traditional bottleneck blocks [13]. A HarDBlock reduces most of the layer connections from
a dense block, which heavily decreases concatenation cost. Moreover, the input/output
channel ratio is balanced by increasing the channel width of a layer according to its
connections. In particular, HarDNet for semantic segmentation is a U-shaped architecture
with five encoder and four decoder blocks built of HarDBlocks. Compared to SOTA CNN
architectures, HardDNet achieves comparable accuracy with significantly lower GPU
runtime. Therefore, our material segmentation model is based on a HarDNet architecture.
Particularly, we train a HarDNet model with the coarse labels obtained by AffinityNet.
Subsequently, we fine-tune the model with the FMD dataset. Note that fine-tuning helps to
enrich the quality of the HarDNet segmentation results by employing (in the supervision)
the pixel-level annotations provided by the FMD dataset.
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3.2.2. Material Translation

As a baseline, we use the conventional NST method from Gatys [4] for material
translation, which uses a pre-trained VGG19 network to extract content and style features.
The translated image is optimized by minimizing the features distance and their Gram
matrices (correlation operations). Gatys et al. [4] experimentally proved that the Gram
matrix of CNN activations from different layers efficiently represents the style of an image.
As shown in Figure 4, we first translate the whole content image to the retrieved style.
Finally, we integrate the material region of the synthesized image and the background
region of the content image into the final output (Iout), which is defined by:

Iout = Igen Imask + Iorg(1− Imask) (3)

where Igen is the synthesized image, Imask ∈ {0, 1} is the region mask obtained by HarDNet,
and Iorg is the content image with the original object.

4. Experimental Results

4.1. Implementation Details

We use PyTorch 1.2 with CUDA 10.2 for all experiments. For all trained methods, we
used their respective pre-trained models on ImageNet [29]. AffinityNet (PSA) employed
Adam as the optimization method. On the other hand, for HarDNet and InceptionV3,
we used Stochastic Gradient Descent (SGD) with weight-decay 5× 10−4 and momentum
0.9 as the optimizer. The rest of the parameters and data augmentation techniques were
chosen as described in their original papers: PSA [12], HarDNet [13], and InceptionV3 [26].
The input image size for each network was 448× 448, 512× 512, and 299× 299 for PSA,
HarDNet, and InceptionV3, respectively. Note that all methods were tested with images in
their original resolution (512× 384 for FMD and EFMD datasets). Finally, we measured
the inference time of each method (excluding I/O time) on an Intel Core i7-9700K desktop
with a single NVIDIA GTX 1080Ti GPU.

4.2. Datasets

In this paper, we use two publicly available datasets: Flickr Material Database (FMD)
and the Extended-FMD (EFMD). FMD [14] consists of 10 materials (fabric, foliage, glass,
leather, metal, paper, plastic, stone, water, and wood). Each class contains 100 real-world
images. The samples were selected manually from Flickr and were manually annotated
at pixel-level. Some examples of this dataset are shown in Figure 3. EFMD [15] contains
the same materials but includes 1000 images per class (10,000 in total). The samples
were picked as close as possible to the FMD images, and only image-level annotations
are provided. Images from both datasets are real-world RGB photographs with a size of
512× 384 pixels. As shown in Table 1, for each method, we used a different number of
training and testing images from both datasets. As mentioned before, HarDNet is firstly
trained with the complete EFMD (HarDNet-base) and then fine-tuned with the FMD dataset
(HarDNet). Note that for the material translation experiment (NST-based methods), each
of the 100 testing images (10 per class) is transformed into each material class. Hence, we
evaluate the NST-based methods with 1000 synthesized images.

Table 1. Number of training and testing images used for each method.

Method Training Set Test Set

PSA 10,000 (EFMD) 1000 (FMD)
HarDNet-base 10,000 (EFMD) 1000 (FMD)

InceptionV3 10,000 (EFMD) 1000 (FMD)
HarDNet 900 (FMD) 100 (FMD)

NST-based - 100 (FMD)
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4.3. Ablation Study

We first evaluate our proposal with classification and segmentation metrics: average
accuracy (acc) and mean Intersection over the Union (mIoU). The classification accuracy
shows the percentage of synthesized images that can be correctly classified with the trained
InceptionV3 model. The intuition behind this evaluation is that the higher the accuracy,
the better the quality of synthesized images. On the other hand, the segmentation metric
presents a similar evaluation focused on pixel-level accuracy. In other words, the mIoU
metric is stricter since it measures the accuracy of the translated materials by region rather
than taking a single decision from the whole image.

As a baseline, we select one fixed style image per material based on the best-scored
images and the widest material regions. Figure 5 shows the selected style images from
each class. Note that these ten images are used to translate the entire testing set. As a
result, ten translated images are generated from each content sample; hence, we evaluate
1000 synthesized images in total (100 per class). On the other hand, we apply our style
image retrieval only to the refined images (about 15 per class) of the target material. We
evaluate the results of our proposal by replacing the IN whitening (VGG19-IN) with BN
layers (VGG19-BN) and without the normalization process (VGG19). We also evaluate the
results with (w/refine) and without search refinement (w/o refine), which means searching
for the ideal style image within 90 images per class.

Table 2 presents quantitative results of all variations. We observe that IN whitening sig-
nificantly improves the results compared to the vanilla VGG19 and the BN (11% of accuracy
and 4% of mIoU). These results concur with our hypothesis that style information must be
removed from VGG features to retrieve ideal style images. Further, search refinement plays
an essential role in the retrieving process. It boosts the material translation performance
of our VGG19-IN by more than 15%. Surprisingly, the fixed-style image performance is
comparable to that of the retrieving-based approaches and even outperforms the BN and
vanilla VGG19 variations. This issue suggests that there is still a place for improvement in
the retrieving process (to find better style images).

Table 2. Classification and segmentation evaluation of the ablation study: “w/o” and “w/ refine”
refers to without and with search refinement, respectively.

w/o Refine w/ Refine
Method acc mIoU acc mIoU

Baseline - - 0.556 0.4860
VGG19-IN 0.409 0.3967 0.572 0.5062
VGG19-BN 0.291 0.3612 0.543 0.4887

VGG19 0.270 0.3520 0.506 0.4845

We also evaluate per-material performance from our proposal. Figure 7 shows the
average accuracy of content (translated from original material to the ten classes) and
style (individually translated material from all content styles) materials. As expected,
not all materials show the same level of realism after the translation process. Interesting
results are those from glass and water. The former seems to be easy to synthesize but
challenging to translate, while the latter presents the opposite situation. Likewise, water
and leather materials are challenging to synthesize, while glass and wood are certainly
easier. Furthermore, in Figure 8, we evaluate the translation performance from each pair of
materials (A → B), where rows and columns represent original (content) and translated
(style) materials, respectively. Stone to leather and leather to water are challenging to
translate, while stone to wood and wood to plastic are more accessible.
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Figure 7. Classification accuracy per material class using our proposed VGG19-IN.

Figure 8. Classification accuracy (%) of translations from material A (rows) to material B (columns).

Figure 9 illustrates quantitative results of our VGG19-IN feature-based approach. We
can see that all retrieved style images do not share style similarities with the content images
explicitly (due to the IN whitening). Further, some of them show similar features: such as
in the first example (from wood), the angular shape of the tooth-like part of the object has
similar patterns on the foliage image. On the other hand, the difficulty in translating the
water material might be related to the object shapes rather than the style itself. It is not
natural to recognize water as certain shapes that do not exist in the real world.
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(A)

(B)

Figure 9. Translated results using our VGG19-IN proposal. (A) from wood, and (B) from foliage
material (content image in red). From left to right, and top to bottom: content image, results of fabric,
foliage, glass, leather, metal, stone, and water.

4.4. Comparison among SOTA NST Methods

We evaluate our approach with the conventional methods of Gatys [4] and John-
son [17]; the real-time learning-free methods of AdaIN [18], WCT [19], and LST [20]; as well
as the recently proposed methods of MetaStyle [21] and STROTSS [22]. In the case of the
Johnson and MetaStyle models, using the default parameters provided in their respectively
open-source codes, we train ten models based on the fixed style images shown in Figure 5.
For Gatys and STROTSS, we optimize each content image with its respective ideal styles
from all materials, generating the same number of images in total (100 per material). Fi-
nally, we use the respectively pre-trained models provided by the authors of AdaIN, WCT,
and LST.

In addition to the acc and mIoU, we evaluated all methods using GAN metrics,
i.e., Inception Score (IS), and the Frechet Inception Distance (FID). The IS estimates the
quality of the synthesized images based on how well the InceptionV3 model classifies
them. This metric combines the confidence of the conditional class predictions for each
synthetic image (quality) and the integral of the marginal probability of the predicted
classes (diversity). However, IS does not capture how synthetic images compare to real
ones. That’s the main reason for introducing FID, which employs the coding layer of
the InceptionV3 model to generate features from real and synthesized images. Thus,
the distance between the distributions from both groups of images is then calculated using
the Frechet distance. Finally, we use our pre-trained InceptionV3 model to calculate IS and
FID metrics, and the final results are averaged over the 1000 synthesized images generated
from the 100 content images. Note that as an accuracy score, the higher the IS is, the better.
Contrarily, the smaller the FID is, the better, as it reflects the distance from real images.
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Table 3 shows the results from all evaluated NST methods. As expected, the best
results are obtained by the image-optimization-based approaches (Gatys and STROTSS).
However, due to their iterative optimization process, these are the methods with the slowest
inference time. STROTSS obtained the best FID score, which means that the translated
images share stronger semantic similarities with real photographs than those translated by
the Gatys method. Still, the latter gets better classification and segmentation accuracy. On
the other hand, Johnson’s, AdaIN, and MetaStyle are the most computationally efficient
methods. Nevertheless, AdaIN can be preferred since it uses only a single model to transfer
arbitrary styles. Finally, WCT and LST show similar performance, although LST is about
two times faster than the former. Figure 10 shows qualitative results from all methods. We
can see that in this example, almost all synthesized images show distinctive properties
of the target material (stone), such as rough and porous texture rather than the polished
surface of the original wood material. Even so, the results of Gatys and STROTSS look
significantly more real than those of AdaIN and LST.

Table 3. Quantitative results of all evaluated NST methods. Inference time is measured on a single
GTX 1080 Ti GPU.

Method acc ↑ mIoU ↑ IS ↑ FID ↓ Inference Time ↓
Gatys [4] 0.572 0.5062 4.181 61.30 45.6545 s

STROTSS [22] 0.515 0.4887 4.046 60.29 89.1562 s
Johnson’s [17] 0.506 0.4464 3.887 68.44 0.0881 s
MetaStyle [21] 0.442 0.4674 3.635 61.93 0.1868 s

WCT [19] 0.353 0.4079 3.604 64.53 1.0151 s
LST [20] 0.343 0.3606 3.569 62.95 0.4816 s

AdaIN [18] 0.304 0.2780 3.129 74.52 0.1083 s

Figure 10. Qualitative results from all evaluated NST methods, translating from wood to stone. From
left to right and top to bottom: content image (red) and style (blue); results from Gatys, STROTSS,
Johnson, MetaStyle, WCT, LST, and AdaIN.

4.5. Human Perceptual Study

Well-designed perceptual experiments with human observers are the most reli-
able known methodology for evaluating the quality of synthesized images. Human
perceptual studies for NST approaches usually analyze the results from different NST
approaches [22,27,30,31]. However, they do not assess if the generated images can be
perceived as real over legit photographs of the same category. Therefore, we design a
human perceptual study to analyze the capacity of the synthesized images to fool human
perception by translating the original materials with our NST-based proposal.

Using the InceptionV3 model, for this study, we choose the top-6 synthesized images
from each material, 60 images in total. An example of the top-6 translated results of
metal are shown in Figure 1. These images are generated using the Gatys NST method
and are usually translated from content images affine to the target material, as shown in
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the confusion matrix of Figure 8. We present each synthesized image along with two real
photographs of objects from the same material. These photographs were manually selected
from the FMD dataset and considered the objects included in the 60 synthesized images.
Then, users were asked to select the image that does not belong to the depicted material
from the three options. An example of the user interface is shown in Figure 11. Furthermore,
to avoid biased results generated from the background of the original photographs, we
remove this from all images used in the study. In this way, objects only found outdoors
may have the chance to be recognized if these are translated to materials that are found
indoors and vice-versa.

Figure 11. Human perceptual study interface: 70% of the participants chose (A), 18% chose (C), while
the image generated using our approach (B) got only 12% of the votes.

One hundred different participants took part in this study. We randomly showed
30 questions to each of them, keeping a ratio of 3 images per material. In total, 60 dif-
ferent questions were defined, and the image order of the triplets was also randomized
to ensure fair comparisons. Each question was answered by 50 different participants, so
we collected 3000 votes in total. Unlimited time was given to select the fake image out of
three options. Note that there was not an option to indicate that all photos are real. Thus,
the participants were forced to carefully find the outlier image. Consequently, if they did
not pick the synthesized image, it means that the translated results are real enough to fool
human perception.

We counted the results when participants do not choose the synthesized images. Given
that, the average results of the 3000 votes show that 44.86% of the time, participants took the
translated results as representative pictures of their target material. These findings are more
significant for some materials, as shown in Figure 12. Translated images from materials
such as stone, wood, metal, and leather were taken as real over legitimate photographs by
more than 50% of participants. In this way, we can prove that our NST-based approach
can generate images that fool the human perception. Figure 13 shows some examples of
the translated images that got the best acceptance in the human study. We can see that the
synthesized images clearly exhibit elements from the target material, such as reflection and
texture in the cases of metal and leather, respectively.
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Figure 12. Realism results from the human perceptual study. Y-axis shows the average results when
participants did not select the translated image as the outlier. Higher results represent more people
being fooled by the synthesized images.

Figure 13. Examples of synthesized images with fewer votes (i.e., perceived as real). Each row
shows the image triplets shown in one question (1st row: metal; 2nd row: leather). The most-voted
pictures are shown from (left) to (right). The synthesized results of metal and leather got 4% and
14% of the votes, respectively (content image in red).

On the other hand, although we selected the best-scored synthesized images, the re-
sults of foliage, water, and fabric were not able to fool the human perception. Figure 14
shows some examples of these materials. As we can see, the shape and texture of the
original materials (wood in both cases) limits the results for being selected over legitimate
photographs, even though the texture and color of the target materials are still present
(foliage and water). Finally, we believe the results for plastic, paper, and glass can be-
come more real if the original object shares similarities with authentic objects of the target
material. However, with the current study, we cannot prove this hypothesis.
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Figure 14. Examples of synthesized images with more votes (i.e., perceived as fake). Each row
shows the image triplets shown in one question (1st row: foliage; 2nd row: water). The most-voted
pictures are shown from (left) to (right). The synthesized results of foliage and water got 88% and
85% votes of the votes, respectively (content image in red).

5. Conclusions and Future Work

In this paper, we introduced a material translation method based on real-time material
segmentation and neural style transfer with automatic ideal style image retrieval. We build
the image retrieval on VGG19 features whitened with instance normalization to remove
the style information. Our results show that by excluding the style in the search process,
the translated results are significantly better. We were able to translate the material of
segmented objects using different NST methods, which we further analyzed quantitatively
and qualitatively. Furthermore, we presented a human perceptual study to evaluate the
quality of the synthesized images. The results of our study indicate that our NST-based
approach can generate images of stone, wood, and metal that can be perceived as real even
over legitimate photographs. Since we can alternate the material of some objects with the
results being perceived as more real than fictional, we expect that our approach can be used
to create alternate reality scenarios in which the user can feel a different environment based
on the imperceptively modified objects.

As future work, we will further analyze different options to synthesize materials such
as plastic, paper, and glass, which we believe can get more real if the original object shares
similarities with authentic objects of the target material. Further, we would like to develop
a real-time application that can translate the material of objects in-the-wild.
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Abstract: Monitoring of the physiologic metric, respiratory frequency (RF), has been shown to be
of value in health, disease, and exercise science. Both heart rate (HR) and variability (HRV), as
represented by variation in RR interval timing, as well as analysis of ECG waveform variability, have
shown potential in its measurement. Validation of RF accuracy using newer consumer hardware
and software applications have been sparse. The intent of this report is to assess the precision of the
RF derived using Kubios HRV Premium software version 3.5 with the Movesense Medical sensor
single-channel ECG (MS ECG) and the Polar H10 (H10) HR monitor. Gas exchange data (GE), RR
intervals (H10), and continuous ECG (MS ECG) were recorded from 21 participants performing an
incremental cycling ramp to failure. Results showed high correlations between the reference GE
and both the H10 (r = 0.85, SEE = 4.2) and MS ECG (r = 0.95, SEE = 2.6). Although median values
were statistically different via Wilcoxon testing, adjusted median differences were clinically small
for the H10 (RF about 1 breaths/min) and trivial for the MS ECG (RF about 0.1 breaths/min). ECG
based measurement with the MS ECG showed reduced bias, limits of agreement (maximal bias,
−2.0 breaths/min, maximal LoA, 6.1 to −10.0 breaths/min) compared to the H10 (maximal bias,
−3.9 breaths/min, maximal LoA, 8.2 to −16.0 breaths/min). In conclusion, RF derived from the
combination of the MS ECG sensor with Kubios HRV Premium software, tracked closely to the
reference device through an exercise ramp, illustrates the potential for this system to be of practical
usage during endurance exercise.

Keywords: respiratory rate; breathing frequency; heart rate variability; endurance exercise

1. Introduction

While respiratory frequency or breathing rate (RF) has been shown to be of value in
monitoring both health and disease states, its application as an exercise measurement tool has
lagged behind other internal and external load parameters such as heart rate (HR), heart rate
variability (HRV), cycling, and running power [1]. However, there are scenarios in which RF
estimation can be helpful in exercise science. These include ventilatory threshold measurements,
assessments of work rate intensity, and decreases in exercise performance [2–4]. Though
minute ventilation (the tidal volume x RF) has received attention for intensity estimation
purposes [5], the respiratory rate itself has been shown to be quite sensitive in this regard as
well [1]. Interestingly, the RF curve closely mimics that of the rise in lactate seen with progressive
increases in exercise intensity [1]. It also appears to be a good predictor for constant intensity
time to exhaustion and a means of differentiating effort/perceived exertion over long time
periods [6]. Additionally, RF appears to respond to exercise load change faster than HR or VO2,
making this metric ideal for high intensity interval physiologic tracking [7].

There are a wide variety of methods to determine RF, including formal gas exchange
metabolic carts, devices that track mechanical deformation of the chest wall, sounds of
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breathing, and analysis of the photoplethysmogram (PPG) [8]. Unfortunately, both gas
exchange carts and mechanical sensing vests can be cumbersome and costly. Photoplethys-
mography is problematic when used during dynamic exercise due to associated limb and
body motion. However, it is possible to derive RF through the low-cost modality of HR
monitoring technology [9]. One method is based on the alterations in HRV (as the varia-
tion of RR intervals) that accompany the process known as respiratory sinus arrythmia
(RSA) [10]. On a simplistic basis, chest cavity expansion during inspiration induces an
intrathoracic pressure drop with a secondary blood pressure reduction, leading to a re-
duced parasympathetic drive to the cardiac pacemaker apparatus causing heart rate to
rise. Conversely, chest cavity volume contraction during expiration results in a return of
parasympathetic drive and a slowing of HR [11]. Ideally, these cyclic changes in RR/HRV
pattern are directly reflected to the RF and therefore measurable by HR monitoring or
electrocardiogram (ECG) devices. In practice however, RF derived purely from RSA has
relatively poor agreement with reference methods [9]. In an attempt to improve the accu-
racy of RSA-based RF, additional clues taken from the actual ECG waveform have been
utilized to enhance those based on RSA alone. These methods involve several potential
observations including the variation of R wave amplitude, QRS waveform analysis and/or
QRS slope alteration during the breathing process [12–14].

Several reports have been published comparing the accuracy of different ECG and
HRV algorithms to derive RF [13,15]. Many of these procedures are not easily reproduced by
consumers, coaches, or sports professionals. Recently, one of the more popular commercial
HRV software applications, Kubios HRV Premium, has been modified to calculate RF
either using RR/HRV interval or ECG data recordings [16]. The HRV method is based
on the cyclic cardiac beat to beat time domain changes in RR intervals associated with
RSA, whereas the Kubios ECG procedure (ECG-derived RF; EDR) combines both the HRV
estimation method with that of ECG-associated R wave amplitude changes seen during the
respiratory cycle. To date, there has not been a published independent evaluation regarding
the validity of these methods. Additionally, the question of whether adding the R wave
amplitude information seen with ECG recording improves the RF estimation over simple
RR interval analysis arises. In the context of comparing RF derived from two recording
sources, it is also important to consider the effects of lead placement on HRV [17,18]. In
other words, HRV measured from a conventional ECG lead placement may differ from
that of HRV from a chest belt device. Fortunately, there are consumer HR monitoring
devices with similar chest belt form factors able to accurately measure HRV and ECG
waveforms, thus eliminating that particular variable. Therefore, to best compare HRV alone
to that of HRV plus ECG-derived RF, we will compare data from two chest belt devices
worn concurrently, the Polar H10 and Movesense Medical single-channel ECG, to a gas
exchange-derived RF (GE).

2. Methods

2.1. Participants

Twenty-one participants (men: n = 12, age: 43 ± 13 years, height: 178 ± 8 cm, body
weight: 83 ± 14 kg; women: n = 9, age: 35 ± 11 years, height: 169 ± 4 cm, body weight:
66 ± 10 kg) with no previous past medical history, current medications, or recent illness
were recruited. They were all above 18 years of age and of any fitness level. All participants
were asked to abstain from alcohol, caffeine, recreational drugs, tobacco, and vigorous
exercise 24 h before testing, and provided written informed consent. Ethical approval for
the study was acquired through the University of Hamburg, Department of Psychology
and Movement Science, Germany (reference no.: 2021_400) and was in accordance with the
principles of the Declaration of Helsinki.
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2.2. Exercise Protocol and Data Recording

An incremental ramp protocol until exhaustion was performed on a mechanically
braked cycle (Ergoselect 4 SN, Ergoline GmbG, Bitz, Germany) by all participants. Testing
procedure included a warmup of three minutes with an initial workload of 50 watts then
increasing by 1 watt every 3.6 s (equivalent to 50 watts/3 min). The exercise ramp was
terminated when the participant could not maintain a cadence of 60 rpm or when they
reached subjective exhaustion or a heart rate > 90% of the maximum predicted heart rate,
or respiratory quotient > 1.1. Maximum oxygen uptake (VO2MAX) and maximum HR
(HRMAX) were defined as the average VO2 and HR over the last 30 s of the test. Recordings
of RR intervals and ECG were taken continuously with two devices at the same time, the
Movesense Medical sensor (firmware version 2.0.99) single-channel ECG with chest belt
(Movesense, Vantaa, Finland; sampling rate: 512 Hz; app software: Movesense Showcase
version 1.0.9), and the Polar H10 sensor chest belt device (Polar Electro Oy, Kempele,
Finland; sampling rate: 1000 Hz; app software: Elite HRV App, Version 5.5.1). Placement
of both chest belt devices was just below the pectoral muscles with a similar horizontal
alignment (see 18). Gas exchange kinetics including RF were recorded with a metabolic
analyzer (Quark CPET, module A-67-100-02, Cosmed, Italy; desktop software: Omnia
version 1.6.5).

2.3. Data Processing

RR data .txt files were exported from the Elite HRV app then processed by Kubios
HRV Premium Software version 3.5 (Biosignal Analysis and Medical Imaging Group,
Department of Physics, University of Kuopio, Kuopio, Finland). Movesense Medical sensor
ECG tracings were recorded by the Movesense showcase app via an iPhone, converted into
.csv files and also processed by Kubios HRV Premium. Preprocessing settings were set to
the default values including the RR detrending method which was kept at “smoothness
priors” (Lambda = 500). The RR series was then corrected by the Kubios HRV Premium
“automatic method” [19]. For RF calculation, the window width was set to 30 s with a
recalculation done every 1 s (grid interval = 1 s). Data sets with artefacts >3% were excluded
from analysis. A 30 s window was based on recommendations from Kubios HRV [16].
A particular RF value was therefore based on the time 15 s before and 15 s after each
given time stamp. The reference RF measured by the Quark CPET (breath by breath) was
exported to Microsoft Excel 365 and time aligned with both the Polar H10 and Movesense
Medical ECG sensor-derived RF. Since both the Polar H10 and Movesense Medical sensor
ECG RF were recalculated every 1 s for both devices, only those values that time matched
the gas exchange RF values were included for analysis.

2.4. Statistics

Normal distribution of data was checked by Shapiro–Wilk testing and visual inspection
of data histograms. Descriptive statistical analysis was performed for the tested variables
using Microsoft Excel 365 for the calculation of means, medians, and standard deviations
(SD). The agreement of the derived RF during incremental exercise was assessed via linear
regression, Pearson’s r correlation coefficient, coefficient of determination (R2), standard error
of estimate (SEE), and Bland–Altman plots with limits of agreement (LoA) [20]. The size of
Pearson’s r correlations was evaluated as follows: 0.3≤ r < 0.5 low, 0.6≤ r < 0.8 moderate, and
r≥ 0.8 high [21]. For non-normalized data, estimates of the adjusted median difference (AMD)
were calculated using the Hodges–Lehmann shift method along with Wilcoxon testing of
paired groups [22]. Agreement between groups was assessed by Bland–Altman analysis, but
if proportional bias was detected, regression-based calculation of mean differences and limits
of agreement were performed [23]. Bland–Altman mean differences for data comparisons
were expressed as the absolute difference in RF as breaths/min (b/min). Inspection of the
distribution of the mean differences in the Bland–Altman analysis was performed to confirm
normality. For all tests, the statistical significance was accepted as p≤ 0.05. Analytical statistics
were performed using Microsoft Excel 365 with Real Statistics Resource Pack software (Release
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7.6, copyright 2013–2021, Charles Zaiontz, www.real-statistics.com, accessed on 13 August
2022) and Analyse-it software (Leeds, UK, Version 6.01).

3. Results

During the incremental exercise ramp, participants achieved a mean VO2MAX of
40.3± 7.9 mL/kg/min and HRMAX of 176 ± 13 bpm, which was associated with a maximal
power (PMAX) of 260 ± 53 watts. Five participants were excluded from exercise analysis
due to artefacts > 3%. These were caused by both atrial and ventricular ectopic beats that
were noted in the ECG. Artifacts attributed to noise were virtually nonexistent and ECG
waveforms were well shaped in the analysis group.

The total number of paired RF observations between devices was 7543 from 16 par-
ticipants and the distribution of values was not normal. The level of correlation was high
(Figure 1, Table 1) between the reference gas exchange device and both the Polar H10
(r = 0.85, SEE = 4.2) and Movesense Medical ECG sensor (r = 0.95, SEE = 2.6). Although
median values were statistically different via Wilcoxon testing, adjusted median differences
were clinically small for the Polar H10 (RF about 1 b/min) and trivial for the Movesense
Medical ECG sensor (RF about 0.1 b/min). Bland–Altman plotting is shown in Figure 2.
An analysis looking for both proportional bias (change in the bias over the RF range) and
heteroscedasticity (change in scatter of the differences) did show significant findings for
each comparison. A line of regression for the mean differences and limits of agreement was
performed and displayed in Figure 2 according to the recommendations of Ludbrook [23].
Representative plots of RF over time for the three measurement modalities are shown in
Figure 3. In 2 of the cases there were zero artifacts and in the other 2 the total artifacts (atrial
premature beats) were below 1%.

Table 1. Mean, standard deviation (SD), median, minimum, maximum, adjusted median difference
(AMD) as breaths/min (b/min) for the respiratory frequency (RF) comparison of the gas exchange (GE),
Polar H10 (H10) and the Movesense Medical sensor ECG (MS ECG) data according to Hodges–Lehmann
method (p-value estimated by Wilcoxon paired testing), Pearson’s r and standard error of estimate (SEE)
calculated from paired RF data during the incremental exercise test until voluntary exhaustion.

GE H10 MS ECG

Mean (b/min) 27.75 26.19 27.70

Median (b/min) 25.80 25.09 26.51

SD (b/min) 8.56 7.92 8.08

Max (b/min) 63.93 48.01 56.57

Min (b/min) 10.91 9.06 11.89

AMD (b/min) −1.159 0.105

Wilcoxon p value 0.0001 0.004

Pearson’s r 0.85 0.95

SEE (b/min) 4.2 2.6
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Figure 1. Regression plots for the comparison of respiratory frequency (RF) in breaths/min (b/min)
for the (A) Movesense Medical sensor ECG (MS ECG) and the (B) Polar H10 sensor chest belt device
(H10) vs gas exchange data (GE) during the incremental exercise test. Coefficient of determination
(R2), Pearson’s r, standard error of estimate (SEE), and p value shown in the bottom right plot.
Regression line in red, line of unity shown in dark grey.
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Figure 2. Bland–Altman analysis of respiratory frequency (RF) as breaths/min (b/min) for the
(A) Movesense Medical sensor ECG (MS ECG) and the (B) Polar H10 sensor chest belt device (H10)
vs the gas exchange data (GE) during the incremental exercise test until voluntary exhaustion. Center
solid line in each plot represents the mean bias (difference) between each paired value as absolute
values. The top and bottom dashed lines are LoA (1.96 standard deviations from the mean difference).
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Figure 3. Respiratory frequency (RF) plotted over time for Movesense Medical sensor ECG (MS ECG),
Polar H10 (H10) (Kubios window width: 30 s, grid interval: 1 s) and the gas exchange data (GE) in four
representative participants. (A): 26-year-old female with a BMI of 30 kg/m2, VO2MAX of 38 mL/kg/min,
Kubios artifact rate of 0.5%; (B): 27-year-old female with a BMI of 22 kg/m2, VO2MAX of 42 mL/kg/min,
Kubios artifact rate of 0.0%; (C): 47-year-old male with a BMI of 38 kg/m2, VO2MAX of 31 mL/kg/min,
Kubios artifact rate of 0.0%; (D): 25-year-old female with a BMI of 21 kg/m2, VO2MAX of 40 mL/kg/min,
Kubios HRV artifact rate of 0.7%. MS ECG (red circle), H10 (blue circle), GE (black). Ramp termination
corresponds with peak GE respiratory rate. Length of post ramp recovery determined by data recording
cessation and artifacts below 3%.

4. Discussion

The aim of this study was to assess the level of agreement for RF detection between a
reference gas exchange analyzer and either RR interval/HRV analysis alone (Polar H10) or
a combination of RR interval analysis and ECG waveform fluctuation (Movesense Medical
ECG sensor) using a commercial software application, Kubios HRV Premium. The findings
show that RF derived from a combination of both RR intervals and ECG were closer to the
reference values than from RR intervals only. Both correlation coefficients, adjusted median
differences, Bland–Altman bias and LoAs were superior for the combination approach.
In both methodologies, diminished accuracy appears to occur at higher respiratory rates
and/or at the ramp termination with voluntary exhaustion. In almost all cases, this under
reporting of RF was more prominent with the RR interval only method. However, for the
most part, both absolute values as well as the shape of the RF over time curve were well
preserved with the combination RR intervals and ECG data.

Inspection of the Bland–Altman plots did reveal significant proportional bias and
heteroscedasticity (change in scatter of the differences) with both methods. With the
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RR interval-based approach the mean bias varied from −0.3 to −3.9 b/min along with
relatively wide LoA (maximum 8.2 to −16.0 b/min). Although the AMD was only about
1 b/min, there was a general failure to properly measure the higher RF with precision
as well as more frequent outliers than with the combination approach. Improvement in
agreement and correlation was seen using the combination of RR intervals and ECG data
with a reduction of mean bias variation (0.9 to −2.0 b/min), LoA range (maximum 6.1 to
−10.0 b/min) and a trivial AMD. Both r, R2, and SEE were superior with this method but
even this algorithm still failed to fully capture the highest RF portions at ramp termination
at voluntary exhaustion. This disparity in values at high RF was also seen with Kubios’
own internal white paper report [16]. Their data did mirror the present findings in showing
that the combination approach was superior to the RR interval only method especially in
the high RF zone.

It should be noted that the Movesense Medical ECG sensor and the Polar H10 should
display virtually identical base ECG waveforms, since they use the same subpectoral sensor
pad placement. As background information, the Polar H10 is capable of transmitting ECG
waveform data at a fixed sample rate of 130 Hz with several android and iOS applications
available to read this data. This distinction is important as other studies regarding HRV
indexes have shown differences based purely on the ECG lead chosen for comparison [17,18].
In the present case, each device had similar sensor electrode placements, suggesting that this
issue should not be a concern. Both devices also had high sample rates at 512 and 1000 Hz,
respectively, both above recommended levels [24]. In another report [14], a Polar H10 ECG
waveform was upsampled (from 130 to 1000 Hz) and analyzed for RF using a combination
of RR interval and ECG morphology change during various participant activities including
running and cycling. Although correlations and participant specific plotting were not shown,
the Bland–Altman differences were minimal with a bias of −0.5 and LoA of 2 b/min. The
authors did report that the error rate was higher during running than with cycling.

From a practical standpoint, the EDR seems to yield equivalent RF patterns as the
GE noted in Figure 3. Since previous studies showed potential for RF breakpoints to
correspond with ventilatory thresholds [2], it would be of interest to see if EDR could
achieve a similar result. A recent publication showed that both first and second ventilatory
threshold identification is possible with EDR methodology [25]. This study used a Holter
monitor ECG with a sample rate of 1000 Hz, and lead V6. Although we did not attempt
to correlate gas exchange thresholds with the shape of the RF curve, prototypical RF over
time plots shown in the cited report display many similarities to that of the Movesense
Medical ECG sensor seen in Figure 3. Unfortunately, in many cases from the current report
that used RR interval information only, the RF over time plot had skewed regions that
would make breakpoint estimation difficult. Another endurance exercise characteristic that
could be examined with EDR is the ability of RF to act as an index of “acute performance
decrement (APD)” [4] as a consequence of training load. The APD appears to be a similar
concept to that of athletic “durability” described as the time of onset and magnitude in
deterioration in physiological-profiling characteristics over an exercise session [26]. Given
the high concordance between EDR and GDR seen in this report, it seems plausible that
EDR could be substituted for more equipment intensive measurements of RF. In the study
overview by Passfield et al. [4], the APD was well correlated with the RF, supporting the
potential of this metric to follow exercise load effects.

5. Limitations and Future Directions

Several potential limitations are apparent in using both RR interval related RSA pat-
terns and/or ECG morphology for the purpose of RF estimation. The precision of RR
measurement, amount of noise or artifact will certainly play a role in accurate delineation
of any measure of HRV [27–29] and presumably derived RF as well. However, in addition
to these concerns, the ECG based algorithm can be hampered by poor waveform signal
strength, highlighting the need for optimal sensor pad/chest belt placement. In a similar
fashion, even RR measurement can be affected by lead placement and waveform morphol-
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ogy, as noted. To compound matters, the induction of body motion and muscular contractile
effects will make a suboptimal waveform even more difficult to parse. It is interesting to
note that in the subjects with deviation in the RR interval-derived RF seen in Figure 3, the
addition of the ECG algorithm caused almost complete correction of the abnormal tracking.
It is also important to realize that the data presented here represent a best-case scenario,
with excellent ECG waveforms, little-to-no noise/missed beat artifacts and rare premature
beats. The effects of both cardiac arrythmia, missed beats, and noisy ECG tracings are
unclear. We strongly suggest that individuals inspect their ECG waveforms before testing
to optimize QRS morphology (to achieve best R peak voltage) and signal-to-noise ratio. It
is also of note that few validations have been performed investigating EDR during high
intensity activity, let alone incremental exercise ramps until voluntary exhaustion [14].
In the future, a promising area of technology involving wearable, washable fabric sen-
sors may provide a solution to ECG-related noise and arrhythmia issues in respiratory
monitoring as well [30]. Additionally, progress in compensating for motion artifacts in
PPG-derived indexes [31] may lead to better accuracy in forthcoming applications related
to RF calculation [32].

The present study was performed with participants cycling indoors. Extrapolation
to either outdoor cycling or other sport modalities (running, row, ski) needs to be made
with caution until further validation is done. Some evidence points to subtle changes in the
patterns of RF between exercise modalities such as cycling, running, and rowing that are
dependent on entrainment effects [32–35]. In addition to issues related to exercise modality,
higher EDR error rates were observed in participants running rather than cycling [14].
Since that specific study used a similar chest belt sensor (Polar H10), similar preprocessing
and EDR methodology to Kubios HRV Premium software (Pan Tompkins R peak iden-
tification with quantification of R peak voltage combined with RR interval timing), this
may indicate some limitation of using the current implementation with certain sporting
activities. Regarding RF data point matching in the current study, the RR interval/EDR
values were calculated over a measurement window of 30 s. It is possible that the failure to
fully reach the peak RF seen with the gas exchange reference device may be related to the
limited time duration of that RF. We also did not time-average the gas exchange values,
which, if executed, may have led to less scattering of differences on the Bland–Altman
plots. Some recommendations have been made to time-average the RF to remove effects
of swallows, coughs, and sighs [1]. It was felt, that for the most part, breathing patterns
during a cycling ramp would contain little of the above. Our intent was to directly compare
devices with as little data manipulation as possible. Finally, the issue of device specific
HRV precision should not be a factor since both the Polar H10 [36] and the Movesense
Medical ECG sensor [18] have had formal RR validation studies performed.

Despite the above considerations, the degree of similarity between the EDR and GDR
were impressive. Except for the slight underrepresentation of maximal values at ramp
termination at voluntary exhaustion, the overall shape and agreement of the incremental
rise of RF values were clinically meaningful. In the context of insights into exercise intensity
assessment and threshold demarcation, the RF values seen with the Movesense Medical
sensor ECG were virtually indistinguishable to that of the reference device values. With a
similar form factor to a conventional chest belt monitor and only a minimal additional cost,
the Movesense Medical sensor ECG appears very promising for athletic RF estimation in
conjunction with Kubios HRV Premium software. One additional consideration is the cost
of Kubios HRV Premium which is required for both ECG interpretation and any RF analysis.
Beyond price, what are the prospects for future wearable devices (watches, cycling head
units) to include incorporation of ECG-derived RF into dedicated apps which record from
the Movesense Medical ECG sensor directly? Although this may appear to be unrealistic
given the hardware and software constraints of mobile units, the accomplishment of real
time computation of the nonlinear HRV index DFA a1 for the purpose of athletic monitoring
by several apps [37] illustrates what is potentially possible with skillful software design.
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6. Conclusions

The ability of a commercial HRV software package, Kubios HRV Premium, to estimate
respiratory frequency throughout an exercise ramp was assessed in two consumer heart
rate monitoring devices, the Polar H10 and Movesense Medical ECG sensor. Bland–Altman
analysis, linear regression, and adjusted median differences indicate that the ECG centric
system (single-channel chest belt ECG plus Kubios HRV Premium ECG algorithm) is
superior to that of RR interval-derived respiratory frequency. The ECG based methodology
also captured the pattern and shape of the respiratory frequency rise over time during
the incremental ramp, whereas the RR interval-based system displayed variable accuracy
especially at high exercise intensities. Future confirmation of these findings needs to be
carried out with other exercise modalities as well as evaluation of the effects of artifact and
noise. However, the use of commercially available software and hardware for the purpose
of respiratory frequency monitoring appears promising.
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Abstract: This paper presents an automatic recognition system for classifying stones belonging to
different Calabrian quarries (Southern Italy). The tool for stone recognition has been developed in
the SILPI project (acronym of “Sistema per l’Identificazione di Lapidei Per Immagini”), financed by POR
Calabria FESR-FSE 2014-2020. Our study is based on the Convolutional Neural Networks (CNNs) that
is used in literature for many different tasks such as speech recognition, neural language processing,
bioinformatics, image classification and much more. In particular, we propose a two-stage hybrid
approach based on the use of a model of Deep Learning (DL), in our case the CNN, in the first stage and
a model of Machine Learning (ML) in the second one. In this work, we discuss a possible solution to
stones classification which uses a CNN for the feature extraction phase and the Softmax or Multinomial
Logistic Regression (MLR), Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Random Forest (RF)
and Gaussian Naive Bayes (GNB) ML techniques in order to perform the classification phase basing
our study on the approach called Transfer Learning (TL). We show the image acquisition process in
order to collect adequate information for creating an opportune database of the stone typologies
present in the Calabrian quarries, also performing the identification of quarries in the considered
region. Finally, we show a comparison of different DL and ML combinations in our Two-Stage Hybrid
Model solution.

Keywords: Deep Learning (DL); Convolutional Neural Network (CNN); Machine Learning (ML); Softmax;
Support Vector Machine (SVM); k-Nearest Neighbors (kNN); Random Forest (RF); Gaussian Naive Bayes
(GNB); Two-Stage Hybrid Model

1. Introduction

In the course of evolution, humans have developed complex skills to adapt to the
surrounding environment and act on the basis of what has been observed. Depending on the
situation, we are able to decide the most appropriate behavior to use according to a certain
pattern, which can be, for example, recognizing a face, understanding another person’s
words, reading handwriting or distinguishing fresh food from its smell. The development
of technology and the exponential improvement of computational sciences have made it
possible to create computer learning software. This software acts by recognizing a certain
scheme, depending on the application. Pattern Recognition (PR) is a branch of Artificial
Intelligence (AI) that focuses on the recognition of patterns, forms and classifications in
data by a computer. It is closely related to Machine Learning (ML), data mining and the
discovery of knowledge. It aims to classify objects into a number of categories or classes.
The main phase of a PR process concerns the Feature Extraction and Classification. Its goal is
to characterize the data to be recognized by metrics that will provide the same results for
the data in the same category and different results for the data in different categories. This
leads to finding distinctive features that are invariant to any data transformation (ideally).
The degree of classification of the input into different categories varies according to the
characteristics of the data. In this work, we used the Convolutional Neural Network (CNN) to
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perform the feature extraction phase which is one of the most important steps in the PR,
and the TL [1] approach to avoid creating our network from scratch. In particular, we used
a Two-Stage Hybrid Model solution that joins the use of a Deep Learning (DL) technique,
a CNN model for the feature extraction phase, with a classical ML algorithm in order to
perform image classification. We used four different CNNs, each one implementing five
types of ML algorithms for classification: the Softmax or Multinomial Logistic Regression
(MLR) [2], the Support Vector Machine (SVM) [3], the k-Nearest Neighbors (kNN) [4], the
Random Forest (RF) [5] and the Gaussian Naive Bayes (GNB) [6]. We have obtained the
confusion matrix of the performed object recognition for each type of used algorithm.
Finally, we have presented a comparison between these algorithms in order to show the
performances of each approach. In this scenario, the contribution of this paper is to give
some indications into the development of a system for automatic stones classification
from the Calabrian quarries. The tool for stone recognition has been developed in the
SILPI project (acronym of “Sistema per l’Identificazione di Lapidei Per Immagini”), financed
by POR Calabria FESR-FSE 2014-2020 [7]. The characterization and the determination of
the provenance of stone materials, generally, represent a very long and complex process
that requires not only the use of destructive and expensive diagnostic techniques, but also
a specialized staff with scientific and technical know-how who are able to interpret and
process the compositional data obtained from the analyses. Instead, the system developed
in this project is intended to be a tool that can be easily used by non-geologists (such as
restorers, archaeologists, architects, engineers, diagnostics and art historians) by helping
them to solve problems about the provenance and the classification of stone materials.
The system, based on image processing, is developed using rocks sampled from different
Calabrian quarries, some of which were used in historical times for the construction of
artifacts of historical and archaeological interest [8–10].

The main contributions of this work are listed in the following:

• The paper proposes a methodology to be used in the stone recognition context of the
main Calabrian quarries that, to the best of our knowledge, represents the first attempt
in the stone literature;

• The paper proposes to use in the context of stone classification a Two-Stage Hybrid
Model that joins the DL approaches with ML algorithms;

• The paper shows a set of experiments by which it is possible to take out some consid-
erations on the best combination of DL plus ML techniques to be used in the stone
recognition task.

The remainder of the paper is organized as follows. After a review of related literature
(Section 2), we give a description of the materials used in our research (Section 3). A brief
description of pre-trained CNN models and classification methods are provided in Section 4.
Section 5 provides an introduction of the Two-Stage Hybrid Model composed of a CNN
network followed by a traditional ML algorithm. Section 6 describes the experiments to
evaluate the performance of the provided Two-Stage Hybrid Model showing the achieved
results. Section 7 concludes the paper with some final considerations.

2. Related Work

In the last few years, many researchers focused their studies on the DL approach
for many different tasks. In particular, the attention has been concentrated on the CNN
that represents an important technique able to resolve many different issues regarding
different aspects such as speech recognition, natural language processing, bioinformatics,
and image classification [11]. Our attention is focused on image recognition issues and, in
particular, our application domain regards stone recognition. Many different works exist
in literature about stone classification through image processing and many works exist
on neural network and DL approaches applied to this domain. In the remainder of this
section, we show the main works in order to contextualize our research.
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2.1. Convolutional Neural Network (CNN) for Classification

Many papers have faced the topic of image processing and classification using DL
and Convolutional Neural Network (CNN) solutions. In [12], an evaluation of an image
classifier using traditional computer vision and DL approaches is provided. They use
an Inception-V3 architecture and their own CNN called TinyNet built from scratch. The
accuracy and loss attributes are provided as a result of the evaluation. In [13] the use of
DL approach for image classification is provided. The authors analyzed and implemented
a VGG-16 model for performing image classification into different categories. Moreover,
they provide a methodology for more accurate classification of images. In [14] and in [15]
the authors show the use of the CNN approach for visual object recognition using only
SVM, in the first case, and Softmax and SVM classifiers, in the second one. Moreover, the
authors of the second paper demonstrate a small but consistent advantage of replacing
the Softmax layer with a linear SVM. A work based on pedestrians using CNN and
SVM techniques is proposed in [16]. Their tests show that the proposal is able to quickly
and reliably detect the pedestrian targets on the Caltech data set. In [17] the authors
propose an image classification model applied for identifying the display of the online
advertisement using a Convolutional Neural Network (CNN). The proposed CNN considers
two parameters (n, m) where n is a number of layers and m is the number of filters in
convolutional layers that are chosen on the basis of a series of experiments that they
present in the paper. In [18] the authors investigate the use of a deep convolutional neural
network CNN for scene classification. They experiment with two simple and effective
strategies to extract CNN features, first using pre-trained CNN models as universal feature
extractors, and then, domain-specifically fine-tuning pre-trained CNN models on their
scene classification dataset. In [19] the authors propose a CNN architecture using the
MNIST handwritten dataset in order to validate it. They utilize an optimized hardware
architecture with reduced arithmetic operations and faster computations implemented on
an FPGA accelerator. Another paper focusing on computational architecture is [20]. The
authors implement an image classification CNN using a multi-thread GPU on the CIFAR10
dataset. In [21] the authors deal with the problem of synthetic aperture radar (SAR)
image classification. They design a deep CNN architecture proposing a microarchitecture
called Compress Unit (CU). Their architecture, compared with other networks for SAR
classification in literature, results in being more performed and efficient. Other works exist
that compare classification approaches in order to show the best choice for their applicative
domain. An investigation on supervised classification is in [22] where the authors evaluate
the performances of two classifiers as well as two feature extraction techniques: Linear SVM
and Quadratic SVM. An exploration of the hybrid CNN solution for image classification
is provided in [23] where the authors provide a comparative study of seven CNN-based
hybrid image classification techniques showing the results in terms of their accuracy. A
specific topic of butterfly recognition is studied in [24]. The power of DL approaches has
shown the capability of the CNN of discovering with accurate results the different varieties
of these insects. They propose two CNN approaches building from scratch their neural
model able to classify butterfly images. A problem of plant classification is analyzed in [25]
through the use of two different hybrid CNN models implemented by the authors from
scratch. They used three different datasets, namely LeafSnap, Flavia, and MalayaKew
Dataset utilizing the data augmentation approach for better performing the training phase.
Their study shows good results for the proposed models in terms of accuracy.

2.2. Stone Classification

A lot of works exist on this topic in literature. Many researchers face the stone
classification issue taking into account many different approaches that involve earth science
and the mining industry. In [26] the authors have presented some possible approaches
to the development of an expert system for the automatic classification of granite tiles.
Based on recent results on color texture analysis, they have proposed a set of visual
descriptors which provide good classification accuracy with a limited number of features.
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In [27] the authors investigate the problem of choosing adequate color representation
for automated surface grading. Moreover, they discuss the pros and cons of different
color spaces basing their study on a dataset of 25 classes of natural stone. In [28] the
authors describe a methodology for a correct and automated granite identification and
classification by processing spectral information captured by a spectrophotometer at various
stages of processing using functional ML techniques. In [29] the authors describe an
approach for texture classification on a dateset of different stones. They have worked on
extracting statistical features from histogram of grain components. So, they have provided
a computable feature vector which has most meaningful information of texture. In [30]
a novel approach to rotation and scale invariant texture classification is introduced. The
proposed approach is based on Gabor filters that have the capability to collapse the filter
responses according to the scale and orientation of the textures. Their experiments have
shown the goodness of the proposed approach compared with other methods existing in
the literature. In [31] the authors deal with the texture classification issues. In this paper, the
authors propose an approach that uses both the Gabor wavelet and the curvelet transforms
on the transferred regular shapes of the image regions. They show some experiments on
texture classification demonstrating the effectiveness of the proposed approach.

A computer-vision-based methodology for the purpose of gemstone classification
on 68 different classes of gemstones is provided in [32]. The authors utilize a series of
feature extraction techniques used in combination with different ML algorithms. Moreover,
they also use a DL classification with two ResNet models: ResNet18 and ResNet50. They
provide results of classification methods against three expert gemmologists with at least
5 years of experience in gemstone identification showing the difference in time response
between human and automatic approaches.

Other literature works that use the DL approach for automatic stone classification
is [33], where automatic recognition and classification of granite tiles is the object of study
using CNN networks such as AlexNet and VGGNet for a fine-tuning pre-trained approach,
or [34] where the authors implement a classification model of ornamental rocks through
the analysis and classification of images, using machine learning algorithms.

The use of the Transfer Learning (TL) approach for mineral microscopic image classifi-
cation is reported in [35]. The authors show the system behavior using four mineral image
features extracted by an Inception-V3 CNN network. Moreover, the features extracted are
used for classification purposes throughout different ML methods such as: Logistic Regres-
sion (LR), Support Vector Machine (SVM), Random Forest (RF), k-Nearest Neighbors (kNN),
Multilayer Perceptron (MLP), and GNB. As a result, they found that LR, SVM, and MLP
have a significant performance among all the models, with accuracy of about 90.0%. This
last contribution, which is one of the literature works used for conceiving our idea, is
of proposing a hybrid model composed of two stages based on DL and ML approaches:
the first one used for feature extraction and the second one used for performing stone
classification. So, on the basis of these literature works we have proposed a methodology
and a model to be used in the context of stone recognition proposing the joining use of
four different CNNs and five different ML classification algorithms, also showing the best
combination to be used.

2.3. Main Paper Contributions

This literature review presents the scientific community effort in this research field, also
showing how the new AI approaches are largely used in the context of stone classification.
From this study, it emerges that many researchers propose DL- or ML-based approaches but
our Two-Stage Hybrid Model is distinguished for the provided methodology/modeling
and represents a good solution for image recognition. Many studies deal with stone
recognition using classical approaches based on texture and color space that represent very
complex and resource consuming techniques. Other works introduce approaches based
on AI techniques, but no one considers more CNNs (four CNN models) combined with
different classifier algorithms. So, on the basis of these studies, in this work we propose a
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system model to be used in stone classification based on a hybrid approach that consists
of a two-stage model in which, in the first stage, we apply the use of the DL approach
based on four different CNN networks and, in the second stage we propose the use of ML
techniques in order to perform image classification. Our study proposes a methodology
and a modeling that can be used in different contexts of stone classification. Moreover, it
uses the well-known TL approach in the first stage, in order to take advantage of feature
extraction based on a large image database as ImageNet, passing this information to the
second stage that, based on ML algorithms, performs the classification. The TL approach
permits the avoidance of creating a CNN from scratch, making the project less complex
and onerous in terms of time and resources.

So, in the following, the main contributions of this work are listed:

• Stone recognition of the main Calabrian quarries that, to the best of our knowledge,
represents the first attempt in the stone literature;

• Two-Stage Hybrid Model proposal able to join the DL approaches with ML algorithms;
• Methodology for stone classification purpose giving indications to face with this

specific task;
• Experimental tests for providing the best combination of DL and ML techniques to be

used in the stone recognition task.

3. Materials

If we compare the quarries of stone materials currently exploited in Calabria with
those known until the early 1900s and reported by [9], we find that today at least 70% of
the historical quarries in Calabria are no longer exploited. Moreover, most of them have
totally lost their historical knowledge and exact location. Other studies [10,36], recently
conducted by the Calabrian Superintendence, show evidence of ancient quarries, located
mostly on the coastal areas of Calabria, dating back to the Hellenistic and Roman period.
This shows that Calabria, since ancient times, has been for many civilizations the place
of preferential supply of stone materials used to realize artistic artifacts and ancient
architectural buildings.

An easy-to-use tool, capable of identifying the quarries with which an ancient stone
artifact was made, would make an important contribution to historical knowledge of trade
relations between peoples of the same period. For this reason, it was decided to work on
the most representative stone materials of the Calabria Region (Southern Italy), from the
five provinces of Calabria (provinces of Reggio Calabria, Vibo Valentia, Catanzaro, Cosenza
and Crotone). The location of the quarries is shown in Figure 1.

3.1. Stone Materials in Calabrian Provinces

The studied stone materials come from 25 quarries; 10 samples, representative of
the geological outcrops, were sampled for each quarry. Figure 2 shows the 25 types
of stone materials used for the classification in our Two-Stage Hybrid Model. Table 1
shows the historical name of the stone, the city in which the quarry is located and the
geological classification of the stone. The studied rocks include magmatic rocks such as
granodiorites, diorites and porphyrites, sedimentary rocks, such as sandstones, calcarenites
and limestones, but also metamorphic rocks, such as marbles, schists, metabasites and
serpentinites (Figure 2 and Table 1).
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Figure 1. Location of the studied quarries in Calabria Region (Southern Italy). The legend shows the
historical name of the stone materials studied.

Figure 2. Macroscopic photos of the studied stone materials representative of each quarry. The photos
were collected in reflected light using a flatbed scanner. The sizes of each photo are 5 cm × 5 cm.
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Table 1. List of the stone materials studied from the five Calabrian provinces (Southern Italy).

Short Code of
the Quarry Historic Name of the Stone

Name of the City Where the
Quarry Is Located

Geological Classification of the
Stone

ASL Calcarenite di San Lucido (Calcare
di Mendicino) San Lucido (Cosenza) Calcarenite

CAG Rosa di Gimigliano (o marmo per-
sichino) Gimigliano (Catanzaro) Dolomitic Limestone

CAP Calcarenite di Piedigrotta Pizzo Calabro (Vibo Valenzia) Calcarenite
CAS Calcare di Arcomano San Donato di Ninea (Cosenza) Limestone
CIR Calcarenite di Crotone Crotone (Crotone) Biocalcarenite
CIS Calcarenite di Isola Capo Rizzuto Isola Capo Rizzuto (Crotone) Calcarenite

CM Calcare di San Lucido (Calcare di
Mendicino) San Lucido (Cosenza) Variable from limestone to dolomitic

limestone
CMS Calcare rosato di Monte Stella Pazzano (Reggio Calabria) Oolitic limestone (oosparite)
CPS Calcare di Policastrello San Donato di Ninea (Cosenza) Evaporitic limestone
GRB Granito di Serra San Bruno Serra San Bruno (Vibo Valentia) Granodiorite
GRD Granito di Drapia Drapia (Vibo Valentia) Granodiorite

GRS1 Granito silano (varietà grigio-
giallina) San Giovanni in Fiore (Cosenza) Granodiorite

GRS2 Granito silano (varietà nerastra) San Giovanni in Fiore (Cosenza) Diorite
GRS3 Granito silano (varietà grigia) San Giovanni in Fiore (Cosenza) Granodiorite

MBR Metabasite di Monte Reventino
(Pietra verde di Calabria) Platania (Catanzaro) Metabasite o greenschist

PG Calcare di Grisolia Grisolia (Cosenza) Limestone
POG Porfido verde di Catanzaro Catanzaro (Catanzaro) Dioritic green porphyry
POR Porfido rosso di Catanzaro Catanzaro (Catanzaro) Monzonitic red porphyry

PRM Pietra Reggina Motta San Giovanni (Reggio Cal-
abria) Calcarenite

RCSL Pietra rosa di San Lucido (Calcare di
Mendicino) San Lucido (Cosenza) Variable from limestone or dolomitic

limestone to calcarenite
RMM Marmo rosa brecciato di Calabria Montalto Uffugo (Cosenza) Fine marble

SMR Serpentinite di Monte Reventino
(Pietra verde di Calabria) Platania (Catanzaro) Serpentinite

TP Petri i mulinu Tropea (Vibo Valentia) Calcarenite

WCSL Pietra bianca di San Lucido (Calcare
di Mendicino) San Lucido (Cosenza) Biocalcarenite

WMG Marmo bianco di Gimigliano Gimigliano (Catanzaro) Calce-schist

3.2. Image Acquisition System

To acquire the images, the stone samples coming from each Calabrian quarry have
been cut through a petrographic cutter machine in order to obtain perfectly flat and smooth
surfaces. The flat surface obtained, for all 250 samples, was acquired in three different
modes, using two simple tools: a smartphone and a flatbed scanner.

1. The first typology of images was acquired using a smartphone Samsung Galaxy Note
4, with 16 Mpixel camera and a resolution of 4608 × 3456 pixels. The acquisition
was performed under standard conditions, illuminating the sample with an LED
illuminator, inserting the flash of the smartphone and always keeping constant the
distance between the smartphone and the sample surface (10 cm).

2. The second typology of images was acquired by flatbed scanner, with reflected light,
using an Epson Perfection 2400 Photo scanner, with a resolution of 600 dpi (image type:
24-bit colors). During the acquisition, all the filters were removed and the samples
were carefully covered with a synthetic black and thermal cloth to normalize the
acquisition and to perform it in standard condition.

3. The third typology of images was acquired using the same flatbed scanner and the
same conditions of the previous typology, the only difference is that the acquisition
was made on the wet surface of the samples, in order to simulate a polished effect of
the stone.
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4. Pre-Trained CNN Models and Classification Algorithms

Object recognition is a key technology based on AI techniques. Recently, ML and
DL techniques have become commonly used approaches to solve problems related to
object recognition. In DL, a computer model learns to perform classification tasks directly
from images. Recent developments have allowed DL to progress to such an extent that it
surpasses humans in some activities, such as the classification of objects in images. There
are two approaches to performing object recognition using DL:

1. Train a model from scratch;
2. Using a pre-trained DL model (Transfer Learning (TL) technique [1]).

One of the biggest advantages of the current DL approach is the ability to have access
to pre-trained networks. In this way, it is possible to avoid having to spend many hours, if
not days, training the network, and directly use the architecture of the network and the
weights obtained from the training, downloading them from the Internet. It is one of the
advantages offered by the “Open Source” approach adopted to a large extent. Another
advantage is the capability of solving the problem of lacking a large training dataset. The
features from multiple fully-connected layers are combined with different weights and
used to train different algorithms for image classification.

Our image classification system is based on the TL approach [1], a process that consists
of refining a previously trained model through a re-training of the specific images used for
the recognition. In our study, we utilized four CNN models and the performance of these
models was evaluated. All the pre-trained models were trained on the ImageNet dataset,
and each model is briefly explained in the following sections.

In particular, we used the pre-trained model as a feature extractor. We know that a DL
model is basically a grouping of interconnected layers of neurons, where the last one acts
as a classifier [37]. By removing the final layer of the considered pre-trained CNN network,
the output of the penultimate layer, representing the feature vector, can be used as input to
the ML classifier in order to perform the stone recognition on the basis of our dataset and,
then classify stone as belonging to one of the 25 different classes. In fact, in the pre-trained
network, the last layer classifies on the basis of the large database called ImageNet on 1000
different classes of objects. So, the main purpose of the pre-trained CNN is to provide the
feature vector extracted by the large image database and use it to perform classification on
our stone database.

We have used, in our hybrid solution, four different types of classifiers in order to
compare the performance of each one and indicate the most promising solution in solving
an image classification task. The network code is open source and is provided for the
Tensorflow framework [38].

4.1. ImageNet Dataset

ImageNet is a large image database, created for use in the field of computer vision and
in the field of object recognition [39]. The dataset consists of more than 14 million images
with the indication of the objects they represent. Identified objects have been classified
into more than 20,000 categories: some categories of frequent objects, such as “balloon” or
“strawberry”, consist of several hundred images [40]. Since 2010, a competition called the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is held every year. On this
occasion, software programs are made to compete to classify and correctly detect objects
and scenes contained in the images. As part of the competition, a reduced list of images
with objects belonging to a thousand non-overlapping categories is used [41].

4.2. CNN Models

The Convolutional Neural Network (CNN) or ConvNet [42] is one of the most common
algorithms for DL, a type of ML in which a computer model learns to perform classifica-
tion tasks directly from images, video, text or sound. CNNs are particularly useful for
finding patterns in images to recognize objects, faces and scenes. They learn directly from
image data, using patterns to classify images and eliminating the need for manual feature
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extraction. CNNs offer an alternative approach that automates feature learning using
large databases of samples, called training sets, which represent an application domain
of interest. A CNN can have tens or hundreds of layers capable of learning to detect the
different features of an image, see Figure 3.

Figure 3. Example of CNN architecture.

On the basis of the literature works analysis and of the main CNN networks proposed
and used by researchers to perform their experiments, the choice of the CNNs that we
have proposed in our Two-Stage Hybrid Model fell back on the following neural networks:
VGG-16, VGG-19, Inception-V3 and ResNet50. In this section, these four CNNs, used for
our Two-Stage Hybrid Model, are briefly introduced.

VGG-16 is a neural network architecture designed by the Visual Geometry Group,
the department of engineering sciences of the University of Oxford, with 13 convolutional
layers and three fully connected layers for classification and detection tasks, as shown in
Figure 4. It accepts, as input, images with a resolution of 224 × 224 pixels in RGB, has an
output of 4096 features, and input of a classification layer.

Figure 4. VGG-16 architectural model.

The VGG-19 is a CNN with 19 layers among convolutional, pooling and fully con-
nected layers trained on the ImageNet database. It has an architecture very similar to
the previous VGG-16 version as it is possible to view in Figure 5 where the output of the
network is a 4096 feature vector which is then used as input of a classification layer.

Figure 5. VGG-19 architectural model.

Inception-V3 was developed by Google and trained on the ImageNet database com-
posed of 1000 different classes [43,44]. This model uses the inception modules which take
several convolutional kernels of different sizes and stack their outputs along the depth
dimension in order to capture features at different scales, see Figure 6.
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Figure 6. Inception-V3 architectural model.

ResNet won ILSVRC in 2015, the ImageNet Large Scale Visual Recognition Chal-
lenge [45]. Five different versions of ResNet exist, with a number of layers from 18 to 152
and with a consequent explosion of complexity. ResNet50 is the version with 50 layers, see
Figure 7.

Figure 7. ResNet50 architectural model.

4.3. Classification Techniques

Once the features are extracted by the CNN network in the first stage of our Two-
Stage Hybrid Model, these data are passed in input to the second stage where a set of
ML classifiers are used for performing stone classification on the 25 different stone classes.
The choice of these classifiers is, also in this case, due to the previous analysis of literature
manuscripts where a lot of authors proposed mechanisms based on different ML algorithms.
We have selected the most used and proposed different machine learning methods in order
to perform our tests on the considered stones belonging to Calabrian quarries. A plethora
of classifiers could be used but these five are used for the most part of the considered works.
So, in this paper, the following ML classification methods are used:

• Softmax or Multinomial Logistic Regression (MLR) [2], representative of regression models;
• Support Vector Machine (SVM) [3,46], an example of linear models;
• k-Nearest Neighbors (kNN) [4], representative of density or instance based models;
• Random Forest (RF) [5,47], representative of ensemble models;
• Gaussian Naive Bayes (GNB) [6], an example of probabilistic models.

For more details on these classifier algorithms please refers to [48].

5. Two-Stage Hybrid Model

With the term hybrid model we mean an approach that makes use of a Deep Learning (DL)
network together with a classical Machine Learning (ML) algorithm. The joined use of these
two different approaches can give many advantages to the classification purpose.

The proposed hybrid model consists of two stages as it is possible to view in Figure 8.
The first stage of the model guarantees an automatic feature extraction phase that is used
as input for the second stage, which has the task of performing the classification phase.

147



Sensors 2022, 22, 6292

Figure 8. Two-Stage Hybrid Model used for stone classification.

Moreover, in order to make more efficient the phase of the feature extraction we have
used in our Two-Stage Hybrid Model the well-known Transfer Learning (TL) approach
that, throughout models of CNN networks pre-trained on a large image database, guar-
antees a more rapid feature extraction phase avoiding building the neural network from
scratch. This approach, as proved by the literature, guarantees optimal results and allows
for efficient creation, on the basis of a set of filters used in the CNN, a feature vector
composed of numerical values representing the main information of the image in a very
short time period.

The Two-Stage Hybrid Model that we propose in this work is shown in Figure 8. We use
four different pre-trained CNNs from the main networks provided in the literature and
briefly explained in Section 4.2 in the first stage of the model and five different ML algo-
rithms in the second stage, see Section 4.3, in order to accomplish the image classification
on our specific dataset. So, each CNN model has been used as a feature extractor for the
five different classifiers. The main output parameters are reported in the next section in
order to evaluate how each model performs providing a useful comparison of an original
context represented by stones of Calabrian quarries.

6. Experiments: Results and Discussion

In this section, we give a detailed description of all the experiments we performed
with our proposed two-stage architecture presented in the previous Section (Section 5). The
heart of this project is to perform the right class prediction for the considered stones’ images.
We have several images for the input, subdivided between training dataset (80% of the total
dataset) and test dataset (20% of the total dataset). It might be interesting to see what the
Two-Stage Hybrid Model guesses for classes of images it never saw during training.

In order to determine the performance of a neural network, it is important to take
into account some characteristic parameters that can help to indicate the goodness of the
approach. In the context of AI, the confusion matrix, also called the misclassification table,
returns a representation of the accuracy of statistical classification. Each column of the
matrix represents the predicted values, while each row represents the real values. The
element on row i-th and column j-th is the number of cases in which the classifier has
classified the “true” class i-th as class j-th. Through this matrix, it is observable if there is
“confusion” in the classification of different classes. The confusion matrix provides a lot of
information. However, more concise metrics are often useful, such as: accuracy, precision,
recall and F1-score.

6.1. Experimental Environment

In order to perform classification experiments, a workstation equipped with an Intel i9
10900K CPU with 32 GB RAM DDR4, an Nvidia 3060Ti graphic card and a 512 GB SSD and
a Python 3.8.10 was used. Moreover, we have installed some additional libraries such as
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Matplotlib, Pandas, Tensorflow, and NumPi in order to analyze and perform classification
on our dataset.

6.2. Our Dataset

In this study, the image classes, that represent the different object categories, are the
25 different stone types of Calabrian quarries. We need to ensure that the images have the
right size for each considered CNN. In particular, a resolution of 224 × 224 × 3 is used for
VGG-16, VGG-19 and ResNet50 models and a resolution of 299 × 299 × 3 for the input
of Inception-V3 one. So, a little pre-processing operation was made on the input image
dataset in order to match the specific image resolution requirements of the considered
CNN architecture.

6.3. Augmentation of Our Dataset

In order to make our experiments with a sufficient number of images, we have in-
creased our dataset by creating new images through a simple elaboration of our data
samples by performing the so-called Data Augmentation technique [49].

In order to augment the training dataset for our experiment and consider the large
image resolution of our dataset, we have manipulated our input images in a very simple
way. We have cropped the original image in five different parts both in horizontal and
vertical axes creating so 25 different images from the original one as it is possible to view in
Figure 9. This has allowed us to increase the number of images by a 25 factor, creating a
consistent dataset of stone images.

Figure 9. Example of data augmentation used in our experiments.

6.4. Classification Results

As described in Section 3, for our experiments, images from three different typologies
of acquisition have been used. For each type of stone, 10 different images with each type of
acquisition technique have been created. Then, for each type of stone, such as ASL, CAG,
CAP, etc., we have used 10 × 3 = 30 different images on which we have performed the
technique of data augmentation, as previously described in Section 6.3, in order to increase
the input dataset both for training and test campaigns. As we said in the previous section,
we extracted 25 different images from each one, then, we obtained 25 × 30 = 750 different
images for each stone typology. From these images, 600 were used for conducting the
training of the neural network and 150 were used for performing the test campaigns in
order to evaluate the goodness of the network. This corresponds to having, respectively, a
training set and a test set composed of 80% and 20% of the overall dataset.

Different experiments were conducted using the image database created by the stones
acquisition process. We have performed experiments on every single typology of stone
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acquisition, that is, using first only the database comes from smartphone acquisition,
second, the database comes from the acquisition with the flatbed scanner with reflected
light and, finally, the database created using the flatbed scanner with reflected light on the
wet surface of the samples. These experiments have shown the advantages of the automatic
classification through the CNN approach using the different Classification Algorithms (CLFs)

The total number of CNN parameters is reported in Figure 10 (left) in order to show
how complex is the CNN network and provide a comparison between the four CNN
models used in our experimentation. How it is possible to view in Figure 10 (left), the
Inception-V3 and ResNet50 CNN models have a lower number of parameters. Moreover,
Figure 10 (right) reports the inference time comparison between the four CNN models,
both to infer on training and on test samples. How it is possible to note that the ResNet50
model, due to its small parameter number, is able to infer in a shorter amount of time in
both sample sets.

Figure 10. Total number of CNN parameters (left) and Inference time (seconds) (right) of each CNN
model used in the hybrid architecture.

In Figure 11 we show the confusion matrix of the first two used classifiers, Softmax
and SVM, with the ResNet50 CNN model that results in the best CNN to be used together
with the classifiers in order to have the best results in terms of accuracy. In this section,
only the confusion matrices of the ResNet50+CLF hybrid model are reported. It is possible
to observe that both approaches reached similar results on the test set used for experiments.
The network, both with Softmax and SVM classifier, is able to perform prediction with high
accuracy. It is possible to observe that the classes that present some recognition problems
in all Two-Stage Hybrid Models are those related to the family of granite stones, that is
GRB, GRD, GRS1, GRS2 and GRS3 families. This is due to a very similar texture of these
types of stones that also makes it difficult for an expert eye to capture the differences.

Figure 11. Confusion matrix for (left) Softmax (MLR) and (right) SVM classifiers with ResNet50
CNN model.
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In a similar way, we have performed experiments using k-Nearest Neighbors (kNN)
and Random Forest (RF) classifiers. In the following, the confusion matrices are shown for
both classification algorithms. As it is possible to observe in Figure 12, also in this case, the
recognition that presents more issues regards the granite stone classification. It is possible
to view that these two types of classifiers have similar accuracy to the first two considered
in the previous experiments. This means that Softmax and SVM have similar performance
to kNN and RF algorithms.

Figure 12. Confusion matrix for (left) kNN and (right) RF classifiers with ResNet50 CNN model.

The last used classification algorithm is the GNB and, in Figure 13 the confusion matrix
extracted by image recognition tests is reported. As shown in the figure, this last method
presents the worst results in terms of classification accuracy.

Figure 13. Confusion matrix for GNB classifier with ResNet50 CNN model.

The accuracy that we have calculated for all the conducted experiments is shown in
Table 2 and Figure 14 (left). Then, the experiments showed that these algorithms have
optimum performance in pattern recognition purposes: all algorithms are able to recognize
the most part of the input images but, between all, the Softmax, SVM, RF and kNN
approaches allow to reach very high accuracy values representing the best candidates for
image classification in this applicative domain.
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Table 2. Accuracy of CNNs plus CLFs.

MLR SVM kNN RF GNB

VGG-16 (%) 99.0 99.3 97.8 98.3 91.4

VGG-19 (%) 99.0 99.1 98.4 98.2 93.0

Inception-V3 (%) 96.0 91.4 93.8 91.4 78.9

ResNet50 (%) 99.7 99.8 99.9 99.7 88.5

Other than the accuracy, in this section, we also show other metrics: precision, recall
and F1-score in order to prove the goodness of the classification. With precision metric,
the system shows how on the true classification the most part is correct; with the recall
instead, the system is able to cover the most part of the true positive; F1-score gives a joined
metrics between precision and recall. Figures 14 and 15 provide the metric values for each
Two-Stage Hybrid Model considered in our tests. As it is possible to observe, the two-stage
hybrid approach provides a very good performance in almost all tests reaching optimal
results using a ResNet50 CNN in the first stage and a kNN ML algorithm in the second
stage of the hybrid model.

Figure 14. Accuracy (left) and precision (right) comparison.

Figure 15. Recall (left) and F1-score (right) comparison.

So, after this set of experiments that have used the Two-Stage Hybrid Model combining
each DL technique with each ML algorithm, it is possible to make some considerations in
order to conclude our work. The proposed hybrid model consists of a two-stage approach
that makes use of DL techniques in the first stage with the task of performing feature
extraction and ML algorithms in the second stage with the task of performing classification
and, then operating the stone recognition so as to attribute the right class to the specific
stone. The use of the combination of DL and ML approaches resulted in a very high-
performing system able to recognize the belonging class very well. The most accurate
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combination that emerged from the results was based on the ResNet50 CNN model in
joining with the kNN classifier (ResNet50 + kNN). This combination is able to guarantee
a high accuracy in the stone recognition as proved by Table 2 and Figures 14 and 15. The
ResNet50 network also resulted in the best in terms of the number of CNN parameters and
inference time as reported in Figure 10.

7. Conclusions

In this paper, an automatic stones classification approach based on a two-stage hybrid
architecture able to classify different stone classes in the Calabria area (Southern Italy) is
presented. The obtained results are pretty impressive. The neural network models are able
to reach amazing results in the prediction process on the input images provided to the
network. The proposed Two-Stage Hybrid Model based on DL and ML techniques results
in being a more promising approach for stone recognition issues. From the conducted
analysis, it emerged that the only classes that present some minor issues are those related to
granite typologies that result quite complex also for a careful eye of an expert in this field.
However, this two-stage hybrid approach, which uses Deep Learning (DL) CNN models
together with different Machine Learning (ML) Classification Algorithms (CLFs), permits to
create a system that is very powerful and able to reach optimal performance in terms of
image recognition. It exploits the power of DL for the phase of feature extraction, which
represents the more complex phase, and leverages the classical ML algorithms to perform
the classification phase. Moreover, in order to avoid creating the CNNs from scratch, the
proposed Two-Stage Hybrid Model is based on the Transfer Learning (TL) paradigm that is
able to exploit pre-trained networks on large datasets such as ImageNet for reducing the
phase of feature extraction. In fact, the CNN in the TL mode is able to infer on both training
and test sets in a very quick manner as shown by provided results. The most promising
combination that emerged from tests is based on the ResNet50 CNN model together with a
kNN classifier. It guarantees high accuracy and allows us to obtain the best results in terms
of CNN parameter number and inference time. Furthermore, this type of approach shows
that there is a concrete possibility to build tools that are easy to use even for people who do
not have geological knowledge; the applications could be numerous and range from the
field of archaeometry and diagnostics, up to applications of automatic recognition in the
field of the materials sciences.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
FC Fully Connected
GNB Gaussian Naive Bayes
kNN k-Nearest Neighbors
LR Logistic Regression
ML Machine Learning
MLP Multi-Layer Perceptron
MLR Multinomial Logistic Regression
PR Pattern Recognition
RF Random Forest
SVM Support Vector Machine
TL Transfer Learning
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Abstract: The essential factors of information-aware systems are heterogeneous multi-sensory devices.
Because of the ambiguity and contradicting nature of multi-sensor data, a data-fusion method based
on the cloud model and improved evidence theory is proposed. To complete the conversion from
quantitative to qualitative data, the cloud model is employed to construct the basic probability
assignment (BPA) function of the evidence corresponding to each data source. To address the issue
that traditional evidence theory produces results that do not correspond to the facts when fusing
conflicting evidence, the three measures of the Jousselme distance, cosine similarity, and the Jaccard
coefficient are combined to measure the similarity of the evidence. The Hellinger distance of the
interval is used to calculate the credibility of the evidence. The similarity and credibility are combined
to improve the evidence, and the fusion is performed according to Dempster’s rule to finally obtain
the results. The numerical example results show that the proposed improved evidence theory
method has better convergence and focus, and the confidence in the correct proposition is up to 100%.
Applying the proposed multi-sensor data-fusion method to early indoor fire detection, the method
improves the accuracy by 0.9–6.4% and reduces the false alarm rate by 0.7–10.2% compared with
traditional and other improved evidence theories, proving its validity and feasibility, which provides
a certain reference value for multi-sensor information fusion.

Keywords: sensor data fusion; cloud model; Dempster–Shafer evidence theory; cosine similarity;
Hellinger distance

1. Introduction

Heterogeneous multi-sensors play an important role in information perception, the
acquired data may contain some ambiguous and conflicting information due to the limita-
tions of multi-sensor devices’ measurement accuracy and the complexity of the working
environment, which may result in inaccurate data-fusion decisions [1]. Consequently, the
way to better handle multi-sensor data and improve data-fusion accuracy is a popular
research direction in the field of data-fusion technology. Common data-fusion algorithms
currently include Kalman filtering [2], Bayesian estimation [3], Dempster–Shafer (D-S)
evidence theory [4], and artificial neural networks [5], etc. Bayesian networks and D-S
evidence theory are commonly used to deal with the uncertainty in multi-sensor data,
which frequently results in anomalous data. However, the Bayesian estimation fusion
method requires access to prior data to generate new probability estimates, which is not
always possible [6]. Dempster–Shafer (D-S) evidence theory is a theory of fuzzy reasoning
proposed by Dempster in 1967 [7] and subsequently refined by Shafer [8]. It has been
widely employed in areas such as target identification [9], multi-attribute decision analy-
sis [10], fault diagnostics [11], and robotics research [12] due to its capacity to better handle
uncertain and unknown situations with unknown prior probabilities. Although the D-S
evidence theory has been applied in a number of fields, it has certain problems. One is
that there is no unified method for determining the BPA function, and the other is that the
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evidence theory is prone to produce results that contradict the facts when dealing with
highly conflicting evidence, and there is no unified method for solving this problem. Most
scholars have done some research on the above two problems.

Determining the BPA function is an important step in evidence theory, which influ-
ences the accuracy of fusion results to some extent. Many researchers have proposed
various methods for determining BPA functions [13–15]. The cloud model [16] is a concept
proposed by Professor Li in 1995, which is a cognitive model based on probability statistics
and fuzzy set theory. It can well portray the fuzziness and randomness of information
and is applicable to the field of multi-sensor information fusion. Peng et al. [17] improved
the multi-criteria group decision method by using a cloud-model method to deal with
uncertain information based on information fusion and information measurement, Liu
et al. [18] used the cloud model to describe the load direction in topology optimization
with uncertainty, and Peng et al. [19] proposed an uncertain pure linguistic information
multicriteria group decision-making method based on the cloud model, demonstrating
the advantage of the cloud model in dealing with uncertain information. In this paper, the
cloud model is used to determine the BPA function to convert measured quantitative data
to qualitative concepts.

The directions for improving the accuracy of traditional evidence theory fusion can be
divided into two major areas: improvement of combination rules [20,21] and improvement
of the body of evidence. The former blames the D-S rule for producing results that contradict
the facts, achieving certain results but destroying the D-S rule’s own advantages, such as
the law of exchange and the law of union. The latter believes that the problem stems from
the unreliability of the information source and uses an improved approach to the body of
evidence to deal with the conflict, which retains the good characteristics of Dempster’s
rule and weakens the influence of conflicting evidence on the fusion result. As Haenni [22]
points out, the improvement of the body of evidence is more reasonable both from an
engineering and mathematical standpoint. The calculation and assignment of weights
to the body of evidence is critical to improving the body of evidence, and some scholars
have conducted a series of studies on how to evaluate the body of evidence’s weights.
Murphy [23] proposed a simple averaging method to assign the same weight to each
piece of evidence, but it ignores the relationship between the evidence and is therefore
unreasonable. Deng et al. [24] proposed a more convergent method based on the rules
of evidence theory after weighted average processing of evidence based on trust degree,
but it does not take into account the characteristics of the evidence itself. There are two
methods for determining the weight of the body of evidence: according to the relationship
between the evidence and according to the characteristics of the evidence itself. For the
former, Wang et al. [25], Jousselme et al. [26], and Dong et al. [27] measure the relationship
between evidence by using the Pignistic probability distance, the Jousselme distance, and
cosine similarity, respectively; however, using a single measure of evidence relationship to
find the weight of evidence does not accurately describe the relationship between evidence
in certain cases. For the latter, scholars have proposed various uncertainty measures based
on information entropy, such as Yager’s [28] dissonance measure based on the likelihood
function and Deng’s [29] evidence uncertainty measure based on Shannon entropy, but
such methods deal with evidence in a one-sided manner, replacing the entire uncertainty
interval with only part of the evidence information. Deng et al. [30] developed a method
for evaluating evidence uncertainty based on the Hellinger distance of the uncertainty
interval, which is simple to compute and measures uncertainty well for a better integration
effect. The relationship between evidence and the characteristics of the evidence itself do
not affect each other and are both valid information available within the evidence, yet some
current scholarly approaches to improving evidence theory consider only one of them to
deal with the evidence, undermining the integrity of the evidentiary information. Some
scholars have proposed ways to improve the evidence theory based on both, but they both
have some room for improvement. For example, Tao et al. [31] proposed a multi-sensor
data-fusion method based on the Pearson correlation coefficient and information entropy.
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Xiao et al. [32] proposed a multi-sensor data-fusion method based on belief dispersion of
evidence and Deng entropy [29]. Wang et al. [33] combined the Jaccard coefficient and
cosine similarity to calculate evidence similarity, combined with evidence-based precision
and entropy of evidence to calculate evidence certainty. Although these methods combine
the relationship between evidence and the characteristics of evidence itself, they all have
certain disadvantages. The Pearson correlation coefficient is only used to portray the linear
correlation between normally distributed attributes, which is more demanding on evidence.
The Jaccard coefficient and cosine similarity sometimes cannot measure the relationship
between evidence correctly. Using information entropy cannot measure the characteristics
of evidence itself comprehensively, etc.

In order to more accurately measure the relationship between evidence and the char-
acteristics of evidence itself, and improve the accuracy of data fusion, this paper proposes
an improved evidence-theory method based on multiple relationship measures and fo-
cal element interval distance. We combine the Jousselme distance, cosine similarity and
the Jaccard coefficient to calculate the similarity between the evidence, and we use the
Hellinger distance between the evidence determination intervals to measure the certainty
of the evidence. Based on these calculations, the evidence weight coefficients are then
jointly improved. Finally, the original evidence is average-weighted and fused by using the
Dempster rule to produce the result. In addition, we analyze the results of the arithmetic
examples to demonstrate the validity of the proposed improved evidence theory. By using
the aforementioned improved evidence theory along with cloud model, we developed a
multi-sensor data-fusion method. The BPA functions corresponding to each data source
are determined based on the cloud model, which converts the collected quantitative data
into stereotypical concepts. The fusion results are obtained by fusing each BPA function by
using the improved evidence theory mentioned above.

Multi-sensor data-fusion technology can combine relevant information within multi-
ple sensors, thereby increasing the safety and reliability of the overall system. The proposed
multi-sensor data-fusion method can be utilized in multi-sensor systems in various fields,
such as fault-determination systems, target identification systems, environmental moni-
toring systems, and intelligent firefighting systems, among others. Due to external factors
or their own aging faults, one or more sensors may acquire incorrect information, causing
the fusion results to be contradictory to the facts. The proposed method overcomes the
problem, improves the handling of ambiguity in sensor data, increases the reliability of data
fusion results, and makes it easier for people to make appropriate decisions. We establish
an early indoor fire detection model to test the efficacy of the proposed strategy. The
proposed method improves accuracy by 0.7–10.2% and reduces false alarm rate by 0.9–6.4%
when compared to the traditional evidence theory and other improved evidence theories.
It has better fusion performance, which provides some reference value for multi-sensor
data fusion.

2. Preliminaries

This section provides a brief overview of D-S evidence theory and the cloud model.

2.1. Cloud Model

Let X be a quantitative domain (X = {x}) and U be a qualitative concept on the
domain X. For any element x(x ∈ X) and x is a single random realization on U, the
certainty of x to U is y(x) ∈ [0, 1], which is a random number with stable tendency, the
distribution of x over the domain X is called a cloud model and each (x y(x)) becomes a
cloud drop [34].

