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Special Issue: Neural Networks, Fuzzy Systems
and Other Computational Intelligence Techniques
for Advanced Process Control
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Computational intelligence (CI) techniques have developed very fast over the past
two decades, with many new methods emerging. Novel machine learning techniques, such
as deep learning, convolutional neural networks, deep belief networks, long short-term
memory networks, and reinforcement learning, have been successfully applied to solve
many complicated problems ranging from image processing to natural language processing.
These novel CI techniques have also been applied to process systems engineering areas, with
many successful applications reported, such as in the data-driven modelling of nonlinear
processes, inferential estimation and soft sensors, intelligent process monitoring, and
process optimisation. This Special Issue (https://www.mdpi.com/journal/processes/
special_issues/advanced_process_control accessed on 17 July 2023) includes 17 papers on
CI techniques applied to the areas related to advanced process control.

Liu et al. [1] present a reference-model-based neural network (NN) control method for
a multi-input multi-output (MIMO) temperature system. A reference model is introduced
to provide the teaching signal for the NN controller. The control inputs for the MIMO
system are given by the sum of the outputs of the conventional integral-proportional-
derivative (I-PD) controller and the outputs of the neural network controller. It is shown
that the proposed NN control method can not only improve the transient response of the
system, but also realize temperature uniformity in the MIMO temperature system. The
proposed control system is demonstrated on simulations in the MATLAB/SIMULINK
environment and a Digital-Signal-Processor-based experimental platform.

Hung [2] presents a memetic particle swarm optimization (MPSO) algorithm combined
with a noise variance estimator to address the issue of performance decay in a direction of
arrival (DOA) estimator under a non-uniform noise and low signal-to-noise ratio (SNR)
environment. The proposed MPSO incorporates the re-estimation of noise variance and
iterative local search algorithms into the particle swarm optimization (PSO) algorithm,
resulting in higher efficiency and a reduction in non-uniform noise effects under a low
SNR. In the proposed algorithm, PSO is initially utilized to evaluate the signal DOA using
a subspace maximum-likelihood (SML) method. Then, the best position of the swarm to
estimate the noise variance is determined and the iterative local search algorithm is built
to reduce the non-uniform noise effect. The proposed method uses the SML criterion to
rebuild the noise variance for the iterative local search algorithm to reduce non-uniform
noise effects. The proposed method is demonstrated by simulation.

Xue et al. [3] propose a quality integrated fuzzy inference system (QFIS) to quantify
the deviations of the operating variables and the product quality from their target values
in order to overcome the measurement delay of the product quality and to estimate the
reliability of the operation status, as well as the product quality, to enhance the performance
of the safety monitoring system. A quality-weighted multivariate inverted normal loss
function is proposed to quantify the deviation of the product quality from the target value
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in order to overcome the measurement delay. Vital process safety variables are identified
according to the expert knowledge. Then, the quality loss and the vital variables are used
as inputs for an elaborate fuzzy inference system to estimate the process reliability of the
fluorochemical engineering processes. By integrating the abundant expert knowledge and
a data-driven quality prediction model to design the fuzzy rules of QFIS, the operation
reliability can be enhanced and the product quality can also be monitored on-line. The
proposed method is applied to a real fluorochemical engineering process located in East
China and the benchmark Tennessee Eastman process.

Zhang et al. [4] propose an improved finite control set model predictive torque control
strategy for induction motor (IM) control. The proposed strategy is based on a novel
fuzzy adaptive speed controller and an adaptive weighting factor for the tuning strategy to
reduce the speed, torque, and flux ripples caused by different factors. Both simulation and
hardware-in-loop tests are conducted on a 1.1 kW IM drive to verify the proposed ripple
reduction algorithms.

Aguilar-López et al. [5] propose a two-input two-output control strategy for an exother-
mic continuous chemical reactor. The reactor temperature is regulated by a standard
proportional-integral controller. An optimal controller is activated to increase the reactor
productivity in terms of the mass of the product. The optimal control strategy is based on a
Euler–Lagrange framework, where the Lagrangian is based on the model equations of the
reactor and the optimal controller is coupled with an uncertainty estimator to infer the un-
known terms required by the proposed controller. The proposed method is demonstrated
on a simulated continuous stirred tank reactor with a Van de Vusse chemical reaction.

Almarashi et al. [6] study the group acceptance sampling plan in the case where (i) the
lifetime of the items follows the Marshall–Olkin Kumaraswamy exponential distribution
and (ii) a large number of items, considered as a group, can be tested at the same time.
When the consumer’s risk and the test termination period are defined, the key design
parameters can be extracted. The minimum ratios of the true average life to the specified
average life are calculated. The proposed technique is explained using real-world data on
the breaking stress of carbon fibres.

Zhang et al. [7] propose double-layer back propagation neural networks for the learn-
ing of PID control parameters. One network is used to fit the relationship among the
working parameters, the control parameters, and the control performance. Another net-
work is used to fit the relationship between the working condition parameters and the
selected control parameters, and to realize the adaptive adjustment of the PID control pa-
rameters according to the working condition parameters. The effectiveness of the proposed
control method was verified by a simulation and experiment on the hydraulic drive unit of
a legged robot.

Yang et al. [8] propose a self-organizing radial basis function neural network (RBFNN)
based on network sensitivity to improve the generalization performance for nonlinear
process modelling. In the proposed approach, a self-organizing structure optimization
strategy is designed based on the sensitivity measurement to adjust the structure and
parameters of RBFNN. The convergence of the proposed RBFNN-GP is analysed. The
proposed method is applied to two numerical case studies and a membrane bio-reactor in
a wastewater treatment plant.

Zhai et al. [9] propose an adaptive depth-wise separable dilated convolution and
multigrained cascade forest (ADSD-gcForest) fault diagnosis model for fault diagnosis in
bearings. The multiscale convolution, combined with the convolutional attention mecha-
nism, concentrates on effectively extracting fault information under strong noise, and the
Meta-Activate or Not (Meta-ACON) activation function is integrated to adaptively optimize
the model structure according to the characteristics of input samples. Then, gcForest, as the
classifier, outputs the final diagnosis result. The proposed method is applied to bearings
failure diagnoses under various noise and load conditions.
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Wang et al. [10] present a new fault detection scheme using the mutual k-nearest
neighbour (MkNN) method to solve the problem of pseudo neighbour caused by outliers
or large noises in the dataset. In the proposed method, the distance statistics for process
monitoring are calculated using the MkNN rule instead of kNN, so that the influence of
outliers in the training data is eliminated. The effectiveness of the proposed method is
demonstrated through numerical examples and the benchmark Tennessee Eastman process.

Wu et al. [11] present a parameter identification method based on the hybrid genetic
algorithm for the control system of double-fed induction generator converters. A strategy
of “individual identification, elite retention, and overall identification” is proposed in the
improved genetic algorithm, which adopts the generation gap value and immune strategy.
The proposed parameter identification method is applied to a wind farm in North China
for maximum power point tracking, constant speed, and the constant power operation
conditions of the wind turbine.

Chen et al. [12] present an event-triggered H∞ asynchronous filtering for Markov
jump nonlinear systems with varying delay and unknown probabilities. The devised
filter is mode dependent and asynchronous compared with the original system, which
is represented by a hidden Markov model. Both the probability information involved
in the original system and the filter are assumed to be only partly available. Under this
framework, via employing the Lyapunov–Krasovskii functional and matrix inequality
transformation techniques, a sufficient condition is given and the filter is further devised
to ensure that the resulting filtering error dynamic system is stochastically stable, with a
desired H∞ disturbance attenuation performance. The proposed filter design method is
demonstrated through a numerical example.

Muhsin and Zhang [13] present the multi-objective optimization of a crude oil hy-
drotreating (HDT) process with a crude atmospheric distillation unit using data-driven
models based on bootstrap-aggregated neural networks. The HDT of the whole crude
oil has economic benefit compared to the conventional HDT of individual oil products.
Reliable data-driven models for this process are developed using bootstrap-aggregated
neural networks to overcome the difficulty in developing accurate mechanistic models
and the computational burden of utilizing such models in optimization. Reliable optimal
process operating conditions are derived by solving a multi-objective optimization prob-
lem, incorporating the minimization of the widths of model prediction confidence bounds
as additional objectives. The multi-objective optimization problem is solved using the
goal-attainment method. The proposed method is demonstrated on the HDT of crude oil,
with a crude distillation unit simulated using Aspen HYSYS.

Gao et al. [14] propose using the extended Kalman filter algorithm and backpropa-
gation neural network to build a state of charge (SOC) estimation model of the electric
vehicle battery (E-cell) to improve the estimation accuracy. Three working conditions,
constant current discharge, pulse discharge, and urban dynamometer driving schedule,
were considered. The enhanced estimation and tracking of the SOC of the E-cell can provide
a data reference for vehicle battery management, and is of great significance for improving
the battery performance and energy utilization in electric vehicles.

Berard et al. [15] present a range of rate of error change–fuzzy logic controller designs
to demonstrate the tunability of the controller for different haemorrhage scenarios. Five
different controller setups are configured with different membership functions to create
more- and less-aggressive controller designs. It is shown that the proposed controllers are
well-suited for haemorrhagic shock resuscitation and can be tuned to meet the response
rates set by clinical practice guidelines for this application.

Wang et al. [16] propose a traffic light timing optimization method based on a double
duelling deep Q-network, MaxPressure, and self-organizing traffic lights, which control
traffic flows by dynamically adjusting the duration of traffic lights in a cycle, and the phase
can be switched depending on the rules set in advance and the pressure of the lane. In the
proposed method, each intersection corresponds to an agent, and the road entering the
intersection is divided into grids, with each grid storing the speed and position of a car, thus
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forming the vehicle information matrix and acting as the state of the agent. Experimental
results show that the proposed method has superior performance in light and heavy traffic
flow scenarios, and can reduce the waiting time and travel time of vehicles and improve
the traffic efficiency of an intersection.

Ang et al. [17] propose a modified particle swarm optimization (PSO) variant with two-
level learning phases to train an artificial neural network (ANN) for image classification. A
multi-swarm approach and a social learning scheme are designed in the primary learning
phase to enhance the population diversity and the solution quality, respectively. Two
modified search operators with different search characteristics are incorporated into the
secondary learning phase to improve the algorithm’s robustness in handling various
optimization problems. The proposed algorithm is used to train ANN, by optimizing its
weights, biases, and the selection of activation function for the given classification dataset.
It is shown that ANN models trained by the proposed algorithm outperform those trained
by existing PSO variants in terms of classification accuracy.

The above papers in this Special Issue demonstrate that CI techniques can significantly
improve the performance of process control systems. As more advanced CI techniques
have emerged in recent years, more CI-based advanced process control techniques will be
reported in the near future.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Artificial neural networks (ANNs) have achieved great success in performing machine
learning tasks, including classification, regression, prediction, image processing, image recognition,
etc., due to their outstanding training, learning, and organizing of data. Conventionally, a gradient-
based algorithm known as backpropagation (BP) is frequently used to train the parameters’ value of
ANN. However, this method has inherent drawbacks of slow convergence speed, sensitivity to initial
solutions, and high tendency to be trapped into local optima. This paper proposes a modified particle
swarm optimization (PSO) variant with two-level learning phases to train ANN for image classifica-
tion. A multi-swarm approach and a social learning scheme are designed into the primary learning
phase to enhance the population diversity and the solution quality, respectively. Two modified search
operators with different search characteristics are incorporated into the secondary learning phase to
improve the algorithm’s robustness in handling various optimization problems. Finally, the proposed
algorithm is formulated as a training algorithm of ANN to optimize its neuron weights, biases, and
selection of activation function based on the given classification dataset. The ANN model trained by
the proposed algorithm is reported to outperform those trained by existing PSO variants in terms
of classification accuracy when solving the majority of selected datasets, suggesting its potential
applications in challenging real-world problems, such as intelligent condition monitoring of complex
industrial systems.

Keywords: particle swarm optimization; artificial neural network; training algorithm; machine
learning; two-level learning phases

1. Introduction

The human nervous system inspires an artificial neural network (ANN), and many
artificial neurons act as interconnected processing elements in ANN to emulate the cerebral
cortex of brain structure. In contrast to other conventional machine learning methods,
ANNs demonstrate outstanding capabilities in generalizing, organizing, and learning the
nonlinear data that are commonly observed in real-world scenarios [1]. Due to these
appealing features, ANNs have been widely implemented to solve various real-world
application, including intelligent condition monitoring [2], speech recognition [3], fault
diagnosis [4], pothole classification [5], etc. Generally, ANN structure can be separated

Processes 2022, 10, 2579. https://doi.org/10.3390/pr10122579 https://www.mdpi.com/journal/processes6
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into three parts: the input layer, the hidden layer, and the output layer. Information
flows in a single direction within an ANN model, i.e., from the input layer to the hidden
layer, followed by the output layer [6]. Each neuron of the layers is incorporated with an
activation function to convert the summed weighted input received by each neuron into
the nonlinear output. This nonlinear characteristic serves as the cornerstone for ANN to
have competitive performance in tackling various challenging machine learning tasks, such
as the learning of complex data, functions approximation, and predictions [7].

Before deploying an ANN model to solve machine learning tasks, a training process
is performed to determine the optimal combinations of weight and bias values for all
neurons that can achieve minimum error. A gradient-based algorithm known as the
backpropagation (BP) method is conventionally used to train ANN models [7]. At the
beginning stage of ANN training, the initial weight and bias values of neurons are randomly
generated, and the actual output values of the network are determined. The error signals
between the desired and actual outputs are then calculated and backpropagated to the
network to adjust the weight and bias values of each neuron. Despite its popularity,
some drawbacks were reported when using the classical BP method to train ANN models,
especially when solving complex nonlinear problems. For instance, the BP method has
a high tendency to be trapped in local optima and fail to reach global optimum when
dealing with solution regions with complex characteristics. The performance of the ANN
model when solving complex problems can be significantly degraded due to suboptimal
weight and bias values assigned to all neurons [7]. The convergence characteristic of the
classical BP method in ANN training is also sensitive to the initial values of weight, bias,
and network parameters (e.g., activation function). There might be scenarios where the
classical BP method produces poor initial weight and bias values for ANN during the
training process, leading to compromised network performances [7]. These limitations
of classical BP methods have motivated researchers to seek robust alternatives that can
address ANN training problems more efficiently and effectively.

In recent years, metaheuristic search algorithms (MSAs) have emerged as promising
solutions to tackle complex optimization problems, such as those reported in [8–13]. The
excellent global search ability and stochastic characteristic of these MSAs can also be
harnessed for training ANN models to solve classification or regression problems. Particle
swarm optimization (PSO) is one of the most popular MSAs, and it is motivated by the
collective behavior of bird flocks in locating food sources [14]. Each PSO particle can
memorize its previous best searching experiences, and this unique feature distinguishes
PSO from other MSAs [15]. The search trajectory of each PSO particle is adjusted based
on its previous best experience and the best experience achieved by the entire population
during the optimization process. Since the inception of the original PSO in 1995, many new
variants have been proposed to solve various real-world optimization problems. Despite its
appealing features, such as simplicity in implementation and fast convergence speed, the
capability of original PSO to solve complex optimization problems such as ANN training
remain questionable due to its high tendency to suffer from premature convergence issues
when solving complex problems with high-dimensional search space. Therefore, more
robust search mechanisms must be incorporated into the original PSO to balance the
algorithm’s exploration and exploitation searches.

1.1. Research Motivations

A PSO variant known as particle swarm optimization without velocity (PSOWV)
was proposed in [16] by discarding the velocity component of each particle during the
search process. PSOWV has demonstrated more competitive performance than the conven-
tional PSO by solving simple benchmark problems with better accuracy in fewer iteration
numbers. Despite its promising performance, PSOWV still suffers from some inherent
drawbacks that might restrict its feasibility to solve more challenging optimization prob-
lems, such as the training of ANN models for classification or regression tasks.
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Similar to most MSAs, PSOWV employs a conventional initialization scheme to ran-
domly generate the initial population of particles during the search process. This conven-
tional initialization scheme produces the initial position of each particle using uniform
distribution without considering the characteristics or fitness landscapes of given optimiza-
tion problems [17]. When particles are mistakenly initialized in local optima, it may lead to
premature convergence issues and poor solution accuracy. In contrary, the convergence
speed of the algorithm can be significantly deteriorated if particles are initialized at solution
regions far away from the global optimum. It is more desirable to have a robust initializa-
tion scheme that can generate the initial position of each particle more systematically to
ensure the initial population has a better solution quality.

When carefully inspecting the search operator of PSOWV, the new position of each
particle is directly affected by the directional information of historical best positions, i.e.,
the personal best position of the particle itself and the global best position of the population.
While these historical best positions are beneficial to accelerate the convergence speed of
PSOWV at the early stage of optimization, they are less frequently updated at the latter
stages [18]. When both personal and global best positions are overemphasized during
the search process of PSOWV, the entrapment of these historical best positions into local
optima at the early stage of the search process could misguide the remaining particles
converging towards the inferior solution regions and lead to premature convergence. To
prevent these undesirable scenarios, it is necessary for PSOWV to be incorporated with
a more robust diversity preservation scheme when dealing with complex problems. The
directional information offered by other non-historical best positions should be leveraged
during the search process to prevent the potential negative impacts brought by personal
and global best positions.

Finally, it is observed that PSOWV has limited ability to achieve proper trade-off
between exploration and exploitation searches because only one search operator is used
to perform the search process. Hence, PSOWV can only perform well in certain types of
optimization problems (i.e., unimodal problem), and it exhibits poor optimization perfor-
mance in other problem categories. When solving optimization problems with different
complexity levels as governed by the characteristics of fitness landscapes, it is crucial for
an algorithm to intelligently regulate its exploration and exploitation strength to locate the
global optima [19]. The incorporation of multiple search operators with different levels of
exploration and exploitation strengths can be envisioned as an alternative to enhance the
robustness of the algorithm to solve different complex optimization problems competitively.

1.2. Research Contributions

To address the shortcomings of PSOWV in solving complex optimization problems
such as the ANN model training, an enhanced variant known as multi-swarm-based
particle swarm optimization with two-level learning phases (MSPSOTLP) is proposed.
Apart from optimizing the weight and bias values of ANN models during the training
process, the proposed MSPSOTLP can also determine the optimal activation function of an
ANN model to solve the given classification problem. The main modifications introduced
into MSPSOTLP to highlight its research contributions are summarized as follows:

1. A modified initialization scheme is incorporated into MSPSOTLP to generate an
initial population with better robustness and diversity by leveraging the benefits of
the chaotic system (CS) and oppositional-based learning (OBL).

2. In the primary learning phase of MSPSOTLP, both the multi-swarm concept and
social learning concept are incorporated to promote rapid convergence of the popula-
tion towards the optimal regions by enabling particles to learn from other superior
population members while preserving the diversity level of population.

3. In the secondary learning phase of MSPSOTLP, two modified search operators with
different characteristics are designed for each particle to perform searching with
different levels of exploration and exploitation strengths, hence enabling the proposed
algorithm to solve different types of optimization problems more competitively.
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4. The performance of MSPSOTLP in solving global optimization problems is investi-
gated using CEC 2014 benchmark functions. The classification performances of ANN
models trained using MSPSOTLP are also evaluated with 16 datasets selected from
UCI Machine Learning Repository. The proposed MSPSOTLP is proven more compet-
itive than its peer algorithms at solving the benchmark functions and ANN training.

The remaining sections of this article are organized as follows. Related works of
this study are explained in Section 2. The detailed search mechanisms of MSPSOTLP
are described in Section 3. Extensive simulation studies performed to investigate the
performance of MSPSOTLP in solving global optimization problems and its capability to
train ANN models in solving classification problems are presented in Section 4. Finally,
Section 5 concludes the research findings and future works.

2. Related Works

2.1. Particle Swarm Optimization (PSO)

PSO is inspired by the collective behavior of bird flocking or fish schooling to search
for food sources [14]. Suppose that N is the population size and D is the dimensional size of
an optimization problem. Each PSO particle is a potential solution to solve an optimization
problem represented with a velocity vector of Vn = [Vn,1, . . . , Vn,d, . . . , Vn,D] and a position
vector of Xn = [Xn,1, . . . , Xn,d, . . . , Xn,D], where n = 1, . . . , N and d = 1, . . . , D refer to
the population index and dimension index, respectively. Unlike other MSAs, each PSO
particle can memorize its previous best experience and the best experience achieved by the
population, denoted as personal best position of XPbest

n =
[

XPbest
n,1 , . . . , XPbest

n,d , . . . , XPbest
n,D

]
and global best position of Gbest =

[
Gbest

1 , . . . , Gbest
d , . . . , Gbest

D

]
, respectively. During the

t-th iteration of the search process, the new velocity Vt+1
n,d of each n-th particle in any d-th

dimension is adjusted based on the corresponding dimensional components of the personal
best position XPbest,t

n,d (i.e., self-cognitive component) and global best position Gbest,t
d (i.e.,

social component) as follows:

Vt+1
n,d = ωVt

n,d + c1r1

(
XPbest,t

n,d − Xt
n,d

)
+ c2r2

(
Gbest,t

d − Xt
n,d

)
(1)

where ω is an inertia weight; c1 and c2 are acceleration coefficients; r1, r2 ∈ [0, 1] are
two random numbers generated from a uniform distribution. Referring to Vt+1

n,d , the new
position of each n-th particle in every d-th dimension is updated as:

Xt+1
n,d = Vt+1

n,d + Xt
n,d (2)

The fitness of every n-th particle with updated position is evaluated as f
(
Xt+1

n
)

and
compared with those of the personal best position and global best position denoted as
f
(

XPbest,t
n

)
and f

(
Gbest,t

)
, respectively. Both of XPbest,t

n and Gbest,t will be updated as Xt+1
n

if the latter solution is superior. The search process of PSO using Equations (1) and (2) is
iterated until the predefined termination criteria are satisfied.

2.2. Particle Swarm Optimization without Velocity (PSOWV)

PSOWV is a velocity-discarded version of PSO proposed in [16], aiming to enhance
the ability of PSO to locate the global optimum of a given problem with a lesser iteration
number. During the search process, the d-th dimension of position for every n-th PSOWV
particle (i.e., Xt+1

n,d ) can be updated based on the random linear combination between

its personal best position (i.e., XPbest,t
n,d ) and the global best position (i.e., Gbest,t

d ) of the
population in the same dimensional component as follows:

Xt+1
n,d = c1r1XPbest,t

n,d + c2r2Gbest,t
d (3)
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The fitness evaluation and procedure to update historically best positions (i.e., XPbest,t
n

and Gbest,t) of PSOWV are similar to those of the original PSO. Although PSOWV can solve
the simple benchmark functions with a faster convergence speed than the original PSO, its
feasibility to solve more challenging real-world optimization problems, such as training
ANN models, remains unexplored. Furthermore, preliminary studies also revealed the high
tendency of PSOWV to suffer premature convergence issues because its search behavior
is governed by a single search operator that highly relies on the directional information
provided by historically best positions.

2.3. PSO Variants

Despite appealing characteristics, such as rapid convergence speed and simplistic
implementation, the original PSO tends to suffer from rapid loss of population diversity
and premature convergence issues when solving more complex optimization problems.
Proper balancing of exploration and exploitation searches is considered a fundamental
cornerstone for MSAs such as PSO to solve different optimization problems competitively.
Therefore, various modification schemes were proposed by researchers over the years to
address the demerits of the original PSO.

Parameter adaptation is a popular enhancement strategy of PSO by determining the
proper combination of control parameters that can govern its search trajectories. The control
parameters to be adjusted include inertia weight, constriction factor, acceleration coeffi-
cients, and a variety of these parameters. Some notable PSO variants that were proposed
with parameter adaptation approaches are reported in [20–23]. Neighborhood structure
modification is another promising technique of PSO because it governs the broadcast rate
of information between population members. Particularly, the fully connected population
topology tends to be more exploitative, whereas the partially connected one has stronger
exploitation strengths. PSO variants reported in [19,24–28] can achieve proper tradeoffs be-
tween the exploration and exploitation searches by varying their population topology with
time or based on current search environments. Apart from modifying the neighborhood
structure, it is also feasible to introduce single or multiple modified learning strategies
into PSO for achieving performance enhancements such as those proposed in [29–36]. To
alleviate potential negative impacts brought by the historically best solution (e.g., per-
sonal and global best positions), novel exemplars might be constructed by these modified
learning strategies from the non-fittest solutions to guide the search process of particles
more effectively while preserving the population diversity. Finally, the PSO’s robustness
in solving high-complexity real-world problems can be enhanced using the hybridization
approach, such as those reported in [37–40]. Different hybridization frameworks [41] can
be designed to leverage the strengths of search operators incorporated in other MSAs for
compensating the drawbacks of PSO in solving certain problem classes. The strengths and
limitations of selected PSO variants are analyzed and summarized in Table 1.

Table 1. Strengths and limitations of selected PSO variants.

Reference Year Strengths Limitations

[20] 2019
• Acceleration coefficients and inertia weight

of each particle were adjusted adaptively
based on current search environment.

• High computation costs incurred by the novel
method used to estimate the search environment
in each iteration.

[21] 2019

• Inertia weights of particles were adjusted
based on their personal best fitness.

• Mutation scheme was performed on
stagnated particles to preserve
swarm diversity.

• Both adaptive inertia weight and mutation
scheme were highly relying on the directional
information of global best position.
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Table 1. Cont.

Reference Year Strengths Limitations

[22] 2019
• Periodic trigonometric functions were used

to adjust the inertia weight and acceleration
coefficient of particle.

• Limited ability to adjust exploration and
exploitation searches with single search operator.

• Search process only relied on personal and global
best positions.

[23] 2021

• Gaussian white noise with different
intensity was used to adjust the acceleration
coefficients of particles adaptively.

• Wider exploration search.

• Limited ability to adjust exploration and
exploitation searches with single search operator.

• Search process only relied on personal and global
best positions.

[24] 2022
• Neighborhood structure of each particle

was gradually increased from ring topology
to fully connected topology.

• Limited flexibility to regulate exploration and
exploitation searches of algorithm because the
swarm diversity level is increased monotonically.

[19] 2018

• Neighborhood structure of each particle
can be adaptively maintained, decreased,
increased or shuffled by referring to the
search track record of population.

• Expensive computation cost used to adaptively
adjust the neighborhood structure of each
particle.

• Laborious works to fine tune the newly
introduced parameters.

[25] 2018

• Flexible neighborhood structure concept
was introduced to achieve proper tradeoff
between exploration and
exploitation searches.

• Expensive computation cost used to adaptively
adjust the neighborhood structure of
each particle.

• Relatively poor performances when dealing with
unimodal problems.

[26] 2020
• A reinforcement learning concept (i.e.,

Q-learning) was used to select the optimal
topology of particle.

• Expensive computation cost due to the
involvement of Q-learning and computation of
swarm diversity.

• Search process only relied on personal and global
best positions.

[27] 2020

• Multiple good quality subswarms were
constructed based on correlations between
group sequences.

• A dynamic regrouping strategy was
introduced to promote information sharing
between different subswarms and
accelerate their convergence speed.

• Overemphasized on the influences of historically
best positions to guide the search process
of subswarms.

• Complex population division scheme.
• Laborious works to fine tune the newly

introduced parameters.

[28] 2020

• Benefits of holonic organization in
multiagent system were leveraged to
achieve proper tradeoff between
exploration and exploitation searches.

• Relatively slow convergence speed when
locating the global optima of unimodal problems.

[29] 2017

• Multiple subswarms were constructed
based on the fitness levels of particles.

• Directional information of non-fittest
particles was used to guide the
search process.

• Relatively poor performances when dealing with
low and medium scale optimization problems.

[30] 2020
• Exemplar used to guide the general swarm

was derived from the mean positions of
elitist swarm.

• Limited enhancement of swarm diversity
because mean position used to guide the
population search was shared by all particles.

[31] 2020

• Positions of other particles were updated
using mainstream and stochastic
learning strategies.

• Global worst position was handled using
terminal replacement mechanism.

• Limited enhancement of swarm diversity
because mean position used to guide the
population search was shared by all particles.
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Table 1. Cont.

Reference Year Strengths Limitations

[32] 2020
• Forgetting ability was introduced to

maintain the population diversity
of algorithm.

• Neglected the potential benefits brought by
non-fittest particles to guide the search process.

[33] 2019

• Dimensional learning strategy and
comprehensive learning strategy were
introduced to achieve proper tradeoff
between exploration and
exploitation searches.

• High fitness evaluation numbers were consumed
by dimensional learning strategy when
generating the exemplar.

[34] 2019
• Oppositional-based learning and convex

combination concepts were used to
generate exemplar for the fittest particle.

• Strong dependency on historically best positions
used to guide the non-fittest particles.

[35] 2020

• Optimal guide creation module was
designed to generate a global exemplar
based on two nearest neighbors of global
best position.

• Expensive computation cost due to the
construction of global exemplar in
every iteration.

[36] 2021

• Construction of main swarm and hover
swarm as diversity maintenance scheme.

• Construction of unique exemplar for main
swarm and hover swarm,

• Expensive computation cost due to the binary
population division scheme and construction of
unique exemplar in every iteration.

[37] 2019

• Crossover and mutation of genetic
algorithm were used to enhance the
exploitation and exploration searches of
PSO, respectively.

• Huge memory consumption to store the
individual solutions that offered significant
performance gains.

[38] 2019
• Grey wolf optimizer was used to update

the positions of some particles to
enhance exploration.

• Increasing execution time due to sequential
cascading of grey wolf optimizer and PSO.

[39] 2020
• Butterfly optimization algorithm was

hybridized with PSO to improve the
exploration ability.

• Neglected the potential benefits brought by
non-fittest particles to guide the search process.

[40] 2022

• Differential evolution was hybridized with
PSO to achieve better balancing of
exploration and exploitation searches of
algorithm

• Increasing execution time due to sequential
cascading of differential evolution and PSO.

2.4. Application of MSAs in Training ANN Models

Given the drawbacks of the conventional BP method, numerous MSAs were de-
signed as promising alternatives to train ANN models with more robust network per-
formances [42]. A two-layer PSO (PSO-PSO) algorithm was proposed in [43] to train a
multilayer perceptron (MLP) neural network by interleaving two PSO algorithms. The first
layer of PSO was used to optimize the number of perceptrons in the network architecture,
whereas the second layer of PSO optimized the weight and bias values based on the net-
work architecture obtained by the first layer. Nevertheless, simulation studies revealed
that the ANN models optimized by PSO-PSO did not significantly outperform their peers
when solving the classification benchmark datasets. A hybridized PSO and gravitational
search algorithm (PSOGSA) was proposed [44] to optimize the weights and biases of the
ANN model by leveraging the unique searching behaviors of PSO and GSA. When training
the ANN model, PSO was incorporated to alleviate the inherent drawbacks of GSA, i.e.,
low convergence rate and high tendency to be trapped in local optima. A hybrid improved
opposition-based PSO with a backpropagation algorithm (IOPSO-BPA) [45] was introduced
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to optimize the weight values of ANNs. Both oppositional-based learning and mutation
schemes were incorporated as diversity preservation schemes of IOPSO-BPA.

Furthermore, the concepts of time-varying parameters were introduced to improve
the convergence characteristic of the algorithm in optimizing the weights of ANN models.
Kandasamy and Rajendran [46] proposed a hybrid algorithm to overcome the drawbacks
of the conventional BP methods overfitting and entrapment in local optima when training
ANN models. PSO was firstly employed to search for the optimal combination of trainable
weights of the ANN model by minimizing the classification error function. Subsequently,
the steepest descent method was applied to fine tune the near-optimal weight values
encoded in the global best position to further improve classification accuracy. In [47], a
self-adaptive and strategy-based PSO (SPS-PSO) was designed to solve the large-scale
feature selection and ANN training problems for large-scale datasets. Five search operators
with different characteristics were introduced in SPS-PSO, and an adaptive mechanism
was used to assign a suitable operator for each particle to ensure it can perform searching
with balanced exploration and exploitation strengths. A comprehensive adaptive PSO
(ACPSO) was designed in [48] to tackle the denoising issue of ultrasound images by
optimizing the functional-link neural network (FLNN). The velocity of the ACPSO was
only dependent on the global best position, and its controlling parameters were adaptively
adjusted based on the personal and global best positions. To mitigate the flooding issue, an
ANN model was trained using PSO in [49] to formulate river flow modelling based on the
weather and meteorological data. It was revealed that the river flow strongly correlates
with selected variables, such as temperature, evaporation, and rainfall. In [50], hybrid
intelligent modeling was developed using PSO and ANN (PSO-ANN) to predict the soil
matric sanction, i.e., a useful metric to indicate the soil shear strength in addressing sudden
landslides issue, with improved prediction accuracy.

The genetic algorithm (GA) [51] is another popular MSA used to train ANN models.
A hybrid model of ANN and GA (ANN-GA) was proposed in [52] to optimize the weights
and biases of the ANN model used for modeling the slump of ready-mix concrete. The
initial weights and biases of ANN-GA were determined using GA and fine-tuned with the
BP algorithm. ANN-GA was reported to outperform its peers by leveraging the benefits of
GA and BP to promote its global and local search abilities, respectively. In [53], GABPNN
was proposed by integrating GA into a BP-trained ANN to optimize the thickness of
blow-molded polypropylene bellows. In GABPNN, the BP algorithm was first applied
to train the weights of the ANN model using lesser learning samples, and these weights
were further evolved in the feasible solution regions using GA. Contrary to ANN-GA,
GA promoted the local search behavior of GABPNN by adopting an elitist strategy and a
simulated annealing algorithm. GABPNN demonstrated its effectiveness and competitive
performance in solving blow molding problems. A hybrid MLP ANN and GA approach
(MLPANN-GA) was introduced in [54] to predict sludge bulking for water treatment
plants. GA was incorporated to train the weights, activation functions, and thresholds
of the MLPANN model. Simulation studies reported that the incorporation of GA to
train MLPANN can increase the accuracy of the ANN model in estimating the sludge
volume index.

In addition to GA, teaching-learning-based optimization (TLBO) [55] is another pop-
ular MSA widely used for ANN optimization. A TLBO-based ANN (TLBOANN) was
proposed in [56] to estimate the energy consumption in Turkey. TLBO was applied to
search for the optimal weights and biases of the ANN model by minimizing the error
function based on the input data provided, i.e., gross domestic product, population, and
import and export data in Turkey. An improved hybrid TLBO and ANN (iTLBO-ANN) was
proposed in [57] to solve real-world building energy consumption forecasting problems.
Three modifications, known as feedback stage, accuracy factor, and worst solution elimi-
nation, were introduced to improve the performance of TLBO in optimizing the weights
and thresholds of the ANN model within a shorter time. The iTLBO-ANN outperformed
other ANN models trained by GA and PSO by predicting building energy consumption

13



Processes 2022, 10, 2579

with better accuracy and computational speed. Another TLBO-optimized ANN [58] was
proposed to improve the performance in predicting the axial capacity of pile foundations.
TLBO was used to train the weights of the ANN model by minimizing the mean square
error produced when predicting the ultimate capacity of both driven and drilled shaft piles
embedded in uncemented soils. The ANN model trained by TLBO outperformed that
trained by BP by producing better variance accounted for and determination coefficient. A
new TLBO variant known as TLBO-MLPs was used to train ANN model for data classifica-
tion [59]. Additional mechanisms were introduced in both the teacher and learner phases
of TLBO-MLPs to achieve realistic emulation of classroom teaching and learning that can
lead to performance gain in solving complex optimization problems [60].

3. Proposed Methodology

3.1. Formulation of ANN Training as an Optimization Problem

An ANN model to be optimized in this study consists of a three-layer structure with
P input neurons, Q hidden neurons, and R output neurons in input, hidden, and output
layers, respectively, as illustrated in Figure 1. The neurons in each layer are considered
a set of processing elements that are connected by weights with other layers. Suppose
that Ip refers to the value of p-th neuron at the input layer, Hq represents the value of
q-th neuron at the hidden layer, and Or is the r-th neuron at the output layer, where
p = 1, . . . , P, q = 1, . . . , Q, and r = 1, . . . , R. Denote WH

p,q as the connection weight between
Ip and Hq; WO

q,r as the connection weight between Hq and Or; BH
q and BO

r as the biases of
Hq and Or, respectively. The values of each q-th hidden neuron Hq and r-th output neuron
Or can be produced by computing the sum of input weight with the presence of biases,
followed by the non-linearization process of this weighted summation with an activation
function of Φ(·) expressed as follows:

Hq = Φ

(
P

∑
p=1

WH
p,q Ip + BH

q

)
(4)

Or = Φ

(
Q

∑
q=1

WO
q,r Iq + BO

r

)
(5)

Contrary to the majority of existing ANN training algorithms that only focus on
searching optimal weights and biases, this study also considers the optimal selection of the
activation function used to solve a given classification task. The decision variables to be
optimized by the proposed MSPSOTLP when training the ANN model include: (a) weights
WH

p,q, WO
q,r ∈ [−1, 1], (b) biases BH

q , BO
r ∈ [−1, 1], and (c) index K = {1, 2, 3, 4, 5} that refer to

the candidate activation functions, where Binary Step, Sigmoid [7], Hyperbolic Tangent
(Tanh) [7], Inverse Tangent (ATan), and Rectified Linear Unit (ReLU) [61] functions are
assigned with indices of 1, 2, 3, 4, and 5, respectively. The mathematical formulation of the
candidate activation functions considered in this study is presented in Table 2.

Table 2. The mathematical formulation of the considered activation functions.

Activation Functions Mathematical Formulation

Binary Step Φ(X) =

{
0, for X < 0
1, for X ≥ 0

Sigmoid Φ(X) = X
1 + e−X

Hyperbolic Tangent (Tanh) Φ(X) =
(

eX − e−X

eX+e−X

)
Inverse Tangent (ATan) Φ(X) = tan−1(X)

Rectified Linear Unit (ReLU) Φ(X) =

{
X, for X ≥ 0
0, for X < 0
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Figure 1. The network architecture of an ANN model with three-layer structure.

The decision variables to be optimized by the proposed MSPSOTLP in ANN training
are encoded into the position vector X of each particle as follows:

X
=
[
WH

1,1, . . . , WH
p,q, . . . , WH

P,Q, WO
1,1, . . . , WO

q,r, . . . , WO
Q,R, BH

1 , . . . , BH
q , . . . , BH

Q , BO
1 , . . . , BO

r , . . . , BO
R , K

] (6)

Referring to Equation (6), the ANN training considered in the current study can be
formulated as an optimization problem with a dimensional size of D, where

D = PQ + QR + Q + R + 1 (7)

In this study, the fitness of each MSPSOTLP particle when it is used to train the ANN
model can be evaluated by measuring the mean square error between the predicted and
expected output values. Given a dataset with a total of G data samples, the predicted
output of g-th data sample produced by an ANN model trained by MSPSOTLP and its
corresponding expected outcome stored in the dataset are indicated as �pred

g and �exp
g ,

respectively, where g = 1, . . . , G. The mean square error ε(X) produced by an ANN model
constructed using the decision variables stored in the position vector X of the particle is
calculated as the fitness value f (X) as follows:

f (X) = ε(X) =
1
G

G

∑
g=1

[
�pred

g (X)−�exp
g

]2
(8)

Based on Equation (8), the ANN training is considered a minimization problem
because it is more desirable to produce an ANN model with a minor error, implying its
high classification accuracy in solving a given dataset.

3.2. Proposed MSPSOTLP Algorithm

In this study, a new PSO variant known as MSPSOTLP is proposed to solve challenging
optimization problems, including the ANN training problem formulated in Equation (8),
with improved performances. For the latter problem, the proposed MSPSOTLP is used to
optimize the weights, biases, and selection of activation functions of the ANN model when
solving the given datasets. The essential modifications introduced to enhance the search
performance of MSPSOTLP are described in the following subsections.
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3.2.1. Modified Initialization Scheme of MSPSOTLP

Population initialization is considered a crucial process to develop robust MSAs
because the quality of initial candidate solutions can influence the algorithm’s convergence
rate and searching accuracy [17]. Most PSO variants employed random initialization to
generate the initial population without considering any meaningful information about the
search environment [17]. The stochastic behavior of the random initialization scheme might
produce particles at inferior solution regions at the beginning stage of optimization. This
undesirable scenario can prevent the algorithm’s convergence towards the global optimum,
thus compromising the algorithm’s overall performance.

In this study, a modified initialization scheme incorporated with the chaotic system
(CS) and oppositional-based learning (OBL), namely the CSOBL initialization scheme, is
designed for the proposed MSPSOTLP to overcome the drawbacks of the conventional
initialization scheme. Unlike a random system that demonstrates completely unpredictable
behaviors, CS is considered a more powerful initialization scheme that can produce an
initial swarm with better diversity by leveraging its ergodicity and non-repetition natures.
Denote ϑ0 as the initial condition of a chaotic variable that is randomly generated in
each independent run. ϑz refers to the value of the chaotic variable in z-th iteration with
z = 1, . . . , Z, where Z represents the maximum sequence number. Given the bifurcation
coefficient of μ = π, the chaotic sequence is updated using a chaotic sine map [62] as:

ϑz+1 = sin(μϑz), where z = 1, . . . , Z (9)

Let XU
d and XL

d be the upper and lower limits of the decision variable in each d-th
dimension, respectively, where 1 = 1, . . . , D. Given the chaotic variable ϑZ produced in
the final iteration of Z, the d-th dimension of each n-th chaotic swarm member XCS

n,d can be
initialized as:

XCS
n,d = XL

d + ϑZ

(
XU

d − XL
d

)
(10)

Referring to Equation (10), a chaotic population with a swarm size of N can be pro-
duced and represented as a population set of PCS =

[
XCS

1 , . . . , XCS
n , . . . , XCS

N
]
.

Despite the benefits of the chaotic map in enhancing population diversity, these chaotic
swarm members can be initialized in solution regions far away from the global optimum,
leading to the low convergence rate of the algorithm. To overcome this drawback, a solution
set opposite with PCS is generated by leveraging the OBL concept [63]. For every d-th
dimension of n-th chaotic swarm member represented as XCS

n,d, the corresponding opposite
swarm member XOL

n,d is calculated using OBL strategy [17,64] as follows:

XOL
n,d = XL

d + XU
d − XCS

n,d (11)

Similarly, an opposite population with a swarm size of N can be generated using
Equation (11) and represented as another population set of POL =

[
XOL

1 , . . . , XOL
n , . . . , XOL

N
]
.

To produce an initial population with better fitness and wider coverage in the solution
space, both of PCS and POL are merged as a combined population set of PMRG with a
swarm size of 2N as follows:

PMRG = PCS ∪ POL (12)

Subsequently, the fitness of all solution members in PMRG are evaluated, and a sorting
operator of Ψ(·) is then applied to rearrange these solution members from the best to worst
based on their fitness to produce a sorted population set of PSort, where

PSort = Ψ (PMRG ) (13)

Finally, a truncation operator Γ(·) is applied to select the top N solution members of on
PSort to construct the initial population of MSPSOTLP, i.e., P = [X1, . . . , Xn, . . . , XN ], where

P = Γ (PSort ) (14)
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The pseudocode used to describe the CSOBL initialization scheme of MSPSOTLP is
presented in Algorithm 1.

Algorithm 1. Pseudocode of CSOBL initialization scheme for MSPSOTLP

Input: N, D, XU, XL, Z
01: Initialize PCS ← ∅ and POL ← ∅ ;
02: for each n-th particle do

03: for each d-th dimension do

04: Randomly generate initial chaotic variable ϑ0 ∈ [0, 1];
05: Initialize the chaotic sequence as z = 1;
06: while z is smaller than Z do

07: Update chaotic variable ϑz+1 using Equation (9);
08: end while

09: Compute XCS
n,d using Equation (10);

10: Compute XOL
n,d using Equation (11);

11: end for

12: PCS ← PCS ∪ XCS
n ;/* Store new chaotic swarm member */

13: POL ← POL ∪ XOL
n ;/* Store new opposite swarm member */

14: end for

15: Construct PMRG using Equation (12);
16: Evaluate the fitness of all solution members in PMRG;
17: Sort all solution members of PMRG from the best to worst using Equation (13);
18: Produce the initial population P using Equation (14);
Output: P = [X1, . . . , Xn, . . . , XN ]

3.2.2. Primary Learning Phase of MSPSOTLP

Most PSO variants, including PSOWV, rely on the global best position to adjust the
search trajectories of particles during the optimization process without considering the
useful information of other non-fittest particles in the population. Although the directional
information of the global best position might be useful to solve simple unimodal problems,
it might not necessarily be the best option to handle complex problems with multiple
numbers of local optima due to the possibility of the global best position being trapped at
the local optima in an earlier stage of optimization. Without a proper diversity preservation
scheme, other population members tend to be attracted by misleading information about
the global best position and converge towards the inferior region, leading to premature
convergence and poor optimization results.

To address the aforementioned issues, several modifications are incorporated into the
primary learning phase of MSPSOTLP to achieve a proper balancing of exploration and
exploitation searches. The multiswarm concept is first introduced as a diversity preserva-
tion scheme at the beginning stage of the primary learning phase by randomly dividing
the main population of P = [X1, . . . , Xn, . . . , XN] into S subswarms. Each s-th subswarm
is denoted by Psub

s =
[

Xsub
1 , . . . , Xsub

n , . . . , Xsub
Nsub

]
consists of Nsub = N/S particles, where

s = 1, . . . , S. To produce each s-th subswarm Psub
s from the main population P, a reference

point of Rs =
[

Xre f
s,1 , . . . , Xre f

s,d , . . . , Xre f
s,D

]
is randomly generated in search space. The nor-

malized Euclidean distance between the reference point Rs and personal best position of
each n-th particle, i.e., XPbest

n =
[

XPbest
n,1 , . . . , XPbest

n,d , . . . , XPbest
n,D

]
are measured as Ξ(s, n), i.e.,

Ξ(s, n) =

√√√√√ D

∑
d=1

⎛⎝Xre f
s,d − XPbest

n,d

XU
d − XL

d

⎞⎠2

(15)

Referring to the Ξ(s, n) values computed for all N particles, the Nsub particles with
the nearest Ξ(s, n) distances from Rs are identified as the members of s-th subswarm and
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stored in Psub
s before they are discarded from the main population P. From Algorithm 2,

the reference-point-based population division scheme used to generate the multiswarm for
the primary learning phase of MSPSOTLP is repeated until all S subswarms are generated.

Algorithm 2. Pseudocode of reference-point-based population division scheme used to generate
the multiswarm for the primary learning phase of MSPSOTLP

Input: P, N, S, D, Nsub, XU , XL

01: Initialize s ← 1 ;
02: while main population P is not empty do

03: Randomly generate Rs = [Xre f
s,1 , . . . , Xre f

s,d , . . . , Xre f
s,D ] in search space;

04: for each n-th particle do

05: Calculate Ξ(s, n) using Equation (15);
06: end for

07: Select Nsub particles with the nearest Ξ(s, n) from Rs to construct Psub
s ;

08: Eliminate the members of Psub
s from P;

09: s ← s + 1 ; /* Update the index of subswarm*/
10: end while

Output: Psub
s = [Xsub

1 , . . . , Xsub
n , . . . , Xsub

Nsub ] where s = 1, . . . , S

Define f (XPbest,s
n ) as the personal best fitness of each n-th particle stored in the s-th

subswarm Psub
s , where n = 1, . . . , Nsub and s = 1, . . . , S. All Nsub particles stored in each

s-th subswarm Psub
s are then sorted from the worst to best based on their personal best

fitness values, as shown in Figure 2. Accordingly, any k-th particle stored in the sorted Psub
s

is considered to have better or equally good personal best fitness than that of n-th particle
if the condition of n ≤ k ≤ Nsub is satisfied. Referring to Figure 2, it is notable that the first
particle stored in Psub

s has the worst personal best fitness, whereas the final particle stored
in Psub

s has the most competitive personal best fitness after the sorting process. Therefore,
the personal best position of the final particle is also considered as the subswarm best
position of Psub

s represented as XSbest
s = XPbest,s

Nsub for s = 1, . . . , S.

For each s-th sorted subswarm, define Ωs
n = {XPbest,s

k |k ∈ [n, Nsub ]} as a set variable
used to store the personal best position of all solution members that are superior to that
of n-th solution member for n = 1, . . . , Nsub − 1. Notably, the set variable Ωs

Nsub is not
constructed for the final solution member because none of the solution members stored
in Psub

s has better personal best fitness than XPbest,s
Nsub or XSbest

s . Referring to the solution
members stored in each Ωs

n, a unique mean position denoted as Xmean,s
n is then specifi-

cally constructed to guide the search process of every n-th solution member in the s-th
subswarm, where:

Xmean,s
n =

1
Nsub − n + 1

(
Nsub

∑
k=n

XPbest,s
k

)
(16)

Figure 2. Graphical illustration of sorting all particles stored in each subswarm based on their
personal best fitness values.
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Apart from Xmean,s
n , a social exemplar XSOC,s

n = [XSOC,s
n,1 , . . . , XSOC,s

n,d , . . . , XSOC,s
n,D ] that

plays crucial roles to adjust the search trajectory of each n-th particle stored in Psub
s is also

formulated. In contrary to global best position, the social exemplar constructed for each n-th
particle is unique and it can guide the search process with better diversity by fully utilizing
the promising directional information of other particles stored in Ωs

n with better personal
best fitness values. Specifically, each d-th dimension of n-th social learning exemplar for
s-th subswarm, i.e., XSOC,s

n,d , can be contributed by the same dimensional component of any
randomly selected solution members of Ωs

n. The procedures used to construct the social
exemplar XSOC,s

n for each n-th particle stored in Psub
s are described in Algorithm 3, where α

refers to a random integer generated between the indices of n and Nsub.

Algorithm 3. Pseudocode used to generate the social exemplar for each non-fittest solution
member in each subswarm

Input: D, Nsub, n, Ωs
n

01: for each d-th dimension do

02: Randomly generate an integer α between indices of n and Nsub;
03: Extract the associated component of XPbest,s

α,d from Ωs
n;

04: XSOC,s
n,d ← XPbest,s

α,d ;
05: end for

Output: XSOC,s
n

Given the subswarm best position XSbest
s , mean position Xmean,s

n and social exemplar
XSOC,s

n , the new position Xs
n of each n-th non-fittest solution member stored in the s-th

subswarm, where n = 1, . . . , Nsub − 1 and s = 1, . . . , S, is updated as follows:

Xs
n = Xs

n + c1r1 (XSOC,s
n − Xs

n ) + c2r2 (XSbest
s − Xs

n ) + c3r3 (Xmean,s
n − Xs

n ) (17)

where c1, c2 and c3 represent the acceleration coefficients; r1, r2, r3 ∈ [0, 1] are random
numbers generated from uniform distributions. Referring to Equation (17), the directional
information contributed by XSOC,s

n and Xmean,s
n are unique for each n-th non-fittest solution

member of Psub
s because the better solution members are stored in every set variable Ωs

n are
different for n = 1, . . . , Nsub − 1. The social learning concept incorporated in Equation (17)
also ensures that only the useful information brought by better-performing solutions is used
to guide the search process of each n-th particle to accelerate the algorithm’s convergence
rate. Furthermore, this learning strategy does not consider the global best position in
updating the new position of each n-th particle; therefore, it has better robustness against
premature convergence issues.

