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1. Introduction

To effectively solve the increasingly complex problems experienced by human beings,
the latest development trend is to apply a large number of different types of sensors to
collect data in order to establish effective solutions based on deep learning and artificial
intelligence [1–4]. This not only creates a huge demand for sensors, providing business
opportunities, but also creates new challenges for the development of sensor devices and
their related applications [5,6]. These technological developments that combine AI and sen-
sors are being actively used in various application fields such as healthcare, manufacturing,
agriculture and fisheries, transportation, construction, environmental monitoring, etc.

For instance, in environmental monitoring, sensors integrated with deep learning
and AI algorithms possess the capability to swiftly analyze extensive datasets, identifying
patterns, anomalies, and trends in real-time [7,8]. Consider weather forecasting, where
sensors driven by AI can gather data from various sources like satellites, weather stations,
and drones, enabling more precise predictions of weather patterns. Through deep learning
models, sensors can dynamically adjust and incorporate new data, thereby refining their
predictive accuracy over time. Additionally, in industrial settings, sensors enhanced with
AI play a crucial role in optimizing manufacturing operations by monitoring equipment
health, forecasting potential failures, and scheduling maintenance preemptively [9–12].
This approach reduces operational downtime and enhances overall efficiency.

In this context, the Special Issue “Artificial Intelligence and Deep Learning in Sensors
and Applications” collected high-quality original contributions on new developments in
AI (specifically deep learning) and sensor technology in various fields, as well as sharing
ideas, designs, data-driven applications, and production and deployment experiences and
challenges. The call for papers for this Special Issue included topics such as applications
and sensors for manufacturing, machinery, and semiconductors; smart applications and
sensors for architecture, construction, buildings, e-learning; recommendation systems;
applications and sensors for autonomous vehicles, traffic monitoring, and transportation;
object recognition, image classification, object detection, speech processing, human behavior
analysis; and other related sensing applications [13,14].

2. Overview of Published Papers

All submissions were evaluated based on their technical excellence, resulting in the
selection of ten research articles, and two reviews on weed detection using deep learning
and medical XAI, for inclusion in this Special Issue. Below, all of the contributions are
listed, followed by a short summary of each contribution.

In contribution 1, the author contributes to the field by exploring the integration of
AI and deep learning for enhancing lung cancer screening through sensors, such as CT
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scans, enriched with clinical data. By comparing single-modality (imaging data alone) and
multimodality approaches (combining imaging with clinical data), the study underlines the
importance of leveraging multiple data types for improved diagnostic accuracy. Specifically,
it showcases the application of ResNet18 for 3D CT imaging analysis and random forest
algorithms for clinical data evaluation, demonstrating a significant leap in performance
with multimodal data fusion. This work aligns with the journal’s focus by illustrating
how AI and deep learning can optimize sensor data utilization in healthcare applications,
pushing the boundaries of early cancer detection capabilities.

In contribution 2, the innovative C2RL framework introduces a convolutional-contrastive
learning approach that integrates with reinforcement learning to enhance the generalization
capabilities of agents in varied environments, especially those captured through high-
dimensional image sensors. This paper’s approach addresses the challenge of leveraging
strongly augmented sensor data without compromising the reinforcement learning process.
By demonstrating its effectiveness in the DeepMind Control suite, the paper contributes to
the journal’s theme by showcasing how AI and deep learning techniques can enhance the
interpretability and utility of sensor data in complex, dynamic systems, paving the way for
more robust AI agents that can operate in diverse and unpredictable real-world scenarios.

In contribution 3, TransNet leverages transformer architecture to introduce a novel
approach for point cloud sampling, addressing the computational complexities associated
with direct usage of dense point cloud data from sensors. This contribution is particularly
relevant to the journal’s interests, as it illustrates the application of AI and deep learning in
optimizing sensor data processing. By implementing self-attention mechanisms, TransNet
not only reduces computational demands, but also enhances precision in tasks requiring
detailed spatial analysis, such as autonomous driving and robotic navigation, highlighting
the potential of advanced AI models in improving the efficiency and accuracy of sensor-
based applications.

In contribution 4, DCFF-MTAD presents a dual-channel feature fusion model for
anomaly detection in multivariate time-series data, a common output from various sensors.
This paper’s approach, combining spatial STFT and graph attention networks, exemplifies
the integration of AI to enhance sensor data analytics for predictive maintenance and moni-
toring of complex systems. It aligns with the journal’s focus by demonstrating the potential
of deep learning for extracting and fusing features from sensor-generated data to identify
anomalies, offering valuable insights for applications in industrial IoT, environmental
monitoring, and more, where accurate and timely anomaly detection is crucial.

In contribution 5, MTGEA addresses the challenge of aligning sparse point cloud data
from radar sensors with skeleton data from Kinect sensors for human activity recognition,
a critical task in smart home systems. The paper’s development of a multimodal two-
stream GNN framework exemplifies innovative use of deep learning to enhance sensor
data compatibility and application efficiency. This work is highly relevant to the journal, as
it showcases the fusion of data from diverse sensors through AI to improve accuracy in
privacy-preserving human activity recognition, contributing to the advancement of smart
home technologies and healthcare monitoring systems.

In contribution 6, the author explores semi-supervised learning techniques for seman-
tic segmentation, leveraging perturbed unlabeled inputs to enforce consistency in dense
prediction tasks. By focusing on one-way consistency and introducing a novel perturbation
model, this research advances the application of AI in processing and interpreting sensor
data, especially in real-time and low-power scenarios. The findings are pertinent to the
journal’s scope, as they highlight how deep learning can reduce reliance on extensively la-
belled datasets in dense prediction, facilitating more efficient and scalable implementations
of AI in semantic segmentation tasks using data from visual sensors for applications in
autonomous driving, surveillance, and robotics.

In contribution 7, the author contributes significantly to the realm of AI and sensor
applications by addressing the vulnerabilities of deep-learning-based face recognition
systems to adversarial patch attacks. By using Generative Adversarial Networks (GANs),
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the study proposes a method that successfully implements black-box attacks, enhancing the
realism and applicability of security assessments in systems that rely on facial recognition
sensors. This contribution is vital for developing robust face recognition technologies that
are increasingly integrated into various security and personal identification applications,
ensuring they can resist real-world adversarial threats.

In contribution 8, the introduction of a real-time, on-chip audio super-resolution
system tailored for bone-conduction microphones marks a notable advancement in sensor
technology and AI applications. This paper’s development of lightweight deep-learning
models for enhancing audio quality directly addresses the limitations of existing sensor
technology in noisy environments. By optimizing these models for low-power, real-time
processing on embedded systems, the study provides a practical solution that can be
integrated into next-generation hearing aids and communication devices, leveraging AI to
significantly improve the user’s experience.

In contribution 9, the research enhances the application of AI in industrial sensors by
introducing a deep learning framework capable of detecting anomalies in the network traffic
of industrial control systems. The use of multi-attention residual blocks to refine the feature
extraction process represents a forward leap in improving the accuracy and reliability of
anomaly detection in critical infrastructure. This paper’s methodology contributes to safer,
more secure industrial operations by leveraging deep learning to interpret complex sensor
data streams effectively.

In contribution 10, the author contributes to the field of AI and sensor applications
through their innovative use of convolutional LSTM networks combined with a multi-
head attention mechanism, specifically designed to enhance traffic flow predictions. By
effectively analyzing and predicting traffic conditions using vast arrays of sensor data, this
approach helps with optimizing traffic management and urban planning. The integration
of spatial and temporal data analyses in a unified deep learning model exemplifies how AI
can harness sensor data to facilitate smarter, more efficient city infrastructure.

In contribution 11, this systematic literature review aggregates and synthesizes the
use of AI in agricultural sensors for weed detection, presenting an overview of the state-of-
the-art deep learning techniques applied to this problem. By reviewing various approaches
and evaluating their effectiveness, this paper contributes to the broader application of
AI in precision agriculture. It guides future research and practical implementations that
can help farmers reduce crop loss and manage fields more efficiently through advanced
sensor technology.

In contribution 12, this survey paper explores the critical role of explainable AI (XAI)
within the medical field, emphasizing the integration of AI with medical sensor data to
improve diagnostics and patient care. By discussing recent progress and proposing new
frameworks for XAI, the paper contributes to the ongoing development of transparent,
understandable AI applications that can work alongside healthcare professionals. This
work is especially important for enhancing the trustworthiness and efficacy of AI systems
in interpreting complex medical sensor data, thus supporting better clinical decisions and
patient outcomes.

3. Conclusions

The intersection of artificial intelligence (AI) and deep learning with sensor tech-
nologies presents an evolving frontier with profound implications across a myriad of
applications, from healthcare diagnostics to autonomous systems and beyond. This collec-
tion of twelve papers contributes significant insights and innovations at this intersection,
showcasing the potential of AI and deep learning in extracting, processing, and analyzing
sensor data to solve complex real-world problems.

We appreciate all contributors of this Special Issue, as well as the reviewers of the
submitted papers. Their dedicated efforts and expertise in providing thorough reviews
greatly helped with the completion of this successful publication.
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Single Modality vs. Multimodality: What Works Best for Lung
Cancer Screening?
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3 Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
* Correspondence: joana.v.sousa@inesctec.pt

Abstract: In a clinical context, physicians usually take into account information from more than one
data modality when making decisions regarding cancer diagnosis and treatment planning. Artificial
intelligence-based methods should mimic the clinical method and take into consideration different
sources of data that allow a more comprehensive analysis of the patient and, as a consequence, a more
accurate diagnosis. Lung cancer evaluation, in particular, can benefit from this approach since this
pathology presents high mortality rates due to its late diagnosis. However, many related works make
use of a single data source, namely imaging data. Therefore, this work aims to study the prediction of
lung cancer when using more than one data modality. The National Lung Screening Trial dataset
that contains data from different sources, specifically, computed tomography (CT) scans and clinical
data, was used for the study, the development and comparison of single-modality and multimodality
models, that may explore the predictive capability of these two types of data to their full potential. A
ResNet18 network was trained to classify 3D CT nodule regions of interest (ROI), whereas a random
forest algorithm was used to classify the clinical data, with the former achieving an area under the
ROC curve (AUC) of 0.7897 and the latter 0.5241. Regarding the multimodality approaches, three
strategies, based on intermediate and late fusion, were implemented to combine the information from
the 3D CT nodule ROIs and the clinical data. From those, the best model—a fully connected layer
that receives as input a combination of clinical data and deep imaging features, given by a ResNet18
inference model—presented an AUC of 0.8021. Lung cancer is a complex disease, characterized by a
multitude of biological and physiological phenomena and influenced by multiple factors. It is thus
imperative that the models are capable of responding to that need. The results obtained showed that
the combination of different types may have the potential to produce more comprehensive analyses
of the disease by the models.

Keywords: deep learning; multimodality; feature fusion; lung cancer; CT scan; clinical data

1. Introduction

Lung cancer is the leading cause of cancer-related deaths, being responsible for ap-
proximately over 2 million new cases and 1.8 millions deaths in 2020 [1]. Despite the
increasing risk of developing cancer related with age, tobacco consumption persists as the
main contributor for all major histological types of lung cancer, accounting for about 80% of
cases [2–4]. Nevertheless, there are other risk factors that can have a key role as well in the
development of this condition, such as exposure to air pollution and second-hand smoke,
occupational exposure, a diet poor in nutrients, alcohol consumption, genetic susceptibil-
ity and positive family history of lung cancer [3,4]. Given the lack of clear and distinct
symptoms at early stages, when this condition begins to manifest itself in a more evident
manner, by the time patients are diagnosed, lung cancer is usually in an advanced stage,
and, as result, the 5-year survival rate is low, around 19%. On the contrary, if the disease is
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detected at earlier stages, the 5-year survival rate can increase up to 54% [5], reinforcing,
for this reason, the urgent need for screening and prevention measures.

In the clinical practice, it is common for physicians to take into account the information
obtained from multiple sources, namely imaging findings, clinical and demographic data,
and family history, in order to give an accurate diagnosis for the patient. Through the
visual inspection of medical images, such as computed tomography (CT) scans, radiologists
search for evidence of lung cancer, and in case there is a suspicion of the presence of
malignant nodules, patients are submitted to biopsy, an invasive procedure with associated
risks. However, very often, false positives are identified, leading to unnecessary procedures
in patients that are cancer-free. Furthermore, given the great amount of medical images to
analyze and because physicians cannot overlook them, this task becomes time demanding,
exhausting and human-error prone [6]. Artificial intelligence (AI) based methods can assist
the practitioners in the correct classification of these nodules, helping to decrease the high
rates of false positives and negatives, and give more accurate diagnoses for these patients.
Nonetheless, the vast majority of available methods use a single modality for the task of
classification, mainly imaging modalities [2], which may put constraints on the learning
process of the models, as they are limited to a single type of information [6].

Motivated by the variation in the size and morphology of lung nodules, Lyu et al. [7]
introduced a multi-level cross ResNet that includes three sets of parallel residual blocks,
each with a specific convolutional kernel size, in order to extract features at different scales.
Data from the Lung Image Database Consortium (LIDC) [8] dataset were retrieved and
because they contain nodules that can fall into three malignancy categories—benign, malig-
nant and indeterminate—the authors conducted experiments for a ternary classification
and a binary classification (that only considers benign and malignant nodules). Accuracies
of 0.85 and 0.92 were obtained for the former and the latter experiments. Calheiros et al. [9]
presented a work that studied the importance of the perinodular area for the malignancy
classification of lung nodules. Radiomic features were extracted from the perinodular
and intranodular regions of the 3D CT images from the LIDC database, and different
combinations of the extracted features were made. The authors tested six different ma-
chine learning methods, namely decision tree, logistic regression, random forest, k-nearest
neighbor (kNN), support vector machine (SVM) and extreme gradient boosting (XGBoost),
with a total of 15 models, as a result of the combination of various hyper-parameters. The
overall best performance was obtained with SVM trained with the set of features pertaining
to the nodule, margin sharpness and the perinodular zone, having achieved an area under
the receiver operating characteristics curve (AUC) of 0.91 ± 0.031. In addition, from the
feature ranking analysis of the tree-based models, the results demonstrated that 6 of the
20 top features were extracted from the perinodular region, thus highlighting its relevance
for the classification task. In [10], the authors developed a 3D axial-attention network for
the classification of CT lung nodules, and data were retrieved from the LIDC dataset. The
model presented an AUC, accuracy, precision and sensitivity of 0.96, 0.92, 0.92 and 0.92,
respectively. The authors in [11] extracted features from CT images using the convolutional
neural network, histogram of oriented gradients (HOG), extended HOG and local binary
pattern, and tested four different algorithms: SVM, kNN, random forest and decision trees.
The LIDC dataset was, once again, used for development and evaluation, and the best
performance model presented an accuracy of 0.95. Liu et al. [12] proposed an architecture
denominated as Res-trans networks that combines residual and transformer blocks for the
lung cancer classification of CT nodules. The method is assessed in the LIDC dataset and
presents an AUC of 0.96 and an accuracy of 0.93. With the aim of studying the relation-
ship between chronic obstructive pulmonary disease (COPD), pulmonary nodules and
the risk of lung cancer, Uthoff et al. [13] explored the idea of fusing clinical features (that
include the data and clinical history of the patients, the diameter of the nodules, and four
pulmonary function tests) with automatically extracted features from CT images (such as
measurements from the whole pulmonary parenchyma, the lobe that contained nodules,
and the airways). Three approaches were implemented to study the impact of these features
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on the developed models: using clinical features only; using imaging features only; and
combining both. Mutual information optimization (IO) and least absolute shrinkage and
selection operator (LASSO) were applied for feature selection, and LASSO and an ensemble
neural network (ENN) were chosen as classification models. For training and evaluation,
data were collected from the COPD Genetic Epidemiology Study (COPDGene) [14], In-
flammation, Health, and Lung Epidemiology Study (INHALE) [15] and National Lung
Screening Trial (NLST) [16] databases, and only patients with pulmonary nodules ≥ 4 mm
were selected, for a total of 327 individuals. The highest performance metric, an AUC of
0.79, was achieved with the ENN when trained with both clinical and imaging features,
selected with the IO method. Motivated by the possible complementarity between the
information of CT images and serum biomarkers, Jing et al. [17] developed two malignancy
classification algorithms for lung cancer, one for each modality, and then studied the combi-
nation of the predictions of those two algorithms to output a final one. CT scans and serum
biomarkers were collected with a total of 173 patients used. For all pulmonary nodules, the
malignancy was confirmed with a biopsy. A total of 78 quantitative features were extracted
from the CT segmented nodules and given to a SVM classifier. Five serum biomarkers were
investigated (squamous cell carcinoma antigen (SCC); carcinoembryonic antigen (CEA),
cytokeratin fragment 21-1 (CYFRA21-1); cancer antigen 15-3 (CA15-3); and carbohydrate
antigen 19-19 (CA19-9) ) and also given to a SVM. As for the combination of predictions
of the two algorithms, three fusion methods were studied: minimum score between the
two predictions; maximum score between the two predictions; and an weighted average
of the two, in which the weights assigned vary between 0.1 and 0.9. The imaging model
demonstrated higher performance metrics than the biomarker model, and the maximum
AUC, 0.85 ± 0.03, was obtained by combining the predictions of the two models with
weight factors of 0.3 and 0.7, respectively.

As mentioned above, in a clinical setting, data from a variety of sources are considered
for lung cancer diagnosis. On the other hand, a great number of current AI approaches
makes use of a single data modality, with the LIDC dataset being one of the most commonly
used datasets for the development of image-based models [7,9–12], as it includes labeled
nodules, yet no other data modalities are provided. In more recent years, multimodal
approaches applied to the biomedical field have emerged, and often deep fusion methods
surpass the performance of unimodal strategies [18]. Lung cancer is a complex disease,
characterized by a multitude of biological and physiological phenomena and influenced
by multiple factors. Multimodality data represent the possibility of developing learning
models that are capable of responding to that need. With that in mind, the goal of this work
was to study and compare lung cancer classification models that are dependent on a single
modality with models that translate the clinical context by integrating information from
different modalities, and with that, ascertain if improvements are registered when a broader
view and analysis of the patients are taken into account. Furthermore, experiments were
conducted with the NLST dataset [16] since it allows the combination of those modalities
and it contains more challenging cases (as seen by the results obtained in [13]) which may
enable the development of a more comprehensive analysis by the learning models.

2. Materials and Methods

In this section, the data used and the methods implemented in this work are described.
Section 2.1 gives a detailed description of the dataset used and the pre-processing steps
applied, whereas Section 2.2 describes the methodologies implemented, namely the single-
modality approaches in Section 2.2.1 and the multimodality approaches in Section 2.2.2.

2.1. Dataset
2.1.1. National Lung Screening Trial

The NLST [16] was a clinical trial conducted in partnership between the Lung Screen-
ing Study group and the American College of Radiology Imaging Network, with the aim of
ascertaining whether the use of low-dose helical CT for lung cancer screening in high-risk
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patients would reduce mortality in comparison to chest radiography. For that reason, indi-
viduals with ages between 55 and 74 and considered high-risk (current or former smokers
with 30 years or more of cigarette pack smoking history) were randomly assigned to one of
two possible study arms: one in which participants were scanned with chest radiography,
and another in which CT was used as a screening imaging modality. Given the scope of
this work, the focus was on participants who were screened with CT, and, as such, data
regarding those participants were retrieved (representing a subset of the entire dataset),
which included CT images, abnormalities annotations and lung cancer screening results, as
well as participant data.

2.1.2. CT Scans

The CT scans provided were acquired with different equipment and scanning proto-
cols, which resulted in differences in slice thickness and pixel spacing. For this reason, and
to ensure homogeneity across all images, resampling was applied that set the pixel spacing
to 1 mm in axes x, y and z. Afterwards, images were resized to a dimension of 128 × 128 pix-
els and submitted to a min–max normalization, with −1000 and 400 Hounsfield Units (HU)
defined as lower and upper limits, to transform the original range of HU intensities to a
range of [0, 1]. In the end, each scan had a dimension of 128× 128×s, in which s represents
the number of slices for that scan. This dataset does not provide the segmentation masks
of the identified nodules; thus, 20 × 50 × 50 bounding boxes containing the nodule in
their center were manually created, with a total of 1079 3D nodule regions of interest (ROI)
obtained, from which 655 were of the benign class and 424 of the malignant class. For some
of the patients, more than one nodule was identified, and thus, the 1079 cases represented,
in fact, a total of 1005 patients. Examples of the bounding boxes of CT slices in axial view
are presented in Figure 1.

Figure 1. Example of bounding boxes of the CT slices of the NLST dataset. From left to right, the first
three images correspond to malignant nodules, whereas the last three images correspond to benign
nodules [16].

2.1.3. Clinical Features

The NLST dataset also provides participant data with regards to the study in which
they were enrolled; participant identifier demographics (such as age, height, weight and
education); smoking habits; screening; invasive procedures and possible complications;
lung cancer results; last contact; death; occupational exposure to pollutants and prevention
measures; medical history; cancer history; family history of lung cancer; alcohol habits;
and lung cancer progression. Given the fact that some of these features were related to
lung cancer screening results and further outcomes, they were discarded in the feature
selection process, in order not to introduce bias during the learning of the models, and, as a
result, a total of 136 features, out of the original 324, were selected, under the following
tags: demographic, smoking, work history, disease history, personal cancer history, family
history, and alcohol.

2.1.4. Summary

As explained above, the number of participants differs from the number of CT volumes
of nodules obtained since for some patients, there was more than one nodule identified;
hence, the distribution of classes benign and malignant of the CT scans and clinical data is
different as presented in Table 1.
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Table 1. Class distribution for imaging and clinical modalities.

Data Modality
Class

Task
# Benign # Malignant

CT Scans 522 339 Train
133 85 Test

Clinical Features 463 337 Train
121 84 Test

2.2. Methodology

Firstly, each data modality, the CT scans and the clinical features, was analyzed
separately with the purpose of investigating its individual effect on the classification task.
Afterwards, three different strategies that combine both modalities were implemented to
study whether joining information from different sources is beneficial and complementary
to the learning of the models. An overview of the pipeline implemented is depicted in
Figure 2.

3D CT Nodule ROI Clinical Features

Output

Single-Modality Model

Multi-Modality Model

Multi-Modality
Model

Imaging Model Clinical Model

Multi-Modality
Approaches

Single-Modality
Approaches

Figure 2. Overview of the pipeline implemented for study and comparison of the single- and
multimodality strategies for lung cancer classification. Concerning the single-modality approaches,
a classification model was developed for each of the data types utilized: an imaging model for the
3D CT nodule regions of interest and a clinical model for the clinical data. In the multimodality
approaches, there is a fusion of the information from the two modalities.

In all experiments, for the division of the data into training and evaluation, the
identifiers associated with the nodules were considered, with 80% used as training data
and the remaining 20% for testing. As for the clinical data, their division was made by
taking into consideration the task previously assigned to the respective nodule(s), see
Table 1. With the goal of identifying the best combination of hyper-parameters, 5-fold
cross validation was implemented, using 80% of the data assigned for training. In this
implementation, for each combination of hyper-parameters, the 80% was divided 5-fold.
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Four were used for training (64% of complete data), whereas the remaining was used for
evaluation (16% of complete data). The process was repeated five times, and an average
AUC was obtained. After all combinations were evaluated, the optimal parameters were
selected as the ones that obtained the highest AUC. At last, the network was trained with
the selected optimal set of parameters and using the 80% of the data assigned for training.
AUC was used as a performance metric [19], and binary cross entropy (BCE) was used as
the loss function.

2.2.1. Single-Modality Aproaches

With respect to the imaging data, a 3D ResNet-18 architecture was chosen, given
its proven efficiency in classification tasks. In the search for an optimal combination
of hyper-parameters, a 5-fold cross-validation was performed. The values used for the
optimizer—learning rate, batch size, dropout, and weight decay—are presented in Table 2.
When employing the 5-fold cross validation, it was ensured that nodules belonging to the
same patient were assigned to the same fold and that no data leakage occurred. The models
were trained for 50 epochs.

Table 2. Hyper-parameters used for the development of the imaging and intermediate fusion models.

Hyper-Parameter Value

Optimizer Adam, SGD
Learning rate 0.01, 0.001, 0.0001
Weight Decay 0.01, 0.001, 0.0001
Batch size 16, 32, 64
Dropout 0.3, 0.4, 0.5, 0.6

As for the clinical data, the random forest algorithm was chosen since it allows the
identification of the features to which more importance was given by the models. A
grid search with a 5-fold cross-validation strategy was implemented, using the AUC as a
scoring metric, and the parameters and respective values analyzed are presented in Table 3.
After assessing the impurity-based feature ranking produced by the highest-performing
model, the scope of features was narrowed down to 42. These features are as follows:
demographic (age, educat, ethnic, height, marital, race, and weight); smoking (age_quit,
cigar, pkyr, smokeage, smokeday, and smokeyr); work history (yrsasbe, yrsbutc, yrschem,
yrscott, yrsfarm, yrsfoun, yrspain, and yrssand); disease history (ageadas, agechas, agechro,
agecopd, agediab, ageemph, agehear, agehype, agepneu, agestro, diagchas, diagchro, and
diagpneu); personal cancer history (ageoral and cancoral); and alcohol (acrin_drink24h,
acrin_drinknum_curr, acrin_drinknum_form, acrin_drinkyrs_curr, acrin_drinkyrs_form,
and lss_alcohol_num).

Table 3. Hyper-parameters used for the development of clinical models.

Hyper-Parameter Value

# Estimators 200, 300, 400, 500, 600
Criterion gini, entropy
Max features sqrt, log2
Maximum depth 3–9
Class weight None, balanced

2.2.2. Multimodality Approaches

Regarding the fusion of the two modalities, there are three main strategies that can
be implemented: early fusion, in which the raw data from two or more modalities are
combined and given to a single model; intermediate fusion, in which features from each
modality are extracted, concatenated, and given to a single model; and late fusion, in
which the final classification output is a combination of the outputs given by each modality
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model [20]. In order to better exploit the information inherent to each modality and because
the CT volumes and the clinical features present distinct formats, the early fusion was
discarded, and priority was given to the intermediate and late fusion approaches. Figure 3
depicts the pipeline implemented for the three multimodality strategies.

3D CT Nodule ROI

Clinical Features

3D CT Nodule ROI

Clinical Features

512 deep
features

Half Intermediate Fusion

Full Intermediate Fusion

3D CT Nodule ROI

Clinical Features

3D ResNet18
Inference Model

Clinical
Inference Model

Late Fusion

Weighted
Average

Imaging Output

Single-Modality Model

Multi-Modality Model

Imaging Feature

Clinical Feature

Clinical Output

Multi-Modality Output

Classifier

Classifier

1 FCL +
Sigmoid  

3D ResNet18
Inference Model

3D ResNet18
Inference Model

(without classification
layers)

Figure 3. Overview of the pipeline implemented for the multi-modalities strategies. From top to
bottom: half intermediate fusion (HIF), with the fusion of the imaging output and clinical features;
full intermediate fusion (FIF) with the fusion of deep imaging features and clinical features; and late
fusion (LF) with the fusion of the outputs given by the imaging and clinical models. For the HIF
and FIF approaches, the lung cancer classification is given by a classifier constituted by one fully
connected layer (FCL). In the LF approach, the classification is a weighted average of the predictions
of the single-modality models.

In relation to the intermediate fusion, two methods were studied: one denominated
half-intermediate fusion (HIF), in which the malignancy probability of the volumes of the
nodules, given by an inference model (the ResNet18 imaging model that achieved the
highest AUC), was fused with the clinical features; and full intermediate fusion (FIF), in
which 512 deep imaging features of the volumes of the nodules, given by the last layer prior
to the classification layer of that same inference model of the HIF, are fused with the clinical
features. In both, the concatenated features are fed to one fully connected layer (FCL),
followed by a sigmoid activation layer that outputs the final probability. Furthermore, with
respect to the clinical features used, two different sets were tested: one with the original
136, and another with the selected 42, as described above. A 5-fold cross validation was
performed in the search for the optimal parameters. The hyper-parameters implemented
are presented in Table 2. The models were trained for 200 epochs.
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As for the late fusion (LF) approach, the weighted average of the outputs of the
imaging model and the clinical model was computed and used to estimate the malignancy.
The weight assigned to each output ranged between 0.1 and 0.9.

3. Results and Discussion

This section includes the results obtained for the strategies developed and further
discussion.

Table 4 presents the results of the models that demonstrated the best performance for
each one of the five methods studied, as well as the number of features used, in the cases in
which they were necessary. From the results of the 5-fold cross-validation implementation,
for the single-modality approaches, the mean AUC and standard deviation obtained for the
image and clinical models were, respectively, 0.7227± 0.0311 and 0.5924± 0.0188. As for
the intermediate fusion approaches, mean AUC and standard deviation of 0.9195± 0.0029
and 0.8750± 0.0129 were obtained for the half intermediate fusion and full intermediate
fusion models, respectively. Table 5 presents the hyper-parameters for three of these models,
namely the imaging model and both intermediate fusion models. As for the clinical model,
the set of parameters that achieved the best performance was as follows: 300 estimators
with a maximum depth of 7 and the maximum number of features given by log2. The
weight of the classes is balanced, and gini was used to measure the quality of the splits.
The hyper-parameters of the single-modality models of the LF approach were formerly
described. The result presented in Table 4 corresponds to an image output weight of 0.8
and respective clinical model output weight of 0.2, which is the combination of weight
factors that achieved the highest AUC.

Table 4. Results obtained for the five methods implemented. The highest performance metric,
highlighted in bold, is obtained for the Full Intermediate Fusion approach.

Approach # Clinical Features AUC

Single-Modality
Image Model - 0.7897

Clinical Model 136 0.5241

Multimodality
HIF 42 0.7934
FIF 42 0.8021
LF 136 0.7911

Table 5. Hyper-parameters of models with the highest performance metric for the image-only and
intermediate fusion approaches.

Approach Optimizer
Learning Weight Batch

Dropout
Rate Decay Size

Single Modality Image Model SGD 0.0001 0.001 32 0.4

Multimodality
HIF Adam 0.01 0 16 0.4
FIF Adam 0.0001 0 64 0.5

It is possible to observe that the multimodality approaches are the ones that present
the highest performance metric, which can indicate that combining information from
different sources has the potential to improve the performance of the models, particularly
in comparison with the clinical model. Nonetheless, these improvements are minimal when
compared to the value obtained for the imaging model. Effectively, when analyzing the
results obtained by the imaging model, one can see that the CT volumes containing the
nodules lead to a higher capability to distinguish cancer from non-cancer diagnosis.

One possible explanation could reside in the fact that the clinical features used may
not bring enough relevance to the learning, as made evident by the poor results obtained by
the clinical model. These results are also in agreement with what one would expect since
in a clinical context, the lung cancer diagnosis is not based solely on the characteristics of
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the patient, pertaining to personal information and medical history. Similarly, considering
that the LF approach combines the predictions of the single-modality models and given
the results of the clinical model, it was likely that it would present the lowest AUC among
the three multimodality methodologies. Those insights are reflected as well in the results
of the intermediate fusion approaches, for which the attention of the network is mostly
on the imaging inputs, produced by the imaging inference model. On the other hand, the
configuration of both intermediate fusion models is constituted by a single FCL, equivalent
to the last layer of the imaging model, i.e., the classification layer, and it seems that this
network was not able to fully capture the relationship between the clinical data and the
features of the CT volumes, assuming its existence.

Limitations

When analyzing the results presented in the literature, existing methods can reach
performance metrics above 0.90 [7,9–12]. However, the LIDC dataset is used for the
development and evaluation of their proposed methodologies. The usage of this dataset
results in these excellent metrics since the data do not represent a realistic view of the
clinical context (they contain mostly easier cases) and do not translate the full heterogeneity
of lung cancer patterns. Moreover, the LIDC dataset provides nodule contours as a result of
the annotation process made by experts, and these nodules are labeled into five malignancy
categories that can be further subclassified as benign, malignant and indeterminate. The
indeterminate nodules, in some approaches, are discarded, which may lead to higher
performance metrics [7]. On the other hand, this study made use of a dataset, the NLST
dataset, different than what the vast majority of the proposed algorithms used. The NLST
dataset presents cases with more complex lung cancer patterns (that are, therefore, more
challenging) and, in addition, it does not provide nodule annotations. The regions of
interest of the nodules used in this study were generated in a manual process susceptible to
human errors, with some degree of uncertainty regarding the malignancy level. Ultimately,
all these factors had an impact on the learning models, resulting in lower performance
metrics. Considering the work that uses a mutual dataset [13], the NLST dataset, another
two datasets were used by the authors of [13], with a total of 327 participants, whereas this
study used a total of 1005 participants from the NLST dataset only, and it is not possible
to ascertain if the same patients were used. Moreover, in this work, regions of interest of
the nodules were manually generated, which adds another layer of divergence. As such, a
comparison between the two works would not be fully equitable.

Additionally, the predictive capability of the clinical features seems to be very limited,
which is corroborated by the clinical practice, in which physicians use these data in an initial
phase of screening in order to discern patients that may have lung cancer. Afterwards, an
initial diagnosis of this pathology is given to those patients through the visual assessment
of medical images and subsequently confirmed with biopsy.

4. Conclusions

This work aimed at investigating the combination of more than one type of information
for predicting lung cancer, specifically, extracted from CT nodules and clinical data. The
study of each modality and the results obtained showed the utmost importance of the
imaging data, essential for lung cancer diagnosis. The clinical features used, on the contrary,
demonstrated poor predictive capability when used alone, which is understandable, as
they are used as complementary information in the clinical context, serving as primary
suspicion in the screening stage. The results obtained from the multimodality approaches
showed the potential of fusing different data modalities. The future investigation could
branch out from the described work, with the possibility of combining different strategies
and architectures, such as implementing deep learning approaches for the extraction of
features from the clinical data, with the goal of exploiting to its maximum potential the
relationship shared between two distinct modalities.
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Abstract: Reinforcement learning agents that have not been seen during training must be robust in test
environments. However, the generalization problem is challenging to solve in reinforcement learning
using high-dimensional images as the input. The addition of a self-supervised learning framework
with data augmentation in the reinforcement learning architecture can promote generalization to a
certain extent. However, excessively large changes in the input images may disturb reinforcement
learning. Therefore, we propose a contrastive learning method that can help manage the trade-off
relationship between the performance of reinforcement learning and auxiliary tasks against the data
augmentation strength. In this framework, strong augmentation does not disturb reinforcement
learning and instead maximizes the auxiliary effect for generalization. Results of experiments on
the DeepMind Control suite demonstrate that the proposed method effectively uses strong data
augmentation and achieves a higher generalization than the existing methods.

Keywords: deep reinforcement learning; self-supervised learning; contrastive learning; generalization;
data augmentation; network randomization

1. Introduction

Since the advent of AlphaGo, the potential of deep reinforcement learning has been
demonstrated, and it has been applied in various fields, such as autonomous driving and
automated robots. As Figure 1 shows, the combination of reinforcement learning and deep
neural networks allows control tasks to be performed using high-dimensional observations,
such as, images [1]. Notable successes include learning to play various games from raw
images (board games [2] and video games [3,4]), controlling a car from a camera frame in
the virtual environment [5], solving complicated problems from camera observations [6–8],
and picking up objects in the real world [9].

However, the use of high dimensional observations, such as raw images, may lead
to sample inefficiency [10,11]. In other words, learning the same number of steps shows a
lower performance when using images rather than using a low-dimensional state vector.
Among many studies, CURL increases the sample efficiency by learning the similarity
between the input frames through contrastive learning, which is a self-supervised learning
method that learns to extract richer representation from images while contrasting the query
and key [12]. However, due to overfitting in the training environment, the reinforcement
learning performance deteriorates even with minor background changes in the test environ-
ment that do not affect the action selection. In other words, in the unseen environment that
is semantically similar to the seen environment, the improvement in the sample efficiency

Sensors 2023, 23, 4946. https://doi.org/10.3390/s23104946 https://www.mdpi.com/journal/sensors17



Sensors 2023, 23, 4946

through contrastive learning is not guaranteed, and this is called a generalization problem
in vision-based deep reinforcement learning [13,14].

Figure 1. Vision-based reinforcement learning architecture.

Input image data are typically augmented to ensure a robust performance even in
environments that the model has not observed [15]. Learning from various input distribu-
tions through augmentation can help prevent over-fitting in the training environment. In
addition, data augmentation is essentially used for contrastive learning. Stronger data aug-
mentation results in more effective contrastive learning, the auxiliary task of reinforcement
learning, and generalization. However, the use of strong augmentation is limited because
a large change in the input frame disturbs the downstream task (here, via reinforcement
learning) [16]. By preventing the adverse effect of strong augmentation on reinforcement
learning, the benefits of contrastive learning can be maximized, and generalization perfor-
mance can be enhanced.

To improve the generalization of vision-based reinforcement learning, we propose a
convolutional–contrastive learning for reinforcement learning (C2RL): a simple architecture
that can be added to most reinforcement learning frameworks. Furthermore, we propose
a self-pretraining method to overcome the trade-off associated with the augmentation
strength and use strong augmentation for both reinforcement learning and contrastive
learning without performance degradation. (i) Until the initial steps of the training stage,
reinforcement learning and contrastive learning are performed without strong augmenta-
tion, such as random convolution. (ii) After training the encoder through self-pretraining,
strong data augmentation, such as random convolution, is applied to the input frame and
reinforcement, and contrastive learning is continued for the remaining training period.
(iii) Although the input data significantly change due to strong augmentation (random
convolution), robust feature extraction is possible, which does not significantly degrade
the performance of reinforcement learning. (iv) Contrastive learning can induce a greater
auxiliary effect on reinforcement learning due to strong augmentation.

One of the greatest contributions of this study is that strong augmentation is used
more effectively in our method than when the same strong augmentation is applied con-
sistently throughout training. Furthermore, our study introduces a new attempt on how
to efficiently use image data in reinforcement learning. None of the existing studies have
focused on contrastive learning using random convolution, despite its potential in achiev-
ing a stronger auxiliary effect. Experiments are performed in two modes of the DeepMind
Control (DMControl) suite, as shown in Figure 2. The proposed approach significantly out-
performs the existing generalization methods in both statically and dynamically changing
test environments.
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Figure 2. Left: Training environment (seen environment) of DMControl. Right: Test environ-
ments (unseen environments) of DMControl generalization benchmark (Color-hard and Video-easy
mode) [17].

2. Related Work

2.1. Soft Actor Critic (SAC)

For continuous control from raw images, we use the SAC, which is a state-of-the-
art, off-policy reinforcement learning algorithm that maximizes the expected sum of re-
wards [18]. The agent outputs action at from frame observations ot, which are stored as
transitions in the replay buffer D with reward rt. The parameters of the SAC are ψ of the
state value function Vψ , θ of the soft Q-function Qθ , and φ of policy πφ. To learn a critic
Qθ , the critic parameters are trained by minimizing the Bellman error using transitions
sampled from replay buffer D:

JQθ
= E(ot ,at)∼D

[(
Qθ(ot, at)−

(
rt + γVψ (ot+1

)))2
] (1)

The state value is estimated by sampling an action from the current policy πφ, and Qθ

denotes an exponential moving average of the critic network:

Vψ (ot+1) = Ea′∼πφ [(Qθ(ot+1, a′)− α logπφ(a′| ot+1)] (2)

The policy parameter φ is trained by minimizing the divergence from the exponen-
tial of the soft-Q function, and α is a temperature parameter for the stochasticity of the
optimal policy:

Jπφ = −Eat∼πφ [(Qθ(ot, at)− α logπφ(at|ot)] (3)

2.2. Self-Supervised Learning

Self-supervised learning, an unsupervised learning strategy, is aimed at learning
pretext tasks to improve the downstream task performance [19,20]. The trained model can
extract rich representations from unlabeled data by learning appropriate pretext tasks that
can facilitate downstream tasks, such as classification, object detection, or reinforcement
learning, and can utilize them through transfer learning [21]. Recently, self-supervised
learning models, such as MoCo [22], SimCLR [23], BYOL [24], and BERT [25], have made
great advancements in natural language processing and computer vision tasks, and have
also been actively applied to vision-based reinforcement learning.

Self-supervised learning can be divided into several types according to the pretext task.
Among them, contrastive learning is a self-supervised learning method aimed at increasing
the similarity between positive image pairs and decreasing the similarity between negative
image pairs [26]. As shown in Figure 3, to define the positive and negative pairs, the input
image is randomly augmented twice with each image acting as the query and key image.
Based on the query, the key augmented from the same image is defined as the positive
pair, and keys augmented from other images are defined as negative pairs. Contrastive
learning allows a query encoder to extract rich representation vectors from unlabeled
images, thereby improving the performance of downstream tasks such as reinforcement
learning. In our study, InfoNCE is used as the loss function for contrastive learning. In
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Equation (4), q is the query for contrast; k+ and ki are the positive and negative keys,
respectively; and W is a matrix for bilinear products [27]. Through the log loss of a K-
way softmax classifier with label k+, the encoder can learn embeddings to determine the
similarity between the query and keys.

LNCE = log
exp

(
qTWk+

)
exp(qTWk+) + ∑K−1

i=0 exp(qTWki)
(4)

Figure 3. Conventional contrastive learning architecture.

2.3. Network Randomization

Random networks have been used to improve the various performance metrics associ-
ated with deep reinforcement learning. For example, researchers focusing on ensemble-
based approaches used random networks to improve the uncertainty estimation and
exploration of deep reinforcement learning [28]. Moreover, in unexplored state recogni-
tion tasks, randomly initialized neural networks were used to define intrinsic rewards for
unexplored state visits [29]. In this study, we use a random network for improving the
generalization in vision-based reinforcement learning. The input image is randomized by a
single layer CNN with a kernel size of 3. Additionally, its output is padded in order to be in
the same dimension as the input. For every training iteration, parameter ω is reinitialized
with a prior distribution, such as Xavier normal distribution [30].

obsconv = fω
(
obsorigin

)
(5)

When input images pass through a convolutional layer that is randomly initialized in
every iteration of reinforcement learning, agents can be trained to be more invariant to the
unseen environment. In other words, augmented images, as shown in Figure 4, can signifi-
cantly improve the generalization of reinforcement learning as they vary the visual patterns
of the input data and provide various perturbed low-level features, such as the color, shape,
or texture [30]. Although strong data augmentation, such as random convolution, can
improve the auxiliary effect on generalization, it cannot be applied independently because
it significantly changes the distribution of images, resulting in instability and performance
degradation of reinforcement learning.
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Figure 4. Example of a random convolution process.

3. Proposed Convolutional–Contrastive Learning for RL (C2RL)

This section describes C2RL, which is a simple, convolutional–contrastive learning
architecture that can be attached to reinforcement learning frameworks. First, we describe
convolutional–contrastive learning: a novel method to enhance the generalization of vision-
based reinforcement learning. Subsequently, we introduce a training method that prevents
strong augmentation from degrading the performance of reinforcement learning and maxi-
mizes the improvement in the generalization performance in unseen test environments.

3.1. Randomized Input Observation

The agent is trained using randomized input observations. To randomize the input
observation, a single-layer convolutional neural network is added to the front of the feature
extractor as a random network. In each iteration, the parameters of the random network
are reinitialized along the Xavier normal distribution [31]. Through the use of the random
network, the output has the same dimensions as the input, and various observations with
different patterns are generated.

Image Blending

To prevent the loss of visual information due to excessive changes in the input image,
we blend the image that passes through the random convolutional layer and the original
image in a certain proportion, as shown in Figure 5. The image blending ratio is set through
parameter α.

obs = α× obsorigin + (1− α)× obsconv . . . (0 ≤ α ≤ 1) (6)

Figure 5. Principle of blending original and randomized images.

3.2. Strong Convolutional–Contrastive Learning

Equation (6) indicates that as α increases, the blending ratio of the original image
increases, and convolutional–contrastive learning cannot achieve a sufficient auxiliary
effect for the generalization performance. In contrast, when α is small, the large change
in the input may confuse reinforcement learning. We introduce a learning method to
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overcome the trade-off associated with data augmentation strength and effectively exploit
strong data augmentation. The training process is divided into two phases, as described in
the following subsections.

3.2.1. Self-Pretraining for Strong Augmentation

In the initial stage of training, random convolution is not applied to the input image.
Similar to CURL [12], the query and key representation vectors generated through the
encoders are used for reinforcement learning and contrastive learning. As shown in
Figure 6, no random convolutional layer is added, and the encoders are trained using
only weak data augmentation for contrastive learning. After this self-pretraining process,
the agent can use the strongly augmented image more efficiently. Unlike those in normal
pretraining, data are self-generated in self-pretraining.

Figure 6. Reinforcement learning and contrastive learning without the random convolution.

3.2.2. Convolutional–Contrastive Learning Strategy for Reinforcement Learning

After self-pretraining in the early steps of training, a single, random, convolution
layer is added to the front of the encoder to induce strong data augmentation as shown
in Figure 7. Although strong augmentation is used only during the remaining time, the
proposed approach outperforms the training methods that consistently use the same strong
augmentation in all stages of training.

Figure 7. Reinforcement learning and contrastive learning with the random convolution.

4. Results

The objective of the proposed approach is to maximize the generalization effect
through strong convolution–contrastive learning by preventing the performance degra-
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dation of reinforcement learning, owing to the strong augmentation. To evaluate the
generalization performance, we compare the scores in various unseen test environments af-
ter training the agent via 500 k steps in DMControl [17]. Following the settings of PAD [32],
we measure the generalization performance in the two types of test environments, i.e., those
involving statically changing background (color-hard mode) and dynamically changing
background (video-easy mode). We compare the test scores for the proposed augmenta-
tion methods of convolutional–contrastive learning and existing generalization methods.
The test score is the average of episode returns obtained using 10 random seeds for each
environment. Self-pretraining is performed for 200 k of the 500 k training steps.

4.1. Augmentation Methods for Convolutional–Contrastive Learning

We study the effect of various image blending parameters of our method(C2RL) on
the generalization performance. Figure 8 shows the test scores for the color-hard mode of
DMControl walker–walk environment. As shown in Figure 8a–d, a larger blending ratio of
images passing through the random network corresponds to a smaller difference between
the training score and test score, albeit with lower scores. In contrast, as shown in Figure 8e,
the self-pretraining method proposed in Section 3.2 can help achieve higher scores in the
test environment, even with considerable blending of the random images. Although the
training and test scores are temporarily reduced when strong augmentation is applied after
self-pretraining without random convolution, the proposed approach outperforms other
methods that use the same augmentation throughout the training process.

Figure 8. Learning curves on convolutional–contrastive learning. (a) uses only original image and
(b) uses only random image. (c,d) use blended image with blending parameter α is 0.8 and 0.2
respectively. (e) uses blended image with blending parameter α (0.2) after self-pretraining.

Figure 9 shows the results according to the image blending ratio. After self-pretraining,
we compare the results by setting the blending ratio α to 0.5, 0.2, and 0, and also shows
the best performance at 0.2. If the blending ratio is 0.5, the generalization effect by random
convolution is only half-used. However, we find that when the blending ratio is zero, a
large change of the image makes reinforcement learning more difficult.
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Figure 9. Results for the change in the multiple image blending ratio α after self-pretraining. From
the left, 0.5, 0.2 and 0 are used as blending parameters α, respectively.

Moreover, we compare the test scores associated with different blending parameters
of C2RL in various unseen environments of DMControl: normal SAC; CURL: using only
weak augmentation(random crop) without random convolution, same as C2RL with α = 1;
C2RL(0.8): using a small ratio of random blending (α = 0.8) without self-pretraining;
C2RL(0.2): using a large ratio of random blending (α = 0.2) without self-pretraining; and
C2RL(+SP): C2RL(0.2) with self-pretraining. As shown in Tables 1 and 2, the highest score
is obtained when self-pretraining is used in both modes of DMControl. In other words,
self-pretraining allows strong data augmentation to be used efficiently for reinforcement
learning and contrastive learning.

Table 1. Test scores for different augmentation methods in the DMControl color-hard mode.

Color-Hard SAC CURL C2RL(0.8) C2RL(0.2) C2RL(+SP)

Walker, walk 414 ± 74 445 ± 99 707 ± 43 617 ± 46 899 ± 15
Walker, stand 719 ± 74 662 ± 54 874 ± 46 912 ± 27 954 ± 16

Cartpole, swingup 592 ± 50 454 ± 110 790 ± 59 375 ± 39 794 ± 20
Cartpole, balance 857 ± 60 782 ± 13 921 ± 15 970 ± 22 978 ± 12
Ball in cup, catch 411 ± 183 231 ± 92 713 ± 166 713 ± 93 893 ± 44
Finger, turn_easy 270 ± 43 202 ± 32 438 ± 95 454 ± 133 464 ± 111

Cheetah, run 154 ± 41 202 ± 22 251 ± 33 274 ± 13 292 ± 5
Reacher, easy 163 ± 45 325 ± 32 317 ± 67 212 ± 91 332 ± 61

Table 2. Test scores for different augmentation methods in the DMControl video-easy mode.

Video-Easy SAC CURL C2RL(0.8) C2RL(0.2) C2RL(+SP)

Walker, walk 616 ± 80 556 ± 133 784 ± 34 689 ± 46 948 ± 15
Walker, stand 899 ± 53 852 ± 75 766 ± 47 891 ± 35 969 ± 23

Cartpole, swingup 375 ± 90 404 ± 67 589 ± 44 415 ± 38 600±16
Cartpole, balance 693 ± 109 850 ± 91 926 ± 13 942 ± 18 948 ± 12
Ball in cup, catch 393 ± 175 316 ± 119 692 ± 85 643 ± 93 747 ± 79
Finger, turn_easy 355 ± 108 248 ± 56 461 ± 188 367 ± 154 421 ± 143

Cheetah, run 194 ± 30 154 ± 50 287 ± 21 234 ± 32 265 ± 24

4.2. Comparison with Existing Reinforcement Learning Networks

We compare the proposed approach with state-of-the-art methods of vision-based
reinforcement learning; CURL [12]: a contrastive learning method using only weak augm
entation (random crop) for reinforcement learning, same as C2RL with α = 1; RAD [33]:
introduces two new data augmentations, i.e., random translate and random amplitude
scale; DrQ [34]: uses value function regularization through data augmentation; PAD [32]:
a self-supervised learning method for policy adaptation during the test. As shown in
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Tables 3 and 4, in all environments of DMControl, the proposed method outperforms the
state-of-the-art methods.

Table 3. Learning curves for various augmentation strategies (Color-hard).

Color-Hard CURL RAD DrQ PAD
C2RL + SP

(Ours)

Walker, walk 445 ± 99 400 ± 61 520 ± 91 468 ± 47 899 ± 15
Walker, stand 662 ± 54 644 ± 88 770 ± 71 797 ± 46 954 ± 16

Cartpole, swingup 454 ± 110 590 ± 53 586 ± 52 630 ± 63 794 ± 20
Ball in cup, catch 231 ± 92 541 ± 29 365 ± 210 563 ± 50 893 ± 44

Table 4. Learning curves for various augmentation strategies (Video-easy).

Video-Easy CURL RAD DrQ PAD
C2RL + SP

(Ours)

Walker, walk 556 ± 133 606 ± 63 682 ± 89 717 ± 79 948 ± 15
Walker, stand 852 ± 75 745 ± 146 873 ± 83 935 ± 20 969 ± 23

Cartpole, swingup 404 ± 67 373 ± 72 485 ± 105 521 ± 76 600 ± 16
Ball in cup, catch 316 ± 119 481 ± 26 318 ± 157 436 ± 55 747 ± 19

5. Conclusions

This paper proposes a novel, self-supervised learning method named C2RL, which al-
lows the agent to use strong augmented images as the input. Self-pretraining without strong
augmentation allows the agents to be trained by efficiently using strong data augmentation.
Experimental results on the DMControl suite show that using part of the training process
for self-pretraining, without strong augmentation, can promote the more efficient use of
strong data augmentation, such as random convolution compared with that when the same
strong data augmentation is used throughout the training. Moreover, the proposed method
outperforms the state-of-the-art methods in extracting robust visual representations.
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Abstract: As interest in point cloud processing has gradually increased in the industry, point cloud
sampling techniques have been researched to improve deep learning networks. As many conven-
tional models use point clouds directly, the consideration of computational complexity has become
critical for practicality. One of the representative ways to decrease computations is downsampling,
which also affects the performance in terms of precision. Existing classic sampling methods have
adopted a standardized way regardless of the task-model property in learning. However, this limits
the improvement of the point cloud sampling network’s performance. That is, the performance of
such task-agnostic methods is too low when the sampling ratio is high. Therefore, this paper pro-
poses a novel downsampling model based on the transformer-based point cloud sampling network
(TransNet) to efficiently perform downsampling tasks. The proposed TransNet utilizes self-attention
and fully connected layers to extract meaningful features from input sequences and perform down-
sampling. By introducing attention techniques into downsampling, the proposed network can learn
about the relationships between point clouds and generate a task-oriented sampling methodology.
The proposed TransNet outperforms several state-of-the-art models in terms of accuracy. It has a
particular advantage in generating points from sparse data when the sampling ratio is high. We
expect that our approach can provide a promising solution for downsampling tasks in various point
cloud applications.

Keywords: deep learning; transformer; self-attention; multi-head attention; point cloud; down
sampling; classification; network

1. Introduction

The technology for creating point clouds using 3D sensings, such as RGB-D cameras
and LiDAR, is advancing rapidly, and increases in computing speeds and interest in the
3D point cloud field are drawing attention as well [1–3]. This has raised the importance of
point clouds in various fields. Point clouds provide a detailed and accurate representation
of real-world objects and environments, allowing for the precise measurements, analysis,
and manipulation of 3D data. They have numerous applications in fields such as robotics,
autonomous vehicles, virtual reality, architecture, and cultural heritage preservation. As
the technology for creating point clouds continues to improve, we can anticipate an even
greater reliance on these data structures for a wide range of applications.

Because the form of 3D point cloud data differs from that of a typical image or natural
language processing (NLP) data, when point cloud research first began, new methods
of point cloud generation were needed because point clouds were contained in irregular
spaces with varying densities.

Initially, a method was proposed to convert 3D point cloud data into 2D images for
processing. This method converts the points of 3D point cloud data into pixels of an image
and treats them as images. While it has been successfully applied in the field of image
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processing, it does not fully reflect the complexity and diversity of 3D point cloud data.
Thus, other metrics are needed to process 3D point cloud data.

Initially, projection-based [4,5] and volumetric convolution-based methods [6–8] were
proposed to convert each point into a grid to handle a 3D point cloud and perform feature
extraction using convolutional layers in the same way as conventional 2D images on the
grid. Because these methods convert irregular points in 3D space into a grid format, the
number of points in the grid cell is uneven, resulting in the loss of information or wasted
calculations in certain cells. To overcome the problems of grid transformation, direct
point-based strategies have emerged. Some methods independently model each point
using multiple shared multi-layer perceptrons (MLPs) [9–11]. Depending on the type of
convolution kernel, 3D convolution methods have emerged [12–16].

Point clouds are being applied to various fields, such as classification, semantic seg-
mentation [17,18], and registration [19], instance segmentation [20,21]. These methods use
point cloud data as input and aggregate local features in the last step. While they main-
tain accurate location information, computational costs increase linearly with the number
of points, and processing high-capacity, dense 3D point cloud data remains challenging.
Accordingly, a method of sampling data is proposed to reduce the amount of data in the
3D point cloud and improve processing efficiency. Previously, heuristic-based sampling
methods, such as task-agnostic random sampling, fast point sampling, and grid voxel
sampling, have been used. However, these methods can degrade performance because
they lose information or select meaningless data from downstream tasks. Recently, a task-
oriented sampling network [22–24] was proposed, allowing the generation of sampling
that optimized the performance of downstream tasks. S-Net and SampleNet performed
well for specific tasks with sampling strategies using deep learning. In addition, APSNet
used the attention-based method to focus on relationships among the points. Still, these
models do not fully consider the relationship information between point clouds.

In this paper, we propose a methodology that leverages the complete information
from the input sequence to effectively interact with the task model for task-oriented sam-
pling. TransNet is a novel transformer-based model that handles an entire sequence in
parallel, capturing a long range of point cloud information and point-to-point interaction
information more effectively. Feature extraction is performed by adding the embedding
layer of the input and positional encoding. After generating the query, key, and value, it
proceeds through the transformer [25] layer with the self-attention mechanism to effectively
capture the complex interrelationships among points within the input point cloud data.
By focusing on the most informative points, our method can selectively sample only the
most relevant areas of the point cloud, thereby improving the efficiency of the network and
the accuracy of the output. Through this approach, we can gain a more comprehensive
understanding of point cloud data and easily extract meaningful features that are essential
for downstream tasks (see Figure 1). Our proposed model has achieved state-of-the-art
performance improvements in the field of point cloud classification. In particular, the effect
is remarkable for sparse points due to the high sampling ratio. To summarize, our main
contributions are threefold:

1. We propose TransNet, a novel self-attention-based point cloud sampling network, as
a task-oriented objective.

2. Our approach demonstrates enhanced performance on point cloud tasks, outperform-
ing both task-agnostic and task-oriented methods.

3. This approach effectively addresses the long-range dependency issues that are com-
monly encountered in point clouds. Thus, it has a notable impact on the sparsely
sampled point clouds, where a high sampling ratio is required to effectively capture
the underlying geometric structures.
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Figure 1. Overview of TransNet. TransNet divides the initial input into two parts. It calculates
a comprehensive attention score map for each part (top) and vector attention (lower left). Then,
multi-head attention is performed to understand the relationships between the points, and this
process is repeated for training. In the decoder part (lower right), pooling and MLP are used to
extract the final features. Detailed implementation methods are provided in Sections 3.1 and 3.2.

2. Related Work

Deep learning on point clouds: Deep learning has been applied to various point
cloud-related tasks, such as object detection, segmentation, and classification. For example,
Qi et al. [9,10] proposed point cloud classification and segmentation and achieved state-of-
the-art performance on several benchmark datasets. In addition, a deep learning model was
proposed for object detection in point clouds [26,27]. Other models have been proposed for
point cloud processing utilizing local features [16] and adaptive convolution operations [28].
Additionally, some studies have explored the use of generative models [29,30] for point
cloud generation and reconstruction tasks. One study [31] used a local self-attention
mechanism, unlike the global attention scheme used in previous studies. Furthermore, it
demonstrated that vector attention methods outperformed scalar attention methods and
introduced position encoding methods to properly process location information in point
clouds. Although the application was different in this paper, the self-attention technique
was encoded by applying the point cloud technique similar to the point transformer [31].
To preserve the location information, positional encoding was utilized, and a decoder was
constructed without undergoing multiple stages.

Point cloud sampling: Task-agnostic algorithms, such as random sampling, uniform
sampling, farthest point sampling (FPS), and grid sampling, have been widely used in
the past. Among them, FPS remains a popular choice in many recent studies [31,32].
While FPS has been widely used, it may not fully consider the downstream tasks for
which the sampled points are used, leading to potential performance degradation. Thus,
alternative downsampling methods have recently been proposed [22–24]. According to
Dovrat et al. [22], the efficiency and accuracy of sampling could be improved through a
learnable point cloud sampling method. Lang et al. [23] introduced a novel differentiable
relaxation for point cloud sampling. The authors of [24] proposed sampling attention
mechanisms to enhance the relationships among points by assigning importance weights,
allowing for a more effective sampling process. Our TransNet is a task-oriented sampling
method that mitigates long-range dependency while viewing the relationships between
points globally and locally.

Transformer and self-attention: Transformer and self-attention models have revolu-
tionized machine translation and NLP [25,33]. Considering this, such methods have been
increasingly used in the field of 2D image recognition [34,35]. Inspired by these findings,
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researchers have also attempted to apply self-attention networks to point cloud data. How-
ever, previous studies have utilized global attention on the entire point cloud, which limits
their applicability to understanding large-scale 3D scenes due to high computational costs.
Recently, Hengshuang et al. [31] developed a highly accurate and scalable self-attention
network, specifically for large 3D scenes, using vector attention applied locally. In contrast
to prior approaches, we applied a transformer locally to handle the input’s point cloud
sampling, which has been shown to be highly effective.

Nearest neighbor selection: In recent studies, nearest neighbor (NN) methods have
been widely used for information fusion. However, in the context of neural networks, the
main drawback is that the selection rule is not differentiable. To address this, Goldberger
et al., proposed the probabilistic relaxation of NN rules by defining categorical distributions
over a set of candidate neighbors. In our study, we applied self-attention to point clouds us-
ing k NNs, allowing for a better grasp of the relationships between the points. Additionally,
we incorporated skip connections to consider information from the global area.

Positional encoding: In the domain of deep learning models, positional encoding has
been commonly utilized to encode the positional information of input data. With respect to
point clouds, previous research has employed basic encoding techniques, such as Cartesian,
spherical, and polar coordinates, to incorporate the position information of the points.
However, these methods have limitations in terms of information loss and insufficient
expressiveness. To address this issue, some studies have employed learned positional
encoding techniques to incorporate more informative position information into the model.
These techniques usually involve learning a continuous function to represent the position
information, which can capture complex spatial relationships and patterns in point clouds.

3. Proposed TransNet

Here, we briefly explain the transformer and self-attention concepts. Transformer and
self-attention networks are innovative and have shown impressive results in NLP [25,33]
and 2D image analysis [34,35]. Recently, networks have also been applied to 3D point cloud
scenes [31,32]. Self-attention can be classified into two types: dot-product attention [25]
and vector attention [36]. The standard formula for dot-product attention is as follows:

yi = ∑
xj∈X

τ
(

α(xi)
T β

(
xj
)
+ δ

)
γ
(
xj
)

(1)

where xi ∈ X is a set of feature vectors, xi and yi are the input feature and output fea-
ture, respectively, α, β, and γ are pointwise feature transformations (e.g., MLP, linear
layer), and τ and δ are normalization functions (a so f tmax and a positional encoding
function, respectively).

Unlike dot product attention, vector attention measures show similarity by calculating
the distance between the input vector and the weight vector:

yi = ∑
xj∈X

τ
(
ε
(
μ
(
α(xi), β

(
xj
)))

+ δ
)� γ

(
xj
)

(2)

where μ is a relation function (e.g., subtraction, multiplication) and ε is a mapping function
(e.g., MLP) that produces attention vectors for feature aggregation.

3.1. Transformer-Based Sampling Layer

Traditional task-oriented sampling methods, such as S-Net [22], SampleNet [23], and
APSNet [24], use PointNet models that employ convolution networks to perform feature
extraction. Moreover, S-Net and SampleNet generate m points at a time, and APSNet
proceeds through the sequential generation process. In this study, we introduce a novel
deep-learning sampling model based on self-attention. We processed inputs by defining
the query, key, and value without using the convolution network. We used vector attention

31



Sensors 2023, 23, 4675

and the subtraction operation between the query and key. Our vector attention process was
as follows:

yi = ∑
xj∈Xknn

τ
(
ε
(
μ
(
α(xi), β

(
xj
)))

+ δ
)� γ

(
xj
)

(3)

Moreover, taking inspiration from [31], we performed self-attention within a local
neighborhood to avoid the high computational costs that arise from global self-attention.

Here, P ∈ Rn×3 denotes a point cloud that contains a given point cloud n, which is
the number of point clouds. We applied feature transformation to the local region selected
by KNN to generate value v. We created an attention map of the same size as the value
and used the indexing sum to create an attention score map W based on the relationship
between representative points (a detailed explanation is given in Section 3.2). Finally, we
obtained the attention value by using multi-head attention on the attention score map W
and value:

Attention value = ∑n
i=1 wi � v (4)

3.2. Attention Score Map

We defined FPS as an algorithm for extracting representative points and performed
multiple rounds of self-attention on the points extracted by FPS. With this result, we
obtained the query and key for each sampled point, proceeded through a subtraction
relationship, and then created a similarity in addition to Positional encoding. A description
of the figure is shown in Figure 2. This process was repeated for the number of farthest point
sampling performed. This resulted in the generation of an attention map that effectively
encompassed all the generated values called the scatter sum. We describe the process in
detail below.

Figure 2. Similarity calculation. Prior to performing value v and multi-head attention, we generated
attention scores for the sampled points via FPS and created an attention score map for multiple
similarities. Additionally, we incorporated positional encoding to retain positional information.

First, we performed the KNN algorithm to find local features for the initial input
and defined the value for local vectors. Then, we created an attention map for the empty
space corresponding to the shape of the vector to calculate the distance between the input
vector and the weight vector using vector attention. For the points S obtained through
the FPS algorithm as S ∈ P, we generated query and key vectors for the representative
S points among the N points generated through the FPS algorithm and examined their
similarity through the subtraction relationship of the two generated vectors, as described
in Equation (5).

wi = ∑
xj∈Xknn

α(xi)− β
(
xj
)

(5)

We added this to the index corresponding to the attention score map W. We repeated
this process for all set ratios R and applied a normalization activation function to the
resulting attention score map:

W = idx(w1) + idx(w2) + . . . + idx(wi) (6)

followed by performing multi-head attention with the initially obtained value v. Details
are described in Figure 3.
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Figure 3. Transformer sampling layer.

To summarize the process before entering the Decoder, the initial point cloud was
divided into two steps. In the first step (yellow area in Figure 1), the value v of the input
was obtained, and an empty attention map of the same size was created. In the second step
(gray area in Figure 1), a representative point was drawn through the FPS, and the query
and key were obtained for each of the selected Ssi×3; the similarity was obtained through
this. Subsequently, we added weights to each index of the attention map generated in the
first step to create a single attention map, which was then used to perform vector attention
with the value v.

By identifying the interrelationships between the points in the input sequence, self-
attention facilitated a better understanding of the relationships between each point, result-
ing in superior performance in handling long-term dependencies. Compared to traditional
models that use LSTM [37], our proposed model enables the parallel processing of input
sequences, resulting in superior performance, particularly in scenarios with high sam-
pling ratios.

3.3. Decoder

In the decoding stage, a max-pooling operation was conducted to collect the extracted
features. To generate the final output, a fully connected network (FCN) was utilized. To
mitigate the loss of positional information that was caused by employing a linear MLP
and positional encoding was further incorporated. Additionally, dropout was employed
as a regularization technique to prevent overfitting. The result contained a number of s
points for the task. With this result, we performed multi-task learning. By adopting a
multi-task learning approach, all tasks could be efficiently processed within a single model.
The concurrent training of these two models enabled us to effectively leverage the shared
data distribution and consider more inter-task correlations, thus further improving the
model’s performance. Further details regarding the model’s architecture are illustrated in
Figure 1 (lower right).

3.4. Loss

We applied supervised learning and used two types of loss: task loss Ltask and sam-
pling loss Lsample, to train TransNet, where Total loss is the sum of the weights added to
these two losses. The sampling loss Lsample aimed to minimize the distance between the
points sampled from S, and the corresponding points in P, while also ensuring that the
sampled points were spread out as much as possible across the original point cloud P.

Ltask can be defined as the cross-entropy loss for classification. Additionally, the
formula for this is as follows:

L(ŷ, y) = −
C

∑
i=1

yi log(ŷi) (7)
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Lsample is the sum of two things: average neighbor loss and maximum neighbor loss.
Given two-point sets Q1 and Q2, the average nearest neighbor loss can be denoted as:

La(Q1, Q2) =
1
|Q1| ∑

q1∈Q1

min
q2∈Q2

||q1 − q2||22 (8)

Additionally, maximal nearest neighbor loss can be given as:

Lm(Q1, Q2) = max
q1∈Q1

min
q2∈Q2

||q1 − q2||2 (9)

The sampling loss is then given by:

Lsample(Q, P) = La(Q, P) + βLm(Q, P) + (γ + δ|Q|)La(P, Q) (10)

where β, γ and δ are the hyperparameter that adjusts the size between losses. In conclusion,
the total loss is then as follows:

Ltotal = Ltask + λLsample(Q, P) (11)

where λ is a hyperparameter value that adjusts the value between the task loss and the
sample loss.

4. Experimental Results and Discussion

In this section, we demonstrate that the performance of our TransNet is superior to
that of existing sampling methods in various fields. We conducted experiments in the
classification and registration domains and proved that the performance was particularly
good in areas with high point cloud sampling ratios. We experimented with two variations
of TransNet (W.O indexing summation) and TransNet. The former is a model that applies
the transformer architecture. This is a method of applying the Transformer method by
generating queries, keys, and values based on existing information without using FPS
points. The latter is a model that incorporates an attention map into the transformer
architecture. This last model performed better, and here we experimented by comparing
the latter model with those of other papers.

We implemented TransNet in PyTorch, setting the batch size, SGD optimizer with mo-
mentum, and weight decay to 128, 0.9, and 0.0001, respectively. In addition, we conducted
400 epochs of training in all the experiments. For classification, we used the ModelNet
40 dataset [38]. We performed experiments on 1024 points that were uniformly sampled.
To train and evaluate our models, we used the train-test split dataset provided on the
official website. We used instance-wise accuracy as a metric to evaluate the classification
results of each sample in multi-class classification problems. Each sample belonged to
a single class, and if the predicted class by the classification model matched the actual
class, the sample was considered “correctly classified”. Therefore, instance-wise accuracy
represents the proportion of samples that were correctly classified among all the samples.
Furthermore, we focused our experiments on sparse points with sampling ratios of 16, 32,
64, and 128, which had previously shown an inferior performance in all papers. In this
study, we conducted an experimental analysis using PointNet, which led us to assume the
outcomes of Table 1.

The sampled experiment would not surpass the accuracy achieved by the original
PointNet prior to sampling. Therefore, we contended that using other state-of-the-art
models can also lead to higher sampling accuracy. For example, in the case of classification,
since PointNet was defined as the underlying model, it was assumed that the performance
of the unsampled PointNet would not be exceeded by any sampled model.

As Figure 4 shows, we have created a model that exceeds the performance of existing
models for the experimental results of sampling 8, 16, 32, 64 for 1024 points each. In
particular, we demonstrated that the sparse points (the results of sampling 8 or 16) resulted
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in greater deviations from other models and that our model was more robust in sparse data.
In Figure 5, we present a sampling comparison experiment of our model and comparison
model on the same object, from which we can clearly see the difference. Our model samples
objected much more evenly and reasonably than an APSNet model’s sampling result,
demonstrating its superior performance in classification results. As a result, our TransNet
had a better grasp of corners and characteristic parts than existing methods. However, all
deep learning models exhibited a tendency to mislead in certain areas (table legs, flower
in a pot, etc.), with many weak characteristics in common, and this problem remains to
be solved.

Table 1. Classification accuracies of five sampling methods on ModelNet40. All experiments were
conducted in the same environment.