The cloud model completes the conversion of quantitative data to qualitative concepts
through numerical characteristic expectation (Ex), entropy (En), and hyperentropy (He),
where expectation is the expected value of the distribution of cloud droplets in the theoreti-
cal domain, entropy reflects the dispersion of cloud droplets, and hyperentropy reflects
the dispersion of entropy. Because the values of the characteristics corresponding to the
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evaluation indices have some stability across the multi-sensor domain and the interval
distributions generally follow a normal distribution that is more realistic, the normal cloud
model is used in this research. Each parameter’s computation formula is presented in
Equation (1), ⎧⎪⎨⎪⎩

Exij =
Cij,max+Cij,min

2

Enij =
Cij,max−Cij,min

2.355
He = λi

, (1)

where
[
Cij,min, Cij,max

]
are the range of values of the evaluation interval corresponding

to the jth certain evaluation index inside the ith data type of the multi-sensor system,
and λi is a value determined by experts based on experience and is typically 0.01. It
is worth noting that the maximum and lower bounds of each data source’s evaluation
value are the expectation of both cloud Ex values. The entropy of the traditional cloud
model is Enij = (Cij,max − Cij,min)/6, when the data is near the endpoint value, and the
corresponding degree of certainty tends to 0. However, the endpoint value of the interval
divided by each level is the transition boundary value of the two adjacent levels, and the
edge value should belong to the upper and lower intervals at the same time. Therefore, in
order to represent the boundary ambiguity of adjacent ranks, the divisor for finding the
entropy is determined to be 2.355.

Let (Exij, Enij, He) be the three numerical properties of a cloud for a given one-dimensional
domain, and the procedure for this one-dimensional normal cloud generator is:

1. Generate a normal random number E′nij with Enij as the expected value and He
2 as

the variance.
2. Generate a normal random number xij with Exij as the expected value and E′nij

2 as
the variance.

3. Calculate yij = exp (− (xij−Exij)
2

2E′nij
2 ), where xij is a specific quantified value, yij is the

degree of determination of xij on qualitative index U, and (xij, yij) is the cloud drop.
4. Repeat the above steps until N cloud drops are generated.

2.2. Dempster–Shafer Evidence Theory

Let Θ = θ1, θ2, . . . , θn be a finite identification framework in the D-S evidence theory,
where Θ = θ1, θ2, . . . , θn are all possible events and θi(i = [1, n]) is a subset of the recogni-
tion frame Θ. The underlying trust function m be a mapping from the set 2Θ → [0, 1] , with
A being any subset of Θ and it satisfies{

m(∅) = 0
∑A⊂Θ m(A) = 1

(2)

We call m the basic probability assignment function (BPA function for short) of Θ [35],
where m(∅) denotes the degree of confidence of the evidence in the empty set. If m(A) > 0,
then A is called a focal element within the identification framework Θ, and m(A) reflects the
degree of trust of the evidence in A. In particular, the condition m(∅) = 0 is not necessarily
satisfied. For the open evaluation set space, m(∅) is not necessarily equal to 0. In this paper,
we only consider the case in the closed evaluation set space.

For recognition framework Θ = θ1, θ2, . . . , θn and BPA function m(A), Bel(A) is defined
as the confidence function, which is the sum of the potential probability assignments
of all subsets of A, indicating the degree of certainty of the proposition A, as shown in
Equation (3):

Bel(A) = ∑B⊂A m(B), ∀A ⊂ Θ . (3)

Pl(A) is the likelihood function of A, as defined in Equation (4), indicates the degree of
trust that does not deny A,

Pl(A) = 1− Bel
(

A
)
= ∑B∩ A �=∅

m(B). (4)
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The intervals of evidence are shown in Figure 1, where [0,Bel(A)] is the support
interval of proposition A, [Bel(A), Pl(A)] is the uncertainty interval of proposition A,
and [Pl(A), 1] is the rejection interval of evidence. Among them, support interval and
rejection interval together constitute the definite interval of evidence, which can represent
the certainty of evidence.

Figure 1. Diagram of evidence intervals.

Let m1 and m2 be two BPA functions on the same finite identification frame Θ, with
focal elements B1, B2, . . . , Bn and C1, C2, . . . , Cn. Then the D-S evidence theory combination
rule rules are as follows in Equations (5) and (6):

m(A) =

⎧⎪⎨⎪⎩
1

1−K ∑Bi∩ Cj=A m1(Bi)m2
(
Cj

)
, A �= ∅

0 , A = ∅

(5)

K = ∑Bi∩ Cj=∅
m1(Bi)m2

(
Cj

)
, (6)

where K is the coefficient of evidence conflict between m1 and m2, the higher K value
indicates the greater the degree of evidence conflict, and the values of K range from 0 to 1.

3. The Proposed Method

Based on the above theoretical knowledge, this paper proposes a heterogeneous data-
fusion method based on a cloud model and improved evidence theory. In order to obtain the
BPA function of evidence more accurately, we consider the ambiguity of multi-sensor data
when completing data transformation by using the cloud model. To improve the reliability
of the fusion results, we propose a new method for measuring the similarity of evidence
and improve the evidence by combining the similarity and certainty of evidence together.
The specific method for determining the BPA function and calculating the similarity of
evidence and the certainty of evidence are described in this section, and finally the overall
steps of the method are proposed.

3.1. Determination Method of BPA Function

It is assumed that the multi-sensor system’s data information is pre-processed to
extract n classes of data, forming n bodies of evidence, i.e., X = (x1, x2, x3, . . . , xn), where
xi(i = [1, n]) is the ith class of data measured by the system. Based on the knowledge
gained from the cloud model, the membership degree μij(k) for the values of discrete
feature variables is calculated as follows in Equation (7):

μij(k) = e
− (xi−Exij)

2

2E′nij
2

, (7)

where μij(k) is the membership of the ith class of data relative to the jth evaluation index
under the kth judgment within the same acquisition cycle of the multi-sensor system, Exij
is the expectation value of class i data relative to the jth evaluation index obtained in
Equation (1), and E′nij is a normal random number generated with Enij as the expectation
and He as the standard deviation obtained in Equation (1).

k is the number of times the multi-sensor acquires data in the same acquisition cycle,
when k is greater than 1, the membership of class i data with respect to the jth evaluation
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index can be determined by the maximum of the k affiliation values when the feature
parameters have multiple values:

μij = max
(
μij(a)

)
, a = 1, 2, . . . , k. (8)

The multi-sensor membership matrix can be calculated based on the membership
degree μij:

Rn×m =

⎛⎜⎜⎜⎝
μ11 μ12
μ21 μ22

. . . μ1m

. . . μ2m
...

...
μn1 μn2

...
...

. . . μnm

⎞⎟⎟⎟⎠. (9)

The elements in each row in Equation (9) represent the membership of the ith (i = 1, 2,
· · · , n) class of data of the multi-sensor for the jth (j = 1, 2, · · · , m) evaluation index, and the
elements in each column represent the membership of all data information collected by the
multi-sensor system at a certain time for the jth (j = 1, 2, · · · , m) evaluation index.

The obtained membership matrix Rn×m basically satisfies the definition of probability
assignment but does not satisfy ∑m

j=1 μij = 1. Considering that the actual use of the sensor
will produce a certain measurement error, the following definition is added to transform
the membership of each evaluation index into a BPA function:⎧⎪⎨⎪⎩

γi = 1−max(μi1,μi2, . . . , μim)
mi(Θ) = γi

mi
(

Aj
)
= (1− γi)

μij,

∑m
j=1 μij

, (10)

where γi denotes the uncertainty of the ith characteristic parameter, mi(Θ) is the basic
probability assignment value of the uncertainty of the ith piece of evidence, and mi

(
Aj

)
is the basic probability assignment value of the jth evaluation index of the ith piece of
evidence.

3.2. Similarity of Evidence

Classical measures for describing the relationship between evidence include: con-
flict coefficient K, Pignistic probability distance, Jousselme distance and cosine similarity,
and so on. The computation of the conflict coefficient K is given in (6), and assuming
that the evidence bodies m1 and m2 are BPA functions of the identification framework
Θ = θ1, θ2, . . . , θn, the calculation of the Pignistic probability distance, Jousselme distance,
and cosine similarity is given below.

1. Pignistic probability distance [25]

Pignistic probability distance is a measure of conflicting relationships between ev-
idence. Let the recognition frame Θ = θ1, θ2, . . . , θn, m is the BPA function of Θ, and if
A ⊆ Θ, then

BetPm(A) = ∑B⊆Θ
|A ∩ B|
|B| m(B) (11)

is said to be the Pignistic probability of the focal element A.
Assuming that BetPm1 and BetPm2 are the corresponding Pignistic probability func-

tions, the Pignistic probability distances are calculated as follows:

di f BetPm1
m2 = maxA⊆Θ(|BetPm1(A)− BetPm2(A)|). (12)

2. Jousselme distance [26]

dBPA(m1, m2) =

√
1
2
(m1 −m2)

TD(m1 −m2), (13)
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where m1 and m2 are the vector forms of the evidences m1 and m2, and D is a 2Θ × 2Θ

positive definite matrix, its mathematical expression is: D =

⎛⎜⎜⎜⎝
d11 d12
d21 d22

. . . d1n

. . . d2n
...

...
dn1 dn2

...
...

. . . dnn

⎞⎟⎟⎟⎠,

where the element dij = J
(
θi, θj

)
= |θi∩ θi |
|θi∪ θj| , θi is any focal element in evidence m1 and θj is

any focal element in evidence m2, which can also be called the Jaccard coefficient and can be
used to reveal the relationship between unifocal and multifocal elements of the evidence.

The Jousselme distance is a measure of the conflicting relationships of the evidence,
and the higher its value, the greater the conflict between the evidence.

3. Cosine similarity [27]

The cosine similarity can be used to calculate the similarity of the evidence. The greater
the cosine similarity, the greater the confidence between the evidence.

cos(m1, m2) =
m1·mT

2

||m1||·||m2|| , (14)

where ||mi|| =
√

mi·mT
i .

The accuracy of the various measurements is examined based on the above computation
by calculating the measures under different conditions in conjunction with Example 1.

Example 1. Suppose there are identification frames Θ = {a, b, c, d} with different distribu-
tions of evidence bodies under different conditions, as shown in Table 1.

Table 1. Distribution of different bodies of evidence in different situations.

Situation The Distribution of Evidence Body

Situation 1 m1(a) = m1(b) = m1(c) = m1(d) = 0.25
m2(a) = m2(b) = m2(c) = m2(d) = 0.25

Situation 2 m1(a) = m1(b) = 0.5
m2(c) = m2(d) = 0.5

Situation 3 m1(a) = m1(b) = m1(c) = 1/3
m2(a, b, c) = 1

Situation 4 m1(a) = 0.25, m1(b) = 0.65, m1(abc) = 0.1
m2(a) = 0.65, m2(b) = 0.25, m2(abc) = 0.1

The body of evidence under Situation 1 is identical, and its conflict coefficient K is
calculated by using Equation (6), yielding 0.75, which contradicts the fact, whereas cosine
similarity and the Jousselme distance yield 1, which is consistent with the fact. Situation
2’s evidence is radically different, and the Jousselme distance metric produces 0.707, which
is inconsistent with the facts, whereas the cosine similarity computation yields 0, which is
consistent with the facts. Because it is impossible to determine whether the body of evidence
m2 under Situation 3 supports each focal element on average, the body of evidence under
Situation 3 is somewhat conflicting, and the results of the Pignistic probability distance and
cosine similarity are both 0, which contradict the facts, the result of the Jousselme distance
is 0.577, which is more consistent with the facts.

From the above analysis, the cosine similarity measure is more accurate when measur-
ing evidence with only a subset of single focal elements, and less accurate when faced with
evidence containing a subset of multiple focal elements. Wang et al. [33] combined cosine
similarity and the Jaccard coefficient to measure the relationship between evidence. But
both measures are similarity measures, and the analysis of how the evidence relates to each
other is not thorough enough. This can lead to inaccurate measurements in some situations,
such as when evidence m1 and m2 in Situation 4 point to different correct propositions and
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there is a big disagreement. However, Wang’s method gives a similarity of 0.80, which
is less consistent with the facts. Therefore, this paper proposes to combine conflicting
evidence and similarity to jointly measure the relationship between evidence. Because the
Jousselme distance can measure the relationship between evidence more accurately in most
cases, and it is introduced to jointly measure the relationship between evidence.

Assuming the identification framework Θ = A1, A2, . . . , An, we define the local
similarity of evidence sij as:⎧⎪⎨⎪⎩

J(Aa, Ab) =
|Aa∩Ab |
|Aa∪Ab | , ∀Aa, Ab ⊆ Θ

sij = (1− dBPA(m1, m2))× ∑n
a=1 ∑n

b=1 mi(Aa)mj(Ab)×J(Aa ,Ab)√
∑n

c=1 mi(Ac)
2
√

∑n
c=1 mj(Ac)

2

(15)

According to Equation (15), the local similarities of the evidence under different
situations in Example 1 are: 1, 0, 0.244, and 0.470, all of which are more consistent with the
facts. Based on the local similarity sij, the global similarity si can be derived for each piece
of evidence, and its normalization can lead to the similarity-based weight coefficient αi,
which is calculated as follows: {

si = ∑n
j=1,i �=j sij

αi =
si

∑n
j=1 sj

. (16)

3.3. Certainty of Evidence

The properties of the evidence itself can be measured based on the degree of certainty
of the evidence. In probability theory, the Hellinger distance is a complete distance metric
defined in the space of probability distributions and can be used to measure the similarity
between two probability distributions. It has the advantage of stability and reliability
compared to other metrics. Deng et al. [30] measured the uncertainty of the evidence itself
by calculating the uncertainty interval distance of the evidence focal elements. However,
finding the weight of the evidence based on uncertainty involves more steps and is more
tedious than finding the weight based on certainty, so this paper proposes a method by
which to combine the Hellinger distance of the evidence support interval and rejection
interval to jointly measure the certainty of the evidence.

Suppose X = {x1, x2, . . . xn} and Y = {y1, y2, . . . yn} are two probability distribution
vectors of the random variable Z, and the Hellinger distance is

Hel(X||Y) =
√

1
2 ∑n

i=1(
√

xi −√yi)
2. (17)

Assuming the identification framework Θ = A1, A2, . . . , An and defining DU(mi) as
the evidence certainty, the calculation of DU(mi) is as follows:

DU(mi) = ∑n
j=1

√
2×

⎛⎝
√√√√1

2
×

[(√
Bel

(
mi

(
Aj

))
− 0

)2

+

(
1−

√
Pl

(
mi

(
Aj

)) )2]⎞⎠ , (18)

where
√

2 is the normalization factor. The Hellinger distance reaches its maximum when
the evidence determines that the interval is [1,1] or [0,0], which leads to the calculation of
the normalization factor: 1

Hel[[1,1],[0,1]] =
√

2.
Normalizing the resulting determinacy DU(mi) obtains the weight of the evidence

based on the determinacy:

βi =
DU(mi)

∑n
j=1 DUmj

. (19)
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3.4. Steps of the Proposed Method

Based on the above study, the specific steps of the proposed method in this paper are
given as follows, and the flow chart is shown in Figure 2.

Step 1: After pre-processing the data from sensors, the BPA function of each data source
related to the body of evidence is calculated by integrating the cloud model and each data
evaluation index.
Step 2: With the obtained BPA function of each evidence, the weight αi based on the
similarity of evidence is calculated by combining Equations (15) and (16), and the weight
βi based on the certainty of evidence is calculated by combining Equations (18) and (19).
Step 3: With the weights αi and βi, the total weight of the evidence body is calculated and
normalized to obtain the final weight ωi, which is calculated as follows:⎧⎨⎩ω′i = αi × βi

ωi =
ω′i

∑n
j=1 ω′j

. (20)

Step 4: Based on the weights ωi, the original evidence is averaged and weighted to obtain
the processed body of evidence m,

m(A) = ∑n
i=1 ωi ×mi(A). (21)

Step 5: Use Dempster’s fusion rule to perform n − 1 fusion for evidence body m.

 
Figure 2. Flow chart of the proposed method.
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4. Numerical Example and Simulation Results

In this section, the proposed improved D-S evidence theory method based on similarity
and certainty, as well as the proposed overall method of heterogeneous data fusion based
on cloud model and evidence theory, are evaluated and simulated to demonstrate the
feasibility and effectiveness of the proposed method in this paper.

4.1. The method for Improving D-S Evidence Theory

In this section, four common conflicting, normal, and multi-quantity single-focal and
multi-focal element evidences are fused based on the proposed improvement method,
comparing traditional evidence theory, classical improvement methods, and similar im-
provement methods, and demonstrating the effectiveness of the proposed methods in this
paper through Examples 2–4. We take the methods proposed by Deng Z. [30] and Wang [33]
as similar improvement methods.

Example 2. In evidence theory, there are four common sorts of conflicts: complete conflict,
0 trust conflict, 1 trust conflict, and severe conflict [36], and the BPA functions for the four
typical conflicts are provided in Table 2.

Table 2. Four common conflicting BPA functions.

Types of Conflict Evidences
Proposition BPA

A B C D E

Complete conflict
(k = 1)

m1 1 0 0 \ \
m2 0 1 0 \ \
m3 0.8 0.1 0.1 \ \
m4 0.8 0.1 0.1 \ \

0 trust conflict
(k = 0.99)

m1 0.5 0.2 0.3 \ \
m2 0.5 0.2 0.3 \ \
m3 0 0.9 0.1 \ \
m4 0.5 0.2 0.3 \ \

1 trust conflict
(k = 0.9998)

m1 0.9 0.1 0 \ \
m2 0 0.1 0.9 \ \
m3 0.1 0.15 0.75 \ \
m4 0.1 0.15 0.75 \ \

High conflict
(k = 0.9999)

m1 0.7 0.1 0.1 0 0.1
m2 0 0.5 0.2 0.1 0.2
m3 0.6 0.1 0.15 0 0.15
m4 0.55 0.1 0.1 0.15 0.1
m5 0.6 0.1 0.2 0 0.1

The global similarity si and own determination DU(mi) of each evidence under the
four conflict types are shown in Table 3. The weights αi and βi of the evidence can be
calculated based on the degree of similarity si and the degree of certainty DU(mi), and
the overall weight ωi of the evidence can be obtained by combining the weights αi and βi.
Figure 3 displays the distribution chart for each weight. Figure 3 shows that the weights
of conflicting evidence are lower than those of normal evidence, and the distribution of
each weight is consistent with the facts. We combined similarity and certainty to improve
the body of evidence in order to improve the science of data fusion, and it should be noted
that because the certainty of evidence describes the characteristics of the evidence itself,
which includes the interval information of all focal elements within the evidence and is
independent of the relationship between the evidence, the weights αi and βi are not always
positively correlated.
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Table 3. Similarity and certainty of each evidence under four conflicts.

Types of Conflict Evidences Global Similarity si Determinacy DU(mi)

Complete conflict

m1 1.628 3
m2 0.036 3
m3 1.832 4.527
m4 1.832 4.527

0 trust conflict

m1 2.141 6.009
m2 2.141 6.009
m3 0.423 3.785
m4 2.141 6.009

1 trust conflict

m1 0.068 3.785
m2 1.715 3.785
m3 1.891 4.858
m4 1.891 4.858

High conflict

m1 2.651 7.194
m2 0.631 8.127
m3 2.737 7.733
m4 2.779 7.987
m5 2.888 7.718

Figure 3. Four common types of conflicting evidence weights.

Table 4 displays the fusion results of the traditional D-S rule, the methods proposed by
Sun [20], Murphy [23], Deng Y. [24], Deng Z. [30], and Wang [33], and the improved method
proposed in this paper. As seen in Table 4, when confronted with the four conflicting
situations listed above, the D-S fusion rule fails or does not match the genuine situation,
and Sun’s method allocates the uncertainty to the entire set, resulting in high BPA values for
the entire set that do not fit the true situation. The larger the value of BPA after fusing, the
greater the amount of confidence in the proposition. Although the approaches of Murphy,
Deng Y., Deng Z., and Wang yield correct answers, the method proposed in this work yields
a higher BPA function value and converges faster, demonstrating that the improved method
in this research performs better than the other methods in resolving the four conflicts. The
fusion BPA results on the reasonable propositions of each algorithm are shown in Figure 4.
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Table 4. Fusion results of four common conflicts.

Types of Conflict Methods
Proposition

Θ
A B C D E

D-S \ \ \ \ \ Invalid

Complete conflict

Sun 0.0917 0.0423 0.0071 \ \ 0.8589
Murthy 0.8204 0.1748 0.0048 \ \ 0
Deng Y. 0.8166 0.1164 0.0670 \ \ 0
Deng Z. 0.9792 0.0207 0.0001 \ \ 0

Wang 0.9996 0.0002 0.0002 \ \ 0
This paper 0.9999 0.0001 0.0001 \ \ 0

D-S 0 0.7270 0.2730 0 0 0

0 trust conflict

Sun 0.0525 0.0597 0.0377 \ \ 0.8501
Murthy 0.4091 0.4091 0.1818 \ \ 0
Deng Y. 0.4318 0.2955 0.2727 \ \ 0
Deng Z. 0.6510 0.2384 0.1106 \ \ 0

Wang 0.7628 0.2200 0.0172 \ \ 0
This paper 0.8421 0.0428 0.1151 \ \ 0

D-S 0 1 0 0 0 0

1 trust conflict

Sun 0.0388 0.0179 0.0846 \ \ 0.8587
Murthy 0.1676 0.0346 0.7978 \ \ 0
Deng Y. 0.1388 0.1318 0.7294 \ \ 0
Deng Z. 0.0273 0.0018 0.9709 \ \ 0

Wang 0.0006 0.0015 0.9980 \ \ 0
This paper 0.0001 0.0008 0.9991 \ \ 0

D-S 0 0.3571 0.4286 0 0.2143 0

High conflict

Sun 0.0443 0.0163 0.0163 0.0045 0.0118 0.9094
Murthy 0.7637 0.1031 0.0716 0.0080 0.0538 0
Deng Y. 0.5324 0.1521 0.1462 0.0451 0.1241 0
Deng Z. 0.9846 0.004 0.0055 0.0001 0.0029 0

Wang 0.9911 0.0025 0.001 0.0 0.0004 0
This paper 0.9983 0.0002 0.0013 0.0 0.0002 0

 
Figure 4. Comparison of reasonable proposition BPA value of different fusion algorithms.

Example 3. Assume the radar identification library contains three radar model data A, B,
and C, with identification frame Θ = {A, B, C, AC}. Five existing heterogeneous sensors
are used separately to identify the radar radiation sources, yielding a total of five conflicting
evidences ranging from m1 to m5. Tables 5 and 6 show the results of a specific two times,
which represent the data distribution of multi-quantity single and multi-focal element
conflict evidence, respectively.
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Table 5. Single focal element evidence body data distribution.

Evidences A B C

m1 0.5 0.2 0.3
m2 0 0.8 0.2
m3 0.6 0.3 0.1
m4 0.55 0.25 0.2
m5 0.65 0.15 0.2

Table 6. Multi-focus evidence body data distribution.

Evidences A B C AC

m1 0.5 0.2 0.3 0
m2 0 0.9 0.1 0
m3 0.55 0.1 0 0.35
m4 0.55 0.1 0 0.35
m5 0.6 0.1 0 0.3

The global similarity si and certainty DU(mi) of each evidence under single and
multifocal elements are shown in Table 7. The weights of evidence αi, βi, and ωi for a
different number of evidence cases are shown in Figure 5. From Figure 5, it can be seen
that the weight of conflicting evidence is less than the normal weight, the weight occupied
by conflicting evidence gradually decreases as the number of evidence increases, and the
distribution of each evidence is consistent with the facts, which proves the rationality of
the method proposed in this paper.

Table 7. Similarity and certainty of evidence under single and multifocal elements.

Evidences

Global Similarity si Determinacy DU(mi)

Single-Focal
Element

Multi-Focal
Element

Single-Focal
Element

Multi-Focal
Element

m1 2.743 6.009 2.496 6.009
m2 0.858 4.485 0.345 3.785
m3 2.756 5.599 3.685 3.221
m4 2.983 5.868 3.685 3.221
m5 2.999 5.434 3.730 3.422

 

Figure 5. Weight of evidence under different amounts of evidence. (a) Single-focal element evidence
weights. (b) Multi-focal element evidence weights.
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To verify the effectiveness of the improved method proposed in this paper, the evi-
dences are fused by using Murthy [23], Deng Y. [24], Deng Z. [30], and Wang [33], and the
proposed method are fused respectively. Table 8 shows the fusion results for each method,
and Figure 6 shows the comparison of BPA values for reasonable propositions. From
the fusion results and comparison results, it can be concluded that when facing different
numbers of single and multifocal element conflicting evidence bodies, the traditional D-S
fusion results all contradict the facts. Although Murthy [23], Deng Y. [24], Deng Z. [30], and
Wang [33] and the proposed method all point to the correct results, the BPA functions of
the proposed method are higher than the other two improved methods, and as the number
of evidence bodies increases, the improved method converges faster with higher accuracy
on the BPA value as the number of evidence bodies increases.

Table 8. Multi-quantity evidence body fusion results.

Methods

m1–m3 m1–m4 m1–m5

Single-Focal
Element

Multi-Focal
Element

Single-Focal
Element

Multi-Focal
Element

Single-Focal
Element

Multi-Focal
Element

D-S
m(A) = 0

m(B) = 0.9132
m(C) = 0.0868

m(A) = 0
m(B) = 0.6315
m(C) = 0.3685

m(AC) = 0

m(A) = 0
m(B) = 0.9293
m(C) = 0.0707

m(A) = 0
m(B) = 0.3287
m(C) = 0.6713

m(AC) = 0

m(A) = 0
m(B) = 0.9079
m(C) = 0.0921

m(A) = 0
m(B) = 0.1403
m(C) = 0.8597

m(AC) = 0

Murthy
m(A) = 0.3555
m(B) = 0.5868
m(C) = 0.0577

m(A) = 0.5568
m(B) = 0.3562
m(C) = 0.0782

m(AC) = 0.0088

m(A) = 0.5453
m(B) = 0.4246
m(C) = 0.0301

m(A) = 0.8656
m(B) = 0.0891
m(C) = 0.0382

m(AC) = 0.0074

m(A) = 0.8090
m(B) = 0.1785
m(C) = 0.0125

m(A) = 0.9688
m(B) = 0.0156
m(C) = 0.0127

m(AC) = 0.0029

Deng Y.
m(A) = 0.4978
m(B) = 0.4434
m(C) = 0.0588

m(A) = 0.6500
m(B) = 0.2547
m(C) = 0.0858

m(AC) = 0.0095

m(A) = 0.7418
m(B) = 0.2312
m(C) = 0.0270

m(A) = 0.9305
m(B) = 0.0274
m(C) = 0.0339

m(AC) = 0.0082

m(A) = 0.9277
m(B) = 0.0633
m(C) = 0.0090

m(A) = 0.9846
m(B) = 0.0024
m(C) = 0.0098

m(AC) = 0.0032

Deng Z.
m(A) = 0.6367
m(B) = 0.2631
m(C) = 0.1002

m(A) = 0.5669
m(B) = 0.3325
m(C) = 0.0966

m(AC) = 0.0044

m(A) = 0.6603
m(B) = 0.3095
m(C) = 0.0301

m(A) = 0.8389
m(B) = 0.1068
m(C) = 0.0507

m(AC) = 0.0036

m(A) = 0.8733
m(B) = 0.1152
m(C) = 0.0115

m(A) = 0.9136
m(B) = 0.0454
m(C) = 0.0357

m(AC) = 0.0053

Wang
m(A) = 0.6594
m(B) = 0.3119
m(C) = 0.0286

m(A) = 0.6581
m(B) = 0.2409
m(C) = 0.0937

m(AC) = 0.0073

m(A) = 0.8142
m(B) = 0.1604
m(C) = 0.0255

m(A) = 0.9391
m(B) = 0.0190
m(C) = 0.0342

m(AC) = 0.0077

m(A) = 0.9518
m(B) = 0.0401
m(C) = 0.0081

m(A) = 0.9859
m(B) = 0.0014
m(C) = 0.0096

m(AC) = 0.0031

This paper
m(A) = 0.7983
m(B) = 0.175

m(C) = 0.0267

m(A) = 0.8368
m(B) = 0.0478
m(C) = 0.1105

m(AC) = 0.0049

m(A) = 0.8842
m(B) = 0.0944
m(C) = 0.0221

m(A) = 0.9597
m(B) = 0.0028
m(C) = 0.0316

m(AC) = 0.0059

m(A) = 0.9849
m(B) = 0.0109
m(C) = 0.0026

m(A) = 0.9895
m(B) = 0.0003
m(C) = 0.0078

m(AC) = 0.0024

Example 4. With the identification frame Θ = {A, B, C}, there are five normal evidence
bodies from m1 to m5, and the distribution is shown in Table 9.

Table 9. Normal evidence body data distribution.

Evidences A B C

m1 0.85 0.05 0.1
m2 0.70 0.15 0.15
m3 0.50 0.20 0.30
m4 0.50 0.20 0.30
m5 0.7 0.25 0.05

170



Sensors 2022, 22, 5902

 

Figure 6. Comparison of the fusion results of multiple evidence. (a) Single focus element evidence
fusion results. (b) Multi-focal element evidence fusion results.

The proposed improved method’s fusion of normal evidence is compared to the
traditional evidence theory to demonstrate the proposed improved method’s superior
performance in dealing with normal data, and the fusion results are shown in Table 10.
Compared to the traditional evidence theory algorithm, the proposed method can also get
correct results when dealing with normal body of evidence and has a higher BPA function
with higher credibility.

Table 10. Normal evidence fusion result.

Methods m(A) m(B) m(C)

D-S 0.9985 0.0007 0.0008
This paper 1 0 0

According to the above examples, the similarity and certainty-based evidence the-
ory fusion algorithm proposed in this paper performs better in handling both normal
and conflicting evidence bodies, demonstrating the improved method’s rationality and
effectiveness.

4.2. The Proposed Holistic Approach

To demonstrate the feasibility and effectiveness of the proposed data-fusion method,
the heterogeneous data-fusion method combining cloud model and the proposed improved
evidence theory in this paper is used for indoor early fire detection in this subsection.

It has been discovered that the combination of temperature, smoke concentration, and
CO concentration has superior detection performance in fires [37], and the above informa-
tion is collected as fire characteristic parameters in this paper. The fire discrimination results
are divided into three categories: no fire, smoldering fire, and open fire. In the established
fire identification framework Θ = {θ1, θ2, θ3, θ1θ2θ3}, θ1, θ2, θ3 represent no fire, smoldering
fire, and open fire, respectively, and θ1θ2θ3 indicates uncertainty of fire. Lin et al. [38]
proposed a fire-detection method by using the Jousselme distance to improve the evidence
corresponding to the fire characteristic parameters and fusing the evidence according to
Dempster’s rule to improve the timeliness of detection. However, the method ignored the
characteristics of the evidence body itself and did not fully exploit the fire data information.
Because the attribute values corresponding to the three fire characteristic parameters of CO
concentration, smoke concentration, and temperature have certain stability and the interval
distribution obeys normal distribution within a certain value interval [39], the cloud model
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of each data source based on the forward cloud generator and the evaluation index of each
parameter is built, and the cloud diagram is shown in Figure 7.

 

Figure 7. Fire characteristic parameter cloud chart. (a) CO concentration-fire cloud chart. (b) Smoke
concentration-fire cloud chart. (c) Temperature-fire cloud chart.

PyroSim fire simulation software provides a visual user interface for fire dynamic sim-
ulation (FDS) and can more accurately predict the distribution of characteristic parameters
such as fire smoke and temperature [40], so this paper simulates the occurrence of fire to
obtain fire characteristic parameters. We build the indoor scenario as follows:

• The length, width and height of the room are 5, 5, 3 m;
• The room has a sofa, wooden bed and wooden table, in the upper left corner of the

room from the wall 1 m set CO, temperature and smoke sensor group;
• Set the vent: room left wall with 1 × 1 m window, room directly opposite the sofa

with 1.2 × 2 m door;
• The fire burning material is n-Heptane, the center of combustion is the center of the

wooden bed, the burning area is 1 m2.

By setting different heat release rate and heat ramp up time to simulate the occurrence
of open fire and negative fire in the room, the starting room temperature is 30 ◦C, the
simulation time is 30 s, and the data acquisition frequency is 2 Hz. Based on the proposed
data-fusion method, a fire detection model is built. The initial fire detection probability is
estimated by combining CO concentration, smoke concentration, and temperature data.
The probability of smoldering fire and open flame within the initial fire detection probability
is also added, and if it is greater than 0.75, the fire occurred in the room.

Figure 8a depicts a simulation of an open fire with visible fire and black smoke
visible at t = 2.5 s. Figure 8b shows the change of the measured CO concentration, smoke
concentration, and temperature data with time. When the probability of an open fire is 1, the
values of CO, smoke, and temperature are the thresholds, and the time when each parameter
first reached the threshold is shown in Figure 8b. The three characteristic parameters of CO,
smoke, and temperature had almost no fluctuation in the first 2 s and increased rapidly
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after 2 s. The temperature and smoke reached the threshold value relatively quickly, and
all parameters showed an increasing trend in the first 30 s response time.

Figure 8. Open fire simulation information diagram.

To determine whether a fire has occurred, the early open fire data from this simulation
are fused using the traditional D-S evidence theory, the methods proposed by Murphy [23],
Deng Y. [24], Deng. Z. [30], and Wang [33] and this paper, respectively. Because the
frequency of data acquisition in the simulation is 2 Hz, the period of data fusion is 0.5 s.
The traditional evidence theory, Murphy’s Deng Y’s., and Deng. Z’s methods all detect fire
at t = 3.5 s, Wang’s method detects fire at t = 3 s, and the proposed method detects fire at
t = 2.5 s, proving the method’s effectiveness. Figure 9 depicts the probability comparison
of fire occurrence in this open fire scenario.

Figure 9. Fire occurrence probability comparison in open fire scene.
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A smoldering fire’s combustion features include the emission of a significant amount
of black smoke from the combustion point prior to the appearance of the evident fire.
Figure 10a depicts a simulation of a smoldering fire, with a clear fire visible at t = 18 s.
Figure 10b displays a time-plot of the data collected by the multi-sensor group during the
first 30 s. As shown in Figure 10b, the rising trend of each characteristic parameter in the
shaded fire scenario is slower than it is in the open fire scenario, and the parameters only
continue to grow after 7 s as a result of the early shaded fire’s insufficient combustion.

 
Figure 10. Smoldering fire simulation information diagram.

The determination of whether a fire has occurred is made possible by combining data
on smoldering fires based on the traditional D-S evidence theory, the methods proposed
by Murphy [23], Deng Y. [24], Deng. Z. [30], and Wang [33] and this paper, respectively.
The method proposed in this paper can detect the occurrence of fire at t = 10 s, which
is earlier than the 11.5 s of Wang’s method, 11.5 s of Deng Y.’s method, 12 s of Deng Z’s
method, 13.5 s of traditional evidence theory, and 17 s of Murthy’s method, as shown in
Figure 11. As illustrated in Figure 11, when compared to the traditional evidence theory,
classical improvement method, and similar improvement method, the method proposed
in this paper not only detects the occurrence of fire in advance, but also has a higher
detection accuracy.

To further verify the effectiveness of the proposed fire detection method, we obtained
different CO concentration, smoke concentration and temperature data by setting different
combustibles, combustion locations, heat release rates, and heat ramp-up times. Then
we made our own fire dataset, which included 1000 positive samples and 1000 negative
samples. Based on the traditional evidence theory, classical improvement method, similarity
improvement method and the proposed method in this paper, the homemade samples are
fused to calculate the accuracy rate and false alarm rate of detection. Assuming that TP
represents the number of samples correctly judged to be fires, FN represents the number of
samples not correctly judged to be fires, FP represents the number of samples misreported
to be fires, and TN represents the number of samples correctly judged to be fires that did
not occur. The accuracy and false alarm rates (FAR) are calculated as Equation (22):⎧⎨⎩ accurary

∣∣∣= TP+TN
TP+FN+FP+TN

FAR
∣∣∣= FP

FP+TN

. (22)
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Figure 11. Fire occurrence probability comparison in smoldering fire scene.

Table 11 shows the fire detection accuracy and false alarm rate of various methods.
According to Table 11, compared to other methods, the proposed method increased the fire
detection rate by 0.7–10.2% and reduces the false alarm rate by 0.9–6.4%, which improves
the reliability of fire discrimination obviously.

Table 11. Comparison of fire detection accuracy and false alarm rate of different methods.

Fusion Methods Accuracy Rate False Alarm Rates

Traditional D-S 88.6% 7.2%
Murthy 93.4% 5.6%
Deng Y. 96.6% 2.2%
Deng Z. 96.3% 3.1%

Wang 98.1% 1.7%
The method proposed 98.8% 0.8%

It is evident that when applied to indoor fire detection, the proposed heterogeneous
data-fusion method has better fire detection performance and can simultaneously improve
the timeliness and accuracy of detection, proving its feasibility and effectiveness in multi-
sensor data fusion.

5. Conclusions

In this paper, a multi-sensor heterogeneous data fusion strategy based on the cloud
model and improved evidence theory is presented, which can better cope with the ambigu-
ity and conflict of heterogeneous multi-sensor gathered data. The cloud model is used to
estimate the BPA function of each data source’s associated evidence. Evidence similarity is
calculated by using multi-relationship measures, evidence certainty is measured by using
interval distance, the body of evidence is jointly improved by combining the evidence’s
similarity and certainty, and the improved body is fused by using Dempster’s rule. The
usefulness of the improved evidence theory technique is validated in this research, and the
results show that the proposed method performs better when dealing with both conflicting
and normal evidence. The method is used for indoor fire detection in light of the issues of
prolonged duration and low accuracy. Compared to traditional evidence theory, classical
improvement method, and similar improvement method, the proposed method improves
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detection speed by 0.5–3 s, accuracy by 0.7–10.2%, and reduces the false alarm rate by
0.9–6.4%, which has better detection performance. It also provides a specific reference value
for multi-source information fusion.

In future work, we intend to test the feasibility of the proposed method on other multi-
sensor acquisition information systems, as well as investigate how to combine homoge-
neous and heterogeneous data fusion algorithms to fully exploit effective data information
and improve data fusion accuracy.
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Abstract: Various types of motion blur are frequently observed in the images captured by sensors
based on thermal and photon detectors. The difference in mechanisms between thermal and photon
detectors directly results in different patterns of motion blur. Motivated by this observation, we
propose a novel method to synthesize blurry images from sharp images by analyzing the mechanisms
of the thermal detector. Further, we propose a novel blur kernel rendering method, which combines
our proposed motion blur model with the inertial sensor in the thermal image domain. The accuracy
of the blur kernel rendering method is evaluated by the task of thermal image deblurring. We
construct a synthetic blurry image dataset based on acquired thermal images using an infrared
camera for evaluation. This dataset is the first blurry thermal image dataset with ground-truth images
in the thermal image domain. Qualitative and quantitative experiments are extensively carried out
on our dataset, which show that our proposed method outperforms state-of-the-art methods.

Keywords: motion blur model; synthetic blurry thermal image; thermal detector; thermal image
deblurring; blur kernel rendering; inertial sensor; gyroscope sensor

1. Introduction

Infrared images are increasingly being used in various fields, e.g., commercial, med-
ical, and military applications. Infrared cameras have been mainly used in industrial
applications, such as thermal insulation performance measurement and electrical leakage
testing [1]. Recently, new applications of infrared imaging are emerging. For instance,
drones equipped with infrared cameras have been used to search for missing survivors at
nighttime [2,3], and the infrared camera is becoming an essential sensor for autonomous
vehicle driving at night to prevent accidents [4]. Furthermore, due to the outbreak of
COVID-19, many applications measuring the body temperature of visitors at a building
entrance have been widely used.

The infrared image sensor is a device that displays the thermal information of subjects
as an image. The wavelength of the infrared band is longer than the visible band, being
invisible to human eyes. The infrared band can be categorized into three types according
to its wavelength: Short Wavelength Infrared (SWIR) with the wavelength ranging from
1.4 μm to 3 μm, Mid Wavelength Infrared (MWIR) with the wavelength ranging from
3 μm to 8 μm, and Long Wavelength Infrared (LWIR) with the wavelength ranging from
8 μm to 15 μm [5]. Due to the cost issue, most commercial applications use LWIR image
sensors. More specifically, since SWIR and MWIR image sensors are fabricated based on
compound semiconductors, they are more expensive than silicon-based visible and LWIR
image sensors. Further, MWIR image sensors require a cryogenic system to maintain the
sensor temperature at precisely 77K, which significantly increases the price, volume, and
weight. Therefore, the MWIR image sensors have limitations in being used for commercial
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purposes. The cost of LWIR image sensors, on the other hand, is relatively low because they
are fabricated based on the MEMS (Micro Electro Mechanical Systems) technology. Further,
the LWIR image sensors can be manufactured in a very small since they do not need any
cryogenic cooling system. The principle of the LWIR image sensors are different from the
ones of CCD and CMOS image sensors which usually are for visible band images. The
CCD and CMOS image sensors, so-called photon detectors, have semiconductor materials
and structures that directly convert photons into electrons. In contrast, the LWIR sensors
have the structure of a microbolometer [6]. This structure absorbs photons and changes
them into heat. The LWIR sensors generate an image signal by detecting the temperature
change induced by photons. The sensors having the mechanism of a microbolometer are
called thermal detectors.

Traditional image processing tasks such as denoising [7–10], contrast enhancement [11],
deblocking [12,13], inpainting [14,15], deblurring [16–19], and compressive sensing
recovery [20,21] have been intensively studied in the visible image area since it is easy
to acquire sufficient test data. However, due to domain dependency, image processing
algorithms that properly work on a visible image are not guaranteed to work well on a ther-
mal image. In general, the algorithms developed for the visible images tend to suffer from
performance degradation in the thermal image domain. Therefore, it is essential to develop
algorithms that directly consider the characteristics of the image domain. For example,
in the studies on image quality metric, many efforts have been made to find appropriate
metrics for thermal images [22–24]. Further, in the studies on image enhancement, many
research proposals have been made to develop methods specialized for thermal images
to solve problems such as low signal-to-noise ratio (SNR), halo effect, blurring, and low
dynamic range compared to visible images [25–27].

The domain dependency can also be observed in the image deblurring area, where the
two types of sensors produce apparently different motion blur patterns. The shape of a
motion blur is very strongly related to the principle of image sensors, as shown in Figure 1.
Photon detectors such as CCD and CMOS require time to physically collect photons, which
is called exposure time (or integration time). If the camera or subject moves during the
exposure time, motion blur occurs in the resulting image. In addition, the motion blur is
easily observed at nighttime when the camera needs a longer exposure time. In contrast,
the main cause of the motion blur in thermal detectors is the heat flow in a microbolometer
structure. The microbolometer structure is designed and manufactured to provide good
thermal isolation. Due to the thermal isolation of the microbolometer, time is needed for
the heat to be transferred from one structure to another. The thermal detector generates
images by measuring the temperature change of a microbolometer structure. Therefore, the
remaining heat in the previous frame can appear as the motion blur in the next frame. As
such, the photon detector and the thermal detector have different mechanisms for motion
blur and produce different blur patterns in an image. As shown in Figure 2, the motion blur
of the photon detector exhibits a linear blur pattern, whereas the thermal detector shows a
blur pattern similar to a comet-tail shape.

Several algorithms have been proposed to address this issue for thermal image de-
blurring. Oswald-Tranta [28] and Nihei et al. [29] observed that the motion blur in the
LWIR image is different from that of the visible image and then proposed methods for
image restoration. However, their image restoration experiments were conducted in limited
conditions. The target’s velocity was maintained with a constant at a fixed distance from
the sensor, or the camera moved at a constant speed with its fixed direction. Consequently,
their deblurring methods suffer from performance degradation when the size or orientation
of the motion blur changes. Ramanagopal et al. [30] assumed the temporal sparsity of
pixel-wise signals and performed motion deblurring on a thermal video using the LASSO
(Least Absolute Shrinkage and Selection Operator) algorithm. However, it does not operate
in real-time, and the deblurring fails when the temporal sparsity assumption is broken (e.g.,
fast camera motion). Zhao et al. [31] used the deep learning-based approach, a new GAN
(Generative Adversarial Networks) structure for thermal image deblurring. However, the
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training dataset was synthesized simply by averaging video frames without considering
the characteristics of a motion blur in thermal images. Therefore, their method cannot be
applied to thermal images with large motion blur. Batchuluun et al. [32] improved the
deblurring performance by converting the one-channel thermal image into a three-channel
thermal image. However, their method also did not consider how the motion blur occurs
in thermal images when constructing the training dataset.

(a) (b)

Figure 1. The mechanism of two different sensors and cause of motion blur. (a) the cause of motion
blur in the photon detector is integration time, (b) the cause of motion blur in the thermal detector is
the response time of temperature change.
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Figure 2. Two kinds of cameras simultaneously take an image of the aircraft’s twin-jet engine flames.
Both images have motion blur, but they have different motion blur patterns. (a) LWIR camera using
thermal detector, (b) MWIR camera using photon detector.

In fact, a number of deblurring methods have been studied based on visible images.
Deep-learning-based methods have recently shown state-of-the-art performance in the
image deblurring task, outperforming classic handcrafted methods. LSTM and CNNs are
combined in SRN-DeblurNet [33] to deblur an image in a multi-scale manner. Pan et al. [34]
proposed a method, in which neighboring video frames are warped into the center frame
to use latent image information from adjacent frames for deblurring. Kupyn et al. [35] pro-
posed a GAN-based structure, in which the feature pyramid networks balance performance
and efficiency. Ye et al. [36] proposed a scale-iterative upscaling network with sharing
weights to recover sharp images, and they used the super-resolution architecture for better
performance. Zha et al. [18] proposed an effective algorithm for image deblurring by
combining an optimization-based model with a deep neural network model. Although the
deep learning-based method shows remarkable performance, the deblurring performance
can still be significantly improved by incorporating the thermal image characteristics as
well as by addressing the issue of the lack of datasets. Except for deep learning-based ap-
proaches, the most common and widely used approach for image deblurring is to estimate
the blur kernel and sharp image simply using the observed blurry image [16,17,19]. In these
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conventional methods, the latent image and blur kernels are obtained by minimizing the
energy function with its constraints of statistics information. However, as a typical ill-posed
problem, the conventional methods need large computational resources and often fail to
deblur when the blur kernel size is large. So as to avoid these problems, the approach using
an inertial sensor has been proposed especially for the blurry images caused by camera
motions [37–47]. This approach has been evaluated as a method with great advantages over
the existing blind deblurring method, in that the computational resources can be reduced
by directly rendering the blur kernel with the inertial sensor information. However, all
previous studies have proposed blur kernel rendering methods based on a photon detector
model, which is generally used for visible images.

This paper proposes a novel motion blur kernel rendering method inspired by the
sensing mechanism of a thermal image sensor and the supplementary information from
a gyroscope sensor. Rendering the blur kernel by using gyroscope information is both
efficient and accurate. It also enables the deblurring task through an efficient deconvolution.
In our study, we interpret the microbolometer structure model in the aspect of motion blur,
construct the motion blur model of the thermal image, and propose the method to efficiently
and accurately render a blur kernel connoting the properties of the physical mechanism.

The main contributions of our study are summarized as follows:

• We propose a novel synthesis method for the blurring effect in the thermal image by
interpreting the operating properties of a microbolometer.

• We propose the blur kernel rendering method for a thermal image by combining the
gyroscope sensor information with the motion blur model.

• We acquire and publically release both actual thermal images and synthetic blurry
thermal images for the construction of a dataset for thermal image deblurring.

• Our method quantitatively and qualitatively outperforms the latest state-of-the-art
deblurring methods.

2. Image Generation and Motion Blur Model

There is a fundamental difference between a photon detector and a thermal detector
in the principle of image generation. This section describes the mechanism of how the two
detectors generate an image. Based on the analysis of detector mechanism, we propose an
approach to synthesize the motion blur in a thermal image.

2.1. Photon Detector Model

A photon detector is based on a photodiode structure. When photons are incident on
the p–n junction in the photodiode, electron-hole pairs are generated, and the electrical
current flows along with the direction of the photodiode bias. The generated electrons are
accumulated in a capacitor during the integration time. The integration time means the
exposure time of a camera. The read-out integrated circuit (ROIC) outputs an image signal
by measuring the charge stored in the capacitor.

I(i, j) =
∫ Tint

0
Φi,j(t)dt. (1)

As can be seen in Equation (1), an image is corresponds to the sum of the incident
photon energy during the integration time. The incident photon power is Φi,j(t), the image
signal is I(i, j), and the integration time is Tint, where (i, j) is the index of pixels in an image.
Previous studies have used Equation (2) to generate a motion blur image from sharp images
in the visible image domain [48–51].

B[n] =
1
n

n

∑
k=1

S[k]. (2)

S[k] denote the kth sharp image, which is equal to the incident photon power. n is the
number of sampled sharp images during the exposure time.
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2.2. Thermal Detector Model

The microbolometer sensor is the most frequently used device structure in a thermal
detector. Since the fabrication cost of the microbolometer is relatively cheap than other
structures, this structure is predominantly used for the mass-production of the uncooled
infrared detector [6]. The operating mechanism of a microbolometer consists of four steps:
(i) the incident photon energy is converted into thermal energy, (ii) the heat changes the
device resistance, (iii) ROIC measures the amount of change in resistance, (iv) ROIC outputs
an image signal proportional to the measuring value. The thermal isolation structure is
essential for this four-stage operation to be conducted normally. The microbolometer
supports a large sheet area with extremely thin legs for thermal isolation. The large sheet
absorbs incident photons, and the generated heat is isolated by thin legs. The conceptual
diagram of a microbolometer structure and substantive implementation are shown in
Figure 3. The following Equation (3) expresses the heat flow of a microbolometer [52].

(a) (b)
Figure 3. (a) Microbolometer structure and Schematic model, (b) Microbolometer scanning electron
microscope (SEM) image [53].

Cth · dΔT
dt

+
dΔT
Rth

= ηΦ(t). (3)

Cth, Rth, Φ(t), ΔT and η denote thermal capacitance (W ·K), thermal resistance(K·W−1),
photon power (W), device temperature (K) and photon absorption rate, respectively. CthRth
is the thermal time constant value and is expressed as τ. Therefore, Equation (3) becomes
Equation (4), and the solution of first-order differential equation is given as Equation (5).

τ · dΔT
dt

+ ΔT = RthηΦ(t), (4)

ΔT(t) =
Rthη

τ
Φ(t) ∗ e

−t
τ . (5)

Let B(t) be a final output image. The temperature difference is converted into an
image signal through the element resistance change. As a more specific expression, the
temperature difference of the microbolometer and the signal level of an output image
are proportional to each other [6]. Therefore, considering the scale factor, Equation (5) is
expressed as Equation (6).

B(t) = KΦ(t) ∗ e
−t
τ , where K =

Rthη

τ .
(6)

It is important to note that the image generation models of a thermal detector and a
photon detector are different as shown in Equations (6) and (1). In the case of the photon
detector, the output signal is formed by accumulating incident photon energy. On the other
hand, the output of the thermal detector is the convolutional result of incident photon
energy and an exponential decay function. Therefore, the output images of the thermal
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detector lose the signal value over time. The theoretical mechanism difference between
the two detectors is observed by our experiments. Even though the photon detector and
thermal detector acquire a moving subject simultaneously, the blur effects appear differently,
as shown in Figure 2. The response time of the thermal detector is related to τ. A high τ
value means that the device has a high response time, showing a large amount of motion
blur in an image. In contrast, a low τ value indicates less amount of blur effect in an image
due to the faster response of the device.

2.3. Generating the Synthetic Blurry Image in a Thermal Image

In order to actually use the thermal detector model, it is necessary to convert the
continuous model into a discrete model. Therefore, for the discrete model, we propose a
new assumption based on Equation (4). A sampling process is used to replace continuous-
time with discrete-time. Through the sampling process, t is converted to tk. By applying
Backward Euler method [54], Equations (7)–(9) can be obtained based on Equation (4) using
dΔT(tk)

dtk
≈ ΔT(tk)−ΔT(tk−1)

h .

τ · ΔT(tk)− ΔT(tk−1)

h
+ ΔT(tk) = RthηΦ(tk), (7)

ΔT(tk) =
τ

τ + h
ΔT(tk−1) +

h
τ + h

Φ
′
(tk),

where Φ
′
(tk) = RthηΦ(tk),

(8)

ΔT(tk) = (1− α)ΔT(tk−1) + αΦ
′
(tk),

where α =
h

τ + h .

(9)

ΔT(tk) is proportional to B(tk), and Φ
′
(tk) is a sharp image, which can be rewritten

by using S(tk). Furthermore, the formula for a single device can be expanded to an image
array, and the formula should be as the following Equation (10).

Bi,j(tk) = (1− α)Bi,j(tk−1) + αSi,j(tk). (10)

The kth blurry image is expressed as the weighted sum of the blurry image at tk−1 and
the sharp image at tk. Equation (10) has the form of the Infinite Impulse Response (IIR)
filter, and when the recursive term is eliminated, it becomes Equation (11).

Bi,j(tk) = α
k

∑
n=1

(1− α)k−nSi,j(tn). (11)

The blurry thermal image Bi,j(tk) is expressed as the exponential average of sharp
images Si,j(tn). In a photon detector, sharp images are averaged over a certain exposure
time to synthesize a blurry image, as shown in Equation (2). On the other hand, it can be
observed that an exponential average is used for a thermal image.

One thing that remains is how many sharp images are needed to synthesize the exact
motion blur effect in the thermal detector. To address this problem, we need to look at
the assumption taken in Equation (7). In the Backward Euler method, it is assumed that
h = tk − tk−1 ≈ 0, while h is the interval time between tk and tk−1. If the assumption
tk ≈ tk−1 is satisfied, then Φ(tk) ≈ Φ(tk−1) also must be satisfied. Therefore, to satisfy
Φ(tk) ≈ Φ(tk−1), the translation using a sharp image must be less than one pixel during h.
In other words, if the subject image focused on the sensor plane moves within one pixel
during h, the subject does not change in the image. The assumption can be satisfied if
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the shift between adjacent images is within one pixel. For example, if the camera rotation
directly causes an image motion blur, the following Equation (12) must be satisfied.

h = tk − tk−1 ≤ IFOV
ω .

(12)

Instantaneous Field of View (IFOV) [55] is the field of view corresponding to a single
pixel. ω is the angular velocity, which can be obtained when the camera rotates in the pitch
or yaw direction. IFOV/ω is the time for an image to be shifted by one pixel. For example,
if IFOV is 0.1◦ and the angular velocity of a camera is 100◦/s, time interval h required for
synthesis is 1 ms (where h is 1 ms, having the sharp image frame rate as 1000 Hz).

2.4. Verification of Thermal Detector Blur Model

This section describes the verification of our thermal detector blur model through
experiments. Two test patterns are acquired using FLIR A655sc thermal camera and a
collimator. Firstly, A655sc thermal camera was installed on the pan/tilt mount and rotated
to collect real blurry images. Sharp images are obtained when the camera is stopped.
The blurry images are synthesized by applying our thermal detector blur model to the
sequential frames of sharp images. The model verification is achieved by quantitatively
comparing real blurry images with synthetic blurry images.

2.4.1. Acquiring a Real Blurry Image

Real blurry images are acquired by rotating the camera at a certain angular velocity.
The infrared camera is installed on a pan/tilt framework to precisely control the rotation
speed. The image sensor plane is aligned with the rotation center. The camera rotation
speed is 40◦/s. Point source and 4-bar patterns are used as simple targets. The test patterns
in a sharp image and a real blurry image are shown in Figure 4c,d, respectively.

(a) (b)

(c) (d)

Figure 4. Examples of motionless and moving pattern images. (a) 4-bar pattern, (b) Point source,
(c) 4-bar pattern at 40◦/s, (d) Point source at 40◦/s.
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2.4.2. Obtaining a Synthetic Blurry Image from Sharp Images

The set of sharp images with a high frame rate is required to generate synthetic blurry
images via Equation (10). According to the previous section, a set of sharp images must be
shifted by less than one pixel from adjacent frames. As shown in Figure 4a,b, we acquire
a sharp image while the camera is stopped, and the set of sharp images is generated by
shifting the image. The set of sharp images is used as Si,j(tk) in Equation (10). If the sharp
images are shifted by more than one pixel, the synthetic blurry image suffers from the
stepping effect, as shown in Figure 5. The stepping effect makes synthetic blurry images
have low similarity with real blurry images and makes them difficult to use either for
training or for evaluation. In this experiment, the maximum rotation speed of a camera
is 40◦/s, and IFOV of FLIR A655sc is 0.0391◦. Hence, the time interval h is 0.978 ms for
synthesizing a blurry image without any stepping effect.

(a) (b) (c) (d)

Figure 5. Examples of stepping effects. (a) Shifting one pixel between adjacent frames, (b) Shifting
two pixels between adjacent frames, (c) Shifting four pixels between adjacent frames, (d) Shifting
eight pixels between adjacent frames.

2.4.3. Comparing Real and Synthetic Blurry Images

Figure 6 shows the real and synthetic blurry images when the camera rotation speed is
40◦/s. In both test patterns, the comet tail shape appears in the opposite direction of a target
movement. Even though the camera is rotating at a constant speed, the asymmetric blur
phenomenon occurs. There is no difference in the position and value of the peak point of a
signal value between real and synthetic blurry images. Therefore, the two signal profiles
show high similarity, which means that our model has the sufficient ability to synthesize a
blur effect.

Real Synthetic
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Figure 6. The comparison of real blurry images and synthetic blur images. (a) 4-bar pattern,
(b) Point source.
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3. Blur Kernel Rendering Using a Gyroscope Sensor for a Thermal Detector

The gyroscope sensor provides reliable information for rendering the blur kernel in
the blurry images caused by camera motions. The blur kernel rendering methods with the
assistance of an external sensor have been studied in many papers [37–47]. However, all
approaches have been conducted in the visible image domain based on a photon detector.
We propose the first blur kernel rendering method using an inertial sensor in the thermal
image domain, leveraging the physical model of a thermal detector.

3.1. Blur Kernel Rendering and Gyroscope Data Selection

When a camera has motion, the relationship between the real-world scene and the
image on a camera sensor plane is expressed as a homography transform [56]. In this case,
the camera motion is expressed by translation and rotation. The intrinsic matrix of a camera
is expressed in Equation (13), where f is the focal length, (px0 ,py0) is the principal point,
and s is the skew parameter. ⎡⎣ f s px0

0 f py0

0 0 1

⎤⎦ (13)

We assumed the principle point and skew parameter to be 0. If the distance between
a camera and a target is d, the rotation matrix is R(θ), the translation vector is t, and
the normal vector of a scene is n. Then, the warping matrix and the rotation matrix are
expressed by Equations (14) and (15), respectively.

H(t, θ) = K
(

R(θ)− tnᵀ

d

)
K−1, (14)

R(θ) =

⎡⎣cos θx −sin θx 0
sin θx cos θx 0

0 0 1

⎤⎦ ·
⎡⎣ cos θy 0 sin θy

0 1 0
−sin θy 0 cos θy

⎤⎦ ·
⎡⎣1 0 0

0 cos θz −sin θz
0 sin θz cos θz

⎤⎦
.

(15)

If the distance between a subject and a camera is longer than the focal length, the camera
rotation is the dominant factor in the warping matrix rather than camera translation [57–59].
Therefore, according to the above assumption, Equation (14) can be approximated as
Equation (16).

H(θ) = KR(θ)K−1. (16)

It is reported in several studies that the path of a light point source, which is called
a light streak in blurry images, corresponds to the shape of a blur kernel [60]. Generally,
the blur kernel is expressed as the cumulative sum of unit impulse functions during the
exposure time T in a camera using the photon detector. Therefore, the relationship between
a camera motion and a blur kernel is as the following Equation (17). δ[x, y] is the unit
impulse function, fg is the gyroscope frame rate, and Np is the total number of gyroscope
data during the exposure time.

kp[x, y] =
1

Np

Np

∑
i=1

δ[x− xi, y− yi],

where (xi, yi, 1) = KR(θ(ti))K−1(x0, y0, 1), Np = T fg.

(17)

The warping matrix of a thermal detector is identical to that of a photon detector case,
but their image generation models are different. The blur kernel rendering method in the
thermal image domain is expressed in Equation (18) by combining Equations (11) and (16).
Since the exponential decay term causes the signal attenuation effect in Equation (18), the
result of blur kernel rendering resembles a comet tail shape. Figure 7 shows the camera
axis and the blur kernel rendering results. Since the position of a point source transformed
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through the warping matrix is not expressed as an integer, the bi-linear interpolation is
conducted. (1− (1− α)Nt ) is the normalization term to make the summation of the blur
kernel be one. fg and Nt are the gyroscope frame rate and the total number of gyroscope
data during mτ in Equation (17), respectively.

kt[x, y] =
α

(1− (1− α)Nt)

Nt

∑
i=1

(1− α)Nt−iδ[x− xi, y− yi],

where Nt = mτ fg.

(18)
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Figure 7. Illustration of camera rotation. (a) 3-axis rotation model, (b) Rotation motion measured by
gyroscope sensor, (c) Blur kernel rendering result using the thermal detector model, (d) Blur kernel
rendering result using the photon detector model.

The rotation matrix is required to implement the formula of blur kernel rendering.
The angular information of each axis in the rotation matrix can be obtained through the
gyroscope sensor. Since the gyroscope is a sensor that measures the angular velocity, the
angle can be calculated by integrating the measured values over time. Next, we should
decide the number of gyroscope data. In the case of a photon detector, the number of
gyroscope data is easily determined by the exposure time, which induces the blur effect. In
contrast, the blur effect of a thermal detector is caused by the thermal time constant in the
microbolometer structure. Therefore, it is necessary to define the number of gyroscope data
based on the thermal time constant τ. According to the modeling result in Equation (18),
All gyroscope data stored during the entire duration are required for blur kernel rendering.
However, the practical length of gyroscope data for rendering is limited due to the signal
attenuation characteristics of the thermal detector. We confirmed that it is sufficient if
the length of gyroscope data is at least five times the thermal time constant, or m = 5.
For instance, if τ is 8 ms, obtaining gyroscope data for 40 ms is enough to synthesize the
blur kernel.

3.2. Calibration and Blur Kernel Refinement

We calibrate a camera and a gyroscope using the open-source code for calibration [61].
Generally, the calibration process can be conducted by a standard checkerboard pattern
in a visible image. On the other hand, the thermal camera cannot display a standard
checkerboard pattern without temperature variations. To solve this problem, we use
aluminum tapes whose emissivity is different from that of paper, as shown in Figure 8.

We conduct the refinement process for synthesizing the blur kernel as realistic as
possible. The uniform blur effect appears even if there is no camera movement due to
the optical Point Spread Function (PSF). The optical PSF is known to occur due to the
diffraction and aberration of a camera lens system. Even for an ideal point source, a
blur spot appears on the sensor plane by optical PSF [62]. Since diffraction increases as
wavelength increases, the optical PSF is larger in an infrared band than in a visible band.
Then, a refinement process considering the optical system is necessary to utilize the blur
kernel rendering method in the infrared band. Precise optical measurement systems are
required to synthesize an accurate optical PSF. However, these systems consume enormous
time and cost. Instead, an efficient approximation formula is used in our method. As the
primary cause of optical PSF, the diffraction blur spot size is expressed as an airy disk
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function. The airy disk equation is approximated as Gaussian function, and its standard
deviation is expressed by Equation (19) [63].

σ = 0.45 · λ · f /�
β .

(19)

where (19), λ is the infrared wavelength, f /� is the F-number, and β is the weighting factor
to reflect the optical aberration effect. When β is 1, it directly means a diffraction-limited
lens with no optical aberration effect. We determined the value of β with reference to the
Strehl ratio to apply the optical aberration effect. Here, the Strehl ratio is defined as the peak
intensity ratio of the center between a real PSF and an ideal PSF without aberrations [64].
Finally, the refined blur kernel can be calculated through the convolution between the blur
kernel rendering result and the Gaussian function with the deviation value as σ shown in
Equation (19). The blur kernel refinement results are presented in Figure 9.

(a) (b)
Figure 8. The calibration pattern for a thermal signal. (a) An ordinary checkerboard pattern (captured
in visible-band and infrared band), (b) The checkerboard pattern improved by attaching aluminum
material (captured in visible-band and infrared band).

(a) (b)

Figure 9. (a) Blur kernel before refinement, (b) blur kernel after refinement (given λ = 10 μm,
f /� = 1.0, β = 0.6).

4. Experimental Setup

4.1. Construction of Synthetic Blurry Thermal Image Dataset

Most of the datasets for evaluating deblurring performance consist of visible band
images, while thermal image datasets with ground truth images cannot be found. In this
paper, we introduce the first Synthetic Blurry Thermal Image (SBTI) dataset with ground
truth images in the thermal image domain. Firstly, we constructed the Sharp Thermal
Image (STI) dataset using FLIR A655sc LWIR camera. The gyroscope sensor was mounted
on the camera to measure the camera rotation speed. The LWIR camera was installed on a
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tripod to synthesize the uniform blurry image by suppressing the roll movement. Table 1
shows the camera and gyroscope sensor parameters.

Table 1. The Parameters of Camera-Gyroscope integrated system.

Camera Parameters Gyroscope Parameters

Resolution (pixel) 640 × 480 Resolution (◦/s) 0.0076
Frame rate (Hz) 50 Frame rate (Hz) 1000
FOV/IFOV (◦) 25 × 19/0.0391 Range (◦/s) ±200
Thermal time constant (ms) 8 Bias drift (◦/s) 0.12
Focal length (mm)/ f /� 24.6/1.0 Total RMS noise (◦/s) 0.05

As depicted in Figure 5, in order to synthesize a blurry thermal image without the
stepping effect, adjacent images should be shifted by at most one pixel. Therefore, the
maximum rotation angle of a camera between two adjacent images should be limited to the
angle of IFOV. Since the IFOV of a FLIR camera is 0.0391◦, and the frame rate is 50 Hz, the
above condition can be satisfied if the camera rotation speed should be less than 1.955◦/s.
Since a gyroscope measures the angular velocity of a camera, the camera rotation speed is
able to keep less than 1.955◦/s during image acquisition. As shown in Table 2, the total
number of images in each subset of the SBI dataset is between 1400 and 2000. The gyroscope
data has been stored while synchronized with sharp images. Since the gyroscope frame
rate is 1000 Hz, the camera rotation motion between adjacent images has been paired with
20 consecutive gyroscope data.

Table 2. Configuration of STI Dataset.

STI Dataset Subject # of Images # of Gyro.
Collection

Environment
Bit Depth

[1] Test pattern 1400 28000 Indoor 16 bits
[2] Vehicle, Road 1600 32000 Outdoor 16 bits
[3] Person, Road 2000 40000 Outdoor 16 bits
[4] Person, Vehicle 2000 40000 Outdoor 16 bits

The SBTI dataset is generated through Equation (10) based on the STI dataset. In
Equation (10), the blur size is determined by α which consists of τ and h. Here, τ is thermal
time constant, and h is interval time between two consecutive images (where h is 20 ms,
having camera frame rate as 50 Hz). We adjust the blur size by changing the value of h. The
real interval time of two sharp images is 20 ms, but we can control the blur size by replacing
this interval time with a specific value. For example, assuming h is 1/1280, the frame rate
between two sharp images becomes 1280 Hz. In other words, the time consumed to collect
1280 images is no longer 25.6 s but 1 s. The camera rotation speed also is converted from
1.955◦/s to 50◦/s. This range is about 25.6 times higher than a real camera rotation speed.
Using this time compression method, we can generate blurry images corresponding to
any camera rotation speed. Finally, the blurry images are sampled every 20 frames and
converted to 8-bit images for comparison. Figure 10 and Table 3 show the configurations
of STI and SBTI datasets. In the SBTI dataset, there are seven different blur sizes, and the
maximum camera rotation speed intuitively expresses the blur size.
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Table 3. Configuration of SBTI dataset.

STI
Dataset

SBTI Dataset

Maximum Camera Rotation Speed (◦/s)

6.25 9.375 12.5 25 50 75 100

[1] [1-1] [1-2] [1-3] [1-4] [1-5] [1-6] [1-7]
[2] [2-1] [2-2] [2-3] [2-4] [2-5] [2-6] [2-7]
[3] [3-1] [3-2] [3-3] [3-4] [3-5] [3-6] [3-7]
[4] [4-1] [4-2] [4-3] [4-4] [4-5] [4-6] [4-7]

4.2. Construction of Real Blurry Thermal Image Dataset

We collected an additional dataset containing real motion blur for evaluating our
method in a real-world environment. The process for acquiring real blurry images is as
same as the one for collecting sharp images as presented in Section 4, except that there
is no limitation in camera rotation speed for the real effect of a blur. Another difference
is that, since we use only one camera, we cannot acquire sharp images at the same time
when collecting real blurry images. Specifically, the camera rotation speed varies from
30◦/s to 100◦/s. In addition, since infrared images are greatly affected by environmental
temperature change, we collected daytime and nighttime images, respectively.

4.3. Our Deblurring Procedure

We evaluate the accuracy of our proposed blur kernel rendering result through the
deblurring procedure. Therefore, we selected the deconvolution algorithm [65] which can
be combined with blur kernel rendering result to construct a non-blind deblurring method.
Actually, we used the public code version of [66] implementing [65]. In our experiment, we
set parameters as follows: λ = 0.001∼0.003, α = 1.

4.4. Evaluation Environment

Blur kernel rendering and non-blind deblurring are implemented in MATLAB. NVIDIA
GeForce GTX 1080 Ti GPU with 11 GB memory and Intel core i7-1065 G7@1.3G HZ with
16 GB memory have been adopted.

5. Experimental Results

Our experimental results are compared to the state-of-the-art deblurring methods,
including the single image deblurring methods [33,35,36] and the deep learning-based
video deblurring method [34]. We conducted both qualitative and quantitative comparisons
on our SBTI dataset. Additionally, we used the real blurry thermal images to qualitatively
evaluate the deblurring performance in actual situations.

5.1. Performance Evaluation on SBTI Dataset

The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [67] index
were leveraged as the metrics of quantitative evaluation. The experimental results are
summarized in Tables 4–7 as average values. Relatively higher PSNR and SSIM have been
observed from [1-1] to [1-7] compared to the others in the SBTI dataset. As can be observed
in the Tables 4–7, PSNR and SSIM tend to gradually decrease when the blur size increases.
In most cases, our proposed method produces relatively higher PSNR and SSIM values
compared to the state-of-the-art methods.
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Table 4. Comparison of quantitative deblurring performance on the SBTI dataset [1-1]–[1-7].

SBTI
Dataset

SRN [33] SIUN [36] DeblurGAN.v2 [35] CDVD [34] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[1-1] 40.33 0.9881 41.03 0.9914 41.30 0.9910 39.62 0.9905 41.57 0.9926
[1-2] 37.96 0.9849 38.45 0.9889 38.37 0.9872 37.09 0.9874 38.79 0.9906
[1-3] 35.94 0.9815 36.35 0.9858 36.13 0.9835 35.05 0.9840 36.42 0.9880
[1-4] 30.97 0.9675 31.11 0.9714 30.91 0.9695 30.36 0.9699 31.06 0.9756
[1-5] 26.69 0.9419 26.74 0.9476 26.64 0.9456 26.32 0.9453 26.65 0.9526
[1-6] 24.59 0.9221 24.67 0.9298 24.57 0.9273 24.34 0.9271 24.52 0.9337
[1-7] 23.21 0.9049 23.33 0.9141 23.22 0.9118 23.07 0.9130 23.11 0.9165

Average 31.38 0.9558 31.67 0.9613 31.59 0.9594 30.84 0.9596 31.73 0.9642

Table 5. Comparison of quantitative deblurring performance on the SBTI dataset [2-1]–[2-7].

SBTI
Dataset

SRN [33] SIUN [36] DeblurGAN.v2 [35] CDVD [34] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[2-1] 28.66 0.8573 29.74 0.9026 32.25 0.9458 28.12 0.8358 32.98 0.9600
[2-2] 27.06 0.8247 27.97 0.8719 30.06 0.9221 26.54 0.8076 30.93 0.9504
[2-3] 26.02 0.8048 26.72 0.8455 28.69 0.9014 25.57 0.7891 29.55 0.9396
[2-4] 23.82 0.7603 24.32 0.7805 25.81 0.8405 24.04 0.7679 26.38 0.9034
[2-5] 21.78 0.7128 22.54 0.7421 23.36 0.7738 22.74 0.7674 23.49 0.8492
[2-6] 20.29 0.6743 21.01 0.7063 21.74 0.7262 21.53 0.7450 21.86 0.8104
[2-7] 19.11 0.6487 19.66 0.6776 20.28 0.6902 20.47 0.7204 20.61 0.7757

Average 23.82 0.7547 24.56 0.7895 26.03 0.8286 24.14 0.7762 26.54 0.8841

Table 6. Comparison of quantitative deblurring performance on the SBTI dataset [3-1]–[3-7].

SBTI
Dataset

SRN [33] SIUN [36] DeblurGAN.v2 [35] CDVD [34] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[3-1] 29.20 0.8606 29.64 0.8862 35.69 0.9603 34.034 0.9240 36.556 0.9600
[3-2] 27.93 0.8305 28.66 0.8597 33.79 0.9368 32.43 0.9081 35.02 0.9525
[3-3] 27.05 0.8053 27.92 0.8394 32.66 0.9201 31.45 0.8965 33.95 0.9452
[3-4] 25.34 0.7556 26.25 0.7961 30.10 0.8772 29.21 0.8657 31.10 0.9177
[3-5] 24.29 0.7348 24.90 0.7656 27.27 0.8237 26.72 0.8263 28.00 0.8786
[3-6] 23.38 0.7196 23.90 0.7435 25.52 0.7882 25.14 0.7982 25.93 0.8427
[3-7] 22.48 0.7034 22.94 0.7215 24.21 0.7605 23.82 0.7726 24.53 0.8128

Average 25.67 0.7728 26.32 0.8017 29.89 0.8667 28.97 0.8559 30.73 0.9013

Table 7. Comparison of quantitative deblurring performance on the SBTI dataset [4-1]–[4-7].

SBTI
Dataset

SRN [33] SIUN [36] DeblurGAN.v2 [35] CDVD [34] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

[4-1] 30.37 0.8925 31.42 0.9271 33.63 0.9552 32.19 0.9258 34.05 0.9640
[4-2] 29.02 0.8742 29.78 0.9066 31.78 0.9373 30.77 0.9177 32.34 0.9589
[4-3] 28.14 0.8620 28.71 0.8900 30.67 0.9262 29.86 0.9110 31.22 0.9532
[4-4] 25.98 0.8294 26.40 0.8531 27.87 0.8923 27.44 0.8937 28.20 0.9312
[4-5] 23.88 0.7947 24.22 0.8137 25.19 0.8506 24.81 0.8636 25.02 0.8956
[4-6] 22.53 0.7731 22.82 0.7869 23.53 0.8216 23.22 0.8390 23.41 0.8704
[4-7] 21.52 0.7567 21.74 0.7662 22.33 0.8022 22.06 0.8175 22.30 0.8460

Average 25.92 0.8261 26.44 0.8491 27.86 0.8836 27.19 0.8812 28.08 0.9170

The qualitative comparing results are shown in Figures 11–14. Figure 11 shows the
deblurring results on the 54th frame of the SBTI dataset [1-4]. The main subjects of the
SBTI dataset [1-4] consist of a cross pattern and a 4-bar pattern. Unlike the other methods,
which partially removed the blur effect, our proposed method dramatically recover the
blur effect. The shape of the small spot at the edge of the cross-pattern reveals the signal
attenuation characteristics of the blurry thermal image. This signal attenuation effect makes
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the small subject disappear in the blurry image. As shown in other algorithm results, it
is not easy to restore the blurry image with an extreme loss of signal. In this case, the
size of the blur kernel rendered by our proposed method is 20 by 20. Figure 12 shows
the deblurring results on the 49th frame of the SBTI dataset [2-5], and the main subject is
a group of vehicles. In this blurry image, it is difficult to recognize either the number of
vehicles or their shapes. The result of SRN shows that it is almost impossible to recognize a
vehicle in the deblurred image. Further, the other methods still fail to restore the shapes of
vehicles due to the signal attenuation effect. In this dataset, the signal attenuation effect
makes the subject and the background indistinguishable. In contrast, our result shows high
restoration performance enough to recognize the number of vehicles and distinguish their
external shapes. In this case, the size of the blur kernel rendered by our proposed method
is 54 by 54. Figure 13 shows the deblurring results on the 51th frame of the SBTI dataset
[3-4]. The main subject is people. Our method most clearly restores the shape of human
arms and legs than other competing methods. Further, SRN and CDVD methods show
distorted restoration results regarding the tree’s shape in the promenade center. In the
case, the size of the blur kernel rendered by our proposed method is 24 by 24. Figure 14
shows the deblurring results on the 91th frame of the SBTI dataset. It is very difficult to
recognize the number of subjects or their shapes without referring to the ground truth
image. Our proposed method successfully restores the blurry image so that the details
are sufficiently revealed, such as the number of people and the shapes of vehicles. Most
people and vehicles’ edges disappeared in this blurry image due to the signal attenuation
effect. It is challenging to predict the blur kernel in an image where the subject and the
background cannot be distinguished. It is also difficult to show good restoration results
without learnable knowledge, even using a deep learning-based approach. In the case, the
size of the blur kernel rendered by our proposed method is 107 by 107.

(a) Dataset[1-4]52th image

(b) PSNR/SSIM: 28.96/0.9703 (c) PSNR/SSIM: 28.90/0.9653 (d) PSNR/SSIM: 29.01/0.9688

(e) PSNR/SSIM: 28.27/0.9662

Rendered 
blur kernel

(f) PSNR/SSIM: 28.28/0.9737 (g) Ground truth image

Figure 11. Qualitative comparison of deblurring results on the SBTI dataset [1-4]54th. (a) Synthetic
blurry thermal image, (b) SRN [33], (c) SIUN [36], (d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours,
(g) GT.
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(a) Dataset[2-5]49th image

(b) PSNR/SSIM: 22.40/0.7791 (c) PSNR/SSIM: 21.79/0.7401 (d) PSNR/SSIM: 23.02/0.8191

(e) PSNR/SSIM: 22.98/0.8509

Rendered 
blur kernel

(f) PSNR/SSIM: 22.98/0.9015 (g) Ground truth image

Figure 12. Qualitative comparison of deblurring results on the SBTI dataset [2-5]49th. (a) Synthetic
blurry thermal image, (b) SRN [33], (c) SIUN [36], (d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours,
(g) GT.

(a) Dataset[3-4]51th image

(b) PSNR/SSIM: 26.23/0.8058 (c) PSNR/SSIM: 24.72/0.7374 (d) PSNR/SSIM: 29.45/0.8884

(e) PSNR/SSIM: 29.30/0.8978

Rendered 
blur kernel

(f) PSNR/SSIM: 30.61/0.9408 (g) Ground truth image

Figure 13. Qualitative comparison of deblurring results on the SBTI dataset [3-4]51th. (a) Synthetic
blurry thermal images, (b) SRN [33] (c) SIUN [36], (d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours,
(g) GT.
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(a) Dataset[4-4]91th image

(b) PSNR/SSIM: 22.62/0.7937 (c) PSNR/SSIM: 22.49/0.7910 (d) PSNR/SSIM: 22.75/0.8053

(e) PSNR/SSIM: 22.56/0.8357

Rendered 
blur kernel

(f) PSNR/SSIM: 22.60/0.8723 (g) Ground truth image

Figure 14. Qualitative comparison of deblurring results on the SBTI dataset [4-4]91th. (a) Synthetic
blurry thermal image, (b) SRN [33], (c) SIUN [36], (d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours,
(g) GT.

5.2. Performance Evaluation on Real Blurry Thermal Images

Furthermore, we conduct a qualitative comparison between our proposed method
and other methods on real blurry images. Since the real blurry images cannot have the
supplementary sharp images as ground truth, only qualitative comparisons are performed.
Figures 15 and 16 show the blurry thermal images of building, construction equipment
and people, collected when the camera rotation speed has been about 30◦/s. Even though
the blur effect is low in these images, the competing algorithm results show a residual
blur effect in their restoration images. In contrast, our proposed method successfully
recovers blurry images, so the shape of the subject is distinguished well. Figures 17 and 18
show the blurry thermal images of vehicles, buildings, and people, collected while the
camera rotation speed has been about 40◦/s. Because of the effect of a motion blur, we
can barely know the shape of the subject in the real blurry images. As can be seen in
Figures 17c and 18e, the shape of a person still has the blur effect in the restoration image.
On the other hand, our proposed method shows the restoration result that has the fully
recognizable shape of the person’s arms and legs and contains the details of the vehicle’s
wheels. Figures 19 and 20 depict the results of images acquired when the camera rotation
speed has been about 80◦/s. Because of the large level of blur effect, it is impossible to
recognize the shape or number of any subject. Although the competing methods reduced
the blur effect, their restoration images are not enough to recognize the details of a subject.
On the other hand, our proposed method recovers the details of subjects better than the
competing methods. In Figure 21, the blurry image was obtained while the camera rotation
speed has been about 100◦/s. The blur effect had been so huge that the contour or presence
of a subject is barely recognizable. However, our method remarkably restores the shape of
a person, and all competing methods failed. Figure 22 is the image data collected at night,
when the camera rotation speed has been 40◦/s. Similar to the above results, our method
restores the shape of a person, while the competing methods do not.
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(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 15. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 31◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 16. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 39◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.
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(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 17. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 43◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 18. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 44◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.
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(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 19. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 84◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 20. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 85◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.
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(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 21. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 100◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

(a) (b) (c)

(d) (e)

Rendered 
blur kernel

(f)

Figure 22. Qualitative comparison of motion deblurring results on the real blurry thermal image.
(a) Real blurry thermal image acquired with a camera rotating at 40◦/s, (b) SRN [33], (c) SIUN [36],
(d) DeblurGAN.v2 [35], (e) CDVD [34], (f) Ours.

Extensive experimental results show that our proposed method outperforms other
methods. The reason is that our approach is able to estimate more accurate blur kernels
using a physical model and inertial sensor. There are two explanations regarding how
our method can render the exact blur kernel. Firstly, our method leverages the physical
mechanism of a thermal detector for accurate blur kernel rendering. As shown in Figure 2,
the pixel structure of a thermal detector loses its stored thermal energy over time which
appears as the effect of attenuation of an image signal. This attenuation effect causes motion
blur similar to a comet tail shape. As shown in Figures 14 and 17–21, when a small-sized
subject has its temperature similar to the background, the subject is barely distinguished
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from the background due to its attenuation effect of motion blur. It is extremely challenging
to obtain a blur kernel from an intensely blurred image where the subject has almost
disappeared. Further, even with a deep learning-based method, high performance is hardly
achieved without learnable information. In contrast, our method shows high deblurring
performance even for vanishing subjects with a large amount of motion blur. For this
reason, our proposed method, which is designed considering the characteristics of the
thermal detector, is able to show high feasibility compared to other methods in the thermal
image domain. Secondly, accurate blur kernel rendering is possible since our proposed
method is free from the synchronization problem between the gyroscope data length and
the image sensor exposure time. In general, to combine photon detector and gyroscope data,
the synchronization problem between photon detector exposure time and gyroscope sensor
data length must be resolved. A photon detector adjusts the exposure time in real-time
according to the amount of ambient light in a scene. The exposure time range is generally
set from a few microseconds to several seconds. Due to the dynamic change in exposure
time, the length of gyroscope data also needs to be changed simultaneously. In contrast, in
a thermal detector, the concept corresponding to the exposure time of the photon detector
is the thermal time constant. Since the thermal time constant is a fixed value determined
when a thermal detector is fabricated, the length of gyroscope data used for blur kernel
rendering is not changed. Therefore, a thermal detector combined with a gyroscope is more
feasible to render the accurate blur kernel.