On the other hand, different approaches are proposed to generate the mean position
and social exemplar used for guiding the search process of the final particle stored in every
n-th subswarm because none of the solution members of Psub

s can have better personal best
fitness than that of XPbest,s

Nsub . Define Ωs
Nsub as a set variable used to store the subswarm best

position of any b-th subswarm Psub
b if f (XSbest

b ) is better than f (XSbest
s ), i.e.,

Ωs
Nsub = {XSbest

b | f (XSbest
b ) is better than (XSbest

s ), b ∈ Bs } (18)

where Bs is a set containing the indices of all subswarms that have better subswarm best
fitness than that of s-th subswarm; |Bs | refers to the size of set Bs in the range of 0 to S − 1.
Obviously, |Bs | = 0 is the subswarm best position of s-th subswarm is the same as the
global best position Gbest of population, therefore the empty sets of Bs = Ωs

Nsub = ∅ are
obtained under this circumstance.
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The subswarm consists of Gbest, the unique mean position Xmean,s
Nsub used to guide the

search process of the final particle Xs
Nsub stored in each s-th subswarm based on Ωs

Nsub are
calculated as follows:

Xmean,s
Nsub =

1
|Bs |

⎛⎝ ∑
b∈Bs ,|Bs |�=0

XSbest
b

⎞⎠ (19)

Similarly, a social exemplar of XSOC,s
Nsub =

[
XSOC,s

Nsub ,1
, . . . , XSOC,s

Nsub ,d, . . . , XSOC,s
Nsub ,D

]
is also de-

rived from adjusting the search trajectory of the final particle Xs
Nsub stored in each s-th

subswarm except for the one consisting of Gbest. As shown in Algorithm 4, each d-th
dimension of the social exemplar is assigned to the final particle of s-th subswarm Psub

s ,
i.e., XSOC,s

Nsub ,d, is contributed by the same dimensional component of any subswarm best posi-

tion XSbest
b randomly selected from Ωs

Nsub , where b refers to a subswarm index randomly
selected from Bs.

Algorithm 4. Social Exemplar Scheme for the Best Particle in Each Subswarm

Input: D, Ωs
Nsub , Bs, Nsub

01: for each d-th dimension do

02: Randomly generated a subswarm index of b ∈ Bs;
03: Extract the corresponding component of XSbest

b,d from Ωs
Nsub ;

04: XSOC,s
Nsub ,d ← XSbest

b,d ;
05: end for

Output: XSOC,s
Nsub =

[
XSOC,s

Nsub ,1, . . . , XSOC,s
Nsub ,d, . . . , XSOC,s

Nsub ,D

]
Except for the subswarm consisting of Gbest with Bs = Ωs

Nsub = ∅, the position Xs
Nsub

of final particle stored in each s-th subswarm can be updated as follows:

Xs
Nsub = Xs

Nsub + c1r4 (XSOC,s
Nsub − Xs

Nsub ) + c2r5 (Gbest − Xs
Nsub )

+c3r6 (Xmean,s
Nsub − Xs

Nsub )
(20)

where r4, r5, r6 ∈ [0, 1] are random numbers generated from a uniform distribution. Simi-
larly, the directional information provided by XSOC,s

Nsub and Xmean,s
Nsub are unique for each final

particle Xs
Nsub in each s-th subswarm Psub

s because the solution members stored in each
Ωs

Nsub set are different. Contrary to Equation (17), the social learning concept introduced in
Equation (20) allows each subswarm to converge towards the promising solution regions
without experiencing rapid loss of population diversity by facilitating the information
exchanges between different subswarms. In addition, the employment of Gbest in Equation
(20) is expected to improve the convergence rate of MSPSOTLP.

The overall procedures of the primary learning phase proposed for MSPSOTLP is
described in Algorithm 5. For each new position Xs

n obtained from Equations (17) or (20),
boundary checking is first performed to ensure all decision variables’ upper and lower
limits are not violated. The fitness value corresponding to the updated Xs

n for each particle
in s-th subswarm is then evaluated as f (Xs

n) and compared with those of its personal best
position and global best position denoted as f (XPbest,s

n ) and f (Gbest ), respectively. Both
XPbest,s

n and Gbest are replaced by the updated Xs
n if the latter solution is proven to be

superior to the latter two solutions.
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Algorithm 5. Pseudocode of primary learning phase for MSPSOTLP

Input: P, N, S, D, Nsub, XU , XL,Gbest

01: Divide main population into multiple subswarm using Algorithm 2;

02:
Sort the solution members of Psub

s from the worst to best based on their personal best fitness
values and create Ωs

n for each s-th subswarm;

03:
Identify the subswarm best position XSbest

s of each s-th subswarm and create Ωs
Nsub for the

final particle in all S subswarms using Equation (18);
04: Determine Bs and |Bs | for the final particle of all S subswarms based on Ωs

Nsub ;
05: for each s-th subswarm do

06: for each n-th particle do

07: if n �= Nsub then

08: Calculate Xmean,s
n based on Ωs

n using Equation (16);

09: Generate XSOC,s
n based on Ωs

n using Algorithm 3;
10: Update Xs

n using Equation (17);
11: else if n = Nsub then

12: if Bs �= ∅ and Ωs
Nsub �= ∅ then

13: Calculate Xmean,s
Nsub based on Ωs

Nsub using Equation (19);

14: Generate XSOC,s
Nsub based on Ωs

Nsub using Algorithm 4;
15: Update Xs

Nsub using Equation (20);
16: end if

17: end if

18: Evaluate f (Xs
n) of the updated Xs

n;

19: if f (Xs
n) is better than f (XPbest,s

n ) then

20: XPbest,s
n ← Xs

n , f (XPbest,s
n ) ← f (Xs

n) ;
21: if f (Xs

n) is better than f (Gbest ) then

22: Gbest ← Xs
n , f (Gbest ) ← f (Xs

n) ;
23: end if

24: end if

25: end for

26: end for

Output: Xs
n, f (Xs

n), XPbest,s
n , f (XPbest,s

n ), Gbest and f (Gbest )

3.2.3. Secondary Learning Phase of MSPSOTLP

Substantial studies [19,65] reported that most PSO variants employed single search
operators that can only solve specific optimization problems with good results, but fail to
perform well in the remaining problems due to the limited variations of exploration and
exploitation strengths. For some challenging optimization problems, the fitness landscapes
contained in different subregions of search space can be significantly different. Therefore,
the particles need to adjust their exploration and exploitation strengths dynamically when
searching in different regions of the solution space to locate global optimum and deliver
good optimization results.

Motivated by these findings, a secondary phase is designed as an alternative frame-
work of MSPSOTLP, where two search operators with different search characteristics are
incorporated to guide the search process of particles with varying levels of exploration and
exploitation strengths. Unlike the primary learning phase, both search operators assigned
in the secondary learning phase aim to further refine those already found promising re-
gions by searching around the personal best positions of all MSPSOTLP particles. Before
initiating the secondary learning phase, all S subswarms constructed during the primary
learning phase, i.e., Psub

s for s = 1, . . . , S, are merged to form the main population P with N
particles as shown below:

P = Psub
1 ∪ . . . ∪ Psub

s ∪ . . . ∪ Psub
S (21)
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To assign a search operator for each n-th particle during the secondary learning phase
of MSPSOTLP, a randomly selected particle with a population index of e is randomly
generated, where e ∈ [1, N] and e �= n. Define XPbest

e as the personal best position of this
randomly selected e-th particle and its personal best fitness is evaluated as f (XPbest

e ). If
the e-th particle has better personal best fitness than that of XPbest

n , the new personal best
position of latter particle can be updated as XPbest,new

n , where

XPbest,new
n = XPbest

n + r7 (XPbest
e − XPbest

n ), if f (XPbest
e ) is better than f (XPbest

n ). (22)

where r7 ∈ [0, 1] are random numbers generated from a uniform distribution. The search
operator of Equation (22) can attract of n-th particle towards the promising solution regions
covered by the e-th peer particle, hence it behaves more exploratively.

For the case, if e-th particle has more inferior personal best fitness than that of n-th
particle, the former solution is discarded. Another four distinct particles with popula-
tion indices of w, x, y and z are randomly selected instead, where w, x, y, z ∈ [1, N] and
w �= x �= y �= z. Denote XPbest

w,d , XPbest
x,d , XPbest

y,d and XPbest
z,d as the d-th dimension of the

personal best position for the w-th, x-th, y-th and z-th particles, respectively. Let Gbest
d be

the same d-th dimension of the global best position. For every n-th particle, each of the d-th
dimension of its new personal best position can be calculated as:

XPbest,new
n,d =

{
Gbest

d + τ1 (XPbest
w,d − XPbest

x,d ) + τ2 (XPbest
y,d − XPbest

z,d ), if r8 > 0.5
XPbest

n,d , otherwise
(23)

where τ1, τ2, r8 ∈ [0, 1] are random numbers generated from a uniform distribution. From
Equation (23), there is a probability for each XPbest,new

n,d to inherit its original information from
XPbest

n,d or to perform searching around the nearby region of Gbest
d with small perturbations

based on the information of XPbest
w,d , XPbest

x,d , XPbest
y,d and XPbest

z,d . Hence, the search operator of
Equation (23) is considered more exploitative than that of Equation (22). The procedures
used to implement the secondary learning phase of MSPSOTLP is shown in Algorithm
6. For each new XPbest,new

n obtained from Equations (22) or (23), boundary checking is
performed. For each n-th particle, the fitness value of its updated XPbest,new

n is obtained as
f (XPbest,new

n ) and compared with f (XPbest
n ) and f (Gbest ). If XPbest,new

n is better than XPbest
n

and Gbest, the latter two solutions are replaced by the former one.

3.2.4. Overall Framework of MSPSOTLP

The overall framework of MSPSOTLP is described in Algorithm 7. The initial pop-
ulation of MSPSOTLP is first generated using the CSOBL initialization scheme, where
the chaotic map and oppositional-based learning concepts are incorporated to enhance
the quality and coverage of the initial solutions in the search space, respectively. The
primary learning phase is performed to update the positions of particles by leveraging the
benefits of the multiswarm and social learning concepts. The secondary learning phase is
then executed to fine-tune the personal best position of each particle based on two newly
proposed search operators with different search characteristics. These iterative search
processes are repeated until the termination criterion of γ > Γmax is satisfied, where γ
is a counter used to record the fitness evaluation number consumed by MSPSOTLP and
Γmax is a predefined maximum fitness evaluation number. At the end of the optimization
process, Gbest is returned as the best-optimized result found by the proposed algorithm.
If MSPSOTLP is used to train the ANN model, then Gbest can be decoded as the optimal
combination of weights, biases, and activation functions used by an ANN model to solve a
given dataset.
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Algorithm 6. Pseudocode of secondary learning phase for MSPSOTLP

Input: Psub
s for s = 1, . . . , S, Gbest

d , f (Gbest )
01: Reconstruct main population P using Equation (21);
02: for each n-th particle do

03: Randomly select e-th particle from P with XPbest
e and f (XPbest

e );
04: if f (XPbest

e ) is better than f (XPbest
n ) then

05: Calculate XPbest,new
n using Equation (22);

06: else if f (XPbest
e ) is not better than f (XPbest

n ) then

07: for each d-th dimension do

09: Calculate XPbest,new
n,d using Equation (23);

10: end for

11: end if

12: Evaluate f (XPbest,new
n );

13: if f (XPbest,new
n ) is better than f (XPbest

n ) then

14: XPbest
n ← XPbest,new

n , f (XPbest
n ) ← f (XPbest,new

n ) ;
15: if f (XPbest,new

n ) is better than f (Gbest ) then

16: Gbest ← XPbest
n , f (Gbest ) ← f (XPbest

n ) ;
17: end if

18: end if

19: end for

Output: XPbest
n , f (XPbest

n ), Gbest, f (Gbest )

Algorithm 7 (Main Algorithm). MSPSOTLP

Input: N, D, , XU , XL, Γmax

01: Initialize Gbest as an empty vector and f (Gbest ) ← ∞ ;
02: Initialize γ ← 0 ;
03: Generate the initial population P using Algorithm 1;
04: γ ← γ + 2N ;
05: for each n-th particle do
06: XPbest

n ← Xn , f (XPbest
n ) ← f (Xn) ;

07: If f (Xn) is better than f (Gbest ) then

08: Gbest ← Xn , f (Gbest ) ← f (Xn) ;
09: end if

10: end for

11: while γ ≤ Γmax do

12: Perform the primary learning phase using Algorithm 5;
13: γ ← γ + N ;
14: Perform the secondary learning phase using Algorithm 6;
15: γ ← γ + N ;
16: end while

Output: Gbest, f (Gbest )

4. Performance Analysis of MSPSOTLP

The performance of the proposed MSPSOTLP in solving various types of challenging
optimization problems is investigated and compared with well-established PSO variants.
This includes the performance of MSPSOTLP in solving CEC 2014 benchmark functions,
followed by its performance in optimizing the weights, biases, and activation functions of
ANN models for solving classification problems.

4.1. Performance Evaluation of MSPSOTLP in Solving Global Optimization Problems
4.1.1. CEC 2014 Benchmark Functions

The optimization performance of the proposed MSPSOTLP is evaluated using 30 bench-
mark functions of CEC 2014 [66]. As described in Table 3, the benchmark functions with
different fitness landscape characteristics can be classified into four categories, known
as (i) unimodal functions (F1–F3), (ii) simple multimodal functions (F4–F16), (iii) hybrid
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functions (F17–F22) and (iv) composition functions (F23–F30). For all benchmark functions
in CEC 2014 with D dimensions, the search range X of each decision variable is constrained
between −100 to 100. Furthermore, the fitness value of theoretical global optimum f (X∗)
of each function is presented in Table 3.

Table 3. CEC 2014 benchmark functions and its fitness value of theoretical global optimum.

Categories No. Function Name f(X*)

Unimodal
F1 Rotated High Conditioned Elliptic Function 100
F2 Rotated Bent Cigar Function 200
F3 Rotated Discus Function 300

Simple Multimodal

F4 Shifted and Rotated Rosenbrock’s Function 400
F5 Shifted and Rotated Ackley’s Function 500
F6 Shifted and Rotated Weierstrass Function 600
F7 Shifted and Rotated Griewank’s Function 700
F8 Shifted Rastrigin’s Function 800
F9 Shifted and Rotated Rastrigin’s Function 900
F10 Shifted Schewefel’s Function 1000
F11 Shifted and Rotated Schwefel’s Function 1100
F12 Shifted and Rotated Katsuura Function 1200
F13 Shifted and Rotated HappyCat Function 1300
F14 Shifted and Rotated HGBat Function 1400

F15 Shifted and Rotated Expanded Griewank’s plus
Rosenbrock’s Function 1500

F16 Shifted and Rotated Expanded Schaffer’s F6 Function 1600

Hybrid

F17 Hybrid Function1 1700
F18 Hybrid Function 2 1800
F19 Hybrid Function 3 1900
F20 Hybrid Function 4 2000
F21 Hybrid Function 5 2100
F22 Hybrid Function 6 2200

Composition

F23 Composition Function 1 2300
F24 Composition Function 2 2400
F25 Composition Function 3 2500
F26 Composition Function 4 2600
F27 Composition Function 5 2700
F28 Composition Function 6 2800
F29 Composition Function 7 2900
F30 Composition Function 8 3000

4.1.2. Performance Metrics for Solving Benchmark Functions

Performances of all compared algorithms are measured using the mean fitness Fmean
and standard deviation SD. Specifically, Fmean is the mean error between the fitness of the
best solution produced by an algorithm and the actual global optimum of a benchmark
function in multiple runs. At the same time, the SD value measures the consistency of an
algorithm in solving a given problem. Smaller Fmean and SD imply the capability of an
algorithm to solve a function with better accuracy and consistency, respectively.

A set of non-parametric statistical analysis procedures [67,68] are applied to analyze
the performance of the proposed MSPSOTLP and its competitors from a statistical point
of view. The Wilcoxon signed rank test [68] is applied to conduct a pairwise comparison
between the proposed MSPSOTLP and each competitor at a significance level of α = 0.05.
The results generated by the Wilcoxon signed rank test are presented in terms of R+, R−,
p, and h values. R+ and R− summarize the sum of ranks where MSPSOTLP outperforms
or underperforms its peer algorithm, respectively. The p-value indicates the minimum
significance level required to identify the performance deviations between the two algo-
rithms. If the p-value is smaller than α = 0.05, the better result achieved by an algorithm is
considered statistically significant. Based on the obtained p-value and predefined α, the
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corresponding h value is concluded to be significantly better (i.e., h = “+”), statistically
insignificant (i.e., h = “=”), or significantly worse (i.e., h = “-”).

Multiple comparisons among the proposed MSPSOTLP and its competitors is also
conducted using the Friedman test [67]. The Friedman test first produces the average
ranking of each algorithm. The p-value obtained from the Friedman test measures the global
differences among all compared algorithms at a significance level of α = 0.05. If significant
global differences are observed, three post-hoc analyses [67], known as Bonferroni-Dunn,
Holm, and Hochberg, are performed to analyze the substantial differences among all
compared algorithms based on the adjusted p-values (APVs).

4.1.3. Parameter Settings for Solving Benchmark Functions

The performance of the proposed MSPSOTLP in solving CEC 2014 benchmark func-
tions is compared with seven well-established PSO variants. The selected PSO variants
include the conventional PSO (PSO) [14], PSO without velocity (PSOWV) [16], uncon-
strained version of multi-swarm PSO without velocity (MPSOWV) [15], competitive swarm
optimizer (CSO) [69], social learning PSO (SLPSO) [18], hybridized PSO with gravitational
search algorithm (PSOGSA) [44], and accelerated PSO (APSO) [70].

The parameter settings of all of the compared algorithms are set with the recommended
values in their respective literature and presented in Table 4. All compared algorithms are
configured with a population size of N = 100 to solve each benchmark function at D = 30
for 30 independent times. The maximum fitness evaluation numbers of all algorithms are
set as Γmax = 10, 000 × D. All compared algorithms are simulated using Matlab 2019b on a
personal computer with Intel ® Core i7-7500 CPU @ 2.70 GHz.

Table 4. Parameter settings of all compared algorithms.

Algorithms Parameter Settings

PSO Inertia weight ω : 0.9 → 0.2 , acceleration coefficients c1 = c2 = 2.05
PSOWV c1 = 1.00, c2 = 1.70

MPSOWV Subpopulation size Nsub
s = 10, where s = 1, . . . , 10, acceleration coefficients

c1 = c2 = c2 = 4.1/3
CSO Parameter control the influence of mean position ϕ ∈ [0, 0.3]

SLPSO
Exponential component to adjust learning probability α̃ = 0.5, parameter to
control social influence factor β̃ = 0.01

PSOGSA Initial gravitational constant G0 = 1, descending coefficient of gravitational
constant α̂ = 20

APSO Additional acceleration coefficient A = 0.3, ω = 1, c1 = c2 = 2.05
MSPSOTLP Nsub

s = 10, where s = 1, . . . , 10, c1 = c2 = c2 = 4.1/3

4.1.4. Performance Comparison in Solving CEC 2014 Benchmark Functions

The simulation results of Fmean and SD produced by the proposed MSPSOTLP and
other selected PSO variants in solving the CEC 2014 benchmark functions are presented in
Table 5. The algorithms’ best and second-best Fmean obtained are indicated in boldface and
underlined, respectively. Moreover, the performance comparison between the proposed
MSPSOTLP and selected PSO variants is summarized in #BMF and w/t/l. Specifically,
#BMF indicates the number of best Fmean obtained by an algorithm in solving all function,
while w/t/l reports that the proposed MSPSOTLP has better performance in w function,
similar performance in t function, and worse performance in l function as compared to the
particular compared algorithm.
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Table 5. Fmean and SD values produced by the proposed MSPSOTLP and other PSO variants in
solving CEC 2014 benchmark functions.

Func. Criteria MSPSOTLP PSO PSOWV CSO MPSOWV SLPSO PSOGSA APSO

F1 Fmean 5.61 × 103 6.69 × 106 4.70 × 108 3.12 × 105 1.61 × 108 4.88 × 105 2.47 × 105 1.25 × 108

SD 2.57 × 103 8.99 × 106 3.79 × 108 1.32 × 105 7.38 × 107 2.86 × 105 7.24 × 104 2.02 × 107

F2 Fmean 0.00 × 100 7.27 × 101 6.94 × 1010 6.84 × 103 2.12 × 1010 1.57 × 104 1.25 × 104 3.01 × 107

SD 0.00 × 100 2.90 × 102 1.56 × 1010 5.63 × 103 2.74 × 109 1.10 × 104 6.97 × 103 5.81 × 107

F3 Fmean 2.18 × 1011 4.87 × 101 3.18 × 105 7.85 × 103 8.20 × 104 7.26 × 103 6.93 × 103 1.97 × 105

SD 2.52 × 10−11 6.61 × 101 5.70 × 104 5.62 × 103 2.44 × 104 5.50 × 103 1.33 × 103 3.56 × 104

F4 Fmean 1.44 × 10−2 1.79 × 102 8.66 × 103 5.71 × 101 1.39 × 103 2.56 × 101 4.49 × 101 2.71 × 102

SD 1.23 × 10−2 5.12 × 101 3.26 × 103 2.31 × 101 3.56 × 102 3.04 × 101 2.91 × 101 3.29 × 101

F5 Fmean 2.01 × 101 2.09 × 101 2.09 × 101 2.10 × 101 2.09 × 101 2.09 × 101 2.00 × 101 2.00 × 101

SD 5.32 × 10−2 8.52 × 10−2 9.48 × 10−2 3.65 × 10−2 3.01 × 10−2 6.49 × 10−2 2.99 × 10−4 3.26 × 10−2

F6 Fmean 3.25 × 100 2.12 × 101 3.83 × 101 4.08 × 10−1 3.38 × 101 5.43 × 10−1 1.80 × 101 2.45 × 101

SD 1.02 × 100 5.40 × 100 2.41 × 100 6.73 × 10−1 9.46 × 10−1 6.38 × 10−1 5.22 × 100 3.50 × 100

F7 Fmean 0.00 × 100 2.62 × 10−2 5.61 × 102 1.48 × 10−3 1.62 × 102 1.97 × 10−3 1.23 × 10−2 1.25 × 100

SD 0.00 × 100 2.21 × 10−2 2.05 × 102 3.12 × 10−3 1.44 × 101 4.41 × 10−3 7.38 × 10−3 6.16 × 10−1

F8 Fmean 1.15 × 101 1.15 × 102 3.87 × 102 8.66 × 100 2.68 × 102 1.37 × 101 1.70 × 102 1.37 × 102

SD 1.57 × 100 2.51 × 101 3.23 × 101 1.88 × 100 2.21 × 101 3.25 × 100 9.24 × 100 2.75 × 101

F9 Fmean 1.20 × 101 1.39 × 102 4.85 × 102 9.65 × 100 3.29 × 102 1.65 × 101 1.91 × 102 1.98 × 102

SD 3.16 × 100 1.42 × 101 3.67 × 101 3.78 × 100 1.25 × 101 5.52 × 100 7.06 × 100 2.18 × 101

F10 Fmean 1.52 × 102 2.63 × 103 7.66 × 103 1.78 × 102 6.22 × 103 5.47 × 102 3.89 × 103 3.71 × 103

SD 7.91 × 101 4.52 × 102 4.67 × 102 1.36 × 102 2.45 × 102 2.60 × 102 3.20 × 102 5.04 × 102

F11 Fmean 2.42 × 103 3.76 × 103 7.56 × 103 2.85 × 102 7.24 × 103 7.21 × 102 4.36 × 103 4.16 × 103

SD 3.73 × 102 6.08 × 102 4.57 × 102 2.28 × 102 4.44 × 102 2.29 × 102 1.82 × 102 8.01 × 102

F12 Fmean 1.62 × 100 1.74 × 100 2.70 × 100 2.39 × 100 2.65 × 100 2.50 × 100 2.07 × 10−1 5.61 × 10−1

SD 2.07 × 10−1 3.84 × 10−1 1.22 × 10−1 3.10 × 10−1 1.63 × 10−1 3.68 × 10−1 1.66 × 10−1 2.68 × 10−1

F13 Fmean 1.29 × 10−1 4.82 × 10−1 6.12 × 100 1.34 × 10−1 3.09 × 100 1.97 × 10−1 5.62 × 10−1 5.92 × 10−1

SD 7.49 × 10−3 1.19 × 10−1 5.58 × 10−1 1.61 × 10−2 2.33 × 10−1 2.41 × 10−2 7.52 × 10−2 1.17 × 10−1

F14 Fmean 1.93 × 10−1 2.90 × 10−1 1.46 × 102 3.94 × 10−1 4.48 × 101 4.42 × 10−1 2.82 × 10−1 2.57 × 10−1

SD 8.61 × 10−3 9.55 × 10−2 6.54 × 101 4.61 × 10−2 7.08 × 100 7.32 × 10−2 2.23 × 10−2 5.35 × 10−2

F15 Fmean 2.30 × 100 1.10 × 100 3.58 × 106 3.14 × 100 9.90 × 104 5.07 × 100 8.15 × 100 3.16 × 101

SD 2.08 × 10−1 3.82 × 100 7.86 × 105 4.29 × 10−1 2.26 × 104 4.93 × 100 4.94 × 100 2.06 × 101

F16 Fmean 7.60 × 100 1.16 × 101 1.34 × 101 1.08 × 101 1.30 × 101 1.21 × 101 1.25 × 101 1.28 × 101

SD 3.86 × 10−1 5.88 × 10−1 2.05 × 10−1 4.73 × 10−1 1.38 × 10−1 1.79 × 10−1 2.12 × 10−1 6.66 × 10−1

F17 Fmean 2.10 × 103 2.86 × 105 1.77 × 107 1.49 × 105 6.01 × 106 1.05 × 105 1.86 × 104 2.05 × 106

SD 5.36 × 102 3.25 × 105 1.08 × 107 6.66 × 104 1.12 × 106 5.42 × 104 5.76 × 103 2.37 × 106

F18 Fmean 1.22 × 102 3.79 × 103 5.88 × 108 2.17 × 103 2.58 × 108 8.42 × 102 3.84 × 102 1.41 × 105

SD 6.67 × 101 4.62 × 103 2.87 × 108 3.17 × 103 8.05 × 107 4.97 × 102 1.85 × 102 3.12 × 105

F19 Fmean 4.08 × 100 1.24 × 101 3.64 × 102 5.30 × 100 1.41 × 102 6.13 × 100 1.59 × 101 2.93 × 101

SD 2.68 × 10−1 3.21 × 100 1.51 × 102 6.33 × 10−1 2.38 × 101 5.50 × 10−1 2.89 × 100 2.74 × 101

F20 Fmean 7.96 × 101 3.74 × 102 2.78 × 105 1.26 × 104 2.90 × 104 2.48 × 104 2.84 × 103 1.02 × 105

SD 8.58 × 100 2.38 × 102 1.88 × 105 9.04 × 103 9.09 × 103 1.36 × 104 2.73 × 102 4.65 × 104

F21 Fmean 8.02 × 102 6.12 × 104 6.03 × 106 6.92 × 104 1.56 × 106 8.18 × 104 1.18 × 104 1.16 × 106

SD 2.07 × 102 6.19 × 104 6.96 × 106 3.80 × 104 5.59 × 105 3.84 × 104 1.29 × 103 9.69 × 105

F22 Fmean 3.52 × 101 6.77 × 102 1.08 × 103 1.28 × 102 9.76 × 102 1.51 × 102 7.94 × 102 6.23 × 102

SD 1.30 × 101 2.68 × 102 2.42 × 102 5.43 × 101 1.96 × 102 1.32 × 101 1.59 × 102 173 × 102

F23 Fmean 3.15 × 102 3.16 × 102 3.15 × 102 3.15 × 102 4.17 × 102 3.15 × 102 2.00 × 102 3.62 × 102

SD 3.20 × 10−13 3.52 × 10−1 8.04 × 101 9.16 × 10−12 1.26 × 101 4.99 ×
10−13 1.06 × 10−7 1.51 × 101

F24 Fmean 2.24 × 102 2.30 × 102 4.66 × 102 2.26 × 102 3.20 × 102 2.33 × 102 2.01 × 102 2.50 × 102

SD 1.50 × 10−1 6.64 × 100 3.90 × 101 4.74 × 100 1.13 × 101 7.32 × 100 1.09 × 10−1 2.84 × 100

F25 Fmean 2.00 × 102 2.13 × 102 2.59 × 102 2.06 × 102 2.25 × 102 2.06 × 102 2.00 × 102 2.22 × 102

SD 0.00 × 100 4.81 × 100 2.21 × 101 1.55 × 100 5.87 × 100 2.72 × 100 8.94 × 10−10 2.99 × 100

F26 Fmean 1.00 × 102 1.70 × 102 1.06 × 102 1.00 × 102 1.03 × 102 1.40 × 102 1.00 × 102 1.83 × 102

SD 2.32 × 10−2 4.81 × 101 1.57 × 100 1.83 × 10−2 5.44 × 10−1 5.47 × 101 1.35 × 10−1 4.59 × 101

F27 Fmean 3.94 × 102 8.49 × 102 1.28 × 103 3.55 × 102 1.14 × 103 3.69 × 102 2.00 × 102 8.02 × 102

SD 2.91 × 101 3.58 × 102 3.92 × 101 5.77 × 101 6.81 × 101 2.77 × 101 5.10 × 10−9 2.03 × 102

F28 Fmean 8.55 × 102 4.04 × 103 1.82 × 103 8.57 × 102 1.36 × 103 9.77 × 102 2.00 × 102 2.50 × 103

SD 1.80 × 101 9.59 × 102 5.12 × 102 4.42 × 101 3.69 × 102 1.07 × 102 2.07 × 10−8 5.80 × 102

F29 Fmean 8.60 × 102 1.43 × 103 1.04 × 107 1.63 × 103 2.15 × 106 1.55 × 103 2.02 × 102 1.23 × 107

SD 5.36 × 101 7.53 × 102 9.14 × 106 4.77 × 102 4.02 × 106 4.57 × 102 2.00 × 10−1 1.88 × 107

F30 Fmean 1.72 × 103 3.56 × 103 3.79 × 105 2.69 × 103 4.04 × 104 3.17 × 103 2.00 × 102 9.88 × 104

SD 5.39 × 102 1.93 × 103 339 × 105 1.06 × 103 8.14 × 103 3,17 × 103 3.62 × 10−3 3.25 × 104

#BMF 18 0 0 5 0 0 10 1
w/t/l - 29/1/0 30/0/0 22/3/5 30/0/0 26/1/3 19/2/9 28/0/2
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For unimodal functions (i.e., F1–F3), the proposed MSPSOTLP has the most dominat-
ing search performance by producing the best Fmean values to solve these three functions.
MSPSOTLP is also the only PSO variant to locate the global and near-global optimum
solutions of F2 and F3, respectively. Apart from MSPSOTLP, both PSO and PSOGSA are
considered to have relatively better search performance than the rest of the algorithms
in solving unimodal functions by producing one second-best Fmean. Meanwhile, PSOWV,
MPSOWV and APSO have inferior search performance by producing Fmean values that are
generally larger than those of the other algorithms.

For simple multimodal functions (i.e., F4-F16), the proposed MSPSOTLP has the most
competitive performance in solving these 13 functions with the seven best Fmean (i.e., F4,
F7, F10, F13, and F14) and three second-best Fmean (i.e., F5, F8, and F9). MSPSOTLP is also
the only algorithm that successfully locates the global optimum of function F7. Contrary
to unimodal functions, CSO and SLPSO have exhibited relatively better performance in
solving several simple multimodal functions, such as F6, F8, F9, and F11. Although PSO
and PSOGSA have good performance in solving unimodal functions, their performances in
solving F4, F6, F7, F8, F9, F10, F11, F13, F15, and F16 are relatively inferior. The performance
degradations of PSO and PSOGSA reflect the limitation of both algorithms in tackling
optimization problems with multiple local optima. Meanwhile, APSO shows relatively
better search performance at solving F5, F12, and F14 than PSOWV and MPSOWV.

The excellent optimization performance of the proposed MSPSOTLP is also demon-
strated in the hybrid function category (i.e., F17–F22) by solving all six functions with the
best Fmean values. PSOGSA follows this, producing three second-best Fmean values for F17,
F18, and F21. However, the performance of PSOGSA in solving hybrid functions is not
consistent, as shown by its relatively inferior results in F19 and F22. A similar scenario is
observed from PSO, CSO, and SLPSO, producing mediocre performance in solving most
hybrid functions. Specifically, PSO can solve F20 and F21 with relatively good performance,
but it performs poorly in F17, F18, F19, and F22. Meanwhile, CSO is reported to solve F19
and F22 with competitive performance, but delivers poor results for F17, F18, F20, and F21.
On the other hand, APSO, PSOWV, and MPSOWV are reported to have inferior search
performance in solving all hybrid functions with higher complexity levels.

In the category of composition function (i.e., F23–F30), PSOGSA shows its competitive
performance in dealing with these more complex functions, followed by the proposed MSP-
SOTLP. PSAGSA can solve all eight composite functions with the best Fmean values, while
MSPSOTLP produces two best Fmean (i.e., F25 and F26) and five second-best Fmean (i.e., F23,
F24, F28, F29, and F30). Although PSOGSA performs better than MSPSOTLP when solving
composite functions, PSOGSA performs more inferiorly than MSPSOTLP in three other
problem categories. CSO produces one best Fmean (i.e., F26) and three second-best Fmean (i.e.,
F23, F25, and F27), implying its competitive performance in solving composite functions.
Meanwhile, SLPSO is observed to have relatively good performance in solving F23 and
F25, but mediocre performance in the remaining composite functions.

Overall, the proposed MSPSOTLP has demonstrated the best search accuracy among
all compared PSO variants by producing 18 best Fmean values in solving 30 functions, imply-
ing that the search mechanisms incorporated are sufficiently robust to handle optimization
problems with different levels of complexity as compared to most of its peer algorithms.
This is followed by PSOGSA and CSO, which are reported to have 10 and 5 best Fmean
values, respectively. On the other hand, PSOWV is identified as the worst algorithm by
producing 26 worst Fmean values in solving 30 CEC 2014, implying its limitations in solving
the benchmark functions with simple fitness landscapes.

4.1.5. Non-Parametric Statistical Analyses

Based on the reported Fmean values, Wilcoxon signed rank test [68] is applied to perform
a pairwise comparison between the proposed MSPSOTLP and the selected PSO variants.
The results in terms of R+, R−, p, and h values, are presented in Table 6. Accordingly,
MSPSOTLP performs significantly better than all other PSO variants at a significance level
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of α = 0.05 as indicated by the h value of “+”. Notably, the proposed MSPSOTLP completely
dominates PSO, PSOWV, and PSOWV to solve CEC 2014 benchmark functions based on
the promising R+, R−, p and h values reported.

Table 6. Pairwise comparisons by Wilcoxon signed rank test between MSPSOTLP and each peer algorithm.

MSPSOTLP vs. R+ R− p Value h Value

PSO 465.0 0.0 2.00 × 10−6 +
PSOWV 465.0 0.0 2.00 × 10−6 +
CSO 382.5 82.5 1.91 × 10−3 +
MPSOWV 465.0 0.0 2.00 × 10−6 +
SLPSO 390.0 45.0 1.76 × 10−4 +
PSOGSA 347.5 117.5 1.75 × 10−2 +
APSO 459.0 6.0 3.00 × 10−6 +

The Friedman test [67] is further conducted for multiple comparisons between the
proposed MSPSOTLP and selected PSO variants based on their Fmean values. The results, in
terms of average ranking, chi-square statistics, and p-value, are reported in Table 7. The
Friedman test reports that MSPSOTLP has the best performance by scoring an average
rank of 1.6833, followed by CSPSO, PSOGSA, SLPSO, PSO, APSO, MPSOWV, and PSOWV
with average ranks of 3.0500, 3.0667, 3.7667, 4.4167, 5.6500, 6.6500, and 7.7167, respectively.
The p-value determined by the Friedman test through chi-square statistics is smaller than
the predefined significance level of α = 0.05. Therefore, significant global performance
deviations among all compared algorithms are observed.

Table 7. Average ranking and p-value produced by Friedman test.

Algorithm Ranking Chi-Square Statistics p value

MSPSOTLP 1.6833

144.636111 0.00 × 100

PSOGSA 3.0667
CSO 3.0500
PSO 4.4167
SLPSO 3.7667
APSO 5.6500
MPSOWV 6.6500
PSOWV 7.7167

Given the global performance difference observed from the Friedman test, three post-
hoc statistical analyses [67], known as Bonferroni-Dunn, Holm, and Hochberg, are utilized
to identify other concrete performance differences between the proposed MSPSOTLP
and different PSO variants. The results, in terms of z values, unadjusted p values, and
adjusted p values (APVs), produced by three procedures are reported in Table 8. All post-
hoc procedures confirm the significant performance enhancement of MSPSOTLP against
PSOWV, MPSOWV, APSO, SLPSO, and PSO at α = 0.05. The Hochberg procedure has
higher sensitivity to detect the significant performance difference between MSPSOTLP,
CSO, and PSAGSA. Notably, the Holm procedure can detect the significant performance
improvement of MSPSOTLP against CSO and PSOGSA if the threshold level is adjusted to
α = 0.10.

4.1.6. Performance Analysis of Proposed Improvement Strategies

A further performance analysis is conducted in this subsection to investigate the
contribution brought by each improvement strategy introduced into MSPSOTLP, i.e., mod-
ified initialization scheme (i.e., chaotic map and oppositional based learning), primary
learning phase (i.e., multiswarm concept and construction of social exemplar), and sec-
ondary learning phase (i.e., two search operators with different search characteristic). The
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original PSOWV is chosen as the baseline method to be compared in this subsection. An-
other three variants of MSPSOTLP, i.e., MSPSOTLP-1, MSPSOTLP-2 and MSPSOTLP-3, are
also introduced to analyze the performance gains brought by the modified initialization
scheme, primary learning phase, and secondary learning phase, respectively. Particularly,
MSPSOTLP-1 refers to the PSOWV enhanced with the CSOBL initialization scheme. Mean-
while, MSPSOTLP-2 refers to PSOWV enhanced with the CSOBL initialization scheme
and primary learning phase. Finally, MSPSOTLP-3 refers to PSOWV enhanced with the
CSOBL initialization scheme and secondary learning phase, where its primary phase is
replaced with the original search operator of PSOWV. The performance gain achieved by
each MSPSOTLP variants against the original PSOWV when solving every benchmark
function is measured as ΔG as follow:

ΔG =
Fmean(MSPSOTLP variant)− Fmean(PSOWV)

|Fmean(PSOWV)| × 100% (24)

Table 8. Adjusted p values produced by each algorithm through three post-hoc analysis procedures.

MSPSOTLP vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p

PSOWV 9.54 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

MPSOWV 7.85 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

APSO 6.27 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

SLPSO 4.32 × 100 1.50 × 10−5 1.08 × 10−4 6.20 × 10−3 6.20 × 10−5

PSO 3.29 × 100 9.88 × 10−4 6.91 × 10−3 2.96 × 10−3 2.96 × 10−3

CSO 2.19 × 100 2.87 × 10−2 2.01 × 10−1 5.75 × 10−2 3.07 × 10−2

PSOGSA 2.16 × 100 3.07 × 10−2 2.15 × 10−1 5.75 × 10−2 3.07 × 10−2

Referring to Equation (24), it is evident that a positive value of ΔG can be obtained if
a particular MSPSOTLP variant can solve the benchmark functions with better Fmean value
than that of PSOWV and vice versa.

The simulation results in terms of Fmean and ΔG obtained by PSOWV and all MSP-
SOTLP variants when solving all CEC 2014 benchmark functions are presented in Table 9.
Accordingly, all MSPSOTLP variants have successfully solved the majority of CEC 2014
benchmark functions with different degrees of performance gains. MPSOTLP-1 is observed
to outperform PSOWV in the majority of CEC 2014 benchmark functions except for F1,
F5, F6, F11, F12, F16, F17, F21, F29, and F30. Although the CSOBL can produce an initial
population with better solution quality in terms of fitness and diversity that can lead to
performance gain of algorithm, it is not sufficient to solve the complex problem because
CSOBL is only executed once during the search process. Some interesting findings can be
observed when both variants of MSPSOTLP-2 and MSPSOTLP-3 are used to solve CEC 2014
benchmark functions. Particularly, MSPSOTLP-2 can perform better than MSPSOTLP-3
when solving the unimodal (i.e., F1 to F3), simple multimodal (i.e., F4 to F16) and hybrid
(i.e., F17 to F22) functions. Meanwhile, MSPSOTLP-3 is revealed to be more competitive
than MSPSOTLP-2 in dealing with the most complex composition function. The perfor-
mance differences between MSPSOTLP-2 and MSPSOTLP03 can be justified based on their
inherent search mechanisms. For MSPSOTLP-2, the primary learning phase is incorporated
with multiswarm and social learning concepts used to accelerate the convergence char-
acteristic of the algorithm without compromising its population diversity. When dealing
with optimization functions with less complex fitness landscapes (i.e., unimodal, simple
multimodal, and hybrid functions), the benefits brought by both the multiswarm and social
learning concepts can still suppress the potential negative drawbacks of the historically
best position (i.e., global best position in this case). When the fitness landscapes of the
optimization problems are increased further, such as those in composition functions, the
numbers of local optima in the solution space have increased exponentially. Under this
circumstance, the diversity maintenance scheme introduced in the primary learning phase
of MSPSOTLP-2 is not sufficient to curb the high tendency of historically best positions
to be trapped in these local optima. On the other hand, the secondary learning phase of
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MSPSOTLP-3 can leverage the useful directional information of other non-fittest solutions
to perform searching with greater exploration strengths; thus, it has a higher chance to
escape from the inferior regions of the solution space. Finally, the complete MSPSOTLP
has exhibited the best performance when solving all CEC 2014 benchmark functions with
26 best and 4 s-best Fmean values. The simulation results reported in Table 9 have veri-
fied that each improvement strategy incorporated into MSPSOTLP indeed has different
contributions to enhancing the search performance of the proposed algorithm.

Table 9. Simulation results of Fmean and ΔP obtained by PSOWV and all MSPSOTLP variants when
solving CEC 2014 benchmark functions.

Func
Fmean (ΔG)

PSOWV MSPSOTLP-1 MSPSOTLP-2 MSPSOTLP-3 MSPSOTLP

F1 4.70 × 108 (−) 8.08 × 108 (−71.93%) 8.42 × 106 (98.21%) 1.37 × 108(70.83%) 5.61 × 103 (100.00%)
F2 6.94 × 1010 (−) 1.47 × 1010 (78.79%) 2.70 × 107 (99.96%) 4.95 × 109 (92.87%) 0.00 × 100 (100.00%)
F3 3.18 × 105 (−) 8.56 × 104 (73.09%) 1.10 × 104 (96.53%) 4.09 × 104 (87.13%) 2.18 × 10−11 (100.00%)
F4 8.66 × 103 (−) 6.80 × 103 (21.52%) 1.48 × 102 (98.29%) 2.43 × 102 (97.20%) 1.44 × 10−2 (100.00%)
F5 2.09 × 101 (−) 2.10 × 101 (−0.60%) 2.09 × 101 (0.04%) 2.08 × 101 (0.43%) 2.01 × 101 (3.83%)
F6 3.83 × 101 (−) 4.34 × 101 (−13.26%) 2.45 × 101 (35.92%) 2.78 × 101 (27.39%) 3.25 × 100 (91.51%)
F7 5.61 × 102 (−) 2.23 × 102 (60.17%) 1.19 × 100 (99.79%) 3.68 × 100 (99.34%) 0.00 × 100 (100.00%)
F8 3.87 × 102 (−) 2.49 × 102 (35.67%) 4.13 × 101 (89.34%) 1.53 × 102 (60.36%) 1.15 × 101 (97.03%)
F9 4.85 × 102 (−) 3.16 × 102 (34.90%) 9.96 × 101 (79.47%) 1.67 × 102 (65.50%) 1.20 × 101 (97.53%)
F10 7.66 × 103 (−) 6.85 × 103 (10.55%) 2.12 × 103 (72.36%) 4.47 × 103 (41.70%) 1.52 × 102 (98.02%)
F11 7.56 × 103 (−) 8.54 × 103 (−12.92%) 3.60 × 103 (52.35%) 4.82 × 103 (36.24%) 2.42 × 103 (67.99%)
F12 2.70 × 100 (−) 3.61 × 100 (−33.67%) 2.15 × 100 (20.26%) 2.15 × 100 (20.48%) 1.62 × 100 (40.00%)
F13 6.12 × 100 (−) 5.14 × 100 (16.06%) 2.64 × 10−1 (95.68%) 7.40 × 10−1 (87.91%) 1.29 × 10−1 (97.89%)
F14 1.46 × 102 (−) 1.40 × 102 (3.96%) 9.63 × 10−1 (99.34%) 2.98 × 10−1 (99.80%) 1.93 × 10−1 (99.87%)
F15 3.58 × 106 (−) 3.64 × 104 (98.98%) 1.89 × 101 (100.00%) 9.12 × 101 (100.00%) 2.30 × 100 (100.00%)
F16 1.34 × 101 (−) 1.37 × 101 (−2.00%) 1.31 × 101 (2.56%) 1.36 × 101 (−1.63%) 7.60 × 100 (43.28%)
F17 1.77 × 107 (−) 5.56 × 107 (−100.00%) 8.27 × 105 (95.33%) 6.08 × 105 (95.56%) 2.10 × 103 (99.99%)
F18 5.88 × 108 (−) 4.07 × 108 (30.77%) 2.59 × 104 (100.00%) 7.51 × 105 (99.87%) 1.22 × 102 (100.00%)
F19 3.64 × 102 (−) 1.44 × 102 (60.49%) 1.06 × 101 (97.09%) 2.26 × 101 (93.80%) 4.08 × 100 (98.88%)
F20 2.78 × 105 (−) 2.54 × 105 (8.77%) 1.98 × 104 (92.88%) 5.06 × 103 (98.18%) 7.96 × 101 (99.97%)
F21 6.03 × 106 (−) 1.22 × 107 (−100.00%) 1.21 × 105 (97.99%) 7.86 × 105 (86.97%) 8.02 × 102 (99.99%)
F22 1.08 × 103 (−) 8.96 × 102 (17.07%) 3.15 × 102 (70.81%) 4.25 × 102 (60.65%) 3.52 × 101 (96.74%)
F23 6.74 × 102 (−) 2.00 × 102 (70.33%) 3.15 × 102 (53.21%) 2.00 × 102 (70.33%) 3.15 × 102 (53.26%)
F24 4.66 × 102 (−) 2.00 × 102 (57.08%) 2.12 × 102 (54.45%) 2.00 × 102 (57.08%) 2.24 × 102 (51.93%)
F25 2.59 × 102 (−) 2.00 × 102 (22.78%) 2.07 × 102 (19.92%) 2.00 × 102 (22.78%) 2.00 × 102 (22.78%)
F26 1.06 × 102 (−) 1.04 × 102 (1.80%) 1.01 × 102 (5.19%) 1.01 × 102 (5.13%) 1.00 × 102 (5.66%)
F27 1.28 × 103 (−) 2.00 × 102 (84.38%) 7.58 × 102 (40.76%) 2.00 × 102 (84.38%) 3.94 × 102 (69.22%)
F28 1.82 × 103 (−) 2.00 × 102 (89.01%) 8.98 × 102 (50.65%) 2.00 × 102 (89.01%) 8.55 × 102 (53.02%)
F29 1.04 × 107 (−) 3.21 × 107 (−100.00%) 1.47 × 103 (99.99%) 5.95 × 104 (99.43%) 8.60 × 102 (99.99%)
F30 3.79 × 105 (−) 8.38 × 105 (−100.00%) 2.54 × 103 (99.33%) 9.93 × 104 (73.80%) 1.72 × 103 (99.55%)

4.2. Performance Evaluation of MSPSOTLP in Training ANN Models
4.2.1. Classification Datasets for Training ANN Models

Apart from general optimization performance, the capability of the proposed MSP-
SOTLP in training ANN models for data classification tasks is also evaluated using six-
teen standard datasets extracted from the University of California Irvine (UCI) machine
learning repository [71]. The sixteen datasets selected for performance evaluation include
Iris, Liver Disorder, Blood Transfusion, Statlog Heart, Hepatitis, Wine, Breast Cancer, Seeds,
Australian Credit Approval, Haberman’s Survival, New Thyroid, Glass, Balance Scale,
Dermatology, Landsat and Bank Note. The properties of each dataset are summarized in Ta-
ble 10. Each selected dataset is separated into two parts, known as 70% of training samples
and 30% of testing samples. Specifically, the training samples are used by MSPSOTLP and
other PSO variants to optimize the parameters of ANN models (i.e., weights, biases, and
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activation function). In contrast, the testing samples are used to evaluate the generalization
performance of ANN models trained by all compared algorithms.

Table 10. Properties of datasets selected for ANN model training.

No. Dataset # Attributes # Classes # Samples

DS1 Iris 4 3 150
DS2 Liver Disorder 6 2 345
DS3 Blood Transfusion 4 2 748
DS4 Statlog Heart 13 2 270
DS5 Hepatitis 19 2 80
DS6 Wine 13 3 178
DS7 Breast Cancer 9 2 277
DS8 Seeds 7 3 210
DS9 Australian Credit Approval 14 2 690
DS10 Haberman’s Survival 3 2 306
DS11 New Thyroid 5 3 215
DS12 Glass 9 6 214
DS13 Balance Scale 4 3 625
DS14 Dermatology 34 6 338
DS15 Landsat 36 6 4435
DS16 Bank Note 4 2 1372

4.2.2. Performance Metrics for ANN Training

Classification accuracy RC is a popular performance metric used to measure the
classification performance of an ANN model. Suppose that R̃ refers to the number of
correctly classified data samples by the ANN model, while R represents the total number
of data samples in each dataset. The RC value is calculated as follow:

R
C =

R̃
R
× 100% (25)

An ANN model with a larger value of RC is more desirable because it can produce
better results in terms of classification accuracy. In addition, the ANN model produces a
larger RC value when solving the testing samples s also considered to have better gener-
alization performance due to its excellent capability to accurately classify unseen data in
different classes with its understanding of the existing data. Furthermore, the standard
deviation SD values are also recorded to observe the consistency of ANN models trained
by compared PSO variants in solving classification datasets.

4.2.3. Parameter Settings for ANN Training

Similar to the global optimization, the performance of the ANN model trained by the
proposed MSPSOTLP in solving sixteen datasets extracted from the UCI machine learning
repository is compared with the seven PSO variants reported in Section 4.1.3. The param-
eters of all compared algorithms are configured as reported in Table 3 as recommended
in their original literature. The same values of N = 100 and Γmax = 10, 000 × D are also
configured for all compared PSO variants in solving ANN training problems, where the
value of D is calculated based on Equation (7). The ANN model to be trained in this study
is constructed by an input layer, a hidden layer, and an output layer. The number of input
and output neurons of each ANN model are configured based on the number of attributes
and classes of a given dataset, respectively, as presented in Table 8. Meanwhile, the number
of neurons in the hidden layer is 15. Similarly, all compared algorithms in training ANN
model are simulated using Matlab 2019b on a personal computer with Intel ® Core i7-7500
CPU @ 2.70GHz.
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4.2.4. Performance Comparison in Training ANN Models

The RC and SD values produced by the ANN models optimized by all compared PSO
variants when classifying the training and testing samples are presented in Tables 11 and 12,
respectively. Similarly, the best and second best RC values produced by the compared
methods in each dataset are indicated in boldface and underlined, respectively. The
comparative studies between the ANN models trained by MSPSOTLP and other PSO
variants are summarized in #BRC and w/t/l as similar to those in Table 5. Specifically, #BRC

records the number of best RC values produced by each algorithm in training the ANN
models for 16 datasets extracted from UCI machine learning repository.