Sampling Ratio 128 64 32 16

RS 8.7 24.87 54.53 79.26
FPS 24.3l 55.12 76.92 87.53

SampleNet [23] 80.71 85.32 86.38 87.10
APSNet [24] 82.72 84.89 86.66 88.00

TransNet 87.47 88.16 88.49 87.88

Figure 4. Instance accuracy. This is the result of training three sampling models (SampleNet, APSNet,
TransNet) on the ModelNet40 dataset after uniformly sampling 1024 examples. The sampling ratios
used were 128, 64, 32, and 16. For example, if 8 examples were sampled from 1024, the sampling ratio
would be 128. TransNet achieved much better performance in sparse areas such as (a,b) and showed
superior performance in other areas. Less sparse (c,d) can also see similar or higher levels of results
than existing papers. The classification accuracies are shown in Table 1.
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Figure 5. Visualized Sampled Points. Results for 8, 16, and 32 sampling points (green) on ModelNet40.
The results on the left are from TransNet (a), and those on the right are from APSNet (b). Moreover,
from top to bottom, the objects are a laptop, nightstand, chair, and airplane. The gray points represent
the original ground truth, and the green points were generated. From the overall shape, the result
value of our TransNet (a) szx more evenly expressed than the result value of APSNet (b). Overall, for
square objects (laptop, desk), the method tended to have a better grasp of the ends, while for objects
such as chairs, it tended to have a better grasp of the legs. Detailed class-specific results are shown in
Table 2.
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Table 2. Class-specific accuracies of two sampling methods on ModelNet40. All experiments were
conducted in the same environment.

Sampling
Ratio

Laptop Chair Nightstand Airplane

128
SampleNet 81.32 91.38 38.18 97.51

APSNet 83.33 95.56 42.18 98.52
TransNet 85.32 96.49 51.88 99.1

64
SampleNet 85.23 94.38 59.38 98.11

APSNet 88.88 95.52 64.67 99.49
TransNet 91.42 96.52 65.92 99.55

32
SampleNet 89.29 86.38 67.21 98.89

APSNet 90.90 94.68 67.39 99.50
TransNet 90.91 97.05 72.50 99.00

5. Conclusions

Transformer algorithms have been expanded beyond the natural language process into
various fields. We applied this algorithm to the field of point cloud sampling and achieved
successful results. In this paper, we proposed a novel transformer-based point cloud sam-
pling network to achieve precision performance. While S-Net and SampleNet generated the
sampling process using MLP-based methods, and APSNet used an attention-based model,
TransNet employed a multi-head self-attention technique in the down-sampling process.
In addition, assuming that FPS is a representative point for viewing general-purpose infor-
mation, we created an attention map that collected information after proceeding through
several FPS algorithms and indexed it for each location while applying multi-head attention.
This strategy improved the relationship between each point in the learning procedure while
it also learned simultaneously with task models and reasonably understood relationships
alongside alleviating long-range dependencies. The proposed TransNet demonstrated a
better performance in terms of precision, especially on sparse data. Moreover, the proposed
sampling method could be applied to various kinds of point cloud deep learning networks.
Thus, its usefulness would be meaningful in many practical scenarios.

6. Ablation Study

6.1. K-Nearest

After extracting the representative points with FPS, we applied the K-nearest neigh-
bor algorithm to find the neighbor points for the representative points and identify the
association between the points. The neighborhood size k is the number of neighbors in the
representative point P of a point q ∈ Q. We evaluated the impact of the hyperparameter,
k, by training multiple progressive TransNet for classification with different values of k.
TransNet was applied as k = 16, and experiments were conducted on k ∈ {4, 8, 16, 32},
respectively. The results of the experiment are shown in Table 3. If the neighbor was
smaller (k = 4 or k = 8), there might not have been enough context for the model to make
predictions. If the neighbor was larger (k = 32), each self-attention layer had a large number
of data points, many of which could be further away and less relevant. This could result in
excessive noise during processing with the potential to degrade the accuracy of the model.

Table 3. The accuracy of TransNet according to K. All experiments were conducted in the same
environment, and we adopted K = 16.

K-Size TransNet-4 TransNet-8 TransNet-16 TransNet-32

Sampling ratio 128 64 32 128 64 32 128 64 32 128 64 32

Instance Accuracy 85.36 86.24 85.32 85.95 86.68 85.93 87.47 88.16 88.49 86.21 87.67 87.58
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6.2. Additional Experiments

As mentioned briefly earlier, when applying the Task model without the sampling
model, higher accuracy was achieved compared to the application of the sampling model.
When tested with PointNet, an accuracy of 90.08 was obtained. To be as close to this target
as possible, we made several attempts, such as adding dropout, skipping connections, or
experimenting with added positional encoding to add positional information in different
parts of the model. The activation function also conducted many experiments, such as
ReLu, Leaky ReLu, and ELU. As a result, we set the probability of the dropout to 0.1 and
added positional encoding to the encoder and decoder portions of the model, respectively.
The activation function performed best when using ReLu.
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Abstract: The detection of anomalies in multivariate time-series data is becoming increasingly
important in the automated and continuous monitoring of complex systems and devices due to the
rapid increase in data volume and dimension. To address this challenge, we present a multivariate
time-series anomaly detection model based on a dual-channel feature extraction module. The
module focuses on the spatial and time features of the multivariate data using spatial short-time
Fourier transform (STFT) and a graph attention network, respectively. The two features are then
fused to significantly improve the model’s anomaly detection performance. In addition, the model
incorporates the Huber loss function to enhance its robustness. A comparative study of the proposed
model with existing state-of-the-art ones was presented to prove the effectiveness of the proposed
model on three public datasets. Furthermore, by using in shield tunneling applications, we verify the
effectiveness and practicality of the model.

Keywords: multivariate time-series; anomaly detection; short-time Fourier transform

1. Introduction

In real-world applications, complex systems and devices, such as smart grids, water
treatment systems, shield machines, and self-driving cars, typically contain multiple sensors.
During operation, these sensors generate large quantities of time-series data that are often
interrelated. Abnormal changes in the data from one sensor can affect the data from other
sensors, making it increasingly difficult to detect anomalies in this growing volume and
dimension of data. The development of efficient and accurate multivariate time-series
anomaly detection algorithms is crucial for the continuous monitoring of key indicators or
parameters in these systems and devices, ultimately increasing their level of automation.

In recent years, deep learning has become a widely adopted tool for time-series
data analysis [1], with the ability to effectively extract both temporal and spatial features.
At present, multivariate time series anomaly detection is mainly divided into the following
three methods: (1) Temporal correlation-based method, where each variable is impacted by
historical data values. Recurrent neural networks (RNNs) [2–6] and temporal convolutional
networks (TCNs) [7] have gained popularity for their ability to extract temporal features.
RNNs store past information in time and automatically extract advanced features from
historical data, while TCNs provide greater flexibility in changing the size of the receptive
field, enabling better control over the memory length of the model. (2) Spatial correlation-
based method, which describes the correlation between different variables. In terms
of extracting spatial features, graph neural networks (GNNs) and their variants [8–10]
have played a critical role. GNNs view each variable in multivariate data as a node
and the relationships between variables as edges. This allows the GNN to learn the
relationships between variables and extract potential spatial features. However, with an
increasing number of sensors, the use of GNNs can lead to higher space complexity and
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greater memory requirements when learning these relationships. (3) The method for spatial-
temporal correlation fusion, of which Transformer is a typical model [11–13]. Transformer’s
self-attention mechanism can capture the potential correlation between sequences, and its
position encoding and upsampling algorithm can capture multi-scale temporal information.
However, it is worth noting that the training process of the transformer-based model
requires powerful computer hardware and the complexity of the model may hinder its
deployment in practical engineering projects.

Recurrent neural networks are prone to gradient disappearance or gradient explosion
when processing large amounts of data. The greater the number of sensors, the greater
the memory occupied by the graph neural network in extracting spatial features from
multivariate data. The model based on transformer has high requirements on equipment
hardware in the training stage, coupled with the harsh site environment of shield engineer-
ing projects, so it is difficult to apply to shield engineering. Therefore, we propose a stable
and practical model for multivariate time-series anomaly detection. The model is based on
a dual-channel feature extraction module. Unlike previous studies in the literature, our
model combines spatial STFT to extract spatial features and the time-based graph attention
layer to extract temporal features. These features are then fused and fed into the subsequent
network structure. As a result of the fusion of different feature information, the proposed
method can be more accurate and robust in its detection of anomalies.

The contributions of the paper are as follows:

1. A multivariate time-series anomaly detection model based on dual-channel feature
fusion (DCFF-MTAD) is proposed.

2. A spatial short-time Fourier transform module is presented for fully extracting spatial
features from multivariate data.

3. In order to improve the robustness of the anomaly detection model, the Huber loss
is introduced.

4. Our network shows good performance on three publicly available datasets.
5. Extensive ablation experiments are conducted to investigate the key factors improving

anomaly detection performance.

The structure of this paper is organized as follows. In Section 2, we present the
literature related to deep learning methods and short-time Fourier transform in anomaly
detection of multivariate time-series. Section 3 shows the dual channel feature extraction
module, feature fusion module, and anomaly detection module. In Section 4, we conducted
the comparative experiment with existing state-of-the-art models and the ablation study
of our model. In Section 5, we verify the effectiveness and practicability of our model in
shield tunneling engineering. In Section 6, we present the conclusion and the prospect of
future research work.

2. Related Work

In this section, we first review deep learning method in multivariate time-series
anomaly detection, and since our model relies on the short-time Fourier transform, we also
summarize related research works on the topic.

2.1. Deep Learning Method

Since data in complex systems or devices often lack anomaly labels, the problem
of anomaly detection is usually regarded as an unsupervised learning problem. During
the past few years, researchers have proposed many effective methods for unsupervised
anomaly detection.

2.1.1. Temporal Correlation-Based Method

Zong et al. [14] proposed a deep autoencoder Gaussian mixture model (DAGMM)
for unsupervised anomaly detection, which utilizes a deep autoencoder to generate a
low-dimensional representation and reconstruction error for each input data point, and
further fed it into a Gaussian mixture model. DAGMM jointly optimizes the parameters

41



Sensors 2023, 23, 3910

of the deep autoencoder and the hybrid model in an end-to-end manner and utilizes
a separate estimation network to facilitate the parameter learning of the hybrid model.
Hundman et al. [15] used LSTM for anomaly detection in spacecraft telemetry systems
and proposed a new non-parametric dynamic threshold (NDT) method that does not
rely on scarce labels or spurious parametric assumptions. Li et al. [16] proposed an
unsupervised multivariate anomaly detection method based on generative adversarial
network (GAN), which uses long short-term memory recurrent neural network (LSTM-
RNN) as the basic model in the GAN framework (i.e., generator and discriminator) to
capture the temporal correlation of the time-series distribution. Instead of processing each
data stream independently, the method considers the entire set of variables simultaneously
to capture potential interactions between variables. Audibert et al. [17] proposed USAD,
an autoencoder-based approach for unsupervised anomaly detection in multivariate time-
series, and conducted adversarial training inspired by generative adversarial networks.
Its autoencoder structure makes it an unsupervised method and enables it to show great
stability in adversarial training. Su et al. [18] proposed OmniAnomaly, which uses key
technologies such as random variable connection and plane normalization flow to learn
a robust representation of multivariate time-series, obtain its normal pattern, reconstruct
input data according to these representations, and detect anomalies using reconstruction
probability. Abdulaal et al. [19] extracted the priors of multivariate signals through spectrum
analysis of latent spatial representation to synchronize the representation of the original
sequence, then input the random subset of the synchronous multivariate into an automatic
encoder array that learns the loss of minimum quantile reconstruction, and finally infer and
locate anomalies through majority voting. Liang et al. [20] proposed the multi-time-scale
deep convolutional generative adversarial network (MTS-DCGAN) framework, which
used cross-correlation calculation based on multi-time-scale sliding Windows to transform
multivariate time-series into multi-channel feature matrix. By inputting the feature matrix
into DCGAN, multi-layer CNN can capture the nonlinear interrelated features hidden in
the original multivariate time-series without prior knowledge.

2.1.2. Spatial Correlation-Based Method

Deng and Hooi [21] proposed an attention-based graph neural network method—
GDN—which can learn the dependency graph between sensors, and identify and ex-
plain the deviation of these relationships, helping users infer the cause of anomalies.
Chen, X. et al. [22] proposed GraphAD, a new multivariate time series anomaly detection
model based on graph neural networks. They extracted patterns of key indicators from
attribute, entity, and temporal perspectives via graph neural networks. Wang, Y. et al. [23]
proposed a simple but effective graph self-supervised learning scheme called Deep Clus-
ter Infomax for node representation learning, which captures intrinsic graph attributes
in a more concentrated feature space by clustering the whole graph into multiple parts.
Yang, J., and Yue, Z. [24] proposed a hierarchical spatial-temporal graph representation that
constructs discriminative decision boundaries by learning hierarchical normality closed
hyperspheres on the generated graph structural representation, without requiring a prede-
fined topological prior. Razaque, A. et al. [25] proposed an anomaly detection paradigm
called novel matrix profile to address the full-pair similarity search problem for time-series
data in healthcare. A novel matrix profile can be used on large multivariate datasets and
produces high-quality approximate solutions in a reasonable amount of time.

2.1.3. The Method for Spatial-Temporal Correlation Fusion

Li, Y. et al. [26] proposed an inflated convolutional transformer-based GAN to improve
the accuracy and generalization of the model. They utilized multiple generators and a
single discriminator to mitigate the pattern collapse problem. Each generator consists of an
inflated convolutional neural network and a transform module to obtain both fine-grained
and coarse-grained information of the time series. Qin, S. et al. [27] proposed a novel
method for time series anomaly detection based on transformer and signal decomposition.
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They provide a multi-view embedding method to capture temporal and correlation features
of the signal. To make full use of temporal patterns, a frequency attention module is de-
signed to extract periodic oscillation features. Kim, J. et al. [28] proposed an unsupervised
prediction-based time series anomaly detection method using the transformer, which learns
the dynamic patterns of sequential data through a self-attentive mechanism. The output
representation of each transformer layer is accumulated in the encoder to obtain a repre-
sentation with multiple levels and rich information. The decoder fuses this representation
by means of a one-dimensional convolution operation. Therefore, the model can forecast
while considering both the global trend and local variability of the input time series.

2.2. Short-Time Fourier Transform

In recent years, short-time Fourier transform has become a successful method for
fault diagnosis or anomaly detection. In the existing research, most scholars have utilized
the short-time Fourier transform to convert the signal into a spectrogram, then extract
features from the spectrogram by using a convolutional neural network, and finally detect
or classify abnormal signals. Gultekin et al. [29] proposed a data fusion method based
on convolutional neural network, which used short-time Fourier transform to detect and
identify operational faults in automatic transfer vehicles (ATVs). Li and Boulanger [30]
combined the short-time Fourier transform spectra of the ECG signal with hand-made
features to detect more complex cardiac abnormalities, including 16 distinct rhythm ab-
normalities and 13 heartbeat abnormalities. Zhou et al. [31] proposed a radio anomaly
detection algorithm based on an improved GAN, which uses short-time Fourier transform
to obtain the spectral graph image from the received signal, then reconstructs the spectral
graph by combining the encoder network in the original GAN, and detects the anomaly
according to the reconstruction error and discriminator loss. Chong et al. [32] studied the
feasibility of detecting adverse substructure conditions by using bullet train load through
finite element numerical simulation. All the synthesized signals obtained from the numeri-
cal simulation are analyzed using fast Fourier transform (FFT) in the frequency domain
and short-time Fourier transform in the time-frequency domain. The three-dimensional
Fourier scattering transform proposed by Kavalerov et al. [33] is a fusion of time-frequency
representation and neural network architecture, taking advantage of short-time Fourier
transform and the numerical computational efficiency of a deep learning network structure.
Khan et al. [34] proposed a new network intrusion detection system (NIDS) framework
based on deep convolutional neural networks, which utilized the network spectrum image
generated by short-time Fourier transform to improve the accuracy of intrusion detection.
Haleem et al. [35] used short-time Fourier transform to convert ECG beats into 2D images
to automatically distinguish normal ECG from cardiac adverse events such as arrhythmia
and congestive heart failure. Sanakkayala et al. [36] used short-time Fourier transform
to convert bearing vibration signals into spectral graphs and then used the convolutional
neural network VGG16 to extract features and classify health conditions.

As mentioned above, both deep learning techniques and short-time Fourier transform
in multivariate time-series anomaly detection have shown superiority in some specific cases.
In our paper, we combine the advantages of these two techniques to research multivariate
time-series anomaly detection.

3. Methods

In this paper, we describe our multivariate time-series anomaly detection model DCFF-
MTAD in detail. Figure 1 shows the general framework of DCFF-MTAD, which includes
the following parts:

(1) Preprocessing module: multivariate time-series data collected from multiple sen-
sors are normalized and used as input to the model; (2) dual-channel feature extraction
module composed of time-based graph attention layer and short-term Fourier transform;
(3) feature fusion module based on gated recurrent unit (GRU); (4) anomaly detection mod-
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ule composed of prediction model, reconstruction model, and anomaly score calculation
method. Below is a detailed description of each of these modules.

Figure 1. The overall architecture of our proposed DCFF-MTAD.

3.1. Preprocessing Module
3.1.1. Data Format

A univariate time-series is generated by a single sensor and is strictly arranged by
timestamp. Multiple univariate time-series from the same entity form a multivariate time-
series. In this paper, t1, t2, · · · , tN is used to represent the timestamp; there are K sensors in
total, and the matrix X is used to represent the multivariate time-series as follows:

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1K
x21 x22 · · · x2K

...
...

...
xN1 xN2 · · · xNK

⎤⎥⎥⎥⎦ (1)

where xnk (1 ≤ n ≤ N, 1 ≤ k ≤ K) represents the value of the kth sensor at the timestamp tn.
In this paper, we use the sliding window of size l × K (1 < l < N) to obtain data.

3.1.2. Data Normalization

The input parameters of our model are multivariate data, which contain multiple
variables with different dimensional units. In the training process, this can lead to low
prediction accuracy of multivariate data, low reconstruction accuracy of multivariate
data, and slow gradient descent of the optimal solution. To resolve these issues, the data
normalization method is used to map the data values of multiple variables to the same
scale. We use the maximum and minimum values of each sensor data for normalization:

x̃nk =
xnk − xmin

k
xmax

k − xmin
k

(2)

where xmax
k and xmin

k respectively represent the maximum and minimum values of the kth
sensor data, and x̃nk represents the result of xnk after normalization processing.

3.2. Spatial Short-Time Fourier Transform

The curve forms of multivariate data are complex and varied, and most of the curves
are non-stationary signals. Since time-domain methods cannot obtain frequency informa-
tion, and frequency-domain methods cannot obtain instantaneous features, time-frequency
transform methods are often used in non-stationary signal analysis to diagnose industrial
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machinery faults [37]. STFT is a conventional and classic linear time-frequency analysis
method, which overcomes the shortcomings of the traditional Fourier transform, which
cannot reveal the local characteristics of the signal. Unlike STFT, the Wigner distribution is
a nonlinear distribution. Since the Wigner distribution does not use a window function
similar to the STFT definition, it has no loss of resolution when analyzing signals. Wigner
distribution is a traditional quadratic time-frequency distribution, and suffers from the
cross-terms presence, which will generate redundant interference information when pro-
cessing multi-component signals. The cross-terms-free Wigner distribution (frequently
named the S-method) unifies the desirable properties of STFT (cross-terms-free nature)
and Wigner distribution (optimal auto-terms presentation, high concentration, resolution,
and selectivity). Besides, the S-method provides both the noise influence reduction in
comparison to the conventional time-frequency tools (the spectrogram and the Wigner dis-
tribution) [38] and the best performances in estimation of the instantaneous frequency [39].
Compared with STFT, the operation of S-method is more complex, and it needs more
computation when dealing with multivariate data. Although the S-method has better
time-frequency analysis performance, its more complex computation is not conducive
to practical engineering applications. Considering the advantages and disadvantages of
various methods, STFT is used to extract features from a large number of multivariate time
series data.

Unlike the previous approach of applying STFT in the time dimension, we apply STFT
in the spatial dimension of multivariate data. Figure 2 illustrates how we perform the short
time Fourier transform in the spatial dimension.

Figure 2. The calculation process of spatial STFT.

The spatial short-time Fourier transform is defined as follows:

Spatial STFT(n, Q) = DFT{ fn(k)g(k)}, n = 1, 2, · · ·N (3)

where DFT denotes discrete Fourier transform. fn(k) denotes a function formed by multiple
variables in the spatial dimension and g(k) denotes a window function. Q denotes the
location of the computed Fourier transform.

The spatial short-time Fourier transform is carried out on the multivariate time-series
data whose tensor dimension is (l, K). Set the window size (nperseg) of STFT to the
dimension of the dataset and the number of window function overlap to the default
value of 50%. After the transformation, the three-dimensional tensor with dimension
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(l, f , t) is obtained. f denotes the dimension of the extracted spatial features and t denotes
the dimension of the centroid of the window function.

3.3. Time-Based Graph Attention Layer (Time-GAT)

The graph attention network (GAT) uses attention weights to replace connections
between nodes that are either 0 or 1 and is able to automatically learn and optimize
connections between nodes by using the attention mechanism. The relationship between
nodes can be optimized into continuous values so that the expression of information is
more abundant, and the correlation between nodes can be better integrated into the model.
The graph attention network does not use the Laplace matrix for complex calculation,
and the calculation of its attention value is carried out in parallel between nodes, so the
calculation process of the graph attention network is very efficient. In this paper, we use
the same method as Zhao et al. [40] to construct the graph attention layer based on time.

As can be seen in Figure 3, all the data in the sliding window is considered to be a
complete graph. Specifically, the feature vector at a timestamp is represented by a node,
and the relationship between two timestamps is represented by an edge. In this way, the
time dependence in the time-series data can be captured.

Figure 3. Schematic diagram of constructing a time-based graph attention layer.

Generally, given a graph with N nodes, i.e., {v1, v2, · · · , vN}, where vi represents the
feature vector of each node, the calculated output of each node is as follows:

hi = σ

(
L

∑
j=1

αijvj

)
(4)

where σ represents the sigmoid activation function. αij represents the attention score that
measures the contribution of node j to node i, and node j is one of the adjacent nodes of
node i. L represents the total number of adjacent nodes of node i.

The calculation formula of the attention score αij is as follows:

eij = LeakyReLU
(

ωT · (vi ⊕ vj
))

(5)

αij =
exp

(
eij
)

∑L
l=1 exp(eil)

(6)

where ⊕ represents the concatenation of two node representations, ω ∈ R2m is a column
vector of learnable parameters, and m represents the dimension of the feature vector of
each node.

3.4. Feature Fusion Module Based on GRU

The dimension of the output data of the time-based graph attention layer is (l, K),
and the dimension of the output data after spatial short-time Fourier transform is (l, f , t).
Since the data after the short-time Fourier transform is a complex number, we conduct
modulo operation on it. To match the dimensions of the output data of the two channels,
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we conduct average operation on the third dimension t of the three-dimensional tensor
(l, f , t). Finally, we get the two-dimensional tensor (l, f ).

The GRU is a variant of the traditional RNN, which can effectively capture the correla-
tion between time-series data and alleviate the phenomenon of gradient disappearance or
gradient explosion in traditional neural networks. Compared with LSTM network, GRU
has a simpler structure and fewer parameters and requires less time in the training phase.
Therefore, GRU is chosen as the model of the feature fusion module.

The time and spatial features of the multivariate time-series are respectively extracted
through the time-based graph attention layer and the spatial short-time Fourier transform.
In this paper, the output data of the two channels are concatenated in the way shown in
Figure 4 to obtain a tensor with dimension (l, K + f ), which is then sent to the GRU and
mapped into a tensor with dimension (l, K) through the GRU.

Figure 4. Feature fusion map.

3.5. Loss Function

In multivariate time-series anomaly detection, loss function plays a very important
role. The loss function is a function used to measure the gap between the predicted data
and the actual data. For the same neural network, the selection of loss function will affect
the quality of model training to a certain extent.

Huber Loss is a piece-wise loss function for regression problems, which combines the
advantages of both mean absolute error (MAE) and mean square error (MSE). A model
using MSE as a loss function is likely to forcibly fit outliers to reduce the value of the loss
function, thereby affecting the output of the model. Compared with MSE, Huber Loss has
better robustness to outliers. Huber Loss is selected for its reliability and validity, which is
defined as follows:

Lδ(y, ŷ) =
{ 1

2 (y− ŷ)2, |y− ŷ| � δ

δ|y− ŷ| − 1
2 δ2, |y− ŷ| > δ

(7)

where ŷ represents the predicted value of y, and δ is a boundary. When the absolute value
of the difference between the actual value and the predicted value is less than or equal to
δ, the square error is used; When the absolute value of the difference between the actual
value and the predicted value is greater than δ, Loss is reduced and a linear function is
used. This approach can reduce the weight of outliers in the calculation of Loss and prevent
overfitting of the model.

A prediction-based model is used to predict the value of the next timestamp. We use
the same approach as Zhao et al. [40], stacking three fully-connected layers after GRU as
the prediction-based model. A reconstruction-based model is used to capture the data
distribution across the time-series. We use a GRU-based decoder as the reconstruction-
based model.

During training, the parameters of the prediction-based and reconstruction-based
models are updated simultaneously. Both models use Huber Loss as the loss function, and
the loss function of the entire model is defined as the sum of the loss functions of the two
models, as shown in the following formula.
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Loss = Lossprediction + Lossreconstruction (8)

where Lossprediction represents the loss function of the prediction-based model and
Lossreconstruction represents the loss function of the reconstruction-based model.

3.6. Anomaly Determination

There are two results for each timestamp: one is the predicted value based on the
prediction model and the other is the reconstructed value based on the reconstruction
model. We calculate the anomaly score for each variable and take the average of the
anomaly scores for all variables as the final anomaly score. The final anomaly score is
calculated as follows:

Anomaly Score =
1
K

K

∑
k=1

(∣∣∣xprediction
k − xk

∣∣∣+ γ
∣∣∣xreconstruction

k − xk

∣∣∣) (9)

where
∣∣∣xprediction

k − xk

∣∣∣ represents the deviation degree between the predicted value and the

actual value of variable k and
∣∣xreconstruction

k − xk
∣∣ represents the deviation degree between

the reconstructed value and the actual value of variable k. K is the total number of variables.
γ is a hyperparameter that balances the error based on the prediction model with the error
based on the reconstruction model.

The threshold is set to give the best boundary between normal and abnormal data.
Hundman et al. [15] proposed a non-parametric dynamic threshold method, which is an
unsupervised method and does not depend on labeled data and statistical assumptions
about errors. The non-parametric dynamic threshold method is selected for its low compu-
tational cost and high performance. We calculate the threshold for each variable and take
the average of the thresholds for all variables as the final threshold. If the anomaly score on
a timestamp is greater than the final threshold, the timestamp is marked as an anomaly.

4. Experiment

We have trained and evaluated DCFF-MTAD on three publicly available datasets,
compared it with existing state-of-the-art models for detecting anomalies in multivariate
time-series, and analyzed the experimental results. The datasets, evaluation metrics,
implementation details, comparative experiments, ablation study, and sensitivity analysis
are presented in this section.

4.1. Datasets

We selected three publicly available datasets, including soil moisture active passive
(SMAP) [41], server machine dataset (SMD) [18], and mars science laboratory (MSL) [41],
which are widely used anomaly detection datasets.

SMAP is a publicly available dataset of the amount of water in the earth’s topsoil col-
lected by NASA. The observation mission uses both active and passive sensors. The active
sensor is the L-band radar, and the passive sensor is the L-band microwave radiometer.

SMD is a 5-week public dataset collected from 28 computers of a large Internet
company.

MSL is a publicly available dataset from NASA that contains telemetry data from
spacecraft monitoring systems for unexpected event anomaly reports.

Table 1 shows the detailed statistics of the three datasets, including dataset name,
number of entities, dimensionality, size of training set and test set, and the ratio of anomalies
in the test set.
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Table 1. Dataset statistics.

Dataset
Name

Number of
Entities

Number of
Dimensions

Training Set
Size

Testing Set
Size

Anomaly
Ratio (%)

SMAP 55 25 135,183 427,617 13.13
SMD 28 38 708,405 708,420 4.16
MSL 27 55 58,317 73,729 10.72

4.2. Evaluation Metrics

We evaluate the anomaly detection performance of all models using precision, recall,
and F1-score on the test dataset. Precision indicates the percentage of correctly detected
anomalies among all detected anomalies, recall indicates the percentage of correctly de-
tected anomalies among all anomalies, and the F1 value is the harmonic mean of precision
and recall.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 =
2× Precision× Recall

Precision + Recall
(12)

where TP represents the number of samples correctly detected as abnormal in abnor-
mal samples; TN represents the number of samples correctly detected as normal in nor-
mal samples; FP represents the number of samples correctly detected as abnormal in
normal samples; FN represents the number of samples correctly detected as normal in
abnormal samples.

4.3. Comparative Experiments
4.3.1. Implementation Details

We implemented our model in Pytorch 1.10.0 and CUDA 10.2. The model was fully
trained on a server equipped with Intel(R) Xeon(R) Silver 4110 CPU @2.10GHz and an
NVIDIA Tesla P100 GPU (16G memory). To be fair, we set the learning rate for all models to
0.001, using the Adam optimizer for 10 training sessions and the non-parametric dynamic
threshold method. In our model, we set γ to 1, the batch size to 256, and the hidden layer
dimensions of the GRU-based feature fusion module, the prediction-based model and the
reconstruction-based model are all 150. In the feature fusion module based on GRU, the
prediction-based model, and the reconstruction-based model, the dropout mechanism [42]
is used to prevent the overfitting problem of the complex model. The key idea is to
drop some neurons (set output to zero) randomly during the training process with some
probability, which helps to prevent complex co-adaptations on training data. The dropout
ratio adopted in this paper is 0.3.

4.3.2. Experimental Results

We compared DCFF-MTAD with existing state-of-the-art models for multivariate
time-series anomaly detection, including LSTM [15], OmniAnomaly [18], USAD [17], MAD-
GAN [16], DAGMM [14], and GDN [21]. Table 2 shows the F1, precision (P), and recall
(R) of all models on the three public datasets. In terms of the F1 value, compared with
existing state-of-the-art models, our network structure performs well in multivariate time-
series anomaly detection, especially on the SMAP and SMD datasets. On the MSL dataset,
OmniAnomaly shows the best anomaly detection performance, but our model is also
second only to OmniAnomaly and outperforms the remaining models.
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Table 2. Anomaly detection performance metrics on three datasets. The best results are highlighted
in bold.

Models SMAP SMD MSL
F1 P R F1 P R F1 P R

LSTM 0.5800 0.9809 0.4118 0 * 0 * 0 * 0.8322 0.7126 0.9999
OmniAnomaly 0.5789 0.9747 0.4118 0.8709 0.7713 0.9999 0.9509 0.9064 0.9999
USAD 0.8360 0.9734 0.7326 0.8704 0.7713 0.9989 0.8959 0.8115 0.9999
MAD-GAN 0.5725 0.9390 0.4118 0 * 0 * 0 * 0.8367 0.7193 0.9999
DAGMM 0.5752 0.9536 0.4118 0.7892 0.6518 0.9999 0.9351 0.8782 0.9999
GDN 0.5773 0.9655 0.4118 0.7486 0.5991 0.9974 0.9051 0.8267 0.9999
Our Model 0.8955 0.9767 0.8268 0.9140 0.8416 0.9999 0.9366 0.9257 0.9478

* The place of 0 in this table is because the threshold selected by the non-parametric dynamic threshold method is
too high, resulting in TP and FP being 0. Therefore, the three calculation indicators are all 0.

As can be seen from Table 2, LSTM’s performance is suboptimal because it only
captures time information, as indicated by its F1 values of 0.5800 and 0.8322 on the SMAP
and MSL datasets, respectively. MAD-GAN’s performance is unstable, with F1 values of
0.5725 and 0.8367 on the SMAP and MSL datasets, respectively, due to the difficulty of
training GAN-based network, which may suffer from issues such as mode collapse and
non-convergence. USAD performs well on the SMAP, SMD, and MSL datasets, with F1
values of 0.8360, 0.8704, and 0.8959, respectively. USAD’s encoder-decoder architecture
combines the advantages of autoencoders and adversarial training, and is able to learn
how to amplify the reconstruction error of inputs containing anomalies. USAD is more
stable and robust than methods based on GAN architectures. The F1 value of DAGMM
on MSL dataset is 0.9351, which is lower than that of OmniAnomaly and Our Model.
DAGMM saves the key information of input samples in low-dimensional space, including
the features discovered through dimensionality reduction and reconstruction errors, so
it shows good performance on MSL dataset with higher dimensions. F1 values of GDN
on SMAP, SMD, and MSL datasets are 0.5773, 0.7486, and 0.9051, respectively. The GDN
captures the unique characteristics of each sensor, and its graph structure can learn the
relationships between high-dimensional sensors to detect deviations in those relationships.
The higher the dimension of the dataset, the better the GDN can play its advantages, and
the higher its F1 value. The F1 values of OmniAnomaly on the SMD and MSL datasets are
0.8709 and 0.9509, respectively. OmniAnomaly uses stochastic recurrent neural networks to
model the explicit time dependence between random variables, and planar normalization
streams to better capture the complex distribution of input data. Therefore, OmniAnomaly
shows good performance on the more complex high-dimensional MSL dataset. LSTM
focuses on the temporal features of multivariate data, and GDN focuses on the spatial
features of multivariate data. Our model extracts the spatial and temporal features of
multivariate data through spatial STFT and time-based graph attention layer, and these two
features are further fused. Therefore, our model contains richer feature information, which
is an important reason why our model is superior to other models. Our model improves F1
values by 7.12% and 4.95% on SMAP and SMD datasets, respectively. In addition, Huber
Loss is used to improve the robustness of the model, which makes the performance of our
model on the three datasets very stable. Although our model performs well on F1, the
complexity of our model is high. As shown in Table 3, parameters, FLOPs, and runtime of
our model are larger than other models.
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Table 3. Model complexity.

Model Parameters FLOPs Runtime

LSTM 3962 20,120 1.8 ms
OmniAnomaly 18,490 37,760 3.8 ms

USAD 10,609 33,760 3.7 ms
MAD_GAN 9903 25,920 3.1 ms

DAGMM 10,516 21,234 3.4 ms
GDN 4160 61,956 13.9 ms

Our Model 325,934 3,207,080 51 ms

4.4. Ablation Study

In this section, we conducted a series of experiments to verify the effectiveness of the
different components in the proposed DCFF-MTAD.

4.4.1. Effectiveness of Dual-Channel Feature Extraction Module

We propose a dual-channel module to extract features from multivariate time-series
data, which makes the feature information richer and improves anomaly detection accuracy.
To further demonstrate the effectiveness of our proposed dual-channel feature extraction
module, we conducted a series of experiments, including single-channel, dual-channel,
and triple-channel, and the experimental results are shown in Table 4. The feature-based
graph attention layer (Feat-GAT) in the ablation experiment was constructed in the same
way as in the study of Zhao et al. [40].

Table 4. The effects of dual-channel feature extraction module on three datasets. The best results are
highlighted in bold. �indicates that the module is used for experiments.

STFT Time-GAT Feat-GAT
SMAP SMD MSL

F1 P R F1 P R F1 P R

� 0.8086 0.9242 0.7187 0.9019 0.8213 0.9999 0.9196 0.9048 0.9348
� 0.8060 0.9759 0.6864 0.8335 0.7146 0.9999 0.8952 0.9037 0.8869

� � 0.8955 0.9767 0.8268 0.9140 0.8416 0.9999 0.9366 0.9257 0.9478
� � 0.6730 0.9866 0.5106 0.8844 0.7928 0.9999 0.9542 0.9662 0.9426
� � � 0.8938 0.9588 0.8372 0.8744 0.7768 0.9999 0.9258 0.9607 0.8934

On the SMAP dataset, our model shows better detection performance than the net-
work composed of spatial STFT and Feat-GAT, with 33.06% improvement of the F1 value.
Although the F1 value of our model is only 0.19% higher than that of the triple-channel
network, our model has fewer parameters, less computation, and shorter training time.

On the SMD dataset, our model performs better than the network composed of spatial
STFT and Feat-GAT, and the F1 value is improved by 3.35%. Our model performs better
than the triple-channel network, and the F1 value increases by 4.53%.

On the MSL dataset, our model performs weaker than the network composed of
spatial STFT and Feat-GAT, because the MSL dataset has a higher dimension than SMAP
and SMD. A major advantage of Feat-GAT is that it can capture the relationship between
higher-dimensional data. Therefore, Feat-GAT has given full play to its advantage on the
MSL dataset. Compared with the triple-channel network, our model still performs well,
and the F1 value has increased by 1.17%.

The experimental results of the above three public datasets show that our dual-channel
feature extraction module can extract richer data information, both in the time dimension
and in the spatial dimension. Therefore, our dual-channel feature extraction module
achieves better detection results than single-channel networks. In addition, our dual-
channel feature extraction module has fewer parameters than the triple-channel network,
which shortens the training time of the model.
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4.4.2. Effectiveness of Huber Loss

In this section, we investigate the effect of Huber Loss on model performance. To
verify the effectiveness of Huber Loss, we choose ordinary MSE Loss as the baseline. Above
the baseline, MSE Loss is replaced by Huber Loss, and other modules in the model remain
unchanged. We conduct this ablation experiment on three public datasets, and Table 5
shows the results of the ablation experiments.

Table 5. The effects of Huber Loss. The best results are highlighted in bold.

Loss
SMAP SMD MSL

F1 P R F1 P R F1 P R

MSE 0.8481 0.9458 0.7686 0.8913 0.8039 0.9999 0.9287 0.9103 0.9478
Huber 0.8955 0.9767 0.8268 0.9140 0.8416 0.9999 0.9366 0.9257 0.9478

When Huber Loss is used as the loss function of the model, the detection index is
significantly improved. On the SMAP dataset, F1 value, precision, and recall are increased
by 5.59%, 3.27%, and 7.57%, respectively. On the SMD dataset, the F1 value and precision
are increased by 2.55% and 4.69%, respectively. On the MSL dataset, the F1 value and
precision are improved by 0.85% and 1.69%, respectively. The experimental results show
that Huber Loss as a loss function can improve the detection performance of the model.

4.4.3. Effectiveness of Threshold Calculation Method

A study [43] showed that determining an appropriate threshold is as important as the
algorithm itself. The experiments in the part will further prove the point. In multivariate
time-series anomaly detection, there are two common threshold calculation methods: non-
parametric dynamic threshold (NDT) and peak over threshold (POT) [44]. We used the two
threshold calculation methods to conduct experiments on three public datasets, and Table 6
shows the experimental results.

Table 6. The effects of the threshold calculation method. The best results are highlighted in bold.

Method
SMAP SMD MSL

F1 P R Threshold F1 P R Threshold F1 P R Threshold

POT 0 * 0 * 0 * 1.0967 0.7137 0.5549 0.9999 0.1424 0.7467 0.9865 0.6007 0.9086
NDT 0.8955 0.9767 0.8268 0.6390 0.9140 0.8416 0.9999 0.2111 0.9366 0.9257 0.9478 0.5845

* On the SMAP dataset, the threshold obtained by POT is too high, resulting in TP and FP being 0. Therefore, the
three calculation indicators are all 0.

When NDT is used as threshold calculation method, the detection metrics are signifi-
cantly improved. On the SMD dataset, the F1 value and precision increased by 28.07% and
51.67%, respectively. On the MSL dataset, the F1 value and recall increased by 25.43% and
57.78%, respectively. The experimental results show that NDT can significantly improve
the detection performance of the model.

4.5. Sensitivity Analysis

The model proposed in this paper involves many parameters, such as sliding window
size, learning rate, γ, batch size, and the hidden layer dimensions of the GRU-based feature
fusion module, the prediction-based model, and the reconstruction-based model. Sliding
window size and γ are more important than other parameters. Therefore, we focus on
analyzing the sensitivity of the sliding window size and γ.

4.5.1. Sensitivity to the Window Size.

The sliding window size is an important parameter that affects model performance
and training time. We conducted several sets of experiments with different window sizes on
three public datasets, and the experimental results are shown in Figures 5 and 6. Compared
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with SMAP, F1 values fluctuate less on SMD and MSL. When we use smaller windows,
our model takes less time to train. If the window is too small, our model cannot capture
local contextual information well. If the window is too large, the training time of the model
will increase. The window size of 100 used in the experiments balances the F1 score and
training time.

Figure 5. F1 score with window size.

Figure 6. Training times with window size.

4.5.2. Sensitivity to γ

γ is an important parameter used to balance the error of the prediction model and
the error of the reconstruction model. We conducted several experiments with different
γ values on three public datasets, and the experimental results are shown in Figure 7.
Compared with MSL, the F1 values fluctuate more on SMAP and SMD. The γ of 1 we use
in the experiments balances prediction-based and reconstruction-based models well.
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Figure 7. F1 score with γ.

5. Case Study

In this section, we verify the effectiveness and practicality of DCFF-MTAD on our
dataset, which focuses on the shield machine—a critical piece of engineering equipment
used for tunnel excavation in projects such as subways and highway tunnels. Due to
the complexity and uncertainty of the underground environment, engineering safety and
quality problems occur from time to time. For our study, we consider a tunnel project
section with a total length of 943.5 m, where the shield tunneling method is employed for
construction. Specifically, we analyze an abnormal event report which indicates that the
shield machine passed through a karst cave between 13:23 and 21:32 on 2 November 2020.
The geological survey report shows that the cave fillings consist of soft plastic silty clay,
gravel sand, gravel, and other materials, which pose significant challenges for anomaly
detection due to their inhomogeneity and complexity.

We used 31,333 pieces of normal data from 13:35 on 23 October 2020 to 14:08 on
29 October 2020 as training data, and 6475 pieces of data from 06:01 on 2 November 2020 to
21:56 on 2 November 2020 as testing data. We selected the total thrust, advance speed, cutter
head torque, and screw speed recorded in the abnormal event report as the input parameters
of our model. Firstly, the input parameters were normalized, and then the processed data
were input into the spatial STFT module and the time-based graph attention layer in parallel
to extract the spatial and temporal features of the input parameters, respectively. The output
representations of the spatial STFT module and the time-based graph attention layer were
concatenated and fed into the GRU to fuse spatial and temporal features. The output of the
GRU was fed into the prediction-based and reconstruction-based models in parallel to obtain
the predicted and reconstructed values of the input parameters.

The experimental results on the testing data are shown in Figure 8. The green curve
represents the actual value, the orange curve represents the predicted value obtained
by the prediction-based model, and the dark blue curve represents the reconstructed
value obtained by the reconstruction-based model, all of which are normalized values.
Our dual-channel feature extraction module fully extracts the time and spatial features
of the construction parameters, and the prediction and reconstruction models use these
two features to predict and reconstruct the data. We used the anomaly score to measure
the difference between the value obtained by the model and the actual value, and an
appropriate threshold was calculated using the non-parametric dynamic threshold method.
When the anomaly score consistently exceeds the threshold, we consider it an abnormal
phenomenon, which is indicated by the light red box.
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As shown in Figure 8, the time of the purple line is 13:11 on 2 November 2020. From
06:01 to 13:11, total thrust, advance speed, cutter head torque, and screw speed of the
shield machine fluctuated around 0.75, 0.1, 0.5, and 0.1, respectively, and the anomaly
score was always below the threshold. From 13:11 to 13:23, the shield machine gradu-
ally approached the cave area, total thrust showed a downward trend, advance speed
and screw speed showed an upward trend, cutter head torque showed obvious fluc-
tuations, and the anomaly score gradually increased but did not exceed the threshold.
From 13:23 to 21:32, when the shield machine tunneled forward in the cave area, the total
thrust and cutter head torque decreased, the advance speed and screw speed increased,
and the anomaly score exceeds the threshold—this period is marked as abnormal. After
21:32, the shield machine left the cave area and the four construction parameters gradually
returned to the normal range, with the anomaly score gradually falling below the threshold.

Figure 8. Anomaly detection result graph.
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Our model extracts both spatial and temporal features of the construction parameters
through spatial STFT and time-based graph attention layer. The two features are fused.
This is because our model extracts the rich information hidden in the data, so the model
successfully can learn the normal behavior pattern of construction parameters. When the
construction parameter is abnormal, our model can detect the anomaly quickly. From this,
it can be seen that DCFF-MTAD is able to monitor whether the shield machine is operating
normally or not without much prior knowledge of the detection of abnormal behavior. This
would be of great significance for ensuring the safe operation of the shield machine and
improving its reliability by combining the proposed method with the automatic intelligent
control technology of the shield machine.

6. Conclusions and Future Work

In this paper, we propose DCFF-MTAD, a stable and practical multivariate time series
anomaly detection model, which employs dual-channel feature fusion. The performance of
the model is mainly guaranteed by (1) the temporal features of multivariate data extracted
by time-based graph attention layer; (2) the spatial features of multivariate data extracted
by spatial STFT; (3) the feature-level fusion of temporal features and spatial features
enriches the feature representation of data; and (4) the introduction of Huber Loss makes
the anomaly detection performance of the model more robust. Extensive experiments
are conducted to tune and validate the hyperparameters of the model to achieve the
best performance. Experimental results show that compared with the state-of-the-art
approaches, our method has the best anomaly detection performance on the SMAP and
SMD public datasets, with 7.12% and 4.95% improvement in F1 values, respectively. The
F1 score of our method is second only to OmniAnomaly on the MSL public dataset. In a
practical application scenario, our method can continuously monitor important parameters
during shield tunneling. Anomalies in construction parameters can be well detected when
the parameters deviate from normal behavior.

In future research, we will improve our method so that it can be widely used in
multivariate time series anomaly detection. The following suggestions can further improve
the performance of the method and increase the availability of the method in anomaly
detection: (1) The fully connected neural network used in the prediction-based model and
the GRU used in the reconstruction-based model are more commonly used methods. If
lower model complexity is required, the computational efficiency and performance of the
entire model could be improved by replacing them with faster and better modules. (2) The
choice of threshold is very important for the anomaly detection performance of the model.
If the selected threshold is too high, only a few anomalies can be detected; if the selected
threshold is too low, normal samples will be misjudged as abnormal. To further improve
the anomaly detection performance and universality of the model, two existing threshold
calculation methods (peak over threshold and non-parametric dynamic threshold) can
be optimized or a new one can be developed. (3) In the case study, our model learned
features from the normal behavior of construction parameters. On small-scale datasets,
unsupervised learning may be extended to supervised learning, which means that both
normal behavior and abnormal behavior can be used for learning data features.
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Abstract: Because of societal changes, human activity recognition, part of home care systems, has
become increasingly important. Camera-based recognition is mainstream but has privacy concerns
and is less accurate under dim lighting. In contrast, radar sensors do not record sensitive information,
avoid the invasion of privacy, and work in poor lighting. However, the collected data are often sparse.
To address this issue, we propose a novel Multimodal Two-stream GNN Framework for Efficient
Point Cloud and Skeleton Data Alignment (MTGEA), which improves recognition accuracy through
accurate skeletal features from Kinect models. We first collected two datasets using the mmWave
radar and Kinect v4 sensors. Then, we used zero-padding, Gaussian Noise (GN), and Agglomerative
Hierarchical Clustering (AHC) to increase the number of collected point clouds to 25 per frame to
match the skeleton data. Second, we used Spatial Temporal Graph Convolutional Network (ST-GCN)
architecture to acquire multimodal representations in the spatio-temporal domain focusing on skeletal
features. Finally, we implemented an attention mechanism aligning the two multimodal features to
capture the correlation between point clouds and skeleton data. The resulting model was evaluated
empirically on human activity data and shown to improve human activity recognition with radar
data only. All datasets and codes are available in our GitHub.

Keywords: human activity recognition; mmWave radar; Kinect V4 sensor; point clouds; skeleton
data; multimodal; two stream; attention mechanism

1. Introduction

As the world population ages, older persons are a growing group in society. According
to World Population Prospects 2019 (United Nations, 2019), by 2050, the number of persons
aged 65 years or over globally will surpass those aged 15–24. In addition to this, single-
person households have increased tremendously in the last few years due to societal
changes. With these population changes, home care systems have emerged as a promising
venue of intelligent technologies for senior and single-person households. In addition, the
recent COVID-19 pandemic has further increased the importance of developing home care
systems. The current mainstream home care systems are based on cameras [1]; however,
people can feel uncomfortable being recorded by cameras and hence might refuse to be
monitored by camera-based techniques. The biggest problem is the invasion of privacy. If
the personal data recorded by the camera is leaked, it may have devastating consequences.
There is also a problem with the accuracy of the camera being affected by the lighting and
its placement. Consequently, alternative approaches to home care are needed.

With the advances in Frequency-Modulated Continuous Wave (FMCW) mmWave
technology, human activity recognition by mmWave radar sensors has recently attracted
significant attention. A radar sensor can collect 3D coordinates called point clouds while
emitting and absorbing radio waves to and from objects. Moreover, depending on the
hardware or data collection tool type, other data (e.g., range and velocity) can be captured
simultaneously. A radar sensor also does not require a strict environment setting. In other
words, it works correctly even in poor lighting and with poor camera placement. Because
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a radar sensor does not record personal information as an image or video, the issue of
invasion of privacy is significantly reduced. However, radar produces sparse point clouds
due to the radar sensor’s radio wavelength and inherent noise. Many researchers have
devoted effort to processing sparse radar data [2–5] and have thus devised voxelization.
Voxelization is a method that converts point clouds into voxels with constant dimensions,
which researchers decide empirically. Singh et al. [6] voxelized point clouds with dimen-
sions 60 × 10 × 32 × 32 (depth = 10) and then fed them into a set of classifiers. Although
voxelization is a well-known pre-processing method, it is inefficient, as researchers must
decide the dimensions empirically. Using upsampling techniques to deal with the sparsity
of the point clouds is another popular method. Palipana et al. [7] resampled the number
of points to achieve a fixed number. They used Agglomerative Hierarchical Clustering
(AHC) for upsampling. The AHC algorithm adds a cluster’s centroid as a new point after
clustering the point clouds.

Another popular sensor is the Microsoft Kinect [8,9], which provides various data such
as RGB videos, depth sequences, and skeleton information. In recent years, many studies
have taken advantage of skeleton data because of their robustness to human appearance
change as well as illumination. Hence, plenty of related skeleton data (e.g., NTURGB+D [10]
and NTU-RGB+D 120 [11]) has been collected and used. Rao et al. [12] proposed learning
the pattern invariance of actions using a momentum Long Short-Term Memory (LSTM)
after seven augmentation strategies to boost action recognition accuracy via 3D skeleton
data. To overcome the sparsity of point clouds, we propose exploiting this skeleton data in
radar-based recognition, and we designed a multimodal framework that can effectively
combine point clouds with useful skeleton information.

Depth video recordings gathered using Kinect were also utilized for human activity
recognition. In the [13], the authors pre-processed the dataset recorded by depth cameras.
To avoid misleading context, separating poses and removing context were needed. How-
ever, the opportunities for learning more from the background rather than a real person’s
data remain, and recorded videos have privacy issues.

In the case of wearable sensors, Wozniak et al. [14] identify the user’s body position
using wearable sensor data from various body parts, such as the ankle, wrist, waist, and
chest. They have decided only two sensors are enough to obtain up to 100% accuracy in a
thorough examination. Although proposed models in [14] achieved 99.89% accuracy rates,
wearable devices which touch body parts, such as the chest, during data collection, can be
quite cumbersome in actual use, especially for children or elderly people.

Various multimodal frameworks that take advantage of data from multiple sources
have already been studied. As such, fusion strategies for combining multimodal features
have been devised. These include concatenation [15], attention mechanisms [16], and a
simple weight-sum manner [17].

Based on these results, this paper proposes a novel Multimodal Two-stream GNN
Framework for Efficient Point Cloud and Skeleton Data Alignment (MTGEA) to improve
human activity recognition with radar data. The proposed framework utilizes spatial
temporal graph convolutional networks (ST-GCNs) as graph neural networks (GNNs),
which can effectively capture both temporal and spatial features. Three upsampling
techniques were used to address the sparsity of point clouds. In addition, unlike previous
work, which uses the single-modal framework, we constructed a multimodal framework
with skeletal data so that reliable features could be obtained. While strict one-to-one
mapping is difficult due to the different types of environmental settings, in the proposed
model, the point clouds and skeleton data can be used together as 3D coordinates. Based
on the embedded representations generated from applying ST-GCN to both data, we
incorporated an attention mechanism in aligning the point clouds and skeleton data and
attained structural similarity and accurate key features from the two datasets. Then, the
aligned features and embedded features of point clouds were concatenated to form the
final classification decision. For the reasoning of human activity recognition, we used the
radar data only, with the Kinect part frozen. We evaluated MTGEA empirically with seven
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human activity data, including falling. All data were collected by mmWave radar and
Kinect v4 sensors simultaneously. In summary, our main contributions are as follows:

• We propose a novel MTGEA. Our major contribution is presenting a new approach
for incorporating accurate Kinect skeletal features into the radar recognition model,
enabling human activity recognition using sparse point clouds alone without having
to use the Kinect stream during reasoning;

• We propose skeleton data with an attention mechanism as a tool for generating re-
liable features for the multimodal alignment of point clouds. We also utilize three
upsampling techniques to address the sparsity of radar point clouds;

• We provide a new point cloud and skeleton dataset for human activity recognition.
All data simultaneously collected by mmWave radar and Kinect v4 sensors are open
source, along with the entire code and pre-trained classifiers.

2. Related Works

Early research on detecting human actions usually used images. Ogundokun et al. [18]
proposed a deep convolutional neural network (DCNN) framework for human posture
classification. They chose DCNN for deriving abstract feature maps from input data.
However, the pixels of images and image sequences have various backgrounds, so features
should be carefully extracted due to the risk of privacy invasion.

So, in the case of radar sensors, most researchers focused on pre-processing sparse
point clouds. One of the popular methods was voxelization. Sengupta et al. [19] presented
mmPose-NLP, an mmWave radar-based skeletal keypoint inspired by natural language
processing (NLP). In their study, point clouds were first pre-processed through voxelization.
Authors regarded this method as a process similar to the tokenization of NLP. The mmPose-
NLP architecture was applied to predict the voxel indexes, corresponding to 25 skeleton
key points. To measure the accuracy of the proposed system, the authors used the Mean
Absolute Error (MAE) metric. However, voxelization pre-processing methods, which
usually require a fixed shape, are augmented sequences. In the case of point clouds,
Palipana et al. [7] proposed an upsampling method to expand sparse point clouds. They
used AHC for upsampling until they achieved a fixed number of point clouds. In the AHC
algorithm, all point clouds formed clusters first, and each cluster’s centroid was added to
the point clouds as a new point. We provide more detailed information regarding the AHC
algorithm in Section 3.2.

In [20], a pre-trained model based on two consecutive convolution neural networks
(CNNs) was used to extract reliable features in skeleton form from sparse radar data. Then,
the GNN-based model was applied for classification. It achieved above 90% accuracy on the
MMActivity dataset [6]. However, two-phase flow models such as this can be inefficient.

In this paper, we utilized the two-stream multimodal framework and alignment
method to exploit an accurate skeleton dataset from Kinect. Many previous researchers
have devised various alignment methods for proper feature fusion. Yang et al. [17] built
a shallow graph convolutional network with a two-stream structure for bone and joint
skeleton data and proposed a weight-sum manner to obtain the final prediction. This
method requires a lower computational cost and is relatively simple. Concatenation is one
of the popular methods for feature fusion. Pan et al. [21] proposed a Variational Relational
Point Completion Network (VRCNet) to construct complete shapes for partial point clouds.
VRCNet had two consecutive encoder–decoder sub-networks named probabilistic mod-
eling (PMNet) and relational enhancement (RENet). In the PMNet, the concatenation of
coarse complete point clouds and incomplete point clouds occurred, which led to the gener-
ation of the overall skeletons. Weiyao et al. [15] proposed a multimodal action recognition
model based on RGB-D and adopted skeleton data as the multimodal data. The proposed
network consisted of GCN and CNN. The GCN network took the skeletal sequence, and
R (2+1)D based on the CNN network architecture took the RGB video. Then, the outer
product of two compressed features was obtained to make the final classification decision.
Zheng et al. [16] designed a Multimodal Relation Extract Neural Network with Efficient
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Graph Alignment (MEGA). To identify textual relations using visual clues, MEGA utilized
visual objects in an image and textual entities in a sentence as multimodal data. The au-
thors conducted experiments using the MNRE dataset, demonstrating that the alignment of
visual and textual relations by attention could improve the relation extraction performance.
In this paper, we created a skeleton and point cloud dataset and used these sensor data as
multimodal data. Then, we utilized an attention mechanism to integrate these two features
to assist in generating more reliable features.

3. Methodology

3.1. Subsection Experimental Environments and Dataset

Training and test data were collected following a study protocol approved by the
Institutional Review Board of Dongguk University (Approval number: DUIRB-202104-04).
We recruited 19 subjects to collect the new dataset, the DGUHA (Dongguk University
Human Activity) dataset, which includes both point cloud and skeleton data. All subjects
were in their twenties (the average age was 23 years). In the environment shown in
Figure 1a, each subject performed seven movements: running, jumping, sitting down and
standing up, both upper limb extension, falling forward, right limb extension, and left limb
extension, as illustrated in Figure 2 (This figure was captured from the authors and thus
did not require approval from IRB). All of the subjects performed each activity for about
20 s. Including break time, data collection was performed for 1 h, and all activities were
repeated approximately 5–6 times during this time. We utilized an mmWave radar sensor
and Microsoft Kinect v4 sensor to collect the data.

Figure 1. Experimental environments for the DGUHA dataset. (a) Data collection environments, and
(b) Data collection setup.

In the case of the mmWave radar sensor, TI’s IWR1443BOOST radar (Texas Instruments,
city and country: Dallas, TX, USA), which includes four receivers and three transmitters,
was used. It is based on FMCW, of which a chirp signal is a fundamental component. After
transmitters emit an FMCW signal, receivers detect objects in a 3D plane by measuring the
delay time according to the distance to the target as a frequency difference. The sensor was
mounted parallel to the ground at a height of 1.2 m, as shown in Figure 1b. The sampling
rate of the radar was 20 fps, and we collected the data using a robot operating system [22].
We stored five primary data modalities: 3D coordinates (x, y, and z in m), range, velocity,
bearing angle (degrees), and intensity. The 3D coordinates are usually called point clouds.

The Microsoft Kinect v4 sensor was also mounted parallel to the ground at a height
of 1 m, as shown in Figure 1b. A total of 25 skeleton data represented the 3D locations of
25 major body parts: spine, chest, neck, left shoulder, left elbow, left wrist, left hand, left
hand tip, left thumb, right shoulder, right elbow, right wrist, right hand, right hand tip,
right thumb, left hip, left knee, left ankle, left foot, right hip, right knee, right ankle, right
foot, and head. It captured skeleton data at a sampling rate of 20 fps. We collected the
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two datasets on Ubuntu 18.04 system simultaneously, and they were saved as a text file, as
illustrated in Figure 3.

Figure 2. The DGUHA dataset collected in our experiments. (a) Running, (b) Jumping, (c) Sitting
down and standing up, (d) Both upper limb extension, (e) Falling forward, (f) Right limb extension,
and (g) Left limb extension.

Figure 3. The DGUHA dataset format. (a) mmWave radar data format in DGUHA, and (b) Kinect
data format in DGUHA.

3.2. Data Augmentation

The sampling rates of both sensors were the same, and each activity was performed
for 20 s, as mentioned in Section 3.1. Although exact one-to-one mapping was difficult due
to the different types of hardware and data collection tools, the two datasets were stored at
400 frames per activity. If there were fewer than 400 frames, we replaced missing frames
with the last ones. In contrast, extra frames were removed to maintain 400 frames. We
randomly picked data files from each activity to check the average, median, and mode
of the number of point clouds. As shown in Table 1, the point clouds were sparse. This
sparsity is because of the radar sensor’s radio wavelength and inherent noise. To address
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the above challenge, we applied three upsampling techniques introduced in [7,12] to the
point clouds.

Table 1. Descriptive statistics for data samples.

Activity Mean Median Mode Min Max

Running 12.79 13.0 13 3 24
Jumping 9.65 10.0 10 3 3

Sitting down and standing up 5.86 6.0 5 2 13
Both upper limb extension 6.18 5.0 3 2 17

Falling forward 3.78 4.0 3 2 8
Right limb extension 6.11 6.0 5 2 13
Left limb extension 5.22 5.0 5 2 13

To use the skeleton data collected from Kinect simultaneously with those from the
radar sensor as multimodal data, our upsampling techniques aimed to augment the number
of point clouds to 25 per frame to match the number of joints in the collected skeleton data.
To augment the number of point clouds, we used the following techniques for upsampling:

(1) Zero-Padding (ZP): ZP is the simplest and most efficient of the many data augmen-
tation methods. We padded the remaining points with zeros to obtain 25-point clouds;

(2) Gaussian Noise (GN): The GNs were generated based on the standard derivations
(SDs) of the original datasets. After ZP, we added Gaussian noise N (0, 0.05) over point
clouds according to the following formula:

N
(

x
∣∣∣μ, σ2

)
=

1

(2πσ2)
1
2

exp
{
− 1

2σ2 (x− μ)2
}

(1)

(3) Agglomerative Hierarchical Clustering (AHC): This algorithm is a bottom-up and
iterative clustering approach. It consists of three steps. First, the dissimilarity between all
data is calculated. Generally, Euclidean distance or Manhattan distance can be calculated.
Second, the two closest data are clustered to create a class. Finally, the dissimilarity between
the cluster and other data or between clusters is calculated. These three steps are repeated
until all data become one cluster. Maximum, minimum, and mean can be calculated to
measure the dissimilarity of the two clusters.

3.3. Feature Extraction Using ST-GCNs

We obtained 25 point clouds through upsampling to match the skeleton data. We
then used the ST-GCN architecture to acquire multimodal representation, as illustrated
in Figure 4. The GNN used in the proposed MTGEA is the ST-GCN. ST-GCN achieved
promising performance by utilizing a graph representation of the skeleton data [23]. In
the skeleton structure, human joints can be considered a vertex or node of a graph, and
connections between them can be regarded as an edge or relation of the graph. In addition
to a spatial graph based on human joints, there are temporal edges connecting joints
between the previous and next steps within a movement. If a spatio-temporal graph for
a movement is denoted as G = (V, E), V denotes the set of the joints, and E denotes both
spatial and temporal edges. The authors [23] adopted a propagation rule similar to that of
GCNs [24], which is defined as follows:

fout = Â
− 1

2 (A + I)Â
− 1

2 finW, (2)

where Â
ii
= ∑j(Aij + Iij) and W is the weight matrix. The authors also used partitioning

strategies such as distance partitioning, spatial configuration partitioning, and dismantled
adjacency matrix into multiple matrixes Aj, where A + I = ∑j Aj. Therefore, Equation (2)
is transformed into:

fout = ∑
j

Â
− 1

2
j AjÂ

− 1
2

j finWj, (3)
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where Â
ii
j = ∑k(Aik

j ) + ε and ε = 0.001 is used to avoid empty rows in Aj. Then, the
element-wise product is conducted between Aj and M to implement the learnable edge
importance weighting. M is a learnable weight matrix and is initialized as an all-one matrix.
Consequently, Equation (3) is substituted with:

fout = ∑
j

Â
− 1

2
j (Aj

⊗
M)Â

− 1
2

j finWj, (4)

where
⊗

denotes the element-wise product. In our model, the three channels, which made
up the 3D coordinates, were the input. As illustrated in Figure 4, two consecutive ST-GCN
layers had the same 128 channels, and the final output of the ST-GCN contained 32 channels.

 

Figure 4. Illustration of the MTGEA. Three ST-GCN layers with the same channels were used to
extract features in both point cloud and skeleton data. After passing the ST-GCN layers, features
were extracted in the spatio-temporal domain from 3D coordinate data. Their features were then
transformed into the matrixes Q, K, and V by three learnable matrixes, and the attention function
was calculated, after which an aligned feature was obtained. The aligned and point cloud features
were then concatenated and sent to the fully connected layer to form a final classification decision.

3.4. Multimodal Feature Alignment by Attention

In the field of NLP, an attention mechanism was first introduced in [25]. This mech-
anism allows a decoder to find parts to pay attention to from the source sentence. We
implemented an attention mechanism to align point clouds and skeleton data. Unlike
previous feature fusion methods [26–29], which operate by concatenating the features or
simply calculating a weight-sum, an attention mechanism can find the structural similarity
and accurate key features between two features, resulting in the generation of reliable fea-
tures. These reliable features can help our model address sparse point clouds and recognize
human activities more accurately. The input of the attention function, (scaled dot-product
attention) [30], consists of a query, a key of the dimension dk and values of the dimension
dv. We set dk and dv to the same number dt, as proposed in [16], for simplicity. Queries,
keys, and values were packed into matrixes Q, K, and V, respectively, and the matrix of
outputs was calculated as:

Attention(Q, K, V) = so f tmax
(

QKT
√

dt

)
V, (5)

where the dot products of the query with all keys are scaled down by dt. In practice, we
projected each point cloud and skeleton data into a common t-dimensional space using
an ST-GCN, achieving point cloud representation X ∈ RN×dt and skeleton representation
Y ∈ RN×dt . Then, we used three learnable matrixes Wq ∈ Rdt×dt , Wk ∈ Rdt×dt and
Wv ∈ Rdt×dt empirically to generate the matrixes Q, K, and V as:
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Q = WqY + biasq, (6)

K = WkX + biask, (7)

V = WvX + biasv, (8)

where biasq, biask and biasv are the learnable biases. After generating the matrixes Q, K,
and V, we computed the attention function and obtained the aligned feature Z ∈ RN×dt , as
illustrated in Figure 4.

3.5. Feature Concatenation & Prediction

As shown in the rightmost box of Figure 4, we concatenated the aligned and point
cloud features and sent them to the fully connected layer to obtain the final classification
decision. Finally, the classification decision was normalized by the softmax function.

4. Results

In this section, we demonstrate the effectiveness of the proposed MTGEA components
with the training and test sets of the DGUHA dataset. We performed all experiments on a
machine with an Intel Xeon-Gold 6226 CPU, 192GB RAM (Intel Corporation, Santa Clara,
CA, USA), and RTX 2080 Ti (Gigabyte, New Taipei City, Taipei) graphic card. We report the
accuracy and weighted F1 score value as the evaluation metrics. The weighted F1 score
is one of the metrics that take imbalanced data into account. Originally, the F1 score was
calculated as follows:

F1 score =
2·Recall·Precision
Recall + Precision

, (9)

where Recall is True Positive/True Positive + False Negative, and Precision is True Posi-
tive/True Positive + False Positive. We considered the weighted F1 score so that the ratio of
the classes was balanced. (Approximately, running: 0.1432, jumping: 0.1419, sitting down
and standing up: 0.1419, both upper limb extension: 0.1432, falling forward: 0.1432, right
limb extension: 0.1432, and left limb extension: 0.1432.)

Three MTGEA models were trained using the three augmented types of data. We
trained each model with a batch size of 13 for 300 epochs and used stochastic gradient
descent with a learning rate of 0.01. Then, we froze the weights of the Kinect stream to
verify the possibility of human activity recognition using radar data only. Therefore, only
the test dataset of the point cloud was fed into the network during the test process, and the
results are shown in Table 2.

Table 2. Test Accuracy on the DGUHA dataset.

Model Accuracy (%)
Weighted

F1 Score (%)

MTGEA (ZP + Skeleton) 85.09 79.35
MTGEA (GN + Skeleton) 95.03 95.13

MTGEA (AHC + Skeleton) 98.14 98.14

Among the three augmented point cloud datasets, the MTGEA model that used the
ZP augmentation strategy for sparse point clouds performed poorly in terms of prediction
since the missing points were replaced by zeros only. However, the other models using
multiple different augmentation strategies achieved higher accuracies of around 90%. In
our evaluation, the best-performing MTGEA model, which was the one that used the
AHC augmentation strategy, achieved a test accuracy of 98.14% and a weighted F1 score
of 98.14%. This was 13.05% higher than the accuracy of the MTGEA model that used
the ZP augmentation strategy and 3.11% higher than that using the GN augmentation
strategy. This result indicates that the AHC algorithm can augment sparse point clouds
more effectively. The confusion matrixes for the visualization of classification performance
for our DGUHA dataset are illustrated in Figure 5, and the a–g labels denote the seven types
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of activity shown in Figure 2. According to the confusion matrix in Figure 5c, the MTGEA
model that used the AHC augmentation strategy classified (a) running, (c) sitting down and
standing up, (f) right limb extension, and (g) left limb extension 100% correctly. However, a
few activities were confused with other activities; these were (b) jumping, (d) both upper
limb extension, and (e) falling forward. However, these activities still achieved a high
accuracy of over 95%.

Figure 5. Confusion matrixes of three MTGEA models with different augmented data. (a) MTGEA
(ZP + Skeleton), (b) MTGEA (GN + Skeleton), and (c) MTGEA (AHC + Skeleton).

According to the confusion matrix in Figure 5b, the MTGEA model that used the GN
augmentation strategy achieved an accuracy under 95% for three out of seven activities.
The three activities, (d) both upper limb extension, (f) right limb extension, and (g) left limb
extension, are somewhat similar, as the arms or arms and legs moved away from the body
and then moved back toward the body.

The MTGEA model that used the ZP augmentation strategy achieved 0% accuracy
for (d) both upper limb extension activity, as this activity was somewhat confused with
(b) jumping, (f) right limb extension, and (g) left limb extension, as shown in Figure 5a.

From these observations, we found that simple movements in which the body remains
still and only the arms or legs move are generally harder to recognize than complex
movements requiring the whole body, such as moving from left to right or running. Finally,
the MTGEA model that used the AHC augmentation strategy achieved 95% accuracy for
all activities, indicating the robustness of the model for simple activities that do not have
complex movements distinct from other activities.

In addition, ablation studies were performed to demonstrate the necessity of the
multimodal framework and attention mechanism in the proposed model.

5. Ablation Studies

5.1. Ablation Study for the Multimodal Framework

Ablation experiments were performed to justify the multimodal design of the proposed
model. Single-modal models were created using a one-stream ST-GCN, and the ST-GCN
architecture was the same as that of the MTGEA. The accuracy and weighted F1 score of
the single-modal models are shown in Table 3. Compared to the multimodal models with
the same augmented data, the single-modal models generally showed lower performance.

In the case of point clouds, the single-modal model used augmented point clouds with
ZP and achieved 81.99% accuracy and a weighted F1 score of 81.51%. This was 3.1% lower
in accuracy than the MTGEA model that used ZP. Notably, however, the single-modal
model achieved a 2.16% higher weighted F1 score, as it classified (d) both upper limb
extension activities 57% correctly. However, it classified the remaining activities incorrectly
more often than the MTGEA model.