6. Conclusions

In this paper, we observed that a thermal detector and a photon detector have different
inherent characteristics, which accordingly cause different motion blur effects. Based on
this observation, we have analyzed the physical and theoretical differences between a
thermal detector and a photon detector in order to precisely model a motion blur effect
in the thermal image. We suggest a novel motion blur model for thermal images by inter-
preting the physical mechanism of a thermal detector. The proposed motion blur model is
leveraged to enable blur kernel rendering to accurate using gyroscope sensor information.
We constructed the first blurry thermal image dataset that contains both synthetic blurred
images and sharp thermal images in the thermal image domain. Finally, extensive quali-
tative and quantitative experiments were conducted to show that our proposed method
outperforms the state-of-the-art methods.
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Abstract: Hyperspectral remote sensing has tremendous potential for monitoring land cover and
water bodies from the rich spatial and spectral information contained in the images. It is a time
and resource consuming task to obtain groundtruth data for these images by field sampling. A
semi-supervised method for labeling and classification of hyperspectral images is presented. The
unsupervised stage consists of image enhancement by feature extraction, followed by clustering for
labeling and generating the groundtruth image. The supervised stage for classification consists of
a preprocessing stage involving normalization, computation of principal components, and feature
extraction. An ensemble of machine learning models takes the extracted features and groundtruth
data from the unsupervised stage as input and a decision block then combines the output of the
machines to label the image based on majority voting. The ensemble of machine learning methods
includes support vector machines, gradient boosting, Gaussian classifier, and linear perceptron.
Overall, the gradient boosting method gives the best performance for supervised classification of
hyperspectral images. The presented ensemble method is useful for generating labeled data for
hyperspectral images that do not have groundtruth information. It gives an overall accuracy of
93.74% for the Jasper hyperspectral image, 100% accuracy for the HSI2 Lake Erie images, and 99.92%
for the classification of cyanobacteria or harmful algal blooms and surface scum. The method
distinguishes well between blue green algae and surface scum. The full pipeline ensemble method
for classifying Lake Erie images in a cloud server runs 24 times faster than a workstation.

Keywords: hyperspectral images; semi-supervised learning; groundtruth; labeling; feature extraction;
principal components analysis; normalization; image classification and reconstruction

1. Introduction

Hyperspectral imaging (HSI) provides a high density of spectral information in the
hundreds of bands of the imaged material. Most modern hyperspectral sensors also have a
high spatial resolution enabling the images to have a range of applications in agriculture,
ecosystem monitoring, astronomy, molecular biology, biomedical imaging, geosciences,
physics, and surveillance. Hyperspectral unmixing is the method of identifying the per-
centage of material or endmember contributions in each pixel, hence useful for material
identification or detection. There are linear and nonlinear methods for hyperspectral un-
mixing [1]. They can be used to gain preliminary knowledge on the site before embarking
on a field campaign. These images are particularly useful for informed decision-making on
a terrestrial or aquatic ecosystem.

Hyperspectral image classification requires preprocessing methods to reduce dimen-
sionality and requires algorithms to solve the issues of few labeled samples, and low spatial
resolution [2]. Traditionally, hyperspectral images have been classified using supervised,
semi-supervised, and unsupervised Machine Learning (ML) methods. HSI classification
is usually done after applying dimensionality reduction, feature extraction, and/or band
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subset selection. A review of the ranking, clustering, searching, sparsity, embedding, and
hybrid scheme-based methods for band selection are given in [3]. A review of non-negative
matrix factorization techniques and benchmark datasets for unmixing are presented in [4].
Low spatial rank tensor factorization methods are popular for unmixing hyperspectral im-
ages with mixed pixels [5]. ML approaches such as Random Forest (RF) and XGBoost have
been applied in precision agriculture for the estimation of biomass [6]. HSI are also used
for change detection in the ocean. A spatial–spectral attention network with PCA-based
features is used for change detection [7].

The challenging problems with HSI classification are the unlabeled pixels and the high
dimensionality of hyperspectral images. It is also expensive to assign labels to the pixels
from field sampling requiring human supervision. To address the problem of unlabeled
samples, ML algorithms have been developed which are described below. A graph-based
semisupervised learning or ensemble label propagation method using spectral–spatial
similarity measurements from a graph representation is proposed in [8]. Recently, Deep
Learning (DL) methods are being developed and used for HSI classification [9]. Autoen-
coders have been used for hyperspectral unmixing and extended to the classification of
HSI [10–12]. DL networks require a large number of labeled samples, which is overcome by
few shot learning from spectral–spatial features, and training and testing using a 3D CNN in
a metric space [13]. One of the disadvantages of using DL techniques is the computational
complexity and cost. ML techniques are promising, but require pre-processing and feature
extraction stages before training and validation. A local and global modeling approach
for pseudo labeling using Active Learning (AL) is proposed in [14] for HSI classification.
Tree-based approaches have gained attention in semi-supervised HSI classification. An
ensemble semi-supervised random forest method is used for adaptively labeling unlabeled
data and adding them to the training dataset [15]. AL and semi-supervised learning are
combined to improve the performance of random forest method for HSI classification
in [16]. The current ensemble classifiers and semi-supervised methods do not consider all
the samples without labeling. The novelty of our ensemble semi-supervised scheme takes
into account all the unlabeled samples in the HSI. Moreover, considering the computational
complexity of DL networks, we propose a scheme for improving the performance of ML
approach for HSI classification by image preprocessing using spectral textural and statisti-
cal feature extraction for image enhancement and semi-supervised ensemble labeling and
classification in the following way:

• Unlabeled samples are labeled without a pre-trained labeled model by extracting spec-
tral textural and statistical features and incorporating them in the image enhancement
stage.

• The textural energy and statistical features computed in the image enhancement stage
are input to a k-means clustering stage.

• The novel workflow consists of assigning labels to the unlabeled samples using spec-
tral textural and statistical information in the unsupervised stage, followed by the
application of an ensemble of four ML classifiers in the supervised stage, and a decision
block that selects the best classifier for the classification of the image.

We apply our ensemble semi-supervised ML scheme for labeling and classification
of hyperspectral images acquired over water bodies with Harmful Algal Blooms (HABs).
HABs occur in fresh, marine (salt), and brackish (mixture of salt and fresh) water bodies
around the world. They are caused by noxious and toxic phytoplankton, cyanobacteria,
benthic algae, and microalgae. They are also produced by the overabundance of nutrients
such as nitrates, ammonia, urea, and phosphates in the water. These nutrients runoff
into the water from agriculture, fertilizers, and urban activity. The HABs lower oxygen
levels in the water causing harm to organisms, animals, the environment, and the economy.
The bloom lifespan lasts as long as there are favorable conditions but typically ranges
from a few days to many months. HABs have been increasing in size and frequency
worldwide, and it is caused by possible global climate change. Hence, HAB monitoring
is key to the management of the health and utility of waterbodies. NOAA has used

205



Sensors 2022, 22, 1623

hyperspectral sensors to detect HABs in Lake Erie, one of the Great Lakes that border the
U.S. and Canada. The hyperspectral camera collects information on the location, size, the
concentration of the blooms, and types of algae [17]. The NASA Glenn Research Center
(GRC) has developed an in-house hyperspectral camera, the airborne HSI2 that operates in
the wavelength of 400 to 900 nm useful for HAB identification [18]. It can collect data at
a high spatial resolution of 1 m, with the advantage of on-demand airborne flight paths
not affected by cloud cover [19]. The HSI2 camera images have been used for assessing
spatial and temporal variability of blue-green algae, chlorophyll, and temperature [20]. The
airborne imagery serves as a complement to satellite-based measurements. HAB detection
has been done using varimax-rotated principal components to isolate noise, extracting
spectral components, and spatial patterns [21]. Satellite imagery from Sentinel-2A has
been used for retrieval of chlorophyll-a concentration using empirical algorithms applied
to the image bands, and an ensemble method. An ensemble is a set of base estimators
that can be combined to make new predictions [22]. Moreover, Sentinel-2A images have
been used for the estimation of chlorophyll-a concentration from regionally and locally
adaptive models. Several empirical models were evaluated and found that the single
global model constructed by the top-performing empirical algorithm performed best in
estimating Chlorophyll-a concentration from both the multispectral and hyperspectral
airborne images [23].

In this paper, we present a semi-supervised approach for labeling and classification of
HSI that combines the best classifiers to provide optimal classification results. The rest of
the paper is organized as follows. Section 2 presents an overview of the methodology and
the algorithms used for preprocessing, feature extraction, clustering, and classification. It
presents the ensemble ML models: (1) for labeling HSI in the absence of groundtruth data,
which requires a preliminary clustering procedure, and (2) labeling and classification of
HSI with groundtruth data. Section 3 presents results, while Section 4 discusses the results
and compares them with those of state-of-the-art methods. The limitations and future work
are presented here. The conclusions are provided in Section 5.

2. Materials and Methods

This section describes the images, and the methods used for preprocessing, labeling,
and classification of the hyperspectral images. Two types of HSI are used: ones without
groundtruth data and another with groundtruth data. The ones without groundtruth data
are from airborne HSI sensors flown by NASA Glenn Research Center (GRC).

The processing of hyperspectral images involves calibration of the images in the
laboratory and georeferencing of the data in flight. The calibration in the laboratory utilizes
a known National Institute of Standards and Technology (NIST) calibrated radiance source
to convert image intensity counts to radiance units. The calibration also utilizes a HgAr
light source to convert the spatial pixel axis into known wavelength units. Additionally,
in-flight O2 absorption lines fine-tune these wavelength calibrations to negate the effects of
temperature and pressure differences. In-flight measurements of latitude, longitude, and
attitude allow for georeferencing of the images. Figure 1 shows the HSI2 sensor installed
on the NASA Twin Otter aircraft.

We have used two HSI2 camera images from the Ohio Supercomputer Center (OSC)
and one image developed by GRC for HAB monitoring in near real-time in Lake Erie [19].
The two HSI2 images are one-meter resolution with 51 bands from 400 to 900 nanometers
of size 5000 rows and 495 columns, and the CyanoHAB hyperspectral image has 170 bands
from 400 to 900 nm with a spectral resolution of 2.5 nm, also with a spatial resolution of 1 m.
Figure 2 shows the block diagram for the proposed semi-supervised classification scheme.
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Figure 1. HSI2 installed on the NASA Twin Otter aircraft.

Figure 2. Block diagram for the semi-supervised hyperspectral image classification framework. The
numbers on the arrows from top to bottom indicate the 3 types of scaling. The blue arrows represent
the input and output for each stage, and the stages are represented by the blocks. The red arrow is a
zoom into the corresponding stage showing what happens in that stage in detail.

The proposed semi-supervised HSI classification workflow is illustrated in Figure 2.
The workflow has seven stages. The HSI2 images have NaN entries for some pixel data
points. The sunlight reflects off the water causing imager saturation by glare or speckle.
Hence, NaN is inserted at these data locations. The first stage corresponds to the input
and is the hyperspectral image, the image is read and is processed using a data frame
structure and the NaN values are replaced by the mean of the five neighborhood pixels.
After this filtering process, the enhancement stage has two sub-processes 2.1 and 2.2 (shown
in Figure 2). In Section 2.1 relevant features are extracted using the stacked 51 bands of
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the image using the first-two statistical moments (mean, standard deviation) and texture
information as an energy feature. These features are described below:

ξ =
N1 N2

∑
n=1

|x[n]|
2

(1)

is the energy. N1 and N2 are the batch size [24]. The mean is computed as:

μ =
1

N1N2

N2

∑
j=1

N1

∑
i=1

x[i][j] (2)

and the standard deviation feature is computed as:

σ =

√√√√ 1
N1N2

N2

∑
j=1

N1

∑
i=1

(x[i][j]− μ)2 (3)

In the 2.2 sub-process, the enhancement vectors are stacked. The 3 arrows indicate the
3 features which are then stacked into one data frame. In the 2.2 sub-process, the stacked
vectors are then input to the unsupervised stage. In the 3.1 sub-process, the label assign-
ment is made. The data preparation for this stage requires a 1-D tensor representation of the
image. The experiment consists of various trials of cluster numbers, k = 2 to 5, to result in
an output image label representation from the original image after the enhancement stage.
Once the best label assignment for the Lake Erie image is determined, we have the data and
the corresponding labels. Since the images do not have specific groundtruth data, the unsu-
pervised stage produces a label representation of the original image for the best number of
clusters. The next is stage 4 processing which includes 4 sub-processes. Sub-process 4.1 is
a data normalization process using three different kinds of normalization: normalization
scaling (ns), maximum scaling (ms), and scaling (sc). After the data normalization process,
sub-process 4.2 is PCA decomposition and selection of 3, 5, or 7 bands. In sub-process 4.3,
the feature vectors ft from the enhancement stage are computed. In sub-process 4.4, the
resulting vectors are stacked into an array Y and are concatenated with the labels provided
by the unsupervised stage. Stacked vectors and the labels are then input to the process 5,
supervised Machine Learning (ML) stage.

Stacked vectors Y and the labels go through a batch selection process before being
input to the supervised ML stage. The Supervised ML stage has four machine learning
techniques in an ensemble configuration: Support Vector Machines (SVM), Gradient Boost
Classifier (GB), Gaussian Classifier, and a Linear Perceptron (LP) [25]. SVMs represent
the training samples as points in p-dimensional space, mapped so that the samples of the
data classes are separated by a (p-1) dimensional hyperplane. The hyperplane is chosen
such that it maximizes the margin on either side of the hyperplane between two classes.
Hence, SVM performs binary classification but can be extended to multi-class problems.
Gradient boost classifiers combine many weak learning models to create a strong predictive
model. It minimizes a loss function by iteratively choosing a function that points towards
the negative gradient. A Gaussian classifier is a naïve Bayes classifier. It is a generative
approach that models the class posterior and input-class conditional distribution. The LP is
a linear feedforward network with an input and an output layer.

The stage 6 process is the decision block that decides the best classifier based on
the classification accuracy results obtained from testing the trained models. The final
classification stage 7 receives the decision block results and labels the HSI pixels to fixed
class labels. The classification stage results are also evaluated using three metrics. They are
the classification accuracy, F1-score, and the Structural Similarity Index Metric (SSIM). The
SSIM compares the reconstructed image with the labeled image and rates how good the
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reconstructed image from the classification is compared to groundtruth labeled image. The
SSIM is given by:

SSIM(x, y) =

(
2μxμy + C1

)(
2σxy + C2

)(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (4)

where x and y are two non-negative image signals, μx and μy are their means, and σx and
σy are their standard deviations, σxy the correlation, and C1 and C2 are constants [26,27].
The SSIM is widely used for the assessment of image quality and it satisfies the conditions
of symmetry, boundedness, and unique maximum.

We used Amazon Web Services (AWS) [28] to run the training models written in
Python for classification of the two HSI2 Lake Erie images. AWS hardware resource is an
EC2 instance of type R5 extra large which has six Virtual CPUs (VCPUs), and 32 GB RAM.
This particular instance provides optimized memory computing.

2.1. Workflow for Supervised Classification of Jasper Image

We have used the Jasper HSI, because it is similar to the Lake Erie image as it has
land cover and an inland water body. Figure 3 shows the Jasper image along with the
groundtruth. The Jasper image has 100 rows, 100 columns, and has 224 bands. Figure 4
shows the four endmember abundances for the materials present in the Jasper image. The
endmembers are road, soil, water, and tree. We did not consider the road class because of
an insufficient number of pixels for training. The available groundtruth has endmember
abundances for each of the pixels. In [29] random labeling of the HSI pixels is used for
creating labels. Here, we conduct two classification experiments by generating labels based
on groundtruth endmember abundances. For the first experiment, to perform a fixed
classification of each pixel to a particular class, we created three labels for each pixel from
the endmember abundances as strongly belong, weakly belong, and does not belong to
one of the three original groundtruth classes. If the fractional abundance is greater than 0.8,
then the pixel is labeled as strongly belonging to the class. If the fractional abundance is
less than 0.8, then the pixel weakly belongs to the class, and if the abundance is 0 the pixel
does not belong to the class. All the four machines are trained with training batches for the
three groundtruth classes and for the three labels for each of the three groundtruth classes
resulting in training of nine classes. We also conduct a second classification experiment
with two labels for pixels. The pixel is labeled as strongly belonging to the class if the
abundance is less than the groundtruth maximum value for the class and greater than
0.4. If the pixel value is greater than the minimum groundtruth value and less than 0.4,
it is labeled as not belonging to the class, resulting in the training of 6 classes. For both
the experiments, 10 fold cross-validation is done which results in the training of a total of
90, and 60 models for both experiments, respectively. We have effectively converted an
unmixing problem into a classification problem by assigning fixed labels to pixels with
fractional abundances by thresholding. The procedure for preprocessing and extraction of
batch sizes for training and testing are explained below.

 

Figure 3. Jasper HSI (a) original image, (b) Groundtruth abundances, (c) Groundtruth endmembers.

209



Sensors 2022, 22, 1623

 

Figure 4. Endmember abundances for the four endmembers for Jasper image.

Firstly, PCA is applied to the Jasper image, and three, five, and seven dominant PCA
bands are selected. The batch selection process consists of the random extraction of parts of
the image by class. The batches are divided into groups for training, testing, and left-over
data. Batch sizes for the training data are 820, 1000, and 1500 pixels. The data is split
into training data, testing data corresponding to the same selected batch size as training
data, and the remaining data not used for training or testing is used only for the image
reconstruction. This data is around 400 pixels. The training is done with less than 2% of
the pixels of Jasper HSI for each class. Figure 5 explains the batch size extraction process
for three PCA bands with min–max scaling. The experiment is repeated with max-scaling
and normalization. Finally, the batches are stacked for training the models. For two labels
(strongly belong, and does not belong), the training batch sizes are (6 × 820 pixels), where
6 corresponds to two batches for each of the three PCA bands. The six batches per class
are stacked together for training the models for all three classes. The testing batch sizes
are (9 × 820 pixels) where 9 corresponds to three batches for each of the three PCA bands
which are stacked together for testing for the three classes. There is a remaining 980 pixels
of left-over data which is used for image reconstruction. The experiment is repeated for
batch sizes of 1000 and 1500 pixels. For three labels (strongly belong, weakly belong, and
does not belong), the batch sizes are smaller: 300, 500, and 600 pixels. The training is done
on the features extracted from the batches.

The features are energy, mean, and standard deviation which are calculated on the
batches of pixels. The ML models are trained with the computed features. The ensemble
model for the training process for the three classes, trees, water, and soil, is shown in
Figure 6. The labeled testing pixels are then used to reconstruct the classified Jasper image
with color code for each class.
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Figure 5. Batch size selection process for the three PCA bands from the Jasper HSI.

Figure 6. Energy, mean, and variance features are calculated from the Jasper HSI training samples
and are input to the ML algorithms. The decision block selects the best machine for each class and
uses the selected machines to label the testing samples.

Pseudocode description of the algorithms for the image enhancement features block,
supervised ML block, and decision block are given below.

A. Pseudo code feature enhancement block

Input: Hyperspectral Image
Output: Stacked vector Enhancement
Begin:

compute the energy feature using Equation (1)
compute the mean using Equation (2)
compute the standard deviation using Equation (3)
concatenate the energy, mean and standard deviation in to a data frame

Return Stacked enhancement vector
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The enhancement features block is applied to obtain the spectral features representa-
tion. The input is the 1-D reshaped hyperspectral image vector placed as columns for each
of the bands, then the energy, mean, and standard deviation feature are extracted. Finally,
the data is stacked in to a data frame.

B. Pseudo code supervised machine learning block

Input: dataset train (data), label for dataset train (label), tolerance, kernel, depth, estimators
Output: Models
Begin: Initialize variables for accuracy, F1 score, confusion matrix for the models (metrics)
For 10-fold cross validation of the data

compute SVM Model using data, label, and tolerance
compute GB Model using data, label, estimators, and depth
compute LP Model using data, label, and tolerance
compute GC Model using data, label, and kernel
compute accuracy score for the four models
compute F1 score for the four models
compute confusion matrix score for the four models
save (SVM Model, GB Model, LP Model, GC Model)
append accuracy, F1-score, confusion matrix

Return Models, metrics
The unsupervised machine learning block proposed is composed of four machine

learning methods: SVM, GB, GC, LP. The models are trained using a 10-fold cross-validation
methodology. Then, the input of the machine learning blocks is the selected training data,
the respective labels, and the tuning parameters. The tuning parameters are configured for
each machine learning technique as follow:

SVM is set using a linear kernel, and hinge as a loss function and tolerance values
of 1 × 10−3. The Gradient Boosting parameter is the depth of the individual regression
estimator which is set to 10, the number of boosting stages is 100, and the learning rate for
each tree is 1.0. The LP classifier is set to tolerance or stopping criteria of 1 × 10−5. The
Gaussian classifier is set with the RBF kernel using L-BFGS quasi-Newton methods as an
optimization function.

C. Pseudo code decision block

Input: data_test (batch_size, features), label (batch_size), models
Output: Best classifiers
Begin: Initialize dictionary metrics variable (accuracy, F1 score, confusion matrix,

training data, predicted labels), maximum accuracy variable
For each folderModels

For each Model
load model
compute accuracy
compute F1 score
compute confusion matrix
append accuracy, F1 score, confusion matrix, model, and variables in

dictionary metrics
concatenate dictionary metrics in a pandas data frame

obtain the best model classifier using the accuracy criteria
Return best classifier
The above pseudocode procedure is for the principal blocks of the workflow in

Figures 2 and 6. The rest of the blocks that include preprocessing methods for scaling, and
dimensionality reduction using PCA are straightforward to compute.

3. Results

This section presents and discusses the results of applying the ensemble method for the
labeling, classification, and reconstruction of the HSI2 images and Jasper hyperspectral images.
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3.1. Classification and Reconstruction of HSI2 Images

The semi-supervised classification pipeline is applied to two HSI2 images over Lake
Erie. The HSI2 images (Image 1 and Image 2) are shown in Figure 7. Image 1 is of size
3270 × 960, where 3270 is the number of lines, and 960 is the number of samples per line.
Image 2 in Figure 7b is of size 4444 × 960, where 4444 is the number of lines, and 960 is the
number of samples per line. The semi-supervised classification scheme shown in Figure 2
is applied to the images shown in Figure 7a,b.

  
(a) (b) 

Figure 7. HSI2 Hyperspectral images over Lake Erie (a) Image 1 (white—clouds, blue—water,
yellow—land), and (b) Image 2 (white—clouds, green—water, red—land).

The unsupervised stage for segmenting the image into clusters is applied for a choice
of 2, 3, 4, and 5 clusters. This stage performs k-means clustering after image enhancement
using the standard deviation and energy features. This combination and 3 numbers of
clusters give the best results for labeling and obtaining the groundtruth image. Following
unsupervised classification which identifies the best number of clusters image preprocess-
ing is performed. PCA is used for selecting the best number of a subset of bands. There are
51 bands in the HSI2. The covariance matrix of the image and its Eigenvalues are computed.
Figure 8 shows the percentage of contribution of the first ten bands to the Eigenvalues of
the covariance matrix of the image. It can be seen that all the energy is compacted in the
first three bands of the image.

Figure 8. Scree plot of the contribution of each principal component bands for the two hyperspectral
images in Figure 7 (Left Image 1 and Right Image 2).

Following preprocessing, extraction of the three mean, standard deviation, and energy
features is performed. For supervised classification, all the three features are used. The
features are stacked for training the four ML methods. The Ensemble of the four machines
is applied to HSI2 images 1 and 2 in Figure 7. The decision block loads all the models of the
10 fold cross-validation process, and classifies the images with all the models, and choose
the best model using the classification accuracy as the selection metric.
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Tables 1 and 2 shows the accuracy and F1 score obtained from 10-fold cross validation
for three clusters with 3, 5, and 7 PCA bands, using the three scaling methods of standard-
ization normalization (ns), max scaling (ms), and min–max scaling(sc) for the HSI2 Image 1
in Figure 7a, and HSI2 Image 2 in Figure 7b, respectively. The three clusters are land, water,
and clouds. Tables 3 and 4 show the accuracy and F1 score obtained from 10-fold cross
validation for three clusters with 3, 5, and 7 PCA bands, using the three scaling methods of
normalization scaling, min–max scaling, and max scaling for the HSI2 Image 2 in Figure 7b.

Table 1. The classification accuracy for HSI2 image 1 using PCA 3, 5, and 7 bands and the different
scaling and normalization methods using the four machines for a 1500 pixels batch size.

Accuracy

SVM LP GB GC

PCA-3 ns 68.46 56.88 100.00 87.77
PCA-3 ms 72.67 56.88 100.00 99.94
PCA-3 sc 72.67 56.88 100.00 99.90

PCA-5 ns 63.80 56.88 99.65 81.63
PCA-5 ms 58.55 56.88 99.97 98.87
PCA-5 sc 58.55 56.88 99.93 97.77

PCA-7 ns 58.75 56.88 98.95 79.13
PCA-7 ms 58.07 56.88 99.92 97.26
PCA-7 sc 58.07 56.88 99.97 97.26

Table 2. The F1 score for classification of HSI2 image 1 using PCA 3, 5, and 7 bands and the different
scaling and normalization methods using the four machines.

F1-Score

SVM LP GB GC

PCA-3 ns 61.80 41.22 100.00 89.75
PCA-3 ms 70.43 41.22 100.00 100.00
PCA-3 sc 70.43 41.22 100.00 99.92

PCA-5 ns 54.97 41.22 99.79 83.41
PCA-5 ms 44.46 41.22 99.90 90.06
PCA-5 sc 44.46 41.22 99.95 85.85

PCA-7 ns 43.64 41.22 99.21 79.53
PCA-7 ms 43.64 41.22 99.95 88.56
PCA-7 sc 43.64 41.22 99.88 87.96

Table 3. The classification accuracy for HSI2 image 2 using PCA 3, 5, and 7 bands and the different
scaling and normalization methods using the four machines for a 1500 pixels batch size.

Accuracy

SVM LP GB GC

PCA-3 ns 83.97 52.88 100 98.46
PCA-3 ms 53.54 53.54 100 94.94
PCA-3 sc 53.54 53.54 100 93.76

PCA-5 ns 64.81 52.88 99.81 94.74
PCA-5 ms 52.88 52.88 98.19 88.75
PCA-5 sc 52.88 52.88 98.64 88.16

PCA-7 ns 56.58 52.88 86.47 79.98
PCA-7 ms 52.88 52.88 86.88 79.7
PCA-7 sc 52.88 52.88 87.08 79.95
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Table 4. The F1 score for classification of HSI2 image 2 using PCA 3, 5, and 7 bands and the different
scaling and normalization methods using the four machines.

F1-Score

SVM LP GB GC

PCA-3 ns 79.12 36.58 100 98.46
PCA-3 ms 48.25 48.25 100 94.91
PCA-3 sc 48.25 48.25 100 93.78

PCA-5 ns 61.17 36.58 99.81 94.73
PCA-5 ms 36.58 36.58 98.18 88.78
PCA-5 sc 36.58 36.58 98.63 88.19

PCA-7 ns 52.09 36.58 86.22 79.8
PCA-7 ms 36.58 36.58 86.33 80.23
PCA-7 sc 36.58 36.58 86.57 80.53

The models are trained with the extracted features for a batch size of 1500 for HSI2
image 1 and image 2 for three classes. For both images, the best batch size is found to be
1500 pixels compared to 1000 pixels batch size. The trained models are then used to classify
the images into three classes. The classified images are reconstructed. The best accuracy
is obtained with the GB model and 3 PCA bands for both images. The reconstructed
labeled image and reconstructed classified image for HSI2 image 1 are shown in Figure 9a,b,
respectively. The SSIM between the labeled image and the reconstructed image is 0.6743.

  
(a) (b) 

Figure 9. (a) HSI2 Image 1 with labels for 3 classes using the unsupervised stage (k-means clustering
method), (b) Reconstructed image from classified samples using the supervised stage.

Figure 10 shows the confusion matrices for the reconstruction of HSI2 Image 1 using
3 PCA bands with the three types of scaling methods. All of the scaling methods give 100%
accuracy using GB classifier, and second best classifier is GC.

The labeled image and classified reconstructed image for HSI2 image 2 are shown in
Figure 11a,b, respectively. The classified image of HSI2 image 2 using 3 PCA bands and
maximum scaling (ms) gives the best similarity with the labeled image with the SSIM being
1.0. Figure 12 shows the confusion matrices for the reconstruction of HSI2 Image 2 using
3 PCA bands with the three types of scaling methods. Overall, the scaling and maximum
scaling methods give 100% accuracy, and the normalization scaling gives 99.95% accuracy.
For HSI image 1, the highest accuracies are obtained for using 3 PCA bands and maximum
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scaling, and for HSI image 2, the highest accuracies are obtained for using 3 PCA bands and
normalization scaling. The confusion matrices in Figures 10 and 12 have different number
of testing samples, as the HSI2 images 1 and 2 are of different size.

   

(a) (b) (c) 

Figure 10. Confusion matrices for classification of HSI2 Image 1 into 3 classes for a batch size of
1500 using 3 PCA bands with the three types of scaling methods (a) normalization scaling (ns),
(b) maximum scaling (ms), (c) scaling (sc). The three classes are indicated as W—water, C—clouds,
L—land.

  
(a) (b) 

Figure 11. (a) HIS2 Image 2 with labels for 3 classes using the unsupervised stage (k-means clustering
method), (b) Reconstructed image from classified samples using the supervised stage.

   
(a) (b) (c) 

Figure 12. Confusion matrices for classification of HSI2 Image 2 into 3 classes for a batch size of
1500 using 3 PCA bands with the three types of scaling methods (a) normalization scaling (ns),
(b) maximum scaling (ms), (c) scaling (sc).

216



Sensors 2022, 22, 1623

3.2. Classification of Cyanohab from Lake Erie Image

We use another HSI image shown in Figure 13 to show that the ensemble semi-
supervised scheme can identify blue green algae or cyanoHAB (cyanobacteria) from other
materials in the lake. This image was acquired using a different sensor than HSI2, the
data has a different format. The image is of size 5000 lines, with 496 samples per line.
We used ENVI to obtain the ROIs for the cyanobacteria and surface scum. This image
shows higher concentrations of cyanobacteria and also surface scum. A Region of Interest
(ROI) with a high concentration of cyanobacteria in the East side of the lake, highlighted
by a blue rectangle in Figure 13a is extracted. The ROI image is of size 3240 lines, with
311 samples per line. The ROI image is shown enlarged in Figure 13b. The image is stored
in ‘tif’ format in 170 bands and the proposed workflow shown in Figure 2 is applied, similar
to the classification of HSI2 images. The enhancement stage performs feature extraction
of the textural energy and statistical mean and standard deviation features. Then, the
vectors are stacked using a Pandas data frame structure. The next stage is the unsupervised
stage for label assignment in the image using a k-means clustering that takes as input the
stacked features vectors. The output of this block are the labels and data. The labeled
image with four clusters is shown in Figure 13c. A preprocessing stage is performed using
data normalization followed by feature extraction. The previous outputs are the inputs for
the supervised machine learning ensemble trained with a batch size of 1000 by 3 features
similar to the previous experiment on Lake Erie HSI2 images. After training, the decision
block decides the best of the four machines using majority voting, using which the final
classification and reconstructed image are obtained. The classified reconstructed image is
shown in Figure 13d.

    
(a) (b) (c) (d) 

Figure 13. (a) Hyperspectral image of Lake Erie with extracted ROI shown as blue rectangle,
(b) Zoomed ROI subimage, (c) Output image from unsupervised stage with four clusters, (d) Classi-
fied reconstructed image using 3 PCA bands and normalization scaling (Legends are the same as
image in (c)).

The classification accuracies using the supervised stage of the ensemble method for
the 3 scaling methods, and 3, 5, and 7 PCA bands are given in Table 5. As can be seen, the
three PCA bands result in higher accuracies using the Gradient Boosting classifier. The F1
shores are given in Table 6.

217



Sensors 2022, 22, 1623

Table 5. The classification accuracy for CyanoHAB HSI using PCA 3, 5, and 7 bands, with the three
types of scaling using the four machines for a 1000 pixels batch size.

Accuracy

SVM LP GB GC

PCA-3 ns 63.48 53.88 99.92 91.53
PCA-3PCA-3 ms 53.88 53.88 99.33 90.15

PCA-3 sc 53.71 53.88 98.53 83.73

PCA-5 ns 61.03 50.04 96.33 76.93
PCA-5PCA-5 ms 50.04 50.04 97.36 64.18

PCA-5 sc 49.89 50.04 97.08 74.11

PCA-7 ns 50.13 48.39 90.71 67.78
PCA-7PCA-7 ms 48.39 48.39 95.11 56.17

PCA-7 sc 48.81 48.39 91.25 62.66

Table 6. The F1 score for classification of CyanoHAB HSI using PCA 3, 5, and 7 bands with the three
types of scaling using the four machines.

F1-Score

SVM LP GB GC

PCA-3 ns 53.76 43.52 99.92 91.32
PCA-3PCA-3 ms 43.52 43.52 99.33 89.50

PCA-3 sc 43.38 43.52 98.54 83.25

PCA-5 ns 51.30 37.91 96.35 77.70
PCA-5PCA-5 ms 37.91 37.91 97.38 64.13

PCA-5 sc 37.80 37.91 97.10 73.01

PCA-7 ns 38.49 35.18 90.88 64.37
PCA-7PCA-7 ms 35.18 35.18 95.14 57.10

PCA-7 sc 40.19 35.18 91.60 63.39

The confusion matrices for the 4 classes are given in Figure 14. The classified recon-
structed image shown in Figure 13d has the same color legends as Figure 13c.

   
(a) (b) (c) 

Figure 14. The confusion matrices for 4 labels High Scum, High Cynanobacteria, Low Scum, and Low
Cyanobacteria pixels of the CyanoHAB image for three types of scaling- (a) normalization scaling
(ns), (b) maximum scaling (ms), and (c) scaling (sc).

3.3. Classification and Reconstruction of Jasper Image

Jasper HSI has 4 different materials with mixing in each pixel. We did not consider the
road class because of insufficient data for training. The three considered classes are trees,
water, and soil. The Jasper image pixels have been classified into subcategories: Belong
(B) and Not Belong (NB) and to three subcategories: Strong Belong (SB), Weak Belong
(WB), and Not Belong (NB) to give fixed labels to the groundtruth pixels with fractional
abundances. For two labels within the three classes of trees, water, and soil, 2× 2 confusion
matrices are obtained for each of the three classes, and for three labels within the three
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classes, 3 × 3 confusion matrices are obtained (shown in Figure 15) for each of the three
classes. For the two subcategories experiment, we have a total of 136 testing samples, and
for the three subcategories experiment, we have a total of 261 testing samples.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 15. The confusion matrices for 2 labels Not Belong (NB) and Belong (B) given to the (a) trees,
(b) water, and (c) soil pixels of the Jasper HSI in the top row. Bottom row shows the confusion
matrices for 3 labels Strong Belong (SB), Weak Belong (WB), and Not Belong (NB) given to the
(d) trees, (e) water and (f) soil pixels of the Jasper HSI.

We divided the data into batches of training and testing sizes and computed the
classification accuracies using 10-fold cross validation. Figure 16 shows the classified
images and the original groundtruth endmembers for each of the classes for classifying
with three labels per class.

Tables 7 and 8 show the accuracy and F1 score obtained from 10-fold cross validation
for three clusters with 3, 5, and 7 PCA bands, using the three scaling methods of standard-
ization normalization, min–max scaling, and maximum scaling for the Jasper HSI. The
structural similarity index measure (SSIM) between the original and reconstructed image
pixels is 1.0 for the tree, water, and soil classes. Best results are obtained with three PCA
bands and maximum scaling. The batch sizes for training and classification for three labels
per class are 300, 500, and 600. The best batch size is found to be 300 pixels.

Table 7. The classification accuracy for Jasper HSI using PCA 3, 5, and 7 bands, with maximum
scaling using the four machines for a 300 pixels batch size.

Accuracy

SVM LP GB GC

Tree 63.60 60.54 95.02 82.76
PCA-3Water 69.73 55.17 96.93 77.78

Soil 62.07 66.28 89.27 72.80

Tree 58.62 58.62 77.47 72.41
PCA-5Water 61.61 55.17 93.10 69.20

Soil 64.14 63.45 85.29 71.49

Tree 58.62 59.44 68.80 68.97
PCA-7Water 55.83 55.17 76.52 64.20

Soil 60.26 62.73 80.13 69.13
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 16. (a) Tree class reconstructed image with label 0 (blue) for pixels Not Belonging to tree class,
label 1(green) for Strong Belonging pixels to tree class, and label 2 (brown) for pixels Weakly Belonging
to tree class. (b) Water class reconstructed image with label 3 (blue) for pixels Not Belonging to
water class, label 4 (green) for Strong Belonging to water class, and label 5 (brown) for pixels Weakly
Belonging to water class, (c) Soil class reconstructed image with label 6 (blue) for pixels Not Belonging
to soil class, label 7 (green) for pixels Strongly Belonging to soil class, and label 8 (brown) for pixels
Weakly Belonging to Soil class, (d) Original groundtruth for tree class, (e) Original groundtruth for
water class, and (f) Original groundtruth image for soil class.

Table 8. The F1 score for classification of Jasper HSI using PCA 3, 5, and 7 bands with maximum
scaling using the four machines.

F1-Score

SVM LP GB GC

Tree 54.67 47.31 95.03 82.93
PCA-3Water 64.27 39.23 96.90 78.86

Soil 51.64 58.98 89.35 71.67

Tree 43.33 43.33 77.98 69.97
PCA-5Water 57.04 39.23 93.16 70.95

Soil 61.99 53.56 86.38 71.84

Tree 43.33 45.12 69.64 64.98
PCA-7Water 52.00 39.23 76.87 65.12

Soil 59.43 51.93 82.53 66.53

The Jasper image is also classified into two labels per pixel versus Not Belong and
Strong Belong by thresholding the fractional abundances as discussed in Section 2.1. The
batch sizes for training and classification for two labels per class are 820, 1000, and 1500.
The results of the reconstructed images for each endmember are shown in Figure 17. The
SSIM for these reconstructions is also 1.0 giving the highest similarity between original and
reconstructed images.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 17. (a) Tree class reconstructed image with label 0 (blue) for pixels Not Belonging to tree
class, label 1(brown) for pixels Belonging to tree class. (b) Water class reconstructed image with label
3 (blue) for pixels Not Belonging to water class, and label 4 (brown) for pixels Belonging to water
class, (c) Soil class reconstructed image with label 6 (blue) for pixels Not Belonging to soil class, and
label 7 (brown) for pixels Belonging to soil class, (d) Original groundtruth for tree class, (e) Original
groundtruth for water class, and (f) Original groundtruth image for soil class.

4. Discussion

4.1. Discussion of Ensemble Model Results for HSI2 Images of Lake Erie

The semi-supervised ensemble method pipeline is larger for Lake Erie images because
we do not have the labeled groundtruth data. The labeled data has to be created using
the unsupervised stage of the pipeline. Moreover, the image enhancement stage makes
use of all the 51 bands of the original image to compute the features that are input to the
unsupervised stage. The enhancement stage is important as it improves the labeling of
the original HSI dataset. Both images are labeled by the unsupervised stage into 3 classes:
clouds, land, and water. The supervised stage implements four ML models and the
output classified images are obtained after 10-fold cross validation. The best batch size is
1500 pixels stacked for the 3 features. The SSIM is 0.6743 for Lake Erie Image 1 while it
is 1.0 for image 2 which has more land cover than image 1. This is because of the higher
cloud cover in image 1. Optical remote sensing imagery has the problem of cloud cover
and thresholding methods are applied for their removal from hyperspectral imagery [30].
Onboard spectral–spatial method is proposed in [31] for cloud detection. A deep learning
neural network method is proposed for cloud detection in [32]. Our method can be used for
masking and filtering cloud cover pixels before classification of the image. The advantage
of our ensemble method is that the identification of cloud pixels is part of the labeling
process in the pipeline, which is followed by supervised classification using the ensemble
ML technique.

4.2. Discussion of Ensemble Model Results for CyanoHAB Image of Lake Erie

The spectral signature of pixels in the four clusters from the ROI image in Figure 13c
is shown in Figure 18. The bands 679 nm, 664 nm, and 709 nm, and the bands 667 nm
and 858 nm are used to calculate the Cyanobacteria Index (CI) and Surface Scum Index
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(SSI), respectively in [19]. As can be seen from the output of the unsupervised stage the
regions of High CyanoHAB, Low CyanoHAB, High Scum, and Low Scum are identified
correctly compared to the images obtained from the CI and SSI in [19]. The classification
accuracies for the supervised classification of CyanoHAB is 99.92%. Our classification
of High CyanoHAB, High Scum, and Low Scum are good, but the accuracy is low for
low cyanobacteria concentration. The classification of the low cyanobacteria class can be
improved by spectral feature extraction. Our semi-supervised ensemble scheme can be
used for the identification of cyanobacteria from hyperspectral images in an automatic
manner without human intervention and the need for labeled samples. Moreover, the CI
and SSI give a fractional index of the materials with one image per material. While our
classification pipeline gives fixed labels for each pixel which will be more useful for water
management as they know definitely which areas pertain to harmful cyanobacteria, and
which are safer for recreation and other activities.

Figure 18. Spectral signature profiles of the CyanoHAB found in the Lake Erie Hyperspectral image.

4.3. Discussion of Ensemble Model Results for Jasper HSI

For two subclasses by label, the classification results were compared for using three,
five, and seven PCA bands. The best classification performance was obtained with the
GB classifier, with three PCA bands giving an accuracy of 91.57%, and 100%, 100% for the
tree, water, and soil classes, respectively. For the tree and soil classes a better accuracy is
obtained with five PCA bands. On the other hand, for water classification, the performance
is better with seven PCA bands. For larger batch sizes, e.g., 1000 and 1500, lower number of
PCA bands such as three, gives an accuracy of 100% for the three classes with GB classifier.
For the three labels per class configuration of SB, WB, and NB, three PCA bands for a
batch size of 300 gives the best classification accuracy of 95.02%, 96.23%, and 89.27% for
the tree, water, and soil classes, respectively, using the GB classifier. For the water class,
we obtained better accuracy of 99.07% using a batch size of 600. The three labels per class
configuration also gives a SSIM of 1.0 for the reconstructed image compared to the original
groundtruth image. The best results for the Jasper image can be summarized as the use of
three PCA bands with min–max scaling and GB classifier. The GB is found to be the best
classifier as it is based on decision trees and it combines many weak learners to create a
strong predictive model.
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Jasper dataset has four endmembers’ contributions corresponding to tree, soil, water,
and road. A graph-based architecture is proposed in [33] to classify the endmember
contributions and, the authors compare the classification performance with ML techniques
such as SVM, KNN, LDAKNN, PCAKNN, KPCAKNN, LDASVM, PCASVM KPCASVM,
Convolution Neural Network (CNN), the abbreviation Linear Discriminant Analysis (LDA),
Kernel PCA (KPCA) in the machine learning methods means the preprocessing step before
the classification techniques. The accuracy measurements for Jasper image for classification
into the endmembers contribution by class is as follows: Soil Class obtained 100% accuracy
results using the PCAKNN method and SVM 99.905%, for water, and TLM-2 classifier
obtained 98.959%, Finally, for tree class, TLM-2 obtained 97.622%. From our experiments,
in the separate analysis for three classes using a labeled subset of non-belong (NB), strong-
belong (SB), and weak-belong (WB), and using the feature extracted from three PCA bands,
we obtained the following accuracies for three classes: trees 95.02%, water class 96.93%,
and soil class 89.27% for the GB classifier. On the other hand, for two classes using as a
label sub-set of non-belong (NB) and belong (B), we obtained 91.67%, 100.00%, and 100.00%
for the three classes of trees, water, and soil, respectively. We improve the results compared
to the method proposed in [33] for our two sub-labels approach. The best scaling method
for Jasper dataset was the min–max-scaling. Our ensemble method improves the water and
soil classification accuracies using 24.6% of the dataset for training and the remaining data
for testing. In [29], the authors propose a Kernelized Extreme Learning Machine (K-ELM)
using 2000 samples for training and the obtained accuracy score for a groundtruth labeling
in the re-testing procedure for road, soil, water, and trees as: 84.7%, 98.06%, 69.4%, and
71.1% by class which are lower than the accuracies obtained by our ensemble method, and
also requires a larger number of training samples.

The ensemble model can handle unlabeled samples. However, it needs sufficient
unlabeled samples for training the machines. Since there are four machines involved the
model is time-consuming. In the cloud server, the model takes 6 h 47 min for classifying
the Lake Erie images which are still faster than a DELL desktop computer which takes
about a week to classify one image. Currently, the model classifies pixels as belonging
to particular classes, the future work will involve developing the model to determine
fractional abundances of each pixel. Moreover, the future work will involve optimizing the
training to work with fewer unlabeled samples using other machines such as DL networks.

5. Conclusions

A semi-supervised ensemble method is presented for labeling pixels in an HSI and
classifying the image. The method performs well for airborne HSI over Lake Erie and
the Jasper benchmark HSI. In the absence of groundtruth, this method can be used as
a preprocessing step for labeling pixels and creating groundtruth data. Moreover, the
unsupervised stage effectively detects cloud pixels in the HSI and can be used for cloud
removal. The method is able to identify cyanobacteria and other water pollutants from HSI.
As with any ML method, sufficient training samples are necessary for adequate training of
the machines. The best normalization scheme is found to be maximum scaling, and the
number of PCA bands depends on the spectral bands and characteristics of the HSI. For
the Lake Erie images and Jasper image dataset, the best number of PCA bands is found to
be three. The best ML classifier is found to be the GB classifier for both the Lake Erie and
Jasper HSIs. A lower number of PCA bands implies a lesser running time of the models. In
the AWS cloud server, the models run in about 6 h and 47 min compared to a regular PC
which takes a week for training the models and classification.
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Abstract: The radar shadow effect prevents reliable target discrimination when a target lies in the
shadow region of another target. In this paper, we address this issue in the case of Frequency-
Modulated Continuous-Wave (FMCW) radars, which are low-cost and small-sized devices with an
increasing number of applications. We propose a novel method based on Convolutional Neural
Networks that take as input the spectrograms obtained after a Short-Time Fourier Transform (STFT)
analysis of the radar-received signal. The method discerns whether a target is or is not in the shadow
region of another target. The proposed method achieves test accuracy of 92% with a standard
deviation of 2.86%.

Keywords: radar; shadow effect; machine learning; CNN; transfer learning

1. Introduction

In recent years, the application of radars for target detection at short and medium
ranges has become ubiquitous [1]. The use of short-range Ultra-Wide-Band (UWB) and
Continuous-Wave (CW) radars is becoming an attractive solution for localization purposes.
Some radar systems applications include through-wall and through-fire detection [2,3],
the tracking of moving targets during security operations [4], the detection of trapped
people after an avalanche or earthquake [5], and the detection, tracking, and classification
of multiple targets passing through a security gate [6].

Up to now, the bi-static radars (with at least one transmitting antenna and at least one
receiving antenna) have resolved the detection and localization of a single stationary target,
yet the problem of multi-stationary target detection has been less addressed. The bi-static
radars are able to accurately detect targets that are closer to the radar antennas, whereas the
greater the distance of the targets from the radar, the lower the accuracy of the detection [7].
This is mainly attributed to two factors. Firstly, as the transmission distance increases, the
energy of the electromagnetic wave is attenuated; hence, the energy of electromagnetic
waves reaching farther targets is inevitably smaller than that reaching the closest target. Sec-
ondly, some targets, named recessive targets, can lie in the shadowed region of a dominant
target (i.e., the closest to the radar). Thus, because the highest energy of the electromagnetic
waves is reflected from the dominant target to the radar, the electromagnetic illumination of
the recessive targets could decrease to the point where they are not detected [8]. Therefore,
radar systems suffer from what is called the shadowing effect. This effect occurs when two
targets stand in front of the antenna, one in the shadowing region of the other. The radar is
usually not reliably capable of detecting the target that is standing in the shadow region [7].
This problem is common for most radar technologies, particularly, Ultra-Wide-Band (UWB)
radar [2] and Frequency-Modulated Continuous-Wave (FMCW) radar [9]. Unlike pulse
and Ultra-Wide-Band (UWB) radars, FMCW systems require lower sampling rates and
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lower peak-to-average power ratios to detect the distance and speed of multiple moving
targets [10,11]. Accordingly, the FMCW radar is a good solution for detection and localiza-
tion purposes but performs poorly whenever the shadow effect occurs. The shadow effect
is more relevant in low-cost radars. This is due to their lower resolution compared to the
high-end radars (higher range and velocity resolution) [12].

In the literature, the shadow effect has been targeted only by a few papers [2,7,8,13–19].
The authors proposed non-scalable solutions, thus requiring expert intervention for apply-
ing their methods in different environments. In this paper, we propose a novel solution
for solving the issue of target identification in the shadow region and we adopt Deep
Learning (DL) techniques. This method is quantitatively analyzed and results are presented
in Section 6. It benefits from the promising achievements presented in the literature of
applying AI techniques on post-processed radar data. These techniques can help to dynam-
ically learn suitable filters. This proposed solution is also scalable and does not need expert
intervention.

In general, DL methods have proven to be very efficient in real-world image classifica-
tion [20]. Moreover, DL techniques that use radar input are adopted for a wide range of
applications, such as target classification [21], object tracking [22], and gesture recognition
applications [23]. Among DL techniques, Convolutional Neural Networks (CNNs) are par-
ticularly suited for addressing image processing problems [24,25]. Our proposed method
uses a lightweight CNN model based on ImageNet (i.e., convolutional filters have been
pre-learned based on ImageNet data [26]) to target the discrimination of shadowed targets,
fine-tuning only the weights of the last layer (i.e., dense layer). The convolutional layers
perform the feature extraction without any prior knowledge of the user. To validate the
proposed solution, we address a two-class classification problem: one target vs. two targets.
In the latter, one target is in the shadowing region of the other. Four models have been
tested using the collected dataset. The best model in terms of accuracy is the MobileNet_V3
Large version; it achieves a generalization performance on the test set of 92.2%. The results
encourage us to extend the adoption of CNNs in applications such as identifying and
tracking more shadowed targets.

The rest of this paper is organized as follows. In Section 2, the state of the art of the
targeted research domain is extensively presented. In the following Section 3, the problem
statement is explained. Section 4 presents and discusses the methodology adopted to
identify and solve the shadowing effect. The experimental setup is considered in Section 5,
explaining the data acquisition process, time frequency analysis, and training process. The
experimental results and discussion are presented in Section 6. Finally, the conclusions and
some proposals for future work are provided in Section 7.

2. State of the Art

In [13], the shadow effect and its removal using PCL radar is investigated. A study
on PCL radar performance under the shadowing effect is presented, when a distant, weak
target echo is shadowed by strong echoes. In [7,8], the authors outlined the origin of
the shadow effect as the impact of the mutual shadowing of targets in a multiple-person
tracking scenario. This explanation is confirmed by the experimental measurements. Other
researchers investigated the shadowing effect for the purposes of person detection and
tracking with UWB radars [14]. The results confirm the existence of additional attenuation
within the shadow zones. In [15], a technique based on wavelet entropy is proposed
because of the significant difference in frequency ratio components between the echo signal
of the tested target and that of the masked target generated by dynamic clutter. Wavelet
entropy can accurately detect multiple human targets in the presence of dynamic clutter,
even if the distant human targets are in the shadow area of the closer target, as compared to
the reference techniques of adaptive line enhancement and energy accumulation. In [2], a
significant difference in frequency was detected between the echo signal of the human target
and that of noise in the shadowing region. The authors concluded that the target detection
using the power spectrum is not effective. Therefore, an auto-correlation algorithm is
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applied to the pre-processed signals in order to compute the wavelet entropy. Results show
that the proposed approach is capable of detecting a shadowed target. Other applications
have been addressed in the literature [16–19]. In general, none of the previous works have
presented a scalable solution for solving the shadowing effect. In fact, these solutions
require expert intervention for applying them in different environments.

Several works involving the use of FMCW radar have been reported in the literature.
In [23], the authors introduced a novel system for dynamic continuous hand gesture recog-
nition based on a Frequency-Modulated Continuous-Wave radar sensor. They employed a
recurrent 3D CNN to perform the classification of dynamic hand gestures and achieved a
recognition rate of 96%. In [27], the authors proposed a prototype of an FMCW radar sys-
tem for the classification of multiple targets passing through a road gate. The classification
covered four classes: pedestrians, motorcycles, cars, and trucks. It achieved accuracy of
88.4%. Many other applications have been tackled in the literature [9,28–35]. Most of the
systems presented in the aforementioned works suffer from the shadow effect. However,
none of them have proposed a solution.

Deep learning classification techniques for radar target classification have also been
adopted in the literature. The practical classification of a moving target system, based
on automotive radar and deep neural networks, is presented in [36]. The study presents
results for the classification of different classes of targets using automotive radar data
and different neural networks. In addition, a human–robot classification system based
on 25 GHz FMCW radar using micro-Doppler features was introduced in [37]. The raw
Range-Doppler images were directly fed into a CNN, resulting in performance with 99%
accuracy for distinguishing humans from robots. Many other applications that use neural
networks for radar problems have been tackled in the literature [38–42].

3. Problem Statement

3.1. FMCW Radar Device

The multi-chirp FMCW algorithm is considered the standard for detecting and mea-
suring the range and speed of multiple targets [43]. The concept of multi-chirp is to send a
frame containing a number of chirps (Nc) in saw-tooth modulation and in a short period,
with the chirp time (Tc) being very small (in μs), where Tf is the time of the data frame
(Tf is in ms). In the current scenario, the “Position2Go” [44] cheap radar is used. It is an
FMCW radar board developed by Infineon technologies. This development kit allows the
user to implement and test several sensing applications at the 24 GHz ISM band, such
as tracking and collision avoidance. This is possible by using fast chirp FMCW and two
receiving antennas to obtain the angle, distance, speed, and direction of motion. The radar
is equipped with a pair of arrays of microstrip patch antennas (one for transmitting and
two for receiving) characterized by a 12 dBi gain and 19 × 76 degree beam-widths, defining
the Field of View (FoV). The kit consists of the BGT24MTR12 transceiver MMIC and a
XMC4700 32-bit ARM® Cortex®-M4 for signal processing and communication via USB. The
radar is connected via USB to a PC that is running MATLAB. A MATLAB script sends the
order to the radar to initiate the data acquisition procedure through the USB port. Table 1
shows the radar sensor parameters.

3.2. Shadow Effect

Figure 1 shows different cases of target detection using a radar. In particular, Figure 1a
illustrates the case of a single target standing in the range of the radar, Figure 1b depicts
two targets both detectable by the radar, while Figure 1c represents the shadowing effect
where target B is masked by target A and thus target B is not visible to the radar.
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Table 1. Position2Go radar specifications.

Parameters Value

Sweep Bandwidth 200 MHz
Center Frequency 24 GHz

Up-Chirp Time 300 μs
Number of Samples/Chirp (Ns) 128
Number of Chirps/Frame (Nc) 32

Maximum Range 50 m
Maximum Velocity 5.4 km/h
Range Resolution 0.75 m

Velocity Resolution 0.4 km/h
Sampling Rate 42 KHz

(a) (b)

(c)

Figure 1. Illustration of the data collection setup. (a) One target in range of the radar. (b) Two targets
in range of radar, both visible to the radar. (c) Two targets in range of radar, only one visible to
the radar.

The shadowing effect creates a region behind the target (Target A in Figure 1c) where
the electromagnetic waves emitted by the radar transmitting antenna or reflected by another
object are not able to propagate. In fact, computing the power spectrum on the multi-chirp
data acquired by the FMCW radar, it is possible to detect the masked target, but the
detection is accompanied by a lot of variability in the measurements. The reason for such
variability is that a few radar waves penetrate and slip through the shadowing target to the
masked one, reflecting to the radar with a very low intensity. These waves in particular
cause huge variability that can affect the detection parameters of both targets in the Field
of View (FoV) of the radar. Figure 2 shows three examples of the range representation
obtained after the fast-time FFT (range-FFT) on multi-chirp signals [43], positioning the
radar 1.5 m from the floor. Each target on the spectrum is represented by a peak. A
fixed target detection threshold (red horizontal line) is used to determine the valid target
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identifications, i.e., each target passing in the FoV of the radar with a peak higher than the
fixed threshold is considered a valid detection by the radar. The threshold is a user-defined
parameter that affects radar performance directly by causing a trade-off between detection
accuracy and false alarm probability. If it is chosen to be too high, the algorithm will fail
to identify some targets. If it is too low, the algorithm will detect many artifacts as targets.
Figure 2a shows only one peak at a distance of 7 m; this situation is illustrated in Figure 1a,
where only one target is in front of the radar (d1 = 7 m). In Figure 2b, two peaks appear
at distances of 7 m and 10 m, respectively; this spectrum is the result of a trial where two
people were standing in different positions (i.e., d1 = 7 m and d2 = 10 m) with no shadow
effect on each other, as illustrated in Figure 1b. The magnitude of the peak at a 10 m is
smaller than that at 7 m because of the attenuation of the electromagnetic wave of the radar
as the distance increases. In Figure 2c, the maximum peak appears at a distance of 7 m,
which corresponds to the location of target A (d1 = 7 m). However, target B (d2 = 10 m)
cannot be detected, since he stands in the shadowing region. An example is illustrated in
Figure 1c.

Therefore, the traditional spectrum method is not reliable for detecting multiple targets
where the shadow effect occurs. The shadowed targets are hardly detected. This fact is
dependent on the chosen power threshold, Radar Cross-Section (RCS) of the shadowing
target [45], and the environmental clutter.

In the case when target B is not fully shadowed by target A, target B is expected to
be detected with a weak signal, based on how much it is shadowed by target A. However,
this detection is also relative to the chosen detection threshold. The radar is capable
of discontinuously detecting target B when it is not completely aligned with target A [7].
However, the detection of target B is not reliable, and the partial shadow effect was excluded
from our testing campaign because it represents a simplified version of the full shadow
effect illustrated in Figure 1c.

(a) One target (b) Two unmasked targets

(c) Two targets, one masked

Figure 2. Range-FFT power spectrum. The horizontal red line is the target detection threshold. Radar
is positioned 1.5 m from the floor. (a) Only target A (d1 = 7 m), (b) both targets A (d1 = 7 m) and B
(d2 = 10 m) without shadowing effect, (c) target B (d2 = 10 m) shadowed by target A (d1 = 7 m).
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4. Methodology

To address the shadow effect, a novel approach is proposed. The idea is that a small
portion of the waves slip through or around the shadowing target (target A in Figure 1c)
towards the shadowed target (target B in Figure 1c). The masked target is receiving
and reflecting these slithered electromagnetic waves, thus causing a slight but noticeable
variation in the waves received by the radar. These reflections are used to identify whether
there is a masked target or not. This goal could be achieved using time frequency analysis
to construct images (i.e., spectrograms) that feed CNNs, addressing a two-class image
classification problem (one target vs. two targets).

4.1. Time Frequency Analysis

Spectrograms are a popular signal processing tool used to reveal the instantaneous
spectral contents of the time-domain signal. They also show the variations in the spectral
content over time. A spectrogram is obtained by applying the squared magnitude of the
STFT computed over a discrete input signal. The STFT can be formalized as:

STFT{x[n]} = X(m, k) =
∞

∑
n=−∞

x[n]w[n−m]e−j2πkn/N (1)

where x[n] is the discrete signal, w[n] is the discrete window function, which is non-zero in
[0. . .N] and zero elsewhere, N is the number of samples in the window, and k is the discrete
frequency. The window’s location is indicated by the index m. The spectrogram can be
generated by continuously computing the STFT with increasing m by a step size Δm. The
step size Δm can be used to achieve an overlap between two consecutive analysis windows,
resulting in a smoother time dimension output. Eventually, to use the computationally
quicker Fast Fourier Transform (FFT), a power of 2 must be selected for N, or N can be zero
padded to a power of 2. As a rule of thumb, a large window size indicates a high resolution
in the time domain and low resolution in the frequency and vice versa.

4.2. Deep Neural Network Models

To address the shadowing effect problem in its most simplified form, only two classes
were considered in this study (one target and two targets). To address the two-class
classification problem, we employed CNNs trained over the spectrogram images. The
CNNs proved to be very efficient in image classification. In particular, MobileNet models
are suitable for deployment on embedded systems since they achieve similar accuracies
in the object classification problem, while requiring less parameters than ResNets and
VGGs. The peculiarity of the MobileNet models is the adoption of the depth-wise separable
convolution [46], i.e., the standard convolution operator is replaced by two separate layers:
the first layer involves one convolutional filter per input channel, while the second is a point-
wise convolution. For an input of size H×W ×D, and a 2D convolutional layer presenting
Nk kernels of size K× K, the computational cost CSC of the standard convolution is:

CSC = H ×W × D× Nk × K× K (2)

while, using the depth-wise separable convolution, the cost CDSC is:

CDSC = H ×W × D× (K2 + Nk) (3)

which is significantly smaller than (2).
Table 2 shows a comparison of some state-of-the-art MobileNet models (i.e., V2 and

Small V3) with ResNet50 and VGG19 networks [47], all trained on the Imagenet dataset.
The first column reports the models, the second represents the number of parameters, the
third shows the generalization accuracy on the Imagenet dataset, the fourth displays the
model sizes in megabytes, while the last column presents the average inference time of the
models running on GPU Tesla A100. The table demonstrates that the MobileNet models
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can achieve similar generalization performance, employing few parameters with respect to
more complex models.

Table 2. Sample of the available models.

Model
Num of Params Top Size Inference Time

(Million) Accuracy (%) (MB) (ms) on GPU

ResNet50 25.6 74.9 98 4.55
VGG19 143.6 71.3 549 4.38

MobileNet_V2 3.53 71.3 14 3.83
Small MobileNet_V3 2.0 73.8 12 3.57

Following the results of Table 2, four different MobileNet-based architectures were
compared. The four models were pre-trained on the Imagenet dataset; thus, the weights
and biases were statically loaded, before eventually fine-tuning the last trainable dense
layer using the collected dataset. Hence, the convolutional layers of the MobileNet models
provided the filters, learned on the Imagenet dataset, to process the input image. Eventually,
the features extracted by the convolutional layers were fed to the dense layer, which
classified the data among the two possible classes (one target vs. two targets). The data
collection procedure is presented in Section 5.1.

5. Experimental Setup

Four persons were involved in a series of experiments with the aim of collecting data
to validate the proposed solution. In the following section, the data retrieval process is
described. In addition, the spectrogram hyperparameter selection is explained. Finally, the
CNN training phase is described. A block diagram of the proposed system is illustrated in
Figure 3.

Figure 3. Block diagram of the proposed system.

5.1. Data Acquisition

In order to overcome the possible problem of the multi-path effect, a clutter removal
technique proposed in [27] was used to remove the environmental clutter (i.e., the potential
ghost effect) from the source.

Two sets of experiments were carried out for this study. Measurements took place in a
thirty-meter-long and three-meter-wide corridor. The corridor environment was chosen
because it maximized the clutter, thus making it harder for the radar to detect the shadowed
target. The goal of the experiments was to detect all human targets standing in range of the
radar. The radar was placed one and a half meters from the ground. Figure 4 schematizes
the experimental environment.

Figure 4. Illustration of the corridor data collection environment.
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As illustrated in Figure 3, data are collected and pre-processed to reach a spectrogram
format (i.e., image). These spectrograms are then fed to the CNN classifier. Figure 5 shows
the data processing pipeline from the raw radar outcome towards the spectrogram format.
The data corresponding to chirps are stored as the rows of a matrix of dimension Nc× Ns
(i.e., Nc is the number of chirps and Ns is the number of samples of each chirp). To convert
the data type, an Analog to Digital Converter (ADC) was used. Range FFT is then applied
on each row, which results in a range representation. Multiple slices (Slices = 50 in this
study) of this matrix are then collected to form a tensor (Nc× Range× Slices). The slices
are collected consecutively: as soon as the n-th slice is collected, the radar immediately
starts to collect the slice n-th + 1. Finally, STFT is applied on this 3D tensor to obtain
the spectrogram.

Figure 5. Data processing pipeline.

For the first experiment, illustrated in Figure 1a, a single target (target A) stood in range
of the radar. The target was standing in different positions gradually through all reference
positions d1 along an eleven-meter range. Four different human targets were involved in
this experiment to increase the data diversity. One hundred and fifty measurements were
collected for each target. Therefore, for the first experiment, six hundred measurements
were collected. This dataset is called the One Target (OT) class.

For the second experiment, illustrated in Figure 1c, two targets, A and B, stood in
range of the radar. Target A, who was closer to the radar antennas, was standing gradually
through all reference positions d1 along the eleven-meter range in front of the antennas, and
target B, who was farther away from the antennas, stood in the shadowing region of target
A (setup is illustrated in Figure 1c), two meters behind him. Three persons were involved
in this experiment, exchanging their mutual positions. Six hundred measurements were
collected during this experiment; this dataset is called the Two Targets (TT) class. To sum
up, the complete collected dataset consists of one thousand two hundred samples, divided
in half among the two classes. The extracted dataset is formalized in:

D = {(X , y)i; Xi ∈ R
Nc×Ns×Slices, yi ∈ {OT, TT}; i = 1, . . ., Z = 1200} (4)

where Nc = 32, Ns = 128, and Slices = 50.
Table 3 summarizes the data collection setup. The first column represents the class

(One Target vs. Two Targets). The second and the third columns present the distances from
each target to the radar (i.e., target A and target B, respectively). The last column displays
the number of measurements acquired for each combination of the targets involved in
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the experiments. In the case of the One Target class, 4 persons were involved (i.e., four
combinations for each d1 distance); thus, there were 30 acquisitions per combination. For
the Two Targets class, measurements were obtained on 3 persons exchanging their mutual
position (i.e., 6 possible combinations for each pair [d1, d2]), hence leading to 20 acquisitions
per combination.

Table 3. Data collection setup.

Class
Distance of Distance of Num of Meas.

Target A (d1) [m] Target B (d2) [m] per Comb.

One Target

3 - 30
5 - 30
7 - 30
9 - 30

11 - 30

Two Targets

3 5 20
5 7 20
7 9 20
9 11 20

11 13 20

5.2. Spectrogram

According to Section 4.1, a time-frequency analysis was carried out on D to extract
spectrograms in order to feed CNNs. To obtain a continuous spectrogram, a large window
size was chosen with N = 2048, with a 50% overlap (Δm = 1024). Two samples of the
obtained results are illustrated in Figure 6.

(a) (b)

Figure 6. Spectrogram examples. (a) One target. (b) Two targets.

The spectrograms of the 1200 collected samples were generated. The original dimen-
sions of each spectrogram were (875, 656, 3); each was down-sampled and zero padded
to fit the input size of our CNN, with the dimensions (224, 224, 3). The dataset containing
spectrograms can be formalized as:

S = {(X̂ , y)i; X̂i ∈ N
224×224×3, yi ∈ {OT, TT}, i = 1, . . ., Z = 1200}. (5)

Figure 6a shows an example of the generated spectrogram for the One Target class as
illustrated in Figure 1a. In this example, the target was standing five meters away from the
radar. Figure 6b shows an example for the Two Targets class as illustrated in Figure 1c. In
this example, target A was five meters away from the radar while target B was two meters
behind target A, so seven meters away from the radar. If inspected carefully, a difference is
visible in Figure 6a,b; this difference represents the passive electromagnetic waves reflected
from target B and received by the radar antenna.

234



Sensors 2022, 22, 1048

5.3. Training

The authors adopted the four most common implementations of the MobileNet ar-
chitectures. The number of neurons in the trainable dense layer was set to 128 for each
network, using the ReLU as a non-linear activation function. Moreover, the Stratified K-
Fold technique was adopted to ensure fair results. Stratified sampling consists of splitting
the data of the original labeled dataset (i.e., the population) into subsets, having the same
proportion of data as in the population. The subgroups are called ‘strata’. Thus, adopting
the stratified method in cross-validation guarantees that the training and test sets contain
the same proportion of labeled dataset in each fold, leading to a close approximation of the
generalization error on the test set. In each of the ‘K’ iterations of the K-fold cross-validation
technique, where the data have been split into ‘K’ groups, one portion is used as the test set,
while the remaining portions are used for training. In the current situation, ‘K’ was chosen
to be equal to five. Therefore, five folds were generated, and results will be presented in
the next section as the average of the five results from each of the folds. In this way, 80%
of the data have been used for training and 20% for testing in each iteration run. Actually,
the test data were split into two parts (validation and test sets) having the same number of
samples. An early stopping criterion was implemented during training over the validation
set, fixing the patience parameter to 10. All the results have been averaged over the 5 folds.
The Adam optimizer function was used with a learning rate of 1/2000. Regarding the loss
function, categorical cross entropy was used. Models were trained for one hundred epochs
for each split.

6. Experimental Results and Discussion

The results achieved using the proposed approach are presented in Table 4. The first
column provides the four adopted model architectures, the second shows the number of
parameters, the third column reports the average accuracy computed on the test set of the
five folds and the standard deviation for each model, the fourth column depicts the average
inference time of the model running on a RTX-2080Ti GPU, while the last column presents
the saved model sizes.

Table 4. Results over the four different models.

Model
Num of Params Average Test Inference Time Size

(Million) Acc (%) ± STD (ms) on GPU (MB)

MobileNet_V2 2.3 81.5 ± 4.36 2.35 7.2
MobileNet_V3 3.2 92.2 ± 2.86 2.23 18.2Large
MobileNet_V3 1.6 90.9 ± 1.4 1.91 6.8Small
MobileNet_V3 1.06 88.7 ± 2.39 1.64 5.0Small Minimalistic

The table shows that all the MobileNet_V3-based networks generally perform better
than MobileNet_V2. This could be explained by the introduction of the hard-swish activa-
tion function and the implementation of a squeeze-and-excitation module [46]. Among the
three MobileNet_V3 versions (Large, Small, and Small Minimalistic), the testing accuracy
results are directly proportional to the number of parameters used in the architecture: the
higher the number of parameters, the higher testing accuracy is achieved.

A compromise should be taken when choosing the model. This compromise would be
highly dependent on the application scenario. If the application scenario is critical and the
accuracy is the main interest, Large MobileNet_V3 would be chosen. If the goal is to deploy
on the edge, then memory and inference time would be the main goal, and Small Minimal-
istic MobileNet_V3 would be chosen. Usually, the main interest in using a low-cost radar
is the possibility of edge deployment, and the main constraint of edge deployment is the
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number of parameters, i.e., the model size. Therefore, the Small Minimalistic MobileNet_V3
best suits the proposed use-case.

Under the proposed circumstances, where either one or two targets are in the detection
range of the radar, the model choice (i.e., number of parameters, architecture, etc.) affects
the performance of the proposed algorithm. In addition, the radar parameters and hardware
specifications (i.e., number of chirps, memory capacity, etc.) influence the performance of
the algorithm; these parameters were chosen according to [44].

As introduced in Section 2, the authors in [2] proposed an algorithm based on the
wavelet entropy for shadow effect removal for human targets using UWB radars. This
method proved to be effective in detecting two stationary human targets despite one person
being in the shadowing region of the other. Hence, static filters (i.e., wavelet) were used. For
each new possible deployment environment, an on-site adjustment is required: the number
of filter levels and the wavelet function need to be tuned to accurately fit the application
scenario. Therefore, the solution is not easily scalable because it needs expert intervention
whenever a new context occurs. On the other hand, our proposal uses filters (i.e., weights
of the convolutional layers) learned on a massive dataset (i.e., Imagenet dataset). This
guarantees a high level of scalability and ease of deployment for different environments.
In addition, it is not necessary to retrain the filters for new problems: only one dense
layer needs to be fine-tuned for the incoming dataset, preserving the same structure of the
pre-trained architecture, without requiring any expert intervention.

7. Conclusions and Future Works

In the case of multi-target detection using an FMCW radar, the target closest to
the radar antennas partially reflects the energy of the electromagnetic wave, and the
person farther from the radar antennas is not detected continuously, especially when
in the shadowing region of the closest person. In this paper, a novel solution for the
radar shadowing effect has been proposed. The solution is based on a CNN model that
classifies the spectrogram images, obtained after a time-frequency analysis of the radar data,
among one of two classes: One Target vs. Two Targets. The model is based on MobileNet
and is loaded with the Imagenet weights. The best solution in terms of testing accuracy
achieved 92.2% with a standard deviation of 2.86%, while the lightest (i.e., 1.06 million
parameters) model attained 88.7% with a standard deviation of 2.39% over five splits of
input data. The latter model uses 1.06 million parameters only and has a size of 5 MB. The
inference time using a GPU is 1.64 ms. In future research, the authors plan to deploy the
proposed solution on a Raspberry Pi and test the model in a real scenario. In addition,
the distance between the visible target and the masked target should be assessed using a
regression model. The proposed solution could be extended to different types of targets
(e.g., cars, robots, pedestrians, etc.). This novel solution uses a supervised learning method;
in other words, it already knows all the possible classes (One Target or Two Targets). If the
situation of multiple shadowed targets needs to be addressed, it is theoretically possible by
collecting enough data for every possible class. This method might not be practical because
the number of classes could not be predicted beforehand. Therefore, the recommended
procedure would be to shift the problem into an unsupervised problem. We are also
considering an extension of this proposed approach; the goal is to detect and track two or
more moving targets, with different inner distances, in a cluttered environment.
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Abstract: Developments in the field of artificial intelligence have made great strides in the field
of automatic semantic segmentation, both in the 2D (image) and 3D spaces. Within the context
of 3D recording technology it has also seen application in several areas, most notably in creating
semantically rich point clouds which is usually performed manually. In this paper, we propose the
introduction of deep learning-based semantic image segmentation into the photogrammetric 3D
reconstruction and classification workflow. The main objective is to be able to introduce semantic
classification at the beginning of the classical photogrammetric workflow in order to automatically
create classified dense point clouds by the end of the said workflow. In this regard, automatic image
masking depending on pre-determined classes were performed using a previously trained neural
network. The image masks were then employed during dense image matching in order to constraint
the process into the respective classes, thus automatically creating semantically classified point clouds
as the final output. Results show that the developed method is promising, with automation of the
whole process feasible from input (images) to output (labelled point clouds). Quantitative assessment
gave good results for specific classes e.g., building facades and windows, with IoU scores of 0.79 and
0.77 respectively.

Keywords: photogrammetry; semantic segmentation; deep learning; automation; dense matching;
point cloud; classification

1. Introduction

The use of artificial intelligence has seen an exponential increase in recent decades,
aided by developments in computing power. Within the field of 3D surveying, such
methods have been used to perform tasks such as semantic segmentation [1]. This process
of automatically attributing semantic information into the otherwise geometric information
stored in spatial 3D data (e.g., point clouds) is a major step in accelerating the surveying
process. Semantic annotation also enables easier modelling and predictions using the
available spatial data. Since spatial data annotation is traditionally performed manually,
the use of artificial intelligence such as the deep learning approach has the potential
to reduce both the significant time and resources required. However, current research
mostly focuses on the application of deep learning on the 3D space. In this paper, we
propose a method to introduce deep learning semantic segmentation into the classical
photogrammetric workflow in order to benefit from some of photogrammetry’s rigorous
advantages, e.g., block bundle adjustment.

Photogrammetry as a discipline has a long history of use in the field of surveying.
Starting with primarily small scale aerial use [2,3], the use of terrestrial images has also been
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effectively applied for many applications in larger scale architectural survey [4]. In the past
few decades, photogrammetry has also seen significant developments in both its theoretical
and technical aspects. Major strides were made in subjects such as analytical photogram-
metry [5,6], automatic image matching [7] and bundle adjustment [8]. Furthermore, the
parallel development of the computer vision domain such as structure-from-motion [9,10],
automatic feature extraction [11] and dense image matching [12,13] have helped in solving
some traditional photogrammetric bottlenecks.

Recently, photogrammetry has seen a major democratisation by the advent of low-cost
sensors [14,15], more powerful computing capacity [16,17] as well as availability of drones
in the public market [18,19]. The latter greatly facilitated close-range photogrammetry as it
enabled an aerial point of view which was previously a major constraint in data acquisition.
Indeed, 3D reconstruction in general is slowly becoming the standard in mapping, replacing
traditional 2D methods and products.

As 3D data both in the form of point clouds and meshes became more and more
common as a geospatial product, a new research question rose [20–22]. All the major devel-
opments in 3D technology, including in photogrammetry, have focused on the geometrical
reconstruction of existing objects. This is as far as surveyors are concerned, the main
objective of the mapping activity. However, in order to be truly useful, specific tangible
meanings must be attached to these geometric elements, i.e., annotating them with relevant
semantic information [23,24]. Semantic information or attributes will give these 3D data
richness and opens the possibility for various spatial analysis and modelling. Within the
traditional 2D mapping, one of the most known framework for this mixture of geometry
and semantic attribute is the Geographical Information System (GIS) [25,26]. Its extension
into the 3D space can be seen in, for example, 3D GIS for smaller scale scenes [27,28] or
Building Information Models (BIM) in larger scenes [29].

The problem of attribute annotation into geometric data was mostly addressed man-
ually [30]. Indeed, historically, GIS layers were physical maps which were digitised and
vectorised. When required, semantic annotation was performed at the same time by the
operator. This method continued on with the arrival of BIM, where most users would
create parametric 3D models from point clouds and attach attributes to them manually [31].
Attempts at automation can be seen in the current literature [32–34], and remains a major
research question today. In practice, this process of data labelling translates into 3D data
classification in geomatics or semantic segmentation in AI parlance [35].

Various methods for semantic segmentation have been proposed in the literature, with
some review papers highlighting this fact [1,36]. Techniques based on heuristic information
(e.g., geometric rules or tendencies for certain object classes) present a fast and generally
precise results [37,38]. These algorithmic approaches are however often non-flexible and
problems may occur when encountering complex cases, e.g., historical buildings or tra-
ditional architecture. More recent research into artificial intelligence, coupled with more
powerful computing power, has opened the possibility to the application of machine learn-
ing (ML) to fulfil this purpose. Deep learning (DL), a subset of machine learning, has
also seen major strides in performing semantic segmentation on 2D images [39]. Promis-
ing results can also be observed in 3D semantic segmentation, both indirectly [40] and
directly [41]. It is worth noting that in DL-based solutions, a major bottleneck is the avail-
ability of labelled data for training. While over the past few years immense amounts of
labelled images have become available in ML circles, 3D training data remain scarce [23]
due to the higher complexity in manually labelling them.

While these solutions show promise, most are concerned with the segmentation of
the point clouds or 3D meshes which are the product of 3D reconstruction techniques. In
this regard, the process of creating these 3D inputs for classification matters a little as they
may come from either photogrammetry, lidar, a combination of both, or other 3D sensors.
Few studies (e.g., [42]) had addressed the potential of involving this semantic segmentation
process directly within the photogrammetric workflow. Hypothetically speaking, such
integration may benefit from several advantages. For instance, the application of semantic
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segmentation on the input images may take advantage from the vastly more available 2D
training datasets for DL. Furthermore, when applied on the dense image matching step,
other mathematical conditions such as the epipolar constraint and error minimisation via
bundle adjustment may help improve the results.

The idea of using AI to support photogrammetry has been previously explored by
several studies. In [43], the authors reported several applications including aiding feature
detection for the orientation of images with significant differences in scale and viewing
angle. A study by [44] presented a similar approach to the one presented in this paper, i.e.,
using AI to generate classified point clouds from 2D images via photogrammetry although
the authors did not prove numerical assessments of their method. The same authors also
briefly reported their experiments in using masks to automatically clean dense point clouds,
as well as to transfer 2D labels to 3D point cloud [42]. A similar approach using masks was
reported in [45] for agricultural applications. Furthermore, the authors in [46] attempted to
implement masks during dense matching in order to clean point cloud noise.

The aim of the study is therefore to propose a method which may benefit from both
the abundance of 2D training data for DL purposes and the rigour of photogrammetric
computations to create a faster and more precise approach to 3D point cloud semantic
segmentation. To this end, in this paper we propose a practical and fully automatic
workflow from images to classified 3D point clouds. As a proof of concept, the workflow
was implemented within the context of close-range photogrammetry for architectural
surveying purposes, e.g., building facade modelling. The input of the said workflow is 2D
images acquired according to photogrammetric principles and oriented using a classical
image matching and bundle adjustment. A DL-based neural network trained on a database
of rectified building facade images was then used to perform semantic segmentation on the
oriented images. The segmented images were thereafter used in dense image matching to
generate semantically rich and classified 3D point cloud. The workflow was implemented
using the open source photogrammetric suite Apero-Micmac [47], with additional coding
in Matlab. Additional comparison was also implemented in the commercial software
Agisoft Metashape. As the readers shall observe in this paper, the proposed method
may be adapted into other photogrammetric situations, e.g., aerial mapping or heritage
documentation by simply adjusting the applied neural network. As far as the paper’s
structure is concerned, the next section will explore some work related to the main idea
presented in this paper. Section 3 will thereafter contain the main description of the
proposed method, with experimental results and discussions presented in Sections 4 and 5,
respectively. Finally, Section 6 shall put forward arguments to the potential of the proposed
method, its drawbacks, and some ideas for improvements.

2. Literature Review

In the following exposition, a summary of existing literature on the subject of pho-
togrammetry, AI semantic segmentation and their interaction shall be addressed. First, an
overview of the photogrammetric workflow will be described. Arguments will also be
put forward on the choice of software solution used in this study. Subsequently, a short
description of deep learning methods for 3D semantic segmentation will be given. Finally,
several existing solutions to the problem of projecting 2D image labels into the 3D space
will be described.

2.1. Notions on Photogrammetry

Photogrammetry as a mapping technique attempts to convert 2D images into 3D
coordinates using stereo vision principles [48]. While such concepts were first implemented
in an empiric manner, as is the case with analogue photogrammetry, mathematical relations
were soon developed to enable an analytic approach to the problem of 3D reconstruction.
Notably, the collinearity and coplanarity conditions played an important role in establishing
a relation between the 2D and 3D space [6]. For most of its history and even today,
photogrammetry remains very focused on the problem of precision. This is in line with the
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original objective of photogrammetry as a remote sensing mapping tool. However, almost
in parallel developments in the computer vision domain saw significant leaps as evidenced
by the popularity of Structure-from-Motion as a solution to image pose estimation [10].
This progress, in addition to other developments in both imaging sensor and computing
technologies, enabled the unprecedented automation of the traditional photogrammetric
workflow albeit sometimes at the expense of rigorous quality control [49]. Image matching
algorithms further reduce the necessity of manual measurements, e.g., those involving the
traditional six Von Grüber points [11,50].

Evolving from previous solutions for the problem of aerotriangulation, i.e., densifica-
tion of ground controls [50] in analytical photogrammetry, the concept of bundle adjustment
refers to the simultaneous computation of image exterior orientation parameters (also re-
ferred to as extrinsic parameters in computer vision [10,35]) and point coordinates in
the 3D space. It typically involves a non-linear optimisation calculation based on either
collinearity or coplanarity equations. This simultaneous “block” adjustment of the whole
system provides a rigorous solution for the exterior orientation problem [49]. The bundle
adjustment may also include the resolution of camera internal parameters in a process
called self or auto-calibration [51]. Furthermore, modern bundle adjustment solutions may
include damping techniques (e.g., Levenberg–Marquardt algorithm) to help the classical
Gauss–Newton least-squares method in reaching final convergence [8]. This is the case, for
example, in the software Apero-Micmac used in this study [47].

Another major breakthrough in the field of photogrammetry was the development
of dense image matching. Work on Patch-based Multi View Stereo (PMVS) [9] and Semi-
Global Matching [52] may be considered some of the most important developments. Dense
image matching is a crucial development for photogrammetry which enables it to generate
dense point clouds not unlike those created by lidar. This provides photogrammetry
with the tool to compete with lidar systems [53], although in practice they are often
complementary, especially in large-scale applications [54].

Various photogrammetric solutions exist in the market today, both of commercial
and open source nature. A classical photogrammetric workflow starts with the acquisi-
tion of images. Certain rules must be respected in order to guarantee good results from
photogrammetry, e.g., enough overlapping between images [55], configuration of image
network [49,51,56] but also photographic quality [57]. From a surveying perspective,
pre-acquisition steps such as determination of the required Ground Sampling Distance
(GSD) [21] and distribution of Ground Control Points (GCP) or scale lines are equally
important [18,58]. Image orientation with bundle adjustment is then usually performed
before continuing with dense image matching in order to create dense point clouds.

However, these point clouds for the most part represent only the geometric aspect of
the object in question. Semantic information is usually imbued by performing point cloud
classification [59,60] as a post-processing of the point cloud generation process. Indeed,
most studies including those with application of DL involve semantic segmentation on the
point cloud [1]. In this paper, DL-based methods are introduced during the photogrammet-
ric process with the final goal of creating a truly semantic photogrammetry workflow.