Table 11. The RC and SD values produced by ANN models trained by the proposed MSPSOTLP and
other PSO variants when solving the training samples.

Dataset Criteria MSPSOTLP PSO PSOWV CSO MPSOWV SLPSO PSOGSA APSO

DS1 RC 99.58 94.58 67.42 79.08 98.67 77.00 90.92 19.83
SD 4.39 × 10−1 2.25 × 100 1.11 × 101 6.30 × 100 3.73 × 10−1 2.20 × 100 9.84 × 100 4.01 × 101

DS2 RC 72.72 73.44 52.68 58.55 69.60 57.03 73.26 58.59
SD 2.45 × 10−1 5.37 × 10−1 5.30 × 100 1.05 × 100 9.12 × 10−1 2.67 × 100 2.09 × 10−1 2.43 × 100

DS3 RC 80.59 80.55 78.63 78.93 79.45 78.93 81.29 78.90
SD 5.29 × 10−2 4.83 × 10−1 2.70 × 100 0.00 × 100 3.34 × 10−1 0.00 × 100 1.67 × 10−1 0.00 × 100

DS4 RC 96.20 94.07 69.82 80.56 91.90 77.69 92.18 52.45
SD 8.11 × 10−1 2.09 × 100 7.87 × 100 2.12 × 100 5.35 × 10−1 2.41 × 100 1.17 × 100 1.86 × 101

DS5 RC 96.41 94.53 62.19 75.94 95.00 80.31 92.81 60.94
SD 1.81 × 100 1.80 × 100 9.55 × 100 0.00 × 100 1.80 × 100 3.61 × 100 9.02 × 10−1 1.18 × 101

DS6 RC 100.00 94.09 59.58 82.32 99.79 66.41 99.51 28.80
SD 0.00 × 100 1.08 × 100 2.22 × 101 3.33 × 100 4.07 × 10−1 4.30 × 100 4.07 × 10−1 4.64 × 101

DS7 RC 82.48 83.29 67.34 74.32 79.69 74.73 79.55 69.73
SD 3.82 × 10−1 6.88 × 10−1 2.31 × 100 9.38 × 10−1 4.50 × 10−1 6.88 × 10−1 2.74 × 100 4.82 × 100

DS8 RC 97.50 87.62 60.30 75.77 96.37 77.20 93.10 69.05
SD 1.04 × 100 7.35 × 100 2.03 × 101 2.81 × 100 3.44 × 10−1 4.81 × 100 9.09 × 10−1 4.70 × 101

DS9 RC 89.67 89.40 73.55 82.63 88.97 83.97 89.10 88.46
SD 2.96 × 10−1 1.41 × 100 7.60 × 100 1.73 × 100 4.56 × 10−1 2.20 × 100 3.14 × 10−1 1.56 × 101

DS10 RC 75.14 75.43 70.94 72.33 75.14 72.04 75.71 72.20
SD 2.32 × 10−1 2.36 × 10−1 3.89 × 100 8.16 × 10−1 2.36 × 10−1 4.08 × 10−1 1.08 × 100 0.00 × 100

DS11 RC 98.55 93.20 80.35 92.85 95.87 85.23 94.48 71.28
SD 1.29 × 100 1.01 × 101 5.53 × 100 3.20 × 100 1.34 × 100 6.40 × 100 6.71 × 10−1 1.11 × 101

DS12 RC 54.39 45.73 13.22 15.97 41.17 13.74 49.06 45.61
SD 1.04 × 101 1.32 × 101 1.14 × 101 4.39 × 100 2.06 × 101 2.05 × 100 1.88 × 100 1.49 × 101

DS13 RC 91.18 86.96 65.06 80.78 89.42 81.46 89.82 77.00
SD 1.50 × 100 2.31 × 100 4.63 × 100 1.93 × 100 1.15 × 10−1 4.05 × 100 7.02 × 10−1 2.70 × 101

DS14 RC 29.02 28.50 24.34 27.20 29.02 24.86 27.94 21.33
SD 9.90 × 10−3 3.03 × 100 2.29 × 100 2.13 × 100 4.35 × 10−15 6.06 × 10−1 3.03 × 100 6.06 × 10−1

DS15 RC 76.63 71.16 33.35 52.30 75.57 35.53 69.50 33.74
SD 3.67 × 10−1 1.30 × 100 3.48 × 101 2.20 × 100 8.15 × 100 1.10 × 10−1 8.03 × 100 2.55 × 101

DS16 RC 100.00 98.48 73.96 96.07 99.46 92.71 99.68 63.37
SD 0.00 × 100 1.90 × 10−1 6.01 × 100 6.59 × 10−1 0.00 × 100 8.71 × 100 1.58 × 10−1 1.46 × 101

#BRC 12 2 0 0 1 0 2 0
w/t/l - 13/0/3 16/0/0 16/0/0 14/2/0 16/0/0 13/0/3 16/0/0

According to Table 11, ANN models trained by the proposed MSPSOTLP are reported
to have the best performance for being able to solve 12 out of 16 sets of training samples
with the best RC values. Specifically, MSPSOTLP emerges as the best training algorithm
for ANN models in dealing with datasets of Iris, Statlog Hearts, Hepatitis, Wine, Seeds,
Australian Credit Approval, New Thyroid, Glass, Balance Scale, Dermatology, Landsat, and
Bank Note. It is also noteworthy that the proposed MSPSOTLP is the only algorithm that
has successfully trained ANN models with 100% of RC values to classify the training sets
of Wine and Bank Note. The ANN models trained by PSO and PSAGSA can occasionally
deliver good performances by producing two best RC values in solving training samples.
Although the RC values produced by ANN models trained by the proposed MSPSOSLP
in classifying training samples of Liver Disorder, Blood Transfusion, Breast Cancer, and
Haberman’s Survival are slightly lower than PSO and PSOGSA, the performance differences
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between these algorithms are marginal and not more than 1%. On the other hand, the ANN
models trained by MSPSOTLP are reported to have more notable performance differences
than PSO and PSOGSA in terms of RC values when classifying the training samples of
Iris, Statlog Heart, Hepatitis, Seeds, New Thyroid, Glass, and Landsat. The ANN models
trained by PSOWV are reported to have the most inferior performance by producing eight
worst and seven second-worst RC values when solving all 16 classification datasets except
for Landsat.

Table 12. The RC and SD values produced by ANN models trained by the proposed MSPSOTLP and
other PSO variants when solving the testing samples.

Dataset Criteria MSPSOTLP PSO PSOWV CSO MPSOWV SLPSO PSOGSA APSO

DS1 RC 100.00 99.67 56.67 88.33 97.33 92.33 87.67 16.67
SD 0.00 × 100 1.49 × 100 3.16 × 101 2.23 × 101 0.00 × 100 0.00 × 100 3.35 × 101 4.88 × 101

DS2 RC 50.00 47.68 35.80 40.73 47.83 37.10 49.28 55.22
SD 7.64 × 10−1 6.48 × 10−1 1.51 × 101 7.67 × 100 1.45 × 100 1.35 × 101 5.23 × 100 3.89 × 100

DS3 RC 58.53 58.53 60.67 63.80 65.33 65.47 49.73 63.13
SD 2.81 × 10−1 1.19 × 101 1.27 × 101 2.40 × 100 4.37 × 100 7.70 × 10−1 4.23 × 100 2.31 × 100

DS4 RC 80.37 75.93 61.30 75.00 77.22 72.78 73.15 42.04
SD 1.56 × 100 3.85 × 100 2.38 × 101 2.14 × 100 1.07 × 100 3.21 × 100 3.85 × 100 1.57 × 101

DS5 RC 72.50 60.00 51.88 55.63 60.63 60.63 53.13 46.88
SD 3.23 × 100 3.61 × 100 7.22 × 100 1.30 × 101 9.55 × 100 1.08 × 101 0.00 × 100 1.44 × 101

DS6 RC 90.28 76.94 34.44 61.11 82.50 42.78 83.06 16.11
SD 1.46 × 100 3.21 × 100 1.58 × 101 8.93 × 100 2.78 × 100 1.79 × 101 6.99 × 100 4.01 × 101

DS7 RC 73.82 72.55 59.46 65.09 70.73 66.36 66.91 69.27
SD 9.39 × 10−1 1.05 × 100 7.57 × 100 3.15 × 100 1.05 × 100 4.81 × 100 2.78 × 100 4.58 × 100

DS8 RC 100.00 78.33 30.24 32.86 96.19 40.24 74.29 54.76
SD 7.53 × 10−1 5.22 × 101 3.23 × 101 5.23 × 101 3.71 × 101 2.75 × 100 4.76 × 100 4.81 × 101

DS9 RC 84.57 82.39 67.75 76.38 82.54 87.31 87.05 86.86
SD 6.87 × 10−1 2.54 × 100 0.00 × 100 3.16 × 100 2.09× 100 2.09 × 100 3.83 × 100 1.51 × 101

DS10 RC 78.69 78.03 68.85 73.12 78.53 76.39 67.38 78.53
SD 0.00 × 100 0.00 × 100 4.41 × 101 1.64 × 100 0.00 × 100 5.91 × 100 1.46 × 101 1.89 × 100

DS11 RC 84.19 67.21 38.84 48.37 54.19 42.79 47.67 40.47
SD 1.05 × 101 4.65 × 100 3.55 × 100 4.65 × 100 1.28 × 101 8.70 × 10−15 8.06 × 100 4.03 × 100

DS12 RC 46.51 44.19 8.14 14.19 29.07 15.58 29.07 25.58
SD 6.39 × 100 5.85 × 100 2.01 × 101 5.37 × 100 6.15 × 100 7.48 × 100 9.30 × 100 7.48 × 100

DS13 RC 88.72 85.84 54.80 82.08 87.36 80.24 86.88 80.80
SD 1.22 × 100 2.01 × 100 8.09 × 100 3.23 × 100 1.67 × 100 7.26 × 100 4.62 × 10−1 3.80 × 101

DS14 RC 65.83 65.97 57.78 62.64 65.14 59.17 62.78 54.17
SD 9.71 × 10−1 4.88 × 100 7.13 × 100 6.56 × 100 1.39 × 100 4.01 × 100 2.41 × 100 0.00 × 100

DS15 RC 80.47 72.66 12.22 25.78 78.19 10.67 63.84 21.76
SD 1.49 × 100 1.14 × 101 9.85 × 100 2.22 × 100 3.03 × 101 7.81 × 100 3.06 × 101 3.41 × 101

DS16 RC 92.15 90.18 33.98 4.9 81.35 55.99 86.28 31.68
SD 3.30 × 100 2.64 × 100 0 × 100 3.39 × 100 1.48 × 101 3.45 × 100 1.16 × 101 3.16 × 101

#BRC 12 1 0 0 1 1 0 1
w/t/l - 14/1/1 15/0/1 15/0/1 15/0/1 14/0/2 15/0/1 13/0/3

In addition to training samples, 30% of datasets are extracted as testing samples to
evaluate the generalization performances of ANN models optimized by all compared PSO
variants. According to Table 12, ANN models trained by the proposed MSPSOTLP are
reported to have the best generalization performance for being able to produce 12 best and
2 s-best RC values when classifying the testing samples of 16 selected datasets. Specifically,
ANN models trained by MSPSOTLP successfully produce the best RC in solving the testing
samples of Iris, Statlog Heart, Hepatitis, Wine, Breast Cancer, Seeds, Haberman’s Survival,
New Thyroid, Glass, Balance Scale, Landsat, and Bank Note. Moreover, MSPSOTLP is also
reported to be the only algorithm that can train ANN models to solve the testing samples
of Iris and Seeds with 100% of RC. On the other hand, the ANN models trained by PSO,
MPSOWV, SLPSO, and APSO are reported to produce the best RC values when classifying
the testing samples of Dermatology, Blood Transfusion, Australian Credit Approval, and
Liver Disorder, respectively. Although ANN models trained by MSPSOTLP are observed to
produce relatively inferior RC values in solving the testing samples of these four datasets,
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some performance differences are insignificant. On the contrary, ANN models trained by
MSPSOTLP produce much better RC values than PSO, MPSOWV, SLPSO, and APSO in
solving the testing samples of certain datasets, such as Hepatitis, Wine, Seeds, New Thyroid,
etc. The ANN models trained by PSOWV perform the worst by producing seven lowest
RC values (i.e., testing samples of Liver Disorder, Breast Cancer, Seeds, Australian Credit
Approval, New Thyroid, Glass, and Balance Scale) and eight second-worst RC values (i.e.,
testing samples of Iris, Statlog Heart, Hepatitis, Wine, Haberman’s Survival, Dermatology,
Landsat, and Bank Note).

4.2.5. Non-Parametric Statistical Analyses

Similar to those reported in Section 4.1.5, the Wilcoxon signed rank test [68] is applied
to perform a pairwise comparison between the proposed MSPSOTLP and the selected PSO
variants based on the reported RC values. The R+, R−, p, and h values produced by ANN
models trained by the compared algorithms in classifying the training and testing samples
are presented in Tables 13 and 14, respectively. From Table 13, ANN models trained by
the proposed MSPSOTLP have significantly better performance than those of other PSO
variants at a significance level of α = 0.05, as indicated by the h value of “+”. Notably, the
ANN model optimized by the proposed MSPSOTLP can completely dominate those of
PSOWV, CSO, SLPSO, and APSO when solving the training samples of selected datasets.
Similarly, ANN models trained by MSPSOTLP are observed to perform significantly better
than other PSO variants in solving all testing samples of datasets chosen, as indicated by
the h values of “+” in Table 14. These pairwise comparison results imply the excellent
generalization ability of ANN model trained by MSPSOTLP due to its ability to handle
unseen data of testing samples effectively.

Table 13. Wilcoxon signed rank test as a pairwise comparison between the ANN models optimized
by MSPSOTLP and each PSO variant when classifying the training samples.

MSPSOTLP vs. R+ R− p Value h Value

PSO 122.0 14.0 3.36 × 10−3 +
PSOWV 136.0 0.0 3.05 × 10−5 +
CSO 136.0 0.0 3.05 × 10−5 +
MPSOWV 119.0 1.0 1.22 × 10−4 +
SLPSO 136.0 0.0 3.05 × 10−5 +
PSOGSA 122.0 14.0 3.36 × 10−3 +
APSO 136.0 0.0 3.05 × 10−5 +

Table 14. Wilcoxon signed rank test as pairwise comparison between the ANN models optimized by
MSPSOTLP and each PSO variant when classifying the testing samples.

MSPSOTLP vs. R+ R− p Value h Value

PSO 134.0 2.0 9.16 × 10−5 +
PSOWV 135.0 1.0 6.10 × 10−5 +
CSO 134.0 2.0 9.16 × 10−5 +
MPSOWV 125.0 11.0 1.68 × 10−3 +
SLPSO 130.0 6.0 4.27 × 10−4 +
PSOGSA 133.0 3.0 1.53 × 10−4 +
APSO 125.0 11.0 1.68 × 10−3 +

Apart from pairwise comparison, multiple comparisons among the ANN models
trained by all compared algorithms are also conducted by Friedman Test [67]. The average
ranking values produced by the ANN models trained by all compared algorithms in
solving training and testing samples are reported in Tables 15 and 16, respectively. Table 15
shows that the ANN models trained by MSPSOTLP score the best average ranking when
classifying the training datasets, followed by PSOGSA, PSO, MPSOWV, CSO, SLPSO,
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APSO, and PSOWV. Although Table 7 reports that MPSOWV has a relatively poor ranking
in solving CEC 2014 benchmark functions, it performs relatively well in training ANN
models in solving training samples. Conversely, CSO does not perform well in training the
ANN model despite producing relatively competitive performance in solving CEC 2014
benchmark functions. Table 16 reveals that the ANN model trained by MSPSOTLP has the
best average ranking value in classifying the testing samples, followed by MPSOWV, PSO,
PSOGSA, SLPSO, CSO, APSO, and PSOWV. Similarly, MPSOWV shows its competitive
performance in training the ANN model, despite having inferior performance in solving
CEC 2014 benchmark functions. Although the ANN model trained by PSOGSA has the
second-best average ranking in solving training samples, as reported in Table 15, it does
not perform well in solving testing samples, as reported in Table 16, implying the tendency
of PSAGSA to produce the ANN models that suffer with overfitting issues and have poor
generalization performance to handle unseen data.

Table 15. The average ranking values of ANN models are trained by all compared algorithms in
solving training samples.

Algorithm Ranking Chi-Square Statistics p Value

MSPSOTLP 1.4688

94.875000 0.00 × 100

PSOGSA 2.8125
PSO 2.8750
MPSOWV 2.9062
CPSO 5.5312
SLPSO 5.9062
APSO 6.9375
PSOWV 7.5625

Table 16. The average ranking values of ANN models are trained by all compared algorithms in
solving testing samples.

Algorithm Ranking Chi-Square Statistics p value

MSPSOTLP 1.6250

59.864583 0.00 × 100

MPSOWV 2.9688
PSO 3.3750
PSOGSA 4.4688
SLPSO 5.2188
CSO 5.3125
APSO 5.7188
PSOWV 7.3125

Referring to the p values reported in Tables 15 and 16, significant global performance
differences among the ANN models trained by all compared algorithms to solve training
and testing samples are observed at a significance level of α = 0.05. The concrete differences
between the ANN models trained by MSPSOTLP and other PSO variants in classifying
the training and testing samples are further analyzed using the Bonferroni-Dunn, Holm,
and Hochberg procedures, as shown in Tables 17 and 18, respectively. According to the
APVs for solving training samples, as reported in Table 17, all post-hoc procedures confirm
the significant performance improvement of ANN models trained by MSPSOTLP against
those of PSOWV, APSO, SLPSO, and CPSO at α = 0.05. On the other hand, all post-hoc
procedures can detect the significant performance improvement of ANN models trained by
MSPSOTLP against those of PSOWV, APSO, CSO, SLPSO, and PSOGSA in solving testing
samples, as indicated by the APVs values in Table 18.
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Table 17. Adjusted p values produced by trained ANN models in solving training samples through
three post-hoc analysis procedures.

MSPSOTLP vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p

PSOWV 7.04 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

APSO 6.31 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

SLPSO 5.12 × 100 0.00 × 100 2.00 × 10−6 1.00 × 10−5 1.00 × 10−5

CSO 4.69 × 100 3.00 × 10−6 1.70 × 10−5 1.10 × 10−5 1.10 × 10−5

MPSOWV 1.66 × 100 9.69 × 10−2 6.79 × 10−1 2.91 × 10−1 1.21 × 10−1

PSO 1.62 × 100 1.04 × 10−1 7.31 × 10−1 2.91 × 10−1 1.21 × 10−1

PSOGSA 1.55 × 100 1.21 × 10−1 8.45 × 10−1 2.91 × 10−1 1.21 × 10−1

Table 18. Adjusted p values produced by trained ANN models in solving testing samples through
three post-hoc analysis procedures.

MSPSOTLP vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p

PSOWV 6.57 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

APSO 4.73 × 100 0.00 × 100 1.60 × 10−5 1.40 × 10−5 1.40 × 10−5

CSO 4.26 × 100 2.10 × 10−5 1.44 × 10−4 1.03 × 10−4 1.03 × 10−4

SLPSO 4.15 × 100 3.30 × 10−5 2.33 × 10−4 1.33 × 10−4 1.33 × 10−4

PSOGSA 3.28 × 100 1.03 × 10−3 7.17 × 10−3 3.07 × 10−3 3.07 × 10−3

PSO 2.02 × 100 4.33 × 10−2 3.03 × 10−1 8.66 × 10−1 8.66 × 10−1

MPSOWV 1.55 × 100 1.21 × 10−1 8.45 × 10−1 1.21 × 10−1 1.21 × 10−1

5. Conclusions

This study proposes a new PSO variant known as multi-swarm-based particle swarm
optimization with two-level learning phases (MSPSOTLP) to address the potential draw-
backs of PSOWV. Three significant modifications are introduced into the proposed MSP-
SOTLP to ensure that proper balancing of the exploration and exploitation searches of the
algorithm can be achieved in handling more challenging optimization problems, including
the training process of the ANN model. A new population initialization scheme, the CSOBL
initialization scheme, is incorporated to replace the conventional random initialization
scheme in generating initial solutions with better diversity and broader coverage in the
solution space. Both multiswarm and social learning concepts are incorporated into the pri-
mary learning phase of MSPSOTLP to guide the search process of particles more effectively
without losing population diversity by leveraging the directional information contributed
by other non-fittest particles in the population. Additionally, a secondary learning phase is
introduced with the adoption of two search operators with different levels of exploration
and exploitation strengths, aiming to address the limitations of a single search operator
adopted by many existing PSO variants. Extensive simulation studies report that the
proposed MSPSOTLP outperforms the selected seven PSO variants in solving benchmark
problems from CEC 2014 by producing 18 best mean fitness values out of 30 functions.
Moreover, the training process of the ANN model is also formulated as an optimization
problem, where the objective is to produce the optimal values of weights and biases and
the selection of activation functions. The proposed MSPSOTLP is reported to have the best
overall performance in training ANN models to solve classification datasets extracted from
the UCI machine learning repository.

While MSPSOTLP has demonstrated competitive performances to solve the CEC 2014
benchmark functions and train ANN model for classifying UCI machine learning datasets,
the proposed work still has room for improvement in terms of its search mechanisms and
potential real-world applications. First, the main population of MSPSOTLP is divided
by the reference-point-based population division scheme into a predefined number of
subswarms during the primary learning phase. It is nontrivial to determine the optimal
subswarm numbers for optimization problems with different types of fitness landscapes.
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Second, the solution update process of MSPSOTLP is performed by comparing the fitness
values of current and new particles. It is noteworthy that such a greedy selection scheme
tends to suppress the survival of novel particles that might have temporary poor perfor-
mances at the earlier stage of search process, but can contribute for long-term success if
given sufficient iteration numbers. Third, the performance of the ANN optimized by MSP-
SOTLP is currently evaluated using the datasets obtained from a public database. Despite
exhibiting promising classification accuracy in most selected datasets, the feasibility of
the proposed method to solve more challenging real-world classification and regression
problems remains unexplored. Some potential future works are then suggested to address
these aforementioned limitations. First, the population division scheme of MSPSOTLBP
can be further enhanced such that the optimal subswarm numbers can be determined
adaptively based on the types of fitness landscapes encountered by the population. Second,
other criteria, such as the fitness improvement rate and population diversity, should be con-
sidered by MSPSOTLP during the solution update process to preserve the novel particles
that can bring long-term success for the algorithm. Finally, it is worth it to investigate the
feasibility of ANN optimized by MSPSOTLP to address challenging issues encountered in
the intelligent condition monitoring of complex industrial systems [2], such as the remain-
ing useful life prediction of gear pumps [72], the time series prognosis of fuel cells [73], and
predictive maintenance of renewable energy systems [74].
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Abstract: Existing inflexible and ineffective traffic light control at a key intersection can often lead
to traffic congestion due to the complexity of traffic dynamics, how to find the optimal traffic light
timing strategy is a significant challenge. This paper proposes a traffic light timing optimization
method based on double dueling deep Q-network, MaxPressure, and Self-organizing traffic lights
(SOTL), namely EP-D3QN, which controls traffic flows by dynamically adjusting the duration of
traffic lights in a cycle, whether the phase is switched based on the rules we set in advance and the
pressure of the lane. In EP-D3QN, each intersection corresponds to an agent, and the road entering
the intersection is divided into grids, each grid stores the speed and position of a car, thus forming
the vehicle information matrix, and as the state of the agent. The action of the agent is a set of traffic
light phase in a signal cycle, which has four values. The effective duration of the traffic lights is
0–60 s, and the traffic light phases switching depends on its press and the rules we set. The reward of
the agent is the difference between the sum of the accumulated waiting time of all vehicles in two
consecutive signal cycles. The SUMO is used to simulate two traffic scenarios. We selected two types
of evaluation indicators and compared four methods to verify the effectiveness of EP-D3QN. The
experimental results show that EP-D3QN has superior performance in light and heavy traffic flow
scenarios, which can reduce the waiting time and travel time of vehicles, and improve the traffic
efficiency of an intersection.

Keywords: traffic light control; deep reinforcement learning

1. Introduction

Traffic congestion has increasingly become one of the major problems in cities. Traffic
light control can effectively alleviate traffic congestion and improve traffic efficiency in
urban intersections. The existing traffic light control methods are divided into timing
control and adaptive traffic signal control (ATSC) [1]. The timing control is FixedTime [2],
and the most representative ATSC is SCOOT [3] and SCATS [4]. Self-organizing traffic
lights (SOTL) [5] and max pressure (MP) control [6] aim to maximize the global throughput
from observation of traffic states.

These conventional methods are not effective as the complexity of the traffic net-
work increases. Recently, reinforcement learning (RL) has been widely used for traffic
light control. Reinforcement learning defines traffic light control as a Markov decision
process (MDP) and learns an optimal control strategy through continuous iteration with
the environment. Reinforcement learning based on table Q-learning can only deal with
discrete intersection states [7]. Deep reinforcement learning (DRL) can deal with discrete or
continuous intersection states. Some DRL-based methods have shown better performance
than many traditional methods in specific scenarios, which can be used to control traffic
lights and improve the traffic efficiency of the intersection [8,9].

Most DRL-based methods focus on learning a strategy to switch the current traffic
lights phase in a signal cycle [10]. The duration of traffic lights is a fixed-length interval,
which is not flexible enough to cope with changing traffic conditions. Liang et al., tried
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to control the traffic light duration in a cycle based on deep reinforcement learning and
the extracted information from vehicular networks [11]. It shows good performance in
specific scenarios, but it will become unstable with the increase of intersection complexity.
Hua et al., also attempted to introduce the concept of max pressure from the traffic field as
the reward for control model optimization [12–14].

This paper proposes the EP-D3QN algorithm based on 3DQN [11], MP [6] algorithm,
and SOTL [5] algorithm. In EP-D3QN, the road entering the intersection is divided into
grids, and each grid stores the information of each vehicle. The matrix formed by these
grids serves as the state of the agent, whose action is the combination of different traffic
light phases in a cycle, and the reward is the difference between the sum of accumulated
waiting times of all vehicles in two consecutive cycles. The EP-D3QN can dynamically
adjust the duration of traffic lights in a signal cycle and activate the effective phase during
phase switching. The experiment uses the Simulation of Urban Mobility (SUMO) [15] to
simulate two traffic scenarios to verify the effectiveness of EP-D3QN.

The remainder of this paper is organized as follows. The related work is introduced in
Section 2. Section 3 shows the problem statement and the details of the EP-D3QN. Section 4
shows the result of the experiment and analysis. Finally, the paper is concluded in Section 5.

2. Related Work

Traffic light control approaches can be divided into two types: traditional methods
and RL-based methods.

2.1. Traditional Methods

Early research works on traffic light control mainly are Fixed-time Traffic Light Control
(FT) [2], which fix the duration of traffic lights according to historical traffic information. Sub-
sequently, SCOOT [3], SCATS [4], and other adaptive traffic signal control methods emerged.
These methods are still widely deployed in many cities. SOTL [5] and MP [6] followed. Both MP
and SOTL switch the traffic lights phase based on current traffic conditions. In the SOTL method,
whether the traffic light phases is switched depends on the current observed traffic conditions
and the rules defined in advance. Compared with fixed time, it is more flexible. The MP method
introduces the concept of max pressure. The pressure is defined as the difference between the
number of vehicles on incoming lanes and the number of vehicles on outgoing lanes. When
the traffic light phases are switched, the phase with the max pressure is preferentially activated.
Hua et al., introduced the concept of maximum pressure as a reward function, so as to learn
more optimal strategies [12–14]. Wu et al., also optimized the MP algorithm and proposed the
efficient MP [16]. Liang et al., also integrated the advantages of SOTL and MaxPressure and
applied them in traffic light control [17]. Despite the high performance of the MP-based control,
it lacks flexibility as the duration of traffic lights is a fixed-length interval.

2.2. RL-Based Methods

RL-based traffic light control has attracted wide attention from both academia and in-
dustry in the last two decades. Traditional RL-based methods mainly use table Q-learning,
which can only handle discrete intersection state representation [7]. Later, deep reinforce-
ment learning (DRL) appeared, which can deal with discrete or continuous intersection
states. Compared with traditional traffic light methods, some DRL-based methods show
better performance in certain situations [18–20]. However, DRL-based methods will over-
estimate Q-value, and due to the complexity of traffic conditions, DRL-based methods
will become unstable. Some scholars also proposed multiple optimization elements to im-
prove the DRL’s performance, such as double Q-learning network [21], dueling Q-learning
network [22], and prioritized experience replay [23]. Liang et al., incorporates these op-
timization technologies and tried to dynamically control the duration of traffic lights in
a cycle [11], which showed good performance in light traffic flow scenarios, but became
unstable in heavy traffic flow scenarios.
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Inspired by the above work, this paper proposes the EP-D3QN algorithm based on
MP, SOTL, and 3DQN algorithms. The advantage of double dueling deep Q-network can
dynamically calculate the duration of the traffic light in each signal cycle. It is more flexible,
and the advantages of MP and SOTL just overcome the instability of deep Q-network,
which make EP-D3QN more adaptive.

3. Method

3.1. Problem Statement

Traffic congestion often occurs at key intersections [24], so this paper focuses on an
intersection. The agent corresponding to the intersection can receive its observation and
obtain the duration of the traffic lights, and control the traffic light phases switching in a
cycle. Each traffic light has three colors: red, yellow, and green. Each traffic light phases
is a set of permissible traffic movements, and each intersection has four phases, and the
combination of all phases is called a signal cycle. The vehicles always travel across an
intersection from one incoming road to one outgoing road. The signal phases of a cycle are
played in a fixed sequence to control the traffic flow.

Our problem is to learn a strategy based on DRL to dynamically adjust the duration of
traffic lights in a cycle, and to switch the phase based on the rules we set, so as to control
the traffic flow. The state of the agent is the information matrix formed by all vehicles
entering the intersection, and its action is the set of all phases in a cycle. Its reward is
the difference between the accumulated waiting time and the sum of all vehicles in two
consecutive cycles. The goal of the agent is to maximize the reward. In each time step,
the agent will obtain the observation of the intersection, and then select an action based
on its own strategy. The action is a set of phases in a cycle, and the effective phase will be
activated first in each time step. After the execution of the action, the agent will get the
reward, and then the state of the intersection will change. The agent finally learns to get a
high reward by reacting to different traffic scenarios.

3.2. Agent Design

In EP-D3QN, each intersection corresponds to an agent. In order to better introduce
EP-D3QN into traffic light control. First, we need to design the state, action, and reward of
the agent.

3.2.1. Intersection State

For each intersection, we divide the road entering the intersection into grids, and each
grid can only accommodate one vehicle, as shown in Figure 1.

Figure 1. The process to build the state matrix. (a) is the snapshot of the road entering the intersection.
(b) is the position matrix of vehicles at the current moment. (c) is the speed matrix of vehicles at the
intersection at the current moment.
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Among them, (b) is the position information of the vehicle. A grid with 1 means a
vehicle, and 0 means no vehicle. In (b), the more grids with 1, the more vehicles stay at
the intersection at the current moment. (c) represent the speed information of the vehicle.
Floating data is used to represent the speed of the vehicle. Each grid is the actual speed
of the vehicle in meters/second. Therefore, all the lanes entering the intersection can be
represented as a matrix. This matrix is the state of the intersection.

3.2.2. Agent Actions

The action of the agent is defined as ai ∈ [1, 2, . . . , 9], where ai =< NS, NSL, WE, WEL >,
as shown in Figure 2b, NS, NSL, WE, and WEL represent the four traffic lights phases in a
cycle, which indicates going straight from north to south, turning left from north to south, going
straight from east to west, and turning left from east to west, respectively. We set the longest
duration of the traffic light to 60 s and the shortest duration to 0 s.

Figure 2. The framework of EP-D3QN.

At each time step, the agent will choose an action from the nine actions to act on the traf-
fic light controller at the intersection. For example, the current action is
a1 = < NS, NSL, WE, WEL >, and the next legal action is < NS5, NSL, WE, WEL >,
< NS, NSL5, WE, WEL >, < NS, NSL, WE5, WEL > and < NS, NSL, WE, WEL5 >.

3.2.3. Reward

The reward of the agent is crucial for the deep reinforcement learning model. An ap-
propriate reward can guide the agent to get better training results. Therefore, based on
previous research work [7,25,26], the reward of the agent is defined as follows:

rt =
n

∑
i=1

wi
t−1 −

m

∑
j=1

wj
t (1)

Among them, wi
t−1 represents the waiting time of i-th vehicle in the (t − 1)-th cycle,

wj
t represents the waiting time of j-th vehicle in the t-th cycle, and n and m represent the

number of vehicles entering the intersection in the (t − 1)-th and t-th cycle, respectively.
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3.3. Effective-Pressure with Double Dueing Deep Q-Network for Traffic Light Control

In this paper, we propose the EP-D3QN algorithm based on MP, SOTL, and 3DQN
algorithms. In EP-D3QN, the agent corresponding to the intersection can receive its
observation and choose an action to execute. After receiving its observation, the agent
encodes its observation by the convolution layer and the fully connected layer, and then
obtains Q-value of each action. The greedy strategy is used to select the action with the
largest Q-value, and the effective traffic lights phase is preferentially activated in a cycle
during each time step. The complete process is shown in Figure 3.

Figure 3. The synthetic intersection during all training episodes.

In the EP-D3QN, the state of the intersection is a vehicle information matrix with
a size of 60∗60, and each grid in the matrix stores the location and speed of the vehicle.
There are two convolutional layers in total. The first convolutional layer contains 32 filters,
the size of each filter is 4∗4, and its moving stride is 2∗2. The second convolutional layer
contains 64 filters with size 2∗2, and its moving stride is also 2∗2. The fully connected
layer is responsible for integrating the information extracted by the convolutional layer.
After the fully-connected layer, the data are split into two parts. The first part is then used
to calculate the value and the second part is for the advantage. The advantage of action
means how well it can achieve by taking an action over all the other actions. The formula
can be expressed in Equation (2).

Q(o, a; θ) = V(o; θ) + (A(o, a; θ)
1
|A| ∑

a′
A(o, a′; θ)) (2)

Among them, the value of a state V(o; θ) denotes the overall expected rewards by taking
probabilistic actions in future steps. The A(o, a; θ) is the advantage that corresponds to every
action. Each action corresponds to a Q-value. The target Q-value is calculated as follows:

Qtarget(o, a) = r + γQtarget(o′, argmaxa′(Q(o′, a′; θ)), θ′) (3)

where r is the reward of the agent, γ is the discount factor, θ and θ′ are the parameters of
the main network and target network, o′ and a′ are the state of intersection and the action
of the agent at the next time step respectively.

After the agent obtains Q-value through its main network, the main network is
updated by TD-error as follows:

J(θ) =
1
m

m

∑
i=1

[Qtarget(oi, ai; θ′)− Q(oi, ai; θ)]2 (4)
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Among them, m represents the sample size extracted by the replay buffer. The param-
eters of the target network θ′ are updated as Equation (5).

θ′ = εθ′ + (1 − α)θ (5)

Among them, ε is the update rate from the main network to the target network and α
is the learning rate of the main network.

The detailed steps of the EP-D3QN algorithm are shown in Algorithm 1. First, to ini-
tialize the parameters of the main network and target network. Meanwhile, to initialize
discount factor γ , target network update rate ε, replay buffer D and threshold vmin and
vmax; Then, in each time step, the agent receives state o, select action a. During the action
a be executed, preferentially activates the effective phase in a cycle, then get reward r,
and new state o′, and stored the experience (o, a, r, o′) in the replay buffer (lines 4 to 13);
Next, for the agent, sample a minibatch of step episodes experience trajectories (o, a, r, o′)
from the replay buffer (line 14). Finally, update the parameters of the main network by
TD-error (line 19), and then update the parameters of the target network (line 20). This
process is repeated until it converges.

Algorithm 1 EP-D3QN for traffic light control.

Input:
Intersections’ state o

Output:
Action a

Initialize:
The parameters of main network θ and target network θ′, discount factor γ,target
network update rate ε, replay buffer D, threshold vmin and vmax

1: for episode = 1 to M do
2: Initialize observation o and t = 1
3: for t < T do
4: The agent select an action a
5: Calculate pressure pNS and pWE for the phases NS and WE
6: Calculate vehicles approaching red phase vr
7: Calculate vehicles approaching green phase vg
8: if vg < vmin and vr > vmax then
9: if phase = WE and pNS > pWE or phase = NS and pWE > pNS then

10: switch light
11: end if
12: end if
13: Then get reward r and new observation o′
14: Store (o, a, o′, r) in D
15: o ← o′
16: if Tupdate > minSteps then

17: Sample random minibatch of step (o, a, o′, r) from D
18: Calculate Qtarget(o, a) for the agent with Equation (3)
19: Update the main network θ with Equation (4)
20: Update target network θ′ with Equation (5)
21: end if
22: end for
23: end for

4. Experiment and Analysis

4.1. Experimental Setup

In the experiments, we use Simulation of Urban Mobility (SUMO), an open-source, micro,
multi-model traffic simulation software [15], to simulate light and heavy traffic flow scenarios
respectively. The intersection created by sumo is with a two-way six-lane, as shown in Figure 2a.
Each direction has 6 lanes. Each lane is 180 m, and the length of the vehicles traveling is 5 m.
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Vehicles entering the intersection can go straight, and turn left or right. The distance between the
adjacent vehicles is set to 1 m. The maximum speed of the car is 13.89 m/s. The intersection has
four traffic light phases, as shown in Figure 2b. In the light traffic flow scenario, the traffic flow
is generated using the Bernoulli distribution with a probability of 0.2 (two vehicles arriving at
the intersection every 10 s). In the heavy traffic flow scenario, the traffic flow is also generated
using the Bernoulli distribution with a probability of 0.4.

4.2. Evaluation Metrics

Following previous research work [25–27], we select two types of evaluation indicators,
the first is the average reward, the second is average waiting time (AWT), average queue
length (AQL), and average travel time (ATT). The average reward is used to reflect the
performance of EP-D3QN, and the bigger its value, the better its performance. AVWT,
AQL and ATT are used to reflect the traffic conditions of the intersection. The smaller the
average, the higher the traffic efficiency of the intersection, and vice versa.

4.3. Compared Methods

In order to verify the performance of EP-D3QN, we compare it with the following methods.

• Fixed-time Traffic Light Control (FT). FT [2] is the most widely used traffic light
control method. Each intersection sets a fixed sequence of signal phases, and the
duration of traffic lights is also fixed.

• Self-organizing traffic lights (SOTL). In the SOTL [5], whether the traffic light phases
is switched depends on the observed traffic conditions and the rules defined in ad-
vance. Compared to FT, SOTL is very flexible.

• MaxPressure (MP). In the MP [6], the traffic light controller activates the traffic light
phases with max pressure in a cycle. The MP introduces the concept of pressure, which
is the difference between the number of vehicles on incoming lanes and the number of
vehicles on outgoing lanes. At each time step, the pressure of each phase is calculated
and compared. Finally, the phase with the max pressure is activated.

• Double dueling Deep Q-network (3DQN). The 3DQN [11], incorporates multiple opti-
mization elements to improve the performance of traffic light control, such as dueling
network, target network, double Q-learning network, and prioritized experience replay.

4.4. Result and Analysis
4.4.1. Light Traffic Flow Scenario

The simulation results are shown in Figure 4. We plotted the average waiting time
during all the episodes. The red line shows the EP-D3QN, the blue line is the 3DQN,
and the green line is the FixTime method, SOTL and MaxPressure correspond to the brown
and orange lines, respectively. As can be seen from the figure, there is little difference in
the average waiting time between SOTL and MP, but both are better than the FT method.
That’s because in the MP algorithm, the traffic light phases with the max pressure will be
activated at each time step, while in the SOTL algorithm, whether to activate the phase
according to the set threshold. Compared with 3DQN, it can be seen that EP-D3QN has
faster convergence speed and stronger stability. That’s because EP-D3QN activates the
effective traffic phase preferentially when the action is performed at each time step.

Table 1 shows the results of the comprehensive evaluation. As can be seen from the
table, compared with other methods, EP-D3QN shows better performance, its AWT, AQL,
and ATT are relatively small, and the average reward is the largest. The AQL and ATT of
FT are the largest, followed by MP and SOTL, and EP-D3QN is the smallest. The AWT of
3DQN and SOTL is at a medium level, the AWT of FT and MP is the highest, while the
AWT of EP-D3QN is the lowest. It shows that EP-D3QN can dynamically control traffic
lights more effectively, so as to improve the traffic efficiency of the intersection.
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Figure 4. The average waiting time in the light traffic flow scenario during all training episodes.

Table 1. Comprehensive evaluation in the light traffic flow scenario.

Algorithm Reward AQL AWT ATT

FT 0.005 0.555 7.729 27.538
MaxPressure 0.172 0.504 7.240 15.631

SOTL 4.410 0.386 5.341 9.331
3DQN 4.229 0.351 6.535 6.775

EP-D3QN 6.332 0.322 3.911 4.982

4.4.2. Heavy Traffic Flow Scenario

Figure 5 shows the average waiting time during all training episodes in the heavy traf-
fic flow scenario. From the figure, we can see that at the beginning, 3DQN and EP-D3QN
were unstable. That’s because, during the initial training episodes, the agent randomly
selects actions. When the training episodes reach about 200, EP-D3QN starts to converge,
and in the later training episodes, the AWT of both EP-D3QN and 3DQN could be main-
tained within a fixed range, but EP-D3QN showed better performance. The AWT of FT,
MP, and SOTL keeps fluctuating in a fixed range, and they are all worse than EP-D3QN,
but SOTL performs better than D3QN, which indicates that the traditional method is not
flexible for heavy traffic flow scenarios due to the complexity of the traffic conditions.

Figure 5. The average waiting time in the heavy traffic flow scenario during all training episodes.
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Table 2 is the result of the comprehensive evaluation in the heavy traffic flow scenario.
As can be seen from the table, AQL and ATT of FT are the largest, AWT of MP is the largest,
while the three indexes of EP-D3QN are the smallest. Moreover, the average reward of
EP-D3QN is the largest. That’s because EP-D3QN incorporates the advantages of SOTL
and MP. Compared with SOTL and MP, AWT is significantly reduced, and ATT is also
significantly reduced compared with 3DQN.

Table 2. Comprehensive evaluation in the heavy traffic flow scenario.

Algorithm Reward AQL AWT ATT

FT 0.009 3.130 6.648 16.030
MaxPressure 0.007 2.740 9.626 6.377

SOTL 0.058 2.243 6.452 10.420
3DQN 9.588 2.703 6.232 7.532

EP-D3QN 11.658 1.385 4.110 3.519

In conclusion, the EP-D3QN can perform better performance in both light and heavy traffic
flow scenarios, ensuring that vehicles entering the intersection spend less waiting time and pass
the intersection quickly, thus effectively improving the traffic efficiency of the intersection.

5. Conclusions

In this paper, we study the problem of how to control the traffic light duration in a
cycle based on deep reinforcement learning in an intersection and propose an EP-D3QN
algorithm based on 3DQN, MP, and SOTL algorithms. In EP-D3QN, the intersection
corresponds an agent. The agent can receive its own observation and choose an action. Its
state is the information matrix of the vehicles entering the intersection. The action of the
agent is the traffic light phases in a cycle. During the action being executed, the traffic lights
phase with the effective pressure will be activated preferentially. The reward of the agent
is the sum of the accumulated waiting time of all the vehicles in two consecutive cycles.
We use SUMO to simulate the traffic scenarios and verify the effectiveness of EP-D3QN.
The experimental results show that EP-D3QN significantly outperforms other methods in
both light and heavy traffic flow scenarios, which can improve the traffic efficiency of the
intersection and relieve traffic pressure.
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Abstract: Hemorrhage remains a leading cause of preventable death in emergency situations, includ-
ing combat casualty care. This is partially due to the high cognitive burden that constantly adjusting
fluid resuscitation rates can require, especially in austere or mass casualty situations. Closed-loop
control systems have the potential to simplify hemorrhagic shock resuscitation if properly tuned for
the application. We have previously compared 4 different controller types using a hardware-in-loop
test platform that simulates hemorrhagic shock conditions, and we found that a dual input—(1) error
from target and (2) rate of error change—fuzzy logic (DFL) controller performed best. Here, we
highlight a range of DFL designs to showcase the tunability the controller can have for different
hemorrhage scenarios. Five different controller setups were configured with different membership
function logic to create more and less aggressive controller designs. Overall, the results for the
different controller designs ranged from reaching the setup rapidly but often overshooting the target
to more conservatively approaching the target, resulting in not reaching the target during high active
hemorrhage rates. In conclusion, DFL controllers are well-suited for hemorrhagic shock resuscitation
and can be tuned to meet the response rates set by clinical practice guidelines for this application.

Keywords: control systems; hemorrhagic shock; fluid resuscitation; fuzzy logic; closed-loop; fluid
resuscitation; hardware-in-loop

1. Introduction

Hemorrhage is the most common cause of preventable death in both civilian [1] and
military [2] trauma casualties. The main pillars of care for these patients are expeditious
hemorrhage control and volume resuscitation—the restoration of blood volume, prefer-
entially using whole blood or blood components, to restore oxygen delivery to the end
organs [3]. In cases where definite control of the hemorrhage is not immediately achiev-
able, most experts recommend the “damage control resuscitation” (DCR) approach, which
prompts goal-directed volume resuscitation balancing the need for restoring perfusion on
one hand, while avoiding exacerbation of the hemorrhage on the other [3]. However, this
can require constant monitoring of the patient’s condition and frequent adjusting of the
infusion rate.

As this task can be described as controlling a variable (e.g., blood pressure) towards a
setpoint (i.e., the resuscitation goal), it is not surprising that several attempts have been
made to automize this task in a closed-loop controlled fashion [4]. They vary in the
approaches taken, secondary to the intended use case. A variety of approaches, including
complex mathematical modeling [5,6] and adaptive controls [7,8] were described for the
purpose of hemodynamic control through fluid management. However, DCR in its most
basic form, which resembles current clinical (manual) practice, can be described as a
single input (e.g., blood pressure)—single output (infusion flow rate). Hence, simpler
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controllers, such as decision tables, proportional-integral-derivative (PID) and fuzzy logic
(FL) controllers [9] should at least be considered for this purpose.

We have previously developed a hardware-in-loop automated test platform for resusci-
tation controllers (HATRC) for comparing the performance between closed-loop controller
designs across a wide range of hemorrhage resuscitation scenarios [10]. With this, we
recently compared various controller logic types and determined that a dual-input fuzzy
logic controller design performed best [11]. This was determined across various subject
variability runs and four hemorrhage scenarios, using aggregate performance metrics tied
to the intensity of the resuscitation, stability of the subject, and resource efficiency. In this
work, we expand on this previous study to compare a range of dual-input fuzzy logic
controller types to highlight the controller capabilities based on tuning for hemorrhagic
shock resuscitation.

2. Materials and Methods

2.1. Overview of HATRC Platform

We previously developed the Hardware-in-loop Automated Testbed for Resuscitation
Controllers (HATRC) for the purpose of high throughput testing of physiological closed-
loop controllers designed to control fluid infusion, particularly for hemorrhagic shock
resuscitation [10,12]. Water was circulated in a closed-loop by a peristaltic pump (Masterflex
L/S, Masterflex Bioprocessing, Vernon Hills, IL, USA) while pressure was monitored and
recorded using LabChart (PowerLab, ADinstruments, Sydney, Australia) via pressure
transducer (ICU Medical, San Clemente, CA, USA). A key component of the system
was the PhysioVessel (PV) model, a customizable fluidic reservoir that provides a volume-
responsive hydrostatic pressure [13]. Analysis of a large animal hemorrhage model revealed
a linear pressure–volume response for the administration of whole blood in swine who
underwent a spleen injury following a controlled hemorrhage. Though alternative pressure–
volume curves were found to characterize other fluids, like crystalloids, only whole blood
was used as the simulated infusate during the hemorrhage scenarios in this study. The
whole blood-tuned PV (PVWB) was connected to two additional peristaltic pumps. One
pump provided outflow comprised of a basal urine rate and a hemorrhage rate determined
by the current hemorrhage scenario (see Section 2.2). The other pump provided an infusion
whose rate was controlled by the resuscitation controller being evaluated. MATLAB
(MathWorks, Natick, MA, USA) was used to run the hemorrhage scenario, determine
inflow rates based on resuscitation controller algorithms, and control the corresponding
pumps through an RS232 USB-to-serial adapter (CoolGear, Clearwater, FL, USA) configured
as indicated by the pumps’ manufacturer.

2.2. Hemorrhage Scenarios for Controller Performance

For a previous study, we designed 11 simulated hemorrhage scenarios to evaluate
the performance of fluid resuscitation controllers by challenging them to operate against
a variety of bleeding rates and initial arterial pressures [12]. Given the similarities found
in controllers’ performances in several scenarios during that study, here we focus on four
distinct whole-blood scenarios to assess the new set of fuzzy logic controllers. Throughout,
a target pressure of 65 mmHg mean arterial pressure (MAP) was the goal controllers were
seeking during resuscitation.

Scenario 1 was the only scenario to last 62 min, and it simulated a compressible bleed
that was already under control by the time resuscitation started. During the first half of
this scenario, the fluid controller attempted to resuscitate the simulated subject from an
initial MAP of 45 mmHg up to a target MAP of 65 mmHg without an active hemorrhage.
At the 30-min mark, however, a high-rate bleed lasting 2 min was triggered, simulating a
loosening and re-tightening of a tourniquet. Afterwards, hemorrhage was stopped, and
controllers were given an additional 30 min to restabilize at target MAP.

The remaining three scenarios all lasted 30 min and simulated non-compressible hem-
orrhages. Both Scenarios 2 and 3 allowed natural coagulation to affect the simulation—the
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only difference was in the initial MAP: Scenario 2 started in a state of simulated com-
pensated shock at 65 mmHg, while Scenario 3 started in a state of decompensation at
45 mmHg. Finally, Scenario 4 mimicked a subject with an initial MAP of 45 mmHg, who
starts to experience a gradual degradation of their internal hemostatic mechanisms 5 min
into the resuscitation.