The second single-modal model that used augmented point clouds with GN achieved
92.55% accuracy and a weighted F1 score of 92.45%. These were 2.48% and 2.68% lower,
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respectively, than those of the MTGEA model that used the GN. The third single modal
model used augmented point clouds with AHC and achieved 93.79% accuracy and a
weighted F1 score of 93.80%, and both values were over 4% lower than those of the MTGEA.

Table 3. Performance comparison of single-modal models on the DGUHA dataset.

Model Accuracy (%)
Weighted

F1 Score (%)

Augmented point clouds using ZP 81.99 81.51
Augmented point clouds using GN 92.55 92.45

Augmented point clouds using AHC 93.79 93.80
Skeleton data 97.52 97.51

The single-modal model that used skeleton data showed the best performance in this
ablation experiment. It achieved an accuracy of 97.52% and a weighted F1 score of 97.51%,
which were only 0.62% and 0.63% lower, respectively, than those of the MTGEA model
that used the AHC augmentation strategy. These results seem to imply that since two
useful datasets could be exploited by a multimodal framework, the multimodal models’
performance was generally better than that of the single-modal models’.

5.2. Ablation Study for the Attention Mechanism

Ablation experiments without an attention mechanism were conducted. Many feature
fusion strategies have been studied to combine features effectively, and concatenation
is one of the most popular methods. In this experiment, we concatenated two feature
representations extracted by the ST-GCN before sending them to the fully connected layer
instead of the attention mechanism, as illustrated in Figure 6. Then, we fed them to a
softmax classifier to form a prediction.

 
Figure 6. Multimodal feature fusion by concatenation. After features were extracted by three ST-GCN
layers, the point cloud and skeleton data features were concatenated and fed into the fully connected
layer. Then, a softmax classifier made a prediction.

Table 4 describes the results, which reveal the necessity of an attention mechanism.
The best-performing MTGEA model achieved 98.14% accuracy, whereas the MTGEA model
without attention that used the same multimodal two-stream framework achieved a lower
accuracy of 96.27%. The weighted F1 score was also 1.9% lower than the MTGEA model
with attention.

69



Sensors 2023, 23, 2787

Table 4. Performance comparison of fusion models on the DGUHA dataset.

Model Accuracy (%)
Weighted

F1 Score (%)

MTGEA (ZP + Skeleton) without attention 83.85 77.77
MTGEA (GN + Skeleton) without attention 94.41 94.40

MTGEA (AHC + Skeleton) without attention 96.27 96.24

In the case of the MTGEA model without attention that used the GN augmentation
strategy, it had a 0.62% lower accuracy and a 0.73% lower weighted F1 score than the
original MTGEA model with the same augmentation strategy. Similarly, the MTGEA model
without attention that used the ZP augmentation strategy had a 1.24% lower accuracy
and a 1.58% lower weighted F1 score than the original MTGEA model that used the ZP
augmentation strategy.

One notable point is that the MTGEA model without an attention mechanism gen-
erally had higher score values than the single-modal models, except for one weighted
F1 score, while displaying lower score values than the MTGEA model with an attention
mechanism. This means that utilizing accurate skeletal features from the Kinect sensor was
critical. Additionally, comparisons between models with the same multimodal two-stream
framework but with and without an attention mechanism indicated the necessity of an
attention mechanism.

6. Conclusions

This paper presented a radar-based human activity recognition system called MTGEA
that does not cause an invasion of privacy or require strict lighting environments. The
proposed MTGEA model can classify human activities in a 3D space. To improve the
accuracy of human activity recognition using sparse point clouds only, MTGEA uses a
multimodal two-stream framework with the help of accurate skeletal features obtained
from Kinect models. We used an attention mechanism for efficient multimodal data align-
ment. Moreover, we provided a newly produced dataset, called the DGUHA, that contains
human skeleton data from a Kinect V4 sensor and 3D coordinates from a mmWave radar
sensor. MTGEA was evaluated extensively using the DGUHA dataset. The results obtained
after training the MTGEA model show that the proposed MTGEA model successfully rec-
ognizes human activities using sparse point clouds alone. Training/test datasets, including
the raw dataset of DGUHA, are provided on our GitHub page. An ablation study on
the multimodal two-stream framework was conducted, and it showed that two-stream
framework structures were better than single-modal framework structures for human
activity recognition. A similar conclusion was drawn from the second ablation study. This
is because even when comparing the results with the MTGEA model that did not consist of
an attention mechanism, it showed better performance than the single-modal framework
structure. The second ablation study shows the effectiveness of an attention mechanism, an
alignment method we used to leverage accurate skeletal features. For the same augmented
point clouds, the MTGEA model without an attention mechanism had lower score values
than that with an attention mechanism. In this experiment, we chose concatenation as a
feature fusion strategy. Our experimental evaluations show the efficiency and necessity
of each component of our MTGEA model. The MTGEA uses a multimodal two-stream
framework to address the sparse point clouds and an attention mechanism to consider
efficient alignment for two multimodal datasets. The entire workflow diagram is shown in
Figure 7. Although the model needs some improvement for distinguishing simple activities
that do not have complex movements, it can be one of the first steps toward creating a
smart home care system.
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Figure 7. Proposed model diagram.
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Abstract: Semi-supervised learning is an attractive technique in practical deployments of deep
models since it relaxes the dependence on labeled data. It is especially important in the scope of
dense prediction because pixel-level annotation requires substantial effort. This paper considers
semi-supervised algorithms that enforce consistent predictions over perturbed unlabeled inputs.
We study the advantages of perturbing only one of the two model instances and preventing the
backward pass through the unperturbed instance. We also propose a competitive perturbation
model as a composition of geometric warp and photometric jittering. We experiment with efficient
models due to their importance for real-time and low-power applications. Our experiments show
clear advantages of (1) one-way consistency, (2) perturbing only the student branch, and (3) strong
photometric and geometric perturbations. Our perturbation model outperforms recent work and
most of the contribution comes from the photometric component. Experiments with additional data
from the large coarsely annotated subset of Cityscapes suggest that semi-supervised training can
outperform supervised training with coarse labels. Our source code is available at https://github.
com/Ivan1248/semisup-seg-efficient.

Keywords: semi-supervised learning; semantic segmentation; dense prediction; one-way consistency;
deep learning; scene understanding

1. Introduction

Most machine learning applications are hampered by the need to collect large anno-
tated datasets. Learning with incomplete supervision [1,2] presents a great opportunity
to speed up the development cycle and enable rapid adaptation to new environments.
Semi-supervised learning [3–5] is especially relevant in the dense prediction context [6–8]
since pixel-level labels are very expensive, whereas unlabeled images are easily obtained.

Dense prediction typically operates on high resolutions in order to be able to recognize
small objects. Furthermore, competitive performance requires learning on large batches
and large crops [9–11]. This typically entails a large memory footprint during training,
which constrains model capacity [12]. Many semi-supervised algorithms introduce addi-
tional components to the training setup. For instance, training with surrogate classes [13]
implies infeasible logit tensor size, while GAN-based approaches require an additional
generator [6,14] or discriminator [7,15,16]. Some other approaches require multiple model
instances [17–20] or accumulated predictions across the dataset [21]. Such designs are less
appropriate for dense prediction since they constrain model capacity.

This paper studies semi-supervised approaches [3,5,18,21,22] that require consistent
predictions over input perturbations. In the considered consistency objective, input per-
turbations affect only one of two model instances, while the gradient is not propagated
towards the model instance which operates on the clean (weakly perturbed) input [4,5]. For
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brevity, we refer to the two model instances as the perturbed branch and the clean branch.
If the gradient is not computed in a branch, we refer to it as the teacher, and otherwise as
the student. Hence, we refer to the considered approach as a one-way consistency with the
clean teacher.

Let x be the input, T a perturbation to which the ideal model should be invariant, hθ

the student, and hθ′ the teacher, where θ′ denotes a frozen copy of the student parameters θ.
Then, one-way consistency with clean teacher can be expressed as a divergence D between
the two predictions:

Lct
θ (x, T) = D(hθ′(x), hθ(T(x))) . (1)

We argue that the clean teacher approach is a method of choice in case of perturbations
that are too strong for standard data augmentation. In this setting, perturbed inputs
typically give rise to less reliable predictions than their clean counterparts. Figure 1
illustrates the advantage of the clean teacher approach in comparison with other kinds of
consistency on the Two moons dataset. The clean student experiment (Figure 1b) shows that
many blue data points get classified into the red class due to teacher inputs being pushed
towards labeled examples of the opposite class. This aberration does not occur when the
teacher inputs are clean (Figure 1c). Two-way consistency [21] (Figure 1d) can be viewed
as a superposition of the two one-way approaches and works better than (Figure 1b), but
worse than (Figure 1c). In our experiments, D corresponds to KL divergence.

(a) No consistency loss (b) One-way; clean student:
D(hθ(x), hθ′ (T(x)))

(c) One-way: clean teacher:
D(hθ′ (x), hθ(T(x)))

(d) Two-way: one input clean:
D(hθ(x), hθ(T(x)))

Figure 1. A toy semi-supervised classification problem with six labeled (red, blue) and many un-
labeled 2D datapoints (white). All setups involve 20,000 epochs of semi-supervised training with
cross-entropy and default Adam optimization hyper-parameters. The consistency loss was set to
none (a), one-way with clean student (b), one-way with clean teacher (c), and two-way with one
input clean (d). One-way consistency with clean teacher outperforms all other formulations.
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One-way consistency is especially advantageous in the dense prediction context since
it does not require caching latent activations in the teacher. This allows for better training
in many practical cases where model capacity is limited by GPU memory [12,23]. In
comparison with two-way consistency [20,21], the proposed approach both improves
generalization and approximately halves the training memory footprint.

This paper is an extended version of our preliminary conference report [24]. It exposes
the elements of our method in much more detail and complements them with many
new experiments. In particular, the most important additions are additional ablation and
validation studies, full-resolution Cityscapes experiments, and a detailed analysis of a large-
scale experiment that compares the contribution of coarse labels with semi-supervised
learning on unlabeled images. The new experiments add more evidence in favor of one-
way consistency with respect to other consistency variants, investigate the influence of
particular components of our algorithm and various hyper-parameters, and investigate the
behavior of the proposed algorithm in different data regimes (higher resolution; additional
unlabeled images).

The consolidated paper proposes a simple and effective method for semi-supervised
semantic segmentation. One-way consistency with clean teacher [4,5,25] outperforms the
two-way formulation in our validation experiments. In addition, it retains the memory
footprint of supervised training because the teacher activations depend on parameters
that are treated as constants. Experiments with a standard convolutional architecture [26]
reveal that our photometric and geometric perturbations lead to competitive generalization
performance and outperform their counterpart from a recent related work [25]. A similar
advantage can be observed in experiments with a recent efficient architecture [27], which
offers a similar performance while requiring an order of magnitude of less computation. To
our knowledge, this is the first account of the evaluation of semi-supervised algorithms for
dense prediction with a model capable of real-time inference. This contributes to the goals
of Green AI [28] by enabling competitive research with less environmental damage.

This paper proceeds as follows. Section 2 presents related work. Section 3 describes the
one-way consistency objective adapted to dense prediction, our perturbation model, and
a description of our memory-efficient consistency training procedure. Section 4 presents
the experimental setup, which includes information about datasets and training details,
as well as the performed experiments in semi-supervised semantic segmentation. Finally,
Section 5 presents the conclusion.

2. Related Work

Our work spans the fields of dense prediction and semi-supervised learning. The
proposed methodology is most related to previous work in semi-supervised semantic
segmentation.

2.1. Dense Prediction

Image-wide classification models usually achieve efficiency, spatial invariance, and
integration of contextual information by gradual downsampling of representations and
use of global spatial pooling operations. However, dense prediction also requires location
accuracy. This emphasizes the trade-off between efficiency and quality of high-resolution
features in the model design. Some common designs use a classification backbone as a
feature encoder and attach a decoder that restores the spatial resolution. Many approaches
seek to enhance contextual information, starting with FCN-8s [29]. UNet [30] improves
spatial details by directly using earlier representations of the encoder in a symmetric
decoder. Further work improves the efficiency with lighter decoders [23,31]. Some models
use context aggregation modules such as spatial pyramid pooling [32] and multi-scale
inference [31,33]. DeepLab [26] increases the receptive field through dilated convolutions
and improves spatial details through CRF post-processing. HRNet [34] maintains the
full resolution throughout the whole model and incrementally introduces parallel lower-
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resolution branches that exchange information between stages. Semantic segmentation
gains much from ImageNet pre-trained encoders [23,26].

2.2. Semi-Supervised Learning

Semi-supervised methods often rely on some of the following assumptions about
the data distribution [35]: (1) similar inputs in high density regions correspond to similar
outputs (smoothness assumption), (2) inputs form clusters separated by low-density regions
and inputs within clusters are likely to correspond to similar outputs (cluster assumption),
and (3) the data lies on a lower-dimensional manifold (manifold assumption). Semi-
supervised methods devise various inductive biases that exploit such regularities for
learning from unlabeled data.

Entropy minimization [36] encourages high confidence in unlabeled inputs. Such
designs push decision boundaries towards low-density regions, under assumptions of
clustered data and prediction smoothness. Pseudo-label training (or self-training) [37–39]
also encourages high confidence (because of hard pseudo-labels) as well as consistency
with a previously trained teacher. The basic forms of such algorithms do not achieve
competitive performance on their own [40], but can be effective in conjunction with other
approaches [4,41]. Pseudo-labels can be made very effective by confidence-based selection
and other processing [37,38,42]. Note that some concurrent work [42] uses the term pseudo-
label as a synonym for processed teacher prediction in one-way consistency, but we do not
follow this practice.

Many approaches exploit the smoothness assumption by enforcing prediction consis-
tency across different versions of the same input or different model instances. Introducing
knowledge about equivariance has been studied for understanding and learning useful
image representations [43,44] and improving dense prediction [45–47]. Exemplar train-
ing [13] associates patches with their original images (each image is a separate surrogate
class). Temporal ensembling [21] enforces per-datapoint consistency between the current
prediction and a moving average of past predictions. Mean Teacher [3] encourages consis-
tency with a teacher whose parameters are an exponential moving average of the student’s
parameters.

Clusterization of latent representations can be promoted by penalizing walks which
start in a labeled example, pass over an unlabeled example, and end in another example
with a different label [48]. PiCIE [46] obtains semantically meaningful segmentation without
labels by jointly learning clustering and representation consistency under photometric and
geometric perturbations.

MixMatch [49] encourages consistency between predictions in different MixUp pertur-
bations of the same input. The average prediction is used as a pseudo-label for all variants
of the input. Deep co-training [19] produces complementary models by encouraging them
to be consistent while each is trained on adversarial examples of the other one.

Consistency losses may encourage trivial solutions, where all inputs give rise to the
same output. This is not much of a problem in semi-supervised learning since there the
trivial solution is inhibited through the supervised objective. Interestingly, recent work
shows that a variant of simple one-way consistency evades trivial solutions even in the
context of self-supervised representation learning [50,51].

Virtual adversarial training (VAT) [4] encourages one-way consistency between pre-
dictions in original datapoints and their adversarial perturbations. These perturbations
are recovered by maximizing a quadratic approximation of the prediction divergence in
a small L2 ball around the input. Better performance is often obtained by additionally
encouraging low-entropy predictions [36]. Unsupervised data augmentation (UDA) [5]
also uses a one-way consistency loss. FixMatch [52] shows that pseudo-label selection and
processing can be useful in a one-way consistency. However, instead of adversarial additive
perturbations, they use random augmentations generated by RandAugment. Different
from all previous approaches, we explore an exhaustive set of consistency formulations.
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2.3. Semi-Supervised Semantic Segmentation

In the classic semi-supervised GAN (SGAN) setup, the classifier also acts as a dis-
criminator which distinguishes between real data (both labeled and unlabeled) and fake
data produced by the generator [14]. This approach has been adapted for dense prediction
by expressing the discriminator as a segmentation network that produces dense C+1-way
logits [6]. KE-GAN [53] additionally enforces semantic consistency of neighbouring predic-
tions by leveraging label-similarity recovered from a large text corpus (MIT ConceptNet).
A semantic segmentation model can also be trained as a GAN generator (AdvSemSeg) [7].
In this setup, the discriminator guesses whether its input is ground truth or generated
by the segmentation network. The discriminator is also used to choose better predictions
for use as pseudo-labels for semi-supervised training. s4GAN + MLMT [8] additionally
post-processes the recovered dense predictions by emphasizing classes identified by an
image-wide classifier trained with Mean Teacher [3]. The authors note that the image-wide
classification component is not appropriate for datasets such as Cityscapes, where almost
all images contain a large number of classes.

A recent approach enforces consistency between outputs of redundant decoders with
noisy intermediate representations [54]. Other recent work studies pseudo-labeling in
the dense prediction context [55–57]. Zhu et al. [55] observe advantages in hard pseudo-
labels. A recent approach [20] proposes a two-way consistency loss, which is related to
the Π-model [21], and perturbs both inputs with geometric warps. However, we show
that perturbing only the student branch generalizes better and has a smaller training
footprint. A concurrent work [58] successfully applies a contrastive loss [59,60] between
two branches which receive overlapping crops, and proposes a pixel-dependent consistency
direction. Mean Teacher consistency with CutMix perturbations achieved state-of-the-art
performance on half-resolution Cityscapes [25] prior to this work. Different than most
presented approaches and similar to [25,55,56,61], our method does not increase the training
footprint [12]. In comparison with [55,56,61], our teacher is updated in each training step,
which eliminates the need for multiple training episodes. In comparison with [25], this
work proposes a perturbation model which results in better generalization and shows that
simple one-way consistency can be competitive with Mean Teacher. None of the previous
approaches addresses semi-supervised training of efficient dense prediction models. We
examine the simplest forms of consistency, explain advantages of perturbing only the
student with respect to other forms of consistency, and propose a novel perturbation model.
None of the previous approaches considered semi-supervised training of efficient dense-
prediction models, nor studied composite perturbations of photometry and geometry.

3. Method

We formulate dense consistency as a mean pixel-wise divergence between correspond-
ing predictions in the clean image and its perturbed version. We perturb images with a
composition of photometric and geometric transformations. Photometric transformations
do not disturb the spatial layout of the input image. Geometric transformations affect the
spatial layout of the input image and the same kind of disturbance is expected at the model
output. Ideally, our models should exhibit invariance to photometric transformations and
equivariance [44] to the geometric ones.

3.1. Notation

We typeset vectors and arrays in bold, sets in blackboard bold, and we underline
random variables. P[y|x = x] denotes the distribution of a random variable y|x, while
P(y|x) is a shorthand for the probability P(y = y|x = x). We denote the expectation of
a function of a random variable as e.g., IEτ f (τ). We use similar notation to denote the
average over a set: IEx∈D f (x). We use the Iverson bracket notation: given a statement P,
�P� = 1 if P is true; 0 otherwise. We denote cross-entropy with Hy (y∗) := IEy∼y∗ ln p(y =
y), and entropy with H(y) [62]. We use Python-like array indexing notation.
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We denote the labeled dataset as Dl, and the unlabeled dataset as Du. We consider
input images x ∈ [0, 1]H×W×3 and dense labels y ∈ {1 . . . C}H×W . A model instance maps
an image to per-pixel class probabilities: hθ(x)[i,j,c] = P(y[i,j] = c|x, θ). For convenience, we
identify output vectors of class probabilities with distributions: hθ(x)[i,j] ≡ P[y[i,j]|x, θ].

3.2. Dense One-Way Consistency

We adapt one-way consistency [4,5] for dense prediction under our perturbation model
Tτ = TG

γ ◦ TP
ϕ , where TG

γ is a geometric warp, TP
ϕ a per-pixel photometric perturbation,

and τ = (γ,ϕ) perturbation parameters. TG
γ displaces pixels with respect to a dense

deformation field. The same geometric warp is applied to the student input and the teacher
output. Figure 2 illustrates the computational graph of the resulting dense consistency loss.
In simple one-way consistency, the teacher parameters θ′ are a frozen copy of the student
parameter θ. In Mean Teacher, θ′ is a moving average of θ. In simple two-way consistency,
both branches use the same θ and are subject to gradient propagation.

x

hθ′ TG
γ

TG
γ ◦ TP

ϕ hθ

D

Figure 2. Dense one-way consistency with clean teacher. Top branch: the input is fed to the teacher
hθ′ . The resulting predictions are perturbed with geometric perturbations TG

γ . Bottom branch: the
input is perturbed with geometric and photometric perturbations and fed to the student hθ. The loss
D corresponds to the average pixel-wise KL divergence between the two branches. Gradients are
computed only in the blue part of the graph.

A general semi-supervised training criterion L(θ;Dl,Du) can be expressed as a weighted
sum of a supervised term Ls over labeled data and an unsupervised consistency term Lc:

L(θ;Dl,Du) = IE
(x,y)∈Dl

Ls(θ; x, y) + α IE
x∈Du

IE
τ

Lc(θ; x, τ). (2)

In our experiments, Ls is the usual mean per-pixel cross entropy with L2 regularization. We
stochastically estimate the expectation over perturbation parameters τ with one sample
per training step.

We formulate the unsupervised term Lc at pixel (i, j) as a one-way divergence D
between the prediction in the perturbed image and its interpolated correspondence in the
clean image. The proposed loss encourages the trained model to be equivariant to TG

γ and
invariant to TP

ϕ :

Li,j
c (θ; x, τ) = D(TG

γ (hθ′(x))[i,j], hθ((TG
γ ◦ TP

ϕ)(x))[i,j]) . (3)

We use a validity mask vγ ∈ {0, 1}H×W , vγ
[i,j] =

�
TG

γ (1H×W)[i,j] = 1
�

to ensure that the loss
is unaffected by padding sampled from outside of [1, H]× [1, W]. A vector produced by
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TG
γ (hθ(x))[i,j] represents a valid distribution wherever vγ

[i,j] = 1. Finally, we express the
consistency term Lc as a mean contribution over all pixels:

Lc(θ; x, τ) =
1

∑(vγ) ∑
i,j

vγ
[i,j]L

i,j
c (θ; x, τ) . (4)

Recall that the gradient is not computed with respect to θ′. Consequently, Lc allows
gradient propagation only towards the perturbed image. We refer to such training as one-
way consistency with clean teacher (and perturbed student). Such formulation provides
two distinct advantages over other kinds of consistency. First, predictions in perturbed
images are pulled towards predictions in clean images. This improves generalization when
the perturbations are stronger than data augmentations used in Ls (cf. Figures 1 and 3).
Second, we do not have to cache teacher activations during training since the gradients
propagate only towards the student branch. Hence, the proposed semi-supervised objective
does not constrain model complexity with respect to the supervised baseline.

We use KL divergence as a principled choice for D:

D(y, ỹ) := IE
y

ln
P(y = y)
P(ỹ = y)

= H ỹ (y)−H(y) . (5)

Note that the entropy term −H(y) does not affect parameter updates since the gradients
are not propagated through θ′. Hence, one-way consistency does not encourage increasing
entropy of model predictions in clean images. Several researchers have observed improve-
ment after adding an entropy minimization term [36] to the consistency loss [4,5]. This
practice did not prove beneficial in our initial experiments.

Note that two-way consistency [20,21] would be obtained by replacing θ′ with θ. It
would require caching latent activations for both model instances, which approximately
doubles the training footprint with respect to the supervised baseline. This would be
undesirable due to constraining the feasible capacity of the deployed models [12,63].

We argue that consistency with clean teacher generalizes better than consistency with
clean student since strong perturbations may push inputs beyond the natural manifold and
spoil predictions (cf. Figure 1). Moreover, perturbing both branches sometimes results in
learning to map all perturbed pixels to similar arbitrary predictions (e.g., always the same
class) [64]. Figure 3 illustrates that consistency training has the best chance to succeed if the
teacher is applied to the clean image, and the student learns on the perturbed image.

AAAAAAAAAAAAAAAc

BpBc

AAAAAAAAAAAAAAAp

clean student and 
perturbed teacher: risky

Ac 

BpBc

Apperturbed student and 
clean teacher: useful

clean student and 
perturbed teacher: risky

perturbed student and 
clean teacher: useful

Figure 3. Two variants of one-way consistency training on a clean image (left) and its perturbed
version (right). The arrows designate information flow from the teacher to the student. The proposed
clean-teacher formulation trains in the perturbed pixels (Ap) according to the corresponding predic-
tions in the clean image (Ac). The reverse formulation (training in Bc according to the prediction in
Bp) worsens performance, since strongly perturbed images often give rise to less accurate predictions.
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3.3. Photometric Component of the Proposed Perturbation Model

We express pixel-level photometric transformations as a composition of five simple
perturbations with five image-wide parameters ϕ = (b, s, h, c, π). These perturbations
are applied in each pixel in the following order: (1) brightness is shifted by adding b
to all channels, (2) saturation is multiplied with s, (3) hue is shifted by addition with
h, (4) contrast is modulated by multiplying all channels with c, and (5) RGB channels
are randomly permuted according to π. The resulting compound transformation TP

ϕ is
independently applied to all image pixels.

Our training procedure randomly picks image-wide parameters ϕ for each unlabeled
image. The parameters are sampled as follows: b ∼ U (−0.25, 0.25), s ∼ U (0.25, 2), h ∼
U (−36◦, 36◦), c ∼ U (0.25, 2), and π ∼ U (S3), where S3 represents the set of all 6 3-element
permutations.

3.4. Geometric Component of the Proposed Perturbation Model

We formulate a fairly general class of parametric geometric transformations by lever-
aging thin plate splines (TPS) [65,66]. We consider the 2D TPS warp f : R2 → R2, which
maps each image coordinate pair q to the relative 2D displacement of its correspondence q′:

f (q) = q′ − q . (6)

TPS warps minimize the bending energy (curvature)
∫

dom( f )

∥∥∥ ∂2 f (q)
∂q2

∥∥∥2

F
dq given a set of

control points and their displacements {(ci, di) : i = 1 . . . n} ⊂ R2 ×R2. In simple words, a
TPS warp produces a smooth deformation field which optimally satisfies all constraints
f (ci) = di. In the 2D case, the solution of the TPS problem takes the following form:

f (q) = A
[

1
q

]
+ W

[
φ(‖q− ci‖)

]T
i=1...n , (7)

where q denotes a 2D coordinate vector to be transformed, A is a 2× 3 affine transformation
matrix, W is a 2× n control point coefficient matrix, and φ(r) = r2 ln(r). Such a 2D TPS
warp is equivariant to rotation and translation [66]. That is, f (T(q)) = T( f (q)) for every
composition of rotation and translation T.

TPS parameters A and W can be determined as a solution of a standard linear sys-
tem which enforces deformation constraints (ci, di), and square-integrability of second
derivatives of f . When we determine A and W , we can easily transform entire images.

We first consider images as continuous domain functions and later return to images
as arrays from [0, 1]H×W×3. Let I : dom(I) → [0, 1]3 be the original image of size (W, H),
where dom(I) = [0, W]× [0, H]. Then the transformed image I′ can be expressed as

I′(q + f (q)) =

{
I(q), q ∈ dom(I),
0, otherwise.

(8)

The resulting formulation is known as forward warping [67] and is tricky to implement.
We, therefore, prefer to recover the reverse transformation f̃ , which can be conducted by
replacing each control point ci with c′i = ci + di. Then, the transformed image is:

Ĩ(q′) =
{

I(q′ − f̃ (q′)), q′ − f̃ (q′) ∈ dom(I),
0, otherwise.

(9)

This formulation is known as backward warping [67]. It can be easily implemented for discrete
images by leveraging bilinear interpolation. Contemporary frameworks already include the
implementations for the GPU hardware. Hence, the main difficulty is to determine the TPS
parameters by solving two linear systems with (n + 3)× (n + 3) variables [66].
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In our experiments, we use n = 4 control points corresponding to the centers of

the four image quadrants:
(
c′1, . . . , c′4

)
=

([
1
4 H, 1

4 W
]T

, . . . ,
[ 3

4 H, 3
4 W

]T)
. The parameters

of our geometric transformation are four 2D displacements γ = (d1, . . . , d4). Let fγ

denote the resulting TPS warp. Then, we can express our transformation as TG
γ (x) =

backward_warp(x, fγ).
Our training procedure picks a random γ for each unlabeled image. Each displacement

is sampled from a bivariate normal distributionN (02, 0.05× H × I2), where H is the height
of training crops.

3.5. Training Procedure

Algorithm 1 sketches a procedure for recovering gradients of the proposed semi-
supervised loss (2) on a mixed batch of labeled and unlabeled examples. For simplicity, we
make the following changes in notation here: xl and yl are batches of size Bl, xu, γ and ϕ
batches of size Bu, and all functions are applied to batches. The algorithm computes the
gradient of the supervised loss, discards cached activations, computes the teacher predic-
tions, applies the consistency loss (3), and finally accumulates the gradient contributions of
the two losses. Backpropagation through one-way consistency with clean teacher requires
roughly the same extent of caching as in the supervised baseline. Hence, our approach
constrains the model complexity much less than the two-way consistency.

Algorithm 1. Evaluation of the gradient of the proposed semi-supervised loss given perturbation
parameters (γ, ϕ) on a mixed batch of labeled (xl, yl) and unlabeled (xu) examples. CE denotes
mean cross entropy, while KL_masked denotes mean KL divergence over valid pixels.

1 # xu, γ, ϕ, pt, ps, and v contain batches of Bu elements.
2 # xl, y, and pl contain batches of Bl elements.
3 procedure compute_loss_gradient(h, θ, xl, yl, xu, γ,ϕ):
4 θ′ ← frozen_copy(θ) # simple one−way
5
6 # supervised loss
7 pl ← hθ(xl)
8 Ls ← CE(yl, pl)
9 g ← ∇θLs # clears cached activations

10
11 # unsupervised loss
12 with no_grad(): # activations not cached here
13 pt ← TG

γ (hθ′(xu)) # clean teacher
14 ps ← hθ((TG

γ ◦ TP
ϕ)(xu)) # perturbed student

15 v ← �TG
γ (1Bu×H×W)� # validity mask

16 Lc ← α ·KL_masked(pt, ps, v)
17 g ← g +∇θLc
18
19 return g

Figure 4 illustrates GPU memory allocation during a semi-supervised training iter-
ation of a SwiftNet-RN34 model with one-way and two-way consistency. We recovered
these measurements by leveraging the following functions of the torch.cuda package:
max_memory_allocated, memory_allocated, reset_peak_memory_stats, and
empty_cache. The training was carried out on a RTX A4500 GPU. Numbers on the x-
axis correspond to lines of the pseudo-code in Algorithm 1. Line 9 backpropagates through
the supervised loss and caches the gradients. The memory footprint briefly peaks due
to temporary storage and immediately declines since PyTorch automatically releases all
cached activations immediately after the backpropagation. Line 13 computes the teacher
output. This step does not cache intermediate activations due to torch.no_grad. Line

81



Sensors 2023, 23, 940

16 computes the unsupervised loss, which requires the caching of activations on a large
spatial resolution. The memory footprint briefly peaks since we delete perturbed inputs
and teacher predictions immediately after line 16 (for simplicity, we omit opportunistic
deletions from Algorithm 1). Line 17 triggers the backpropagation algorithm and accu-
mulates the gradients of the consistency loss. The memory footprint briefly peaks due
to temporary storage and immediately declines due to automatic deletion of the cached
activations. At this point, the memory footprint is slightly greater than at line 4 since we
still hold the supervised predictions in order to accumulate the recognition performance on
the training dataset.

The ratio between memory allocations at lines 16 and 9 reveals the relative memory
overhead of our semi-supervised approach. Note that the absolute overhead is model
independent since it corresponds to the total size of perturbed inputs and predictions, and
intermediate results of dense KL-divergence. On the other hand, the memory footprint of
the supervised baseline is model dependent, since it reflects the computational complexity
of the backbone. Consequently, the relative overhead approaches 1 as the model size
increases, and is around 1.26 for SwiftNet-RN34.
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Figure 4. GPU memory allocation during and after execution of particular lines from Algorithm 1
during the 2nd iteration of training. Our PyTorch implementations involve SwiftNet-RN18 and
SwiftNet-RN34 models with one-way and two-way consistency, 768× 768 crops, and batch sizes
(Bl, Bu) = (8, 8). Line 9 computes the supervised gradient. Line 13 computes the teacher output
(without caching interemediate activations). Lines 16 and 17 compute the consistency loss and
its gradient.

4. Results

Our experiments evaluate one-way consistency with clean teacher and a composition
of photometric and geometric perturbations (TG

γ ◦ TP
φ ). We compare our approach with

other kinds of consistency and the state of the art in semi-supervised semantic segmentation.
We denote simple one-way consistency as “simple”, Mean Teacher [3] as “MT”, and our
perturbations as “PhTPS”. In experiments that compare consistency variants, “1w” denotes
one-way, “2w” denotes two way, “ct” denotes clean teacher, “cs” denotes clean student, and
“2p” denotes both inputs perturbed. We present semi-supervised experiments in several
semantic segmentation setups as well as in image-classification setups on CIFAR-10. Our
implementations are based on the PyTorch framework [68].

4.1. Experimental Setup

Datasets.We perform semantic segmentation on Cityscapes [9], and image classification
on CIFAR-10. Cityscapes contains 2975 training, 500 validation and 1525 testing images
with resolution 1024× 2048. Images are acquired from a moving vehicle during daytime
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and fine weather conditions. We present half-resolution and full-resolution experiments.
We use bilinear interpolation for images and nearest neighbour subsampling for labels.
Some experiments on Cityscapes also use the coarsely labeled Cityscapes subset (“train-
extra”) that contains 19,998 images. CIFAR-10 consists of 50,000 training and 10,000 test
images of resolution 32× 32.

Common setup. We include both unlabeled and labeled images in Du, which we
use for the consistency loss. We train on batches of Bl labeled and Bu unlabeled images.
We perform �|Dl|/Bl� training steps per epoch. We use the same perturbation model
across all datasets and tasks (TPS displacements are proportional to image size), which
is likely suboptimal [69]. Batch normalization statistics are updated only in non-teacher
model instances with clean inputs except for full-resolution Cityscapes, for which updating
the statistics in the perturbed student performed better in our validation experiments (cf.
Appendix B). The teacher always uses the estimated population statistics, and does not
update them. In Mean Teacher, the teacher uses an exponential moving average of the
student’s estimated population statistics.

Semantic segmentation setup. Cityscapes experiments involve the following models:
SwiftNet with ResNet-18 (SwiftNet-RN18) or ResNet-34 (SwiftNet-RN34), and DeepLab
v2 with a ResNet-101 backbone. We initialize the backbones with ImageNet pre-trained
parameters. We apply random scaling, cropping, and horizontal flipping to all inputs and
segmentation labels. We refer to such examples as clean. We schedule the learning rate
according to e �→ η cos(eπ/2), where e ∈ [0 . . . 1] is the fraction of epochs completed. This
alleviates the generalization drop at the end of training with standard cosine annealing [70].
We use learning rates η = 4× 10−4 for randomly initialized parameters and η = 10−4 for
pre-trained parameters. We use Adam with (β1, β2) = (0.9, 0.99). The L2 regularization
weight in supervised experiments is 10−4 for randomly initialized and 2.5× 10−5 for pre-
trained parameters [27]. We have found that such L2 regularization is too strong for our
full-resolution semi-supervised experiments. Thus, we use a 4× smaller weight there.
Based on early validation experiments, we use α = 0.5 unless stated otherwise. Batch
sizes are (Bl, Bu) = (8, 8) for SwiftNet-RN18 [27] and (Bl, Bu) = (4, 4) for DeepLab v2
(ResNet-101 backbone) [26]. The batch size in corresponding supervised experiments is Bl.

In half-resolution Cityscapes experiments the size of crops is 448× 448 and the log-
arithm of the scaling factor is sampled from U (ln(1.5−1), ln(1.5)). We train SwiftNet for
200× 2975

|Dl| epochs (200 epochs or 74,200 iterations when all labels are used), and DeepLab

v2 for 100× 2975
|Dl| epochs (100 epochs or 74,300 iterations when all labels are used). In

comparison with SwiftNet-RN18, DeepLab v2 incurs a 12-fold per-image slowdown during
supervised training. However, it also requires less epochs since it has very few parame-
ters with random initialization. Hence, semi-supervised DeepLab v2 trains more than
4× slower than SwiftNet-RN18 on RTX 2080Ti. Appendix A.2 presents more detailed
comparisons of memory and time requirements of different semi-supervised algorithms.

Our full-resolution experiments only use SwiftNet models. The crop size is 768× 768
and the spatial scaling is sampled from U (2−1, 2). The number of epochs is 250 when all
labels are used. The batch size is 8 in supervised experiments, and (Bl, Bu) = (8, 8) in
semi-supervised experiments.

Appendix A.1 presents an overview and comparison of hyper-parameters with other
consistency-based methods that are compared in the experiments.

Classification setup. Classification experiments target CIFAR-10 and involve the
Wide ResNet model WRN-28-2 with standard hyper-parameters [71]. We augment all
training images with random flips, padding and random cropping. We use all training
images (including labeled images) in Du for the consistency loss. Batch sizes are (Bl, Bu) =

(128, 640). Thus, the number of iterations per epoch is
⌊ |Dl|

128

⌋
. For example, only one

iteration is performed if |Dl| = 250. We run 1000× 4000
|Dl| epochs in semi-supervised, and

100 epochs in supervised training. We use default VAT hyper-parameters ξ = 10−6,
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ε = 10, α = 1 [4]. We perform photometric perturbations as described, and sample TPS
displacements from N (0, 3.2× I2).

Evaluation. We report generalization performance at the end of training. We report
sample means and sample standard deviations (with Bessel’s correction) of the correspond-
ing evaluation metric (mIoU or classification accuracy) of 5 training runs, evaluated on the
corresponding validation dataset.

4.2. Semantic Segmentation on Half-Resolution Cityscapes

Table 1 compares our approach with the previous state of the art. We train using
different proportions of training labels and evaluate mIoU on half-resolution Cityscapes
val. The top section presents the previous work [7,8,25,57]. The middle section presents our
experiments based on DeepLab v2 [26]. Note that here we outperform some previous work
due to more involved training (as described in Section 4.1). since that would be a method
of choice in all practical applications. Hence, we get consistently greater performance.
We perform a proper comparison with [25] by using our training setup in combination
with their method. Our MT-PhTPS outperforms MT-CutMix with L2 loss and confidence
thresholding when 1/4 or more labels are available, while underperforming with 1/8 labels.

The bottom section involves the efficient model SwiftNet-RN18. Our perturbation
model outperforms CutMix both with simple consistency, as well as with Mean Teacher.
Overall, Mean Teacher outperforms simple consistency. We observe that DeepLab v2 and
SwiftNet-RN18 get very similar benefits from the consistency loss. SwiftNet-RN18 comes
out as a method of choice due to about 12× faster inference than DeepLab v2 with ResNet-
101 on RTX 2080Ti (see Appendix A.2 for more details). Experiments from the middle and
the bottom section use the same splits to ensure a fair comparison.

Table 1. Semantic segmentation performance (mIoU/%) on half-resolution Cityscapes val after
training with different proportions of labeled data. The top section reviews experiments from
previous work. The middle section presents our experiments with DeepLab v2. The bottom section
presents our experiments with SwiftNet-RN18. We run experiments across 5 different dataset splits
and report mean mIoUs with standard deviations. The subscript “∼[25]” denotes training with L2

loss, confidence thresholding, and α = 1, as proposed in [25]. The best results overall are bold, and
best results within sections are underlined.

Method
Label Proportion

1/8 1/4 1/2 1/1

DLv2-RN101 supervised [8,25] 56.2 60.2 64.61 66.0
DLv2-RN101 s4GAN+MLMT [8] 59.3 61.9 – 65.8
DLv2-RN101 supervised [7] 55.5 59.9 64.1 66.4
DLv2-RN101 AdvSemSeg [7] 58.8 62.3 65.7 67.7
DLv2-RN101 supervised [57] 56.0 60.5 – 66.0
DLv2-RN101 ECS [57] 60.3 63.8 – 67.7
DLv2-RN101 MT-CutMix [25] 60.31.2 63.90.7 – 67.70.4

DLv2-RN101 supervised 56.40.4 61.91.1 66.60.6 69.80.4
DLv2-RN101 MT-CutMix∼[25] 63.21.4 65.60.8 67.60.4 70.00.3
DLv2-RN101 MT-PhTPS 61.51.0 66.41.1 69.00.6 71.00.7

SN-RN18 supervised 55.50.9 61.50.5 66.90.7 70.50.6
SN-RN18 simple-CutMix 59.80.5 63.81.2 67.01.4 69.31.1
SN-RN18 simple-PhTPS 60.81.6 64.81.5 68.80.7 71.10.9
SN-RN18 MT-CutMix∼[25] 61.60.9 64.60.5 67.60.7 69.90.6
SN-RN18 MT-CutMix 59.31.3 63.31.0 66.80.6 69.70.5
SN-RN18 MT-PhTPS 62.01.3 66.01.0 69.10.5 71.20.7

Now, we present ablation and hyper-parameter validation studies for simple-PhTPS
consistency with SwiftNet-RN18. Table 2 presents ablations of the perturbation model, and
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also includes supervised training with PhTPS augmentations in one half of each mini-batch
in addition to standard jittering. Perturbing the whole mini-batch with PhTPS in supervised
training did not improve upon the baseline. We observe that perturbing half of each mini-
batch with PhTPS in addition to standard jittering improves the supervised performance,
but quite less than semi-supervised training. Semi-supervised experiments suggest that
photometric perturbations (Ph) contribute most, and that geometric perturbations (TPS)
are not useful when there is 1/2 or more of the labels.

Table 2. Ablation experiments on half-resolution Cityscapes val (mIoU/%) with SwiftNet-RN18.
Subscripts denote the difference from the supervised baseline. The label “supervised PhTPS-aug”
denotes supervised training where half of each mini-batch is perturbed with PhTPS. The bottom three
rows compare PhTPS with Ph (only photometric) and TPS (only geometric) under simple one-way
consistency. We present means of experiments on 5 different dataset splits. Numerical subscripts are
differences with respect to the supervised baseline.

Method
Label Proportion

1/8 1/4 1/2 1/1

SN-RN18 supervised 55.5 61.5 66.9 70.5
SN-RN18 supervised PhTPS-aug 56.2+1.5 62.2+0.7 67.4+0.5 70.4−0.1
SN-RN18 simple-Ph 59.2+3.7 64.9+3.4 68.3+1.4 71.8+1.3
SN-RN18 simple-TPS 58.2+3.1 63.4+1.9 66.7−0.2 70.1−0.4
SN-RN18 simple-PhTPS 60.8+5.3 64.8+3.3 68.8+1.9 71.1+0.6

Figure 5 shows perturbation strength validation using 1/4 of the labels. Rows corre-
spond to the factor that multiplies the standard deviation of control point displacements
sG defined at the end of Section 3.4. Columns correspond to the strength of the photo-
metric perturbation sP. The photometric strength sP modulates the random photometric
parameters according to the following expression:

(b, s, h, c) �→ (sP · b, exp(sP · ln(s)), sP · h, exp(sP · ln(c)) . (10)

We set the probability of choosing a random channel permutation as min{sP, 1}. Hence,
sP = 0 corresponds to the identity function. Note that the “1/4” column in Table 2 uses
the same semi-supervised configurations with strengths sG, sP ∈ {0, 1}. Moreover, note
that the case (sG, sP) = (0, 0) is slightly different from supervised training in that batch
normalization statistics are still updated in the student. The differences in results are due to
variance—the estimated standard error of the mean of 5 runs is between 0.35 and 0.5. We can
observe that the photometric component is more important, and that a stronger photometric
component can compensate for a weaker geometric component. Our perturbation strength
choice (sG, sP) = (1, 1) is close to the optimum, which the experiments suggests to be at
(1, 0.5).

Figure 6 shows our validation of the consistency loss weight α with SN-RN18 simple-
PhTPS. We observe the best generalization performance for α ∈ [0.25 . . . 0.75]. We do
not scale the learning rate with (1 + α)−1 because we use a scale-invariant optimization
algorithm.
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Figure 5. Validation of perturbation strength hyper-parameters on Cityscapes val (mIoU/%). We use
5 different subsets with 1/4 of the total number of training labels. The hyper-parameters sP (photo-
metric) and sG (geometric) are defined in the main text. SD denotes the sample standard deviation.
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Figure 6. Validation of the consistency loss weight α on Cityscapes val (mIoU/%). We present the
same results in two plots with different x-axes: the proportion of labels (left), and the consistency
loss weight α (right).

Appendix B presents experiments that quantify the effect of updating batch normal-
ization statistics when the inputs are perturbed.

Figure 7 shows qualitative results on the first few validation images with SwiftNet-
RN18 trained with 1/4 of labels. We observe that our method displays a substantial
resilience to heavy perturbations, such as those used during training.
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input ground truth simple-PhTPS supervised

Figure 7. Qualitative results on the first few validation images with SwiftNet-RN18 trained with 1/4
of half-resolution Cityscapes labels. Odd rows contain unperturbed inputs, and even rows contain
PhTPS perturbed inputs. The columns are (left to right): ground truth segmentations, predictions of
simple-PhTPS consistency training, and predictions of supervised training.

4.3. Semantic Segmentation on Full-Resolution Cityscapes

Table 3 presents our full resolution experiments in setups such as in Table 1, and
comparison with previous work, but with full-resolution images and labels. In comparison
with KE-GAN [53] and ECS [57], we underperform with 1/8 labeled images, but outperform
with 1/2 labeled images. Note that KE-GAN [53] also trains on a large text corpus (MIT
ConceptNet) as well as that ECS DLv3+-RN50 requires 22 GiB of GPU memory with batch
size 6 [57], while our SN-RN18 simple-PhTPS requires less than 8 GiB of GPU memory with

87



Sensors 2023, 23, 940

batch size 8 and can be trained on affordable GPU hardware. Appendix A.2 presents more
detailed memory and execution time comparisons with other algorithms.

We note that the concurrent approach DLv3+-RN50 CAC [58] outperforms our method
with 1/8 and 1/1 labels. However, ResNet-18 has significantly less capacity than ResNet-50.
Therefore, the bottom section applies our method to the SwiftNet model with a ResNet-34
backbone, which still has less capacity than ResNet-50. The resulting model outperforms
DLv3+-RN50 CAC across most configurations. This shows that our method consistently
improves when more capacity is available.

We note that training DLv3+-RN50 CAC requires three RTX 2080Ti GPUs [58], while
our SN-RN34 simple-PhTPS setup requires less than 9 GiB of GPU memory and fits on a
single such GPU. Moreover, SN-RN34 has about 4× faster inference than DLv3+-RN50 on
RTX 2080Ti.

Table 3. Semi-supervised semantic segmentation performance (mIoU/%) on full-resolution
Cityscapes val with different proportions of labeled data. We compare simple-PhTPS and MT-
PhTPS (ours) with supervised training and previous work. DLv3+-RN50 stands for DeepLab v3+

with ResNet-50, and SN for SwiftNet. We run experiments across 5 different dataset splits and report
mean mIoUs with standard deviations. Best results overall are bold, and best results within sections
are underlined.

Method
Label Proportion

1/8 1/4 1/2 1/1

KE-GAN [53] 66.9 70.6 72.2 75.3
DLv3+-RN50 supervised [57] 63.2 68.4 72.9 74.8
DLv3+-RN50 ECS [57] 67.4 70.7 72.9 74.8
DLv3+-RN50 supervised [58] 63.9 68.3 71.2 76.3
DLv3+-RN50 CAC [58] 69.7 72.7 − 77.5

SN-RN18 supervised 61.10.4 67.31.1 71.90.1 75.40.4
SN-RN18 simple-PhTPS 66.31.0 71.00.5 74.30.7 75.80.4
SN-RN18 MT-PhTPS 68.60.6 72.00.3 73.80.4 75.00.4

SN-RN34 supervised 64.90.8 69.81.0 73.81.4 76.10.8
SN-RN34 simple-PhTPS 69.20.8 73.10.7 76.30.7 77.90.2
SN-RN34 MT-PhTPS 70.81.5 74.30.5 76.00.5 77.20.4

Finally, we present experiments in the large-data regime, where we place the whole
fine subset into Dl. In some of these experiments, we also train on the large coarsely
labeled subset. We denote the extent of supervision with subscripts “l” (labeled) and
“u” (unlabeled). Hence, Cu in the table denotes the coarse subset without labels. Table 4
investigates the impact of the coarse subset on the SwiftNet performance on the full-
resolution Cityscapes val. We observe that semi-supervised learning brings considerable
improvement with respect to fully supervised learning on fine labels only (columns Fl vs.
Fl ∪ Cu). It is also interesting to compare the proposed semi-supervised setup (Fl ∪ Cu)
with classic fully supervised learning on both subsets (Fl, Cl). We observe that semi-
supervised learning with SwiftNet-RN18 comes close to supervised learning with coarse
labels. Moreover, semi-supervised learning prevails when we plug in the SwiftNet-RN34.
These experiments suggest that semi-supervised training represents an attractive alternative
to coarse labels and large annotation efforts.
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Table 4. Effects of an additional large dataset on supervised and semi-supervised learning on full-
resolution Cityscapes val (mIoU/%). Tags F and C denote fine and coarse subsets, respectively. Subset
indices denote whether we train with labels (l) or one-way consistency (u).

Method Fl (Fl, Fu) (Fl, Fu ∪ Cu) (Fl, Cl)

SN-RN18 simple-PhTPS 75.40.4
75.80.4 76.50.3 76.90.3SN-RN18 MT-PhTPS 75.00.4 75.50.3

SN-RN34 simple-PhTPS 76.10.8 77.90.2 78.50.4 77.70.4

4.4. Validation of Consistency Variants

Table 5 presents experiments with supervised baselines and four variants of semi-
supervised consistency training. All semi-supervised experiments use the same PhTPS
perturbations on CIFAR-10 (4000 labels and 50,000 images) and half-resolution Cityscapes
(the SwiftNet-RN18 setups with 1/4 labels from Table 1). We investigate the following
kinds of consistency: one-way with clean teacher (1w-ct, cf. Figure 1c), one-way with
clean student (1w-cs, cf. Figure 1b), two-way with one clean input (2w-c1, cf. Figure 1d),
and one-way with both inputs perturbed (1w-p2). Note that two-way consistency is not
possible with Mean Teacher. Moreover, when both inputs are perturbed (1w-p2), we have
to use the inverse geometric transformation on dense predictions [20]. We achieve that by
forward warping [72] with the same displacement field. Two-way consistency with both
inputs perturbed (2w-p2) is possible as well. We expect it to behave similarly to 1w-2p
because it could be observed as a superposition of two opposite one-way consistencies, and
our preliminary experiments suggest as much.

We observe that 1w-ct outperforms all other variants, while 2w-c1 performs in-between
1w-ct and 1w-cs. This confirms our hypothesis that predictions in clean inputs make
better consistency targets. We note that 1w-p2 often outperforms 1w-cs, while always
underperforming with respect to 1w-ct. A closer inspection suggests that 1w-p2 sometimes
learns to cheat the consistency loss by outputting similar predictions for all perturbed
images. This occurs more often when batch normalization uses the batch statistics estimated
during training. A closer inspection of 1w-cs experiments on Cityscapes indicates the
consistency cheating combined with severe overfitting to the training dataset.

Table 5. Comparison of 4 consistency variants under PhTPS perturbations: one-way with clean
teacher (1w-ct), one-way with clean student (1w-cs), two-way with one input clean (2w-c1), and one-
way with both inputs perturbed (1w-p2). Algorithms are evaluated on CIFAR-10 test (accuracy/%)
while training on 4000 out of 50,000 labels (CIFAR-10, 2/25) and half-resolution Cityscapes val
(mIoU/%) while training on 1/4 of labels from Cityscapes train with SwiftNet-RN18 (CS-half, 1/4).

Dataset Method sup. 1w-ct 1w-cs 2w-c1 1w-p2

CIFAR-10, 4k WRN-28-2 simple-PhTPS 80.80.4 90.80.3 69.34.2 72.92.6 73.37.0
CIFAR-10, 4k WRN-28-2 MT-PhTPS 80.80.4 90.80.4 80.50.5 - 73.41.4
CS-half, 1/4 SN-RN18 simple-PhTPS 61.50.5 65.31.9 1.61.0 16.73.0 61.60.5
CS-half, 1/4 SN-RN18 MT-PhTPS 61.50.5 66.01.0 61.51.4 - 62.01.1

4.5. Image Classification on CIFAR-10

Table 6 evaluates the image classification performance of two supervised baselines and
4 semi-supervised algorithms on CIFAR-10. The first supervised baseline uses only labeled
data with standard data augmentation. The second baseline additionally uses our pertur-
bations for data augmentation. The third algorithm is VAT with entropy minimization [4].
The simple-PhTPS approach outperforms supervised approaches and VAT. Again, two-way
consistency results in the worst generalization performance. Perturbing the teacher input
results in accuracy below 17% for 4000 or less labeled examples, and is not displayed. Note
that somewhat better performance can be achieved by complementing consistency with
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other techniques that are either unsuitable for dense prediction or out of the scope of this
paper [5,49,69].

Table 6. Classification accuracy [%] on CIFAR-10 test with WRN-28-2. We compare two supervised
approaches (top), VAT with entropy minimization [4] (middle), and two-way and one-way consistency
with our perturbations (bottom three rows). We report means and standard deviations of 5 runs.
The label “supervised PhTPS-aug” denotes the supervised training, where half of each mini-batch is
perturbed with PhTPS.

Method
Number of Labeled Examples

250 1000 4000 50,000

supervised 31.80.6 59.31.4 81.00.2 94.7
supervised PhTPS-aug 48.70.9 67.20.5 81.70.2 95.0

VAT + entropy minimization 41.02.5 73.21.5 84.20.4 90.50.2
1w-cs simple-PhTPS 27.75.9 51.73.5 69.34.2 91.61.5
2w-c1 simple-PhTPS 30.31.8 54.81.5 72.92.6 95.90.2
1w-ct simple-PhTPS 68.85.4 84.20.4 90.60.4 96.20.2

5. Discussion

We have presented the first comprehensive study of one-way consistency for semi-
supervised dense prediction, and proposed a novel perturbation model, which leads to
the competitive generalization performance on Cityscapes. Our study clearly shows that
one-way consistency with clean teacher outperforms other forms of consistency (e.g., clean
student or two-way) both in terms of generalization performance and training footprint.
We explain this by observing that predictions in perturbed images tend to be less reli-
able targets.

The proposed perturbation model is a composition of a photometric transformation
and a geometric warp. These two kinds of perturbations have to be treated differently,
since we desire invariance to the former and equivariance to the latter. Our perturbation
model outperforms CutMix both in standard experiments with DeepLabv2-RN101 and in
combination with recent efficient models (SwiftNet-RN18 and SwiftNet-RN34).

We consider two teacher formulations. In the simple formulation, the teacher is a
frozen copy of the student. In the Mean Teacher formulation, the teacher is a moving
average of student parameters. Mean Teacher outperforms simple consistency in low data
regimes (half resolution; few labels). However, experiments with more data suggest that
the simple one-way formulation scales significantly better.

To the best of our knowledge, this is the first account of semi-supervised seman-
tic segmentation with efficient models. This combination is essential for many practical
real-time applications where there is a lack of large datasets with suitable pixel-level
groundtruth. Many of our experiments are based on SwiftNet-RN18, which behaves sim-
ilarly to DeepLabv2-RN101, while offering about 9× faster inference on half-resolution
images, and about 15× faster inference on full-resolution images on RTX 2080Ti. Experi-
ments on Cityscapes coarse reveal that semi-supervised learning with one-way consistency
can come close and exceed full supervision with coarse annotations. Simplicity, competi-
tive performance and speed of training make this approach a very attractive baseline for
evaluating future semi-supervised approaches in the dense prediction context.
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Abbreviations

The following abbreviations are used in this manuscript:

DLv2 DeepLab v2
DLv3+ DeepLab v3+

CS Cityscapes
MT Mean Teacher
PhTPS Our composition of photometric and geometric perturbations
pp Percentage point
RN ResNet
simple-X Simple one-way consistency with clean teacher, with perturbation model X
1w-ct One-way consistency with clean teacher
1w-cs One-way consistency with clean student
2w-c1 Two-way consistency with one input perturbed
1w-p2 One-way consistency with both inputs perturbed
SD Sample standard deviation with Bessel’s correction
SN SwiftNet
TPS Thin plate spline
WRN Wide ResNet

Appendix A. Additional Algorithm Comparisons

Appendix A.1. Hyper-Parameters

Tables A1 and A2 review hyper-parameters of consistency-based semi-supervised
algorithms from Tables 1 and 3.
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,ỹ

is
th

e

st
ud

en
tp

re
di

ct
io

n,
ha

rd
is

a
fu

nc
tio

n
th

at
m

ap
s

a
ve

ct
or

re
pr

es
en

tin
g

a
di

st
ri

bu
tio

n
to

th
e

cl
os

es
to

ne
-h

ot
ve

ct
or

(h
ar

d
[c
]
=

� c
=

ar
g

m
ax

k
y [

k ]

� ),
e

is
th

e
pr

op
or

tio
n

of
co

m
pl

et
ed

ep
oc

hs
,α

is
th

e
co

ns
is

te
nc

y
lo

ss
w

ei
gh

t,
an

d
η

is
th

e
ba

se
le

ar
ni

ng
ra

te
.T

he
if

-c
la

us
e

in
th

e
“C

on
si

st
en

cy
lo

ss
”

co
lu

m
n

re
pr

es
en

ts
co

nfi
de

nc
e

th
re

sh
ol

di
ng

,i
.e

.,
de

te
rm

in
es

w
he

th
er

th
e

pi
xe

li
s

in
cl

ud
ed

in
lo

ss
co

m
pu

ta
ti

on
.

M
o

d
e
l

M
e
th

o
d

C
ro

p
S

iz
e

Ji
tt

e
r.

S
ca

le
It

e
ra

ti
o

n
s

E
p

o
ch

s
B l

B u
C

o
n

si
st

e
n

cy
L

o
ss

α
L

e
a
rn

in
g

R
a
te

S
ch

e
d

u
le

D
Lv

2
M

T-
C

ut
M

ix
[2

5]
32

1
[0

.5
..

.1
.5
]

40
,0

00
13

5
*

10
10
‖h

ar
d
(y
)
−
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,ỹ
)

0.
5

η
(1
−

e)
0.

9

SN
ou

rs
44

8
[0

.5
..

.2
]

74
,2

00
20

0
8

8
D
(y

,ỹ
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Appendix A.2. Time and Memory Performance Characteristics

Table A3 shows memory requirements and training times of methods from Tables 1 and 3.
The times include data loading and processing, and do not include the evaluation on the
validation set. The memory measurements are based on the max_memory_allocated and
reset_peak_memory_stats procedures from the torch.cuda package. Note that some
overhead that is required by PyTorch is not included in this measurement (see PyTorch
memory management documentation for more information: https://pytorch.org/docs/
master/notes/cuda.html (accessed on 8 Jan 2023). Some algorithms did not fit into the
memory of GTX 2080Ti. The memory allocations are higher than in Figure 4 because the
supervised prediction, perturbed inputs, and perturbed outputs are unnecessarily kept
in memory.

For DeepLabv3+-RN50, we use the number of iterations, batch size, and crop size
from [58]. Note, however, that the method from [58] has the memory requirements of
two-way consistency because of per-pixel directionality.

Table A3. Half resolution Cityscapes (top section) and Cityscapes (bottom section) maximum memory
allocation and training time on two GPUs.

Duration /min
Model Method Crop Size Iterations Bl Bu Memory /MiB A4500 2080Ti

DLv2-RN101 MT-CutMix [25] 321 40,000 10 10 16,289 1067 –
MT-CutMix∼[25] 321 37,100 4 4 7037 794 1314

DLv2-RN101 supervised 448 74,300 4 – 6611 338 602
MT-PhTPS 448 74,300 4 4 7021 816 1397

SN-RN18 supervised 448 74,200 4 – 1646 119 161
simple-PhTPS 448 74,200 8 8 2398 228 279
MT-PhTPS 448 74,200 8 8 2456 234 297

SN-RN18 supervised 768 92,750 8 – 4444 321 432
simple-PhTPS 768 92,750 8 8 6683 732 963
MT-PhTPS 768 92,750 8 8 6727 768 965

SN-RN34 supervised 768 92,750 8 – 5500 422 570
simple-PhTPS 768 92,750 8 8 7737 994 1268
MT-PhTPS 768 92,750 8 8 7818 1013 1276

DLv3+-RN50 supervised 720 92,560 8 – 11,645 1229 –
simple-PhTPS 720 92,560 8 8 13,384 1884 –
CAC [58] 720 92,560 8 8 25,165 † >3000 * –

† Estimated by running on NVidia A100. * The original implementation requires 36,005 MiB. Approximately
10.6 GiB can be saved by accumulating gradients as in Algorithm 1.

Table A4 shows the numbers of model parameters, and Table A5 shows inference
speeds of models from Tables 1 and 3.

Table A4. Number of model parameters.

Model Number of Parameters

DeepLabv2-RN101 43.80× 106

DeepLabv3+-RN50 40.35× 106

SwiftNet-RN34 21.91× 106

SwiftNet-RN18 11.80× 106
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Table A5. Model inference speed (number of iterations per second) on three different GPUs and
two input resolutions. Inputs are processed one by one, without overlap in computation. The
measurements include the computation of the cross-entropy loss, but do not include data loading
and preparation.

1024 × 2048 512 × 1024
A4500 2080Ti 1080Ti A4500 2080Ti 1080Ti

DeepLabv2-RN101 5.1 3.0 1.5 19.6 12.2 6.3
DeepLabv3+-RN50 16.1 9.6 5.2 54.2 30.7 23.5
SwiftNet-RN34 39.2 30.5 23.6 93.4 86.1 73.5
SwiftNet-RN18 56.5 45.3 34.6 139.5 115.8 98.4

Appendix B. Effect of Updating Batch Normalization Statistics in the

Perturbed Student

Batch normalization layers estimate population statistics during training as exponen-
tial moving averages. Training on perturbed images can adversely affect the suitability
of these estimates. Consequently, we explore the design choice to update the statistics
only on clean inputs (when the supervised loss is computed), instead of both on clean and
on perturbed inputs. Note that this configuration difference does not affect parameter
optimization because the training always relies on mini-batch statistics.. Figure A1 shows
the effect of disabling the updates of batch normalization statistics when the model instance
(student) receives perturbed inputs in our semi-supervised training (one way consistency
with clean teacher). The experiments are conducted according to the corresponding descrip-
tions in Section 4. In case of half-resolution Cityscapes, disabling updates in the perturbed
student (blue) increased the validation mIoU by between 0.3 and 1.4 pp, depending on
the proportion of labels. However, in case of full-resolution Cityscapes, an opposite effect
occured—mIoU decreased by between 0.1 and 1.1 pp. In CIFAR-10 experiments, the effect
is mostly neutral.
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Figure A1. Cont.
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Figure A1. Effect of updating batch normalization statistics in the perturbed student. (a) Half-
resolution Cityscapes val. (b) Cityscapes val. (c) CIFAR-10 validation set.
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27. Oršić, M.; Krešo, I.; Bevandić, P.; Šegvić, S. In defense of pre-trained imagenet architectures for real-time semantic segmentation
of road-driving images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 15–20 June 2019; pp. 12607–12616.

28. Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [CrossRef]
29. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
[CrossRef]

96



Sensors 2023, 23, 940

30. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9
October 2015; Navab, N., Hornegger, J., III, Wells, M.W., Frangi, A.F., Eds.; Lecture Notes in Computer Science; Proceedings, Part
III; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241.

31. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In Proceedings
of the ECCV, Munich, Germany, 8–14 September 2018; Volume 11207, pp. 418–434.

32. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 22–25 July 2017.
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Abstract: Deep learning technology has developed rapidly in recent years and has been successfully
applied in many fields, including face recognition. Face recognition is used in many scenarios nowa-
days, including security control systems, access control management, health and safety management,
employee attendance monitoring, automatic border control, and face scan payment. However, deep
learning models are vulnerable to adversarial attacks conducted by perturbing probe images to
generate adversarial examples, or using adversarial patches to generate well-designed perturbations
in specific regions of the image. Most previous studies on adversarial attacks assume that the attacker
hacks into the system and knows the architecture and parameters behind the deep learning model. In
other words, the attacked model is a white box. However, this scenario is unrepresentative of most
real-world adversarial attacks. Consequently, the present study assumes the face recognition system
to be a black box, over which the attacker has no control. A Generative Adversarial Network method
is proposed for generating adversarial patches to carry out dodging and impersonation attacks on
the targeted face recognition system. The experimental results show that the proposed method yields
a higher attack success rate than previous works.

Keywords: deep learning; face recognition; adversarial attack; perturbation; adversarial examples;
adversarial patches; Generative Adversarial Network

1. Introduction

Face recognition technology has undergone significant advances in recent years
through the application of deep learning models. Meanwhile, the COVID-19 pandemic
has brought about many lifestyle changes, including a desire for non-contact business
opportunities wherever possible [1]. As a result, face recognition now plays a significant
role in improving security and convenience in all manner of fields and applications. For
example, face recognition is widely used throughout manufacturing and warehousing,
banking and financial insurance, smart offices, smart homes, retail, public transportation
and airports, medical scenes, schools and education institutions, hotels, and many other
service industries. MarketsandMarkets [2] estimated that the global output value of face
recognition would grow at an annual rate of 17.2% from 2020 onwards and would reach a
global market value of USD 13.87 billion in 2028. Thus, face recognition offers significant
business opportunities in the coming years and decades.

However, despite the many benefits of deep learning technology, it is not without
risk. For example, the authors in [3] showed that image classification systems built on deep
learning models can be easily attacked by adding a small perturbation to the original image
to form an adversarial example, which is subsequently misclassified. Similar misclassifi-
cation errors can be induced by applying adversarial patches [4] to the original image to
produce local perturbations. In such cases, the reliability of the image classification system
is significantly impaired. Consequently, the problem of improving the robustness of deep
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learning models, and the applications which rely on these models (face recognition systems,
for example), is a crucial concern in real-world environments.

Based on the above issue, we propose a method that can make the face recognition
model misclassified, and the method can achieve attack effectiveness in the physical world
as well. Moreover, we also explore adding adversarial images to the face recognition model
as a training dataset to improve the model’s robustness.

Adversarial attacks against deep learning models can be divided into many types. For
example, depending on the adversarial capacity, they can be classified as either white-box
or black-box attacks, where in the former case, the attacker knows the parameters and
architecture of the deep learning model, whereas in the latter case, they do not. Black-box
attacks are thus generally more challenging than white box attacks. A second class of attack
is that of poisoning attacks, in which adversarial images are injected into the model during
the training stage in order to affect the learning performance; or input or evasion attacks, in
which the input images are deliberately perturbed in order to produce misclassification
errors. Depending on the space in which they are launched, adversarial attacks can also be
classified as either physical world attacks [5,6] or digital world attacks. Finally, depending
on whether or not the attack has a specific target, adversarial attacks can be categorized as
either targeted attacks or non-targeted attacks, where such attacks are generally referred
to as dodging attacks or impersonation attacks, respectively, in the face recognition field.
Dodging attacks aim to cause the input face image to be identified as any other individual
in the face database. By contrast, impersonation attacks aim to cause the individual to be
identified as a specific person (i.e., the attack target) in the database.

However, for the attack method, Bhambri et al. [7] surveyed the relevant literature, in
which Deb et al. [8] proposed a GAN-based [9] adversarial attack method that generates
perturbations for the human face to achieve an attack in a digital environment. That
perturbation cannot be examined with the human eye, nor can physical cameras. Therefore,
based on this method, we can conduct an attack on a face recognition system in the physical
world by generating perturbation for the glasses of a specific person. When an attacker
wears attack glasses to attack a face recognition system, it can cause misidentification.

As aforementioned, the majority of face recognition systems are built in the real world,
the present study focuses on the challenging problem of black-box input attacks using
GAN-based adversarial patches in the physical world. For the sake of robustness, the study
considers both dodging attacks and impersonation attacks. In short, our contributions are
summarized as follows.

• We propose the adversarial patches method for face recognition attacks applicable
to the physical world. It does not require knowledge of the parameters of the deep
learning model (black box) to achieve attack effectiveness.

• For the reliability of our approach, we performed a comprehensive attack test for all
one-to-one combinations. Based on testing quantities, the number of subjects and
the number of testing by each subject is higher than the previous literature, which
results show that the success rate of dodging attacks is 57.99%, and the impersonation
attack success rate is 46.78% in the digital world. The success rate of dodging attacks
is 81.77%, impersonation attack success rate reached 63.85% in the physical world.

• The proposed attack method utilizes the adversarial patch, which occupies only a small
area of the face, instead of the adversarial example, which occupies the whole face.
Therefore, the attacker can adjust the noise region according to the requirements. In our
case, we hide the adversarial perturbation in the glasses to achieve the effectiveness of
being judged as someone else. As a result, it is difficult for the layperson to know our
attack intent and, therefore, poses a significant threat to the face recognition system.

• Based on the method proposed in this study, we found that the number of people with
two face databases of different numbers of people, the number of people will further
affect the attack’s success rate. The attack success rate increases when the number of
people in the database increases. In short, the chances of being hacked increase.
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• We propose a novel defense mechanism to counter the GAN-based adversarial patch
method. The results show that the proposed mechanism can detect almost all dodging
attacks and more than half of the impersonation attacks with high defense effectiveness.

• We explored the relationship between thresholds and attack success and proved that
both are relative. In addition, we attack different models by the no-box attack, showing
that our attack method is transferable.

2. Background

2.1. Face Recognition

Various face recognition methods have been proposed in the past, such as SVM-based,
subspace learning-based, and deep-learning-based methods. We summarize and compare
the previous works in Table 1.

Table 1. Previous works of face recognition.