2.2. DEEP Learning for Semantic Segmentation

Semantic segmentation refers to the process of grouping parts of a data into several
subsets that share similar feature characteristics. It can be considered as a fundamental step
in the machine automatic comprehension and it is a key topic in a lot of computer vision
problems such as scene understanding, autonomous driving, remote sensing, robotic per-
ception, and many others. The continuously increasing number of applications concerning
semantic segmentation makes it a very active research field, and different methods and
approaches are proposed every year. Image segmentation, or 2D semantic segmentation,
involves a pixel-level classification, in which each pixel is associated with a category or
a class. Point cloud semantic segmentation is the extension of this task in the 3D space,
in which irregular distributed points are used instead of regular distributed pixels in

242



Sensors 2022, 22, 966

a 2D image. Point cloud semantic segmentation is usually realised by supervised and
unsupervised learning methods, including regular learning and deep learning [61]. In
the last five years DL on point clouds has been attracting extensive attention, due to the
remarkable results obtained on two-dimensional image processing, in particular after the
introduction of Convolutional Neural Networks (CNN). Compared with two-dimensional
data, working with 3D point clouds provides an opportunity for a better understanding of
spatial and geometrical information, and a better comprehension and characterisation of
complex scenarios. However, the use of deep learning on 3D point clouds still faces several
significant challenges due to: (i) the unstructured and unordered nature of point clouds,
which prevents the use of 2D network architectures, (ii) the large data size, which implies
long computing time and (iii) the unavailability of large dedicated dataset for the networks
training process. Studies exist which aim to remedy this problem [62].

Despite these challenges, more and more methods are proposed to work with point
clouds. In the current literature, semantic segmentation techniques for 3D point cloud can
be divided into two groups: (i) projection-based methods and (ii) point-based methods [63].

2.2.1. Projection-Based Methods

The main issue to solve in the problem of point cloud segmentation using standard
neural network is its unstructured nature. To address this issue, projection-based techniques
first apply a transformation to convert 3D point cloud into data with a regular structure,
before subsequently performing semantic segmentation by exploiting the standards models
and finally re-projecting the extracted features back to the initial point cloud. Although
intermediate representation involves inevitably a spatial and geometrical information loss,
the advantage of these methods is the ability to leverage well-established 2D network
architectures. According to the type of representation, it is possible to distinguish four
categories among these methods:

1. Multiview representation: These methods project firstly the 3D shape or point cloud
into multiple images or views, then apply existing models to extract feature from
the 2D data. The results obtained on the image representation are compared and
analysed, and then re-projected on the 3D shape to obtain the segmentation of the 3D
scene. Two of the most popular works are MVCNN [64] which proposed the use of
Convolutional Neural Networks (CNN) on multiple perspectives and SnapNet [65]
which uses snapshots of the cloud to generate RGB and depth images to address the
problem of information loss. These methods ensure excellent image segmentation
performance, but the 3D features transposition remains a challenging task, producing
large loss of spatial information.

2. Volumetric representation: Volumetric representation consists in the transformation of
the unstructured 3D cloud into a regular spatial grid, a process also called voxelisation.
The information as distributed on the regular grid is then exploited to train a standard
neural network to perform the segmentation task. The most popular architectures
are VoxNet [66] which uses CNN to predict classes directly on the spatial grid, Oct-
NET [67] and SEGCloud [68] which introduced the methods of spatial partition such
as K-d tree or Octree. These methods require large amounts of computing mem-
ory and produce reasonable performance on small point clouds. They are therefore
unfortunately still unsuitable for complex scenarios.

3. Spherical representation: This type of representation retains more geometrical and
spatial information compared to multiview representation. The most important works
in this regard include SqueezeNet [69] and RangeNet++ [70] especially for application
on real time lidar data segmentation. However, they still have to face several issues
such as discretisation errors and occlusion problems.

4. Lattice representation: Lattice representation converts a point cloud into discrete
elements such as sparse permutohedral lattices. This representation can control the
sparsity of the extracted features and it reduces memory requirement and compu-
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tational cost compared to simple voxelisation. Some of the main studies include
SPLATNet [71], LatticeNet [72] and MinkowskiNet [73].

2.2.2. Point-Based Methods

Point-based methods do not introduce any intermediate representation, and they work
directly with point clouds. This direct approach leverage on the full use of the characteristics
of the raw cloud data and consider all the geometrical and spatial information. They seem
the most promising but are still in development and they still have to face several critical
issues. Overall, these methods could be divided into four groups:

1. Pointwise methods: The pioneering work for this method is PointNet [74] which learns
per-point features using shared Multi-Layer Perceptrons (MLPs) and global features
using symmetrical polling functions. Since MLP cannot capture local geometry, a lot
of networks based on PointNet have been developed recently. These methods are
generally based on neighbouring feature pooling such as PointNet++ [75].

2. Convolution methods: These methods propose an effective convolution operator
directly for point clouds. PointCNN [76] is an example of a network based on para-
metric continuous convolution layers and kernel function as parameterised by MLPs.
Another example is ConvPoint [77] which proposed a point-wise convolution operator
and convolution weights determined by the Euclidean distances to kernel points.

3. RNN-based methods: Recurrent Neural Network (RNN) are used recently for the
segmentation of point clouds, in particular to capture inherent context features. Based
on PointNet, they first transform a block of points into multi-scale blocks or grid
blocks. Then the features extracted by PointNet are fed into a Recurrent Consolidation
Units (RCU) to obtain the output-level context. One of the most popular networks in
this regard is 3DCNN-DQN-RNN [78].

4. Graph-based methods: Graph Neural Network (GNN) is a type of network which
directly operates on graph structure. Several methods leverage on graphs to capture
richer geometrical information, for example DGCNN [79].

Point-based methods seem to be the most promising in the future as evidenced,
amongst others, by the great interest it generated in recent research. However, this study
will focus more on the deployment of a workflow for dense point cloud semantic segmenta-
tion based on two-dimensional data as integrated within the traditional photogrammetric
workflow. On one hand, this approach allows us to exploit the tried-and-tested results in
2D image processing while on the other hand it allows the automatic creation of a directly
segmented and classified point cloud. In addition, the interaction between point clouds and
images could converge in a hybrid point-image method that may improve the performance
of both approaches in the future.

2.3. Reprojection of 2D Semantic Segmentation into the 3D Space

In the case of multiview deep learning approaches for 3D semantic segmentation, two
main steps may be distinguished: (i) the labelling of the two-dimensional images related to
the 3D scene, and (ii) the (re)projection of such labels from the images to the 3D shape or
point cloud. Since numerous techniques and methods are already developed for 2D image
segmentation with promising results and accuracy [80], the most challenging and critical
step in this framework is the reprojection step. This operation introduces inevitably a loss
of spatial and geometrical information, and, in many cases, involves a loss of accuracy on
the overall performance.

In the last years, several methods have been proposed to address these problems.
In [81], the authors proposed a 2D-to-3D based label propagation approach to create 3D
training data by utilising existing datasets such as ImageNet and LabelMe. The proposed
method consists of two major novel components, Exemplar SVM based label propagation,
which effectively addresses the cross-domain issue, and a graphical model based contextual
refinement incorporating 3D constraints.
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For similar purposes the method developed in [82] propagates object label from 2D
image to a sparse point cloud by matching a group of points that corresponds to the
area within the 2D bounding box in the image. Furthermore, [42] proposed a semantic
photogrammetry workflow similar to the one proposed in this paper, in which the label
back-projection is based on the projection matrix which connects the 3D with the 2D space.
Using this approach, all of the images contribute to the labelling projection on the cloud
with a weighted winner procedure. Although the proposed method is similar, the authors
only described their method briefly with few quantitative analysis.

Our previous work described in [40] presented an approach for the segmentation
of 3D building facade based on orthophoto and the corresponding depth maps. The XY
coordinates of each pixel in the orthophoto was used to determine the corresponding
planimetric coordinates of the point in the point cloud and finally a winner-takes-all
approach was applied to annotate the 3D points with the respective 2D pixel class.

In [83], the authors proposed an approach for label propagation in RGB-D video se-
quences, in which each unlabelled frame is segmented using an intermediate 3D point cloud
representation obtained from the camera pose and depth information of two keyframes.
For similar purposes some studies deal with the 3D to 2D projection as can be seen for
example in [84]. In this paper, a CFR model was proposed which is able to transfer the
labels from a sparse 3D point cloud to the image pixels by leveraging the calibration and the
registration of a camera and laser scanner system, estimated using structure-from-motion.
Finally, the authors in [85] developed a method to map the semantic label of 3D point
clouds into street view images. The images are over-segmented into super-pixels, and
each image plane super-pixel is associated with a collection of labelled 3D points using the
generic camera model.

3. Proposed Method

Figure 1 presents a flowchart of the developed workflow. It starts with image acqui-
sition following standard photogrammetric procedure. The acquired images were then
processed using the previously trained DL network to semantically segment them accord-
ing to the predetermined classes. The output of this process is class labels for each pixel
for each input image. Using these segmented images, class masks were then generated
which was later on used as constraints during the dense image matching process. The final
result would be a semantically segmented 3D dense point clouds directly out from the
photogrammetric process without need for further labelling or annotation.

In the case of this paper, image acquisition of a building facade was conducted using
terrestrial images as a proof of concept for the semantic photogrammetry method. The
building used in this case is the main facade of the Zoological Museum of Strasbourg,
France. The dimensions of this facade is roughly 40 × 10 m. Note that the building was
built in the 19th century and therefore presents a typical architecture of the era; indeed, it
is part of the UNESCO World Heritage site of Neustadt since 2017. This heritage aspect
is another challenge for the DL networks, since heritage architectural elements are more
complex and thus more difficult to identify [23]. In this case, the terrestrial images were
taken using a Canon EOS 6D DSLR camera with a 24 mm fixed lens.

A total of 33 images were acquired and processed using the open source Apero-
Micmac software suite [47]. As an additional comparison, they were also independently
processed using the commercial software Agisoft Metashape. The use of Apero-Micmac
in this study is prioritised since almost if not all theoretical aspects of this open source
suite can be determined and more importantly verified, whereas the same cannot be said of
commercial solutions for understandable reasons related to trade secrets. That being said,
Metashape also employs a bundle adjustment computation process [49] and an SGM-like
dense matching approach [53].
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Figure 1. Developed workflow for the proposed semantic photogrammetry process.

Parallel to the computation of the image orientation parameters, a neural network was
applied on the input images to semantically segment them. To this end, a DL network of
the DeepLabV3+ architecture [86] pre-trained using a ResNet-18 network [87]. Using the
pre-trained network, further training was performed using an open dataset prepared by the
Center for Machine Perception (CMP) of the Czech Technical University [88]. This dataset
consists of 606 rectified images of building facades with varying types of architecture. This
process of transfer learning was deemed adequate to perform the 2D semantic segmentation
of the case study presented in this paper. Furthermore, the images were classified into six
classes: “pillar”, “door”, “facade”, “window”, “shops” and “background”. The “shops”
class refers to business signs and plaques. Note that this setup is more or less identical to a
previous study as referred in [40].

Once the semantic segmentation was performed on all the input images, a simple
script enabled the extraction of pixels pertaining to each class. Image masks were created
for each class and for each image (Figure 2). These masks were then integrated into the
photogrammetric process by applying them during the dense matching step. At this stage,
it is assumed that the exterior orientation parameters acquired from the bundle adjustment
are of a good quality. Dense matching was thereafter performed separately for each of the
six classes using the image masks as constraints. The result is six distinct 3D dense point
clouds which will naturally inherit the classes of the respective input 2D masks.
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Figure 2. Creation of class-dependent image masks from the segmented image and its application in
dense matching to generate semantically classified point clouds.

4. Experimental Results and Assessments

In the following section the case study on the Strasbourg Zoological Museum will be
presented. A visual description of some of the results can be seen in Figure 3, in which dense
point cloud generated by Micmac is presented, along with the manually segmented ground
truth and the prediction results. The outcome of the same method applied in Metashape is
also presented in said figure. It should be noted that the ground truth displayed in Figure 3
is created from manual segmentation of Micmac point cloud. A separate ground truth was
also created for the Metashape point cloud.

In order to perform quantitative assessment on the results, several metrics were chosen
to measure the performance of the proposed method. The semantic segmentation metrics
of precision, recall and the aggregate F1 score were used in this regard. In addition, the
Intersection over Union (IoU) score was also used to assess the results. As has been
previously mentioned, for each photogrammetric software a separate ground truth was
created. These ground truth data were created from combining all the separate point clouds
generated by the method as described in Figures 1 and 2, and then manually labelled.

Table 1 shows the confusion matrix for the proposed semantic photogrammetry
method applied to the software Micmac. Note that the assessment does not include the
“background” class which was not considered particularly pertinent overall (see, however,
a technical application in Section 5.3). In general, the proposed method seems to show
promising results judging from the number of correctly classified points. Similarly Table 2
shows the same matrix for Metashape. In addition, Figure 4 presents a comparison between
the statistics obtained from both Micmac and Metashape. In both cases, the proposed
method was able to perform well in detecting and segmenting important classes such as
windows and doors. The good performance on the facade class is nevertheless expected
since it constitutes the majority of labels in any building-related semantic segmentation.
The results for the “shops” class, in this case defined as panels and business signs, seem to
be better in Metashape than Micmac. This point may be further explained by the fact that
Metashape generated a much denser point cloud than Micmac. Indeed, this issue might be
related to the fact that Micmac employs a much stricter post-filtering of dense matching
than Metashape in relation to problematic areas such as little or textureless objects and
shadows [18].
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Figure 3. Visual illustration of some results from the experiment: (a) raw unclassified dense point
cloud generated by Micmac, (b) manually segmented ground truth, (c) result of the semantic seg-
mentation on Micmac dense point cloud and (d) result of the same procedure applied to Metashape
dense point cloud.

The results for the building openings (i.e., windows and doors) are especially encour-
aging because this has often been known to be a particular problem in building semantic
segmentation, especially those using point-based approaches [89]. These results become
even more interesting in light of the many potential applications for the automatic detection
of building openings, such as automatic indoor–outdoor point cloud registration [90] or
BIM creation [31]. For this reason, a further comparison was performed between these
results and our implementation of PointNet++, which shall be detailed in Section 5.1. Fur-
thermore, a comparison against another approach developed in a prior work shall also be
explained in the next section.

Table 1. Confusion matrix for the semantic segmentation on Micmac dense point cloud.

Ground Truth
Class Window Door Shops Pillar Facade Total

P
re

d
ic

te
d

Window 548,886 3920 688 14,927 254,941 823,362
Door 1566 152,538 0 0 21,483 175,587
Shops 682 25,738 6216 0 13,326 45,962
Pillar 15 0 0 124 9535 9674

Facade 38,903 6121 66 6910 1,876,172 1,928,172
Total 590,052 188,317 6970 21,961 2,175,457 2,982,757

Table 2. Confusion matrix for the semantic segmentation on Metashape dense point cloud.

Ground Truth
Class Window Door Shops Pillar Facade Total

P
re

d
ic

te
d

Window 3,104,942 22,286 6467 6697 217,949 3,358,341
Door 42,294 819,405 179,411 87 44,619 1,085,816
Shops 6427 0 28,283 0 531 35,241
Pillar 181,417 0 0 2621 54,961 238,999

Facade 1,595,515 190,429 82,260 130,134 14,612,534 16,610,872
Total 4,930,595 1,032,120 296,421 139,539 14,930,594 21,329,269
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Figure 4. Performance statistics for the proposed method applied to dense point clouds generated by
(a) Micmac and (b) Metashape.

5. Discussion

5.1. Comparison to Previous Work

In previous work detailed in Murtiyoso et al. (2021) [40], we presented another
approach to reprojection-based semantic segmentation. While the neural network was
prepared in a similar manner, in this paper the pixel class prediction was performed on the
orthophoto of a building facade instead of the input images as presented in this paper. This
method produced good results also for the building openings, but was severely limited
by the fact that an orthophoto and a depth map are required as inputs. This may prove
problematic in the case of more complex building architectures, hence the development
of the semantic photogrammetry method as described here. In this section, a comparison
is performed between the method proposed in this research and the one described in our
previous work.

Furthermore, in another experiment conducted almost in parallel to the development
of the methods in this paper, an implementation of the PointNet++ architecture was done
for the Zoological Museum dataset [91]. This enables a further comparison to a point-
based 3D segmentation method in order to better assess the results of this study. For the
PointNet++ implementation, the 3D point cloud of the four facades was acquired. All of
the facades were then manually labelled into classes. Three facades were then used to train
the neural network, with the fourth and final facade used as a test data. In this case, the
same main facade as the one used in this paper and in [40] was used.

For the purposes of this comparison, only three classes (“window”, “door” and
“facade”) shall be compared since both the “shops” and “pillar” classes were grossly
underrepresented in the training data for PointNet++. This is owed to the fact that within
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the Zoological Museum dataset these two classes do not present adequate data, whereas
they are not negligible in the CMAP image dataset used for the training in this paper.

Figure 5 describes the comparison between these methods in a histogram representa-
tion. As can be observed from the figure, the proposed method shows a clear advantage in
regards to PointNet++. Indeed, for PointNet++ the “door” class is virtually non-existent
while the “window” class IoU score is less than 0.5. As has been mentioned before, this
is a known issue in direct point-based 3D segmentation. The main reasons are usually
related to inadequacy in terms of training data and point features, especially in the case
of building openings. Compared to our previous approach in [40], the proposed semantic
photogrammetry method presented an improvement with regards to the two building
opening classes while the detection of facade remained better in this previous approach.
However, this previous method is very limited to certain buildings with mostly flat facades
and few architectural ornaments. The need to acquire not only the orthophoto but also
a depth map to reproject the labels to the 3D point cloud may also present additional
problems. This would be the case especially in heritage buildings with more complex types
of architecture.

Figure 5. Comparison of IoU scores of the proposed method to other previous work.

5.2. Comparison to Other Studies

Finally, in order to further assess the results obtained especially in the case of building
openings, a comparison was also performed to other studies which use AI-based semantic
segmentation to perform the detection of openings, i.e., windows and/or doors. Four
papers were identified, all of which were based on either an ML or DL, and are fairly recent.
In Malinverni et al. (2019) [89], the authors used DGCNN to perform the task. Building
upon this, Pierdicca et al. (2020) modified the base DGCNN architecture [41]. Matrone et al.
(2020) [34] presented results not only from this modified DGCNN, but also the inclusion of
3D features during training. Finally, Grilli et al. (2020) [92] presented some results from
their implementation of Random Forest (RF) algorithm.

Throughout these studies, the “window” and “facade” class was the only one common
to all of them. Figure 6 shows therefore the comparison on the performance of each
method in a histogram form. For comparison purposes, values for Grilli et al. (2020)
and Matrone et al. (2020) represent the average of the several datasets described in those
papers. Furthermore, results of the modified DGCNN with 3D features in Matrone et al.
(2020) was chosen for this comparison. Similarly, the values for the proposed method
present an average of results from both Micmac and Metashape. It should be noted that
this comparison is only intended as a general overview, since for each study not only
the method is different but also the nature of the case studies, the training data and their
distribution of class labels as well as the determination of which classes were included
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during the segmentation. From Figure 6, the semantic photogrammetry method proposed
here seems to have an advantage at least for the “window” class.

Overall, the proposed method registered better scores compared to the four other
studies using AI for the semantic segmentation of building openings. It is worth noting
that the four studies included in the comparison are all based on point-based semantic
segmentation, i.e., direct segmentation of the 3D point cloud. In the majority of these cases,
classes representing building openings e.g., windows are often underrepresented, as can be
seen in our own implementation of PointNet++ described previously in Section 5.1. On
the other hand, facade or walls are mostly overrepresented, although in some of the cited
studies the authors further divide the facade into several other classes, e.g., mouldings and
vaults. This is reflected by the results from the three DL-based approaches of Malinverni
et al. (2019), Matrone et al. (2020) and Pierdicca et al. (2020), as shown in Figure 6. However,
using more classical Random Forest ML-based approach, Grilli et al. (2020) were able to
achieve better results in the case of windows. The implemented semantic photogrammetry
approach was able to outperform all other studies for the detection of building openings,
while reaching a comparable result to RF in the case of facades.

Furthermore, it may be argued that in these other cases, the source of the point cloud is
irrelevant due to the point-wise nature of the segmentation. Using the proposed approach,
we argue that both the much more available training data for 2D segmentation and the
introduction of the DL process into the photogrammetric workflow directly contribute to
the observed performance. It is also interesting to note that the current implementation
of semantic photogrammetry as described in this paper involves a small training dataset
for DL standards (606 images), and further improvements and adaptations of this proof of
concept may be envisaged in the future.

Figure 6. Comparison to other studies for the class (a) “window” and (b) “facade”.
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5.3. Example of Direct Application: Point Cloud Cleaning

In order to show the potential of the developed approach, an example of direct
application can be seen in Figure 7. In this figure, the semantic photogrammetry approach
was used to automatically mask unwanted objects in a scene, directly from the 2D images
input. Concretely, this involves the inversion of the masks for the “background” class, thus
excluding objects not considered as of interest. Furthermore, this approach for automatic
point cloud cleaning not only excludes unwanted object classes, but may also reduce overall
processing time during dense image matching. This is because the masks by virtue of its
constraining effect reduces the area of interest to be matched. Quantitative assessment has
shown that this method manages to achieve a 0.86 F1 score for the non-background classes
(all combined).

Figure 7. Example of concrete application of the proposed method in photogrammetric point cloud
cleaning: (a) original image, (b) mask of all classes except “background”, (c) mask applied to the
original image and (d) 3D point cloud from dense image matching using the masked image.

6. Conclusions and Future Investigations

This paper presents an approach to introduce AI-based semantic segmentation into the
photogrammetric workflow, in an attempt to develop a semantic photogrammetry method.
The proposed method takes benefit from the abundance of 2D image label data and reliable
AI-based methods available today, in contrast to the scant availability of 3D labelled point
clouds especially for large scale applications. With semantic segmentation performed on
the 2D input images, a processing strategy based on the creation of 2D image masks were
developed. The image masks created correspond to the class labels, and create therefore
separate point clouds for each class.

The proposed method was implemented in both Apero-Micmac and Metashape.
While the comparison of these two pieces of software in their capacity as photogrammetric
solutions is beyond the scope of the paper, it has been shown that the quality of dense
matching also plays a role in the final quality of the result. Furthermore, the post filtering
process also plays a role as it determines the level of noise, i.e., false positives in the final
dense point cloud. This relation between semantic photogrammetry and dense image
matching quality has not been sufficiently investigated and may be an interesting subject
for a future work.

Nevertheless, this paper attempted to present a proof of concept to the possibility to use
AI in photogrammetric task. In the case study and comparisons, this was demonstrated in
the case of building facade segmentation. The method has shown that the initial hypothesis
of using the vastly more available labelled 2D training data is beneficial, as highlighted
in the comparisons. Especially for the very interesting application of building opening
detection, the proposed method has performed well. On the other side, this has also shown
the limitation of the current implementation of the approach. Indeed, underrepresented
classes, e.g., shop signs and pillars still pose problems although this is a more general
problem with any method of semantic segmentation.

Based on the results obtained in the experiments, the developed method of semantic
photogrammetry show much promise. It is also interesting to investigate its potentials for
implementations in other settings, e.g., aerial photogrammetry, building interior modeling
or even low-cost spherical photogrammetry. Evidently different scenes will require different
sorts of DL learning; however, the overall semantic photogrammetry approach may be
easily transposed on these different scenes thereafter.
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Other points for improvement include the generation of 2D training data more suited
to the encountered situation. For example, in this study the CMP database was used to train
the neural network. This image database consists of rectified images, i.e., images already
processed to have a perpendicular point of view. This does not exactly correspond to the
input images in the experiments, which were close-range photogrammetry images. Meth-
ods to automatically create more suitable training data for close-range photogrammetry
are also under investigation, with preliminary results described in [62].
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Abstract: Recently, the use of portable electroencephalogram (EEG) devices to record brain signals
in both health care monitoring and in other applications, such as fatigue detection in drivers, has
been increased due to its low cost and ease of use. However, the measured EEG signals always
mix with the electrooculogram (EOG), which are results due to eyelid blinking or eye movements.
The eye-blinking/movement is an uncontrollable activity that results in a high-amplitude slow-time
varying component that is mixed in the measured EEG signal. The presence of these artifacts misled
our understanding of the underlying brain state. As the portable EEG devices comprise few EEG
channels or sometimes a single EEG channel, classical artifact removal techniques such as blind source
separation methods cannot be used to remove these artifacts from a single-channel EEG signal. Hence,
there is a demand for the development of new single-channel-based artifact removal techniques.
Singular spectrum analysis (SSA) has been widely used as a single-channel-based eye-blink artifact
removal technique. However, while removing the artifact, the low-frequency components from the
non-artifact region of the EEG signal are also removed by SSA. To preserve these low-frequency
components, in this paper, we have proposed a new methodology by integrating the SSA with
continuous wavelet transform (CWT) and the k-means clustering algorithm that removes the eye-
blink artifact from the single-channel EEG signals without altering the low frequencies of the EEG
signal. The proposed method is evaluated on both synthetic and real EEG signals. The results also
show the superiority of the proposed method over the existing methods.

Keywords: electroencephalogram (EEG); electrooculogram (EOG); singular spectrum analysis (SSA);
continuous wavelet transform (CWT); k-means clustering

1. Introduction

Electroencephalogram (EEG) signals represent the electrical activity of the brain and
are measured by placing electrodes over the scalp. The EEG signals are often used to
understand brain functions such as mental state (or cognitive state) and brain disorders such
as epilepsy and stroke [1–5]. However, the recorded EEG signals are always contaminated
by physiological artifacts, such as electrooculogram (EOG), electromyogram (EMG) and
electrocardiogram (ECG). Unlike other artifacts, the EOG artifact that is a result of the
eye-blink/movement activity and always contaminates the EEG signal. As the eye-blink
is an uncontrollable and involuntary activity and occurs once every 5 s (as in [6]), we
refer to the EOG artifact as an eye-blink artifact in this paper. Therefore, the removal
of these artifacts forms an important stage before analyzing the EEG signals [6]. Hence,
methods such as linear filters have been used for eye-blink artifact removal from EEG
signals. In general, the eye-blink artifact strongly contaminates the low-frequency spectrum
of EEG (0.5–12 Hz) [7]. Therefore, the use of linear filters for the removal of eye-blink
artifacts alters the valuable information from the EEG signal. Later, a regression-based
method was proposed to remove artifacts from multichannel EEG signals [8]. In this
method, the artifact weighting coefficients are computed from the EOG channels, which are
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recorded separately. However, such fixed coefficients may not fully remove the eye-blink
artifacts from the EEG signals.

Blind source separation (BSS) techniques such as independent component analysis
(ICA) and canonical correlation analysis (CCA) techniques have been used to remove arti-
facts from the multichannel EEG signals [9–13]. The ICA technique was extensively used
to remove eye-blink artifacts from EEG signals as compared to the CCA method [12,13].
Several other techniques were also integrated with ICA for efficient removal of eye-blink
artifacts from the multichannel EEG signals [14–17]. The artifact subspace reconstruction
(ASR) method was also proposed to remove the artifact from the EEG signals [18,19].
The performance of this method depends on the user-defined cut-off parameter k. Even
though a detailed study was conducted for selecting the cut-off parameter in [19], inappro-
priate selection of this parameter may result in the loss of EEG information.

Recently, the demand for in-home health monitoring has been increasing due to the
increase in chronic illnesses and population aging [20]. Several studies have employed
portable EEG devices for various applications, including analysis of cognitive state in
stroke survivors, sleep disorders, driver fatigue and event-related potential (ERP)-based
BCI applications [2,21–23]. To reduce the burden and to minimize the stress on the patient,
recently portable EEG devices with a reduced number of EEG channels, including single
EEG channel equipment [24,25], have been developed. Therefore, the existing ICA and ASR
techniques that are popular for multichannel settings cannot be used to remove eye-blink
artifacts from single-channel EEG signals. Therefore, there is a need for new methods that
are customized for processing single-channel EEG signals.

An adaptive filter is one of the possible solutions to process single-channel EEG signals.
The use of adaptive filters to remove eye-blink artifacts from the EEG signals was first
discussed in [26]. However, the adaptive filters require reference signals to remove the
eye-blink artifacts from single-channel EEG data. Therefore, in [27], the adaptive filter is
combined with discrete wavelet transform (DWT) to solve this problem. In this method,
the reference signal (an approximated eye-blink artifact) needed for the adaptive filter is
estimated from the contaminated EEG signal using DWT. After that, the estimated eye-blink
artifact signal is used as a reference signal to the adaptive filter to remove the eye-blink
artifact from the EEG signal. Recently, the Savitzky–Golay (SG) filter was also used to
estimate the reference signal needed for an adaptive filter [28]. Very recently, the Variational
Mode Extraction (VME) and DWT techniques were combined to remove eye-blink artifacts
from single-channel EEG signals [29]. In this method, first, the eye-blink artifact interval
is identified using VME. Next, a DWT algorithm is employed to filter the contaminated
interval of the EEG signal. Although this method does not significantly alter the non-artifact
regions of the EEG signal, the eye-blink artifact component is partially removed from the
contaminated EEG signal. Along with these methods, a data-driven decomposition method,
namely an ensemble empirical mode decomposition with adaptive noise, is also proposed
to remove eye-blink artifacts from a single-channel EEG signal [30]. However, this method
alters the non-artifact regions of the EEG signal.

Singular spectrum analysis (SSA) is a subspace-based technique used to extract the
low-frequency, oscillating and noise components from uni-variate time-series data [31,32].
Recently, the SSA technique has been applied for processing the biomedical signals [33–36].
The application of SSA for eye-blink artifact removal from single-channel EEG signals was
first studied in [37]. However, identifying the desired signal subspace (eigenvectors) is
a critical step in classical SSA. Therefore, new criteria were proposed in [38] to identify
the eigenvectors that are used to reconstruct the desired signal. In [38], the SSA is com-
bined with an adaptive filter to enhance the performance of the adaptive filter over the
method in [27]. Recently, in [39], with new grouping criteria, the adaptive SSA technique is
combined with ANC (SSA+ANC) and the method showed better performance over the
method in [38]. Moreover, SSA is used as a means to apply ICA on single-channel EEG
signals [40,41]. Very recently, SSA has been used as a smoothing filter in [42] to remove the
eye-blink artifact from the EEG signal. In this method, the user has to adjust the thresh-
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old for faithful separation of the eye-blink artifact from the EEG signal. In other words,
the performance of the method is sensitive to the user-defined threshold.

Even though the SSA is able to extract the eye-blink artifact efficiently, it also removes
the EEG low-frequency information (0.5–12 Hz) from the non-artifact regions. Removing
these components may affect the subsequent analysis of the EEG signal. Recently, the effect
of pre-processing methods on EEG results has been studied in [43] and it concludes that
the selection of artifact removal strategy affects the end application results. Therefore, care
should be taken while designing the artifact removal method. Therefore, in this paper, we
proposed a new technique by combining SSA with continuous wavelet transform (CWT)
and k-means algorithms so that it removes the eye-blink artifact from single-channel EEG
signal without altering the non-artifact regions of the EEG signal. The proposed method
exploited the strengths of both SSA and the CWT in removing the artifact. Unlike the
method in [42], where time-domain features are used, the proposed method used frequency-
domain features of the signal to remove the eye-blink artifact. Moreover, a frequency-based
threshold is defined for SSA to identify the artifact subspace, and such threshold will act
as the cut-off frequency as in a low-pass filter. The performance of the proposed method
(which we call SSA-CWT) is evaluated on synthetic and real single-channel EEG signals.
The results show its superiority over existing methods.

The rest of the paper is organized as follows: The performance measures to evaluate the
efficiency of the proposed and existing method are defined in Section 2. The framework of
the proposed method is discussed in Section 3. The simulation results and their discussions
are presented in Section 4 and Section 5, respectively. Section 6 concludes the paper.

2. Performance Metrics

In this section, we have employed several few performance metrics to evaluate the
performance of the proposed method on a synthetic EEG dataset. We define four commonly
used performance measures to evaluate the performance of the methods on synthetic EEG
data: the relative root mean square error (RRMSE), the canonical correlation analysis (CC),
artifact reduction ratio (λ) and mean absolute error (MAE). To evaluate the performance of
the proposed method on real EEG datasets, we first identify the non-artifact and artifact
intervals of the real EEG signal manually. Then RRMSE and CC between the non-artifact
interval of contaminated and corrected EEG signals is computed.

Consider the N sampled contaminated signal x = s + p.a, where s and a are the
true EEG and the EOG artifact signals, respectively and p is an artifact mixing constant.
The following performance metrics are defined as follows:

2.1. Relative Root Measure Square Error (RRMSE)

The RRMSE measure is often used to evaluate the performance of artifact removal
methods on synthetic EEG data. The RRMSE between the two signals a and â can be
defined as

RRMSE =

√√√√√√√√
N
∑

n=1
[a(n)− â(n)]2

N
∑

n=1
a2(n)

× 100(%) (1)

where a and â represent the ground truth eye-blink and the estimated eye-blink artifacts,
respectively. The relationship between the signal-to-noise ratio (SNR) and the artifact
mixing constant p is given by

SNR =
RMS(s)

RMS(pa)

RMS(s) =

√√√√ 1
N

N

∑
n=1

s2(n)
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when the constant p is small, the EOG artifact is small and the SNR of the EEG signal
is high. The low RRMSE value indicates a good estimation of artifacts by the method.
Here, the RRMSE is computed between the true eye-blink and the estimated eye-blink
artifact to understand the efficacy of the proposed method in estimating the artifact from
the contaminated EEG signal.

2.2. Correlation Coefficient (CC)

It is a statistical-based measure, which shows the strong relationship between the two
signals. The CC measure is also used to evaluate the performance of an artifact removal
technique. The CC between the two signals a and â can be defined as

CC =
cov(a, â)

σaaσââ
(2)

where cov(·) represents the covariance between the two signals a and â and σ(·) variance of
the signal itself. The CC value close to one indicates a good estimation of eye-blink artifact
from the contaminated EEG data.

2.3. Artifact Reduction Ratio (λ)

Along with the above-defined two performance measures, we also employed a perfor-
mance metric that quantifies the percentage reduction in artifacts and is defined as

λ =

(
1− Rclean − Ra f ter

Rclean − Rbe f ore

)
× 100 (3)

where Rclean is set to 1 and the Rbe f ore is the correlation between the true EEG and the
contaminated EEG signals and Ra f ter is the correlation between the true EEG and the
estimated EEG signals. For a good artifact removal method, this value should be high.

2.4. Mean Absolute Error (MAE)

This metric is employed to evaluate the performance of the proposed method in the
frequency domain. It is defined as the sum of the absolute of the difference between the
true EEG signal power spectrum, Ps, and the corrected EEG signal power spectrum Pŝ in a
particular band. The MAE between the spectrums of the true and corrected EEG signals is
defined as

MAE =
∑K

i=1 |Ps(i)− Pŝ(i)|
K

(4)

where K represents the number of frequency bins in a specific band. The MAE value is
expected to be very small for a good artifact removal method.

2.5. Precision and Accuracy

Along with these performance measures, we have also defined two measures associ-
ated to binary classification, precision and accuracy, to detect how precisely and accurately
the proposed method identifies (detected) the artifact and non-artifact intervals of the EEG
signals. The performance measures, precision and accuracy are defined as

Precision =
TP

(TP + FP)
(5)

Accuracy =
TP + TN

(TP + TN + FP + FN)
(6)

where TP, TN, FP and FN are true positive, true negative, false positive and false negative,
respectively. The true positive indicates that the artifact removal method correctly predicted
(detected) the positive class (artifact interval) and true negative indicates that the method
correctly detected the negative class (non-artifact interval). Similarly, false positive and
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false negatives represents that the method incorrectly detected the positive and negative
classes, respectively.

3. Eye-Blink Artifact Removal from Single-Channel EEG Signals

The key components of the proposed method for eye-blink artifact removal is shown
in Figure 1. It is a two-step approach: first, an eye-blink artifact is extracted from the
contaminated single-channel EEG signal using SSA. Next, the extracted eye-blink artifact is
denoised in the non-artifact region using CWT and k−means algorithms.

Grouping
components

Embedding Decomposition
Component
construction
by k-means
information

+Diagonal
averaging CWT

k-means
Clustering

SSA

Figure 1. Block diagram of proposed method for eye-blink artifact removal from single EEG signals.

SSA is a data-driven technique employed to process the single-channel (uni-variate)
time-series data [31,32]. Basically, the SSA technique comprises the following four steps:
embedding, decomposition, grouping and diagonal averaging. Let us consider the contam-
inated EEG signal y, which is a result of the mixing model shown as follows:

y = s + pa (7)

where s and a are the ground truth EEG and the eye-blink artifact signals, respectively,
and p is an artifact mixing constant that changes the signal-to-noise ratio (SNR) of the
measured EEG signal y. When p is small (<1), the artifact contribution is less and results
in a high SNR of the EEG signal y and vice-versa for p > 1. The key steps of SSA are as
follows: in the embedding step of SSA, the given N sampled single-channel EEG signal
y = [y(1), y(2), . . . , y(N)] is mapped into multivariate data matrix Y.

Y =

⎡⎢⎢⎢⎣
y(1) y(2) . . . . . . . . . . . . y(K)
y(2) y(3) . . . . . . . . . . . . y(K + 1)

...
... . . . . . . . . . . . .

...
y(M) y(M + 1) . . . . . . . . . . . . y(N)

⎤⎥⎥⎥⎦ (8)

where M represents the window length and K = N − M + 1. The matrix in (8) is called the
Hankel matrix, as its anti-diagonal elements are constant (same). From (7), we can write
Y = S + A (assuming that p = 1), where S and A represent the trajectory matrices of the
ground truth EEG and eye-blink artifact signals, respectively. Note that we have considered
the artifact mixing constant p = 1 for a simple explanation.

In the decomposition step of SSA, the trajectory matrix Y is decomposed into M trajec-
tory matrices, for example, Y1, Y2, . . . , YM. Hence, the singular value decomposition (SVD)
of Y = UDVT will be performed, where D represents the diagonal matrix whose elements
are singular values and U and V are left and right singular matrices, whose columns are the
eigenvectors of covariance matrix C = YYT and C = YTY, respectively. However, direct
decomposition of Y using SVD will increase the computational complexity. Therefore,
the eigen decomposition of the covariance matrix of C = YYT will be performed first.

Let us consider that λ1, λ2, . . . , λM and u1, u2, . . . , uM represent the eigenvalues and
the eigenvectors of the covariance matrix C = YYT . Moreover, we assume that the eigen-
values are sorted in the descending order of their amplitudes, λ1 ≥ λ2 ≥, . . . ,≥ λM ≥ 0.
Then, the jth trajectory matrix Yj can be represented as

Yj =
√

λjujv
T
j j = 1, 2, . . . , M (9)

261



Sensors 2022, 22, 931

from the SVD of Y, vj = YTuj/
√

λj. Substituting vj in (9), then the jth trajectory matrix Yj

can be represented as
Yj = uju

T
j Y (10)

The terms uju
T
j in (10) form a subspace to reconstruct the jth component from the

given signal y.
The main goal in the grouping step of SSA is to construct the eye-blink associated

trajectory matrix A from M trajectory matrices Yj, j = 1, 2, . . . , M. Basically, we try to
identify the appropriate eigenvectors by which we can construct an eye-blink artifact-
associated trajectory matrix A. In the classical SSA technique, the eigenvectors that are used
to construct the eye-blink artifact are identified based on the strength of the eigenvalues
(eigen spectrum) of a covariance matrix C [36]. However, in this work, we have identified
these eigenvectors based on the local mobility or Hjorth mobility [44], which is a signal
complexity measure of each eigenvector [38]. Here, the hypothesis is that the local mobility
of the eigenvectors corresponding to the eye-blink artifact is low and is high for eigenvectors
associated with EEG signals. Therefore, the pre-defined threshold has to be set to identify
the eigenvectors associated to the eye-blink artifact. In fact, finding the eigenvectors
associated with the artifact is similar to identifying the artifact signal subspace from
the given signal space. The parameter for identifying the eye-blink artifact subspace
is computed as follows: as the eigenvector holds the variation of the data, first, M sampled
sinusoidal signal of frequency f is generated. Next, the local mobility of the sinusoidal
signal is computed and it will be used as a threshold. As the threshold, which is used to
identify the artifact subspace, is proportional to the frequency, it is denoted with variable
f . The threshold parameter f of SSA will be acting as a cut-off frequency as in the case
of a low-pass filter. After identifying the eigenvectors (basis functions) associated with
an eye-blink artifact, the trajectory matrix corresponding to an eye-blink artifact (Ā) is
computed using (10).

In fact, the computed trajectory matrix Ā that resulted from the grouping step of SSA
will not hold the Hankel structure. In the diagonal averaging step of SSA, the anti-diagonal
elements are replaced with their average, and the uni-variate signal ā will be constructed
using (11), as follows:

ā(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
n

n
∑

i=1
Ā(i, n− i + 1) for 1 ≥ n < M

1
M

M
∑

i=1
Ā(i, n− i + 1) for M ≥ n ≤ K

1
N−n+1

N−K+1
∑

i=n−K+1
Ā(i, n− i + 1) for K < n ≤ N

(11)

The extracted eye-blink artifacts ā from the SSA method contain low-frequency EEG
components. The direct subtraction of the extracted eye-blink artifact (ā) from the contam-
inated signal y results in a loss of low-frequency components in the reconstructed EEG
signal. Therefore, denoising of these components from ā has to be performed before it is
subtracted from the contaminated EEG signal y.

Denoising the EEG Components from the Extracted Eye-Blink Artifact (ā)

In order to denoise the EEG components in the extracted eye-blink artifact ā, we
proposed a new methodology. In this method, the time-frequency representation of ā,

262



Sensors 2022, 22, 931

which is the output of the SSA block, is performed using CWT, and it results in a matrix Ã

of size L× N and is denoted by

|Ã| =

⎡⎢⎢⎢⎣
ã(1, 1) . . . . . . ã(1, j) . . . . . . ã(1, N)
ã(2, 1) . . . . . . ã(2, j) . . . . . . ã(2, N)

...
... . . . . . . . . . . . .

...
ã(L, 1) . . . . . . ã(L, j) . . . . . . ã(L, N)

⎤⎥⎥⎥⎦ = [ã1, . . . , ãj, . . . , ãN ]

where L is the number of frequencies for which CWT is computed. Each column vector ãj
(j = 1, 2, . . . , N) of |Ã| represents the feature vector of jth sample of ā. Next, each column
vector of |Ã| is clustered using k-means clustering algorithm with C number of clusters.
Then, k-means algorithm provides the labels for each feature vector of |Ã|. These labels
inform to which cluster a particular feature vector (indirectly the sample of ā) has fallen.
With this clustering information, we construct C number of signals using (12)

ãi(j) =

{
ā(j) if ãj ∈ Ci, i = 1, 2, . . . , C & j = 1, 2, . . . , N
0 if ãj /∈ Ci

(12)

Here, ãj represents the jth column vector of matrix |Ã|. After decomposing the signal
ā into C number of signals, say ã1, ã2, . . . . . . , ãC using (12), then, the fractal dimension
(FD) [45] of each component is computed to identify the eye-blink artifact associated
component. The estimated eye-blink artifact (â) is identified based on the FD; usually, it
is low for denoised eye-blink artifacts. Finally, the corrected EEG signal (ŝ) is obtained by
subtracting the estimated eye-blink artifact â from y.

4. Results

To evaluate the performance of the proposed and the existing methods, we have con-
structed synthetically contaminated EEG signals from fatigue EEG data [46,47].

4.1. Construction of Synthetically Contaminated EEG Signal and Eye-Blink Artifact

We have considered 10 subjects’ EEG data from the Fatigue EEG database [46,47]. Each
subject performed a driving task on a static simulator. The EEG data were recorded in two
phases normal and fatigue states using a 32-channel electrode cap with a sampling frequency
of 1000 Hz. More details about the EEG data are discussed in [46,47]. In the construction of a
true EEG signal for the simulation study, first, the raw EEG data measured from Fp1 channel
of ten subjects is down sampled to 250 Hz from 1000 Hz. Next, the baseline drift and the
high-frequency components in the EEG data are removed using a band-pass filter with cut-off
frequencies of 1 and 45 Hz. However, for synthetic simulation, a 10 s artifact-free EEG epoch
is segmented from the filtered EEG data. These artifact-free EEG epochs are served as true
EEG signals (s) for a synthetic simulation study. The synthetic eye-blink artifact data were
constructed as follows: first, we identified the eye-blink artifact region manually and segmented
it from the EEG signal. Next, zeros were padded to the segmented eye-blink component on
both sides such that the length of the signal is 10 s. In order to remove the EEG remnants
present on the eye-blink component, MATLAB smooth command was used. This results in
the ground truth eye-blink artifact signal (a). We have constructed five such eye-blink artifacts
from five subjects. Using these five eye-blink artifacts and ten EEG signals, we constructed
a total of 50 synthetically contaminated EEG signals (y). However, we assumed that the
contaminated EEG signal is additive mixing of both the true EEG signal and the eye-blink
artifact, i.e., y = s + pa. Here, the artifact mixing constant p changes the SNR of the EEG
signal. When the artifact mixing constant is p > 1, the eye-blink artifact contribution in the
contaminated EEG signal is high, and as a result, the SNR of the EEG signal is low. When p < 1,
the eye-blink artifact contribution in the contaminated EEG signal is low, and as a result, the
SNR of the EEG signal is high. Figure 2 shows the synthetically constructed ground truth EEG,
the eye-blink artifact and the contaminated EEG signals for p = 0.5.
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(a) (b) (c)

Figure 2. (a,b) Synthetically constructed ground truth EEG signal (s) and the EOG artifact (a), respec-
tively, and (c) the contaminated EEG signal x = s + pa for the artifact mixing constant p = 0.5.

4.2. Parameter Settings for Proposed and Existing Methods

The faithful reconstruction of eye-blink artifact components from the contaminated
EEG signal depends on the SSA window length and the parameter f that identifies the
artifact subspace. Therefore, we have performed simulations to select these parameters.
Figure 3 shows the effect of the parameter f and the window length M in extracting the eye-
blink artifact. We have identified the region of the eye-blink component (the artifact region
only) from the fifty extracted eye-blink artifact signals by SSA and computed the mean
eye-blink artifact component. Figure 3a–c shows the mean eye-blink artifact component
(the artifact region) of ā obtained by the SSA method for window lengths M = 22, 32 and
64 and the parameter f = 4, 6, 8, 10 and 12 Hz. We have noticed from Figure 3a–c that the
performance of SSA with f = 4 Hz is low for different window lengths M = 22, 32 and
64. However, the performance of SSA with M = 32 and 64 is stable for f = 6, 8, 10 and
12 Hz, as evident from Figure 3d. The RRMSE curves were plotted with respect to the mean
ground truth eye-blink artifact a. Based on the results in Figure 3d, the parameters of the
SSA method, f and the window length M are set to 8 Hz and 64, respectively, to obtain
better performance. For the proposed denoising methodology, Morlet wavelet transform
has been used to represent the eye-blink artifact obtained by SSA into its time–frequency
feature matrix, which is then given as input to the k-means clustering algorithm. In order to
map the eye-blink artifact component into its time–frequency representation, we compute
the wavelet coefficients in the range of 1 to 12 Hz with an increment of 0.25 Hz. This
results in a feature matrix of size 45× 2500. Such representation maps each sample of the
eye-blink artifact estimated by SSA into a high-dimensional feature vector of size 45× 1. It
was clear from Figure 1 that the number of components (ã1, ã2, . . . , ãC) constructed using
k-means information also increased when the number of clusters (C) increases. As the
eye-blink artifact is a strong component, setting the number of clusters to 2 displayed
better performance on short EEG epochs. Hence, we set the number of clusters to 2
for the proposed method. Based on the recommendations in [42], the parameters of the
k-means+SSA method, the window length and thresholds Th and TSSA are set to 125, 1.4
and 0.01, respectively. In the case of SSA+ANC, we identified better performance with
window length 40. Whereas in the case of the VME-DWT method, the α parameter is set to
1000 and the other parameters are fixed as in [29].
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(a) (b)

(c) (d)

Figure 3. The estimated eye-blink artifacts ā (the artifact region only) by SSA with different thresholds
and the window lengths (a) M = 22, (b) M = 32, and (c) M = 64. (d) Performance of SSA in terms of
RRMSE for varying window length M and thresholds ( f = 4, 6, 8, 10 and 12 Hz). The RRMSEs were
calculated with respect to the ground truth eye-blink signal, a.

4.3. Results with Synthetic EEG Signals

The time–frequency representation of the extracted eye-blink artifact ā, in Figure 4a ob-
tained by SSA, is shown in Figure 4b. As the eye-blink component is a strong component in
ā, also evident from Figure 4a, the feature vectors of the time–frequency matrix (Figure 4b)
between 2.5 and 3.5 s are significantly different. It is clear from the clustering information,
shown in Figure 4c that all of the feature vectors (the columns of time-frequency map)
corresponding to the eye-blink artifact region belong to cluster 2. The features vectors that
correspond to the non-artifact region belong to cluster 1. By computing (12), we have ob-
tained two signals ã1 and ã2, (as C = 2). We have computed the FD of these two components
to identify the eye-blink artifact. As the eye-blink artifact is a low-frequency component, we
expect its corresponding FD to be a low value. Finally, the denoised eye-blink component
is identified based on their FD value. The estimated eye-blink artifact and the corrected
EEG signals using the proposed and the existing methods are shown in Figure 5. Even
though the SSA and SSA+ANC methods extracted the eye-blink artifact very well, they
also extracted the low-frequency EEG information from the non-artifact regions, as shown
in Figure 5a. Although VME-DWT does not alter the non-artifact regions, it removed the
eye-blink artifact partially (see circled region), whereas the k-means+SSA method removes
valuable EEG information (see the circled region in the fourth row). In contrast, it is also
clear from Figure 5b that there is no loss of EEG information with the proposed method.
The RRMSE, the CC, the artifact reduction ratio (λ) and MAE values shown in Figure 5
also reveal the superiority of the proposed method over the existing methods. We also
computed the power spectrums of the true EEG, the contaminated EEG and the corrected
EEG signals to observe any spectral changes in the EEG signal after the artifact removal.
Figure 5c–g shows the superposition plots of the true EEG, contaminated EEG and the
corrected EEG signals using all methods. It can be observed from the power spectrum
plots of the true and corrected EEG signals that the proposed method almost preserves the
low-frequency information of the EEG signal as compared with the existing methods.
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(a)

(b)

(c)

Figure 4. (a) The extracted eye-blink artifact (ā) by SSA, (b) its time–frequency representation using
CWT (normalized plot) and (c) clustering information.

We have applied the proposed method to remove the eye-blink artifacts from 50 syn-
thetically contaminated EEG signals. Figure 6 shows the RRMSE, the CC, the artifact
reduction ratio (λ) and the MAE plots obtained by the application of the existing and the
proposed techniques over 50 EEG records for different artifact mixing constants (p). As
discussed earlier, the artifact mixing constant p alters the SNR of the EEG signal. When
p > 1, the SNR of the EEG signal is low, whereas the SNR of the EEG signal is high for
p < 1. Removing the eye-blink artifact is a challenging task when its contribution in the
contaminated EEG signal is low (i.e., p < 1). The relation between p and SNR of the
EEG signal is inversely proportional. The RRMSE and the CC values are computed with
respect to the ground truth eye-blink artifacts. Whereas, the artifact reduction ratio (λ) and
MAE values are computed with respect to the ground-truth EEG signals. It is clear from
Figure 6a–d that in all conditions, the mean RRMSE, the CC, artifact reduction ratio and
MAE values of the proposed method show better performance over SSA, SSA+ANC and
VME-DWT methods. Although the VME-DWT showed comparative performance with the
proposed method (see MAE plot) for p < 1, its performance is poor for p ≥ 1. Furthermore,
the performance of the proposed method is better as compared to k-means+SSA for p < 1
condition. Although the performance of the k-means+SSA method is comparable with the
proposed method for p ≥ 1, its performance is not stable due to the threshold parameters
Th and TSSA.
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(a) (b)

(c) (d) (e)

(g)(f)

Figure 5. (a) The estimated eye-blink artifact (â), (b) the corrected EEG signals (ŝ) using all methods,
for the artifact mixing constant p = 0.5. (c–g) the power spectrums of the true EEG (s), the contami-
nated EEG (y), and the corrected EEG signals of all methods.

267



Sensors 2022, 22, 931

(a) (b)

(c) (d)

Figure 6. Performance of the existing and the proposed methods in terms of (a) RRMSE, (b) CC,
(c) artifact removal ratio (λ) and (d) MAE (in log scale) with respect to the artifact mixing constant p.
(The artifact mixing constant p is ∝ 1/SNR) of the signal.

4.4. Results with Real EEG Signals

To evaluate the performance of the proposed method on the real EEG signals from the
Fatigue EEG dataset (Fatigue EEG DB), we have segmented 50 EEG epochs of length 10 s
from ten subjects’ lengthy EEG records [46,47]. Note that the data are re-sampled to 250
from 1000 Hz. Similarly, from the EEG Motor Movement/Imagery Database (EEG-MMI
DB), an EEG epoch of 10 s from the lengthy EEG signal (eyes open task) obtained from
65 subjects is segmented [48,49]. The sampling frequency of this dataset is 160 Hz. For both
datasets, the segmentation of the EEG epoch is performed such that at least one eye-blink
artifact component is present in the segmented EEG epoch. From these two datasets, we
have constructed in total 105 EEG epochs of length 10 s and evaluated the performance of
the proposed and existing methods. In fact, for real EEG signals there will be no ground-
truth EEG to evaluate the performance. Hence, we manually indicated the non-artifact and
artifact intervals of each record and computed RRMSE and CC values.

The estimated eye-blink artifact and the corrected EEG signals (Fatigue EEG data) with
all the methods are shown in Figure 7a,b. From Figure 7a, we can see that the low-frequency
components are still present in eye-blink artifacts obtained by the SSA and SSA+ANC
methods (see the non-artifact region between 1–4 s). As a result, low-frequency EEG
information is removed from the corrected EEG signal obtained by the SSA and SSA+ANC,
as shown in Figure 7b, whereas the VME-DWT method partially removed the eye-blink
artifact and altered the non-artifact region in the time interval 2–3 s. The k-means+SSA
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method also altered the non-artifact region of the EEG signals in time interval 1–4 s (as
indicated by circles in Figure 7b). The corrected EEG signal obtained by the k-means+SSA
method and the contaminated EEG signals do not match in the non-artifact region (see 1–4 s
in Figure 7b time interval). However, the corrected EEG signal obtained by the proposed
method perfectly matches with the non-artifact region of the contaminated EEG signal,
as shown in Figure 7b. The RRMSE and CC values shows the superiority of the proposed
method over the existing methods.

(a) (b)

Figure 7. (a) The estimated eye-blink artifact (â) and (b) the corrected EEG signals (ŝ) from the
contaminated EEG signal (y) using the existing and the proposed methods.

As we do not have ground truth EEG signals for real EEG datasets, it is difficult to
assess the performance of the proposed and existing methods in the frequency domain
(power spectrum). However, the manually identified non-artifact and artifact regions of the
EEG epoch are used to evaluate the performance of all methods in-terms of RRMSE and
CC values. Table 1 shows the RRMSE and CC (mean ± standard deviation) values of the
proposed method. Moreover, two binary classifier performance measures, such as precision
and accuracy are also computed to evaluate the performance. Table 2 shows the mean
precision and accuracy values of VME-DWT, k-means+SSA and proposed methods. It is
also evident from Tables 1 and 2 that the proposed method shows superior performance
over the existing methods.
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Table 1. RRMSE and CC (μ± σ) comparison between the non-artifact interval of contaminated and
corrected EEG signals.

Measures and
Methods

Fatigue EEG DB EEG-MMI DB

RRMSE CC RRMSE CC

SSA 63.6077 ± 11.6133 0.7576 ± 0.1068 71.4361 ± 11.9799 0.6831 ± 0.1106

SSA+ANC 61.4721 ± 9.3272 0.7815 ± 0.0764 61.5249 ± 11.2345 0.7775 ± 0.0862

VME-DWT 6.7885 ± 13.3722 0.9885 ± 0.0283 5.9036 ± 10.9759 0.9922 ± 0.0164

k-means+SSA 16.3888 ± 16.4607 0.9713 ± 0.0598 16.0701 ± 13.7886 0.9770 ± 0.0361

Proposed 4.9198 ± 7.4213 0.9960 ± 0.0139 2.9976 ± 7.3030 0.9969 ± 0.0104

Table 2. Comparison of precision and accuracy (μ± σ) of the proposed method with existing methods
for eye-blink detection on two real EEG datasets.

Measures and
Methods

Fatigue EEG DB EEG-MMI DB

Precision (%) Accuracy (%) Precision (%) Accuracy (%)

VME-DWT 80.0445 ± 14.9771 93.8336 ± 5.0842 72.0040 ± 14.1527 92.8067 ± 4.9993

k-means-DWT 55.5252 ± 12.4375 82.7320 ± 8.7630 57.5738 ± 11.3917 86.8750 ± 7.8568

Proposed 96.1604 ± 4.3639 94.2760 ± 6.3941 98.8142 ± 3.4201 95.4538 ± 2.6401

5. Discussion

Even though the SSA and SSA+ANC methods extract the eye-blink artifact component
efficiently, they also alter the low-frequency component of the EEG signal in the non-artifact
region (from Figures 5a and 7a). However, subtracting the estimated eye-blink artifact
directly from the contaminated EEG signal will also remove the low-frequency components
(0.5–12 Hz) of the EEG signal. This can be a cause of concern in applications such as
driver fatigue detection, where the spectral energy of low-frequency EEG components
is used to detect the fatigue level [50]. The use of low-frequency EEG components to
detect hand movements of subjects with spinal cord injury has been studied in [51,52].
In a recent study, it is found that the low-frequency EEG oscillations could be used as a
biomarker of stroke injury and recovery [53]. Moreover, eye-blink component features
(the frequency, amplitude and phase) are also used in applications such as control of
hand exoskeleton for the paralyzed hand [54–56]. Therefore, in order to preserve these
important low-frequency components at the pre-processing step, we combined SSA with
CWT and k-means algorithms. The results show that the proposed method preserves
these components while removing the eye-blink artifact. As the eye-blink artifact is a
high amplitude component in the EEG signal (particularly in pre-frontal EEG channels),
the proposed method has exploited this inherent feature to remove the eye-blink artifact
without altering the original EEG components. Although the VME-DWT method does not
alter the non-artifact intervals of EEG, it failed to remove the eye-blink artifact completely.
Even though the k-means+SSA method displayed comparable performance as compared
to the proposed method for a few EEG records, for cases where the eye-blink artifact is
stronger, the proposed method fared well in overall performance. In this present study, we
have only considered pre-frontal EEG channel signals. However, it can be expected from
the results that the performance of the proposed method will be degraded further when
the amplitude of the eye-blink artifact that is mixed in the EEG signal is low and this will
be our topic of future research. For example, the eye-blink artifact contribution is low on
fronto-central EEG channels FCx.

6. Conclusions

In this paper, we combined SSA with CWT and the k-means algorithms to preserve the
low-frequency EEG information in the artifact removal process. As the eye-blink artifact
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appears as a slow-time varying and strong component in the contaminated EEG signal,
the proposed method exploited this feature to remove eye-blink artifacts from a single-
channel EEG signal. The proposed method is evaluated on one synthetic and two real
EEG datasets, and results show superior performance over existing techniques. Results
also show the advantage of integrating SSA with CWT and k-means for eye-blink artifact
removal from single-channel EEG signal. Since the present study considered the artifact
removal from pre-frontal channel EEG signals, with the integration of available artifact
detection algorithms, the proposed method could be employed for online applications
where the pre-frontal EEG channel is used. Results show that the proposed method was
successful in removing the eye blink artifact without the loss of original EEG informa-
tion. Although the classification problem using the proposed method was not studied
in the paper, we foresee that the proposed method will offer good performance in the
final application.
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Abstract: Vital signal detection using multiple radars is proposed to reduce the signal degradation
from a subject’s body movement. The phase variation in the transceiving signals of continuous-
wave radar due to respiration and heartbeat is generated by the body surface movement of the
organs monitored in the line-of-sight (LOS) of the radar. The body movement signals obtained by
two adjacent radars can be assumed to be the same over a certain distance. However, the vital
signals are different in each radar, and each radar has a different LOS because of the asymmetric
movement of lungs and heart. The proposed method uses two adjacent radars with different LOS to
obtain correlated signals that reinforce the difference in the asymmetrical movement of the organs.
The correlated signals can improve the signal-to-noise ratio in vital signal detection because of a
reduction in the body movement effect. Two radars at different frequencies in the 5.8 GHz band are
implemented to reduce direct signal coupling. Measurement results using the radars arranged at
angles of 30◦, 45◦, and 60◦ showed that the proposed method can detect the vital signals with a mean
accuracy of 97.8% for the subject moving at a maximum velocity of 53.4 mm/s.

Keywords: body movement cancelation; continuous wave; Doppler radar; multiple radars; vital
signal detection; heartbeat; respiration

1. Introduction

The extraction of respiration and heartbeat signals from the variations in transceiving
signal characteristics is a promising remote vital signal detection technology because it can
escape the physical restraint of a contact sensor and be used in various applications [1–3].
A continuous wave (CW) Doppler radar, which monitors the Doppler frequency change in
the CW signal caused by the thoracic movement from respiration and the heart’s periodic
movement, can acquire remote vital signals using a simple hardware configuration [4,5].

The effect of a subject’s body movement must be removed for vital signal detection
technology using a CW Doppler radar sensor to be commercialized for industrial and
medical applications. A human body movement normally involves a larger displacement
than movement caused by respiration (with a displacement of 4–12 mm) and heartbeat
(with a displacement of 0.2–0.5 mm) on the body surface [6]. When a human body moves,
a signal saturation may occur in a sensitive receiver for heartbeat detection because of its
limited dynamic range, making it impossible to detect any signals [7]. Even when the radar
has a sufficiently wide dynamic range, the frequency components of body movement can
occupy a similar band to the frequencies resulting from respiration and heartbeat. As these
components act as noise, they can deteriorate the signal-to-noise ratio (SNR) in vital signal
detection or make the detection of vital signals impossible [7].

Previous studies on mitigating performance degradation in vital signal detection
due to body movement can be divided into techniques for improving radar hardware
configuration and signal-processing techniques [8–19]. Previous studies on radar hardware
configuration separate the body movement and vital signals by measuring the directivity
of body movement. Some studies use a plurality of radars to remove Doppler shifts
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due to body movement by arranging them at positions facing each other around the
subject and comparing the phase change in the baseband signals obtained from each
radar [8–12]. However, these studies have a limitation in that it is difficult to consider the
same movement in each radar because of the interference between radars and a change
in the polarity of the received signal. Previous studies have shown that body movement
can be canceled by fusion techniques using additional sensors, but they have a limitation
in terms of their increased system complexity and implementation cost [13–16]. A signal-
processing technique for minimizing the effect of body movement on radars is based
on the compensation of the dominant baseband signal characteristics generated by body
movement [17–19]. They have a limitation in that compensating for the effect of body
movement because the cancelation performance can depend on the windowing size and
time period of polynomial fitting. Although previous studies on removing the effect of body
movement in vital signal detection using radars have been conducted in various directions,
a technique for removing the effect of body movement has not been sufficiently explored.

In this study, the method of placing two independent radar sensors at the front
for a certain angle of line-of-sight (LOS) is proposed to effectively compensate for the
body movement characteristics and sensitively detect only vital signals based on the
asymmetrical movement of internal organs. In the proposed radar configuration, two
radars with different LOS are arranged in the same direction within a shorter distance
than the wavelength of the operating frequency. The two radars use different operating
frequencies to minimize direct coupling. It is assumed that the vital signals obtained by the
two radars are different because of the asymmetric movement of organs, but the signal from
body movement is approximately the same for each radar. The proposed configuration
can improve the SNR of vital signal detection by removing the baseband signals from
body movement. Section 2 describes the displacement difference due to the asymmetric
movement of the heart and lungs, along with the proposed configuration and operating
principle using multiple radars. The digital signal processing and hardware configuration
to improve the SNR using a correlation between the two baseband signals of the radars are
presented in Section 3. The measurement results and analyses are discussed in Section 4.
Section 5 presents the conclusions of this study.

2. Proposed Configuration Using Multi-Radars

2.1. Physiological Movement of the Heart and Lungs

The heart and lungs inside a human body move in asymmetric directions with re-
peated contraction and expansion, as shown in Figure 1. The human heart in Figure 1a,
which is divided into four parts (left and right atria and left and right ventricles) generates
different displacements of the chest wall due to its different volumes and pressures [20–22].
In addition to the non-uniform characteristics of the human tissue layer consisting of
various organs, muscles, and bones, the inherent directional movement of heart muscles
caused by its various parts is asymmetrically monitored on the surface of the human body.
As shown in Figure 1b, the lung movement during respiration is accompanied by the
movement of the surrounding intercostal muscles, diaphragm, and the lung itself, resulting
in a larger asymmetrical movement. The movement due to respiration, accompanied by
the movement of the ribcage, is also generated anisotropically because the body volume
depends on the contraction and expansion of the lungs [23,24]. The asymmetric move-
ments of the human heart and lungs imply that a radar sensor to detect vital signals from
varying surface displacements can be positioned along a specific direction to increase its
detection sensitivity.
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(a) (b) 

Figure 1. Asymmetrical movements of human organs: (a) pumping and filling of blood in the heart; (b) expansion and
contraction in the lungs [25,26].

The asymmetric movement of the heart and lungs on the surface of the human body
was experimentally verified using two 5.8-GHz CW Doppler radars, as shown in Figure 2, to
monitor respiration and heartbeat signals from a periodic displacement. The configuration
of the CW Doppler radar module is described in Section 3. Two radars operating at the
same frequency are placed between the subject in a line at a distance of 0.8 m to ensure their
LOS is between the subject’s front and rear. It was assumed that the vital signals obtained
from each radar have dominant characteristics caused by the position of the human body.
Unlike previous studies, in which radars were also placed on the left and right sides of the
subject, in this study, there were no additional radars on either side to exclude the effect
of minute movements of the subject′s arms [9]. Figure 3 shows the vital signals that were
simultaneously measured by the radars. Both the measured data displayed respiration and
heartbeat signals at the same frequency, but the signal powers were measured differently
between the two datasets, even though all components and conditions in the radars were
identical. The respiration measured from the front radar (located at the front of the subject)
had a higher intensity than that from the rear radar (located on the back of the subject).
However, the heartbeat measured from the rear radar had a higher intensity than that from
the front radar, even though the noise signal near DC was higher in the rear radar. The
measurement results in Figure 3 show that the respiration and heartbeat signals measured
by the radars, which detect the vital signal from the displacement of the human body
surface, have an asymmetrical movement, as shown in several previous studies [8–10]. It
is unreasonable to insist that the rear radar is more advantageous for heartbeat detection
than the front radar based on the results in Figure 3. The SNR for heartbeat detection could
decrease even though the amplitude of the heartbeat signal increased in the rear radar
because it could increase the harmonic components of respiration and the noise near DC
by increasing the nonlinearity of the received signal. The SNR could improve by using a
signal correlation between the front and rear radars, because the body movement could be
canceled by a displacement compensation using the quadrature signals of the configuration
shown in Figure 3; however, the compensation performance is limited when the received
signal from the rear radar is too small to detect the vital signals of the subject. The vital
signals from the rear radar generally have lower power due to the small displacements
based on the asymmetric movements of human organs when compared to the front radar,
and their attenuation is more affected in the rear radar by the clothing conditions of the
subject and the distance between the subject and the radar.
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Figure 2. Preceding experiment showing that the respiration and heartbeat signals obtained from the
radar can be different depending on the direction of the line-of-sight to the subject.

Figure 3. Frequency spectrum of the vital signals simultaneously measured from the two radars placed in front of and
behind the subject.

2.2. Proposed Configuration for Vital Signal Detection Using Multiple Radars

A configuration using multiple radars, as shown in Figure 4, is proposed to increase
the SNR of vital signal detection while considering the asymmetrical movements of human
organs. The radar modules in the 5.8 GHz frequency band, which operate independently
and consist of transmitting and receiving front-end and baseband circuits, are separately
located at the same angle (θ) to the left and right and at the same distance (d0) from the
subject. The operating frequencies of the two radars are set to be different within the
frequency band to reduce the degradation from a direct signal coupling between them
and are arranged at an angle of 30◦ or more for a sufficient separation distance to reduce
the increase in noise due to the blocker signal. When the operating frequencies of the two
radars are different in the frequency band, the transmitted signals T1(t) and T2(t) from the
two radars can be expressed as follows:

Tk(t) = ATk· cos[2π f kt + θk(t)], k = 1.2, (1)

where k is an index to discriminate the radar module, fk is the operating frequency of
each radar, ATk is the amplitude of the transmitted signals, and Δθk(t) is the phase noise
generated from the signal source at the operating frequency. The vital signals generated
by the asymmetrical movements of human organs are differently monitored in the two
radars because of their different LOSs, and the received signals Rk(t) in each radar can
be expressed, except for the non-ideal characteristics such as the multipath and signal
coupling, as follows:

Rk(t) = ARk· cos
[

2π f kt− 4πd0

λk
− 4πxk(t)

λk
± 4πb(t)

λk
+ θk

(
t− 2d0

c

)]
, k = 1.2 (2)
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where ARk denotes the amplitudes of the received signals, c represents the propagation
velocity of light in air, λk denotes the wavelength of the operating frequency, xk(t) denotes
the displacement of the vital signals, and b(t) denotes the displacement caused by human
body movement. Assuming that the human body moves only in the forward and backward
directions, the displacement b(t) because of this movement can be equally expressed in
both radars. The ± sign is used to indicate the human body movement direction, and the
+ and – signs, respectively, indicate movements approaching and moving away from the
radar. Owing to the asymmetric movements of the heart and lungs and the different radar-
operating frequencies, xk(t) can be expressed by distinguishing the amplitudes, phases,
and frequencies as follows:

xk(t) = xrk(t) + xhk(t) = mrk cos(ωrt + ϕrk) + mhk cos(ωht + ϕhk) (3)

where xrk(t) and xhk(t) are the displacements from respiration and heartbeat, respectively;
mrk and mhk denote the magnitudes of respiration and heartbeat, respectively; wr and wh
denote the angular frequencies of respiration and heartbeat, respectively; and ϕrk and
ϕhk denote the phases of respiration and heartbeat, respectively. Although the radars
are located at the same distance from the subject, the magnitudes mrk and mhk and the
phases ϕrk and ϕhk are differently indicated because of the asymmetrical movement of
the organs. The angular frequencies wr and wh can be assumed to be a single-frequency
component because respiration and heartbeat signals at the surface of the human body are
dominated by changes in the volume of the chest cavity and the left ventricle’s movement,
respectively [20,24]. After a down-conversion with a quadrature mixer and filtering with
the low-pass filters, the baseband signals in the in-phase (I) and quadrature (Q) channels
can be obtained as:

Ik(t) = AIk· cos
[

4πd0

λk
+

4πxk(t)
λk

∓ 4πb(t)
λk

+ ·θk(t)
]
+ DCIk, k = 1.2 (4)

Qk(t) = AQk· sin
[

4πd0

λk
+

4πxk(t)
λk

∓ 4πb(t)
λk

+ ·θk(t)
]
+ DCQk, k = 1.2 (5)

where AIk and AQk are the amplitudes in I/Q channels, Δθk(t) is the residual phase noise,
which is neglected in short-range applications because of the range correlation effect,
and DCIK and DCQK are the DC offset voltages in I/Q channels, which are generated
by stationary clutters in the experimental environment and direct coupling between the
transmitting and receiving signals [27]. The signal processing may require demodulation
to extract the vital signal x(t) in the trigonometric functions in Equations (4) and (5). A
mathematical demodulation technique such as arcsine or arctangent demodulation is not
suitable for the proposed configuration with multiple radar modules because DC offset
voltages caused by the presence of the subject and surrounding clutter are difficult to
remove [27,28]. The circle fitting method, which can extract the displacement through
the circle trajectory, shown as a graph in the I/Q plot, can demodulate the dominant
displacement of baseband signals, even in an environment with a DC offset [29]. However,
when b(t) caused by the movement of the human body is dominantly shown in the circle
trajectory, the circle fitting method has limits to vital signal detection using the proposed
radar configuration because x(t) may be lost in the demodulated signals [8]. The complex
signal demodulation (CSD) used in the proposed configuration is useful for detecting small
displacements from vital signals in an environment with a DC offset. The complex signal
Sk(t) can be expressed as follows:

Sk(t) = I′k(t) + j·Q′k(t) = Ak exp
[

j
(

4πd0

λk
+

4πxk(t)
λk

∓ 4πb(t)
λk

)]
, k = 1.2 (6)

where Ik
′(t) and Qk

′(t) are baseband signals after compensating for the I/Q imbalance,
and Ak is the amplitude of the complex signal. The DC offset is negligible in the I/Q
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imbalance compensation and the CSD method because it is significantly reduced in Sk(t)
by the amplitude of the baseband signals.

Figure 4. Proposed radar configuration using multiple radars based on the asymmetrical movement of human organs.

A signal processing technique is proposed to improve the SNR in vital signal detection
using the correlation between two radar signals. By normalizing Sk(t) and extracting only
the phase using a natural logarithm, the phase of the baseband signal obtained in the
conventional CSD method can be expressed as follows:

Pk(t) =
4πd0

λk
+

4πxk(t)
λk

∓ 4πb(t)
λk

. k = 1.2 (7)

The phase difference PD(t) between two operating frequencies obtained from each
radar can be expressed as

PD(t) = P1(t)− P2(t) = 4π(d0 ∓ b(t))·
(

1
λ1
− 1

λ2

)
+ 4π

(
x1(t)

λ1
− x2(t)

λ2

)
(8)

As shown in Equation (8), the effect of b(t) in the proposed configuration is not entirely
diminished because of the different operating frequencies, but it is smaller than that in the
single CW radar configuration. The amplitude of the periodic vital signal is as prominent
as the asymmetrical movement of organs due to the non-identical amplitudes of the vital
signals from each radar. When an identical operating frequency is used in the two radars,
the effect of the human body movement can be removed, as the second term in Equation (8)
will remain due to the asymmetric movement, but the first term will cancel out [8–10].
However, the displacement of the movement in Equation (8) is difficult to remove if the
wavelength difference between the two radars is large, and it has a significant effect on
the noise level by increasing the harmonic components due to the vital signals and the
signal caused by human body movement. The mathematical expression of the signal using
Equation (8) can be expressed as

C(t) = exp(jPD(t)) = exp
[

j4π(d0 ∓ b(t))·
(

1
λ1
− 1

λ2

)
+ j4π

(
x1(t)

λ1
− x2(t)

λ2

)]
(9)

The conventional signal processing method obtains the respiration and heartbeat
signals by searching the signal amplitude in the frequency band corresponding to the res-
piration and heartbeat using the fast Fourier Transform (FFT) of Equation (9). Respiratory
and heartbeat signals can be accurately obtained for each vital signal by comparison with
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the frequency detected by the reference sensor. In the proposed signal processing, the
vital signals are extracted from the difference in the spectrum obtained by each FFT of the
demodulated signal by the CSD. The mathematical expression of the signal processed by
the proposed method can be expressed as a subtraction of the normalized complex signals
Sk
′(t) shown in Equation (6) as follows:

F(t) = S′1(t)− S′2(t) = exp
[

j4π

λ1
(d0 + x1(t)∓ b(t))

]
− exp

[
j4π

λ2
(d0 + x2(t)∓ b(t))

]
. (10)

The first term in the exponential function represents the DC signals caused by the
distance between the radar and the subject; the DC signal level from the difference between
two frequencies is reduced in the FFT results compared with that from a single radar.
The effect of b(t) in the proposed configuration is not entirely diminished because of the
different operating frequencies, but b(t) in Equation (10) can be expressed in the same form
as Equation (9) after applying a complex FFT and can be reduced in the output signal F(t)
by a subtractive operation. However, x(t) in Equation (10) cannot be reduced at the output
because x(t) in each radar is not the same in magnitude and phase, as shown in Equation (3).
As the phases of the vital signals independently obtained from the two radars are different
owing to the asymmetric movement of human organs, x(t) may be integrated during the
sampling period and increase beyond the signal level obtained from a single radar.

Figure 5 shows the digital signal processing in the proposed radar configuration. A
simulation to verify the proposed configuration and signal processing was performed using
MATLAB. It was assumed that two radars individually operating at 5.75 GHz and 5.85 GHz
are located at 0.5 m from the subject. In the simulation, the magnitudes of the vital signals
were set to 8 mVPP at radar A and 7 mVPP at radar B for respiration and 1 mVPP at radar A
and 0.4 mVPP at radar B for heartbeat, considering the measurement data from the previous
experiments [4,5,18]. The phase differences of the vital signals were set to π between
radar A and B. The overall data acquisition time and sampling frequency in the simulated
experiment were set to 40 s and 1 kHz, respectively. The simulation assumed that the
signal caused by the human body is located at 0.003 Hz with the magnitude of 100 mVPP.
Figure 6 shows the normalized spectrum of the baseband signals using Equations (6) and
(10) following the complex FFT. In the simulated spectrum of the single-frequency radar,
the signal caused by body movement has a lower frequency than the vital signals because
of its low velocity. The simulation results show that the SNR of the vital signals can be
reduced by body movements with a large displacement. The simulated spectrum processed
by the proposed signal processing method shows a significant reduction in the effect of
body movement because of a correlation between the baseband signals of the two radars.
A respiration frequency of 0.4 Hz and heartbeat frequency of 1.4 Hz, which are the same
values as in the simulation condition, were effectively recovered by increasing the SNR of
the vital signal detection because of the proposed signal processing. Figure 7 shows the
simulated spectra of both the conventional method and the proposed method in the radar
configuration. Compared to the conventional method, which increases the harmonics using
a nonlinear function, the modified method can suppress the harmonic generation in the
spectrum. The same frequencies of vital signals in both spectra indicate that the proposed
method does not distort the demodulated signals when compared to the conventional
method. Figure 8 shows the signal processing gain of the conventional and proposed signal
processing methods depending on the difference in the operating frequency of the two
radars. The SNR in Figure 8 was calculated from the simulation results by using the signal
spectrum magnitude of the vital signals and the noise spectrum magnitude of the human
movement signal. Simulation results show that the proposed signal processing method
can achieve higher SNR in both respiration and heart rate compared to the conventional
method. In particular, the SNR of the proposed method improved 1.3 dB for respiration
signals and 0.7 dB for heartbeat signals at a frequency difference of 100 MHz in the
proposed configuration. The SNRs of the conventional and proposed methods do not show
a significant difference above the frequency difference of 170 MHz. These results show that
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the proposed method can be effective for vital signal detection in the 5.8 GHz ISM band
with a maximum frequency bandwidth of 150 MHz.

Figure 5. Digital signal processing using the proposed correlation technique for reducing the effect of human body movement.

Figure 6. Normalized spectrum of baseband signals in the simulation.

Figure 7. Simulated spectrum of the conventional and proposed signal processing methods.
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(a) 

 
(b) 

Figure 8. Signal-to-noise ratios of the conventional and proposed signal processing methods depending on the difference in
the operating frequency of the two radars: the signal is the magnitude of the vital signs and the noise is the magnitude of
the signal caused by the human body movement: (a) for respiration; (b) for heartbeat.

3. Measurement Environment

Two signal channel radar modules were implemented for the proposed radar configu-
ration as shown in Figure 9 [17]. The operating frequencies of the two radars in the 5.8 GHz
ISM band are individually determined with the control voltage of a voltage-controlled
oscillator (VCO). In the experiment, the frequencies were set to 5.75 GHz and 5.85 GHz,
with a frequency gap of 100 MHz. The transmitted powers at each radar module were
measured to be 7.8 dBm at 5.75 GHz and 9.3 dBm at 5.85 GHz, respectively. The desired
LOS, as shown in Figure 10, was set to the position and angle of the patch antenna with
an antenna gain of 4.4 dBi, which is connected to the radar module through low-loss RF
cables. The quadrature signals of the module were simultaneously obtained using a data
acquisition board (NI USB-6366, National Instruments, Austin, TX, USA) with a sampling
rate of 1 k samples per second in each channel of the two radars. A three-electrode ECG
sensor (EKG-BTA, Vernier Software & Technology, Beaverton, OR, USA) and respiration
belt (GDX-RB, Vernier Software & Technology, Beaverton, OR, USA) were used as reference
sensors to compare the accuracy of vital sign detection using the proposed radar configura-
tion. The reference data for displacement and velocity of the human body movement were
measured using a laser sensor (ILR1182-30, Micro-Epsilon, Ortenburg, Germany) with a
resolution of 0.1 mm and sampling rate of 50 samples per second.
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Figure 9. Implemented single-channel radar module in the 5.8 GHz ISM band.

 
Figure 10. Experiment environment of the proposed radar configuration for vital signal detection for
canceling the effect of body movement.

The two CW radars with different operating frequencies were positioned at a specific
angle in the radar configuration, as shown in Figures 4 and 10. The angles in the experiment
were set to 30◦, 45◦, and 60◦, and the distance between the subject and each radar was fixed
at 0.5 m. The body movement was controlled in the experiment for the given conditions,
a motionless state and a random back-and-forth moving state for approximately 5 s. The
movement of the subject’s arms was restricted because the movement may affect the
experimental results. The velocity obtained from the reference laser sensor was calibrated
to the velocity at the radar module considering the different LOSs and the angles.

4. Results and Discussion

The radar experimental frequency spectrum of the respiration and heartbeat signals
were simultaneously compared with the signals of the reference respiration belt and an ECG
sensor. The experiment was configured so that the subject′s respiration harmonics did not
overlap with the heartbeat signal to prevent obscuring the detection of the heartbeat signal.
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Figure 11 shows the frequency spectra of the vital signals obtained from the proposed
radar configuration with a LOS angle of 30◦ and the reference signals obtained from the
respiration belt and the ECG sensor. The peak frequency of the respiration in the proposed
radar was 0.36 Hz while the reference frequency measured by the respiration belt was
0.37 Hz. The peak frequency of the heartbeat signal in the radar was 1.34 Hz while the
reference ECG sensor measured 1.32 Hz. The frequency difference between the respiration
harmonics and the heartbeat was 0.1 Hz or higher.

Figure 11. Frequency spectra of the vital signals measured by using the reference sensors (a respiration belt and an ECG
sensor) and the proposed radar configuration at the LOS angle of 30◦.

The vital signals obtained in the proposed configuration using two radars were pre-
sented as a spectrum depending on the LOS, angle, and presence of body movement. The
measurement results are of two types: a normalized spectrum and a spectrum expressed
with the absolute amplitude, for demonstrating the SNR improvement of the vital signal
detection by the proposed radar configuration and signal processing. Figures 12–14 show
the spectra measured in the experimental environment configured with a measurement
angles of 30◦, 45◦, and 60◦, respectively. In the case of motion, the subject in the experiment
moved arbitrarily in the forward and backward directions, and the maximum velocity in
the measurement was presented with a laser-based reference sensor because it is difficult
to control the velocity and displacement of these movements. Owing to the angle set by
the LOS of the subject and the radar, the body movement of the subject is presented in
the direction of the LOS on the radar. The velocity of the subject’s body movement was
measured to be a maximum of 17.2 mm/s at 30◦, 12 mm/s at 45◦, and 26.7 mm/s at 60◦
using the reference sensor at the front of the subject, and the calculated velocity considering
the angle was 19.9 mm/s at 30◦, 17.0 mm/s at 45◦, and 53.4 mm/s at 60◦, respectively.
The subject′s movement was limited in the experiment because a sufficient space between
the radars and the subject was not secured, and the maximum displacement because of
the movement was 80 mm at 30◦, 80 mm at 45◦, and 30 mm at 60◦, as measured by the
reference sensor.