2.3. Fuzzy-Logic Controller Design

Fuzzy logic controllers are widely used in industries such as manufacturing [14,15],
automobile operation [16–18], and even space exploration [19,20], and their utility in vari-
ous areas of medical care has been a subject of ongoing research and development [21–24].
Fuzzy logic takes a discrete input value and classifies it into a non-discrete linguistic, or
descriptive, term using a set of membership functions. These functions map the input to
a value of 0–1 which is its degree of membership for each class within the linguistic set.
A set of logical rules then evaluate the fuzzified input(s) to determine the corresponding
output. This approach is particularly advantageous when precise classifications are not
easily determined, making Boolean-based logic suboptimal. The nonlinear, time-varying
nature of the cardiovascular system makes it a prime candidate for fuzzy logic control.

We previously tested multiple types of hemorrhagic shock resuscitation controllers
on HATRC that included two different versions of decision table, PID, single-input fuzzy
logic (SFL), and dual-input fuzzy logic (DFL) controllers. Based on a comparative analysis
using select controller performance metrics and a set of three aggregate metrics, described
in further detail in Section 2.4, we determined that the DFL controllers demonstrated the
best balance of Intensity, Stability, and Resource Efficiency [12]. We kept the two original
DFL controller configurations and included an additional three DFL controllers with a
wider range of tuning variations for a total of 5 in a comparative study using HATRC. The
MATLAB Fuzzy Logic Designer toolbox was used to develop all the controllers evaluated
here, and the infusion flow rate was the single output to the system. The first input to
the controllers was the error expressed as a percentage of the measured system pressure
divided by the setpoint, with a value of 1 representing the target being reached and was
titled PerformanceError (Figure 1). The second input was the rate of change in the error over
time taken as the slope of a linear regression across the last three samples and was titled
(d/dt)PerformanceError (Figure 1).

Figure 1. Diagram of the dual input fuzzy logic controller for hemorrhagic shock resuscitation. Two
inputs to the fuzzy logic controller are derived from input pressure readings and the distance from
set point mean arterial pressure−performance error and rate of performance error change. These two
inputs are used to determine an infusion rate output for providing fluid to resuscitate and stabilize
pressure. Each controller was set with the same types of membership functions, but with varying
constants. DFL 1−4 classified PerformanceError into three fuzzy sets: VeryLow, Low, and Set. DFL 5
used these same three with an additional set called Over. All controllers used z-shaped membership
functions for mapping PerformanceError into VeryLow and s-shaped membership functions for Set.
DFL 1-3 used simple Gaussian curves while 4 and 5 used generalized bell-shaped membership
functions for mapping PerformanceError into Low. DFL 5 also used an s-shaped membership function
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to map Over. Smooth and Gaussian curves were selected as the membership functions for input 1
due to their lower computational cost and guaranteed continuity when compared to trapezoidal
functions [25,26]. They have also been shown to be easier to optimize using evolutionary computa-
tional algorithms in type-2 fuzzy controllers which will be important for future iterations. Parameters
for the functions used here were informed by expert feedback and current DCR guidelines. The
membership functions for both inputs of all controllers are shown in Figure 2.

Figure 2. Membership function plots for dual-input fuzzy logic controllers. Plots of the PerformanceEr-
ror and (d/dt)PerformanceError input membership functions for dual-input fuzzy logic controllers 1
(A,B), 2 (C,D), 3 (E,F), 4 (G,H), and 5 (I,J).
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All controllers used the same fuzzy sets and membership function types for
(d/dt)PerformanceError. Five fuzzy sets were defined: dropFast, dropSlow, noChange,
riseSlow, and riseFast. Linear z-shaped membership functions were used to map
(d/dt)PerformanceError into dropFast, triangular membership functions were used for
dropSlow, noChange, and riseSlow, and linear s-shaped membership functions were used
to map riseFast. Parameters of the membership functions for both inputs were tuned for
each controller to produce a range of performance (e.g., prioritizing reaching the set point
quickly vs. prioritizing minimum overshoot of the set point). Distinct rules were created
for each controller using a similar ethic, and plots of the resulting rule surfaces are pre-
sented in Figure 3. The output, titled InfusionRate, was broken into the fuzzy sets Off, Med,
and Max which utilized linear functions mapping to the output values of 0, 250 mL/min,
and 500 mL/min, respectively. All controllers were type-1 Sugeno systems and used the
following implication methods: a product AND, probabilistic OR, minimum Implication,
maximum Aggregation, and a weighted average defuzzification method.

Figure 3. Rule surface plots for dual-input fuzzy logic controllers 1 (A), 2 (B), 3 (C), 4 (D), and 5 (E).

2.4. Controller Performance Metrics

A total of 12 individual metrics were used to evaluate the performance of each fluid
resuscitation controller during the simulated hemorrhage scenarios. Additionally, with
the goal of making all these measurements more useful for reaching conclusions about the
controllers, 3 aggregate combinations of the individual metrics were also calculated. All of
these measurements have been described previously [5,11,27,28].

A number of the individual metrics used are derived from measurements of perfor-
mance error (PE)—that is, the difference between the measured pressure at a given time
and the target pressure, as a percentage of the target. In summary, these metrics were:
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• Median performance error (MDPE): median value of all the PEs;
• Median absolute performance error (MDAPE): median of the absolute values of all

the PEs;
• MDAPE at steady state (MDAPESS): MDAPE after system has reached steady state;
• Target overshoot: maximum positive PE value, relative to the target pressure;
• Effectiveness: percent of time that the pressure remained within 5 mmHg of the

target value
• Wobble: median of the absolute values of the differences between each PE and MDPE;
• End-state divergence: expressed as a percentage, this is the slope of the linear regres-

sion of PE vs. time during the final 10% of the test scenario, multiplied by the total
duration of the scenario;

• Percent rise time: amount of time required for the measured MAP to reach 90% of the
target, relative to the total duration of the scenario;

• Volume efficiency: ratio of total volume of fluid infused over the output volume;
• Areas above and below target: expressed as a percentage, these are the total areas

delimited by the target pressure line and the measured MAP-vs-time curve, both
above and below said line, respectively, relative to the target pressure and further
normalized by scenario time duration;

• Mean infusion rate: mean rate of infusion as a percentage of the maximum infusion
rate allowed by the controller (500 mL/min);

• Infusion rate variability: the averaged standard deviations of the infusion rates as a
percentage of the mean infusion rate.

The aggregate metrics derived from the aforementioned individual ones were used to
aide in evaluating the controllers’ overall performances in three areas, as follows:

• Intensity: the controller’s ability to effectively treat hypotension; it is the product of
Percent rise time and Area below target, divided by the Effectiveness.

• Stability: the controller’s propensity for stable performance and reduced overshooting;
it is the product of Wobble, the absolute value of End-state divergence, the squared
value of MDAPESS, and the sum of Area above target and Target overshoot.

• Resource efficiency: the controller’s capacity for reduced fluid consumption and
hardware wearing; it is the product of Mean infusion rate, Infusion rate variability
and Volume efficiency.

It should be noted that whenever any of the measurements listed above are evaluated,
except for “Effectiveness”, lower values are generally considered better.

2.5. Statistical Analysis

For each controller, three subject variability experiments were conducted for all the test
scenarios. Each metric was made unitless as described in Section 2.4. Metrics were averaged
across all test scenarios for each subject variability and normalized to the median value for
each metric to make the weights for each metric similar. Aggregate metrics for Intensity,
Stability, Resource Efficiency, and an average of each were calculated. Results throughout
are reported as mean ± standard deviation. For evaluating statistical significance between
aggregate scores, one-way analysis of variance (ANOVA) was used, post hoc Tukey’s
test, for each metric to evaluate differences between the five controllers. Significance was
defined as p < 0.05.

3. Results

3.1. Scenario 1: Low Initial MAP with Momentary Severe Hemorrhage Results

The first scenario tested began with a low MAP of 45 mmHg with no active hemor-
rhage. An intense hemorrhage was then introduced after 30 min, simulating a complication
such as an extremity tourniquet failure, and lasted for 2 min. This was followed by an addi-
tional 30-min period with no active hemorrhage. This scenario evaluated the controllers’
ability to resuscitate a patient without complications and test how quickly the controllers
responded to an acute but brief hemorrhage. Plots of the MAP vs. Time and Flow Rate
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vs. Time for a single run of each controller are presented in Figure 4A with positive flow
rate values representing the infusion rate outputs of the controllers and negative flow rate
values being a representative plot of the outflow (a combination of basal urine rate and
hemorrhage). Percent Area Above Target and Absolute End-State Divergence are shown
in Figure 4B,C, respectively, and results for all performance metrics can be found in Ta-
ble A1. While all controllers achieved less than 5% Area Above Target relative to the target
pressure and total scenario time, DFL 4 demonstrated the best overshoot performance in
this scenario with a near 0% result. DFL 1 and 2 technically performed the worst, both
overshooting around 3%. None of the controllers exceeded the overshoot limit of 5% of
the target to cause a re-bleed event. DFL 1 and 2 had the lowest End-State Divergence
relative to total scenario time with values of 0.10% and 0.15%, respectively. These both
were significantly lower than the other three controllers which all were above 0.5% with
DFL 5 having the highest value of 1.04%.

Figure 4. Dual-input fuzzy logic results for Scenario 1. Scenario 1 began with a MAP of 45 mmHg with
no active hemorrhage for 30 min, followed by a fast hemorrhage for 2 min and then no hemorrhage for
the remaining 30 min. (A) Five controller designs’ MAP and infusion rate vs. time are shown for one
replicate run. A single representative outflow vs. time result is shown. (B) Area above target pressure
and (C) Absolute end state divergence performance metrics for each controller design are shown as
mean values from three subject variability runs, with error bars denoting standard deviation.

3.2. Scenario 2: Target Initial MAP with Coagulating Hemorrhage Results

Scenario 2 presented the patient with a MAP starting at the targeted 65 mmHg but
with an active hemorrhage that gradually reduced over time simulating an internal re-bleed
accompanied by coagulation. This tested the controllers’ responsiveness to perturbations to
the system after reaching the set point. Plots of the MAP vs. Time and Flow Rate vs. Time
for a single run of each controller are presented in Figure 5A. Percent Area Below Target
and Percent Infusion Rate Variability are shown in Figure 5B,C, respectively, and results for
all performance metrics can be found in Table A2. DFL 1 and 2 were the most responsive
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to a drop in MAP while near the target pressure with % areas below target of 0.25% and
0.27%, respectively. DFL 3–5 all had significantly higher areas below the target with DFL 4
having the highest value (8.5%). It should be noted that DFL 1 and 2, as well as 5, ended up
overshooting the target, though not enough to trigger a re-bleed penalty (Table A2). DFL 5
had the lowest % Infusion Rate Variability (7.24%) while DFL 1 had the highest (27.9%).
This can be visually observed when looking at the varying magnitudes of the peaks in the
Flow Rate vs. Time plot for DFL 1 and DFL 2 which had the second highest % Infusion
Rate Variability (21.9%).

Figure 5. Dual-input fuzzy logic results for Scenario 2. Scenario 2 began with a MAP of 65 mmHg
with an active hemorrhage that slows with time to mimic coagulation for 30 min, with a resuscitation
target of 65 mmHg. (A) Five controller designs’ MAP and infusion rate vs. time are shown for one
replicate run. A single representative outflow vs. time result is shown. (B) Area below target pressure
and (C) infusion rate variability performance metrics for each controller design are shown as mean
values from three subject variability runs, with error bars denoting standard deviation.

3.3. Scenario 3: Low Initial MAP with Coagulating Hemorrhage Results

Scenario 3 began with a low MAP of 45 mmHg like Scenario 1 but included an
ongoing hemorrhage with accompanying coagulation effects like Scenario 2. This scenario
evaluated how effectively the controllers resuscitated a patient against complications like
an internal, non-compressible hemorrhage. Plots of the MAP vs. Time and Flow Rate vs.
Time for a single run of each controller are presented in Figure 6A. Percent Rise Time and
% Effectiveness are shown in Figure 6B,C, respectively, and results for all performance
metrics can be found in Table A3. DFL 4 and 5 had extremely high % Rise times compared
to the other three controllers (44.7% and 41.3%, respectively) with DFL 1 and 2 performing
almost identically with the lowest rise times (6.30% and 6.20%, respectively). This inversely
correlates with the % Effectiveness with all 5 controllers maintaining the same relative
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rankings with respect to each other (DFL 1 = 93.1%, DFL 2 = 92.9%, DFL 3 = 81.4%,
DFL 5 = 24.5%, and DFL 4 = 34.0%).

Figure 6. Dual-input fuzzy logic results for Scenario 3. Scenario 3 began with a MAP of 45 mmHg
with an active hemorrhage slowing with time to mimic coagulation for 30 min, with a resuscitation
target of 65 mmHg. (A) Five controller designs’ MAP and infusion rate vs. time are shown for one
replicate run. A single representative outflow vs. time result is shown. (B) Percent rise time and
(C) effectiveness performance metrics for each controller design are shown as mean values from three
subject variability runs, with error bars denoting standard deviation.

3.4. Scenario 4: Low Initial MAP with Coagulopathic Hemorrhage

Lastly, Scenario 4 provided the most complications of the scenarios tested. The patient
began with a low MAP of 45 mmHg and presented with an ongoing non-compressible
hemorrhage. This hemorrhage gradually slowed over time as the result of coagulation, but
after 5 min, simulated coagulopathy was introduced gradually accelerating the hemorrhage
until reaching a maximum rate of ~125 mL/min. This scenario was designed to tease out
weaknesses of the controllers resulting in equilibrating infusion and outflow at a steady
state that significantly deviates from the target. Plots of the MAP vs. Time and Flow Rate
vs. Time for a single run of each controller are presented in Figure 7A. Percent Area Below
Target and % MDAPE at Steady-State are shown in Figure 7B,C, respectively, and results
for all performance metrics can be found in Table A4. These two metrics correlate closely in
this scenario with the controller ranking and metric values nearly equal between the two.
DFL 2 performed the best (3.56% area below target, 2.69% MDAPE at Steady State) and
DFL 1 was nearly identical (3.56% area below target, 2.70% MDAPE at Steady State). DFL
3 (10.9% area below target, 10.8% MDAPE at Steady State) and DFL 4 (14.6% area below
target,14.4% MDAPE at Steady State) were next, and DFL 5 performed the worst in these
two metrics (16.6% area below target, 16.8% MDAPE at Steady State).
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Figure 7. Dual-input fuzzy logic results for Scenario 4. Scenario 4 began with a MAP of 45 mmHg with
an active hemorrhage slowing for the first 5 min and then accelerating to a maximum hemorrhage
rate to mimic coagulopathy, with a resuscitation goal of 65 mmHg MAP. (A) Five controller designs
MAP and infusion rate vs. time are shown for one replicate run. A single representative outflow
vs. time result is shown. (B) The area below target pressure and (C) median absolute performance
error at steady state performance metrics for each controller design are shown as mean values from
three subject variability runs, with error bars denoting standard deviation.

3.5. Controller Performance in Aggregate Performance Metrics

We compiled the average score across all four scenarios of each aggregate performance
metric for the 5 DFL controllers and then took the average of the three aggregate perfor-
mance metrics (Figure 8). DFL 1 and 2 had the lowest two scores for the Intensity (both at
0.121) and Stability (0.314 and 0.299, respectively) metrics while holding the highest two
scores in Resource Efficiency (2.02 and 1.88, respectively). DFL 4 had the highest score in
the Intensity aggregate metric (10.18) with the second lowest score in Resource Efficiency
(0.836). DFL 5 had the second highest score for Intensity (8.84) and held the lowest score for
Resource Efficiency (0.604), though it had the highest score in the Stability aggregate (5.08).
DFL 2 had the lowest average aggregate score (0.765) followed closely by DFL 1 (0.817)
while DFL 4 had the second highest (3.88) and DFL 5 had the highest average aggregate
(4.84). DFL 3 did not have the highest nor lowest of any aggregate score and had the
median average aggregate score of the 5 controllers (1.49). A summary of one-way ANOVA
statistical analyses comparisons for each aggregate metrics are shown in Table A5.
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Figure 8. Aggregate metric results for dual-input fuzzy logic controller configurations. Aggregate
(A) Intensity, (B) Stability, (C) Resource Efficiency, and (D) Average across the three metric results are
shown as mean values from three subject variability runs, with error bars denoting standard deviation.

4. Discussion

Hemorrhagic shock resuscitation remains a challenging aspect of emergency medicine
and trauma care. This is especially true in the context of resource and care provider-limited
environments or mass casualty incidents where the attention needed to properly monitor
their status and adjust therapy accordingly can quickly exceed current capabilities. The
implementation of automated systems to provide DCR in these environments can lighten
this load on care providers and potentially improve patient outcomes. Previously, multiple
physiological closed-loop controllers were evaluated, and DFL controllers were shown to
have the best performance in an assortment of performance and aggregated metrics [11].

This work compared an expanded set of five DFL controllers to identify which one
performed favorably using the HATRC system. Three aggregate metrics were used to
evaluate the controllers along the criteria of Intensity, Stability, and Resource Efficiency.
Four hemorrhage scenarios were used in the comparison to assess how the controllers
performed against an array of patient conditions including low MAP, with and without
ongoing hemorrhage, the introduction of sudden, acute hemorrhage, and the introduction
of ongoing hemorrhage. We also tested a scenario particularly designed to challenge the
controllers’ ability to overcome steady state error.

DFL 1 and 2 had the best performance in Intensity and Stability, indicating they were
best suited to quickly reach the set point with the lowest degree of long-term oscillations in
MAP. Although they tended to overshoot the target, especially when there was no ongoing
hemorrhage, they did not exceed the overshoot threshold allowed, and the amount of
overshoot was minimal with respect to the other metrics considered when calculating
Stability. They performed worst in Resource Efficiency indicating they placed a high
demand on equipment and consumed the most amount of fluid. This is understandable
when observing the larger peak-to-trough magnitudes in infusion rate and the fact that a
contributor to hemorrhage rate in HATRC was the MAP—i.e., sustaining a higher MAP
for a larger proportion of the scenario time resulted in a larger accumulative hemorrhage,
requiring more infused volume to compensate. DFL 4 and 5 showed the worst performance
in Intensity but had the best scores in Resource Efficiency. This illustrates the compromise
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taking place between fast, aggressive resuscitation aimed at rapid restoration of oxygen
delivery to the tissues, and a more gradual approach. It also emphasizes the gap in current
clinical knowledge regarding which method is optimal for patients’ outcomes. There may
be conditions that would be better treated by one versus the other, but there has not been
a robust enough study to draw conclusions based on established patient outcomes. All
that said, in this study DFL 2 had the best average score in our tests, seemingly offering
the most comprehensive balance of the metrics evaluated. This controller will be further
investigated for potential optimizations and considered for testing in other models.

The current study does possess certain limitations that should be considered. The
HATRC platform was designed based on empirical data and does not contain the degree of
complexity and unpredictability of an in vivo model. There are alternative models, such as
in silico simulations that may be useful for further evaluating the capabilities of automated
controllers [29,30]. The intent here was to provide real-world performance data when
physical hardware was used, and we believe the results show promise within the limita-
tions of the empirical data-guided platform. The controllers investigated used MAP as the
sole input, but real-time values provided by invasive measurements may not always be
available. The reduced feedback frequency of current non-invasive arterial blood pressure
measurement techniques may greatly hinder the performance of these controllers. Improve-
ment opportunities exist in using other physiological variables for inputs as an alternative,
such as cardiac output [31], a photoplethysmography waveform [32], or tissue oxygen
saturation. Although the membership functions and their corresponding parameters were
selected based on feedback from subject matter experts in anesthesiology, surgery, and
military medicine, the lack of universal agreement within the medical community on the
best resuscitation profile and the unpredictable nature of the physiologic response makes
this tuning difficult and requires further refinement. This could be offered by more complex
models that cover a wider range of physiologic states, such as septic shock, which would
also make it possible to expand into type-2 fuzzy logic systems and iteratively optimize
using simulation techniques [33–35]. As previously mentioned, the aggregate performance
metrics used do not account for the full scope of physiological responses present when
systemic trauma is experienced and may require weighting of some metrics over others.
There are also unknowns regarding multiple simultaneous injuries, incapacitation of certain
physiological systems, and the impact of chemical therapies that may be present. These
interactions and their potential effect on arterial blood pressure, such as distributive or
cardiogenic shock, were outside the scope of the current study but will be addressed in
future in vivo ones.

5. Conclusions

Hemorrhagic shock goal-directed resuscitation can be facilitated in both emergency
and military medicine by automating the constant fluid rate changes required to adequately
stabilize a patient. Dual input fuzzy logic controllers have a wide range of tunability for
managing various hemorrhagic shock resuscitation scenarios. As advancements in hemor-
rhagic shock resuscitation standard of care develop, DFL controllers have demonstrated the
flexibility to be adapted to meet physiological demands that can promote the most desired
patient outcomes. Through aggregate performance metric scores, a single DFL controller
was identified as performing best which will be further evaluated in large animal hemor-
rhagic shock studies. This will bring closed loop control for acute hemorrhage resuscitation
closer to reality to help improve the patient’s recovery and stabilization while lessening the
cognitive burden for the medical provider.
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Appendix A

Table A1. Summary of performance metrics for Scenario 1. Performance metrics for each of five DFL
controllers is shown as mean values for three subject variability runs.

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

MDPE (%) 3.25% 3.41% 2.18% −4.04% −1.15%

MDAPE (%) 3.32% 3.46% 3.16% 4.04% 3.12%

MDAPE_SS (%) 3.29% 3.43% 3.03% 3.17% 2.42%

Target Overshoot (%) 4.25% 4.59% 5.00% 0.46% 3.79%

Effectiveness (%) 97.14% 97.23% 94.01% 83.29% 86.06%

Wobble (%) 0.43% 0.42% 0.94% 1.20% 1.18%

End-State Divergence (%) 0.10% 0.15% 0.59% 0.67% 1.04%

Percent Rise Time (%) 2.64% 2.64% 4.12% 6.02% 8.47%

Volume Efficiency 310.93% 311.83% 321.43% 297.47% 312.70%

Area Above Target Pressure (%) 3.06% 3.19% 2.14% 0.04% 0.84%

Area Below Target Pressure (%) 0.73% 0.72% 1.73% 5.21% 3.80%

Mean Infusion (%) 3.72% 3.75% 3.77% 3.26% 3.58%

Variable Infusion (%) 40.34% 41.03% 22.27% 24.58% 16.72%

Table A2. Summary of performance metrics for Scenario 2. Performance metrics for each of five DFL
controllers is shown as mean values for three subject variability runs.

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

MDPE (%) 0.55% 0.56% −4.61% −9.03% −8.07%

MDAPE (%) 0.94% 0.93% 4.61% 9.03% 8.07%

MDAPE_SS (%) 0.94% 0.93% 3.60% 8.27% 6.78%

Target Overshoot (%) 3.54% 3.52% 1.70% 0.51% 1.30%

Effectiveness (%) 100.28% 100.28% 98.61% 32.04% 46.67%

Wobble (%) 0.90% 0.92% 1.39% 1.14% 1.20%

End-State Divergence (%) 0.54% 0.51% 1.06% 1.15% 1.72%

Percent Rise Time (%) NA NA NA NA NA

Volume Efficiency 105.00% 102.70% 97.67% 82.87% 87.50%

Area Above Target Pressure (%) 0.88% 0.92% 0.09% 0.00% 0.01%

Area Below Target Pressure (%) 0.25% 0.27% 4.10% 8.50% 7.44%

Mean Infusion (%) 6.69% 6.55% 5.72% 4.52% 4.86%

Variable Infusion (%) 27.87% 21.88% 10.25% 10.91% 7.24%
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Table A3. Summary of performance metrics for Scenario 3. Performance metrics for each of five DFL
controllers is shown as mean values for three subject variability runs.

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

MDPE (%) 0.45% 0.55% −4.88% −9.96% −9.50%

MDAPE (%) 1.06% 1.07% 4.88% 9.96% 9.50%

MDAPE_SS (%) 0.92% 0.92% 1.89% 7.44% 5.36%

Target Overshoot (%) 3.49% 3.54% 1.48% 0.00% 0.00%

Effectiveness (%) 93.06% 92.87% 81.39% 24.54% 33.98%

Wobble (%) 0.92% 0.89% 1.25% 1.11% 1.16%

End-State Divergence (%) 0.49% 0.54% 1.16% 1.41% 1.36%

Percent Rise Time (%) 6.30% 6.20% 11.39% 44.72% 41.30%

Volume Efficiency 186.47% 188.07% 191.40% 179.70% 192.83%

Area Above Target Pressure (%) 0.88% 0.92% 0.09% 0.00% 0.00%

Area Below Target Pressure (%) 1.67% 1.65% 5.91% 10.39% 10.47%

Mean Infusion (%) 10.83% 10.96% 9.88% 8.63% 8.96%

Variable Infusion (%) 23.39% 21.76% 13.36% 15.42% 11.34%

Table A4. Summary of performance metrics for Scenario 4. Performance metrics for each of five DFL
controllers is shown as mean values for three subject variability runs.

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

MDPE (%) −2.76% −2.75% −10.86% −14.43% −16.85%

MDAPE (%) 2.76% 2.75% 10.86% 14.43% 16.85%

MDAPE_SS (%) 2.70% 2.69% 10.81% 14.38% 16.79%

Target Overshoot (%) 1.18% 0.94% 0.00% 0.00% 0.00%

Effectiveness (%) 93.54% 93.63% 15.51% 0.00% 0.00%

Wobble (%) 0.47% 0.48% 0.58% 0.55% 0.68%

End-State Divergence (%) 0.18% 0.09% 0.16% 0.11% 0.20%

Percent Rise Time (%) 5.83% 5.93% 9.54% 15.42% 19.44%

Volume Efficiency 120.67% 121.13% 117.40% 117.43% 113.60%

Area Above Target Pressure (%) 0.06% 0.05% 0.00% 0.00% 0.00%

Area Below Target Pressure (%) 3.56% 3.56% 10.94% 14.61% 16.56%

Mean Infusion (%) 22.87% 22.92% 18.92% 17.35% 15.91%

Variable Infusion (%) 14.32% 14.99% 9.32% 11.51% 8.05%
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Table A5. Summary of statistical analysis for aggregate metrics averaged across all tested scenarios.
p < 0.05 indicated statistical significance. Values are italicized when this threshold was reached for
the particular comparison pairing.

Statical Analysis for Intensity Aggregate Scores

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

DFL 1
DFL 2 > 0.99
DFL 3 0.7297 0.7323
DFL 4 <0.0001 <0.0001 <0.0001
DFL 5 <0.0001 <0.0001 <0.0001 0.3829

Statical Analysis for Stability Aggregate Scores

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

DFL 1
DFL 2 >0.9999
DFL 3 0.3469 0.3405
DFL 4 0.9986 0.9983 0.4788
DFL 5 0.0128 0.0125 0.2509 0.0194

Statical Analysis for Resource Efficiency Aggregate Scores

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

DFL 1
DFL 2 0.8266
DFL 3 <0.0001 0.0002
DFL 4 <0.0001 0.0001 0.9841
DFL 5 <0.0001 <0.0001 0.2548 0.4824

Statical Analysis for Average Aggregate Scores

DFL 1 DFL 2 DFL 3 DFL 4 DFL 5

DFL 1
DFL 2 0.6678
DFL 3 0.2177 0.1343
DFL 4 0.043 0.0384 0.0426
DFL 5 0.0726 0.0705 0.0941 0.2818
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Abstract: Power lithium battery is an important core component of electric vehicles (EV), which
provides the main power and energy for EV. In order to improve the estimation accuracy of the state
of charge (SOC) of the electric vehicle battery (E-cell), the extended Kalman filter (EKF) algorithm,
and backpropagation neural network (BPNN) are used to build the SOC estimation model of the
E-cell, and the self-learning characteristic of BP neural network is used to correct the error and track
the SOC of the E-cell. The results show that the average error of SOC estimation of BP-EKF model is
0.347%, 0.0231%, and 0.0749%, respectively, under the three working conditions of constant current
discharge, pulse discharge, and urban dynamometer driving schedule (UDDS). Under the influence
of different initial value errors, the average estimation errors of BP-EKF model are 0.2218%, 0.0976%,
and 0.5226%. After the noise interference is introduced, the average estimation errors of BP-EKF
model under the three working conditions are 1.2143%, 0.2259%, and 0.5104%, respectively, which
proves that the model has strong robustness and stability. Using the BP-EKF model to estimate and
track the SOC of E-cell can provide data reference for vehicle battery management and is of great
significance to improve the battery performance and energy utilization of EV.

Keywords: back propagation neural network; extended Kalman filter; electric vehicle; state of charge

1. Introduction

Since the 21st century international energy consumption is increasing, the earth’s oil
resources are scarce, and there are serious environmental pollution problems, the global oil
energy can not meet the needs of industry and automobiles and other aspects [1,2]. In recent
years, due to the increasing sales of cars in China, the country’s energy consumption has also
shown a rapid growth trend. China is gradually becoming a net importer of non-renewable
energy sources such as crude oil, coal, and natural gas in the world, and the external
demand for energy is rising year by year, which has seriously affected China’s energy
security. In order to reduce environmental pollution and achieve the global goal of energy
saving and emission reduction of greenhouse gases, the world and China’s energy structure
is also undergoing a series of changes, with the traditional fossil energy-based energy
system gradually changing into a new supply system with renewable energy as the main
source [3,4]. Traditional cars use petroleum as the main source of energy supply and emit a
large amount of toxic exhaust gas during operation, further aggravating environmental
pollution and degradation, so new energy vehicles powered by clean energy have become
an important development direction for the automotive industry in recent years.

The remaining battery energy of an electric vehicle is an important parameter for
battery management. The battery management system of an electric vehicle will use the
remaining battery energy data as the basis to equalise the individual batteries, so as to
improve the performance of battery use while ensuring stable battery operation. Accurate
estimation of the remaining battery energy of EVs helps to reasonably allocate and plan the
battery energy, develop scientific energy allocation strategies, ensure the driving range of
EVs, and is of great value in extending the service life of EV batteries [5,6]. On the other
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hand, the estimation of the remaining energy of EV can also play a protective role for the
battery, avoiding the phenomenon of overcharging and over discharging, which accelerates
the aging and elimination of the battery. Therefore, in order to further improve the service
performance of electric vehicle batteries and strengthen the battery management, the
extended Kalman filter algorithm and BP neural network are used to estimate the battery
SOC and realize the accurate tracking of the battery SOC. It is expected to provide data
support for the battery management system.

2. Related Works

The E-cell SOC of an electric vehicle directly affects the battery usage and daily driving
of the vehicle, but the E-cell SOC is non-linear and cannot be measured directly, so many
researchers have conducted research on the E-cell SOC estimation problem. A deep neural
network with different number of hide tiers was trained to predict the E-cell SOC under
different driving cycles. It was found that the deep neural network with four hide tiers
could accurately predict the SOC under various operating conditions such as Dynamic
Stress Test (DST) and Federal Urban Driving Schedule (FUDS) [7]. Xiong R and his team
proposed a fractional-order discrimination model for E-cell based on least squares and
nonlinear optimization by combining the Butler–Volmer equation and fractional-order
calculus and used the model as the basis for estimating the E-cell SOC using the fractional-
order traceless Kalman filter algorithm, which was further processed by singular value
decomposition [8]. Sarrafan K et al. proposed a combined estimation model based on
battery energy, adaptive forgetting factor recursive least squares for the non-linear E-cell
SOC estimation problem, which solves the battery parameter rate variation problem while
reducing the computational difficulty and fully considers the traffic environment and other
conditions; after laboratory tests, the results showed that the combined SOC estimation
model has high estimation accuracy [9]. He Z’s group proposed to use the adaptive
extended Kalman filter algorithm and adaptive recursive least squares for parameter
identification and constructed a first-order RC equivalent circuit to identify the battery
parameters using the estimation model with forgetting factors and dynamically adjust
the system noise to improve the estimation accuracy of the model [10]. Wadi A et al.
combined the extended Kalman filter algorithm and the smoothed variable structure filter
algorithm to appraise the SOC state of lithium batteries, combining the robustness and
noise sequence approximation advantages of the two algorithms to improve the accuracy
of SOC estimation; experimental tests on different data sets showed that the model has
high estimation accuracy and effectively reduces the computational complexity of the
algorithm [11]. Many researchers use different methods to estimate the SOC state of electric
vehicle batteries, but the estimation accuracy of the existing research needs to be improved.
The research is expected to explore different estimation methods to further accurately track
the battery SOC.

Kalman filter (KF) is a commonly used algorithm in the field of control, which has
advantages in solving a variety of problems. whl A et al. proposed a wind speed estimation
model based on a Gaussian process regression model and an extended KF for the rotor
effective wind speed estimation of wind turbines, taking into account the effects of other
dynamics and atmospheric changes on the wind speed estimation; the results show that
the model can effectively reduce the estimation errors arising from wind speed and other
factors, and has high estimation accuracy [12]. Han F and his team proposed to use
KF and random matrix theory for smart grid data-driven event detection in order to
improv e the power system’s grid situational awareness and use dynamic KF to process
the phasor measurement unit data; the research results show that the model has strong
robustness [13]. Zhang Y et al. proposed a denoising algorithm based on composite Kalman
and least squares curve fitting for the noise problem of marine sensors, using least squares
to eliminate the nonlinear factors of the system and combining wavelet transform for
real-time tracking of noise, using a combined model based on composite KF for sensor
denoising to improve the temperature measurement accuracy of sensors [14]. Zhou T
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et al. proposed a hybrid pairwise KF algorithm for predictive analysis of short-time traffic
flow, modelled on the basis of the difference propagation between the traditional Kalman
algorithm and the random wandering algorithm, and compensated for the prediction
by means of error calibration, and the results of the study showed that the model has
advantages on parametric and non-parametric models [15]. Li Y and his group members
used magneto-optical imaging. The finite element model of the weld is combined with
image characterisation of the weld to analyse the distribution of the leakage field under
different conditions; in order to reduce the impact of weld coupling noise on the accuracy
of laser weld analysis, the KF algorithm is used to identify the weld centre [16].

In summary, there are many studies on the SOC state estimation problem of E-cell,
but the estimation accuracy needs to be further improved. Therefore, the study introduces
BPNN and extended KF in the E-cell SOC estimation, expecting to further improve the SOC
estimation accuracy of E-cell and provide help to improve the energy utilization efficiency
of batteries.

3. Study on SOC Estimation of E-Cell Combining BP and EKF

3.1. E-Cell Modelling

The battery system of the electric vehicle is the basis of the driving and operation of
the electric vehicle. The battery management system of the vehicle can monitor and analyze
the state of the vehicle battery, monitor and collect the voltage, temperature, and other
parameters of the vehicle battery, and monitor the state of charge (SOC) of the battery, so as
to facilitate the management of the battery energy and ensure the safe and stable operation
of the power battery pack of the electric vehicle [17–19]. SOC is the remaining capacity
data of the automobile battery. Accurate battery SOC data can provide a safe range for the
charging and discharging of the automobile, promote the extension of the service life of the
automobile battery, and directly affect the accuracy of the automobile mileage data [20,21].
The research studies the SOC estimation strategy of electric vehicles. Firstly, the lithium
battery model of electric vehicles is established to provide a model basis for the subsequent
SOC estimation of electric vehicles.

The research simulates the external dynamic response of the battery by establishing
the equivalent circuit model of the automobile battery. In order to fully reflect the voltage
current characteristics of the electric vehicle battery, the research uses the eneral nonlinear
(GNL) equivalent circuit model to build the battery model of the electric vehicle. The
study considers that although the high-order number model can improve the accuracy to
a certain extent, it greatly increases the computational workload and complexity, so the
study simplifies the high-order GNL model and uses the second-order RC ring model to
simulate the battery circuit [22]. The second-order RC ring model of the battery is shown in
Figure 1. Compared with the traditional GNL circuit, the second-order RC circuit has one
less RC circuit, which can effectively maintain the non-linear characteristics of the battery
and reduce the computational difficulty. The equivalent resistance of the battery is R0,
the open circuit voltage is Eo, the terminal voltage is v0, C1 and C2 represent the battery
electrochemical polarisation capacitance and the concentration difference polarisation
capacitance, respectively, R1 and R2 represent the battery electrochemical polarisation
resistance and the concentration difference polarisation resistance, respectively, and V
represents the battery open circuit voltage.

The terminal voltage and current functions for the second-order RC model of the
battery are shown in Equation (1).{

v0 = Eo + v1 + v2 + iR0
i = v

R + C dv
dt

(1)

69



Processes 2022, 10, 1721

Figure 1. Second order RC ring model of battery.

In Equation (1), v1 and v2 represent the voltages at the ends of C1 and C2, respectively.
Using the E-cell SOC and capacitor terminal voltages as the state vectors of the system, the
battery state space equations are shown in Equation (2).

.
x =

⎡⎢⎣−
1

R1C1
0 0

0 − 1
R2C2

0
0 0 0

⎤⎥⎦x +

⎡⎢⎣
1

C1
1

C2

− 1
Q

⎤⎥⎦i (2)

In Equation (2), x =
[
v1 v2 SOC

]
, and Q represents the battery capacity. The

Eulerian method is used to discretize the continuous state equation, and the discretized
state equation and system output equation are shown in Equation (3).⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk =

⎡⎢⎣ − 1
R1C1

Δt + 1 0 0
0 − 1

R2C2
Δt + 1 0

0 0 1

⎤⎥⎦xk−1 +

⎡⎢⎣
Δt
C1
Δt
C2

−Δt
Q

⎤⎥⎦ik−1

v0,k = Eo,k + v1,k + v2,k + ikR0

(3)

3.2. EKF-Based E-Cell SOC Estimation

The Kalman filter (KF) algorithm is widely used in control applications and has
a significant accuracy advantage in system estimation when the system noise satisfies
the Gaussian distribution [23,24]. However, the classical Kalman filter is less suitable
for non-linear systems and more suitable for linear systems, while EV have non-linear
characteristics. The operation principle of the EKF model is shown in Figure 2. The EKF
model is shown in Figure 2. The initialisation process is carried out first, then the battery
state and error covariance are appraised, and the state appraises and error covariance
values are updated by the extended Kalman filter gain calculation. Due to the strong
robustness and adaptiveness of the EKF model, although the EKF model does not require
a high degree of accuracy in terms of input battery parameters and initial SOC values,
the EKF model can quickly achieve automatic convergence of the E-cell SOC during the
computational update process, making it converge to the initial value, so the EKF model
has a good and wide applicability for EV E-cell SOC estimation.
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Figure 2. Operation principle of EKF model.

Let the inputs and outputs of the discrete system be uk and yk, respectively, and the
system state quantities be xk. The state transfer matrix of the system is Ak. The relationship
between the inputs and states of the system is represented by Bk, and the observation and
feedforward matrices of the system are Ck and Dk, respectively. Let the measurement noise
and process noise of the system be vk and wk, respectively, and the noise is assumed to be
Gaussian white noise with a mean value of 0. The discrete system function is shown in
Equation (4). {

xk+1 = Akxk + Bkuk + wk
yk = Ckxk + Dkuk + vk

(4)

The EKF model is used for EV E-cell SOC estimation, where the state and observation
equations of the system are Taylor expanded at the optimal estimation point, the higher
order terms are discarded, the non-linear system is linearised, and the traditional KF
algorithm is used for estimation. The state and observation equations of the system are
shown in Equation (5). {

xk+1 = f (xk, uk) + wk
yk = h(xk, uk) + vk

(5)

In Equation (5), f (xk, uk) and h(xk, uk) are the non-linear state transfer function and
observation function, respectively. The state vector of the model is x =

[
v1 v2 SOC

]T

and the input vector is uk = ik. The state transfer matrix and observation matrix of the
system are shown in Equation (6).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ak =
∂ f (xk ,uk)

∂xk
=

⎡⎢⎣ − 1
R1C1

Δt + 1 0 0
0 − 1

R2C2
Δt + 1 0

0 0 1

⎤⎥⎦
Ck =

∂h(xk ,uk)
∂xk

=
[

1 1 ∂E0
∂SOC

] (6)

Further estimation is performed using the KF algorithm by first initialising, at this
point k = 0, assigning values to the system state initial value x0 and the error writing
covariance P0. The a priori values of the system state quantities are then appraised using
the model inputs and the best appraise of the system state at the previous moment, and
the estimation function for the system state quantities at the current moment is shown in
Equation (7).

x−k = Ak−1xk−1 + Bk−1uk−1 (7)

The initial value error will have an impact on the accuracy of the a priori appraise
of the system state. To ensure that the a priori appraise accurately tracks the true value,
the degree of dispersion between the appraise and the true value is analysed through the
calculation of the error covariance. The current moment value is appraised using the error
covariance of the previous moment, and the error covariance calculation function is shown
in Equation (8).

P−
k = Ak−1Pk−1 AT

k−1 + Qk−1 (8)

71



Processes 2022, 10, 1721

In Equation (8), the covariance matrix of the process noise is represented. The correc-
tion factor for the appraised value is obtained from the error covariance, i.e., the Kalman
gain matrix. The extended Kalman gain calculation function is shown in Equation (9).

Lk = P−
k CT

k

[
P−

k CT
k + Rw

]−1
(9)

In Equation (9), Qk is the covariance matrix of the measurement noise. The a priori
appraises are updated in combination with the gain to obtain the best a priori appraise,
and the system state appraise update function is shown in Equation (10).

xk = x−k + Lk
(
yk − Ckx−k − Dkuk

)
(10)

In Equation (10), yk is the measured value of the system state quantity at the current
moment. The error covariance of the system is updated, and the update function is shown
in Equation (11).

Pk = (I − LkCk)P−
k (11)

In Equation (11), I is the unit matrix.

3.3. Optimization of Estimation Models Based on BP Neural Networks

In order to improve the estimation accuracy of the EKF model, the BPNN was used to
compensate for the error, and the self-learning characteristics of the BPNN and its ability to
approximate nonlinear functions were used to further optimize the EKF model. The EKF
model is shown in Figure 3. The SOC state quantities at k, v1, and v2 and the gain values
calculated by the EKF model are used as the input values of the BPNN, and the BPNN is
used to output the error compensation values to correct the appraised values.

Figure 3. Structure of BP-EKF model.

Due to the variation in the range of E-cell SOC, voltage and gain values, and the
different magnitudes and orders of magnitude of the individual input and output data,
the input and output data are first normalised so that the data are between [1] to ensure
that the sample data are weighted differently by the influence in training and to avoid the
problem of neuron saturation, which affects the training effect of the network model. The
normalisation function for the input and output data is shown in Equation (12).{

xi =
xi−xmin

xmax−xmin

xii = 2 × xii−xmin
xmax−xii

− 1
(12)
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Using the battery state quantity and Kalman filter coefficients as the input values of
the BPNN, the input quantity of the BPNN is xi =

[
v1 v2 SOC k1 k2 k3

]
. The input

quantity of the output tier of the BPNN xl is the weighted sum of the output of the hide
tier, while the excitation function of the output quantity x′l is the tansig function with the
function value range of (−1, 1). The input quantity and output quantity of the output tier
are shown in Equation (13). {

xl = ∑ wjl x′j
x′l =

2
1+e−2xl

− 1
(13)

The algorithm for learning the connection weights between the implicit and import
tiers of the BPNN, and the connection weights to the output tier, is shown in Equation (14).{

Δwij = η · e · wjl · f ′
(

x′j
)
· xi

Δwjl = η · e · x′j
(14)

In Equation (14), η denotes the learning rate, η ∈ [0, 1], and e denotes the error of the
output value from the ideal value. In order to solve the problem of model oscillation or
slow convergence of BPNN in weight learning, the momentum factor α is introduced for
adjustment, α ∈ [0, 1], fully considering the influence of the previous moment weights on
the present weights, then the weights wij and wjl are shown in Equation (15).{

wij(k + 1) = wij(k) + Δwij + α
(
wij(k)− wij(k − 1)

)
wjl(k + 1) = wjl(k) + Δwjl + α

(
wjl(k)− wjl(k − 1)

) (15)

The role of the implicit layer of the BPNN is to extract and store the laws in the sample
data. The implicit layer directly affects the mapping ability of the network; too many nodes
in the implicit layer may lead to overfitting problems and affect the network generalization
ability, while too few nodes will affect the extraction of the sample laws. The estimation
function of the number of nodes in the hide tier is shown in Equation (16).⎧⎨⎩

m =
√

n + 1 + α
m = log2 n
m =

√
nl

(16)

In Equation (16), n and l denote the number of nodes in the input and output tiers,
respectively, α is a constant, and α ∈ [1, 10].

4. Analysis of the Application Effect of the BP-EKF Based E-Cell SOC Estimation Model

4.1. Validation of Battery Modelling Effects

In order to verify the response effect of the electric vehicle battery model constructed in
the research on the dynamic characteristics of the battery, the equivalent circuit model of the
battery was built in the Simulink environment. The input and output of the battery model
were circuit current and terminal voltage, respectively. The rated capacity of the battery
was 20 Ah, the maximum discharge current was 100 A, the maximum charging voltage
was 4.15 V, and the cut-off voltage was 3 V. The electrochemical polarization resistance and
concentration difference polarization resistance of the battery are 0.0042 Ω and 0.0020 Ω,
respectively, the equivalent resistance of the battery is 0.0013 Ω, and the electrochemical
polarization capacitance and concentration difference polarization capacitance of the battery
are 17,111 F and 440.56 F, respectively. The output data of the battery model under DST
working condition is compared with the actual data of the battery, and the reflecting ability
of the dynamic characteristics of the battery model is analyzed. The comparison between
the output data of the battery model and the actual data is shown in Figure 4.
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Figure 4. No load discharge test of battery.

Figure 4a shows the results of the battery no-load voltage test, and it can be seen that
the ideal no-load voltage required for the study is 13 V, and the voltage value exhibited by
the battery during the experiment is also 13 V, i.e., the state of the experimental voltage
under no-load is consistent with the ideal value. Figure 4b shows the error variation
between the experimental voltage and the ideal voltage in the battery discharge test. It can
be seen that there is significant error variation between the experimental voltage and the
ideal voltage during the 600 s test time, but it is known from the error magnitude of the
experimental voltage that the maximum error voltage is only 0.015 V, and the error stays
within 0.005 V for most of the time. The above results show that the proposed BP-EKF
battery has a high agreement with the ideal voltage under no-load condition and during
the discharge process, indicating that the BP-EKF-based battery design is reasonable.

4.2. Analysis of the Estimation Accuracy of the BP-EKF Model

In order to verify the accuracy of the BP-EKF model constructed in the study for E-cell
SOC estimation and to investigate the validity and feasibility of the model, the study was
carried out in the MATLAB/SIMULINK working environment to simulate the battery
operating mode for experiments. The battery is assumed to be fully charged at the initial
moment, the initial value of SOC is set to 1, the battery current is 0, and the terminal voltage
at both ends of the RC circuit is 0. Therefore, the initial values of the states are

[
0 0 1

]
and R = 1000. The operating effects of the model under constant current discharge, pulse
discharge, and UDDS conditions are analysed, respectively. The SOC estimation and error
of the model under constant current discharge conditions are shown in Figure 5.

As can be seen from Figure 5, the model’s SOC appraises are very close to the true
values under constant current discharge conditions, and the model is able to converge
accurately and quickly to approximate the true values, with a maximum error of 0.22%
and an average error of 0.347% between the model’s SOC appraises and the true values’
accuracy. The SOC estimation results and errors of the model under pulse discharge
conditions are shown in Figure 6.

As can be seen in Figure 6, the difference between the appraised and true values of the
EV E-cell SOC using the model under pulse discharge conditions is small, and the model
is able to converge to the true value quickly, with a maximum error of 1.0367% and an
average error of 0.0231% in the model SOC estimation. The results and errors of the model
E-cell SOC estimation under UDDS conditions are shown in Figure 7.
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Figure 5. SOC estimation and error of the model under constant current discharge condition.

Figure 6. SOC estimation results and errors of the model under pulse discharge conditions.

Figure 7. SOC estimation results and errors of model battery under UDDS conditions.

As can be seen from Figure 7, the model converges quickly to the true value in the
UDDS condition, and the difference between the appraised SOC and the true value is
small. Compared with the constant current discharge condition and the pulse discharge
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condition, the estimation error of the model under UDDS condition increases slightly, but
still maintains a good estimation accuracy. The BP-EKF model was compared with the
unscented Kalman filter (UKF) model and the EKF model, and the absolute value of the
estimation error of the E-cell SOC for the DST condition is shown in Figure 8.

Figure 8. Absolute value curve of E-cell SOC estimation error of three models under DST operat-
ing mode.

As can be seen in Figure 8, during the time period 0–3000 s, when the battery is in a
stable state of low current charging and discharging, all three models have a small error
in estimating the E-cell SOC and can better appraise the E-cell SOC situation accurately.
At 3000 s, when the battery has a sudden change in current, the EKF and UKF models are
unable to track the state quantity quickly and accurately, resulting in a sudden increase
in the SOC estimation error, and the SOC estimation error curves of the EKF and UKF
models show large fluctuations and rising trends. The estimation error of the EKF model
gradually becomes larger and the estimation performance is less stable. In contrast, the
BP-EKF model, with the effect of BPNN and extended Kalman filter gain, always maintains
a low level of E-cell SOC estimation error, and after a sudden current change at 3000 s, the
estimation error of the model falls back quickly, and the error curve fluctuates less.

4.3. Robustness Analysis of the BP-EKF Model

During the initial start-up of an electric vehicle, it is difficult for the battery manage-
ment system to obtain the initial value of the E-cell SOC. The E-cell SOC estimation model is
required to provide fast and accurate tracking of the true value of the SOC when the initial
value of the SOC is clear, and also needs to converge quickly to the true value when the
initial value is unknown to ensure the accuracy and efficiency of the SOC value estimation.
In order to investigate the adaptability of the BP-EKF model proposed in the study to the
case of unknown initial SOC values and to analyse the convergence capability of the model,
the study analyses the estimation performance of the model under different initial SOC
values. Ensuring that other parameters are the same, the range of SOC initial values is set
to [0.5, 1], the division interval is 0.1, and the model estimation results for six SOC initial
value cases are shown in Figure 9.
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Figure 9. Model estimation effect under six initial SOC values.

It can be seen from Figure 9 that under the constant current discharge condition, the
model proposed by the research is used to estimate the SOC of the battery. When the
initial value of SOC is different from the actual value to different degrees, the average
SOC estimation error of the model is 0.2218% under the six initial values of SOC, while
the average SOC estimation error under the pulse discharge condition is 0.0976%. Under
UDDS working condition, the average error of SOC estimation of the model battery is
0.5226%, which can meet the actual application requirements of battery management of
electric vehicles. It proves that the BP-EKF model can effectively track the SOC of the
battery quickly and accurately.

In order to verify the adaptability of the proposed model to current noise, the SOC
estimation results of the BP-EKF model and the EKF model under three operating conditions
were compared and analysed in a simulation environment with a white noise with a mean
square deviation of 10A2 to investigate the robustness and optimisation of the model.

From Figure 10, it can be seen that after adding noise to the current signal, the average
estimation error values of the BP-EKF model are 1.2143%, 0.2259%, and 0.5104%, respec-
tively, for the three operating conditions, while the average error values of the EKF model
are 2.2416%, 0.9968%, and 2.1864%, respectively, which proves that the BP-EKF model can
effectively cope with the noise interference, and the SOC estimation error of the BP-EKF
model is smaller with the error compensation of the BPNN.
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Figure 10. Model estimation effect under six initial SOC values (EKF and BP-EKF model).