Previous Works Database Method Accuracy Year

[10] Tufts face MvRDTSVM 91.55% 2022
MvFRDTSVM 88.82 % 2022

[11] AT&T face
DWT + PCA + SVM 96% 2018
DWT + LDA + SVM 96% 2018
DWT + ICA + SVM 94.5% 2018

[12] PubFig83 CSV-DML 84.6% 2022

[13] LFW DeepFace-ensemble 97.35% 2014

[14] LFW Siamese Network
(ZFNet + Inception-v1) 99.63% 2015

[15] VGGFace2 ResNet-50 99.6% 2018

[16] LFW LightCNN-v29 98.98% 2020

[17] VGGFace2-FP PDA 95.32% 2020

[18] VGGFace2-FP HOG + Autoencoders 99.60% 2017

[19] CASIA
NIR-VIS2.0 CpGAN 96.63% 2020

[20] LFW FI-GAN 99.6% 2020

[21] IJB-A DAC 0.976 ± 0.01% 2020

[22] YTF ADRL 96.52 ± 0.54% 2017

In many classification issues, the samples of one class are usually surrounded by
the samples of the other classes. To address this issue, Ye et al. [10] proposed multiview
robust double-sided twin SVM(MvRDTSVM) and a fast version of MvRDTSVM (named
MvFRDTSVM). In the Tufts face database, MvRDTSVM and MvFRDTSVM achieved an
accuracy of 91.55% and 88.82%, respectively. The previous method used in the two classifi-
cation problems is not suited for face recognition that has many people. In general, face
recognition algorithms consist of three steps: pre-processing images, feature extraction,
and face classification. Lahaw et al. [11] proposed combining Two Dimensional Discrete
Wavelet Transform (2D-DWT), which can capture localized information of images, with
Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), or Independent
Component Analysis (ICA) to extract face feature. Finally, the SVM algorithm combined
with the 2D-DWT method has led to the increase of the performance of PCA + SVM,
LDA + SVM, and ICA + SVM from 90.24%, 93.9%, and 91% to 96%, 96%, and 94.5%, respec-
tively. Most of the existing distance metric-based(DML) methods are kNN DML methods.
The disadvantage of kNN DML method is that the classification result is affected by the
setting of the nearest neighbor number k. Ruan et al. [12] proposed a convex model for
support vector DML (CSV-DML), which increased the accuracy of the CSV-DML to 84.6%,
better than the existing kNN DML and support vector DML methods.
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Furthermore, many well-known face recognition studies are based on deep learning
approaches, including Deepface [13], FaceNet [14], VGG-Face [15], and ArcFace [23]. Deep-
face [13], proposed by Facebook in 2014, uses a nine-layer neural network with Softmax
in the loss function, and achieved a recognition accuracy of 97.35% when applied to the
LFW (Labeled Faces in the Wild) dataset. FaceNet [14] was proposed by Google in 2015
and uses ZFNet and Inception-v1 as the Siamese network [24] architecture and a triplet
loss in the loss function. The model achieved an accuracy of 99.63% on the LFW dataset in
the validation stage. The Visual Geometry Group (VGG) proposed VGG-Face [15] in 2017,
which is a neural network for large-scale image recognition based on a small number of
VGG [25] training samples and the Softmax loss function. It was shown that the accuracy of
the proposed network reached 99.6% when using the triplet loss proposed in FaceNet [14]
for inference purposes.

ArcFace [23], proposed in 2018, is based on the ResNet deep neural network architec-
ture [26], but employs a novel loss referred to as Additive Angular Margin Loss. The model
achieved an accuracy of 99.83% when applied to the LFW dataset.

In recent studies, Fuad et al. [27] surveyed many deep learning (DL) methods for
face recognition (FR). The authors explored them in several parts. For the CNN-based
method, Chen et al. [16] considered the angle discrepancy and magnitude gap between
high-resolution and corresponding low-resolution faces. It successfully identified faces
with fewer than 32 × 32 pixels, resulting in LightCNN-v29 achieving a 98.98% success rate.
Wang et al. [17] proposed a pyramid-diverse attention framework to avoid the model fo-
cusing on fixed blocks by extracting features in multiple layers so that the model can extract
facial features more comprehensively. For the Autoencoder-based method, Autoencoder
combines generated and learned properties, but it still learns irrelevant features. There-
fore, Pidhorskyi et al. [28] proposed an Adversarial Latent Autoencoder (ALAE) to solve
this issue and improve the training procedure of GAN. Additionally, Usman et al. [18]
used multiple levels of hidden layers for feature extraction and dimension reduction for
expression recognition. For GAN-based methods, Iranmanesh et al. [19] proposed the
CpGAN method, which processes visible and non-visible spectra separately through two
sub-networks of independent GANs. The CpGAN was then used for heterogeneous face
recognition. In addition, Rong et al. [20] used GAN to solve the issue of failing recognition
when the identified person has a large pose change. For the Reinforcement Learning-based
method, Liu et al. [21] and Rao et al. [22] applied reinforcement learning to find the
attention of videos in a heterogeneous collection of unordered images and videos, and both
achieve rich results.

To sum up the above methods, despite the many novel architectures proposed in
the recent literature, FaceNet has a unique architecture and employs a triplet loss to
process the data. FaceNet continues to be one of the most commonly used and accurate
models for face recognition purposes. Although the accuracy of ArcFace is slightly higher
than that of FaceNet, its performance advantage is obtained at the expense of a higher
computational cost. Consequently, the present study deliberately adopts FaceNet to build
the face recognition systems used for evaluation purposes.

2.2. Adversarial Attack
2.2.1. Adversarial Example

Adversarial examples are produced by adding small perturbations to the original input
sample. Many methods are available for generating adversarial examples, including the
Fast Gradient Sign Method (FGSM) [3], the Basic Iterative Method (BIM) [5], the Projected
Gradient Descent (PGD) [29], and the Carlini & Wagner attack [30]. All of these methods
have a high attack success rate and are widely used in digital attack scenarios. However,
FGSM is not suitable for black-box attacks since they require knowledge of the model
parameters when training. BIM and PGD are based on FGSM, albeit with a smaller step
size, and is thus equally inapplicable to black-box attacks.
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Consequently, among these methods, only the Carlini and Wagner attack model can
be applied to black-box attacks. Most attack methods are based on loss functions and add a
gradient value to the image pixels as noise. The target model is then queried repeatedly until
model convergence. However, face recognition systems are generally implemented in the
real world and, provided that the face recognition system is not hacked, the likelihood of an
attack succeeding simply by directly modifying the image pixels is rather low. Furthermore,
if the attack queries the model many times in an attempt to deceive the system, it is likely to
trigger a security mechanism and will thus similarly fail. In other words, adversarial attack
methods, which add noise to the entire image, have only a limited effectiveness against
face recognition applications.

2.2.2. Adversarial Patch

Adversarial patches [4] differ from adversarial examples in that they add noise only
to certain regions of the image, rather than the entire image. Adversarial patch attacks
can be easily applied in the real world and require no knowledge of the parameters or
architecture of the model. The authors in [31] demonstrated the feasibility for fooling
automated surveillance cameras by applying adversarial T-shirts to the subject. Similarly,
the authors in [32] generated adversarial patches for road signs using a GAN-based [9]
method and showed that the patches prevented the classifier from identifying the road
signs correctly.

2.3. Attention Area of Face Recognition

The accuracy of face recognition systems based on deep learning methods is signifi-
cantly higher than that of earlier image-processing-based or statistical methods. However,
besides the prediction accuracy of such methods, there is growing interest in the inter-
pretability of the prediction results. Castanon and Bryne [33] used a heat map to quantify
the relative importance of each feature in the classification model. The results indicated
that the prediction outcome was determined mainly by the features extracted from the eyes,
nose and mouth regions of the image. Deb et al. [8] also showed that the success rate of
adversarial patch attacks against face images was enhanced when applying noise mainly
to the eyes and nose regions of the face.

3. Related Works

The literature contains many studies on attack methods against deep-learning-based
face recognition systems. However, many of these studies assume that the attacker some-
how gains access to the face recognition system, or consider only attacks in the digital
world. By contrast, the present study aims to explore a more realistic attack scenario, in
which the attack occurs in the physical world and the attacker has no information of the
model parameters and architectures. Thus, in considering the previous work in the field,
the present study focuses mainly on the works shown in Table 2 where we distinguish
related works by attack method, attack situation, generate object and attack capacity.

Table 2. Related Works.

Related Works Attack Method Situation
Generate

Object
Adversarial

Capacity

[34] L-BFGS Physical Patches White-Box

[35] LED Physical LED Infrared White-Box

[36] FGSM Physical Patches White-Box

[37] MI-FGSM Physical Patches White-Box

[38] VLA Physical Visible Light Black-Box

[39] Transformation-Invariant
Adversarial Pattern Physical Visible Light Black-Box
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Table 2. Cont.

Related Works Attack Method Situation
Generate

Object
Adversarial

Capacity

[8] GAN-based Digital Digital Face
Image Black-Box

[40] GAN-based Physical Adv-Makeup Black-Box

[41] GAN-based Digital Digital Image Black-Box

[42] FACESEC Physical Eyeglass Black-box

[43] GAN-based Physical Sticker Black-box

As shown in Table 2, many of the adversarial attack methods reported in the literature
are white-box attacks and use adversarial patches. For example, the method in [34] uses the
L-BFGS method to print 2D or 3D images with adversarial glasses. The attack success rate
was found to be as much as 97.22% in dodging attacks and 75% in impersonation attacks.
However, the test dataset was limited to just three individuals. In [35], an LED is added
to the hat, an infrared light is projected onto the face which is adjusted according to the
attack target. It is noticed that the attack is unstable which indicates some limitation on
using infrared light attack. Moreover, the attack method is white-box attack. The studies
in [36,37] conduct white-box attacks using adversarial stickers attached to hats and the
nose, forehead and eyes regions of the face image, respectively. It was shown in [36], that
the adversarial patches effectively reduce the similarity between the input image and the
target image and therefore is able to attack the face recognition system. In [37], although the
similarity of the patch face image with the ground truth class was only just slightly lower
that that with the targeted class, the attack is successful as the neural network classifies the
patch face image as the targeted class.

Although the methods in [34–37] are capable of deceiving the face recognition model,
their success rate is relatively low. Moreover, the adversarial attacks are launched using
white-box attack methods. As described above, white-box attacks require a knowledge of
the parameters and architecture of the face recognition model. Thus, white-box attacks are
generally ineffective in real-world scenarios, where such information is carefully guarded.
Accordingly, the authors in [38,39] proposed black-box attacks, in which light produced
by a projector was used to generate attack noise. The study in [38] attacked the FaceNet
face recognition system and achieved an average dodging success rate of 85.7% for nine
test subjects and an average impersonation success rate of 32.4%. In [39], projected light
was generated as noise using an update gradient method and was used to conduct attacks
against a commercial face recognition model. The dodging attack and impersonation attack
success rates were shown to be 70% and 60%, respectively. However, the impersonation
attack considered only one test subject. The attack success rates of the methods in [38,39]
are generally higher than those of previous methods. However, in both cases, it is necessary
to query the system multiple times during training. Moreover, it is impractical to carry and
use the light projection equipment in real-world situations, and the projection angle and
light intensity must be carefully considered and managed.

Deb et al. [8] used a GAN to generate adversarial noise, which was added to the
original face to form an adversarial face in the digital world. In the original GAN ar-
chitecture, the aim is to generate an image which is as similar to the original image as
possible. In [8], however, the performance of the GAN in generating adversarial noise was
improved by extending the loss function to include not only the original loss LGAN , but also
two new losses, namely Lperturbation and Lidentity , respectively. The aim of the Lperturbation
loss was to control the amount of noise generated, while that of the Lidentity loss was to
control the generated noise such that the image was classified into a specified class. The
GAN model was used against the FaceNet face recognition model and achieved a success
rate of 97.22% for obfuscation attacks and 24.30% for impersonation attacks. Thus, even
though the attack model considered the more realistic scenario of a black-box attack, the
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impersonation success rate was still rather low. Bin et al. [40] used a GAN-based method
to add makeup around the eyes as adversarial noise. The experimental results showed
that the proposed method achieved an average success rate of 33.17% for impersonation
attacks against FaceNet and a maximum success rate of 52.92% for impersonation attacks
against a commercial face recognition model. Xiao et al. [41] proposed another GAN-based
method (advGAN) for generating adversarial examples. However, it was limited only to
attacks in the digital world and was aimed at image classification systems rather than face
recognition systems. Tong et al. [42] proposed the FACESEC method based on gradient
l0-norm to generate stickers, eyeglass frames, and face masks, which in turn attack FaceNet
and VGGFACE. The attack success rate of the eyeglass frame on the FaceNet model is 54%.
In addition, [42] explored the effect of knowing the parameter and architecture of the attack
model on the attack success rate. Shen et al. [43] proposed a GAN-based adversarial attack
to generate stickers that can be adhered to the ciliary arches, nasal bones, and two nasolabial
folds on both sides. This study attacked Arcface, CosFace, FaceNet, and VGGFace models.
For the dodging attack on FaceNet in the physical world, the work could achieve an attack
success rate of 100.0%. For the impersonation attack, the attack success rate is 55.32%.
Finally, [43] also explored the effects of camera distance, sticker size, and head pose.

In summary, other papers use Gradient-based (e.g., L-BFGS [34], FGSM [36,37],
FACESEC [42]), Visible Light-based [35,38,39], and GAN-based [8,40,41,43] methods. In
the physical world, the model architecture and parameters are mandatory knowledge for
the traditional Gradient-based method, which means it is only applicable to white-box
attacks. This approach is not realistic for practical applications. The Visible Light-based
method uses visible light projection to change the face feature pixels. Besides requiring
many resources and projectors, this method is easily vulnerable to external environmental
factors, such as an infrared cut-off lens leading to the attack’s failure. In contrast, we use a
GAN-based approach to generate attack glasses or face patches, which is convenient. We
also restrict the noise to the frame of the glasses (small area, not modified face features),
which achieves a high success rate of attacks in both the physical and digital worlds. In
addition, our method does not result in a “this person does not exist” warning in real-world
face recognition systems. It is difficult for a layman such as a security guard to know the
intent of our attack.

4. Proposed Method

The present study proposes a GAN-based attack method based on the generation
of adversarial patches. The attack method assumes the use of a black-box model and is
applicable to both the digital world and the physical world. It is shown that the proposed
method achieves a success rate of 57.99% in digital dodging attacks and 48.78% in digital
impersonation attacks. Moreover, the success rates for physical dodging and impersonation
attacks are 81.77% and 63.85%, respectively. In other words, the attack performance of the
proposed method is significantly better than that of previous methods reported in Section 3.

The present study refers to the model architecture used in [8,44], in which the training
images comprise a face data set, and adversarial noise is added to each face using the
conventional GAN method. In contrast to the method in [8], however, the generator in the
present study generates adversarial noise only on glasses rather than on the entire face, and
then adds these adversarial glasses to the face prior to judgement by the discriminator. The
proposed method is thus more easily applied for attacks in the physical world.

On the whole, our proposed GAN architecture is illustrated in Figure 1, which com-
prises three main components: the generator G, the discriminator D, and the face matcher F.
For the execution process of the proposed architecture, first, the glasses are the generator’s
input for generating the perturbation. Second, the perturbation will be combined with the
glasses and the person to form the merged image, which will be used as the input to the
discriminator (D) and the face matcher (F). Third, the generator, discriminator, and face
matcher will calculate the losses, Lperturbation, Ladv, and Lidentity, respectively. The pseudo
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codes for generating adversarial glasses and patches are shown in Algorithms 1 and 2. The
details of these components will be presented below.

Figure 1. Proposed architecture.

Algorithm 1 Training AdvFace in dodging attack

Input:
X Training Glasses Dataset
f Training Face Dataset
F Cosine similarity between an image pair obtained by face matcher
G Generator with weight Gθ

D Discriminator with Dθ

m Batch size
α Learning size

1: for number of training iterations do

2: Sample a batch of probes {x(i)}m
i=1 ∼ X

3: Sample a batch of origin face images {y(i)}m
i=1 ∼ f

4: δ(i) = G(x(i))
5: x(i)adv = x(i) + δ(i)

6: Lperturbation = 1
m [∑m

i=1 max(P, ||δ(i)||2)]
7: Lidentity = 1

m [∑m
i=1 E[(F (y(i), x(i)adv))]]

8: LD = 1
m [∑m

i=1 log(1−D(x(i)adv))]

9: Ladv = 1
m [∑m

i=1 log(D(x(i))) + log(1−D(x(i)adv))]

10: LG = Ladv + λiLidentity + λpLperturbation

11: Gθ = Adam(�GLG ,Gθ , β1, β2)
12: Dθ = Adam(�DLD ,Gθ , β1, β2)
13: end for
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Algorithm 2 Training AdvFace in impersonation attack

Input:
X Training Face Dataset
f Target Face Dataset
F Cosine similarity between an image pair obtained by face matcher
G Generator with weight Gθ

D Discriminator with Dθ

m Batch size
α Learning size

1: for number of training iterations do

2: Sample a batch of probes {x(i)}m
i=1 ∼ X

3: Sample a batch of target images {y(i)}m
i=1 ∼ f

4: δ(i) = G(x(i), y(i))
5: x(i)adv = x(i) + δ(i)

6: Lperturbation = 1
m [∑m

i=1 max(P, ||δ(i)||2)]
7: Lidentity = 1

m [∑m
i=1 E[1−F (y(i), x(i)adv)]]

8: LD = 1
m [∑m

i=1 log(1−D(x(i)adv))]

9: Ladv = 1
m [∑m

i=1 log(D(y(i))) + log(1−D(x(i)adv))]

10: LG = LGadv + λiLidentity + λpLperturbation

11: Gθ = Adam(�GLG ,Gθ , β1, β2)
12: Dθ = Adam(�DLD ,Gθ , β1, β2)
13: end for

4.1. Generator

The aim of the generator is to generate an adversarial image that causes the face
recognition system to misclassify the input. A glasses image x is input to the generator,
and the generator randomly generates G(x) from the multi-dimensional space. The noises
generated by the generator are then added to the original glasses image to produce x+G(x).
(That is, x + G(x) denotes that only noises within the glasses are remained on the glasses.)
As shown in Figure 1, the generated noise, G(x), can be controlled by the Lperturbation loss.
In particular, the L2 norm of G(x), designated as ‖G(x)‖2, is taken and compared with a
predefined noise threshold, P. The loss function, Lperturbation, is then assigned based on the
outcome of this comparison, as shown in the following:

Lperturbation = E[max(P, ‖G(x)‖2)] (1)

With the Lperturbation, the generator will be trained to generate as much noise as possible
with the constraint that the L2 norm of G(x) is close to but not larger than the predefined
noise threshold, P.

The proposed architecture incorporates an additional loss, designated as Lidentity,
which aims to encourage the generator (G) to generate noise specifically intended to cause
the face recognition system to misjudge the input face as that of another individual. The
adversarial image x + G(x) is first attached to a face image f through image processing to
produce f + x + G(x). The matcher (F) then compares f + x + G(x) with the original face image
f and calculates the difference between them as Lidentity. The aim of the generator is to
minimize the output value of the face matcher, F. The Lidentity here has different definitions
for non-targeted attack and targeted attack. When generating adversarial glasses for a
non-targeted attack, Lidentity is calculated as follows:

Lidentity = E[F( f , ( f + x + G(x))], (2)

where f is the face image of the person performing adversarial attack.
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However, when generating adversarial faces ((x + G(x), where x = ft) to carry out
targeted attacks, the aim is to attack a specific target, and hence the input image patched
with the adversarial face image, f + x + G(x), is compared to the face image of the attack
target, ft. Thus, in this case, Lidentity is computed as

Lidentity = E[1− F( ft, f + x + G(x))]. (3)

For the layer structure of the generator, Table 3 shows the structural parameters of the
design in detail.

Table 3. Structural parameters of the generator.

Layer Type Filters/Neurons Stride Padding

1 Conv 64 (kernel size = 7) 1 3
2 Conv 128 (kernel size = 4) 2 -
3 Conv 256 (kernel size = 4) 3 -
- residual block kernel size = 3 - -
- residual block kernel size = 3 - -
- residual block kernel size = 3 - -
4 Unsampling 128 (kernel size = 5) 1 2
5 Unsampling 64 (kernel size = 5) 1 2
6 Conv 3 (kernel size = 7) 1 3

4.2. Discriminator

The purpose of the discriminator is to compare the original face f and the face image
with glasses f + x + G generated by the generator. The original face f is input to the
discriminator, and the generator then attempts to minimize the difference between f and f
+ x + G such that the discriminator is unable to distinguish between them. In the present
architecture, the discriminator is implemented using the loss function described in [9].
That is,

Ladv = E[log D( f )] + [log(1− D( f + x + G(x)))] (4)

For the layer structure of the discriminator, Table 4 shows the structural parameters of
the design in detail.

Table 4. Structural parameters of the discriminator.

Layer Type Filters/Neurons Stride Padding

1 Conv 32 (kernel size = 4) 2 -
2 Conv 64 (kernel size = 4) 2 -
3 Conv 128 (kernel size = 4) 2 -
4 Conv 256 (kernel size = 4) 2 -
5 Conv 512 (kernel size = 4) 2 -
6 Conv 1 (kernel size = 1) 1 -

4.3. Face Matcher

The propose of the face matcher is to quantify the similarity between two faces. In
other words, F can be regarded as a form of face recognition system. To compare the
similarity between two faces, the face matcher receives the two face images and outputs
two corresponding feature vectors. The distance between the two feature vectors is then
taken as a measure of the similarity between them, where a smaller distance indicates a
greater similarity, and vice versa.

The total loss function of the proposed GAN architecture thus has the form

Ltotal = Ladv + x1Lperturbation + x2Lidentity, (5)
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where x1 and x2 are weighting values used to control the relative contributions of the
Lperturbation and Lidentity losses, respectively. The total loss, Ltotal , is then fed back to the
generator G for further training. In particular, the generator produces a new adversarial
image, which is reevaluated by the discriminator D and face matcher F. The resulting loss,
Ltotal , is then returned to the generator as feedback once again. The training process contin-
ues iteratively in this way until the generator produces a set of high-quality adversarial
images which are virtually indistinguishable from the original face images by both the
discriminator and the face matcher.

5. Experimental Results

The present study constructed two system environments: one in the digital world and
another in the physical world. The former system implemented a face recognition system
for the digital world and a generator for producing adversarial patches. The system was
implemented on the Ubuntu 18.04 operating system with 256 GB of memory space, a Tesla
V100 GPU, 32 GB PCIe (NVIDIA Corp., San Jose, CA, USA), and an Dell PowerEdge R740
with Intel� Xeon� Silver 4116 CPU @ 2.10 GHz. The system was programmed in Python
3.6 using a variety of deep learning tools, including TensorFlow 1.14.0, Keras 2.3.1, Pytorch
1.9, and CUDA version 11.0.

The second system implemented a face recognition system in the physical world. For
testing convenience, and to reproduce a realistic face recognition system environment, the
system was implemented on an ASUS X556UR laptop (ASUSTek Computer Inc., Taipei,
Taiwan) under an Anaconda virtual environment. The face recognition system was run on
a NVIDIA GeForce 940MX (NVIDIA Corp., San Jose, CA, USA) 2 GB graphics card and was
programmed in Python 3.6 with TensorFlow 1.14.0, Keras 2.3.1 and Pytorch 1.9. The laptop
camera had a poor resolution of just 480 p. Thus, to enhance the face recognition process,
the laptop was interfaced with a Logitech C925e (Logitech International S.A., Lausanne,
Switzerland, and Newark, CA, USA) webcam with an improved resolution of 1080 p.

5.1. Evaluation Metric

The performance of the proposed GAN-based attack method was quantified by eval-
uating the attack success rate in both the digital world and the physical world. For both
worlds, the attack success rate was investigated for both dodging attacks and impersonation
attacks. In the case of dodging attacks in the digital world, the success rate was computed
as follows:

∑i∈N(ŷi �= yi) and (d(ŷi) < threshold)
|N| , (6)

where yi is the original class of the input image i; ŷi is the image class (of the image
i) predicted by the face recognition model; d(ŷi) is the similarity (e.g., cosine distance)
of the input image i and an image in class ŷi; |N| is the total number of input images;
and threshold is a threshold parameter used for classification judgement purposes. Note
that the threshold parameter was assigned a value of 0.4, where a similarity less than this
threshold was taken to indicate a valid classification result.

The success rate of impersonation attacks in the digital world was evaluated using
Equation (7), in which ỹ is the class of the target, ŷi is the class predicted by the face
recognition model.

∑i∈N(ŷi = ỹ) and (d(ŷi) < threshold)
|N| (7)

In the physical world, the face images were read directly through the webcam. Thus,
the adversarial patches produced by the generator were printed and worn by the subjects.
For each subject, images were collected over a 10 s period with head motion allowed. For
the dodging attacks, the attack was considered to be successful when the system identified
three consecutive face images as belonging to an individual other than the subject. Similarly,
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for the impersonation attacks, the attack was considered to be a success when the system
identified three consecutive face images as belonging to the target individual.

5.2. Datasets

Three datasets were used to construct the face recognition systems, namely one dataset
consisting of 3000 face images chosen from the LFW open-source face dataset, and two
self-collected small face datasets. The first self-collected database contained 10 subjects
(6 male and 4 female) between the age of 22 and 27 years old, with five face images for each
subject. The second self-collected database added an additional 12 individuals to the first
dataset, giving a total of 22 individuals (16 male and 6 female) between the ages of 20 and
34 years old. Again, the dataset contained five face images for each individual. For both
self-collected databases, the face images were captured in a well-lit indoor environment
using a mobile phone camera.

When performing dodging attacks against the face recognition systems, adversarial
patches were produced by adding noise to the glasses dataset in [34], which contains various
styles of glasses, each with multiple colors, giving a total of 16,833 images. Meanwhile, the
impersonation attacks were conducted using the 10 individuals in the first self-collected
dataset as training subjects, where each individual wore printed adversarial glasses and
face patches.

5.3. Face Recognition Systems in Digital World

The experiments commenced by evaluating the attack performance of the proposed
GAN-based adversarial patch method against the face recognition systems constructed
in the digital world. The attack performance was evaluated for both the face recognition
system built using the LFW dataset and the systems built using the two self-collected
databases, respectively. In all three cases, face recognition was performed using the Deep-
face [45] open-source model, with a similarity (cosine distance) threshold set as 0.4 in
order to achieve a False Accept Rate (FAR) of 0.1%. Two different adversarial patches
were generated to carry out dodging attacks and impersonation attacks, respectively. The
dodging attacks were conducted using the adversarial glasses patches shown in Figure 2.

Figure 2. Generated adversarial glasses.
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The adversarial glasses were passed through the mask shown in Figure 3, and the
resulting frames were applied to the face images one-by-one to perform adversarial attacks,
as shown in Figure 4.

Figure 3. Glasses mask.

Figure 4. Addition of adversarial glasses in the digital world.

To carry out the impersonation attacks, adversarial faces were generated by the pro-
posed method, as shown in Figure 5. The adversarial faces were extracted as circles (see
Figure 6) and were then attached to the forehead regions of the face images with adversarial
glasses, as shown in Figure 7.

111



Sensors 2023, 23, 853

Figure 5. Generated adversarial faces.

Figure 6. Adversarial faces cut into circles.
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Figure 7. Addition of adversarial faces to face images with adversarial glasses in the digital world.

5.4. Face Recognition Systems in Physical World

To evaluate the performance of the proposed model in the physical world, the face
recognition system was constructed using the self-collected dataset containing 22 individu-
als. In implementing the face recognition system, the similarity threshold was set as 0.1 to
achieve a FAR of 0.1%. For the dodging attacks, the adversarial glasses were printed on
cardboard and worn around the eyes, as shown in Figure 8. For the impersonation attacks,
the adversarial faces were additionally printed and attached to the forehead region, as
shown in Figure 9.

Figure 8. Wearing of adversarial glasses in the physical world.
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Figure 9. Wearing of adversarial glasses and an adversarial face in the physical world.

5.5. Results
5.5.1. Dodging Attacks in Digital World

The dodging attacks in the digital world were conducted against all three face recogni-
tion systems based on the LFW dataset (3000 images), Self-Collected Dataset 1 (10 subjects),
and Self-Collected Dataset 2 (22 subjects), respectively. The intention of using the three
different face recognition systems was to evaluate the relationship between the number
of faces in the face recognition database and the attack success rate. The experiments
commenced by evaluating the attack performance against the LBW face recognition system.
The attack was conducted using 10 face images chosen at random from the LBW dataset,
where each image wore 64 different adversarial glasses in turn. The corresponding attack
results are shown in Table 5.

Table 5. Digital dodging attacks against LFW database.

Number Attack Success Rate

No.1 92.18%

No.2 1.56%

No.3 10.93%

No.4 4.68%

No.5 35.93%

No.6 32.81%

No.7 62.5%

No.8 85.93%

No.9 100%

No.10 93.75%

Average 52.02%

Overall, the results presented in Table 5 show that the adversarial glasses result in a
high attack success rate for some individuals (e.g., #1, #9 and #10), but a low attack success
rate for others (e.g., #2 and #4). A detailed analysis revealed two main reasons for the
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low success rate in these cases: (1) even after wearing adversarial glasses, the adversarial
face was still very similar to the original; and (2) the LFW dataset contained no faces
similar to the adversarial face with glasses, i.e., the dataset contained no target to attack.
Accordingly, the dodging attacks were repeated against the face recognition systems built
using the two self-collected datasets, respectively. The corresponding results are presented
in Tables 6 and 7.

Table 6. Digital Dodging Attack in 10 people’s database.

Number Attack Success Rate

No.1 0%

No.2 31.25%

No.3 78.13%

No.4 0%

No.5 37.5%

No.6 0%

No.7 0%

No.8 28.13%

No.9 34%

No.10 32.81%

Average 24.18%

Table 7. Digital Dodging Attack in 22 people’s database.

Number Attack Success Rate Number Attack Success Rate

No.1 10.9% No.12 0%

No.2 100% No.13 98.4%

No.3 100% No.14 1.5%

No.4 43.75% No.15 100%

No.5 57.8% No.16 100%

No.6 0% No.17 100%

No.7 1.5% No.18 96.8%

No.8 100% No.19 39%

No.9 56.2% No.20 95.3%

No.10 54.6% No.21 34.3%

No.11 35.9% No.22 50%

Average 57.99%

As shown, the average attack success rates against the 10-person and 22-person
databases are 24.18% and 57.99%, respectively. In general, in conducting successful dodging
attacks, the aim is for the face recognition system not only to identify the original face
image after the addition of adversarial glasses, but also to match the face with another
face. For the face recognition system constructed with a larger number of faces, there exist
more targets which can be matched by the adversarial face. Consequently, as the size of the
database used by the face recognition system increases, the vulnerability of the system to
adversarial glasses attacks also increases.
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5.5.2. Impersonation Attacks in Digital World

The impersonation attacks were conducted against the face recognition system built
using the self-collected database of 22 individuals. Ten individuals were chosen randomly
from the database for testing purposes. In addition to wearing adversarial glasses, each
face also wore the adversarial faces of the other nine individuals in turn. That is, each
individual attacked nine targets. The corresponding attack results are shown in Table 8.

Table 8. Digital impersonation attacks against 22-person face recognition system.

Attack Number

Origin
Number

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Average

No.1 90% 10% 30% 70% 90% 60% 0% 30% 70% 50%

No.2 50% 10% 30% 60% 90% 60% 30% 50% 60% 50%

No.3 30% 80% 10% 60% 80% 60% 10% 60% 50% 48.9%

No.4 70% 90% 30% 80% 90% 60% 10% 30% 70% 58.9%

No.5 40% 70% 10% 30% 80% 60% 20% 40% 60% 45.6%

No.6 10% 50% 0% 20% 40% 40% 30% 10% 10% 23.3%

No.7 50% 80% 20% 30% 50% 70% 0% 10% 50% 40%

No.8 10% 90% 10% 20% 60% 90% 50% 30% 70% 47.8%

No.9 70% 90% 10% 40% 40% 80% 40% 10% 80% 51.1%

No.10 30% 100% 20% 30% 70% 90% 60% 20% 50% 52.2%

Total 48.78%

It is seen in Table 8 that the overall average success rate is 48.78%. However, it is also
noted that some of the targets (e.g., #3 and #8) are less easily impersonated than others.
It is speculated that when adversarial face stickers are generated by the method of this
study, some faces are more difficult to attack. Furthermore, some of the adversarial images
also have a lower attack success rate than others. For example, the successful attack rate
of adversarial image #6 is just 23.3%. In other words, the face recognition system matches
the adversarial face image with the original image rather than the target individual. To
investigate this phenomenon further, the method proposed in [8] was used to generate
adversarial noise for all of the faces in the self-collected database, as shown in Figure 10.

It can be seen that some of the faces are attacked by generating noise in the eye region
of the image, while in other cases, the noise is distributed over the entire face. However, the
method proposed in the present study generates adversarial glasses and stickers which are
applied only to certain regions of the face, and it cannot attack those faces with the noise is
distributed over the entire face.

5.5.3. Dodging Attacks in Physical World

The dodging attack success rate in the physical world was evaluated for both self-
collected databases. For each database, 10 subjects were selected for testing purposes,
where each subject wore 11 adversarial glasses in turn. The corresponding attack success
rates are shown in Tables 9 and 10, respectively.

In the attacks performed in the physical world, the subjects were allowed to turn their
face during the detection process. Thus, compared to the digital case, in which the detection
process was limited to only a single face input image, the detection process in the physical
world was less constrained. As shown in Tables 9 and 10, the average dodging attack
success rates against the 10-person database and 22-person database were 39.94% and
81.77%, respectively. In other words, as for the attacks performed in the digital world, the
attack success rate in the physical world also increases as the size of the database increases.
The results also imply that when the subject turns the face to a non-frontal angle, the
likelihood of the face recognition system misclassifying the input face image also increases.
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Figure 10. Generated adversarial masks.

Table 9. Physical dodging attacks against 10-person face recognition system.

Number Attack Success Rate

No.1 45.4%

No.2 54.5%

No.3 36.3%

No.4 27.2%

No.5 36.3%

No.6 54.5%

No.7 18.1%

No.8 45.4%

No.9 27.2%

No.10 54.5%

Average 39.94%
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Table 10. Physical dodging attacks against 22-person face recognition system.

Number Attack Success Rate

No.1 81.8%

No.2 72.7%

No.3 63.6%

No.4 100%

No.5 72.7%

No.6 81.8%

No.7 81.8%

No.8 90.9%

No.9 81.8%

No.10 90.9%

Average 81.77%

5.5.4. Impersonation Attacks in Physical World

The performance of the impersonation attacks in the physical world was evaluated
using the 10 subjects in the first self-collected database as test subjects and the 22 individuals
in the second self-collected database as targets. Each of the test subjects wore adversarial
glasses and the adversarial faces of all the other subjects in the first self-collected database
in turn. The aim of the attack was to cause the face recognition system to recognize the
target on the adversarial face sticker rather than the original subject. The corresponding
attack results are presented in Table 11.

Table 11. The attack success rate of a single target for impersonation attacks in the physical world on
a face recognition system with 22 persons in the database.

Attack Number

Origin
Number

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Average

No.1 90% 0% 50% 90% 90% 80% 40% 90% 30% 62.2%

No.2 50% 0% 40% 80% 90% 60% 50% 90% 90% 63.3%

No.3 70% 80% 50% 90% 90% 90% 40% 90% 30% 70%

No.4 60% 100% 20% 100% 90% 70% 40% 100% 80% 73.3%

No.5 40% 80% 20% 40% 80% 90% 40% 90% 20% 55.5%

No.6 40% 80% 10% 50% 80% 80% 40% 90% 20% 54.4%

No.7 50% 90% 30% 50% 90% 90% 30% 90% 50% 63.3%

No.8 40% 70% 10% 50% 90% 90% 90% 80% 60% 64.4%

No.9 20% 100% 40% 50% 90% 90% 80% 40% 70% 64.4%

No.10 40% 100% 30% 50% 80% 90% 90% 40% 90% 67.7%

Total 63.85%

As shown, the average success rate of the impersonation attacks is 63.85%. Interest-
ingly, the results show that even though the same adversarial face patch of a given target
is added to all of the test subjects, the attack success rates are different for different test
subjects. On the other hand, it is also evident that some subjects (e.g., #5, #6, #7) are easier
to attack than others (e.g., #3). Notably, we achieve more than 70% attack success rate in the
physical world on most of the targets, even if we set a threshold of 0.4, corresponding to a
False Accept Rate (FAR) of 0.01%. Moreover, since the above table is a comprehensive attack
success rate test for each person against others, the existing literature mainly discusses the
attack success rate of a single target. Therefore, for a more intuitive comparison with the
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existing literature, we show in Table 12 that the average attack success result for a single
target is 78%.

Table 12. In 22-person face recognition system, the attack success rate of a single target for imperson-
ation attacks in the physical world.

Original No. Attack Target Attack Success Rate

No.1 No.3 70%

No.2 No.10 100%

No.3 No.9 40%

No.4 No.6 50%

No.5 No.4 100%

No.6 No.7 90%

No.7 No.5 90%

No.8 No.2 50%

No.9 No.4 100%

No.10 No.2 90%

Average 78%

5.6. Comparison of Dodging Attack Success Rates of Different Methods

Table 13 compares the dodging attack success rate of the proposed method in the
physical world with that of several other attack methods proposed in the literature.

Table 13. Comparison of physical dodging attack success rates of different methods.

Literature
Generate

Object

Face Recog-
nition
Model

Adversarial
Capacity

Number of
Subjects

Number of
People in
Database

Dodging
Attack’s
Success

Rate

[34] Patches VGG-Face White-Box 3 10 97.22%

[38] Visible Light FaceNet Black-Box 9 5749 (LFW) 85.7%

[39] Visible Light Commercial Black-Box 10 50 70%

[42] Eyeglass FaceNet Black-Box 10 5749 (LFW) 54%

Ours Patches FaceNet Black-Box 10 22 81.77%

The method proposed in [34] applied adversarial glasses to the test images and
achieved an average attack success rate of 97.22%. However, the adversary attack was a
white-box attack, which is unrealistic in practical attack environments. The premise of
the white-box attack is to know the model architecture and parameters, which is worlds
apart from our black-box attack. At the same time, through the experiments of cosine
similarity in the [36], we can observe some interesting variations of cosine similarity. In [36],
cosine similarity varies between white box and black box attacks (note that when the cosine
similarity is larger, the more similar it is). First, experiments in [36] are based on semi-
white-box attacks, and we can see that the cosine similarity ranges from 0.15 to 0.2 in the
Final similarity. Second, when the authors transfer the adversarial attack noise generated
on the white-box attack to other unknown models, the architecture and parameters of
the unknown model are unknown for the adversarial attack noise. In this case, it can be
considered a no-box attack (more rigorous black box attack), which yields a cosine similarity
of about 0.4. However, the no-box’s cosine similarity increases from 0.2 to 0.4, which means
that the similarity between the original image and the adversarial image is affected. That
is, the attack success rate may be slightly decreased. In other words, the reason why our
proposed attack success rate is lower than [34] is due to the difference between white-box
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and black-box. Moreover, the performance evaluation was conducted using just three test
subjects in [34], which had slightly fewer test subjects. The methods in [38,39] adopted a
black-box attack model and considered a greater number of test subjects (9 and 10 subjects,
respectively). They were thus more representative of real-world attack scenarios than the
method in [34]. Moreover, they achieved reasonable attack success rates of 85.7% and 70%,
respectively. However, both methods require the use of visible light projection systems
when conducting the attack and need careful consideration of the face angle and mask
conditions. Thus, neither method is practical in real-world physical attack situations. In
addition, we further compared our work with [38]. The work [38] did not set a similarity
threshold. As aforementioned, the attack success rate will be higher without a similarity
threshold. However, it is not practical as real-world face recognition systems will set the
threshold properly. Therefore, we conducted an experiment by varying the threshold
from 0 to 1 with an interval of 0.05. The purpose of this experiment is to illustrate the
relationship between attack success rate and threshold. We discuss the results in Section 5.7.
Tong et al. [42] proposed the FACESEC method based on gradient l0-norm for adversarial
patch attacks. However, this type of attack is significantly affected by the adversarial
patch’s wearing position, shape, and scale. Although in [42], whose attack method (patch)
and position (eyeglass frame) are the same as ours, the attack success rate in [42] is lower
than ours, at only 54%. The reason is the difference between Gradient-based and GAN-
based. More interestingly, for the advantages and disadvantages of Gradient-based and
GAN-based approaches, it has been shown in the experimental results of [40] that the
performance of gradient-based attacks will be slightly lower than that of GAN-based
approaches. Clearly, our results are consistent with the results of [42]. By contrast, the
method proposed in this study not only considers a black-box attack model and achieves a
relatively high success rate of 81.77% over 10 test subjects, but also requires only the use of
simple temporary adversarial glasses stickers to deceive the face recognition system. It is
thus more convenient and practical than the other methods presented in Table 13, while
retaining a similar (if not better) attack performance.

Table 14 compares the impersonation attack success rate of the proposed method in
the physical world with that of four other attack methods reported in the literature.

Table 14. Comparison of physical impersonation attack success rates of different methods.

Literature
Generate

Object

Face
Recognition

Model

Attack
Subjects

Number of
Subjects

Number of
Attack Target

Number of
People in
Database

Impersonation
Attack’s

Success Rate

[34] Patches VGG-Face White-Box 3 1 10 75%

[38] Visible Light FaceNet Black-Box 9 60 5749 (LFW) 32.4%

[39] Visible Light Commercial Black-Box 25 1 50 60%

[40] Adv-Makeup Commercial Black-Box 1 1 20 52.92%

[43] Sticker FaceNet Black-Box 20 3 20 (VolFace) 55.32%

Ours Patches FaceNet Black-Box
10 10 22 63.85%

10 1 22 78%

The method in [34] used a white-box attack model to generate adversarial glasses and
achieved an average attack success rate of 75%. It is noted that the attack rate is slightly
higher than that of the present study (63.85%). However, the present study is based on the
more realistic assumption of a black-box model and, moreover, considers a greater number
of test subjects (10 vs. 3 subjects), with the consequence that the results are expected to
be more reliable. Although the average attack success rate of the combined experimental
results is slightly lower than that of [34], the reason lay in the fact that we performed a
comprehensive attack test on several targets and averaged the resulting attack success rates.
For the above reasons, we compared the attack success rate of the single target with [34], as
shown in Table 14, which resulted in 78% and had better results than that of Sharif et al. [34].
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The method in [38] also considered a black-box attack model and used visible light to
produce noise. Moreover, the attack evaluation considered a relatively large number of
test subjects (9 subjects). However, the attack success rate against the FaceNet recognition
system was just 32.4%, i.e., around half that of the present study. The authors in [39]
also used projected light to produce noise in order to deceive the face recognition system.
The attack success rate was 60%, and is thus close to that obtained in the present study.
However, the evaluation process in [39] considered only 1 subject tested 10 times, and
hence the evaluation results may not be reliable. Furthermore, as for the method in [39], the
attack requires the use of visible light projection equipment, which is impractical for most
real-world situations. By contrast, the present method requires only the use of adversarial
stickers (glasses and face), which can be easily removed once the face recognition system
has been fooled. The method in [40] requires only the application of makeup to the face,
and is thus also convenient in real-world attack scenarios. However, the attacks in [40]
were performed only once for seven different face angles, and hence the reliability of the
evaluation results cannot be guaranteed. Moreover, the attack success rate was just 52.82%,
and is hence lower than that of the present study (63.85%). Finally, in [43], the GAN-based
adversarial stickers were crafted and put on five regions near to the facial organs (i.e., two
superciliary arches, two nasolabial sulcus, and the nasal bone). Notably, these regions are
critical regions for face recognition [8,33]. As a result, [43] was able to achieve 100% attack
success rate of the dodging attack in the physical world which are higher than our results.
However, the success rate for the impersonation attack is only 55.32%, which is slightly
lower than ours.

Defense Mechanism

The attack method proposed in the present study exploits adversarial patches, which
occupy only small regions of the face, rather than adversarial examples, which occupy
the entire face. Many defense mechanisms based on face recognition rely on the detection
of live subjects through temperature measurements [46], or the detection of adversarial
samples [47]. These methods thus have only a limited ability to counter the adversarial
patch-based method proposed in the present study. Accordingly, this study also proposes a
new defense method, in which it is assumed that the defender already knows the attack
method employed by the adversary. A new class, referred to as “Defense”, is added to the
output label. In particular, photos of each subject wearing adversarial glasses are added
to the face database to counter dodging attacks, while photos of each subject wearing
adversarial glasses and adversarial faces are also added to the face database to thwart
impersonation attacks. All these inputs are labeled as “Defense” during training of the
face recognition system. Tables 15 and 16 show the dodging attack success rate and
dodging attack defense rate, respectively, following the implementation of the proposed
defense mechanism.
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Table 15. Dodging attack success rate after defense.

Number Attack Success Rate

No.1 0%

No.2 0%

No.3 6.25%

No.4 0%

No.5 0%

No.6 0%

No.7 0%

No.8 0%

No.9 0%

No.10 0%

Average 0.06%

Table 16. Dodging defense rate after defense.

Number Defense Rate

No.1 100%

No.2 81.25%

No.3 85.93%

No.4 78.12%

No.5 100%

No.6 56.25%

No.7 100%

No.8 100%

No.9 100%

No.10 95.3%

Average 89.69%

The results presented in Table 15 show that the dodging attack success rate reduces
significantly from 57.99% to 0.06% following the implementation of the proposed defense
mechanism. Moreover, the average defense rate is 89.69%. In other words, the proposed
defense mechanism significantly improves the robustness of the face recognition system
against dodging attacks.

Tables 17 and 18 show the equivalent results for impersonation attacks.
As shown, the implementation of the defense mechanism reduces the average imper-

sonation attack success rate from 48.33% to 28.33% and achieves an average defense rate of
41.1%. It is noted that the defense rate is lower than that for dodging attacks. Nonetheless,
the defense mechanism still reduces the original attack success rate by around 60%.

It can be shown that, the attack success rate attack success rate dropped from 48.33%
to 28.33%, and the defense rate is 41.1%, the defense is not as effective as dodging attack,
but it still can reduce the original attack by about 60%, and defense about 40% attack.
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Table 17. Impersonation attack success rate after defense.

Attack Number

Origin
Number

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Average

No.1 50% 10% 30% 0% 80% 30% 0% 0% 70% 30%

No.2 50% 0% 30% 10% 90% 10% 0% 0% 60% 27.7%

No.3 20% 80% 10% 0% 80% 20% 0% 0% 80% 32.2%

No.4 50% 70% 20% 10% 90% 20% 0% 0% 70% 37.8%

No.5 30% 50% 10% 30% 80% 10% 0% 0% 60% 30%

No.6 10% 30% 0% 20% 0% 10% 0% 0% 10% 8.9%

No.7 10% 50% 20% 30% 0% 70% 0% 0% 50% 25.6%

No.8 10% 70% 10% 10% 0% 90% 0% 0% 70% 28.9%

No.9 10% 70% 0% 40% 0% 80% 0% 0% 80% 31.1%

No.10 30% 70% 20% 30% 0% 90% 30% 10% 0% 31.1%

Total 28.33%

Table 18. Impersonation defense rate after defense.

Attack Number

Origin
Number

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Average

No.1 40% 0% 0% 70% 10% 30% 40% 80% 0% 34.4%

No.2 30% 10% 20% 80% 0% 90% 90% 10% 10% 37.8%

No.3 10% 10% 0% 60% 0% 50% 90% 90% 0% 33.3%

No.4 20% 20% 10% 80% 10% 70% 90% 10% 0% 34.4%

No.5 60% 50% 60% 20% 20% 80% 80% 10% 20% 44.4%

No.6 90% 70% 10% 70% 90% 90% 10% 10% 90% 58.9%

No.7 90% 50% 70% 30% 90% 30% 90% 10% 40% 55.6%

No.8 0% 20% 10% 0% 60% 0% 50% 80% 0% 24.4%

No.9 80% 30% 70% 20% 90% 20% 10% 80% 20% 46.7%

No.10 40% 30% 40% 20% 80% 0% 60% 90% 10% 41.1%

Total 41.1%

5.7. Threshold

In our study, we additionally discuss two issues, which are (1) the relationship between
threshold and attack success rate and (2) the portability of attacking other models by no-box.

First, about the relationship between threshold and attack success rate, we can observe
from Figure 11 that the threshold directly affects the attack success rate. When the threshold
is set smaller, the attack success rate is lower. Based on the observation, setting a proper
threshold is necessary for the face recognition system. This also shows that our attack
method is more realistic than [38] by properly setting the threshold.

Second, according to the definition of [48], a no-box attack does not query the face
recognition system. That is, when generating adversarial samples, it does not refer to
the confidence scores of the target face recognition system. Therefore, when our adver-
sarial glasses attack other face recognition systems, that forms a no-box attack. Based
on the experimental results shown in Figure 11, we can observe that our attack method
exhibits transferability.
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Figure 11. Compare the relationship between threshold and attack success rate.

5.8. Time Efficiency

For the analysis of techniques, other papers adopted Gradient-based (e.g., L-BFGS [34,42]),
Visible-light-based [38,39], and GAN-based [40,43] methods. For Gradient-based, [34] took
4.39 h to output 35 attack images. The paper [42] did not mention its time efficiency. For the
Visible Light-based approach, the paper [38] showed that VLA took less than 3 s on average to
generate a frame pair containing a perturbation frame and a concealing frame. However, the
paper [39] did not describe its time efficiency. For GAN-based, papers [40] neither discussed
their time efficiency. [43] took 26 min to generate 8100 stickers. For our approach, first, one
iteration could generate 64 pairs of glasses, which took 75 s. In all experiments, we ran
50 iterations. The total running time is 62.5 min. Second, for adversarial patches, each iteration
could generate 32 adversarial patches in 20 s. It took 66.67 min to run 200 iterations. For the
GAN model (including the Facenet) we used, the number of parameters is 31529204, and the
FLOPs reach 58332210.

6. Conclusions

This work proposes an attack method based on GAN that generates noise and restricts
the adversarial glasses and patches generated in the face region. This method can achieve
black-box attacks in both digital and physical worlds. Among the attacks in the physical
world, our method is more representative of the real-world attacks in the physical world
by wearing adversarial glasses or patches on the face during face recognition. Furthermore,
due to the assumption of a black-box model, the adversary requires no knowledge of the
parameters and structure of the deep learning model employed by the face recognition
system to conduct an attack.

On the other hand, the reason why the traditional method of dodging attacks fails
is that “this person does not exist” attracts the attention of the guards, which is a severe
problem. However, in dodging attacks, our method can make the face recognition system
mistakenly identify the attacker as someone else, thus posing a significant threat to the
face recognition system. Moreover, we take advantage of the fact that people often use
glasses as a fashion accessory to hide the adversarial perturbation in the glasses. As such,
it is difficult for laypersons to know our attack intentions. In impersonation attacks, we
can wear glasses and patches that disguise a person as other people without tampering
with focused features on the face. Namely, we can be who we want to be in front of the
face recognition system. Furthermore, face recognition is used in various fields nowadays.
Through our experiments, we have verified that when the database of the face recognition
system is larger, the chances of being hacked will increase. In this case, serious security
concerns still need to be considered and improvements need to be made.

In another exploration, we introduce a defense mechanism to counter the GAN-based
adversarial patch method. The results show that the proposed mechanism detects almost all
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dodging attacks and more than half of the impersonation attacks. In impersonation attacks,
although the adversarial patches applied in this study occupy only a small region of the face,
which is still easily recognized by the supervisor monitoring the face recognition system.
In this case, the attack is easy to fail. Therefore, future works will generate less obvious
adversarial patches to improve the attack’s success rate in the supervisor’s presence.

Author Contributions: Conceptualization, R.-H.H., J.-Y.L. and S.-Y.H.; methodology, R.-H.H., J.-Y.L.
and S.-Y.H.; software, S.-Y.H.; validation, J.-Y.L., R.-H.H., H.-Y.L. and C.-L.L.; formal analysis, R.-H.H.
and S.-Y.H.; investigation, R.-H.H. and S.-Y.H.; resources, R.-H.H., H.-Y.L. and C.-L.L.; data curation,
J.-Y.L. and S.-Y.H.; writing—original draft preparation, S.-Y.H. and J.-Y.L.; writing—review and edit-
ing, R.-H.H., H.-Y.L. and C.-L.L.; visualization, S.-Y.H.; supervision, R.-H.H.; project administration,
R.-H.H., H.-Y.L. and C.-L.L.; funding acquisition, R.-H.H., H.-Y.L. and C.-L.L.; All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Telecom Technology Center (TTC), Taiwan: TTC CCU 202205.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Human Research Ethics Committee of National Chung Cheng
University (protocol code CCUREC111120101 Version 1 and date of approval 13 December 2022) for
studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Due to the involvement of personal privacy (faces), these data are not
publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DL Deep Learning
FR Face Recognition
ABC Automatic Border Control
GAN Generative Adversarial Network
VGG Visual Geometry Group
LFW Labeled Faces in the Wild
FGSM Fast Gradient Sign Method
BIM Basic Iterative Method
PGD Projected Gradient Descent
FAR False Accept Rate

References

1. Hariri, W. Efficient masked face recognition method during the COVID-19 pandemic. Signal Image Video Process. (SIViP) 2022,
16, 605–612. [CrossRef] [PubMed]

2. Facial Recognition Market Worth $8.5 Billion by 2025. Available online: https://www.marketsandmarkets.com/PressReleases/
facial-recognition.asp (accessed on 19 September 2022).

3. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

4. Brown, T.B.; Mané, D.; Roy, A.; Abadi, M.; Gilmer, J. Adversarial Patch. Available online: https://arxiv.org/abs/1712.09665
(accessed on 19 September 2022).

5. Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial examples in the physical world. In Artificial Intelligence Safety and Security;
Yampolskiy, R.V., Ed.; Chapman & Hall/CRC: New York, NY, USA, 2018; pp. 99–112.

6. Li, J.; Schmidt, F.; Kolter, Z. Adversarial camera stickers: A physical camera-based attack on deep learning systems. In Proceedings
of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.

7. Bhambri, S.; Muku, S.; Tulasi, A.; Buduru, A.B. A Survey of Black-Box Adversarial Attacks on Computer Vision Models. Available
online: https://arxiv.org/abs/1912.01667 (accessed on 9 November 2022).

8. Deb, D.; Zhang, J.; Jain, A.K. AdvFaces: Adversarial Face Synthesis. In Proceedings of the 2020 IEEE International Joint Conference
on Biometrics (IJCB), Houston, TX, USA, 28 June–1 October 2020.

125



Sensors 2023, 23, 853

9. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Proceedings of the Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014.

10. Ye, Q.; Huang, P.; Zhang, Z.; Zheng, Y.; Fu, L.; Yang, W. Multiview Learning With Robust Double-Sided Twin SVM. IEEE Trans.
Cybern. 2022, 52, 12745–12758. [CrossRef] [PubMed]

11. Lahaw, Z.B.; Essaidani, D.; Seddik, H. Robust Face Recognition Approaches Using PCA, ICA, LDA Based on DWT, and SVM
Algorithms. In Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP),
Athens, Greece, 4–6 July 2018.

12. Ruan, Y.; Xiao, Y.; Hao, Z.; Liu, B. A Convex Model for Support Vector Distance Metric Learning. IEEE Trans. Neural Netw. Learn.
Syst. 2022 33, 3533–3546. [CrossRef]

13. Taigman, Y.; Yang, M.;Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.

14. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of
the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

15. Cao, Q.; Shen, L.; Xie, W.; Parkhi, O.M.; Zisserman, A. VGGFace2: A Dataset for Recognising Faces across Pose and Age. In
Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Los Alamitos,
CA, USA, 15–19 May 2018.

16. Chen, J.; Chen, J.; Wang, Z.; Liang, C.; Lin, C.-W. Identity-Aware Face Super-Resolution for Low-Resolution Face Recognition.
IEEE Signal Process. Lett. 2020, 27, 645–649. [CrossRef]

17. Wang, Q.; Wu, T.; Zheng, H.; Guo, G. Hierarchical Pyramid Diverse Attention Networks for Face Recognition. In Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

18. Usman, M.; Latif, S.; Qadir, J. Using deep autoencoders for facial expression recognition. In Proceedings of the 2017 13th
International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 27–28 December 2017.

19. Iranmanesh, S.M.; Riggan, B.; Hu, S.; Nasrabadi, N.M. Coupled generative adversarial network for heterogeneous face recognition
Image Vis. Comput. 2020, 94, 1–10.

20. Rong, C.; Zhang, X.; Lin, Y. Feature-Improving Generative Adversarial Network for Face Frontalization. IEEE Access 2020, 8,
68842–68851. [CrossRef]

21. Liu, X.; Guo, Z.; You, J.; Vijaya Kumar, B.V. K. Dependency-Aware Attention Control for Image Set-Based Face Recognition. IEEE
Trans. Inf. Forensics Secur. 2020, 15, 1501–1512. [CrossRef]

22. Rao, Y.; Lu, J.; Zhou, J. Attention-Aware Deep Reinforcement Learning for Video Face Recognition. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

23. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

24. Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature Verification using a “Siamese” Time Delay Neural Network.
Int. J. Pattern Recognit. Artif. Intell. 1993, 7, 669–688. [CrossRef]

25. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Available online: https:
//arxiv.org/abs/1409.1556 (accessed on 21 September 2022).

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 27–30 June 2016.

27. Fuad, M.T.H.; Fime, A.A.; Sikder, D.; Iftee, M.A.R.; Rabbi, J.; Al-Rakhami, M.S.; Gumaei, A.; Sen, O; Fuad, M.; Islam, M.N. Recent
Advances in Deep Learning Techniques for Face Recognition. IEEE Access 2021, 9, 99112–99142. [CrossRef]

28. Pidhorskyi, S.; Adjeroh, D.; Doretto, G. Adversarial Latent Autoencoders. Available online: https://arxiv.org/abs/2004.04467
(accessed on 19 November 2022).

29. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks.
Available online: https://arxiv.org/abs/1706.06083 (accessed on 22 September 2022).

30. Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium on
Security and Privacy (SP), San Jose, CA, USA, 22–24 May 2017.

31. Thys, S.; Ranst, W.V.; Goedeme, T. Fooling Automated Surveillance Cameras: Adversarial Patches to Attack Person Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA,
USA, 16–20 June 2019.

32. Liu, A.; Liu, X.; Fan, J.; Ma, Y.; Zhang, A.; Xie, H.; Tao, D. Perceptual-Sensitive GAN for Generating Adversarial Patches. Proc.
AAAI Conf. Artif. Intell. 2019, 33, 1028–1035. [CrossRef]

33. Castanon, G.; Byrne, J. Visualizing and Quantifying Discriminative Features for Face Recognition. In Proceedings of the 2018 13th
IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018.

34. Sharif, M.; Bhagavatula, S.; Bauer, L.; Reiter, M.K. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face
Recognition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
24–28 October 2016.

35. Zhou, Z.; Tang, D.; Wang, X.; Han, W.; Liu, X.; Zhang, K. Invisible Mask: Practical Attacks on Face Recognition with Infrared.
Available online: https://arxiv.org/abs/1803.04683 (accessed on 21 September 2022).

126



Sensors 2023, 23, 853

36. Komkov, S.; Petiushko, A. AdvHat: Real-World Adversarial Attack on ArcFace Face ID System. In Proceedings of the 2020 25th
International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021.

37. Pautov, M.; Melnikov, G.; Kaziakhmedov, E.; Kireev, K.; Petiushko, A. On Adversarial Patches: Real-World Attack on ArcFace-100
Face Recognition System. In Proceedings of the 2019 International Multi-Conference on Engineering, Computer and Information
Sciences (SIBIRCON), Novosibirsk, Russia, 21–27 October 2019.

38. Shen, M.; Liao, Z.; Zhu, L.; Xu, K.; Du, X. VLA: A Practical Visible Light-Based Attack on Face Recognition Systems in Physical
World. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–19. [CrossRef]

39. Nguyen, D.; Arora, S.S.; Wu, Y.; Yang, H. Adversarial Light Projection Attacks on Face Recognition Systems: A Feasibility Study.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle,
WA, USA, 14–19 June 2020.

40. Yin, B.; Wang, W.; Yao, T.; Guo, J.; Kong, Z.; Ding, S.; Li, J.; Liu, C. Adv-Makeup: A New Imperceptible and Transferable Attack
on Face Recognition. Available online: https://arxiv.org/abs/2105.03162 (accessed on 21 September 2022).

41. Xiao, C.; Li, B.; Zhu, J.-Y.; He, W.; Liu, M.; Song, D. Generating Adversarial Examples with Adversarial Networks. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018.

42. Tong, L.; Chen, Z.; Ni, J.; Cheng, W.; Song, D.; Chen, H.; Vorobeychik, Y. FACESEC: A Fine-grained Robustness Evaluation
Framework for Face Recognition Systems. Available online: https://arxiv.org/abs/2104.04107 (accessed on 18 November 2022).

43. Shen, M.; Yu, H.; Zhu, L.; Xu, K.; Li, Q.; Hu, J. Effective and Robust Physical-World Attacks on Deep Learning Face Recognition
Systems. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4063–4077 [CrossRef]

44. Deb, D. AdvFaces: Adversarial Face Synthesis. Available online: https://github.com/ronny3050/AdvFaces (accessed on
19 November 2022).

45. Serengil, S.I. Deepface. Available online: https://github.com/serengil/deepface (accessed on 22 September 2022).
46. Singh, M.; Arora, A.S. Computer Aided Face Liveness Detection with Facial Thermography. Wirel. Pers. Commun. 2020, 111,

2465–2476. [CrossRef]
47. Theagarajan, R.; Bhanu, B. Defending Black Box Facial Recognition Classifiers Against Adversarial Attacks. In Proceedings of the

2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020.
48. Chen, P.-Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.-J. ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural

Networks without Training Substitute Models. Available online: https://arxiv.org/abs/1708.03999 (accessed on 19 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

127



Citation: Li, Y.; Wang, Y.; Liu, X.;

Shi, Y.; Patel, S.; Shih, S.-F. Enabling

Real-Time On-Chip Audio Super

Resolution for Bone-Conduction

Microphones. Sensors 2023, 23, 35.

https://doi.org/10.3390/s23010035

Academic Editors: Shyan-Ming Yuan,

Zeng-Wei Hong and Wai-Khuen

Cheng

Received: 2 November 2022

Revised: 15 December 2022

Accepted: 15 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enabling Real-Time On-Chip Audio Super Resolution for
Bone-Conduction Microphones

Yuang Li 1,2, Yuntao Wang 1,*, Xin Liu 3, Yuanchun Shi 1, Shwetak Patel 3 and Shao-Fu Shih 4

1 Key Laboratory of Pervasive Computing, Ministry of Education, Department of Commputer Science and
Technology, Tsinghua University, Beijing 100084, China

2 Department of Engineering, University of Cambridge, Cambridge CB2 1TN, UK
3 Department of Computer Science and Engineering, Paul G. Allen School of Computer,

University of Washington, Seattle, WA 98195, USA
4 Google Inc., Mountain View, CA 94043, USA
* Correspondence: yuntaowang@tsinghua.edu.cn

Abstract: Voice communication using an air-conduction microphone in noisy environments suffers
from the degradation of speech audibility. Bone-conduction microphones (BCM) are robust against
ambient noises but suffer from limited effective bandwidth due to their sensing mechanism. Although
existing audio super-resolution algorithms can recover the high-frequency loss to achieve high-
fidelity audio, they require considerably more computational resources than is available in low-
power hearable devices. This paper proposes the first-ever real-time on-chip speech audio super-
resolution system for BCM. To accomplish this, we built and compared a series of lightweight audio
super-resolution deep-learning models. Among all these models, ATS-UNet was the most cost-
efficient because the proposed novel Audio Temporal Shift Module (ATSM) reduces the network’s
dimensionality while maintaining sufficient temporal features from speech audio. Then, we quantized
and deployed the ATS-UNet to low-end ARM micro-controller units for a real-time embedded
prototype. The evaluation results show that our system achieved real-time inference speed on
Cortex-M7 and higher quality compared with the baseline audio super-resolution method. Finally,
we conducted a user study with ten experts and ten amateur listeners to evaluate our method’s
effectiveness to human ears. Both groups perceived a significantly higher speech quality with our
method when compared to the solutions with the original BCM or air-conduction microphone with
cutting-edge noise-reduction algorithms.

Keywords: audio super-resolution; bone-conduction microphone; real-time system; convolutional
neural network

1. Introduction

The most commonly used microphones for voice communication are air-conduction
microphones, which pick up sound propagating through the air. Although providing high
fidelity capture in quiet scenarios, they are vulnerable to environmental noises. To improve
the speech quality of air-conduction microphones in noisy environments, researchers
proposed multi-microphone beamforming with noise suppression techniques [1–3] or
deep-learning-based speech enhancement methods [4,5]. However, these solutions require
a significant amount of additional hardware or computing resources. Further, all these
methods fundamentally seek to reduce environmental noises but also inevitably corrupt
speech. Moreover, these solutions are still vulnerable to boisterous environments, such as
construction sites or strong wind, where extraneous noises overpower speech signals.

Bone-conduction microphones (BCMs) could achieve more robust results against am-
bient noises due to their physical design and fundamental conduction principles. However,
BCMs only have limited frequency response with high-frequency components above 2 kHz
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significantly attenuated. Reconstructing the high-frequency details can effectively increase
the speech audio’s quality.

A traditional method of reconstruction is to design a linear phase impulse response
filter [6]. However, acoustic paths are different among speakers because their bone struc-
tures are unique. Furthermore, it is impossible to ensure uniform BCM placement, which
may result in different spectral properties [7]. Therefore, a simple filter is insufficient to
accommodate a variety of users.

Audio super resolution [8], also called bandwidth expansion, is the task of increasing
the audio sampling rate and restoring the high-frequency components of low-resolution
audios. Convolutional Neural Networks have achieved state-of-the-art performance in
audio super resolution [9–11]. Additionally, similar neural-network structures have also
been proven effective in reconstructing distorted spectrograms [12] and enhancing record-
ings from low-end microphones [13,14]. Therefore, designing an audio super-resolution
model is feasible to reproduce high-fidelity speech from BCMs while maintaining their
noise resistance property in multi-speaker settings. However, existing deep-learning-based
audio super-resolution methods are commonly computationally intensive, making them
unfit for deployment on resource-constrained embedded systems.

This paper proposes the first-ever real-time on-chip speech audio super-resolution
system for BCMs. In order to achieve this goal, we first designed and compared a series
of lightweight deep-learning models for speech audio super resolution. Among all the
models, ATS-UNet is the most cost-efficient. We proposed an audio temporal shift module
(ATSM) and introduced this module to ATS-UNet. Therefore, ATS-UNet can reduce the
network to one dimension but still learn sufficient features from the temporal information
flow in speech audios.

Thus, ATS-UNet can reconstruct high-fidelity speech audios but require minimal
computational resources. We further quantized and deployed ATS-UNet and its variants
on micro-controllers, including ARM Cortex-M4f and M7 processors, and conducted a
full evaluation of our proposed method’s performance regarding the audio quality and
inference latency. The results show that ATS-UNet outperformed the cutting-edge audio
super-resolution method [9] with the perceptual evaluation of speech quality (PESQ) [15]
increased by 9% and log-spectral distance (LSD) [16] by 44%.

On the Cortex-M7 processor, our end-to-end latency, comprising model inference, feature
extraction, and reconstruction, is 38 ms on average. This is less than the half-frame length
(64 ms), meaning that our system can achieve real-time processing with 128 ms frames half-
overlapped. To further assess our method’s effectiveness in obtaining high quality speech, we
recruited 20 participants, including 10 experts and 10 amateur listeners, for the perceptual
audio quality evaluation. The results show that our method outperformed the original BCM
solution and commodity noise reduction solution with the air-conduction microphone. To the
best of our knowledge, our method is the first chip-deployable audio super-resolution solution.
To summarize, our contributions are as follows:

• We propose a lightweight audio super-resolution deep-learning model—ATS-UNet—
that utilizes our proposed audio temporal shift module (ATSM) to form a novel one-
dimensional UNet architecture. When compared with ATS-UNet’s variants without
ATSM, ATS-UNet was the most cost-efficient for chip deployment.

• We implement the first-ever real-time on-chip speech audio super-resolution sys-
tem for the bone-conduction microphone by quantizing and deploying ATS-UNet to
popular micro-controllers in commodity hearable devices. We further evaluate its com-
putational complexity on both ARM Cortex-M4f and M7 processors and demonstrated
its real-time processing capability.

• We evaluate our system’s effectiveness in improving speech quality with a bone-
conduction microphone through perceptual audio quality user studies. Audio sam-
ples are publicly available (https://sites.google.com/view/audio-sr-for-bcm/home
(accessed on 1 November 2022)).
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2. Background and Related Work

Voice communication using air-conduction microphones in noisy environments has
been a challenging problem. For conventional speech communication, researchers have
proposed speech enhancement methods, such as beamforming with a microphone array
and blind source separation [17], for background noise removal. These algorithms only
remove part of the unwanted noises and introduce the risk of damaging the voice integrity.
Beamforming is based on directionality.

Therefore, it is prone to directional noise sources. In other words, when noise and
voice sources are on-axis, beamforming will not effectively separate the noise. To reduce
on-axis noise, noise suppression algorithms, such as [3,18,19] first estimate the noise with
statistical models and then remove the noise from the captured spectrum to recover the
original speech. These methods could lead to speech integrity issues due to the noise
model estimation accuracy. Moreover, under extreme conditions, such as strong wind noise,
air-conduction microphones will not pick up human voices due to saturation.

A bone-conduction microphone, which collects human speech propagated via human
bones, naturally suppresses environmental noises with its hardware placement and FSV
conduction. However, the speech captured by the BCM has a limited frequency bandwidth
which attenuates quickly above 2 kHz [20]. Our motivation is to enhance the BCM’s speech
sound quality by recovering high-frequency details while keeping its advantage against
environmental noise. In this section, we describe existing speech enhancement algorithms
for BCM and then give an overview on speech super-resolution techniques.

2.1. Bone-Conduction Microphones

Bone-conduction microphones are commonly used as an accessorial enhancer to
air-conduction microphones for capturing human speech. Researchers have proposed
speech enhancement methods using BCMs [21–25]. The BCMs can be used for accurate
voice activity detection due to their noise suppression characteristics [24]. BCMs can also
be incorporated to increase the voice activity detector accuracy and, hence, increase the
accuracy for noise model estimation to achieve better denoising results [22].

Further, BCMs can provide additional input for a multi-modal deep-learning net-
work [25]. However, these solutions require multiple microphones that are costly and
limited in capability in extreme circumstances, such as strong wind noise. Our work aims
to enhance speech quality using a single bone-conduction microphone. In other words, we
plan to achieve clean human speech capture while maintaining the microphone’s capability
against environmental noises.

Similar speech processing techniques based on BCM speech capture with audio super
resolution can be found, including the following: speech enhancement approaches for bone-
conduction microphones through audio signal processing [20]. Shimamura and Tamiya [6]
proposed a reconstruction filter calculated from long-term spectra of human voices from
both air- and bone-conduction microphones.

Shimamura et al. [26] further utilized a multi-layer perceptron to model the recon-
struction filter more accurately. Rahman and Shimamura [27] excluded the need for the
air-conduction microphones by introducing an analysis-synthesis method based on linear
prediction. Bouserhal et al. [28] introduced adaptive filtering along with non-linear band-
width extension method for enhancing the speech sound quality. However, these methods
require complex feature engineering and are, thus, difficult to adapt to different users and
equipment setups.