Respirations were detected from the measured signal peaks, regardless of the pres-
ence or absence of motion in the LOS angles of 30◦ and 60◦, as shown in Figure 12a,c,
Figure 13a and Figure 14a,c. However, in the radar arrangement at an angle of 45◦, the
peak of the respiration signal was detected only in the correlated signal by the proposed
signal processing, as shown in Figure 13c. Despite its small velocity when compared to
other angles, the subject′s movement at 45◦ in Figure 13 had a significant effect on vital
signal detection because of the SNR degradation caused by an increase in the noise. This
shows that the displacement magnitude is more important than velocity of human body
movement because the subject at an angle of 45◦ moved his body with a high displacement
and a low velocity. For the subject’s motionless condition, the heartbeat signals were
measured at all angles by a correlation between the two radars using the proposed method,
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as shown in Figure 12a, Figure 13a and Figure 14a; however, the signal in the single radar
was measured only from radar A, which was located close to the subject′s heart. Assuming
that the transmitter output power and receiver sensitivity of the two radars do not have a
significant difference, it can be seen that a larger heartbeat signal was received by radar
A because of the asymmetry of the heart rate and position between the two radars. The
heartbeat signals in an environment with the subject′s motion were not obtained from each
radar, as shown in Figure 12c, Figure 13c and Figure 14c. However, the signal correlated
using the proposed signal processing displayed the heartbeat signals at all angles. The
performance improvement by the proposed configuration and processing can be explained
by the increase in the SNR because of a decrease in the noise reduction near DC. Figure 12d,
Figure 13d and Figure 14d, displayed as the absolute amplitudes of the signals, show
that the signals near DC caused by the motion of the subject are significantly reduced
by the proposed signal processing. The spectra at angles of 30◦ and 45◦ (Figure 12b and
Figure 13b) in the motionless condition show that the noise level near DC was slightly
reduced by the proposed method. However, there was no significant reduction in the noise
level of the spectrum at an angle of 60◦, as shown in Figure 14b. The residual noise near DC
in the motionless state of the subject shows that the proposed configuration and processing
can only improve the performance for common noise in both radars. This shows the
limitation of the proposed configuration and processing: it does not show a performance
improvement for noise generated by the asymmetric clutter and multipath problem.

 
(a) (b) 

  
(c) (d) 

Figure 12. Measurement results using the proposed radar configuration in the experiment with a measurement angle of
30◦: (a) normalized spectrum obtained in the motionless condition; (b) spectrum displayed with the absolute amplitudes
of signals in the motionless condition; (c) normalized spectrum obtained in the presence of human body movement; and
(d) spectrum displayed with the absolute amplitudes of the signals in the presence of human body movement.
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(a) (b) 

  
(c) (d) 

Figure 13. Measurement results using the proposed radar configuration in the experiment with a measurement angle of
45◦: (a) normalized spectrum obtained in the motionless condition; (b) spectrum displayed with the absolute amplitudes
of signals in the motionless condition; (c) normalized spectrum obtained in the presence of human body movement;
(d) spectrum displayed with the absolute amplitudes of the signals in the presence of human body movement.

The SNR of the vital signal detection in the experiment can be expressed as the ratio
of the sum of the respiration and heartbeat signals to the sum of all signals except the vital
signals below 2 Hz. The SNR improvement of the vital signal detection by the proposed
signal processing method for the moving human body condition was measured to be 5.6 dB
for respiration and 3.3 dB for heartbeat at an angle of 30◦, 5.7 dB for respiration and 4.2 dB
for heartbeat at an angle of 45◦, and 3.7 dB for respiration and 3.0 dB for heartbeat at an
angle of 60◦, respectively. The detection accuracy of the vital signal calculated using the
measured peaks in Figures 12–14 was 96.8% for respiration and 98.2% for heartbeat at 30◦,
96% for respiration and 99.2% for heartbeat at 45◦, and 98.4% for respiration and 96% for
heartbeat at 60◦, respectively. Compared to previous studies on vital signal detection using
the CW radars, the detection accuracy of the proposed radar configuration was lower for
respiration but higher for heartbeat. In the measurement results, the detection accuracy
of respiration was reduced by increasing the noise level because of the movement of the
human body appearing at a lower frequency range than the respiration. The detection
accuracy of heartbeat was not affected by the noise level from the motion because of the
far frequency range between the noise and the heartbeat signals and increased because
of the SNR improvement from the proposed signal processing. Table 1 summarizes the
comparison of vital signal detection using radar technology to reduce the effect of human
body movement.
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(a) (b) 

  
(c) (d) 

Figure 14. Measurement results using the proposed radar configuration in the experiment with a measurement angle of
60◦: (a) normalized spectrum obtained in the motionless condition; (b) spectrum displayed with the absolute amplitudes
of signals in the motionless condition; (c) normalized spectrum obtained in the presence of human body movement;
(d) spectrum displayed with the absolute amplitudes of the signals in the presence of human body movement.

Table 1. Radar technology for vital signal detection in the presence of human body movement.

Ref. Techniques
Maximum Body
Movement [mm]

Maximum Body
Velocity [mm/s]

Detection Accuracy [%]

Respiration Heartbeat

[8]
CSD method using

two antennas
around the subject

Not mentioned 4 Not mentioned Not mentioned

[30] SIL 1 radar using
two antennas

200 <7.7 Not mentioned 96.5

[31] Polynomial fitting
algorithm 150 ≈ 0 Not mentioned Not mentioned

[32]
Adaptive noise

cancelation
algorithm

155 47.6 97.9 99.1

This work
Correlation

method using
multiple radars

80 53.4 97.8 2 97.9 2

1 Single Self-Injection-Locked Radar. 2 Average data from the measurement results at all angles.
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The measurement results in the motion of the subject in Figure 12d, Figure 13d and
Figure 14d show that the proposed configuration and processing increase the absolute
amplitudes of the vital signals and decrease the motion-induced noise. The amplitude
and phase of the vital signals obtained from the two radars should be different because of
the asymmetrical movement of the human organs to simultaneously realize a decrease in
noise and an increase in the vital signals. The different amplitudes and phases between the
vital signals obtained from the two radars show that the asymmetric movement of human
organs affects vital signal detection using the radar. In particular, the phases of the vital
signals x1(t) and x2(t) acquired simultaneously by two radars should not be the same to
increase the amplitude of vital signals by the proposed signal processing method explained
in Section 2. Figure 15 shows the phase waveforms of vital signals acquired simultaneously
and independently from the two radars. The waveforms of the simultaneously sampled
data show that the phases of the vital signals have a difference of 180◦ in the proposed
configuration. This is caused by the asymmetrical characteristics of vital signals in the
radar because of the presented phase differences in the measurement results, regardless of
the LOS angles.

 

Figure 15. Phase waveform of the vital signals simultaneously measured in each radar.

The proposed radar configuration was demonstrated by strictly controlling the vari-
ables and factors that can affect the vital signal detection. Therefore, it has limitations for
extension to general applications. However, the configuration limitations on the location
and the arrangement between the radars and the subject can be solved with a modified
radar operation that can detect the distance difference between each radar and the subject,
such as FSK or FMCW radars. This study shows that the radar can detect vital signals based
on the asymmetric movements of the internal organs using the proposed configuration and
signal processing techniques.

5. Conclusions

A configuration and signal processing method using two radars operating at different
frequencies are proposed for detecting vital signals during the subject’s body movement.
Based on the asymmetrical organ movements caused by the vital signals monitored in the
CW Doppler radar, the proposed radar configuration includes two radars spaced apart in
front of the subject with different LOSs at the same distance. The operating frequencies of
two radars were individually set to 5.75 GHz and 5.85 GHz in the 5.8 GHz ISM for reducing
a direct coupling between them. A signal processing method was proposed for effectively
extracting correlated vital signals from the complex baseband signals received from the two
radars. The proposed signal processing had the same demodulation performance as the
conventional method without using a nonlinear function, which increases the harmonics. A
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SNR improvement was observed in vital signal detection during human body movement,
and the stable accuracy was enhanced for asymmetrical organ movements in the proposed
method. The proposed configuration based on the asymmetrical movement of organs was
verified by placing two radars at a distance of 0.5 m from the subject for different LOSs
at angles of 30◦, 45◦, and 60◦ from the center of the subject. For the motionless condition,
the respiration and heartbeat were obtained from the signals detected by the radar located
closer to the heart on the left side of the subject, and the signals from the two radars were
correlated using the proposed method. In the presence of body movement with a maximum
velocity of 53 mm/s, respiration and heartbeat could be detected only from the correlated
signals obtained using the proposed method. The noise reduction in the low-frequency
range by the proposed method shows that it can reduce the effect of human movement.
The improvement in SNR and the detection accuracy of both respiration and heartbeat
detection by the proposed configuration and method were measured to be more than 3 dB
and 96% at all three angles, respectively.
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Abstract: Pulsed thermography is a commonly used non-destructive testing method and is increas-
ingly studied for the assessment of advanced materials such as carbon fibre-reinforced polymer
(CFRP). Different processing approaches are proposed to detect and characterize anomalies that may
be generated in structures during the manufacturing cycle or service period. In this study, matrix
decomposition using Robust PCA via Inexact-ALM is investigated as a pre- and post-processing
approach in combination with state-of-the-art approaches (i.e., PCT, PPT and PLST) on pulsed
thermography thermal data. An academic sample with several artificial defects of different types,
i.e., flat-bottom-holes (FBH), pull-outs (PO) and Teflon inserts (TEF), was employed to assess and
compare defect detection and segmentation capabilities of different processing approaches. For this
purpose, the contrast-to-noise ratio (CNR) and similarity coefficient were used as quantitative metrics.
The results show a clear improvement in CNR when Robust PCA is applied as a pre-processing
technique, CNR values for FBH, PO and TEF improve up to 164%, 237% and 80%, respectively, when
compared to principal component thermography (PCT), whilst the CNR improvement with respect to
pulsed phase thermography (PPT) was 77%, 101% and 289%, respectively. In the case of partial least
squares thermography, Robust PCA results improved not only only when used as a pre-processing
technique but also when used as a post-processing technique; however, this improvement is higher
for FBHs and POs after pre-processing. Pre-processing increases CNR scores for FBHs and POs with
a ratio from 0.43% to 115.88% and from 13.48% to 216.63%, respectively. Similarly, post-processing
enhances the FBHs and POs results with a ratio between 9.62% and 296.9% and 16.98% to 92.6%,
respectively. A low-rank matrix computed from Robust PCA as a pre-processing technique on raw
data before using PCT and PPT can enhance the results of 67% of the defects. Using low-rank matrix
decomposition from Robust PCA as a pre- and post-processing technique outperforms PLST results
of 69% and 67% of the defects. These results clearly indicate that pre-processing pulsed thermography
data by Robust PCA can elevate the defect detectability of advanced processing techniques, such as
PCT, PPT and PLST, while post-processing using the same methods, in some cases, can deteriorate
the results.

Keywords: Robust PCA; RPCA; PCP; IALM; noise reduction; pulsed thermography; CFRP

1. Introduction

Due to the unique features of Carbon-fibre-reinforced polymers (CFRP)—low-density
and high-performance physico-chemical properties—the interest in using these lighter
products and thus replacing the conventional materials (Steel, aluminum, etc.) has in-
creased. The increasing demand for CFRP structures in the aerospace industry is leading to
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the development of enhanced more eco-efficient manufacturing [1]. Although composite
materials are sensitive to impact damage during a lifetime (manufacturing, operations, or
maintenance) [2], they are less prone to corrosion and cracks than other materials. Due to
the different types of defects during the manufacturing process or the service life of the
components, it is important to monitor their efficiency and functionality non-invasively.
Among non-destructive testing techniques, infrared thermography, which involves map-
ping the surface temperatures, can characterize the surface and sub-surface anomalies.
Pulsed thermography (PT) is a no-contact and full-field Infrared Non-Destructive Testing
(IRNDT) approach based on thermal heat transfer analysis during the cooling period; after
the thermal impulse, an incident to the sample’s surface becomes a thermal wave due to
conduction and propagates through the material. The temperature decay is recorded by
the infrared camera during the cooling period. Subject to the presence of discontinuity,
depending on its material and thermal properties and depth, defects will be revealed at
different times. The deeper defects appear later with lower thermal contrast. In order
to obtain quantitative information from thermal data, several approaches have been pro-
posed. Manipulating thermal data makes active thermography an attractive and powerful
approach for industrial control and maintenance purposes.

Moreover, effective pre-processing or post-processing can provide favorable condi-
tions to enhance defect information extraction. Most of the pre-processing for thermal
data is limited to removing the first few frames from the beginning of the sequences, crop-
ping the image, and selecting the region of interest (ROI). Fleuret et al. [3], in their study,
proved that using LatLRR (Latent Low-Rank Representation) as a post-processing tool on
the best image of state-of-the-art methods provides significant improvement in detection.
Khodayar et al. [4] have used the thermographic signal reconstruction (TSR) [5] approach
for pre-processing to reduce the noise. They stated that principal component thermography
(PCT) [6] after the noise reduction could enhance the results. Wang et al. [7] used sequence
differential pre-processing, which was combined with cold image subtraction (CIS) [8], to
provide better thermal data for post-processing approaches in laser infrared thermography.
They evaluated the quality of the image after the combination of pre-processing with pulsed
phase thermography (PPT) [9] or PCT and found that pre-processing improved some re-
sults. Ebrahimi et al. [10] showed that the low-rank matrix computed by RPCA-PCP via
Inexact ALM when used with PT data does not provide optimal results; nonetheless, this
method has not been investigated as a pre-processing method nor as a post-processing
method. Several state-of-the-art IRNDT methods, i.e., PPT, PCT and Partial Least Square
Thermography (PLST) [11,12], have been chosen to evaluate the approaches. We chose
these methods due to the large number of studies that use them.

In the remainder of this paper, we review the most recent works involving RPCA
and thermography. Then, we detail the many aspects of our investigations in Section 3.
Section 4 demonstrates the obtained results, which we analyze and discuss in Section 5.
Finally, Section 6 concludes this study.

2. Literature Review

The presence of excessive noise in raw thermal data always urges researchers to
develop new IRNDT processing approaches. Although limited research work has been
done on the improvement of PCA methods to deal with corrupted data, RPCA has been
the most promising approach in recent years. RPCA is widely used in separating dynamic
variations from the static feature of interest, such as video surveillance data analysis to
extract foreground and background [13]. Infrared dim small target detection has been a hot
and difficult research topic in infrared search and tracking systems. Later, Fan et al. [14]
introduced a novel detection algorithm based on RPCA to solve the difficulty of small
target detection.

Substantial progress has been made in moving object detection, for which RPCA has
been demonstrated to be very effective. The RPCA has been used in infrared moving target
tracking [15] and hyper-spectral image processing for anomaly detection [16]. Moreover,
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RPCA has been used for pre-processing in the machine learning method proposed by
Zhu et al. [17]. They utilized RPCA to detect regions of interest (ROIs) in a novel classifica-
tion model based on the CNN model in eddy current testing (ECT), and the percentage
of defects correctly identified have increased to almost 100%. Draganov et al. [18] used
several decomposition techniques, such as RPCA with Go implementation (GoDec), to esti-
mate the wild animal population using videos captured by thermographic cameras. They
reported promising results in terms of accuracy and execution times. Later, they carried
out a comparative analysis of the performance of several tensor decomposition algorithms,
including high-order robust principal component analysis solved by the Singleton model
(HoRPCA-S) [19]. They reported that among the selected methods, HoRPCA-S has a lower
detection rate but high precision. Furthermore, Liang et al. [20] have demonstrated the
feasibility of sparse tensor decomposition theory on an ECPT data sequence, and they
concluded that Tensor RPCA (TRPCA) can extract defects with high accuracy. The same
year, Li et al. [21] introduced the weighted contraction IALM (WIALM) algorithm based
on low-rank matrix recovery for online applications. It has been used for tire inspection on
radiographic images captured by tire X-ray inspection machines. They improved the effi-
ciency of the algorithm by optimizing the incremental multiplier parameter. Wu et al. [22]
proposed a novel hierarchical low-rank and sparse tensor decomposition method to detect
anomalies in the induction thermography stream. This approach can suppress the interfer-
ence of a strong background and sharpens the visual features of defects. Furthermore, it
overcame the over- and under-sparseness problem suffered by similar state-of-the-art meth-
ods. Surface defect detection is important for product quality control. A visual detection
method was based on low-rank and sparse matrices extracted from the RPCA approach for
surface defect detection of the wind turbine blade [23]. This method in terms of robustness
and accuracy outperformed several state-of-the-art methods. Recently, Wang et al. [24]
proposed a methodology based on RPCA that can separate anomalies in a sparse matrix
from a low-rank background for photovoltaic systems using thermography imaging. They
successfully overcame the difficulties arising from real data and built an automatic online
monitoring system for anomaly detection. Ebrahimi et al. [10] proposed the orthogonal
inexact augmented lagrange multiplier (OIALM). This study demonstrates its efficiency
for defect enhancement capabilities over mixed and various types of defects typically
addressed in IRT in composite materials. In addition, Kaur et al. [25] conducted a com-
parative study between PCA and RPCA to evaluate their effectiveness in defect detection.
They demonstrated that although PCA proved to be better in detection capability, the
sparse matrix provides better detectability than the data reconstructed from the low-rank
matrix. In the medical field, for 3D segmentation of lungs, Sun et al. [26] achieved good
segmentation results for lungs with juxta-pleural tumours by the active shape model (ASM)
based on RPCA.

Many research works have reported the applicability of IRNDT approaches, including
PCT, PPT and PLST. The first implementation of the PCT was introduced by Rajic [27]
for defect detection in composite materials. Lara et al. expressed that optical effects,
such as heating non-uniformities, surface reflection and emissivity variations, appear
on the first component, and the thermal effect will be retrieved on one of the secondary
components [28]. Furthermore, the PCA is a linear decomposition function that is sensitive
to over-illumination and non-uniform heating more than other types of noise. In our
previous research, we proved that Robust PCT [10] can improve the detectability of deeper
defects in composites. Moreover, the PLST is sensitive to gradient. Having an approach that
is less sensitive to noise and applicable to other IRNDT approaches in order to improve the
defect detection is always interesting. As indicated from the literature, low-rank matrices
from RPCA have less noise, and in this study, we study the use of this matrix on different
IRNDT approaches.

The following section introduces the methods and materials regarding this study.
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3. Methods and Materials

3.1. Robust Principal Component Analysis (RPCA)

The Robust PCA problem can be solved via convex optimization that minimizes a
combination of the nuclear norm and the �1-norm. The augmented Lagrange multiplier
(ALM) is a method to solve this convex program. Equation (1) introduces the general
method of ALM for solving constrained optimization problems [29]:

min f (X), subject to h(X) = 0 (1)

where f : Rn → R and h : Rn → Rm. Candès et al. [30] used a convex optimization; the
formulation they have used is known as PCP. The observation matrix D is assumed to be a
combination of the low-rank (A) and sparse matrix (E):

D = A + E (2)

To minimize the energy function, �0-norm is used.

min
A,E

rank(A) + λ‖E‖0 (3)

subject to D−A− E = 0

where λ is a positive and arbitrary balanced parameter to determine the contribution of
A and E in minimizing the objective function. Since Equation (3) is an NP-hard problem,
i.e., at least as hard as the hardest problems in non-deterministic polynomial (NP) time,
Candès et al. [30] reformulated this equation into a similar convex optimization problem
as follows:

X = (A, E) , min
A,E

(‖A‖∗ + λ‖E‖1) (4)

subject to D−A− E = 0

where ‖A‖∗, ‖E‖1 are the nuclear norm of A and l1-norm of E, respectively. The balance
parameter λ is defined as:

λ = 1/
√

max(m, n) (5)

The low-rank minimization due to the correlation between the frames provides a framework
for background modelling. Lin et al. [31] solved Equation (4) using a generic ALM method.
The Lagrange function can be defined as:

L(X, Y, μ) = f (X) + 〈Y, h(X)〉+ μ

2
‖h(X)‖2

F (6)

The Lagrange function of Equation (4) is defined as:

L(A, E, Y, μ) = ‖A‖∗ + λ‖E‖1 + 〈Y, D−A− E〉+ μ

2
‖D−A− E‖2

F (7)

where Y is the Lagrange multiplier and the penalty parameter μ is a positive scalar parameter.
The inexact augmented Lagrange multiplier (IALM) method used to solve the RPCA problem
is shown in Algorithm 1. Y0 has been initialized to Y0 = D/J(D) [32], making the objective
function value 〈Y0, D〉 reasonably large. In addition, J(D) = max(‖A‖2, λ−1‖Y‖∞), where
‖.‖∞ is the maximum absolute value of the input matrix.

In Step 1 of Algorithm 1, ρ is the learning rate, and μ0 is the initialization of the
penalty parameter that influences the convergence speed. In [31], it is proven that the
objective function of the RPCA problem (Equation (4)), which is non-smooth, has an
excellent convergence property. In addition, it has been proven that to converge to an
optimal solution (A∗, E∗) of the RPCA problem, it is necessary for μk to be non-decreasing
and ∑+∞

k=1 μ−1
k = +∞. The proposed algorithm steps are detailed in the following table.
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Algorithm 1: RPCA via IALM method

Input: Data: D ∈ Rm×n, balance parameter λ
Y0 = D

J(D)
; E0 = 0; μ0 > 0; ρ > 1; k = 0;

while not converged do
// Lines 3-4 update A by solving Ak+1 = argmin

A

L(A, Ek, Yk, μk)

(U, S, V) = svd(D− Ek + μ−1
k Yk);

Ak+1 = US
μ−1

k
[S]VT ;

// Line 5 update E by solving Ek+1 = argmin
E

L(Ak+1, E, Yk, μk)

Ek+1 = S
λμ−1

k
[D−Ak+1 + μ−1

k Yk];

Yk+1 = Yk + μk(D−Ak+1 − Ek+1);
Update μk to μk+1;
k ← k + 1;

end
Output: (Ak, Ek)

3.2. State-of-the-Art

Pulsed thermography has been extensively investigated as a mean to detect defects
for a wide variety of applications. Several processing techniques have been proposed and
have been thoroughly reported. References [33–35] provide a detailed review of various
methods. Principal component thermography (PCT) [27], pulsed phase thermography
(PPT) [9] and the partial least squares thermography (PLST) [11] are among the most
effective.

In this paper, a computed low-rank matrix was used prior to or after the application
of PCT, PPT and PLST in the PT regime for comparative purposes.

3.2.1. PCT

PCT was introduced by Rajic et al. [6,27] based on the popular multivariate statistical
method, principal component analysis (PCA) [36]. This method constructs a set of empirical
orthogonal functions (EOFs), which are strong representations of complex input signals. In
IRNDT, PCT tends to project data in the orthogonal space that maximizes the variance of
projected data. The EOFs will represent the most critical variability of the data, respectively.
In general, the given sequence can be represented with a few EOFs. Typically, the thermal
sequence of thousands of frames can be replaced by a maximum of ten EOFs.

3.2.2. PPT

Pulsed phase thermography was introduced by Maldague et al. [9]. Each pixel in
the thermal data sequence can be transformed using the one-dimensional discrete Fourier
transform (DFT) to extract amplitude and phase information from PT data. Unlike raw
thermal data, phase transform φ is less sensitive to environmental reflections, emissivity
variations, non-uniform heating, surface geometry and orientation. The most important
characteristic of this method is that it can provide qualitative and quantitative analysis. For
instance, a straightforward formulation of depth estimation (z) using the thermal diffusion
length μ and the blind frequency fb is:

z = C1.μ = C1.
√

α

π. fb
(8)

where fb is the frequency at which a given defect has enough contrast to be detected,
while C1 is the empirical constant and calculated after a series of experiments. It has
been observed that C1 ≈ 1 for amplitude data and a value in the range of 1.5 to 2, with
C1 = 1.82, are typically adopted for research similar to that presented in [37]. Therefore,
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probing deeper defects using the phase makes it more interesting than the amplitude. More
information regarding PPT can be found in [9].

3.2.3. PLST

PLST [12] is based on a statistical correlation method known as partial least squares
regression (PLSR). PLST decomposes predictor X(n×N) and predicted Y(n×M) matrices
into loading (P and Q), score (T and U) vectors and residuals (E and F). The predictor
matrix corresponds to the thermal profile, while Y is defined by the observation time during
which the thermal sequence was acquired. Mathematically, the PLS model is expressed as:

X = TPT + E (9)

Y = UQT + F (10)

In order to select the appropriate number of PLS components, two parameters, i.e., the root
mean square error (RMSE) and the percentage variance explained in the X matrix, must be
taken into consideration.

3.3. Data Acquisition

The experiments were carried out on an academic carbon-fibre-reinforced polymer
(CFRP) plate (30.8 cm× 46 cm× 2.57 mm) with 73 defects of 3 different types, i.e., 23 round
flat-bottom holes (FBH), 25 triangular Teflon inserts, and pullouts. In order to manufacture
the pullout defect, a metallic sheet is removed after polymer curing. Therefore, the pullout
can only be located at the edge of the part (Figure 1c). The Teflon insert is made of Teflon
sheets inserted between plies (Figure 1b). In the case of FBH manufacturing, a hole is drilled
to have a flat reflecting surface at the hole bottom at the backside of the sample (Figure 1a).
One of the important defects in non-destructive inspection is delamination, which occurs
between plies during manufacturing or by fatigue, bearing damage, impact, etc., during the
life-cycle. The academic plate used in this study was prepared to investigate the differences
in the thermal response of different artificial defect types. Strictly speaking, all artificial
defects are at best an approximation of a real delamination. A pull-out seems to be closer
to a real delamination (thermally speaking) but is difficult to produce anywhere other than
on the borders of the specimen (which implies that the sample must have an open border).
Teflon inserts are traditionally employed for other NDT techniques (e.g., ultrasounds) in
thermography. However, Teflon behaves significantly different than a real delamination
(air) does. Lastly, flat-bottom-holes are easier to produce, though they are open on the
rear side of the specimen and possess a much larger volume than a real delamination. The
surface of the specimen possesses a fairly good emissivity, so environmental reflections
were negligible. Non-uniform heating had a greater impact on all techniques, as can be
seen in Section 4.

(a) (b) (c)
Figure 1. Schematic of a defects in the form of (a) flat bottom hole; (b) Teflon insert; and (c) pullouts.

The defects vary in size, depth and thickness and are presented in Table 1, and the
schematic of the plate shows their respective locations in Figure 2a. The thermophysical
properties of CFRP involved in the NDE are: k—thermal conductivity (W/m/K), ρ—
density (kg/m3) and c—specific heat capacity (J/kg/K). The other important thermal
properties are: α = k/ρ/c—thermal diffusivity and e =

√
kρc—thermal effusivity. The

thermophysical information of the CFRP plate is shown in Table 2. The PT experimental
setup, two flash lamps for 5 ms sent a thermal pulse (6.4KJ/flash (Balcar, France)) to
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the specimen; a cooled infrared camera (FLIR Phoenix (FLIR Systems, Inc., Wilsonville,
Oregon, USA), InSb, midwave, 3–5 mm, Stirling Cooling) with a frame rate of 180 Hz was
used to record the temperature profile in the reflection mode (Figure 2b). The technical
camera specifications of the thermal camera are presented in Table 3. The data processing
was performed on a PC with 56 GB memory and an Intel(R) Core(TM) i7-4820K control
processing unit. Infrared images were taken from a distance of 70 cm by the IR camera
without pan nor tilt in a controlled environment.

(a)

(b)
Figure 2. (a) CTA CFRP plate, where Z is the defect depth, and labels are used to identify the location of each defect;
(b) pulsed thermography setup. a, PC; b, IR camera; c1 and c2, left and right flashes; d, CFRP specimen.
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Table 1. Defect specifications for the CFRP Plate, Z is the depth of the defect below the inspected surface. Thickness is the
defect thickness or thickness of the holes in case of the FBH type of defect.

Defect
Code

Z
(mm)

Dimensions
(mm)

Thickness
(mm)

Defect
Code

Z
(mm)

Dimensions
(mm)

Thickness
(mm)

Defect
Code

Z
(mm)

Dimensions
(mm)

Thickness
(mm)

Teflon Inserts Pull-Outs FlatBottom Holes

Tef-A 2.43 12.7 × 50.8 0.17 PO15-A 2.43 12.7 × 50.8 0.15 FBH-1J 2.28 12.70 0.29
Tef-B 2.28 12.7 × 50.8 0.17 PO15-B 2.28 12.7 × 50.8 0.15 FBH-2K 2.00 12.70 0.57
Tef-C 2.14 12.7 × 50.8 0.17 PO15-C 2.14 12.7 × 50.8 0.15 FBH-3L 1.71 12.70 0.86
Tef-D 2.00 12.7 × 50.8 0.17 PO15-D 2.00 12.7 × 50.8 0.15 FBH-4M 1.43 12.70 1.14
Tef-E 1.86 12.7 × 50.8 0.17 PO15-E 1.86 12.7 × 50.8 0.15 FBH-5N 1.28 12.70 1.29
Tef-F 1.71 12.7 × 50.8 0.17 PO15-F 1.71 12.7 × 50.8 0.15 FBH-6P 1.00 12.70 1.57
Tef-G 1.57 12.7 × 50.8 0.17 PO15-G 1.57 12.7 × 50.8 0.15 FBH-7Q 0.71 12.70 1.86
Tef-H 1.43 12.7 × 50.8 0.17 PO15-H 1.43 12.7 × 50.8 0.15 FBH-8R 0.57 12.70 2.00
Tef-J 1.28 12.7 × 50.8 0.17 PO15-J 1.28 12.7 × 50.8 0.15 FBH-8S1 0.57 12.70 2.00
Tef-K 1.14 12.7 × 50.8 0.17 PO15-K 1.14 12.7 × 50.8 0.15 FBH-8S2 0.57 12.70 2.00
Tef-L 1.00 12.7 × 50.8 0.17 PO15-L 1.00 12.7 × 50.8 0.15 FBH-8S3 0.57 12.70 2.00
Tef-M 0.86 12.7 × 50.8 0.17 PO15-M 0.86 12.7 × 50.8 0.15 FBH-8S4 0.57 12.70 2.00
Tef-N 0.71 12.7 × 50.8 0.17 PO15-N 0.71 12.7 × 50.8 0.15 FBH-8S5 0.57 12.70 2.00
Tef-P 0.57 12.7 × 50.8 0.17 PO15-P 0.57 12.7 × 50.8 0.15 FBH-3H 1.71 6.35 0.86
Tef-Q 0.43 12.7 × 50.8 0.17 PO15-Q 0.43 12.7 × 50.8 0.15 FBH-4G 1.43 6.35 1.14
Tef-R 0.29 12.7 × 50.8 0.17 PO15-R 0.29 12.7 × 50.8 0.15 FBH-5G 1.28 6.35 1.29
Tef-S 0.14 12.7 × 50.8 0.17 PO15-S 0.14 12.7 × 50.8 0.15 FBH-6F 1.00 6.35 1.57
Tef-B2 2.28 12.7 × 50.8 0.17 PO10-B2 2.28 12.7 × 50.8 0.10 FBH-7E 0.71 6.35 1.86
Tef-D2 2.00 12.7 × 50.8 0.17 PO10-D2 2.00 12.7 × 50.8 0.10 FBH-8E1 0.57 6.35 2.00
Tef-F2 1.71 12.7 × 50.8 0.17 PO10-F2 1.71 12.7 × 50.8 0.10 FBH-8E2 0.57 6.35 2.00
Tef-H2 1.43 12.7 × 50.8 0.17 PO10-H2 1.43 12.7 × 50.8 0.10 FBH-8E3 0.57 6.35 2.00
Tef-J2 1.28 12.7 × 50.8 0.17 PO10-J2 1.28 12.7 × 50.8 0.10 FBH-8E4 0.57 6.35 2.00
Tef-L2 1.00 12.7 × 50.8 0.17 PO10-L2 1.00 12.7 × 50.8 0.10 FBH-8E5 0.57 6.35 2.00
Tef-N2 0.71 12.7 × 50.8 0.17 PO10-N2 0.71 12.7 × 50.8 0.10
Tef-P2 0.57 12.7 × 50.8 0.17 PO10-P2 0.57 12.7 × 50.8 0.10

Table 2. Thermal properties of the CFRP.

Material
Density

ρ (kg/m3)
Specific Heat

c (J/kg◦K)
Conductivity
k (W/(m◦K))

Diffusivity
α (m2/s 10−7)

Effisivity

e (W s0.5/(m2 ◦K))

CFRP (⊥) 1600 1200 0.8 4.167 1239.3

Table 3. Technical specification of Phoenix Thermal Camera from FLIR Systems.

Thermal Camera Specifications

Parameters Values

Detector Indium Antimonide (InSb)
Spectral Range 1.5–5.0 microns
Cold Filter Bandpass 3.0–5.0 μm standard
Resolution 320 × 256 pixels
Detector size 30 × 30 μm
Well Capacity 18 M electrons
Integration Type Snapshot
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Table 3. Cont.

Thermal Camera Specifications

Parameters Values

Integration Time
(Electronic shutter speed) 9 μs to full frame time

Sensor Assembly f/# f/2.5 standard, f/4.1 optional

Sensor Cooling Stirling closed cycle cooler;
optional Liquid Nitrogen (LN2)

Lens Mount Bayonet Twist-Lock
Spec Performance
(Thermal resolution) <25 milliKelvin

Dynamic Range 14 bits
Max Frame Rates
with RTIE Electronics

320 × 256: 120 frames per sec in full frame;
13.6 kHZ in smallest window (2 × 64)

Max Frame Rates
with DAS Electronics

320 × 256: 345 frames per sec in full frame;
38 kHZ in smallest window (2 × 128)

3.4. Metrics

In this section, we added two metrics—one to yield a thermal score indicating thermal
anomalies, another to measure the segmentation potential.

3.4.1. Contrast-to-Noise Ratio (CNR)

The signal-to-noise ratio (SNR) is a metric that quantitatively assesses the desired
signal quality by estimating the signal level with respect to the background noise. The
contrast-to-noise ratio (CNR) is similar to SNR, but it measures the image quality based on
the contrast between a defective area and its neighbourhood. Usamentiaga [38] proposed a
definition of SNR, which is more robust against noise and image enhancement operations.
Equation (11) shows this definition, which has been used in this study. For this purpose,
two areas are considered: an area in the defect area (carea) and a region around the defect
region as a reference region (narea).

CNR =
| μcarea − μnarea |√

(σcarea2+σnarea2)
2

(11)

where μcarea and μnarea are the average levels of contrast in carea and narea, respectively;
σcarea and σnarea are the standard deviation of the contrast in carea and narea, respectively.

3.4.2. Jaccard Similarity Coefficient Score

The Jaccard similarity coefficient [39] (also known as Jaccard index or Intersection-
Over-Union (IoU)) is a statistical method that emphasizes the similarity between two finite
datasets (as illustrated in Figure 3):

This approach mathematically represents Equation (12) and is formally defined as the
number of the shared members/pixels between two sets (intersection), divided by the total
number of members in either set (union) and multiplied by 100. J(A, B) provides a value
between 0 (no similarity) and 1 (identical sets). Hence, the higher the value of IoU, the
higher the level of similarities between the two sets (Figure 3b).

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B|

0 ≤ J(A, B) ≤ 1
(12)

For the remainder of this article, we will refer to the low-rank matrix A as low-rank matrix
(LRM).
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(a) (b)
Figure 3. (a) Jaccard index similarity definition; (b) similarity between the ground-truth and the detected area.

3.5. Analysis

The previous section recalls the RPCA we used in our experiments. As described in
Figure 4a,b, we conducted two experiments. The main difference between our experiments
is that: in the first experiment (Figure 4a), the LRM is computed directly from the raw data;
while in the second (Figure 4b), the LRM is computed from the output of the processing
methods. For the remainder of this article, we refer to the first experiment as a pre-
processing experiment and to the second as a post-processing experiment.

(a) (b)
Figure 4. (a) Using the method for pre-processing; (b) Using the method for post-processing.

We chose to compare our approach with three state-of-the-art approaches, principal
component thermography (PCT) [6,27], pulsed phase thermography (PPT) [9] and partial
least-squares thermography (PLST) [11,12], due to the popularity and simplicity of these
methods.

The metrics are computed using different protocols. The defective areas were labelled
using LabelMe © [40]. From the border of the defective region, n pixels are considered as a
transient region, and from the boundaries of this area, n pixels are automatically counted
as a non-defective or sound area. Figure 5 illustrates the aforementioned regions so as to
estimate the CNR score. According to Equation (11) and the labelled regions, the average
and standard deviation values are obtained for all data.

Regarding the second metric, Figure 6 depicts the automatic segmentation approach
and Jaccard index calculation. In our segmentation approach, after the image’s contrast
correction, a bilateral filter [41] smoothed the image. Then, after applying local thresholding,
the small artifacts are removed from the image. The obtained mask from the segmentation
step can be compared with the ground truth in order to compute the metric score.
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Figure 5. Examples of reference and defect regions. The boundaries of the reference region are
between the green and red lines, whilst the defective region is inside the blue line area.

Figure 6. Segmentation and Jaccard index computation flow graph.

4. Results

The original data acquired by pulsed thermography (raw data) is used as pre- and
post-processing for different processing approaches. Figure 7 shows some representative
results (selected arbitrarily) of the different methods. The first column in Figure 7 results
from different techniques on raw data, where the second column presents RPCA results
as a pre-processing method, and the last column shows the RPCA approach used as a
post-processing method.

Figures 8–10 present the thermal profile across the different lines in images where the
defects are either detectable or non-detectable. The first and last lines in each image (green
and blue) show the pullout defects profile, while the second and fourth lines (lime and teal)
represent the FBHs, and the third line (olive) presents the Teflon inserts profile.

The detailed maximum CNR values of all methods for all defect types are pre-
sented in Tables 4–6. The maximum CNR values between different methods are in bold.
Figures 11–14 present the maximum CNR value in full sequences for different methods.
The CNR values of all defects and all processing techniques were calculated using the
defects and reference areas, such as the ones shown in Figure 5.
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Method Pre-processing Post-processing

PCT

PPT

PLST

Figure 7. (1st row) These images present the 3rd component of PCT data on raw data after using a low-rank matrix for pre-processing
and post-processing, respectively. (2nd row) These images present PPT data at 0.135 Hz on raw data after using a low-rank matrix for
pre-processing and post-processing, respectively. (3rd row) These images present the 3rd component of PLST data on raw data after
using a low-rank matrix for pre-processing and post-processing, respectively.

Figure 8. Profiles across the sample after using different processing techniques.
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Figure 9. Profiles across the sample after using different processing techniques.

Figure 10. Profiles across the sample after using different processing techniques.
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Figure 11. Maximum CNR by different FBHs as a function of defect depth for all data sequences.
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Figure 12. Maximum CNR for pullout-10 as a function of defect depth for all data sequences.

304



Sensors 2021, 21, 7185

0.14 0.29 0.43 0.57 0.71 0.86 1.0 1.14 1.28 1.43 1.57 1.71 1.86 2.0 2.14 2.28 2.43

2.5

5.0

C
N

R

pct
pct_rpct
rpct_pct

0.14 0.29 0.43 0.57 0.71 0.86 1.0 1.14 1.28 1.43 1.57 1.71 1.86 2.0 2.14 2.28 2.43
0

5

C
N

R

ppt
ppt_rpct
rpct_ppt

0.14 0.29 0.43 0.57 0.71 0.86 1.0 1.14 1.28 1.43 1.57 1.71 1.86 2.0 2.14 2.28 2.43
Depth (mm)

5

10

C
N

R

plst
plst_rpct
rpct_plst

Figure 13. Maximum CNR for pullout-15 as a function of defect depth for all data sequences.
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Figure 15a,b illustrate the numbers of enhanced defects using pre- and post-processing,
respectively. The numbers inside the columns represent the enhanced defects when using
different techniques, and the number above the columns are the total number of defects in
each case.

(a) (b)
Figure 15. Number of defects that are enhanced for each experiment. (a) Results of the pre-processing experiments.
(b) Results of the post-processing experiments.

The best Jaccard index for all data sequences for different methods is shown in Table 7.

Table 7. Jaccard index values for different methods on segmented data.

Method On Raw Data Pre_Processing Post_Processing

PCT 60.43 64.08 53.94
PPT 61.19 62.82 55
PLST 50.66 55.36 55.35

Figure 7 illustrates selected results from different methods. In this figure, the first
image from each row presents the selected technique on raw data (PCT, PPT or PLST); the
second and third images show the effect of using the LRM as a pre- and post-processing
method.

Our segmentation approach was evaluated by the Jaccard index presented in Table 7.

5. Discussion

Figure 7 implies that although pre-processing can reduce the non-uniform heating
impact, post-processing accentuates this effect. Thermal profiles of different methods across
the different lines are shown in Figures 8–10. As depicted in the graphs, the flat thermal
profiles show the non-defective or sound area, and when the amplitude is increased
or decreased, the available discontinuities can be guaranteed. The application of pre-
processing before PCT and PPT approaches improved the defect detection; also, in the case
of PLST, both pre- and post-processing can increase the detection of anomalies. In addition,
the graphs show similar results with quantitative metrics, which will be explained later.
From Tables 4–6 and Figures 11–14, one can note that the results from the pre-processing
experiments are noticeably better than those obtained from the post-processing experiment.
Note that these results are compared with results obtained without using low-rank matrices
for both experiments. For the PCT method, one can note:

• The pre-processing experiments have led to a clear improvement of the results, re-
gardless of the defect type. For 13 of the 14 FBH defects, one can observe an increase
in the CNR score. The ratio of this improvement varies from 31.24% to 163.56%. The
CNR scores obtained for the PO defects show a higher score in 22 of the 25 defects,
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with a ratio that varies from 0.43% to 115.88%. Similarly, the CNR scores obtained for
the Teflon inserts also show a CNR score increase for 14 of the 17 defects. The ratio of
this improvement varies from 2.5% to 80.36%.

• The results of the post-processing experiments do not show any improvement for the
FBH defects. Nevertheless, for the PO defects, one can note that there is a higher CNR
score for 19 of 25 defects. The ratio of this improvement varies from 0.05% to 149.62%.
For Teflon defects, 8 of the 17 defects have a higher CNR score, with a ratio between
2.39% and 58.63%.

From the PPT method results, one can observe:

• As already observed with the PCT, the results of the pre-processing experiments offer
an improvement for every type of defect. For 10 of the 14 FBH defects, one can observe
that their CNR score increases, with a ratio between 4.58% and 77.19%. The PO defects
show an increase in the CNR score for all of the defects. The ratio of improvement
varies from 21.72% to 288.97%. For Teflon inserts, the number of defects with a higher
CNR is similar to what was observed for the previous method, with 14 of the 17
defects with an improved CNR value. The ratio of improvement varies from 4.43% to
101.45%.

• The results obtained for the post-processing experiment show very little improvement.
No improvement at all was recorded for the FBH. For the PO defects, 4 of the 25
defects had an increased CNR value, with a ratio between 8.67% and 46.97%. Only
one Teflon defect of the 17 defects had its CNR increased by a ratio of 6.41%.

Finally, from the PLST method results, one can note:

• The pre-processing experiments shows a similar trend as the trend observed for the
two other methods. For 12 of the 14 FBH defects, the CNR score increased, with a
ratio from 0.43% to 115.88%. All of the PO defects have their CNR score increased,
with a ratio between 13.48% and 216.63%. Finally, for the Teflon insert, 13 defects of
the 17 obtained an increased CNR score, with a ratio between 7.16% and 77.64%.

• For the post-processing approach, one can note that the results are quite similar to
those obtained during the pre-processing experiments. For 11 of the 17 FBH defects,
an increase in the CNR value was observed, with a ratio from 9.62% to 296.9%. All
of the PO defects show an improvement of their CNR score, ranging from 16.98% to
92.6%. For 13 of the 17 Teflon defects, the CNR score has improved, with a ratio from
0.46% to 76.38%.

Moreover, as indicated in Figures 11–14, regarding the relative depths, in all cases (FBHs,
POs and TEFs), the deeper the defect, the lower the CNR value (as expected). Comparing
the two experiments, one can observe that the pre-processing experiment leads to a larger
number of defective regions for PCT and PPT methods than the post-processing experi-
ments. Nevertheless, this observation is not valid for the PLST method, where the results
are pretty similar in both experiments. For the PO defect, the increase in terms of CNR
score is higher in the pre-processing experiments; the mean ratio of improvement is 2.6
times higher than it is for the post-processing experiments. Similarly, the mean ratio of
improvement for the Teflon defects is 1.7 times higher in the pre-processing experiment
than in the post-processing experiments. Nonetheless, the mean improvement ratio is 2.5
times higher in the post-processing experiment than in the pre-processing experiment. To
conclude, our results show that computing an LRM from the raw data before applying any
state-of-the-art method significantly improves the results of the method. In the particular
case of FBH defects, one can consider computing an LRM before and after the method.

As one can note in Table 7 and see in Figure 15b, using the LRM, prior to the state-of-
the-art processing method, leads to better Jaccard index scores and therefore segmentation
in all cases. One can also note that the Jaccard index score for the PLST method does not
change much between the pre-processing and post-processing experiments. The Jaccard
index score for the PCT and PPT methods decreases noticeably for the segmentation of the
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post-processing experiment results compared with the segmentation of the raw data. This
indicates that the results of the segmentation worsen.

6. Conclusions

The present study investigates the benefits of the low-rank matrices for pulsed ther-
mography. The investigation conducted for this study focuses on enhancing defective
regions located within a reference sample of CFRP. The sample we used had three types of
defects. Two experiments were conducted: during the first experiment, the low-rank ma-
trix was computed from the raw data before applying any processing. During the second
experiment, the low-rank matrix is computed from the output of a method, after it was
applied on raw data. For both experiments, we used PPT [9], PCT [6,27] and PLST [11,12].
Two figures of merit, the contrast-to-noise ratio (CNR) and the Jaccard similarity coefficient,
were used to evaluate the results quantitatively.

Our results conclude that using a low-rank matrix, when used as a pre-processing
method, noticeably improves the results of all of the techniques. The low-rank matrix
reconstruction effectively reduces the noise and non-uniform heating. When used as a post-
processing method, the results vary from one method to another. The results indicate that
pre-processing can improve 67.12% of PCT results more than post-processing, especially
regarding FBHs (the detectability of FBHs, pullouts and Teflon inserts was increased to
92.86%, 88% and 82.35%, respectively). Furthermore, pre-processing has a better effect on
PPT results (67.12% of the defects were detected) than post-processing. For FBHs, pullouts
and Teflon inserts, the detectability of defects reached 71.43%, 100% and 82.35%. The
detectability of pullouts and Teflon insert defects in both pre- and post-processing has
improved, reaching 100% and 76.47%, respectively; however, the detectability is better
after using pre-processing in the PLST method. In addition, when used on the output of
PLST, the low-rank matrix reconstruction still shows better results than the PLST alone.
Nonetheless, this conclusion is not shared for both PPT and PCT. The Jaccard index proved
that pre-processing can improve the segmentation potential in all aforementioned methods.
In the case of PLST, improvements were made for both pre-processing and post-processing.

This study presents very promising results regarding the improvement of anomaly
detection in pulsed thermography in CFRPs. To make the proposed approach more
practical in NDT techniques, future research will be directed towards the application of
pre- and post-processing on a wider range of materials.
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Abbreviations

The following abbreviations are used in this manuscript:

ASM Active Shape Model
ALM Augmented Lagrangian Multiplier
APG Accelerated Proximal Gradient
a.u arbitrary units
CFRP Carbon Fiber Reinforced Plastic
CIS Cold Image Subtraction
CNN Convolutional neural network
CNR Contrast to Noise Ratio
DFT DiscreteFourier Transform
DRPCA Double Robust Principal Component Analysis
EALM Exact Augmented Lagrange Multiplier
ECT Eddy Current Thermography
ECPT Eddy Current Pulsed Thermography
EOF Empirical Orthogonal Functions
ESPCA Edge-Group Sparse Principal Component Analysis
ESPCT Edge-Group Sparse Principal Component Thermography
FBH Flat Bottom Holes
GPGPU General-purpose computing on graphics processing units
IALM Inexact Augmented Lagrange Multiplier
ICA Independent Component Analysis
IoU Intersection over Union
IRNDT Infrared Non-Destructive Testing
IRT InfraRed Thermography
LADMAP Linearized Alternating Direction Method with Adaptive Penalty
LatLRRT Latent Low-Rank Representation Thermography
LN Liquid Nitrogen
LRM Low-Rank Matrix
MWIR Mid-Wave InfraRed
NDT Non Destructive Testing
NMF Non-negative Matrix Factorization
NP Non-Deterministic Polynomial
OIALM Orthogonal Inexact Augmented Lagrange Multiplier
PCA Principal Component Analysis
PCP Principal Component Pursuit
PCT Principal Component Thermography
PLS Partial Least Square
PLSR Partial Least Square Regression
PLST Partial Least Square Thermography
PO pullouts
PPT Pulsed Phase Thermography
PT Pulsed Thermography
RMSE Root Mean Square Error
ROI region of interest
RPCA Robust Principal Component Analysis
RPCT Robust Principal Component Thermography
SNR Signal to Noise Ratio
SPCA Sparse Principal Component Analysis
SPCT Sparse Principal Component Thermography
SVM Support Vector Machine
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Tef Teflon Inserts
TSR Thermographic Signal Reconstruction
TRPCA Tensor RPCA
UT Ultrasound Testing
WIALM Weighted contraction IALM
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Abstract: More electric aircrafts (MEAs) are paving the path to all electric aircrafts (AEAs), which
make a much more intensive use of electrical power than conventional aircrafts. Due to the strict
weight requirements, both MEA and AEA systems require to increase the distribution voltage
in order to limit the required electrical current. Under this paradigm new issues arise, in part
due to the voltage rise and in part because of the harsh environments found in aircrafts systems,
especially those related to low pressure and high-electric frequency operation. Increased voltage
levels, high-operating frequencies, low-pressure environments and reduced distances between wires
pose insulation systems at risk, so partial discharges (PDs) and electrical breakdown are more likely
to occur. This paper performs an experimental analysis of the effect of low-pressure environments
and high-operating frequencies on the visual corona voltage, since corona discharges occurrence
is directly related to arc tracking and insulation degradation in wiring systems. To this end, a rod-
to-plane electrode configuration is tested in the 20–100 kPa and 50–1000 Hz ranges, these ranges
cover most aircraft applications, so that the corona extinction voltage is experimentally determined
by using a low-cost high-resolution CMOS imaging sensor which is sensitive to the visible and near
ultraviolet (UV) spectra. The imaging sensor locates the discharge points and the intensity of the
discharge, offering simplicity and low-cost measurements with high sensitivity. Moreover, to assess
the performance of such sensor, the discharges are also acquired by analyzing the leakage current
using an inexpensive resistor and a fast oscilloscope. The experimental data presented in this paper
can be useful in designing insulation systems for MEA and AEA applications.

Keywords: more electric aircraft; electrical discharges; visual corona; corona extinction voltage;
variable frequency; low pressure

1. Introduction

More electric aircrafts (MEAs) allow for reducing weight [1], fuel consumption, green-
house gas emissions, operation and maintenance costs and boosting overall system ef-
ficiency when compared with conventional aircrafts [2]. However, engineers are facing
important challenges due to the increased voltage levels MEAs require, the increase in the
power density and the dv/dt, or the reduction in distances between electrical wires, thus
increase the likelihood of electric arc occurrence [3,4] with the consequent safety risks.

Jet aircrafts typically fly at altitudes between 33,000 and 42,000 feet (10,000 m to
12,800 m) [5], thus operating under harsh environmental conditions. Some electric and
electronic aircraft systems operate in unpressurized zones [6], so electric and electronic
aircraft systems must be designed to operate under a broad range of pressures, in the range
1 atm to 0.15 atm [7].

The development of MEA and AEA systems is accompanied by a rise of the dis-
tribution voltage levels, since for a given power, the lower the current, the higher the
voltage, and vice versa. However, according to Paschen’s law, when operating at higher
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voltage levels and reduced pressure, there is risk of partial discharges (PDs) and electric
breakdown [8], the inception voltages of such discharges being below the ones found at
sea level [9,10].

Direct current (dc) distribution systems of current aircrafts are operated at 28 V, 270 V
(±135 V) or 540 V (±270 V), whereas alternating current (ac) distribution systems are
operated at 230 V or 115 V phase voltage with variable or wide frequency (typically
320–800 Hz) [11], or 230 V or 115 V phase voltage with constant frequency (400 Hz) [12,13].
In AEA, voltage levels in the range 2 to 3 kV seem advantageous [13]. It is believed that ac
distribution systems in the voltage range between 0.6 and 2 kV lead to wiring systems with
less weight, reduced power losses and higher efficiency. However, above 2 kV, additional
insulation requirements add extra mass to the system, thus needing careful analysis [13].
Because of the need of more electrical power, next generations MEA aircrafts will probably
raise the distribution voltage above 1 kV [14,15]. According to NASA, future aerospace
systems can operate at voltages up to 20 kV (designed for 40 kV), with high-frequency
operation (400 Hz to 4000 Hz) [16]. The combination of low pressure, high voltage and high-
operating frequencies stresses insulation systems [13], with the consequent degradation
risk due to partial discharge and arc tracking occurrence [17,18] because electrical discharge
inception voltages can be much lower than those at sea level [1].

Wiring issues in aircrafts due to electrical discharges and arc tracking leading to insu-
lation degradation have caused catastrophic accidents [13]. Different insulation materials
have been proposed to combat insulation degradation [19,20]. This is of paramount impor-
tance because MEA and AEA make an increasing use of electric and electronic apparatus
and devices, so polymer insulation materials are inevitably exposed to harsh and varying
environments. Thus, care must be taken in selecting appropriate insulating materials since
reliability is an issue [21]. Before electric breakdown occurrence, partial discharges (PDs)
appear, PDs being discharges that do not entirely channel the insulation between two
electrodes [22]. They are roughly classified as internal discharges, external discharges
and corona discharges. Although short duration PDs are usually harmless, when they
persist over time, they tend to generate important insulation damage in polymeric ma-
terials because PDs can produce a partially conductive path or track on the insulation
outer surface, thus favoring the flow of an electric current and ultimately arc tracking
activity or even complete electrical breakdown [23]. Arc tracking occurring in organic
(polymeric) insulation systems, damages the polymer material, which shifts from insulating
to conductor because of the tremendous thermal shocks due to the electron bombardment
generated by the electrical discharge [24]. This effect also breaks the polymeric chains and
degrades the insulation, generating conducting carbon tracks, which reduce the insulating
properties of the polymer surface and promote electrical breakdown [25], fire hazard [26]
and explosions [27], even at very low voltage [28]. Atmospheric pressure, applied voltage,
supply frequency and geometry are dominant variables to determine corona discharge
inception and extinction levels.

It is worth noting that reliability and safety are key points in aircraft systems. To
design reliable aircraft insulation systems, it is necessary to have a deep knowledge of
the conditions leading to a corona [6] as a function of environmental pressure and supply
frequency, because if these conditions are not controlled, they can lead to damaging effects,
including arc tracking and electrical breakdown [2]. To better understand the effect of
low pressure and supply frequency on the development of electrical discharges, it is
imperative to run extensive test plans. Due to the difficulty to operate under low-pressure
environments and using high-voltage generators with adjustable frequency, there is a lack
of experimental data obtained under conditions compatible with aeronautic environments.
This paper aims to contribute in this field. In addition, some of the studies are focused to
analyze the disruptive spark breakdown [29,30], but non-uniform gaps can lead to corona
inception and extinction voltages much lower than those required to ignite disruptive or
breakdown discharges.
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To analyze the effect of low-pressure environments jointly with the effect of the supply
frequency, a rod-to-plane electrode configuration is tested in the 20–100 kPa and 50–1000 Hz
intervals, these ranges account for the wide range of pressure and frequencies found in
aircraft applications.

The detection of partial discharges and arcing activity in aircrafts in the very early
stage is a problem that remains unsolved, so there is an imperious need to develop sensor
systems to solve this important safety problem. Although there are several sensors that
potentially can be applied to detect electrical discharges such as PD detection, antennas
to detect electromagnetic noise and radio interference voltage, or acoustic sensors, they
are too complex or are severely affected by the noise found in aeronautic applications. In
addition, these methods do not directly allow to locate the discharge points. Therefore,
this paper focus on the visible-UV light emitted by the electrical discharges because this
method offers immunity to noise, while allowing to locate the discharge points.

It is known that the corona effect generates visible (mainly blue) and ultraviolet (UV)
light [31]. Thus, by using optical sensors sensitive to these spectral regions, it is possible to
detect the corona discharges in the early stage [2]. A corona can also be detected by means
of other methods, which are usually more complex, such as optical spectrophotometers [32],
audible noise meters [33], PD and radio interference voltage (RIV) detectors [34] or UHF
sensors [35]. However, the simpler and straightforward way to locate the discharge point
is by using visible-UV imaging sensors. Therefore, to determine the conditions leading to a
corona, the corona extinction voltage is determined by using a low-cost high-resolution
CMOS imaging sensor. This sensor is sensitive to the visible and near ultraviolet spectral
ranges, and the discharge points are identified from the images generated by the CMOS
sensor, as well as the intensity of the discharge, thus offering high sensitivity, simplicity
low-cost measurements and immunity to electromagnetic noise. Results attained with
the imaging sensor are compared with those obtained by analyzing the leakage current.
Experimental data presented in this paper can be useful to design insulation systems
for future MEA and AEA applications, thus ensuring the reliability of aircraft insulation
systems for electrical and electronic circuits.

Specific objectives of this research work include determining the combined effect of
pressure and frequency on visual corona and specifically on corona extinction voltage
(CEV) for aeronautics applications using a low-cost CMOS imaging sensor, and to compare
the sensitivity of such sensor with that of a leakage current sensor.

The paper is organized as follows. Section 2 details the experimental setup to generate
a variable frequency high voltage and the instrumentation used, as well as the sensors used
to detect the corona extinction voltage. The experimental results are presented in Section 3,
whereas Section 4 discusses the results attained. Finally, the conclusions of the paper are
developed in Section 5.

2. Experimental Setup

Corona experiments were performed inside a pressurized chamber that allows re-
ducing the pressure from 100% to 20% of the pressure at sea level, i.e., from 100 kPa
to 20 kPa approximately, covering the altitude/pressure interval of commercial jet lin-
ers. The low-pressure chamber is composed of a stainless-steel cylindrical container
(diameter = 130 mm, height = 375 mm) with a sealed methacrylate lid to allow the wireless
imaging sensor to transmit the long-exposure photographs to a computer placed outside the
low-pressure chamber, as displayed in Figure 1c. The pressure is regulated using a vacuum
pump (1/4 HP, 0.085 m3/min, Bacoeng BA-1, Bacoeng, Suzhou, China) and a manometer
(76 mmHg, ±2.5%, Bacoeng, Suzhou, China). Experiments were conducted at a constant
room temperature of 25 ◦C. The humidity effect was not studied but limited to below 25%
during the experiments.
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(a) (b) 

   
(c) (d) 

  
(e) (f) 

Leakage current resistor: 

Voltage divider: 

Figure 1. Experimental setup. (a) Sketch of the experimental setup and the instrumentation used in the high-voltage
tests at variable pressure, frequency and voltage; (b) photograph of the rod-to-plane electrode used in the experiments;
(c) detail of the tip of the electrode; (d) low-pressure chamber; (e) photograph of the experimental setup including the
low-pressure chamber; (f) snapshot of the oscilloscope used to detect corona activity connected to the terminals of the
leakage current resistor.

The applied voltage and supply frequency were regulated by means of a SP300VAC600W
programmable ac source (600 W, 0–300 V, ±0.1 V, 15–1000 Hz, APM Technologies, Dong-
guan, China) following the IEC61000-4-14 standard. A high-voltage instrument transformer
(single-phase, turns ratio 1:100, maximum voltage 36 kV, 600 VA, VKPE-36, Laboratorio Elec-
trotécnico, Cornellà de Llobregat, Spain) was connected to the output of the SP300VAC600W
programmable ac source to step up the output voltage provided by this source.

A voltage divider with a voltage ratio of 1000:1 was used to measure the high voltage
at the output of the high-voltage transformer, so that the load voltage was measured with
a calibrated true-RMS voltmeter (0–1000 VRMS, 0.4%, 0–10 A, Fluke 289, Fluke, Everett,
WA, USA).

The rod-to-plane gap is composed of a MBT5M brass tube (Albion Alloys, Poole,
UK) with outer and inner diameters of Ø = 1.5 mm and Ø = 0.8 mm, respectively. The
tip of the electrode was placed at a height of 8 mm above a grounded flat copper plane.
A rod-to-plane arrangement was used in this work because this geometry is among the
reference gaps used in high-voltage applications [36], thus allowing the generation of
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PDs. The tip was cut with a hacksaw for metals and polished with a metal grinding
wheel (fine grain 220 g, 2800 rev/min). This geometry was chosen in order to generate
a corona before arc appearance under the conditions analyzed in this work (20–100 kPa,
50–1000 Hz, 25 ◦C, humidity < 25%, <6 kV) being compatible with the dimensions of the
low-pressure chamber.

The experimental corona extinction voltage (CEV) values shown and analyzed in
Section 3 are measured by the means of two detection methods. The first method is based
on visual corona tests, a corona representing a pre-arc condition in its very early stage
before obvious damage in the insulation can be appreciated. To detect the visual corona
phenomenon and locate the discharge area, a high-resolution low-cost back-illuminated
CMOS imaging sensor (sensor size 8.0 mm, cell size 0.8 μm × 0.8 μm, 8000 × 6000 pixels,
48 Mpixels, 30 frames/second, lens focal 17.9 mm, quad Bayer filter array, images in raw
format, IMX586, Sony, Tokyo, Japan) was used, because back-illuminated CMOS sensors
are sensitive to visible and UV light [37]. To increase the sensitivity of the measurements,
long-exposure pictures were taken for 32s in manual focus mode, selecting an ISO of
400. This is a low-cost sensor that allows for locating corona discharge regions, as well as
quantifying the intensity of the discharges, thus easing maintenance tasks. This sensor also
enables reducing the costs and complexity of the instrumentation while offering excellent
measurement sensitivity and accuracy. Due to a special arrangement of the photodiodes,
back-illuminated CMOS imaging sensors allow capturing more light compared with con-
ventional CMOS sensors, thus performing better under low-light conditions, particularly
in the UV spectrum [37,38].

To determine the existence of a corona in the images taken by the CMOS sensor, they
were first converted to grayscale (rgb2gray function in Matlab®). Next, the mean value
of the pixels of a selected window centered near the corona focus was calculated and
compared with the mean value of the pixels from the rest of the image. If the first value is
greater than the second by 5%, it is assumed that there is a corona. This simple processing
approach is quite immune to the effect of external light (partial darkness).

The second method is based on measuring the leakage current. In this case the sensing
system consists of a 620 Ω ± 1% low-inductance resistor connected in series between the
ground copper plate and the laboratory electrical ground. The leakage current from the
discharges produces a voltage drop across the resistor that was monitored and registered
with a fast digital insulated oscilloscope (5GSa/s, 0–1000 V, 0.5% + 0.05% voltage range,
RTH1004, Rohde & Schwarz, Munich, Germany) equipped with two RT-ZI10 passive
voltage probes (500MHz, 1kV, 10:1, R&S ®, R&S, Munich, Germany).

Corona appearances in the leakage current is seen as peaks superimposed in the
current waveform. Therefore, by using a peak detection algorithm (based on the findpeaks
function of Matlab®) it is easy to differentiate between corona and no corona conditions.

3. Experimental Results

This section details the experimental results obtained by using the setup and instru-
mentation detailed in Section 2.

3.1. Visual Corona Photographs Taken with the Back-Illuminated CMOS Sensor

In order to describe the effects of frequency and pressure on corona discharges, long-
exposure photographs (32 s exposition time, RGB mode, ISO 400, manual focus, automatic
white balance) were taken using the setup detailed in Section 2. The discharges were per-
formed in the 20–100 kPa range in increments of 20 kPa and for different frequencies (50 Hz,
200 Hz, 400 Hz, 600 Hz, 800 Hz and 1000 Hz). Some of the long-exposure photographs
are shown in Figure 2, which show the effects of pressure and frequency on the visual
corona discharges. It is noted that the voltage levels corresponding to the photographs in
Figure 2 are higher than the CEV values to facilitate a good description of the discharge
patterns. It is noted that at low pressure, specifically around 20 kPa, care must be taken
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when increasing the voltage level, because there is very little difference between the CEV
value and the voltage level at which complete breakdown occurs.

50 Hz 200 Hz 400 Hz 600 Hz 800 Hz 1000 Hz 
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a 3907.4 V 3824.6 V 3836.5 V 3878.3 V 3938.7 V 3997.5 V 
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40
 k

Pa
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 1503.5 V 1506.8 V 1518.5 V 1536.1 V 1555.2 V 1580.4 V 
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40
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Figure 2. Long-exposure images taken with the back-illuminated CMOS sensor. (a) Negative ac
corona discharges. (b) Positive ac streamer corona discharges.
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Figure 2a shows negative corona discharges before streamers of positive corona appear.
The major visual effect is due to the pressure change. At high pressures, corona discharges
appear in several spots or “beads” and the active region of ionization is relatively small
and well-defined. As pressure decreases, the active region slightly expands and becomes
more diffuse, while the number of corona spots reduces. Figure 2a also shows that the
supply frequency has very little visual effect on the distribution of the corona discharges.

Figure 2b shows positive corona discharges superimposed with negative discharges,
the last ones appearing at lower voltages. According to the images included in this figure,
the streamers become more localized and ultimately develop into fewer beams of light
(650 μm± 100 μm in diameter, measured from the images) as pressure decreases. Figure 2b
also shows that the density of positive streamers also reduces when the supply frequency
increases. It can also be observed that in some cases, for a given pressure, there is a
maximum frequency from which streamers are not formed, and a further voltage increase
may be followed by electrical breakdown.

3.2. Obtained Corona Extinction Voltages (CEV)

This section describes the experimental CEV results attained when analyzing rod-to-
plane gap geometry, as described in Figure 1b. To obtain the CEV value, the voltage is
progressively increased from 0 kV until identifying corona activity, this point corresponds
to the corona inception voltage (CIV). Next, the voltage is increased by about 10% and
slowly reduced until the corona effect extinguishes. The last point is where a corona
manifest corresponds to the corona extinction voltage (CEV), i.e., the minimum voltage
value where corona activity can be found.

Figure 3 summarizes the process to determine the CEV value. This process was
repeated three times for each measurement, and these values were annotated.

 

Figure 3. Procedure to determine the value of the corona extinction voltage (CEV).

To avoid the CEV value to be influenced by ozone formation, the atmospheric air in
the low-pressure chamber was completely replaced in each test.

Table 1 summarizes the tests performed for each condition (pressure range 20–100 kPa,
frequency range 50–1000 Hz).

320



Sensors 2021, 21, 6676

Table 1. Tests performed (three consecutive repetitions each test).

Pressures Frequencies

100 kPa 50, 200, 400, 600, 800, 1000 Hz
80 kPa 50, 200, 400, 600, 800, 1000 Hz
60 kPa 50, 200, 400, 600, 800, 1000 Hz
40 kPa 50, 200, 400, 600, 800, 1000 Hz
20 kPa 50, 200, 400, 600, 800, 1000 Hz

The voltage amplitude was increased with discrete steps of 100 V consisting of a ramp
with a standard 1 V/ms rate. To determine the CEV value, the voltage was decreased with
steps of 10 V at a rate of −1 V/ms.

Table 2 summarizes the CEV values obtained by using the CMOS imaging sensor
according to the experimental setup shown in Figure 1b when analyzing different frequen-
cies (50 Hz, 200 Hz, 400 Hz, 600 Hz, 800 Hz and 1000 Hz) and different pressures (100 kPa,
80 kPa, 60 kPa, 40 kPa and 20 kPa).

Table 2. Experimental results corresponding to the rod-to-plane electrode geometry. CEV versus environmental pressure
and supply frequency.

Pressure Test Sensor 50 Hz 200 Hz 400 Hz 600 Hz 800 Hz 1000 Hz

100 kPa

Test 1
Camera 3761.5 3817.1 3784.0 3792.0 3659.9 3579.1

Leakage current 3723.2 3788.1 3754.5 3792.0 3659.9 3579.1

Test 2
Camera 3802.3 3781.0 3826.3 3899.8 3798.5 3732.3

Leakage current 3774.4 3781.0 3826.3 3835.9 3798.5 3732.3

Test 3
Camera 3800.7 3819.6 3807.1 3795.8 3843.2 3779.7

Leakage current 3763.9 3800.5 3786.8 3774.7 3843.2 3779.7
Average 3788.2 3805.9 3805.8 3829.2 3767.2 3697.0

80 kPa

Test 1
Camera 3382.9 3414.8 3410.6 3441.2 3341.8 3146.4

Leakage current 3326.5 3377.3 3410.6 3430.5 3341.8 3146.4

Test 2
Camera 3367.0 3398.1 3412.6 3424.6 3358.8 3272.4

Leakage current 3348.2 3379.1 3373.0 3404.0 3358.8 3272.4

Test 3
Camera 3385.4 3377.7 3412.9 3415.1 3358.1 3271.9

Leakage current 3329.1 3359.3 3393.4 3404.2 3358.1 3271.9
Average 3378.4 3396.9 3412.1 3427.0 3352.9 3230.2

60 kPa

Test 1
Camera 2757.9 2774.2 2761.2 2763.5 2791.7 2689.5

Leakage current 2719.8 2736.0 2742.6 2742.2 2781.3 2688.1

Test 2
Camera 2798.5 2842.9 2861.9 2868.7 2873.7 2813.1

Leakage current 2778.4 2823.8 2842.3 2837.2 2851.0 2813.1

Test 3
Camera 2853.7 2918.9 2901.8 2909.8 2916.8 2837.4

Leakage current 2815.5 2851.7 2862.4 2889.6 2916.8 2837.4
Average 2803.4 2845.3 2841.7 2847.3 2860.7 2780.0

40 kPa

Test 1
Camera 2255.6 2267.0 2270.0 2270.7 2274.6 2254.3

Leakage current 2198.5 2248.1 2270.0 2249.5 2274.6 2254.3

Test 2
Camera 2266.1 2315.4 2330.7 2333.9 2366.7 2354.2

Leakage current 2227.7 2296.3 2330.7 2333.9 2366.7 2354.2

Test 3
Camera 2246.4 2316.4 2321.5 2313.3 2322.5 2308.0

Leakage current 2246.4 2297.3 2321.5 2313.3 2322.5 2308.0
Average 2256.0 2299.6 2307.4 2306.0 2321.2 2305.5

20 kPa

Test 1
Camera 1468.8 1520.2 1522.6 1529.0 1526.7 1529.8

Leakage current 1449.3 1520.2 1522.6 1529.0 1526.7 1529.8

Test 2
Camera 1374.7 1443.1 1444.3 1426.4 1439.3 1458.0

Leakage current 1355.2 1443.1 1444.3 1426.4 1439.3 1458.0

Test 3
Camera 1450.2 1474.0 1463.6 1488.5 1552.0 1629.1

Leakage current 1450.2 1474.0 1463.6 1488.5 1552.0 1629.1
Average 1431.2 1479.1 1476.8 1481.3 1506.0 1539.0

Electrode diameter = 1.5 mm, tip angle = 90◦, electrode tip to plane distance = 8 mm.
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For a better analysis, the results presented in Table 2 are potted in Figure 4.
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Figure 4. Experimental results of the rod-to-plane electrode geometry. CEV values (kV) versus pressure (kPa) and supply
frequency (Hz). Results from the imaging sensor and the leakage current sensor (resistor) were plotted together.

Results in Figure 4 show that when analyzing the rod-to-plane electrode geometry,
the effect of frequency in the range 50–1000 Hz is much less than the effect of pressure in
the 100–20 kPa interval in the CEV values. Although high frequencies tend to reduce the
CEV values in the 100–60 kPa range, this effect disappears at lower pressures.

To further analyze the effect of pressure, Figure 5 shows the CEV versus pressure
error plots at each analyzed frequency. Such error plots show that the CEV reduces with
pressure almost linearly. The parameters of the linear fits are summarized in Table 3.
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Figure 5. Experimental results of the rod-to-plane electrode geometry obtained with the CMOS imaging sensor. CEV values
(kV) dispersion plot of the three measurements at each point versus pressure (kPa). (a) 50 Hz; (b) 200 Hz; (c) 400 Hz;
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Table 3. Linear fit parameters CEV = CEV0 + m·P, where CEV0 is the CEV at zero pressure in Volt, m
is the slope in Volt/kPa and P is the pressure in kPa.

Frequency

CEV0 m R2

Imaging
Sensor

Leakage
Current

Imaging
Sensor

Leakage
Current

Imaging
Sensor

Leakage
Current

50 Hz 980.5 965.9 29.182 28.908 0.9853 0.9867
200 Hz 1040.1 1031.2 28.755 28.565 0.9845 0.9871
400 Hz 1040.0 1043.4 28.813 28.548 0.9835 0.9839
600 Hz 1033.1 1037.5 29.084 28.765 0.9849 0.9847
800 Hz 1095.4 1093.2 27.771 27.771 0.9820 0.9827
1000 Hz 1138.1 1138.0 26.204 26.204 0.9863 0.9864

R2 is the coefficient of determination of linear regression, indicating how well data fits.

Results summarized in Table 3 show a quasi-linear relationship of the CEV versus
P plots measured at different frequencies in the 50–1000 Hz range, according to the high
values of the determination coefficient R2. These results also show similar values of the
CEV0 and m parameters for the different frequencies, thus corroborating the low effect of
the frequency in the CEV value.

Table 4 compares the CEV values obtained with both sensors.

Table 4. Average difference between the CEV values attained with the CMOS image and the leakage
current sensors for each frequency.

Frequency Difference

50 Hz 1.153%
200 Hz 0.695%
400 Hz 0.388%
600 Hz 0.466%
800 Hz 0.078%

1000 Hz 0.003%

From the values shown in Table 4 it can be observed that both methods have similar
sensitivity, whereas the difference between the results attained with the imaging sensor
and those with the leakage current sensor decreases with frequency.

4. Discussion

The results presented in Figure 4 clearly show that CEV values are mainly affected by
ambient pressure. The results plotted in Figure 4 are in accordance with previous studies
analyzing gas discharges for specific supply frequencies [7]. This effect is due to the fact
that the mean free path between ion collisions is inversely proportional to air density, and
thus, a larger number of successful secondary ionizations are produced at a lower pressure,
so that partial discharges can occur at lower voltages than the ones required at atmospheric
pressure [39].

Regarding the effect of frequency, Linder and Steele [40] studied the effect of frequency
on breakdown, proving that breakdown voltage decreases as the operating frequency
increases. There are other studies describing that CIV values usually decrease when
increasing the frequency, although this effect reduces at lower pressures [10]. This same
effect was observed in the experimental results presented in this paper. However, as can be
seen in Figure 4, the CEV values at 20 kPa slightly rise when increasing the frequency up
to 1000 Hz.

The formation of a larger number of negative corona spots and brighter negative
discharges at atmospheric pressure in contrast to what was observed at low pressure as
shown in Figure 2a, can be attributed to the fact that at atmospheric pressure a higher
voltage is needed to produce a corona; therefore, more spots are suitable for ionization
and more molecules are ionized in the process, thus increasing the brightness of the
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discharge [41]. The shape change observed in Figure 2a from a localized and defined to a
more diffuse and homogenous corona when lowering pressure, may be due to the fact that
at a low pressure, the free path of ionization is larger, so that ionized particles can travel
further, thus increasing the active area of ionization. This visual effect of pressure on a
corona has also been described in previous studies [42].

The results in Figure 2b show that when pressure reduces, the number of streamers also
reduces, becoming less diffuse and more localized. This effect was described in [43] using
a high-speed photographic camera. In the images presented in this paper, atmospheric-
pressure streamers appear as a diffuse bluish glow within the gap due to the 32 s long-
exposure effect.

To the best of our knowledge, there is a scarcity of publications analyzing in detail the
combined effect of variable frequency and variable pressure on visual corona. However, it
has been shown that although frequency has no significant visual effect on negative corona
(see Figure 2a), there is a slight effect on the streamers of positive corona (see Figure 2b).

The sensibility to detect corona discharges of the image sensor has been tested and
compared with that of the leakage current sensor, obtaining very close results, as shown in
Figure 4 and in Table 4, where the percentage differences are calculated, which are very low.
A similar comparison was performed in [7] where it was also concluded that the imaging
method with a CMOS camera has almost the same sensitivity as other sensitive methods
for corona detection.

It is noted that a drawback of the detection method based on the CMOS sensor is
that it requires partial darkness to operate. However, partial darkness is often found
in aeronautics applications since wires and harnesses are often inside troughs, ducts, or
conduits whose interior is usually dark. The authors are aware of this drawback, so they
are working in the integration of solar-blind imaging sensors, which can also operate under
usual sunlight conditions.

5. Conclusions

This paper conducted an experimental study to determine the effect of pressure and
frequency on visual corona using a CMOS imaging sensor and by measuring the leakage
current, proving that both sensing systems present very similar sensitivity, although the
imaging sensor allows locating the points where the electrical discharges occur. The
study was conducted by analyzing a rod-to-plane air gap in the 20–100 kPa and 50–1000
Hz intervals, covering most aeronautic applications. The results show that pressure and
frequency both have an effect on corona extinction voltage (CEV). CEV increases remarkably
with air pressure, but the effect of frequency is lower, causing the CEV to decrease with
frequency in the 100–60 kPa pressure range, this effect diminishes with pressure. In
addition, a visual description of the effects of pressure and frequency on a corona was
performed. The results presented show that the CMOS image sensor has enough sensitivity
to be used as a corona detector in low-pressure environments and under a wide range of
electrical frequencies. In addition, it was shown that although the difference between the
CEV values found with the CMOS imaging sensor and by analyzing the leakage current is
very low, this difference tends to reduce at higher frequencies.
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Abstract: Motor imagery (MI)-based brain–computer interfaces have gained much attention in the
last few years. They provide the ability to control external devices, such as prosthetic arms and
wheelchairs, by using brain activities. Several researchers have reported the inter-communication
of multiple brain regions during motor tasks, thus making it difficult to isolate one or two brain
regions in which motor activities take place. Therefore, a deeper understanding of the brain’s neural
patterns is important for BCI in order to provide more useful and insightful features. Thus, brain
connectivity provides a promising approach to solving the stated shortcomings by considering
inter-channel/region relationships during motor imagination. This study used effective connectivity
in the brain in terms of the partial directed coherence (PDC) and directed transfer function (DTF)
as intensively unconventional feature sets for motor imagery (MI) classification. MANOVA-based
analysis was performed to identify statistically significant connectivity pairs. Furthermore, the
study sought to predict MI patterns by using four classification algorithms—an SVM, KNN, decision
tree, and probabilistic neural network. The study provides a comparative analysis of all of the
classification methods using two-class MI data extracted from the PhysioNet EEG database. The
proposed techniques based on a probabilistic neural network (PNN) as a classifier and PDC as a
feature set outperformed the other classification and feature extraction techniques with a superior
classification accuracy and a lower error rate. The research findings indicate that when the PDC was
used as a feature set, the PNN attained the greatest overall average accuracy of 98.65%, whereas the
same classifier was used to attain the greatest accuracy of 82.81% with the DTF. This study validates
the activation of multiple brain regions during a motor task by achieving better classification outcomes
through brain connectivity as compared to conventional features. Since the PDC outperformed the
DTF as a feature set with its superior classification accuracy and low error rate, it has great potential
for application in MI-based brain–computer interfaces.

Keywords: brain–computer interface; brain effective connectivity; PDC; DTF; PhysioNet motor
imagery; probabilistic neural network; SVM; KNN; decision tree

1. Introduction

Many unfortunate people with severe motor disabilities are not able to communicate
well with the outside world. Their disabilities become obstacles between them and their
social lives. Millions of people around the globe are affected by these types of disabilities,
which are caused by several medical conditions, such as trauma, stroke, and different
neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease
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(PD), motor neuron diseases (MND), etc. Such people are afraid to be neglected as a
significant part of society. Research communities around the world are working on the
development of brain–computer interfaces based on different medical applications, such
as brain-controlled wheelchairs, thus helping patients who have lost their abilities to
communicate and providing them with mobility.

The brain–computer interface (BCI) has been one of the most rapidly growing tech-
nologies in recent years. It provides a control system that is capable of transforming a
user’s intentions into special commands to be used as a communication bridge between
the brain and the outside world [1,2]. BCIs are a combination of software and hardware
technologies that allow the brain to control external devices, such as prosthetic arms/legs
or wheelchairs, by decoding different brain patterns. A general representation of a BCI
system is given in Figure 1.

Signal Acquisition Pre-Processing Signal Processing Applications

SNR Improvement

Band Pass Filtration

Line Noise Removal

Feature Extraction

Classification

Feature Selection

Prosthetics

Games

Robots

Wheelchairs

Figure 1. General overview of brain–computer interface (BCI) systems.

Electroencephalography (EEG) is the conventional method of monitoring the electrical
activities of the brain by placing special sensors called electrodes on the surface of the
scalp [3]. Electrical signals are generated by the inter-communication of cells within the
brain. EEG-based BCIs identify explicit frequency patterns in the brain by sensing slight
variations in the voltages that the brain emits while the person thinks in any way.

Motor imagery (MI) a traditional and active BCI paradigm that uses electroencephalog-
raphy (EEG) to directly reflect a user’s intention. Motor imagery can be expressed as the
process of performing the imagination of motor tasks (i.e., the movement of body parts)
without actually executing them physically [4].

Although the literature shows positive outcomes and accomplishments by using con-
ventional MI-based BCI systems, including different state-of-the-art feature extraction and
classification techniques, there are still many barriers and hurdles in using the technology
efficiently and effectively. The major drawback of the existing MI-based BCIs is that they
are based on traditional feature extraction and classification algorithms. Traditional feature
extraction methods use MI-responsive frequency bands that do not have inter-subject or
intra-subject consistency, which creates instability in BCI systems [5]. ERS/ERD analysis
has proven to be complex due to its occurrence in different parts of the brain, during
different time intervals, and at different frequencies, thus making it difficult to obtain
significant features for classification [6]. Considering the low amplitude and noisy nature
of EEG data, pattern inconsistency among multiple subjects and even altered patterns
within a session with the same subjects can be expected. Various EEG studies confirmed
the occurrence of MI-actuated signals in primary sensorimotor areas [7,8], whereas other
researchers also reported the inter-communication of multiple brain parts during cognitive
tasks [9,10], thus making it difficult to isolate one or two regions where the activity takes
place. Furthermore, conventional MI-based BCI systems utilize temporal–spectral features
from individual channels to recognize motor imagery patterns, which may not provide
sufficient information. Therefore, a deeper understanding of the behavior of the brain’s
neural patterns is important in order to provide more useful and insightful features for
BCIs, since the execution of motor or cognitive tasks results in the exchange of information
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of multiple mutually interconnected brain regions. Thus, awareness of brain connectivity
has become a key aspect of neuroscience and of understanding the behaviors of different
regions. Different MI tasks are expected to have associations with particular brain connec-
tivity patterns among the brain regions. Therefore, brain connectivity provides a promising
approach to solving the stated shortcomings by considering inter-channel/region relation-
ships during motor imagination. EEG recordings can be used to identify these connectivity
patterns and offer unique features to infer a subject’s intentions.

Several conventional classification algorithms have been widely used in brain-
connectivity-based BCIs. In a study by Mehdi et al. [11], MVAR (multivariate autoregressive)-
based source localization was used with an SVM for the classification of MI tasks, whereas
Liang et al. [12] used the combination of the PDC and MEMD with an SVM to classify
two-class MI. In another work [13], Panche et al. used a linear discriminant analysis (LDA)
classifier for the prediction of MI tasks using the transfer-entropy-based effective connec-
tivity. Lingyun et al. [14] used brain network analysis for the classification of lower-limb
motor imagery; the authors used a sparse multinomial logistic regression (SMLR)-based
SVM for the prediction of the MI. In the work of Rahman et al. [15], an fNIRS-based BCI
was proposed by using effective temporal window estimation. The extracted features were
used with three classifiers—LDA, SVM, and KNN—for the prediction of two-class MI.

Human brain mapping has primarily been used to construct maps that indicate re-
gions of the brain that are activated by certain tasks. The term brain network or brain
connectivity refers to sets of interconnected brain regions among which information is
transferred. However, there has been insufficient discussion about the use of brain connec-
tivity for motor-imagery-based pattern recognition. Our research is based on the analysis
of effective connectivity, which explains the effects of neurons on each other, thus repre-
senting the causal connections between activated brain regions. The technique proposed
in this study is based on brain connectivity, which is a unique direction for research on
building a more accurate framework. The accuracy and performance improvements of the
developed system in this work will be a step forward for the effective implementation of
BCI applications, such as brain-controlled wheelchairs.

The rest of this paper is structured as follows: Section 2 describes the use of brain
connectivity in the field of motor-imagery-based brain–computer interfaces. Subsequently,
Section 3 covers the detailed description of an MI-based EEG dataset. Section 4 discusses
the methods used in this work, including the preprocessing, feature extraction, and clas-
sification techniques. It further describes the detailed estimation of the PDC and DTF,
along with the description of the evaluation measures. Section 5 presents the results and
discussion. Finally, Section 6 concludes the paper.