5. Conclusions

In order to make accurate estimation of E-cell SOC, the study uses the extended
Kalman filter algorithm to construct an E-cell SOC estimation model and introduces BPNN
to compensate the error of the SOC estimation model to achieve accurate and fast tracking
of E-cell SOC. The study conducts simulation experiments in the MATLAB/SIMULINK
working environment. The experimental results show that the average errors between the
BP-EKF model SOC estimation and the real value are 0.347%, 0.0231%, and 0.0749% under
the three operating conditions of constant current discharge, pulse discharge, and UDDS.
The average SOC estimation errors of the BP-EKF model for different initial values were
0.2218%, 0.0976%, and 0.5226%, proving that the model is more applicable to different initial
value errors. The average estimation errors of the BP-EKF model under noise disturbance
were 1.2143%, 0.2259%, and 0.5104%, proving that the model has strong robustness. The
study analyses the model performance under three operating conditions, and in the future,
the influence of temperature and other factors can be further considered to optimise the
E-cell SOC estimation under a variety of operating conditions.
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Abstract: This paper presents the multi-objective optimization of a crude oil hydrotreating (HDT)
process with a crude atmospheric distillation unit using data-driven models based on bootstrap
aggregated neural networks. Hydrotreating of the whole crude oil has economic benefit compared
to the conventional hydrotreating of individual oil products. In order to overcome the difficulty in
developing accurate mechanistic models and the computational burden of utilizing such models
in optimization, bootstrap aggregated neural networks are utilized to develop reliable data-driven
models for this process. Reliable optimal process operating conditions are derived by solving a
multi-objective optimization problem incorporating minimization of the widths of model prediction
confidence bounds as additional objectives. The multi-objective optimization problem is solved using
the goal-attainment method. The proposed method is demonstrated on the HDT of crude oil with
crude distillation unit simulated using Aspen HYSYS. Validation of the optimization results using
Aspen HYSYS simulation demonstrates that the proposed technique is effective.

Keywords: crude oil refining; crude oil hydrotreating; bootstrap aggregated neural networks; multi-
objective optimization

1. Introduction

Oil and gas are among the most widely utilized natural resources in modern society.
Crude oil is a mixture of different hydrocarbons and small quantities of sulphur, nitrogen,
and some metal elements [1]. Refined oil products provide fuels for modern transportation,
such as automobiles, airplanes, and ships. In addition to being used as fuels, oil products
also provide raw materials for the chemical industry in the production of a wide range
of products with the most well known as various types of plastics. Crude oil needs to be
split into more valuable products by distillation processes in the oil refinery. The purpose
of the oil-refining process is to separate crude oil (raw material) into different types of oil
products, such as light gas oil, jet fuels, light naphtha, kerosene, etc. Figure 1 shows a
flowsheet of a typical crude oil refinery [2,3], which is a complex process containing many
processing units, such as crude distillation units (CDU), reformer units, hydrotreating units
(HDT), fluid catalytic cracking (FCC), vacuum distillation units (VDU), hydrocracking units
(HCU), and others. In addition, there are some offsite facilities, such as tank farms, pipe
systems, traps and depots. Refineries are large and complex processes and consume large
amounts of energy and water.

Crude oil from different oil fields around the world varies in composition as well
as containing undesirable impurities, such as sulphur and nitrogen. The undesirable
impurities in oil products need to be removed or reduced due to strict environmental
regulations for limiting sulphur and nitrogen contents in oil products. As a matter of fact,
oil products with high sulphur content can lead to corrosion, pollution, and poisoning to
catalyst. Thus, it is important to reduce the sulphur content in oil products. In crude oil
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refineries, the process for reducing sulphur compounds is known as hydrodesulphurization
(HDS) while that for reducing nitrogen compounds is known as hydrodenitrogenation
(HDN) [4]. The hydrodemetallization (HDM) process is responsible for removing nickel
and vanadium contaminants from the heavy feed. The hydrotreating (HDT) process is
employed to remove sulphur, nitrogen, and aromatic saturation compounds [5].

Figure 1. Flow sheet diagram of a crude oil refinery.

The conventional approach is to apply HDT on some individual oil products. In
order to improve refinery efficiency, a few researchers have investigated applying HDT to
the crude oil instead of individual oil products recently [6,7]. HDT of crude oil is a new
hydrotreating process that has not been extensively reported and it has economic benefit
compared to the conventional HDT process [8]. Jarullah et al. [6] shows that this new
hydrotreating process can significantly improve middle distillate yields. Moreover, the
desulphurization of whole crude oil has the potential to more effectively meet the need of

81



Processes 2022, 10, 1438

environmental legislation for decreasing sulphur content and producing clean fuels in the
refining processes and is expected to become more common in the future [7].

Optimal operating conditions for crude oil HDT process need to be determined in
order to obtain the best process operation performance. A number of process variables
can be considered as the decision variables in the optimization of crude oil HDT process.
Table 1 shows the operating conditions of different HDT technologies applied to different
oil products [9]. The process variables shown in Table 1, pressure (P), temperature (T),
liquid hourly space velocity (LHSV), and hydrogen-to-hydrocarbon (H2/HC) ratio can be
considered as the decision variables in optimizing crude oil HDT process.

Table 1. Operating conditions of various HDT processes [9].

Hydrotreating Process T (◦C) PH2 (MPa) LHSV (h−1) H2/Oil (Nm3/m3)

Naphtha 320 1–2 3–8 60
Kerosene 330 2–3 2–5 80
Gasoil 340 2.5–4 1.5–4 140
VGO 360 5–9 1–2 210
Atmospheric Residue 370–410 8–13 0.2–0.5 >525
Hydrocracking VGO 380–430 9–20 0.5–1.5 1000–2000
Vacuum Residue 400–440 12–21 0.1–0.5 1000–2000

Optimizing crude oil HDT processes will require an accurate process model. It is
generally very difficult to obtain accurate mechanistic models for crude oil HDT processes
due to the complexity of the material and process involved. To overcome this difficulty, data-
driven models obtained from process operation data should be utilized. In recent years,
there has been an increasing interest in computational intelligence, particularly in the area of
machine learning, which has contributed significantly to data-driven modelling. Among the
machine-learning tools, neural networks are a very powerful tool for data-driven modelling.
They attempt to mimic the way in which the human brain functions. A neural network
consists of a number of information-processing units named neurons which are arranged
into layers. Neurons in adjacent layers are connected through weighted connections.
During neural network training, the neural network weights are adjusted so that the neural
network can learn the relationship between the input and output data. Advanced versions
of neural networks, such as stacked neural networks, extreme learning machines, and deep
learning, have also been applied to nonlinear process modelling [10–14].

In this work, bootstrap aggregated neural networks are employed to model a crude
oil HDT with the CDU process and then used to optimize the process operation. Simulated
process operation data are obtained from Aspen HYSYS simulation and used for develop-
ing bootstrap aggregated neural network models. Note that simulated process operation
data are used here to represent real plant operation data. When real plant operation data
are available, they can be directly used to build neural network models. The developed
bootstrap aggregated neural network models are then utilized in a multi-objective opti-
mization framework. In order to enhance the reliability of optimization results, minimizing
the widths of model prediction confidence bounds is considered as a further optimization
objective. The multi-objective optimization problem is solved by using the goal-attainment
method. In some cases, even the Aspen HYSYS models are available, and their neural
network surrogate models are often used in the optimization due to the short computation
time of neural network models. This type of surrogate modelling approach has been
getting popular in recent years [15]. A recent study on reducing the computational burden
of mechanistic models using analytical simplifications could enable real-time optimization
with mechanistic models in some cases [16].

The novelty of this study lies in the following two areas. First, reliable data-driven
models are developed from a limited amount of simulated process operation data through
utilizing bootstrap aggregated neural networks. Secondly, a reliable multi-objective op-
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timization framework for a crude oil HDT with the CDU process is developed through
utilizing the model prediction confidence bounds.

This paper is structured as follows: Section 2 provides process description for the crude
oil HDT process with CDU. Also, the crude oil feedstock and products specifications are
given in this section. Modelling of a crude oil HDT with the CDU process using bootstrap
aggregated neural networks is detailed in Section 3. Section 4 presents multi-objective
optimization of the crude oil HDT with the CDU process using the goal-attainment method.
The last section gives some concluding remarks.

2. A Crude Oil HDT Process with CDU

2.1. Process Description

The process flow diagram of crude oil HDT process with CDU is illustrated in Figure 2.
At the beginning, crude oil is taken from storage tanks and is joined by a stream of hydrogen
gas. The mixture is fed to a train of heat-exchangers where they are pre-heated. After
that, the mixture enters the convection and radiation sections of a furnace where they
are heated to the required reaction temperature and then are fed to a reactor containing
catalysts (HBED in Figure 2). The reactor effluent is employed to preheat the charge (crude
oil) by the heat-exchanging system. Then the effluent is cooled in a cooler. Following that,
the mixture of liquid and gases is fed into a high-pressure separator where gases, such as
hydrogen sulphide and unreacted hydrogen, are removed from the liquid. The gases are
then compressed and sent to a vessel whereas the liquid passes to a low-pressure separator
to further remove gases not being removed in the high-pressure separator. After that, the
hydrotreated crude oil is fed to a CDU process. Aspen HYSYS with the Peng–Robinson
fluid package is employed to simulate the process. The CDU is designed to be able to
cope with the maximum crude feed rate considered to prevent column flooding so that the
optimization study will not be affected by the hydraulic limitation. The CDU considered
here has 29 trays with 0.5 m tray spacing.

Figure 2. HDT for crude oil with CDU.

In general, the function of the crude distillation unit is to distil and split the feedstock
into different types of oil products, such as off gas, naphtha (N), kerosene (K), light gas
oil (LGO), heavy gas oil (HGO), and reduced crude (RC). The hydrotreated crude oil is
preheated in the train of heat-exchangers and then fed to the furnace where it is finally
heated to the required temperature and vaporized. The mixed liquid and vapor charge
flows to the flash zone of the crude distillation tower. Liquid from the flash zone flows
across many stripping trays in the bottom section of the tower. Additionally, stripping
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steam is injected to increase vaporization and reduce volatile content and in this way to
remove lighter compounds. Vapors leaving the flash zone pass through the wash section of
the tower and they are further condensed and fractionated on the trays of a fraction section
with two pump-around sections to yield side-drawn products. The total naphtha leaves
the column via the column top and accumulates in the overhead drum after condensation.
From the overhead drum, part of the naphtha is recycled back to the tower top and the
rest is pumped to the naphtha stabilizer as a product. The side products of the distillation
tower (K, LGO, and HGO) flow to the stripper tower sections where they are individually
steam-stripped to remove dissolved lighter components which are returned to the tower.
Each side product (K, LGO, and HGO) is cooled and sent by pump to the storage tanks.
Finally, RC from the tower bottom is used to preheat the hydrotreated crude oil (charge)
and further cooled by the cooler and then sent to the storage tanks.

2.2. Feed and Products Specifications

Generally, there are specific chemical and physical properties for each type of crude
oil. These characteristics include refinery-related specifications, such as PONA analysis,
specific gravity, pour point, kinematic viscosity, and sulphur and nitrogen contents. The
data involved in a petroleum assay includes yields produced from the physical distillate
and residue properties [17]. The feed and product specifications are given in Table 2 [18]
and Table 3, respectively. In this work, the products’ specifications were taken from the
Midland Refineries Company (Daura Refinery). Crude oil products and the ranges of
hydrocarbons in each fraction are illustrated in Table 4 [19].

Table 2. Petroleum Essay.

No. Property Bulk Value

1 Sulphur By (Wt.%) 2.63
2 Std Liquid Density (kg/m3) 867.5162
3 Watson K 11.4279
4 Pour Point (◦C) 21.8696
5 Total Acid Number (mg KOH/g) 0.171
6 Kinematic Viscosity (cSt)@ 20 (◦C) 13.0798
7 Kinematic Viscosity (cSt)@ 37.78 (◦C) 7.7831
8 Kinematic Viscosity (cSt)@ 37.78 (◦C) 7.7831
9 Kinematic Viscosity (cSt)@ 50 (◦C) 5.697
10 Kinematic Viscosity (cSt)@ 60 (◦C) 4.5238
11 Kinematic Viscosity (cSt)@ 80 (◦C) 2.9883
12 Kinematic Viscosity (cSt)@ 100 (◦C) 2.0967
13 NaCl By (Wt.%) 0.002
14 Mercaptan Sulphur By (Wt.%) 0.0217
15 Conradson Carbon By (Wt.%) 6.0699
16 Asphaltene By (Wt.%) 2.3412
17 Nickel By (Wt.%) 0.0008
18 Vanadium By (Wt.%) 0.0037
19 Iron By (Wt.%) 0.0001
20 Gross Heating Value (kJ/kg) 44,157.58
21 Net Heating Value (kJ/kg) 41,482.25
22 Cut Yield By (Wt.%) 100
23 Cut Yield By (Vol.%) 100
24 Nitrogen By (Wt.%) 0.1113
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Table 2. Cont.

No. Property Bulk Value

25 Paraffins By (Vol.%) 30.5540
26 Naphthenes By (Vol.%) 40.8213
27 Arom By (Vol.%) 28.6245
28 N + 2A (%) 98.0705
29 Smoke Pt (m) 0.0156
30 Freeze Point (◦C) 79.3312
31 Basic Nitrogen By (Wt.%) 0.0378
32 Cloud Point (◦C) 38.6010
33 CtoH Ratio By Wt 6.6651

Table 3. Crude distillation products.

Cut
Oils

Yield
(Wt.%)

Specific
Gravity at

15 ◦C

Flash Point
(◦C)

Color
TBP
(◦C)

Fuel gases 0.01 – – – –
LPG 0.12 – – – –
LN 8.98 0.665–0.680 – – 35–120
HN 12.40 0.735–0.750 – – 90–178
Ker 10.80 0.785–0.800 40 min. 30 min. 135–250
LGO 17.70 0.825–0.840 70 min. 0.5 max. 200–350
HGO 3.68 0.880–0.890 90 min. 2.5 max. 335–355
RC 46.31 0.965–0.980 120 min. – 355+

Table 4. Crude oil hydrocarbon ranges.

Petroleum Products Carbon Range

Fuel gases C1–C2
LPG C3–C4
LN and HN C5–C12
Ker C12–C16
LGO and HGO C12–C20
Lubricating oil C20–C50
RC >C50

3. Modelling of the Crude Oil HDT Process with CDU Using Bootstrap Aggregated
Neural Networks

HDT process optimization should be carried out in order to enhance process efficiency.
Accurate process models are essential for process optimization. Process models can be
broadly divided into mechanistic models and data-driven models. The development of
detailed mechanistic models is typically very time-consuming. Furthermore, optimiza-
tion using mechanistic models in the form of differential and algebraic equations is also
computationally demanding. In some cases, where even a mechanistic model is available,
data-driven surrogate models are used in process optimization [15,20]. In building such
data-driven surrogate models, detailed mechanistic models are used to simulate process
operation under various operating conditions and the simulated process operation data
are used in the development of data-driven surrogate models which are computationally
efficient in solving process optimization problems.

The goal of HDT of crude oil with the CDU scheme is to minimize undesirable
impurities, for instance, sulphur and some other compounds in the treated kerosene
produced from the main atmospheric column. To overcome the difficulties in developing
detailed mechanistic models, as well as using them in process optimization, neural network
models are developed from process operation data. An Aspen HYSYS-based process
simulator was used to produce various process operation data under different operating
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conditions of the HDT of crude oil with the CDU process. When sufficient plant operation
data are available, then data reconciliation can be applied so that the Aspen HYSYS can
match with real plant operation data [21]. Then, the data were utilized to construct neural
network models. It should be noted that when real plant operation data are available, then
they can be directly used in building neural network models.

As the main purpose of the developed neural network models is for process optimiza-
tion, the neural network inputs and outputs should be selected so that they can be used
in process optimization, i.e., they should be related to the optimization objective function
and decision variables. In this work, the neural network inputs are selected as the flow
rates of crude oil and hydrogen, and the pressure and temperature of the reactor. These are
important process operation variables and can be measured and adjusted during process
operation. The neural network outputs are selected as the contents of sulphur and nitrogen
in the kerosene produced from the CDU, which will be minimized in the optimization
problem. In this work, two neural network models are developed and they are represented
by the following equations:

S = f 1(x1, x2, x3, x4) (1)

N = f 2(x1, x2, x3, x4) (2)

where S and N are the contents of sulphur and nitrogen, respectively, in the kerosene
produced from the CDU, and x1 to x4 are, respectively, flow rates of crude oil and hydrogen,
reactor pressure, and temperature.

The development of neural network models for predicting sulphur and nitrogen
contents in the treated kerosene comprise four essential steps. The first step is the collection
of data for model building. The second step is data normalization and data partition into
training data, testing data, and unseen validation data. The third step is to select the
structure of neural networks, such as the number of hidden neurons, layers, and the type
of transfer functions. The fourth step is the training and validation of the neural networks.

In this study, 197 data samples are generated from the Aspen HYSYS simulation of a
crude oil HDT process with CDU to develop neural network models. The data samples
are generated by varying the crude oil flow rate, hydrogen flow rate, and reactor pressure
and temperature within their constraints and they cover the range of inputs over which the
optimization is carried out. The lower and upper bounds of these variables are given in
Table 5. To represent the practical situations where process operation data are limited, a
relatively small amount of simulated plant operation data are produced through simulation.
To address the issue of different magnitudes in the model input and output variables, all
input and output data are scaled to zero mean and unit variance before they are used
in network training. In order to represent practical situations, simulated measurement
noises are added to the simulated plant operation data. The simulated measurement
noises follow normal distribution with zero means. In this study, the standard deviations
for the measurement noises on feed flow rate, H2 molar flow rate, reactor pressure and
temperature, and sulphur and nitrogen contents are, respectively, 0.3 m3/h, 1.5 kgmole/h,
0.5 bar, 0.3 ◦C, 0.003 Wt.%, and 1.5 ppmwt. Note that these measurement noises are only
added to the outputs from the Aspen HYSYS simulation, not to any inputs to the Aspen
HYSYS simulation. The data are split into three groups: training data (56%), testing data
(23%), and unseen validation data (21%). The networks are trained on the training data. The
testing data are utilized for the determination of network structure and early termination
of the training process to avoid over-fitting. The final developed model is evaluated on
the unseen validation data. As mentioned earlier, the simulated process operation data
represent the practical situations where the available process operation data may not be
abundant. Therefore, a relatively large portion of the data are used as training data. On the
other hand, if the neural network models are used as surrogate models for the mechanistic
model (Aspen HYSYS model), then plenty of data can be generated and a large portion of
the data should be used as testing and validation data.
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Table 5. The lower and upper bounds of the process operation variables.

Variables Units Lower Bounds Upper Bounds

crude oil flow rate m3/h 40 70
hydrogen flow rate kgmole/h 700 1000

reactor pressure bar 70 130
reactor temperature ◦C 330 380

3.1. Single Neural Network Models

In this work, single neural network models are developed first for the purpose of
comparison. The networks have a single hidden layer as a single hidden layer network
can approximate any continuous nonlinear function [22]. The activation function in the
hidden neurons is the sigmoid whereas that in the output layer is the linear activation
function. The networks are trained using the Levenberg–Marquardt training algorithm
with regularization and early stopping to avoid over-fitting. During the process of network
training, network errors on the testing data are continuously monitored and training is
terminated when testing errors stop decreasing. The initial network weights are taken
as random values uniformly distributed in the range (−0.1, 0.1), and the regularization
parameter is selected as 0.1. The number of hidden neurons is determined by trying a
number of neural networks with a range of hidden neurons (from 2 to 30) and examining
their sum of squared errors (SSE) on the testing data. The network with the least SSE
on the testing data is considered as having the appropriate number of hidden neurons.
Figure 3 depicts the neural network model performance on the training, testing, and unseen
validation data for modelling the contents of sulphur and nitrogen in treated kerosene from
the HDT of crude oil with CDU. It can be seen that there are a few noticeable errors on the
unseen validation data although model errors on training and testing data seem to be small.
This indicates that single neural network models are not very accurate.

Figure 3. Network model performance on the training, testing, and validation data for sulphur
content (a) and nitrogen content (b).

3.2. Bootstrap Aggregated Neural Networks

The developed neural network models to be used in the optimization of crude oil
hydrotreating with CDU are required to be accurate and reliable. The drawback of a
single neural network is the lack of generalization when applied to unseen validation data.
In other words, a single neural network giving good performance on the training data,
however, can give poor performance on the unseen validation data which is not utilized
in network training [23]. Different methods have been used to improve neural network
generalization, such as network training with regularization [24], Bayesian learning [25],
and aggregating multiple neural networks [26–28]. It was noticed that the approach of
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aggregating multiple neural networks usually provides better performance than other
techniques [29,30].

A simple diagram of bootstrap aggregated neural networks is illustrated in Figure 4,
where several neural networks are developed to model the same relationship between
model inputs and outputs and are then aggregated together [31,32].

Figure 4. A bootstrap aggregated neural network.

The bootstrap aggregated neural network can be represented as:

f (x) = ∑n
i=1 wi fi(x) (3)

where f (x) is the bootstrap aggregated network model, fi(x) is the ith neural network
model, wi is the aggregating weight for the ith neural network, n is the number of networks
included in the aggregated networks, and x is a vector of model inputs.

In this study, each of the developed bootstrap aggregated neural network contains
35 single hidden layer networks. The original training and testing data are put together and
re-sampled via bootstrap re-sampling with replacement to generate 35 replications of the
original data. Each resampled data set is then randomly partitioned into training data (70%)
and testing data (30%). A single hidden layer neural network is developed on each set of
resampled data. These networks are trained by utilizing the Levenberg–Marquardt training
method with regularization and early stopping. The initial network weights are taken
as random values uniformly distributed in the range (−0.1, 0.1), and the regularization
parameter is selected as 0.1. Cross-validation is used to determine the number of hidden
neurons in each individual network. In this study, 29 networks with the number of hidden
neurons ranging from 2 to 30 are trained on the training data and then tested on the testing
data. The network giving the smallest SSE on the testing data is considered as having the
appropriate number of hidden neurons. The number of hidden neurons determined for the
35 single neural networks for sulphur and nitrogen contents are shown in Figure 5. Then,
these 35 neural networks are aggregated, instead of choosing the “best” individual neural
network. Finally, the combined prediction from the 35 neural networks is taken as the final
model prediction [28].

Figure 6 shows the mean squared errors (MSE) of the individual networks for predict-
ing sulphur content on the training, testing, and unseen validation data. It can be seen that
the single networks provide inconsistent performance on the training, testing, and unseen
validation data. For example, the MSE on the validation data by the 12th network (0.0342) is
the second largest. On the other hand, the same network gives better performance (0.0200)
than many of the single networks on the training and testing data. This demonstrates that
the single neural network models are not reliable.
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Figure 5. Number of hidden neurons of single neural networks for sulphur content (a) and nitrogen
content (b).

Figure 6. Errors of signal neural networks for estimating sulphur content.

Figure 7 shows the MSE of bootstrap aggregated neural networks when stacking
different numbers of networks in predicting sulphur content on the training, testing, and
unseen validation data. The first bar in both plots in Figure 7 is the first single neural
network shown in Figure 6, the second bar represents aggregating the first two single
neural networks in Figure 6, and the last bar in Figure 7 represents aggregating all the
single neural network models in Figure 6. It can be seen from Figure 7 that the MSE values
on the training, testing, and unseen validation data decrease with the number of networks
being aggregated and then remain stable. This clearly indicates that bootstrap aggregated

89



Processes 2022, 10, 1438

neural networks are more reliable and give more accurate model prediction performance
than individual neural networks.

Figure 7. Errors of stacked neural networks for estimating sulphur content.

Figure 8 shows the bootstrap aggregated neural network model predictions and actual
values for sulphur and nitrogen contents on the training and testing data, and the unseen
validation data. The training and testing data are represented by ‘+’, and the unseen
validation data are represented by ‘o’. It can be seen from both plots in Figure 8 that
the model predictions correlate well with the true values for most of the samples. The
bootstrap aggregated neural network model prediction performance is better than that
of single neural networks shown in Figure 3. For the sulphur prediction model, there
are a few samples with large errors when the sulphur content is high. This is probably
due to fewer training samples in this region. However, as the optimization objective is to
minimize sulphur content, the large error at the high sulphur content region has no impact
on the optimization.

Figure 8. Stacked networks prediction and real values for sulphur content (a) and nitrogen content (b).
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Figure 9 shows the MSE values of single neural networks for the prediction of nitrogen
content on the training, testing, and unseen validation data. It can be seen from this figure
that the 10th network gives much worse performance than any other networks on all the
data sets. Thus, this network is removed. Note that the deletion of this network is purely
based on its very poor performance on the training and testing data. Figure 10 shows the
performance of the remaining networks. The performance of individual networks on the
training and testing data is not in agreement with that on the unseen validation data. It
can be seen from Figure 10 that the second network gives better performance than the
third network on the training and testing data. However, its performance on the unseen
validation data is worse than that of the third network. This clearly shows that the single
networks are not reliable.

Figure 9. Errors of signal neural networks for estimating nitrogen content (35 networks).

Figure 10. Errors of signal neural networks for estimating nitrogen content (34 networks).

Figure 11 shows the MSE values of predicting nitrogen content on the training, testing,
and unseen validation data by aggregating several numbers of single neural networks. In
Figure 11, the first bar in both plots is the first single network in Figure 10, the second
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bar is aggregating the first two single networks in Figure 10, and the last bar represents
aggregating all the single neural network models in Figure 10. It can be seen from Figure 11
that aggregated networks produce consistent performance on the training and testing
data and on the unseen validation data. The MSE values of bootstrap aggregated neural
networks decrease and remain stable on the training, testing, and unseen validation data as
more networks are aggregated. Furthermore, it can be observed that bootstrap aggregated
neural networks are more accurate and reliable than single neural networks. Figures 7
and 11 indicate that model errors level off after combining about 10 networks. Although
combining more networks does not further improve model accuracy, the estimation of
model prediction confidence bounds (to be discussed in Section 3.3) would not be accurate
if too few networks are used.

Figure 11. Errors of stacked neural networks for estimating nitrogen content.

3.3. Neural Network Model Prediction Confidence Bounds

One major advantage with the use of bootstrap aggregated neural networks is that
model prediction confidence bounds can be easily estimated from the predictions of in-
dividual neural networks [31]. Confidence bounds reveal how confident the associated
prediction is.

The standard error of the individual network predictions can be estimated as:

σe =

{
1

n − 1 ∑n
i=1[ fi(x)− y(x)]2

} 1
2

(4)

where n is the number of neural networks in the aggregated neural network and
y(x) =∑n

i=1 fi(x)/n. The 95% confidence bounds for the prediction corresponding to an
input x is estimated as y(x) ± 1.96σe. A lower σe, i.e., a narrower confidence bound, means
that the model prediction is more reliable.

Figure 12a,b show the 95% model prediction confidence bounds for predicting sulphur
and nitrogen contents on the unseen validation data by aggregated neural network models,
respectively. The actual values are represented by “o”, the predicted values from the
aggregated network models are represented by “+”, and 95% confidence intervals are
represented by the green dashed lines. When the confidence bounds are tight, the reliability
of the model predictions will be high. It can be seen that model predictions using bootstrap
aggregated models are quite close to the real values for most of the samples. Furthermore,
the confidence bounds are quite narrow for most of the samples indicating reliable model
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predictions. It can be concluded that the bootstrap aggregated neural network models for
sulphur and nitrogen contents give very good performance.

Figure 12. Stacked neural network predictions of sulphur content (a) and nitrogen content (b) on the
unseen validation data.

4. Multi-Objective Optimization of the Process Using the Goal-Attainment Technique

Multi-objective optimization is a field of multiple criteria decision-making, which
is concerned with mathematical optimization problems with conflicting objectives [33].
A single objective function in many cases with various constraints cannot adequately
represent the multi-criteria decision-making problem, such as balancing results between
profit and energy costs [34]. When the number of objectives rises, trade-offs become
complicated. Multi-objective optimization includes minimizing or maximizing various
objectives which are subject to a number of constraints. It is concerned with the creation of
non-inferior solutions which are also named as efficient or Pareto optimum solutions [35].
According to a formal definition provided by [36], “a non-inferior solution is one in which
no decrease can be obtained in any of the objectives without causing a simultaneous
increase in at least one of the other objectives”. A non-inferior solution is also known as
Pareto front or Pareto optimal.

Some common methods for multi-objective optimization include: goal-attainment,
minimax, and multi-objective genetic algorithm. In this study, the multi-objective opti-
mization problem for the crude oil hydrotreating process with the crude distillation unit is
solved using the goal-attainment method.

4.1. Goal-Attainment Method

The goal-attainment method is a powerful tool which can be used to find the best solu-
tion in a multi-objective optimization problem. In this method, the decision-maker specifies
a goal for each of the objectives. This method includes a set of goals
F(x) = [F1(x), F2(x), F3(x), . . . , Fn(x)] which are associated with a set of objectives
Y(x) = [Y1(x), Y2(x), Y3(x), . . . , Yn(x)]. Also, a set of weighting factors
W(x) = [W1(x), W2(x), W3(x), . . . , Wn(x)] is used to control the degree of goal achieve-
ment [37]. Figure 13 shows the goal-attainment method with two objectives, Y1 and Y2.
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Figure 13. The goal-attainment method for a two-dimensional problem.

It can be seen from Figure 13 that the goal point P is defined by goals (Y1
* and Y2

*)
corresponding to the two objectives Y1 and Y2, respectively, while the weighting factors W
determines the direction of search from the goal point P to the feasible space 2(G). The set
of nonlinear solutions can be obtained by changing W over 2during the optimization.

In this work, the multi-objective optimization problem deals with three process opera-
tion objectives, namely, minimization of sulphur content, minimization of nitrogen content,
and maximization of production rate. Four decision variables are selected and they are
feedstock flow rate, H2 molar flow rate, reactor temperature, and pressure. These four
decision variables are also the neural network model inputs.

The multi-objective optimization problem considered in this paper can be represented
as follows:

Y =

⎡⎣ S
N
− f

⎤⎦ (5)

min
x,γ

γ

s.t.
Yi(x)− Wi γ ≤ Fi i = 1, 2, 3
LBi ≤ xi ≤ UBi i = 1, 2, 3, 4

Equations (1) and (2)

(6)

In the above equation, Y is a vector of the objectives, S and N are, respectively, the
predicted contents of sulphur and nitrogen in the kerosene produced from the CDU, f is the
crude oil feed rate, x = [x1, x2, x3, x4] is a vector of decision variables which are the neural
network model inputs, LBi and Ubi are the lower and upper bounds for xi respectively and
are given in Table 5, Wi is the weighting factor for the ith objective, γ is a slack variable,
and Fi is the desired goal for the ith objective. The three objectives in Equation (5) are
minimizing the contents of sulphur and nitrogen in the kerosene product, and maximizing
the refinery throughput.

Table 6 shows two cases of the multi-objective optimization results for two sets of
goals. In Case 1, the goals for sulphur content, nitrogen content, and feed flow rate were
selected as 0.04 Wt.%, 140.0 ppmwt, and 70 m3/h, respectively. The weighing factors
(W) were selected as 0.5, 5.0, and 0.1 for sulphur content, nitrogen content, and feed flow
rate, respectively. A smaller weighting means the associated goal is more important. As
can be seen from Table 6 (Case 1), all the three goals have been met according to neural
network model predictions. The neural network predicted sulphur and nitrogen contents
are 0.0329 Wt.% and 140.0 ppmwt, respectively. However, when the optimal process

94



Processes 2022, 10, 1438

operating conditions are implemented on HYSYS simulation, the actual sulphur content
decreases to 0.0300 Wt.% and the actual nitrogen content increases to 143.0 ppmwt. In
Case 2, the goals for sulphur content, nitrogen content, and feed flow rate were selected as
0.03 Wt.%, 130.0 ppmwt, and 70 m3/h, respectively. The weighing factors (W) for sulphur
content, nitrogen content, and feed flow rate are kept the same as those in Case 1. It can
be seen from Table 6 (Case 2) that all the three goals have been met according to neural
network model predictions. The neural network predicted sulphur and nitrogen contents
are 0.0292 Wt.% and 130.0 ppmwt, respectively. On the other hand, when the optimal
process operating conditions are implemented on HYSYS simulation, the real sulphur and
nitrogen contents increase to 0.0300 Wt.% and 134.5 ppmwt, respectively.

Table 6. Multi-objective optimization results without confidence bounds.

Case Goals Cb(S) Cb(N) W x Stacked
Network

HYSYS
Absolute

Error

1
⎛⎝0.04

140
−70

⎞⎠ 0.0177 0.0149
⎛⎝0.5

5
0.1

⎞⎠
⎛⎜⎜⎝

70
802.66
123.89
377.68

⎞⎟⎟⎠
S: 0.0329

N: 140.0000
S: 0.0300

N: 143.0000
0.0029
3.0000

2
⎛⎝0.03

130
−70

⎞⎠ 0.0168 0.0171
⎛⎝0.5

5
0.1

⎞⎠
⎛⎜⎜⎝

70
802.83
125.99
377.60

⎞⎟⎟⎠
S: 0.0292

N: 130.0000
S: 0.0300

N: 134.5000
0.0008
4.5000

The actual nitrogen content exceeds its goal value in both cases. This performance
degradation is due to the model plant mismatch. The absolute errors shown in Table 6 are
calculated as the difference between bootstrap aggregated neural network predictions and
HYSYS simulation.

4.2. Reliable Multi-Objective Optimization through Incorporating Model Prediction
Confidence Bounds

The reliability of optimization results is affected by the reliability of model predictions.
If the model predictions are not reliable, then the optimization results based on these
predictions are not likely to be reliable. Incorporating model prediction reliability in the
optimization objectives could improve the reliability of optimization results. In order to
improve the reliability of multi-objective optimization, minimization of the widths of model
prediction confidence bounds is incorporated as additional optimization objectives. The
reliable multi-objective optimization problem is given as follows:

Y =

⎡⎢⎢⎢⎢⎣
S
N
− f

Cb(S)
Cb(N)

⎤⎥⎥⎥⎥⎦ (7)

min
x,γ

γ

s.t.
Yi(x)− Wi γ ≤ Fi i = 1, 2, 3, 4, 5

LBi ≤ xi ≤ UBi i = 1, 2, 3, 4
Equations (1) and (2)

(8)

where Cb(S) and Cb(N) are the widths of model prediction confidence bounds for sulphur
and nitrogen contents, respectively. The purpose of minimizing the width of model predic-
tion confidence bounds is to make the model prediction more reliable leading to reliable
optimization results. The goals and weights specify the relative importance of various
process objectives and model prediction reliability.

95



Processes 2022, 10, 1438

Tables 7 and 8 show the optimization results and HYSYS simulation by incorporating
model prediction confidence bounds in the optimization objectives for Case 1 and Case
2, respectively. As can be seen from these tables, the goals for sulphur content, nitrogen
content, and feed flow rate are kept the same as those in the corresponding cases in Table 6.
Two additional goals on the widths of model prediction confidence bounds for sulphur and
nitrogen contents are added here.

Table 7. Multi-objective optimization results with confidence bounds (Case 1).

Run Goals W x Stacked
Network

HYSYS Absolute Error

1

⎛⎜⎜⎜⎜⎝
0.04
140
−70
0.01

0.01

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0.5
5.0
0.1
1.0
1.0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

69.9993
802.86
126.37
377.18

⎞⎟⎟⎠
S: 0.0294

N: 132.6498
Cb(S): 0.0165
Cb(N): 0.0165

S: 0.0300
N: 137.7000

0.0006
5.0502

2

⎛⎜⎜⎜⎜⎝
0.04
140
−70
0.01

0.01

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0.5
5.0
0.1
0.5
0.5

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

69.9987
802.86
126.37
377.18

⎞⎟⎟⎠
S: 0.0294

N: 132.6510
Cb(S): 0.0165
Cb(N): 0.0165

S: 0.0300
N: 137.7000

0.0006
5.0490

3

⎛⎜⎜⎜⎜⎝
0.04
140
−70
0.01

0.01

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0.5
5.0
0.1
0.05
0.05

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

69.9922
861.56
120.88
376.90

⎞⎟⎟⎠
S: 0.0322

N: 139.5789
Cb(S): 0.0139
Cb(N): 0.0139

S: 0.0300
N: 132.6000

0.0022
6.9789

Table 8. Multi-objective optimization results with confidence bounds (Case 2).

Run Goals W x Stacked
Network

HYSYS Absolute Error

1

⎛⎜⎜⎜⎜⎝
0.03
130
−70
0.01

0.01

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0.5
5.0
0.1
1.0
1.0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

69.9993
802.81
125.70
377.74

⎞⎟⎟⎠
S: 0.0294

N: 132.0352
Cb(S): 0.0170
Cb(N): 0.0170

S: 0.0300
N: 134.1000

0.0006
4.0648

2

⎛⎜⎜⎜⎜⎝
0.03
130
−70
0.01

0.01

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0.5
5.0
0.1
0.5
0.5

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

69.9986
802.81
125.70
377.74

⎞⎟⎟⎠
S: 0.0294

N: 130.0704
Cb(S): 0.0170
Cb(N): 0.0170

S: 0.0300
N: 137.7000

0.0006
4.0296

3

⎛⎜⎜⎜⎜⎝
0.03
130
−70
0.01

0.01

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0.5
5.0
0.1
0.05
0.05

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

69.9878
836.62
122.27
378.00

⎞⎟⎟⎠
S: 0.0304

N: 130.6100
Cb(S): 0.0160
Cb(N): 0.0160

S: 0.0300
N: 127.0000

0.0004
3.6100

When solving the multi-objective optimization problem, it is expected that different
optimal operating policies will be obtained from different goals and weightings. It can be
seen from Table 7 (Case 1) that, as the weightings on model prediction confidence bounds
are further reduced (i.e., making the model reliability more important) in run 3, model
prediction reliability is improved leading to much less actual nitrogen content. The nitrogen
content has been reduced from 143.0 ppmwt in all runs in Table 7 (Case 1) in the real process
(HYSYS simulation). Table 8 (Case 2) shows that the weightings on model prediction confi-
dence bounds are also further reduced in run 3 and model prediction reliability is improved
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leading to much fewer absolute errors between the bootstrap aggregated neural network
model and HYSYS model. The nitrogen content has been reduced from 134.5 ppmwt to
127.0 ppmwt in run 3 in Table 8 (Case 2) in the real process (HYSYS simulation). This reveals
the improved reliability of the proposed reliable multi-objective optimization method. As
can be seen from run 3 in Table 8 (Case 2), the bootstrap aggregated neural network model
predicted values for sulphur and nitrogen contents are closer to the true values compared
to those in Table 6 (Case 2). It can be concluded that run 3 in Table 8 (Case 2) can be selected
as the best optimum case with confidence bounds.

Table 9 compares the base case and the optimum cases of the operating conditions for
HDT of crude oil with CDU. The optimal case 1 is run 3 in Table 7, while the optimal case 2
is run 3 in Table 8. It can be seen that the crude oil charge is increased significantly from
55 m3/h in the base case to about 70 m3/h in the optimum cases 1 and 2. Optimal case 2
has slightly higher sulphur and nitrogen removal than optimal case 1.

Table 9. Comparison of the base case and the optimum cases.

Cases
Feed

(m3/h)
H2 Molar Flow

(kgmole/h)
Pressure

(bar)
Temperature

(◦C)
S Removal

(Wt.%)
N Removal

(Wt.%)

Base 55.00 800.00 90.00 375.00 85.32 88.08
Optimum 1 69.65 865.01 120.78 376.42 88.63 88.18
Optimum 2 69.99 836.62 122.27 378.00 88.64 88.63

5. Conclusions

Modelling and multi-objective optimization of a crude oil hydrotreating process with a
crude distillation unit using bootstrap aggregated neural networks is studied in this paper.
Hydrotreating of whole crude oil is a new process with economic advantages compared
to hydrotreating of individual oil products. Bootstrap aggregated neural networks are
employed in this work to improve the reliability and accuracy of data-driven non-linear
models. Bootstrap aggregated neural networks can also provide model prediction confi-
dence bounds based on the individual neural network predictions. Minimization of the
widths of model prediction confidence bounds is incorporated as additional optimization
objectives. It is shown that reliable optimization results are obtained by incorporating
model prediction confidence in the optimization objectives. The modelling and optimiza-
tion results are validated using Aspen HYSYS simulation.
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Abstract: This paper focuses on the problem of event-triggered H∞ asynchronous filtering for
Markov jump nonlinear systems with varying delay and unknown probabilities. An event-triggered
scheduling scheme is adopted to decrease the transmission rate of measured outputs. The devised
filter is mode dependent and asynchronous with the original system, which is represented by a hidden
Markov model (HMM). Both the probability information involved in the original system and the
filter are assumed to be only partly available. Under this framework, via employing the Lyapunov–
Krasovskii functional and matrix inequality transformation techniques, a sufficient condition is
given and the filter is further devised to ensure that the resulting filtering error dynamic system is
stochastically stable with a desired H∞ disturbance attenuation performance. Lastly, the validity of
the presented filter design scheme is verified through a numerical example.

Keywords: event-triggered scheduling; Markov jump nonlinear systems(MJNSs); error threshold;
partly unknown probabilities; asynchronous filtering

1. Introduction

Markov jump systems (MJSs), as a kind of significant hybrid stochastic systems, have
attracted immense attention in recent decades owing to their wide range of applications in
aerospace, electric power systems, communication, economic, traffic and other areas [1–4].
Scholars have put a lot of effort into research on MJSs since they were first proposed by
Krasovskii and Lidskii [5] in the 1960s, and many results for MJSs have been released
in the literature (see [6–13] and the references therein). Additionally, it is a fact that the
nonlinearity in MJSs, which makes the system more complex, is ubiquitous in many real-
world applications. Therefore, the research on Markov jump nonlinear systems (MJNSs)
has great theoretical significance and practical application value and has been widely
examined [14–18]. Among this research, neural network (NN) [16–18] is one of the most
popular approaches to deal with nonlinearity. For instance, the exponential stability
problem was discussed for multiple-delayed Markov jump NNs (MJNNs) in [16].

Moreover, the filtering or estimation is a very essential issue in the field of cybernetics
and has received strong interest from scholars [19], mainly for the reason that it is often a
difficult job to obtain the accurate values of system states in engineering practice, and thus,
a high-quality filter is essential for state estimation. The problem of filtering or estimation
for MJSs has been investigated in [12–14,20–25]. To mention a few such studies, the H∞
filtering and the dissipative asynchronous filtering for periodic MJSs were investigated
in [12,13], respectively. The state estimation problem for a class of MJNSs was explored
in [14], which put forward a moving horizon estimation algorithm, and the optimal estimate
was obtained by minimizing a quadratic estimation cost function.

On the other hand, due to the increasing complexity of networks, communication
constraint is also a serious problem for networked control systems (NCSs), which have
been extensively used in real systems in recent years [26]. To the best of our knowledge,
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the event-triggered (ET) scheduling scheme is a useful and emerging approach to deal with
this trouble and has become one of the current research hotspots [27–30]. Event-triggered
scheduling means that the information transmission of nodes in the system determine
whether to execute or not according to the preset event-triggered conditions. Based on this
scheme, the measured outputs are transmitted only when the ET condition holds. Com-
pared with the traditional periodic transmission scheme, it has the advantages of reducing
redundant communication and saving energy, and so on. In recent years, some useful
results for MJSs on this topic have been reported [20–22,31–33]. Specially, the filtering or
estimation problem was addressed in [20–22,33]. For example, the event-based state estima-
tion problem was explored for MJSs considering quantization and stochastic nonlinearity
simultaneously in [20], in which both the ET and quantization schemes were introduced
into the model of MJSs, then an estimator was devised to ensure that the filtering error
system was randomly bounded and satisfied a desired H∞ performance. The event-based
dissipative filtering issue was studied for delayed MJSs [22], by means of the Lyapunov
and Wirtinger inequality techniques, the stochastic stability with strict dissipativity of the
error system and the co-design design scheme of the ET matrices and filter parameters
were presented.

In NCSs, the plant, filter or controller are always geographically scattered and con-
nected through communication network, which will inevitably cause some issues,
e.g., network-induced delay and data dropout, and lead to incomplete data transmis-
sion among different nodes, thus causing asynchronous problems in MJSs [25]. However,
in many of the existing works, this problem is ignored by assuming that the filter/controller
is mode independent [34,35] or synchronous [36,37] with the original system. Mode in-
dependence implies that there is no use of available mode information, which will bring
about more conservatism, and the assumption of synchronization means that the modes of
the filter/controller are completely consistent with those of the plant, which is too rigor-
ous. Due to realizing the irrationality of these assumptions, recently, scholars have paid
increasing attention to the investigation of asynchronous techniques [23–25,38]. In [23,24],
the asynchronous phenomenon was described as a piecewise homogeneous Markov pro-
cess. In [13,25,38], a hidden Markov model (HMM) was proposed to address the asyn-
chronous issue, which related the filter/controller to the plant with a conditional probability
matrix (CPM). Based on this, the asynchronous filtering problem for MJNNs in [25] and the
asynchronous control problem for MJSs in [38] were investigated, respectively.

Based on the foregoing discussions, we know that some important results have been
released about ET scheduling schemes or asynchronous techniques in MJSs. These works
have important theoretical and practical significance. Nevertheless, there are few results
concerning the ET asynchronous filtering/control for MJSs or MJNSs, which is one of the
motivations for our work. In addition, it should be noted that the above asynchronous
results are restricted due to the assumption that both the probability information of the
original system and the filter are considered to be fully accessible. However, it is difficult
or costly to fulfill in many engineering applications. However, some results on the partly
unknown transition probabilities (TPs) case [39,40] have been reported recently, in which it
is assumed that the modes of the plant and the filter/controller are synchronous, and the
unknown entries only exist in the transition probability matrix (TPM), so they are not
suitable for asynchronous cases. For instance, in the HMM-based asynchronous case, there
may be unknown entries in both TPM and CPM, which is more complex and challenging.
This is another motivation for our work.

This paper will concentrate on the issue of ET asynchronous filter design for discrete-
time MJNSs based on a NN model with varying delay and unknown probabilities. An ET
scheduling scheme is introduced to decrease the transmission rate of measured outputs.
The modes of the devised filter are dependent on and asynchronous with those of the origi-
nal system, represented by an HMM. It is assumed that both the probability information
involved in the original system and the filter are only partly available. By utilizing the
Lyapunov–Krasovskii functional (LKF) and matrix inequality transformation techniques,
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an asynchronous filter is devised to ensure the stochastic stability and a desired H∞ perfor-
mance of the error system. The slack matrix technique and Projection lemma are introduced
to facilitate the filter design. Lastly, a numerical example is offered to demonstrate the
validity of the obtained results. The major contributions of this work are stated as follows:

(1) A more practical scenario is considered, which includes not only the varying
delay, partly unknown probabilities and nonlinearity of the original system, but also the
network-induced communication constraint and asynchronous problem.

(2) The ET asynchronous filtering problem based on HMM is first explored for discrete-
time delayed MJNNs, in which both the TPM of the original system and the CPM of the
filter are assumed to be only partly accessible.

(3) The filtering scheme proposed in this paper has strong versatility since the asyn-
chronous strategy based on HMM contains two special cases: mode independence and
synchronization, and the case with partly unknown probabilities considered in this paper
covers both fully known and fully unknown cases.

2. Preliminaries

In this work, the physical plant, which is a discrete-time MJNN with varying delay, is
addressed as below:

S0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) = A(αk)x(k) + Ad(αk)x(k − d(k))
+E(αk)g(x(k)) + Ed(αk)g(x(k − d(k)))
+B(αk)w(k)

y(k) = C1(αk)x(k) + Cd(αk)x(k − d(k))
+D1(αk)w(k)

z(k) = C2(αk)x(k) + D2(αk)w(k)
x(k0) = χ(k0), k0 = −τ2,−τ2 + 1, · · · ,−1, 0

(1)

where x(k) ∈ Rn is the system state with the initial value χ(k0), y(k) ∈ Rp is the output
signal, z(k) ∈ Rq is the target value to be estimated, and w(k) ∈ Rr is referring to the
disturbance with w(k) ∈ l2[0, ∞). g(x(k)) ∈ Rn denotes a nonlinear function. d(k) ∈ N+

means the system delay with lower bound τ1 and upper bound τ2 . A(αk), Ad(αk), E(αk),
Ed(αk), B(αk), C1(αk), Cd(αk), D1(αk), C2(αk) and D2(αk) are known constant matrices with
proper dimensions. αk refers to a Markov chain which regulates the jumps of system(S0) in
a set of modes S1= {1, 2, · · · , s1} with a TPM Φ= {φij}, and its TP φij is defined as

Pr {αk+1 = j|αk = i} = φij (2)

in which φij ≥ 0 and
s1
∑

j=1
φij=1 for ∀i, j ∈ S1 .

Next, a filter will be devised for estimating z(k) according to measured outputs. Nev-
ertheless, due to the introduction of an ET scheduler, the output signal will be transmitted
only when the ET condition holds(see Figure 1). While the deviation between the current
measured output and the last transmission signal is bigger than its relative error, the output
signal will be transmitted (i.e., ρ(k) = 1), otherwise it will not be transmitted (i.e., ρ(k) = 0).
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Figure 1. Block diagram of ET asynchronous filtering

Therefore, at the sampling instant k, if the ET condition holds, the filter will receive
the latest measured output, otherwise it will keep the last transmission value by zero
order holder (ZOH). Based on this scheme, the input of the filter during the period k is
addressed as:

ỹi(k) =
{

yi(k) |ỹi(k − 1)− yi(k)| > δi|yi(k)|
ỹi(k − 1) |ỹi(k − 1)− yi(k)| ≤ δi|yi(k)| (3)

where i = 1, 2, · · · , p ; δi ∈ [0, 1] is the error threshold.
Setting H(k) = diag{∇1(k),∇2(k), · · · ,∇p(k)}, ∇i(k) ∈ [−δi, δi], i = 1, 2, · · · , p ,

then in accordance with (3) , we can obtain

ỹ(k) = (I + H(k))y(k) (4)

Remark 1. Thanks to the introduction of the ET scheduler into MJNSs, the measured outputs need
not be transmitted in each sampling period, thus achieving the aim of reducing the data transmission
rate. In the following, we introduce a communication performance index of MTR = n̄sent/ntotal ,
which denotes the mean transmission rate ( n̄sent and ntotal denote the average number of measured
output y(k) transmitted with and without the ET scheduler in the simulation time, respectively.).
The smaller MTR means better communication performance.

Based on the ET outputs (4), we will adopt a mode-dependent filter to estimate z(k) :

Sf :
{

x f (k + 1) = A f (βk)x(k) + Bf (βk)ỹ(k)
z f (k) = Cf (βk)x(k) + Df (βk)ỹ(k)

(5)

where x f (k) ∈ Rn refers to the filter state, z f (k) ∈ Rq denotes the estimated value of z(k).
A f (βk), Bf (βk), Cf (βk) and Df (βk) are parameters of the filter to be obtained, which are
dependent on the filter mode βk, βk ∈ S2= {1, 2, · · · , s2}.