Recently, researchers applied deep-learning methods for speech enhancement with
BCMs. These methods aim to increase the sound quality of BCMs to be comparable to
air-conduction microphones in ideal conditions. For example, Shan et al. [29] proposed an
encoder–decoder network with a long short-term memory (LSTM) layer and local attention
mechanism, which reconstructs an air conduction log-spectrogram from a bone-conduction
log-spectrogram. This method only reconstructs frequency components below 4 kHz and
is based on a specific speaker.
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Liu et al. [30] introduced Mel-scale features of speech audio from a bone-conduction
microphone with a deep denoise auto-encoder for speech enhancement. This work recon-
structs high-frequency components up to 8 kHz. This increases the perceptual evaluation
of speech quality (PESQ) by 9.38% compared with the original bone-conduction speech;
however, the auto-encoder is also trained with a single speaker’s speech. Hussain et al. [31]
proved that, with only limited training data, the hierarchical extreme-learning machine
could outperform the denoise auto-encoder. Zheng et al. [32] adapted structural similarity
(SSIM)—a widely used metric in image quality assessment—as the loss function for a
Bidirectional LSTM Neural Network. As a result, the model achieved higher PESQ when
trained with SSIM loss compared with the standard mean square error (MSE).

Although proven effective, the aforementioned deep-learning methods were not
designed to be deployed on real-time embedded systems due to exceeding computation
resources and power limits. Moreover, these methods were not evaluated with cross-
user validation, which limits their generalizability to adapt to individual users. Some
works [29,32] used a sampling rate of 8 kHz, which is not sufficient for the Wideband Speech
protocol with required sampling frequency at 16 kHz. Therefore, our work approaches BCM
voice capture as a real-time resource-constrained super-resolution problem on embedded
systems. Furthermore, to make our solution robust against individual users and various
environments, we also introduced transfer learning to make our model generalizable.

2.2. Audio Super-Resolution Techniques

The audio super resolution, also known as bandwidth expansion, aims to increase the
sampling rate and restore high-frequency components of the low-resolution audio. Inspired
by image inpainting methods, researchers have proposed several frequency domain based
deep-learning methods for audio super resolution. These methods can be trained using
clean samples of BCMs as input and air-conduction microphones as references. These
samples are then converted into snapshots of spectrograms in the frequency domain as
snippets of audio features. The learned model restores the missing high-frequency details
from BCMs based on pattern recognition at the inference time. Then, the output snippets are
reconstructed back into the real-time speech stream as output. Below we describe various
audio super-resolution methods, optimization strategies, and on-chip deployment methods.

Audio super-resolution methods either took raw waveforms [8–11] or spectral repre-
sentations [33–35] as the input. A one-dimensional UNet [8] asymmetrical network with
skip connections was the first attempt to use a deep convolutional neural network for
end-to-end speech super resolution. To expand the perceptual field, TFiLM [9] utilized
bidirectional LSTM as the module to build up a variant 1D-UNet for speech audio su-
per resolution. In another variation of 1D-UNet [10], conventional convolutional layers
were replaced by multi-scale convolutional layers to capture information at multiple scales.
Mfnet [11] also attempted to facilitate multi-scale information exchange through multi-scale
fusion block.

Other deep-learning methods utilized the spectrogram as input. For example, Li and
Lee [33] proposed a three-layer fully connected network for speech audio super resolution.
UNet [34] was also proven to be effective in performing speech audio super resolution
using the power spectrogram. To take advantage of representations in both the time and
frequency domain, TFnet [35] incorporated two network branches that operate on both the
waveform and the spectrogram, respectively. Although proven effective on speech audio
super resolution, the deep-learning models mentioned above have too many parameters,
which causes them to exceed the computation and power budgets of micro-controllers by a
factor of 100 times.

The optimization strategy for audio super resolution includes the loss function and
training optimizations. One of the most commonly used loss functions is the mean square
error [8,33]. Although simple to compute, the MSE does not represent human perceptual
speech quality. Therefore, perceptually motivated loss [36] that calculates the L1 distance on
log mel-spectrogram was proposed. Further, the log spectral distance (LSD) [8,16], which
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measures the distance between the log–power spectrum of reference and reconstructed
signals, was also adopted as one option for the loss function.

For training, WaveNet [37,38], an auto-regressive model, optimized the joint prob-
ability of the targeted high-resolution audio. Adversarial learning is another popular
training technique. In this technique, a discriminator that works either in the time do-
main [10,11,39] or frequency domain [34,40,41] guides the generator to predict more realistic
high-resolution audio from low-resolution inputs.

Recently, hearable devices, such as TWS earbuds, have become increasingly popular,
with 233 million shipments in 2020, while deep-learning-based audio super-resolution
methods have been proven effective, deploying such solutions to a resource-limited em-
bedded system has not been fully investigated. Similar to our proposal, several super-
resolution deep-learning methods [39,42,43] have proven the feasibility of applying the
super-resolution method on a smartphone.

Other state-of-the-art speech super-resolution models require considerable computa-
tion resources and cause significant latency, which is not suitable for edge device deploy-
ment. This paper proposed a lightweight deep-learning model—ATS-UNet, which can run
on power- and space-limited ARM Cortex-M platforms. We expect future hearables em-
bedded with a single BCM will achieve good performance without the need for additional
computation resources with the proposed method.

3. Overview

This paper focuses on the uplink portion of the communication system—namely, the
capture side of the speech communication protocol. In particular, the capture and recovery
of the BCM input as an alternative solution to the conventional air-conduction microphone.
Shown in Figure 1, our proof-of-concept prototype is composed of commercially available
electronic parts: a pulse density modulation (PDM) bone-conduction microphone (Knowles
V2S100D), an analog MEMS air-conduction microphone (InvenSense ICS-40730), and a
micro-controller development board (Bestechnic (http://www.bestechnic.com/Home/
Index/index/lan_type/2 (accessed on 1 November 2022)) (BES) BES2300YP).

The BES2300YP system on chip (SoC) simultaneously collects audio signals from the
Knowles V2S100D and InvenSense ICS-40730, forming a dataset for audio super resolution.
Then, we trained ATS-UNet using this dataset on an Nvidia Titan XP GPU (12GB RAM).
The floating-point model was further quantized to the 16-bit data format and transformed
from a Tensorflow [44] to CMSIS-NN [45] implementation. With the model quantization
and optimization, ATS-UNet can then run efficiently on micro-controllers.

Figure 1. This paper’s overview.
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In this work, we tested two popular micro-controllers. (1) The BES2300YP with dual
ARM-Cortex M4F processors operating at a frequency up to 300 MHz with 992 KB SRAM
and 4 MB flash storage. The BES SoC was adopted by many popular TWS earbuds, such as
JBL FREE II, Samsung Galaxy Buds Live, and Huawei FreeBuds 2 Pro, for its compact form
factor and power efficiency. We only use one single processor in this work since the other
processor runs the Bluetooth stack and digital signal processing (DSP)-related algorithms.

Furthermore, the two processors share the SRAM with the storage requirements
from the Bluetooth and the operating system taking more than 400 KB. To prevent the
memory overflow, we limited the SRAM for the machine-learning model to be below
500 KB. (2) The NXP RT1060 SoC with a single Arm-Cortex M7 processor operating at a
frequency up to 600 MHz with 1 MB on-chip SRAM. In this case, only 512 KB general-
purpose SRAM can be used to host the machine-learning model. Both micro-controllers
support audio applications.

4. Deep-Learning Models for Bone Conduction Speech Audio Super Resolution

In this section, we first describe our general UNet design for bone-conduction speech
audio super resolution. We then describe how our models, including our proposed 2D-
UNet, Hybrid-UNet, Mixed-UNet, 1D-UNet, and ATS-UNet, were derived from this UNet
design. Most importantly, we present the key module called the Audio Temporal Shift
Module (ATSM). Finally, we describe the pre-processing and post-processing methods for
our deep-learning models.

4.1. UNet Variances for Bone Conduction Speech Audio Super Resolution

The original UNet has a fully convolutional and symmetrical network structure with
skip connections to facilitate information flow. Additionally, it can extract temporal and
frequency information in the time–frequency domain and reconstruct high-resolution
spectrograms. Compared with conventional convolutional and recurrent neural networks,
UNet is more efficient, as feature maps are down-sampled, contributing to fewer floating-
point operations.

However, UNet’s large model size still introduces unfavorable computation for on-
chip deployment. Therefore, we reduce the number of channels and network depth.
The general UNet architecture (Figure 2) contains five down-sampling blocks (DB) and
five up-sampling blocks (UB). Each DB has a max-pooling layer followed by two convolu-
tional layers. The size of the max-pooling layer is 2× 1. Therefore, after each DB, the length
of the frequency axis of the feature map is halved, while the time dimension remains the
same throughout the network.

Figure 2. The detailed architecture of our general UNet design. (F, T, C) indicates F for frequency
bins, T for temporal frames, and C for channels. When all convolutional layers are 1D and ATSMs
are inserted after each DB/UB, it is our ATS-UNet.

In UB, feature maps are up-sampled, concatenated with skip features, and then fed
into two convolutional layers. A ReLU activation function is adopted after each convolu-
tional layer except for the last layer. 2D-UNet V1 (Figure 3a) has the same structure and
channel numbers as shown in Figure 2; however, it has no ATSM, and every convolutional
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layer is 2D. We also present 2D-UNet V2, which has four times the filters of 2D-UNet v1
for comparison.

Figure 3. Our proposed series of novel network architectures including a variant 2D-UNet, 1D-UNet,
Hybrid-UNet, Mixed-UNet, and ATS-UNet.

Although 2D-UNet V1 is significantly smaller than the original UNet for image seg-
mentation, 2D convolutional layers still introduce unfavorable computation for on-chip
deployment. Since low-latency audio super resolution requires a small frame size, the shape
of the input spectrogram is narrow (the frequency axis is much longer than the time axis).
Therefore, only a few 2D convolutional layers are sufficient to extract information from
the full temporal range. Thus, using 2D convolutional layers throughout the network
is unnecessary.

Based on the above observation, We present another architecture called Hybrid-UNet

(Figure 3c) and Mixed-UNet (Figure 3d), which replace a portion of the 2D convolutional
layers with 1D convolutional layers. 2D convolutional layers enable temporal information
flow, while 1D convolutional layers only compute along the frequency dimension to enlarge
the perceptual range. Hybrid-UNet adopts 2D and 1D convolutional layers in each DB/UB
alternately, which maintains temporal information flow in the whole network. Mixed-UNet
replaces 2D convolutional layers with 1D layers in the middle of the network so that
temporal information exchange only exits in shallow layers.

Although Hybrid-UNet and Mixed-UNet are more efficient than traditional 2D-UNet,
2D convolutional layers still introduce unfavorable computation for real-time inference
on low-end embedded systems. Thus, we replace 2D convolutional layers with 1D con-
volutional layers completely to obtain a new architecture called 1D-UNet (Figure 3b), a
1D version of 2D-UNet V1. However, 1D-UNet lacks temporal modeling; therefore, we
inserted ATSM after each DB/UB to enable efficient and effective information exchange
along the temporal axis. We called 1D-UNet with ATSM ATS-UNet (Figure 3e). For all the
models, the kernel sizes of 1D and 2D convolutional layers are 3 × 1 and 3 × 3, respectively.

4.2. Audio Temporal Shift Module (ATSM)

Conventional deep-learning models for audio processing require massive 2D convolu-
tional operations to extract meaningful features from spectrograms [4] as Figure 4a shows.
However, they utilize a large number of computational resources. Therefore, the aforemen-
tioned deep-learning models are unlikely to be adopted for on-chip audio super resolution.
Instead, we introduced a novel module to accelerate convolutional operations in the time–
frequency domain called the Audio Temporal Shift Module (ATSM), as Figure 4b shows.
ATSM was inspired by the Temporal Shift Module (TSM) [46], an effective mechanism for
video understanding.
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This replaces 3D convolutional operations with 2D ones while preserving high-
dimensional modeling. This is achieved by shifting the feature maps among video frames
to enable temporal information flow. Similarly, ATSM utilizes 1D convolution operations
to replace 2D convolution operations for audio processing. In order to utilize information
from a longer temporal range for 1D convolutional kernels, ATSM shifts feature maps
along the temporal axis of spectrograms. In contrast to the TSM, whose input is four-
dimensional feature maps extracted from video frames, the input ATSM is extracted from
the 2D log-spectrogram and only has three dimensions: channel, time, and frequency.

More specifically, as illustrated in Figure 4b, feature maps are divided into two chunks
along the channel dimension: (1) dynamic and (2) static. The dynamic feature maps are
split evenly into two parts, with one part shifted forward (delaying time by one frame)
and the other backward (advancing time by one frame). The static feature maps remain
unchanged. It is worth noting that ATSM requires no additional computational resources to
facilitate information exchange along the temporal dimension in spectrogram computation.

Figure 4. To enable information flow through t1, t2, t3, we can use (a) a 2D convolutional layer or
(b) the proposed ATSM with a 1D convolutional layer. The latter is more lightweight.

4.3. Audio Pre-Processing and Resynthesis

Voice communication’s ideal overall latency is below 50 ms, which humans are unable
to notice. As latency increases, humans start to notice lip-sync issues; however, communi-
cation latency under 150 ms is still considered acceptable. However, a latency that exceeds
400 ms [47] is unacceptable for real-time communication. Therefore, a feasible audio super-
resolution system should not add too much latency to the communication process. As a
result, our system requires fast computing with an appropriate frame size and short-time
Fourier transform (STFT) parameter.

The pre-processing includes the feature extraction from the raw audio signal as shown
in the left figure of Figure 5. ATS-UNet processes a single audio frame at a time and outputs
audio frames in sequence to resynthesize the audio stream. A large frame provides more
information for ATS-UNet but introduces longer latency, since the system has to wait for the
time of the entire frame. Therefore, we use a 2048-point (128 ms) frame with half overlap
to achieve acceptable latency while maintaining adequate information. These frames are
transformed into spectrograms by STFT and fed into ATS-UNet.

The STFT parameter is another major factor in computational intensity. High frequency
and time resolution spectrograms can be achieved with a larger fast Fourier transform
(FFT) size and overlap between FFT windows, resulting in considerable computation load.
Considering the memory and resources on the micro-controller, we adopted a window size
of 512 points for the STFT. Further, we also utilized a half overlap strategy to the raw audio
data. The detailed trade-off of the STFT parameter is explained in Section 5.

The audio resynthesis, also known as post-processing, converts the reconstructed
spectrograms back to the time domain using the inverse short-time Fourier transform
(ISTFT). The overlapped frame is then multiplied by the Hanning window (2048-point) and
added to the previous frame. We adopted this resynthesis method because the data points
in the center of the window are better reconstructed due to richer temporal information.
Therefore, the Hanning window function gives the data samples in the center of the
window higher weights but weakens the importance of the data samples by the side.
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Further, we adopted half-overlapped Hanning window functions so that their summation
is a constant value. Thus, it will not distort the signal and can smooth the transition between
adjacent frames.

Figure 5. Feature extraction and reconstruction.

5. Model Training and Deployment

In this section, we provide experimental details, including the data collection proce-
dure, training scheme, and quantization procedure.

5.1. Speech Audio Data Collection

We conducted a user experiment to collect an audio dataset using the hardware shown
in Figure 6. The MEMS air-conduction microphone was placed near the mouth to collect
high-quality ground-truth speech audios. The BCM was secured with an earmuff. Thus,
when subjects wore the earmuff, the BCM would be pressed in front of the ear. To prevent
reverberation, we placed an acoustic panel in front of the speaker. As Figure 1 indicates, we
utilized a BES2300YP micro-controller to simultaneously collect speech audios from both
the air- and bone-conduction microphones. The sampling rate and bit depth were set to
44.1 kHz and 16 bits. We recorded the speech audios in a recording studio that was quiet
for high speech quality.

Figure 6. (a) The position of the air (MEMS) and the bone (BCM) conduction microphone. (b) The
headphone prototype for data collection.

We recruited 20 participants (10 males and 10 females). After wearing the headphone,
each subject was informed to read six paragraphs of an article, yielding approximately
12 min of speech per subject. We removed the silence clips at the beginning and the end
of all audio files and normalized the volume across participants. We then down-sampled
each speech audio to 16 kHz, which is sufficient for communication (https://en.wikipedia.
org/wiki/Sampling_(signal_processing) (accessed on 1 November 2022)). The processed
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dataset includes 200 min of speech audios in total. Each participant received a 10 USD gift
card after the experiment.

5.2. Implementation and Training Details

Bone-conduction audios were down-sampled to 16 kHz, cropped to 2048-point frames
(128 ms), and transformed to time–frequency representations by short-time Fourier trans-
form (STFT) [48] with 512-point Hanning window and half overlap (a stride of 256-point).
We adopted the implementation of librosa (https://librosa.org/doc/latest/index.html (ac-
cessed on 1 November 2022)) for STFT and ISTFT. The symmetrical component is removed,
resulting in 257 Fourier coefficients. Thus, the size of the input spectrogram is 257 × 9.

Then, we converted the power of each coefficient to the log scale and standardize
them to normal distribution. We skipped the 0th coefficient (DC component) but fed
the remaining 256 coefficients into the network. Lastly, we obtained the enhanced log-
spectrogram from the super-resolution model and concatenated it with 0th coefficient;
therefore, the output’s shape is also 257× 9. The post-processing audio resynthesis includes
denormalization, conversion to linear-scale, and inverse STFT. The model only predicts
magnitude, and thus we kept the original phase information from the bone-conduction
audio to resynthesize the enhanced speech audio.

All super-resolution models were implemented in Tensorflow [44]. We adopted cross
user validation with the training dataset consisting of speech audios from 18 speakers and
the remaining audios as the test dataset. We randomly initialized the model and trained it
for 100 epochs using the Adam optimizer [49] with a learning rate of 0.0001 and batch size
of 64.

5.3. Loss Function

The loss function is given by Equation (1), that consists of two parts: the least absolute
deviation (L1) loss and perceptually motivated loss [36]. L1 loss measures the absolute
difference between the log-spectrograms of the output speech audio and the ground-
truth speech audio—log(s(y)). Perceptually motivated loss is the L1 distance calculated
on log-melspectrogram log(ms(y)) considering that the mel-scale is more aligned with
human hearing [50]. In Equation (1), s(y) and s(ŷ) stand for spectrograms of the output
and ground-truth audios. ms(y) and ms(ŷ) represent melspectrograms of the output and
ground-truth audios, respectively.

Loss = | log(s(y))− log(s(ŷ))|1 + | log(ms(y))− log(ms(ŷ))|1 (1)

5.4. Model Quantization

We re-compiled each model using the CMSIS-NN [45] framework for efficient inference
on Arm Cortex-M processors. First, we transformed the model from floating-point to fixed-
point format. Both weights and activations were quantized to 16-bit integers, given by
Equation (2). In practice, quantization is symmetrical around zero with power-of-two
scaling; therefore, it can be implemented by bitwise shifts in CMSIS-NN kernels.

xq = �x× 215−log2 max|x|�, (2)

where x represents the weights of a convolutional layer. xq is the quantized weights.

5.5. Noise Transfer Learning

The primary motivation behind the use of BCM is to enhance the communication
quality in noisy environments. Therefore, our system should improve bone-conduction
recordings in a quiet environment and in boisterous environments. To this end, we collected
voices from BCM in different noisy locations. However, we observed more unwanted noises
in the reconstructed speech compared with the quiet laboratory setup. This is because BCM
can still pick up some external noises that are further being enhanced by the model.
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We adopted transfer learning to fine-tune the model for noise reduction. By collecting
pure noises using BCM and adding them to bone-conduction audio in the training dataset,
the model can learn to identify the unwanted noises and only recover speech signals.
In detail, we collected bone-conduction noises in three locations, including a subway
station, a bus stop, and a dining hall. We instructed a participant to wear the prototype
without speaking and recorded bone-conduction noises for 20 min in each location.

We then added the noises to the bone-conduction speech recorded in the quiet studio.
For each audio clip, the signal-to-noise ratio (SNR) between the bone-conduction speech
and the additive noise was randomly sampled from Gaussian distribution with a mean of
18 and a standard deviation of 3.5. Before being deployed in real-world environments, ATS-
UNet was fine tuned on the noisy data for another 100 epochs with the same parameters
in Section 5.2.

6. Quantitative Speech Quality Evaluation

In this section, we present the quantitative speech quality evaluation regarding the air-
conduction microphone as the ground truth. We describe the evaluation metrics, baselines,
and results. We then explain the reasons behind the hyper-parameter selection and bench-
mark the performance of ATS-UNet, UNet variants, and baselines for speech enhancement.

6.1. Evaluation Metrics

We considered the effectiveness, model size, latency, and power consumption to
evaluate each model’s performance comprehensively. Specifically, the effectiveness includes
two metrics: the log spectral distance (LSD) [16], and the perceptual evaluation of speech
quality (PESQ) [15]. LSD, given by Equation (3) [8], measures the distance between the
log–power spectrum of reference and reconstructed signals. Therefore, a lower value
indicates a better performance. PESQ was provided by Recommendation ITU-T P862 [15]
for the objective assessment of speech quality. This models the mean opinion score (MOS),
which ranges from 1 (bad) to 5 (excellent).

LSD(x, x̂) =
1
T

T

∑
t=1

√√√√ 1
K

K

∑
k=1

(X(t, k)− X̂(t, k))2, (3)

where t and k are the frame and frequency index, respectively. X and X̂ denote the log–
power spectrum of x and x̂, which are defined as X = log|S(x)|2. S stands for STFT with
2048-point frames.

6.2. Baselines

Birnbaum et al. [9] inserted temporal feature-wise linear modulation (TFiLM) layers
into a time-domain 1D-UNet to expand the receptive field. This improved the performance
of audio super resolution compared with the original 1D-UNet [8], achieving cutting-edge
audio super resolution performance. Therefore, we adopted TFiLM as the baseline in this
paper. We used the open-sourced code of TFiLM implementation (https://github.com/
kuleshov/audio-super-res (accessed on 1 November 2022)).

6.3. Effect of the Input Hyper-Parameter

To evaluate the trade-off between frequency resolution and model performance, we first
compared two sets of STFT parameters: 1024-point FFT, 256 strides, and Blackman window as
well as 512-point FFT, 256 strides, and Hanning window. The experiments were performed on
two models. The first model is a lightweight 2D-UNet v1. In the second model, we expanded
2D-UNet v1 by increasing the number of filters in each layer by four times to explore the
optimum audio super resolution results without considering computation.

As shown in Table 1, both 2D-UNet v1 and v2 outperformed the baseline method—
TFiLM [9] with significantly fewer parameters. This proves the effectiveness of 2D-UNet in
speech audio super resolution. The computational intensity of the 1024-point STFT was
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nearly doubled compared with the 512-point STFT; however, the performances were close.
Therefore, we adopted a 512-point window size for the STFT in the following evaluation
procedures considering the latency and model size.

Table 1. Performance comparison for different STFT parameters.

Average LSD(dB)/PESQ

Model Params 1024-Point STFT 512-Point STFT

2D-UNet v1 11.8 k 2.028/2.713 2.013/2.790
2D-UNet v2 187.3 k 1.949/2.937 1.961/2.983

TFiLM (baseline) [9] 68,221.2 k 3.646/2.523 (time domain)

6.4. Model Performance Results and Comparison

To align the loss function with human hearing sensitivity for different frequency
ranges, we incorporated perceptually motivated loss [36]. Compared with the L1 loss, this
increased the accuracy for every tested architecture (Table 2).

Table 2. Performance comparison for different UNet architectures. Latency is the model inference
time on a single 2048-point frame by Arm Cortex-M4f/M7 processor. For 2D-UNet v2 and TFiLM,
latency was not provided as they are too large to be deployed on our embedded system.

Latency (ms) Average LSD(dB)/PESQ

Our Models Params FLOPs Cortex-M4f Cortex-M7 L1 L1 + Perceptual Loss

2D-UNet v2 187.3 k 133.9 M / / 1.961/2.983 1.954/3.030
2D-UNet v1 11.8 k 8.6 M 187 44 2.013/2.790 2.004/2.780

Hybrid-UNet 8.4 k 7.0 M 163 38 2.024/2.689 2.015 /2.733
Mixed-UNet 6.3 k 6.9 M 166 39 2.026/2.692 2.019/2.743

1D-UNet 4.5 k 4.8 M 129 31 2.063/2.664 2.052/2.717
ATS-UNet 4.5 k 4.8 M 131 32 2.032/2.710 2.032/2.749

TFiLM (baseline) [9] 68,221.2 k 116,420 M / / 3.646/2.523

Although UNet v1 only has about 10 thousand parameters, it still requires a long
inference time on a computation restricted platform, and thus we proposed Hybrid-UNet,
Mixed-UNet, and ATS-UNet as described in Section 4. Benchmark latencies and accuracies
are provided in Table 2 and Figure 7. ATS-UNet and 1D-UNet are the fastest networks,
taking 131/32 ms and 129/31 ms, respectively, to inference a 2048-point frame.

Due to the lack of temporal modeling, the accuracy of 1D-UNet is significantly lower
than ATS-UNet. ATSM effectively promotes temporal modeling while only adding negligi-
ble latency. Although Hybrid-UNet has 2000 more parameters than Mixed-UNet, the two
settings achieve nearly the same latency and accuracy because their floating-point opera-
tions (FLOPs) are very close. 2D-UNet v1 is the slowest with expensive computation and
slightly higher accuracy. Note that 2D-UNet v2 is too large to be run on our embedded
system, and thus we leave gaps in the table.

As shown in Figure 7, ATS-UNet is the most cost-efficient model as it is on the
upper left of the plot. In addition, spectrum examples in Figure 8 demonstrate that ATS-
UNet outperformed TFiLM since it recovered a more accurate high-frequency structure.
Considering our embedded system’s restricted computational resources and memory,
ATS-UNet was the best architecture to enable on-chip audio super resolution for BCM.
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Figure 7. (a) The trade-off between on-chip latency and audio super resolution performance measured
by LSD. The number of parameters is represented by circle size. (b) Without ATSM, there is a linear
relationship between latency and LSD. ATS-UNet is on the upper left of the dotted line, thereby,
proving its superiority.

Figure 8. Audio super-resolution results visualized by spectrograms.

6.5. Power Consumption

Since the algorithm pipeline can be run in real-time on Arm Cortex-M7, we measured
the power consumption of this microcontroller under two circumstances: (1) during audio
super resolution and (2) without audio super resolution. We used a power analyzer
(EMK850) to measure the average current within one minute. When our super-resolution
module was active, the average consumption was 498 mW (114.4 mA at 4.35 V). After the
audio super-resolution module was deactivated, the microcontroller consumed 406mW
(93.0 mA at 4.37 V). Therefore, ATS-UNet, feature extraction and reconstruction consumed
92 mW (498 mW–406 mW) on average.

7. Perceptual Speech Quality Evaluation

In this section, we present the perceptual speech quality evaluation of our method
under both quiet and noisy environments. We describe the user study design, participants,
and results in this section. Specifically, we conducted two user studies. The first was to
compare the perceived speech audio quality of different machine-learning models.

The second user study was to evaluate our method’s effectiveness against environ-
mental noises. We utilized a within subject user study design. We utilized the Friedman
test for non-parametric statistical analysis (p < 0.05) and the Wilcoxon signed-rank test for
post hoc analysis (p < 0.05). We utilized the Mann–Whitney U test to evaluate the difference
between user groups for statistical analysis (p < 0.05).

7.1. Participants

We recruited 20 participants (14 males and 6 females) with an average age of 33.2
(s.d. = 4.8) separated into two groups. The “Golden Ear” (GE) group had 10 participants
(6 males and 4 females) with an average age of 34.2 (s.d. = 5.0). They were specialists who
were selected and trained to be able to discern subtle differences in audios. The “Non-
Golden Ear” (NGE) group had the other 10 amateur listeners (6 males and 4 females) with
an average age of 32.1 (s.d. = 4.6).

The study was conducted in a quiet listening room. During the test, each participant
was required to wear headphones (AKG N20 model). A 5 min break was required after
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10 trials. The whole study lasted for 60 min. Each participant received a 30 USD gift card
for their time and effort.

7.2. User Study 1: Speech Audio Quality in Quiet Environment

This user study included 20 trials. Participants listened to an audio clip from the
MEMS air-conduction microphone in each trial, which produced the highest speech audio
quality. Then, they listened to and compared three audio clips, including: (1) original
speech audio from the BCM (Original); (2) speech audio processed by the 2D-UNet v1; and
(3) speech audio processed by the ATS-UNet.

The three audio clips had the same duration, while each set of audio clips lasted
between 5 and 10 s with an average duration of 8.2 s. Then, each participant rated the
sound quality of these three audio clips by referring to the high-quality audio clip from
the MEMS microphone. We utilized a 5-point Likert scale for the rating (5 = very good,
3 = neural, and 1 = very bad). The three audio clips were ordered randomly in each trial
before the user study. Participants were allowed to listen to and compare audio clips
repeatedly. In total, each participant listened to 80 audio clips.

Results

The results show that both 2D-UNet v1 and ATS-UNet can effectively increase the
sound quality of audio from the bone-conduction microphone. Further, 2D-UNet v1
achieved better performance compared with ATS-UNet. As shown in Figure 9a, the mean
score of the original audio was 2.09 (s.d. = 0.03), of the ATS-UNet audio was 2.95
(s.d. = 0.03), and of the 2D-UNet v1 audio was 3.03 (s.d. = 0.03). These differences were sta-
tistically significant according to a Friedman test (χ2(2, N = 400) = 376.6, p < 0.001). Post-hoc
analysis showed that both the perceived sound quality of audio processed by the ATS-UNet
(Z = −13.6, p < 0.001) and the 2D-UNet v1 (Z = −13.9, p < 0.001) significantly outperformed
the original bone-conduction speech audio. Further, 2D-UNet v1 outperformed ATS-UNet
(Z = −2.8, p < 0.01) significantly.

Figure 9. (a,b) The qualitative speech audio quality evaluation results.

The user group analysis results show that there was significant effect of golden ear
status on the perceived sound quality when listening to the original speech audio from the
BCM (Z = −2.1, p = 0.036) but not under the 2D-UNet v1 (Z = −0.9, p = 0.37) or ATS-UNet
(Z = −1.2, p = 0.23) conditions.

7.3. User Study 2: Effectiveness of ATS-UNet Against Environmental Noises

This user study is to evaluate the effectiveness of our method against environmental
noises. We compared our method (BCM + ATS-UNet) to a baseline method—a single air-
conduction microphone with environment noise reduction (AIR+ENR). In this evaluation,
we adopted Baseus Encok TWS earbuds–WM01 (http://www.baseus.com/product-740?
lang=en-us (accessed on 1 November 2022)) as our comparison baseline. It has a built-in
signal processing method for environmental noise reduction. During our test with five
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different brands of earphones with the single speech microphone solution, the Baseus
WM01 earbud achieved the best performance in environmental noise reduction.

7.3.1. Speech Audio Data Collection in Noisy Environments

We first recruited five participants to collect speech audios under various environ-
ments, including a noisy pedestrian street, a subway station, and a moving car with the
window open. They had an average age of 26.5 (s.d. = 2.5). We used the recording hard-
ware presented in Section 5.1 to collect the speech audios from both the air-conduction
microphone and the bone-conduction microphone. Further, we streamed the speech audio
from the Baseus WM01 earbud to an iPhone 12 for comparison.

We used three hand-clapping events to start each recording and later synchronize the
audios. During each data collection session, each participant read the same article that lasts
around 2 min. The whole data collection procedure lasted 40 min. Each participant received
a 20 USD gift card. As a result, we collected 2 (min) × 5 (participants) × 3 (environments) =
30 min of speech audios with the bone-conduction microphone, the MEMS air-conduction
microphone, and the Baseus WM01 earbud. Among these audio recordings, the raw audios
from the MEMS microphone contained stronger environmental noises.

7.3.2. Speech Audio Quality Evaluation

This user study included 24 trials. In each trial, participants listened to an audio
clip from the MEMS microphone with stronger background noises. Then, they listened
to and compared two audio clips, including (1) speech audio from the bone-conduction
microphone processed by the ATS-UNet and (2) speech audio from the Baseus WM01
earbud with noise-reduction algorithms. Each pair of audio clips had the same duration
and lasted between 8 and 13 s, with an average duration of 10.96 s.

Then, each participant rated the sound quality of these two audio clips by referring to
the audio clip from the MEMS microphone. We utilized a 5-point Likert scale for the rating
(5 = very good, 3 = neural, and 1 = very bad). The two audio clips were ordered randomly
in each trial before the user study. Participants were allowed to listen to and compare the
audio clips repeatedly. In total, each participant listened to 60 audio clips.

7.3.3. Results

The results show both golden ear (GE) (Z =−12.2, p < 0.001) and non-golden ear (NGE)
(Z = −2.2, p = 0.02) raters considered the speech audio quality of the BCM + ATS-UNet
outperformed the baseline method—AIR + ENR. As shown in Figure 9b, GE raters scored
the speech audio quality of BCM + ATS-UNet with an average of 3.83 (s.d. = 0.86) and of
the AIR + ENR with an average of 2.61 (s.d. = 0.93). NGE raters scored the speech audio
quality of BCM + ATS-UNet and AIR+ENR with average values of 3.58 (s.d. = 1.17) and
3.38 (s.d. = 1.21), respectively.

User group analysis results show that there was a significant effect of the user group on
the perceived sound quality of AIR + ENR (Z = −7.7, p < 0.001) but not BCM + ATS-UNet
(Z = −1.9, p = 0.053). These results indicate that GE and NGE raters perceived similar
speech audio quality regarding our method. However, GE raters gave the AIR+ENR a
significantly lower score, indicating a poorer preference for AIR + ENR.

8. Discussion

In this work, we present the first on-chip audio super-resolution system for BCM.
By integrating a novel ATSM into UNet architecture, ATS-UNet makes it possible to recover
the missing high-frequency content captured by the BCM on resource-constrained hearable
devices. Therefore, model inferences could be run locally on hearable devices without
unwanted data transmission and lower latency. In this section, we discuss potential future
works and related applications.
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8.1. Dual Microphone System and Ambient Awareness

Even though BCM is superior to traditional microphones in noisy environments, and
our system significantly improved the BCM’s audio quality, air-conduction microphones
still provide higher speech quality in low noisy environments. Therefore, a great deal of
research [21–25] has focused on using an air-conduction microphone as the primary sensor,
accompanied by a BCM for noise reduction. Conversely, low-quality bone-conduction
audio is used directly in this research, and thus we hypothesize that there may be an
opportunity to apply the audio super-resolution model on bone-conduction speech in
conjunction with multi-microphone denoising algorithms.

BCMs and air-conduction microphones are suitable for different scenarios due to
their hardware properties. For example, under strong wind noise, BCMs are highly de-
sired, whereas, in a quiet meeting room, BCMs are unnecessary. In this case, the audio
super-resolution algorithm leads to unnecessary power consumption. Therefore, another
potential future research with a dual-microphone system could be ambient awareness. We
anticipate that a dual-microphone system with ambient awareness could achieve the best
user experience with optimal power consumption. With the ambient environment informa-
tion, we could then determine an appropriate microphone and algorithm combination to
be utilized at any instance.

8.2. Audio Super Resolution Applications

In this work, our system incorporated a single BCM, which we modeled as an audio
super-resolution problem. We have also observed many other potential real-world appli-
cations. For example, recently, many people are wearing masks to prevent COVID-19.
While these masks prevent the spread of the virus, it also blocks part of the speech
signals. Corey et al. [51] showed different masks and microphone placements have dif-
ferent impacts on speech quality.

We believe the audio super-resolution model is a potential solution for recovering the
attenuated frequency components from the masks. Increasingly, people pursue high-fidelity
music; however, for now, the majority of music on the internet is compressed MP3 files.
We anticipate that our model could be used to recover compression losses generated from
lossy compression audio codecs. In general, it is encouraged to use our ATS-UNet if audio
quality is degraded by frequency loss.

8.3. ATSM for Other Audio Applications

ATSM was designed for processing spectrograms of the audio signal, one of the most
widely used input features for audio-related deep neural networks. Therefore, we believe
ATSM can be easily adapt to other audio applications, such as speech separation [52] and
speech emotion recognition [53]. Researchers can insert ATSM into existing models and
reduce the dimension of convolutional layers making the models more lightweight and
deployable. Though ATSM was not designed for input features, such as waveforms and
MFCC, this provides insight on how to enable information flow and enlarge perceptual
range without large convolutional kernels.

8.4. Limitations and Future Work

In this paper, we built a hardware prototype to evaluate the effectiveness of our method
to recover high-fidelity speech audio from the bone-conduction microphone. The data
collection and performance evaluation procedures were performed on the development
board, as Figure 1 shows. We did not develop a wearable hardware solution designed for
users to wear it comfortably. Further, during our test and evaluation, the placement of the
BCM had a significant effect on the audio quality.

In our implementation, we utilized an earmuff to stabilize the BCM to the user’s
skin with its location shown in Figure 6. We chose this location for two reasons. (1) It
can pick good quality of speech audios during our pilot study (In the pilot study, we
compared two locations: in front of the ear and behind the ear). (2) We referred to the
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cutting-edge design of modern bone-conduction speakers. We expect future work to
investigate the optimized location and mounting mechanism. Further, we expect future
work to explore sensor fusion approaches to enable better speech audio quality using air-
and bone-conduction microphones.

9. Conclusions

In this paper, we proposed a novel real-time embedded audio super-resolution-based
speech-capture system with BCM. By integrating a novel ATSM into UNet architecture,
ATS-UNet efficiently processed bone-conduction speech audio signals with minimal com-
putational resources among our proposed lightweight audio super-resolution models.
Compared with the baseline method (TFiLM), ATS-UNet achieved higher performance in
audio quality and reduced the number of parameters by approximately 100 times. Com-
pared to the 2D-UNet v1, ATS-UNet reduced the number of FLOPs by 44% and achieved
comparable performance.

With the reduction in computation complexity, our system can achieve real-time pro-
cessing on a Cortex-M7 with an average power consumption of 92 mW. User studies demon-
strated that our system significantly improved the perceptual quality of bone-conduction
speech. We propose that our system will promote the usage of BCM in earphones and
other deep-learning-based audio-processing applications, particularly those deployed in
resource-constrained embedded systems.
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Abstract: This paper proposes a novel method monitoring network packets to classify anomalies
in industrial control systems (ICSs). The proposed method combines different mechanisms. It is
flow-based as it obtains new features through aggregating packets of the same flow. It then builds
a deep neural network (DNN) with multi-attention blocks for spotting core features, and with
residual blocks for avoiding the gradient vanishing problem. The DNN is trained with the Ranger
(RAdam + Lookahead) optimizer to prevent the training from being stuck in local minima, and with
the focal loss to address the data imbalance problem. The Electra Modbus dataset is used to evaluate
the performance impacts of different mechanisms on the proposed method. The proposed method is
compared with related methods in terms of the precision, recall, and F1-score to show its superiority.

Keywords: anomaly detection; anomaly classification; industrial control system; deep learning; deep
neural network; multi-attention block; residual block

1. Introduction

The industrial control system (ICS) integrates information technology (IT) and opera-
tional technology (OT) to monitor, control, and manage network-interconnected devices in
large-scale industrial production systems or critical infrastructures, such as manufacturing
factories, power plants, waterworks, oil refineries, gas pipelines, and public transportation
systems [1]. Once cyber attackers intrude into an ICS to launch attacks, its performance
degrades and some functions may fail, leading to huge losses. For example, a Taiwan chip-
maker was attacked by WannaCrypt malware in 2018. Consequently, many chip-fabrication
factories were shut down, leading to a loss of about USD 256 million [2]. For another
example, an American oil pipeline system was halted by a ransomware cyberattack, and
consequently, a ransom of USD 4.4 million was paid to restore its operations [3].

Anomalies occur before or during major attacks are launched. It is therefore helpful
to develop methods to detect and classify anomalies associated with cyberattacks. Alerts
are issued once anomalies are detected and/or classified. Traditional anomaly detection
and classification methods cannot be directly applied to ICS applications due to differences
in protocols and attack types between traditional networks and ICS networks. Several
studies proposed ICS anomaly detection and classification methods that inspect network
packets of the Modbus and S7Comm protocols. Gomez et al. [4] proposed supervised
and unsupervised machine learning methods to detect ICS anomalies. Ning et al. [5]
proposed an anomaly detection method based on the generative adversarial network
(GAN) model [6] and the deep neural network (DNN) model.

Jiang and Chen [1] proposed an ICS anomaly detection method (abbreviated as the
JC-AD method in this paper) and an ICS anomaly classification method (abbreviated as
the JC-AC method in this paper). The two methods first utilize the denoising autoencoder
(DAE) [7] to reduce data noise and extract core features from packets. Then, the JC-AD
method employs the synthetic minority oversampling technique (SMOTE) [8] and the
Tomek link (T-Link) [9] mechanism to oversample and undersample data for dealing with
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imbalance packets, where the majority of class samples (i.e., normal packets) significantly
outnumber the minority class samples (i.e., anomalous packets). The SMOTE and the T-
LINK mechanisms are for the binary-class samples, so they are not employed by the JC-AC
method that addresses multi-class samples. Finally, both methods use extreme gradient
boosting (XGBoost) [10] based on the ensemble learning concept to avoid overfitting to
achieve good performance.

Among all the above-mentioned ICS anomaly detection methods, the JC-AD method [1]
has perfect (i.e., 100%) accuracy, precision, recall, and F1-score. The JC-AC method [1] is the
sole ICS anomaly classification method; it has almost perfect (i.e., nearly 100%) precision,
recall, and F1-score.

This paper proposes an ICS anomaly classification method integrating difference
mechanisms to improve the performance of the JC-AC method. The proposed method
is flow-based; that is, it investigates the flow of packets instead of a single packet for
classifying anomalies. It builds a DNN with multi-attention blocks [11] for spotting core
features, and with residual blocks [12] for avoiding the gradient vanishing problem. The
DNN is trained with the Ranger [13] (i.e., RAdam [14] + Lookahead [15]) as the optimizer
to prevent the training from being stuck in local minima, and with the focal loss [16] to
address the data imbalance problem. The proposed method can be used in conjunction
with the JC-AD method. Specifically, it can be used for better anomaly classification after
the JC-AD method perfectly detects ICS anomalies. Moreover, the proposed method can
also be used for detecting ICS anomalies when viewed as a binary-class (i.e., normal-
anomalous) classifier. As will be shown, it has comparably good performance in detecting
ICS anomalies.

The Electra Modbus dataset [17] reported in [4] is employed to evaluate the proposed
method’s performance. As the proposed method integrates several mechanisms, the evalu-
ation also assesses the performance impact of not using a single mechanism. Furthermore,
the evaluation results are compared with those of the JC-AC method to show that the
proposed method indeed improves the JC-AC method in terms of the precision, recall, and
F1-score of anomaly classification. Notably, the proposed method is shown to have compa-
rably good ICS anomaly detection performance when compared with related methods.

The contribution of this paper is three-fold. First, it proposes a novel flow-based
method integrating the mechanisms of the muti-attention block, residual block, Ranger
optimizer, and focal loss to construct a DNN for monitoring ICS network packets to classify
anomalies. Second, extensive experiments using the Electra Modbus dataset are conducted
to evaluate the performance impacts of different mechanisms. Third, the performance of
the proposed method is compared with those of related methods to show its superiority.

The rest of this paper is organized as follows. Section 2 describes background knowl-
edge. Section 3 elaborates the proposed method. Performance evaluation and comparisons
of the proposed method, with related methods, are shown in Section 4. Finally, Section 5
concludes the paper.

2. Background

2.1. Multi-Attention Block

The attention mechanism [11] utilizes the attention block to assign different weights to
each part of the DNN input, and extract more critical information for achieving better per-
formance. It is widely used in applications such as machine translation, voice recognition,
and image recognition, etc. The structure of the attention block (or the scaled dot-product
attention block) is shown in Figure 1a. Based on the input vector, the attention mechanism
obtains query vector Q through the Query matrix, key vector K through the Key matrix,
and value vector V through the Value matrix. The attention score can be obtained by
multiplying Q and K, then scaling and normalizing the product by the SoftMax function
to obtain the attention weight, which is in turn multiplied by V to produce the output.
Unlike recurrence-based models, such as the recurrent neural network (RNN), which have
to sequentially check each input vector one by one, the attention mechanism can check
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all input vectors simultaneously to determine which input vector has a higher attention
score to be paid more attention to. It thus has better performance than its counterparts. If
the attention mechanism considers many queries, it is called a multi-attention mechanism
and can be realized by multi-attention blocks, as shown in Figure 1b. It can be regarded as
running through the attention mechanism multiple times (say, h times) in parallel. Each
running of the attention mechanism can pay attention to different parts of input vectors
to have an independent output result. All the attention output results are subsequently
concatenated and linearly transformed to be the final output.

MatMul

Q K

Scale

SoftMax

MatMul

V Q

LinearLinear

K

Linear

Concat

V

Linear

h

(a) (b)

Scaled Dot-Product 
Attention

Figure 1. (a) The scaled dot-product attention block, and (b) the multi-attention block.

2.2. Residual Block

Increasing the depth of a DNN usually improves its performance. However, the depth
increase causes the gradient vanishing problem so that the gradient approaches zero; it
also causes the gradient exploding problem so that the gradient becomes excessive. The
two problems may make the DNN weight update insensitive to output changes; thus, it is
sometimes difficult for the DNN training error to converge. Although batch normalization
can mitigate the two problems, there still exists the degradation problem that deeper DNNs
may have worse performance than shallower DNNs. The residual block (ResBlock) [12],
whose structure is shown in Figure 2, can be used to alleviate all the problems, as described
below. The ResBlock has the normal dense layer with the ReLU (Rectified Linear Unit) or
another activation function. In particular, it has the shortcut connection of identity mapping.
With the shortcut, the ResBlock can learn the residual (i.e., difference) between the input
and the output of the block. It can thus focus on the residual, which is more significant. As
such, it is more sensitive to output changes and can mitigate the gradient vanishing, and
the gradient exploding problems, which in turn can alleviate the degradation problem.

 

Figure 2. The residual block structure.
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2.3. RAdam

RAdam [14] stands for Rectified Adam; it is simply an Adam optimizer [18] with a
warmup scheme. Note that Adam stands for the Adaptive Moment Estimation, a well-
known gradient descent optimization scheme in the DNN error-backpropagation process.
On the one hand, in the early stage of training a DNN with the Adam optimizer, the
variance of training errors of all samples is relatively small. However, after several epochs,
the variance of training errors of all samples grows large. The reasons are as follows. If
the warmup scheme is not employed and a large learning rate is used in the early stage
of training a DNN model, the model becomes overfitting to the few samples ever seen.
Thus, the training error is quite large for unseen samples. On the other hand, the Adam
optimizer with the warmup scheme can reduce the variance of training errors of all data
samples, as the learning rate is small in early stages and then grows in later stages of
training the DNN. This can prevent the training from getting stuck in local minima for
getting better performance.

Figure 3 shows the absolute gradient histogram during training a DNN using Adam
without warmup for machine translation on the IWSLT2014 German-English (De-En)
dataset [14]. In the histogram, the y-axis is the iteration (epoch), and the x-axis is the
absolute gradient value in a logarithmic scale, whose height stands for the frequency. It
can be observed from the histogram that using Adam without warmup makes the gradient
distribution distorted to have mass centers of relatively small values in the first 10 iterations,
which indicates the training may fast converge and be trapped in local minima after the
first few iterations. Figure 4 shows the absolute gradient histogram during training a DNN
using RAdam (i.e., Adam with warmup) for machine translation on the IWSLT2014 De-En
dataset [14]. It can be observed from the histogram that the gradient distribution is not
distorted after the first few iterations. This can avoid the bad situation that the training fast
converges and is trapped in local minima.

Figure 3. The absolute gradient histogram during training a DNN using Adam without warmup for
machine translation on the IWSLT2014 De-En dataset [14].

Figure 4. The absolute gradient histogram during training a DNN using RAdam (i.e., Adam with
warmup) for machine translation on the IWSLT2014 De-En dataset [14].
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2.4. Lookahead

The core concept of Lookahead [15] is to prepare two sets of weights for the neural
network, one set of fast weights and one set of slow weights. When the fast weights are
updated k times, the slow weights are updated to half the extent of the fast weights. In this
way, even if the fast weights get stuck in local minima, the slow weights can still escape
local minima to achieve better performance. Note that the Lookahead mechanism and
the above-mentioned RAdam mechanism are combined as the Ranger optimizer [13] for
training DNNs for improving performance.

Figure 5 [15] is the visualization of Lookahead effects with k = 10 for training the
ResNet-32 model [12] using stochastic gradient descent (SGD) as an image classifier on the
Canadian Institute For Advanced Research-100 (CIFAR-100) dataset [19]. The figure shows
the test accuracy surface of the model using fast weights indicated by the blue-dashed path,
and slow weights indicated by the purple-line path. It can be observed from Figure 5 that
Lookahead can quickly progress to the global minima than SGD.

Figure 5. The visualization of Lookahead effects with k = 10 through a ResNet-32 test accuracy surface
at epoch 100 on the CIFAR-100 dataset [15].

2.5. Focal Loss

The core concept of the focal loss [16] is to set the loss of correctly classified samples
(i.e., simple samples) to be small, and to set the loss of misclassified samples (i.e., difficult
samples) to be large. Equation (1) is for the simplified cross entropy (CE), where pt is the
probability to correctly predict the input sample to be positive. Equation (2) is for the
focal loss (FL), where αt is the parameter related to data imbalance, and γ is the parameter
related to the difficulty of sample detection and classification.

CE(pt) = − log pt (1)

FL(pt) = −αt(1− pt)
γ log pt (2)

Figure 6 shows the CE and the FL with data imbalance parameter αt = 1 (for not
considering data imbalance) and γ = 0, 0.5, 1, 2, and 5 [16]. Note that the CE is actually the
FL with γ = 0. The y-axis is the loss, and the x-axis is pt, the probability to correctly predict
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the input sample to be positive. It can be observed from Figure 6 that the well-classified
samples or examples (i.e., those with pt larger than 0.5 and even close to 1) are associated
with the FL that fast approaches 0 when pt grows. The FL approaches 0 faster than the CE.
It can also be observed that the FL sets the loss of well-classified examples to be small, and
sets the loss of misclassified examples to be large.

Figure 6. The comparisons of the CE and the FL with different values of γ.

3. Proposed Method

The workflow of the proposed method mainly consists of three steps: data preprocess-
ing, model building, and model training, as shown in Figure 7. Each step is elaborated in a
subsection below.

 

Figure 7. The workflow of the proposed method.
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3.1. Data Preprocessing

The data preprocessing contains four sub-steps: label encoding, normalization, data
flow processing, and data splitting. The four sub-steps are described below.

1. Label encoding:

In this sub-step, non-numeric features (e.g., categorial features) are converted into
integers. If the number of categories of a feature is N, then the feature is converted into an
integer in the range of [0, N − 1]. Using integers to represent non-numeric features may
cause the problem that the DNN model mistakes the order relations among integers as the
precedence relations among different categories, which in turn may influence the model
performance. The one-hot encoding can avoid the problem by inserting N new columns
and by assigning 1 in one column, and 0 in the other columns for a category. However,
one-hot encoding needs many extra columns, whereas label encoding does not. Since
there are likely many categories in the ICS anomaly classification setting, label encoding is
adopted to convert non-numerical features.

2. Normalization:

Numerical features may have different ranges, which influence the training of neural
networks. The proposed method adopts the min-max normalization to scale values of
a feature into the range of [0, 1], while the distribution of feature values remains the
same. With normalization, features are transformed to be within a common scale without
distorting their distributions, which in turn can improve DNN model training stability and
model performance.

3. Data flow processing:

If two packets have an identical pair of the source IP address and the destination IP
address, then they are considered to belong to the same flow. Packets of the same flow
are sorted by timestamps. As shown in Figure 8, new features are derived form a sliding
window of s (say, s = 4) consecutive packets of the same flow, and the label of the sth packet
is taken as the new label associated with the new features. In this way, the new flow-based
data are derived. When an attacker launches an attack, he/she usually sends multiple
malicious data packets to the same target device, causing anomalies. Therefore, finding
related packets with the same source and destination IP addresses through the data flow
processing is very helpful for anomaly classification.

Figure 8. New features and a label are derived from a sliding window of s = 4 consecutive packets of
a flow.
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4. Data splitting:

New flow-based features and associated labels of data are split into the training dataset,
the validation dataset, and the test dataset according to the ratios of 0.6, 0.2, and 0.2. The
datasets are used to train, validate, and test data. Specifically, the training dataset is used to
train a DNN model to have a small error, and the validation dataset is applied to the trained
model to check (or validate) if the error is still small to prevent the model from overfitting
to the training dataset. The above-mentioned actions constitute an iteration or an epoch of
the training process. The training process stops when the error keeps decreasing and stays
very small or when the maximum number of iterations is reached. Afterwards, the best
model with the smallest error ever encountered is output as the final model. At last, the
test dataset is applied to the final DNN model for assessing the model performance.

3.2. Model Building

The proposed method builds the DNN that combines multiple attention blocks and
residual blocks. Figure 9a shows the DNN without multi-attention blocks or residual blocks,
whereas Figure 9b shows the DNN with multi-attention blocks and residual blocks adopted
by the proposed method. In the DNN shown in Figure 9b, the first layer is the input layer.
Then, there are t (say t = 6) copies of the dense layer, the multi-attention block layer, and the
residual block layer, with each layer having eight neurons. The flatten layer and the dense
layer then follow. The last is the output layer. In total, the DNN has 51 layers, with the last
layer using the SoftMax, and the other layers using Swish [20] as the activation function. It
is shown that the Swish function can help mitigate the gradient vanishing problem [20].
The He normal initializer [21] is employed to initialize neural weights. The initializer draws
samples from a truncated normal distribution and is shown to have good performance.

 
(a) 

 
(b) 

X 6

FlattenDense Dense
(Output)

Figure 9. (a) The DNN without multi-attention blocks or residual blocks, (b) the DNN with multi-
attention blocks and residual blocks adopted by the proposed method.

3.3. Model Training

The parameters for training the DNN model are described as follows. The focal loss
is used as the loss function with the parameter α set as 0.25, and the parameter γ set as
2, which are suggested by [16]. Ranger is used as the optimizer, and the minimum and
the maximum learning rates are set as 0.000001 and 0.001, respectively. The early stopping
scheme with the parameter patience set as 32 is employed to early stop the model training
when the training loss and the validation loss no longer decrease. This can prevent the
DNN model from overfitting.

4. Performance Evaluation

The Electra Modbus dataset [17] is applied for evaluating the performance of the
proposed method in terms of some metrics. This section first introduces the dataset,
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describes the metrics, demonstrates the performance evaluation results, and then shows
performance comparisons of the proposed method and related methods.

4.1. The Electra Modbus Dataset

Electra Modbus dataset [17] reported in [4] collects Modbus TCP protocol packet data
generated during normal and abnormal operation of an electric traction substation used
in the railway industry. It uses an ICS testbed to gather data. The testbed is composed
of a supervisory control and data acquisition (SCADA) system, a firewall, a switch, a
programmable logic controller (PLC) master, four PLC slaves, some ICS devices, and a
special device that can launch man-in-the-middle (MitM) attacks for generating anomalous
network packets. The special device launches attacks, records the features of all packets, and
labels packets as normal or anomalous for 12 hours for generating the dataset. Recorded
features of the Electra Modbus dataset are the timestamp, source MAC address, destination
MAC address, source IP address, destination IP address, request, function code, error,
memory address, and data sent between the PLC master and slaves, as shown in Table 1.

Table 1. Descriptions of the Electra Modbus dataset [4].

Feature Description Data Type

time Timestamp String

smac Source MAC address String

dmac Destination MAC address String

sip Source IP address String

dip Destination IP address String

request Indicates whether the packet is a request (packet from master to slave) Boolean

fc Function code Integer

error Indicates whether there has been an error in reading/writing operation Boolean

madd Memory address to perform read/write operation Integer

data
In the case of a read operation, it indicates the data that the slave sends
to the master. In the case of a write operation, it indicates the data that

the master sends back to the slave
Integer

label Label for attacks and normal samples String

Packets generated during the period of normal operations are labelled as normal,
whereas packets generated during the period of attacks are regarded as anomalous. There
are in total 5.2% of anomalous packets associated with three categories of attacks, namely,
reconnaissance, false data injection, and replay attacks. As shown in Table 2, the three
categories of attacks are further classified into seven classes, as described below. The
“function code recognition attack” is launched by generating malicious packets to scan all
possible function codes of the attacked PLC. Attackers inject fake packets for performing
the “read attack” or “write attack” on the PLC. The “response modification attack” and
the “force error in response attack” are launched by modifying the response of a slave
device. The “command modification attack” is launched by modifying command packets
of a master device. The “replay attack” is launched by retransmitting packets ever sent by
the master or slave devices. The ratios of various attack classes are also shown in Table 2.
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Table 2. Attack classes of the Electra Modbus dataset [4].

Classes Percentage of Samples

Normal 94.8%
Function code recognition attack 0.19%

Response modification attack 0.1%
Force error in response attack 0.007%

Read attack 4.83%
Write attack 0.06%

Replay attack 0.006%

4.2. Performance Metrics

The performance of the proposed method is evaluated in the following metrics: the
precision, recall, and F1-score, as defined in the following equations. Note that in the
equations, TP (True Positive) stands for the number of classifying anomalous packets as
anomalous ones; TN (True Negative) stands for the number of classifying normal packets
as normal ones; FP (False Positive) stands for the number of classifying normal packets as
anomalous one, and FN (False Negative) stands for the number of classifying anomalous
packets as normal ones.

This paper evaluates the performance of the proposed method in terms of only the
precision, recall, and F1-score. This is because many existing ICS anomaly classification
methods, such as those proposed in [1], also adopt the three metrics to evaluate their
performance. In order to compare with related methods properly, the proposed method
also adopts the three metrics for its performance evaluation.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1− score = 2× Precision× Recall
Precision + Recall

(5)

4.3. Performance Evaluation and Comparison

The proposed method utilizes many mechanisms. First, it uses the flow-based data
investigation mechanism. It also uses the DNN with the mechanisms of the multi-attention
block, the residual block, the Ranger optimizer, and the focal loss. The performance
impact of not adopting a single mechanism is assessed. Figure 10 shows the performance
evaluation of six different cases of mechanism combinations. In case 1, flow-based data
investigation mechanism is not used; instead, per-packet investigation mechanism is used.
Case 2 omits the muti attention block mechanism, whereas case 3 omits the residual block
mechanism. Case 4 uses the Adam optimizer to replace the Ranger optimizer. The cross-
entropy, instead of the focal loss, is used in case 5. All mechanisms are used in case 6. It can
be observed that the combination of all mechanisms has the best performance. Furthermore,
the residual block mechanism has the most impact on performance, as not using it leads
to the worst performance. As to other mechanisms, they have less and similar impacts on
performance than the residual block mechanism.

The confusion matrix of the proposed ICS anomaly classification method using all
mechanisms is shown in Figure 11. It can be observed that most anomalies can be classified
correctly. However, some anomalies, especially those associated with the replay attack and
the read attack, are misclassified. This is probably due to the fact that most replay attacks
behave similarly to read attacks; that is to say, most replay attacks read data illegally [4].
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Figure 10. Performance impact of various schemes adopted by the proposed method.

 

Figure 11. The confusion matrix of the proposed ICS anomaly classification method.

The performance evaluation results of the proposed method are compared with those
of the related ICS anomaly classification methods for the multi-class case, as shown in
Figure 12 and Table 3. Based on Figure 12 and Table 3, it can be observed that the proposed
method is better than the JC-AC method in terms of the precision, recall, and F1-score.
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Figure 12. Performance comparisons of the proposed method and related ICS anomaly classification
methods for the multi-class case.

Table 3. Performance comparisons of the proposed method and the JC-AC method for the multi-
class case.

Method Precision Recall F1-Score

JC-AC [1] 0.9985 0.9978 0.9980
Proposed Method 0.9998 0.9999 0.9998

As mentioned earlier, the proposed method can also be used for detecting ICS anoma-
lies when viewed as a binary-class (i.e., normal-anomalous) classifier. For the binary class
case, the precision, recall, and F1-score of the proposed method are all 0.9999, which is
quite high. Table 4 shows the comparison results of the proposed method with related ICS
anomaly detection methods for the binary-class case. The methods for comparison are the
JC-AD method [1] and the methods based on the support vector machine (SVM) [4], the
one class support vector machine (OCSVM) [4], the random forest (RF) [4], the isolation
forest (IF) [4], the DNN [4], and the integration of GAN and DNN (GAN + DNN) [5]. The
proposed method is inferior to the JC-AD method, which has the perfect performance;
however, it almost outperforms all other related methods in all performance metrics like
the precision, recall, and F1-score.

Table 4. Performance comparisons of the proposed method and related ICS anomaly detection
methods for the binary-class (i.e., normal-anomalous) case.

Method Precision Recall F1-Score

JC-AD [1] 1.0000 1.0000 1.0000
SVM [4] 0.9756 1.0000 0.9876

OCSVM [4] 0.9862 0.9856 0.9859
RF [4] 0.9877 0.9871 0.9874
IF [4] 0.8739 1.0000 0.9327

DNN [4] 0.9692 1.0000 0.9843
GAN + DNN [5] - 0.98 -

Proposed Method 0.9999 0.9999 0.9999

5. Conclusions

This paper proposes a flow-based ICS anomaly classification method. The method first
obtains new features based on the flow of packets. It then employs multi-attention blocks
for spotting core features, and uses residual blocks for alleviating the gradient vanishing
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problem. Furthermore, it adopts the Ranger optimizer to avoid the overfitting problem and
to accelerate the convergence of the DNN training. The focal loss is finally used as the loss
function to deal with the data imbalance problem.

The Electra Modbus dataset is used to evaluate the performance of the proposed
method. It is observed that the residual block has the most impact on the performance of
the proposed method. The proposed method is shown to outperform the JC-AC method in
terms of the precision, recall, and F1-score for ICS anomaly classification. When viewed as
a binary-class (i.e., normal-anomalous) classifier, the proposed method can also be used
for detecting ICS anomalies. For the binary class case, the proposed method also has
comparably high performance of 0.9999 in the precision, recall, and F1-score metrics.

In the future, we plan to apply the proposed method to other ICS environments, such as
those under different types of attacks, such as distributed denial-of-service (DDoS), and those
using various protocols such as S7 Communication (S7Comm), and Distributed Network
Protocol 3 (DPN3), etc. Furthermore, we also plan to employ new techniques, such as graph
neural networks, to improve the ICS anomaly detection and classification performance.

Author Contributions: Conceptualization, J.-R.J. and Y.-T.L.; funding acquisition, J.-R.J.; investi-
gation, J.-R.J. and Y.-T.L.; methodology, J.-R.J. and Y.-T.L.; software, Y.-T.L.; supervision, J.-R.J.;
validation, J.-R.J. and Y.-T.L.; writing—original draft, J.-R.J. and Y.-T.L.; writing—review and editing,
J.-R.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science and Technology Council (NSTC), Taiwan,
under the grant number 109-2622-E-008-028.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, J.-R.; Chen, Y.-T. Industrial control system anomaly detection and classification based on network traffic. IEEE Access 2022,
10, 41874–41888. [CrossRef]

2. Zhou, C.; Hu, B.; Shi, Y.; Tian, Y.-C.; Li, X.; Zhao, Y. A unified architectural approach for cyberattack-resilient industrial control
systems. Proc. IEEE 2020, 109, 517–541. [CrossRef]

3. Eaton, C.; Volz, D.U.S. Pipeline Cyberattack Forces Closure. Wall Street J. Available online: https://www.wsj.com/articles/
cyberattack-forces-closure-of-largest-u-s-refined-fuel-pipeline-11620479737 (accessed on 15 November 2022).

4. Gómez, Á.L.P.; Maimó, L.F.; Celdrán, A.H.; Clemente, F.J.G.; Sarmiento, C.C.; Masa, C.J.D.C.; Nistal, R.M. On the generation of
anomaly detection datasets in industrial control systems. IEEE Access 2019, 7, 177460–177473. [CrossRef]

5. Ning, B.; Qiu, S.; Zhao, T.; Li, Y. Power IoT attack samples generation and detection using generative adversarial networks.
In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China,
30 October–1 November 2020; pp. 3721–3724.

6. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

7. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

8. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

9. Tomek, I. Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, 6, 769–772.
10. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv.

Neural Inf. Process. Syst. 2017, 30, 5998–6008.
12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

159



Sensors 2022, 22, 9084

13. Wright, L. New Deep Learning Optimizer, Ranger: Synergistic Combination of RAdam + LookAhead for the Best of Both. Avail-
able online: https://lessw.medium.com/new-deep-learning-optimizer-ranger-synergistic-combination-of-radam-lookahead-
for-the-best-of-2dc83f79a48d (accessed on 15 November 2022).

14. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and beyond. arXiv
2017, arXiv:1908.03265.

15. Zhang, M.; Lucas, J.; Ba, J.; Hinton, G.E. Lookahead optimizer: K steps forward, 1 step back. In Proceedings of the 33rd Conference
on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019.

16. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

17. Dataset for Cybersecurity Research in Industrial Control Systems. Available online: http://perception.inf.um.es/ICS-datasets/
(accessed on 15 November 2022).

18. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
19. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto, ON,

Canada, 2009.
20. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

160



Citation: Wei, Y.; Liu, H.

Convolutional Long-Short Term

Memory Network with Multi-Head

Attention Mechanism for Traffic Flow

Prediction. Sensors 2022, 22, 7994.

https://doi.org/10.3390/s22207994

Academic Editors: Shyan-Ming Yuan,

Zeng-Wei Hong and Wai-Khuen

Cheng

Received: 9 October 2022

Accepted: 18 October 2022

Published: 20 October 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Convolutional Long-Short Term Memory Network with
Multi-Head Attention Mechanism for Traffic Flow Prediction

Yupeng Wei * and Hongrui Liu

Department of Industrial and Systems Engineering, San Jose State University, San Jose, CA 95192, USA
* Correspondence: yupeng.wei@sjsu.edu

Abstract: Accurate predictive modeling of traffic flow is critically important as it allows transportation
users to make wise decisions to circumvent traffic congestion regions. The advanced development
of sensing technology makes big data more affordable and accessible, meaning that data-driven
methods have been increasingly adopted for traffic flow prediction. Although numerous data-driven
methods have been introduced for traffic flow predictions, existing data-driven methods cannot
consider the correlation of the extracted high-dimensional features and cannot use the most relevant
part of the traffic flow data to make predictions. To address these issues, this work proposes a decoder
convolutional LSTM network, where the convolutional operation is used to consider the correlation
of the high-dimensional features, and the LSTM network is used to consider the temporal correlation
of traffic flow data. Moreover, the multi-head attention mechanism is introduced to use the most
relevant portion of the traffic data to make predictions so that the prediction performance can be
improved. A traffic flow dataset collected from the Caltrans Performance Measurement System
(PeMS) database is used to demonstrate the effectiveness of the proposed method.

Keywords: traffic flow prediction; deep learning; convolutional LSTM; attention mechanism

1. Introduction

Traffic congestion results in reduced efficiency of transportation infrastructure, in-
creased traveling time, and a waste of energy fuel [1–3]. According to a report by Nation-
wide, 1.9 billion gallons of fuel are wasted every year as a result of traffic congestion [4].
Traffic congestion could be induced by numerous factors, such as bottlenecks, traffic ac-
cidents, and severe weather conditions. To address the issue of traffic congestion, traffic
flow prediction has gained much attention in the recent decade. Accurate predictive mod-
eling of traffic flow is critically important as it allows transportation users to make wise
decisions to circumvent traffic congestion regions [5]. Therefore, commuter and shipment
activities could be effectively scheduled to increase moving efficiency. Moreover, accurate
predictive modeling of traffic flow can also assist in reducing carbon emissions and traffic
incident possibilities.

The advanced development of sensing technology makes big data more affordable
and accessible, and thus, data-driven methods have been increasingly adopted for the pre-
dictive modeling of traffic flow. Data-driven methods can be classified into two categories:
machine learning methods and deep learning methods [6–10]. In comparison with machine
learning methods, deep learning methods have gained more attention from both academia
and industry in traffic flow predictions due to their extraordinary prediction fidelity and
robustness. Among these deep learning methods, artificial neural networks (ANNs) and
autoencoder-based methods have been widely used for traffic flow predictions as these
methods are capable of decomposing the original traffic flow data into features located at a
higher dimensional feature space, and these high-dimensional features can reveal the latent
information in the traffic flow data. However, there are two primary issues for ANNs and
autoencoders: (1) they can not take the temporal correlation of traffic flow data into account;
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(2) they can not consider the correlation of the extracted high-dimensional features. To
consider the temporal correlation of traffic flow data, deep learning methods with recurrent
characteristics are adopted, such as long short-term memory (LSTM), recurrent neural
network (RNN), and gated recurrent unit (GRU). While these deep learning methods with
recurrent characteristics are promising, they are not able to use the most relevant part of
the traffic flow data to make predictions, which leads to a higher prediction time and a
worse prediction accuracy. To address these issues, this work introduces a novel deep
learning-based framework to consider the temporal correlation of traffic flow data, the
correlation of the extracted high-dimensional features, and the most relevant part of the
traffic flow data to make predictions in a unified manner. More specifically, a decoder
network is firstly proposed to decompose the traffic flow data into high-dimensional fea-
tures. Second, a convolutional LSTM network is introduced to simultaneously consider
the correlation of the decomposed high-dimensional features and the temporal correlation
of traffic flow data, where the convolutional operation is used to consider the correlation
of the high-dimensional features, and the LSTM network is used to consider the temporal
correlation of traffic flow data. Next, the multi-head attention mechanism is introduced to
use the most relevant portion of the traffic data to make predictions so that the prediction
performance can be improved. The primary contribution of this work can be summarized
as follows:

• A decoder network is introduced to decompose the original traffic flow data into
features located at a higher-dimensional feature space.

• A convolutional LSTM network is introduced to consider the correlation of the high
dimensional features and the temporal correlation of traffic flow data.

• A multi-head attention mechanism is introduced to use the most relevant portion of the
traffic data to make predictions so that the prediction performance can be improved.

The remainder of this paper is organized as follows. Section 2 reviews data-driven
methods reported in the literature for traffic flow predictions. Section 3 introduces the
proposed deep learning model. Section 4 demonstrates the effectiveness of the proposed
method utilizing the traffic flow data from the Caltrans Performance Measurement System
(PeMS) database. Section 5 concludes this research work and directs future work.