2. Related Work

The study of brain connectivity is based on three distinct but related types of connec-
tivity, including anatomical connectivity (AC), functional connectivity (FC), and effective
connectivity (EC) [16,17]. Connectivity patterns are created by structural connections, such
as synapses or fiber pathways, or they exemplify statistical or causal relationships, which
are measured as cross-correlations, coherence, or information flow [18,19]. Among the
different types of feature representations for motor-imagery-based EEG decoding, the
connectivity models of multi-channel signals may produce more discriminating features
for significant classification [20,21]. Several approaches to analyzing motor-imagery-based
BCI systems that were established using brain connectivity have been proposed in the last
few years.

Billinger et al. [22] proposed a technique for obtaining single-trial directed transfer
functions (DTFs) by using vector-autoregressive (VAR) independent variable models for
MI-based BCI classification, and the classification findings were identical to the band-
power (BP) characteristics. Ming et al. [23] researched EEG characteristics associated with
the movement of the left and right fingers. The event-related desynchronization (ERD)
and movement-related cortical potential (MRCP) features were recovered using common
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spatial patterns (CSP) and discriminative canonical pattern matching (DCPM). Since pre-
movements have supportive MRCP and ERD characteristics, the proposed DCPM and CSP
combination approach may be able to recognize them effectively. Mehdi et al. [11] proposed
a method in which they used an MVAR model with the source localization algorithm
(sLORETA) to extract active sources. After incorporating ANOVA for the reduction of the
feature set, the authors used an SVM for the classification of the motor imagery tasks. In
another study [24], a new time- and frequency-based causality was proposed by using a
time-invariant BVAR model to investigate the flow of causality in the central region of the
brain. As a result, improved performance with the new causality (NC) was reported as
compared to the Granger causality.

In Rathee et al.’s study [25], the time-domain partial Granger causality (PGC) in
terms of the connectivity feature set was used in an MI-based BCI environment. This
resulted in the improved discriminability of MI tasks by using a single-trial effective
connectivity distribution. However, Yang et al. [20] proposed a method in which time-
and frequency-conditional Granger causality (CGC) was determined using a regularized
orthogonal forward regression (ROFR) algorithm. The extracted features were classified
using a boosted convolutional network, resulting in enhanced classification accuracy.
Ahmad et al. [26] proposed an effective connectivity analysis for MI by using several
variants, including DTF, direct DTF, and generalized PDC. A hierarchical feature selection
technique was adopted to select the most important connectivity features, which resulted
in successful discriminations of mental arithmetic tasks. Short-term DTF was used to
investigate brain activities by implementing it to evaluate motor imagery experiments in
three channels—C3, C4, and Cz [27,28]. Liang et al. [12] explored the effective connectivity
in the motor cortex by using a combination of the PDC and multivariate empirical mode
decomposition (MEMD). The results demonstrated the existence of significant effective
connectivity in the bilateral hemisphere during the MI tasks.

However, in a study by Chung et al. [29], the temporal patterns of connectivity among
EEG channels were evaluated according to the time-varying patterns of the channel-to-
channel correlation coefficients and the average correlation coefficients per channel for
left- and right-hand motor imagery. In [30], Lee et al. predicted the MI performance by
using dynamic causal modeling to study the connectivity of a rest-state network, which
affected the performance of the MI. As a result, a significant difference was observed in
the network strength from the motor cortex to the right prefrontal cortex between the
high- and low-MI-performance groups. Independent-source-based causal brain connec-
tivity was introduced in [31] for the classification of left- and right-hand motor imagery.
Chen et al. [32] used Granger causality analysis to analyze the brain connectivity between
the motor, contralateral premotor, and sensorimotor areas. The results also revealed the
significant difference in the G-causality trial numbers of left- and right-finger motor im-
agery. Li et al. [33] investigated effective connectivity in order to analyze and compare the
rest state with right-hand motor imagination. In another study [13], Panche et al. proposed
Renyi-based transfer entropy for measuring effective connectivity, resulting in significant
robustness against varying amounts of data and noise levels.

3. Dataset Description

3.1. Ethical Approval

The dataset used in this work was entirely de-identified; therefore, no ethical review
board (ERB) permission was required. The publicly accessible Physionet EEG motor
imagery dataset used in this research work is available online [34], and it can be used
without any further authorization.

3.2. Dataset

The developers of the BCI2000 instrumentation system created the dataset used in this
work. The database includes more than 1500 one- and two-minute recordings from 109
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volunteer subjects. The overall dataset contains the recordings of both the actual and the
imagined motor tasks from all of the participants [35].

Each subject underwent 14 runs, where they performed several tasks, including the
actual movement of the right/left fist, the imagination of the movement of the right/left
fist, the actual movement of both fists/both feet, the imagination of the movement of both
fists/both feet, and the opening/closing the eyes. EEG recordings were obtained as per the
international 10–10 system from 64 electrode channels (excluding Nz, F9, F10, FT9, FT10,
A1, A2, TP9, TP10, P9, and P10) that were sampled at the rate of 160 samples per second.

For the purpose of analysis, 14 out of the 64 EEG electrodes from all of the major
regions of the brain (left region, right region, and central region) were used in this study.
Among these 14 carefully chosen channels, two electrodes (i.e., Cz and Fz) are in the central
region of the brain, six electrodes (i.e., T7, P7, C3, P3, FC3, and CP3) are located in the
left-brain region, and the remaining six electrodes (i.e., T8, P8, C4, P4, FC4, and CP4)
are in the right region of the brain. These selective electrodes are capable of analyzing
the effective network during the MI-demonstrated brain networks underlying the mental
behavior in several brain parts, including the primary motor cortex, primary and secondary
somatosensory cortices, lateral premotor cortex, supplementary and presupplementary
motor areas, frontal cortex, temporal cortex, and parietal cortex [36,37]. These are the most
suitable electrodes for the feasible implementation of MI-based BCI using multiple brain
regions with a reduced number of electrode channels. Moreover, these channels have been
endorsed by several researchers in their work [38–42]. The channels chosen for the BCI
application are shown in Figure 2.

Figure 2. Standard 10–10 EEG electrode configuration. Selected electrodes from left, right and central
region are encircled with blue, green and red color, respectively.
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In this work, we excluded the data from 18 subjects—namely, S29, S30, S34, S37,
S41, S51, S64, S72, S73, S74, S76, S88, S89, S92, S100, S102, S104, and S106—since they
had contaminated EEG recordings or an insufficient number of samples in the available
dataset. Thus, the EEG data from 91 out of the 109 subjects were used in this study.
Among the several tasks available in the stated database, two-class motor imagery (imagi-
nation of opening/closing the left fist and imagination of opening/closing the right fist)
was analyzed.

3.3. MI Paradigm

The subjects were asked to sit on a comfortable armchair in front of a screen in order
to guide them through the experimental procedure. They were instructed not to move
any parts of the body during the recording of the data. For the experiment, participants
were instructed to perform the imagination of motor tasks as a target appeared on either
the left or the right side of the screen. The subjects imagined opening and closing the
corresponding fist until the target disappeared. Then, the subject relaxed. Every subject
recorded three sessions for each type of MI task. However, a single session comprised seven
to eight random trials of each class, i.e., left or right movement imagery. Each trial was
carried out for four seconds, followed by a rest period of 4 s ± 5%, as shown in Figure 3.

 − 4s 0 s 4 s 8 s

Imagination 
Task

Left or Right
Fist

Rest
Next
Trial

Previous
Trial

Rest

Figure 3. Motor imagery time scheme during the recording of the EEG signals.

4. Methodology

The proposed methodology aimed to utilize the estimation of brain connectivity (ef-
fective connectivity) for the classification of motor-imagery-based electroencephalographic
signals using different classifiers. To the best of the authors’ knowledge, a probabilistic
neural network has never been used for the task of MI prediction using brain connectivity.
This study provides a comparative analysis of all of the traditional and unique classifiers
for two-class MI classification by using connectivity features.

Figure 4 represents the flow of the proposed methodology, in which raw EEG data
from the 91 healthy subjects were preprocessed with different techniques. Based on the
studies from the literature, 14 significant channels were selected out of a total 64 channels,
and their effective connectivity in terms of the partial directed coherence (PDC) and directed
transfer function (DTF) was used as a key feature. Both the PDC and DTF were analyzed
separately by using the classifiers in order to recognize the 2-class MI-based patterns.

The proposed work was implemented on Intel® Xeon(R) CPU E3-1226 v3 at 3.30 GHz
(installed memory: 16 GB). MATLAB 2020a was used as the programming platform for our
proposed work.
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Figure 4. General workflow diagram for the classification of the two-class MI EEG using the effective
connectivity matrices with the PDC and DTF.

4.1. Preprocessing

The enhancement of the raw signal is the prerequisite and fundamental step of EEG
signal processing. The raw data hold both significant information and artifacts/undesired
components (i.e., eye blinks, eyeball movement, jaw clenches, heavy breaths, etc.). The
exclusion of unnecessary components from the signal is very important in order to improve
the signal-to-noise ratio (SNR).

The data from the 91 subjects were preprocessed using Brainstorm in MATLAB.
Brainstorm is an open-source platform dedicated to the analysis of several types of brain
recordings, such as fNIRS, MEG, ECoG, and EEG. A high-pass filter was applied at 0.1 Hz
for the purpose of DC offset correction, while a notch filter was used at 60 Hz to eliminate
the electrical interference. The raw signal was bandpass filtered between 7 and 32 Hz to
exclude all of the frequency components other than mu and beta, as the studies [43–45]
revealed the occurrence of MI patterns in the stated frequency range. However, the artifacts
were removed using the EEGLAB-based artifact removal algorithm called artifact subspace
reconstruction (ASR). Major artifacts identified by the ASR technique, including eye blinks,
muscle noise, and sensor motions, were removed from the data. Furthermore, excessive
preprocessing was avoided in this research, since the creator of the DTF/PDC suggested
that unnecessary preprocessing may impact the causality information and should, thus, be
avoided [46].

Although the data were preprocessed to remove the artifacts and unnecessary sig-
nals, there was still redundant information available, which was also eliminated. These
redundant data were actually the duration during the trial when the participants rested
and did not perform any type of MI task (see Figure 3). After discarding the undesired
part of the MI trials, 4095 trials (4 sec each) were available for further signal processing.
Since the sampling frequency was 160 Hz, the total number of samples for each trial was
equal to 4× 160 = 640. In this work, we used 14 significant channels, as discussed in the
dataset description.
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4.2. Feature Extraction

The next critical step of the signal processing of the BCI system after preprocessing
was feature extraction. This process was intended to extract specific characteristics of
the signals that encoded the messages or commands elicited in the user’s brain by either
evoked or spontaneous inputs. In this work, effective connectivity was estimated using
the partial directed coherence (PDC) and directed transfer function (DTF) for the MI-based
EEG classification.

The basic code for the calculation of the PDC and DTF is available at [47]. The PDC
and DTF were calculated by adjusting the maximum frequency to 32 Hz, whereas the
number of bins was set to 64. Both the PDC and DTF were calculated for every 4 s of EEG
data, which referred to a single MI trial (see Figure 3). Every subject recorded 23 trials for
the left direction and 22 trials for the right direction. The feature sets calculated for each
trial were in the form of 3D matrices (i.e., 14× 14× 64), which were converted into 2D (i.e.,
896× 14) by performing matrix reshaping in order to execute the classification process.
For the left class, each of the 23 trials (896× 14) was concatenated to get a (20,608×14)
matrix, whereas for the right class, each of the 22 trials of (896× 14) was concatenated
to get a (19,712×14) matrix. To create the final feature set, both the left and right feature
sets were combined along with an extra column (i.e., labels for both classes) to get a
(40,320×15) matrix. This final feature set for each subject set was used as an input for
different classification algorithms for the 2-class MI prediction (see Figure 4).

4.2.1. Effective Connectivity

Effective connectivity can be interpreted as the indirect or direct influence of one
neural system on another at either a synaptic level or a cortical level [48]. According to [49],
the EC should be recognized as the time-dependent and simplest possible circuit diagram
that replicates the timing relationships between the recorded neurons. There are several
brain connectivity estimators, including non-linear estimators, linear estimators, bivariate
estimators, and multivariate connectivity estimators. The difference between bivariate
and multivariate estimators is presented in [50], which states that the presence of multiple
channels (i.e., more than two) in the case of an interrelated system of channels in bivariate
connectivity estimators provides erroneous information due to the electrode channels
positioned at different distances causing notable delays in the recorded signal.

This fact has led the research community to consider multivariate estimation for effec-
tive connectivity. These multivariate estimators based on Granger causality (GC) [51,52]
allow precise measurement of the directed connectivity by eliminating the problem caused
by multiple channels in the bivariate method. The Granger causality (GC) was established
to determine the causal connection between two signals. If past information of signal X(t)
is given with the past information of signal Y(t), then the causality between X(t) and Y(t)
can be measured by decreasing the error (prediction error) of signal Y(t).

The partial directed coherence [53] and directed transfer function [54] are among
the most widely used connectivity estimators based on the multivariate autoregressive
model (MVAR) under the umbrella of Granger causality (GC) to evaluate the directional
influences of any given pair of channels in a dataset. The PDC and DTF, which are based
on the MVAR model, can detect causal interactions between the signals and identify
the directional propagation of the EEG activity in terms of the frequency function. The
frequency dependency of estimators is an essential aspect, since various EEG rhythms
play different roles in the processing of information. The PDC and DTF are insensitive to
volume conduction and are very tolerant towards noise, as they are based on the phase
differences between channels of multivariate data. The physiological information provided
by means of the parametric and multivariate autoregressive (MVAR)-based methods has
revealed their effectiveness in brain research.
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4.2.2. Partial Directed Coherence

Baccala and Sameshima [53] developed an analysis method called partial directed
coherence (PDC) as an extension of Granger’s conditional causality in the frequency
domain. The analysis aims to set up the connectivity links among different brain regions
for the frequency range selected from an electroencephalographic signal. In this work, we
selected two frequency ranges, commonly known as alpha (7–13 Hz) and beta (13–32 Hz).

The multi-channel EEG data obtained by using multivariate autoregressive (MVAR)
model can be defined as follows:

Y(t) =
l

∑
r=1

A(r)Y(t− r) + E(t), (1)

where Y(t) denotes the 14-channel EEG time-series data, l is the model order, A(r) is the
coefficient matrix with lag r, and E(t) is the error (prediction error) of the multivariate
autoregressive model. Equation (1) can be rearranged to determine the prediction error
as follows:

E(t) =
l

∑
r=0

Â(r)Y(t− r), (2)

where the following value belongs to Â(r):

Â(r) =

{
1− A(r), r = 0.
−A(r), r > 0.

(3)

The error function in Equation (2) can be expressed in the frequency domain:

E( f ) = A( f )Y( f ), (4)

where f represents the frequency. So,

A( f ) =
l

∑
r=0

Â(r) exp−j2π f r. (5)

The PDC in the frequency domain can be calculated as

Pij( f ) =
Aij( f )√

∑x
k=1 |akj( f )2|2

. (6)

In Equation (6), the number of analyzed channels (except for the current channel j)
is denoted by x, while Pij represents the PDC’s correlation indicators from Yj to Yi at a
specific frequency f . The capital A represents the whole coefficient matrix; however, the
small a refers to the matrix elements. The sum of all causal inference estimations Pij at
certain frequencies while reviewing the influence on all channels x by channel j is 1. This
proves that higher values of Pij result in a greater influence of channel j on channel i.

4.2.3. Directed Transfer Function

Kaminski and Blinowska [54] presented an analysis method based on a multivari-
ate model called the directed transfer function (DTF). This work generalized Granger’s
work to some extent and claimed to have significant superiority in brain connectivity
estimation. The PDC and DTF differ in such a way that the PDC detects active direct
directional coupling, while the directed transfer function illustrates the presence of both
direct (i.e., the immediate causal influence path) and indirect (the signal traveling through
intermediate structures rather than an instant direct causal influence path) directional
signal propagation [55].
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The only different step in the DTF is that of taking the inverse of A( f ) from Equation (5)
and then performing the normalization.

H( f ) = A( f )−1 (7)

where H( f ) is the frequency-domain representation of the transfer function of the system
and can be obtained as follows:

H( f ) =
1

1 + ∑l
r=0 Â(r) exp−j2π f r

. (8)

Then, the squared DTF from channel j to i can be given as

D2
i←j =

|Hij( f )|2
∑

y
m=1 |Him( f )|2 (9)

Di←j =
|Hij( f )|√

∑
y
m=1 |Him( f )|2

(10)

Here, Di←j represents the normalized version of causality from channel j by channel i
at some specific frequency f , while the transfer matrix of the multivariate autoregressive
model is denoted by Hij.

4.2.4. Connectivity Estimation

There were several steps (i.e., dataset adjustment, model order calculation, MVAR
coefficient determination, and PDC/ DTF estimation) involved in the estimation of effec-
tive connectivity.

1. The first step in the estimation of connectivity was to adjust the MI EEG dataset by
selecting the significant electrode channels from the primary dataset. The selection of
14 channels was already discussed in the preprocessing section.

2. After selecting the number of channels for the connectivity estimation, the data
were divided into several trials, and the connectivity was computed separately for
each trial.

3. Next critical step was the calculation of the model order l, which defined how many
previous samples were needed for the prediction of the current samples. This was
an automatic process that required a minimum and maximum range of order (i.e.,
1–20 in our case) and an optimizing algorithm (i.e., Schwarz’s Bayesian Information
Criterion in our case) to select the order with the minimum error. However, the model
order l was calculated by using the ARFIT toolbox with the parameters suggested by
several researchers [56–58].

4. After estimating the optimized model order l, the next step incorporated the estima-
tion of the MVAR coefficients (see Equation (1)).

5. The next step was to define the sampling frequency (i.e., 160 Hz) and the number
of frequency bins among which the total frequency range (i.e., 7–32 Hz) would be
divided for the connectivity analysis. In this work, we set the number of frequency
bins to 64 so that the connectivity estimation process would be repeated 64 times for
each bin of the frequencies.

6. The next step after the assignment of the above parameters was to find the difference
Â by subtracting the MVAR coefficient matrix A from the identity matrix I, as in
Equation (3).

7. After calculating the difference from the identity matrix, a Fourier transform was
performed to convert the time-series MVAR matrix Â into the frequency domain A( f )
(see Equation (5)).

8. The estimation of both the PDC and DTF followed all of the above-mentioned steps;
however, for the DTF, the only different step was to find the inverse of the frequency
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domain matrix (i.e., H( f ) = A( f )−1), where H is called the transfer matrix of the
system (see Equation (7)).

9. The final step in the estimation of the connectivity was the normalization of A( f ) and
H( f ) for the PDC and DTF, respectively (see Equations (9) and (10)). The normalized
outputs P and D were then called the PDC and DTF, respectively.

10. The 14-channel data were used while incorporating 64 frequency bins; therefore, the
estimation of the PDC and DTF resulted in a 14× 14× 64 matrix for each trial. Since
the estimated connectivity matrix was in 3D, matrix reshaping was carried out to
convert the 3D matrix into a 2D matrix for the purpose of classification.

4.3. Classification

Classification is a mechanism by which target variables or classes are predicted from
given information. An extensive motor-imagery-based EEG dataset covering 91 healthy
subjects was used for the estimation of brain connectivity with measures of the effective
connectivity (i.e., PDC and DTF). The extracted features in terms of the DTF and PDC were
classified by using four classifiers to predict 2 classes of left/right EEG MI. The k-fold cross-
validation (CV) technique was used to explore the performance of the proposed method,
and k = 5 and 10 were used for all experiments, as they were found to be appropriate.

K-nearest neighbors (KNN) belongs to the category of supervised learning, and it can
be used for both classification and regression problems. In KNN, the item is identified by a
majority vote from its neighbors, with the item being allocated to the most common class
of its nearest k neighbors [59]. In this work, standardized data were used in KNN with
the Euclidean distance function while using equal-distance weights, and the number of
neighbors was set to 3.

Support vector machine (SVM) is a supervised-learning-based classification model
that is explicitly described by a separating hyperplane [60]. This work aims to use a 2-
class SVM with a Gaussian kernel function for the classification of MI-based EEG data.
Standardized data were used in the stated variant of the SVM with a kernel scale of 0.9399
and a box constraint of 1.

The decision tree is a non-parametric predictive modeling approach to supervised
machine learning that covers both classification and regression problems. As the name
indicates, it utilizes a tree-like structure of decisions. In the tree model, class labels or final
outcomes are represented by the leaves, while the decision nodes contain the split data [61].
Decision trees are significantly easy to interpret and simple to implement.

Probabilistic Neural Networks (PNNs)

A probabilistic neural networks (PNN) is a supervised approach that excels in decision
making and classification. The network is trained with objects from known classes by using
a collection of known instances, and thereafter, it can distinguish new objects according to
the categories specified in the training set [62].

A PNN is a feedforward neural network that is commonly used in classification
problems, and it does not require the extensive forward and backward calculations used
in traditional neural networks. A PNN is intimately associated with the estimation of the
Parzen window probability distribution function (PDF). This comprises several networks,
where each sub-network is a Parzen window PDF estimator for each class [63]. A PNN
is a feedforward multilayered network with four layers—an input layer, pattern layer,
summation layer, and output layer—as shown in Figure 5.
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Figure 5. Illustration of a probabilistic neural network.

The 1st layer performs the distribution of the input values from the input layer to the
neurons of the 2nd layer, i.e., the pattern layer. The pattern layer incorporates pattern units
that are equal to the number of samples. Each pattern unit performs a two-step process on
the input, including the computation of the Euclidean distance and the implementation
of the kernel function, which computes the output when the pattern x is received from
the input layer. The calculations from the pattern layer are passed to the 3rd layer (i.e.,
summation layer). The number of neurons in the 3rd layer is equal to the number of
available classes, where each neuron is linked to all of the neurons in the pattern layer
associated with the class represented by the particular unit. Each neuron represents the
probability of the pattern x that is classified. The summation layer also determines the false
detection of any given class. Weighted votes or values for each class from the 3rd layer
are presented to the decision layer, where the majority voting is carried out in order to
compare the values for each class, and the highest value predicts the target class.

The training process is perhaps the most time-intensive element of the preparation
of a network for usage, since it depends on iterative algorithms that define the weight
values. There are three stages in which the weight definition process occurs. In the 1st
stage, weights are defined between the input and pattern layer. The definition of weights is
instantaneous. As a result, training is accomplished by showing the training set examples
all at once (after normalization) and sharing the node values for the layer of examples.
In the 2nd stage, weights are predetermined between the pattern and summation layers
and are equal to 1. In the 3rd stage, the weights are preset between the summation and
output layers; however, their values may be given based on certain factors according to the
training samples [62]. In this work, the spread of 0.04 was used as a hyperparameter for the
proposed PNN model. This parameter was rigorously tuned to achieve consistent results.

4.4. Evaluation Parameters

The performance of the proposed work was determined by using several evaluation
parameters. The evaluation parameters incorporated in this work are given below:
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1. Classification accuracy (CA):

CA =
TP + TN

TP + TN + FP + FN
(11)

2. Sensitivity or true positive rate (TPR):

TPR =
TP

TP + FN
(12)

3. Specificity or true negative rate (TNR):

TNR =
TN

TN + FP
(13)

4. Precision or positive predictive value (PPV):

PPV =
TP

TP + FP
(14)

5. False positive rate (FPR):

FPR =
FP

FP + TN
(15)

6. False negative rate (FNR):

FNR =
FN

FN + TP
(16)

Here, TP, FP, TN, and FN represent true positives, false positives, true negatives, and
false negatives, respectively.

4.5. Statistical Investigation

A multivariate analysis of variance (MANOVA) pairwise comparison was performed
with a significance threshold of 0.05 to determine the statistical significance in the features
of the left and right motor imagery EEG. For this, the 2 classes (left and right) were
treated as fixed factors, while connections from all of the subjects were used as dependent
variables. The mean difference between the 2 classes for each connection was tested with
a 95% confidence interval, and the connection was marked as significant if the p-value
was less than 0.05. As an adjustment for multiple comparisons, Bonferroni correction was
implemented.

5. Results and Discussions

In this work, motor-imagery-based pattern recognition was experimented upon by
using effective connectivity features, the PDC, and the DTF. The effective connectivity
among three different brain portions—the central, left, and right regions—was measured
using 14 electrode channels (i.e., 196 connectivity pairs) for which statistical analysis
was carried out in order to determine the significant connections. The performance of
the proposed work was evaluated separately for each subject; however, the results are
presented as the averages of all 91 subjects.

5.1. Statistical Analysis

Figure 6 presents the connectivity pairs with significant differences that were obtained
through MANOVA. The green color highlights the significant connections, whereas the
white boxes indicate the insignificant pairs.
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Figure 6. Matrix-form illustration of 105 significant connections (in green) listed in Table 1.

The statistical analysis showed that 105 out of the 196 connections were identified as
significant with a 95% confidence level. With more than half (55.6%) of the connections
at the 95% confidence level, the classification of the left/right MI EEG based on the 14
electrodes is expected to give good performance. Table 1 provides the p-value of the
significant pairs. As described in Section 4.5, a p-value that is less than 0.05 basically
indicates that the difference between the classes of the said connections is significant. This
implies that the significant connections are dominant PDC features that largely contribute
to the high classification accuracy of the proposed method.

Table 1. List of p-values of 105 significant connection pairs.

Pair p-Value Pair p-Value Pair p-Value

T7←P7 0.000 CP3←Cz 0.025 C4←T8 0.022

T7←FC3 0.000 CP3←P4 0.000 CP4←P7 0.000

T7←P3 0.001 CP3←P8 0.000 CP4←FC3 0.000

T7←Fz 0.000 P3←FC3 0.000 CP4←C3 0.000

T7←Cz 0.011 P3←Fz 0.000 CP4←P3 0.003

T7←C4 0.000 P3←Cz 0.000 CP4←Cz 0.000

T7←CP4 0.008 P3←C4 0.024 CP4←FC4 0.005

T7←P4 0.000 P3←P4 0.019 CP4←C4 0.002

P7←P7 0.005 P3←P8 0.002 CP4←P4 0.000

P7←FC3 0.000 P3←T8 0.000 P4←P7 0.000

P7←Fz 0.000 Fz←P7 0.002 P4←FC3 0.000

P7←C4 0.017 Fz←P3 0.011 P4←C3 0.000

P7←P4 0.000 Fz←FC4 0.000 P4←CP3 0.000

P7←P8 0.000 Fz←CP4 0.010 P4←FC4 0.002
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Table 1. Cont.

Pair p-Value Pair p-Value Pair p-Value

FC3←P7 0.000 Fz←P8 0.000 P4←C4 0.027

FC3←C3 0.003 Cz←CP3 0.005 P4←CP4 0.000

FC3←CP3 0.005 Cz←Fz 0.000 P4←P8 0.000

FC3←Cz 0.000 Cz←P4 0.000 P4←T8 0.003

FC3←CP4 0.001 Cz←P8 0.021 P8←P7 0.000

FC3←P4 0.047 Cz←T8 0.021 P8←FC3 0.000

FC3←T8 0.000 FC4←P7 0.000 P8←C3 0.000

C3←P7 0.000 FC4←C3 0.000 P8←C4 0.000

C3←FC3 0.020 FC4←CP3 0.000 P8←P4 0.000

C3←CP3 0.000 FC4←Fz 0.000 P8←P8 0.040

C3←Fz 0.023 FC4←CP4 0.000 P8←T8 0.001

C3←Cz 0.000 FC4←P4 0.000 T8←P7 0.000

C3←FC4 0.000 FC4←P8 0.002 T8←FC3 0.000

C3←C4 0.000 FC4←T8 0.000 T8←C3 0.029

C3←P4 0.000 C4←P7 0.000 T8←P3 0.000

C3←P8 0.022 C4←C3 0.000 T8←Fz 0.003

CP3←P7 0.000 C4←Cz 0.000 T8←Cz 0.000

CP3←FC3 0.000 C4←FC4 0.000 T8←C4 0.000

CP3←C3 0.000 C4←CP4 0.000 T8←CP4 0.000

CP3←CP3 0.024 C4←P4 0.013 T8←P4 0.000

CP3←Fz 0.036 C4←P8 0.000 T8←P8 0.000

5.2. Classification of the MI EEG Using the EC

In this research work, two cases (with respect to the feature set and the classifier)
were examined for the classification of the two-class motor imagery EEG recordings. A
description of each case is given below.

• Case 1: The partial directed coherence (PDC) was used as a feature set with four
classifiers: SVM, decision tree, KNN, and PNN.

• Case 2: The directed transfer function (DTF) was used as a feature set with the four
classifiers stated in Case 1.

In Case 1, the PDC with SVM provided average classification accuracies of 96.30%
and 97.45% for 91 subjects when using 5- and 10-fold cross-validation (CV), respectively.
The PDC with KNN resulted in mean CAs of 97.85% for 5-fold CV and 98.63% for 10-fold
CV. The PDC with the decision tree resulted in average CAs of 63.85% and 64.92%, whereas
the average accuracies for the PDC with the PNN were 97.87% and 98.65% for 5- and
10-fold cross-validation, respectively. The classification accuracies and other evaluation
parameters for Case 1 are presented in Table 2.
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Table 2. Performance in left/right MI EEG classification when using the PDC.

EC k-Fold Classifier CA (%)
TPR
(%)

TNR
(%)

PPV
(%)

FPR
(%)

FNR
(%)

PDC

5-Fold CV

SVM 96.30 95.49 97.19 97.37 2.81 4.51

KNN 97.85 97.90 97.81 97.90 2.19 2.10

D. Tree 63.85 64.57 63.10 64.89 36.90 35.43

PNN 97.87 97.93 97.82 97.92 2.18 2.07

10-Fold CV

SVM 97.45 96.98 97.96 98.08 2.04 3.02

KNN 98.63 98.68 98.60 98.60 1.40 1.32

D. Tree 64.92 65.58 64.21 66.00 37.79 34.42

PNN 98.65 98.68 98.63 98.69 1.37 1.32

In Case 2, the DTF with SVM provided average classification accuracies of 81.83%
and 82.69% for 91 subjects when using 5- and 10-fold cross-validation (CV), respectively.
The DTF with the KNN resulted in mean CAs of 82.04% for 5-fold CV and 82.67% for
10-fold CV. The DTF with the decision tree resulted in average CAs of 61.42% and 61.95%,
whereas the average accuracies for the DTF with the PNN were 82.16% and 82.81% for 5-
and 10-fold CV, respectively. The classification accuracies and other evaluation parameters
for Case 2 are presented in Table 3.

Table 3. Performance in left/right MI EEG classification when using the DTF.

EC k-Fold Classifier CA (%)
TPR
(%)

TNR
(%)

PPV
(%)

FPR
(%)

FNR
(%)

DTF

5-Fold CV

SVM 81.83 77.43 88.84 91.50 11.16 22.57

KNN 82.04 82.38 81.68 82.51 18.32 17.62

D. Tree 61.42 62.19 60.62 62.58 39.38 37.81

PNN 82.16 82.64 81.65 82.49 18.35 17.36

10-Fold CV

SVM 82.69 78.55 89.04 91.46 10.96 21.45

KNN 82.67 83.02 82.34 83.14 17.66 16.98

D. Tree 61.95 62.72 61.15 63.03 38.85 37.28

PNN 82.81 83.27 82.33 83.13 17.67 16.73

From Tables 2 and 3, it can be seen that, independent of the classifier, the classification
based on PDC was better than that on the DTF. This was due to the fact that the PDC could
eliminate the indirect effects of sources in the system [64]. Suppose that three sources—X1,
X2, and X3—in a system are communicating such that X1 drives X2 while X2 drives X3.
Thus, the connectivity between them should be X2 ← X1 and X3 ← X2, which will be
correctly identified by the PDC. On the other hand, due to indirect effects [65], the DTF
also suggests that X1 drives X3 (X3 ← X1), which is incorrect. As the number of sources
increases in a system, these indirect connections also increase. Since there is no way to
differentiate between direct and indirect connections in the DTF, the classification accuracy
based on the DTF is less than that with the PDC.

The evaluation parameters for the different classification algorithms stated in Cases
1 and 2 were calculated in terms of the TPR (true positive rate), TNR (true negative rate),
PPV (positive predictive value), FPR (false positive rate), and FNR (false negative rate).
The probabilistic neural network achieved the maximum values of the TPR, TNR, and PPV
when used with the PDC as well as the DTF for both 5- and 10-fold cross-validation. The
maximum values for the FPR and FNR and the minimum values for the TPR, TNR, and
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PPV were recorded for the decision tree, which provided the lowest classification accuracy
with both the PDC and DTF using 5- and 10-fold CV.

Figure 7 demonstrates the comparison of classification accuracies along with the errors
of the classifiers using 5- and 10-fold CV, as described in Cases 1 and 2. Using the 5-fold
cross-validation, the PNN outperformed all other classification algorithms by achieving
average classification accuracies of 97.87% and 82.16% for the PDC and DTF, respectively,
whereas the 10-fold CV resulted in enhanced maximum accuracies of 98.65% for the PDC
and 82.81% for the DTF when using the PNN as a classification algorithm. On the other
hand, the decision tree gave the lowest accuracy using the PDC and DTF for both 5- and
10-fold cross-validation. The error rate for each classifier using the DTF was greater than
that of the classifiers when using the PDC. The minimum error was recorded for the PNN
when using 10-fold CV, whereas the maximum was presented by the SVM when using
5-fold cross-validation.
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Figure 7. Classification accuracy of the four classifiers—SVM, KNN, decision trees, and PNN—based
on the PDC and DTF as the feature sets when using (a) 5-fold CV and (b) 10-fold CV.

As discussed earlier, the MI classification was performed for 91 healthy subjects, and
the results presented above are the averages of all of the subjects. Among all 91 subjects,
the PNN’s accuracy with the PDC varied between 94.01% and 98.28% for 5-fold CV and
between 95.06% and 99.00% for 10-fold CV. In contrast, the PNN’s accuracy for the DTF
varied between 70.66% and 92.95% for 5-fold CV and between 71.08% and 93.33% for
10-fold CV.

However, the standard deviation of the classification accuracy among the 91 subjects
for each case provided information about the stability of the given classifiers. The standard
deviation of the classification accuracy in each case is given in Table 4.

Table 4. Standard deviation (SD) of the accuracy for the classification of MI EEG based on the PDC
and DTF when using 5- and 10-fold cross-validation.

EC Classifier
SD (%)

EC Classifier
SD (%)

5-Fold 10-Fold 5-Fold 10-Fold

PDC

SVM 2.26 2.24

DTF

SVM 4.47 4.45

KNN 0.48 0.44 KNN 4.46 4.46

D.Tree 0.47 0.48 D.Tree 4.44 4.41

PNN 0.39 0.34 PNN 2.47 2.50
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From Table 4, it can be seen that the PNN classifier had the lowest standard deviation
for both Case 1 and Case 2, whereas the SVM classifier had the maximum standard
deviation for both cases. Therefore, the PNN was proven to be the most stable classifier in
both cases.

Although the PNN outperformed the other classification algorithms, there was a
small difference between the prediction accuracies of the PNN and KNN. One of the
major disadvantages of kNN is that the technique is not precise when calculating class
probabilities with low values of k [66]. However, the PNN is an exclusive classifier, since a
number of classifications can map every input pattern. The PNN’s main benefits include, an
intrinsically parallel training process, no issues with local minima, a fast training procedure,
and the assurance that the training structure converges on an optimum classifier as the size
of the training set increases. Once the training samples have been added or deleted, no
significant retraining is required. As a result, a PNN learns faster than neural networks
and has already been shown to be successful in a range of tasks. A PNN is a supervised
neural network that may be used for system categorization and pattern recognition based
on these facts and benefits [67]. Another benefit of the PNN method is that probabilities
for classification results may be immediately determined from a structural analysis. It is
unlike other classification techniques, such as the SVM, which performs the process for
calculating the probabilities associated with the classification results as a separate step after
the model is created [68]. The computational cost of the proposed methodology is based on
the k-fold cross-validation technique. It takes around 9.5 min on average to cross-validate
each fold. However, the testing takes just a few seconds after the training procedure.

5.3. Comparison of the Proposed EC-Based MI EEG Classification Methods with Conventional
Methods and Related Published Papers

We tested the prediction of the two-class MI EEG using the same 14-channel EEG
dataset with several traditional feature extraction techniques, including the average power,
root mean square, standard deviation, variance, entropy, discrete wavelet transform (DWT),
and power spectral density (PSD). A comparison of the proposed and traditional methods
is given in Table 5, which justifies the significance of the connectivity features compared to
the traditional feature extraction techniques. Thus, it proves the hypothesis of achieving
better results with the connectivity features.

Table 5. Comparison of the proposed method with the conventional feature extraction techniques in
terms of classification accuracy (%).

Classifier
Proposed Features Conventional Feature

PDC DTF F1 F2 F3 F4 F5 F6 F7

SVM 97.45 82.67 75.72 74.17 79.82 80.55 62.25 77.28 74.12

KNN 98.63 82.69 77.03 78.53 81.31 81.97 62.54 78.19 74.86

D.Tree 64.92 61.95 74.87 73.64 76.33 74.81 60.92 76.94 71.47

PNN 98.65 82.81 78.26 78.91 82.28 82.62 64.76 80.47 75.98
F1—Average power, F2—Root mean square, F3—Standard deviation F4—Variance, F5—Entropy, F6—DWT, and
F7—PSD.

In contrast with the proposed work in which brain connectivity analysis was utilized in
the prediction of two-class motor imagery with the Physionet MI database, Sagee et al. [69]
used wavelet decomposition for mu and beta rhythms with Naive Bayes and ANN classi-
fiers to achieve the accuracies of 86.31% and 93.05%, respectively. Kim et al. [70] used the
strong uncorrelating transform complex common spatial patterns (SUTCCSP) algorithm
to extract features after obtaining the mu and beta bands through multivariate empirical
mode decomposition (MEMD). The authors achieved an accuracy of 77.70% with a random
forest classifier by using the extracted features. Dose et al. [71] extended the use of deep
neural networks by incorporating subject-specific adaptation with transfer learning to
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get 86.49% accuracy for two-class MI prediction. Lun et al. [72] used a novel deep learn-
ing framework based on graph convolutional neural networks (GCNs) that learned the
generalized features, and this achieved a classification accuracy of 88.57%. Qiu et al. [73]
calculated the symbolic transfer entropy (STE) between electrode channels and constructed
the brain networks of various cognitive behaviors of each participant by using the di-
rected minimum spanning tree (DMST) algorithm. Finally, the spectral distribution set
scoring (SDSS) method was used to recognize 69.35% of the labels. Carlos et al. [74] used
a functional-connectivity-based graph method to acquire features and used PSD-based
feature selection techniques to obtain 90% accuracy by using a linear discriminant analysis
(LDA) classifier. Funda et al. [75] proposed a two-stage channel selection method and local
transformation-based feature extraction for the classification of motor imagery/movement
tasks and achieved a significant prediction of 95.95% by using KNN (see Table 6).

Table 6. Comparison of the classification accuracy with related papers that used the same dataset (the Physionet EEG motor
imagery dataset).

Work Year Channels Features Classification Method Accuracy (%)

Y. Kim et al. [70] 2016 14
Strong uncorrelating transform
complex common spatial patterns
(SUT-CCSP)

Random Forest 77.70

GS. Sagee et al. [69] 2017 64 Mu and beta rhythms ANN 93.05

C. Filho et al. [74] 2017 64 FC-based graph method LDA 90.00

H. Dose et al. [71] 2018 64 Raw EEG data 1D CNN 86.49

FK. Onay et al. [75] 2019 22 1D local transformation-based
features KNN 95.95

X. Lun et al. [72] 2020 64 Time-resolved EEG data Graph CNN (GCNs) 88.57

L. Qiu et al. [73] 2020 64 symbolic transfer entropy (STE) Directed minimum
spanning tree (DMST) 69.35

Proposed Work 2021 14
Partial directed coherence (PDC)

PNN
98.65

Directed transfer function (DTF) 82.81

6. Conclusions

This study aimed to use the effective connectivity of the brain by considering inter-
channel/region relationships during the imagination of left-/right-hand movements, which
were determined by using the partially directed coherence (PDC) and directed transfer
function (DTF). The PDC and DTF were then used as feature inputs for four types of ma-
chine learning (ML) algorithms for the classification of left and right motor imagery classes.
A probabilistic neural network (PNN) based on the PDC features outperformed other PDC-
and DTF-based ML algorithms. The PDC manifested its prediction superiority over DTF
due to its ability to eliminate the indirect effects of sources in the system. The proposed
framework solved a major disadvantage of conventional techniques by integrating a better
knowledge of the brain’s neural patterns to improve the consistency and complexity, as well
as by using multiple brain areas instead of just sensorimotor regions. The high classification
accuracy of the left and right motor imagery based on the effective connectivity of the brain
strongly supports the use of the PDC in BCI motor imagery applications. The use of graph
theory for the identification of specific motor imagery patterns can be incorporated into the
proposed technique to help people with motor disabilities by providing them with some
reliable assistive technology, such as a brain-controlled wheelchair. However, there is a
need for further testing on multiple classes (more than two), along with the optimization
of the process in order to reduce the computational cost before the proposed technique can
find its way in real-time BCI applications.
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Abstract: The aim of this study was to find an efficient method to determine features that characterize
octave illusion data. Specifically, this study compared the efficiency of several automatic feature
selection methods for automatic feature extraction of the auditory steady-state responses (ASSR) data
in brain activities to distinguish auditory octave illusion and nonillusion groups by the difference
in ASSR amplitudes using machine learning. We compared univariate selection, recursive feature
elimination, principal component analysis, and feature importance by testifying the results of feature
selection methods by using several machine learning algorithms: linear regression, random forest,
and support vector machine. The univariate selection with the SVM as the classification method
showed the highest accuracy result, 75%, compared to 66.6% without using feature selection. The
received results will be used for future work on the explanation of the mechanism behind the octave
illusion phenomenon and creating an algorithm for automatic octave illusion classification.

Keywords: feature selection; machine learning; octave illusion; auditory illusion; MEG

1. Introduction

The auditory illusion is a false perception of real auditory stimuli. Unlike halluci-
nations, which have no sensory base, auditory illusions are always caused by external
stimuli. Compared with visual illusions, people who perceive auditory illusions are not
always aware of them. It is difficult for the human brain to separate the real and perceived
sounds. In addition to physical pathologies, the ability to classify them depends on the
mental status of the subject. Not all auditory illusions are symptoms of psychological
disorders; the main characteristics of pathological illusions are their connection with the
subject’s painful experiences and worries and the absence of the context of the situation.
Auditory illusions can accompany depression, panic disorders, delirium, and other mental
problems [1]. Therefore, understanding the mechanisms underlying auditory illusions will
contribute to our knowledge of pathological mental issues.

The octave illusion is one of the less-studied types of auditory illusions. It is induced
by two dichotic sounds (400 and 800 Hz) played simultaneously and constantly in both
ears [2]. The main characteristic of this phenomenon is the perception that occurs only in
one ear at a time. A low tone presented to the right ear and a high tone to the left ear can
be perceived in four main patterns. Perception is described as a single high-pitch tone in
one ear, alternating with a single low-pitch one in another ear (Figure 1).

The behavioral explanation for octave illusion is the “what” and “where” model, in
which “what” is a perceived sound determined by the dominant ear and “where” is a
sound location defined in the ear receiving a high tone [3].

Sensors 2021, 21, 6407. https://doi.org/10.3390/s21196407 https://www.mdpi.com/journal/sensors349
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Figure 1. Octave illusion stimulation and four perception patterns.

However, the difference in brain responses between subjects who experience the
illusion and those who do not is unclear. Although it has been proven that the pitch of the
illusion perception has a main neural counterpart bilaterally in Heschl’s gyrus (primary
auditory cortex), the processes underlying the octave illusion have not been clarified
yet. We suggest that it is possible to separate illusion (ILL) and nonillusion (non-ILL)
groups based on the difference in auditory steady-state responses (ASSRs) using machine
learning methods.

Machine learning has a wide application in the biomedical field. It is being used for
EEG-based BCI for classification person intentions [4], gait decoding [5], or short/zero-
calibration calibration [6]. Along with EEG data, machine learning is being used for the
analysis of fMRI data [7] and MEG data. There are studies dedicated to applying deep
learning to MEG data source localizations [8] and decoding signals [9]. Machine learning
has also proved itself as a powerful tool for recognizing subtle patterns in complex data,
such as ASSR [10,11].

ASSRs are auditory evoked potentials that arise in response to rapid auditory stim-
ulation. They can be used as a measurement to estimate the brain’s ability to generate
responses, which can be used to differentiate subjects with normal and pathological hearing
sensitivity [12]. Pathological hearing sensitivity often corresponds with mental diseases,
such as schizophrenia, and researching ASSRs can help understand these problems as well.

In this study, there was no evident gap between the average ASSR responses (Figure 2)
of the ILL and non-ILL groups during the octave illusion stimulation (Figure 3). Therefore,
it is impossible to distinguish them by simple comparison, and we hypothesized that the
selected features of ASSR patterns of the left and right hemispheres would provide enough
information for binary classification. However, the usual process of data selection, when
certain features are added or removed individually depending on the results, is more
difficult to implement for this task because of the lack of information about the octave
illusion. Because we do not know what exactly defines the octave illusion, limiting the size
of the dataset risks losing valuable features without resolving problems with overfitting or
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improving accuracy. Therefore, we investigated how the use of automatic feature selection
accomplishes octave illusion classification using machine learning.

 
Figure 2. The random example of ASSR data used in this study.

Figure 3. ASSR amplitude in nonillusion and illusion groups. RH and LH show the ASSR amplitude
in the right and left hemispheres.

In machine learning, gathering a sufficient number of features is a vital requirement for
classification tasks. However, increasing the number of features improves the classification
abilities only to a certain point. This is called the curse of dimensionality. The curse
of dimensionality is a common problem in machine learning caused by exponentially
increasing errors with the number of features. A larger number of features requires a
larger dataset, but because practically the number of training data is fixed, the classifier’s
performance will drop after the number of features reaches a certain point, depending on
the size of the dataset.

The excessive number of features also leads to other problems:

1. Overfitting. It is a condition when the model has learned so many random fluctuations
and noise that it cannot learn from new data.

2. Too many features make each observation in the dataset equidistant from all others.
However, if all data are approximately equidistant from each other, then all data look
equal, and no significant predictions can be made.
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Feature selection refers to several methods that resolve this fundamental problem by
the dimensional reduction of unnecessary variables. From a set of features F = {f 1, f 2, . . . ,
fn}, feature selection methods define the ones that contribute the most to the learning ability.
Feature reduction helps to improve the classifier’s learning abilities, reduces overfitting
and training time, and removes unnecessary noise.

Automatic feature selection is a popular method for the inclusion of brain data fea-
tures, such as certain features of motor imagery [13] and features important for diagnosis
using PET data [14], or for automated electroencephalography (EEG) data classification [15].
However, auditory illusion data have not been studied sufficiently, and there is no universal
approach or strong basis for applying feature selection algorithms. Analyzing selected fea-
tures that define octave illusion classification will contribute to the general understanding
of auditory illusion mechanisms and, accordingly, the mental issues’ processes.

We used magnetoencephalography (MEG) data because, unlike EEG, it provides the
origins of brain functional activity. Functional magnetic resonance imaging (fMRI), which
simply measures blood flow instead of directly measuring the brain’s signals, also does not
provide the necessary information. Moreover, the combination of MEG and the frequency-
tagging method provides access to the contribution of each ear to the responses in the
auditory cortices of each hemisphere. Therefore, we suggest that analyzing ASSR through
MEG data will reveal the difference in auditory cortex activity between the auditory cortex
of the ILL and non-ILL groups.

In this study, we aimed to find the most efficient union of the automatic selection
method and machine learning method by comparing their various combinations. Consid-
ering the analyzed literature, to the best of our knowledge, this is the first study dedicated
to the automatic feature extraction of octave illusion data for the classification of ILL and
non-ILL groups.

2. Materials and Methods

2.1. Experimental Paradigm

This study involved MEG data of 17 male right-handed participants (9 ILL and
8 non-ILL) with a mean age and standard deviation of 21.4 ± 1.09 years. All participants
were right-handed and had no history of otolaryngological or neurological disorders. All
participants provided written consent after being informed of the nature of the study. This
study was performed in accordance with the Declaration of Helsinki and was approved by
the Research Ethics Committee of Tokyo Denki University.

MEG was recorded using a 306-channel whole-head-type brain magnetic field mea-
surement device (VectorView 306, Elekta Neuromag, Neuromag, Helsinki, Finland). The
brain magnetic field measurement device was installed in a magnetically shielded room,
and the octave illusion tones were presented to the participants from the stimulation com-
puter, after which the MEG was measured. After the analog-to-digital conversion of the
measured MEG, the data were loaded into a computer at a sampling frequency of 1000 Hz.

Adobe Audition CS6 (Adobe Systems Incorporated) was used to generate tones. For a
higher tone, the sound intensity was set to 3 dB, which is lower than the sound pressure
level of the low tone.

2.2. Behavioral Testing

To classify the participants into ILL and non-ILL groups, we conducted a behavioral
experiment in which each participant was equipped with headphones (E-A-RTONE 3A,
Aearo Company Auditory Systems, Indianapolis, IN, USA) and presented with an octave
illusion sound from a computer (ThinkPad Lenovo). Tones that were 513 ms long with
modulation frequencies of 400 and 800 Hz (Figure 4) were played to the left and right ears,
and each participant wrote on paper the perceptual pattern while the combination of the
first stimulus scales and modulation frequencies of the left and right ears were changing.
All participants listened to the sounds until they fully understood the perceptual pattern.
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As instructed, the participants wrote “Low” when they perceived a low tone, wrote “High”
when they perceived a high tone, or left the space blank in the case of zero perception.

Figure 4. Experimental design. Audio stimuli had low (400 Hz) and high (800 Hz) tones, with a duration.

The behavioral experiment results showed that the participants who alternately per-
ceived the high and low tones from each ear were classified as the ILL group, and those
who perceived the actual sounds were classified as the non-ILL group.

2.3. Preprocessing

Each participant’s session was cut to 1026 ms, one switch of 513 ms long tone, and
averaged 96 times. All data were then subjected to bandpass filtering at 36–38 Hz. In the
last preprocessing step, we applied source estimation to Heschl’s gyrus (primary auditory
cortex).

In this way, one set of features consisted of 2052 features of ASSR values (1026 values
of each ms from each left and right hemisphere). Because we only have data of 17 subjects,
2052 features for one sample was considered as an extremely large number, which can lead
to overfitting. Therefore, we decided to use the ASSR signals only after 513 ms because the
change of tones gives the most impact on ASSR amplitudes. This leads us to 1026 features
for each subject. This number still can be considered large; however, since we do not have
reliable information about which features differ between illusion and nonillusion groups,
in order to not lose important features, we decided to use 513 features for each left and
right hemisphere—1026 in total for each subject.

2.4. Machine Learning

Machine learning is a number of algorithms aimed to learn data, find specific patterns
according to task, and make decisions without human intervention. There are three main
categories of machine learning: supervised machine learning, which is characterized by
using labeled data to train the model; unsupervised machine learning, which is character-
ized by analyzing and clustering unlabeled datasets; and reinforcement learning, which is
based on rewarding and punishing the model according to its desired behavior.

Since we have labeled data and we are interested in using the trained model with
other similar data in the future, we used supervised machine learning in our study.

All algorithms require a set of related data to extract features that characterize the
problem. The structure and quality of data is the most important factor for receiving reliable
results of models’ performance. The more various and clean data, the more accurate the
performance will be. Moreover, for any given task, some specific models can show better
results than others. There are no exact rules on how to choose the best model for a task. It
is necessary to test several algorithms to find the one that gives the most accurate results.

In our study, we had data of only 17 samples, which did not provide enough variety
of data. This is why we focused on using several simple models with L2 regularization to
avoid overfitting and compared the results to find the most optimal one.

In this study, we compared the results of four main classification approaches: logistic
regression, random forest, support vector machine, and convolutional neural network.
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2.4.1. Logistic Regression

Logistic regression (LR) is a classification algorithm used to estimate binary values as
true/false or 0/1 (Figure 5). The function quantifies the likelihood that a training sample
point is correctly classified by the model. Therefore, the average for the entire training
set indicates the probability that a random data point will be correctly classified by the
system, regardless of the possible class. LR tries to maximize the mean of the data. For
binary classification, the logistic regression model can be expressed as

P(y) = 1− 1
1 + exp(w x + b)

(1)

where P is the probability, y is the outcome of interest, w is the weight, and b is a bias
term [16]. LR is a simple, fast-training, feature-derivation classification method that gives
good results on a small dataset with many features, which is the case in this study.

Since there is a literature gap in verified knowledge about octave illusion data features,
in our study, to identify the dependencies between variables, we used a trial-and-error
approach to choose the most accurate parameters for our model. The model with the
following parameters showed the most accurate results for LR: gamma (inverse of the
standard deviation) = 0.0001, C (inverse of regularization strength) = 1.0, L2 regularization.

Figure 5. Logistic regression.

2.4.2. Random Forest

Random forest (RF) is an ensemble version of the decision tree algorithm. Each
decision tree in the ensemble “votes” for a certain classification decision, and the prediction
with the majority of voices “wins” (Figure 6). RF uses multiple trees to compute the majority
of votes in the last leaf nodes to make a decision. Using decision trees, random forest
models have resulted in significant improvements in prediction accuracy compared with a
single tree by increasing the number of trees. In addition, each tree in the training set was
randomly sampled without replacement. Each decision tree in the forest presents a simple
structure in which the top node is considered the root of the tree that is recursively split at
a series of decision nodes from the root until the decision node is reached [16]. Compared
with other methods, RF is less prone to overfitting and works well with an automated
feature interaction, making it a suitable method for classifying octave illusion data.

As with LR, to identify the dependencies between variables we used a trial-and-error
approach to choose the most accurate parameters for our model. The model with the
following parameters showed the most accurate results for RF: number estimators = 100,
samples = 2, and the maximum number of features.
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Figure 6. Random forest.

2.4.3. Support Vector Machine

Support vector machine (SVM) is a two-class classification method that finds the
optimal linear hyperplane in the feature space that maximally separates the target classes,
saving space for misclassification (Figure 7). The common formula for the linear classifier is:

f (x) =
n

∑
i

αik(x , xi) + b (2)

where α is the margin hyperplane, x and xi are separable classes, k is a kernel function,
b is a linear parameter, and i = 1, 2, 3, . . . , n [17]. There could be an infinite number of
hyperplanes separating classes, but because it is a two-dimensional space, any hyperplane
will always have one dimension, which can be represented by a simple regression line.

Figure 7. Support vector machine.
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Although SVM, same as LR, shows good results on a small dataset with many features,
unlike LR, it handles outliers better.

Along with the approach for LR and RF, we again used a trial-and-error approach
to choose the most accurate parameters for our model. The model with the following
parameters showed the most accurate results for SVM: gamma = 0.0001, C = 1.0, L2
regularization.

2.4.4. Convolutional Neural Network

Neural networks would be an effective method even for data with this high level
of impurity; however, on a small dataset with many features, neural networks are more
easily overfitted than other methods. Nevertheless, in order to explore possibilities of deep
learning as well, we investigated the application of a convolutional neural network (CNN)
for classification of octave illusion data. Although CNNs are commonly used for computer
vision tasks, they have proved their efficiency in other fields, such as signal processing or
medical applications. Furthermore, CNNs can be especially effective for biomedical data
because they are tolerant to the input data transformations such as scaling or distortion
and they can adapt to different input sizes [18].

Because our original dataset consists of 2D arrays of size 1026 × 2 (time/hemisphere),
in order not to lose data, we could not use anything except 1D CNN structure, and to avoid
overfitting, we used extremely simple CNN architecture of only three layers: convolutional,
max-pooling, and fully connected (Table 1).

However, since it is impossible to establish exactly which features the CNN has used
for its training and classification, in our study, we used the CNN as a tool to find that there
is a difference in ASSR response between two groups and to compare its classification
results with simpler methods of machine learning.

Table 1. CNN architecture.

Layer Kernel Size Filter Stride

Convolutional 1 × 1 4 1
Max-Pooling 1 × 2 - 4

Fully Connected - - -

2.5. Feature Selection

In machine learning, gathering a sufficient number of features is a vital requirement for
classification tasks. However, increasing the number of features improves the classification
abilities only to a certain point. This is called the curse of dimensionality. The curse
of dimensionality is a common problem in machine learning caused by exponentially
increasing errors with the number of features. A larger number of features requires a
larger dataset, but because practically the number of training data is fixed, the classifier’s
performance will drop after the number of features reaches a certain point, depending on
the size of the dataset [19]. Since in our study we have the dataset of only 17 subjects with
1026 features for each subject, using feature selection is necessary for effective classification
of octave illusion and nonillusion data.

Feature selection should not be confused with feature extraction. Feature extraction
creates a new set of features by mapping the original set of features. In contrast, feature
selection takes a subset of the existing features without creating a new one. The overall
feature selection process used in this study is shown in Figure 8.

In our study, we compared the results of four feature selection methods, which are
univariate feature selection, recursive feature elimination, principal component analysis,
and feature importance.
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Figure 8. Feature selection process.

2.5.1. Univariate Feature Selection

Univariate feature selection (US) is a method of selecting features that contribute the
most to the classification using univariate statistical tests. It returns a ranked list of features
based on different statistical scoring functions. The main characteristic of a univariate
approach is that it does not consider the dependencies between the features, and in the
end, features of the dataset are independent of each other [20].

2.5.2. Recursive Feature Elimination

Recursive feature elimination (RFE) works by recursively removing values and uses
the remaining attributes to build the model. First, the classifier is trained on the initial set
of features, and the importance of each feature is written. The least important features are
then cut from the features list. This procedure is recursively repeated until the desired
number of quality features is reached [21].

2.5.3. Principal Component Analysis

Principal component analysis (PCA) chooses variables based on the magnitude (from
largest to smallest absolute values) of their coefficients. PCA is fast and easy to implement,
but it does not count the potential multivariate nature of the data structure, which leads to
the loss of potentially valuable features [21].

2.5.4. Feature Importance

Feature importance (FI) (or variable importance) is a method to calculate scores for
each feature for a given model. A feature is considered “important” if the accuracy of the
model drops, and its change causes an increase in errors. However, a feature is considered
“unimportant” if the shuffling of its values does not affect the accuracy of the model. There
are several approaches to calculate the importance of features; in our study, we used an
ensemble of decision trees (random forest) with mean decrease impurity. The algorithm
randomly rearranges or shuffles one column of the validation dataset, leaving all other
columns untouched [22]. It is a quick and easy-to-implement method with a tendency
to prefer features with high cardinality, which is one of the important characteristics of
our dataset.

3. Results

The main problem with using feature selection is its stochastic nature, which could
lead to different results. To eliminate all possible ambiguities, each combination of machine
learning and feature selection methods was run 10 times. Owing to the size of 17 of the
entire dataset, we set the size of the training dataset to 11 (6 illusion and 5 nonillusion data),
with the validation dataset of 4, and the test dataset to 6 (3 illusion and 3 nonillusion data)
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(Table 2). Again, based on the relatively small size of the training dataset (11 data in total),
we focused on choosing the appropriate number of features.

Table 2. Dataset.

Parameters Dataset

Stimuli (low tone/high tone) (Hz) 400/800
Number of participants (ILL/non-ILL) 17 (9/8)

Training data (ILL/non-ILL) 11 (16/5)
Validation data (ILL/non-ILL) 6 (3/3)

Test data (ILL/non-ILL) 6 (3/3)

First, we ran LR, RF, and SVM without using feature selection. Since we decided to
use data from the time period between 513 and 1026 ms, we have 1026 features of ASSR
signals from both the left and right hemispheres for the dataset of 17 subjects. To provide
an understanding of used features, the short list of original features is shown in Table 3.
Using the trial-and-error approach, the best parameters for each classifier are as follows:

• LR: gamma (inverse of the standard deviation) = 0.0001, C (inverse of regularization
strength) = 1.0, L2 regularization.

• RF: number estimators = 100, samples = 2, maximum number of features.
• SVM: gamma = 0.0001, C = 1.0, L2 regularization.

Table 3. Short list of original features.

Label LH_513 LH_514 LH_515 RH_513 RH_514 RH_515

NILL 7.29 × 10−13 4.68 × 10−13 1.86 × 10−13 6.84 × 10−12 6.84 × 10−12 6.47 × 10−12

NILL 3.26 × 10−12 3.37 × 10−12 3.30 × 10−12 2.60 × 10−12 1.21 × 10−12 2.63 × 10−13

ILL 4.50 × 10−12 3.45 × 10−12 2.24 × 10−12 8.76 × 10−12 2.38 × 10−12 4.73 × 10−12

NILL 6.21 × 10−12 5.19 × 10−12 3.87 × 10−12 4.05 × 10−13 3.62 × 10−13 1.12 × 10−12

ILL 2.59 × 10−12 1.89 × 10−12 1.09 × 10−12 4.45 × 10−13 1.97 × 10−12 3.38 × 10−12

ILL 2.48 × 10−12 3.09 × 10−12 3.53 × 10−12 1.82 × 10−12 1.35 × 10−12 8.09 × 10−13

ILL 2.58 × 10−12 3.28 × 10−12 3.81 × 10−12 3.81 × 10−12 3.41 × 10−12 2.82 × 10−12

ILL 2.46 × 10−13 4.62 × 10−13 6.56 × 10−13 1.45 × 10−12 2.33 × 10−12 3.07 × 10−12

ILL 2.71 × 10−12 2.56 × 10−12 2.28 × 10−12 3.17 × 10−12 2.66 × 10−12 2.01 × 10−12

ILL 3.20 × 10−12 4.44 × 10−12 5.45 × 10−12 1.35 × 10−12 1.75 × 10−12 2.05 × 10−12

ILL 2.60 × 10−12 1.98 × 10−12 1.26 × 10−12 4.98 × 10−12 5.11 × 10−12 4.97 × 10−12

NILL 8.77 × 10−13 1.50 × 10−12 2.04 × 10−12 6.66 × 10−13 5.40 × 10−13 3.94 × 10−13

NILL 2.45 × 10−12 2.41 × 10−12 2.24 × 10−12 3.74 × 10−12 4.63 × 10−12 5.28 × 10−12

NILL 3.56 × 10−12 4.02 × 10−12 4.25 × 10−12 5.04 × 10−12 4.22 × 10−12 3.16 × 10−12

NILL 3.25 × 10−12 3.24 × 10−12 3.05 × 10−12 3.96 × 10−12 5.27 × 10−12 6.29 × 10−12

ILL 6.08 × 10−12 6.07 × 10−12 5.71 × 10−12 9.50 × 10−12 9.54 × 10−12 9.08 × 10−12

NILL 1.71 × 10−12 1.60 × 10−12 1.40 × 10−12 1.09 × 10−12 1.07 × 10−12 1.01 × 10−12

LH is left hemisphere; RH is right hemisphere; 513, 514, and 515 are time codes in ms; ILL is illusion data; NILL is nonillusion data.

The results for each algorithm are listed in Table 4.

Table 4. Classification results for machine learning and CNN methods.

Method TP TN FP FN

CNN 3 3 0 0
LR 2 1 2 1
RF 1 2 1 2

SVM 2 2 1 1
TP: true positive, TN: true negative, FP: false positive, FN: false negative.
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Both LG and RF showed the same unsatisfactory results, with only 50% accuracy.
In contrast, the SVM steadily showed 66.6% accuracy, which, considering the size of the
dataset, can be called a satisfactory result.

In order to find the appropriate amount of features that will give stable classification
results without losing too many data, we decided to remove the number of selected features
gradually, by dividing it in half, and test the results. From the original dataset for machine
learning of 1026, we stopped on datasets of 200, 30, and 40 features selected by each feature
selection method. The results for 200 and 30 features, which showed some improvements,
are presented in Tables 5–8. Those steps were selected as turning points to choose a
direction for increasing or decreasing the number of features. The dataset of 40 selected
features (Tables 9 and 10) showed the best and most stable results.

Table 5. Classification results for machine learning methods with US of 200 features.

Method TP TN FP FN

LR US/FI 2 1 2 1
RF US/FI 2 2 1 1

SVM US/FI 2 2 1 1
TP: true positive, TN: true negative, FP: false positive, FN: false negative.

Table 6. Classification results for machine learning methods with RFE/PCA/FI of 200 features.

Method TP TN FP FN

LR RFE/PCA 2 1 2 1
RF RFE/PCA 1 2 1 2

SVM RFE/PCA 2 2 1 1
TP: true positive, TN: true negative, FP: false positive, FN: false negative.

Table 7. Classification results for machine learning methods with US/FI of 30 features.

Method TP TN FP FN

LR US/FI 2 1 2 1
RF US/FI 2 2 1 1

SVM US/FI 2 2 1 1
TP: true positive, TN: true negative, FP: false positive, FN: false negative.

Table 8. Classification results for machine learning methods with RFE/PCA of 30 features.

Method TP TN FP FN

LR RFE/PCA 2 1 2 1
RF RFE/PCA 2 2 1 1

SVM RFE/PCA 2 2 1 1
TP: true positive, TN: true negative, FP: false positive, FN: false negative.

Table 9. Classification results for machine learning methods with US/FI of 40 features.

Method TP TN FP FN

LR RFE/PCA 2 1 2 1
RF RFE/PCA 2 2 1 1

SVM RFE/PCA 3 2 1 0
TP: true positive, TN: true negative, FP: false positive, FN: false negative.
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Table 10. Classification results for machine learning methods with RFE/PCA of 40 features.

Method TP TN FP FN

LR RFE/PCA 2 1 2 1
RF RFE/PCA 2 2 1 1

SVM RFE/PCA 2 2 1 1
TP: true positive, TN: true negative, FP: false positive, FN: false negative.

The results of the univariate feature selection for the dataset of 200 features are shown
in Table 5. The method showed no improvement in combinations with LR and SVM but
showed better results of RF: 66.6% instead of 50%. The results for RFE, PCA, and FI are
shown in Table 6. None of the methods showed any difference from the original dataset.

The results of the univariate feature selection and feature importance for the dataset
of 30 features are listed in Table 7. The method showed no improvement in combinations
with LR and SVM from the original dataset, and the same RF results of 66.6% as for the
dataset of 200 features. The results for RFE and PCA are shown in Table 9. It showed better
results again of RF 66.6% instead of 50%. The results for other methods stayed the same.

The results of the univariate feature selection and feature importance for the dataset
of 40 are listed in Table 8. Both methods showed no improvement in combination with
LR, same results with RF, and better results of SVM with 75% accuracy. Although both
methods showed the same accuracy results, US proved to be a more stable approach owing
to its constant selection of the same features. Values selected by FI were different for each
run, which is an expected behavior considering its stochastic nature. However, since we
are interested in defining features of ASSR that contribute to octave illusion classification, a
large variety in selection is unsatisfying data.

The results for both RFE and PCA showed no difference for LG, RF, and SVM and are
listed in Table 10. As in the case of applying feature importance, we faced the problem
with different sets of selected features after every run. Because the selected features were
different every time and did not match even once after 10 runs, we created 10 sets of
selected features for each RFE and PCA and ran them multiple times to obtain reliable
results. The results shown are the majority of accurate results (7 out of 10) for all methods.

The dataset of 40 features received by using the US, which showed the best classifi-
cation results aside from CNN, almost entirely consists of data from the left hemisphere.
Datasets created by using RFE, PCA, and FI consist more of data from the right hemisphere,
but the majority is left for the left one. Timecodes of those features are scattered along
the time axis, and it is difficult to make a statement about when the difference between
illusion and nonillusion groups happens exactly, but we can say that it takes place in the
left hemisphere.

Compared to using other machine learning methods with or without feature selection,
applying deep CNN to the original dataset of features gave the best results of 100% accuracy,
sensitivity, and specificity (Tables 9 and 11). This made the used CNN structure the most
efficient tool to classify octave illusion and nonillusion data using ASSR, but it does not
contribute to our knowledge about exactly which features of ASSR make the difference
between the two groups. Since there are no false positive or false negative results and the
training and validation losses are both small after epoch 10 (Figure 9), we can say that
features were extracted successfully and no overfitting had happened.
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Table 11. Overall classification results.

Method Accuracy (%) Sensitivity (%) Specificity (%)

CNN 100 100 100
LR 50 66.6 33.3
RF 50 33.3 66.6

SVM 66.6 66.6 66.6
LR US/FI (40 features) 50 66.6 33.3
RF US/FI (40 features) 66.6 66.6 66.6

SVM US/FI (40 features) 75 100 66.6
LR RFE/PCA (40 features) 50 66.6 33.3
RF RFE/PCA (40 features) 66.6 66.6 66.6

SVM RFE/PCA (40 features) 66.6 66.6 66.6

Figure 9. Training and validation losses.

4. Discussion

In this study, we aimed to find the most efficient combination of feature selection and
machine learning methods for classifying octave illusion data. Machine learning has been
widely used for the classification of various brain data, from classifying brain–computer
interface (BCI) data to decoding MEG signal processing. ASSR signals are quite difficult to
define owing to their small amplitudes and high levels of brain noise. The combination of
SVM as a machine learning algorithm with univariate selection and feature importance
as feature selection methods showed the highest classification results with 75% accuracy,
100% sensitivity, and 66.6% specificity (Table 10), which, considering the small size of the
training dataset, are satisfactory results. Applying CNN gives even better results with
100% accuracy, 100% sensitivity, and 100% specificity, which makes it the best classification
method (Figure 10).

However, considering the big picture, we are not interested in simple classification
of illusion and nonillusion data, but in obtaining information about exactly which ASSR
values differentiate those two groups to obtain a deeper understanding of the auditory
illusion mechanism. Since the FI, due to its stochastic nature, gives various results and
requires several runs to average it, and the US in its turn always presents the same results,
the combination of SVM with the US is preferable.

Univariate selection is the only feature selection method that provides almost the
same set of ASSR features in every run. Using this method, we received the set of features
that most clearly define the difference between octave illusion and nonillusion groups,
which will help in constructing the classification tool for octave illusion and nonillusion
data. Since this set almost entirely consists of data from the left hemisphere, we suggest
that for the right-handed group of people, the mechanisms that cause the octave illusion
are lying there. However, since no dependencies were found between these features, at this
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moment, it is difficult to define the pattern of auditory cortex activity for octave illusion
and nonillusion groups.

Figure 10. Confusion matrix for four methods.

In addition to using the developed machine learning methods for the classification of
octave illusion and nonillusion data, information about selected features can be used to
understand the underlying mechanisms of auditory illusions, which can contribute to man-
aging mental diseases. In the future, we plan to build a universal tool for the classification
of various types of auditory illusions based on the differences in the ASSR signals.
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Abstract: The Portuguese population is aging at an increasing rate, which introduces new problems,
particularly in rural areas, where the population is small and widely spread throughout the territory.
These people, mostly elderly, have low income and are often isolated and socially excluded. This
work researches and proposes an affordable Ambient Assisted Living (AAL)-based solution to
monitor the activities of elderly individuals, inside their homes, in a pervasive and non-intrusive
way, while preserving their privacy. The solution uses a set of low-cost IoT sensor devices, computer
vision algorithms and reasoning rules, to acquire data and recognize the activities performed by a
subject inside a home. A conceptual architecture and a functional prototype were developed, the
prototype being successfully tested in an environment similar to a real case scenario. The system
and the underlying concept can be used as a building block for remote and distributed elderly care
services, in which the elderly live autonomously in their homes, but have the attention of a caregiver
when needed.

Keywords: computer vision; image analysis; internet of things; monitoring of elderly; low cost

1. Introduction and Motivation

Portugal has an aging population with a tendency to increase [1], particularly, in rural
areas, where the migration of the active population to large urban centers, in search of
better job opportunities and quality of life, has led the remaining resident population in
rural environments, mostly elderly, suffering social exclusion, and often ending up living
in isolation.

As the economic factor is sometimes a barrier for technology adoption, especially
by the elderly population with limited financial resources [2], cost-effective solutions to
monitor the elderly and the isolated population in general have been researched for a
while. The Ambient Assisted Living Joint Programme [3] is a European initiative and
is an example of the needs that exist in support for the elderly. Since then, more and
more research has been carried out [4], and every year new solutions appear make their
contribution.

In this article, a low-cost solution for monitoring the movement of elderly people living
alone in their homes, based on the AAL paradigm, is presented with the name IndoorCare.
The system is based on a distributed architecture, where low-cost IoT devices acquire
and process video images to export non-personal/private data through a gateway to a
server. Then, the server aggregates all this information and makes it available, in a simple
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way, to the user or caregiver. This proposed solution is based in technologies increasingly
used in the area of smart everything [5] and provides a non-invasive monitoring system
to a caregiver or a family member. The IndoorCare system records the person’s physical
movements over time and allows that information to be analyzed later by the caregiver to
assess the person’s health. One other advantage of a solution such as this is to allow the
detection of any anomalous situations, such as emergencies or possible falls, in time.

The paper is organized as follows: Section 2 presents an overview of the related
work; Section 3 describes the solution’s architecture; Section 4 presents the prototype that
was developed to validate the concept; Section 5 presents the system’s evaluation and
optimizations; and Section 6 presents the work’s general conclusions.

2. Related Work

There are several solutions and projects focused on the detection, spatial location,
and monitoring of the daily activity of people in indoor environments. In this section, we
discuss some of the founding technologies for this type of solution, namely image analysis
and infrared sensors.

There are several articles that analyze the AAL solutions that have been appearing in
recent years [6,7] and some that expose the challenges that must be resolved in the future [8],
especially in a post COVID-19 era [9]. There are also recent studies that focus on the analyses
and comparison, in various ways, of the created applications and architectures of recent
AAL solutions, exposing the trends in the solutions’ implementation that most works have
followed [10]. On a more practical level, there are several interesting implementations
that have used various methods to monitor and interact with older people; these solutions
typically use IoT devices to perform this monitoring [11], whether using sensors attached
to the person [12], monitoring furniture [13], using video systems that analyze in real time
what is happening [14,15], using face recognition to detect people and who they are [16],
or even through the analyses of the sound [17]. The use of computer vision together
with artificial intelligence is an increasingly common practice, using the best that these
technologies allow to better monitor the elderly in their homes [18]. In addition, there is a
growing need to transfer the information processing from data centers to the periphery of
the systems, namely to the source where the data is acquired, to reduce the traffic sent by
the equipment at the edge. This concept is called fog computing, and in addition to being a
great advantage for computer vision solutions, it is also already being used in monitoring
solutions for the elderly that use wearable devices, among others [19].

The extraction of information based on image analysis is a relatively recent topic that
has enabled the development of technologies that allow the automatization of the informa-
tion gathering process. Image recognition solutions, such as the Open-Source Computer
Vision Library (OpenCV) [20], combined with ubiquitous computing, using microcomput-
ers, such as Raspberry Pi [21] or Arduino [22], allow the creation of environments that can
act intelligently, according to the information extracted and collected.

The OpenCV software library uses image analysis to recognize the various types of
information in an image, such as: detection of hand gestures, as set out in [23]; human
facial recognition [24], where in this particular paper [25] the authors implemented a
prototype using the Java CV library [26], which analyzes the camera stream from a IP
security camera and detects human presence; and recognition and extraction of vehicle
registration information [27] or surveillance security systems [28], in which the authors
coupled common web cameras to devices of small processing power, e.g., Raspberry Pi,
which acquires the image from the camera and uses a cloud platform to process the image
for movement detection.

The research in the area of human monitoring and human location has resulted in
several interesting works, such as the one presented in [29], where the authors propose
a system that uses two modes of monitoring, inside the residence (indoor) and outside
the residence (outdoor). For the detection of the indoor position, the users must wear
RFID (Radio-Frequency Identification) tags, which are detected and read whenever the
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user enters a new division, similarly to the RFID tagging systems used in logistic solutions
to track items. For the detection of the outdoor position, the user must wear a GPS (Global
Positioning System) device for position tracking. The GPS mode (outdoor) is activated
automatically whenever the user leaves the room three meters away.

In ref. [30], the authors used infrared (IR) sensors to calculate the number of people
inside a building, installing sensors on the doors’ tops to detect transit movement between
rooms, so they could calculate how many people were in each division.

In the work developed in ref. [31], the authors propose a solution that addresses some
of the problems enunciated in this work. A system is proposed that constantly monitors
the security of a home. It uses several Raspberry Pi devices, connected to surveillance
cameras, and uses the OpenCV library for image analysis. The system can detect various
types of events, such as opening and closing doors and windows, movement in the rooms,
and breaking windows.

Table 1 summarizes and explains why the solutions previously presented are consid-
ered interesting for the development of this solution.

Table 1. Comparison between the solutions presented in the related work section.

Reference Case Study Why Was Chosen

[23] Hand gesture detection Image data extraction using OpenCV
[24] Video processing on Raspberry PI OpenCV on Raspberry PI
[25] Human facial recognition OpenCV on Raspberry PI
[27] Extraction of vehicle information OpenCV on Raspberry PI
[28] Surveillance system Image acquisition on Raspberry PI
[29] Indoor/outdoor person detection Uses RFID tags to detect humans
[30] Indoor human detection Uses infrared sensor to detect humans
[31] Indoor monitoring Uses IoT devices with AI

IndoorCare Indoor human monitoring Uses IoT devices with Computer Vision

The work that identifies most of the requirements for this intended solution is ref. [31],
mainly because of the image analysis using computer vision, artificial intelligence, and IoT
devices. Although the solution works as intended, according to the authors, it requires too
many processing resources from the IoT devices, which means that a robust IoT device
must be used, thus increasing the solution’s cost. The objective of this work is to develop a
solution that can monitor a person’s movements inside the house, in the various rooms, also
using computer vision, as in ref. [31], using IoT devices, while keeping the cost reasonably
low.

3. IndoorCare System Architecture

The solution IndoorCare, proposed in this article, is based on some principles used
in other solutions, namely using only one device per room for human detection [29],
detecting the presence of people through motion capture analysis [30], and using low-cost
microcomputers to analyze and process the collected information [31]. The system has a
distributed and multi-agent architecture [32], which implements the client–server model,
having a gateway module to ensure information security, as presented in Figure 1.
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Figure 1. IndoorCare conceptual architecture.

The architecture comprises three modules, highlighted in Figure 1, where each module
has a specific agent, a software-based entity, which performs the various tasks on the
equipment to ensure proper operation of the system:

• The monitoring module, which translates to the several IoT devices at home that
capture images and pre-process the data obtained from the images, in order to send
this information to the presentation module.

• The gateway module, responsible for ensuring WiFi network availability and data
communication security from the clients to the server (presentation module).

• The presentation module, which is the server that receives the data from the moni-
toring modules. It provides a presentation layer for the users (caregivers) to visually
perceive the dynamics of the elderly person’s activities inside the house over time.

The option to use image acquisition equipment and computer vision, instead of
infrared sensors, although the latter in theory are cheaper, was because with computer
vision it is possible to analyze several subzones within the same zone with a single IoT
device, while with affordable infrared sensors, typically, one sensor is necessary to detect
motion in each subzone. Although there are infrared sensors with this capability, such as
the temperature detection cameras used to detect possible cases of COVID-19 [33], these
are not low-cost IoT devices as their cost is in the range of thousands of euros per device.

3.1. Monitoring Module (IoT Device)

The IoT devices present in the elderly person’s home are responsible for processing the
information they acquire; namely, image analysis through OpenCV, generating processed
data ready to be sent to the server. This functionality is in line with the Edge Computing
concept [34], where the processing is executed close to the data source, in this case at the
home of the elderly, being a paradigm increasingly used in the IoT universe and in smart
systems.

The monitoring module works as a black box system that receives video feeds, and
outputs the extracted data from the image analysis in the form of movement events. No
other information is fed to the user/caregiver. This module encompasses the devices in-
stalled in the distinct areas (zones) of the elderly home to perform the movement detection.
The software agent defined for this module and presented in Figure 2 is responsible for the
image acquisition and hotspot calculation, using the available resources on the IoT device.
A hotspot is defined as an area where movement is detected in the image, and for which
the device must compare several image frames to be able to confirm if there is movement
in a zone or not.

In Figure 2 are detailed all the components of each of the modules and how they
communicate with each other.
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Figure 2. IndoorCare detailed architecture.

Each equipment has a unique identifier (ID) that identifies with which zone the device
is associated. The ID is also used to identify the hotspot’s information in the server’s
database and establish a relation between the device and its location in the house.

3.2. Gateway Module (Gateway)

This module is responsible for the confidentiality and integrity of the data transmission
between the monitoring module and the presentation module. The module’s agent, also
presented in Figure 2, ensures that all communications go through an encrypted tunnel,
from the network access point to the server. The agent guarantees the data encryption, as
well as the server’s address validation.

3.3. Presentation Module (Server)

This module acts as the server element of the client–server model in the communica-
tion and receives data from the clients, which are represented by the monitoring module.
The data are saved, processed, and presented to the caregiver user. The software agent in
this module, as presented in Figure 2, implements the features for data reception, decryp-
tion, saving, and presentation on a web platform. The user interaction is minimalistic and
the agent basically combines the data streams from the several clients into a unique event
feed.

To create the event stream from the data, the agent uses the subzones, as previously
defined in the server’s configuration, to check whether there is movement within them,
using the hotspots sent by the clients. A subzone corresponds to a part of the image (the
entire zone) acquired by a particular IoT device and corresponds to a specific area inside
the elderly person’s home.

This module provides a web portal for the caregiver to monitor the elderly and
browse the daily activities inside the house, via Northbound [35] access. It also provides
communication using Application Programming Interfaces (API) [36] via Southbound [35]
for communication with the IoT devices and gateways.

3.4. Communication

As seen previously in Figure 1, there are three different types of communications:

• Caregiver with the server;
• Gateway with the server;
• IoT devices with the server.
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In Northbound communication, between the caregiver and the server, as it typically
occurs in a web environment (via the Internet), the most suitable communication protocol
will be HTTP (Hypertext Transfer Protocol), in its secure version (HTTPS) [37]. This is one
of the most used protocols for accessing online platforms and is widely used in the IoT
environment for the same purpose.

In Southbound communication, between the server, gateways, and IoT devices, since
it is a communication between IoT and network devices (if supported by the hardware),
several protocols focused on the IoT environment can be used:

• HTTP (Hypertext Transfer Protocol): The most used client–server communication
protocol on the Web which is also widely used in the IoT world due to its simplicity
and efficiency in delivering information.

• COAP (Constrained Application Protocol): A communication protocol designed for
devices that have limited processing capabilities, much like HTTP, but that uses much
less data to send messages.

• MQTT (Message Queuing Telemetry Transport): One of the lightest communication
protocols, it uses the Publisher/Subscriber model to exchange messages and is widely
used in scenarios where network connectivity is not ideal.

These are just a few examples of communication protocols that can be implemented
in this architecture, with HTTP still being one of the most used [38].

4. Implemented Prototype

In this section is presented the prototype developed to validate the proposed architec-
ture. Low-cost IoT devices, widely used by the community, were used to implement the
solution to validate the fulfilment of the objectives set out in the previous section.

In Figure 3, the general architecture of the prototype is illustrated, showing the
modules and devices used.

 

Figure 3. Prototype conceptual architecture.

The implemented prototype incorporates all the modules described in the architecture
to demonstrate the intended functionality with the proposed system. Links at the right
side are the interaction that takes place between the server, gateways and IoT devices
(Southbound). The link at the left side represents the user/caregiver interaction with the
web platform to access the IndoorCare system (Northbound). It should be noted that in this
prototype, at the gateway level, only the basic static mechanisms were implemented for
the system to work correctly, namely the VPN connection and server address validation.

4.1. Equipment Used

The equipment selection for this prototype project considered the costs in order to
keep the solution effective and as low cost as possible, targeted at people with modest
economic resources.

For the client IoT devices, we opted to use Single Board Computers (SBC) with an
Operating System (OS) based in Linux, specifically the from the Raspberry PI family [39],
due to its low price and good technical characteristics. To capture and analyze the images,
we chose the Raspberry Pi Zero W [40] combined with a Fisheye 160◦ camera (including a
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5 V 2.1 A power supply and Micro SD card), as presented in Figure 4. The total cost per
device was around EUR 45 + VAT.

Figure 4. Raspberry PI Zero W #1 (a) and #2 (b).

This equipment is reasonably compact and has a set of ideal characteristics, such as
a single-core processor at 1 GHz, 512 MB of RAM, and built-in WiFi, thus enabling the
creation of client equipment capable of collecting, processing, and sending images to the
system server over a WiFi network. It should be noted that initially the cameras used were
normal Raspberry Pi Camera Modules [41], which were replaced by fisheye cameras only
after testing the system, as described in Section 5.