In this paper, filter(Sf) is mode dependent, and its mode βk is influenced by the
mode αk of system(S0) via a CPM Ω= {σim}, where the conditional probability(CP) σim is
given by

Pr {βk = m|αk = i} = σim (6)

which denotes the probability that filter(Sf) is in the m-th mode while the plant works in

the i-th mode. Obviously, σim ≥ 0 and
s2
∑

m=1
σim=1 for ∀i ∈ S1, m ∈ S2.

Remark 2. Notice that the devised filter acts asynchronously with the original system as their
jumping processes are controlled by different Markov parameters, βk and αk, respectively. However,
the parameter βk is affected by αk through the CP (6). Thus, the set (αk, βk, Φ, Ω) is addressed as
an HMM, linking filter(Sf) and system(S0) tightly with a CPM which can reflect the asynchronous
degree between them. We should mention that the devised asynchronous filter under this scheme is
more general because it includes the synchronous and mode-independent cases [38].
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Considering the complexity of practical systems, in this paper, we assume that the
entries of TPM Φ and CPM Ω are partly inaccessible; namely, Φ and Ω may take the forms
as follows:

Φ=

⎡⎣ φ11 ? ?
? ? φ23
? φ32 ?

⎤⎦, Ω=

⎡⎣ σ11 ? ?
? ? σ23
? σ32 ?

⎤⎦ (7)

in which “?” refers to the unknown elements. For ∀i ∈ S1 , define S1=S i
1K + S i

1U and
S2=S i

2K +S i
2U , where {

S i
1K =

{
j : φij is known

}
S i

1U =
{

j : φij is unknown
}{

S i
2K = {m : σim is known}

S i
2U = {m : σim is unknown}

(8)

Remark 3. In recent years, there have been some research results on the HMM-based asynchronous
filtering/control of MJSs, e.g., [25,38], in which all TPs in TPM and CPs in CPM are assumed to be
known. Nevertheless, it is very arduous or costly to obtain all the information about TPM or CPM.
Hence, a more complex and challenging case where both TPM and CPM are only partly accessible
will be explored in this paper. It is worth pointing out that our result under this framework is more
general because it contains two special cases: (1) the fully known case, i.e., S i

1U = ∅ or S i
2U = ∅,

which is the most studied case at present; (2) the fully unknown case, i.e., S i
1K = ∅ or S i

2K = ∅ .

For brevity of notation, in the following, parameters αk, αk+1 and βk are simplified to i,

j and m of the subscript, for example, A(αk)
Δ
= Ai , A f (βk)

Δ
= A f m .

Selecting the augmented vector x̃(k) = [ xT(k) xT
f (k) ]T and the estimated error

ẽ(k) = z(k)− z f (k), and synthesizing (1), (4) and (5), we derive the filtering error dynamic
system as follows:

Se :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̃(k + 1) = Ãimx̃(k) + Ãdimx(k − d(k))

+B̃imw(k) + Ī[Eig(x(k))
+Edig(x(k − d(k)))]

ẽ(k) = C̃imx̃(k) + C̃dimx(k − d(k))
+D̃imw(k)

(9)

where Ãim =

[
Ai 0

Bf m(I + H(k))C1i A f m

]
, Ãdim =

[
Adi

Bf m(I + H(k))Cdi

]
,

B̃im =

[
Bi

Bf m(I + H(k))D1i

]
, Ī =

[
I
0

]
, C̃im =

[
C2i − Df m(I + H(k))C1i −Cf m

]
,

C̃dm =
[
−Df m(I + H(k))Cdi

]
, D̃im =

[
D2i − Df m(I + H(k))D1i

]
.

Next, we will provide some important definitions, assumptions and lemmas that
promote the work of this paper.

Definition 1 ([41]). The filtering error system(Se) with w(k) = 0 is said to be stochastically stable
if the following condition is satisfied for the arbitrary initial condition (x̃(0), α0)

E

{
∞

∑
k=0

‖x̃(k)‖2|x̃(0), α0

}
< ∞ (10)

Definition 2 ([41]). The filtering error system(Se) with w(k) ∈ l2[0, ∞) is said to have an H∞
disturbance attenuation performance γ, if under the zero initial condition, the error ẽ(k) fulfills the
condition as follows:
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∞

∑
k=0

E
{
‖ẽ(k)‖2

}
< γ2

∞

∑
k=0

‖w(k)‖2 (11)

where γ is a positive scalar.

Assumption 1 ([42]). The continuous nonlinear function gi(•) in system(S0) is supposed to be
bounded, and satisfies the following condition

li ≤ gi(x)
x ≤ hi x �= 0, x ∈ R

where li and hi are constants, i = 1, 2, · · · , n.

Lemma 1 ([42]). Based on Assumption 1, there is a symmetric matrix N > 0, satisfying

[
x(k)

g(x(k))

]T[ Y1N −Y2N
∗ N

][
x(k)

g(x(k))

]
< 0

where Y1=diag{l1h1, l2h2, · · · , lnhn}, Y2=diag{(l1+h1)/2, (l2+h2)/2, · · · , (ln+hn)/2} .

Lemma 2 (Projection lemma [43]). For given matrices X, U and V, there exists a matrix Y
such that

X + UTYV + VTYTU < 0

is satisfied, if and only if the inequalities listed below are true

UT
⊥XU⊥ < 0, VT

⊥XV⊥ < 0

where U⊥ and U, V⊥ and V are orthogonal complements, respectively.

Based on the above, the objective of this paper is to develop a feasible ET asynchronous
filter(S f ) for discrete-time delayed MJNSs (S0) with unknown probabilities, such that the
error system (Se) is stochastically stable and has a desired H∞ performance γ.

3. Main Results

We will first provide a sufficient condition about the stochastic stability with an H∞
performance γ of the error system (Se) in this section, then present a design scheme of a
solvable filter.

For brevity, we first introduce the following notations:

Āim =

[
Ai 0

Bf mC1i A f m

]
, Ādim =

[
Adi

Bf mCdi

]
, B̄im =

[
Bi

Bf mD1i

]
, C̄im =

[
C2i − Df mC1i −Cf m

]
,

C̄dim =
[
−Df mCdi

]
, D̄im =

[
D2i − Df mD1i

]
, η1(k) =

[
x̃T(k) gT(x(k)) xT(k − d(k)) gT(x(k − d(k)))

]T ,

η(k) =
[

ηT
1 (k) wT(k)

]T , Λ=diag{δ1, δ2, · · · , δp}, Q =

[
Q11 Q12
∗ Q22

]
, τ=τ2 − τ1 + 1.

By use of LKF and H∞ theory, we can obtain the following conclusions.

Theorem 1. For a prescribed γ > 0, the filtering error dynamic system(Se) based on Assumption 1
is stochastically stable with the H∞ performance γ, if there are matrices A f m, Bf m, Cf m, Df m,
Pi > 0, Fim > 0, and Q > 0, and diagonal matrices N1 > 0, N2 > 0, and Wim > 0, such that the
following two conditions are fulfilled for ∀i ∈ S1, m ∈ S i

2U

FK
i +(1 − σK

i )Fim < Pi (12)
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and for ∀i ∈ S1, j ∈ S i
1U , m ∈ S2

Πim =

⎡⎣ Π1
im Um ZT

i ΛWim
∗ −Wim 0
∗ ∗ −Wim

⎤⎦ < 0 (13)

where FK
i = ∑

m∈S i
2K

σimFim, σK
i = ∑

m∈S i
2K

σim, P̄i=PK
i +(1 − φK

i )Pij, PK
i = ∑

j∈S i
1K

φijPj, φK
i =

∑
j∈S i

1K

φij, Π1
im=

⎡⎢⎢⎣
Π11

i Π12
im Π13

im Π14
im

∗ τQ̄ − Π22 − F̄im 0 0
∗ ∗ −Q − Π33 0
∗ ∗ ∗ −γ2 I

⎤⎥⎥⎦, Π11
i =

[ −P̄−1
i 0

0 −I

]
,

Π12
im=

[
Āim ĪEi
C̄im 0

]
, Π13

im=

[
Ādim ĪEdi
C̄dim 0

]
, Π14

im=

[
B̄im
D̄im

]
, Q̄=

[
ĪQ11 ĪT ĪQ12

∗ Q22

]
,

F̄im=

[
Fim 0
0 0

]
, Π22=

[
ĪY1N1 ĪT − ĪY2N1

∗ N1

]
, Π33=

[
Y1N2 −Y2N2
∗ N2

]
, Um =[ [

0 BT
f m

]
−DT

f m 0 0 0 0 0
]T

, Zi =
[

0 0
[

C1i 0
]

0 Cdi 0 D1i
]
.

Proof. First, we will derive some useful results according to (12) and (13). Equation (12)
ensures that

s2

∑
m=1

σimFim − Pi < 0 (14)

holds, because when σK
i < 1,

s2
∑

m=1
σimFim − Pi = FK

i +(1 − σK
i ) ∑

m∈S i
2U

σim
1−σK

i
Fim − Pi

= ∑
m∈S i

2U

σim
1−σK

i

{FK
i +(1 − σK

i )Fim − Pi
} (15)

and when σK
i =1, obviously, (12) is equivalent to (14).

In terms of the Schur complement, (13) is equivalent to

Π1
im + UmW−1

im UT
m + ZT

i ΛWimΛZi < 0 (16)

which obtains
Π2

im
Δ
= Π1

im + UmH(k)Zi + ZT
i HT(k)UT

m < 0 (17)

and it is easy to derive that

Π2
im=

⎡⎢⎢⎣
Π11

i Π̄12
im Π̄13

im Π̄14
im

∗ τQ̄ − Π22 − F̄im 0 0
∗ ∗ −Q − Π33 0
∗ ∗ ∗ −γ2 I

⎤⎥⎥⎦ < 0 (18)

where Π̄12
im =

[
Ãim ĪEi
C̃im 0

]
, Π̄13

im =

[
Ãdim ĪEdi
C̃dim 0

]
, Π̄14

im =

[
B̃im
D̃im

]
.

Then, based on the Schur complement and the analysis similar to (14) and (15), we can
derive from (18) that {

Π3
im

Δ
= υ + μT

imP̃iμim < F̃im

Π4
im

Δ
= ξ − ςT

imΠ̃11
i ςim < F̂im

(19)
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where μim =
[

Ãim ĪEi Ãdim ĪEdi
]
, υ =

[
τQ̄ − Π22 0

∗ −Q − Π33

]
,

Π̃11
i =

[ −P̃i 0
0 −I

]
, ξ = diag{υ,−γ2 I}, ςim =

[
Π̄12

im Π̄13
im Π̄14

im
]
, P̃i =

s1
∑

j=1
φijPj,

F̃im = diag{F̄im, 0}, F̂im= diag{F̄im, 0, 0}.
Next, a mode-dependent LKF is introduced as follows:

V(k) =
2

∑
l=1

Vl(k) (20)

where V1(k) = x̃T(k)Pαk x̃(k), V2(k) =
−τ1+1

∑
b=−τ2+1

k−1
∑

a=k−1+b

[
x(a)

g(x(a))

]T

Q
[

x(a)
g(x(a))

]
.

Then, we calculate ∇V(k) along the locus of the error system (Se) and take the expec-
tation. It is easy to find that E{∇V(k)} = E{∇V1(k)}+ E{∇V2(k)}.

E{∇V1(k)} = E{V1(k + 1)− V1(k)|x̃(k), αk = i}
= E

{
x̃T(k + 1)Pjx̃(k + 1)− x̃T(k)Pix̃(k)

}
= E

{
s2
∑

m=1

s1
∑

j=1
σimφij x̃T(k + 1)Pjx̃(k + 1)−x̃T(k)Pix̃(k)

}
= E

{ s2
∑

m=1
σimx̃T(k + 1)P̃i x̃(k + 1)−x̃T(k)Pix̃(k)

}
= E

{ s2
∑

m=1
σimηT(k)

[
μT

im
B̃T

im

]
P̃i
[

μim B̃im
]
η(k)−x̃T(k)Pix̃(k)

}
(21)

E{∇V2(k)} = E{V2(k + 1)− V2(k)}
= E

{
τ

[
x(k)

g(x(k))

]T

Q
[

x(k)
g(x(k))

]
−

k−τ1
∑

a=k−τ2

[
x(a)

g(x(a))

]T

Q
[

x(a)
g(x(a))

]}

≤ E

{[
x̃(k)

g(x(k))

]T

τQ̄
[

x̃(k)
g(x(k))

]
−[

x(k − d(k))
g(x(k − d(k)))

]T

Q
[

x(k − d(k))
g(x(k − d(k)))

]}
(22)

According to Lemma 1, there are diagonal matrices N1 > 0, N2 > 0 such that
(23) and (24) are satisfied [

x̃(k)
g(x(k))

]T

Π22
[

x̃(k)
g(x(k))

]
≤ 0 (23)

[
x(k − d(k))

g(x(k − d(k)))

]T

Π33
[

x(k − d(k))
g(x(k − d(k)))

]
≤ 0 (24)

Synthesizing (22)–(24), we get that

E{∇V2(k)} ≤ E
{

ηT
1 (k)υη1(k)

}
(25)
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Next, we will verify that (Se) with w(k) = 0 is stochastically stable, and that

E{∇V(k)} = E{∇V1(k)}+ E{∇V2(k)}
≤ E

{ s2
∑

m=1
σimηT

1 (k)Π
3
imη1(k)− x̃T(k)Pix̃(k)

}
< E

{
ηT

1 (k)(
s2
∑

m=1
σimF̃im)η1(k)− x̃T(k)Pix̃(k)

}
= E

{
x̃T(k)

( s2
∑

m=1
σimFim − Pi

)
x̃(k)

}
≤ εE

{
x̃T(k)x̃(k)

}
(26)

where “<” is based on (19), ε = λmax
i∈S1

(
s2
∑

m=1
σimFim − Pi) .

Notice that ε < 0 due to (12) and (14); then,

E{∞
∑
0
∇V(k)} = E{V(∞)− V(0)} ≤ εE

{
∞
∑
0

x̃T(k)x̃(k)
}

(27)

therefore,

E

{
∞

∑
0

x̃T(k)x̃(k)

}
< ∞ (28)

which conforms to Definition 1, so we have verified the stochastic stability for (Se) with
w(k) = 0.

Next, we will verify that (Se) with w(k) ∈ l2[0, ∞) has an H∞ performance γ. Define
the performance index as

J =
∞
∑

k=0
E
{

ẽT(k)ẽ(k)− γ2wT(k)w(k)
}

=
∞
∑

k=0
E
{

ẽT(k)ẽ(k)− γ2wT(k)w(k) +∇V(k)
}

+E{V(0)} − E{V(∞)}

(29)

Owing to the zero initial value, we obtain that V(0) = 0, whereas V(∞) ≥ 0 , thus

J ≤ ∞
∑

k=0
E
{

ẽT(k)ẽ(k)− γ2wT(k)w(k) +∇V(k)
}

=
∞
∑

k=0
E

{ s2
∑

m=1
σimηT(k)Π4

imη(k)− x̃T(k)Pix̃(k)
}

<
∞
∑

k=0
E

{ s2
∑

m=1
σimηT(k)F̂imη(k)− x̃T(k)Pix̃(k)

}
=

∞
∑

k=0
E

{
x̃T(k)

( s2
∑

m=1
σimFim − Pi

)
x̃(k)

}
< 0

(30)

in which the two “<” are obtained on the basis of (19) and (14), respectively. Then, from (11)
and (30), we can readily conclude that the error system (Se) has an H∞ performance γ.
Thus, the proof is accomplished.

Remark 4. The purpose of introducing the extra matrix Fim in Theorem 1 is to simplify matrix
inequalities. However, in order to solve the parameters of the filter, the nonlinearity in (13) needs to
be further processed so as to transform the matrix inequalities into linear matrix inequalities (LMIs).

Next, we will devise the filter with the techniques of slack matrix and Projection
lemma and obtain Theorem 2.
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Theorem 2. The filtering error dynamic system (Se) based on Assumption 1 is stochastically stable
with an H∞ performance γ , if there are matrices Ã f m, B̃ f m, C̃ f m, D̃ f m, and Gm, a scalar γ̃ > 0,
diagonal matrices N1 > 0, N2 > 0, and Wim > 0, and the following matrices

Pi =

[
P1

i P2
i

∗ P3
i

]
> 0, Fim =

[
F1

im F2
im

∗ F3
im

]
> 0, Q =

[
Q11 Q12
∗ Q22

]
> 0,

such that the following two conditions are fulfilled for ∀i ∈ S1, m ∈ S i
2U

FK
i +(1 − σK

i )Fim < Pi (31)

and for ∀i ∈ S1, j ∈ S i
1U , m ∈ S2

ΞT
i

�

ΠimΞi < 0,
�

Πim < 0 (32)

where

�

Πim =

⎡⎣ P̄i −
�

Gm
�

Π
12
im

∗ �

Πim

⎤⎦,
�

Gm =

[
0 Gm
∗ Gm + GT

m

]
,
�

Πim =

⎡⎢⎣
�

Π
1
im

�

Um (
�

Zi)
T

ΛWim
∗ −Wim 0
∗ ∗ −Wim

⎤⎥⎦ ,

�

Π
12
im =

[
0 B̃ f mC1i Ã f m 0 B̃ f mCdi 0 B̃ f mD1i B̃ f m 0
0 B̃ f mC1i Ã f m 0 B̃ f mCdi 0 B̃ f mD1i B̃ f m 0

]
,

�

Π
1
im =

⎡⎢⎢⎢⎢⎣
−I

�

Π
12
im 0 D2i − D̃ f mD1i

∗ �

Π
22
im 0 0

∗ ∗ −Q − Π33 0
∗ ∗ ∗ −γ̃I

⎤⎥⎥⎥⎥⎦ ,
�

Π
12
im =

[
C2i − D̃ f mC1i −C̃ f m 0

]
,

�

Π
22
im =

⎡⎣ τQ11 − Y1N1 − F1
im −F2

im τQ12+Y2N1
∗ −F3

im 0
∗ ∗ τQ22 − N1

⎤⎦ ,
�

Um =
[
−D̃T

f m 0 0 0 0 0 0
]T

,

�

Zi =
[

0 C1i 0 0 Cdi 0 D1i
]

, Ξ̄i =
[

0 0 Ai 0 Ei Adi Edi Bi 0 0
]
,

Ξi =
[

Ξ̄T
i I(6n+2p+q+r)

]T
, γ̃ = γ2.

In addition, if (31) and (32) are solvable, the filter matrices of (5) can be gained by{
A f m = (Gm)

−1 Ã f m, Bf m = (Gm)
−1B̃ f m

Cf m = C̃ f m, Df m = D̃ f m
(33)

Proof. In order to verify Theorem 2, (13) is rewritten as

Πim =

[
−(P̄i)

−1 Ψ1
im

∗ Ψ2
im

]
< 0 (34)

By comparing (13) and (34), it is easy to obtain Ψ1
im and Ψ2

im, which is omitted here
to save space. To handle the nonlinearity (P̄i)

−1 in (34), an invertible slack matrix Gim is
introduced as follows:

Gim
Δ
=

[
G1

im Gm
G2

im Gm

]
(35)

where G1
im , G2

im , Gm are n-dimensional square matrices. Then, (34) is pre-multiplied and
post-multiplied by diag{Gim, I} and its transpose; hence, one has[

−Gim(P̄i)
−1GT

im GimΨ1
im

∗ Ψ2
im

]
< 0 (36)
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On the other hand, according to the fact that (P̄i − Gim)(P̄i)
−1(P̄i − Gim)

T ≥ 0 , we can
readily obtain that

P̄i − Gim − GT
im ≥ −Gim(P̄i)

−1GT
im (37)

Combining (13), (36) and (37), we know that the following condition

Π̃im
Δ
=

[
P̄i − Gim − GT

im GimΨ1
im

∗ Ψ2
im

]
< 0 (38)

is sufficient for (13). Moreover, we define{
Ã f m

Δ
= Gm A f m, B̃ f m

Δ
= GmBf m

C̃ f m
Δ
= Cf m, D̃ f m

Δ
= Df m

(39)

and substitute them into (38).
Then, we define

Θi =
[ −In Ξ̄i

]
, Γ =

[
I2n 0(2n)×(5n+2p+q+r)

]
, Γ⊥ =

[
0(2n)×(5n+2p+q+r)

I(5n+2p+q+r)

]
,

Ḡim =

[
G1

im
G2

im

]
We can readily derive that Ξi and Θi, Γ⊥ and Γ are orthogonal complements, respectively.
Then, Π̃im is decomposed into the following form

Π̃im =
�

Πim+ΓTḠimΘi + ΘT
i ḠT

imΓ (40)

In accordance with lemma 2 (i.e., Projection lemma), Π̃im < 0 is equivalent to

ΞT
i

�

ΠimΞi < 0, ΓT
⊥

�

ΠimΓ⊥ < 0 (41)

which is obviously equivalent to (32). Furthermore, it can be inferred from (38) that Gim and
Gm are both nonsingular, so we can deduce (33) from (39). Thus, we have accomplished
the proof.

Remark 5. In Theorem 2, a filter design scheme is provided such that the error system (Se) is
stochastically stable with an H∞ performance γ. γ means the H∞ performance level, a smaller γ
indicates a better performance. The optimal performance γ∗ =

√
γ̃min can be yielded by solving

the problem of convex optimization as follows:

{
min γ̃
s.t. (31), (32)

(42)

Remark 6. The number of LMIs Nl in Theorem 2 is

Nl =
s1

∑
i=1

max
{

1,
∣∣∣S i

2U

∣∣∣}+s2 ·
s1

∑
i=1

max
{

1,
∣∣∣S i

1U

∣∣∣}+ s1 · s2 (43)

where
∣∣S i

1U

∣∣ and
∣∣S i

2U
∣∣ represent the number of elements in the set S i

1U and S i
2U, respectively.

From (43), we clearly find that as the number of unknown entries for TPM Φ and CPM Ω increases,
so does the number of LMIs required, thus aggravating the computational burden.

4. Numerical Example

This section will introduce a numerical example to verify the validity of the presented
method. A three-mode MJNN(S0) is considered with the parameters as follows, which are
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partly borrowed from [25]:

Mode 1 :

A1 =

[
0.2 0
0 0.2

]
, Ad1 =

[
0.05 0

0 0.05

]
, E1 =

[
0.3 −0.2
0.1 0.3

]
,

Ed1 =

[
0.1 −0.2
0.1 0.15

]
, B1 =

[
0.1
0.2

]
, C11 =

[
0.17 0.18

]
, Cd1 =

[
0.1 0.1

]
, D11 = 0.1,

C21 =
[

0.2 0.35
]
, D21 = 0.1.

Mode 2:

A2 =

[
0.1 0
0 0.3

]
, Ad2 =

[
0.1 0
0 −0.1

]
, E2 =

[
0.3 0.1
0 0.2

]
, Ed2 =

[
0.1 −0.2
0 0.1

]
,

B2 =

[
0.6
0.3

]
, C12 =

[
0.42 0.90

]
, Cd2 =

[ −0.1 −0.1
]
, D12 = 0.5,

C22 =
[

0.1 0.15
]
, D22 = 0.15.

Mode 3:

A3 =

[
0.2 0
0 0.4

]
, Ad3 =

[
0.05 0

0 −0.15

]
, E3 =

[
0.2 −0.1
0 0.1

]
, Ed3 =

[
0.1 −0.1
0.1 0.1

]
,

B3 =

[
0.4
0.2

]
, C13 =

[
0.12 0.5

]
, Cd3 =

[ −0.05 −0.1
]
, D13 = 0.3,

C23 =
[

0.2 0.2
]
, D23 = 0.2.

The nonlinear function is chosen as g(x) = tanh(x) with the bounds of l1 = l2 = 0 and
h1 = h2 = 1 ; the delay d(k) ∈ {1, 2, 3} is time-varying and random with τ = 3, and the
error threshold of the ET scheduler is δ = 0.3.

In the sequel, four different TPM Φi and CPM Ωi (i ∈ {1, 2, 3, 4}) will be considered.

Φ1=

⎡⎣ 0.85 0.05 0.1
0.2 0.5 0.3
0.5 0.1 0.4

⎤⎦, Φ2=

⎡⎣ 0.85 ? ?
0.2 0.5 0.3
0.5 0.1 0.4

⎤⎦, Φ3=

⎡⎣ 0.85 ? ?
? ? 0.3

0.5 0.1 0.4

⎤⎦, Φ4=

⎡⎣ ? ? ?
? ? ?
? ? ?

⎤⎦.

Ω1=

⎡⎣ 0.9 0.05 0.05
0.1 0.9 0
0.1 0.1 0.8

⎤⎦, Ω2=

⎡⎣ 0.9 ? ?
0.1 0.9 0
0.1 0.1 0.8

⎤⎦, Ω3=

⎡⎣ 0.9 ? ?
? ? 0

0.1 0.1 0.8

⎤⎦, Ω4=

⎡⎣ ? ? ?
? ? ?
? ? ?

⎤⎦.

Notice that Φ1 and Ω1 are fully known; Φ4 and Ω4 are fully unknown; Φ3 and Ω3

have more unknown elements than Φ2 and Ω2, respectively.
Firstly, in accordance with Theorem 2 and Remark 5, we can achieve the optimal H∞

performance for different combinations (Φi, Ωj), (i, j ∈ {1, 2, 3, 4}), listed in Table 1.
From Table 1, we can clearly observe that, for a given Φ (or Ω ), the optimal γ∗

increases gradually when varying Ω from Ω1 to Ω4 (or Φ from Φ1 to Φ4). In addition,
for (Φ, Ω) = (Φ1, Ω1), which denotes the fully known case, γ∗ is the smallest, which
means that the H∞ performance is the best. On the contrary, for (Φ, Ω) = (Φ4, Ω4), which
represents the fully unknown case, γ∗ is the largest, i.e., the H∞ performance is the worst.
Therefore, we can conclude that the less probability information of TPM Φ or CPM Ω
is available, the worse the H∞ performance is. What is more interesting is that for each
case of Ω = Ω4, we find that the designed filter parameters are the same, e.g., when
(Φ, Ω) = (Φ2, Ω4), the solved filter parameters are as follows:

A f m =

[
0.2266 −0.9508
0.0551 0.7867

]
, Bf m =

[ −1.0299
−0.2585

]
, Cf m =

[ −0.0912 −0.1673
]
, Df m = 0.1963.

for m = 1, 2, 3, which indicates that the filter is mode independent when Ω is fully unknown.
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Table 1. Optimal H∞ performance for different Φ and Ω with unknown elements.

γ∗ CPM Ω

Ω1 Ω2 Ω3 Ω4

TPM Φ

Φ1 0.5437 0.5524 0.6300 0.6386
Φ2 0.5498 0.5588 0.6393 0.6489
Φ3 0.5806 0.5884 0.6733 0.6784
Φ4 0.6319 0.6379 0.7440 0.7441

Furthermore, when (Φ, Ω) = (Φ3, Ω3), the designed filter parameters can be obtained
as follows:

Filter 1 :

A f 1 =

[ −0.1645 −1.3380
0.1701 0.9285

]
, Bf 1 =

[ −1.5449
−0.0437

]
, Cf 1 =

[ −0.0896 −0.1532
]
,

Df 1 = 0.1879.

Filter 2:

A f 2 =

[
0.0037 −0.8974
0.0714 0.6686

]
, Bf 2 =

[ −1.2739
−0.2034

]
, Cf 2 =

[ −0.0901 −0.1549
]
,

Df 2 = 0.1867.

Filter 3:

A f 3 =

[
0.3964 −0.0578
−0.0550 0.2278

]
, Bf 3 =

[
0.7787
−1.8741

]
, Cf 3 =

[ −0.0792 −0.1296
]
,

Df 3 = 0.2777.

We further assume that the initial values of filter (S f ) and system (S0) are x f (0) =[
0 0

]T and x(k0) =
[

0.2 −0.2
]T , k0 = −3,−2,−1, 0, α0 = 1 , and the external dis-

turbance is w(k) = 0.9k sin(k). Based on the above parameters, a simulation is made with
the presented ET asynchronous filtering scheme. The mode jumps of the original plant and
the filter are plotted in Figure 2 to show the asynchronization between them.

Figure 2. Mode jumps of the original plant and the filter.

The response curves of z(k) and z f (k), and ẽ(k) = z(k) − z f (k) are shown in
Figures 3 and 4, from which we observe that the filtering error system is stochastically
stable. In addition, we obtain MTR = 0.84 via calculation with the threshold δ = 0.3,
which implies that the ET scheduler can effectively decrease the data-transmission rate of
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measured outputs. Therefore, it can be observed that the effect of the devised ET filter in
Theorem 2 is fine.

Figure 3. The response curves of z(k) and z f (k).

Figure 4. The curve of estimation error ẽ(k).

In our research, the asynchronous issue is characterized as a HMM, the core of which
is the CPM, reflecting the asynchronous degree between filter (S f ) and system (S0). Next,
four different CPM Ωi (i ∈ {a, b, c, d}) are chosen to exhibit the influence of asynchronous
features on the H∞ performance of the error system (Se):

Ωa =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦, Ωb =

⎡⎣ 1 0 0
0 1 0

0.1 0.1 0.8

⎤⎦, Ωc =

⎡⎣ 1 0 0
0.1 0.9 0
0.1 0.1 0.8

⎤⎦, Ωd = Ω1.

which represent four different cases: synchronization, weak asynchronization, strong
asynchronization and full asynchronization. In addition, in order to compare the results
of the fully known TPs case and the partly unknown TPs case, we choose TPM Φ as Φ1

and Φ3, respectively. By solving the convex optimization in (42) with the LMI toolbox of
Matlab,we use the mincx function to calculate the corresponding optimal γ∗, as shown in
Table 2. We can easily see from Table 2 that, for a given Φ, with the increase in asynchronous
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degree between filter (S f ) and system (S0), γ∗ becomes larger, which implies the decline of
the H∞ performance.

Finally, we will investigate the influence of the ET feature on the H∞ performance
and communication performance with the varying threshold of δ in the ET scheduler. We
keep the other parameters fixed, and only vary the threshold parameter δ. The evolution
curves of the corresponding H∞ performance γ∗ and communication performance MTR
for the cases of (Φ1, Ω1) and (Φ3, Ω3) are shown in Figure 5. We can easily find that as
the parameter δ increases, γ∗ becomes larger, which implies that the H∞ performance
decreases, whereas the MTR value shows a trend of getting smaller, which means that
the communication performance of measured outputs is becoming better. Considering
the trade-off between the H∞ performance and communication performance, thus we can
choose a compromise error threshold of the ET scheduler to achieve a more satisfactory
comprehensive performance in practical applications.

Table 2. Optimal H∞ performance for Ω with different asynchronous features.

γ∗ CPM Ω
Ωa Ωb Ωc Ωd

TPM Φ Φ1 0.4791 0.4912 0.5249 0.5437
Φ3 0.5104 0.5219 0.5644 0.5806

(a) When (Φ, Ω) = (Φ1, Ω1)

Figure 5. Cont.

114



Processes 2022, 10, 769

(b) When (Φ, Ω) = (Φ3, Ω3)

Figure 5. The H∞ performance and communication performance with varying δ.

5. Conclusions

In this paper, the study of the ET H∞ asynchronous filtering issue was explored for
MJNSs with varying delay and unknown probabilities. An ET scheduling strategy was
adopted to decrease the transmission rate of measured outputs, and the filter was mode
dependent and asynchronous with the original MJNS, represented by an HMM. Both the
TPM of the original system and the CPM of the filter were assumed to be only partly
accessible. Under this framework, based on Lyapunov stability and H∞ theory, a sufficient
condition was derived, in which the nonlinearity of the matrix inequalities was further dealt
with and a feasible filter was achieved with the techniques of slack matrix and Projection
lemma. Lastly, the relationship between the H∞ performance and the unknown elements of
TPM and CPM, the relationship between the H∞ performance and the asynchronous feature
of CPM, and the relationship among the H∞ performance, communication performance
and the ET threshold were discussed and exhibited through a numerical example. The
simulation results sufficiently validated the availability of our developed filtering scheme,
which will contribute to the further research involving this subject, e.g., control and fault
detection. This can also be extended to other dynamic systems, such as singular MJNSs
and 2-D MJNSs.

Author Contributions: Conceptualization, investigation and methodology: H.C., R.L. and W.X.;
simulation and writing: H.C. and R.L.; supervision: Z.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China
under Grant 61603133, and the Zhejiang Provincial Public Welfare Technology Application Research
Project of China under Grant LGG21E020001 and LGG22F030023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

115



Processes 2022, 10, 769

Abbreviations

The following abbreviations are used in this manuscript:

HMM hidden Markov model
MJNSs Markov jump nonlinear systems
MJSs Markov jump systems
NN neural network
MJNNs Markov jump neural networks
NCSs networked control systems
ET event-triggered
CPM conditional probability matrix
TPs transition probabilities
TPM transition probability matrix
LKF Lyapunov–Krasovskii functional
ZOH zero-order holder
CP conditional probability
LMIs linear matrix inequalities
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Abstract: The accuracy of doubly fed induction generator (DFIG) models and parameters plays
an important role in power system operation. This paper proposes a parameter identification method
based on the hybrid genetic algorithm for the control system of DFIG converters. In the improved
genetic algorithm, the generation gap value and immune strategy are adopted, and a strategy
of “individual identification, elite retention, and overall identification” is proposed. The DFIG
operation data information used for parameter identification considers the loss of rotor current, stator
current, grid-side voltage, stator voltage, and rotor voltage. The operating data of a wind farm
in Zhangjiakou, North China, were used as a test case to verify the effectiveness of the proposed
parameter identification method for the Maximum Power Point Tracking (MPPT), constant speed,
and constant power operation conditions of the wind turbine.

Keywords: wind power; doubly fed induction generator; parameter identification; immune
algorithm; genetic algorithm

1. Introduction

Considering the depletion of fossil fuels and the threat that greenhouse gas emissions
pose to the global climate, the proportion of renewable energy will continue to expand [1],
and wind power is poised to be a major contributor to this expansion. Owing to the
different structures, types, and capacities of wind turbines, the control system strategy and
parameters will also be different, resulting in different power generation characteristics [2].
As large-scale wind turbine integration will greatly affect the stability of the power system,
the accuracy of the power system model has become an important technical issue in the
operation, which needs to be consistent with the physical system, and the accuracy of the
parameters is the key to ensuring model correctness. Parameter identification is a feasible
method for model acquisition during the test and operation of wind turbines.

At present, the doubly fed induction generator (DFIG) is one of the main wind tur-
bine types used on the market. The research on parameter identification of the DFIG
has mainly focused on electrical parameters [3] and parameters of the converter control
system. Classified from the perspective of algorithms, it can be divided into two types:
traditional statistical algorithms and intelligent algorithms. In [4], an Extended Kalman
Filter (EKF) was proposed for parameter estimation of DFIG in wind turbine systems.
Belmokhtar et al. [5] explored the recursive least-squares (RLS) online parameter iden-
tification of a DFIG operating in a wind energy conversion system. Based on the RLS,
a two-stage identification method was applied in [6], and the correctness of the method
was verified by simulation. Wang et al. [7] applied the damped least-squares algorithm to
identify the parameters of a variable speed DFIG-based wind turbine generator for wind
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power dynamic analysis. Takahashi et al. [8] proposed a recursive least-squares sensorless
identification method for online identification of permanent magnet synchronous generator
parameters, and it effectively detects characteristic changes during aging and degradation.
A new decoupled weighted recursive least-squares (DWRLS) method, proposed in [9], im-
proves the modeling accuracy by separately estimating the parameters of the fast and slow
dynamics. Xia et al. [10] improved the model’s parameter discrimination accuracy based
on forgetting the factor recursive least squares for the state-of-charge (SOC) estimation of
a battery management system.

Most traditional identification methods require that the input signal is known and
varies significantly. For some situations or systems, it may not be possible to obtain all
necessary input signals accurately, making the method less adaptable. Especially for
nonlinear systems, this often leads to low identification accuracy or poor global search
ability. Therefore, some bionic optimization algorithms, which have been developed
and applied to research on parameter identification, have gradually formed the current
intelligent parameter identification method [11]. These methods include the artificial neural
network, particle swarm optimization algorithm, and genetic algorithm.

Based on the artificial neural network method, Rong et al. [12] proposed a step-by-step
identification strategy to get the electrical parameters of a generator. In [13], a performance
evaluation model was constructed with long short-term memory (LSTM) neural units and
auto-encoder (AE) networks to evaluate the degree of abnormal performance of wind
turbines, and an adaptive threshold estimation method was established to identify key
condition-monitoring parameters. Based on the particle swarm algorithm, Li et al. [14]
realized the dynamic equivalence of multiple units and simplified the equivalent values of
the electrical parameters for multi-wind turbines. In [15], a new method for estimating the
parameters of a wind turbine DFIG and drivetrain system was proposed, and the global
optimal estimation result was obtained based on the local estimation and the coordinated
estimation method under different types of disturbances. In [16], a symbolic regression
method was introduced to identify models of a horizontal-axis wind turbine with evolu-
tionary multi-objective optimization. In [17], wind turbine structural parameters such as
inertial parameters, the damping coefficient, axial strength, and gearbox damping ratio
were identified based on the genetic algorithm. In [18], different control modes of wind
turbines under different lower voltage levels were identified based on the genetic algorithm.
In [19], the objective function was to minimize the active output power error between the
equivalent model and the actual wind farm, and an improved genetic algorithm was used
to identify the key parameters of a permanent magnet synchronous generator. In [20], a set
of fan parameters was identified with fault record data and the genetic algorithm to identify,
and the evaluation function was to calculate the total deviation between the original signal
and the simulation result.

The local search ability of the traditional genetic algorithm is insufficient and prone
to premature convergence. Consequently, the relevant parameters of an excitation system
were decomposed into multiple sets in [21], and a niche genetic algorithm with a fitness-
sharing mechanism was proposed to overcome the local convergence for parameters
identification. In view of the particularity of the DFIG structure and the complexity of
its inverter control system, in this paper, the generation gap value and immune strategy
are applied, and a strategy to improve the parameter identification based on the genetic
algorithm is introduced, namely “individual identification, elite retention and overall
identification”, so as to establish a hybrid genetic algorithm (HGA) suitable for parameter
identification of the DFIG converter control system. It is also considered that data variables
used for DFIG parameter identification, such as rotor current, stator current, grid voltage,
stator voltage, and rotor voltage, may be missing during the operation of the wind farm.
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2. DFIG Converter Control Model and Parameters to Be Identified

2.1. Converter Control Model and its Parameters to Be Identified

DFIG has been widely used in wind power systems and is mainly composed of a wind
turbine, transmission chain system, wound induction generator, and control system [22].
Figure 1 shows the structure of the DFIG-based wind power generation system, where
the stator windings are directly connected to the grid and the rotor windings are directly
connected to the external power grid through back-to-back converters [23]. The back-to-
back converter provides three-phase rotor excitation power with adjustable amplitude,
frequency, and phase, and ensures that the slip power can flow in both directions.

Machine side 
converter

Grid side 
converter

DFIG

External network

dsi

qri dri

qsi

qru dru

dcu

dgu qgu
qgidgi

gX

TX LXLR CX

di qidsu qsu

Figure 1. Structure of doubly fed induction generator (DFIG)-based wind power generation system.

The converter of the doubly fed wind turbine consists of a rotor-side converter (RSC)
and a grid-side converter [23]. The RSC realizes the variable speed and constant frequency
operation of the DFIG by controlling the rotor excitation current, while the grid side
converter (GSC) maintains the DC bus voltage constant by controlling the power output.
Because the control objectives of the RSC and the GSC are different, the RSC adopts
the stator flux linkage-oriented control method, while the GSC adopts the vector control
method based on the grid voltage orientation. Figure 2a shows a block diagram of a typical
control system of the RSC of a doubly fed wind turbine, which is a double closed-loop
structure composed of an outer power loop and an inner current loop to realize active
and reactive power decoupling control. Figure 2b shows the typical control system block
diagram of the GSC of the DFIG, which is a double closed-loop structure of the DC voltage
outer loop and the grid-connected current inner loop. The DC voltage outer loop is used to
realize the DC voltage. The stable control of the innercurrent loop is used to achieve fast
tracking of active current and reactive current.

PI controller

PI controller PI controller

PI controller

Power outer loop control Current inner loop control  

PI controller

PI controller

PI controller

DC capacitor voltage loop control Current inner loop control  
(a) (b) 

Figure 2. Control strategy diagram of the converter. (a) Typical control system block diagram of the
rotor-side converter (RSC); (b) Typical control system block diagram of the grid side converter (GSC).
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It can be known from the current inner loop control flow in Figure 2a that the output
expression of the double closed-loop PI controller of the rotor-side converter is as follows:{

udr =
dx4
dt (kp4 +

ki4
s )− Lr(ω1 − ωr)iqr − Lm(ω1 − ωr)iqs

uqr =
dx2
dt (kp2 +

ki2
s ) + Lr(ω1 − ωr)idr + Lm(ω1 − ωr)ids

, (1)

where kp2 and kp4 are the proportional coefficients, while ki2 and ki4 are the integral coeffi-
cients, which are in the two PI controllers of RSC. Lr and Lm are the inductance of the rotor
winding and the mutual inductance between the stator winding and the rotor winding,
respectively. w1 and wr are the synchronous speed and the rotor speed of the wind turbine,
respectively. idr and iqr are respectively the d-axis and q-axis components of the rotor current
in the dp coordinate system. x4 and x2 are state variables.

As the current inner loop control flow in Figure 2b shows, the output expression of
the double closed-loop PI controller of the grid-side converter is as follows:⎧⎨⎩ udg = uqs − dx6

dt (kp6 +
ki6
s ) + ω1Lgiqg

uqg = − dx7
dt (kp7 +

ki7
s )− ω1Lgidg

, (2)

where kp6, kp7 and ki6, ki7 are the proportional and integral parameters of the two PI
controllers of the grid-side converter, respectively. Lg is the filter inductor on the grid side.
idg and iqg are the d-axis and q-axis components of the grid-side current in the dp coordinate
system, respectively. x6 and x7 are state variables.

In Equations (1) and (2), the expressions of the state variables, x2, x4, x6, and x7 are
shown in Equations (3) and (4), representing the rotor side and grid side, respectively.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx1
dt = Ps_re f − Ps

dx2
dt = dx1

dt (kp1 +
ki1
s )(− Ls

Lm
)− iqr

dx3
dt = Qs_re f − Qs

dx4
dt = dx3

dt (kp3 +
ki3
s )(− Ls

Lm
) + Us

ω1Lm
− idr

, (3)

⎧⎪⎪⎨⎪⎪⎩
dx5
dt = udc_re f − udc

dx6
dt = dx5

dt (kp5 +
ki5
s )− idg

dx7
dt = iqg_ref − iqg

. (4)

In Equation (3), kp1 and ki1 are the proportional and integral parameters of the active
power outer loop PI controller, respectively. kp3 and ki3 are the proportional and integral
parameters of the reactive power outer loop PI controller, respectively. Ps_ref, Ps, Qs_ref,
and Qs are the systemic active power reference value, active power output value, reactive
power reference value, and reactive power output value, respectively. Us represents the
stator winding voltage, u2

ds + u2
qs = U2

s . x1, x2, x3, and x4 are intermediate state variables.
In Equation (4), kp5 and ki5 are the proportional and integral parameters of the DC bus

voltage outer loop PI control, respectively. udc_ref and udc are the DC bus voltage reference
value and the DC bus voltage output value, respectively. idg, iqg_ref, and iqg are the d-axis
components of the grid-side current, and the reference value of the q-axis components and
the q-axis components are in the dp coordinate system. x5, x6, and x7 are intermediate
state variables.

In the converter parameter identification process, the known parameters include Ps_ref,
Ps, Qs_ref, Qs, udc_ref, udc, idr, iqr, ids, iqs, uds, uqs, udr, uqr, udg, and uqg. The parameters to be
identified include electrical parameters (Ls, Lr, Lm, and Lg), rotor winding resistance (Rr),
stator winding resistance (Rs), and parameters of the converter PI controller.

It is shown that PI controller parameters are important for sensitivity analysis [24,25].
Therefore, the parameters to be identified for the DFIG converter control system are kp1,
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kp2. . . kp7 and ki1, ki2. . . ki7 in Equations (3) and (4). In the DFIG control system, parameters
are generally set as follows: kp2 = kp4, ki2 = ki4, kp6 = kp7, ki6 = ki7 and ki6 = ki7, so this setting
is also used in this paper. The parameters to be identified for the back-to-back converter
control system are shown in Tables 1 and 2.

Table 1. Parameters to be identified for the rotor-side converter (RSC).

Parameters to be Identified Parameter Description

kp1 Proportional parameters of the active power outer loop PI controller
ki1 Integral parameters of the active power outer loop PI controller
kp2 Proportional parameters of the rotor q-axis current inner loop PI controller
ki2 Integral parameters of the rotor q-axis current inner loop PI controller
kp3 Proportional parameters of the reactive power outer loop PI controller
ki3 Integral parameters of the reactive power outer loop PI controller
kp4 Proportional parameters of the rotor d-axis current inner loop PI controller
ki4 Integral parameters of the rotor d-axis current inner loop PI controller

Table 2. Parameters to be identified for grid side converter (GSC).

Parameters to be Identified Parameter Description

kp5 Proportional parameters of the DC bus voltage outer loop PI controller
ki5 Integral parameters of the DC bus voltage outer loop PI controller
kp6 Proportional parameters of the grid-side current d-axis PI controller
ki6 Integral parameters of the grid-side current d-axis PI controller
kp7 Proportional parameters of the grid-side current q-axis PI controller
ki7 Integral parameters of the rotor q-axis current inner loop PI controller

There are various operating modes of the DFIG, such as maximum power point
tracking (MPPT) mode, constant speed mode, and constant power mode. In these modes,
the control structure of the RSC and GSC are familiar, but the parameters may be different,
which should be considered in the parameter identification method. Especially in the
constant power mode, the blade angle of the DFIG will change. Because the blade controller
only operates under specific wind speed conditions, even if the blade controller model
is introduced here, the complexity of parameter identification method will not increase.
Therefore, this paper only discusses the identification method of relevant parameters for the
converter control system. Moreover, for generator parameter identification, it is mentioned
in literature [17] that the greater the degree of disturbance, the higher are the accuracy of
the identification results. Therefore, a certain disturbance should be applied to the DFIG at
the beginning of parameter identification, and the data obtained in this way will make the
identification results more accurate.

2.2. Identification of Converter Control Parameters in the Absence of Certain Variables

Data for certain variables corresponding to some key working conditions for parameter
identification may be missing or contain errors occasionally. The parameter identification
method in this case has to be considered. In a group of variables, there is usually a situation
where one type of variable is not available, such as rotor current, stator current, stator
voltage, or rotor-side or grid-side voltage.

In actual working conditions, because the excitation voltage on the rotor side of the
doubly fed fan is not collected, the rotor side voltage is missing. Figure 2 shows that
the loss of rotor-side voltage will only affect the solution of the RSC equations. During
the parameter identification of DFIG, in the description equation of the RSC, the flux
linkage equation, the voltage equation, and the state equation are substituted into the
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output equation so as to eliminate the variable of the rotor-side voltage. Expressions of the
rotor-side simultaneous equations are shown in Equation (5).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt = Ps_re f − Ps

dx2
dt = dx1

dt (kp1 +
ki1
s )(− Ls

Lm
)− iqr

dx3
dt = Qs_re f − Qs

dx4
dt = dx3

dt (kp3 +
ki3
s )(− Ls

Lm
) + Us

ω1Lm
− idr

dx4
dt (kp4 +

ki4
s ) = dψdr

dt + Rridr

dx2
dt (kp2 +

ki2
s ) =

dψqr
dt + Rriqr

ψdr = Lridr + Lmids

ψqr = Lriqr + Lmiqs

. (5)

According to Equation (5), the parameters to be identified are electrical parameters
(Lm, Lr, Ls, Rr) and controller parameters (kp1, ki1, kp2, ki2, kp3, ki3, kp4, ki4). Other types of
variables missing can also be handled in a similar way.

3. Hybrid Genetic Algorithm for Converter Control System Identification

At present, the swarm intelligence algorithms mainly used in wind power parameter
identification research problems include the genetic algorithm, particle swarm algorithm,
ant colony algorithm, differential evolution algorithm. The use of these algorithms alone
in parameter identification will inevitably lead to some shortcomings and limitations. For
example, the genetic algorithm easily falls into the local optimum when solving the objective
function in parameter identification. The particle swarm algorithm highlights strong
robustness in the process of use; however, the initial parameter setting relies on experience
and experimentation. The differential evolution algorithm highlights the characteristics
of strong robustness during use and exhibits a high degree of parallelism, but it easily
falls into premature convergence. Moreover, the early convergence of the ant colony
algorithm is relatively low. It is fast and has high precision, but it lacks effective mutation
measures, the convergence is slow in the later stage, and the algorithm easily falls into the
local optimum. In addition, the parameter identification model becomes complicated in
the absence of key information such as rotor current, rotor voltage, stator current, stator
voltage, grid-side current, and grid-side voltage, which makes the identification process
easier for a single group of intelligent algorithms stuck in a local optimum. Based on this,
an identification method for the control parameters of the DFIG converter based on the
hybrid genetic algorithm is proposed in this paper.

3.1. Hybrid Genetic Algorithm

Genetic algorithm (GA) is a global optimization search algorithm based on evolution-
ary mechanisms such as good and bad selection and genetic variation in the process of
biological survival [26]. GA mainly realizes the problem-solving process through four ba-
sic operations: reproduction, mutation, competition, and selection. Compared with the
least-squares method, GA does not need to consider the influence of the initial value of
the function for the identification results, and only needs to get the form of all objective
functions to obtain the optimal solution [27].

The immune algorithm (IM) is proposed based on the diversity of the immune system
and the learning and memory mechanism, which can be simulated by the recognition
and binding between antibodies and antigens in the immune system and the production
of antibodies [28].

The hybrid genetic algorithm proposed in this paper introduces an immune strategy
and generation gap value, and retains the elite individuals in the population in the memory
bank. The elite individuals are no longer genetically manipulated to ensure that each
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chromosome has immune memory function. Then, the excellent genes in the individual are
retained in the iterative process so as to improve the convergence speed and avoid falling
into local solutions. The specific steps of the hybrid genetic algorithm include population
initialization, calculating the population fitness value, calculating affinity, calculating the
concentration of antibodies, and calculating the expected reproduction rate of antibodies.

3.1.1. Calculating Affinity

Affinity represents the binding degree between the antigen and antibody, which
correspond to the objective function and feasible solution of the objective function, re-
spectively [25]. Obtaining the affinity between the antibody and antigen in the genetic
algorithm is done to calculate the individual fitness value (Fv). The greater the value of
Fv, the greater the affinity. The affinity between the antibody and antibody in the hybrid
genetic algorithm is the approximation between two chromosomes.

Whether the absolute error between the fitness values of the two individuals is less
than a certain threshold (ε) is used to judge the similarity between two antibodies. As shown
in Equation (6), if it is less than ε, the two individuals are considered to be approximately
the “same”, so Sv,s = 1; otherwise, the two individuals are different, so Sv,s = 0.