2. Literature Review

In the context of traffic flow predictions, data-driven methods can be classified into two
categories: machine learning [11–13] and deep learning methods [14,15]. These machine
learning methods include support vector regression [16], random forest [17], Gaussian
process [18], Bayesian models [19], and so on. For example, Tang et al. [20] combined the
support vector machine method with multiple denoising mechanisms to predict the traffic
flow. A dataset collected by the real-time detectors located in the city of Minneapolis was
used to evaluate the performance of the proposed methods. The simulation results have
shown that the denoising mechanisms could boost the performance of the support vector
machine. Zhang et al. [21] introduced a hybrid framework based upon support vector
regression to predict the traffic flow, where the random forest method was implemented
for feature selections, and the genetic algorithm was adopted to determine the model
hyperparameters. The simulation results have shown that the proposed methodology
enables better prediction accuracy. Xu et al. [22] introduced a scalable Gaussian process
model for large-scale traffic flow predictions. The proposed model combined the Gaussian
process with alternative directional methods for paralleling and optimizing hyperparam-
eters during the training process. Wang et al. [23] presented a vicinity Gaussian process
method for short-term traffic flow prediction under the conditions of missing data with
measuring errors. In the proposed model, a directed graph was constructed based on the
traffic network, a dissimilarity matrix and a proper cost function were selected to boost the
prediction performance. Zhu et al. [24] introduced a linear conditional Gaussian process
method, where temporal and spatial correlations of traffic flow were taken into account. A
simulated traffic dataset was adopted to evaluate the effectiveness of the Gaussian process
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method, and simulation results have shown that the utilization of both spatial and temporal
data can dramatically boost prediction accuracy. Li et al. [25] presented a Bayesian network
to tackle the node selection challenge in traffic flow prediction. Experimental results have
shown that the proposed directed correlation-based Bayesian network method results in a
sparse model and better performance in traffic flow prediction.

With the advanced improvement of computational power, deep learning methods
are increasingly adopted in traffic flow prediction due to their extraordinary perfor-
mance. These deep learning methods include LSTM [26,27], gated recurrent neural
network (GRU) [28,29], recurrent neural network (RNN) [30,31], graph neural network
(GNN) [32–34], and so on. For instance, Tian et al. [35] introduced LSTM-based predictive
modeling of traffic flow, where a smoothing function was implemented to deal with the
missing data points, and the LSTM was used to capture the prediction residual. Two
traffic flow datasets were used to evaluate the performance of the proposed methodol-
ogy, and the results have shown that the smoothing function can boost the performance
of the predictive model. Dai et al. [36] integrated the spatial-temporal analysis with a
GRU network to forecast the traffic flow in a short time interval. In the proposed method,
the GRU model was applied to process the spatial-temporal features extracted from the
collected traffic data. The simulation results have shown that the GRU outperforms the
convolutional neural network (CNN) in both prediction accuracy and robustness. Zhene
et al. [37] combined the CNN with RNN for urban traffic flow predictions, where CNN
was adopted to extract attributes from traffic flow data and RNN was implemented to
make predictions. In comparison with the traditional RNN, the proposed RNN was able to
process multiple temporal features simultaneously. The experimental results have demon-
strated that online traffic flow prediction could be achieved with high precision by using
the proposed methodology. Luo et al. [38] introduced a k-nearest neighbor-based (KNN)
LSTM method to extract temporal and spatial correlations, where KNN was utilized to
capture spatial correlations and LSTM was adopted to further extract temporal correlations.
A dataset provided by the University of Minnesota Duluth Data center was utilized to
demonstrate the effectiveness of the proposed methods, and the results have indicated
that the proposed method outperforms the auto-regressive integrated moving average
and wavelet neural network in terms of prediction accuracy. Zhu et al. [39] integrated
the GNN with RNN to extract the spatial and temporal correlations of traffic data. The
belief rule-based algorithm was adopted for data fusion, and the fused traffic data were
fed into the proposed methodology for traffic flow prediction. Yu et al. [40] presented
a novel GNN methodology to predict the traffic flow, in which a weighted undirected
graph was utilized to differentiate the density of connected roads. A simulation model was
introduced to simulate the traffic propagation, and the simulation results were considered
in the GNN model for online traffic flow prediction. The simulation results have shown
that the proposed GNN outperforms the traditional GNN in traffic flow predictions. More
details about applying GNN for traffic flow predictions can be found in [41].

While numerous data-driven methods have been studied to predict traffic flow under
various conditions, some issues still exist with these methods. The existing data-driven
methods can not consider the correlation of the extracted high-dimensional features and
can not use the most relevant part of the traffic flow data to make predictions, which leads
to a higher prediction time and a worse prediction accuracy. To deal with these issues, this
work proposes a decoder convolutional LSTM network to simultaneously consider the
correlation of the decomposed high-dimensional features and the temporal correlation of
traffic flow data, where the convolutional operation is used to consider the correlation of
the high-dimensional features, and the LSTM network is used to consider the temporal
correlation of traffic flow data. Moreover, a multi-head attention mechanism is introduced
to use the most relevant portion of the traffic data to make predictions so that the prediction
performance can be improved.
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3. Convolutional LSTM with Multi-Head Attention Mechanism

This section introduces the convolutional LSTM with a multi-head attention mech-
anism. Figure 1 shows the framework of the proposed deep learning approach. First, a
moving window with a fixed window size is utilized to split raw traffic flow into historical
traffic flow as features and future traffic flow as labels. The historical traffic flow is fed into
a decoder network to be decomposed into multiple time-series signals. The decomposed
signals are fed into the convolutional LSTM network to consider the correlation of the
decomposed high dimensional features and the temporal correlation of traffic flow data.
The outputs of the convolutional LSTM are transited to the multi-head attention model for
traffic flow prediction. Next, the prediction loss is calculated based on the future traffic
flow and predicted traffic flow, and the backpropagation algorithm is adopted to train the
proposed method. More details of the proposed deep learning approach are provided in
the following subsections.

Traffic flow
data

Moving
window

Historical
traffic flow

Future traffic
flow

Decoder
network

Decomposed
traffic data

Convolutional
LSTM

Convolutional
outputs

Multi-head
attention

Predicted
traffic flow

Prediction loss

Convolutional LSTM with
Muli-head attentionTraffic Data Preprocessing

Traffic sensor
monitors

Figure 1. The framework of the convolutional LSTM with a multi-head attention mechanism for
traffic flow prediction.

3.1. Decoder Network for Traffic Data Decomposition

The initial step of the proposed method is to decompose the traffic flow so that the
most useful latent information can be reflected and the data can be better analyzed. To
decompose the traffic flow data, this research uses a decoder network that stacks multiple
fully connected layers. The output of the decoder network can be written as Equation (1),

Di,L = fL . . . [ fl . . . [ f2[ f1(Xi)]]] (1)

where Xi ∈ R1×T represent the traffic flow data for data sample i; L refers to the total
number of stacked fully connected layers in the decoder network; Di,L ∈ Rm×T refers to
the output of the decoder network for data sample i; m represents the number of hidden
nodes in the fully connected layers of the decoder network; T represents the length of the
historical traffic flow; and fl(·) can be given by Equation (2).

fl(·) := Relu(Wl ·Di,l−1 + bl) (2)

In Equation (2), Relu represents the rectified linear unit activation function; Wl refers
to the kernel weight matrix at the l-th fully connected layer in the decoder network;
Di,l−1 represents the output of the l − 1-th fully connected layer for data sample i; and
bl represents the bias weight matrix at the l-th fully connected layer. Next, the output
Di,L of the decoder network is fed into the convolutional LSTM network to consider the
correlation of the decomposed high-dimensional features and the temporal correlation of
traffic flow data.

3.2. Convolutional LSTM Cell

The traditional LSTM is capable of considering the temporal correlation of traffic flow
data. However, the traditional LSTM fails to consider the correlation of the decomposed
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high-dimensional features. To address this issue, this research aims to introduce the
convolutional LSTM cell that incorporates a convolutional operation into the traditional
LSTM cell so that both the temporal correlation of traffic flow data and the correlation of
the decomposed high-dimensional features can be considered in a unified manner [42].
Figure 2 shows the framework of the convolutional LSTM cell. In the convolutional LSTM
cell, the output vector d

(t)
i,L of the decoder network at time t and the hidden state hi,t−1

of the one-dimensional convolutional LSTM cell at the prior time point t− 1 are fed into
the one-dimensional convolutional LSTM cell to perform the weighted convolutional
operations. Such convolutional operations can consider the correlation of the decomposed
high dimensional features Di,L. The recurrent usage of the convolutional LSTM cell can
extract temporal correlations, and the output of this cell can be written as Equation (3),

fi,t = σ(Ci, f +W f ,c ◦ ci,t−1 + b f )

ai,t = σ(Ci,a +Wa,c ◦ ci,t−1 + ba)

ci,t = fi,t ◦ ci,t−1 + ai,t ◦ Tanh(Ci,c + bc)

oi,t = σ(Ci,o +Wo,c ◦ ci,t + bo)

hi,t = oi,t ◦ σ(ci,t)

(3)

where fi,t, ai,t, ci,t, oi,t, respectively, refer to the outputs of the forget gate, input gate, mem-
ory cell, and output gate; W f ,c,Wa,c,Wo,c represent the trainable matrices for the forget
gate, input gate, and output gate, respectively; b f , ba, bc, bo represent the bias vectors for
the forget gate, input gate, memory cell, and output gate; σ refers to the sigmoid function;
Tanh refers to the hyperbolic tangent function.
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Figure 2. The framework of the one-dimensional convolutional LSTM cell with weighted convo-
lutional operations, where (a) is the 1D convolutional LSTM cell and (b) gives an example of the
weighted convolutional operation.

Moreover, Ci, f , Ci,a, Ci,c, Ci,o, respectively, refer to the outputs of the convolutional
operations at the forget gate, input gate, memory cell, and output gate. These convolutional
outputs can be written as Equation (4), where ∗ refers to the convolutional multiplication;
W f ,d and W f ,h refer to the kernel matrices of the convolutional operations at the forget gate;
Wa,d and Wa,h are the kernel matrices of the convolutional operations at the input gate;
Wc,d and Wc,h represent the kernel matrices of the convolutional operations in the memory
cell; and Wo,d and Wo,h represent the kernel matrices of the convolutional operations at the
output gate. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ci, f = W f ,d ∗ d
(t)
i,L +W f ,h ∗ hi,t−1

Ci,a = Wa,d ∗ d
(t)
i,L +Wa,h ∗ hi,t−1

Ci,c = Wc,d ∗ d
(t)
i,L +Wc,h ∗ hi,t−1

Ci,o = Wo,d ∗ d
(t)
i,L +Wo,h ∗ hi,t−1

(4)

In summary, the convolutional LSTM cell integrates the convolutional operations with
the traditional LSTM cell, where the convolutional operations are adopted to consider the
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correlation of the decomposed high-dimensional features Di,L and the traditional LSTM
cell is utilized to extract the temporal correlations of traffic flow data. The integration of the
convolutional operation with the traditional LSTM cell allows the neural network to con-
sider both the correlation of the decomposed high-dimensional features and the temporal
correlation of traffic flow data. Next, the hidden outputs, hi,t for all t, of the convolutional
LSTM cell are fed into the multi-head attention mechanism for the final prediction.

3.3. Multi-Head Attention Model

In the recent decade, the attention mechanism [43,44] has been introduced to deal with
time series as it is capable of using the most relevant proportion of a time series to make
predictions. The primary theory of the attention mechanism is simulating the data retrieval
process in the data management system. To retrieve data, a query should be inserted into a
data management system. If the query is matched with a key, the value associated with the
key will be retrieved. Equation (5) shows the construction process of queries Qi, keys Ki,
and values Vi for traffic flow predictions.

(WQ, WK, WV) ·Hi = (Qi, Ki, Vi) (5)

In Equation (5), Hi represents the hidden outputs of the convolutional LSTM network
for data sample i, and Hi can be written as Hi = (hi,1, . . . , hi,t, . . . , hi,T); and WQ ∈ Rr×T ,
WK ∈ Rr×T , WV ∈ Rr×T are trainable weight matrices. To use the most relevant portion
of the values V, the attention vector a should be obtained by using Equation (6), where
So f tMax is the normalized exponential function.

a = So f tMax(Qi · K′i/
√

T) (6)

To retrieve the most relevant part of the values V, the attention vector is multiplied by
the value matrix, which can be written as Oi = aVi.

The multi-head attention mechanism stacks the multiple attention model [45,46].
Figure 3 presents the framework of the multi-head attention model for traffic flow pre-
diction. The attention vector of the multi-head attention mechanism can be written as
ah = So f tMax(W(h)

Q Hi · (W(h)
K Hi)

′/
√

T), where W
(h)
Q , W

(h)
K , W

(h)
V are trainable weight ma-

trices of the h-th attention model; and ah is the attention vector of the h-th attention model.
The output of the h-th attention model is written as Oi,h = ah(W

(h)
V Hi).
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Figure 3. The framework of the multi-head attention model for traffic flow prediction.

Next, the output of all attention models is concatenated, which can be written as
Equation (7), where H is the number of attention models and has been stacked in the
multi-head attention model.

Ci = Concat{Oi,1, . . . , Oi,h, . . . , Oi,H} (7)
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Next, the concatenated output C is fed into a fully connected layer for final predictions.
The training loss of the traffic flow prediction is written as Equation (8), where N refers to
the total amount of data samples; yi,j is the true traffic flow for sample i at time j; and ŷi,j is
the predicted traffic flow for sample i at time j.

L =
1

N × T

N

∑
i=1

T

∑
j=1

(yi,j − ŷi,j)
2 (8)

The backpropagation algorithm is utilized for training the proposed deep learning
model. Table 1 presents the training process of the proposed method. First, the weight
matrices in the deep learning model are randomly initialized, the traffic flow data and
labels are prepared, and the learning rate is initialized. Next, the traffic flow data Xi for data
sample i are fed into the decoder network to decompose the traffic flow data into multiple
parts. The output Di,L of the decoder network is fed into the convolutional LSTM layer
to extract temporal and spatial correlations, and the output of this layer is Hi. Next, Hi is
fed into the multi-head attention model to use the most relevant portion of the features
extracted by the convolutional LSTM layer. The output of the multi-head attention model
Ci is fed into the fully connected layers for traffic flow predictions, and the trainable weight
matrices are updated in each training iteration.

Table 1. The pseudo-code to train the proposed deep learning model for traffic flow predictions.

1. Initialize trainable weight matrices
2. Prepare the traffic flow data Xi and the traffic flow labels yi,j, ∀i, j
3. Initialize the learning rate
4. While iteration = 1,. . . ,I, repeat

4.1. While l = 1, . . . , L, repeat
Di,l = Relu(Wl ·Di,l−1 + bl), Di,l = Xi if l = 1

4.2. End iteration
4.3. Feed Di,L into the convolutional LSTM layer to obtain Hi
4.4. While h = 1, . . . , H, repeat

Obtain attention vector ah ← So f tMax(Qi,h · K′i,h/
√

T)
Obtain attention model’s output Oi,h ← ah ·Vi,h

4.5. End iteration
4.6. Obtain Ci ← Concat{Oi,1, . . . , Oi,h, . . . , Oi,H}
4.7. Feed Ci to FC layers
4.8. Update weight matrices in fully connected layers
4.9. Update weight matrices in the multi-head attention layer
4.10. Update weight matrices in convolutional LSTM layer
4.11. Update weight matrices in the decoder network

5. End iteration

4. Case Study

In this section, a real-world traffic flow dataset was used to demonstrate the effective-
ness of the proposed deep learning approach. The following subsections provide dataset
descriptions, evaluation metrics, model architecture, and prediction results.

4.1. Dataset Description

Traffic flow data collected by the Caltrans Performance Measurement System (PeMS)
was utilized to demonstrate the effectiveness of the proposed methodology. The dataset
was collected in real-time from over 40,000 unique detectors located on the freeway in the
state of California [47]. The collected dataset aggregated hourly traffic flow data obtained
from the corresponding detection station. In this study, we used two cases to demonstrate
the effectiveness of the proposed method. The first case used the traffic flow data collected
from January to March in the year 2022 located at the I5-North freeway, where the post-mile
range is from 495.73 to 621.42 in the state of California. The second case used the traffic
flow data collected from February to April in the year 2022 located at the I5-North freeway,

167



Sensors 2022, 22, 7994

where the post-mile range is from 495.73 to 621.42 in the state of California. The post-mile
refers to the range of routes that move through individual counties in the state of California.
For both two cases, the data for the first two months were used to train the proposed deep
learning model, and the remaining month was used to test the proposed model. Figure 4
highlights the range of the post-mile 495.73 to 621.42 at the freeway I5-North. To avoid
loss of generality, both training and test data were standardized. In this work, we use the
data rescaling method to standardize all data to guarantee that both vehicle miles traveled
(VMT) and vehicle hours traveled (VHT) are on the same scale. The data rescaling method
refers to multiplying each data point by a constant factor, where the factors for VMT and
VHT are 10−5 and 10−3, respectively.

I5 North

I5 North

Figure 4. The post-mile ranges from 495.73 to 621.42 located at the freeway I5-North.

4.2. Evaluation Metric

To evaluate the performance of the proposed methodology, this study adopts the root
mean squared error (RMSE) and mean absolute error (MAE). The RMSE and MAE can be
defined by using Equation (9), where N is the total amount of data samples; yi,j refers to
the true traffic flow for the sample i at time j; and ŷi,j represents the predicted traffic flow
for the sample i at time j.

RMSE = (
1

N × T

N

∑
i=1

T

∑
j=1

(yi,j − ŷi,j)
2)1/2

MAE =
1

N × T

N

∑
i=1

T

∑
j=1
|yi,j − ŷi,j|

(9)

4.3. Model Architecture and Hyperparameters

In this case study, we use three tasks to evaluate the prediction performance of the
proposed deep learning model for both two cases. These tasks include the next 1st-hour
traffic flow prediction (first task), the next 5th-hour traffic flow prediction (second task),
and the next 10th-hour traffic flow prediction (third task). The next nth-hour traffic flow
prediction refers to using the past 24 h traffic flow data to predict the traffic flow in the
24 + n h. Tables 2–4 show the model architecture and hyperparameters used in this case
study for three tasks. For these three tasks under two cases, we use the batch size of 100
and utilize the past 24 h traffic flow data to make predictions in each batch. We also use
the filter size of 2 in the first task and use the filter size of 10 in the remaining two tasks.
Moreover, the number of hidden nodes in the decoder network is 100.
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Table 2. The model architecture and hyperparameters used for the next 1st-hour traffic flow predic-
tion task.

No. of Layers Descriptions Output Dimensions

1 Input layer 100 × 24 × 1
2 FC layer 100 × 24 × 100
3 Convolutional LSTM 100 × 24 × 99
4 Multi-head attention 100 × 24 × 99
5 Flatten layer 100 × 2376
6 Dense layer 100 × 1

Table 3. The model architecture and hyperparameters used for the next 5th-hour traffic flow predic-
tion task.

No. of Layers Descriptions Output Dimensions

1 Input layer 100 × 24 × 1
2 FC layer 100 × 24 × 100
3 FC layer 100 × 24 × 100
4 FC layer 100 × 24 × 100
5 Convolutional LSTM 100 × 24 × 91
6 Multi-head attention 100 × 24 × 91
7 Flatten layer 100 × 2184
8 Dense layer 100 × 1

Table 4. The model architecture and hyperparameters used for the next 10th-hour traffic flow
prediction task.

No. of Layers Descriptions Output Dimensions

1 Input layer 100 × 24 × 1
2 FC layer 100 × 24 × 100
3 FC layer 100 × 24 × 100
4 FC layer 100 × 24 × 100
5 FC layer 100 × 24 × 100
6 FC layer 100 × 24 × 100
7 Convolutional LSTM 100 × 24 × 91
8 Multi-head attention 100 × 24 × 91
9 Flatten layer 100 × 2184
10 Dense layer 100 × 1

4.4. Traffic Flow Prediction Results for the First Case

Figure 5 shows the traffic flow prediction results for three different tasks under the first
case, where VMT refers to vehicle miles traveled, and VHT refers to vehicle hours traveled.
From these three figures, we can observe that the proposed methodology can predict the
traffic flow with high accuracy, as the true VMT and VHT are close to the predicted VMT
and VHT. For example, for the 5th-hour prediction task, the predicted VMT is 1.260 when
the true VMT is 1.219. For the 1st-hour prediction task, the predicted VHT is 0.337 when
the true VHT is 0.325. To further demonstrate the performance of the proposed method, we
compare the proposed method with existing methods reported in the literature, and these
methods are listed in Table 5. In this table, the D-ConvoLSTM method refers to the decoder
network with the convolutional LSTM network; and the D-Attention method refers to
the decoder network with the multi-head attention mechanism; LSTM refers to the long
short-term memory network; LASSO refers to the least absolute shrinkage and selection
operator; ANN refers to the artificial neural network.
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Table 5. Symbols and descriptions of the proposed method and other methods for traffic
flow predictions.

Method Symbol Description

D-ConvLSTM Decoder with convolutional LSTM
D-Attention Decoder with multi-head attention

LSTM Long short term memory network
LASSO Regression with l1-norm regularization
ANN Artificial neural network
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Figure 5. The VMT and VHT prediction results for three different tasks under the first case, where
(a,c,e) show the VMT predictions for three tasks; and (b,d,f) show the VHT predictions for three tasks.

Table 6 compares the traffic flow prediction performance of the proposed method with
methods listed in Table 5 in terms of RMSE and MAE. From this table, we can conclude that
the proposed method can predict traffic flow with high accuracy and outperforms existing
data-driven methods. For example, for the 1st-hour task, the RMSE of the VMT prediction
for the proposed method is 0.032, and the RMSE of other data-driven methods ranges from
0.038 to 0.088. For the 5th-hour task, the RMSE of the VHT prediction for the proposed
method is 0.128; however, the RMSE of LSTM is 0.145, and the RMSE of ANN is 0.245.
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Table 6. The traffic flow prediction errors in terms of RMSE and MAE for the proposed methods and
other data-driven methods under the first case.

1 h Task 5 h Task 10 h Task

VMT VHT VMT VHT VMT VHT

RMSE

Proposed 0.032 0.066 0.080 0.128 0.084 0.167
D-ConvLSTM 0.044 0.079 0.099 0.128 0.094 0.157
D-Attention 0.043 0.086 0.105 0.179 0.113 0.199
LSTM [30] 0.038 0.064 0.065 0.145 0.104 0.191

LASSO [48] 0.088 0.141 0.142 0.242 0.141 0.240
ANN [49] 0.054 0.103 0.137 0.245 0.138 0.241

MAE

Proposed 0.024 0.048 0.059 0.090 0.058 0.116
D-ConvLSTM 0.034 0.058 0.072 0.097 0.064 0.115
D-Attention 0.034 0.066 0.076 0.135 0.077 0.138
LSTM [30] 0.029 0.045 0.046 0.107 0.064 0.130

LASSO [48] 0.063 0.096 0.099 0.165 0.098 0.163
ANN [49] 0.039 0.072 0.090 0.172 0.089 0.168

4.5. Traffic Flow Prediction Results for the Second Case

Figure 6 shows the traffic flow prediction results for three different tasks under the
second case, where VMT refers to vehicle miles traveled, and VHT refers to vehicle hours
traveled. From this figure, we can observe that the proposed methodology can predict
the traffic flow with high accuracy as the true VMT and VHT are close to the predicted
VMT and VHT. For example, for the 5th-hour prediction task, the predicted VMT is 1.085
when the true VMT is 1.082. For the 1st-hour prediction task, the predicted VHT is 2.110
when the true VHT is 2.138. Table 7 compares the traffic flow prediction performance of
the proposed method with methods listed in Table 5 in terms of RMSE and MAE. From
this table, we can conclude that the proposed method can predict traffic flow with high
accuracy and outperforms existing data-driven methods. For example, for the 1st-hour
task, the RMSE of the VMT prediction for the proposed method is 0.053, and the RMSE of
other data-driven methods ranges from 0.055 to 0.091. For the 5th-hour task, the MAE of
the VHT prediction for the proposed method is 0.093; however, the RMSE of LSTM is 0.129,
and the RMSE of ANN is 0.175.

Table 7. The traffic flow prediction errors in terms of RMSE and MAE for the proposed methods and
other data-driven methods under the second case.

1 h Task 5 h Task 10 h Task

VMT VHT VMT VHT VMT VHT

RMSE

Proposed 0.053 0.100 0.084 0.135 0.100 0.172
D-ConvLSTM 0.088 0.153 0.094 0.157 0.118 0.184
D-Attention 0.055 0.087 0.112 0.168 0.141 0.253
LSTM [30] 0.055 0.106 0.113 0.187 0.119 0.225

LASSO [48] 0.091 0.145 0.149 0.256 0.145 0.248
ANN [49] 0.063 0.112 0.143 0.255 0.146 0.256

MAE

Proposed 0.042 0.078 0.062 0.093 0.064 0.109
D-ConvLSTM 0.060 0.107 0.060 0.104 0.078 0.125
D-Attention 0.043 0.107 0.075 0.123 0.104 0.187
LSTM [30] 0.046 0.076 0.077 0.129 0.080 0.153

LASSO [48] 0.063 0.099 0.102 0.175 0.100 0.168
ANN [49] 0.044 0.079 0.096 0.175 0.099 0.179
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Figure 6. The VMT and VHT prediction results for three different tasks under the second case, where
(a,c,e) show the VMT predictions for three tasks; and (b,d,f) show the VHT predictions for three tasks.

5. Conclusions and Future Work

In this study, a deep learning approach was proposed to predict traffic flow. In
the proposed deep learning approach, a convolutional long short-term memory network
was used to consider the correlation of the extracted high-dimensional features and the
temporal correlation of traffic flow data in a unified manner. Moreover, a multi-head
attention mechanism was implemented to use the most relevant portion of the traffic flow
data to make predictions so that the prediction performance can be improved. A traffic flow
dataset collected from the Caltrans Performance Measurement System (PeMS) database was
used to demonstrate the effectiveness of the proposed method. Experimental results have
shown that the proposed method can accurately predict the traffic flow with a minimum
RMSE of 0.032 and outperforms the existing data-driven methods in terms of RMSE and
MAE. Future work will be directed to use the convolutional LSTM network to make traffic
flow predictions under more complicated environments and conditions.
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ANN artificial neural network
PeMS Caltrans Performance Measurement System
VMT vehicle miles traveled
VHT vehicle hours traveled
RSME root mean squared error
MAE mean absolute error
FC fully connected
ConvLSTM convolutional long short-term memory
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Abstract: Weeds are one of the most harmful agricultural pests that have a significant impact on
crops. Weeds are responsible for higher production costs due to crop waste and have a significant
impact on the global agricultural economy. The importance of this problem has promoted the research
community in exploring the use of technology to support farmers in the early detection of weeds.
Artificial intelligence (AI) driven image analysis for weed detection and, in particular, machine
learning (ML) and deep learning (DL) using images from crop fields have been widely used in the
literature for detecting various types of weeds that grow alongside crops. In this paper, we present
a systematic literature review (SLR) on current state-of-the-art DL techniques for weed detection.
Our SLR identified a rapid growth in research related to weed detection using DL since 2015 and
filtered 52 application papers and 8 survey papers for further analysis. The pooled results from
these papers yielded 34 unique weed types detection, 16 image processing techniques, and 11 DL
algorithms with 19 different variants of CNNs. Moreover, we include a literature survey on popular
vanilla ML techniques (e.g., SVM, random forest) that have been widely used prior to the dominance
of DL. Our study presents a detailed thematic analysis of ML/DL algorithms used for detecting the
weed/crop and provides a unique contribution to the analysis and assessment of the performance
of these ML/DL techniques. Our study also details the use of crops associated with weeds, such as
sugar beet, which was one of the most commonly used crops in most papers for detecting various
types of weeds. It also discusses the modality where RGB was most frequently used. Crop images
were frequently captured using robots, drones, and cell phones. It also discusses algorithm accuracy,
such as how SVM outperformed all machine learning algorithms in many cases, with the highest
accuracy of 99 percent, and how CNN with its variants also performed well with the highest accuracy
of 99 percent, with only VGGNet providing the lowest accuracy of 84 percent. Finally, the study will
serve as a starting point for researchers who wish to undertake further research in this area.

Keywords: weed detection; deep learning; machine learning; systematic literature review

1. Introduction

Crop farming is considered a significant agricultural pursuit for the global economy
in the modern era, and over a longer time period, it has had a notable impact on countries’
GDP. In 2018, it contributed 4% to the global GDP and accounts for more than 25% of the
GDP for many developing countries. Moreover, with almost 9% of the world population
hungry in 2020, agriculture is a powerful source of food, revenue, and employment and
is expected to minimize poverty, raise income levels, and boost prosperity for a projected
9.7 billion population by 2050 [1,2]. However, agricultural growth through crop farming
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is always at risk due to several reoccurring problems, for example, climate change, green-
house gas emissions, pollution and waste generation, malnutrition, and food wastage [1].
Another serious problem that plagues crop farming is the growth of weeds which leads to
significant crop wastage annually. Hence, weed management and removal practices have
been adopted for several decades to control weed growth [3–5].

Weeds are undesired plants that compete against productive crops for space, light,
water, and soil nutrients and propagate themselves either through seeding or rhizomes.
They are generally poisonous, produce thorns and burrs, and hamper crop management by
contaminating crop harvests. Smaller weed seedlings with a slow growth rate are more
difficult to detect and manage than larger ones which grow vigorously. Weed management
is complicated because the competitive nature of weeds can vary in different conditions and
seasons. For instance, the tall and fast-growing fat hen weed is considered dangerous to
adjacent crops, but fat hen seedlings that appear in late summer are considerably smaller in
size and not potentially dangerous [6]. Similarly, chickweed is smaller and less dangerous
during the summer season, but in winter, it can have a high growth rate and can swamp
crops such as onions and spring greens [7,8]. Moreover, weeds can co-exist ‘peacefully’
with the crops earlier on in their growth period but start competing for more natural
resources later on. Another difficulty in managing weeds is determining the exact time
when a weed actually starts to affect the harvest. Moreover, several weeds, such as couch
grass and creeping buttercup, can survive in drought and severe winter weather as they
store food in long underground stems. Weeds are also potential hosts for pests and diseases
which can easily spread to cultivated crops. For instance, the charlock and shepherd’s
purse weeds may carry clubroot and eelworm diseases, while chickweed can host the
cucumber mosaic virus [7,9,10]. Finally, different weeds have different seeding frequencies,
further complicating weed management; for instance, groundsel can produce 1000 seeds
per season, while scentless mayweed might produce 30,000 seeds per plant. These seeds
might stay in the soil for decades until exposed to light; for instance, the poppy seed can
survive even up to 80 years.

For several decades weeds have been managed, detected, and controlled
manually [3–5]. The most common method of weed detection is manual surveillance
by hiring crop scouts or by tasking crop farmers to do the same, which is expensive, diffi-
cult to manage, and infeasible to execute in unfavorable weather conditions Scouts only
work on a sample of the field and have to follow a pre-determined randomized pattern
(e.g., zigzag). Such a setting does not always ensure that all weeds will be detected and
removed. Scouts also carry specialized equipment (e.g., hand-held computers with GPS
and geo-tagging), which adds to the expense. They need to repeat the process regularly
and fill up a report. All these limitations make crop scouting difficult to manage, and hence,
weeds continue to affect crop harvest each year globally.

Motivation and Contribution

In this paper, we focus on smart farming techniques that can detect weeds in crop
images through machine learning methods, particularly DL. This can potentially eliminate
the need for crop scouts while scanning the entire field for weeds with no management
overload. However, ever since the introduction of Graphical Processing Units (GPUs),
DL has demonstrated an unparalleled pace of research and superior performance across
a wide variety of complicated applications involving images, text, video, and speech
datasets [11–15]. DL was considered nascent till 2010 due to a lack of hardware technology
to process its complex architectures. One of the initial researches on weed detection found in
1991 [16], which highlighted the limitations of using tractor-mounted weed detectors, and
proposed the use of digital image processing (IP) techniques [17,18] to detect weeds from
both aerial and previous manually-snapped photographs by crop scouts. Research efforts
using pure IP and CV techniques for automated weed detection remained very limited
for the next two odd decades [19–22]. This paper demonstrates that such applications
are still in their infancy with respect to applications in ML and DL [12,23]. Since 2000,
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researchers have been using ML sometimes in combination with CV to automatically detect
weeds from images [24–29]. Although most of these works detected weeds with reasonable
accuracy, they also highlighted the potential of DL for significantly better performances.

Through some initial searches, we determined that DL applications in research for
weed detection have increased considerably since 2015, and they primarily use convolu-
tional neural networks (CNNs) and their variants such as SegNet, GoogLeNet, ResNet,
DetectNet, and VGGNet [30,31]. Though some survey articles have been published since
2015 on DL applications for weed detection [32,33], they lack proper SLR.

The rapid pace of research in DL and its potential to provide a competitive performance
on complicated image-based recognition tasks motivated us to conduct the SLR on DL
applications of weed detection. Our general intent is to extract and summarize the relevant
and most recent research and provide concrete future directions regarding industrial
applications and academic research. As this domain involves working with image data of
weeds, we target applications of CNNs, particularly the most recent and standard published
research content for the time period between 2015 and January 2023. In our SLR, we answer
the following research questions:

RQ1: What is the trend of employing deep learning to address the problem of weed
detection in recent years?

RQ2: Which types of weeds and corresponding crops have been detected using deep
learning, and what are the characteristics of the corresponding weed datasets?

RQ3: Which deep learning algorithms are best suited for a particular weed/crop combi-
nation?

RQ4: What are the tangible future research directions to achieve further benefit from deep
learning applications for weed detection?

RQ1 is addressed in Section 4, where we describe our SLR methodology and analyze
the trends and other relevant statistics of extracted papers.

RQ2 and RQ3 are addressed in Section 5. For RQ2, we analyze and identify the
datasets that have been used in the papers and summarise the relevant information such as
weed types, crop types, and characteristics of weed images (e.g., resolution, size).

To address RQ3, we identify the different DL algorithms in the literature and compare
their frequency of usage and performance data. Moreover, we categorize each paper by
assigning a unique label based on the usage of ML, IP, and DL, along with characteristics
such as training time and performance. We then compare the performance of ML and IP
algorithms with DL ones. To further strengthen the analysis, we associate the weed types
with the algorithm used and its associated evaluation outcome. Finally, we address RQ4
in Section 8 by analyzing our findings and proposing a set of future research directions to
motivate and enhance the DL research weed detection domain.

2. Related Surveys

In this section, we discuss in detail the eight articles of literature review which we
extracted through our SLR.

In [34], the authors review seven research papers based on deep learning and dis-
cuss three previously-used techniques for the classification of weeds such as color-based,
threshold-based, and learning-based techniques. The authors review the papers over dif-
ferent parameters such as the type of deep learning used, targeted crops, training setup,
the training time of the algorithm, dataset acquisition, dataset strength, and accuracy of
the algorithm. Research gaps are also identified, and one of the gaps was the lack of a big
dataset which could be a major contribution in this field.

Moreover, in [35], the challenges faced by vision-based plant and weed detection
and their solutions have been discussed. Two main challenges of weed detection are the
light problems, i.e., the algorithm may work differently due to the presence of light, and
discrimination between crop and weed, i.e., sometimes both may look similar. Shading or
artificial lighting can be used to control the variation of natural light, or image processing
techniques like segmentation of background (and then converting the image into Grayscale)
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can be used to tackle this problem. For the second problem, different types of IP-based
classification techniques were discussed, which were based on shape, texture, height, and
DL. The authors discussed the comparison of traditional classification and DL methods.
They also highlight the application of online cloud databases as an important future
direction to further improve the recognition or detection of weeds and crops.

Furthermore, in [22], the authors summarize different problems and provided solu-
tions to weed classification using IP and DL techniques. Four basic steps of classification,
such as pre-processing, image segmentation, feature extraction (biological morphology,
spectral feature, visual texture, spatial context), and classification (convolutional machine
learning), have been discussed in detail. Some challenges like leaf overlapping, light vari-
ation, and stages of plant growth and their solutions were discussed. Semi-supervised
learning techniques have been proposed by the authors to improve the current performance
of the aforementioned techniques.

In [36], the authors analyze different techniques for weed detection using IoT tech-
nology. The authors discuss several DL algorithms employed in the context of IoT and
perform their comparative analysis, for example, CNN, SegNet (with a synthetic dataset
for achieving higher accuracy), and summarised training set technique with CNet, which
is a deep CNN based on image segmentation. The authors also propose an IoT-based
architecture where different devices and sensors are connected to one central data server,
and users can communicate with the server through the Internet. This model can be con-
trolled by a desktop computer or mobile device. Moreover, in [37], the authors focus on the
methods and technologies used in weed detection with particular focus on the requirements
of weed detection, its applications, and the system needed for weed detection, such as
satellite-based positioning, crop-row following, and multi-spectral images. They have also
drawn attention to the limitation of previously constructed detection systems, such as the
lack of within-row plant-detection facilities.

In [38], the authors discuss DL techniques and architecture. In the former, they discuss
Artificial Neural Networks (ANN), CNN, and Graph Convolutional Networks (GCN), and
in the latter, they discuss image classification, object detection, semantic segmentation, and
instance segmentation. They also mention the significance of public datasets, specifically
carrot-weed, CWF-788, CWF-ID, DeepWeeds, GrassClover, Plant Seedlings, Sugar Beets
2016, Sugar Beet/Weed Dataset, and WeedCorn/Lettuce/Radish, to demonstrate how
images were acquired, size of the dataset, pixel-wise annotation and modality. They also
discuss data augmentation by mentioning limitations in the size of public datasets to work
in varied conditions. They discuss fine-grained learning that overcomes the problem of
general deep architectures, which ignores the challenges of similarities between crops and
weeds, along with low-rank factorization, quantization, and transferred convolutional
filters to solve the resource-consumption problems in analyzing real-time data for weed
detection through DL. For the manual collection of datasets for weed, identification could
be expensive, so weakly supervised and unsupervised methods can be necessary. For
weakly supervised, object detection or segmentation can be used on image-level annotation,
and for unsupervised learning, domain adaptation and deep clustering can be used. The
existing methods for deep learning cannot deal with new species once a model is trained; to
overcome this problem, incremental learning is proposed that is used to extend the existing
trained model without retraining it.

Finally, in [39], the importance of reducing the use of herbicides is highlighted, and
the authors review current and emerging technologies for this domain in the last 5 years.
They classify the discussions into “digital image sensor-based” and “non-digital image
sensor-based”. In the former, the shapes and morphological features of weeds are used
for detection, and in the latter, reflectance spectra are used to detect weeds. A complete
workflow example of weed detection of Romaine lettuce has been discussed. This workflow
shows the means of automatic weed detection using deep learning based on YOLO. In
all the review papers, the authors did not conduct an SLR, and the focus is apparently to
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review performance over specific tasks rather than conduct a wide-ranging review of DL
applications to weed detection.

Perhaps the paper most related to our work is [40], in which the authors review DL
approaches to weed detection based on four steps: data acquisition, dataset preparation,
weed detection, and localization and classification of weeds in crops. They develop a
taxonomy for DL applications specifying the weed and crop type, the DL architecture
applied, and the IP technique. In data acquisition, they detail how data or images have
been collected, for example, using digital cameras, public datasets, camera moving vehicles,
etc. They discuss and classify 19 public datasets according to several standard parameters,
such as modality, dataset size, etc. In the data preparation phase, after acquiring images
using different sources, images are prepared for training and testing, which includes
different techniques, for instance, image processing, image labeling, image augmentation,
etc. Weed detection is classified as a plant-based classification or a weed mapping approach.
In the former, every plant needs to be localized in an image before detection, and in the
latter, the density of the presence of weed in an image is used to detect that weed. In
the last step, the authors discuss different algorithms, such as CNN, YOLO, FCN, GCN,
and hybrid models, along with learning methods, such as supervised, unsupervised, and
semi-supervised.

Several major differences distinguish our paper from [40]. Firstly, our process of
review is more standardized because we conduct an SLR and answer concrete research
questions (Sections 1 and 4). Secondly, we present a more thorough analysis of the SLR
results, specifically through analyzing different combinations of algorithms, binning and
analyzing individual algorithmic performance, specifying appropriate thematic labels, and
analyzing the literature with respect to these labels (Section 7). Thirdly, we use a table
to present a comprehensive association of algorithmic performance across different weed
types and their respective crops, which provides a strong guideline to analyze current
performance in the literature and to determine directions for future research (Section 6).
Fourthly, we specify these directions more thoroughly to provide a type of road map for
researchers of this domain (Section 8).

3. Background Knowledge

Before looking deeper into weed detection techniques, it is necessary first to understand
weeds. This section discusses weeds, their various types, and weed detection algorithms.

3.1. Weed Types

Weeds can be generally classified as annual, biennial, and perennial [3–5]. Annual
weeds germinate, bloom, and die within one year, while biennial weeds have a life cycle
of two years, with germination and blooming happening in the first year and dying out
in the second year. Perennial includes all weeds which last longer than two years in that
they can germinate, bloom, and seed for several years. In our 60 extracted papers, authors
have used a total of 34 weeds, of which we identified 26 annual and 8 perennial types. We
illustrate these weeds in Figures 1–7 and discuss them in the following two sections.

Figure 1. From left to right: Pigweed, Blackgrass, Bluegrass, Dockleaf, Canadian Thistle (Source: [41]).
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Figure 2. From left to right: Chickweed, Cleaver, Cockleblur, Crowfoot, Fat-hen (Source: [41]).

Figure 3. From left to right: Field pansy, Hare’s ear mustard, Japanese hop, Jungle rice, Little seed
(Source: [41]).

Figure 4. From left to right: Mayweed, Meadow grass, Nutsedge, Paragrass, Shepherd’s purse
(Source: [41]).

Figure 5. From left to right: Silky-bent, Turnip weed, Dicot, Grass Weed, Velvetleaf (Source: [41]).

Figure 6. From left to right: Benghal dayflower, black nightshade, hedge bindweed, Indian jointvetch,
snakeweed (Source: [41]).

Figure 7. From left to right: Fescue grass, Chinee apple, Lantana camara, Sedge weed (Source: [41]).
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For each weed, we label it by its commonly-used published name and mentioned sci-
entific name in parentheses (wherever applicable). We extracted more detailed information
about all these weeds from the Invasive Species Compendium section of the Cab Insti-
tute’s website [42] and Wikipedia entries [43] along with websites of Garden Organic [44],
Crop Protect [45], Gardening Know How [46], Lawn Weeds [47], Farms [48], and the USA
Department of Agriculture [49]. Moreover, several weeds are categorized as both annual
and perennial, for example, chickweed, but we have considered them as annual weeds for
classification purposes.

3.1.1. Annual Weeds

In this section, we list the twenty-six (26) annual weeds used in our extracted pa-
pers. (1) Chickweed (Stellaria media), (2) Loose silky-bent (Apera spica-venti), (3) Velvetleaf
(Abutilon theophrasti), (4) Shepherd’s purse (Capsella bursa-pastoris), (5) Cleaver (Galium
aparine), (6) Black nightshade (Solanam nigrum), (7) Blackgrass (Alopecurus myosuroides), (8)
Littleseed canarygrass (Phalaris minor), (9) Crowfoot grass (Dactyloctenium aegyptium), (10)
Jungle rice (Echinochloa colona), (11) Mayweed (chamomile), (12) Fat-hen (Chenopodium album),
(13) Pigweed (Amaranthus albus), (14) Chinee apple (Ziziphus mauritiana), (15) Snakeweed
(Gutierrezia sarothrae), (16) Indian jointvetch (Aeschynomene indica), (17) Fescue grass, (18)
Bluegrass (Poa annua), (19) Meadow grass (Poa trivialis), (20) Hare’s ear mustard (Conringia
orientalis), (21) Turnip weed (Rapistrum rugosum), (22) Cocklebur (Xanthium strumarium),
(23) Field pansy (Viola rafinesquii), (24) Japanese hop (Humulus scandens), (25) Dicot, and
(26) Grass weed (Monocot). Collectively, the annual weeds can attack livestock and diverse
cereal and vegetable crops, notably wheat, maize, sugar beet, tomato, cotton, rice, carrots,
potato, peanuts, and corn. They also grow in different land types like crop fields, pastures,
orchards, home lawns, grasslands, arable lands, roadsides, seashores, and wooded areas
and in different soil types (sandy, dirty, wet). They pose severe management challenges:
they can weaken the crop by more than 70% in some severe cases and can continue to
germinate in the soil for decades, along with causing skin diseases to farmers and affecting
the milk taste of livestock [6,50–52].

3.1.2. Perennial Weeds

The following eight (8) perennial weeds have been used in our extracted papers
for weed detection: (1) Canadian thistle (Cirsium arvense), (2) Paragrass (urochloa mutica),
(3) Nutsedge (cyperus rotundus), (4) Dockleaf (Rumex obtusifolius), (5) Benghal dayflower
(tropical spiderwort), (6) Sedge weed, (7) Lantana (Lantana camara) [53], and (8) Hedge
bindweed (morning glory). Collectively, like the annual weeds, these weeds can cause severe
damage to crop fields, gardens, lawns, and other land types and can survive for several
decades in diverse soil conditions [54–57]. They can grow in water and on profound soils
in non-muddy areas and can attack sugarcane, chrysanthemum, rice, cotton, soybeans,
peanuts, and corn crops.

3.2. Deep Learning (DL) Algorithms

Deep Neural Networks (DNNs) are extensions of Artificial Neural Networks (ANNs)
in terms of complexity, number of connections, and hidden layers. A CNN is a DNN
that assigns learnable weights and biases to various aspects and objects of input images
to distinguish and classify objects such as weeds. CNNs do not require manual feature
selection; rather, the network learns important features automatically from training data to
reveal useful information hidden. CNNs are robust at classifying various objects with dif-
ferent scales, orientations, and levels of occlusion. CNNs capture the spatial and temporal
dependencies of the input image through relevant filters autonomously and hence provide
better and more efficient image processing with a considerably lesser number of estimable
parameters and processing time.

Max pooling is generally preferred as it discards the noise (data values unreliable for
machine learning) in the data and performs the de-noising operation. Due to the possibility
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of saturation in sigmoid and tanh activation functions, CNNs employ the rectified linear
activation unit (ReLU) as the activation function g(z), which outputs the aggregated value
z if it is greater than 0, and 0 otherwise, i.e., g(z) = max{0, z}. Hence, it is a piece-wise
linear function. The linearity of ReLU for z > 0 allows it to preserve many properties of the
input to facilitate stochastic gradient descent [15] and generalize to unseen data. Moreover,
batch normalization is performed in CNN, which breaks up the training image data into
mini-batches and standardizes the mini-batch input data to each layer. This stabilizes the
learning process and considerably reduces the training epochs required to train CNNs [58].

One application of convolution and max pooling with ReLU forms one layer of the
CNN pipeline. Typically multiple such layers can be employed. In each layer, we can
have parallel processing based on different color channels or feature maps, for example,
RGB. The output from the last pooling layer is flattened as a 1-D vector and fed to the fully
connected layer (i.e., conventional Multilayer Perceptrons (MLP)) for image classification,
e.g., detecting weeds within a given image. MLP outputs the probability of occurrence of
each possible object (on which the CNN has been trained) through the softmax activation
function σ(−→z )i = ezi / ∑K

j=1 ezj where σ is the softmax function for i-th activation input
vector −→z i, K represents the number of classes, and ezi and ezj represent the standard
exponential functions for input and output vectors, respectively.

3.3. Variants of CNNs

The first usable and concrete CNN architecture was LeNet-5, proposed by Yann LeCun
in 1998 and developed to recognize handwritten and printed characters [59]. It has a 2-
layered architecture with 6 feature maps in the first layer and 16 feature maps in the second
layer, followed by two fully-connected layers. A key outcome of this work is that larger
image sizes can distinguish more pixels for the stroke end-points for written characters.
After LeNet-5, ImageNet [60] has motivated researchers to propose enhancements leading
to significant reductions in top-5 error percentages, i.e., the proportion of miss-classified
images appearing in the top-5 results sorted in decreasing order of predictive confidence
P(Yi|Xi) (where Xi is the input test data and Yi is the class label under consideration). For
instance, AlexNet [61] is trained on 1.2 million images to achieve the lowest top-5 error rate
of 16%, with five convolutional layers, followed by three fully connected dense layers. The
authors used ReLU activation in all layers except the last layer, which employed softmax
activation. Moreover, VGGNet 16 [62] is a deeper network than AlexNet with a top-5 error
rate of 7.5%, with five CNN layers followed by three fully connected layers. VGGNet
needs to estimate approximately 140 million parameters for training; however, due to the
availability of pre-trained models, VGGNets are still being employed for several image
classification tasks.

GoogleNet [63] achieved a top-5 error rate of 6.7% (almost equal to human-level
performance) with its inception modules merging convolutional operations together rather
than implementing them in different layers, and the concatenated output shows results
from all convolutional operations. It employs 22 layers containing 9 inception module
layers inserted between several pooling, convolutional, and fully connected layers with
a drop-out layer used to drop input neurons from processing randomly to prevent over-
fitting. GoogleNet achieves a significant reduction in the number of parameters to be
estimated (4 million) as compared to AlexNet (60 million) and LeNet-5 (more than 100
million). Inception Module V1 used by GoogleNet was later upgraded to Inception Module
V4 and Inception ResNet.

The ground-breaking research in CNN was achieved by ResNet (Residual Network)
with a top-5 error rate of 3.6% (better than human performance) and remains unbeatable
to date [64]. ResNet is a deep CNN with 152 layers which provides a solution to the
vanishing gradient problem, i.e., the gradient becomes very small as it keeps on getting
multiplied during backpropagation until it stops influencing any weight updates (learning
stops). ResNet assumes that deeper layers should not generate more training errors than
the shallower ones. Hence, it employs skip-connections, which transfer the results of
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a few layers to deeper layers while skipping some layers in between, hence preventing
deeper layers from producing higher training errors than shallow layers. The gradient
flow through the shortcut connection to the earlier layers, thus, reducing the vanishing
gradient problem.

Along with this, SegNet [65] has been used for weed detection through image seg-
mentation. It comprises an encoder network and a decoder network, much similar to
Autoencoders [12]. In encoding, convolutions are performed using the 13 convolutional
layers from VGGNet, followed by 2× 2 max pooling to generate an encoded representation.
In decoding, the max pooling indices from the encoding phase are employed to upsample
the encoded data; for example, the 2 × 2 matrix is upsampled to a 4 × 4 matrix, and
convolutions are also applied during the upsampling operations. Finally, the softmax
function is applied at the end. In essence, there are no fully connected layers after decoding.
Rather 1 × 1 convolutions are used, which allows outputting of a label for each pixel (a
requirement for image segmentation) rather than a label for the whole input image. Such a
setup is also called a Fully Convolutional Network (FCN). Another FCN-based algorithm is
U-Net [66], which is used for biomedical image segmentation. It does not employ pooling
indices during the decoding phase. Rather, the entire feature maps are transferred from
encoder to decoder to acquire better segmentation performance but at the cost of time and
memory. This makes U-Nets computationally intensive as compared to SegNets.

Finally, Deeplab [67] is a series of image segmentation algorithms invented by Google
(Deeplabv1, Deeplabv2, Deeplabv3, Deeplabv3+) in 2018. The iterative application of
pooling operations in FCNs reduces the spatial resolution of images. Deeplab uses atrous
convolutions to generate much denser decoded feature maps with lesser computational
overhead. It also enhances the localization accuracy in FCNs through the use of conditional
random fields.

3.4. Machine Learning Algorithms

We now briefly describe the more important Machine Learning (ML) algorithms (for
more details, refer to [68–71]). Support Vector Machines (SVMs) estimate an optimal hyper-
plane between data points to linearly separate two classes by maximizing the margin with
respect to the closest points called support vectors. Mathematically, from the equation
y = m ∗ x + c, we can have y = a ∗ x + b and a ∗ x + b− y = 0. Suppose we have vectors
X = (x, y) and W = (a,−1), then the vector in hyper-plane become W ∗ x + b = 0. Assume
n training instances with each instance x of D dimension and belonging to class y = +1
or y = −1. Then the training would be xi, yi where i = 1 · · · n, yiε−1, 1, and xεRD. If
D=2, then hyper plane would be described as follows: for yi = 1 as yi(W ∗ x + b) >= 1
and for yi = −1 as yi(W ∗ x + b) <= −1. This leads to equations h1 : w.x + b = −1
and h2 : w.x + b = 1 for two lines forming the hyper-plane. The distance between h1
and the starting point is (−1− b)/|w| and the distance between h2 and starting point is
(1− b)/|W|. The maximum distance between h1 and h2 is called the margin M: M =
(−1− b)/|w| − (1− b)/|w| = 2/|w|.

Decision Trees (DTs) model data as a tree whose nodes represent features as decision
points, branches as feature values, and leaf nodes as class labels. Different patterns of
label classification can then be extracted from the root node to each leaf node. At each
decision node, features are selected at each node based on statistical criteria, mostly infor-
mation gain. Specifically, the entropy of any partition of a dataset D can be expressed as
Entropy(D) = −∑n

i pi ∗ log2(pi), where p is the probability of occurrence of an instance i
in n total instances. The Information Gain G(D, A) represents the change in entropy of D
when we consider feature A for decision node: G(D, A) = E(D)−∑

f
i (|Df |/|D|) ∗ E(D),

where f represents all possible values of F, |D| represents total instances in D, and |Df |
represents the number of rows containing the particular value f . Random Forest (RF)
is a well-known DT ensemble algorithm that employs bootstrap aggregation (bagging)
to generate m (m < N) datasets D1, D2, · · · , Dm by sampling D uniformly and randomly
with replacement. A set of m DTs h1, h2, · · · , hm is generated for each dataset. An unseen
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instance is then tested on each tree, and the class with the majority vote from amongst all
m trees is output as the final predicted value.

In the same vein, Adaptive boosting (Adaboost) uses an ensemble boosting technique
to construct a strong learner from a number of weak learners, which are typically DTs.
In each iteration, it adapts by finding miss-classified data points from each learner and
increases their weights (to learn them with more emphasis in the next iteration) while
decreasing the weights of correctly classified points (to learn them with less emphasis in the
next iteration). As long as the performance of each learner is better than random guessing,
Adaboost is guaranteed to converge to a strong learner. A boosted classifier over T weak
classifiers can be represented as FT(x) = ∑T

t=1 ft(x) where each ft is a weak learner that
takes x as input and outputs the class label. A hypothesis h(xi) for each sample in training
data is output by each ft. At iteration t, each weak learner is assigned a coefficient αt to
minimize the following sum of training error Et: Et = ∑i E[Ft−1(xi) + αth(xi)] where Ft−1
is the boosted classifier of the previous stage, E(F) represents the error function and ft(x) =
αh(x) is the weak learner under consideration for addition to the Adaboost classifier.

Artificial Neural (ANNs), more commonly known as Multilayer Perceptrons, are ML
versions of the CNNs described earlier. They can model complex non-linear stochastic
relationships between predictors and label through layers of neurons (processing units).
Predictor data are fed to an input layer, processed over one or more hidden layers, and
predictions are generated at the output layer. The neurons between each pair of layers are
connected to each other through synapses called weights. The weight vectors are updated
based on numerical values output from a mathematical activation function from each neuron
in the hidden and output layer, based on the aggregated input at each neuron. A sample
output can be represented as hi = σ(∑N

j=0 Vijxi + Th
i id) where σ is the activation function,

N is the number of input neurons to a given neuron, vi j are the weights of these input
neurons, xi shows the input values to input neurons, and T is the threshold for activation.

Moreover, the k-nearest neighbor (KNN) categorizes the input x by its k nearest
neighbors. For k, it will observe the adjacent neighbors of hidden data points and assign the
data point to a class with the highest number of data points from all classes of k neighbors.
It uses Euclidean distance when it calculates the probabilities. KNN gives the input x to the
class which has the highest probability: P(Y = j|X = x) = 1/K ∑iεa I(yi = j), where a is
the set of k nearest neighbors and I(yi = j) is an indication variable which calculates to 1 if a
given neighbor (xi, yi) in a is a participant of class j, else it calculates to 0. Finally, K-means
is primarily used for cluster analysis. It divides the data into k predefined unique clusters
(collection of data points with similar features) where each data point should preferably
belong to only a single cluster. It initially sets k centroids randomly and assigns every data
point to its nearby cluster. It calculates the centroids for each cluster by averaging all the
data points belonging to that cluster. The Euclidean distance between a data point q and

centroid p is typically calculated as d(q, p) =
√

∑n
i=1(qi − pi)2, where n is the the number

of features.

3.5. Image Processing Techniques

Image Processing (IP) can be used to improve images for further processing with DL or
ML algorithms. IP facilitates algorithm tasks by improving image quality and transforming
images to meet the needs of the algorithm. Local Binary Patterns (LBP) [72] is a visual
descriptor of images in CV based on thresholding. It divides an image into equal-sized cells,
for example, with each cell containing 16 × 16 pixels. Each center pixel c is then compared
to each of its 8 neighbors n, for example, clockwise starting from top-right, middle-right,
then bottom-right, and so on. The thresholding works as follows: if the value of n is greater
than the value of c, we set n = 0; otherwise, we set n = 1, giving us an 8-digit binary
number. Then, we compute a histogram over c indicating the frequency of each of the
256 (28) combinations of this binary number. Finally, we concatenate the histograms of all
cells to form a feature vector for the whole image, which can then be processed in machine
learning and deep learning tasks. Mathematically, LBP for pixel c over a neighboring radius
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r (set to 8) is estimated as follows: LBPc,r = ∑P−1
i s(vi − vc)2i where P is the number of

neighboring pixels, vi and vc are values of the neighboring and center pixel respectively,
s(t) is thresholding such that s(t) = 1 if t > 0 and 0 otherwise. The histogram feature
vector of size 2P (256) is then estimated from the obtained LBP code.

Moreover, Simple Linear Iterative Clustering (SLIC) [73] is an image segmentation
algorithm that uses k-means clustering to create superpixels, which are small-sized clusters of
pixels sharing common features. Clustering is done by distance measurement computation
in 5D (labxy) space, where (l, a, b) is the 3-dimensional color representation of the pixel at
coordinate (x, y). The distance measure DS is then defined as follows: DS = dlab + (m/s) ∗
dxy where dlab =

√
(lk − li)2 + (ak − ai)2 + (bk − bi)2 and dxy =

√
(xk − xi)2 + (yk − yi)2

and m controls the density of superpixels proportionally. Moreover, Histogram of Gradients
(HoG) [74] is used for feature extraction. It divides an image into a number of regions, and
for each region, it estimates the gradient (magnitude) and the orientation (direction) of the
edges in that region. Then, the histogram of this data (HoG) for each region is generated
separately. Suppose that for each pixel (x, y), we define HG as the distance between the
adjacent right and adjacent left pixel values and VG as the distance between the adjacent
top and bottom pixel values. The gradient magnitude GM is GM =

√
(HG)2 + (VG)2 and

the gradient angle GA is GA = tan−1(HG/VG) Then, HoG is generated by binning the
frequencies of either GM or GA or both together [74].

In addition, Hilbert Transform (HT) [18] is used to separate features of a specific shape
within an image, for example, circles, lines, and ellipses. A line is a collection of single
points with slope m and intercept c and y = mx + c in the xy plane. In HT, we convert
a line from (x, y) plane to (m, c) space, i.e., from y = mx + c to c = −mx + y. To avoid
unbounded values of m, the well-known Hough space (r, θ) transformation can also be
used as follows: r = x.cosθ + y.sinθ. Moreover, Median filtering [17] is a non-linear IP
technique that maintains edges while removing noise. It calculates the median gray-scale
value of a pixel’s neighborhood. In applying a fixed-size kernel, we sort all pixel values
within this kernel based on gray-scale values. Then, the median value of this sorted array
will be used, and zeros can be padded in rows and columns to complete the pixel count.
Finally, Background Subtraction (BS) [75] is a well-known technique used in IP and CV for
detecting moving objects in videos from static cameras for additional processing. It isolates
these foreground objects with respect to a reference image by subtracting the current frame
from a reference frame called the background model. If the data points are non-linear, then
we need to add one more dimension to the data point, which will be z = x2 + y2.

GANs (generative adversarial networks) [76] are types of generative deep learning
algorithms whose purpose is to learn a set of training samples and their probability distribu-
tions and then generate data from this distribution. GANs can produce more samples based
on the measured probability distribution and are particularly accurate in producing real-
istic high-resolution images. GANs comprise two different feed-forward artificial neural
networks named Generator (Gen) and Discriminator (Dis) that participate in an adversarial
game. The input to the generator is Gaussian noise pz(x) and Gen tries to generate an
approximation pmodel(x) to the probability distribution of the actual data pdata(x). Mean-
while, Dis learns to distinguish whether a data point x is sampled from pdata(x) or pz(x),
the latter being input to Dis as data sampled from pmodel(x). The task of Gen is to fool Dis
into thinking that data sampled from pmodel(x) is actually the data sampled from pdata(x).
Therefore, Dis maximizes the probability of classifying data as pdata(x) and minimizes
the probability of classifying it as pmodel(x), while Gen tries to do the exact opposite. In
this context, both Dis and Gen participate in a two-player minimax game with the value
function Val(Dis, Gen) as minGenmaxDisVal(Dis, Gen) = Ex ∼ pdata(x)[logDis(x)] + Ez ∼
pz(z)[log(1− Dis(Gen(z))))] where Gen maximizes logDis(Gen(z)) rather than minimiz-
ing log(1− Dis(Gen(z))) [12,76].
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4. SLR Methodology

In this section, we address RQ1: What is the trend of employing deep learning to
address the problem of weed detection in recent years. To answer this, we conduct an
SLR by following the standard methodology [77] and dividing our work into three phases:
(1) Planning, (2) Execution, and (3) Reporting (see Figure 8).

Figure 8. Our SLR process.

In the planning phase, we identify the research objective, research protocols, search
keywords, and digital sources for extracting the relevant papers. In the execution phase,
we execute our search queries on each of the identified digital sources to acquire the
relevant corpus of papers by using a three-step technique (described below) and eliminating
duplicates. In the reporting phase, we apply thematic classification to our final list of
extracted papers and describe them in detail, identify the limitations of these works, and
then propose a concrete set of future work recommendations.

In this SLR, our specific consideration is in the domain of DL applications in weed
detection. Our research objective is to extract the state-of-the-art, identify published
academic research related to this domain, understand the content of these papers, classify
our results using different methods of analyses, identify the gaps or limitations through
these classifications, and consequently propose guidelines and directions to motivate and
enhance the state-of-the-art research. To achieve this, we adopted the following inclusion
and exclusion criteria.

• We targeted original academic research content published in journals, conferences,
workshops, and symposiums. We excluded periodicals (magazines and news from
newspapers), letters, books, and online content, specifically websites, blogs, and social
network feeds.
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• We considered papers published in the English language only.
• We selected the following digital sources: IEEE, ACM, Elsevier, Springer, and Google

Scholar. Our previous experience [78,79] has shown us that these sources are collec-
tively effective in retrieving required content for data analytics, machine learning, and
any computer science domain in general. Moreover, Google Scholar can effectively
index published data from other sources, for instance, Taylor and Francis, Wiley, MDPI,
and Inderscience.

• Initially, we focused on research published from 2010 and onwards. However, after
some preliminary results, we discovered that the content most relevant to the domain
of weed detection using DL was published primarily from 2015 onwards. Therefore,
we focus our SLR from Jan 2015 till Jan 2023.

The published DL research has seen an exponential rise in different domains in the
last several years, for example, after the proposal of generative adversarial networks in
2014 and the discovery of different variants of CNNs, autoencoders, and recurrent neural
networks (RNNs). Hence, we decided to focus only on the latest research from 2015 till
January 2023. We considered all articles irrespective of the country of the first authors.
Moreover, we considered three types of research publications: (1) application papers, i.e.,
papers that present a novel research idea along with experimental results; (2) literature
reviews (both systematic and non-systematic) and (3) frameworks, i.e., papers that present
a novel research framework/idea with a concrete design but it has not been validated with
experimental work.

We formulated our search queries from our four research questions (mentioned in
Section 1). In these questions, we focused on discovering important information on smart
farming, particularly deep learning, applications for weed detection, for instance, the
different research trends and statistics, types of weeds detected and algorithms used,
and performance comparison of algorithms. From our previous experience [78,79], we
concluded that all this information could be extracted by using search queries based on
different combinations of the following three keywords: (1) weed detection, (2) smart
farming, which is used interchangeably with smart agriculture and precision farming, (3)
Weed Classification, and (4) deep learning, in which we particularly targeted CNNs. Based
on this, we initially executed the following nine search queries (& = AND): (1) {“weed
detection”}, (2) {“precision farming” & “weed detection”}, (3) {“precision agriculture” &
“weed detection”}, (4) {“smart farming” & “weed detection”}, (5) {“weed detection” & “deep
learning”}, (6) {“precision farming” & “weed detection” & “deep learning”}, (7) {“precision
agriculture” & “weed detection” & “deep learning”}, (8) {“smart farming” & “weed detec-
tion” & “deep learning”}, (9) {“weed detection” & “CNN”}, (10) {“weed classification”},
(11) {“precision farming” & “weed classification”}, (11) {“precision agriculture” & “weed
classification”}, (12) {“smart farming” & “weed classification”}, (13) {“weed classification”
& “deep learning”}, (14) {“precision farming” & “weed classifcation” & “deep learning”},
(15) {“weed classification” & “CNN”}

The results from these queries showed that the most relevant papers could be obtained
only through the following two queries (which we also used in our SLR): (1) {“weed
detection” & “deep learning”} (labeled as Q1), (2) {“weed detection” & “CNN”} (labeled
as Q2) and (3) {“weed classification” & “CNN”} (labeled as Q3). Q1 and Q2 also retrieved
articles related to applications in ML and IP (without any DL implementation) for weed
detection. We considered these papers in our SLR to facilitate a comparison of these
algorithms with DL to understand further the strengths and limitations of these approaches
(RQ4 in Section 1).

We implemented a three-step procedure to filter out our required subset of research
articles (shown in the execution phase in Figure 8). In the first step, we filtered out the
articles based on their titles, i.e., we did not consider articles whose titles were not related
to the domain of weed detection using DL, for instance, several titles related to smart
farming but no research contribution to weed detection. In the second step, we adopted the
same approach to filter articles from the first step based on their abstracts, and in the third
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step, we filtered articles from the second step based on their content, i.e., after reading the
article’s introduction, methodology, and results section.

Across all the digital sources, we filtered out a total of 129 articles from the title
filtration step, of which 25 were duplicates. Thus, we filtered out 92, 81, and 64 articles after
the title, abstract and content filtration, respectively. The breakdown of these numbers with
respect to each digital source (IEEE, ACM, Elsevier, Springer, Google Scholar) and search
query (Q1, Q2, and Q3) is shown in Table 1. Of our 64 articles, 49 (83%) were retrieved by
Q1 alone, 10 by Q2, and the remaining 4 by Q3. Across Q1, Q2, and Q3, IEEE retrieved 29
(53%) of these 64 articles, while ACM retrieved 2 (3%) only. The 8 articles were retrieved
from Springer, 10 from Elsevier, and 15 from Google Scholar. All the above trends are also
applicable for title filtering and abstract filtering data.

Figure 9 shows the frequency distribution of our filtered 64 articles from January 2015
to January 2023. We observed an exponential trend in the number of publications from 2015
onwards. Moreover, Figure 10 demonstrates that out of our 64 articles, 55 were application
papers, 8 were literature reviews, and only 1 article introduced a framework. Finally,
Figure 11 shows the co-author citation graph for our 64 papers. Out of a total of 221 authors
in these papers, the presented 13 authors in Figure 11 have the strongest co-authorship
links. The colors red and green represent two clusters of co-authorship links with the
author Arnold W. Schumann participating in the red cluster (in the years 2020 and 2021)
[38] as well as in the green cluster (in 2019) [80,81].

Figure 9. Year Wise Distribution of Articles.

Figure 10. Article types and Frequency.
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Figure 11. Co-Author Citation Graph.

Table 1. Breakdown of frequency of articles filtered with respect to title, abstract, and content across
search queries Q1. Q2 and Q3 and digital sources.

Q1 Q2 Q3

Digital Sources Title Abstract Content Title Abstract Content Title Abstract Content

IEEE 50 42 25 4 4 4 0 0 0

ACM 3 2 1 2 2 1 0 0 0

Elsevier 8 7 8 3 3 2 0 0 0

Springer 8 7 6 3 3 2 0 0 0

Google Scholar 10 5 9 9 2 2 11 6 4

5. Review of Weed Detection Algorithms

In this section, we summarize the findings of our surveys on application articles
and literature reviews. For convenience, we merged the single paper, which proposed a
framework [82] into the application articles (i.e., implementation) category.

5.1. Weed Datasets Available for Deep Learning

In this section, we answer RQ2: Which types of weeds and corresponding crops have
been detected using deep learning, and what are the characteristics of the corresponding
weed datasets? In this regard, we extracted and classified important characteristics regard-
ing the datasets of weed images used by researchers of the application papers, shown in
Table 2. These are (1) corresponds to the reference article, (2) the dataset name or label
(Dataset), (3) the size or the number of images in the dataset (Size), (4) the type of crop for
which the weed was detected by the authors (Crop), (5) the particular weed type which
was detected (Weed), (6) the modality of the dataset (Modality), (7) the data collection
technique through which images were acquired (Data Collection), and (8) the resolution of
the images (Resolution). We use N/M (Not Mentioned) to indicate any of this information
not mentioned by the authors.
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Table 2 shows that researchers in application papers have used a total of 44 unique
weed image datasets. Under ‘Dataset,’ we present the dataset names as labeled by the
corresponding researchers in their papers. Where no specific name was assigned to a
dataset by the authors, we have used the city’s name wherein the implementation was done
as dataset name (e.g., Gharo (Pakistan)). Most researchers have created their personalized
weed image datasets by using drones, robots, and a large variety of cameras. However,
three available datasets have also been used: (1) Indian Agriculture Research Institute
(IARI), (2) Crop Weed Field Image (CWFID), and (3) Plant Seedling (available on Kaggle).
The three largest datasets are Gold Field (36,000), WeedMap (11,441), and Bok Choy (11,150),
while the three smallest datasets are CWFID (120), Tobacco Field (76), and IARI (60).