For the server equipment, to receive, store, process, and present data on a web portal,
we opted for the Raspberry Pi 3 B [42] (including a 5 V 2.1 A power supply and a Micro
SD card). The total cost was around EUR 50 + VAT. The characteristics of this equipment,
despite being an IoT device, meet the requirements for server equipment, as it has a
quad-core processor at 1.4 GHz and 1 GB of RAM. Although this device has a reasonable
performance, in a real or production environment, a more robust computational node
should be used, namely a dedicated server (PC) or an online VPS (Virtual Private Server).

For network gateway equipment, we chose a Mikrotik Routerboard RB951Ui-2ND [43],
mainly because of the possibility to create internal scripting for network management,
and the ability of this scripting to communicate with platforms via REST API. This device
had a total cost around EUR 30 + VAT. This equipment can work as a WiFi access point
for the client devices, allowing the creation of a secure bridge Virtual Private Network
(VPN) [44] between client and server equipment, thus ensuring client–server end-to-end
confidentiality.

One major concern is the device intrusion that can lead to the visualization of the
images captured by the camera by unauthorized persons. A way to guarantee the privacy
of the residents is by physically blurring the lens of the equipment. Figure 5 shows the
differences between a focused and an unfocused lens, and it is possible to notice that in the
image with the lens out of focus, objects and people are not perceptible, thus ensuring the
privacy required by the GDPR [45].
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Figure 5. Focused (a) and unfocused (b) lens.

4.2. System Operation

To acquire the location of an individual person from video camera images, it is
necessary to analyze and extract information from the images. We used the OpenCV
software library [20] and the ImUtils library [46] to recognize movement in the images and
Python [47] as the programming language for the software agent. It is possible to compare
two images, one that serves as base reference for comparison and the other to check for
changes, converting the captured images to arrays of pixels and comparing the different
values of their respective positions. To perform the comparison, the absolute value in the
subtraction of each of the respective pixels is obtained, thus creating an image that presents
the differences found in the pixel array, which in this case shows the complete changes
that occurred between the images. Then, a threshold is applied to the resultant image, by
defining a change limit between pixels, where the pixels below the threshold are discarded
and those above are saved, to create an image, commonly known as threshold, which
contains only the pixels where there is a significant difference or, in this case, movement
detection.

In Figure 6, on the right side, the threshold which corresponds to the movement
detected on the left side of the image is displayed, with the movement area defined by a
blue rectangle.

 

Figure 6. Motion detection in the image.

To effectively calculate the threshold, as stated in [24], it is necessary at an early stage
to convert the color image to a grayscale image, so the only differentiating factor is the pixel
brightness. Then, it is necessary to blur the image so that there are no sudden changes in
the pixel tones. Figure 7 shows the different types of blurs supported by OpenCV: Gaussian
Blur, Median Blur, and Normalized Block Blur [48].
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Figure 7. Some types of image blurring.

Each blur type uses a different approach, yielding different results. The tests per-
formed consisted of acquiring images where there was always the same human movement,
walking from one end of the room to the other. Several threshold values were tested with
the different types of blurs, which led to the following conclusion:

• Median Blur and Normalized Block give less false positives in the motion detection;
• Gaussian Blur detects more movement, as it provides more image detail after blurring.

In the prototype, Median Blur was used, but any other blur could be used as well.
Figure 8 describes the algorithm implemented by the Monitoring Agent to collect and

compare images, find hotspots, and send them to the server (explained in the communica-
tion subsection). The device starts up and initially acquires an image to use as a base. In
the following instant, the device acquires another image, and then creates a threshold for it.
It analyzes if there is movement or not and if so, creates a hotspot entry and saves it into
the log. Every 30 s the IoT device tries to upload all the hotspots it finds in that period of
time.

Figure 8. Client operation algorithm.

On the server side, the Presentation Agent receives and inserts the data into a database,
after which it is processed and presented to the user/caregiver. To detect movement in an
area, it is necessary to create sub-areas that will work as baselines for comparison with the
detected hotspots by the devices. The server prototype provides the management feature
to define and manage zones and subzones, as exemplified in Figure 9.
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Figure 9. Management of zones and subzones.

This management feature allows the administrator/system installer to create the zones
and the respective subzones that the caregiver want to supervise. It should be noted that
to be able to acquire an image of the IoT device used as a monitoring module, a physical
action on the equipment is required, namely the junction of two GPIO pins to activate the
device’s configuration mode. In Figure 10 are displayed two zones used in the system’s
prototype and its subzones, each one identified by an ID. Any hotspot detected within one
of the delimited areas corresponds to movement in that subzone.

Figure 10. Two zones and several subzones defined for the prototype.

Following the hotspot detection, this information must be transmitted to the caregiver
through a simple and effective interface, mainly because if the interface is too complex, the
caregiver may not feel comfortable using it. An example of a simplistic visual interface
is the timeline feed of events shown in Figure 11, which is a summary of the events that
occurred each day at a certain time. The timeline provides a perception feed of the activity
in the elderly home spaces under monitoring, by combining the feeds from the zones into a
unique feed, formatted as a timeline grid. For the human caregiver/user, it is very simple
and effective to check for specific events [49] and general activity in the house. In the
timeline, each blue vertical stripe represents a hotspot detection in that respective subzone,
signaling that movement was detected at that time in that area.
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Figure 11. Event timeline.

With the timeline display, the caregiver can follow the daily life of the elderly and
check his routine in a simple and non-intrusive way.

4.3. Communication

To be able to send the “converted images” transformed into data to the server, it
is necessary for the client to be able to structure this information in such a way that it
will be well interpreted at the destination. XML (Extensible Markup Language) [50] is a
markup language that allows structuring information in a simple and easily readable way
by human beings. It is one of the standards used in the communication of information
between information systems and has great flexibility, allowing the creation of the most
varied message structures. Another format also widely used in information communication
is JSON (JavaScript Object Notation) [50], a compact message format that has less overhead
than XML and has been also widely implemented in the industry.

In this prototype, we chose to use XML only because it allows easier reading of
messages and facilitates the query of logs, but JSON could also be used. The messages sent
in XML from the IoT devices to the server have the following fields:

• datetime: date and time of registration of hotspots, will be grouped in intervals of 30 s
for better organization on the server.

• loggerid: the unique identifier of the IoT device that is collecting the information.
• framewidth: the original width of the image that generated the hotspot.
• frameheight: the original height of the image that generated the hotspot.
• matrixwidth: the scale of the matrix width used in this device (to normalize the

different resolutions of different cameras).
• matrixheight: the height scale of the matrix used in this device (to normalize the

different resolutions of different cameras).
• hotspot: with the x and y coordinates of a hotspot detected at that moment, there may

be several at the same moment.

Figure 12 presents an example of one of these messages, sent periodically to the server.
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Figure 12. Example of an XML message used.

Client devices calculate hotspots and store this information in a log to be sent every 30 s.
In case of communication failure, the Monitoring Agents themselves save the information
that was not successfully sent to the server in the log and in the next iteration they try to
resend all the pending information.

Initially, it was decided to encrypt the data using symmetric encryption on the clients,
but this required unnecessary processing by the IoT devices, so the solution was to delegate
this task to the gateway, which would be responsible for creating the VPN bridge with the
server and ensure information security and confidentiality.

4.4. Movement Data History

One of the advantages of the way the system is designed and implemented is that
there is a history of every hotspot detected, and so the processing of movement in the
subzones is carried out in the server, and new subzones can be added or rearranged long
after the system’s first initialization.

In Figure 13 is presented an example of how this works. On the left side there are
five subzones defined and all the hotspots registered since the system startup; on the right
side there is a new subzone defined (2F) after the system initialization. Because a hotspot
history exists for each zone, every movement that occurred in that subzone, even before its
creation, can be fully visualized in the timeline.

Figure 13. Hotspot’s history.

Doing this allows the visualization of all the movement in the new/rearranged sub-
zones, which were not contemplated in the system before, because all the data history
related to the detected movement of the entire zone is saved.
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5. Tests and Optimizations

Due to the current COVID-19 pandemic, it was not possible to carry out tests in
real situations with the elderly. All tests performed were simulated in the same house
division/area, with specific tests focused on the correct functioning of each module. During
the tests, some optimizations were made, namely in the agent present in the IoT devices.

5.1. Client Testing

The tests performed on the IoT devices consisted of analyzing the code of the agent
developed in python and its ability to perform the necessary operations, namely:

• Acquire images from a camera connected to the IoT device;
• Process the image using OpenCV for motion detection;
• Creation of hotspots for later upload to the server;
• Sending collected hotspots to the server.

In Figure 14 is shown the output of the Monitoring Agent, while in debug mode, dis-
playing the image coordinates, where the movement was detected, and the XML message
generated to be sent to the server.

 

Figure 14. Monitoring Agent output in debug mode.

Another test involving the IoT devices was to verify if the hotspots generated by the
devices were accurate or not; that is, if the motion detected by the devices was consistent
with the motion points that appeared on the server’s timeline. In Figure 15 is shown the
timeline of the event stream, as displayed by the server, showing movement detection,
while on the right side of the figure are shown the outputs of the equipment and the zones
they are monitoring.
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Figure 15. Timeline of events and the respective devices.

The tests performed on the system confirmed that the points collected by the device
and the movements present in the timeline matched.

5.2. Server Testing

The tests carried out on the server focused on the reception and processing of data
from the servers and their presentation to the user/caregiver, including:

• Reception of the hotspot in the IoT devices;
• Hotspot data processing and timeline generation;
• Creation and editing of zones and subzones.

In Figure 16 is shown an example of how the subzone creation tool of the server
was tested; this was accomplished by creating subzones with specific x and y limits and
by sending static hotspots generated manually on the IoT device with the corners of the
subzone, to verify that the server was placing the hotspot point in the correct pixels on the
image and thus generating movement correctly in that subzone.

 

Figure 16. Subzone creation testing.

This test, in particular, served to verify if there was any deviation in the hotspot
calculation due to the scale applied to the different image sizes of different types of cameras.
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Different image capture resolutions were used to see if the same movement coincided in
the same subzone, a result that was confirmed at the end.

5.3. Timeline Interpretation

The timeline event feed is a key element of the system, for which were conducted
some tests to verify if an ordinary person (after very brief training) could understand the
information, as presented, and perceive the events that might have generated those data.
Due to the current pandemic situation, the tests were executed with only five persons
simulating caregivers.

A test protocol was designed under which the subjects received a hypothetical timeline
of the event feed of a day in a hypothetical house. While visualizing the timeline, the
subjects were questioned about what they perceived had happened in the house during the
day. In Figure 17 is shown a timeline, created for testing purposes only, in which specific
numbered points correspond to specific events.

 

Figure 17. Timeline interpretation.

The events were then presented, but not numbered, and the subjects had to match the
event with the event number on the timeline. These events were as follows:

• “Mr. João spent the morning watching television on the sofa and then went to lunch.”;
• “Mr. João went to drink water in the kitchen.”;
• “Mr. João went to the bathroom.”;
• “Mr. João was watching TV for almost 2 h.”;
• “Someone knocked on the door and Mr. João went to see who it was.”.

The results, with a test group of five individuals, are quite positive, with all the
individuals confirming that they were able to perceive what happened by reading the
timeline. The only exceptions were events 1 and 5, which are very similar in the timeline,
and two of the five individuals misinterpreted these two.

5.4. Hotspot Detection Optimization

During the tests on IoT devices, it was noticed that when using an outline rectangle
for the movement detection, as the example in Figure 18 shows, the calculation of hotspots
sometimes covered two or more subzones, leading to quite a few false positives in subzones
where the movement was not happening.

378



Sensors 2021, 21, 6051

 

Figure 18. Movement detection optimization.

To reduce the number of false positives, it was decided to create a central point in
the motion detection rectangle that would represent the midpoint of all the movement
that occurred in that specific area of the image. By performing this optimization, and after
several tests, it was concluded that when using this midpoint technique, the number of false
positives decreased significantly, creating a timeline with much less scattered movement
points.

Another advantage of this optimization was the significant decrease (about 50%) in
the network traffic to send a hotspot data message, mainly because the messages are in
XML and the overhead becomes much smaller, when, in this case, only a pair of X + Y
coordinates are transmitted per movement, instead of the two pairs of coordinates to send
the rectangle.

5.5. Automatic Background Adaptation

The analysis of whether there is movement or not is performed by comparing an image
with a previous image (base image), in order to verify if there are differences between them.
There is a problem when the base image no longer corresponds to the actual scenario, and
small changes were introduced due to non-motion pixel changes. These changes, although
not caused by motion, were detected as motion because the pixels in the image changed
since the base image.

One of the identified problems was the constant change in the environment that the
client was analyzing, either due to the presence of new objects or changes in lighting
scenario, such as a light being turned on. To address this problem, in the IoT device was
implemented a compensation algorithm that modified the baseline image when required.
In Figure 19, two of the problems encountered while testing the system are presented. The
first one is when an object enters the background scenario, and it does not exist in the
base image. The second is when the scenario lighting changes, and all the pixels change,
creating movement in the entire image.
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Figure 19. Creation of the new base image.

After several tests, an algorithm was created based on the work of [51], to optimize
movement detection, that changed the baseline image based on two conditions:

• When no significant movement is detected for more than X seconds (X is variable),
which allows the baseline image to be updated to ambient lighting throughout the day.

• When significant movement is detected for more than Y seconds (Y is variable), which
happens in at least three different cases: when there is a sudden change in the ambient
lighting, when new objects are introduced in the scenario, and when there is real
movement in the image.

Regarding the second assumption, when a new base image is created, and if the
movement detection continues, then it is because there is real movement detected. In case
of a change in lighting or a new object in the scene, after the new base image is created the
movement stops.

5.6. Cameras with Fisheye Lens

During the initial development of the system, cameras with regular lenses were used,
with an about 72◦ viewing angle, which greatly limited the area to be monitored, especially
if viewed from above (ceiling of the room). Later, fisheye lenses, with an approximately
160◦ viewing angle, were installed on the IoT devices, allowing a much larger monitoring
area. In Figure 20, there is a lens comparison with normal lenses (72◦) on the left and
fisheye lenses (160◦) on the right.

Figure 20. Angle viewing of lens: 72◦ (Left) vs. 160◦ (Right).

The equipment is positioned exactly in the same place and the only difference is the
camera lens. On the right side, the amount of area is much bigger, which allows a better
use of the image for motion detection. With this type of lens, it is also possible to place the
equipment on the ceiling of the room and monitor the entire area, as seen in Figure 8.

With this optimization, and after several tests, the fisheye lens installed in the ceiling
proved to be the ideal place to position the IoT device and monitor the room. This setup
also produced fewer false positives in the movement detection in the subzones, mainly
because the line of sight between the camera and the subzone is less likely to be obstructed.
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5.7. Movement Detection Performance

To test the system’s performance in real motion detection, various sizes of mini-
mum motion area were tested to check how this would influence the system’s execution.
Figure 21 shows the test scenario with a defined sub-area (a) to detect the movement of the
door (b). Three sizes of minimum area were used to detect the same movement of the door
(c), which were 20 px, 50 px, and 100 px. These sizes were defined in particular for this test
and another set could be defined; the purpose was only to check whether the minimum
detection area influenced the detection of the same movement.

Figure 21. Movement detection of a closed (a) and open door (b) and the used movement area
sizes (c).

The graph in Figure 22 shows the results obtained from the tests carried out. As can
be seen, when using a smaller motion detection area, the system can recognize the same
motion/movement in that subzone more often than when the area is larger.

Figure 22. Movement detection with multiple minimum area sizes.

This result is expected and is reflected in previous tests, since the detection of the
changed pixels is sometimes very fragmented, creating several small detection areas that
are discarded if the minimum size of these to be considered valid is too high.

6. Conclusions and Future Work

In this work, an effective and low-cost indoor monitoring system was proposed to
help caregivers take care of the elderly by monitoring their daily lives from a distance.
This system brings the advantages of knowing where the elderly person is and the activity
dynamics in the house, while fully respecting the elderly person’s privacy, thus creating a
daily movement record of the elderly person.

The test results of the prototype show that it is possible to use low-price and low-
performance IoT equipment, namely a Raspberry Pi Zero W, to build a system that performs
monitoring in a specific zone in the house and its associated subzones. In addition, the tests
also indicate that the usage of the timeline event feed model is very effective to display the
activity inside a home and that it is very simple to interact with.

As future work, an optimization that can be made in terms of processing on the Rasp-
berry Pi is the implementation of gray areas, i.e., areas that will never have points of interest
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for motion detection. The detections that happen in these subzones (e.g., reflections) are not
sent to the server, leading to less false positives and a smaller amount of information to be
sent to the server. Other improvements in this type of system include the implementation
of automatic alerts, which could be of two types: a “Non-movement alert”, which would
inform the caregiver when something abnormal happens in the elderly’s routine; or a
“Too long alert”, which would be used to inform the caregiver that, after movement was
detected in an specific area, it suddenly stopped, informing the caregiver that something
may be happening.
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Abstract: Currently, solutions based on the Internet of Things (IoT) concept are increasingly being
adopted in several fields, namely, industry, agriculture, and home automation. The costs associated
with this type of equipment is reasonably small, as IoT devices usually do not have output peripherals
to display information about their status (e.g., a screen or a printer), although they may have
informative LEDs, which is sometimes insufficient. For most IoT devices, the price of a minimalist
display, to output and display the device’s running status (i.e., what the device is doing), might cost
much more than the actual IoT device. Occasionally, it might become necessary to visualize the IoT
device output, making it necessary to find solutions to show the hardware output information in
real time, without requiring extra equipment, only what the administrator usually has with them.
In order to solve the above, a technological solution that allows for the visualization of IoT device
information in actual time, using augmented reality and a simple smartphone, was developed and
analyzed. In addition, the system created integrates a security layer, at the level of AR, to secure
the shown data from unwanted eyes. The results of the tests carried out allowed us to validate the
operation of the solution when accessing the information of the IoT devices, verify the operation of
the security layer in AR, analyze the interaction between smartphones, the platform, and the devices,
and check which AR markers are most optimized for this use case. This work results in a secure
augmented reality solution, which can be used with a simple smartphone, to monitor/manage IoT
devices in industrial, laboratory or research environments.

Keywords: augmented reality; internet of things; IoT devices monitoring; IoT security; low-cost solution

1. Introduction and Motivation

Currently, Internet of Things (IoT) solutions are becoming increasingly common in sev-
eral areas (e.g., industry, agriculture, human location, and home automation) [1–3]. A key
factor for their ease in adoption is the reasonable low cost of this type of equipment, which
by not having relevant output peripherals such as an LCD displays can keep the costs
low [4,5]. Considering that occasionally it is necessary to visualize the IoT device output or
access real-time configurations, and that a simple LCD display device might cost much
more than the IoT device itself, it becomes necessary to research solutions to visualize
the IoT device data without the use of specific or additional equipment, only that already
available to the administrator, namely a smartphone.

A solution with these characteristics can be used in different contexts such as configure
information systems, support systems for the elderly to take medication, visualize the state
of objects in a home, or even monitor industrial machines with IoT devices integrated.
It is intended that the access to the information, of the various IoT devices, is done in a
simple way, through a simple smartphone. Considering that the data to be accessed may
be confidential, it is a main requirement to guarantee information security, guaranteeing
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that the data will only be available to those who have permission, and not to third parties.
Considering that, in the scope of IoT systems, many of the equipment are ubiquitous
with no information output interfaces, it is useful to use augmented reality to show this
information in real-time near the device itself.

A possible scenario of this is a set of IoT devices scattered in a factory/farm that are
controlling various sensors, namely temperature, pressure, and CO2, among others. For
an administrator who needs to access real-time information from one of the IoT devices,
assuming a universe of 1000 devices, it is necessary for the user to identify where the device
is, see the identifier tag associated with it, access it and see the data that it is collecting,
while assuming that the device has a web access interface or similar.

Using an augmented reality solution, where it is only necessary to point with an
ordinary smartphone to visualize all the information on that device, and even access
and configure it, makes the stated work in this article an interesting idea for this specific
purpose. Although a solution with a dashboard that aggregates all the information from all
devices is also useful and more common, using augmented reality enables the possibility of
seeing the information of the device we are pointing to, in real-time, as if it had an output
LCD display per example.

In this scope, the current work researches and presents a low-cost solution to monitor
the status of IoT devices, in a secure way, using a simple smartphone and augmented reality.

2. Related Work

This section presents some works related to the theme of augmented reality (AR)
associated with the Internet of Things. Some articles explained how augmented reality
works and others have shown some solutions already implemented in the world of IoT.

Augmented reality combines information and virtual elements with real world im-
agery acquired through a camera. AR is becoming increasingly popular in common
application for general public entertainment (e.g., gaming, video, and photo filters in social
media mobile applications). In specific fields, there are other works, focused on marker
detection, information security, platforms for interaction with devices, and IoT. Since this is
one of the objectives of this document, works related to this theme will be addressed [6].
The implementation of the concept of augmented reality includes several types of technolo-
gies [7]: marker-based, marker less, projection-based, and overlay-based. Benefiting from a
lower complexity in the interpretation of information, the type most widely implemented
and used is augmented reality using a marker. In this approach, a camera and some type
of marker is used, and the visual information is only shown when the marker is detected
by a device using image or pattern recognition [8]. Ensuring that markers are detected
with minimal latency time is a major challenge, and factors such as brightness and distance
can affect marker recognition time [9,10].

Regarding previous research, one in particular has motivated a lot of interest—on
which this solution was inspired—where the authors in [11], managed to use a smartphone
and augmented reality to obtain the status of an IoT device, presenting some real examples.
Additionally, a scalable AR framework called ARIoT was presented in [12], where the
authors showed how a much friendlier environment makes use of AR to interact with the
home IoT appliances. In [13], the focus was the benefits that augmented reality brings to
public transport in smart cities and why it should always be used. Another interesting
work is shown in [14], where augmented reality and a set of data information provided by
IoT devices are used to locate the real position of various wireless transmitters. In the case
of the platform presented in [15], it aims to make users aware of the energy consumption
of the various electronic equipment in their home. For this purpose, the authors developed
an interactive system that can display the energy consumption, measured by several IoT
devices. This platform allows the user to visualize the energy consumption in real time and
to interact with the device through AR. In the field of agriculture, there are also low-cost
IoT solutions that provide real-time monitoring of crops [16], making the data visually
available through AR. This work introduces the use of augmented reality as a support for
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IoT data visualization, also called AR-IoT. This concept superimposes the data collected
from IoT devices directly to real-world objects and enhances the interaction with them.
Regarding interior design, some applications that use AR technology have been developed,
for example, in pre-sales, the customers can place and visualize furniture pieces inside
their homes before purchasing them [17]. In assistive solutions, there are systems that use
AR to assist people, for example, the authors of the work proposed in [18] developed a
prototype that aimed to assist visually impaired people to read visual signs. The prototype
consists of an augmented reality device, installed on top of the user’s head, which identifies
real-world text (e.g., signs, room numbers, amongst others), highlights the location of the
text, converts it into high-contrast letters through AR, and reads the content aloud through
text-to-speech conversion.

Most AR applications provide immersive virtual experiences by capturing information
from the user’s environment and superimposing the virtual output to augment the user’s
perception of the real world. The immersive interface and the user’s perception shift
create serious safety and privacy concerns, mainly in situations where the AR information
accuracy is crucial for the user (e.g., while driving a car). Because of this, it becomes
essential to implement mechanisms to ensure that the information provided through AR is
not affected by malicious applications or bugs [19].

The work proposed in the following sections of this paper was developed according
to the concepts presented in [11,12,15,16] to create an information visualization system for
IoT devices, in real-time, using augmented reality and adding a security layer to the AR.
The work presented in [11] demonstrates how augmented reality can be used to expose
information from IoT devices to the users, and in this case, using a simple smartphone
to achieve that. The solutions shown in [12,15] confirm that the usage of AR to interact
and monitor IoT devices is a valid option. In [16], although the focus is to use IoT devices
and computer vision, it is not a solution designed to present information from IoT devices
to the user, but to show information about something that the IoT devices are acquiring
and processing from plantations. Even so, the assumptions exposed in this work and
the information processing techniques are in accordance with what is necessary to the
development of the work created in this article.

3. Conceptual Architecture

In this section, the conceptual architecture of the Secure Augmented Reality for
Internet of Things (SAR.IoT) solution, oriented to the industry and research areas, is
pressented. The main objective is to allow an augmented reality interaction between the
user and the IoT devices, all through a web solution, and that guarantees the security of
the information. The different modules are specified in detail below, namely the Client,
Server and the IoT device.

The SAR.IoT solution has a distributed and multi-agent architecture, as presented in
Figure 1, which is mainly divided in three major roles (Client, Server, and IoT devices), in a
total of four modules.

Figure 1. SAR.IoT conceptual architecture.
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A distributed architecture [20] is composed of several modules that interact with
each other in which each one is responsible for performing a specific task, and where
the correct functioning of the entire system depends on the correct interaction of all the
dispersed modules. A multi-tenant architecture allows having several customers/entities
to interact with the system in general, while this interaction is carried out through the use
of credentials that guarantee the privacy of the data.

This proposed architecture was specified considering the communication architecture
most widely used in the IoT universe, the Client/Server architecture [21], having been
properly modified to incorporate all the requirements necessary for the smooth functioning
of the solution. The architecture comprises four modules:

• The visualization module, acting in the client role, acquires and processes images
to identify possible markers. In the case of a positive identification, it queries the
information module for the data related to the identified marker;

• The information module, acting in the server role, stores the data related to the IoT
devices and their associated AR markers. It replies to requests from the display
module and assures the security of the information;

• The integration module, also acting in the server role, provides communication be-
tween the IoT devices and the information module; and

• The interaction module, acting in the IoT role, provides interaction between the
integration module and the IoT device and is located on the device itself.

Each module has an agent, a software-based entity, which is responsible for performing
various tasks and ensuring the efficient operation of the overall system.

3.1. Client

The interconnection between the Client, Server, and IoT device can be seen in Figure 2.
Note that although there is a direct interaction between the Client and IoT device, this only
occurs for the AR marker reading associated with the device, all the communications were
performed using the server.

Figure 2. Client role.

The client is a user device such as a smartphone and hosts the visualization module
installed and its software agent. This agent acquires and analyzes images to extract AR
markers using the resources available in the client device and the augmented reality
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framework implemented in the solution, as displayed in Figure 3, allowing the interaction
using the smartphone screen.

Figure 3. Visualization module architecture.

After identifying the marker, the agent queries the information module present on the
server via the server’s northbound interface to obtain the related data and to display it on
the screen of the client device.

3.2. Server

Figure 4 shows part of the proposed architecture for the server, where it is possible to
see the two modules within it, the information module, and the integration module, each
performing their respective tasks, interacting with each other and with the other modules
via northbound and southbound, respectively.

Figure 4. Server role.

The server hosts the information agent and the integration agent, as shown in Figure 5.
The server authenticates and replies to the requests from the clients and authenticates and
receives information from the IoT devices. The information agent receives, processes, and
replies to the requests made to the server. The integration agent receives information from
the IoT devices and forwards it to the information agent for data generation and storing.
This last agent also performs the actions on the IoT devices such as enabling output, etc.
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Figure 5. Visualization module and integration module architecture.

The server stores the configuration information as well as all the information sent by
the IoT devices. It manages the identification, authentication, and access of IoT devices
and users, making the access to the data secure.

3.3. IoT Device

In order to be able to interact with an IoT device, it is necessary to be able to commu-
nicate with it, either to obtain information about the equipment itself or to perform actions.
For this to be possible, it is necessary to provide this IoT device with a software-based
agent that returns the needed information and performs the desired actions. Figure 6
shows the zoom at this point in the general architecture, where it is possible to visualize the
connection between the server’s integration module and the IoT devices of the interaction
module.

Figure 6. IoT device role.

The agent present in the interaction module, shown in Figure 7, allows for the collec-
tion of all the information within the sensors associated with the IoT device, performing
actions on the outputs, accessing information about the device itself, among others. The in-
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teraction module is responsible for communicating with the server through the integration
module and sending/receiving all the data necessary for the system to function.

Figure 7. Interaction module architecture.

3.4. Communication

In Figure 8, part of the proposed architecture is presented, focused on the different
communication protocols incorporated in it.

Figure 8. Communication architecture.

In the communication between the different modules in the architecture, and since
it is an IoT environment, it makes sense to use communication protocols suitable for
this purpose. In the previous figure, there are two different types of communication:
northbound communication between clients and the server, accessing the information
module; and southbound communication between the integration module on the server
and the interaction module on IoT devices.

In the northbound communication, since this typically occurs in a web environment
over the Internet, the communication protocol to be used will undoubtedly be HTTP
(Hypertext Transfer Protocol)—in its secure version, HTTPS—to ensure data security. This
is one of the most widely used protocols [21] for accessing online platforms and is widely
used in the IoT environment for the same purpose.

In the southbound communication, since it is mostly communication between IoT
devices and the server, several protocols focused on the IoT environment can be used:

• HTTP (Hypertext Transfer Protocol): The most used Client/Server communication
protocol on the web, which is also widely used in the IoT world due to its simplicity
and efficiency in the delivery of information;
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• COAP (Constrained Application Protocol): A communication protocol designed for
devices that have limited processing capabilities, very similar to HTTP, but uses much
less data when sending messages; and

• MQTT (Message Queuing Telemetry Transport): One of the lightest communication
protocols, uses the Publisher/Subscriber model to exchange messages and is widely
used in scenarios where network connectivity is not ideal.

These are just some examples of some of the communication protocols most widely
used by programmers that can be applied to this architecture. In southbound communica-
tion, the use of HTTPS is recommended, the secured version of HTTP. The protocols COAP
and MQTT can also be used, but only with an implementation of the protocols that ensure
the data security, namely Lithe [22] and SMQTT [23].

4. Prototype Implementation

This section presents the prototype developed to test and validate the proposed
architecture, describing the analyzed frameworks, the used equipment, and the operation
of the entire solution. For this project, a solution was developed, mostly focused on web
technologies, called the Secured Augmented Reality for IoT, shortly named SAR.IoT.

4.1. Frameworks, SDKs, and Augmented Reality Libraries

Below is presented a review of the four most widely used and currently available
SDKs. For this project, we selected the ARToolkit SDK, a choice justified at the end of the
subsection.

4.1.1. Vuforia

The Vuforia SDK [24] is one of the most popular augmented reality SDKs to develop
AR solutions for Android, iOS, UWP, and Unity. It can recognize images, objects, and
text. It uses simultaneous localization and mapping (SLAM) technology, which makes
it possible for applications to recognize 3D scenes and objects. Regarding the licensing,
Vuforia is free for development.

4.1.2. Apple ARKit

The Apple ARKit framework [25] was introduced in iOS11 and allows for the creation
of augmented reality applications for iPhone and iPad. It can recognize images, objects,
and text. It also uses SLAM technology in conjunction with the device’s built-in sensors.
Regarding the licensing, the platform is free, but it only works on Apple devices running
iOS11+ and with A9, A10, and A11 processors.

4.1.3. Google ARCore

Google’s ARCore SDK [26] was designed to support the creation of AR applications
for Android 7.0+ devices. It can also recognize images, objects, and text. It also uses SLAM
technology in conjunction with the device’s built-in sensors. Regarding the licensing, the
platform is free, but only works on Android and iOS devices along with ARKit.

4.1.4. ARToolkit

ARToolKit [27] is a free open-source library, from version 5.2 onward (GPLv3), which
can be used to create cross-platform AR applications including Android, iOS, UWP, Unity,
and Web solutions. It can recognize images, text, and NFT (Natural Feature Tracking) and
was used in many previous works [28] with success. Since one of the defined goals is the
use of a web platform, it was selected to implement the presented solution.

4.2. Equipment Used in Prototype

The economic value is an important issue for the device to be used in this project, so
we opted to use ordinary equipment, readily available to most users. For the client device
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(i.e., to capture images and process the augmented reality), we selected an Android [29]
smartphone, displayed in Figure 9, priced around €150.

Figure 9. Smartphone Android Xiaomi A2 Lite.

For the server equipment (i.e., which receives and replies to requests, stores informa-
tion from the IoT devices, and authenticates users and IoT devices), we selected a Raspberry
Pi 3 B+ [30], displayed in Figure 10, priced at €50 including a 5 V 2.5 A power supply and
a Micro SD card. The characteristics of this equipment, despite being an IoT device, are
suitable for the intended purpose, since it includes a quad-core 1.4 GHz processor and 1
GB of RAM, which assures sufficient server performance.

Figure 10. Raspberry Pi 3 B+.

4.3. Operation

To present augmented information in a device, it is necessary to analyze and process
the image captured by the device itself, usually using a proper software library. In this
case, we used the ARToolKit library, the Javascript version, JSARToolKit5 [31], to work
in a web environment, allowing the system to be used by any device with an updated
browser (e.g., smartphones, tablets, computers, etc.). To create the augmented information
in Javascript, we used the Three.js library, commonly used for WebGL 3D development.
Together with the ARToolKit, we. used the Threex.ARToolKit [32], which is also used by
the AR.js library [33].

For this solution, a web platform was developed using HTML, PHP, MySQL, and
Javascript, and is accessible by the smartphone devices, though the HTTPS protocol (the
secured version of HTTP). The client-side data processing is executed in Javascript on the
smartphones and includes the AR marker detection and the augmented content rendering
systems, as displayed in Figure 11.
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Figure 11. AR marker (left) being detected and processed (right).

Each client can only see the information of the markers to which it has been granted
access by the system administrator. Figure 12 presents an example of this security feature
in operation. In the left side is displayed a marker with augmented content to which the
user has access rights, and in the right side is displayed a marker to which the user does
not have access rights, together with a access restriction notification.

Figure 12. AR markers with (left) and without (right) access granted.
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By doing this, it is possible to have a secure system where only authorized persons
can access the information of the devices. The advantage in this method is that the user
is able, in real-time, to have a sense of what is happening with the devices, all of this
without the need to read codes manually, and subsequently accessing a URL with the
device information, in the case of using QR-Codes. It should also be noted that the ease
of use of an augmented reality system, in an IoT scenario with these characteristics, is an
asset for any multi-user implementation because there is no need to physically interact
with the IoT devices.

The diagram in Figure 13 presents a process view of the client operation, detailing the
actions performed by each activity of the process.

Figure 13. Process view of the client’s operation.

That same operation occurs in the following order:

• The process begins when the client logs into the platform and the marker detection
system is started;

• The client (client-side Javascript) sends a request to the server for the bookmarks
associated with the current user;

• The mobile device captures images and the client searches for AR markers in the
images; and

• When a marker is detected, the system checks whether it can be displayed to the
current user:

◦ If yes, the system downloads the information about the marker from the server and
renders and displays it on the device’s screen (augmented reality). If the user clicks
on the augmented information, an embedded webpage is displayed with the full
information regarding the IoT device.

◦ If not, the system displays a marker access restriction notification.

The system refreshes the information from the markers and devices every 30 s and
the authentication activity is mandatory, as shown in Figure 14. If the user has an adminis-
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tration profile, it is redirected to the platform management portal. Otherwise, the client
process starts as previously described.

Figure 14. Authentication page.

The SAR.IoT platform includes the management features (i.e., user profiles, IoT de-
vices, and bookmarks and associations). Figure 15 shows the users’ management page used
for Create, Read, Update, and Delete (CRUD) operations, where there can exist normal
users or administrators.

Figure 15. User listing.
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Figure 16 shows the IoT device management page with CRUD (Create, Read, Update,
and Delete) operations. The IoT devices can specify the device types, the AR markers, and
users that can interact with them.

Figure 16. Thing parameters.

Figure 17 shows the page to manage the association between IoT devices and users
for access purposes.

Figure 17. Association between an IoT device and users.
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4.4. Visualization Modes

In the visualization module, two visualization modes were implemented: a normal
mode and a debug mode, as displayed in Figure 18. The normal mode presents the IoT
device’s augmented information, while the debug mode adds graphical pins to signal the
presence of augmented information that is not available or configured in the system. To
switch between modes, the user can click the button on the upper right screen corner.

Figure 18. Normal mode (left) and debug mode (right).

The debug mode is very useful in situations where we want to confirm whether the
mobile device (smartphone) is able to recognize the AR marker or not. This is implemented
because there may be situations in which the equipment does not present any information
and may not be able to read the tags due to some defect on them. With this, it is possible
to know if the system is working correctly or not, if it just cannot obtain the information
from the server, or if there is another problem with the client module, namely reading the
markers.

4.5. Interaction with Augmented Reality

When an AR marker augmented reality information in clicked/pressed on the smart-
phone’s screen, an embedded web page with content regarding the IoT device is produced,
as displayed in Figure 19. The contents are updated in real time and can allow interaction
with the IoT device.

This available information is acquired by the interaction module and sent to the server
through the integration module. It was decided to implement this interaction system to
allow the user to consult the information of the IoT devices more comfortably, without the
need to be pointing to the marker. The idea in this approach is for the user to be able to
verify in real-time the information of all the IoT devices that they can see, but if they want
to interact or analyze the information in detail, when clicking on the information generated
in AR, a new window appears with all the information that was in the AR information and
other further details.
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Figure 19. Processed AR marker (left) and the correspondent interaction dashboard (right).

4.6. An Augmented Monitoring Tool

The great advantage of an augmented reality system incorporated in a smartphone,
is its ability to easily allow the detection of equipment that is malfunctioning by simply
pointing the smartphone’s camera to the IoT devices and checking if any of them have
warnings. In the example shown in Figure 20, it is possible to observe a scenario where
multiple IoT devices have an AR marker attached (a), when using the proposed system, one
of the multiple AR information windows visible in the smartphone is drawing attention (b),
that is, there is a problem with that specific device that needs to be checked, doing that by
simply closing in the smartphone and seeing what is happening (c). When using a simple
dashboard on a smartphone, it indicates that there is a device with problems, but the
user must search for the physical equipment and, typically, for written tags with their
identification until they find it.

Figure 20. AR markers (a) being detected (b) and showing an anomaly in a device (c).
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The main benefit of the given solution is that it transforms any smartphone in a real-
time monitoring tool, for example, allowing better monitorization of all the IoT devices in
an industry or a laboratory.

5. Tests and Optimizations

In this section, all the tests and optimizations performed are exposed. Various types of
AR markers were tested and different degrees of confidence in the recognition system were
analyzed. The performance of the solution was also analyzed, with multiple AR markers
being shown in the screen at the same time. The security layer of the AR markers was
also tested, namely, if the system could block access to the information of the markers to
unauthorized users.

5.1. Types of AR Markers

During the development, we tested PATTERN, 2D BARCODE, and NFT (Natural
Feature Tracking) markers, the AR markers used in the tests had a size of 2.5 cm × 2.5 cm,
as the ones in Figure 21 that is showing some pattern markers, and the distance of the
readings taken with the smartphone varied between 5 cm and 50 cm.

Figure 21. PATTERN markers.

To use PATTERN type markers with this framework, they must be defined in PATT
files. These files contain a mapping between the graphic content of the marker’s image
and numeric values in the 0 to 255 range. Each value represents a color, in a gray scale,
from 0 white to 255 black, as presented in Figure 22. An important indicator for the AR
markers’ recognition is the confidence degree, which is a percentage number that defines
the certainty of the recognition or the certain probability of a correct recognition.

Figure 22. Extract from a.PATT file with an image pattern.

To test the effects of the confidence degree in the AR marker recognition, we used
PATTERN type markers (characters) with a 50% confidence degree, and it was verified that
the system mismatched the “B” and the “F” markers. In another test, the confidence degree
was lowered to 25% and the results were predictably worse. The “B” marker was now also
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mismatched with the “D” marker. In a third test, we used an 85% confidence degree, and
all the markers (characters) were correctly recognized.

When using 2D BARCODE type markers, visible in Figure 23, it is not necessary to
include a definition file, which renders a much lighter processing. In the tests, like the ones
previously described, the system always recognized the marker correctly with a confidence
degree between 95% and 100%.

Figure 23. 2D BARCODE markers.

An additional conclusion is that the software library (the Threex.ARToolkit) had a
software bug on the calculus of the confidence degree for 2D BARCODE type markers. It
would always return a 100% confidence degree. The bug was corrected in the library and
the calculation is now accurate.

Figure 24 illustrates an example of some Natural Feature Tracking (NFT) markers that
can also be used with the ARToolkit framework. These types of markers allow for the usage
of any image to create a customized marker, where it is also necessary to generate from the
image for each tag a file with the unique keypoints to correctly identify the marker.

Figure 24. NFT markers.

The results of the tests carried out with the different types of markers are shown in
Figure 25. These tests were executed 10 times each, with different distances (50, 25, and
5 cm) and different numbers of markers simultaneously (1, 2, 3, 4, 5, and 10). The values
presented in the figure are the average values from the 10 iterations of each one.

Figure 25. Marker detection time comparison (0 = not available).

401



Sensors 2021, 21, 6001

The 2D BARCODE markers were the fastest to be detected by the system, while the
NFT markers were the most time consuming and presented several problems in their
detection, namely in terms of distance, where they were only detected at 5 cm from the
camera and with more than two markers at the same time, where the system (on the
smartphone) could not detect any AR marker.

For the AR markers to be used in the implementation, we chose the 2D BARCODE
type as the detection time was lower, the recognition confidence was higher, the detection
of multiple markers simultaneously was faster, and it did not need additional files to work.

5.2. AR Performance

The solution exposed in this article was intended to work using a simple browser
in a low-medium range smartphone, allowing the largest possible visualization of AR
markers at the same tie, being the 60 markers simultaneously on the screen, the maximum
allowed by the framework. In order to validate the capabilities of the system, it was
necessary to verify the performance of the solution and whether it could handle a large
number of markers captured by the system at the same time. For this purpose, several
tests were carried out with the AR solution using 4 × 4 2D barcode markers (allowing a
total of 8181 different markers), and in Figure 26, it is possible to see one of those tests,
where 60 augmented information windows were generated at the same time on the same
smartphone screen.

Figure 26. Performance test with multiple AR markers.

Overall, the system managed to always generate all the AR information windows
needed, with only a slight drag in the animation when the number of AR markers recog-
nized by the system was very high (as the picture above), but when zooming on a specific
AR marker, this drag completely disappears.

5.3. Marker Security Protection

To assure the security while retrieving the information from the IoT devices, several
tests were conducted with a regular smartphone accessing the system, and although the
system detects all the markers and processes them all, it only returns and displays the
real-time information of the devices available to the current user, so every other device will
have access denied and the AR marker will show that, as shown in Figure 27.

In the example above, we can see that the markers unlocked to users U1 (a) and
U2 (b) were completely different, the two users had access to different devices, and the
system only showed the information of the IoT devices that each user had permission
for. Regarding user U3 (c), it could view and manage a set of devices to which users (a)
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and (b) also had access. This behavior is very useful, mainly in industrial or laboratorial
situations, where different employees/users can only view or manage the IoT devices they
have permissions for, which adds a security feature to who can view or not the information
in real-time of each device using augmented reality.

Figure 27. Available and not available AR markers for users U1 (a), U2 (b) and U3 (c).

6. Conclusions and Future Work

In this work, we proposed a real-time visualization system for IoT devices using
consumer grade mobile phone devices and augmented reality. The principal objective was
to be able to extract information in real-time from the IoT devices and present it using
augmented reality without the need for additional specific hardware, keeping the solution
low cost. The main contributions in this article were the creation of an architecture that
allows the simplified use of augmented reality to visualize information in real-time from
IoT devices with a security layer added to the AR, and the development of a functional
prototype that demonstrates the operation of the proposed solution and validates the
architecture.

The tests results concluded which type of AR marker was best to use and validated
the security model used to protect the access to the information on the IoT devices.

In future work, an interesting approach to research would be the implementation of
an AR marker generator, creating unique markers optimized for AR usage, mainly using a
random quantity of triangles and rectangles, composing a unique pattern.
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Abstract: Face and person detection are important tasks in computer vision, as they represent the
first component in many recognition systems, such as face recognition, facial expression analysis,
body pose estimation, face attribute detection, or human action recognition. Thereby, their detection
rate and runtime are crucial for the performance of the overall system. In this paper, we combine both
face and person detection in one framework with the goal of reaching a detection performance that is
competitive to the state of the art of lightweight object-specific networks while maintaining real-time
processing speed for both detection tasks together. In order to combine face and person detection
in one network, we applied multi-task learning. The difficulty lies in the fact that no datasets are
available that contain both face as well as person annotations. Since we did not have the resources to
manually annotate the datasets, as it is very time-consuming and automatic generation of ground
truths results in annotations of poor quality, we solve this issue algorithmically by applying a special
training procedure and network architecture without the need of creating new labels. Our newly
developed method called Simultaneous Face and Person Detection (SFPD) is able to detect persons
and faces with 40 frames per second. Because of this good trade-off between detection performance
and inference time, SFPD represents a useful and valuable real-time framework especially for a
multitude of real-world applications such as, e.g., human–robot interaction.

Keywords: face detection; person detection; multi-task learning; real-time detection

1. Introduction

The detection of face and person bounding boxes from images is very important for
a variety of applications. For example, they can be used in the field of human–computer
interaction (HCI) to detect possible interaction partners, in autonomous driving to per-
ceive road users such as pedestrians, or in mobile robot navigation to identify moving
obstacles. Furthermore, they are the first component for a large number of recognition
systems in many applications, such as face recognition [1], facial expression analysis [2,3],
body pose estimation [4], face attribute detection [5], human action recognition [6] and
others. In such systems, face and/or person detection are often a prerequisite for the
following processing steps; so, their detection rate is crucial for the performance of the
overall system. Through deep learning, the results in the area of object detection have
been greatly improved. However, many state-of-the-art approaches that use deep neural
networks require very heavy computation so that inference does not run in real-time on
a conventional graphics processing unit (GPU), which severely limits their suitability for
many real-world applications that require high framerates.

Our application, for which we combined face and person detection, lies in the area of
autonomous robotic systems. The robot must be able to detect persons with their faces in
real-time, especially, in close range to the system with only limited computational capacity
in order to perform HCI. However, the use of our framework is not limited to this field of
application and is useful for many more real-world applications.
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A major difficulty for the integration of the two tasks, face and person detection, in
a single neural network is the fact that publicly available databases contain only ground
truths for one of the two tasks. To the best of our knowledge, there is no extensive dataset
containing coordinates of face as well as person bounding boxes. To perform the two tasks
simultaneously within the same convolutional neural network (CNN), it is trained using
multi-task learning (MTL). The distinctive characteristic of our training procedure lies in
the fact that we train our network in a single continuous process simultaneously on both
databases for the tasks of face and person detection, although ground truths are missing for
one of the two classes in each database. Thereby, we are able to handle this circumstance
without the need of generating new labels, since the manual generation of annotations is
very time-consuming and the automatic generation only results in annotations of poor
quality. To our knowledge, such a training process has not been presented in the research
community so far.

In this work, we propose an MTL framework for simultaneous detection of faces and
persons, which is able to process 40 frames per second (fps) and is therefore more than
real-time capable. This makes it possible to add further downstream recognition tasks to the
framework and still maintain its real-time runtime. Thus, the algorithm is very interesting
for real-world applications. The results achieved on the WIDER Face [7] and Pascal
VOC [8,9] datasets can compete with other lightweight state-of-the-art methods. In addition,
our framework is completely end-to-end trainable, without pre-training individual network
parts, splitting up the training process, freezing single network layers or creating additional
annotations for one database, as it is mostly the case with other MTL networks.

The main contributions of our work can be summarized as follows:

1. We propose a new CNN for Simultaneous Face and Person Detection (SFPD) in real-
time, which is completely end-to-end trainable using MTL with two datasets, each
containing the ground truths for one of the two detection tasks;

2. A new network architecture was developed which consists of a joint backbone with
shared feature maps and separate detection layers for each task;

3. A multi-task loss was designed which allows to generate loss values throughout the
whole training process despite missing ground truth labels in the training datasets;

4. Comprehensive experimental validation was performed by comparing the detection
performance and inference runtime of multiple algorithms.

Our paper is structured in the following way: In Section 2, related work on general
object detection, face detection, and multi-task learning is reviewed. In Section 3, our
method is presented in detail with regard to the used network architecture and loss
function. In Section 4, the experiments and their results are reported providing details on
the training procedure and the datasets used. Finally, in Section 5, conclusions are drawn.

2. Related Work

There are three major research areas related to our work: general object detection, face
detection and multi-task learning. This section gives a brief summary about these areas.

2.1. Object Detection

The general goal of object detection is to localize the borders of a wide range of objects
inside an image. These object boundaries are described using bounding boxes and are
intended to fit as closely as possible to the object shapes. Additionally, a class label is
predicted as output for each detected object. It is possible that the image contains multiple
objects. The difference to image classification lies in the fact that in classification there is
only one object in the image whose class label is predicted as output, but the bounding box
is not localized.

Especially due to the developments in the field of deep CNNs, the performance of
detection tasks could be increased significantly in recent years. This can be attributed
to the large amount of annotated training data, as well as to the availability of more
powerful GPUs, enabling the training of increasingly deeper and more complex network
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architectures. However, still the most accurate modern neural networks do not operate in
real-time and require large number of GPUs for training with a large mini-batch size [10].
Thus, these methods often cannot be applied for real-world applications with specific
requirements regarding the runtime, hardware, energy consumption, etc.

Modern detection frameworks usually consist of two parts: A backbone for obtaining
the features, which is often pre-trained on ImageNet [11], and a head for predicting the
object classes and bounding box coordinates. Thereby, the head parts can be categorized
into single-stage and two-stage detectors.

Two-stage detectors initially generate a large amount of generic object proposals. For
this purpose, they use external algorithms, such as Selective Search [12], Egde Boxes [13]
or Adobe Boxes [14]. In more recent approaches, the generation of object proposals is
integrated into the network structure by using a region proposal network making the
framework end-to-end trainable. In the next step, each region proposal is classified,
whether it contains an object or not using a CNN. The first two-stage object detection
algorithm was R-CNN [15], upon which newer variants, such as Fast R-CNN [16], Faster
R-CNN [17], R-FCN [18], Mask R-CNN [19] and Libra R-CNN [20] are based on. Although
the two-stage detectors have the capability to achieve the best detection accuracy, they are
rarely used in practice because of their limited suitability for real-time systems. This is
primarily due to the generation of region proposals, which is a computationally intensive
process and the main bottleneck for reaching a real-time detection framework.

Single-stage detectors, often also called single-shot detectors, directly compute object
confidence scores and bounding box coordinates for a given input image without generat-
ing region proposals. For this purpose, a fixed set of anchor boxes with different aspect
ratios and scales is applied to all image components in order to be able to immediately
predict the confidence scores. This greatly improves the detection speed and enables real-
time detection, while reducing the detection accuracy [21]. Due to the better processing
speed, the single-stage detectors are used in practice much more often. To ensure detection
of differently scaled objects in a single forward pass through the network, they utilize
the built-in pyramid structure of CNNs. Feature maps from different stages of layers
with various sizes are collected and pooled, allowing the network to perform direct object
classification and regression of bounding boxes for several scales of objects. The most
representative models for single-stage object detectors are the versions of YOLO [10,22–24],
SSD [25] and RetinaNet [26]. In recent years, more approaches have been introduced:
EfficientDet [27] is a scalable object detection framework where it is easily possible to
change the backbone in order to optimize accuracy and efficiency of the network. With
FCOS [28] and FoveaBox [29], two anchor-free frameworks have been introduced. Their
advantage lies in the fact that complicated computations related to anchor boxes such as
overlaps during training are avoided by eliminating the predefined set of anchors. Instead,
pixel-wise classification is applied to the feature map outputs of the backbone, similar to
semantic segmentation, for detecting the objects.

The recognition task of person detection is mainly handled within the general object
detection, because most object recognition datasets have persons annotated as one of
their object categories. Therefore, most general object detection frameworks perform the
detection of persons besides further object classes.

2.2. Face Detection

Face detection is a specialization of general object detection, which focuses on the
detection of human faces. Many algorithms for face detection have been derived from
methods for general object detection.

Before deep learning became the standard in object and face detection, manually
acquired features were used to accomplish the detection tasks. One of the most popular
algorithms for face detection was developed by Viola and Jones [30]. It utilizes Haar-Like
features and AdaBoost [31] learning to train cascaded classifiers, which achieve good
performance in real-time speed. Besides Viola and Jones, the deformable parts model
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(DPM) [32] has been proposed in the literature [33–35] for face detection using histogram
of oriented gradient (HOG) [36] features, which are robust to partial occlusion and define a
face as a collection of its parts. The main problem for the usage of Haar-Like and HOG
features in unconstrained face detection lies in their inability to capture facial information
at different resolution, viewpoint, illumination, expression, skin color, occlusions and
cosmetic conditions [37].

To overcome these limitations, various deep learning-based face detection models have
been introduced in the literature. One of the first CNN-based face detection algorithms is
Cascade-CNN [38]. It uses an image pyramid to detect differently scaled faces. Then, it
merges the individual faces detected from pyramid structure for the whole image using
non-maximum suppression (NMS) [39], discarding strongly overlapping bounding boxes.
A similar cascade is used by Multi-scale Cascade CNN [7] and by MTCNN [40], while
MTCNN additionally captures five facial landmarks for improved face detection.

In recent years, many more algorithms have been introduced: Face R-FCN [41] is built
on the R-FCN [18] framework and is optimized for face detection. To improve detection
accuracy, they exploit position-sensitive average pooling, multi-scale training and testing as
well as on-line hard example mining. S3FD [42] consists of a scale-invariant network with
a new anchor matching strategy for improved recall rate on tiny faces. In order to increase
performance in particular for partially occluded faces, the specially developed approach
FAN [43] uses anchor-level attention maps. In PyramidBox [44], the authors applied context
modules on feature pyramids to enlarge the receptive field for better observation of context
information. ScaleFace [45] is able to handle an extremely wide range of scales using
a specialized set of deep CNNs with different structures. The challenging problem of
simultaneous dense localization and alignment of faces of arbitrary scales in images is
addressed in RetinaFace [46] through adding a self-supervised mesh decoder branch for
additional prediction of pixel-wise 3D shape information. DSFD [47] proposes a novel
feature enhance module and an enhanced anchor matching strategy for obtaining more
discriminability and better initialization for the regressor. DBCFace [48] is an anchor-free
face detector that generates binary segmentation masks indicating for each pixel whether it
belongs to a face or not.

Due to this multitude of developments, the performance in the field of face detection
has been enhanced significantly. However, the performance of the algorithms is also
strongly correlated to the required computation time, which is the reason why almost
none of the previous mentioned deep learning approaches are able to run in real-time on
a conventional GPU, e.g., PyramidBox [44] only achieves 3 fps on an NVIDIA Titan RTX
(Nvidia Corporation, Santa Clara, CA, USA) and ScaleFace [45] only 4 fps on an NVIDIA
Titan X. One approach that combines good results with real-time runtime is YOLO-face [49].
The method was developed based on YOLOv3 [24] and reaches 38 fps on an NVIDIA
GeForce GTX 1080 Ti.

2.3. Multi-Task Learning (MTL)

MTL describes the simultaneous learning of multiple tasks at the same time, whereby
several output targets are generated for one input target [50]. MTL for machine learning
was first introduced by Caruana [51] in 1998. However, before deep learning algorithms
were extensively deployed, it was highly limited to just a few use cases as the required
features strongly differed. With the upcoming trend of using CNNs for computer vision
tasks and the rejection of hand-crafted features, the fields of application for MTL could be
extended considerably.

Several MTL frameworks were presented such as: DAGER [52] for age, gender and
emotion recognition; HyperFace [53] for face detection, pose estimation, landmark localiza-
tion and gender recognition; or All-In-One [54] for face detection, landmark localization,
face recognition, 3D head pose estimation, smile detection, facial age estimation and gender
classification. Additionally, Levi and Hassner [55] proposed a CNN for age and gender
estimation, Zhang et al. [56] optimized facial landmark localization with facial attribute
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inference and head pose estimation, and Gkioxari et al. [57] trained a CNN for person pose
estimation and action detection.

Chen et al. [58] proposed to combine face detection and alignment in one framework,
because they observed that aligned face shapes provide better features for face detection.
Furthermore, Saxen et al. [59] proved that a CNN can detect faces more easily by adding
face orientation as a training target. Inspired by these approaches, various methods for face
detection were developed, which incorporated the prediction of additional facial features
into the network for improved performance: MTCNN [40] and RetinaFace [46] predict five
ancillary face landmarks, He et al. [60] predict plenty facial attributes and Wu et al. [61]
predict the head pose.

The advantage of having an MTL network, instead of constructing independent CNNs
for each task, is to profit from the inherent correlation between the related tasks and thereby
to enhance each others performance [61]. By sharing the feature maps for the different
detection layers, the generalization capability of the features improves and they can adapt
more effectively to the complete set of recognition domains. This enhances both learning
efficiency and prediction accuracy [62]. In addition, the shared use of several CNN layers
reduces the computational time, which helps realizing a real-time system for simultaneous
execution of multiple tasks.

3. Method

This section introduces our new method for simultaneous face and person detection,
called SFPD, in detail. The basic design of our SFPD algorithm is inspired by the SSD [25]
framework. The layout of the network architecture and the applied loss function are
explained in the following subsections.

The novelty of our training procedure and network architecture lies in the fact that it
is trained end-to-end on two datasets which are both only partially annotated and therefore
only contain labels for one of the two target object classes (faces and persons). We solve
this problem algorithmically without an additional generation of new ground truths, since
we do not have the resources to generate new labels manually as it is very time-consuming
and automatically generated labels are of worse quality. For this reason, the training
process alternates between batches with face and batches with person annotations. Details
about the training data can be found in Section 4.1, details about the training procedure in
Section 4.2.

3.1. Network Architecture

Our SFPD algorithm belongs to the group of single-stage object detectors (see Section 2.1)
and is a feed-forward CNN which uses predefined anchor boxes to output bounding
box coordinates and confidence scores for the respectively targeted class. The network
architecture of SFPD consists of two parts: A joint backbone with shared feature maps and
separate detection layers for the single detection tasks. The detailed structure is illustrated
in Figure 1.

The backbone generates base features and is shared by the two detection layer branches
for faces and persons. This becomes possible because the first layers extract very rough
features such as contours and edges. The middle and back layers of the backbone already
exhibit specific task-related features, which however gain better generalization ability
through training on two related detection tasks. The first part of our backbone consists of
the VGG-16 [63] network. Each of these convolutional blocks (conv1–conv5) consists of
a series connection of one or more convolutional layers with rectified linear unit (ReLU)
activation function and a kernel size of 3 × 3 followed by a max pooling layer with
2 × 2 kernel. All weights were pre-initialized with values trained on ImageNet [11]. The
ReLU activation is able to increase the overall non-linear fitting ability of the CNN. Similar
as in SSD [25], the fully connected layers fc6 and fc7 are replaced by convolutional layers
(conv6 and conv7) with 1024 filters each, fully connected layer fc8 is removed and four
additional convolutional layer blocks (conv8 to conv11) with two convolutional layers each
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and successive kernel sizes 1 × 1 and 3 × 3 are added at the end of the VGG-16 [63] network.
The layers of the first additional block have 256 and 512 filters, those of the following
three ones first 128 and then 256 filters. This results in a feature map size of 1 × 1 at the
end of the backbone for input images with 300 × 300 pixels. The advantage of the 1 × 1
convolution lies in the fact that it performs the dimension reduction of the feature map
without significantly increasing the number of parameters. The newly added convolutional
layers are initialized by the Xavier [64] method.
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Figure 1. Network architecture of SFPD. It consists of a shared backbone and separate detection layers for face and
person detection.

The detection layers generate as output the bounding box coordinates and percentage
class confidence scores for each detection task. Therefore, each detection layer consists of
two head layers, one for bounding box regression and one for class prediction. In order to
be able to detect persons and faces of different scales in one pass through the CNN without
generating image pyramids, features must be tapped at different levels of the backbone.
This is possible because the layers of the backbone are progressively decreasing in size.
The taps for the detection layers are located after layer conv4-3 and conv7 (formerly fc7)
as well as at the end of each newly added block following the VGG-16 [63] network. In
order to be able to detect more smaller faces, a seventh tap after conv3-3 is added to the
branch for the face detection layers. The detection layer for each tap consists of a batch
normalization layer followed by two parallel convolutional layers corresponding to the
two heads. Afterwards, all detection layer feature maps of a branch are concatenated in
order to aggregate the multi-scale detections. The entire CNN is composed of 24, 453,
160 parameters in total from which 24, 451, 112 are trainable.

The anchor boxes are very important hyper-parameters and crucial for the later
detection performance. A set of anchor boxes with different sizes and aspect ratios is
assigned to each detection layer feature map allowing to cover suitable boxes for a large
range of faces and persons that may appear in the images. Usually, the height of faces
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and persons in images is greater than the width. Therefore, besides square anchor boxes,
additional ones with aspect ratios of one half and one third are applied. However, the test
data showed exceptions to this assumption. For that reason the flipped anchor boxes with
aspect ratios two and three were also added. The anchor box sizes were adopted from the
original SSD300 [25] implementation.

The SFPD network outputs a fixed-sized set of bounding boxes and their respective
confidence scores for the presence of a face or person. During inference, the final detections
must be generated out of these. Most boxes can already be sorted out by the confidence
threshold. The confidence threshold plays an important role, because if it is set too high,
correct detections are rejected and if it is set too low, many false positives remain in the
results. Depending on the layer where the bounding boxes are tapped, we use different
confidence scores because it has been observed that especially for small objects, it is often
difficult to achieve a sufficiently high score. Therefore, the bounding boxes from the first
two person and the first three face detection layers receive a confidence threshold of 0.1,
the next two of 0.2 and the last two of 0.3. To avoid multiplicate detection of the same
object, NMS is used. Boxes with an intersection over union (IoU) of more than 0.5 are
rejected and a maximum of 300 detections is kept per image. The decision is based on the
highest confidence score.

3.2. Loss Function

During the training of our SFPD network a loss function consisting of multiple parts
is optimized. For each detection branch, a loss is calculated consisting of a confidence loss
(Lcon f ) for the confidence scores and a regression loss (Lreg) for the bounding box coordinates.

Since the two detection layers decide for each anchor box, if it contains a person or
a face (depending on the branch) or if the box is classified as background, these are both
binary decision problems. For this reason, we use the binary cross-entropy loss for Lcon f :

Lcon f = − 1
N

N

∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (1)

where ŷi is the model output for the i-th anchor box, yi is the corresponding target value
and N is the number of anchor boxes.

We use the generalized intersection over union (GIoU) [65] loss for Lreg:

Lreg =
1
M

M

∑
j=1

1− IoUj +
Ac

j −Uj

Ac
j

(2)

where IoUj is the intersection over union between the predicted and ground truth bounding
box for the j-th anchor box remaining after hard negative mining, Ac

j the smallest enclosing
area and Uj the union area between the two bounding boxes. M is the total number of
remaining anchor boxes after hard negative mining. GIoU was chosen for the regression
loss because it is superior to other loss functions in the regression of 2D bounding boxes [65].

The losses for face (L f ace) and person (Lperson) detection are calculated from the respec-
tive Lcon f and Lreg:

L f ace = Lcon f _ f ace + 2× Lreg_ f ace (3)

Lperson = Lcon f _person + 2× Lreg_person (4)

Thereby, the regression loss is weighted twice as high as the confidence loss. The
weight was chosen empirically and resulted in an improved optimization during training.
Learning the binary classification proved to be uncritical even with weaker weighting.

To realize a complete end-to-end trainable framework for both detection tasks, a total
loss function is required. This total loss L is composed of the loss functions for faces
and persons:

L = 3α× L f ace + β× Lperson (5)
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Our training process alternates between batches of face and batches of person samples,
which come from different databases. During training a batch with face annotations α = 1
and β = 0 are set, during a batch with person annotations α = 0 and β = 1 are set. This
ensures a steady calculation of the loss during the whole training process, despite the
fact that one of the two ground truths is missing for the input images. The face loss is
triple-weighted compared to the person loss because it has been observed that otherwise
the network optimizes itself strongly in the direction of person detection and neglects face
detection to a large extent.

By applying this loss function, a network could be designed which is able to detect
faces and persons simultaneously. The framework is completely end-to-end trainable,
although the available datasets have either face or person labels, but no dataset has both.
Details about the exact training procedure can be found in Section 4.2.

4. Experiments and Results

This section describes the experiments and their results in detail. First, the datasets
used for training and testing our SFPD network are introduced and, then, the training
procedure is precisely specified. Afterwards, the achieved results are presented and
discussed. Finally, the limitations of our new algorithm are pointed out.

4.1. Datasets

Training a CNN for simultaneous detection of faces and persons in images is not a
straightforward task, as extensive and publicly available datasets, which contain face as
well as person bounding box annotations, do not exist in the research community. In order
to train such a network, partially annotated datasets have to be used.

For training and testing the face detection task, we utilize the WIDER Face [7] dataset.
It is currently the most popular and commonly used dataset in face detection. Besides, it is
very challenging due to the high variability in scale, pose, expression and occlusion of the
faces pictured in its images. For training, we apply the WIDER train set with 12,880 images
and, for testing, the WIDER validation set with 3226 images. The sets are divided into
the three categories “easy”, “medium” and “hard” according to their level of difficulty
for detection.

The task of person detection is trained and tested using the Pascal VOC datasets [8,9]
from 2007 and 2012. The two datasets contain annotations for 20 different object classes,
however, we are only interested in the person annotations. For this reason, all images
without person annotations are sorted out. In addition, annotations of other object classes
are ignored during training. This results in 2095 remaining images for the VOC 2007
trainval set and 9583 for the VOC 2012 trainval set, which are used for training the SFPD
network. In total, this results in 11,678 training images with person annotations, which
leads to a relatively balanced number of training images between the two detection tasks
compared to 12,880 for WIDER train. No negative samples (without faces and without
persons) were used in the training as the test performance showed no need for this, since no
false positives were detected on images without objects. The same procedure for rejecting
images is applied to the person test sets. This leaves 2097 images in the VOC 2007 test set
and 5138 in the VOC 2012 test set for testing the person detection of our SFPD network.

4.2. Training Procedure

The SFPD algorithm has been trained on partially annotated databases because there is
a lack of datasets with person as well as face annotations. Therefore, the training procedure
is slightly more complex compared to other CNNs.

First, the input images are loaded and scaled to a size of 300 × 300 pixels. Thereby,
a batch size of 32 is used. Each batch contains only images with either face or person
annotations. Batches with mixed images from both detection tasks do not occur in our
training process. The images within the batches are randomly selected from the dataset.
Whether a face or person batch is loaded, is determined by the probability calculated as
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the ratio of the total number of face to person batches. The training epoch ends once all
batches of the three training datasets have been loaded.

To increase the generalization capability of the network, various data augmentation
techniques are applied to the input images. The images are flipped horizontally with a
probability of 0.5 and vertically with 0.1. Furthermore, every third image is rotated in
the range of −30 to 30 degrees. Since it is difficult for the network to detect small objects,
additional training data are generated. Therefore, the images are effectively downscaled
to create smaller faces and persons. For this purpose, every third image is expanded by
a black area, which extends the original image size by a random factor between one and
four. The aspect ratio remains unchanged. Additionally, some photometric distortions are
applied on the input images, such as adjusting the brightness, contrast, saturation and hue.

During training, the anchor boxes have to be matched to the ground truth coordinates.
Each anchor box above an IoU threshold of 0.5 is classified as positive. This simplifies the
learning problem because the network should not only find the one anchor box with the
highest IoU overlap, but should also predict high confidence scores for multiple appropriate
anchor boxes. During inference, these multiple detections are sorted out using NMS. Since
the number of negative anchor boxes greatly exceeds the number of positive ones at training
time, hard negative mining is performed to compensate for this imbalance. The negative
classified anchor boxes with the highest confidence scores are selected to obtain a ratio of
3:1 between negative and positive training samples.

All training is performed on an NVIDIA GeForce RTX 2080 Ti GPU. The total number
of training epochs is 130. We start with a learning rate of 10−4 which increases by factor
10 after the first ten epochs. By starting the training directly with a higher learning rate,
an unstable behavior could be observed. Therefore, it is increased after the weights of the
network have reached a more stable state. After 80 and 100 epochs, the learning rate is then
reduced by a factor of 0.1 each time. As optimizer, we utilize stochastic gradient descent
(SGD) with a momentum of 0.9.

4.3. Evaluation Results and Discussion

The evaluation of our SFPD network, which is able to detect faces and persons simul-
taneously, was conducted on task-specific datasets for each detection target.

To evaluate the person detection, the Pascal VOC [8,9] “person” subsets of 2007 and
2012 were chosen. The results obtained with our SFPD method and other algorithms
are presented in Table 1. Sample images from the databases with SFPD detections are
shown in Figure 2. Our SFPD method outperforms the comparison algorithms Fast R-
CNN [16], Faster R-CNN [17], SSD [25] and the first two versions of YOLO [22,23], which
are among the most commonly used object detection frameworks. SFPD has one of the
fastest computation times considering that both faces and persons are detected in 40 fps
and the Titan X, Titan V and RTX 2080 Ti are GPUs with comparable technical specifications.
The average precision score was improved by about two percent compared to SSD [25]
with unchanged input image size of 300 × 300 on both datasets. Compared to EfficientDet-
D2 [27], SFPD shows similar performance results but detects faces additionally to persons.
However, the comparison is not quite fair since EfficientDet-D2 [27] was trained on the
significantly larger MS COCO dataset. The same applies to EfficientDet-D3 [27], which
achieves improved detection results but can only process 27 fps. SSD512 [25], RetinaNet [26]
and FoveaBox [29] show slightly higher results of less than two percent, however, they are
not even half as fast as SFPD and only manage to generate person bounding boxes in this
amount of time.

Face detection was tested on the three WIDER Face [7] validation subsets. The results
for several of these detection algorithms are listed in Table 2. Furthermore, images with
sample detections of SFPD are shown in Figure 3. Corresponding precision–recall curves
are outlined in Figure 4. SFPD was compared with a variety of algorithms. The results
show that there is only a small number of algorithms that achieve satisfying performance
combined with real-time runtime on this dataset. All approaches with average precision
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values above 90 percent are not able to be executed in real-time. DSFD [47] with a ResNet50
architecture represents an exception and is capable of running almost in real-time with
22 fps on a high-end Tesla P40 GPU. All other methods at the top of the results list are far
below this runtime. This shows that face detection is a complex and computing intensive
computer vision task. The two implementations of YOLO-face [49] indicate the best trade-
off between performance and runtime achieving 89.9 percent at 38 fps and 82.5 percent at
45 fps on the “easy” subset. Our SFPD ranks just below them in terms of performance. The
average precision score is between one and four percent worse on each of the three subsets
than YOLO-face [49] with darknet-53 architecture. The framerates are in similar range,
but it has to be mentioned that SFPD additionally detects persons in the same amount of
time and no additional CNN is needed for this purpose.

Table 1. Results of our SFPD network and other detectors on the Pascal VOC test “person” subsets
2007 and 2012.

VOC Test Set

Method 2007 2012 fps GPU

Fast R-CNN [16] 69.9 72.0 1 Tesla K40
Faster R-CNN [17] 76.7 79.6 5 Tesla K40

7 Titan X
SSD300 [25] 76.2 79.4 46 Titan X
SSD512 [25] 79.7 83.3 19 Titan X
YOLO [22] - 63.5 45 Titan X
YOLOv2 [23] - 81.3 40 Titan X
EfficientDet-D2 [27] † 78.8 81.9 43 Titan V
EfficientDet-D3 [27] † 81.1 85.6 27 Titan V
RetinaNet [26] 78.3 - 14 Tesla V100
FoveaBox [29] 79.5 - 16 Tesla V100
SFPD [ours] 78.1 81.5 40 * RTX 2080 Ti

All frameworks (except † denoted) were trained exclusively with person annotations from the Pascal VOC trainval
sets of 2007 and 2012; the inference time was determined with a batch size of one; * at our SFPD method denotes
that both faces and persons are detected within this inference time; † denotes that the network is trained on MS
COCO [66] and not on Pascal VOC datasets.

Figure 2. Example detections of SFPD on the Pascal VOC [8,9] test sets 2007 and 2012: Red bounding
boxes indicate detected faces; green bounding boxes detected persons.
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Table 2. Results of our SFPD network and other detectors on the WIDER Face validation set.

WIDER Validation Set

Method Easy Medium Hard fps GPU

YOLOv2 [23] (from [49]) 33.1 29.3 13.8 40 Titan X
ACF-WIDER [67] 65.9 54.1 27.3 20 CPU
Two-stage CNN [7] 68.1 61.8 32.3 - -
YOLOv3 [24] (from [49]) 68.3 69.2 51.1 35 Titan X
Multi-scale Cascade CNN [7] 69.1 66.4 42.4 - -
Faceness-WIDER [68] 71.3 63.4 45.6 - -
LDCF+ [69] 79.0 76.9 52.2 3 CPU
YOLO-face (darknet-53) [49] 82.5 77.8 52.5 45 GTX 1080 Ti
Multitask Cascade CNN [40] 84.8 82.5 59.8 16 Titan Black
ScaleFace [45] 86.8 86.7 77.2 4 Titan X
YOLO-face (deeper darknet) [49] 89.9 87.2 69.3 38 GTX 1080 Ti
DSFD (ResNet50) [47] 93.7 92.2 81.8 22 Tesla P40
Face R-FCN [41] 94.7 93.5 87.4 3 Tesla K80
FCOS [28] (from [48]) 95.0 90.6 55.0 - -
FAN [43] 95.2 94.0 90.0 11 Titan Xp
FoveaBox [29] (from [48]) 95.6 93.5 67.8 11 Tesla V100
DBCFace [48] 95.8 95.0 90.3 7 GTX 1080 Ti
FDNet [70] 95.9 94.5 87.9 - -
PyramidBox [44] 96.1 95.0 88.9 3 Titan RTX
DSFD (ResNet152) [47] 96.6 95.7 90.4 - -
RetinaFace [46] 96.9 96.1 91.8 13 Tesla P40
SFPD [ours] 80.5 73.6 51.3 40 * RTX 2080 Ti

All frameworks were trained exclusively with face annotations from the WIDER Face train set; the inference time
was determined with a batch size of one; * at our SFPD method denotes that both faces and persons are detected
within this inference time.

Figure 3. Example detections of SFPD on the WIDER Face [7] validation set: Red bounding boxes
indicate detected faces; green bounding boxes detected persons.

While the performance gap between the “easy” and “medium” subset is not very big,
SFPD has to deal with a drop of more than 22 percent between “medium” and “hard”. This
can be explained by the fact that the “hard” subset mainly consists of small faces and these
cause difficulties for SFPD. However, this high drop in performance can be observed for
almost all algorithms with double-digit frame rates. Especially, the detection of very small
objects is difficult to implement with only few runtime losses. However, it was not the
goal of our SFPD approach to perform very well with small faces, because it mainly targets
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close-range human–robot interaction scenarios. This was achieved by implementing the
proposed network on a mobile robot and it is successfully used for real-time human–robot
interaction in a demo application (see Figure 5).
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Figure 4. Precision–recall curves of our SFPD network and other detectors on the WIDER Face validation set: (a) easy,
(b) medium and (c) hard.

In conclusion, SFPD achieves good results in both person and face detection. Further-
more, it was important to us that the two detection tasks are executed with high frame rate,
so that additional modules such as face recognition can be integrated into the pipeline and
still real-time processing of the entire system is guaranteed. This goal could be achieved
with a frame rate of 40 fps for the detection of faces and persons. The main advantages
of our SFPD are that it detects both faces and persons simultaneously and reaches high
framerates with good detection performance for both tasks. Compared to all other models,
SFPD is either faster or more reliable in terms of detection performance. Thus, SFPD
represents the optimal network for real-time human–robot interaction applications.

(a) exterior view (b) interior view

Figure 5. Our proposed SFPD network implemented on a mobile robot system for human–robot interaction in a demo
application: (a) exterior view and (b) interior view of the robot.
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4.4. Limitations

Although our SFPD network shows good results on the test datasets, especially in
relation to the required computational time, there are still some limitations regarding the
recognition performance.

SFPD has difficulties to detect very small objects. This can be explained by the fact
that they often consist of only a few pixels and it is therefore difficult to extract meaningful
features which are necessary for correct detection. This is particularly evident in the results
on the WIDER Face validation “hard” subset which consists mainly of small faces. A
possible solution approach would be to scale the input images for the network to a larger
format so that the individual objects would comprise more pixels. However, this would
have negative effects on the runtime of the CNN, which was no option due to the real-time
requirements of the targeted human–robot interaction application.

Another difficulty of SFPD is that it has problems to separate several objects that are
located close to each other, especially, in crowded scenes. For highly overlapping objects,
this effect will be further intensified. An approach to solve this problem would be to lower
the NMS threshold, so that, e.g., two strongly overlapping objects can be recognized as two
objects and none is rejected because of a too high IoU between the boxes. However, this
would result in multiple detections of the same objects.

Despite these limitations, we believe that the SFPD algorithm offers a good trade-off
between detection performance and inference time making it a good detection framework
for many real-world applications. In particular, it is suitable for human–robot interaction,
which requires real-time processing and does not suffer from the limitations detecting very
small faces and handling crowded scenes (due to close-range interaction with a quite small
number of people).

Future work may address improving performance with low-quality images that
may occur, e.g., due to bad lighting or low-cost camera hardware. This may be done
by collecting additional low-quality training data or applying data augmentation that
degrades the image quality.

5. Conclusions

Our newly developed SFPD approach is able to detect faces and persons simulta-
neously in real-time. For this purpose, it employs a joint CNN backbone with shared
feature maps and separate detection layers for each task. The difficulty for training this
network was the fact that available datasets only contain annotations of bounding box
coordinates for one of the two detection tasks. By applying a special training procedure
and by designing a custom multi-task loss function, this problem could be addressed
during training and a completely end-to-end trainable framework was created. Thereby,
SFPD does not need any auxiliary steps during training, such as pre-training individual
network parts, splitting up the training process, freezing single network layers or creating
additional annotations for datasets, as it is mostly the case with other multi-task learning
networks. SFPD performs well against other algorithms. Person detection was evaluated
on the Pascal VOC datasets and face detection on the WIDER Face dataset. Moreover,
our approach is capable of processing 40 fps. It is superior to all other algorithms in at
least one of processing speed, detection performance or providing both face and person
detections. Because of the good trade-off between detection performance for both detection
tasks and inference time, SFPD represents a useful framework especially for close-range
human–robot interaction scenarios and many more real-world applications.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN convolutional neural network
DPM deformable parts model
fps frames per second
GIoU generalized intersection over union
GPU graphics processing unit
HCI human-computer interaction
HOG histogram of oriented gradient
IoU intersection over union
L loss
Lcon f confidence loss
Lreg regression loss
MTL multi-task learning
NMS non-maximum suppression
ReLU rectified linear unit
SFPD simultaneous face and person detection
SGD stochastic gradient descent
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Abstract: We propose a memristive interface consisting of two FitzHugh–Nagumo electronic neurons
connected via a metal–oxide (Au/Zr/ZrO2(Y)/TiN/Ti) memristive synaptic device. We create a
hardware–software complex based on a commercial data acquisition system, which records a signal
generated by a presynaptic electronic neuron and transmits it to a postsynaptic neuron through the
memristive device. We demonstrate, numerically and experimentally, complex dynamics, including
chaos and different types of neural synchronization. The main advantages of our system over
similar devices are its simplicity and real-time performance. A change in the amplitude of the
presynaptic neurogenerator leads to the potentiation of the memristive device due to the self-tuning
of its parameters. This provides an adaptive modulation of the postsynaptic neuron output. The
developed memristive interface, due to its stochastic nature, simulates a real synaptic connection,
which is very promising for neuroprosthetic applications.

Keywords: memristive device; neuron-like oscillator; stochastic dynamics; synchronization; neuro-
morphic circuit; FitzHugh–Nagumo neuron

1. Introduction

The design of compact neuromorphic systems, including micro- and nanochips, ca-
pable of reproducing information and computational functions of brain cells is a great
challenge of modern science and technology. Such systems are of interest for both funda-
mental research in the field of nonlinear dynamics and the synchronization of complex
systems [1–7], as well as medical applications in the devices for monitoring and stim-
ulating brain activity in the framework of neuroprosthetic tasks [8–10]. Due to their
importance, memristive devices have recently become the subject of intense research, espe-
cially in the area of neuromorphic and neurohybrid applications [11–17]. Neuromorphic
technologies are especially relevant for intelligent adaptive automatic control systems—
biorobots. It is also worth noting that the construction and creation of electronic neurons
and synapses (connections between neurons) based on thin-film memristive nanostructures
is a fast-growing area of interdisciplinary research in the development of neuromorphic
systems [18–20].

The history of neuromorphic technologies began in the late 1980s with the emergence
of computation machines, and since then, significant advances have been achieved in elec-
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tronics, physics of micro- and nanostructures, and solid-state nanoelectronics. The careful
development of neuron-like electrical circuits made it possible to reproduce basic neural
behaviors, such as resting, spiking, and bursting dynamics, as well as more sophisticated
regimes, including chaos and multistability [21–25].

A memristive device is usually based on the Chua’s model [19], which is an element
of an electrical circuit capable of changing resistance depending on an electrical signal
entering its input. In recent decades, various thin-film memristive nanostructures have
been created. They are capable of changing their conductivity under the action of a
pulsed signal [26,27], which makes the memristor an almost ideal electronic analogue of a
synapse [13]. A synapse is known to be a communication channel between neurons that
provides unidirectional signal transmission from a transmitting (presynaptic) neuron to a
receiving (postsynaptic) neuron. This communication channel ensures the propagation of a
nerve impulse along the axon of the transmitting cell.

The synaptic communication results in synchronization of postsynaptic and presynap-
tic neurons. Neural synchronization was extensively studied using various mathematical
models and described in terms of periodic solutions [3,6,28–35]. Such artificial synapses
were implemented as electronic circuits that convert pulses of presynaptic voltage into
postsynaptic currents with some synaptic amplification. Different strategies were used
for the hardware implementation of synaptic circuits, e.g., an optical interface between
electronic neurons [4,5,7].

Recent advances in nanotechnology allowed for miniaturization of artificial synapses
by creating memristive nanostructures that mimic dynamics of real synapses. Among
various candidates for the role of electronic synapses, memristive devices have a great
potential for implementing massive parallelism and three-dimensional integration in order
to achieve good efficiency per unit volume [36–38]. In this regard, it is important to create
a memristor-based neuromorphic system capable of processing neuron-like signals.

Recently, the interaction between electronic neurons through a metal-oxide memristive
device was successfully implemented in hardware [39]. The prerequisite for such a device
was the study of the interaction of Van der Pol generators via a memristor [40]. Later, a
significant effort was invested in theoretical research to study synchronization between
neuron-like generators connected through a memristive device [14,41]. However, to the
best of our knowledge, experimental studies of the dynamics of FitzHugh–Nagumo (FHN)
neurons connected by a memristive synapse have not yet been carried out. We believe
that the creation of neuromorphic memristive systems will lead to the production of
simple and compact neuroelements based on memristive devices capable of imitating the
electrophysiological behavior of real neurons.

At the same time, a memristive device made of metal oxides is of interest not only
for experimental research, but also for theoretical studies. Neuromemristive models were
found to exhibit complex dynamics, including chaos and chimeras [42,43], the study of
which can contribute to the fundamental theory. On the other hand, many theoretical
“memristive” neural models reported in the literature have nothing to do with the concept
of memristive elements [44]. Therefore, the development of adequate mathematical models
that can simulate real laboratory neuromemristive experiments is an actual problem.

Summarizing all the above, significant theoretical investigations of memristors and
the possibility of their use as a part of neuromorphic systems were performed. In particular,
not only dynamical were effects simulated, but also the simplest learning rules were imple-
mented [45–52]. Currently, technologies are being developed to improve the characteristics
of memristive devices in order to create reliable memristive networks capable of solving
some mathematical tasks [53], classifying images [54–58], etc. [59–61]. Despite impressive
theoretical results in the development of neuromorphic memristive systems, the experi-
mental research of laboratory memristive devices, rather than their substitutes based on
transistors or resistors as parts of dynamical systems, was not carried out because of high
complexity of this task, which requires the cooperation of nanotechnologists, physicists,
and neuroscientists.
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In this work, we experimentally implement a memristive interface based on the metal–
oxide nanostructure that acts as a synaptic interface connecting two electronic FHN neural
generators. The interface allows for the analog simulation of the adaptive behavior and
neural timing effects, which can be associated with synaptic plasticity. We also investigate
the stochastic properties of the memristive device. For the first time, to the best of our
knowledge, we perform an experimental study on such a memristive neural system and
compare experimental results with numerical simulations.