Si,j =

{
1 ,

∣∣Fvi − Fvj
∣∣ ≤ ε

0 ,
∣∣Fvi − Fvj

∣∣ > ε
. (6)

Here, Fvi and Fvj represent the fitness values of two individuals.

3.1.2. Calculation of the Concentration of Antibody

The antibody concentration Cv represents the ratio of individuals and their similar
individuals in the current population to the total number of individuals [17], as shown
in Equation (7).

Cv =

∑
j∈N

Sv,s

N
. (7)

Here, N is the total number of antibodies, and j is the number of similar individuals of
an individual. Sv,s represents the degree of similarity between individual v and s. If the
value of Equation (7) is 1, it means that the two individuals are similar; otherwise, if it is 0,
they are different.

3.1.3. Calculation of the Expected Reproduction Rate of the Antibody

The expected reproduction rate of antibodies is used to promote the inheritance and
variation of superior antibodies and ensure the diversity of antibodies. The expected
reproduction probability of the antibody is determined by the fitness value (Fv) and the
concentration (Cv) of the antibody; that is,{

P = α
Δy

∑ Δy + (1 − α) Cv
∑ Cv

Δy = 1
Fv

, (8)

where α is a constant value, and the deviation value (Δy) is the inverse value of the
fitness value (Fv). According to Equation (8), the individual fitness value, deviation value,
and individual concentration will affect the expected reproduction probability.

3.2. Application of Hybrid Genetic Algorithm for DFIG Control System Identification

The parameter identification of the DFIG control system needs to fit the actual output
curve and model output curve. The smaller the difference between the two sets of curves,
the closer the identified parameters are to the actual values. Therefore, in the parameter
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identification of the DFIG converter control system, the fitness calculation function used is
as follows: ⎧⎪⎪⎨⎪⎪⎩

Fv = 1
Δy

Δy =

√
n
∑

i=1

[
yd(i)−yddata

(i)
]2

n +

√
n
∑

i=1
[yq(i)−yqdata (i)]

2

n

, (9)

where yd and yq are respectively the d-axis and q-axis response curves of the actual controller
output; yddata

and yqdata are respectively the d-axis and q-axis output simulation curves of
the identified model; and n represents the number of curve data.

As shown in Figure 2, both the RSCs and GSCs include current inner loop control
blocks containing parameters kp4 = kp2, ki4 = ki2, kp7 = kp6 and ki7 = ki6. Therefore, the strat-
egy of “individual identification, elite retention, and overall identification” will be adopted
for parameter identification.

When identifying the parameters of the DFIG converter control system, the real
number coding method is chosen to initialize the population. Taking the RSC as an example,
the flow chart of the hybrid genetic algorithm in parameter identification of RSC of the
DFIG is shown in Figure 3, and the corresponding steps are as follows:

Start

End

Figure 3. Flow chart for parameter identification of rotor-side converter.
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Step 1: A separate fitting strategy for the d-axis and q-axis is adopted for the RSC. The
evolutionary generations in the genetic algorithm are set as m1 (m1 > 5). The elite retention
strategy is adopted, and the top five individuals with the highest fitness in the population
are selected as elite individuals after one operation. The “gene” fragments corresponding
to kp2 and ki2 in these five individuals are extracted and averaged to obtain a group of
excellent “gene” fragments. Thus, n1 groups of excellent “gene” fragments will be obtained
from the d-axis and q-axis. These “gene” fragments will be used as the initial memory bank
of the algorithm. The memory bank is set to be composed of P = 2 ∗ n1 individuals.

Step 2: The overall identification strategy of the d-axis and q-axis is adopted. The
evolutionary algebra in the genetic algorithm [29] is set to M1, and the initial population
has M (M > P) randomly generated individuals. The fitness value of these M individuals
is calculated by Equation (9). The “gene” fragments corresponding to kp2 and ki2 in the
P individuals with the lowest fitness are replaced with excellent “gene” fragments in the
memory bank.

Step 3: The expected reproductive probability of the antibody in the parent population
is calculated. First, the concentration of the antibody is calculated by Equations (6) and (7).
Then, the expected reproduction probability of the antibody is obtained with Equation (8).

Step 4: Progeny populations are produced. When updating the memory bank,
the “gene” fragments corresponding to kp2 and ki2 in s1 individuals with higher fitness
values are first stored in the memory bank. According to the expected reproduction proba-
bility of the remaining individuals in the population, the “gene” segments corresponding
to kp2 and ki2 in the s2 = P-s1 individuals with a high expected reproduction probability are
stored in the memory bank.

Step 5: The fitness value and deviation value (Δy) of all individuals in the current
population are calculated. Comparing Δy with the generation gap (σ), those with Δy < σ

are set as elite individuals and directly retained, while those with Δy > σ go to the next
genetic operation.

Step 6: The non-elite individuals in step 5 are put in order. Non-elite individuals evolve
through selection, crossover, and mutation [29]. In the selection operation, the details are
shown in Equation (8).

Step 7: If the termination conditions are met, the current individual value is output;
otherwise, step 2 is followed.

Step 8: The above processes from step 2 to step 6 are run for n1 times with the initial
memory unchanged, and the running results to reduce the error are averaged.

The structure of the GSC is basically similar to that of the RSC, and so are the identifi-
cation steps.

4. Test Case

The following test was used to evaluate the effectiveness of the proposed hybrid
genetic algorithm. The operating conditions of MPPT, constant power, and constant speed
were tested based on the simulation model (Section 4.1). The missing variables of rotor
current, rotor voltage, stator current, stator current, stator voltage, and grid-side voltage
were tested based on the simulation model (Section 4.2). Recorded data from a wind farm
in Zhangjiakou, China, under the rotor voltage variable missing condition, were examined
under power oscillation conditions (Section 4.3).

4.1. Simulation Test of Converter Parameter Identification under Three Operating Conditions

DFIG data with a wind speed of 8 m/s, 10.5 m/s, and 12.5 m/s, and fluctuation value
of 1 m/s, 0.4 m/s, and 1 m/s were used for the test of MPPT, constant speed, and constant
power operation conditions, respectively. The data of rotor current, rotor voltage, stator
current, stator voltage, grid-side current, and grid-side voltage were used.

Taking the PI controller of the RSC as an example, the identification strategy of
“individual identification, elite retention, and overall identification” was adopted. The
basic parameters of the hybrid genetic algorithm were set as follows: evolutionary algebra
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m1 = 20, number of runs n1 = 5, number of memory bank individuals P = 10, M = 30,
threshold ε = 1; s1 = 7, s2 = 3, and generation gap σ = 0.05.

The basic parameter settings for parameter identification of GSCs were basically the
same as those of RSCs. In the running state of MPPT, the comparison of the identification
results between genetic algorithm and hybrid genetic algorithm is shown in Figure 4. The
identification results of the converter in the constant speed region and the constant power
region also converged when the evolutionary algebra was 20. As shown in Figure 4, in the
subsequent iterations, because the fitness of the new offspring was not as good as the
fitness value of the parent, the algorithm would retain the parent population and discard
the offspring population, so the final identification curve was a straight line, representing
the optimal value searched by the algorithm at this time. Because the genetic algorithm had
problems such as local optimality, after a certain number of iterations, the genetic algorithm
could not jump out of the local optimality and could not find the global optimal solution,
which produced a large error in the parameter identification result.

Evolutionary algebra

 kp1- HGA
 kp1-GA

Evolutionary algebra

 ki1-HGA
 ki1-GA

Evolutionary algebra

 kp2-HGA
 kp2-GA

Evolutionary algebra

 ki2-HGA
 ki2-GA

Evolutionary algebra

 kp3-HGA
 kp3-GA

Evolutionary algebra

 ki3-HGA
 ki3-GA

Evolutionary algebra

 kp5-HGA
 kp5-GA

Evolutionary algebra

 ki5-GA
 ki5-GA

Evolutionary algebra

 kp6-HGA
 kp6-GA

Evolutionary algebra

 ki6-HGA
 ki6-GA

Figure 4. Comparison of identification results of the converter at the lower side of Maximum Power
Point Tracking (MPPT).
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Parameter identification results of the DFIG, RSC, and GSC under different operation
conditions are shown in Tables 3 and 4, respectively.

Table 3. Identification results of RSC parameters in different control modes.

Operating Area Algorithm kp1 ki1 kp2 ki2 kp3 ki3

actual value 0.5 100 0.5 100 0.5 100

MPPT
GA 0.4831 110.1348 0.4916 108.7231 0.5195 105.7642

HGA 0.5001 99.9948 0.5000 99.9555 0.4995 100.0036

constant speed GA 0.5063 103.0831 0.5011 99.5462 0.4969 100.1028
HGA 0.5003 100.0700 0.5000 99.9641 0.4997 100.0049

constant power GA 0.4824 102.7250 0.5113 108.2004 0.4893 98.0537
HGA 0.4997 100.0030 0.5000 100.0073 0.5006 99.9974

Table 4. Identification results of GSC parameters in different control modes.

Operating Area Algorithm kp5 ki5 kp6 ki6

actual value 2 0.01 3 0.001

MPPT
GA 2.004 0.0080 3.010 0.00087651

HGA 2.000 0.01 3.000 0.00099918

constant speed GA 2.001 0.0105 3.004 0.0009228
HGA 2.000 0.01 3.000 0.0009458

constant power GA 2.010 0.0103 3.006 0.0009022
HGA 2.000 0.01 3.000 0.0009913

Among them, the parameters kp4 = kp2, ki4 = ki2; kp7 = kp6, ki7 = ki6.
It can be seen from Tables 3 and 4 that the hybrid genetic algorithm could identify

the key parameters of the DFIG converter control systems effectively, as well as whether
DFIG was in MPPT operation condition, constant speed operation condition or constant
power operation condition. In addition, for the same set of control system parameters,
the identification results are not consistent under different operation conditions. As the
identification result of MPPT operation condition is closest to the actual value, the operation
data in MPPT condition can be preferentially selected for practical engineering application.

4.2. Simulation Test of Converter Parameter Identification in the Absence of Variables

From the analysis in Section 4.1, it is known that the parameter identification results
obtained by applying the data of DFIG in MPPT operation conditions are more accurate.
Therefore, MPPT is used as a typical operating condition to test the effect of converter
parameter identification under the variable missing condition. Based on the simulation
model, the data of rotor current, rotor voltage, stator current, stator voltage, grid-side
current, and grid-side voltage corresponding to the wind turbine in the MPPT operation
condition were generated. Then, by simulating the missing data of rotor current, rotor
voltage, stator current, stator voltage, grid-side current, or grid-side voltage data, the hybrid
genetic algorithm proposed in this paper was used to identify the parameters of the DFIG
converter.

4.2.1. Missing Rotor Current

When the rotor currents idr and iqr were missing, according to Figure 2, the absence
of rotor current did not affect the parameter identification of the GSC, but did affect
the parameter identification process of the machine-side converter. Taking the unknown
electrical parameters Ls and Lr and the Lm converter parameters kp1 ki1, kp2/kp4, ki2/ki4,
kp3, and ki3 as unknown important parameters, the hybrid genetic algorithm was used to
identify these unknown parameters. The identification results of electrical parameters and
controller parameters are shown in Tables 5 and 6, respectively.
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Table 5. Identification results of electrical parameters.

Electrical Parameter Ls Lr Lm

actual value (pu) 0.0049 0.0049 0.0045
identification value (pu) 0.0051 0.0047 0.0044

Table 6. Identification of rotor-side control parameters.

Control Parameter kp1 ki1 kp2 ki2 kp3 ki3

actual value 0.5 100 0.5 100 0.5 100
identification value 0.4962 102.5231 0.4899 99.8759 0.5043 103.4254

Among them, the default kp2 = kp4, ki2 = ki4.

4.2.2. Missing Stator Current

When the stator current ids and iqs were missing, the situation was basically the same
as the rotor current missing. When the stator current was missing, it is shown in Figure 2
that it did not affect the identification process of GSC parameters, only the process of
machine-side converter parameter identification. The electrical unknown parameters were
Ls, Lr, and Lm, and the remaining unknown parameters were the controller parameters
kp1, ki1, kp2/kp4, ki2/ki4, kp3, and ki3. Therefore, a strategy of identifying the two sets of
parameters as unknown parameters was adopted. The specific identification results are
shown in Tables 7 and 8.

Table 7. Identification results of electrical parameters.

Electrical Parameters Ls Lr Lm

actual value (pu) 0.0049 0.0049 0.0045
identification value (pu) 0.0043 0.0043 0.0048

Table 8. Identification of rotor-side control parameters.

Control Parameter kp1 ki1 kp2 ki2 kp3 ki3

actual value 0.5 100 0.5 100 0.5 100
identification value 0.4912 99.6518 0.5145 99.1584 0.4899 99.5214

Among them, the default kp2 = kp4, ki2 = ki4.

4.2.3. Missing Grid-Side Converter Voltage

When the grid-side converter voltages udg and uqg were missing, it can be seen from
Figure 2 that the situation at this time was different from the situation in which the stator
and rotor currents were missing. The GSC voltage loss would only affect the GSC. The
identification of the parameters would not affect the identification of the parameters of
the machine-side converter. When fitting the unknown parameters, only the grid-side
filter inductance Lg was unknown for the electrical parameters, and the other unknown
parameters were the controller parameters kp5, ki5, kp6/kp7, ki6/ki7, so the grid-side filter
inductance Lg was the same as the grid-side controller. The parameters were identified
together as unknown parameters. The results of parameter identification are shown in
Tables 9 and 10.

Table 9. Identification results of electrical parameters.

Electrical Parameters Lg

actual value (pu) 0.0040
identification value (pu) 0.0038
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Table 10. Identification of grid-side control parameters.

Control Parameter kp5 ki5 kp6 ki6

actual value 2 0.01 3 0.001
identification value 1.999 0.0098 3.001 0.00099

Among them, the default kp7 = kp6, ki7 = ki6.

4.2.4. Missing Stator Voltage

When the stator voltages uds and uqs were missing, according to the structure of the
machine-side converter and the structure of the grid-side converter in Figure 2, the absence
of the stator voltage would affect the parameter identification of the machine-side converter
and the GSC. Therefore, it was necessary to replace the stator voltage uds and uqs in the
output items of the machine-side converter and the GSC so as to complete the parameter
identification research of the converter control system of the DFIG based on the absence
of the stator voltage. As the structure of the GSC is simpler than that of the machine-side
converter, when the parameters of the grid-side converter were first identified, at this time,
the unknown parameters were the electrical parameters (Lm, Lr, Ls, and Lg) and controller
parameters (kp5, ki5, kp6/kp7, ki6/ki7). The identification results are shown in Tables 11 and 12.

Table 11. Identification results of electrical parameters.

Electrical Parameters Ls Lg Lm Lr

actual value (pu) 0.0049 0.0040 0.0045 0.0049
identification value (pu) 0.0043 0.0048 0.0044 0.0049

Table 12. Identification of grid-side control parameters.

Control Parameter kp5 ki5 kp6 ki6

actual value 2 0.01 3 0.001
identification value 1.898 0.0091 3.105 0.0015

Then, the machine-side converter was identified, and the parameters to be identified
were the controller parameters kp1, ki1, kp2/kp4, ki2/ki4, kp3, and ki3. The identification
results are shown in Table 13.

Table 13. Identification of rotor-side control parameters.

Control Parameter kp1 ki1 kp2 ki2 kp3 ki3

actual value 0.5 100 0.5 100 0.5 100
identification value 0.4756 97.3581 0.5205 105.1554 0.5199 104.9518

Among them, the default kp2 = kp4, ki2 = ki4.

4.2.5. Missing Rotor-Side Voltage

When the rotor-side voltages udr and uqr were missing, according to Figure 2, the ab-
sence of rotor-side voltages udr and uqr did not affect the parameter identification of the
GSC, but only affected the parameters of the machine-side converter. At this time, new
unknown parameters would appear as stator resistance (Rs) and stator winding inductance
(Ls). The electrical parameters Lm, Rs, Ls, identification results, and process are shown
in Table 14.
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Table 14. Identification results of electrical parameters.

Electrical Parameters Lm Ls Rs

actual value (pu) 0.0045 0.0049 0.002
identification value (pu) 0.0046 0.0050 0.00199

Then, the strategy of identifying Rr and Lr together with the controller parameters
kp1, ki1, kp2/kp4, ki2/ki4, kp3 and ki3 was adopted. The identification results are shown
in Table 15.

Table 15. Identification results of electrical parameters.

Electrical Parameters Rr Lr

actual value (pu) 0.001 0.0049
identification value (pu) 0.0012 0.0049

Then, the machine-side converter was identified, and the parameters to be identified
were the controller parameters kp1, ki1, kp2/kp4, ki2/ki4, kp3, and ki3. The identification
results are shown in Table 16.

Table 16. Identification of rotor-side control parameters.

Control Parameter kp1 ki1 kp2 ki2 kp3 ki3

actual value 0.5 100 0.5 100 0.5 100
identification value 0.5011 99.9878 0.5002 99.6645 0.4992 100.0125

Among them, the default kp2 = kp4, ki2 = ki4.

4.3. Engineering Application

A DFIG wind farm in Zhangjiakou of North China was selected as the test case.
Figure 5 shows recorded data of the DFIG under the condition of power oscillation, where
the time length was 21 s, and the sampling period was 0.01 s, wherein the rotor-side
voltages udr and uqr were missing.

In the absence of the rotor-side voltages udr and uqr, the identification results are shown
in Tables 17–19, in which the assumption of kp4 = kp2, ki4 = ki2, kp7 = kp6 and ki7 = ki6 was
still adopted.

Table 17. Identification of DFIG generator parameters.

Unknown Parameter Rs Ls Lm Rr Lr

identification value (pu) 0.022 4.857 4.68 0.026 4.796

Table 18. Identification of rotor-side control parameters.

Unknown Parameter kp1 ki1 kp2 ki2 kp3 ki3

identification value
(pu) 0.001 5.425 0.0242 2.001 0.001 4.996

Table 19. Identification of grid-side control parameters.

Unknown Parameter kp5 ki5 kp6 ki6

identification value (pu) 2.158 20.751 5.056 2.000

Applying the identified parameters, a set of curves was obtained from the DFIG
simulation model, and the comparison made with the original recorded data is shown in
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Figure 5. It can be seen from Figure 6 that the amplitude and phase of the original data and
the simulated power curve were extremely close, indicating that the identification results
are relatively close to the actual values.
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(c) current variables of Idg, Iqg, Ids, Iqs, Idr, and Iqr 
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Figure 5. DFIG variables under the condition of power oscillation.
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Figure 6. Comparison chart of the actual power curve and simulated power curve. (a) Comparison
chart of the actual active power curve and simulated active power curve; (b) Comparison chart of the
actual reactive power curve and simulated reactive power curve.

5. Conclusions

A hybrid genetic algorithm for parameter identification of the DFIG control system
was proposed. The algorithm introduces the generation gap value and immune strat-
egy, and adopts the identification strategy of “individual identification, elite retention,
and overall identification.” The test case showed that the identification results are different
under different DFIG operating conditions, and the identification results under the MPPT
operating condition are preferable.

According to the engineering requirements of parameter identification, we discussed
the lack of DFIG variables, such as rotor voltage, rotor current, stator voltage, stator current,
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and grid-side voltage. If one of the variables is missing, the DFIG converter control system
parameters can still be identified by the proposed method.
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Abstract: The k-nearest neighbor (kNN) method only uses samples’ paired distance to perform fault
detection. It can overcome the nonlinearity, multimodality, and non-Gaussianity of process data.
However, the nearest neighbors found by kNN on a data set containing a lot of outliers or noises
may not be actual or trustworthy neighbors but a kind of pseudo neighbor, which will degrade
process monitoring performance. This paper presents a new fault detection scheme using the mutual
k-nearest neighbor (MkNN) method to solve this problem. The primary characteristic of our approach
is that the calculation of the distance statistics for process monitoring uses MkNN rule instead of
kNN. The advantage of the proposed approach is that the influence of outliers in the training data
is eliminated, and the fault samples without MkNNs can be directly detected, which improves
the performance of fault detection. In addition, the mutual protection phenomenon of outliers is
explored. The numerical examples and Tenessee Eastman process illustrate the effectiveness of the
proposed method.

Keywords: k-nearest neighbor; outliers; pseudo-neighbors; mutual nearest neighbor; fault detection;
process monitoring

1. Introduction

Data are being generated all the time in industrial processes. Since industry became
a separate category from social production, data collection and use in industrial produc-
tion has gradually increased. In this context, data-driven multivariate statistical process
monitoring (MSPM) methods have developed leaps and bounds [1,2], where principal com-
ponent analysis (PCA) methods are the most widely used [3–6]. However, there are cases
where PCA-based fault detection methods do not perform well. For example, the detection
threshold of Hotelling-T2 and squared prediction error (SPE) are calculated based on the
premise that process variables satisfy a normal or Gaussian distribution. Due to the nonlin-
earity, non-Gaussianity, and multimodality in industrial processes, it is not easy to meet this
assumption in practice [7–11]. Therefore, the traditional PCA-based process monitoring
method has poor monitoring performance when facing the above problems [12–16].

He and Wang [11] proposed a non-parametric lazy fault detection method based on
the k-nearest neighbor rule (FD-kNN) to deal with the above problems. The main idea is
to measure the difference between samples by distance; that is the online normal samples
and training samples are similar, but fault samples and training samples are significantly
different. It only uses samples’ paired distance to perform fault detection and has no strict
requirements for data distribution. Hence, this method provide an alternative way to
overcome the nonlinearity, non-Gaussianity, multimodality in industrial processes.

However, the data collected in the actual industrial process usually contain a certain
amount of noise and even outliers, and the quality of the data cannot be guaranteed [17,18].
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Outliers are generally those samples that are far from the normal training samples and
tend to behave statistically inconsistent with the other normal samples [19,20]. In the actual
industrial processes, outliers are usually introduced when measurement or recording errors
are made. In addition, the considerable process noise is also one of the main reasons for the
generation of outliers [20].

The neighbors of the samples found by kNN from a data set containing noises or
outliers may not be actual neighbors but a pseudo-nearest neighbor (PNN). For example,
in Figure 1, the samples x2, x3, and x4 are the 3-NNs of x1, but sample x1 is not one of the
3-NNs of x2, x3, and x4. In other words, x2, x3, and x4 are the PNNs of x1. This interesting
phenomenon can be explained with an example from human interaction: I regard you
as one of my best friends, but I am not among your best friends. As can be seen from
Figure 1, the sample x1 is far away from its pseudo-neighbors so that the detection threshold
calculated by the pseudo-neighbors in the training phase will have a significant deviation,
which will seriously degrade the detection performance of the FD-kNN.

Figure 1. Samples x1, y1, z1, p1 and their 3-nearest neighbors.

While there are many techniques for removing outliers, these data preprocessing meth-
ods make the model building extraordinarily time-consuming and labor-intensive [21,22].

In this paper, a novel fault detection method using the mutual kNN rule (FD-MkNN) is
proposed. Finding nearest neighbors using the mutual k-nearest neighbor rule will exclude
the influence of PNNs (see Section 2.2.1 for the definition of mutual k-nearest neighbor
(MkNN)). Before the model is established, the outliers in the training set are eliminated by
the MkNN method, and the data quality for monitoring is improved. In the stage of fault
detection, if the test sample does not have mutual neighbors, it is judged to be faulty. For
test samples with mutual neighbors, the corresponding distance statistics are calculated
to perform process monitoring. Compared with the FD-kNN, MkNN uses more valuable
and truthful information (i.e., neighbors of the sample’s neighbors), which improves the
performance of process monitoring. The main contributions of this paper are as follows:

• To our best knowledge, the MkNN method is proposed to perform fault detection of
industrial processes with outliers for the first time;

• The proposed method simultaneously realizes the elimination of outliers and the
fault detection;

• The mutual protection problem of outliers is solved.

This paper will proceed as follows. In Section 2, the FD-kNN method is first briefly
reviewed and then the proposed FD-MkNN approach is presented in detail. In Section 3,
the experiments on numerical examples and Tenessee Eastman process (TEP) illustrate
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the superiority of the proposed monitoring method. Sections 4 and 5 are Discussion and
Conclusions, respectively.

2. Methods

2.1. Process Monitoring Based on kNN Rule

The kNN method is widely used in pattern classification due to its simplicity. In
December 2006, the top ten classic algorithms in data mining included kNN. FD-kNN
was first proposed by He and Wang [11]. The main principle is to measure the difference
between samples by distance; that is, normal samples and training samples are similar, but
fault samples and training samples are significantly different.

• Training phase (determine the detection control limit):

(1) Use Euclidean distance to get the kNNs of each training sample.

dp,q =
∥∥xp − xq

∥∥, p = 1, . . . , n, q �= p (1)

(2) Calculate the distance statistic D2
p.

D2
p =

1
k

k

∑
q=1

d2
p,q (2)

where D2
p represents the average squared distance between the pth sample and its

k neighbors, d2
p,q denotes the squared Euclidean distance between the pth sample

and its qth nearest neighbor.
(3) Establish the control limit D2

α for fault detection. There are many ways to esti-
mate D2

α, such estimation using a noncentral chi-square distribution [11], kernel
density estimation (KDE). The method proposed in this paper uses the (1 − α)-
empirical [23] quartile of D2

p as the threshold.

D2
α = D2

(�n(1−α)�) (3)

• Detection phase:

(1) For a sample x to be tested, find its kNNs from the training set.
(2) Calculate D2

x between x and its k neighbors using Equation (2).
(3) Compare D2

x with the threshold D2
α. If D2

x > D2
α, x is considered abnormal.

Otherwise, it is normal.

2.2. Fault Detection Based on Mutual kNN Method

Since the nearest neighbors found by the kNN rule in the training set containing
outliers may be pseudo-nearest neighbors, the fault detection threshold seriously deviates
from the average level, resulting in the degradation or even failure of the monitoring
performance of FD-kNN. To overcome the above problems, the concept of the mutual k-
nearest neighbor (MkNN) is introduced. This section first defines MkNN and then provides
the detailed steps of the proposed fault detection method.

2.2.1. MkNN

The MkNN of sample x can be defined by Equation (4). Given a sample x, if x has xi
in its kNNs, xi should also have x in its kNNs [18]. According to the above definition, in
Figure 1, M3(x1) = Φ, M3(y1) = {y2}, M3(z1) = {z2, z3} and M3(p1) = {p2, p3, p4}.

Mk(x) = {xi ∈ D|xi ∈ Nk(x) ∧ x ∈ Nk(xi)} (4)
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where Nk(x) denotes the kNNs of x, Nk(xi) represent the kNNs of xi. If Mk(x) = Φ, that is,
x does not exist mutual kNNs. In other words, the kNNs of x are all pseudo-neighbors,
and x is an outlier.

2.2.2. Proposed Fault Detection Scheme Based on Mutual kNN Method (FD-MkNN)

Before the model was established, outliers in the training set were eliminated by the
MkNN method. This improves the data quality for modeling. In the fault detection stage,
the relationship between samples was determined by looking for mutual nearest neighbors.
If a test sample did not have mutual neighbors, this test sample was judged to be faulty. For
test samples with mutual neighbors, the corresponding distance statistics were calculated
to perform process monitoring. Compared with the kNN method, the proposed method
uses more valuable and truthful information, improving fault detection performance. The
flow chart of the proposed fault detection method is shown in Figure 2.

Figure 2. Flow chart of proposed fault detection method.

• Model building:

(1) Finding MkNNs for each sample in the training data set X. Eliminate the training
samples that do not have any MkNNs in X using Equation (4). For example, if
Mk(x) = Φ, remove sample x from X and return Y as the final training data.

(2) Calculate the MkNN average squared distance statistics of each sample in Y using
Equation (2).

(3) Determine the threshold D2
α for fault detection using Equation (3).

• Fault detection:

(1) For a sample z to be tested, determine whether z has MkNNs in Y using
Equation (4).

(2) If z has no MkNNs, z is judged as a fault sample; otherwise, go to the next step.
(3) Calculate D2

z between z and its MkNNs using Equation (2).
(4) Compare D2

z with the threshold D2
α. If D2

z > D2
α, z is considered faulty. Otherwise,

z is detected as a normal sample.

2.3. Remarks

• If x is in the q1th nearest neighbor of y, y is in the q2th nearest neighbor of x and
k = max(q1, q2), x is the kth MNN of y and y is the kth MNN of x [24].

• The number of kNNs of sample x is k, and the number of MkNNs of x is an integer
between [0, k]. Therefore, the average cumulative distance is used to calculate the
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distance statistics. The values of k in the outlier elimination process and fault detection
stages are different, denoted as k1 and k2, respectively. The k1 and k2 are chosen
according to the best cross-validation [11]. Since the value of k is more significant, the
probability that the sample has MkNNs is higher. Therefore, MkNN can more easily
identify outliers when the value of k1 is generally smaller than k2.

3. Results

In this section, numerical examples and TEP are used to explore the effectiveness of the
proposed method in fault detection. In addition, the mutual protection phenomenon of out-
liers is explored and solved using the elbow method to improve the detection performance
of FD-MkNN.

3.1. Numerical Simulation

The number of generated training samples is 300. The outliers follow the Gaussian
with mean 2 and variance 2 [25], the proportion of outliers compared to the training samples
is set to 0%, 1%, 2%, 3%, 4%, and 5%, respectively. In addition, there are 100 testing samples,
of which the first 50 samples are normal, and the rest are faulty.

x =t1 + e1,

y =t2 + e2 (5)

where ti, i = 1, 2 is a latent variable with zero mean and unit variance, and ei, i = 1, 2 is a
zero-mean noise with variance 10−4.

FD-kNN is first applied to detect the faults in the data set. The number of nearest
neighbors is 3. At the confidence level of 99%, the detection result is shown in Figure 3.
It can be seen that, as the proportion of outliers increases, the detection performance of
the FD-kNN method degrades seriously. As shown in Table 1, when the ratio of outliers
is 5%, the fault detection rates (FDR) of the FD-kNN approach is only 20.00%. Due to
outliers in the training samples, part of the neighbors of the samples found using kNN rule
in the training phase are pseudo-neighbors. These pseudo-neighbors seriously affect the
determination of the control threshold (that is, the control limit will be much greater than
the average level) and result in poor fault detection performance.

For FD-MkNN, the parameters k1 and k2 are set to 3 and 5, respectively. At the same
confidence level (that is, 99%), the detection result is shown in Figure 4. As shown in
Table 1, when the proportion of outliers increases from 0 to 2%, the detection performance
of the FD-MkNN method is not significantly affected, and the FDR always remains above
90%. When the proportion of outliers increases from 2% to 5%, the FDR of the FD-MkNN
method is significantly reduced but the FDR is always better than that of FD-kNN.

The false alarm rates (FAR) of the two methods are shown in Table 2 (Note that the
FAR is obtained based on the normal training samples). Due to outliers, the control limit or
threshold of the FD-kNN method seriously deviates from the average level. Therefore, the
FAR of the FD-kNN method is all zero.

The reason why the fault detection superiority of the FD-MkNN is better than that of
the FD-kNN is as follows:

• Before the training phase, part of the outliers in the training samples are removed
so that the outliers will not affect the determination of the control limit in the train-
ing phase;

• In the fault detection phase, MkNN carries more valuable and reliable information
than kNN. Furthermore, the effect of PNN is eliminated.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Fault detection performance of FD-kNN for the numerical example with different propor-
tions of outliers. (a) no outlier; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%.

(a) (b) (c)

(d) (e) (f)

Figure 4. Fault detection performance of FD-MkNN for the numerical example with different
proportions of outliers. (a) no outlier; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%.
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Table 1. Fault detection rates (FDR) (%) of FD-kNN and FD-MkNN for the numerical example.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 100.00 98.00 74.00 62.00 46.00 20.00
FD-MkNN 100.00 100.00 94.00 84.00 80.00 76.00

Table 2. False alarm rates (FAR) (%) of FD-kNN and FD-MkNN for the numerical example.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 0.00 0.00 0.00 0.00 0.00 0.00
FD-MkNN 0.00 2.00 4.00 4.00 0.00 2.00

3.1.1. Experimental Results of FD-MkNN with Different Values of k

The values of k in the outlier elimination and fault detection stages are different and
can be denoted as k1 and k2, respectively. The larger the value of k, the higher the probability
that the query sample finds its mutual neighbors. Therefore, MkNN can more easily identify
outliers when the value of k1 is generally smaller than k2. However, the value of k1 cannot
be too small because the MkNN method will misidentify the normal training samples as
outliers and eliminate them. For example, as shown in Table 3, when the value of k1 is
set to 1, the MkNN method will eliminate all 300 training samples (the actual proportion
of outliers introduced is 5%), resulting in the failure of the MkNN fault detection stages.
As the value of k1 increases, the number of outliers removed decreases, which makes the
monitoring threshold deviate from the normal level, and the FDR decreases seriously.

Table 3. Fault detection results of MkNN with different values of k for the numerical example.

k1 k2 The Number of Outliers Removed FDR FAR

1 3 300 - -
3 5 33 98.00 4.00
5 7 5 86.00 0.00
7 9 2 64.00 0.00
9 11 1 52.00 0.00

3.1.2. Mutual Protection Phenomenon of Outliers

As shown in Figure 5, when two outliers are relatively close, an interesting phe-
nomenon will appear: they will become each other’s mutual nearest neighbors. Therefore,
the MkNN rule cannot identify them as outliers. For example, in Figure 5, b1, b2, and b3
are protected by 1, 2, and 3 outliers, respectively. When the outliers far from the normal
training samples are kept in the training set due to mutual protection, it will cause the
threshold or control limit calculated in the training phase to deviate seriously from the
average level. We call this phenomenon the “Mutual Protection of Outliers (MPO)”, which
is also the main reason why the detection performance of the FD-MkNN method decreases
when the proportion of outliers increases from 2% to 5%.

It can be observed from Figure 5 that, for outliers with mutual protection, the corre-
sponding MkNN distance statistic is significantly larger than that of the normal training
sample. Therefore, the elbow method [26] is used to eliminate outliers with mutual protec-
tion: first, arrange the MkNN distance statistics of the training samples in descending order,
then determine all samples before the elbow position as outliers with mutual protection,
and finally eliminate these outliers from the training set.

As shown in Figure 6, the outliers with mutual protection can be identified according
to the elbow method, that is, all samples before the elbow point. After determining the
outliers with mutual protection, these outliers need to be removed from the training set.
Finally, the process monitoring method was repeated. The detection results are shown in
Figure 7. After eliminating outliers with mutual protection, the recalculated threshold (that
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is, the red dotted line in Figure 7) is more reasonable, and the FDR has reached 100.00%, as
shown in Table 4.

Figure 5. Mutual protection of outliers (MPO) (triangles represent outliers).

(a) (b)

(c) (d)

Figure 6. The descent curve of distance statistic for the numerical example with different proportions
of outliers. (a) 2%; (b) 3%; (c) 4%; (d) 5%.
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(a) (b)

(c) (d)

Figure 7. Fault detection performance of FD-MkNN of the numerical example that eliminates outliers
with mutual protection phenomenon. (a) 2%; (b) 3%; (c) 4%; (d) 5%.

Table 4. FDR (%) and FAR (%) of FD-MkNN of the numerical example that eliminates outliers with
mutual protection phenomenon.

2% Outliers 3% Outliers 4% Outliers 5% Outliers

FDR 100.00 100.00 100.00 100.00
FAR 4.00 2.00 4.00 4.00

3.2. The Tennessee Eastman Process

When comparing the performance or effectiveness of process monitoring methods,
the TEP [27] is a benchmark choice. In [28,29], Downs and Vogel proposed the simulation
platform. There are five major operating units in the TEP, namely, a product stripper, a
recycle compressor, a vapor–liquid separator, a product condenser, and a reactor. The
process has four kinds of reactants (A, C, D, E), two products (G, H), contains catalyst
(B), and byproducts (F). There are 11 manipulated variables (No.42–No.52), 22 process
measurements (No.1–No.22), and 19 composition variables (No.23–No.41). For detailed
information on the 52 monitoring variables and 21 fault patterns, see ref. [27]. The flowchart
of the process is given in Figure 8.

The number of training samples and the number of validation samples are 960 and
480, respectively. In addition, there are 960 testing samples where the fault is introduced
from the 161st sample. To simulate the situation that the training data contains outliers,
outliers whose magnitude is twice the normal data are randomly added to the training
data. The thresholds of different methods are all calculated at a confidence level of 99%.
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Figure 8. Flowchart of Tennessee Eastman process.

These three faults are chosen to demonstrate the effectiveness of the proposed method.
The parameter k of FD-kNN is 3. The parameters k1 and k2 of FD-MkNN are 42 and 45,
respectively. For the FD-MkNN method, the outliers with mutual protection phenomenon
are first eliminated by the elbow method, as shown in Figure 9.

According to [29,30], fault 1 is a step fault with a significant amplitude change. When
fault 1 occurs, eight process variables are affected.

Figures 10 and 11 are the monitoring results of fault 1 by FD-kNN and FD-MkNN,
respectively. As the proportion of outliers increases, the detection results of kNN and
MkNN for fault 1 are not significantly affected. For example, the FDR of MkNN for fault 1
remains at 99.00%, as shown in Table 5. Because fault 1 is a step fault with a significant
amplitude change, the outliers introduced in this experiment are insignificant in the face
of this fault. Although these outliers also deviate the control limits from normal levels,
they do not have much impact on the fault detection phase. The fault false alarm rate of
FD-kNN and FD-MkNN is shown in Table 6.

The fault 7 is also a step fault, but its magnitude changes are small, and only one
process variable (i.e., variable 45) is affected.

Figures 12 and 13 are the monitoring results of fault 7 by FD-kNN and FD-MkNN,
respectively. As shown in Table 7, as the proportion of outliers increases, the FDR of
FD-kNN drops from 100.00% to 18.75%, while the FDR of FD-MkNN does not decrease
significantly and remains above 90.00%. The fault false alarm rate of FD-kNN and FD-
MkNN is shown in Table 8.

According to the detection results of fault 1 and fault 7, it can be seen that FD-MkNN
is suitable for the processing of incipient faults. Because outliers will significantly increase
the threshold, the detection statistic of incipient faults is lower than the threshold. The
proposed method eliminates outliers by judging whether the samples have MkNNs, thereby
improving the fault detection performance.

Fault 13 is a slow drift in the reaction kinetics. Figures 14 and 15 are the monitoring
results of fault 13 by FD-kNN and FD-MkNN, respectively. In Tables 9 and 10, as the
proportion of outliers increases, the FDR of the FD-MkNN is always better than that of
FD-kNN, while the FAR is higher than that of kNN. Due to the appearance of outliers, the
threshold of the kNN is increased so the FAR of FD-kNN is always 0.00%.
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(a) (b)

(c) (d)

(e)

Figure 9. The descent curve of distance statistic for the TEP with different proportions of outliers.
(a) 1%; (b) 2%; (c) 3%; (d) 4%; (e) 5%.

Table 5. FDR (%) of FD-kNN and FD-MkNN for fault 1 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 99.50 98.75 98.50 98.75 98.50 98.50
FD-MkNN 99.50 99.00 99.00 99.00 99.00 99.00
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(a) (b) (c)

(d) (e) (f)

Figure 10. Fault detection results of FD-kNN for fault 1 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.

(a) (b) (c)

(d) (e) (f)

Figure 11. Fault detection results of FD-MkNN for fault 1 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Fault detection results of FD-kNN for fault 7 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.

(a) (b) (c)

(d) (e) (f)

Figure 13. Fault detection results of FD-MkNN for fault 7 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.
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(a) (b) (c)

(d) (e) (f)

Figure 14. Fault detection results of FD-kNN for fault 13 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.

(a) (b) (c)

(d) (e) (f)

Figure 15. Fault detection results of FD-MkNN for fault 13 of TEP. (a) no outlier; (b) 1%; (c) 2%;
(d) 3%; (e) 4%; (f) 5%.
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Table 6. FAR (%) of FD-kNN and FD-MkNN for fault 1 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 0.63 0.00 0.00 0.00 0.00 0.00
FD-MkNN 0.63 0.00 0.00 0.00 0.00 0.00

Table 7. FDR (%) of FD-kNN and FD-MkNN for fault 7 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 100.00 79.75 25.25 25.25 20.38 18.75
FD-MkNN 100.00 99.63 97.63 94.75 93.63 92.75

Table 8. FAR (%) of FD-kNN and FD-MkNN for fault 7 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 0.00 0.00 0.00 0.00 0.00 0.00
FD-MkNN 0.00 0.00 0.00 0.00 0.00 0.00

Table 9. FDR (%) of FD-kNN and FD-MkNN for fault 13 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 95.38 90.50 84.88 85.00 82.25 80.25
FD-MkNN 95.38 92.75 91.88 91.63 91.75 92.00

Table 10. FAR (%) of FD-kNN and FD-MkNN for fault 13 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 1.25 0.00 0.00 0.00 0.00 0.00
FD-MkNN 1.25 0.63 0.63 0.63 0.63 0.63

4. Discussion

The neighbors of the samples found by kNN on a data set containing outliers may not
be true neighbors, but a kind of pseudo neighbor. If such pseudo-nearest neighbors are
used to calculate the threshold, the threshold or control limit will deviate significantly from
the normal level, thereby degrading the fault detection performance.

The MkNN method determines outliers through checking whether the samples have
MkNNs, which simultaneously realizes the elimination of outliers and the fault detection
by using the same rule. Through the detection of fault 1 and fault 7 in the TEP, it can be
seen that the FD-MkNN has obvious advantages for detecting incipient faults because the
incipient faults are more sensitive to outliers.

This work stresses the superiority and promise of the MkNN rule for fault detection,
especially for industrial processes with outliers. The MkNN-method-based fault isolation
or diagnosis part is currently underway.

5. Conclusions

In this paper, a novel fault detection approach based on the mutual k-nearest neighbor
method is proposed. The primary characteristic of our method is that the calculation of the
distance statistics for fault detection uses the MkNN rule instead of kNN. The proposed
method simultaneously realizes the elimination of outliers and the fault detection using
Mutual kNN rule. Specifically, before the training phase, part of the outliers in the training
samples are removed so that the outliers will not affect the determination of the control
limit in the training phase; in the fault detection phase, MkNN carries more valuable and
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reliable information than kNN. Furthermore, the effect of PNN is eliminated. Furthermore,
the mutual protection problem of outliers is solved using the elbow rule, which improves
the performance of fault detection. The experiments on numerical examples and TEP verify
the effectiveness of the proposed method.

The proposed FD-MkNN can be seen as an alternative method in monitoring the
industrial processes with outliers. In addition, the MkNN method based fault isolation or
diagnosis part is currently underway.
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Abstract: With the continuous improvement of industrial production requirements, bearings work
significantly under strong noise interference, which makes it difficult to extract fault features. Deep
Learning-based approaches are promising for bearing diagnosis. They can extract fault informa-
tion efficiently and conduct accurate diagnosis. However, the structure of deep learning is often
determined by trial and error, which is time-consuming and lacks theoretical support. To address
the above problems, an adaptive (Adaptive Depthwise Separable Dilated Convolution and multi-
grained cascade forest) ADSD-gcForest fault diagnosis model is proposed in this paper. Multiscale
convolution combined with convolutional attention mechanism (CBAM) concentrates on effectively
extracting fault information under strong noise, and the Meta-Activate or Not (Meta-ACON) activa-
tion function is integrated to adaptively optimize the model structure according to the characteristics
of input samples, then gcForest outputs the final diagnosis result as the classifier. The experiment
compares the effects of three bearings failure diagnoses under various noise and load conditions. The
experimental results show the effectiveness and practicability of the proposed method.

Keywords: fault diagnosis; Meta-ACON; ADSD-gcForest; SDPimage

1. Introduction

With the development of the manufacturing industry, rolling bearings, as one of
the core components of mechanical equipment, play an increasingly irreplaceable role.
However, under the condition of strong noise and multiple loads for a long time, the
bearings are prone to wear or breakage. An expected failure, such as a crack in the bearings,
may cause the breakdown of the entire machine, resulting in magnificent economic loss and
severe safety accidents [1]. Therefore, it is of great significance to realize the high efficiency
and accuracy of bearing fault diagnosis.

The location of the bearing failure is generally located in the inner ring, outer ring,
and rolling element, and the bearing fault usually produces periodic vibrations when
machinery is running, so analysis of the vibration signal during bearing operation is the
key to achieving the diagnosis of the fault [2]. Traditional fault diagnosis methods are
divided mainly into linear and non-linear methods. Linear diagnosis methods mainly
contain time domain analysis, frequency domain analysis, and time-frequency analysis [3].
Nonlinear analysis is less adopted in fault diagnosis than linear analysis, chaos theory,
fractal dimension, and entropy value theory, are commonly applied nonlinear analysis
methods, among others. However, due to the increase in bearing fault datasets and the
increasing complexity of production environments, traditional fault diagnosis methods
that rely on traditional manual fault sign extraction have become no longer applicable [4].
Therefore, constructing novel fault diagnosis models based on approaches of deep learning
have become a research hotspot.

Frequently used deep learning models include the Deep Autoencoder (DAE), the
Deep Belief Network (DBN), the Convolutional Neural Network (CNN) and the Recurrent
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Neural Network (RNN). Among them, the improved Stack Denoising Autoencoder (SDAE)
diagnostic method was proposed by Hou et al. [5], in which the hyperparameters of the
DAE network were adaptively selected by the particle swarm algorithm to determine the
structure of the SDAE network. On this basis, the characteristic representation of the fault
state was obtained, which was input into the Softmax classifier for fault classification and
recognition; this method has achieved accurate fault diagnosis under the circumstance of
variable operating conditions. In-depth research on DAE was conducted by Shao et al. [6],
in which DAE and shrinking auto-encoding were introduced to improve the fault extrac-
tion capabilities of faulty features, and local preservation of projection fusion features was
applied to optimize feature quality. Liang T et al. [7] presented a method for the diag-
nosis of rolling bearing failures, which consisted mainly of three steps: a series of DBNs
with different hyperparameters were constructed and trained, after which the improved
ensemble method was applied to acquire the weight matrix for each DBN and then each
DBN voted together according to its respective weight matrix to obtain the final result
of the diagnosis. The method of DBN-based degradation assessment under accelerated
life testing of bearings was adopted by Ma et al. [8]. Shao et al. proposed a DBN for the
diagnosis of induction motors faults, in which vibration signals were introduced directly as
input [9], and the t-SNE algorithm was adopted to visualize the learning representation.
Han Tao et al. [10] used CNN training to obtain the corresponding characteristic diagram
of the multi-wavelet coefficient branching process through the wavelet transform to re-
alize the intelligent diagnosis of rolling bearing composite faults. Liang et al. [11] have
constructed two different CNNs, one for extracting time-domain features and the other
was applied to extract time-frequency domain features, and then fused them with the time-
frequency features and time-domain features extracted by continuous wavelet transform
diagnose faults of rolling bearings in a characteristic way. Bearing fault diagnosis based
on LSTM (Long Short-Term Network) and CNN models was established by Pan et al. [12],
a fault diagnosis method was proposed by Zhang et al. [13], in which self-encoding of
convolutional noise reduction was performed to achieve feature extraction and CNN was
introduced for pattern recognition. The long- and short-term memory stacking network
was designed by Yu et al. [14], where 12 different bearing health conditions were classified
using augmented data, including the type and severity of bearing failure. A convolutional
bidirectional long- and short-term memory network was designed by Zhao et al. [15] for
bearing fault diagnosis. In this method, a convolutional neural network was applied as a
feature extractor of the original signal, and then the bearing faults were classified through
a bidirectional long and short-term memory network.

Based on the brief review of the existing diagnosis approaches, the challenges can
be summarized as follows: first of all, numerous methods only conduct comparative
experiments for a single type of noise and other types of noise are not considered. Second,
deep learning structures are often determined by trial and error, which means this structure
is randomly defined; as a result, the model with the best performance is adopted after
many experiments [16]. To solve the above problem, an adaptive ADSD-gcForest fault
diagnosis model is proposed in this paper, and based on the basis of the existing traditional
network, the core fault features at different scales are effectively extracted by using dilated
convolution with different dilation rates and CBAM fusion under strong noise interference.
On this basis, deep separable convolution is incorporated into the dilated convolution
mechanism to improve the efficiency of the calculation [17]. In recent years, many adaptive
optimization methods have been developed for network structure, but most of these
approaches require the assistant of an intelligent optimization algorithm or migration
learning [18,19]. In contrast, the network structure can be simply optimized by the Meta-
ACON activation based on the input samples without the need for additional complex
algorithms and can not only optimize the model structure but also make the model better
deal with different sample data. Then, through the multigranular scanning of the deep
forest classifier and the cascade forest algorithm, the hidden fault features in the feature
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vector are analyzed and extracted, and the final classification results are output. The main
contributions of this article are as follows:

1. An adaptive ADSD-gcForest diagnostic model is proposed for the diagnosis of rolling
bearing fault diagnosis, allowing the extraction of features under the high-noise and
complex working conditions that could be realized. The structure of the diagnosis
model achieves adaptive optimization based on the characteristics of the sample data.

2. Combining the multiscale depth-separable dilated convolution with CBAM can effec-
tively extract fault features under strong noise interference. On the basis of the lack
of adjust the original structure of the model, the Meta-ACON activation function is
introduced into the convolution layer of the model to achieve adaptive optimization
of the model structure according to the fault data of different bearings.

3. The comparative experiment shows that the ADSD-gcForest model proposed in this
paper has strong generalization ability and robustness with certain practical value.

The rest of this paper is organized in the following way: the introduction of the related
theories is mainly in Section 2, the specific structure of the adaptive ADSD-gcForest model
is described in Section 3, Section 4 is the experimental comparison part, and the conclusion
is drawn in Section 5.

2. Related Works

2.1. SDP Image

Through the normalization method, the time domain signal can be described in the
polar coordinate system. Thus, the vibration signal can be converted to SDP images [20],
and the relationship between the amplitude and the frequency of the vibration signal
can be described simply and directly through the geometric shape. The specific mapping
relationship is as follows:

r(i) =
xi − xmin

xmax − xmian
(1)

θ(i) = θl +
xi+a − xmin
xmax − xmin

δ (2)

ϕ(i) = θl − xi+a − xmin
xmax − xmin

δ (3)

where the input vibration signal is represented as xi, i represents the sequence number of
the discrete sampling point of the signal in the time domain, the maximum and minimum
values of the vibration signal are, respectively, described as xmax and xmin and the amplitude
of xi corresponding to the time lag coefficient a is shown as xi+a, the radius of the polar
coordinates is indicated as r(i), δ is the magnification angle, θl is the angle of the l-th mirror
symmetry plane, θ(i) and ϕ(i) are the deflection angles of the mirror symmetry plane, where
δ ≤ θl and θl =

360l
N (l ∈ (0, N−1)), and N is the number of symmetry planes. SDP images

of different fault characteristics will present various geometric characteristics, which are
manifested mainly in the curvature, thickness, geometric center and concentrated area of
the image arm of the SDP image [21]. The SDP images of different fault characteristics
are shown in Figure 1. Among them, IR, OR and B, respectively, represent the inner ring,
outer ring and rolling element, while 007, 014, and 021 indicate that the fault diameter is
0.1778 mm, 0.3556 mm and 0.5334 mm separately.
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(a)   (b)  

Figure 1. SDP images. (a) Drive end bearing, (b) Fan end bearing.