A total of 26 unique crops are used in weed detection. Notably, sugar beet is the
most common crop (used in 13 papers), followed by carrot and wheat (in 5 papers), maize
(4 papers), and rice, soybean, corn, and cereal (in 4 papers). All the remaining crops are
used once in our filtered 51 application papers. As far as the distribution of 34 weed types
is concerned, Dockleaf is used for weed detection most frequently (in 7 papers), followed
by fat-hen (5 papers), Canadian thistle, Chickweed, and Mayweed (in 3 papers), and
Blackgrass, Jungle rice, Nutsedge, Shepherd’s purse, Fescue grass, Grass weed and Pigweed
(in 2 papers). The remaining 22 weeds are used once. Regarding the input modality, RGB
is used most frequently in 33 articles, 5 times in combination with Near Infrared (NIR),
and 5 times in multi-spectral mode. Moreover, hyperspectral, NIR, grayscale, and NDVI
modes are used once, while Color Infra Red (CIR) is employed twice. Regarding data
collection, drones (as UAVs) are used to acquire images in 13 papers, cameras are used in
22 papers (with different types such as digital, cellphone, and professional), robots are used
in 9 papers, and the remaining are referred to as datasets. Here, we would like to mention
about Bonirob, an agricultural robot developed in Germany and used to acquire images in
3 articles. A variety of resolutions are also employed, ranging from a minimum of 61 × 61
and 64 × 64 to a maximum of 4512 × 3000 and 4000 × 3000. Out of 51 papers, 14 have used
a resolution greater than 1000, and the remaining 36 have a resolution less than 1000. Most
high-resolution images have RGB Modality, and low resolution have NIR, CIR, Greyscale,
hyperspectral, and NIR + RGB. High-resolution images are mostly snapped by drones,
while low-resolution images are snapped through semi-professional or cell phone cameras.
Only 35 articles have mentioned the size of the dataset, with the GoldField dataset having
the most images (36,000) and CWFID being used in two papers with the fewest images (60).

5.2. Algorithms Used for Weed Detection

In this and the next section, we collectively answer RQ3: which deep learning algo-
rithms are best suited for a particular weed/crop combination? In this regard, we initially
extract and classify the algorithmic performance of our application papers, shown in
Table 3. Here, we present (1) the article reference (Article), (2) the name of the algorithm(s)
employed by the authors (Algorithm), (3) the image processing technique used, if any
(IPT), (4) performance measure or KPI, such as accuracy or precision/recall (KPI), (5) the
maximum value of this KPI achieved by the authors (Result), (6) the training time taken
by the algorithm (TR.Time), (7) the split ratio for train and test sets (TR.TS.Split), and (8) a
thematic classification label (TCL) which we assigned to each paper based on the algorithm
and the weed detection approach used in the paper.
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We found that both ML and DL algorithms are used by researchers for weed detec-
tion. In total, 10 different algorithms are used whose frequency distribution is shown in
Table 4. For DL, CNN is used in general. Although Autoencoder (AE) is also used, as such,
no specific AE has been used separately, for example, denoising AE, stacked AE, or varia-
tional AE. Rather, only the AE architecture is used within the algorithmic process of CNNs
to improve the CNN performance. Hence, we have not considered AE as separate from
CNN in this work. The CNN algorithms are applied 65 (with different variants) times in
application papers (details below), followed by ML algorithms, specifically, SVM (12 times),
RF (5), ANN (5), KNN (2), Boosting (XGBoost and Adaboost) (2), DT (includes vanilla DT
and ERT) (2), NBG (1), and LR (1). This shows that many representative ML algorithms
have already been applied for weed detection, although the frequency of applications
remains severely limited as compared to CNN.

The 65 CNNs appeared over a total of 19 different variants, whose frequency distribu-
tion is shown in Table 5. Specifically, the custom CNN model is used in 12 implementations,
and transfer learning is used in 21 implementation articles, including 7 implementations
of ResNet, SegNet, and VGGNet. GoogleNet and FCN are used in 6 and 5 articles, respec-
tively. YOLO, U-Net, and AlexNet are each used in three articles while DetectNet, DeepLab
(all variants combined), and SSD are used in two articles, and Mask R CNN, CaffeNet,
CenterNet, GCN, MobileNet, DenseNet, and Xception are used once. This demonstrates
that researchers are not focusing on several CNN models only; rather, there is a trend to
explore recently-introduced CNN variants as soon as they are published (as most of the
variants are introduced recently and have very limited applications).

Image Processing (IP) techniques are used in 38 application articles, with a total
of 16 unique techniques whose frequency distribution is shown in Table 6. There are
four (4) articles in which the authors applied only IP techniques for weed detection, i.e.,
without using any ML or DL algorithm. In these articles, the authors have used techniques
such as both background and foreground subtraction (BFS), converting RGB to Grayscale,
binarizing and labeling the images (CV), feature extraction (Ftr Ext), classification (Classify),
and image tiling techniques. In the remaining 34 articles, IP techniques have been used for
pre-processing images for either a separate application of ML or DL or both ML and DL
collectively. Table 6 shows that feature extraction, image segmentation, and BFS are used
more frequently, along with SLIC, LBP, and HoG, while some less-applied techniques are
also used once, for example, morphological erosion and histogram equalization (HE).

Table 4. Frequency Distribution of Algorithms.

Algorithm Frequency

CNN 65

SVM 12

RF 5

ANN 5

KNN 2

Boosting 2

DT 2

NBG 1

Linear Regression 1

Regarding the use of performance measures, 32 out of the 51 application papers used
the accuracy of weed detection, which gives an average of the predictive performance
for both classes (‘weed detected’ and ‘no weed detected’ respectively). Precision and
recall for the ‘weed detected’ class, which provide a better indicator of the weed detection
performance, are employed in only 11 articles. Of the latter, two papers employ the F1-
Score, which is estimated from both precision and recall values. Performance measure was
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not m1entioned in four articles, while Area Under the Curve (AUC), which provides a
measure of overall classification performance similar to accuracy, is used in two (2) articles,
once in combination with F1-score. In total, 11 papers out of 52 mentioned model training
timing, YOLO with K-means took the shortest time to train at 6.8 ms, and CNN took the
longest at 1895 min. As there is no standard for dividing data into train and test, most
papers used 60–40, 70–30, and 80–20 splits.

Table 5. Frequency Distribution of CNN Variants.

DL Algorithm Frequency

CNN 11

ResNet 8

SegNet 7

VGGNet 8

GoogleNet 5

FCN 4

YOLO 4

U-Net 3

AlexNet 3

DetectNet 2

DeepLab 2

SSD 3

Mask R CNN 2

CaffeNet 1

CenterNet 1

GCN 1

MobileNet 1

DenseNet 1

Xception 2

Table 6. Frequency Distribution of IP Techniques.

IP Techniques Frequency

Feature Extraction 6

Background and Foreground Subtraction 5

Image Segmentation 5

HoG 4

CV 3

SLIC 3

LBP 2

Cluster 2

MG Filter 1

Hough Transformation 1

Classify 1

Image Tiling 1

MRF 1

Masking 1

Morphological Erosion 1

Histogram Equalization 1
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Here we addressed How does the performance and usage of machine learning and
image processing techniques compare with that of deep learning for weed detection?
where we categorize each application paper by assigning it a unique thematic classification
label (TCL) based on the usage of ML, DL, and IP, along with other information such as
training time and KPI. We classify application paper under five TCLs: (1) DL.AE , (2) ML,
(3) DL.CNN, (4) IP, and (5) ML.DL.CNN. In the following, we define these TCLs and
present data about their constituent articles. A summary of this is presented in Figure 12.
(the details of the articles are provided in Section 6).

• DL.AE: This type represents five articles that employ the autoencoder (AE) technology,
i.e., the encoder-decoder DNNs for weed detection. In two of these articles, both the
encoder and decoder are modeled as an FCN. In the remaining three articles, two
articles use the AE-based CNN called SegNet as {SegNet256, SegNet512} and {SegNet,
U-Net, DeepLabV3}, while the last article uses only DeepLab. We remark that the U-
Net and DeepLab series of CNN variants are also based on AE. Histogram Equalization
(HE) is the only technology that is specified for DL.AE category.

• ML: This type represents 9 articles that only employ ML techniques for weed detection.
In four of these articles, the performance of a set of ML algorithms are compared, while
an individual ML algorithm is used in the remaining five articles. The comparison
sets include {SVM, ANN} (in two articles), {NBG, DT, KNN, SVM, ANN} (1) and {ERT,
RF} (1). The individual applications include RF (2) and SVM (3). In one of the SVM
applications, K-means clustering is used to pre-process the image data and then IP
techniques such as SLIC, BFS, Masking, Feature Extraction, Markov Random Field,
Image Segmentation, and Morphological Erosion. are used with ML

• DL.CNN: This type represents the 31 articles that employ the CNN or one/more
of its variants for weed detection. Regarding individual applications, CNN is used
most frequently in nine articles, GoogleNet in two articles, and YOLO, SSD, AlexNet,
and CenterNet in two articles each. Besides this, the following combinations of vari-
ants are used: {ResNet, U-Net, SegNet, FCN, GoogleNet}, {GCN, AlexNet, VGGNet,
ResNet}, {SSD, VGGNet}, {CNN, VGGNet}, {SegNet, VGGNet, U-Net}, {DetectNet,
GoogLeNet VGGNet}, {ResNet-50, YOLO}, {SegNet, SegNet-Basic}, {Mask R CNN,
FCN} and {YOLO, GoogleNet}. All these combinations are used once, except {Detect-
Net, GoogLeNet VGGNet}, which is used twice. The IP techniques employed with
DL.CNN papers are as follows: HoG, LBP, BFS (background), image labeling, image
segmentation, CV, feature extraction, and clustering.

• IP: This type represents four articles that only employ IP techniques for weed detection.
As mentioned above, these techniques are image tiling, classification, CV, feature
extraction, and background and foreground subtraction.

• ML.DL.CNN: This type represents seven articles that employ both CNN (or one/more
of its variants) and ML for weed detection. These 7 combinations are as follows:
{SVM, ANN, CNN}, {ResNet, SVM}, {SVM, KNN, ESD, CNN}, {CaffeNet, SVM, Ad-
aboost, RF}, {ResNet, SVM, RF}, {AlexNet, ANN} and {ResNet, VGGNet, MobileNet,
DenseNet, Xception, SVM, XGBoost, LR} (abbreviations of algorithms are shown for
this sequence for brevity). The IP techniques used in ML.DL.CNN includes MGF, HT,
SLIC, and CV algorithms.

In this section, we analyze the performance of algorithms with respect to our TLCs.
We will first emphasize the training time and train-test split ratio data shown in Table 3.
Our purpose in listing the training time was to gauge the delay or speed-up achieved in
training the DL algorithms due to the complicated nature of this learning task. In fact,
GPU usage has addressed this problem thoroughly. It is considered prudent to conduct a
comparative analysis for different tasks and GPU/CPU settings. In our case, no training
time was recorded by the authors in 36 (out of 51) articles. In the remaining articles, the
maximum recorded time is as follows: (1) 480 s (IP), (2) 83 s (ML), (3) 976 m (DL.CNN),
(4) 480 s (ML.DL.CNN), and (5) 11,389 s (DL.AE). Thus, the maximum training time is
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976 min (approximately 16 h) for DL.CNN followed by 3.1 h for DL.AE. Where pre-trained
DL models were employed, training time is in the order of seconds.

Figure 12. The distribution of different algorithms with respect to five thematic classification labels
(TCLs).

The train-test split ratio has been mentioned in 32 articles. After analyzing the ratios,
we mapped them into four categories: 60–40, 70–30, 80–20, and 90–10. Out of 31 arti-
cles, 11 articles used an 80–20, and 11 others used a 70–30 ratio (these two ratios are
the most common ones in ML and DL domains). However, four articles based on DL
have used a 90–10 ratio, and five articles (three from ML and two from DL.CNN) have
used a 60–40 ratio. Our aim here is to present such information. However, we are not
intended to make conclusions about the reason for a ratio selection because these mat-
ters are guided by several factors, such as the size of the dataset, previous experience, or
trial-and-error experimentation.

To compare the performance of algorithms across our TCLs, we executed the following
steps. We decided to analyze all the different performance measures together by focusing
on their values. In other words, we do not specifically distinguish between accuracy,
precision, recall, etc., but we focus only on their values to compare all application papers
together. For this, we analyzed the values in Table 3 and manually created three bins or
ranges of values: (1) [45–85) (labeled as low performance), (2) [85–95) (medium), and (3)
[95–100] (high). Moreover, we estimated and considered the F1-score in case both precision
and recall are measured, and we considered the performance values of each algorithm
separately in case multiple algorithms were used in the article. Finally, we considered the
F1-score over AUC in articles where both were recorded, and for a recorded performance
of ‘>90’ by the authors, we considered it in the range of 85–95. The results are shown in
Figure 13 and discussed as follows:

• ML: 2 algorithms have a low performance, 4 have medium, while 10 have a high
performance (over multiple algorithms).

• IP: Two articles mention their results which are low and high, respectively (no multiple
algorithms used).
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• DL.CNN: 5 algorithms have a low performance, 21 have a medium, and 18 have a
high performance (over multiple algorithms).

• ML.DL.CNN: 2 algorithms have a low performance, 13 have medium while 10 have a
high performance (over multiple algorithms), and

• DL.AE: One article has a low performance, two have a medium, and the remaining
two demonstrate high performance.

Figure 13. Observed performance evaluation with respect to our defined thematic classification
labels.

A notable trend here is that, although ML applications are limited with respect to
DL.CNN, the proportion of algorithms that demonstrate a high performance is more
(63%) as compared to DL.CNN (44%). In ML.DL.CNN category, of the 10 algorithms
demonstrating high performance, 4 of these are ML algorithms while the rest are CNN
variants. This clearly shows that traditional ML algorithms, particularly SVM and RF, are
demonstrating performances at par with CNN and its variants. Regarding the use of the
AE, the performance seems to have remained consistent over the low, medium, and high
bands. However, we do acknowledge that a dataset of five articles is limited to making any
generalization of this trend.

6. Classification as per Weeds/Crops

To understand the aforementioned trends more thoroughly, we created a table shown
in Table 7, which illustrates associations of different weed types and different crop types
respectively with their algorithmic applications and demonstrates which algorithm has
been used to detect the weed type which belongs to a crop type.

We would like to highlight the following facts before our analysis: (1) We do not
present the algorithms for which their corresponding weed/crop types are not mentioned
by the authors; (2) In all papers using multiple weed types, the performance achieved is
applicable for each type; (3) If algorithm A is used as a feature extractor for algorithm B
(e.g., {ResNet-50, YOLO}, {RCNN, SSD} and {VGGNet, SSD})), we have assigned A and B
the same performance measure as both contributed to achieving this performance, (4) We
do not specifically distinguish between accuracy, precision, recall, etc. as mentioned above
for Figure 13, and (5) we show the highest accuracy with which the weed belonging to a
crop type is detected using one or more algorithms and in each algorithm. The table assists
in understanding the applications and deriving appropriate recommendations.
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The performance of detecting each of the weed types in different crops is high, with a
minimum performance of 84% for Field Pansy and Wheat crops and 99% for Bluegrass in
Corn, Cockleblur, Dockleaf in Soybean, Pasture, Turfgrass, and bahiagrass, Japanese Hop in
Maize, Wheat and Peanut and Black Nightshade and Velveleaf in Tomato and Cotton. The
top-4 weeds that are used most frequently by researchers are Canadian thistle, followed by
Dockleaf, Fat-hen, and Velvetleaf, while those who are applied only once include Latana
Camara, Chinee Apple, SnakeWeed, Indian Jointvetch, Hedge Bind, Benghal Dayflower,
Grass Weed, Dicot, Paragrass, Crowfoot and CockleBlur.The top-3 crops that are used most
frequently by researchers are Sugar beet, followed by Carrot and Maize, while those that are
applied only once include Cranesbill, Charlock, Soybean, Canola, Peanut, White Cabbage,
Tobacco Seedling, Lettuce, Tomato, Radish. It is apparent that the applications of the top-4
weed types are spread out over different algorithms, i.e., the novelty in research articles
is introduced through the application of novel or other algorithms. From the perspective
of algorithms, each algorithm demonstrated high performance in detecting one or more
weed types, with a minimum performance of 87% for FCN and SSD and a maximum of
99% for SVM, CNN, VGGNet, and DetectNet. For DL, the top-3 algorithms that are used
most frequently are CNN, VGGNet, and FCN, while for ML, the top-3 are SVM, ANN, and
KNN. The average performance over all DL algorithms is 94% while the same performance
over all the ML algorithms is 90%. In our opinion, this difference is small, and we believe
the ML community still has much to offer for weed detection, which could be potentially
comparable to DL algorithms. Furthermore, when combined with other algorithms, SVM
and Mask R CNN performed equally or better (five times) and only underperformed once
(to YOLO). SVM and YOLO have not been used together in other cases. YOLO is the only
algorithm that performs every time better or equal to other algorithms when combined.
In three cases, CNN alone performed best, and when combined with other algorithms, it
performed equally (three times). The following are the findings regarding crop association
with algorithms. Sugar beet was used as a crop in 13 of the 51 papers, and different weed
types were associated with each paper. Papers with sugar beet crops used a combination
of FCN and Mask R CNN six times and FCN, Mask R CNN, and CNN four times. YOLO
was only used once to detect sugar beet, and it had the lowest accuracy of 89 percent when
compared to FCN, Mask R CNN, and CNN. In nine papers, sugar beet is mostly combined
with maize and wheat. Maize and rice were used together four times, and GoogleNet and
SSD were frequently used to detect weeds in maize and rice. GoogleNet and SSD are used
together twice, and SSD and GoogleNet are used separately once. GoogleNet provided
the highest accuracy of 99 percent when combined with SSD and without, but SSD alone
provided 98 percent accuracy. Tomato and cotton were used together in two cases where
ResNet, VGGNet, MobileNet, DenseNet, Xception, and SVM were used to detect weeds,
and both times SVM and DenseNet provided 99 percent accuracy. Furthermore, each crop
is used in a unique combination.

7. Summary of Identified Articles in SLR

This section describes a literature survey of our identified 60 articles. We present the
application papers and literature review papers in separate sections.

7.1. Summary of Identified Application Papers

In this section, we briefly discuss each application paper according to our TCLs. The
sequence in which these papers are discussed is the same as the one found in Table 3.

7.1.1. IP Papers

In [32], the basic idea adopted by the authors is to detect weeds at different stages of
growth of the wheat crop, along with detecting the barren land to determine the amount
of land used for cultivation. For detection, the authors employ background subtraction
techniques in the Hue Saturation Value (HSV) color space, but they can only achieve a
maximum weed detection accuracy of 67% with high-resolution images acquired through
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drones. Moreover, in [84], the authors use CV functions for the classification of weeds and
crops, notably, rgb2gray for detection of green plants, im2bw to convert digital images to
binary images, bwlabel for labeling binary images, and regionprops for measuring feature of
images and detection of weed. The classification accuracy obtained with these functions is
99% with a training time of approximately 3 s.

In [82], authors create and implement a framework called the Image Processing Oper-
ation (IPO) library for the classification of weeds. IPO stores information about weeds and
crops in JSON format which are then automatically converted to MATLAB functions to
perform weed discrimination, with the option to add personalized user-defined functions.
The authors claim that IPO is partially successful and discuss methods to remove some
of its limitations. Finally, in [95], the authors study different features of weed leaves for
detection using IP. In their method, the authors propose the execution of several stages
in sequences, such as foreground extraction with grey-scale images, image tiling, feature
extraction, and classification. For classification, authors employ moment-invariant shape
features i.e., rotation, scaling, and translation for identifying the weed, with a training time
of 480 s.

In [131], the researchers described the importance of large datasets for better weed
detection and also emphasized the need for GANs. They also mention a lack of real-world
datasets for weeds. To solve this problem, they proposed a model that combines transfer
learning or a pre-trained model with GANs. The crop weed dataset at the early growth
stage was used, with 202 images of tomato as a crop and 130 images of black nightshade as a
weed. To select the best parameters for the model, various combinations of hyperparameter
tuning were used. Three pre-trained models were used: Xception, Inception-ResNet, and
DenseNet. Xception outperformed with a 99.07% accuracy.

Researchers in [132] study combined Generative Adversarial Networks (GANs) with
Deep Convolutional Networks to create a model that detects weed better than existing
models. GANs are used to generate synthetic images of weeds, and deep neural networks
are used to detect weed images from original and GAN-generated images. They also
compared their model to existing models like AlexNet, ResNet, VGG16, and GoogleNet,
but their model outperformed with an accuracy of 96.34%.

Researchers focused on a robust image segmentation method in [133], which will
be used to distinguish between crops and weeds in real time. They also discussed using
annotated images in various studies and stated that annotating images could be time-
consuming. However, they used GANs to generate synthetic images to supplement the
dataset. Then, for image segmentation, they used CNN variants such as UNet-ResNet,
SegNet, and BonNet. UNet-ResNet and SegNet outperformed with 98.3 percent accuracy.

The authors of [134] study developed an algorithm that is used to synthesize real
agricultural images. The images were captured with a multi-spectral camera, and Near-
Infrared images were collected. They used conditional GAN for segmentation. They also
stated that their experiments improved the generalization ability of segmentation and
enhanced the model’s performance. They used various CNN variants for segmentation,
including UNet, SegNet, ResNet, and UNet-ResNet, and UNet outperformed with 97%
accuracy in Crop detection and 72% in Weeds.

7.1.2. ML Papers

In [90], the authors attempt to classify soil, soybean, and weed images based on the
color indices of these three classes. They compare the performance of SVM and ANN
over this task after processing and segregating the datasets through SLIC. The results do
not demonstrate any major difference in accuracy between SVM (95%) and ANN (96%).
Moreover, in [94], the researchers use ML for the classification of weeds and crops by using
RF. The employed dataset is divided into different categories, specifically crop, weed, and
irrelevant data. The authors train the model on offline datasets and apply these pre-trained
models to real-time images. They have trained their system to give feedback to the flow
control system. The RF algorithm gave 97% accuracy with a training time of 57.4 ms.
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Moreover, in [98], the authors use RF for crop and weed classification through the
following approach. They perform classification using NIR + RGB images, which were
captured through a mobile robot. NIR can help distinguish the plant from the soil and
background. This process is defined in four steps; firstly, identification of a plant using NIR
information, which helps remove unrelated backgrounds so that only relevant regions can
be considered for classification. Then masking is computed on pixel location. Secondly,
feature selection has been performed on the relevant region. Then in the third step, RF
is applied to those computed features, and a binary probability distribution is obtained,
which described that the pixel belongs to a crop or a weed. In the fourth and last step, to
improve the classification results, the information from the third step is utilized in Markov
Random Field (MRF) by computing label assignment independently of the other nearby
labels. In this way, authors were able to achieve 97% accuracy with RF.

In [99], the authors focus on identifying weeds from carrot fields to reduce the use of
herbicides. During the development of plants, it is very difficult to discriminate between
the color of a plant and weeds, which also makes the discrimination process even more
difficult when both the plant and weed overlap each other. To address this problem, they
proposed a 3-step procedure: (1) image segmentation. In this step, the input images are
segregated from weeds using a normalization equation which gives higher weight to the
greener part of the plants and removes the other colors from the input image, (2) in the
second step, feature extraction is performed from the images got from the first step, and
(3) in the third step, weed detection is performed through SVM algorithm. In addition, the
overall accuracy obtained by SVM is 88%. In a related paper [100], the authors discussed the
problem of overlapping weed and carrots leaves. In the initial stage of plant development,
the color of both plant and weed are the same, which makes it more challenging to identify
the weed and plant. Therefore, the 3 step procedure has been proposed to improve the
detection or identification of plants and weeds. Initially, images are segmented using
k-means clustering. Then, features are extracted from these segments by using HoG, which
is then fed to SVM to acquire an improved accuracy of 92%.

In [103], the objective of this research is to propose a very accurate identification of
weeds against crops using robots. The similarities between the shape of a plant and a weed
make it challenging to identify plants precisely from weeds. For that reason, they tried to
add different shapes to make a pattern for the individual range of the plants and tried to
detect weeds based on these patterns using SVM and ANN to achieve maximum accuracies
of 95% and 92%, respectively. Moreover, in [104], the authors compare the performance
of several ML algorithms to detect the Canadian Thistle weed, particularly from a limited
sample size of 30 images. The intent of the authors is also to demonstrate that, with the use
of enhanced IP techniques, it can be possible to attain comparable performance with ML
algorithms. Hence, the authors compare the performance of NBG, DT, KNN, SVM, and
ANN algorithms with an IP technique in which they initially convert the image to grayscale,
remove it from the green channel (in RGB), binarize it, and then perform morphological
erosion to detect weed. In fact, this is not a new IP algorithm but rather a sequence of N/M
IP techniques. The authors show that this IP method achieves comparable accuracy (98%)
to the ML algorithms (97%, 96%, 96%, 96%, and 96%, respectively).

In [106], the authors have focused on developing a system that caters to the effect
of using multiple image resolutions in the weed detection process. The authors employ
enhancements of feature extraction, codebook learning (a clustering technique), feature
encoding, and image classification as IP techniques. Particularly, the system takes an image
as an input with 200 × 50 resolution, then feature extraction is performed by combining
fisher encoding with codebook to cater to the limitation of feature extraction by using 2-level
image representation. Then the image representation vectors got from feature extraction are
given to the SVM algorithm for classification to achieve an overall accuracy of 89%. Finally,
in [107], the authors focused on feature engineering, i.e., selecting the best set of features
from gray-scale images by using HoG and LBP techniques. The extracted features are fed
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to two ML algorithms, i.e., ERT and RF, both of which give below-par accuracy of 52.5%
and 52.4%, respectively, with a training time of 83 s and a limited customized dataset.

7.1.3. DL.CNN Papers

In [33], the authors introduce the concept of positive (weed present) and negative
(weed not present) images. They employ drone-acquired images of ‘black-grass‘ and
‘common chickweed‘ for the positive class and ‘wheat,‘ ‘maize,‘ and ‘sugar beet‘ for the
negative class. They pre-process images to avoid overfitting because of a small range of
datasets and use the traditional (vanilla) CNN architecture with three combinations of
convolution and max pooling layers to extract filters through the former and reduce size
through the latter, followed by the one-dimensional fully-connected layer and a single
output neuron for classification. The authors achieve an accuracy of 97%. Moreover, in [83],
the authors employ transfer learning techniques to reuse the GoogleNet CNN that was
previously trained on IARA datasets to classify three types of weeds, namely littleseed
canarygrass, crowfoot, and jungle rice. The authors achieve an average accuracy of 98%
across these three weeds.

In [85], the authors detect weeds from images of carrot fields to enhance the perfor-
mance of an existing CNN architecture (with one convolution and max pooling layer only)
through the use of GPUs. Although the accuracy remains exactly the same, the authors can
attain a maximum speed-up of 2.0× (976 min on GPU as compared to 1895 min on CPU). In
another application [31], the authors propose using CNNs to localize and classify weeds
simultaneously from carrot field images acquired through robots to replace their current
lengthy solution of multi-stage weed detection process through image segmentation. They
experiment with both YOLO and GoogleNet to acquire a weed detection accuracy of 89%
and 86%, respectively, which is a significant performance improvement over their image
segmentation framework.

In [88], the researcher has used Mask R CNN for enhancement of accuracy in weed
detection for the following weeds: mayweed, chickweed, blackgrass, shepherd’s purse,
cleaver, fat-hen, and loose silky-bent. They employ Mask R CNN also for the segmen-
tation of weed images. In both applications, Mask R performs better than FCN through
a 100% accuracy in training and greater than 90% in the validation phase. In another
application [89], the authors compare the performance of CNN with the HoG image pro-
cessing method for weed detection. CNN application is conducted on hyperspectral images
with four convolutional layers, two fully-connected ones, while RGB images are used with
the HoG method. The results show that CNN can extract more discriminative features than
HoG and with better accuracy (88%), although the computational processing required by
CNN increases with the number of color bands.

Yet another comparison between CNN and IP techniques is done in [91], in which
the authors develop a low-cost weed identification system that employs CNN. In the
system, the data are initially collected and processed. Then, a relevant set of images is
sampled, followed by weed detection through CNN. The authors also employ HOG and
LBP approaches and achieve the best accuracy of 96% by initially employing LBP to extract
relevant features and then using them as input to CNN. In [30], the authors generate
synthetic datasets for weed classification based on real datasets by randomizing different
features such as species, soil type, and light conditions. They compare the performance
of weed detection over both synthetic and real datasets by using Segnet and Segnet-Basic
CNNs and show that there is no performance degradation with synthetic datasets with the
accuracy of 84% and 98%, respectively.

In [96], the authors indicate the limitations of detecting weeds with real-life images in
that whole image content has to be fed into deep learning architectures, which sometimes
makes it difficult to distinguish weeds from their background like soil. Hence, the authors
propose using pre-trained deep learning models, particularly ResNet-50 for classification
and YOLO for performance speed-up to achieve an accuracy of 99%. The authors cre-
ate a framework to utilize both these models for weed detection. In a related work [81],
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the authors experiment with three different deep CNN architectures for weed detection,
namely, DetectNet, GoogleNet, and VGGNet. They discovered that, for different types of
active turfgrass weeds, VGGNet demonstrated much superior performance as compared
to GoogleNet in different surface conditions, mowing heights, and surface densities. More-
over, DetectNet outperformed GoogleNet for dormant turfgrass weeds. The authors also
demonstrate that image classification is an easier solution for weed detection as compared
to object detection because the latter requires the use of bounding boxes.

In [101], the authors solve the tedious process of manually labeling image data at
the pixel level by proposing a 2-step manual labeling process. Here, the first step is the
segregation of foreground and background layers using maximum likelihood classification,
with manual labeling of segmented pixels of background occurring in the second step. This
setting can be used to train segmentation models which can discriminate between crops
and other types of vegetation. The authors experiment with this approach using a SegNet
model based on ResNet-50 and VGGNet encoder blocks, and UNet. The ResNet-50 SegNet
model can demonstrate the best result (99%). Furthermore, in [105], the authors employ
the AlexNet CNN architecture for weed classification in the ecological irrigation domain
by using three different combinations of weeds and crops as datasets, with both CPU and
GPU computing. They demonstrate a maximum accuracy of 99.89%. The authors validate
that through their AlexNet application, both multiple and single weeds can be detected
simultaneously, hence allowing enhanced irrigation control and management.

In [108], the authors developed intelligent software that is able to perform weed
detection on-the-fly on multi-spectral RGB + NIR images acquired from the BOSCH Bonirob
farm robot. For this, a lightweight CNN is initially used to extract pixels that represent
projections of three-dimensional points belonging to green areas or vegetation. Then, a
much deeper CNN uses these pixels to discriminate between crops and weeds. The authors
also propose a novel data summarization method that selects relevant subsets of data that
are able to approximate the original complete data in an unsupervised manner. The authors
are able to achieve a maximum mean average precision (mAP) of 95%. A similar work is
done in [110], where the authors use GoogleNet to detect weeds in the presence of a large
amount of leaf occlusion. The loss function is guided by the bounding boxes and coverage
maps of 17,000 original images collected from a high-speed camera mounted on an all-
terrain vehicle. The authors manually annotate these images (which is a time-consuming
activity) to achieve a precision of 86%, although the recall performance is poor (46%).

In [80], the author experiments with three CNN architectures, namely VGGNet,
GoogLeNet, and DetectNet, for the recognition of broadleaf weeds in turfgrass areas.
Through different experiments, the authors show that VGGNet demonstrates the best per-
formance in classifying several different broadleaf weeds, while DetectNet outperformed
the others in detecting one particular broadleaf weed. Furthermore, in [111], the authors
sought to categorize the weeds in aerial photographs obtained from a height of under
ten meters. The photos were taken using a 3024 × 4032 pixel resolution. Images were
captured at the Heidfeldhof estate near Stuttgart’s Plieningen. Using a mobile, pictures
were captured vertically at a height of 50 cm. The captured weed was in its early stages of
development, and [135] weed photos were utilized to evaluate the model using pixel-based
techniques. They use the CNN model and proposed two approaches, one is object detection,
and the second is pixel-wise labeling. The object-based approach was applied to three
different datasets, and the highest mAP achieved by this approach was 84.2%, and the
pixel-wise approach achieved 77.6% as the highest mean accuracy using FCN.

In [114], the authors combine DL with IP for the classification of crops and weeds.
Initially, a previously-trained CenterNet is used for detecting crops and drawing bounding
boxes around them. Then, green objects falling outside these boxes are considered to be
weeds, and the user can then focus only on crop detection with the reduced number of
training images and easier weed detection. Moreover, the authors employ a segmentation-
based IP method based on color indexing to facilitate the aforementioned detection of
weeds, with the color index being determined through Genetic Algorithm optimization.
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This setup achieved a maximum precision of 95% for weed detection in crop/vegetable
plantations.

In [116], the authors simply propose a framework for crop and weed classification
using deep learning in real-time. They use Dicot and Monocot weeds. Images are being
captured using a USB camera and processing of images has been done by using the OpenCV
library. For weed classification, SSD objection detection is used, which uses a pre-trained
VGG16 for mapping features from images and convolutional filter layers for the detection
of weed. For three different settings, i.e., when the weeds and crops are overlapping and
the weed size is smaller and larger than the crop size, the authors are able to acquire an
average weed detection accuracy of 20% only.

In [117], the authors employ graph-based DL architecture for weed detection from
RGB images which are collected from a diverse number of geographical locations, as
compared to related works carried out in a controlled environment. Initially, a multi-
scale graph is constructed over the weed image with sub-patches of different measures.
Then, relevant patch-level patterns are selected by applying a graph pooling layer over the
vertices. Finally, RNN architecture is used to predict weeds from a multi-scale graph with
a maximum accuracy of 98.1%. In a related work [118], the authors use a feature-based
GCN to detect weeds. They construct a GCN graph based on features extracted through
CNN and the Euclidean distance between these features. This graph uses both labeled and
unlabeled image features for semi-supervised training through information propagation
and labeled data for testing. By combining GCN with ResNet-101, the authors were able to
acquire accuracies of 97.80%, 99.37%, 98.93%, and 96.51%, respectively, on four different
datasets, outperforming the following state-of-the-art methods: AlexNet, VGG16, and
ResNet-101, with a reduced running time of 1.42 s.

In [119], the authors propose a semantic segmentation procedure for weed detection
with ResNet-50 as the backbone architecture. They employ a particular type of convolution
called hybrid dilation for increasing the receptive field and DropBlock for regularization
through random dropping of weights. They also optimize RGB-NIR bands into RGB-NIR
color indices to make the classification results more robust and employ an attention mecha-
nism to focus the CNN on more correlated regions along with a spatial refinement block for
fusing feature maps of differing sizes. The authors test their complicated approach on Bonn
and Stuttgart datasets and compare the weed detection performance with UNet, SegNet,
and FCN, along with performance over two other semantic segmentation algorithms, i.e.,
PSPNet and RSS [12]. For both datasets, they achieve better accuracy than the above five
algorithms of 75.26% and 72.94%, respectively.

In [121], the authors employ the SSD to detect weeds in rice fields which employs
VGG16 to extract features from images. Such a setting gives a maximum accuracy of 86%
over different image resolutions, by using multi-scaled feature maps and convolution filters.
The authors mention that the accuracy achieved with VGG16 (before re-usage) was 99%.

Finally, in [122], the authors employ the YOLOv3 CNN to discriminate between crops
(sugar beet) and weeds (hedge bindweed). They use a combination of synthetic and real
images and a K-means algorithm to estimate the anchor box sizes for YOLOv3. A test run
on 100 images shows that synthetic images can improve the overall mean average precision
(MAP) by more than 7%. The system is also able to demonstrate better performance and
trade-off between accuracy and speed as compared to other YOLO variants.

Moreover [123], the researchers compared the performance of pre-trained classification
algorithms such as VGG16, ResNet50, and Inceptionv3 for weed classification. Cocklebur,
foxtail, redroot pigweed, and gigantic ragweed are four weeds commonly seen in corn and
soybean fields in the Midwest of the United States. They also used YOLOv3 object detection
to locate and classify weeds in an image dataset. VGG16 outperformed all pre-trained
models with an accuracy of 98.90%. They also compare Keras with Pytorch, finding that
Pytorch takes less time to train models and has higher accuracy than Keras.

The authors in [124] examined the performance of single shot detector (SSD) and
Faster RCNN in terms of weed detection utilizing images of soybean fields recorded with a
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UAV in this study. Both the single shot detector and the quicker RCNN object detection
algorithms were compared to the patch-based CNN model. According to the authors,
Faster RCNN outperformed the SSD Model. Furthermore, faster RCNN outperformed
patch-based CNN.

The authors of [125] research proposed a vision-based classification method for weed
identification in spinach, beet, and bean. CNN was used for classification. UAV was
used to capture the images used in this section. Precision was used to measure model
performance, and beet received the highest precision of 93%. Additionally, The researchers
in [126] attempted to construct a precision herbicide application using DCNN and its
various variations such as VGGNet, DetectNet, GoogleNet, and AlexNet for the detection
of various weeds, such as dandelion, ground ivy, and spotted spurge in this work.

To make the algorithms more manageable for hardware with low resources while
still retaining accuracy, in this study [127] the authors used ensemble learning approaches,
transfer learning, and model compression. The suggested method was carried out in
three steps: transfer learning, pruning-based compression, quantization, and Huffman
encoding, and model ensembling with a weighted average for improved accuracy. Similarly
in [128], researchers presented a method for locating a specific area and applying herbicide
based on object detection in real-time as well as crop and weed classification. In this
study, two weed types—monocotyledon and dicotyledon—that are typically seen in cereal
crops were specifically targeted. They acquired 1318 photos using a Nikon 7000 camera
for field recording, trained CNN for classification under various lighting situations, and
trained YOLO for object detection. This [129] research study offered a novel deep-learning
technique to categorize weeds and vegetable crops. CenterNEt, YOLO-v3, and Faster
RCNN were employed in this approach. The YOLO-v3 model was the most effective in
identifying weeds in vegetable crops out of the three. For the pixel-by-pixel segmentation
of weed, soil, and sugar beet, [130] the author employed ResNet50 and U-Net. For 1385
photos, they employed these models as encoder blocks, and to deal with unbalanced data,
they also applied a unique linear loss function. CNN was primarily employed for the
classification and spraying of certain areas for herbicide application. The segmentation
accuracy in tiny regions was increased by using a bespoke loss function and balanced data.

7.1.4. ML.DL.CNN Papers

In [28], the authors compare the performance of SVM, ANN, and CNN for discrim-
inating between crops and weeds, specifically four different crop types and Paragrass
and Nutsedge weed types. They employ median and Gaussian filters for identifying the
relevant areas in images and also extract shape features for both crops and weeds. SVM
is assessed over two kernel functions, i.e., radial basis and polynomial, while ANN is
evaluated with one hidden layer containing six neurons, with the output layer containing
two neurons (one each for weed and crop detection). The CNN contains the traditional con-
volutional and maxpooling layer (with ReLU activation) followed by the fully connected
layer. The authors show that, in the best result, ANN is the best classifier for both weed
and crop classes, followed by SVM and then CNN.

In [86], the authors use SVM and ResNet-18 classifier to discriminate between weeds
and crops from unsupervised (unlabeled) images collected from a UAV. They extract deep
features from the images and employ a one-class classification approach with the SVM
classifier. Hough transform and SLIC are used to detect the crops’ rows and segment the
images into superpixels, which are used to train the SVM. It is found that the performance
of SVM is comparable with the performance of a ResNet-18 CNN which has been trained
through supervised learning (maximum 90%).

In [87], the authors focus on broad-leaf weed detection in pasture fields through an
application and comparison of both ML and DL algorithms, namely, SVM (with linear,
quadratic, and Gaussian kernel), KNN, Ensemble subspace discriminant, Regression and
CNN consisting of six convolutional layers and alternating max-pooling and drop-out
layers and three fully connected layers. Local binary pattern histogram (LBPH) is used to
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extract information from grayscale and RGB images. The authors demonstrate that CNN
outperforms all ML variants by giving a maximum accuracy of 96.88%.

In [102], the authors employ CaffeNet (a variant of AlexNet) for grass weed and
broadleaf weed detection in soybean crop images captured from the Phantom DJI drone
and compare its performance with SVM, Adaboost, and RF algorithms. SLIC was used
to extract superpixels for input to all algorithms. Although CaffeNet achieved the best
accuracy of 99%, SVM, Adaboost, and RF also achieved similar results with 97%, 96%, and
93% accuracy, respectively.

In [109], the authors address the particular problem of manually annotating and/or
segmenting a large number of UAV/drone images for a supervised weed detection task.
They propose an automated unsupervised method of weed detection based on CNNs.
Initially, they detect crop rows using Hough transform variations and SLIC. The output is a
set of lines identifying the center of the crop rows, i.e., around which the crops are growing.
Applying a blob-coloring algorithm on these lines to represent the crop regions, anything
that falls outside the blob area (crop vegetation) is a potential weed. These weeds are then
labeled autonomously and form the dataset for CNN, i.e., ResNet-18. In the data of bean
fields, the best accuracy is obtained by ResNet (88.73%), followed by RF (65.4%) and SVM
(59.51%), while for the spinach field dataset, RF is the winner with 96.2% accuracy, followed
by ResNet-18 (94.34%) and SVM (90.77%).

Moreover, a thorough comparison between ANN and AlexNet CNN has been done
by the authors in [115], in which they develop an application to transmit drone-captured
images to a machine learning server. The results demonstrate that AlexNet is able to acquire
a maximum accuracy of 99.8% while the maximum achieved by ANN is only 48.09%.

In [120], the authors attempt to construct an automated weed detection system that can
detect weeds in their different stages of growth and soil conditions. For this, they employ
a set of pre-trained CNN architectures, namely Inception-Resnet, VGGNet, MobileNet,
DenseNet, and Xception, through transfer learning techniques to extract deep features.
Then, each of these feature sets is used for weed classification with a set of traditional ML
algorithms, specifically, SVM, XGBoost, and LR. The authors test the system on tomato and
cotton fields over black nightshade and velvetleaf weeds. The authors claim that the best F1
score of 99.29% is achieved by Densenet and SVM, while all other CNN-ML combinations
give an F1 score greater than 95%.

7.1.5. AE Papers

In [92], the authors focus on the problem of designing an automated weed detection
system that can generalize to varying environments and soil conditions, as well as weed
and crop types. For this, they propose an autoencoder architecture, embedded within an
FCN, which generates two types of features through the downsample-upsample process.
First are visual features that are generated for each image through the visual code generated
after downsampling, and the second are sequential features that are generated through a
sequence code that aggregates data from a batch of images acquired from the Bonirob robot.
Both visual and sequence features are combined into a pixel-level label mask that is able to
distinguish between both crops and weeds distinctly. In comparison to a baseline method
and some previous approaches, the proposed approach demonstrates better precision and
recall for both crops and weeds over the Stuttgart and Bonn datasets.

In another paper by the same research group [93], the authors use a similar approach
to identify the actual stems of the weeds for mechanical control (e.g., pulling out) and also
a surrounding region for effective spraying. For this, they initially generate a visual code
for each image, which is then input to two different decoder networks, specifically, one
which outputs a pixel map related to weed stem detection and the other for crop detection.
This information is used to identify a bounding area around the stems for spraying. The
authors show that their system can achieve better average precision for identifying two
types of weeds (dicot and grass weed) than a baseline and other related systems.
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In [97], the authors employ two variants of the SegNet algorithm (SegNet 512 and
SegNet 256) to detect weeds from the CWFID dataset. They also make several architectural
changes to the original SegNet architecture to enhance the downsampling performance for
both SegNet 512 and SegNet 256, for instance, by adding or removing convolution and
batch normalization layers, changing the kernel size and the size of the hidden layers. As
the focus of the authors here is on the decoder’s performance, we have categorized this
paper under the DL.AE label. The validation and test accuracy over SegNet 512 is 92%
and 96% respectively, while for SegNet 256, the corresponding accuracy is 92% and 93%
respectively. The authors also show that the training, evaluation, and prediction time for
SegNet 512 is understandably twice as much for SegNet 256 because the former employs
twice as more upsampling and downsampling blocks as compared to the latter.

In [112], the authors conduct a performance comparison of DeepLab V3, U-Net, and
SegNet, which are all autoencoder-based CNN variants. Initially, patches or relevant
regions are selected from aerial images of sugar beet crops to generate the relevant set of
features, which are then input into the three variants. The results show that DeepLab V3
demonstrates the best AUC values for both crop and weed identification, while U-Net
performs better than SegNet. However, DeepLab V3 is computationally the most expensive,
followed by SegNet and then U-Net. The authors recommend generating smaller patches
over a larger training data size with an application of U-Net to achieve a balance of speed
and efficiency.

In [113], the authors employ the encoder-decoder architecture for semantic segmenta-
tion of weeds and crops. The encoder employs Atrous convolution (similar to DeepLab)
over four convolution layers and one pooling layer with an output code of size 1X1. This
code is then upsampled in the decoder twice with several low-level features (from the
atrous convolution output of the encoder) as input. Different image enhancement tech-
niques were compared and used for improving the quality of images and for making the
model to be robust against different lighting conditions. The results demonstrate that when
NIR color indices are used with these enhancement techniques, the weed identification
performance is significantly improved. However, without NIR indices, pure image en-
hancement techniques demonstrate an average performance even though they still improve
the quality of images under different lighting conditions.

8. Challenges and Future Research Directions

In this section, we answer RQ4: What are the tangible future research directions to
achieve further benefit from deep learning applications for weed detection? For this, we
identify and divide the directions of future research and challenges in the domain of deep
learning applications for weed detection into two parts: domain and technical.

8.1. Domain Challenges

• Missing integrated image databases: There is a need to create a general repository
of weed image datasets with specified associations to their respective crops, generated
with high-speed cameras (either mounted on UAVs/robots or taken manually), of an
agreed-upon high resolution, and categorized according to different modality types.
This will create proper benchmarks for any future weed detection experiments. For
instance, an experiment to detect Canadian thistles in some European countries can
employ the standard Canadian Thistle images as the baseline. The need arises from
the fact that almost all researchers generate their own datasets using different types of
cameras without any baseline images, which makes it difficult to determine the exact
impact of their work on the research community.

• Lack of standards: The main challenge arising from implementing such a standard
repository is that weeds demonstrate significant diversity from each other, as do their
associated crops. Both weeds and crops can demonstrate different growth conditions
(size, density, etc.) with respect to weather and other external variables, and the effects
of shadows and illumination will require further classification (and hence complexity)
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of the resulting images. Moreover, manually annotating each image separately over
different classifications is a complex task. Catering to all of these requirements in
collecting weed and their associated crop images is a challenging task.

• Environmental Challenges: The environmental indicators such as soil temperature,
soil water potential, exposure to light, fluctuating temperatures, nitrates concentration,
soil PH and the gaseous environmental soils impact the composition of weed flora of
the cultivated area. Therefore, it is essential to understand the usage of soil profiling
and temperate can help predict early weed detection. However, creating a soil profile
is a time-consuming task because of the nature of the soil variant.

8.2. Technical-Related

We believe that our analysis of Table 7 provides a clear roadmap for practitioners
to derive multiple lines of future research with respect to the selection of algorithm to
detect a particular type of weed and/or associated crops or selection of weeds/associated
crops for detection. Moreover, from an algorithmic perspective, it is obvious that DL,
particularly with the use of CNN and its variants, has the power to generate satisfactory
predictive performance for weed detection. As this trend is prevalent and rising, we
expect it to continue in the near future. As more variants of CNNs are discovered, there
is a high probability that they will be soon applied for weed detection and its related
field. In our opinion, the distinction between the performance of ML and DL can only be
clarified after thorough experimentation of CNN/variants with more robust ML models,
particularly, SVM, Boosting variants (Adaboost, XGBoost, LightGBM), LR, and RF, over
different standard weed datasets. Although we have discussed such previous applications,
they do not demonstrate clearly that DL has a significant edge over ML applications, and
hence, these results cannot be considered comprehensive and generalizable in our opinion.

Furthermore, once we have some standard baseline repository of images as proposed
above, we propose an application of CNN on these baseline datasets to provide an actual
benchmark performance over different measures, specifically accuracy, precision, recall,
F1-score, and AUC score. The reason is that researchers are now focusing on improving
CNN’s performance further through the use of different variants, notably ResNet, VGGNet,
and SegNet. As this trend is increasing rapidly, we expect it to continue. Our proposed
baseline performance benchmarks will then provide a standard backbone to compare the
performance of any application of CNN variant over any weed type and to position the
paper with respect to its comparison with proposed baselines. In doing so, one can also try
to address the prevalent problems of natural light variation and weather effects.

Another research direction is to quantify the impact of using standard and well-
known IP techniques for both DL and ML algorithm applications, particularly feature
selection, BFS, image segmentation, cluster analysis, and different transformations, for the
exact problem of distinguishing the weeds from their respective crops in the same image.
Moreover, we have seen that very good results have been acquired in both DL and ML
applications without the use of any IP technique. So, there is a need to understand, quantify
and hence standardize the impact of these techniques for crop-weed discrimination and a
generalized perspective.

Moreover, it remains to be explored how ML and DL applications are impacting
related fields such as pest and disease detection and the impact of transfer learning of
CNN-based models from one domain to the other. Finally, we believe there is a need to
design appropriate software architectures for such a weed detection activity which could
be generalized for future applications.

9. Conclusions

This paper conducts the first SLR to review deep learning applications in depth for
weed detection. We adopt the standard SLR methodology and answer four concrete
research questions to thoroughly summarize the state-of-the-art research’s impact and
articulate domain and technical challenges for future research directions. Furthermore, we

214



Sensors 2023, 23, 3670

created a citation graph to understand the pattern of publications and researchers in this
area. We also compare our work with the eight latest literature reviews and demonstrate
our approach’s superiority and differences with these reviews.
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Abstract: The emerging field of eXplainable AI (XAI) in the medical domain is considered to be of
utmost importance. Meanwhile, incorporating explanations in the medical domain with respect
to legal and ethical AI is necessary to understand detailed decisions, results, and current status of
the patient’s conditions. Successively, we will be presenting a detailed survey for the medical XAI
with the model enhancements, evaluation methods, significant overview of case studies with open
box architecture, medical open datasets, and future improvements. Potential differences in AI and
XAI methods are provided with the recent XAI methods stated as (i) local and global methods for
preprocessing, (ii) knowledge base and distillation algorithms, and (iii) interpretable machine learning.
XAI characteristics details with future healthcare explainability is included prominently, whereas
the pre-requisite provides insights for the brainstorming sessions before beginning a medical XAI
project. Practical case study determines the recent XAI progress leading to the advance developments
within the medical field. Ultimately, this survey proposes critical ideas surrounding a user-in-the-
loop approach, with an emphasis on human–machine collaboration, to better produce explainable
solutions. The surrounding details of the XAI feedback system for human rating-based evaluation
provides intelligible insights into a constructive method to produce human enforced explanation
feedback. For a long time, XAI limitations of the ratings, scores and grading are present. Therefore, a
novel XAI recommendation system and XAI scoring system are designed and approached from this
work. Additionally, this paper encourages the importance of implementing explainable solutions
into the high impact medical field.

Keywords: eXplainable Artificial Intelligence (XAI); XAI recommendation system; XAI scoring
system; medical XAI; survey; approach

1. Introduction

XAI is recently dominating the research field for improving the transparency of the
working model with the user. The brief history of AI development relates to statistical
analysis, machine learning, natural language processing, computer vision, and data science.
Even though such developments were present, it was not able to exceed human intelligence
which was later progressed by neural networks, reinforcement learning, and deep learning.
Such AI applications advancements were not only beneficial for weather forecasting analy-
sis, self-driving cars, and the AlphaGo game capable of competing with the best humans’
skills, but also were found to be of critical importance within the medical domain and its
progress [1,2]. Human–Computer Interaction (HCI) research is also progressing to auto-
mate many applications and provide solutions [3]. Nevertheless, the improvements within
the life expectancy have been recently improved with the use of advanced technologies and
still will be beneficial to tackle the problems faced within different categories of the medical
domains. Therefore, developments within the medical domain are discussed which focuses

Sensors 2022, 22, 8068. https://doi.org/10.3390/s22208068 https://www.mdpi.com/journal/sensors221



Sensors 2022, 22, 8068

mainly on pneumonia status, bloodstream infections (BSI), acute kidney injury (AKI) and
hospital mortality (HM) prediction [4]. XAI is necessary to be evaluated with the medical
domain progression as it provides complete details of each algorithmic step thought to
be trusted within the medical domain, practitioners, and experts. The three stages in XAI
can be given as (i) explainable building process for facilitating acceptance, (ii) explainable
decisions for enabling trust with users and administrators, and (iii) explainable decision
process for the interoperability with business logic [5]. The goal of XAI is to provide
machine and deep learning algorithms for better performance with explainability, which
further allows ease of user trust, understanding, acceptance, and management.

Even though the drawbacks of the previous AI system including black box models,
catastrophic consequences in medical diagnosis were discussed by some reference [6]
but later by the progression with the model development, enhancement and tuning high
accuracy, quality of work, and speed was achieved. XAI was also found to be the European
Union’s General Data Protection Regulation (GDPR) standard complaint, as no data is
revealed to the outside system/participants by disclosing private medical datasets and
providing explanations in the decision process.

1.1. Motivation

The motivation for this work is thought from realizing “Why explainability is necessary
in the medical domain?”, or it can also be given as the actual motivation is the laws and
ethics aspects in the applications of XAI need to be considered before they can be applicable
in the medical domain. In various parts of the world, the right to explanation is already
enshrined by law, for example by the well-known GDPR, which has huge implications
for medicine and makes the field of XAI necessary in the first place [7]. The medical AI
is termed as a high-risk AI application in the proposal by European legislation, which is
regulated for the fundamental rights of human dignity and privacy protection. In this
case, the decision is based solely on real-time AI processing after the decision to assess,
which is overcome by the “right to explanation”. As the GDPR prohibits decisions solely
based on automated processing, the final decision is drawn from the human in the loop
approach and informed consent of the data subject. The legal responsibility of medical
AI malfunctioning leads to civil liability instead of criminality. Additionally, compulsory
insurance is required in the future against the risks of AI applications by the liability law.
The ethics in medical AI gives a sustainable development goal for the “good health and
well-being” by the United Nations [8]. The bias or flaw in training data due to the societal
inclination impact may lead to the limitations in AI performance. Therefore, the factors
given by the ethics committee discussions about the contribution of medical AI needs
to be given so as to know the specific part decision/action, communication by AI agent,
the responsibility taken by the competent person, transparency/explainability, method
reference, avoiding manipulation for high accuracy, avoiding discrimination, and the
algorithm must not control AI decision and actions. The purpose is to make AI a friend,
and combining all of the above responsibilities, it would be termed as XAI. Therefore, the
XAI approach provided within this paper constitutes one of the major portions for the
directions of future approach and perspective.

1.2. Interpretability

A recent survey on medical XAI focuses completely on interpretability [9]. As the
medical field possessess a high level of accountability and transparency, a greater inter-
pretability is needed to be explained by the algorithm. Even though the interpretability is
treated equally across all the hospitals, it should be handled with caution; medical practices
should be the prime focus for interpretability development, and data based on mathemat-
ical knowledge for technical applications are encouraged. The different interpretability
categories referenced here are perceptive and mathematical structures. The perceptive
interpretability is mostly a visual evidence that can be analyzed using saliency maps,
i.e., LIME, Class Activation Map (CAM), Layer-wise Relevance Propagation (LRP), etc.
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In signal methods, the stimulation/collection of neurons are detected, i.e., feature maps,
activation maximization, etc. The verbal interpretability is the human understandable
logical statements based on the predicates, connectives, i.e., disjunctive normal form (DNF)
and NLP. The mathematical structure based interpretability is the popular mechanism
used through machine learning and neural network algorithms, whereas the predefined
models are the relation between variable to output variable that includes logistic regression,
Generative Discriminative Machine (GDM), reinforcement learning, etc. Ultimately, the
feature extraction from the input source is performed by graphs presentation, clustering,
frame singular value decomposition (F-SVD), etc.

1.3. Feedback Loop

A feedback loop designed for the XAI continuous development includes multiple
phases, which can be given as follows [10]. The model debugging and visualization is
performed first, then model compilation is performed by testing, after which the model is
then released based on versioning. During the output phase, the predictions are performed
by explainable decisions in which different models are compared for analysis and perfor-
mance monitoring is performed successively followed by debugging and feedback loop.
The model’s explainability increases based on how much it supports open box architecture.
The deep learning models, i.e., convolutional neural networks (CNN), recurrent neural
networks (RNN) are the least explainable and are the predecessor of ensemble model, i.e.,
random forest, XGB. The statistical models and graphical models are easy to understand
and are more straight forward, i.e., SVM, Bayesian brief net, Markov models, etc. The deci-
sion trees, linear models, and rule-based models are the most explainable and completely
open box architecture models. The different XAI categories explained within this refer-
ence include dimension reduction which are presented as most important input features
by selecting optimal dimensions, e.g., optimal feature selection, cluster analysis, LASSO,
sparse deep learning, and sparse balanced SVM. The feature importance is used to capture
characteristics and correlation amongst features for XAI models, e.g., feature weighting,
DeepLIFT, SHAP, whereas the attestation mechanism captures the important areas where
attention is required by the model, e.g., MLCAM, CAM, GRAD-CAM, Respond-CAM. The
XAI well-known knowledge distillation is drawing the knowledge from a complicated
model to a more rationalized model, e.g., rule-based system, mimic learning, fuzzy rules,
and decision rules. Ultimately, the surrogate models are the locally faithful models and
approximate reference models to surrogate model, e.g., LIME, LRP, etc.

1.4. General XAI Process

As the XAI necessity is thought to be effective for improvements within the future
system. Therefore, the initial steps required for the XAI process are as follows:

(a) Pre-processing: The data cleaning, recovery/imputation and top feature analysis
are described in this phase. The data cleaning refers to the handling of the incorrect,
duplicate, corrupted, or incomplete dataset, whereas the data imputation refers to the
substitute values for replacing missing data. In case of SHapley Additive exPlanations
(SHAP), which is a part of game theoretic approach for identifying the top dominating
features to help achieve better prediction results [8].

(b) Methodology: The model specifically designed for the effective implementation of
the machine or deep learning construction and tuning. There are many machine learning
algorithms, i.e., naïve bayes, linear regression, decision trees, support vector machine
(SVM), etc., whereas neural networks are used to mimic human brains by providing a series
of algorithms for recognizing relationships within the dataset [9,10]. The interpretable
deep learning refers to the similar concepts except inspecting data processing at each layer
and thus helping the designer to control the data movement and mathematical operations
within it. Furthermore, the layers can also be configured by setting the feature learning by
convolution, max pooling, and classification by fully connected, activation functions, etc.
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(c) Explanation: This phase provides the explanation for each decision transparently to
know the importance and action taken by the algorithm. The explanation provides detailed
reasoning for all the decisions taken within the model from preprocessing, algorithm for
prediction, classification, evaluation, and conclusion. As the explanations form the crucial
content of XAI, it improves the acceptance of the deployed system to the end user, domain
experts, or clients.

(d) Re-evaluation: Feedback system designed to understand limitations as the differ-
ence in choices made by the users and the algorithms. At the end of the algorithm, the end
user can interact with the system by providing the necessary feedback for each decision
and parameters used, which later can be evaluated effectively by re-configuration in the
successive version. Therefore, it not only promotes ease of usage but also makes the end
user as the part of the system, which can improve the next version of the training data and
weights enhancement.

1.5. Objectives

The objectives for this survey can be given as follows:

• Determine the current progress within the different infection/diseases based on AI
algorithms and their respective configurations.

• Describe the characteristics, explainability, and XAI methods for tackling design issues
in the medical domain.

• Discuss the future of medical XAI, supported by explanation measures by human-in-
the-loop process in the XAI based systems with case studies.

• Demonstrate a novel XAI Recommendation System and XAI Scoring System applicable
to multiple fields.

A paper plan for this survey is given as follows: related works describe the various
infections/diseases-based references, methods, and evaluations in Section 2; the difference
between AI and XAI methods is given in Section 3; and recent XAI methods usage with
its importance in Section 4. Afterwards, the characteristics of XAI0-based explanation
in Section 5; future of XAI explainability in Section 6; and prerequisite for AI and XAI
explainability in Section 7. Lastly, details about the case study for application usage in
Section 8; XAI limitations in Section 9; XAI Recommendation System in Section 10; and
XAI Scoring System in Section 11, followed by the conclusion and references.

2. Related Works

In this section, we are going to present the background for the medical domain with
respect to the various infection or diseases related works, which are recently presented as a
solution using AI or XAI. The research work presented in medical fields is mostly evaluated
using mathematical statistics and machine learning algorithms as given in Tables 1–4.
Therefore, it presents several opportunities to provide XAI-based implementation and
improve the current understanding with better evaluation using classification.

The highly affecting acute respiratory disease syndrome (ARDS) or pneumonia-based
evaluation supports various features such as vital signs and chest X-rays (CXR) [11]. The
classification in this case can be mostly performed within the combination or indepen-
dent data sources of vital signs and/or CXR. Usually the patients within this case are
required to be first identified with specific symptoms of cough, fever, etc., and then the
vital signs and/or CXR are used by the medical examiners to diagnose and know the
healing progress of the pneumonia status. Later, the discharge is predicted using this work,
and also more detailed configuration can help to understand the algorithm behavior. The
mechanism for local determines a single decision system, whereas for global it determines
multiple decisions.

Figure 1 presents the mindmap diagram for the literature survey analysis. The expla-
nation type ante-hoc is for open/human understandable models and post hoc for black
boxes and Deep Neural Networks (DNN). One of the commonly occurring infections within
patients is bloodstream infection (BSI), which can be identified by the presence of bacterial
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or fungal microorganisms within the blood samples [21]. It is also popularly known as
sepsis/septic shock and has severe symptoms. The most common symptoms include
fever, increase in heart rate, high blood pressure, chills, and gastrointestinal issues. In the
previous studies, the BSI was studied in detail with vital signs and laboratory variables
with ICU admission data. The preprocessing is mostly done to recover the missing data in
the BSI and Non-BSI cases, which is later evaluated using the machine learning model. The
BSI once detected then later can be cured using medicine treatment.

Figure 1. MindMap diagram for the medical AI analysis.

Table 1. General analysis for the explanation-based preprocessing.

Ref. # Reference Reference
Paper/Mechansim

Data Preprocessing Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[11] Selvaraju, R.R.
et al. (2017)

GRAD-CAM/Global GRAD-CAM VGG, Structured CNN,
Reinforcement Learning
comparisons.

Textual explanations and
AUROC/post-hoc

[12] Tang, Z. et al. (2019) Guided
GRAD-CAM/Global

GRAD-CAM and
feature occlusion
analysis.

Segmentation on
heatmaps and CNN
scoring.

AUROC, PR curve, t-test
and p-value/post-hoc

[13] Zhao, G. et al. (2018) Respond CAM/Global GRAD-CAM, weighted
feature maps and
contours.

Sum to score property on
3D images by CNN.

Natural images captioning
by prediction/post-hoc

[14] Bahdanau
et al. (2014)

Multi-Layer
CAM/Global

Conditional probability Encoder–decoder, neural
machine translation and
bidirectional RNN.

BLEU score, language
translator and confusion
matrix/post-hoc

[15] Lapuschkin, S.
et al. (2019)

LRP 1/Local
(Layer-wise relevance
propagation).

Relevance heatmaps. Class predictions by
classifier, Eigen-based
clustering, LRP, spectral
relevance analysis.

Detects source tag,
elements and orientations.
Atari breakout/ante-hoc

[16] Samek, W.
et al. (2016)

LRP 2/Local Sensitivity LRP, LRP connection to
the Deep Taylor
Decomposition (DTD).

Qualitative and
quantitative sensitivity
analysis. importance of
context measured/post-hoc

[17] Thomas, A.
et al. (2019)

LRP DeepLight/
Local

Axial brain slices and
brain relevance maps.

Bi-directional long
short-term
memory (LSTM) based
DL models for fMRI.

Fine-grained
temporo-spatial variability
of brain activity, decoding
accuracy and confusion
matrix/post-hoc
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Table 1. Cont.

Ref. # Reference Reference
Paper/Mechansim

Data Preprocessing Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[18] Arras, L. et al. (2016) LRP CNN/Local Heatmap
visualizations/PCA
projections.

Vector-based document
representations
algorithm.

Classification performance
and explanatory power
index/ante-hoc

[19] Hiley, L. et al. (2020) LRP DNN/Local Sobel filter and DTD
selective
relevance (tempo-
ral/spatial)
maps

A selective relevance
method for adapting the
2D explanation technique

Precision is the percentage
overlap of pixels, std. and
Avg. precision
comparison/ante-hoc

[20] Eberle, O. et al. (2020) LRP BiLRP/Global DTD to derive BiLRP
propagation rules.

Systematically
decompose similarity
scores on pairs of input
features (nonlinear)

Average cosine similarity to
the ground truth, similarity
matrix/ante-hoc

Table 2. Analysis for the BSI-affected patients treatment research.

Ref. # Reference Paper Dataset Data Preprocess-
ing/Mechanism

Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[21] Burnham, J.P.
et al. (2018)

430 patients Chi-squared/Fisher
exact test, Student t test
/Mann–Whitney
U/Global

Multivariate Cox
proportional hazards
models

Kaplan–Meier curves and
p-values/ante-hoc

[22] Beganovic, M.
et al. (2019)

428 patients Chi-square/ Fisher
exact test for
categorical variables,
and t test/ Wilcoxon
rank for continuous
variables./Global

Propensity scores (PS)
using logistic regression
with backward stepwise
elimination and Cox
proportional hazards
regression model.

p-values./ante-hoc

[23] Fiala, J. et al. (2019) 757 patients Generalized estimating
equations (GEE) and
Poisson regression
models/Global

Logistic regression
models, Cox proportional
hazards (PH) regression
models

p-value before and after
adjustment/ante-hoc

[24] Fabre, V. et al. (2019) 249 patients χ2 test and Wilcoxon
rank sum test/Local

multivariable logistic
regression for propensity
scores

Weighted by the inverse of
the propensity score and
2-sided p-value/ante-hoc

[25] Harris, P.N.A.
et al. (2018)

391 patients Charlson Comorbidity
Index (CCI) score,
multi-variate
imputation/Global

Miettinen–Nurminen
method (MNM) or
logistic regression.

A logistic regression model,
using a 2-sided significance
level

[26] Delahanty, R.J.
et al. (2018)

2,759,529 patients 5-fold cross
validation/Local

XGboost in R. Risk of Sepsis (RoS) score,
Sensitivity, Specficity and
AUROC/post-hoc

[27] Kam, H.J. et al. (2017) 5789 patients Data imputation and
categorization./Local

Multilayer
perceptron’s (MLPs),
RNN and LSTM model.

Accuracy and
AUROC/post-hoc

[28] Taneja, I. et al. (2017) 444 patients Heatmaps, Riemann
sum, categories and
batch
normalization/Global

Logistic regression,
support vector
machines (SVM), random
forests, adaboost, and
naïve Bayes.

Sensitivity, Specificity, and
AUROC/ante-hoc

[29] Oonsivilai, M.
et al. (2018)

243 patients Z-score, the Lambda,
mu, and sigma (LMS)
method. 5-fold
cross-validated and
Kappa based on a grid
search/Global

Decision trees, Random
forests, Boosted decision
trees using adaptive
boosting, Linear support
vector machines (SVM),
Polynomial SVMs, Radial
SVM and k-nearest
neighbours (kNN)

Comparison of
perfor-mance rankings,
Calibration, Sensitiv-ity,
Specificity, p-value and
AUROC/ante-hoc

[30] García-Gallo, J.E.
et al. (2019)

5650 patients Least Absolute
Shrinkage and
Selection Opera-
tor (LASSO)/Local

Stochastic Gradient
Boosting (SGB)

Accuracy, p-values and
AUROC/post-hoc
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Table 3. Analysis for the AKI-affected patients treatment research.

Ref. # Reference Dataset Criteria Data Preprocess-
ing/Mechanism

Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[31] Lee, H-C.
et al. (2018)

1211 Acute kidney injury
network (AKIN)

Imputation and
hot-deck
imputation/Global

Decision tree, random
forest, gradient boosting
machine, support vector
machine, naïve Bayes,
multilayer perceptron,
and deep belief networks.

AUROC, accuracy,
p-value, sensitivity and
specificity/ante-hoc

[32] Hsu, C.N.
et al. (2020)

234,867 KDIGO Least absolute
shrinkage and
selection
operator (LASSO),
5-fold cross
validation/Local

Extreme gradient
boost (XGBoost) and
DeLong statistical test.

AUROC, Sensitivity,
and
Specificity/ante-hoc

[33] Qu, C.
et al. (2020)

334 KDIGO Kolmogorov–
Smirnov test and
Mann–Whitney U
tests/Local

Logistic regression,
support vector
machine (SVM), random
forest (RF), classification
and regression
tree (CART), and extreme
gradient
boosting (XGBoost).

Feature importance
rank, p-value and
AUROC/ante-hoc

[34] He, L.
et al. (2021)

174 KDIGO Least absolute
shrinkage and
selection
operator (LASSO)
regression, Bootstrap
resampling and
Harrell’s C
statistic/Local

Multivariate Cox
regression model and
Kaplan-Meier curves.

p-value, Accuracy,
Sensitivity, Specificity,
and
AUROC/ante-hoc

[35] Kim, K.
et al. (2021)

482,467 KDIGO SHAP, partial
dependence plots,
individual conditional
expectation, and
accumulated local
effects plots/Global

XGBoost model and RNN
algorithm

p-value,
AUROC/post-hoc

[36] Penny-Dimri,
J.C.
et al. (2021)

108,441 Cardiac surgery-
associated (CSA-
AKI)

Five-fold
cross-validation
repeated 20 times and
SHAP/Global

LR, KNN, GBM, and NN
algorithm.

AUC, sensitivity,
specificity, and risk
stratification/post-hoc

[37] He, Z.L.
et al. (2021)

493 KDIGO Wilcoxon’s rank-sum
test, Chi-square test
and Kaplan–Meier
method/Local

LR, RF, SVM, classical
decision tree, and
conditional inference tree.

Accuracy and
AUC/ante-hoc

[38] Alfieri, F.
et al. (2021)

35,573 AKIN Mann–Whitney U
test/Local

LR analysis, stacked and
parallel layers of
convolutional neural
networks (CNNs)

AUC, sensitivity,
specificity, LR+ and
LR-/post-hoc

[39] Kang, Y.
et al. (2021)

1 million. N.A. conjunctive normal
form (CNF) and
Disjunctive normal
form (DNF)
rules/Global

CART, XGBoost, Neural
Network, and Deep Rule
Forest (DRF).

AUC, log odd ratio and
rules based
models/post-hoc

[40] S. Le
et al. (2021)

2347 KDIGO Imputation and stan-
dardization/Global

XGBoost and CNN. AUROC and
PPV/post-hoc
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Table 4. Analysis for the hospital mortality prediction research.