2. Materials and Methods

In order to simulate neural dynamics, we explored two FHN neuron generators with
cubic nonlinearity constructed using diodes [7,22]. The dynamics of the presynaptic FHN
neuron was modeled by the normalized equations obtained with the Kirchhoff law [21]
as follows:

du1
dt = f (u1)− v1

dv1
dt = ε(g(u1)− v1)− I1

(1)

where u1 is the membrane potential of the presynaptic neuron, ν1 is the “recovery” variable
related to the ion current, f (u1) = u1−u1

3/3 is the cubic nonlinearity, I1 is the depolarization
parameter characterizing the excitation threshold, and ε is a small coefficient. If u1 < 0,
the function g(u1) = αu1, and if u1 ≥ 0, g(u1) = βu1 (α, β being the parameters that control,
respectively, the shape and location of the ν-nullcline [22]).

The memristive device model was developed based on a standard approach to reflect
the dynamical response of a memristor to electrical stimulation. The model describes
a change in resistance, similar to potentiation and depression, based on physical laws
identified in experiments [62]. The memristor model is given by the complex function:

j = wjlin + (1− w)jnonlin
jlin = u1/ρ
jnonlin = u1 exp(b

√
u1 − Eb)

w(u1) = A exp(− Em−α1u1
kT )

(2)

This approach supposes the introduction of internal state variable w, which is deter-
mined by the fraction of the insulator region occupied by filaments. The change in this state
is associated with the processes of migration of oxygen ions (vacancies) with the height of
the effective migration barrier Em. In turn, the migration is provided by the Joule heating
kT and applied electric voltage u1. The total current density j through the memristor is the
sum of the linear jlin and nonlinear jnonlin components. The former corresponds to ohmic
conductivity with resistivity ρ, whereas the latter is determined by the transport of charge
carriers through defects in the regions of the insulator not occupied by filaments (including
those in the filament rupture region). It was previously found that, in the insulating state
of the studied ZrO2-based memristive devices, the current transport is implemented by
the Poole–Frenkel mechanism with an effective barrier Eb [62]. The smooth transition
between high- and low-resistance states (HRS and LRS, correspondingly) is determined by
the dynamic contribution to the total current of the conductive filaments and, therefore, the
state variable. In Equation (2), b, α1, and A are coefficients derived from experimental data.
In our numerical simulations we used the Runge–Kutta integration methods for stochastic
differential equations in Matlab [63–65].

In order to compare the experimentally observed dynamics of the memristive device
with the results of numerical simulations, we needed to take into account stochasticity
of microscopic processes leading to a change in the internal state w of the dynamical
system. Random fluctuations of the normal distribution were added to energy barrier
Em for ion hopping (dispersion 10%), energy barrier Eb for electron jumps in the Poole–
Frenkel conduction mechanism in the HRS (dispersion 1%), and ohmic resistance ρ of
the structure in the LRS (dispersion 10%). This led to the scattering of the experimental
current–voltage characteristics. The finite spread of the switching voltages is mainly related
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to the stochasticity of the energy barrier for ions, whereas the change in the resistive states
from cycle to cycle is associated with the electron transport stochasticity.

One-way communication between two neurons through the memristive device was
modeled by the following equations:

du1
dt = f (u1)− v1

dv1
dt = ε1(g(u1)− v1)− I1

du2
dt = f (u2)− v2 + j(u1)Sd

dv2
dt = ε2(g(u2)− v2)− I2

(3)

where d is the equivalent load resistance, j(u1) is the current density through the memristive
device, S is the area of conductive filaments obtained from the experiment, and ε is a small
recovery parameter. The signal from the presynaptic neural generator (u1) was sent to the
postsynaptic neural generator (u2) through the memristive device.

Thus, the two neurogenerators were connected in such a way that part of the current
j(u1) generated by the presynaptic neuron passed through the load resistor, which was
connected in series with the memristive device, before reaching the postsynaptic neuron.
The initial conditions and model parameters corresponded to the experimental conditions.
In particular, both neural oscillators were initially in a self-oscillatory regime.

The designed neuromorphic circuit consisted of an FHN electronic circuit, a mem-
ristive device formed by the thin-film metal–oxide–metal nanostructure based on yttria-
stabilized zirconia (Au/Zr/ZrO2(Y)/TiN/Ti) [66], and a load resistor (Figure 1a). This
memristive interface operated as follows. The electronic FHN neuron generated a pulse
signal that affects the memristive device and thus modulates the oxidation and recovery
of conductive filaments in the oxide film of the memristive device. The analog electronic
FHN neuron consisted of the following blocks: an oscillatory contour unit, a nonlinearity
unit, and an amplifier unit (see Figure 1b). The detailed design of this device is described
in [7,22]. The FHN neural generator demonstrates the main qualitative features of neuro-
dynamics: the presence of an excitability threshold and the existence of resting and spiking
regimes. These regimes were controlled using a potentiometer. The spiking frequency was
varied in the range of 10–150 Hz, the spike duration in the range of 10–25 ms, and the spike
amplitude u1 in the range of 1–6 V.

In this work, we used the National Instruments USB-6212 data acquisition system,
which consists of a digital-to-analog converter (DAC) and two analog-to-digital converters
(ADC). The data acquisition system was controlled using LabVIEW software. The pre-
recorded neuron-like signal was applied to a memristive device with a sampling frequency
of 5 kHz via the DAC. The ADCs recorded the voltage drop across the memristive device
and the load resistor, which made it possible to calculate the memristive device resistance
in real time. The potential difference across the memristive device (Rm) and the load
resistor (R2) was digitized at a sampling frequency of 10 kHz. Matlab was used to analyze
the results.

After testing and tuning, the neuron-like oscillators were connected through the
memristive device. Both analog neurogenerators were turned in the oscillatory regime.
Under the neuron-like signal action, the memristive device changed its state from high
resistive to low resistive. The amplitude of the presynaptic neuron was adjusted by the
potentiometer in order to obtain a frequency-locking regime between two oscillators.
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(a) 

(b) 

Figure 1. The system description: (a) block diagram of the interaction between presynaptic (u1) and postsynaptic (u2)
electronic neurons through a memristive device. The neurons are initially in an oscillatory regime. The output of the
presynaptic neuron is increased during the experiment; (b) analog electrical circuit of the FitzHugh–Nagumo neuron. The
inductance is implemented by the circuit with operational amplifier, cubic nonlinearity is set using diodes D1–D6, capacitor
C2 is related to the capacitance of the neuron membrane, and potential V1 is associated with an equilibrium controlled by
the power source.

3. Results and Discussion

The output signal of the presynaptic electronic neuron is shown in Figure 2a. This
signal is applied to the memristive device. The used neuron-like signal (u1) is asymmetric
(the minimum voltage is −5 V and the maximum voltage is 4 V) due to the asymmetry of
the current–voltage characteristic (I–V curves) of the memristive device. For a more detailed
study of the effect of the neuron-like signal on the memristive device, the curve in Figure 2a
is visually divided into four intervals with different colors. Each interval corresponds to a
specific fragment of the I–V curves in Figure 2b. The I–V curves in Figure 2b display the
switching between LRS and HRS. The RESET process (switching from LRS to HRS) occurs
with a positive voltage and SET (switching from HRS to LRS) with a negative voltage. The
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scattering of the I–V curves in Figure 2b results from random fluctuations applied to the
memristor parameters Em, Eb, and ρ. Figure 2c demonstrates the increase in the amplitude
of the presynaptic neuron from 1.558 V to 4 V. Figure 2d shows that, even when exposed to
a small amplitude signal of 2 V (purple curve), the memristive device can switch from HRS
to LRS.

 

(a) (b) 

 
(c) (d) 

Figure 2. Experimental resistive switching in the response to a neuron-like signal: (a) neural-like pulse. The blue, red,
yellow, and green colors show, respectively, the curve segments increasing from 0 to −5 V, from −5 to 0 V, from 0 to 4 V,
and 4 to 0; (b) I–V curves. Each colored I-V section corresponds to a colored section of the input signal to memristor;
(c) increasing amplitude of the neuron-like signal. The red, purple, blue, green, light blue, and yellow curve corresponds,
respectively, to the peak amplitude of 1.558 V, 2 V, 2.5 V, 3V, 3.5 V, and 4 V; (d) resistive switching of the memristive device
under the action of corresponding neuron-like signals on the I-V curves. Each colored I–V curve corresponds to a colored
curve of the input signal to memristor.

The laboratory memristor demonstrates different responses to an input signal with a
small stochastic spread. Figure 2d shows that, for one curve in Figure 2c, with the yellow
curve used as an example, the numerical memristor model yields 10 possible curves (also
a yellow color) with a small spread. The I–V curves in Figure 2d illustrate the effect of
stochastic switching in the memristor response to the voltage signals of the corresponding
amplitudes. Since memristor conductivity is adaptively changed according to the input
signal, the memristive device demonstrates the property of plasticity.

There is a threshold value of the amplitude (u1) of the neuron-like signal at which the
memristor state switches at each spike. At high amplitudes of the input signal (u1), the
system enters a state of extreme resistance and does not respond to each spike anymore.
The memristive device remains in this state. The switching degree strongly depends on
the internal changes in the memristive device related to the interrelated transport phenom-
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ena in oxide dielectrics, due to electric potential gradients, ion concentration, and local
heating [67,68]. These reasons result in the partial recovery and oxidation of conducting
filaments in the oxide film. The corresponding dynamical change in conductivity is limited
by the applied voltage and leads to the modulation of the strength of neuron coupling and
different types of synchronization. In the course of the study, the optimal coupling strength
is z = j(u1); SR = (0.02–0.06) for 1:1 frequency-locking (Figure 3c) and z = (0.06–0.095) for
intermittent synchronization (Figure 3d).

 

(a) (b) 

 
(c) 

 
(d) 

Figure 3. Results of numerical simulations of the dynamics of FHN neuron generators with memristive coupling: (a,b) phase
portraits and (c,d) time series representing (a,c) 1:1 and (b,d) intermittent frequency-locking regimes. Blue and red curves
show action potentials of presynaptic (u1) and postsynaptic (u2) neurons, respectively.

The experiments show that, when the amplitude of the presynaptic neuron u1 is varied
from 1.6 to 2 V, the oscillation frequencies of the coupled neurons are locked either as 2:1
(Figure 4a) or 3:1 (Figure 4b), i.e., the presynaptic neuron u1 fires the postsynaptic neuron
u2 twice or thrice. This ratio can be randomly changed when chaotic synchronization is
reached at higher voltage amplitudes. Although the phase portraits obtained numerically
and experimentally do not completely match, the experiment confirms the diversity of

429



Sensors 2021, 21, 5587

phase-locking regimes predicted by the model. Moreover, our model demonstrates dynam-
ics close to the experimentally observed one, despite of to the first-order memristor model,
if the stochasticity of switching is accounted for.

 

(a) (b) 

 
 

(c) (d) 

Figure 4. Experimental results demonstrating frequency-locking of FHN electronic neurons coupled by the memristive
device: (a,c) time series and (b,d) phase portraits representing (a,b) 2:1 and (c,d) intermittent frequency-locking regimes.
Black and green curves show action potential of presynaptic (u1) and postsynaptic (u2) neurons, respectively.

The stochasticity is an inalienable property of resistive-switching devices, enabling
the so-called stochastic plasticity used to mimic neural synchrony in a simple electronic
cognitive system [69]. To the best of our knowledge, the present work is the first attempt to
study this important phenomenon both numerically and experimentally. In our case, the
stochasticity is modeled through the introduction of fluctuations in the model parameters
in a way similar to [70]. Recently, Agudov et al. [71] developed a more generic stochastic
model of a memristive device that can be further used to adequately describe the observed
complex dynamics of the proposed memristive interface. Another option is to use the
deterministic, but at the same time higher-order memristor models based on two or more
state variables in order to simulate the experimentally observed intermittency route to
chaos [72].

4. Conclusions

In this work, we have studied the dynamics of two coupled FitzHugh–Nagumo neu-
ron generators coupled through a memristive device of a metal–oxide type that adapts
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the synaptic connection according to the amplitude of the presynaptic neuron oscillations.
The stochastic switching of the memristive device from a high-resistance state to a low-
resistance state is achieved by the variation of the internal parameters. Therefore, the
memristive synaptic device demonstrates the property of stochastic plasticity. Different
synchronous regimes were observed, including 1:1, 2:1, and 3:1 frequency-locking, inter-
mittent synchronization, and more complex dynamics. Its relative compactness and high
sensitivity make the proposed neuromemristive device very promising for biorobotics and
other bioengineering applications [73].
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Abstract: The accuracy of target distance obtained by a frequency modulated continuous wave
(FMCW) laser ranging system is often affected by factors such as white Gaussian noise (WGN),
spectrum leakage, and the picket fence effect. There are some traditional spectrum correction algo-
rithms to solve the problem above, but the results are unsatisfactory. In this article, a decomposition
filtering-based dual-window correction (DFBDWC) algorithm is proposed to alleviate the problem
caused by these factors. This algorithm reduces the influence of these factors by utilizing a de-
composition filtering, dual-window in time domain and two phase values of spectral peak in the
frequency domain, respectively. With the comparison of DFBDWC and these traditional algorithms in
simulation and experiment on a built platform, the results show a superior performance of DFBDWC
based on this platform. The maximum absolute error of target distance calculated by this algorithm
is reduced from 0.7937 m of discrete Fourier transform (DFT) algorithm to 0.0407 m, which is the
best among all mentioned spectrum correction algorithms. A high performance FMCW laser ranging
system can be realized with the proposed algorithm, which has attractive potential in a wide scope of
applications.

Keywords: FMCW laser ranging; spectrum correction; white Gaussian noise; spectrum leakage;
picket fence effect; signal processing

1. Introduction

The frequency modulated continuous wave (FMCW) laser ranging system is a non-
contact detecting and distance measurement system, which has a large detection range
and high measurement accuracy and has been widely used in high precision ranging. The
system utilizes the corresponding relationship between frequency and distance, which
means that the accuracy of distance value relies on the frequency resolution of beat signal
obtained by a series of processing with the emitted signal and echo signal. Therefore, the
key of ranging lies in the frequency calculation of beat signal [1].

The frequency value of the beat signal can be computed by discrete Fourier transform
(DFT) after the signal is sampled and digitized. Ideally, the frequency resolution of it is
closely related to the number of sampling points. Too few sampling points will decrease
the frequency resolution and lead to the picket fence effect, which affects ranging accuracy,
while too many will increase the computing time and the complexity of signal processing.
An optimization method is to add points whose value are zero after the sampled beat
signal [2]. The accuracy of this method for calculating the frequency completely depends on
the number of added points. However, this operation is equivalent to utilizing a rectangular
window function on the beat signal in the time domain. This not only cannot change the
width of the main lobe in the spectrum but also causes spectrum leakage to a certain extent.
Consequently, spectrum correction algorithms to improve the accuracy and resolution of
the beat signal frequency have become more significant.
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The ratio algorithm is the interpolation-based correction method [3–5]. Agrez et al. [6]
and Belega et al. [7–9] have conducted a further studies on it and proposed new methods
based on it to reduce the influence of spectrum leakage on the accuracy of correction.
However, the above methods are all at the expense of noise adaptability. The phase
difference (PD) algorithm originally comes from a phase interpolation estimator of a single
tone frequency in noise proposed by McMahon et al. [10]. Zhu et al. [11] and Kang et al. [12]
have performed further research on it, which indicates that the PD algorithm provides
superior accuracy in frequency estimates compared with the ratio algorithm and has good
adaptability. Luo et al. [13] proposed a new PD method based on asymmetric windows,
which can be used to correct the errors of frequency. The main advantages of this algorithm
are its characteristics of simple application and strong anti-noise performance, but its
reduction of spectrum leakage is unsatisfactory.

The concept of energy centrobaric correction (ECC) algorithm [14] is originally pro-
posed by Offelli et al. [15]. Many researchers have investigated the interferences from
spectral components, wideband noise, and other precision factors related to the estimated
parameters [16,17]. This algorithm has fast speed and great accuracy of frequency calcula-
tion, so it has been applied to engineering after improvement [18]. However, the correction
accuracy is too dependent on the symmetric window function and is easily affected by
white Gaussian noise (WGN). The Chirp z-transform (CZT) algorithm is a z-transformation
method [19]. Because of the low complexity of calculation and the high correction accuracy,
there are a lot of CZT-based related applications [20–25]. Because this algorithm still an-
alyzes the truncated signal, it only reduces the influence of the picket fence effect on the
local spectrum, whereas it does not significantly solve the problem caused by spectrum
leakage. The Zoom fast Fourier transform (ZFFT) algorithm achieves spectrum correction
by reducing the sampling rate of the signal. It blends complex down-conversion, low-pass
filtering, and sample-rate change by way of decimation, thereby improving the frequency
resolution [26]. Al-Qudsi et al. [27] presented an implementation method of the ZFFT
approach to estimate the spectral peak in the FMCW radar, utilizing a field programmable
gate array (FPGA). This algorithm can decrease the complexity of calculations and alleviate
the influence of picket fence effect. However, it is severely affected by spectrum leakage
and WGN.

In view of the unsatisfactory accuracy and resolution of beat signal frequency af-
fected by WGN, spectrum leakage, and picket fence effect, which cannot be solved by
the traditional algorithms above, we propose a new spectrum correction algorithm called
decomposition filtering-based dual-window correction (DFBDWC). The main contributions
are as follows:

(1) This algorithm reduces the influence of WGN, affecting the correction accuracy. In
the decomposition and filter part, the beat signal is divided into several components,
and each component has its characteristics in the frequency domain. Among them,
the first few components possess the widest frequency coverage, and there are no
obvious peaks in their power spectrum. The sum can be used as the input of the filter,
and the WGN in the beat signal will be mostly removed with the weight parameter.

(2) This algorithm minimizes the impact of spectrum leakage effectively. The Hann
window has a narrow main lobe, low side lobe, and fast attenuation speed from the
main lobe to the first side lobe. Using two Hann windows in the correction part can
concentrate more energy of the signal, thereby making the spectral peak of the desired
frequency more obvious.

(3) This algorithm diminishes the picket fence effect that may decrease the frequency
resolution of the beat signal. We utilize phase values and the delay value of two
signals in the frequency domain after DFT processing. The phase values correspond
to the spectral peaks that are at the same position in these signals. Therefore, the
calculation error caused by broad adjacent spectral lines near the peak in only one
used signal is avoided, and an accurate frequency value of the beat signal is obtained.
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(4) This algorithm is different from the traditional spectrum correction algorithm, which
can reduce the influence caused by WGN, spectrum leakage, and the picket fence
effect at the same time, so that the frequency value obtained by this algorithm is more
accurate and the distance ranged by this system is more precise.

This article is organized as follows. In Section 2, the principle of the FMCW laser
ranging system is firstly briefly introduced, and we explain the DFBDWC algorithm in
detail. In Section 3, we built an experimental platform based on the principle of the FMCW
laser-ranging system. The results are obtained via simulation and experiment on this
platform. Afterwards, the discussion that evaluates the spectrum correction performance
of this algorithm by comparing it with these traditional algorithms is conducted. Finally,
Section 4 concludes the article.

2. Methods

Using the method shown in Figure 1, we can obtain the high-precision distance value
of the target.

B
TcR f
B

=

 

Figure 1. Schematic diagram of distance obtained by the FMCW laser ranging system and DFBDWC
algorithm.

The FMCW laser-ranging system emits a modulated laser signal that is reflected by
the target and received by the system. After the processing of the received laser signal,
the system will output the sampled beat signal. In the software part, we can calculate
the precise frequency value of the sampled beat signal with the DFBDWC algorithm and
obtain the distance value of this target by taking the frequency value into the equation. In
this section, we will introduce the principle of the FMCW laser ranging system and the
DFBDWC algorithm, respectively, in detail.

2.1. FMCW Laser Ranging System

The FMCW laser ranging system can be mainly divided into seven parts. The
schematic diagram of it is as shown in Figure 2. The signal processing part controls
the signal emitting part to generate the FMCW emitted signal, and it drives the laser diode
to emit a linear beam, which is the emitted laser signal. The avalanche photo diode (APD)
receives the laser signal that is focused by the lens and outputs the echo signal, which
is a FMCW signal with a certain delay of emitted signal. The echo signal and the local
oscillator signal synchronized by the signal emitting part are mixed in the signal mixing
part, and with a series of processing, the beat signal is obtained. In the signal processing

437



Sensors 2021, 21, 5057

part, the beat signal is digitized and transformed into data, which are stored and sent to
the PC. Finally, the beat signal is analyzed and processed by the algorithm in the PC, and
the distance is computed.

Figure 2. Scheme of FMCW laser ranging system.

In this FMCW laser ranging system, the frequency of the emitted signal is modulated
by a triangle wave, which is as shown in Figure 3. Because of the static ranging target, the
effect of the Doppler shift does not have to be considered. Then, the emitted signal sT(t) is
expressed by

sT(t) = A0 cos
(

2π f0t + πkt2 + ϕ0

)
, (1)

where A0 is the amplitude of emitted signal, f0 is the initial frequency, ϕ0 is the initial
phase, k = 2B/T is the modulation slope, B is the modulation bandwidth, and T is the
modulation period. With the delay τ = 2R/c, the echo signal sR(t) can be obtained by

sR(t) = ηA0 cos (2π f0(t− τ) + πk(t− τ)2 + ϕ0), (2)

where η is the amplitude decay rate of echo signal, R is the distance, and c is the speed
of light. With the mixing of the emitted and echo signal, the beat signal sB(t) can be
calculated by

sB(t) =
ηA0

2

2
cos

(
2π f0τ + 2πkτt− πkτ2

)
. (3)

O
t

f

B

T

f

Bf

( )Ts t ( )Rs t

Figure 3. Type of FMCW modulation. The blue and red line represent the emitted signal sT(t) and
echo signal sR(t), respectively.

Obviously, the frequency of the beat signal fB = kτ. Thus, the relationship between R
and fB is

R =
Tc
4B

fB. (4)
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As shown in the above equation, the factors affecting the accuracy of FMCW laser
ranging system are T, B, and fB. Because T and B are the inherent parameters of this
system, and they have already reached the limit of system performance, they do not have a
decisive impact on the ranging accuracy. Improving the frequency resolution of the beat
signal and obtaining the accurate fB become the most significant work of this system.

2.2. DFBDWC Algorithm

This section depicts a new spectrum correction algorithm that is different from the six
traditional algorithms introduced in Section 1. The key step of it, whose process chart is
as shown in Figure 4, is as follows: Improving the signal to noise ratio (SNR) of sB(t) in
decomposition and filter, extracting two sub-signals with a dual-window on each of them,
and calculating accurate fB according to the phase values in correction and DFT spectrum
analysis. All the parameters are in digital form as (n).

( )s n

( )s n

•••
•••

( )w n

( )s n

( )s n

( )js n

( )Js n−

( )Js n

( )Bs n

( )Be n ( )Bs n Bf

Figure 4. Process of DFBDWC algorithm. The input and output of this algorithm are the beat signal and frequency value of
the beat signal, respectively.

WGN is a kind of noise whose probability density function satisfies the statistical
characteristics of normal distribution and whose power spectral density function is constant.
The most noteworthy feature of it is that the signal contains all frequency components
from negative infinity to positive infinity, so it can be apparently distinguished from useful
signals with a spectral peak in the spectrum. Accordingly, a similar sequence of WGN can
be decomposed from the beat signal.

First, decomposition is a new method based on empirical mode decomposition
(EMD) [28–30] that is a direct extraction of the energy associated with various intrin-
sic time scales and the most important parameters of the system. After processing with
EMD, a signal can be expressed as a sum of amplitude- and frequency-modulated func-
tions called modes. Each mode is intrinsic and has unique characteristics in the frequency
domain, which means several of them enable the estimation of WGN. However, there are
some phenomena in EMD, such as oscillations with very disparate scales in one mode or
oscillations with similar scales in different modes. These phenomena will cause a problem
called “mode mixing”, and some decomposed modes, strictly speaking, will not be a single
component signal, so it is not conducive to estimate the noise component accurately.

In order to alleviate “mode mixing”, we take advantage of the dyadic filter bank
behavior of EMD and the addition of WGN that populates the whole time–frequency space.
Then, the K sub-signal of sB(n) can be expressed by

(sB(n))k = sB(n) + (−1)k·β1·E1(Gk(n)), (5)

where Gk(n) (k = 1, 2, . . . , K− 1, K) is the kth added WGN signal of zero mean unit vari-
ance, K is the number of WGN signals, Ej(·) (j = 1, 2, . . . , J − 1, J) is the jth mode obtained
by EMD, and J is the number of modes or components, β j (j = 1, 2, . . . , J − 1, J) is the jth
parameter used to adjust SNR between added WGN signals and sB(n). The main purpose
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of adding the WGN signal with known features operated by EMD is to generate new
extreme points. Additionally, with the operation of plus and minus, sB(n) will be forced to
focus on some specific values in the scale energy space.

After that, let M(·) be the operator that produces the mean envelope of each signal
in parentheses, which is same as the procedure in EMD and will make use of these new
extreme points in parentheses. Additionally, let A(·) be the operator that produces an
average signal of all signals in parentheses. With the operation of EMD, we can obtain the
first component ŝ1(n) of beat signal sB(n), which is

ŝ1(n) = A(E1((sB(n))k)) = A((sB(n))k −M((sB(n))k))
= sB(n)− A(M((sB(n))k)).

(6)

Averaging is meant to better estimate the mean envelope value, which reduces “mode
mixing” and produces more distinct components. Because of the concept in EMD called
residue, the first residue of the beat signal can be expressed by

R1(n) = sB(n)− ŝ1(n) = A(M((sB(n))k)). (7)

With ŝ1(n) and R1(n), we can estimate the second residue R2(n) and the second
component ŝ2(n) of beat signal, respectively, by

R2(n) = A
(

M
(

R1(n) + (−1)k·β2·E2(Gk(n))
))

, (8)

ŝ2(n) = R1(n)− R2(n) = R1(n)− A
(

M
(

R1(n) + (−1)k·β2·E2(Gk(n))
))

. (9)

Similarly, for the jth(j = 3, 4, . . . , J − 1, J) residue Rj(n) and the jth(j = 3, 4, . . . , J − 1, J)
component ŝj(n) of the beat signal can be calculated by

Rj(n) = A
(

M
(

Rj−1(n) + (−1)k·β j·Ej(Gk(n))
))

, (10)

ŝj(n) = Rj−1(n)− Rj(n)
= Rj−1(n)− A

(
M

(
Rj−1(n) + (−1)k·β j·Ej(Gk(n))

))
.

(11)

In this way, we not only utilize the advantages of EMD to make the frequency distri-
bution of components more obvious but also reduce the effect of “mode mixing” so as to
estimate the noise components more accurately.

Next, these J components can be distinguished according to the characteristics of each
component in the frequency domain. Among them, the first to jth components possess the
widest frequency coverage, and there are no obvious peaks in their power spectrum. At
the same time, they are scattered in the time domain. Therefore, the sum of the first to jth
components is regarded as the evaluation signal eB(n) of sB(n), which can be considered
to be the estimation of WGN, and we can put it into the filter.

The filter in this algorithm has three inputs and one output [31], which is expressed by

s̃B(n) = sB(n)− w(n)eB(n), (12)

where w(n) is a coefficient of weight, s̃B(n) is reconstruction signal of sB(n). In this filter,
eB(n) is weighted by a parameter at the same instant, so we consider that it is the possible
interference signal. If it is subtracted from sB(n), the useful information can be saved as
much as possible in s̃B(n). The weight w(n) is not a fixed parameter, which needs to be
updated with the input eB(n) and the output s̃B(n) at the same instant; then, its value of
the next instant will be obtained. In order to ensure the best result of this filter, we consult
the calculation method of w(n) in [31].

However, these parameters above are described in matrices or vectors according
to [31], which will lead to the great cost of increased computational complexity and some
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stability problems. In order to reduce the complexity of computation and the cost of
calculation, we have changed the order of w(n) into 1 without affecting the performance of
the filter. The expression of the weight update can be expressed by

w(n) = w(n− 1) + r(n)s̃B(n)eB(n), (13)

where r(n) is a relevant coefficient. According to [31], it can be obtained by

r(n) =
r(n− 1)

λ
[1− g(n)eB(n)], (14)

where λ is the forgetting factor. It is introduced to give a greater forgetting effect to s̃B(n)
of the latest moment, and give less forgetting effect to s̃B(n) of the farther moment, so as
to ensure that s̃B(n) in the past period is “forgotten” well, so that the filter can work in a
more stable state. g(n) is a coefficient of gain, which controls the effect of the output s̃B(n).
Referring to the steps in [31], g(n) is calculated by

g(n) =
r(n− 1)eB(n)

λ + r(n− 1)eB2(n)
. (15)

Afterwards, we utilize correction to process s̃B(n) without the interference of WGN.
Correction is the processing of s̃B(n) in the time domain [32,33], which is used to reduce
the picket fence effect and spectrum leakage by spectral peaks in only two sub-signals
of s̃B(n) with the time delay and dual-window of each sub-signal, respectively. With the
processing of this step in the DFBDWC algorithm, the calculated frequency value will
be more accurate and precise. Firstly, we extract two series of sub-signals, s̃B

(1)(n) and
s̃B

(2)(n), from s̃B(n). There are L points of delay between them, which means that s̃B
(2)(n)

is L points behind s̃B
(1)(n). By putting the first L points of s̃B

(1)(n) and the whole points of
s̃B

(2)(n) together, we can acquire s̃B(n).
After that, the first correction signal s̃1(n) can be obtained by

s̃1(n) = S
(

s̃B
(1)(n)·N(W(n) ∗W(n))

)
, (16)

where W(n) is a window signal, which is usually the Hann window because of its excellent
performance in side lobe suppression, ∗ is the operator of convolution, and N(·) is the
operator of producing normalization signal. S(·) is the operator that produces a sum signal
of the signal’s front and back halves in parentheses. Figuratively speaking, there is a signal
whose length is 2N in parentheses of S(·); this signal’s front half means the first to Nth
points and back half means the N + 1th to 2Nth points. The sum signal produced by S(·)
is in the length of N, which is formed by adding the values of the first and N + 1th, the
second and N + 2th, . . . , the Nth points and 2Nth points.

Similarly, the second correction signal s̃2(n) can be obtained by

s̃2(n) = S
(

s̃B
(2)(n)·N(W(n) ∗W(n))

)
. (17)

With a dual-window in the time domain, the influence of spectrum leakage can be
decreased more than the one-window and none-window, that is, the energy is more con-
centrated in the main lobe of these signals, which is more conducive to the subsequent
operation in the frequency domain. Moreover, there cannot be more than two windows ap-
plied to these sub-signals of s̃B(n), because the mathematical model of correction processing
is only in two dimensions.

Finally, in order to make signals turn from time domain into the frequency domain, we
process s̃1(n) and s̃2(n) with DFT to obtain their spectrum signals S̃1(q) and S̃2(q). Before
DFT, s̃1(n) and s̃2(n) can be also expressed in exponential form as

s̃1(n) = Aej(ωB
∗n+θ), (18)
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s̃2(n) = Aej[ωB
∗(n−L)+θ], (19)

where A is the amplitude of s̃B(n), and θ is the initial phase of s̃B(n). ωB
∗ is the angular

frequency of s̃B(n), and it can be calculated by

ωB
∗ = 2π fB

fS
, (20)

where fS is the sample rate.
After the processing of s̃B

(1)(n) and s̃B
(2)(n) with DFT, we can obtain their spectrum

signals S̃1(q) and S̃2(q), respectively, by

S̃1(q) = Aejθ Fg
2(qΔω−ω0), (21)

S̃2(q) = Aej(θ−ωB
∗L)Fg

2(qΔω−ω0), (22)

where Fg is the amplitude spectrum of W(n), q is the serial number of spectral lines, Δω is
the angular frequency between each spectral lines, and ω0 is the initial angular frequency.

In the amplitude spectrum of S̃1(q), the corresponding serial number of its spectral
peak is q∗. According to this, we can find the phase values ϕ1(q∗) and ϕ2(q∗) in the phase
spectrum of S̃1(q) and S̃2(q), respectively. These phase values are expressed by

ϕ1(q∗) = θ, (23)

ϕ2(q∗) = θ −ω∗L. (24)

With Equations (23) and (24), we can only obtain an estimation of ωB
∗ as

ϕ1(q∗)− ϕ2(q∗) = ω̂B
∗L. (25)

This is because ϕ1(q∗)− ϕ2(q∗) is still different from the ideal value; a compensated
value of the phase difference has to be introduced. The corresponding angular frequency
at the spectral peak q∗ is 2πq∗/I, where I is the length of W(n). After the delay of L, this
angular frequency will lead to an additional phase shift of 2πq∗L/I, which will increase
with this delay. Since the position of spectral peak can be observed, 2πq∗L/I is considered
to be the compensated value of the phase difference. Then, we will calculate ωB

∗ by

ϕ1(q∗)− ϕ2(q∗) +
2πq∗L

I
= ωB

∗L. (26)

Eventually, according to Equations (20) and (26), the frequency value fB of sB(n) can
be calculated by

fB =
fS

2π

[
ϕ1(q∗)− ϕ2(q∗)

L
+

2πq∗

I

]
. (27)

The relationship between s̃B
(1)(n) and s̃B

(2)(n) with L delay will overcome the error
caused by two wide spectral lines. With 2πq∗/I, we can compute fB more precisely, and the
influence of the picket fence effect will be reduced well. Therefore, the frequency resolution
of sB(n) can be improved, and the purpose of spectrum correction may be achieved.

3. Results and Discussion

In this section, the performance of DFBDWC algorithm is evaluated by both a sim-
ulation and an experiment. In the simulation part, an original signal is constructed with
Equation (3). Furthermore, to reach the real situation as much as possible, a WGN signal
with appropriate SNR value is added to it, which is regarded as a beat signal. In the
experiment part, we built an experimental platform according to the scheme shown in
Figure 2, and a beat signal obtained with it is analyzed and processed by this algorithm.
Table 1 shows the parameters used in the simulation and the experiment.
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Table 1. The parameters used in the simulation and experiment.

Parameter Interpretation Value

η The amplitude decay rate of echo signal 0.8
A0 The amplitude of emitted signal 1
f0 The initial frequency 1 MHz
c The speed of light 299,792,458 m/s
B The modulation bandwidth 99 MHz
T The modulation period 200 μs
fS The sample rate 20 MHz
fU The upper limit frequency 0.8
fL The lower limit frequency 1

Among them, η and A0 are only used in the simulation. f0, B, and T are the key
parameters of the FMCW laser ranging system, which influence the theoretical accuracy
of distance resolution and are determined by the direct digital synthesizer (DDS) in the
experimental platform. Moreover, fS influences the number of sampled points in beat
signal and is determined by analog-to-digital converter (ADC) in the experimental plat-
form. fU and fL are considered to be a band-pass filter applied to the beat signal, and
they are determined by the performance of the low-pass filter (LPF) in the experimental
platform and T, respectively. Because τ cannot be greater than T/2, the value of fL is 2/T;
otherwise, it will violate the principle of the FMCW laser ranging system. According to
Equation (4), the distance values that this system can obtain are from 1.5141 to 22.7115 m,
which correspond to fL and fU , respectively. Moreover, because the minimum sample time
is T/2, the maximum range resolution of the system is 1.5141 m, which is given by DFT. In
order to ensure the best working states of this platform and verify the performance of this
algorithm better, the test distance values are shown in Table 2.

Table 2. The test distance value used in the simulation and experiment.

Lower Limit
(m)

Test Distance (m)
Upper Limit

(m)

1.5141
2 3 4 5 6 7 8 9 10

22.71152.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

3.1. Simulation

As shown in Figure 5, it is a comparison diagram of s̃B(n) with sB(n) at two specific
distances in both the time and frequency domain.

It can be seen that there is a great interference in sB(n). Compared with sB(n),
the WGN interference in s̃B(n) is reduced well, and the wave pattern of s̃B(n) becomes
smoother. Additionally, s̃B(n) also retains the information of shape, amplitude, and fre-
quency. In their power spectrum, the amplitude of the spectral peak in s̃B(n) is greater than
the amplitude of the spectral peak in sB(n). Moreover, the power spectrum of WGN has
also been decreased. The above results indicate that the DFBDWC algorithm can suppress
the interference of WGN with a large SNR value in the beat signal and retain the useful
information in the signal.

In order to verify the comparison of these signals further, we apply SNR and noise
power Pnoise here. They can be expressed, respectively, by

SNR = 10lg

(
∑N

n=1 x2(n)

∑N
n=1[x(n)− sO(n)]

2

)
, (28)

Pnoise =
1
N

N

∑
n=1

[x(n)− sO(n)]
2, (29)
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where x(n) represents sB(n) or s̃B(n). SNR judges the macroscopic performance of this
algorithm. The larger the SNR is, and the smaller Pnoise is, the better the performance of
this algorithm is, that is, the energy will be more concentrated in the position of the spectral
peak and the probability of selecting a “fake” peak as the target position due to enormous
WGN will be reduced better.

 
(a) (b) 

 
(c) (d) 

Figure 5. Simulation results of signals comparison at two different distances. (a) Beat signals sB(n) obtained by original
signals and WGN signals with SNR of 10 dB. (b) Reconstruction signals s̃B(n). (c) The power spectrum of sB(n). (d) The
power spectrum of s̃B(n).

We calculate the value of these parameters at different distances and noise powers,
and the results are as shown in Figure 6. Among the first two figures, SNR increases from
10 dB to more than 25 dB, and Pnoise reduces from 0.13 W to the order of 10−3 W. In the last
two figures, SNR increases from 1 dB to more than 11 dB, and Pnoise reduces from more
than 5 W to about 0.1 W. The simulation results above indicate that this algorithm has a
great suppression effect on WGN interference, and it saves useful information in s̃B(n) as
much as possible. This will improve the accuracy of fB.
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(a) (b) 

 
(c) (d) 

Figure 6. Simulation results of two parameters for evaluating signal comparison at different distances and noise powers.
(a,c) are SNR, (b,d) are Pnoise. Additionally, the original SNR of WGN in (a,b) is 10 dB, and the original SNR of WGN in
(c,d) is 1 dB.

Furthermore, we compare the performance of the DFBDWC algorithm with six other
algorithms in terms of computing fB, that is, the computed distances, and the original SNR
of WGN in sB(n) is 10 dB. To show the results of the comparison better, absolute error (AE)
and root mean square error (RMSE) are applied here. They can be expressed, respectively,
by

AE = |RC(p)− RT(p)|, (30)

RMSE =

√√√√ 1
P

P

∑
p=1

[RC(p)− RT(p)]2, (31)

where RC(p) is the computed distance of the pth test distance, RT(p) is the pth test distance,
and P is the number of test distance. The smaller the RMSE is, the better the performance
of the algorithm is.

The computed distance and calculation results of AE and RMSE can be seen from
Table 3 and Figure 7, respectively. At the first test distance, AE of the PD algorithm has
the maximum value, and at the last test distance, AE of DFT algorithm has the maximum
value. Among these traditional spectrum algorithm, DFT algorithm has the biggest jump
of AE, while the ECC algorithm has the smallest jump of AE. The AE of the Ratio,
ECC, CZT, and ZFFT algorithm are relatively stable. At each test distance, the AE of the
DFBDWC algorithm basically has the minimum value. RMSE macroscopically evaluates
the deviation between RC(p) and RT(p). It can be seen that the DFT algorithm has the
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maximum value, and the DFBDWC algorithm has the minimum value, which indicates
that the DFBDWC algorithm performs the best compared with other traditional algorithms.

Table 3. Simulation results of computed distances comparison between seven algorithms. There are
WGN signals with SNR of 10 dB in sB(n).

Test Distance
(Real Distance) (m)

Computed Distance
(m)

DFT PD ECC Ratio CZT ZFFT DFBDWC

2 1.8483 2.2712 2.0092 2.0162 2.0109 2.1230 2.0021
2.5 2.3103 2.5013 2.4898 2.5102 2.5136 2.5121 2.5011
3 3.2345 2.9997 3.0018 2.9977 3.0164 2.9354 3.0004

3.5 3.6965 3.5102 3.5163 3.5118 3.5191 3.6794 3.5038
4 4.1586 3.9989 3.9992 4.0074 3.9923 4.0685 4.0003

4.5 4.6207 4.4945 4.4967 4.4939 4.5246 4.4919 4.4981
5 5.0827 4.9836 5.0128 5.0064 4.9977 4.8810 4.9988

5.5 5.5448 5.4979 5.4977 5.5069 5.5005 5.6250 5.5021
6 6.0069 5.9938 5.9968 5.9938 6.0032 6.0141 6.0028

6.5 6.4689 6.5056 6.5119 6.5053 6.5059 6.4374 6.4969
7 6.9310 6.9930 6.9942 7.0027 7.0086 6.8265 7.0017

7.5 7.3931 7.4954 7.4987 7.4968 7.5114 7.5705 7.5032
8 7.8552 7.9956 8.0202 8.0079 8.0141 7.9939 8.0022

8.5 8.3172 8.5020 8.5015 8.5079 8.5168 8.3830 8.4985
9 8.7793 8.9948 9.0008 8.9943 9.0196 9.1270 9.0030

9.5 9.7034 9.5065 9.5206 9.5043 9.4927 9.5161 9.4996
10 10.1655 9.9997 10.0038 10.0056 9.9954 9.9394 10.0027

 
(a) (b) 

Figure 7. Simulation results of seven algorithms comparison at different distances. There are WGN signals with SNR of
10 dB in sB(n). (a) is AE. (b) is RMSE.

Additionally, in order to illustrate that this algorithm can reduce the influence of
the picket fence effect and spectrum leakage further, we conduct a simulation with sB(n)
without WGN, that is sO(n), at different distances, whose results of AE are as shown
in Table 4. The DFBDWC algorithm still basically has the most minimum value of AE
among all the spectrum correction algorithms. According to [34,35], the picket fence
effect and spectrum leakage significantly decrease the precision of DFT when applying
asynchronous sampling in practical applications. Additionally, there are disadvantages of
each traditional spectrum correction algorithm that are described in Section 1. Therefore,
the distance calculation accuracy of the DFBDWC algorithm is much better than any other
six algorithms when processing with sO(n), which can prove our new spectrum correction
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algorithm not only decreases the influence of spectrum leakage, but also reduces the picket
fence effect.

Table 4. Simulation results of AE comparison between seven algorithms. There are no WGN signals
in sB(n).

Test Distance
(Real Distance) (m)

AE
(cm)

DFT PD ECC Ratio CZT ZFFT DFBDWC

2 15.1729 27.1155 0.7593 1.6049 1.0918 12.2982 0.0064
2.5 18.9662 0.3612 0.5100 1.2172 1.3648 1.2092 0.0066
3 23.4474 0.1285 0.0044 0.3879 1.6378 6.4557 0.0118

3.5 19.6541 0.4905 0.9653 0.9247 1.9107 17.9420 0.0069
4 15.8609 0.0843 0.4251 0.7488 0.7735 6.8530 0.0112

4.5 12.0677 0.1837 0.0044 0.3630 2.4567 0.8119 0.0022
5 8.2744 0.0604 1.1222 0.6495 0.2276 11.9009 0.0109

5.5 4.4812 0.1957 0.3470 0.5298 0.0453 12.4969 0.0273
6 0.6880 0.2423 0.0084 0.3479 0.3183 1.4078 0.0087

6.5 3.1053 0.2089 1.2866 0.5007 0.5913 6.2571 0.0013
7 6.8985 0.2696 0.2793 0.4013 0.8642 17.3461 0.0036

7.5 10.6917 0.3016 0.0156 0.3363 1.1372 7.0517 0.0027
8 14.4850 0.2962 1.4637 0.4075 1.4102 0.6132 0.0093

8.5 18.2782 0.3348 0.2210 0.3157 1.2741 11.7023 0.0044
9 22.0714 0.3613 0.0266 0.3265 1.9561 12.6955 0.0084

9.5 20.3421 0.3672 1.6550 0.3435 0.7282 1.6065 0.0054
10 16.5489 0.3971 0.1714 0.2539 0.4552 6.0584 0.0024

The simulation results demonstrate that the DFT algorithm cannot accurately obtain
the distance value, since it cannot overcome the problems described in Section 1. Although
the other five algorithms have improved the accuracy of RC(p) compared with the DFT
algorithm and they have achieved a certain spectrum correction effect, they are still inferior
to the performance of the DFBDWC algorithm. As a consequence, our algorithm will
improve the accuracy of distance calculation.

3.2. Experiment

The experimental platform and scene in the experiment part are as shown in Figure 8.
The laser diode whose power is 500 mW and wavelength is 950 nm is driven by an

emitted signal generated by an emitted signal (ES) DDS named AD9958. The laser beam
is reflected on the target surface at RT(p) and focused by the lens; then, the echo signal is
outputted by an APD with 16 linearly arrayed receiving units. In each signal mixing part,
two series of echo signals can be processed. However, the echo signal is too weak and needs
to be amplified to a certain amplitude by an amplifier named AD8001, after which a local
oscillator (LO) DDS synchronized by ES DDS is mixed with it in a mixer named AD831 to
form a mixed signal that contains two frequency values because of the working principle in
the mixer. The large frequency value, which is an interference, needs to be filtered out by an
LPF named MAX274 whose bandwidth is 150 kHz, and the small frequency value passed
through an automatic gain control (AGC) named AD8367 is amplified. Then, the beat signal
of appropriate amplitude can be obtained. In the signal processing part, the beat signal is
sampled by an ADC named AD9253. Finally, the data are transferred to a FPGA named
XC7Z100 for temporary storage and transmitted to the PC for the distance calculation using
the DFBDWC algorithm. The experimental platform is placed in a corridor with a length
of 15 m, and the distance between the target and APD is considered to be RT(p), whose
value is shown in Table 2. In order to place the target in a precise position, a tape measure
with centimeter accuracy is used specially, and its starting position is the surface of APD.
At the same time, two benchmarks are placed at 2 and 10 m, respectively, to indicate the
placement range of the target.
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(a) 

  
(b) (c) 

Figure 8. The experimental platform and scene in the experiment part. (a) Scheme of this experimental platform. (b) Experi-
mental platform in the experimental scene. (c) Details of this experimental platform.

Above all, we utilize only one of the units in APD to receive the laser signal from
a plane target. With the analysis and processing of the DFBDWC algorithm, we obtain
a comparison diagram of s̃B(n) and sB(n) at two specific distances in the time domain,
which is as shown in Figure 9. It can be seen that they are different from s̃B(n) and sB(n) in
the simulation part, but they still contain the frequency information of sB(n). Compared
with sB(n), the WGN interference in s̃B(n) is reduced well, and the wave pattern of s̃B(n)
becomes smoother. This indicates that the algorithm can suppress the interference of noise
in the beat signal and retain the useful information in the signal.

Similarly, we compare the performance of the DFBDWC algorithm with other six
algorithms in terms of computed distances in Table 5 and error analysis in Figure 10. We
can note from Figure 10 that as for the other six algorithms, the AE of DFT and CZT
algorithm has the maximum value, respectively, at the first and the last test distance.
Overall, the DFT algorithm has the biggest jump of AE, while the ECC algorithm has the
smallest jump of AE. At each test distance, the AE and RMSE of the DFBDWC algorithm
basically have the minimum value. This indicates that the performance of this algorithm
is the best in all these algorithms. Additionally, the maximum and minimum AE of each
algorithm are listed in Table 6. The maximum AE is decreased from 0.7937 to 0.0407 m by
using the DFBDWC algorithm. As expected, this algorithm overcomes the problem to a
certain extent caused by spectrum leakage and the picket fence effect and improves the
accuracy of distance calculation.
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(a) (b) 

Figure 9. Experimental results of signals comparison at two different distances in time domain. (a) is beat signals sB(n).
(b) is reconstruction signals s̃B(n).

Table 5. Experimental results of computed distances comparison between seven algorithms. There
are WGN signals with SNR of 10 dB in sB(n).

Test Distance
(Real Distance) (m)

Computed Distance
(m)

DFT PD ECC Ratio CZT ZFFT DFBDWC

2 2.2406 2.0378 2.0288 2.0142 2.0112 2.0405 1.9947
2.5 2.2428 2.3821 2.3995 2.4305 2.4324 2.3972 2.5130
3 3.0778 3.2725 3.1569 3.2413 3.2570 3.2344 3.0044

3.5 3.4525 3.2725 3.4428 3.3091 3.3091 3.2757 3.4788
4 4.7937 4.1913 3.9345 4.1448 4.1420 4.3819 4.0037

4.5 4.5397 4.9340 4.5286 4.8935 4.8972 4.7189 4.4921
5 4.7935 4.9340 5.0797 4.8935 4.9086 4.7702 5.0177

5.5 4.7951 4.9340 5.4775 4.9486 4.9170 5.0159 5.5240
6 6.0848 6.0423 6.0834 6.1554 6.1661 6.3121 5.9786

6.5 6.7901 6.7241 6.2667 6.8037 6.7990 6.8023 6.5111
7 6.7856 6.7241 7.0700 6.7772 6.7912 6.6798 6.9593

7.5 7.5608 7.6350 7.6754 7.5213 7.5307 7.6526 7.5062
8 7.8234 7.9807 7.9655 7.8641 7.7992 7.6465 8.0192

8.5 8.3899 8.7136 8.3474 8.3670 8.3959 8.5749 8.5271
9 9.1752 8.7136 9.0420 9.1708 9.2079 9.0146 8.9694

9.5 9.7220 9.7542 9.7507 9.7275 9.7192 9.7459 9.4933
10 9.7324 9.7542 9.7507 9.7374 9.7163 9.7367 10.0143

 
(a) (b) 

Figure 10. Experimental results of seven algorithms comparison at different distances. (a) is AE. (b) is RMSE.
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Table 6. Maximum and minimum AE of each algorithm.

DFT PD ECC Ratio CZT ZFFT DFBDWC

Maximum AE (m) 0.7937 0.5660 0.2507 0.5514 0.5830 0.4841 0.0407
Minimum AE (m) 0.0397 0.0193 0.0225 0.0142 0.0112 0.0146 0.0037

On the basis of experimental results above, we can conclude that because of decom-
position and filter, WGN has been estimated accurately from the beat signal and reduced
to a certain extent, which will improve the SNR of the beat signal. Additionally, due to
the dual-window applied in correction, the energy is more concentrated and the influence
of spectrum leakage has been decreased. Moreover, utilizing two main spectral lines at
the peaks of these sub-signals with delay to calculate the frequency of the beat signal has
alleviated the problem of poor accuracy of results caused by the picket fence effect, and it
also avoid the interference that arises from using multiple spectral lines in some traditional
spectrum correction algorithms. When the beat signal is not affected by WGN severely,
correction will become the key step that makes the distance calculation more accurate in
the DFBDWC algorithm.

In addition to the accuracy comparison of computed distance, we also calculate computa-
tion time consumed for these seven algorithms by processing the same group of sampled beat
signals so as to judge the efficiency of each algorithm. Using an PC with CPU of Intel i7-7700
and RAM of 16 GB, we obtain the results that are as shown in Table 7. It can be seen that in
different sample times, the computation time consumption of the ZFFT algorithm is the
least, the DFBDWC algorithm is the most, and the other algorithms are almost the same.
Additionally, with the increase in sample time, the computation time consumption of the
DFBDWC algorithm is doubled, and there are not many rises in the other algorithms. This
is because decomposition and filter in this algorithm have to process by iterative operation.
The larger the sampled points of the beat signal, the more computation time consumption
will be needed. In practical application, we only focus on the accuracy of the distance
calculation, while we do not require any real-time computation. Therefore, we sacrifice the
efficiency for the precision of our algorithm.

Table 7. The comparison of average computation time consuming between seven algorithms.

Sample Time
(μs)

Computation Time Consuming (s)

DFT PD ECC Ratio CZT ZFFT DFBDWC

100 0.0423 0.0449 0.0458 0.0452 0.0441 0.0243 2.3891
200 0.0444 0.0501 0.0468 0.0464 0.0460 0.0259 5.6616

It can be found from the experimental results that the performance of each algorithm
is consistent with simulation results. This indicates that simulation has achieved the real
situation well, and the parameters for evaluating the performance of these algorithms is
also reasonable. However, the values of each parameter obtained in experiment are larger
than those in simulation, which is caused by errors from the experimental platform, the
factors of the environment and the target placement, such as the sensitivity of APD, the
response speed of the laser diode, the bandwidth of the emitted signal, the interference of
ambient light, and the accuracy of distance and angle when we place the target. This can
still verify that the DFBDWC algorithm reduces the influence of WGN, spectrum leakage,
and the picket fence effect. Moreover, it performs the best among the existing spectrum
correction algorithms, and the maximum AE of it is not more than 0.05 m.

4. Conclusions

In this article, we proposed a new spectrum correction algorithm named DFBDWC,
and built an experimental platform based on the principle of the FMCW laser ranging
system. The experimental platform outputs the data of the beat signal, which is analyzed
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and processed by the DFBDWC algorithm in the PC, and the target distance detected by
the system is obtained. Comparing this algorithm to the traditional DFT algorithm and
other spectrum correction algorithms in both the simulation and the experiment, including
the PD, ECC, Ratio, CZT, and ECC algorithm, we achieve the performance evaluation of
this algorithm. The results indicate that DFBDWC algorithm can reduce the influence of
WGN, spectrum leakage, and the picket fence effect. Additionally, it can also improve the
accuracy and frequency resolution of the beat signal. The maximum absolute error of the
target distance calculated by this algorithm is reduced from 0.7937 m of the DFT algorithm
to 0.0407 m, which is the best among all the spectrum correction algorithms. The most
remarkable performance of our algorithm is because decomposition can estimate WGN
accurately in the beat signal and the filter reduces it to a certain extent. The double Hann
window applied in correction concentrates more energy in the spectrum, which minimizes
the impact of spectrum leakage well. Utilizing two main spectral lines at the peaks of these
sub-signals with a delay to calculate the frequency of the beat signal has alleviated the
problem of poor accuracy of results caused by the picket fence effect, and it also avoids
the interference that arises from using multiple spectral lines in some traditional spectrum
correction algorithms. Therefore, the DFBDWC algorithm can improve the performance of
the FMCW laser ranging system. In future work, it is necessary to upgrade this platform
of the system, such as by choosing more sensitive APD, selecting a laser diode with a
faster response speed, and increasing the bandwidth of the emitted signal, which makes
it adapt to this algorithm better. In addition, we still need to optimize the structure and
computational complexity of our algorithm so that the efficiency of distance calculation in
engineering can be greatly raised while keeping the accuracy. Furthermore, we will carry
out experiments by utilizing 16 units in APD to figure out the surface fitting uncertainty
for different object shapes of this system so that it could make our algorithm and platform
more valuable for 3D scanning.
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Abstract: Medicine is heading towards personalized care based on individual situations and condi-
tions. With smartphones and increasingly miniaturized wearable devices, the sensors available on
these devices can perform long-term continuous monitoring of several user health-related parame-
ters, making them a powerful tool for a new medicine approach for these patients. Our proposed
system, described in this article, aims to develop innovative solutions based on artificial intelligence
techniques to empower patients with cardiovascular disease. These solutions will realize a novel 5P
(Predictive, Preventive, Participatory, Personalized, and Precision) medicine approach by providing
patients with personalized plans for treatment and increasing their ability for self-monitoring. Such
capabilities will be derived by learning algorithms from physiological data and behavioral informa-
tion, collected using wearables and smart devices worn by patients with health conditions. Further,
developing an innovative system of smart algorithms will also focus on providing monitoring tech-
niques, predicting extreme events, generating alarms with varying health parameters, and offering
opportunities to maintain active engagement of patients in the healthcare process by promoting the
adoption of healthy behaviors and well-being outcomes. The multiple features of this future system
will increase the quality of life for cardiovascular diseases patients and provide seamless contact with
a healthcare professional.

Keywords: 5P-Medicine; digital health; mobile bio-sensing for medicine; patient empowerment
technologies; artificial intelligence; cardiovascular diseases

1. Introduction

The health care systems traditionally followed the paternalistic approach [1]. In
recent years, there has been a noticeable paradigm shift towards patient- and community-
centered strategies, empowering those approaches with modern technologies [2–4]. Today,
it is impossible to imagine living without ubiquitous technologies such as smartphones
and smart devices. All of us are connected using the Internet, and each of our moves is
either being recorded or analyzed. Smartphones, sensors, and smart devices also allow
measurement of various parameters, contributing to building a general model of our
personal and our health care profile [5–7]. These and other aspects allow employment of
the novel technologies for patient empowerment, in a sense that the patients themselves
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are directly included in their healthcare management. Healthcare is not an institutional
or hospital-based service, but the patients themselves and their communities are at the
service center [8]. However, the application of modern paradigms is yet to be studied and
employed to their full potential [9]. It is especially true for Cardiovascular patients.

Based on World Health Organization (WHO) data published in 2016, cardiovascular
diseases are highly prevalent around the world [10]. Still, the middle- and low-income
countries report higher prevalence with significant worldwide rates of morbidity and
mortality [11]. Cardiovascular diseases are considered chronic non-infectious diseases
related to different risk factors, including arterial hypertension, diabetes, hyperlipidemia,
obesity, smoking, an imbalanced diet, and lack of physical activity [12]. The control and
treating of these diseases include the normalization of blood pressure, the reduction of
stress, healthy nutrition, and the increasing level of physical activity [13].

In general, the technology can be combined for the creation of complex solutions with
complex measurements [14]. At this point, the 5P-Medicine concept is essential for the
design of solutions to Predictive, Preventive, Participatory, Personalized, and Precision
Medicine [15]. Furthermore, it allows the promotion of several actions, prior, during, and
after some healthcare problems [16]. Still, the most important is the technology enables
medical people to act just in time. Combining the different concepts also allows predicting
the future and increasing the effectiveness of treatment to a minimum of 40%.

Nowadays, technology is part of the different daily activities. The various devices
include the possibility of connection to the Internet [17]. Most of them also have a set of
embedded sensors, including an accelerometer, magnetometer, gyroscope, and microphone,
which allows the acquisition of different types of data [18]. In addition, these devices
can add connections to other sensors, including electrocardiography, electromyography,
pressure sensors, sphygmomanometer, among others, that allow the collection of medical
data. It will enable the constant monitoring and the creation of patterns of the different
diseases for the acquired data, allowing a remote evaluation of the patients [19]. Technology
also allows the communication that promotes telemedicine and telemonitoring, making
the patient independent, promoting patient empowerment, and centering the medical
treatments in the patient [20].

The main goal of this paper consists in the proposal of a novel system architecture that
considers the 5P-Medicine paradigm (Predictive, Preventive, Participatory, Personalized,
and Precision Medicine) approach to empowering cardiovascular patients. Currently, the
technology is improving, and the different measurements can be performed anywhere
with the high commodity for the patients. The secondary endpoints consist of the different
prospective achievements needed for the creation of the proposed system:

• Before the planning of the system, analysis of the state-of-the-art about the current
applications which use mobile and wearable personal devices for promoting personal-
ized digital health care must be performed.

• Identify the implementation challenges when applying the approach to
real implementations.

• Analyze the required device features, because, for the use and implementation of the
system, a minimum hardware and software requirements are needed.

• Analyze the required sensors because different sensors are needed for the data acquisi-
tion that will help the healthcare professionals in the monitoring of the
cardiovascular patients.

• Increase the patients’ autonomy with the easy and seamless contact with healthcare
providers and professionals.

This paragraph ends the introduction. In continuation, Section 2 offers state-of-the-art
patient empowerment, the 5P-Medicine concept, wearable devices, smart mobile devices,
cardiovascular diseases and technology, and bio-signals acquisition and processing. Next,
the research background, research design, and expected results are presented in Section 3.
Finally, the analysis and further implementation of the system are discussed in Section 4,
presenting the conclusions of this paper in Section 5.
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2. State-of-the-Art

This section started with state-of-the-art representing the current stage of the 5P
medicine approach. Section 2.1 aims to identify novel contributions of the 5P medicine to
the digital health management practice, in particular for cardiovascular disease. Section 2.2
represented the advanced methods and solutions for empowering patients with different
chronic conditions. Section 2.3 captured current trends in the use of mobile and wearable
personal devices for monitoring and collecting physiological parameters. Section 2.4
presents the technology to prevent and monitor cardiovascular diseases. Finally, Section 2.5
discussed the most suitable Bio-signals acquisition and processing techniques available in
the literature.

2.1. 5P-Medicine Concept

More than ten years ago, Leroy Hood defined the concept of 4-P Medicine, i.e., Pre-
dictive, Preventive, Personalized, and Participatory [21], to highlight the future change
of medical intervention from care to prevention. This concept evolved, with Pravettoni
and Gorrini, into a 5-P model that included Psychocognitive medicine [22]. It recognizes
that patients have behaviors, habits, and beliefs that influence their interaction with health.
Adding this dimension to the biological entity is essential to empower the person to share
decisions over his health [22]. The concept of 5-P Medicine includes Predictive, Preven-
tive, Participatory, Personalized, and Precision Medicine [15]. New technologies have
significantly developed with eHealth providing solutions to improve healthcare [23]. More
recently, the use of mHealth to improve autonomy in the control of chronic diseases. As
public health systems are being modernized worldwide, conventional medicine is under-
going a profound transformation, and new digital 5P-based medical models are emerging.
It is becoming crucial to identify new disease monitoring and prevention methods us-
ing modern information and communication technologies. However, some challenges
remain to enhance accessibility, determine the exact impact on health, know the financial
consequences, and improve data security [24].

As public health systems are being modernized worldwide, conventional medicine
is undergoing a profound transformation, and new digital 5P-based medical models
are emerging. Therefore, developing new disease monitoring and prevention methods
is crucial using modern information and communication technologies. The goal is to
understand and implement how conventional medical approaches and medicine of the
future will co-exist and interact.

2.2. Patient Empowerment

Health care systems have been shifting their delivery of care towards patient- and
community-centered approaches. Shared decisions have increasingly replaced the past
paternalistic, and hospital-based healthcare service model, self-care, self-management,
and home-based care [25]. WHO advocates patient empowerment as an essential tool
to promote health. It is defined as a process to educate and give tools to the patients
by healthcare professionals to recognize community and cultural differences and the
participation of the patients [26]. The effect of patient empowerment on health results
has been studied in several chronic conditions such as diabetes and heart diseases [27,28].
Empowered patients tend to have a better quality of life and well-being [29], impacting
health outcomes to be consistently proved.

The use of technology to promote patient empowerment is being widely discussed and
analyzed. Systems and tools have been developed to encourage and maintain healthy be-
haviors, education, and disease self-management. Technological development is expected
to reduce financial costs and contribute to the sustainability of health care through rethink-
ing interactions between patients and professionals, overcoming geographical barriers, and
developing home-based solutions [30,31]. Several projects developed tools and systems to
promote patient autonomy using online platforms and mobile devices in many medical
fields. Digital tools to encourage autonomy and treatment guidance not only for chronic
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diseases, such as respiratory diseases, diabetes, palliative care, and acute infections [32–35].
The transformation of healthcare and medicine through technology has been predicted
for several years. However, current changes in healthcare delivery globally, boosted by
the COVID-19 pandemic, promote a vital momentum to drive digital transformation in
healthcare [36].

2.3. Wearable and Smart Mobile Devices

Researchers and technology companies have explored the use of wearable sensors to
monitor physiological parameters and activities for the past decade. These devices can
record real-time information through usable gadgets or being incorporated into clothing.
They can measure physiological signals, such as heart rate, body temperature, arterial
oxygen saturation, breathing rate, and body movement. They also have wireless communi-
cation modules integrated with mobile devices [37]. Real-time feedback is useful both for
patients and for healthcare professionals. Patients can better understand their disease and
see immediate and objective results from their actions, allowing them to improve behaviors
and be empowered to make decisions [38]. Health professionals can access individual
data to provide personalized advice, predict events, prevent disease, early diagnosis, and
chronic control conditions [39]. Of course, these outcomes can only be achieved if data is
secure and reliable. However, there are still challenges facing the way sensors and systems
are developed.

Additionally, there is also potential to increase sensors and wearables in clinical trials,
accelerating knowledge and new treatments. For this, the concern about data safety is
essential to improve the acceptance of the systems [40]. Different devices in the market
embed or connect to reliable sensors to monitor various health parameters related to
cardiovascular diseases [41,42].

2.4. Cardiovascular Diseases and Technology

Cardiovascular diseases are highly prevalent across the globe representing 31% of
global deaths [10], with half of deaths occurring in the middle- and low-income countries.
These diseases are related to unhealthy behaviors and poor control of chronic conditions
such as hypertension, diabetes, obesity, and cardiac failure [12].

The cornerstone of cardiovascular diseases management and prevention is based on
interventions to motivate lifestyle modification and adherence to effective cardiovascular
medications. Successful strategies to promote smoking cessation, increase physical activity
levels, encourage a healthy diet, and improve medication adherence are associated with
improvements in morbidity and reductions in mortality [43,44]. However, given the
millions of people at risk for or with cardiovascular diseases, there are practical, logistical,
geographical, and financial challenges in delivering comprehensive risk factor management
to diverse populations. Health systems worldwide are charged with finding ways to reach
more people in efficient and scalable ways.

The use of technology to prevent and monitor cardiovascular diseases has been
tested with positive results [45,46], leading to new clinical practice recommendations [47].
Moreover, there is evidence of the need to develop these tools to achieve more accurate
results and disseminate their adoption [48].

2.5. Bio-Signals Acquisition and Processing

The data acquisition and processing of sensors’ data have been studied in the litera-
ture [49–51]. They consist of the instrumentation of the different individuals with wearable
and smart mobile devices connected to other external sensors to increase the data acqui-
sition capabilities [52–54]. Various studies use cloud servers to store the data acquired in
natural environments [55–58]. In general, acquiring the data is also part of a system that
includes data processing, cleaning, imputation, fusion, and classification [59]. The data
cleaning mainly consists of removing the noisy data for the correct perception of the data
acquired with different methods, including low-pass filter and high-pass filter [52]. The
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data imputation measures the data that failed in the data acquisition process. Different
methods can be implemented, including K-Nearest Neighbors imputation [60]. The feature
extraction consists of analyzing the data related to cardiovascular diseases, including the
heart rate, heart rate variability, different variables, and measurements associated with the
QRS complex, and other measures [61]. However, one sensor/variable is not sufficient for
complex measurements, and the fusion of the different data must be performed [62–64].
The final stage consists of the data classification. It may include various AI techniques,
including Artificial Neural Networks, Support Vector Machines, Decision Trees, and En-
semble Learning algorithms [65]. Finally, the different measurements and machine learning
methods will be more accurate using the Big Data concept in healthcare [66–69].

3. Methods and Expected Results

This section is the main section of this scientific paper, presenting the research back-
ground in Section 3.1. Next, Section 3.2 presents the different stages of the design of the
proposed system. Section 3.3 presents the different methods that will be expected to be
used for the measurement of patients’ empowerment. Finally, Section 3.4 presents an
overview of the expected results to be obtained with the proposed system.

3.1. Research Background

The proposed approach, presented in Figure 1 intends to give a solution that im-
plements the 5P-Medicine paradigm [15], including Precision, Predictive, Preventive,
Participatory, and Personalized Medicine related to cardiovascular diseases. For the final
implementation, each of the 5Ps implementations will be researched for the final combina-
tion. This study aims to integrate the knowledge of different sciences, including computer,
mathematics, and medical sciences, to research, develop, validate, and disseminate the
developed technological solution.

For this purpose, there are different solutions available in the market. Still, no one
includes the different concepts proposed in this paper. We intend to test the proposed
system with cardiovascular patients, where the data acquisition will be performed with
various sensors available in the market, including sensors available in mobile devices,
sensors that can be connected to a BioPlux device [70], and others. These sensors have easy
positioning, and all people may use these sensors to acquire health parameters. Still, some
of these sensors are expensive. Finally, it includes the connection to a server for further
analysis by medical people. In addition, the system must allow communications between
healthcare professionals and patients.

The design and development of the proposed solution will consist of executing the
main tasks, such as planning and development of data acquisition methods with the
technological devices and collaboration of professionals, execution of data acquisition
process for the creation of a database with different kinds of data, data analysis for the
design of models for each of the 5P-Medicine, and integration of all developments.

The proposed system will be divided into five main parts consisting of each of
the different concepts, including Precision, Predictive, Preventive, Participatory, and
Personalized medicine. Then, as expected results, a system that integrates all the con-
cepts will be presented in a solution that implements the 5P-Medicine paradigm for
cardiovascular diseases.

Following the first P related to Prediction Medicine, the data acquired from the various
sensors and wearable and smart mobile devices will be treated to create a method to predict
future events or healthcare problems. It consists in utilizing the cloud computing tools for
the expected model development. After being prepared, data set integration, the machine
learning algorithms, modeling technique, and test design will be applied. Finally, the
performance of predictive training models for cardiovascular diseases will be assessed
to ensure the quality and reliability of the results. The metrics are numerical measures
obtained from the confusion matrix that quantify the performance of a given classifier.
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Figure 1. Workflow of the proposed system.

Following the second P related to Prevention Medicine, the medical and clinical health-
related data sets, which are the prime concerns in healthcare decision-making, will be
used on preventive models development. In addition, these models will be augmented
with additional non-clinical background features to enhance the predictive capabilities of
the preventive models [71]. With the method developed, the goal is to change people’s
behaviors or take adequate actions before healthcare problems occur.

Following the third P related to Participatory Medicine, the patient is the center of the
system that will be part of the system. The patient must report important information in
the system. The patient will be involved in the system’s further development, where the
decision is centered on the patient involved in the treatment and accompanying processes.

Following the fourth P related to Personalized Medicine, the system uses the sensors’
data and the patients to adapt the intervention, recommendations, medication changes,
and adequate medical exams. The monitoring and evaluation of the patient’s process must
be continuous, with no particular time for the decision-making. It is helpful because it
gives independence to the patient. The system performs different measurements when
the patients are in their regular environments, adapting their daily living approach. The
patients’ examination in their environment will be more reliable because they are examined
in their daily living activities. Thus, the system will be integrated into the patients’ living.

Finally, the fifth P, related to Precision Medicine, is intended to create an algo-
rithm capable of predicting the moment and the healthcare problems with high accuracy
and exactness.

3.2. Research Design

Based on the research background presented in Section 3.1, a global system was
designed for the analysis of the data collected by the different sensors available in mobile
and wearable devices, which will be sent to the cloud for further processing and generation
of the notification to the patients and health systems. The whole design of the proposed
system is presented in Figure 2.
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Figure 2. Architecture of the proposed system.

This study will be performed in five different iterations composed of different stages,
presented in Figure 3 for each one of the 5Ps. In the following subsections, each of the parts
for the research and development of the system will be presented. The proposed system
will follow the Regulation (EU) 2017/745 of the European Parliament and the Council
established for medical devices.

Figure 3. Iteration for the development of the proposed system.
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3.2.1. Data Acquisition

Smartphones and connected wearable devices can quickly generate and collect a
large-scale amount of diverse, complex, and dynamic data for analysis. In addition, these
technologies are more economical and time-saving than traditional research mode since
the entire process can be done remotely, anytime, and everywhere.

Gathering and analysis of clinical information will be performed with support from
medical experts. This process involves human participants with cardiovascular diseases.
Participation in the study is voluntary, and there is no compromise of the clinical diagnosis
or management if the patient does not want to participate. Processing personal data will be
carried out in compliance with the General Data Protection Regulation (GDPR), the data
protection law of the European Union.

It consists of collecting medical data, including Electrocardiography (ECG) data,
bioimpedance data, location data, personal data, data related to the various diseases of the
participants, and data acquired from different sensors. The used sensors may be inertial,
acoustic, and imaging, stored in a secure server.

The conditions to participate in the study are related to cardiovascular diseases,
distributed equally by gender, and different age groups. A waiver of informed consent
will be requested for patients in the hospital without conditions to consent and, when
possible, given to the patient to sign afterward, as this is a non-experimental study. In
the event of death or not signing the informed consent, the legal representative or the
closest family members will be asked to determine the patients’ participation in research
studies, as it is a study of non-experimental character. In addition, the participants must
have an Internet connection available to store the collected data remotely. The acquired
data include vulnerable individuals, including older adults, limited capabilities, and other
vulnerable people. The study consists of intervention activities by medical doctors for the
acquisition of imaging data (or other types of data with medical equipment) to be sent
to the data processing stage to control the treatments’ evolution. As it involves different
countries, the data from EU and non-EU countries will be imported/exported for further
processing by the various technological and medical teams.

Before acquiring the different datasets related to each of the 5P-Medicine concepts,
the analysis of the existing methods is performed for the correct planning of the data
acquisition process. As the system must be patient-centered, the planning stage is crucial
for appropriately developing the technique for data acquisition. Finally, the patients with
cardiovascular diseases and group control of healthy people will be recruited.

The positioning of the sensors and the positioning of the mobile device are widely
essential for the correct data acquisition, and the different constraints, including environ-
mental and sensor conditions, affect the data acquisition process. Therefore, it can be
considered as a limitation of this stage. Another limitation is the definition of the timeline
for the acquisition using the device because these devices have limited memory, power
processing, and battery capabilities. The research is intended to use open-source develop-
ment. Thus, the data acquisition will be developed for mobile devices with the Android
operating system for smartphones and smartwatches. The smartphones will collect the
data from the other devices over-the-air.

The study protocol was approved by the Ethics committee of Universidade da Beira
Interior, Covilhã, Portugal, with the reference CE-UBI-Pj-2021-041:ID969.

3.2.2. Data Analysis

It consists of analyzing the data acquired based on the information provided by
medical people. It includes artificial neural networks, statistical, and other computational
methods to analyze the data. The analysis of the data occurs after the data acquisition.

Before starting the study, the participants fill on a questionnaire related to personal
data, i.e., age, gender, diseases, habits, location, biometric data, health data, and other
personal data that may be used for the analysis comparison of the different participants
on the study. However, the data are always anonymized for technical analysis. The
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participant is only identified by one ID attributed by the healthcare professional in the
study’s invitation, which is only known by the healthcare professional. This data are only
used to support the study results, and it will never be used to identify the participants for
the scientific community.

Before analyzing the different datasets related to each 5P-Medicine concept, the defi-
nition of the possible measurements is needed with the support of medical people. The
correct measurements have been essential as the beginning for the excellent performance
of the data analysis. It is predicted that a possible limitation is that the data collected is not
known, and several experiments are needed before the definition of the concrete variables
to analyze. The analyses will be performed with open-source programming technologies,
and only some statistical analysis will require more robust software.

3.2.3. Data Analysis in Developing Countries

It consists of analyzing the data acquired in developing countries based on the in-
formation provided by healthcare professionals, patients’ lifestyles, and healthcare and
environmental conditions for data acquisition of the people from these countries. The
developing countries are particular, and they need to be analyzed separately because the
people’s characteristics are different from developed countries.

3.2.4. Data Analysis in Developed Countries

It consists of analyzing the data acquired in developing countries based on the in-
formation provided by healthcare professionals, patients’ lifestyles, and healthcare and
environmental conditions for data acquisition of the people from these countries. The
developing countries are particular, and they need to be analyzed separately because the
people’s characteristics are different from developing countries.

3.2.5. Development and Integration of Final System

This stage involves developing and integrating several self-contained components
such as wearable personal devices connecting for data acquisition, biometrics signal pro-
cessing, and machine learning algorithms utilizing the cloud computing tools for data
processing and model development. As a result, the system will advance the smart solution
in personalized and precision eHealth. Furthermore, its innovative solutions will increase
the quality of life for cardiovascular diseases patients and be carried out by healthcare
professionals, contributing to 5P-Medicine.

3.3. Methods for Patient Empowerment and System Analysis

Regarding measures improvements for patient empowerment and system effective-
ness, the quantitative and qualitative methods will be applied. In the literature, many
authors defended that patients’ active engagement through digital tools in their health
could increase self-monitoring effectiveness and empowerment, improving and maintain-
ing a healthier lifestyle.

As engagement is important for long-term use, it is crucial to design technology in
such a way that the chance of engagement is high [72]. One way to improve engagement is
by incorporating a combination of persuasive design and behavioral change techniques [73].
The combined term for this is persuasive features. Another factor that influences engage-
ment is usability. Usability relates to the quality of the technology in terms of easiness
to learn and use it [74]. Usability and engagement together form the user experience.
Usability and persuasive features will have a small direct influence on the adherence but
will mainly affect engagement. High engagement is likely to improve adherence.

The log data analysis is a quantitative study. Log data analysis can provide information
about the use of the technology for numerous users without interfering with normal
behavior [75]. Although log data analysis can show interesting differences, it often remains
unclear why these differences in use exist. Qualitative studies can only reach some total
users, but it gives more insight into barriers and facilitators [76]. The qualitative method
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is the usability tests and interviews. In this study, the log data analysis will be provided
insight into general use and difference in use from the proposed system for a specific time.
The usability tests and interviews will be held after the log data analysis.

The availability of more information about the facilitators will motivate patients into
adherent behavior. It is important to achieve effective long-term usage of our proposed sys-
tem for cardiovascular patients. Giving the patient more suitable and credible information,
instant support, and feedback by a health care provider about their health will ensure an
opportunity to increase their motivation for self-management capability.

3.4. Expected Results

After all the developments and tests, it is expected to be available a system for
implementing the different concepts of 5P-Medicine for the accompanying, monitoring,
and empowerment of cardiovascular patients. Furthermore, the system is expected to be
accepted by the medical communities integrated with this system’s design. The system will
have the opportunity to be integrated into the National Health System to expand its use
and empowering patients and healthcare professionals to achieve better health outcomes.

4. Discussion

Implementing a solution that empowers cardiovascular patients based on the 5P-
Medicine concept will promote combining technology and medicine. It is an innovative
system, and the exploration of the digitalization of the 5P-Medicine is only in the beginning,
and further developments are needed. However, several challenges are hard to solve due to
the different devices’ characteristics and variety for medical purposes. One main reason for
these challenges is the complexity of these developments, and the challenges of long-term
and continuous monitoring, sending data and receiving results in real-time.

4.1. Multidisciplinary Approach Required

The proposed approach to implementing the treatment and monitoring process be-
tween healthcare professionals and computer science experts requires constant commu-
nication to plan and develop the final solution. The development of solutions is part of
technological people, but knowing the correct collection, data treatment, and purposes
is part of the medical people. Therefore, different joint expertise from other people will
increase the reliability and validity of the system and future usage. Furthermore, this
approach combines various sciences, including medicine, mathematical, and computer
science knowledge, making the presented problem fascinating.

4.2. Experimental Challenges

The experimental challenges include several variants of potential problems related to
the different activities to perform. The limited power processing and battery capabilities
are significant challenges that must be considered while developing the software for
experimental procedures using lightweight technologies. The next challenge consists of
correctly positioning the sensors for accurate data acquisition, where the correct information
must be provided to the patients by the mobile application. Furthermore, the connection
between different devices and sensors must be available for proper data acquisition. The
various connections must be inspected before the experimental data acquisition to avoid
this problem. Another challenge consists in the Internet connection needed to store the
acquired data into the cloud server. In this case, the system for obtaining the data must
store the received data in offline mode to the mobile device’s memory, and it will be sent
to the cloud server when an Internet connection is available. The correct positioning of
the sensors also reduces the data noise. During the data acquisition, the sensors may have
failures that must have reduced effects with the proper modeling of the system.
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4.3. Complexity and Specificity of System

Following the challenges with the sensors’ data acquisition presented as experimental
challenges, other challenges are related to the other components of the proposed system.
Thus, several specificities of the system will increase the complexity of the system:

• Data acquisition and processing: It must have low latency times to acquire and process
data. The frequencies of data acquisition from the different sensors/equipment must
be adjusted to obtain better results.

• Data processing: The time for data processing can sometimes be high, and the solution’s
development time is affected. The nonexistence of rules for analyzing the data is
another problem related to data processing, where the data should be tested with
different processing methodologies.

• Data fusion: The acquired data have different natures, and the complexity of the data
fusion and processing may be adapted to the different kinds of data. Various sensors
retrieve distinct types of data.

• Amount of data: The proposed approach must be prepared to transmit and store a large
amount of data related to different sensors.

• Interaction between sensors and patients: The patients must be taught and familiarized
with the different sensors and mobile devices before using the system.

• Acquisition of health parameters: As the proposed approach is related to the acquisition
of health parameters, the system must consider different rules for data protection and
security during the data transmission and analysis.

• Patients: The proposed approach must be adapted to the patients. The data acquired
from the different patients must be anonymized and labeled for the healthcare profes-
sional’s knowledge responsible for the patient. Only features related to the different
data types must be processed because the different data types may identify the patients.
Finally, the time zones of the various countries must be controlled to synchronize the
results obtained and contacts with different intervenients.

• Features extracted from the data acquired: During the development and testing of
the developed methods, the best set of features must be identified to increase the
results’ accuracy.

• User interface: The user interface of the proposed approach must be user-friendly for
the different ages of the people as the movements for older adults are more limited
than children.

4.4. Modeling Challenges

The proposed approach includes technological and medical people from different
countries and patients from the selected countries. The main challenge with this system
is the existence of varying healthcare diseases related to cardiovascular problems that
healthcare professionals must have previously identified. Furthermore, the data acquisition
and processing methods must be planned with the knowledge about the diseases [77].
Furthermore, the algorithms for the automatic analysis must be developed for the different
disorders. Moreover, the developed methods must be lightweight as preferable or executed
in a remote server with the data sent by an Internet connection.

This approach consists of implementing a system that aggregated the measurements
related to each of the 5P-Medicine concepts [15]. The method may have different speci-
ficities for each development stage that the literature must discover, and the nature of the
sensors used healthcare professionals’ knowledge.

The most important piece of the proposed system is the patient, and the developed
system must be intelligent to be adapted to the different patients. Therefore, the system’s
adaption is crucial for the patient, and it is also vital for the healthcare professionals with
a suitable communication method between them. The system must be comfortable for
the patient to increase its use. As it includes communication, all the information must
be securely stored and transmitted, and the different procedures on the system must be
performed in an authenticated mode. Finally, the system should notify the patient of
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different things in a non-intrusive method. The patients will have the opportunity to have
contact with healthcare professionals from other countries. Still, the system must take into
account the different time zones to schedule the meeting.

4.5. Integration with Real World

After the development and testing of the system, another challenge is integrating the
system with the National Health Systems. Changes must be made in the National Health
Systems, or adapters should be implemented to allow a seamless operation of both systems
and achieve a wide usage of the proposed approach.

However, as this system is developed with different countries’ cooperation, multilin-
gual support must also be implemented in each nation. Furthermore, due to the diversity of
cultures and different levels of development of the countries and their respective healthcare
systems, the integration approach must take all the varying specificities of each country
into consideration, both cultural and legal.

The final system must perform the different actions and analyses in real-time, adjusting
the participating countries’ various time zones. Furthermore, the marketing of the final
product must be completed in the participating countries and languages to adapt the
different methods to the people’s perception. Finally, the system’s integration must be
performed with technical people working on the current systems.

4.6. Limitations of Study

This study presents the conceptual foundation of the proposed approach for integrat-
ing the 5P-Medicine paradigm within a healthcare system that will be, first and foremost,
patient-centric and will implement all of the requirements of the 5P paradigm. This study
analyzes the initial concepts and compares them with the current state of affairs while also
presenting the current and future challenges this approach will face. The primary study’s
shortcoming is that the system is not yet implemented, and all of the analysis is based on the
proposed concepts. The direct implications to the patients of such systems can be evident
only after the system is implemented and a pilot run is executed in multiple countries.

5. Conclusions

Cardiovascular diseases are disorders of the heart and blood vessels and are a sig-
nificant cause of disability and premature death worldwide. Therefore, individuals at
higher risk of developing cardiovascular diseases must be encouraged to maintain active
engagement in the healthcare process by promoting the adoption of healthy behaviors and
well-being outcomes to prevent premature deaths. Advances in the field of computational
intelligence, together with data from connected wearable and smart mobile devices, have
made it possible to create recognition systems capable of identifying hidden patterns and
valuable information.

In this paper, we presented a new efficiency system for a 5P-Medicine approach to
the healthcare systems to manage cardiovascular diseases. This system will facilitate the
administration of continual care and offer opportunities for maintaining patients’ active
engagement in the care process by promoting patients’ psychological skills and well-being
outcomes. The proposed system is defined as a vehicle to enrich patients and stakeholders
through the intersection of medical informatics and public health business. As such,
through our system, we will promote a new “state of mind” for medical professionals,
marked by a global attitude and intention to improve worldwide health.
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