Ref. # Reference Dataset Ventilator Data Preprocess-
ing/Mechanism

Evaluation
Methods/Algorithms

Outcome/Explanation
Type

[41] Mamandipoor,
B. et al. (2021)

Ventila
dataset
with 12,596

Yes Mathews correlation
coefficient (MCC)/Global

LR, RF, LSTM, and RNN. AUROC, AP, PPV, and
NPV/post-hoc

[42] HU, C.A.
et al. (2021)

336 Yes Kolmogorov–Smirnov
test, Student’s t-test,
Fisher’s exact test,
Mann–Whitney U test,
and SHAP/Global

XGBoost, RF, and LR. p-value,
AUROC/ante-hoc

[43] Rueckel, J.
et al. (2021)

86,876 Restricted
ventilation
(atelectasis)

Fleischner criteria,
Youden’s
J Statistics, Nonpaired
Student t-test/Global

Deep Neural Network. Sensitivity, Specificity,
NPV, PPV, accuracy, and
AUROC/post-hoc

[44] Greco, M.
et al. (2021)

1503 Yes 10-fold cross validation,
Kaplan–Meier curves,
imputation and
SVM-SMOTE/Global.

LR and Supervised
machine learning models

AUC, Precision, Recall,
F1 score/ante-hoc

[45] Ye, J.
et al. (2020)

9954 No Sequential Organ Failure
Assessment (SOFA) score,
Simplified Acute
Physiology Score II (SAP
II), and Acute Physiology
Score III (APS III)./Global

Majority voting, XGBoost,
Gradient boosting,
Knowledge- guided CNN
to combine CUI features
and word features.

AUC, PPV, TPR, and F1
score/ante-hoc

[46] Kong, G.
et al. (2020)

16,688 Yes SOFA and SAPS II
scores./Local

Least absolute shrinkage
and selection
operator (LASSO), RF,
GBM, and LR.

AUROC, Brier score,
sensitivity, specificity,
and calibration
plot/ante-hoc

[47] Nie, X.
et al. (2021)

760 No Glasgow Coma
Scale (GCS) score, and
APACHE II/Global

Nearest neighbors,
decision tree, neural net,
AdaBoost, random forest,
and gcForest.

Sensitivity, specificity,
accuracy, and
AUC/ante-hoc

[48] Theis, J.
et al. (2021)

2436 N.A. SHAP, SOFA, Oxford
Acute Severity of Illness
Score
(OASIS), APS-III, SAPS-II
score, and decay replay
mining/Global

LSTM encoder–decoder,
Dense Neural Network.

AUROC, Mean AUROC
and 10-FOLD CV
AUROC/post-hoc

[49] Jentzer, J.C.
et al. (2021)

5680 Yes The Charlson
Comorbidity Index,
individual comorbidities,
and severity of illness
scores, including the
SOFA and APACHE-III
and IV scores/Global

AI-ECG algorithm AUC/post-hoc

[50] Popadic, V.
et al. (2021)

160 Yes N.A./Local Univariate and
multivariate logistic
regression models

p-values, ROC
curves/ante-hoc

A severe type of infection or condition, which can be caused by multiple factors
affecting blood flow to the kidney or medications side effects is known as acute kidney
injury [31]. The symptoms can be basically seen in the lab tests, which include urine output
and serum creatinine levels. In case of ventilation support, additional parameters are
considered for the features. The preprocessing could help to improve data quality and
provide promising results. Machine learning has shown to identify the stage and level of
AKI, which has helped to apply proper medication treatment, recovery for the mild and
control the severe conditions. In case of comorbidities or critical conditions, the hospital
mortality is thought to be an important prediction [41]. There are more features available
for such cases, as it involves distinct ICU parameters. Additionally, the medication courses
and its related effects are available. The criteria for considering critical cases is the first
filter for preprocessing and later data imputation can be added, if necessary. Previously,
many works have provided such predictions using time windows before 48, 72 h, etc. by

228



Sensors 2022, 22, 8068

using either statistical, machine learning, and/or CNN methods. Such work is important
in case of shifts in the medical treatment department or medication course.

3. Potential Difference between the AI and XAI Methods

Figure 2 presents various factors responsible for the difference in AI and XAI methods.

Figure 2. Difference in AI and XAI Methods.

Researchers are required to select XAI methods for the benefits as discussed below:

3.1. Transparency in the System Process

The use of conventional black-box-based AI models have limited its use and trans-
parency of the system. Therefore, XAI methods are known for their transparent systems
that provide the details of the data preprocessing, model design, detail implementation,
evaluation, and conclusion. Transparency provides the user with complete system design
that can be later configured, improved, versioned, and audited effectively.

3.2. Explainability of the System

The AI model lacks explainability for the system process. Therefore, the user’s trust
can be gained by a highly explained XAI-based decision process. The decision taken on
every step of the system process and its supporting explanation makes it more effective. In
case of model design issues, the explainability can also help to identify at which process
step the erroneous decision was made and thus later can be resolved. The explainability is
crucial for the initial data analysis, decision, and action for the whole XAI model.

3.3. Limitations on the Model Design

The AI models are usually black box and are not accessible to the end users. In
comparison, the XAI provides models more interpretability at each structural layer, which
is used to know the data quality, feature distribution, categorization, severity analysis,
comparison, and classification. Thus, the acceptance of the XAI models is more due to
interpretability. The user is more confident and has trust in the system. Nevertheless,
false positive values can also be caught and analyzed in detail to avoid system failure and
better treatment.
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3.4. Adaptability to the Emerging Situations

The XAI models are known for high adaptability by using the feedback technique. The
domain experts/medical examiners may be interested in applying/modifying a new feature.
In severe cases, ICU parameters can also be adopted for better discharge and mortality
classification. Due to recent infections, the cases of comorbidities are on the rise and such
complex cases need high adaptability and explainability for the treatment. Ultimately, the
model quality can be kept consistent and will be applicable to long-term usage.

4. Recent XAI Methods and Its Applicability

The recent reference papers show the approach of providing interpretability and
transparency of using the models as shown in Figure 3. Even though the models, dataset,
criteria, and outcome are specified in detail in many medical domain papers, still the
explainability and justifiability needs to be provided for every case. In the future, interactive
AI systems will be in more demand for providing such explainability and interaction with
the domain experts to continuously improve the outcome, which is adapted to various
situations such as changes in human, weather, and medical conditions. The tables from
1 to 4 are probable approaches for the respective infection/disease and are deemed to be
appropriate for the hospital-based recovery prediction. For this section, we are going to
discuss the preprocessing methods used for the recent paper, algorithms used within their
respective models, and outcome.

 

Figure 3. XAI Methods Categorization.

4.1. Local and Global Methods for the Preprocessing
4.1.1. Gradient Weighted Class Activation Mapping (Grad-CAM)

Grad-CAM [11] is used for prediction of the respective concept by referring to the
gradients of the target, which is passed to the final convolutional layer. The important
regions are highlighted using the coarse localization mapping. It is also known to be a
variant of heat map, which can be used by image registration to identify the different image
sizes and scales for the prediction. Grad-CAM is a propagation method, easy to visualize
and provides user-friendly explanations. It is one of the popular methods in object detection
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and is recently used frequently within the medical domain to identify different diseases
and affected areas of the patient. The chest X-ray (CXR), CT-scan, brain tumors, fractures in
the different human/animal parts can be easily highlighted by such application. As the
accuracy with sensitive domain is not recommended, there are several other versions for the
CAM supported analysis include Guided Grad-CAM [12], Respond-CAM [13], Multi-layer
CAM [14], etc. The Guided Grad-CAM is used to check models prediction by identifying
salient visual features. Thus, the interest class relevant features are highlighted by the
saliency maps. The Grad-CAM and guided backpropagation pointwise multiplication is
known as saliency maps. The Guided Grad-CAM is known to generate class specific maps,
which are the last convolutional layers feature map dot product and neurons combining
to a predicted class score by partial derivatives. The Respond CAM is used to operate
on the 3D images having complex structures of macromolecular size from the cellular
electron cryo-tomography (CECT). The Respond-CAM has a sum to score property for
better results than Grad-CAM and is used to highlight 3D images’ class discriminative
parts using weighted feature maps.

The Respond-CAM’s sum-to-score property can be given as y(c) as the class score, b(c)

is the last layer CNN parameter, ∑
i,j,k

(L(c)
A ) is the class c sum for Grad-CAM/Respond-CAM

and C as the number of classes given in Equation (1).

y(c) = b(c) + ∑
i,j,k

(L(c)
A )i,j,k (1)

The Multi-layer Grad-CAM is used to compute conditional probability of the selected
feature with a single maxout hidden layer. It is based on maxout units, a single hidden
layer with a softmax function to normalize output probability.

4.1.2. Layer-Wise Relevance Propagation (LRP)

It is also one of the popularly used propagation methods, which operates by using the
propagation rules for propagating the prediction backward in the neural network. The LRP
can flexibly operate on input such as images, videos, and texts. The relevance scores can be
recorded in each layer by applying different rules. The LRP is based and justified using
a deep taylor decomposition (DTD). It can be set on a single or set of layers in the neural
network and can be scaled in the complex DNN by providing high explanation quality. It
is also popularly used in the medical domain consisting of CXR, axial brain slices, brain
relevance maps, and abnormalities, etc. The versions available in LRP are LRP CNN, LRP
DNN, LRP BiLRP, LRP DeepLight for the heatmap visualizations. The LRP relevance is
higher as compared to other visualization/sensitivity analysis. The input representations
are forward-propagated using CNN until the output is reached and back-propagated
by the LRP until the input is reached. Thus, the relevance scores for the categories are
yielded in LRP CNN [18]. For the LRP DNN [19], the CNN is tuned with initial weights
for the activity recognition with pixel intensity. In LRP BiLRP [20], the input features pairs
having similarity scores are systematically decomposed by this method. The high nonlinear
functions are scaled and explained by using composition of LRP. Thus, the BiLRP provides
a similarity model for the specific problem by verifiability and robustness.

The BiLRP is presented as a multiple LRP combined procedure and recombined on
input layer. Here, x and x’ are input which are to be compared for similarity, ∅x as a
group of network layer with {∅1 to ∅L}, and y(x, x’) as the combined output given in
Equation (2).

BiLRP
(
y, x, x′

)
=

h

∑
m=1

LRP([∅L ◦ · · · ◦∅1]m, x)
⊗

LRP
(
[∅L ◦ · · · ◦∅1]m, x′

)
(2)
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The DeepLight LRP [17] performs decoding decision decomposition, which is used to
analyze the dependencies between multiple factors on multiple levels of granularity. It is
used to study the fine-grained temporo-spatial variability of the high dimension and low
sample size structures.

4.1.3. Statistical Functions for the Feature Analysis and Processing

The statistical analysis [21] of survivors and non-survivor’s comparison for categorical
variables is performed by chi-square test/Fisher’s exact test and reported as interquartile
range (IQRs) and standard deviation/medians. Whereas, the continuous variables by
Mann–Whitney U test or Student’s t-test and expressed as frequencies. The Kaplan–Meier
is used for graphical analysis of the relationship between two features with a significance
log rank test. The hazard model of multivariate cox proportional regulation regulates
the risk factor for the outcome and is analyzed graphically by the log-log prediction
plot. In such cases, a significant p-value is less than 0.05 for single variate and 0.10 for
bi-variate analysis. The generalized estimating equation (GEE) [23] is used to present the
correlations between the feature matched sets. The incidence difference between the feature
inheritance with GEE matching is within pre and post data adjustments. The Charlson
comorbidity index score [25] is used to determine the comorbidities affected hospitalized
patient life span risk within one year by a weighted index. The multivariate imputation is
performed by the multiple imputation for the post-hoc sensitivity analysis for discrete and
continuous data using chained equations. The lambda, mu, and sigma (LMS) method [29]
is used to calculate the spirometric values for the normal lower limits in the z-scores. The
kappa is an account chance agreement, where measurement agreement produces output
as kappa 1.0 else 0. The least absolute shrinkage and selection operator (LASSO) [32] is
a method of variable selection and regularization for improving prediction accuracy as
a regression analysis. The imbalance classification problem is popularly solved by using
Synthetic Minority Oversampling Technique (SMOTE) [44]. The cause of imbalance is
usually due to the minority class, which are later duplicated in the training set before fitting
the model. Such duplication helps to balance class duplication but does not provide any
additional information.

4.1.4. SHapley Additive exPlanations (SHAP)

The SHAP [35] uses ranking based algorithms for feature selection. The best feature is
listed in the descending values by using SHAP scores. It is based on the features attribution
magnitude and is an additive feature attribution method. SHAP is a framework that uses
shapley values to explain any model’s output. This idea is a part of game theoretic approach
which is known for its usability in optimal credit allocation. SHAP can compute well on the
black box models as well as tree ensemble models. It is efficient to calculate SHAP values
on optimized model classes but can suffer in equivalent settings of model-agnostic settings.
Individual aggregated local SHAP values can also be used for global explanations due to
their additive property. For deeper ML analysis such as fairness, model monitoring, and
cohort analysis, SHAP can provide a better foundation.

4.1.5. Attention Maps

Popularly used to be applied on the LSTM RNN model, which highlights the specific
times when predictions are mostly influenced by the input variables and has a high inter-
pretability degree for the users [51]. In short, the RNN’s predictive accuracy, disease state,
decomposition for performance, and interpretability is improved. The attention vector
learns feature weights, to relate the next model’s layer with certain features mostly used
with LSTM for forwarding attention weights at the end of the network.

ak = so f tmax (Wkxk) (3)
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Here, the Wk learned weights are used for calculating ak for every k feature of xk. A
feature on every time step is xk weighted with a learned attention vector, which is later
given as yk in Equation (4).

yk = ak � xk (4)

An ICU critical task to capture individual physiological data that is time sensitive is
demonstrated in DeepSOFA [52]. The attention mechanism is used to highlight variables in
time series, which are crucial for mortality prediction outcome. Successively, the time step
is assigned with more weights thought to be more influential for outcome.

4.1.6. Local Interpretable Model-Agnostic Explanations (LIME)

The LIME is a feature-scoring method, which performs the input data samples pertur-
bation and checks for prediction change for understanding the model. In SurvLIME [53],
cox proportional hazard is used to approximate a survival model within the range of the
test area. The cox uses covariates coefficient of linear combination for the prediction impact
of solving unconstrained optimization problems and other applications. The black-box-
based human understandable explanations are given by medical examiner XAI [54], which
is a LIME-like with rule-based XAI. In this case, a model agnostic technique is used for
handling sequential, multi-labelled, ontology-linked data. This model trains a decision tree
on labeled synthetic neighbors and the decision rules help to extract the explanations. The
applications are used to predict the next diagnosis visit of the patient based on EHR data
using RNN. The Lime based super-pixel generation is given in Appendix A.1.

4.2. Knowledge Base and Distillation Algorithms
4.2.1. Convolutional/Deep/Recurrent Neural Networks (CNN/DNN/RNN)

CNN is a deep learning method, which is used to depict the human brain for higher
performance and solving of complex tasks. It basically takes an input data/image, assigns
weights and biases to its various factors, and later differentiates them from each other. The
filters used here act as a relevant converter for spatial and temporal dependencies. The
CNNs designed for structured output are used for image captioning [11]. To improve this
captioning, the local discriminative image regions are found to be better with the CNN
+ LSTM models. The CNN scoring [12] provides precise localization. Later, based on
some categories and thresholds, the scores are calculated. The DNN [43] is termed on the
network consisting of multiple hidden layers. The DNN, once trained, can provide better
performance for the suspicious image findings, which can be used to identify faults and
status. The RNN is mostly used in the natural language processing applications as they are
sequential data algorithms. It is usually preferred for remembering its input by its internal
memory structure and thus is mostly suitable for machine learning methods involving
sequential data. The bi-directional RNN [14] is designed to function as an encoder and
decoder, which emulates searching through sequences at the time of its decoding. Thus,
the sequences of forward and backward hidden states can be accessed.

4.2.2. Long Short-Term Memory (LSTM)

The advancement for processing, classifying and making predictions on time series
data is achieved by using LSTM. The vanishing gradient problem is popularly solved by
using LSTM. The bi-directional LSTM [17] is used to model the within and across multiple
structures with the spatial dependencies. Deeplight also uses a bi-directional LSTM, which
contains a pair of independent LSTM iterating in the reverse order and later forwarding
their output to the fully-connected softmax output layer. The LSTM encoder takes n-sized
embedded sequences with dual layer, n cells, and outputs dense layers. The second LSTM
is the reverse architecture known as a decoder to reconstruct the input. The dropout layer
can be used in between encoder and decoder to avoid overfitting.
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In this LRP, the linear/non-linear classifier f is used with input a having dimension d,
positive prediction f (a) > 0, and Rd is having a single dimension of relevance.

f (a) ≈
D

∑
d=1

Rd (5)

Here, R(l)
j with a j neuron at l network layer, R(l−1,l)

i←j defined by deep light where

Zij = a(l−1)
i w(l−1,l)

ij having coefficient weight w, a as input, and ε as stabilizer given in
Equation (6).

R(l)
j = ∑

iε(l)
R(l−1,l)

i←j

R(l−1,l)
i←j =

Zij

Zj+ ∈ .sign
(
Zj
)R(l)

j (6)

4.2.3. Recent Machine Learning-Based Approaches

The support vector machines (SVMs) are used for regression, classification, and outlier
detection, which are supervised learning algorithms. It is more popularly used in high-
dimensional spaces, which can be even greater than sample size. The linear SVM [29]
is used in ultra large datasets for solving multiclass classification problems, which is the
version of the cutting plane algorithm. The polynomial SVM is also known as polynomial
kernel, which shows the polynomial having feature space with a training set focusing on
the similarity vectors. The decision boundary flexibility is controlled by degree parameter.
Hence, the decision boundary can increase based on the higher degree kernel. The SVM
also uses one more kernel function known as Gaussian RBF (Radial Basis Function). The
value calculated on the basis of some point or origin distance is RBF kernel. In machine
learning, a deep neural network class or generative graphical model is known as deep
belief network (DBN) [31]. It is constructed with latent variables of multiple layers having
interconnected layers excepts for the units in each layer. The deep rule forest (DRF) [39]
are multilayer tree models, which uses rules as the combination of features to outcome
interaction. The DRF are based on the random forest and deep learning based algorithms
for identifying interactions. Validation errors can be effectively reduced by DRFs hyper-
parameters fine tuning.

The DBN [55] consists of the following evolution of a restricted boltzmann ma-
chine (RBM) having posterior probability of each node with values 1 or 0.

P(hi = 1|v) = f (bi = Wiv) (7)

P(hi = 1|h) = f (ai = Wih) (8)

Here, the f (x) = 1/(1 + e−x), which has energy and distribution function as:

E(v, h) = −∑
i∈v

aivi −∑
j∈h

bjhj −∑
i,j

vihjwij (9)

p(v, h) =
1
z

e−E(v,h) (10)

The RBM follows unsupervised learning with pdf p(v), θ ε {W, a, b} as likelihood
function, and v as input vector given as p(v, θ), where the gradient method has logp(v, θ)
as likelihood function and higher learning can be achieved by revising gradient parameters
as ∂p(v,θ)

∂θ .

θ(n + 1) = θ(n) + a×
(
−∂p(v, θ)

∂θ

)
, θ ε {W, a, b}
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− ∂logp
(
v, wij

)
∂wij

= Ev
[
p(hi|v)× vj

]− v(i)j × f
(

Wi × v(i) + bi

)
− ∂logp(v, bi)

∂bi
= Ev

[
p(hi|v)× vj

]− f
(

Wi × v(i)
)

− ∂logp
(
v, aj

)
∂ai

= Ev
[
p(hi|v)× vj

]− v(i)j (11)

4.2.4. Rule-Based Systems and Fuzzy Systems

A rule-based system uses knowledge representation rules for obtaining the knowledge
coded in systems. They are completely dependent on the expert systems, which solves the
knowledge-intensive problem by reasoning similar to human experts. It is used in stroke
prediction models by interpretable classifiers using Bayesian analysis [56]. The interpretabil-
ity of decision statements is simplified by the high dimensional and multivariate feature
space by the discretization of if-then conditions. The decision list has posterior distribution
yielded by Bayesian rule list. The structure used here to support sparsity has a highly
accurate medical scoring system. The interpretable mimic learning uses gradient boosting
trees and has high prediction performance as a knowledge distillation approach [57]. Mimic
learning uses a teacher and student model, where the teacher model eliminates training
data noise/error and soft labels are passed to the student model as regularization to avoid
overfitting. It is applied in the medical domain of acute lung injury and achieves high
prediction results. It is also known to be applicable in speech processing, multitask learning,
and reinforcement learning. Fuzzy rules are a form of if-then conditional statements that
are yielding truth to a certain degree instead of complete true/false. A deep rule-based
fuzzy system is used to predict ICU patient’s mortality which consists of a heterogeneous
dataset combining categorical and numeric attributes in hierarchical manner [58]. The
interpretable fuzzy rules can be found in each unit of hidden layer within this model. Also
to gain interpretability, a supervised random attribute shift is added in the stack approach.

The supervised clustering has fuzzy partition matrix and cluster centers. Here, βdp is
the output weight vectors having a building unit as dp-th, where the partition matrix is
Udp and output set as T given in Equation (12).

βdp =

(
1

Const
I + UT

dp Udp

)−1
UdpT (12)

The interpretability is the layer’s prediction with random projections for higher linear
separability, where α′ is the sub constants of α, Zdp as random projection matrix, and Ydp
as the last unit’s output vector.

Xdp = X + α′YdpZdp

Ydp = Udpβdp (13)

4.2.5. Additional XAI Methods for Plots, Expectations, and Explanations

The partial dependence plot (PDP) in machine learning presents a marginal effect
between input of one or multiple features on the final prediction, which is usually having
a partial dependency. The PDP algorithm performs the average of all input variables
except for PDP computed variable n [59]. This variable n is then checked in relation to
the change in target variable for the purpose of recording and plotting. In comparison
to the PDP, individual conditional expectations focus on specific instances that disclose
variations in the recovery of the patient’s subgroup [60]. The XAI-based explanation
to the classifier prediction is best achieved by the Local Interpretable Model-agnostic
Explanations (LIME) as an interpretable model approximating black box model to the
instance under consideration [61]. The artifacts are user defined interpretable modules and
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are used later to generate local black boxes for instance neighbors. The user intervention
and artifact limits are overcome by Semantic LIME (S-LIME) for possessing semantic
features which are independently generated using unsupervised learning.

The fidelity function is given below consisting of model g with the instance x and y
for feature characterizing agreement and the function π having exponential kernel with
weighted σ with a distance D.

F (x, f, g,π) = ∑
yεX

π(x, y).( f (y)− g(y))2 (14)

D(x, y) = ∑
xi=1

|xi − yi| (15)

LIME is popular to highlight the important features and provides explanation based
on its coefficient but suffers due to randomness in sampling step, making it unacceptable
in medical applications. To gain trust, safeguard stakes, and avoid legal issues, a high
stability and an acceptable adherence level system is proposed known as optimized LIME
explanations (OptiLIME) for diagnostics [62]. The mathematical properties are clearly
highlighted and are kept stable across several runs in OptiLIME to search for the best kernel
width in an automated way. As per the formula given below in Equation (16), the declining
R2 is converted into l(kw, R̃2) a global maximum to get the best width. Here, the R̃2 is the
expected adherence with random kw values.

l(kw, R̃2) =

{
R2(kw), i f R2(kw) ≤ R̃2

2R̃2 − R2(kw), i f R2(kw) > R̃2 (16)

In the classical ROC plot and AUC, the alterable threshold leads to the changes in
false positive and false negative errors types [63]. As the partial part of ROC and AUC are
useful in imbalanced data, then optional methods include partial AUC and the area under
precision recall (PR) curve but are still insufficient to be trusted completely. Therefore, a
new method known as partial AUC (pAUC) and c statistics of ROC are present, maintaining
characteristics of AUC which are continuous and discrete measures, respectively. For the
horizontal partial AUC, where x = 1 for the AUC integration border and other parts as true
negative. Integration with baseline as x-axis and baseline x = 0 in case of swapping x and y
axis. Thus, by transforming x (FPR) to 1 − x (TNR) then TNR can be received as required
and x = 0 changes to 1.

pAUCx �
∫ y2

y1

1− r−1(y)dy (17)

The partial c statistic (cΔ) for ROC data is given in the normalized form as below in
Equation (18). The cΔ can be expressed as J out of positive’s P and the k as a subset out of
negative’s N.

ĈΔ � 2PN.cΔ

J. N + K.P
(18)

The partial c statistic can be summed up as shown by the whole curve having q disjoint
partial curves.

c =
q

∑
i=1

(cΔ)i (19)

4.3. Interpretable Machine Learning (IML)

Machine learning has made phenomenal progress recently in a wide variety of ap-
plications including movie recommendation, language translation, speech recognition,
self-driving cars, etc. [64,65]. IML aims to provide human-friendly explanations with the
combined efforts from computer science, social science, and human–computer interaction.
As self-driving cars need to make decisions by themselves in real time, the black box model
would not be feasible and acceptable. Therefore, an open box model with explainability
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will convey the decision to the user and its choice based on the related reason [66], i.e., why
the daily route was changed is due to the traffic congestion in the upcoming lane. The two
categories of IML can be given as:

4.3.1. Intrinsic Interpretability

Inherently interpretable models consist of self-explanatory features within their struc-
ture. It has more accurate explanations with the slight trade-off of prediction performance.
The global interpretable models can be either made by interpretable constraint or by com-
plex model extraction. In interpretability constraints, the pruning of decision trees is
performed to replace subtrees with leaves for deep trees instead of balanced structure. In
the case of interpretable CNN, natural objects are identified accurately by adding regu-
larization loss for learning disentangled representations, whereas in interpretable model
extraction, also known as mimic learning, the trade-off of explanation is not substantial.
In this case, the complex model is converted into a simple interpretable models, i.e., de-
cision trees, linear model. The obtained model has better prediction and explainability
performance, e.g., the ensemble tree or DNN is transformed into a decision tree, where the
overfitting is handled by active learning.

The local interpretable models are more focused on providing specific prediction
by a more justified model architecture. The attention mechanisms used by the RNNs as
sequential models are interpreted by the attention weight matrix for explaining individual
predictions. Attention mechanism is mostly used in image captioning with CNN for image
vectorization and RNN for descriptions. Additionally, it can also be used in neural machine
translation applications.

4.3.2. Post-Hoc Interpretability

These are the independent model, which requires supporting models to provide
explanation. The post-hoc global explanation consists of machine learning models that
capture several patterns from the training data and retain knowledge into the model. Here,
the knowledge within the pre-trained models are presented to the end user understanding.
In machine learning, the data is converted to features, which are interpretable and are
mapped to output, i.e., feature importance. Model agnostic explanations are known to
be a black box model with no transparency, whereas in permutation feature importance,
the n features are shuffled to check the model’s average prediction score and is known to
be an efficient and robust strategy. The model-specific explanation is based on internal
model structure for its explanation. The generalized linear models (GLM) consist of linear
model combinations for features transformation, e.g., linear regression, logistic regression,
etc. GLM has limitations when the feature dimensions become too large. In tree-based
ensemble models, i.e., random forests, gradient-boosting machines (GBM), XGBoost, which
measure feature contribution by accuracy, feature coverage, or split data count. In case of
DNN explanation, the representations are given by the neurons at the intermediate layers
for detail analysis. The activation maximization is utilized for iterative optimization of the
image interpretations at different layers. Even though some noise and errors can be faced
during classification, generative models are found to provide better visualization. Therefore,
the CNN can capture better visualization from object corners, textures to object parts, and
then whole objects or scenes. The RNN are better known for abstract knowledge where
language modeling is required for learning representations. The RNN are good at capturing
complex characteristics such as dependencies, syntax, and semantics. RNNs can capture
hierarchical representations from different hidden layers, whereas the multi-layer LSTM
are used to construct bi-directional language models with context aware understanding
of words.

The post-hoc local explanations are focused on individual predictions based on the
features supporting it and are also known as attribution methods. In model-agnostic
explanations, the predictions from different machine learning models as black boxes are
explained without guarantee, whereas the local approximations explanation supports in-
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terpretable white box based explanation in an adjacent part of the input, e.g., attribution
methods, sparse linear models such as LASSO. The perturbation-based methods, the feature
contribution, determines the prediction score. Thus, if the input part can change the predic-
tion, then it is known as counterfactual explanation. The model specific explanations refer
to white-boxes such as back-propagation method, deep representations, and perturbation
methods. For perceptive interpretability, refer to Appendix A.2.

5. Characteristics of Explainable AI in Healthcare

In this section, a complete aspect of the medical XAI system is given in detail. Con-
sidering the hospital situation, the interaction, explanation, and transparency detail of the
system will be disclosed. The characteristics will provide a complete overview about the
new generation of XAI healthcare system, equipped with enhanced capabilities [66] as
shown in Figure 4.

Figure 4. XAI Characteristics.

5.1. Adaptability

The transparency needs to be provided equally amongst all the healthcare system users.
In case of medical examiners, the details of complete dataset preprocessing, algorithm
function and decision analysis at each step should be provided. The medical examiners
should be familiar with the system usage by training provided earlier to consultation and
the protocol followed by the hospital treatment standards. The detailed decisions based on
the model training on the previous year’s consultations can help the medical examiners to
check on multiple factors and then provide a final decision.

Early prediction systems can help medical examiners to take immediate actions to
avoid severe conditions. In case of nurses, the statistics of the patient’s health can be
displayed to help them record the patient’s health recovery and administer the required
procedure. The history records of the patients should be accessible and should provide
reminders about the emergency and regular scheduled procedure to be achieved. For
the administrators, the patient’s record, clinical tests, previous history of payments, and
alerts for the future treatment possibility as decided by the medical examiners can be
predicted. The patients connected to the hospital system can receive the daily reminders of
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the personal treatment, doses, warnings about the diets, alerts for the improvements and
updates from the system in case of major infections spread, etc.

5.2. Context-Awareness

An XAI system should be complete in every sense. In case of diagnosis, the system
should provide detailed vital signs, CXR, clinical tests are given as the affected patient’s
conditions and disease. Hence, a prediction or classification system is used to provide
the discharge status after one week or month based on the patient’s history records. For
the surgical/ICU department, the features would vary as the oxygenation, ventilators,
supporting instruments based on the alternative mechanical methods, etc. Therefore, the
algorithms used in this XAI model should be adaptable to the new feature depending
on the patient’s case-to-case basis. In the drug development/consultation process, the
XAI algorithm can predict the required dose schedule, the weighted contents of the drug,
the combination of drug should be suggested for the comorbidities case, etc. The risk
associated with the different types of cases should also be disclosed in the drug usage
case. Exceptional circumstances can also be made for high risk patients and the supporting
dietary or treatment with different age and continental patients should be constituted.

5.3. Consistency

The healthcare dataset and model should be consistent during the continuing patient’s
treatment. Also there should be consistency between multiple evaluations for the same
patient. Therefore, versioning is required to be maintained and report the updates as per
the module changes. A version reports the updates as per the module enhancements. A
version report can be made available to know the updated module details and the changes
affecting the past patient’s records. Log records should be maintained for every patient
that can display complete history with health status and respective time series records. The
system log records should be immutable and must store the versioning information with the
updates and fixes. A database maintained with such rules must also include the patient’s
medication course applied, clinical test report, ICU/emergency facilities details and some
special treatment applied based on some exceptional circumstances. The comorbidities
are related to complex cases that may require careful treatment and dependency factors
to be analyzed. Consistency is an important aspect of the hospital’s quality control and
research department.

5.4. Generalization

In the healthcare system, every patient’s data consists of vital signs, CXR, clinical tests
and comorbidities. In case of ICU treatment, additional features are present. The designed
model must be able to distinguish between multiple patients based on the features with
high accuracy and less error rate. Thus, if many instances have similar explanations, then
the generalization is not acceptable for the treatment and operating process. The XAI
model should be adaptable to different features and must be effective to provide distinct
explanations based on the case-to-case basis. The XAI algorithm must be able to provide
high transparency of every category of the patient’s data, i.e., vital signs, CXR, clinical
test, and comorbidities. It will be useful to distinguish between patients’ affected status
in different categories. These explanations will be helpful to the medical examiners and
medical staff for knowing about the patient’s current health status, i.e., slight/mild/severely
affected and to take appropriate further actions.

5.5. Fidelity

A designed XAI model should be configured as per the available dataset categories
and must be specific to the objective application, i.e., healthcare. To provide a more effective
explanation, the model must be interpretable. Thus, the benefit of having interpretable
models is to analyze the processing of the input data at each level. Considering the
CXR images, the interpretable model will provide analysis by CXR image quality as
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high, average, and low. Additionally, to know whether the CXR processing for the chest
cage edge identification is aligned or not. The feature identification for the different
categories of diseases/infection as infiltrate, cardiomegaly, effusion, COVID-19, etc. The
level of severity analysis of the patient’s condition either as normal, slight, mild, and severe
infection are some of the factors. Furthermore, interpretation must be aligned with the XAI
model prediction to enable the patient’s discharge and/or mortality status prediction with
high transparency.

6. Future of Explainability in Healthcare

In this section, we have identified and provided the four key aspects for the future
of explainability in healthcare. The human-in-the-loop (HITL) enhances the classification
capability of XAI, human–computer interaction (HCI) provides the deep understanding
of a patient’s condition, explanation evaluation provides key insights for personalized
outcome, and explainable intelligent systems (EIS) significantly improves the medical XAI
system. The demands of the medical system in healthcare are always at priority. The future
of XAI shows promising solutions that can improve the healthcare facilities as shown in
Figure 5.

Figure 5. XAI in Healthcare.

6.1. Human–Computer Interaction (HCI)

The concept of HCI refers to the interaction between the real world and augmented
reality [67]. The human subject here is the patient whose interaction with the computer is
recorded for the symptoms feature identification purposes. Here, the computer sensors are
used to record the human movements, e.g., sneezing, coughing, chest pain, stress level, lack
of focus, etc. The HCI then provides the output based on machine learning algorithms for
the predictions of the results. The HCI is also a crucial aspect in the future of XAI as it will
add the symptoms feature for disease identification. The HCI has further applications to
detect human poses, body structure, movement discontinuities, speech recognition, object
handling using motion detection, psychological response, etc. Even though the recent AI
is thought to be progressing, with the future XAI, a complete human body functioning is
thought to be a progressive step towards the goal.
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6.2. Human in the Loop

Applying the XAI concept in the healthcare domain is thought to be incomplete
without the human in the loop process [68]. Considering an infection/disease, there can be
several symptoms including EHR, CXR, clinical tests, etc. In recent works, it can be noticed
that multimodal data analysis is a challenge for the machine learning algorithms because
of trade-offs, less domain knowledge, high false positives, etc. To effectively solve such
a challenge, the domain expert should be continuously involved within the interpretable
model implementation to set the required hyper-parameters at each level, manage the
trade-off, add/remove features manually, decision-based system, manual labeling of data,
handling exceptional conditions, etc. A versioning-based system or feedback evaluation
system should be used for continuous improvement so that the final system will be used in
the hospital evaluation with trust. Human in the loop is hence necessary to manage the
identification/diagnosis or prediction system for the new category of infection/diseases
without replacing the whole XAI model and by adapting to the current scenario.

6.3. Explanation Evaluation

The XAI explanation for the final results evaluation is one of the most crucial aspects
in healthcare. During the peak hours for patient’s diagnosis and health prediction, medical
examiners prefer to only check the final result as an expert opinion. Therefore, the final
explanation provided by the system should be effective and acceptable. Nevertheless,
recent works have discussed the selection of the explanation from multiple robots [69].
For the different robots the explanation may vary, so during the initial phase of the model
deployment in the hospital center, the medical examiners are asked to choose the sentence
type from the multiple explanation options as best suitable to the respective medical
examiner/user. The type of explanation selection determines which robot is most suitable
to the medical examiner and is thus finalized to that specific medical examiner’s personal
account. Therefore, both the system transparency of the evaluation and the explainability
are achieved. The detailed explanation of the results provides model interpretability and
helps to gain the user’s trust.

6.4. Explainable Intelligent Systems

Modern healthcare is being strengthened and revolutionized by the development in
AI [70]. The XAI-based system can improvise the previous analysis, learning, predict, and
perform actions with explainability for the surgery-assisted robots, relationship within
genetic codes to detect, and evaluate minor patterns. The XAI intelligent system is aimed
at explaining the AI-led drug discovery, so that faster, cheaper, and effective drug develop-
ment is performed, e.g., COVID-19, cancer treatments, etc. Healthcare robotics are used
for assisting certain patients in paralysis, smart prosthesis, assistive limbs, spinal cord
injuries and can explain how much recovery in the patient is recorded. Additionally, during
the surgery process, the robots can explain the decision taken and necessary actions. The
AI-powered stethoscope can be used in remote areas where medical personnel shortage
is present and can analyze high clinical data for discovering disease patterns and abnor-
malities. Ultimately, the intelligent systems can treat and provide better explanations for
transparent and trustable processes.

7. Prerequisite for the AI and XAI Explainability

A user is recommended to choose complete XAI explainability categories of preprocess-
ing, methodology and healthcare as shown in Figure 6, as a part of the human-in-the-loop
approach with the discussions provided in the following subsections:
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Figure 6. Explainable AI Approach Planning.

7.1. Discussion for the Initial Preprocessing

� Whether the dataset is consistent?

The dataset is the input given to the model for its processing. In practical aspects, the
dataset is not always complete, as it may include missing data, incomplete data, etc. Thus,
consistency within the dataset is very crucial. Therefore, the dataset should always need to
be checked prior to the utilization, as it may lead to miscalculation for predictions.

� Which data imputation functions are required for data consistency?

In case of an inconsistent dataset, which is usually encountered by the researchers,
an appropriate selection of data imputation techniques is quite necessary. This process
can also be known as cleaning, which performs fixing inaccurate values by deleting,
modifying, or replacing the records. The imputation operations include missing/non-
missing at random, mean, median, replace by zero or constant, multivariate imputation by
chained equation (MICE), stochastic regression, interpolation/extrapolation, hot deck, data
augmentation, etc.

� Presentation of analysis of the data distributions?

The dataset can be analyzed by its distribution in detail. The distribution is used to
present the relationship between observations within the sample space. There can be vari-
ous types of distribution, i.e., normal, uniform, exponential, Bernoulli, binomial, poisson,
etc. The distribution will provide an idea by the analysis with the graphical presentation.

� Image registration techniques required for the image dataset?

In medical image processing, the input given for the chest X-rays (CXR) is not always
consistent. For the alignment, the scene/object must be aligned in the correct angle. Thus, the
issues of image scaling, rotation and skew needs are addressed by using image translation.

� Whether some feature scoring techniques are used prior?

Recently a need for high accuracy and productivity is present within the medical
domain. Thus, feature engineering and scoring helps us to achieve this goal. The feature
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scoring is calculated based on the relevant features obtained by local explanation which has
optimal credit allocation using SHAP. Several other methods include GRAD-CAM, saliency
maps, LRP, Deep LIFT, LIME, etc.

� Is there any priority assigned to some features by domain experts?

In case, the expert will be supportive for achieving better prediction accuracy.

� What actions are taken in case of equal feature scores?

In the complex cases of feature scores showing equal values, the domain experts have
to take the decision as to which features need to be considered on priority. There can be top
20 or 30 features shown by the feature scoring techniques, but the least important features
having high variability needs to be eliminated. In such a case, manual selection of features
on a case by case basis would be applicable.

� Is there some threshold assigned for feature selection?

Possessing several features is usually not effective, as it may lead to high imbalance
within the dataset. Thus, applying thresholds to sort features as priorities can also be
thoughtful to better prediction. In case of general ward patients, the thresholds applied
are on the age, pulse rate, body temperature, respiratory rate, oxygenation (SaO2), etc. are
considered to be beneficial.

� Are the features selected based on domain expert’s choice?

Comorbidities may cause complications in some rare patient cases. To handle such a
situation, the domain expert/medical examiner can select a set of features from a particular
sub-category including the ICU features. The categories of severe patient or critically ill
can be given as slight, mild, or severe.

� How are binary or multiclass output based features used?

There can be binary or multi-class based output that can be managed effectively to
provide considerate prediction. The domain expert in binary case can select either a class 0
or class 1 for priority, whereas for multiclass, a specific priority listing can be assigned to
the features with that multi-class features.

7.2. Discussion for the Methodology Applicability in XAI

• What feature aspects make the method selection valid?

The machine learning algorithms are divided into multiple categories, i.e., unsuper-
vised/supervised, regression, clustering, classification, etc. For a small dataset, principal
component analysis, singular value decomposition, k-means, etc. can be applied. In the
case of a large dataset, where speed and accuracy is important then classification algorithms
experimented are SVM, random forest, XGBoost, neural networks, etc.

• Is the approach genuine for the system model?

A good survey paper reference will be useful to know the recent models and their
respective results. Therefore, selecting an appropriate method for the preprocessing for
feature scoring then using a suitable algorithm based on the available dataset by performing
multiple experiments based on the shortlisted/recent models with hyper-tuning can yield
better results. A good sense of data behavior will be useful for selecting the suitable model
and configuring neural network architecture with parameters.

• Why would some methods be inefficient? Are references always useful for literature?

A recent literature works before or during the initial work of the XAI-based project
would be crucial in this case as given in Tables 1–4. It is recommended that instead of
implementing all the methods, a reference from several books and papers can save time
and help to understand different model behavior based on the dataset availability, thus
helping us to know which methods can be better from the survey paper.
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• In case of multi-modal data analysis is the model suitable? Will it be efficient to use
such a model?

A multi-modal dataset includes data from different categories/formats (i.e., raw data,
images, speech) required to be evaluated by a machine learning/artificial intelligence
model with a binary or multiclass output. Such multiple data is hard to be evaluated by a
single model. Thus, a hybrid model consisting of a combined independent model is made
to ensure appropriate processing for the respective format data, which is later combined
by regression, voting, ensemble, classification predictions, etc. Appropriate combination
methods used will have efficient performance.

• How is the model synchronization made for input?

Multi-modal data has different input provided to the respective same/different models.
A separate algorithm is present, which collects the output of both the models and gives the
prediction/classification. Thus, the synchronization is achieved in this process in parallel.

• Are the features of the current patient affected more or less than the average dataset?

The processing model must provide the details of the patient’s condition by his
features. During the prediction of the results, it is expected prior by the XAI to provide the
patient’s condition in detail comparison to the population for the domain expert analysis
and acceptance with trust.

• What is the current patient’s stage the methods have classified?

The XAI informs in advance about the patient’s affected stages, i.e., stage 1, stage
2, and stage 3. These disease-affected stages depict the critical condition the patient is
at present. The patient affected stage is useful for the medical examiner to provide the
required medical treatment.

� What is the current patient’s medication course assigned and its results?

Upon assigning a medication course, the medical examiner can check the patient’s
recovery progress and can change/update it accordingly. In case of comorbidities, the
patient medication course may vary. A medication may have different recovery progress
based on case to case basis.

� How much of a percentage of a patient’s clinical features are affected?

An affected patient’s data such as vital signs, clinical laboratory features, intensive care
unit (ICU) features, and medication courses are crucial for the complete status overview.
The overall recovery of the patient can be expressed in percentage, which must provide
detailed patient’s features for the confirmation.

� Are the features showing positive or negative improvement status?

With the hospital admission, a medical course in the standard operating proce-
dure (SOP) improves the patient’s condition which shows a positive improvement. In rare
cases of speciality treatment requirements, negative improvements can also be seen in the
patient’s status. Thus, the patients are required to be shifted to the specialty care to the
different section or hospital ICU.

• Which output metrics are suitable for the model evaluation?

A learning model is evaluated either on a statistical function, machine learning, or
AI. The statistical function usage provides numerical p-value or graphical results, whereas
machine learning models provide prediction with the metric of accuracy and deep learning
by classification. In fact, all the metrics are suitable but the medical examiner can select the
one which is more accurate and easy to interpret.
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7.3. Discussion for the Evaluation Factors in XAI

• What cases are important for the output classification?

In case of binary output, the learning model must provide the classification as either
infected or not infected (Yes/No), whereas for multi-class output, the learning model must
classify clearly about the infection, current stage and improving/deteriorating condition
by handling the false alarms carefully. The XAI explainability in such a case will play a
crucial role.

• Is the output improving based on recursion?

The AI expert/architect can design the model carefully with the necessary parameters
or layer configuration. The model can either be back-propagation, epoch based or a
feedback model. It is a best practice to update the training at regular intervals with auto-
weights adjustments. In the case of a feedback model, the domain expert’s suggestions are
considered for the feature engineering.

• How are the multi-model outputs combined?

As discussed previously, the multi-modal data handled by the multiple models are
combined as approximated by an algorithm. The output can then be represented either by
a profitability value/prediction/graph. The limitation for multiple model systems is to
overcome for handling a single model output.

� How are the bar graphs compared and evaluated?

The bar graphs are usually drawn by the iteration value and its respective prediction.
The graphs are given for AUROC curve, PR curve, sensitivity vs. specificity, NPV, PPV, etc.
The graphs are crucial in any system for the performance analysis as well as its effectiveness.

• Whether the user/domain expert likes to manually select features for evaluation?

In some special cases of comorbidities, there can be many false positive alarms that
can cause panic. To handle such a situation, the domain expert can select manually a group
of features by his choice and can take an appropriate treatment decision for the affected
patient’s ahead.

• Is the system designed to record feedback from the domain experts?

As none of the system is considered perfect but it is supposed to continuously update
itself for improvement. The feedback from the domain experts can resolve major issues
about the new infections or its variants, which are not known by the trained system before
and may compromise on performance.

• Whether the model updates training features with every evaluation?

The model re-training takes high processing time, which is a major issue in the ML/DL
models. Therefore, an appropriate schedule is planned by the domain experts and research
team to update the model based on the couple of weeks/months interval. Re-training is
important for the system adaptation for the future tasks, and alternatively it can be done
by proxy system for transferring weights later.

• Which model is suitable for such medical cases, machine learning (ML) or deep
learning (DL)?

A white box model such as a decision tree is easy to understand but cannot be easily
applied on complex human body features, as it may react differently than one another.
Some ML models are known to work with high accuracy for some PPG disease cases,
whereas for several other major infections/diseases, an interpretable deep learning-based
model is required to provide explainability for every step of the multi-class output with the
growth analysis.
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� How the feedback suggestions by domain experts are adapted in the current model?

In case of data imbalance, the domain expert may decide to remove some features from
the classification for high accuracy. However, if the feedback consists of adding scoring
functions features, i.e., CCI, SOFA, OASIS, APS, SPSS, etc. then it is updated in the new
version. The system adaptability is crucial for its progress.

Table 5 provides the problems addressed by the references as given for the Section 6,
even though there exist some concepts that still need to be worked on by the future
XAI research, including multi-modal data analysis [5], model synchronization, recursion,
fusion algorithm, manual features effect, feedback model, model re-training [15], model
design [15,16], and feedback design.

Table 5. XAI Human-In-The-Loop References.

XAI Category Sub-Section References

Pre-Processing

Dataset Consistency [15,18,21–23,25,26]

Imputation [4,22,25,26,28,29]

Data Distribution [15,18,21,22,25,26,28,29]

Image Registration [4,5,17,19]

Feature Scoring [11–13,17,18,25,28]

Feature Priority [9,11,16,23–25,28]

Equal Feature Scoring [11,15,19,20,29]

Threshold (Feature Selection) [12,17,20,23–26]

Manual Feature Selection [12,24–26,28]

Binary/Multi-Class Feature [4,23,25,29]

Methodology

Feature Validation [14,18,25,26,28]

Novel Approach [4,11,16,20]

Method Inefficiency [22,23,25,26,28]

Feature Analysis [11,18,25–29]

Severity Level Analysis [9,23,25,29]

Feature Effectiveness [18,20,23,25,28]

Feature Averaging [4,28,29]

Feature Improvements [16,17,24,25,29]

Evaluation

Model Metrics [4,17,26–29]

Classification [11,12,14,17,27]

Graphs [12,16,18,25,27–29]

8. Case Study

The recent progress in XAI have further advanced the research with higher accuracy
and explainability. Table 6 shows some of the medical datasets with references. The
following discussion will help to understand the influential score (I-score) for the affected
pneumonia patients [71] in Figure 7. The EHR data is known to possess many challenges,
which would be very interesting when the supporting decisions taken for predictions
are explainable.
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Table 6. Publicly available dataset for medical experiments.

Dataset Source Medical Domain Category Size

RSNA(Radiological Society of
North America) and NIH [72]

Pneumonia NIH chest X-ray dataset with initial
annotation.

26,601 CXR Images

Kermany [73] Pneumonia Chest X-rays 5856 CXR Images

Chest radiographs (SCR) dataset
X-ray images [74]

Pneumonia Chest radiographs 247 frontal viewed
posterior-anterior (PA)

Central Line-Associated
Bloodstream infections (CLABSI)
in California Hospitals [75]

Blood Stream Infections (BSI) The CLABSI (text/csv) dataset
contains reported infections, baseline
data predictions, days count for
central line, standard infection
ratio (SIR), associated confidence
interval of 95%, and grading with
respect to national baseline.

Details from 461 hospitals.

MIMIC Clinical Database [76,77] Epidemics (HER Data) The MIMIC dataset consists of ICU
data with high patient’s count
including vital signs, laboratory test,
and medication courses.

The MIMIC-III database has 26
relational tables containing
patient’s data (SUBJECT_ID),
hospital admissions (HADM_ID),
and ICU
admissions(ICUSTAY_ID).

ICES Data Repository [78] EHR Data EHR Data recorded from the health
services of Ontario.

13 million people.

Veterans Health Administration
[79,80]

EHR Data EHR data from US Veteran’s
Affairs (VA) dataset

1293 health care facilities with 171
medical center and 1112
outpatient sites.

 

Figure 7. I-Score Model shown by reducing the top features.

An interaction-based methodology is proposed for the image noise and non-informative
variables elimination using I-score for feature prediction. The explainable and interpretable
features are used to demonstrate its feature prediction, which has an interactive effect.
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Even though there is a tradeoff observed with the learning performance and effectiveness
of explainability, it can still be overcome by providing new features scoring methods. An
explanation factor is determined clearly by the prediction, which is related to the feature
selection technique known to be interpretable with explainable. In this case, I-score variable
used for explainability is processed in discrete form, which may be converted from the
continuous variable as required.

The largest marginal I-score is also specified as a random variable drawn from a
normal distribution. The I-score is maximized by the optimal subsets of variables which
are searched by the backward dropping algorithm (BDA). The BDA achieves its goal by
variable elimination in a stepwise manner from an initial subset in a variable space. In this
research, a pre-trained CNN is applied before I-score and/or alternative BDA, which is later
evaluated using a feed-forward neural network requiring less number of parameters. The
predicted 512 features from pneumonia affected CXR are further reduced to top 19 features
which are explained to provide warning about the disease location.

The EHR used for the prediction of acute critical illness (ACI) in the hospitalized
patients needs to be explained by an open box model [81]. The open box model is usually
an interpretable neural network model with explainable AI (XAI). The drawbacks of AI
models are known to lack correct results, i.e., identifying false positives or true negatives
for critical care. To overcome this problem, the XAI-EWS is designed to provide visual
explanations for sepsis, AKI and ACI. The architecture of XAI-EWS consists of deep
Taylor decomposition (DTD) with temporal convolutional network (TCN) in the prediction
module and a separate explanation module. The explanation module is used to support
prediction relevant to the clinical parameters. These clinical parameters are listed in the
form of top 10 parameters with high weights to recent values. The XAI-EWS model provides
the user with the transparency of the system model and helps to earn trust by giving
explanation of every key decision within the algorithm. The XAI-EWS has an individual
and population based perspective for the model based explanation. The DTD has been
beneficial for predicting the development of ACI from the individual perspective. Back-
propagation is used for the relevance output processing with a global parameter having
mean relevance scores and the correlations in the clinical parameters in local explanation of
the population perspective.

The Influence score (I-score) and the backward dropping algorithm are used in combi-
nation for the Figure 7 output demonstration. This proposed methodology includes select-
ing high potential variables for influential modules, which is filtered by inter-activeness
and later combined for the prediction. This I-score is known to work better with discrete
variables. In case of random variables taken from normal distribution, then optimal cut-off
is set to the highest marginal I-score. It supports limited categories to avoid classification
error rates.

I = ∑j ε
n2

j
(
Yj −Y

)2 (20)

Here, Yj is the average of Y observations over the local average jth partition and global
average . Y is the response variable (binary 0/1) and all explanatory variables are discrete.

K is a subset of K explanatory variables {xb1 . . . xbk}. n1(j) is the number of observations
with Y = 1 in partition element j as given in Equation (20). The BDA algorithm is used as a
greedy algorithm, which selects optimal subsets of variables having highest I-score. The
architecture consists of an interaction based convolutional neural network (ICNN).

The explainable deep CNN (DCNN) is used for the classification of normal, virus infec-
tion (pneumonia), and COVID-19 pneumonia-infected patients [82]. A fine distinguishing
criteria is set by designing application specific DCNN for different infection categories with
high accuracy.

The training set consists of a gold-standard diagnosis set by a radiologist by confir-
mation. The training set provided is quite balanced in this system consisting of healthy,
pneumonia-infected, other virus-infected and COVID-19-infected, thus providing high
accuracy by avoiding trade-off of features within infection categories belonging to the
same patients.
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The base model is adapted from VGG-19, where its convolution kernel is set as per the
requirements. The final values are set with bright colors to identify the region of interest for
medical analysis. The hyper-parameters are trained using the grid search to find the best
settings. The two CNN models include CNN1 for training samples with category labels,
test samples to partition the standard set, and CNN2 for the virus infection output. Finally,
the CNN2 generates the output by classifying the infection in Figure 8 detail.

Figure 8. Explainable DCNN for CXR analysis and COVID-19 pneumonia classification.

The graph diffusion pseudo-labelling by deep network for CXR-based COVID-19 iden-
tification is presented [83]. The Figure 9 GraphXCovid is used for COVID-19 identification
by using a deep semi-supervised framework. It performs pseudo-labelling generation
using dirichlet energy by a novel optimization model. Thus with minimal labels a high
sensitivity in COVID-19 is generated. An iterative scheme in a deep net and attention maps
are the highlights of this model. The work is considered to be the successor of deep SSL
technique [84–87] combining generalization and feature extraction of deep neural networks.
Therefore, the process can be given in detail as optimizing epochs for deep net extraction
for graph construction, diffuse labelled sets to un-labelled data. Thus, pseudo-labels are
generated, which optimizes the model parameter by regular updates, which is later iterated
until completion. In this case, the medical data imbalance problem is handled during the
diffusion process.

The feedback system is designed to evaluate which robot explanation is more suitable
for an explainable AI system [69,88]. In the initial implementation which consists of having
multiple feature evaluators such as CAM, Grad-CAM, and network dissection are used
to support explanation by the robot as shown in Figure 10. The feature engineering pre-
processing uses top 20% by the heat-maps, which are labeled with the respective concepts.
The classification models then provide detailed accuracy for explanation by Resnet-18,
Resnet-50, VGG 16, and AlexNet.

Even though the outcomes are the same by best accuracy, the explanations are distinct.
In such a case the user can decide which robot explanation is more suitable for his under-
standing, and based on that the further outcomes are planned to be explained. The selection
is taken from multiple questionnaires at the beginning, which are later evaluated based on
five points Likert scale. In parallel, the suggestions given by the user in the feedback box
are also collected for the advancements in the new version [89].
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Nevertheless, multiple surveys for computer vision [90], deep learning [91], AI imag-
ing techniques [92], and explainable AI [93] are present, which are informative and provide
basic as well as in-depth knowledge about the concept and applications.

Figure 9. GraphXCovid pneumonia CXR results.

Figure 10. Feedback system for the human rating-based evaluation.

9. XAI Limitations

In order to claim the research work to be XAI-compatible, the designed model should
be rated based on its explainability level and XAI evaluation. In practice, many XAI systems
are not adaptable to the new challenges of model tuning and training [71]. Even though
some models are well-designed but are not correctly trained and classified, which usually
suffer from performance issues. Therefore, such challenges are hidden and are discussed in
more detail as follows.
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9.1. Explainability Ratings for the New Models

Several recent works claim to be XAI compliant but no specific rating based standard
is present [71,82,83]. Therefore, at the base level a system can be checked for preprocessing,
methods, and post evaluation explanation of the model which can still be further improved
by point-based ratings. The explainability also depends on the ease of understanding and
the prediction/classification of the XAI system usage. The language compatibility and
parameter settings provide more transparency. The data statistics provided at every level
and interpretability at every DNN layer can further improve the transparency with more
explanation [94]. The decision transparency is rarely dealt with, and the user has no exact
knowledge about the sudden change in decision [71]. Therefore, the decision taken at every
step should be disclosed to the user, which can be helpful in the scenario of having false
alarms and leading to chaos within the hospital staff.

9.2. Measurement System for the XAI Evaluation

During the XAI evaluation phase, the results comparison is not measurable [81]. Re-
cently, robot-based explanations popularly known as bots have different classification
explanation depending upon distinct models [88], i.e., CAM, GRAD-CAM, Network Dis-
section, etc. Subsequently, the CXR feature highlighting may differ by distinct models.
Therefore, in such a case, the user’s profile account having different priorities can make the
required settings for such preferences optionally by using multiple XAI analysis techniques
known as intrinsic and post-hoc, which are used everywhere [83].

It is still unknown how to apply an automatically adapting system that can select
different optimal techniques to provide the best classification/prediction. Ensemble algo-
rithm can be one of the optional solutions but it uses a brute force method and leads to a
performance trade-off. Nevertheless, a local dataset does tend to bias the classification and
is not effective enough on the global data. A severe security threat for making the model
training biased is made by adversarial attacks [95]. Therefore, identifying such a bias issue
is also a challenge.

9.3. XAI System Adaptation to the Continuous Improvements

Many of the recent works have designed a specific hyper-tuned classification model that
may have shortcomings/over-fitting on the different dataset or feature modification [82,83].
Thus, a model will not perform significantly for the transfer learning cases too. The XAI
system must also be open to adapt to the new feature set, i.e., vitals signs, CXR image, ICU
parameters, clinical tests, etc. [96]. Modification of such features by using a user feedback
system is crucial for the system’s upgrade. A user feedback compatible system improves
the model scope and is thought to be continuously adaptable. In case of model with input
of single or multi-modal data source, the user must be able to choose either of the option as
per data available, e.g., in a multi-modal system, if the CXR is not available for the patient’s
disease diagnosis, then it must be able to classify on single source of vital sign or different
data source of ICU parameters/clinical tests, whereas the model parameter tuning is also
important for optimal performance, which needs to be performed automatically without
sacrificing performance.

9.4. Human in the Loop Approach Compatibility

The saliency map analysis is not perfectly designed to identify certain features with
vital signs data or CXR image data [71]. Therefore, the medical examiner’s based data
labeling is required at the initial training phase of the model for better quality and to achieve
high classification output [97]. Higher expectations from XAI has subsequently led to an
intelligent system that can discuss and convince its classification to the medical examiners,
so that an effective decision about the medical treatment can be made. Achieving such a
highly capable human in the loop can greatly benefit the XAI progress. In addition to the
previous discussion about user profile management for priority-based feature selection, XAI
must be able to serve also in the multi-specialty hospitals concerning different departments.
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Interest for the single patient’s health analysis is one of the major challenges. Considering
the XAI transparency and explainability at every DNN layer, the user must also be able
to configure the layer size and weights for the effective analysis of diagnosis or severity
analysis by feature highlighting is necessary.

10. XAI Recommendation System (XAI-RS)

Table 7 for XAI post-treatment recommendation system is beneficial to the hospi-
talized/treated patients for a group of diseases. As discussed earlier, the hospitalized
patients were treated for a group of diseases i.e., pneumonia, bloodstream infections, acute
kidney injury, mortality prediction, etc. have different features and symptoms. Therefore,
the XAI-RS can evaluate the results as per the recent health condition of the discharged
patient. For every patient, the XAI-RS will be personally evaluated. Thus, the patient’s
recovered from AKI will have a default recommendation set with additional suggestions
for personalized evaluation.

Table 7. XAI post-treatment recommendation chart.

1. Diet 2. Medicine/Treatment 3. Exercise 4. Regular Checkup 5. Side Effects

a. Fruits
b. Vegetables
c. Seafood
d. Meat
e. Grains
f. Soup
g. Milk Products

a. Morning dose 1
b. Afternoon dose 2
c. Evening dose 3
d. Lotions/Drops
e. Physiotherapy
f. Injections
g. Dialysis

a. Walking/Running
b. Yoga
c. Cycling
d. Swimming
e. Sports

a. Daily
b. Alternate day
c. Weekly
d. Bio-sensors/Remote
health monitoring
e. Monthly
f. Quarterly/Year

a. Vomiting
b. Dizziness
c. Headache
c. Loss of Appetite
d. Skin rashes
e. Palpitations

Table 8 presents the XAI-RS for the AKI-affected patient. These recommendations are
default to every AKI-discharged patient but if the patient is addicted to smoking and/or
consuming alcohol, then an additional recommendation needs to be added as shown by
the orange highlighted box. The purpose of the XAI recommendation system is to provide
best continuous treatment to the post-discharged patients to live a healthy lifestyle.

Table 8. XAI Personal Post-Treatment Recommendation Chart for AKI Patient.

1. Diet 2. Medicine/Treatment 3. Exercise 4. Regular Checkup 5. Side Effects

11. XAI Scoring System (XAI-SS)

The XAI-SS determines the standard grade for the newly designed and in use XAI
systems. This scoring system in Table 9 can be extended to multiple areas, i.e., indus-
trial, finance, sensor communications, etc. The scores can be assigned based on interna-
tional (10 points), group (8 points), and local (6 points) policy achievements. As each of
the 10 XAI factors are assigned equal scores with balanced/equal weightage, the final
evaluation grade is assigned as Class I (≥90%), Class II (≥70% and <90%), and Class
III (≥60% and <70%). Designing a new XAI system must involve experts for setting the
objectives for a high quality work plan.

The training provided to the XAI system must involve an international dataset for
its effectiveness (Table 6), whereas the detail for the XAI factors can be referred for pre-
processing (Sections 4.1 and 7.1), model selection (Section 4.2), model re-configuration
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(Section 7.2), interpretability (Sections 1.2 and 4.3), explainability (Section 7), evalua-
tion (Sections 1.3 and 7.3), human-in-the-loop (Section 6.2), and XAI-RS (Section 10). It is
recommended that the XAI should be evaluated every year to maintain the XAI system’s
quality and validity.

Table 9. Checklist for XAI scoring system.

Serial No. XAI Scoring Factor Description Checklist
(10 pts Each)

1 XAI based Objectives To serve the evaluation purpose for
effective problem solving following
laws and ethics.

2 Dataset for Training
Model

Whether the dataset has global and
local scope?

3 Data Pre-processing Manage the data consistency and
imbalance issue.

4 Model Selection To perform feature analysis and
select an appropriate model with a
novel approach.

5 Model
Reconfiguration

The model’s hyper-parameter tuning
for better prediction by handling
bias and variance.

6 Interpretability How much does the model support
intrinsic and post-hoc
interpretability?

7 Explainability Transparency in every step and
decision of the model should be
given by the algorithm.

8 Evaluation, Feedback
loop and
Post-evaluation

The outcome should provide
meaningful results. Graphs,
prediction, and classification should
be cross-verifiable. The feedback
loop consisting of interacting with
domain experts is helpful for
post-evaluation.

9 Human-in-the-Loop
Process

Continuously involve the domain
expert for improving multi-modal
data and feature management.

10 XAI
Recommendation
System

To maintain the discharged patient’s
health conditions.

The Table 10 Grades for the XAI scoring system in Figure 11 provides the evaluation
for the recent XAI medical references [98]. It is helpful to analyze the applicability of XAI
in the recent works and for the future works mapping.

Table 10. Grades for the XAI Scoring System.

Reference XAI Scores Grades

W. Qiu et al. 2022 [99] 90 Class I

Y. Yang et al. 2022 [100] 86 Class II

L. Zou et al. 2022 [101] 88 Class II

C. Hu et al. 2022 [102] 86 Class II

L. Zhang et al. 2022 [103] 84 Class II
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Figure 11. XAI Scoring System Evaluation.

12. Conclusions

The XAI survey presents a detailed approach for the XAI research development. Legal
and ethical XAI aspects are presented, as well as some important areas within the medical
field that need attention to improve it further and gain the user’s trust by providing
transparency within the process. The contribution of XAI Recommendation System and
XAI Scoring System will be suitable for overall development of XAI in the future. The future
work will be focused on presenting the enhancements by XAI and further contributions as
the recent progress is quite impressive.
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Appendix A

Appendix A.1 LIME-Based Super-Pixel Generation

Pixels present the image in grid format and as a part of the original picture. Pixels are
also known as artifacts that are meant to create digital images. In contrast, the originating
source and semantic meaning of a specific super-pixel can be estimated [104,105]. A super-
pixel is usually a pixel group or combination based on a set of common properties including
pixel color value. The benefits of using super-pixel are given as: (a) Less complexity: The
grouping of pixels based on distinct properties reduces the complexity and requires less
computations. (b) Significant entities: A group of super-pixels having texture properties
achieves an expressiveness through embedding. (c) Marginal information loss: In case of
over-segmentation, crucial areas are highlighted with a minor deficit of less valuable data.
Figure A1 shows the four types of super-pixel classification algorithms are explained as
given below:

    
(a) Felzenszwalb (b) Quick-Shift (c) SLIC (d) Compact-Watershed 

Figure A1. Comparison of super-pixel approaches.

(i) Felzenszwalb and Huttenloch (FSZ) algorithm: The FSZ is a well-known algorithm
for graph based approach and utilized for image edge operation with a O(M logM) com-
plexity. The FSZ algorithm takes a weighted gradient with the same properties between
two adjacent pixels. Successively, a future super-pixel seed is administered per pixel for
obtaining the shortest gradient difference and largest for adjacent segments.

(ii) Quick-Shift (QS): QS is the default algorithm used by LIME. The QS algorithm
generates super-pixels by mode seeking segmentation scheme. It then moves every point
towards higher density leading to increased density.

(iii) Simple Linear Iterative Clustering (SLIC): The SLIC belongs to a cluster based
super-pixel algorithm. It operates on the basis of k-means algorithm with a search space
proportional size (S × S) for reducing distance calculations significantly.

D =

√
d2

c +

(
ds

S

)2
m2
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The spatial ds and color dc proximity is combined by weighted distance measure
having complexity of O(N). The size and compactness of super-pixel is given by m as
given in the above equation. The algorithm initiates k cluster process as centers, which

is grid scanned with S pixel’s distance with S =
√

N
K approximately. To avoid super-

pixel placement on the edge, the centers are shifted towards the smallest gradient. Later,
each pixel is allotted to proximate clusters whose search area is overlaid on a super-pixel.
Successively, the new cluster center is taken as pixels’ average vector for every center’s
update. Finally, the residual error E is minimized until the threshold value and independent
pixels are added to proximate super-pixel.

(iv) Compact-Watershed (CW): The CW algorithm is the optimized version of water-
shed super-pixel algorithm. The gradient image is used as input, where the altitude is the
gray tone of each pixel that can be depicted as a topographical surface. The watershed with
catchment basins are resulted from the continuous surface flooding, which may lead to
over-segmentation and can be avoided by markers. The algorithm includes: (i) Flooding
avoidable markers for each label, (ii) Marked areas neighboring pixels are collected in
priority queue and graded by gradient magnitude equivalent to its priority level. (iii) Pixels
with highest priority are pulled out and labeled according to their neighboring pixel. Later,
labeled pixels are added in this queue. (iv) Step 3 is repeated until the priority queue is null.

The CW in terms of size and extensions has more compact super-pixels than watershed
algorithms. To obtain this, the use of Euclidean distance for the difference with a pixel
from super-pixel seed point by weighted distance measure and the gray value comparison
within pixel and gray pixel’s value is performed.

Appendix A.2 Perceptive Interpretability Methods

The XAI based perceptive interpretable methods [106,107] are LIME and GRAD-CAM,
which are the CNN architecture-based decision explanation methods. The input given is a
trained model for this interpretable process known as post-hoc analysis. The details of the
XAI perceptive models for the shapes detection of cancerous masses in the breast imaging
by computer-aided diagnosis (CAD) are as given below:

(a) Local Interpretable Model-Agnostic Explanations (LIME): The LIME interpretation
is provided by highlighting the top contributing of class S, which is evaluated on an image
classification by observing a ground truth prospect. Figure A2 shows the S perturbations
executed by LIME, which are similar to GRAD-CAM, whereas Figure A3 GRAD-CAM is
using the same image for comparison with LIME in Figure A2. The ground truth class is
used for the CNN based prediction is the same class used for LIME perturbations. The green
color indicates positive correlation of regions with the CNN decision, and red color indicates
negative correlation. Figure A2 shows the saliency scheme is used for the presentation of
saliency zones, where higher intensity red color focuses more for classification and lower
intensity blue color has less focus. Several classes are distinguished by header bars with
distinct colors.

(b) Class Activation Mapping (CAM): The Figure A3 shows the GRAD-CAM methods
based pictorial presentation of eight fine-tuned networks for visual explanation. The figure
includes for every class, two sample images are presented and every network’s respective
saliency maps for the images. The links within lesion area and network performance are
highlighted for which accurate prediction of images is given by the network. The ground
truth is considered for generating saliency maps of the approximate features. Subsequently,
the lesion areas which are incorrectly identified by CN architectures are also affected during
classification tasks. In case of SqueezeNet, the AUC is not significant and AUC trade-offs
with the number of parameters obtained from VGG-16 are incapable of highlighting the
lesion area, whereas, the lesion of the images is accurately highlighted by the ResNet-50,
DenseNet-121, and DenseNet-161. Therefore, the GRAD-CAM is distinct from LIME as it
emphasizes the color intensity closer to the center of the lesion area. Figure A3 presents the
super-pixels with red color for negative contribution and green color otherwise. Similarly,
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several classes are distinguished by header bars with distinct colors. Samples belonging to
the same class are represented by similar images header color.

Thus, it can be noticed that graphical reasoning has good understanding in the CAM-
based interpretations, whereas the evaluation of LIME and GRAD-CAM activation maps
are completely different which can be noticed from Figures A2 and A3. Ultimately, it is
recommended to consider both interpretations and models evaluation to gain a broader
view of this process.

 
(a) (b) (c) (d) 

Figure A2. LIME Region of Interest (ROI) images for (a) No lesions (None); (b) Irregular opac-
ity (Ori); (c) Regular opacity (Oro); and (d) Stellar opacity (Ost).
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(a) (b) (c) (d) 

Figure A3. GRAD-CAM Region of Interest (ROI) images for (a) No lesions (None); (b) Irregular
opacity (Ori); (c) Regular opacity (Oro); and (d) Stellar opacity (Ost).
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