2.2. Dilated Convolutional

Unlike ordinary convolution, the dilated convolution is one of the convolutional
neural networks which increases the receptive field of the output unit without increasing
the parameters, which is mainly implemented by introducing the dilation rate parameter.
Specifically, it mainly depends on the way of interval sampling, which means that the
spacing of each value is defined by the dilation rate when the convolution kernel processes
the data. Thus, the receptive field can be increased without reducing the image resolution.
For convolution kernels of the same size, the larger the dilation rate, the greater the receptive
field of the convolution kernel [22]. The calculation formula for the receptive field of the
dilated convolution is as follows:

rn = rn−1 − 1 + k (4)

where the receptive field of the current layer is presented as rn, rn−1 is the upper receptive
field and k is the size of the convolution kernel. The sampling process is shown in Figure 2.

Figure 2. Dilated convolution.

2.3. Depth-Separable Convolution

The standard convolution is decomposed into deep convolution and point-wise con-
volution by depth-separable convolution [23–25]. First, each channel of the input sample is
convolved one by one by the deep convolution; thus, the number of feature maps generated
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is the same as the number of channels of the input sample, and after that, the feature map
is reconstructed with weights which are assigned on the basis of the designed algorithm
according to point-by-point convolution. In this way, the amount of calculation and param-
eters of the model can be reduced in both time and space. For example, the dimension of
the input samples is set as Din1, Din2, Cin, the output dimension is arranged accordingly as
Dout1, Dout2, Cout and the sizes of the convolution kernel are Dk1 and Dk2, where Cout, Cin
are the number of channels. The formula to calculate the total number of parameters for
ordinary convolution and deeply separable convolution is shown in Formulas (5) and (6),
respectively, where Cconv represents the total number of parameters for ordinary convolu-
tion and the total number of parameters for deeply separable convolution is Cseparableconv.
The specific schematic diagram is shown in Figure 3, where channel 1, channel 2 and
channel 3, respectively, indicate the three dimensions of the input image.

Cconv = Dout1 × Dout2 × Dk1 × Dk2 × Cout × Cin (5)

Cseparableconv = Dout1 × Dout2 × Dk1 × Dk2 × Cin + Dout1 × Dout2 × Cout × Cin (6)

 

Figure 3. Depth-separable convolution.

2.4. CBAM

The attention mechanism is derived from the human visual mechanism, which is
widely used in image processing. CBAM has been widely used in target detection by skill-
fully integrating spatial attention mechanism and channel attention mechanism [26–28].
Primarily, the channel attention mechanism selects which features are the key features,
and then uses the spatial attention mechanism to learn the location of the key features,
strengthening the extraction of the core features of the input sample; from this, in addition,
the model can achieve adaptive refinement of the core features in the images. The specific
composition structure is shown in Figure 4, where Avgpooling and Maxpooling, respec-
tively, represent the average pooling and maximum pooling, while shared FC means the
shared full connectivity layer.
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Figure 4. CBAM.

2.5. gcForest

Different from the traditional Softmax classifier, the hidden features of the input
feature vector can be learned by gcForest through the superposition of multi-layer random
forests, which then output the final classification results [29,30]. It has been proven that the
accuracy of the deep forest classifier is about 1–4% higher than that of the Softmax classifier.
The deep forest classifier mainly consists of two parts: multi-granularity scanning and
cascade forest. The feature vector is sampled in a sliding window to form a new feature
vector, which will be input into the cascade forest. After passing through the multi-layer
random forest, the final output class probability distribution vector is taken as the final
classification result. The specific structure of the deep forest classifier is shown in Figure 5,
where K is the dimension of the input vector table type, n is the dimension of the sliding
window, m as the category of the classification number and P is the final output vector
whose dimension. Furthermore, in Figure 5, the scanned vector is input into the cascade
forest, the blue and green two color Forests, respectively, represent random forest and
completely random forest, each layer contains two random forests and two completely
random forests and each forest after the completion of a training will be an output vector, of
which the dimension is C. The output vectors of the four forests are stacked with the output
vectors of multi-granularity scanning, and the vector with dimension (C × 4 + P) is the output;
moreover, after multi-layer learning, the output vectors of the last layer are averaged to
obtain the final probability category vector with dimension C and the maximum probability
of the vector is taken as the classification result.

 

Figure 5. gcForest.

158



Processes 2022, 10, 209

3. Method

The ADSD-gcForest model will be described in detail in this section. The detailed
implementations of the method are described in the following three steps.

Step 1: A sliding window is used to sample vibration signals, then the noise of different
intensity is added and the signals are converted into SDP image, and then the sample data
are divided into a training set and a test set.

Step 2: The training set is entered into the adaptive ADSD-gcForest model for train-
ing and the Meta-ACON activation function is applied to adaptively adjust the network
structure, according to different types of sample data to obtain the current optimal model
structure, after which the trained model is saved.

Step 3: The trained model is used to directly extract fault features from new images,
which results in the final diagnosis. The overall flowchart of the fault diagnosis is drawn
in Figure 6.

Figure 6. The overall flowchart of the fault diagnosis.

3.1. Meta-ACON

In order to achieve more effective fault diagnosis based on different bearing fault
data, it may be necessary to continuously adjust the existing structure to achieve higher
accuracy. In order to solve the above problems, a relatively simple way to achieve adaptive
adjustment of the network model is proposed in this paper: by setting a single conversion
factor β, the Meta-ACON activation function can simply select whether to activate the
neurons in this layer according to different sample data (activation represents nonlinear
output, while on the contrary, non-activation represents linear output). The design of the
Meta-ACON activation function is derived from the smooth maximum function, and its
formula is as follows:

Sβ(x1, . . . xn) =
∑n

i=1 xieβxi

∑n
i=1 eβxi

(7)

where xi represents the input signal sequence, β is the conversion factor, when β→∞,
Sβ→max and β→0, and Sβ is the arithmetic mean value. Many common activation functions
have the form max (ηa (x), ηb (x)). ηa (x) and ηb (x) are two freely configurable functions. For
example, in the ReLU function, ηa (x) = x and ηb (x) = 0, many activation functions can be
expressed in the form of max (ηa (x), ηb (x)). To simplify the design, only two variables are
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considered here, and the sigmoid function is simplified as σ. At this time, the approximate
relationship is represented as:

Sβ(ηa(x), ηb(x)) = ηa(x) ∗ eβηa(x)

eβηa(x)+eβηb(x) + ηb(x) ∗ eβηb(x)

eβηa(x)+eβηb(x)

= ηa(x) ∗ 1
1+e−β(ηa(x)−ηb(x)) + ηb(x) ∗ 1

1+e−β(ηb(x)−ηa(x))

= (ηa(x)− ηb(x)) ∗ σ[β(ηa(x)− ηb(x))] + ηb(x)

(8)

Furthermore, ηa(x) = p1x, ηb(x) = p2x and p1x �= p2x. The Meta-ACON activation
function is as follows:

Sβ = (p1 − p2)x ∗ σ[β(p1 − p2)x] + p2x (9)

Among them, p1 and p2 are two random trainable parameters; therefore, the activation
of neurons in this layer can be easily controlled by means of conversion factor β, where

β = σW1W2
H
∑

h=1

W
∑

w=1
xc,h,w, the input sample data is represented as xc,h,w and c, h and

w, respectively, describe the number of channels, width and height of the input sample
data. W1 is the convolution of the sample data with the number of input channels as
the width of the sample, the number of output channels as the width/r (r is a constant,
generally taken as 16) and the convolution core size of 1 × 1. Similarly, W2 is also obtained
by the convolution with the convolution core size of 1 × 1, except that the number of output
channels and input channels of convolution are opposite to the setting of W1. Since the β
value is directly determined by the structural characteristics of the sample data, different
sample data will produce different β values, Therefore, after many times of training, with
the continuous updating of Meta-ACON parameters, the structure of the model can be
continuously optimized. The specific calculation process is shown in Figure 7.

Figure 7. The specific calculation process of Meta-ACON.
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3.2. ADSD-gcForest

Compared with time-domain signals, SDP images can represent different fault types in
a more intuitive and simple way by presenting different geometric features. Therefore, the
key to achieve an accurate fault diagnosis is to design a diagnosis model that can effectively
extract geometric features from images. The visual geometry group 16 (VGG16) is one of
the commonly used models in image processing. Feature extraction is effectively realized
by stacking multilayer convolution, and network parameters are reduced by pooling layer.
The model in this paper takes VGG16 as the basic framework. However, the structure
of VGG16 network is relatively simple. Firstly, although the network is deep, ordinary
convolution is widely used in convolution layers, which cannot extract the sample feature
information in multiple scales, which limits the feature extraction ability of the network
under the intervention of strong noise. Second, most of the activation functions in the
convolution layer simply make the input signal become non-linear, so the network does
not have good migration learning ability; thus, in the face of different sample data, the
performance of the network will become unstable. Moreover, most diagnostic models use
Softmax as the final classifier, However, Softmax is not an advanced classifier and cannot
learn the feature information that has not been extracted, so as to reduce the final accuracy.
In response to the above problems, the ADSD-gcForest model proposed in this paper makes
the following improvements.

Due to the large number of input sample types, in order to increase the model feature
extraction range and enrich the feature information, the characteristics of the receptive field
are expanded by using the dilated convolution and combined with the residual network to
build three branches. Therefore, the construction of three kinds of dilated convolutions with
different dilation rates is connected through the residual network, the dilation rate is set to
1, 2 and 3 and the size of the convolution kernel is 3 × 3. Thus, multi-scale feature extraction
is realized. After the dilated convolution with different expansion rates, it is combined
with the CBAM, and the channel attention mechanism is used to measure the importance
of different kinds of channel feature information in the feature map at different scales, so as
to determine the key points under different channels in the feature map features. Then, the
spatial attention mechanism is introduced to locate these key features and extract the key
feature information from the feature map to obtain key features at different scales. Next,
three feature maps are obtained and integrated using the residual network and input into
the next layer. Due to the use of more dilated convolution and attention mechanisms in the
network, it may lead to a longer network training time. Since the convolution operations
for different channels of the input image can be simultaneously performed by the depth-
separable convolution, the depth-separable convolution mechanism is led into the dilated
convolution layer, after which the weight ratio of each feature map is determined through
quasi-point convolution, and the the feature maps are integrated according to the weights.
Thus, computational efficiency could be improved in this way. In order to realize that the
network model can be adaptively adjusted according to the sample data of different fault
types, the original ReLU activation function in the convolutional layer is replaced with the
Meta-ACON activation function. The Meta-ACON activation function can be based on
the size characteristics of the input image. By setting the conversion factor β, the value of
β determines whether to activate the neurons in this layer after multiple trainings, and a
flexible and efficient network structure can be adopted for the training model according
to different input samples. Softmax is replaced by gcForest, which learns the hidden fault
characteristics and gives the final results of the diagnosis results. The structure of the model
is shown in Figure 8. SD convolution stands for dilated convolution with a deep separable
mechanism. Detailed parameters of the optimized network are shown in Table 1.
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Figure 8. The model structure of ADSD-gcForest.

Table 1. Detailed parameters of the optimized network.

Layers Filters
Kernel_Size/
Dilation Rate

Trainable
Parameters

Input_Shape Output_Shape

separable_conv_1 64 3/1 137 28 × 28 × 1 28 × 28 × 64
CBAM_1 677 28 × 28 × 64 28 × 28 × 64

separable_conv_2 64 3/2 137 28 × 28 × 1 28 × 28 × 64
CBAM_2 677 28 × 28 × 64 28 × 28 × 64

separable_conv_3 64 3/3 137 28 × 28 × 1 28 × 28 × 64
CBAM_3 677 28 × 28 × 64 28 × 28 × 64

Add_1 0 28 × 28 × 64, 28 × 28 × 64,
28 × 28 × 64 28 × 28 × 64

separable_conv_4 128 3/1 8896 28 × 28 × 64 28 × 28 × 128
CBAM_4 2277 28 × 28 × 128 28 × 28 × 128

separable_conv_5 128 3/2 8896 28 × 28 × 64 28 × 28 × 128
CBAM_5 2277 28 × 28 × 128 28 × 28 × 128

separable_conv_6 128 3/3 8896 28 × 28 × 64 28 × 28 × 128
CBAM_6 2277 28 × 28 × 128 28 × 28 × 128

Add_2 0 28 × 28 × 128, 28 × 28 × 128,
28 × 28 × 128 28 × 28 × 128

separable_conv_7 256 3/1 34,176 28 × 28 × 128 28 × 28 × 256
CBAM_7 8949 25 × 28 × 256 28 × 28 × 256

separable_conv_8 256 3/2 34,176 28 × 28 × 128 28 × 28 × 256
CBAM_8 8949 25 × 28 × 256 28 × 28 × 256

separable_conv_9 256 3/3 34,176 28 × 28 × 128 28 × 28 × 256
CBAM_9 8949 25 × 28 × 256 28 × 28 × 256

Add_3 0 28 × 28 × 256, 28 × 28 × 256,
28 × 28 × 256 28 × 28 × 256

separable_conv_10 256 3/1 68,096 28 × 28 × 256 28 × 28 × 256
separable_conv_11 256 3/1 68,096 28 × 28 × 256 28 × 28 × 256

Add_4 0 28 × 28 × 256 28 × 28 × 256
Flatten 0 28 × 28 × 256 200,704 × 1

dense_1(1000) 200,705,000 200,704 × 1 1000 × 1
dense_2 (256) 256,256 1000 × 1 256 × 1
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4. Experiments

4.1. Introduction of Datasets

The datasets used in the experiment were the Case Western Reserve University bearing
dataset and the Canadian University of Ottawa bearing dataset. Two different bearings are
contained in the Western Reserve University bearing dataset: drive end bearing SKF6205
and fan end bearing SKF6203. The drive end bearing included the two different sampling
frequencies of 12 KHZ and 48 KHZ, while the sampling frequency of the fan end bearing
was only 12 KHZ. Ten types of states are contained in each bearing dataset, which are
normal state, inner ring failure, outer ring failure, and rolling element failure. Each fault
state contains three different fault levels, represented by a fault diameter. A total of
four different load conditions were applied when measuring the bearing data. A total
of 8 normal samples, 53 outer ring damage samples, 23 inner ring damage samples and
11 rolling element damage samples were obtained. The Canadian Ottawa dataset is the
bearing vibration signal of different health conditions measured under time-varying speed
conditions, which had 36 datasets. The bearing conditions include: normal, inner ring
failure and outer ring failure. The working speed conditions are speed increase, speed
deceleration, deceleration after speed increase and speed increase after deceleration. Each
dataset contains two channels, and channel 1 represents the vibration data measured by the
accelerometer, channel 2 signifies the speed data measured by the encoder, the sampling
frequency is 200 KHZ and the sampling duration is 10 s.

The drive end and the fan end bearing data of Western Reserve University used in
this paper are at the sampling frequency of 12 KHZ, and for part of the dataset in Channel
1 of the University of Ottawa in Canada, the sample data used were randomly selected
from the dataset, where B, IR and OR indicate that the fault location is located in the rolling
element, inner ring and outer ring of the bearing, respectively. Moreover, 007, 014 and 021,
respectively, indicate that the fault diameter is 0.1778 mm, 0.3556 mm and 0.5334 mm, and
the number at the end indicates the size of the load. For example, “−1” means that the
load is 1 horsepower. A total of 1000 samples were sampled for each fault category, and the
sample ratio of training set to test set was 7:3. The details are shown in Table 2.

Table 2. Sample distribution table.

Bearing
Number

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

SKF6205

Normal-1 Normal-2 Normal-3 Normal-1 Normal-2 Normal-3
B007-1 B007-3 B007-3 B007-2 B007-1 B007-2
B014-1 B014-3 B014-3 B014-2 B014-3 B014-3
B021-1 B021-3 B021-2 B021-3 B021-2 B021-1
IR007-1 IR007-1 IR007-2 IR007-3 IR007-2 IR007-1
IR014-2 IR014-2 IR014-2 IR014-3 IR014-3 IR014-2
IR021-3 IR021-2 IR021-2 IR021-2 IR021-3 IR021-3
OR007-1 OR007-2 OR007-1 OR007-1 OR007-3 OR007-1
OR014-2 OR014-2 OR014-1 OR014-1 OR014-2 OR014-1
OR021-3 OR021-1 OR021-2 0R021-2 OR021-1 OR021-3

SKF6203

Normal-2 Normal-2 Normal-1 Normal-3 Normal-1 Normal-2
B007-1 B007-1 B007-3 B007-2 B007-1 B007-3
B014-3 B014-2 B014-2 B014-3 B014-2 B014-3
B021-3 B021-1 B021-2 B021-3 B021-2 B021-1
IR007-3 IR007-2 IR007-2 IR007-3 IR007-2 IR007-1
IR014-3 IR014-1 IR014-3 IR014-1 IR014-1 IR014-1
IR021-3 IR021-3 IR021-1 IR021-1 IR021-3 IR021-3
OR007-2 OR007-2 OR007-1 OR007-1 OR007-1 OR007-2
OR014-2 OR014-2 OR014-3 OR014-2 OR014-3 OR014-2
OR021-3 OR021-3 OR021-1 OR021-2 OR021-3 OR021-1
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Six noises of different intensities were added to the sample dataset, namely, Noise 1,
Noise 2, Noise 3, Noise 4, Noise 5 and Noise 6. Each type of noise contains three different
types of noise. The proportions of the three noises in the six noises were Gaussian noise
with signal-to-noise ratios of −4, −2, 0, 2, 4 and 6, salt and pepper noise, with ratios of
0.3, 0.25, 0.2, 0.15, 0.1 and 0.05, and Cauchy noise with position parameter 0 and scale
parameter 1. gcForest was set as the classifier in all comparison methods, and SigDSD-
gcforest means that the Sigmoid function is the activation function of the convolutional
layers. Similarly, the activation functions of the convolutional layers in ReluDSD-gcforest
and PReluDSD-gcforest are Relu and PRelu, respectively. The parameter settings of the
ADSD-gcForest model were as follows: the network training parameters were set at a
learning rate of 0.00005, the number of batch processing was 580, the number of iterations
was 350, Adam was used as the optimization algorithm, the sliding window dimension
used in MGS was 240, the number of trees in the random forests of MGS was 35 and the
number of trees in a single random forest in the cascade forest was 150. The diagnostic effect
is analyzed by comparing the accuracy rate, F1 value and Area Under Curve (AUC) value
of different diagnostic models after training. The accuracy rate is generally expressed as

TP+TN
TP+TN+FP+FN , and FI value is calculated as 2FP

2TP+FP+FN , where TP refers to True Positives,
FP represents True Negatives, FN indicates False Negatives and FP signifies False Positives.
AUC is defined as the area under the area under curve. Generally, the higher the AUC
value, the better the classification effect of the model.

4.2. Case Study 1: Performance of Drive End Bearing Fault Diagnosis

It can be seen from Figures 9 and 10 that when the noise environment is Noise 1, after
the sample is trained by the ADSD-gcForest model, there are three categories of samples
with low recognition rates, and there is also a small amount of aliasing in the T-SNE
image. In other noise environments, there are only one or two fault categories with a low
recognition rate. It can be seen from Table 3 that, compared to other methods, the ADSD-
gcForest model achieves the highest fault accuracy rate and F1 value under various noises
and different working conditions. Among them, the VGG16-gcForest model obtained
the lowest accuracy and the F1 values, which is about 26–35% lower than those of the
ADSD-gcForest model, while the accuracy and F1 values of the Res50-gcForest model are
about 18% higher than the VGG16-gcForest model. Since the Relu function can better solve
the network convergence problem than the Sigmoid function, the accuracy and F1 values of
the Relu-gcForest model are about 0.6–0.7% higher than that of the SigDSD-gcForest model,
and PRelu updates the weight according to the input data, which makes the network
have a certain adaptive optimization capability. The accuracy and F1 values obtained after
training is about 1.3% higher than that of the Relu-gcForest model, but its values are still
lower than the ADSD-gcForest model. Figure 11 mainly describes the comparison of the
AUC values of different methods. From Figure 11, it can be found that the AUC values of
ADSD-gcForest under different noises are the highest and all are above 92%, indicating
that the ADSD-gcForest model has a good fault diagnosis effect. It can be seen from the
experimental results presented above that the ADSD-gcForest model can more accurately
diagnose drive-end bearing failures under different working conditions and strong noise
interference with a high accuracy rate.
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(a)   (b)   (c)   

   
(d)   (e)   (f)   

Figure 9. Confusion matrix obtained by ADSD-gcforest model training (drive end). (a) Noise 1,
(b) Noise 2, (c) Noise 3, (d) Noise 4, (e) Noise 5. (f) Noise 6.

   
(a)  (b) (c)  

   
(d)  (e)  (f)  

Figure 10. T-SNE images obtained by ADSD-gcforest model training (drive end). (a) Noise 1,
(b) Noise 2, (c) Noise 3, (d) Noise 4, (e) Noise 5. (f) Noise 6.
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Table 3. Comparison table of the accuracy (AC) and F1 values of driver end data.

Dataset Methods N1(AC/F1) N2(AC/F1) N3(AC/F1) N4(AC/F1) N5(AC/F1) N6(AC/F1)

Dataset 1

VGG16-gcForest 65.10%/66.20% 69.13%/68.78% 71.20%/72.02% 72.41%/73.10% 75.36%/74.48% 77.54%/76.98%
Res50- gcForest 83.25%/82.86% 86.42%/85.96% 87.85%/88.12% 89.22%/90.03% 92.02%/92.05% 93.33%/94.40%

SigDSD- gcForest 92.43%/91.73% 94.17%/93.92% 95.95%/94.65% 96.04%/96.11% 96.35%/96.30% 96.85%/96.80%
ReluDSD-gcforest 92.85%/93.05% 94.22%/93.88% 96.20%/96.22% 96.47%/96.50% 96.70%/96.73% 97.03%/96.98%

PReluDSD-gcForest 93.09%/92.86% 94.72%/94.70% 96.62%/96.65% 96.73%/96.80% 96.83%/96.96% 97.45%/97.52%
ADSD-gcForest 94.32%/94.30% 95.85%/95.78% 97.70%/97.73% 97.83%/98.03% 97.92%/98.15% 98.23%/98.28%

Dataset 2

VGG16-gcForest 64.72%/63.56% 69.20%/68.95% 69.96%/70.14% 72.02%/71.92% 73.46%/73.45% 76.85%/76.88%
Res50- gcForest 83.50%/83.47% 86.72%/86.75% 87.60%/87.59% 89.27%/89.30% 91.26%/91.33% 92.96%/93.05%

SigDSD- gcForest 89.98%/90.13% 91.40%/91.48% 92.53%/92..60% 93.06%/93.10% 94.12%/94.08% 95.23%/95.26%
ReluDSD-gcforest 90.48%/90.43% 91.92%/92.03% 92.90%/92.86% 93.55%/93.57% 94.67%/94.65% 95.73%/95.70%

PReluDSD-gcForest 91.52%/91.55% 92.03%/92.05% 93.63%/93.71% 94.52%/94.50% 95.03%/95.11% 96.15%/96.18%
ADSD-gcForest 92.65%/92.66% 93.79%/93.82% 94.42%/94.45% 95.91%/96.02% 96.51%/96.47% 97.83%/97.85%

Dataset 3

VGG16-gcForest 66.25%/66.31% 67.43%/67.40% 69.84%/69.86% 72.45%/72.50% 74.62%/75.06% 77.11%/78.23%
Res50- gcForest 83.85%/83.80% 85.62%/86.15% 86.87%/86.93% 88.38%/88.43% 91.67%/91.72% 92.63%/92.73%

SigDSD- gcForest 91.61%/91.78% 92.96%/93.32% 95.41%/95.60% 96.08%/96.05% 96.21%/96.34% 96.91%/97.01%
ReluDSD-gcforest 91.95%/91.86% 93.60%/93.74% 95.92%/96.02% 96.52%/96.46% 96.87%/96.94% 97.32%/97.28%

PReluDSD-gcForest 92.07%/91.96% 94.30%/94.52% 95.42%/95.40% 96.90%/96.86% 97.24%/97.35% 97.75%/97.92%
ADSD-gcForest 93.22%/93.25% 95.43%/95.48% 96.48%/96.56% 97.11%/97.16% 97.84%/98.02% 98.33%/98.30%

Dataset 4

VGG16-gcForest 65.89%/65.92% 68.34%/69.16% 70.54%/71.17% 73.52%/73.58% 75.66%/76.16% 77.35%/77.49%
Res50- gcForest 77.82%/77.80% 80.35%/81.42% 84.48%/85.53% 86.76%/87.36% 90.81%/91.28% 92.28%/93.16%

SigDSD- gcForest 92.25%/91.89% 92.72%/92.70% 93.78%/93.89% 94.75%/94.82% 95.52%/95.64% 96.44%/97.13%
ReluDSD-gcforest 92.71%/93.04% 93.21%/93.19% 94.36%/94.28% 95.46%/95.51% 96.01%/96.33% 97.08%/97.26%

PReluDSD-gcForest 93.07%/93.26% 94.96%/95.14% 95.58%/96.27% 96.82%/97.14% 97.42%/97.59% 97.64%/98.01%
ADSD-gcForest 94.18%/95.64% 95.78%/95.74% 96.28%/96.32% 97.34%/97.64% 97.92%/98.12% 98.17%/98.34%

Dataset 5

VGG16-gcForest 66.14%/66.10% 67.94%/68.23% 71.13%/71.06% 72.86%/72.93% 75.43%/76.15% 76.29%/77.35%
Res50- gcForest 79.85%/80.15% 81.62%/81.64% 84.96%/84.86% 88.62%/88.75% 91.52%/91.67% 93.53%/93.78%

SigDSD- gcForest 92.02%/92.35% 94.40%/94.67% 95.22%/96.37% 95.72%/96.89% 96.51%/97.02% 97.05%/97.28%
ReluDSD-gcforest 92.47%/92.43% 94.86%/94.82% 95.76%/95.84% 96.12%/96.15% 97.02%/97.46% 97.53%/97.88%

PReluDSD-gcForest 93.08%/93.47% 95.48%/94.86% 96.27%/96.20% 96.76%/97.16% 97.67%/98.16% 98.08%/98.24%
ADSD-gcForest 94.27%/94.35% 96.27%/96.37% 97.19%/97.10% 97.46%/97.65% 98.15%/98.10% 98.67%/98.76%

Dataset 6

VGG16-gcForest 65.85%/65.78% 66.72%/67.05% 70.32%/71.14% 72.61%/72.76% 74.50%/75.65% 76.76%/77.04%
Res50- gcForest 78.95%/79.13% 84.06%/84.23% 85.46%/85.63% 87.42%/87.25% 89.73%/89.53% 91.32%/92.03%

SigDSD- gcForest 91.06%/91.32% 92.92%/93.16% 93.72%/94.07% 95.03%/95.06% 96.40%/96.32% 97.02%/97.14%
ReluDSD-gcforest 91.62%/91.76% 93.52%/94.31% 94.34%/94.54% 95.43%/95.32% 97.02%/96.53% 97.33%/97.27%

PReluDSD-gcForest 92.07%/92.15% 94.08%/93.64% 95.17%/95.67% 96.06%/96.05% 97.47%/97.36% 97.78%/98.05%
ADSD-gcForest 93.76%/93.48% 95.61%/95.53% 96.86%/96.57% 97.59%/97.42% 98.34%/98.28% 98.55%/98.62%

  

  

  

Figure 11. Comparison figures of the AUC of the driver end data under Noise 1, 2, 3, 4, 5 and 6.

166



Processes 2022, 10, 209

4.3. Case Study 2: Performance of Fan End Bearing Fault Diagnosis

It can be seen from Figures 12 and 13 that only when the noise environment is Noise 1,
a few fault categories cannot be effectively identified. In other noise environments, the
entire fault category can be accurately identified. It can be seen in Table 4 that the accuracy
and F1 values obtained from the training of the VGG16-gcForest and Res50-gcForest models
have dropped by approximately 1.5–1.6% compared to the driving end values. The overall
accuracy and F1 value of the VGG16-gcForest model are between 61–75%. The accuracy and
F1 values of the training of the SigDSD-gcForest, ReluDSD-gcForest and PreluDSD-gcForest
models has also decreased. Among them, the most obvious decrease is SigDSD-gcForest,
with a decrease from 0.3% to 0.4%, while the accuracy and F1 value of the PreluDSD-
gcForest model drops by at least about 1.3–1.5%. The accuracy value and F1 values of
the ADSD-gcForest model are the highest, and these values are similar to case study 1.
Figure 14 depicts the AUC values obtained by different diagnostic methods under different
noises. It can be found that the AUC values obtained by the ADSD-gcForest model are still
the highest, which are close to those obtained in case study 1. Through the experimental
results presented above, it can be found that the ADSD-gcForest model proposed in this
paper can basically realize an effective fault diagnosis for different bearings under multiple
working conditions.

   
(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 12. Confusion matrix obtained by ADSD-gcForest model training (fan end). (a) Noise 1,
(b) Noise 2, (c) Noise 3, (d) Noise 4, (e) Noise 5. (f) Noise 6.
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(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 13. T-SNE images obtained by ADSD-gcForest model training (fan end). (a) Noise 1, (b) Noise 2,
(c) Noise 3, (d) Noise 4, (e) Noise 5. (f) Noise 6.

  

  

  

Figure 14. Comparison figures of the AUC of the fan end data under Noise 1, 2, 3, 4, 5 and 6.
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Table 4. Comparison table of the accuracy (AC) and F1 values of the fan end data.

Dataset Methods N1(AC/F1) N2(AC/F1) N3(AC/F1) N4(AC/F1) N5(AC/F1) N6(AC/F1)

Dataset 1

VGG16-gcForest 61.87%/61.80% 64.84%/64.75% 67.45%/68.12% 69.85%/70.23% 73.46%/73.32% 75.75%/75.82%
Res50- gcForest 79.75%/80.04% 81.28%/81.42% 84.86%/84.90% 87.91%/88.34% 91.03%/91.06% 92.46%/92.50%

SigDSD- gcForest 91.52%/91.68% 92.53%/93.46% 94.48%/95.62% 95.56%/95.63% 96.01%/96.20% 96.65%/96.60%
ReluDSD-gcforest 92.03%/92.12% 93.20%/93.18% 95.06%/94.92% 96.01%/95.68% 96.53%/96.48% 97.04%/97.06%

PReluDSD-gcForest 92.62%/92.65% 93.95%/93.86% 95.65%/95.60% 96.62%/96.63% 97.03%/97.18% 97.75%/97.70%
ADSD-gcForest 93.32%/93.34% 94.74%/94.70% 96.54%96.46% 97.23%/97.20% 97.72%/97.67% 98.34%/98.25%

Dataset 2

VGG16-gcForest 62.41%/63.26% 64.27%/64.68% 66.75%/67.35% 68.58%/69.14% 71.59%/71.48% 73.84%/73.76%
Res50- gcForest 79.61%/79.53% 81.45%/81.39% 83.68%/83.61% 86.84%/86.72% 89.83%/89.76% 92.69%/92.53%

SigDSD- gcForest 90.37%/90.28% 93.12%/93.36% 94.27%/95.26% 95.76%/95.63% 95.67%/95.72% 96.43%/96.84%
ReluDSD-gcforest 91.06%/91.26% 94.08%/94.34% 95.59%/95.62% 96.22%/96.32% 96.75%/97.14% 97.29%/97.38%

PReluDSD-gcForest 91.56%/92.36% 94.67%/94.37% 96.24%/95.37% 96.87%/97.08% 97.32%/97.46% 97.64%/97.85%
ADSD-gcForest 92.68%/93.06% 95.26%/95.37% 96.81%/96.68% 97.26%/97.39% 97.83%/97.80% 98.44%/98.40%

Dataset 3

VGG16-gcForest 63.21%/63.46% 65.32%/64.89% 67.63%/67.90% 68.42%/68.36% 70.94%/71.26% 72.84%/73.58%
Res50- gcForest 77.12%/77.42% 80.23%/80.68% 82.47%/82.86% 86.58%/86.69% 89.52%/90.15% 92.27%/92.38%

SigDSD- gcForest 90.46%/91.68% 93.48%/93.56% 94.59%/94.75%. 95.03%/96.15% 95.67%/96.82% 95.33%/95.59%
ReluDSD-gcforest 90.72%/91.08% 93.73%/94.28% 95.07%/95.36% 95.68%/96.06% 96.28%/96.33% 96.87%/97.11%

PReluDSD-gcForest 91.25%/91.20% 94.36%/94.38% 95.53%/95.49% 96.36%/96.42% 96.82%/96.74% 97.35%/97.19%
ADSD-gcForest 91.85%/92.09% 94.75%/95.13% 96.15%/96.18% 96.98%/97.26% 97.23%/97.46% 98.31%/98.48%

Dataset 4

VGG16-gcForest 61.74%/62.31% 63.87%/64.26% 66.88%/67.18% 68.36%/69.45% 70.42%/71.26% 71.29%/72.21%
Res50- gcForest 76.42%/76.48% 78.73%/78.62% 82.23%/82.26% 84.64%/85.04% 88.37%/88.49% 91.44%/91.57%

SigDSD- gcForest 91.23%/91.34% 92.34%/92.86% 94.68%/95.71% 95.82%/96.02% 96.42%/96.74% 97.08%/97.06%
ReluDSD-gcforest 91.75%/91.60% 93.03%/93.09% 95.02%/95.16% 96.35%/96.42% 96.97%/97.05% 97.34%/97.48%

PReluDSD-gcForest 92.20%/92.34% 93.58%/93.64% 95.42%/95.56% 96.72%/96.83% 97.41%/97.56% 97.86%/98.01%
ADSD-gcForest 93.45%/93.40% 94.71%/94.65% 96.75%/96.63% 97.32%/97.46% 98.03%/98.14% 98.29%/98.24%

Dataset 5

VGG16-gcForest 62.76%/62.64% 64.52%/65.38% 67.12%/67.48% 69.29%/69.70% 70.68%/71.17% 71.36%/72.47%
Res50- gcForest 75.12%/75.49% 77.37%/77.25% 79.52%/79.26% 82.67%/82.54% 84.46%/84.69% 87.53%/88.14%

SigDSD- gcForest 91.40%/91.42% 93.01%/92.89% 94.81%/95.17% 95.02%/95.43% 96.24%/96.39% 96.82%/97.16%
ReluDSD-gcforest 92.22%/92.47% 93.50%/93.49% 95.22%/95.24% 95.75%/96.78% 96.64%/96.51% 97.27%/97.38%

PReluDSD-gcForest 92.86%/92.92% 94.08%/94.06% 95.82%/95.86% 96.22%/96.36% 97.25%/97.36% 97.76%/97.82%
ADSD-gcForest 93.24%/93.28% 95.78%/95.83% 96.28%/97.36% 96.87%/97.12% 97.73%/97.68% 98.38%/98.06%

Dataset 6

VGG16-gcForest 61.98%/61.86% 63.45%/64.58% 65.62%/65.52% 68.29%/68.34% 69.56%/69.96% 71.42%/71.86%
Res50- gcForest 74.86%/74.92% 77.53%/77.50% 80.22%/80.36% 82.23%/82.18% 84.29%/84.27% 86.36%/86.34%

SigDSD- gcForest 92.25%/92.37% 93.45%/93.57% 94.09%/94.16% 95.42%/95.26% 96.24%/96.31% 96.83%/96.80%
ReluDSD-gcforest 92.86%/92.79% 93.73%/93.76% 94.42%/94.39% 95.73%/95.70% 96.89%/96.92% 97.36%/97.34%

PReluDSD-gcForest 93.03%/93.17% 94.24%/94.28% 95.02%/94.88% 96.36%/97.32% 97.25%/97.05% 97.76%/97.65%
ADSD-gcForest 93.55%/93.64% 94.61%/94.78% 95.42%/95.57% 96.92%/97.18% 97.83%/98.07% 98.34%/98.64%

4.4. Case Study 3: Performance of the Ottawa Bearing Dataset

In order to further test the generalization and robustness of the ADSD-gcForest model,
case study 3 focused on the University of Ottawa dataset, which was specifically divided
into six datasets. The setting method of adding noise was the same as case study 1. The
specific sample types are shown in Table 5. There were three operation conditions of the
bearings in the datasets, i.e., normal (H), inner race fault (I) and out race fault (O), and also
contained four speed transformation conditions, i.e., speed up (A), slow down (B), speed up
and slow down (C) and slow down and speed up (D). The noise setting used in case study 3
is the same as the case study 1. The training parameter settings of the ADSD-gcForest
model are as follows: the network training parameters were set to a learning rate of 0.00005,
the number of batch processing was 550, the number of iterations was 350, Adam was
used as the optimization algorithm, the sliding window dimension used in MGS was 240,
the number of trees in the MGS random forest was 35 and the number of trees in a single
random forest in the cascade forest was 150.
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Table 5. Sample distribution table.

The Name of Dataset Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

University of Ottawa bearing data

HD-1 HA-1 HB-1 HA-1 HC-1 HD-1
HA-1 HB-1 HC-1 HB-1 HA-1 HB-1
HB-1 HD-1 HA-1 HD-1 HB-1 HC-1
IC-1 IA-1 IC-1 IB-1 IB-1 ID-1
ID-1 IB-1 IA-1 IA-1 IC-1 IA-1
IB-1 ID-1 IB-1 ID-1 IA-1 IB-1
OB-1 OD-1 OB-1 OB-1 OA-1 OD-1
OD-1 OC-1 OA-1 OD-1 OC-1 OB-1
OA-1 OB-1 OD-1 OC-1 OD-1 OC-1
HC-1 IA-1 HA-1 IB-1 OD-1 OB-1

It can be seen from Figure 15 that, compared to case study 1 and case study 2, when
the noise environment is Noise 1 and Noise 2, the degree of discrimination of some fault
categories is lower, but in other noise environments, the fault categories can be accurately
classified. It can be seen from Figures 16 and 17 that the training accuracy of the ADSD-
gcForest model is the highest and the value is relatively stable, while the fluctuation
is small, which is consistent with the values in Table 6. At the same time, it can be
found from Table 6 that the accuracy and F1 values obtained by training the VGG16-
gcForest and Res50-gcForest models are significantly lower than case study 1 and case
study 2. In Figures 16 and 17, the accuracy of the two models also fluctuates significantly,
and the accuracy of the other three models is more accurate. The rate values have also
decreased, but the value fluctuations are relatively small. Figure 18 reflects the AUC values
of different diagnostic models, from which it can be found that the AUC values of the
ADSD-gcForest model are basically similar to the first two cases, but other diagnostic
models have decreased. Through comparative experiments of three groups of different
bearings, it can be seen that under different noise conditions and for bearing data under
different working conditions, in one way, the ADSD-gcForest model can achieve effective
fault feature extraction, while in another way, the use of the Meta-ACON activation function
can easily and efficiently complete the self-adaptive optimization of the model structure
and realize more accurate fault diagnosis.

   
(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 15. T-SNE images obtained by ADSD-gcforest model training (Ottawa Bearing). (a) Noise 1,
(b) Noise 2, (c) Noise 3, (d) Noise 4, (e) Noise 5. (f) Noise 6.
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(a)  (b)  

Figure 16. Box plots of accuracy values under different noise conditions. (a) Noise 1, (b) Noise 2.

  
(a)  (b)  

  
(c)  (d)  

Figure 17. Box plots of accuracy values under different noise conditions. (a) Noise 3, (b) Noise 4,
(c) Noise 5, (d) Noise 6.
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Table 6. Comparison table of the accuracy (AC) and F1 values of the Ottawa dataset.

Dataset Methods N1(AC/F1) N2(AC/F1) N3(AC/F1) N4(AC/F1) N5(AC/F1) N6(AC/F1)

Dataset 1

VGG16-gcForest 56.23%/56.20% 60.39%/60.34% 63.76%/63.72% 65.63%/65.59% 68.42%/68.45% 70.28%/70.36%
Res50- gcForest 78.29%/78.26% 82.53%/82.57% 84.31%/84.59% 85.42%/85.31% 87.12%/87.18% 88.03%/87.93%

SigDSD- gcForest 91.23%/91.36% 92.39%/92.58% 94.52%/95.67% 95.26%/95.68% 96.01%/96.19% 96.75%/97.70%
ReluDSD-gcforest 91.79%/91.66% 93.42%/93.35% 95.01%/95.16% 95.76%/95.72% 96.42%/96.48% 97.03%/97.18%

PReluDSD-gcForest 92.34%/92.46% 93.44%/93.67% 95.47%/95.55% 96.12%/96.39% 97.03%/96.98% 97.35%/97.36%
ADSD-gcForest 93.42%/93.39 94.76%/94.58% 96.08%/96.06% 96.89%/96.92% 97.62%/97.58% 98.42%/98.48%

Dataset 2

VGG16-gcForest 57.62%/57.55% 59.45%/59.52% 62.45%/62.38% 64.81%/64.80% 67.02%/67.28% 69.31%/69.59%
Res50- gcForest 77.94%/77.80% 80.66%/81.56% 83.52%/84.28% 86.44%/86.50% 88.18%/88.26% 89.50%/89.53%

SigDSD- gcForest 90.46%/90.63% 92.02%/91.26% 93.25%/93.18% 94.11%/94.07% 95.47%/95.48% 96.26%/96.31%
ReluDSD-gcforest 91.04%/91.16% 92.68%/92.76% 93.82%/93.96% 94.45%/94.48% 96.06./95.89% 96.63%/96.54%

PReluDSD-gcForest 91.65%/91.77% 93.24%/93.20% 94.75%/94.79% 95.36%/95.42% 96.62%/96.59% 97.30%/97.28%
ADSD-gcForest 92.42%/92.38% 94.66%/94.76% 96.14%/97.28% 96.76%/97.02% 97.32%/97.48% 98.15%/98.24%

Dataset 3

VGG16-gcForest 56.80%/56.68% 58.55%/59.04% 62.53%/62.68% 64.33%/65.22% 66.86%/66.78% 68.42%/68.40%
Res50- gcForest 76.73%/76.55% 78.42%/78.61% 81.18%/81.26% 83.92%/83.90% 86.35%/86.42% 88.26%/88.37%

SigDSD- gcForest 89.08%/88.89% 90.91%/91.26% 92.58%/92.87% 94.27%/94.38% 95.31%/95.36% 96.26%/96.28%
ReluDSD-gcforest 89.62%/89.52% 91.54%/91.69% 93.18%/92.89% 94.82%/94.80% 96.05%/96.18% 96.86%/96.76%

PReluDSD-gcForest 90.16%/91.02% 92.32%/92.21% 94.84%/94.56% 95.47%/95.32% 96.76%/96.79% 97.32%/97.42%
ADSD-gcForest 91.85%/91.29% 93.49%/93.74% 95.68%/95.88% 96.31%/96.28% 97.45%/97.52% 98.27%/98.38%

Dataset 4

VGG16-gcForest 57.34%/57.49% 59.56%/59.63% 61.16%/61.19% 63.47%/63.30% 65.52%/65.71% 67.92%/67.94%
Res50- gcForest 75.26%/75.36% 77.56%/77.49% 80.64%/80.79% 83.94%/84.06% 85.16%/85.67% 87.85%/88.06%

SigDSD- gcForest 91.53%/91.68% 92.20%/92.34% 93.23%/94.36% 94.78%/94.82% 95.63%/95.56% 96.28%/96.34%
ReluDSD-gcforest 92.06%/92.64% 92.76%/92.84% 93.74%/93.70% 95.58%/95.88% 96.17%/96.24% 96.65%/96.69%

PReluDSD-gcForest 92.60%/91.65% 93.26%/93.36% 94.43%/94.58% 96.03%/96.15% 96.76%/96.72% 97.22%/97.36%
ADSD-gcForest 93.42%/93.62% 94.60%/94.26% 95.81%/95.68% 96.63%/96.58% 97.45%/97.26% 98.32%/98.30%

Dataset 5

VGG16-gcForest 56.85%/56.79% 58.25%/58.16% 61.83%/62.05% 62.55%/63.18% 64.67%/65.25% 66.86%/66.79%
Res50- gcForest 76.40%/76.59% 78.62%/78.59% 82.35%/83.59% 84.54%/85.69% 85.46%/85.96% 89.14%/89.19%

SigDSD- gcForest 91.01%/91.08% 93.06%/93.28% 95.15%/95.28% 95.70%/95.76% 96.02%/96.34% 96.55%/96.64%
ReluDSD-gcforest 91.57%/91.68% 93.62%/94.68% 95.65%/95.78% 96.04%/96.29% 96.66%/96.64% 97.05%/97.14%

PReluDSD-gcForest 92.02%/91.89% 94.22%/94.26% 96.03%/96.38% 96.48%/96.58% 97.21%/97.36% 97.43%/97.58%
ADSD-gcForest 92.52%/93.76% 94.76%/94.88% 96.56%/96.49% 97.03%/96.69% 97.85%/97.68% 98.42%/98.64%

Dataset 6

VGG16-gcForest 57.25%/57.64% 59.60%/60.12% 61.33%/61.24% 64.58%/64.88% 66.02%/65.89% 68.20%/67.96%
Res50- gcForest 75.05%/76.18% 77.33%/78.38% 79.62%/80.19% 82.32%/83.49% 85.58%/84.99% 88.75%/89.06%

SigDSD- gcForest 92.08%/93.16% 94.01%/93.86% 94.52%/95.67% 95.27%/95.86% 96.06%/96.18% 96.47%/96.34%
ReluDSD-gcforest 92.52%/92.36% 94.63%/94.59% 95.02%/94.98% 95.72%/95.64% 96.58%/96.59% 96.95%/96.85%

PReluDSD-gcForest 93.05%/92.96% 95.06%/94.89% 95.62%/95.57% 96.34%/96.78% 97.10%/96.68% 97.36%/97.29%
ADSD-gcForest 93.60%/93.84% 95.52%/95.67% 96.06%/95.98% 96.85%/97.93% 97.67%/97.58% 98.29%/98.36%

  

  

  

Figure 18. Comparison figures of the AUC of the Ottawa dataset under Noise 1, 2, 3, 4, 5 and 6.
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5. Conclusions

This paper proposes an adaptive ADSD-gcForest model. The model uses the VGG
network as the basic framework. Multi-scale features of input samples can be extracted
through deep separable dilated convolution, and then the CBAM to focus the core features
is combined at different scales, the Meta-ACON activation function is integrated into
all convolution layers in the network, so that the model can be optimized adaptively
according to different input data, and the gcForest as the final classifier can provide the
final result. In the experimental part of this paper, datasets of Western Reserve University
and University of Ottawa are used, including three bearing data, and it can be seen that
faults of different types of bearings under strong noise and multiple load conditions can be
effectively diagnosed by the ADSD-gcForest model. This shows that the model proposed
in this paper has good robustness. It can also be found that the method proposed in this
paper has better improved the migration ability of the model, simplified the design process
of the diagnostic model and effectively avoided the problem of repeatedly modifying the
model structure.

In modern industrial production, multiple bearings are often required to work together;
thus, the effective fault diagnosis of multiple bearings is a hot research topic. The ADSD-
gcForest model proposed in this paper can simply optimize the model structure according
to different bearing data with the help of the Meta-ACON activation function. It has a
certain industrial application value, but the addition of the Meta-ACON activation function
also increases the number of parameters of the model, which leads to a longer training time.
Therefore, how to reduce the training parameters of the Meta-ACON activation function
under the premise of ensuring high accuracy will become the focus of future research.
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Abstract: A radial basis function neural network (RBFNN), with a strong function approximation
ability, was proven to be an effective tool for nonlinear process modeling. However, in many instances,
the sample set is limited and the model evaluation error is fixed, which makes it very difficult to
construct an optimal network structure to ensure the generalization ability of the established nonlinear
process model. To solve this problem, a novel RBFNN with a high generation performance (RBFNN-
GP), is proposed in this paper. The proposed RBFNN-GP consists of three contributions. First, a
local generalization error bound, introducing the sample mean and variance, is developed to acquire
a small error bound to reduce the range of error. Second, the self-organizing structure method,
based on a generalization error bound and network sensitivity, is established to obtain a suitable
number of neurons to improve the generalization ability. Third, the convergence of this proposed
RBFNN-GP is proved theoretically in the case of structure fixation and structure adjustment. Finally,
the performance of the proposed RBFNN-GP is compared with some popular algorithms, using two
numerical simulations and a practical application. The comparison results verified the effectiveness
of RBFNN-GP.

Keywords: radial basis function neural network (RBFNN); generation performance; local generaliza-
tion error bound; self-organizing structure method; convergence analysis

1. Introduction

In recent years, with the continuous development of artificial intelligence and intel-
ligent algorithms, data-driven methods have been widely used as an effective modeling
method because they do not require complex mathematical models and high maintenance
costs. Among them, the radial basis function neural network (RBFNN) is widely used
due to its simple structure and strong nonlinear function approximation ability, especially
in the fields of pattern classification, industrial control, nonlinear system modeling and
so on [1–4]. However, there are still some problems to be solved in practice, for example,
how to extend the network performance from limited training set to invisible data set,
that is, how to design RBFNN with a good generalization ability [5,6]. The generalization
performance of RBFNN is usually measured by generalization error, which mainly includes
the approximation error caused by the insufficient representation ability of network and
estimation errors caused by a limited number of samples. In order to make the RBFNN
learnable, the generalization error should be zero as the data tends to infinity.

Due to the limitation of sample data, the network model will produce an estimation
error. In order to make the total generalization error close to zero, the number of parameters
and samples should tend to infinity to ensure the learnability of the model. Among
them, it is worth mentioning that references [5,7–10] deal with the problem of estimation
error according to different assumptions. On this basis, the sample complexity of finite
networks is studied to demonstrate that, when the data tends to infinity, the estimation

Processes 2022, 10, 140. https://doi.org/10.3390/pr10010140 https://www.mdpi.com/journal/processes175



Processes 2022, 10, 140

error tends to zero. In addition, due to the limited number of samples, even if the optimal
parameter setting is obtained, it will produce functions far from the target, resulting in
errors and a poor generalization performance [9]. To solve this problem, Barron et al. [10]
introduced the concept of an approximation and estimation bound of artificial neural
network, pointing out that, for a kind of common artificial neural network, the integral
square error between the estimation network model and the objective function is bounded,
and discussing the comprehensive influence of approximation error and estimation error
as the objective function on the network accuracy. In addition, Yeung et al. [11] developed
a new RBFNN local generalization error model to identify the classifier. By predefining the
neighborhood of training samples in the local generalization error model, the upper bound
of generalization error of invisible samples was derived. Sarraf [12] proposed a tight upper
bound of the generalization error under the assumption of twice continuously differentiable,
which was composed of the estimation error under the sample space mean and the expected
sensitivity of the error to the input change, and showed how the given upper bound could
be used to analyze the generalization error of a feedforward neural network. Although
the above methods achieved good results through the generalization error bound based
on sensitivity, they still faced challenges due to the computational complexity of partial
derivatives, and the generalization error should not only be a function of the number of
parameters; it is also important to find a better structure. In addition, Wu et.al. proposed
a self-adaptive structural optimal algorithm-based fuzzy neural network (SASOA-FNN)
in [13]. This network can improve the generalization ability of the network by minimizing
the structural risk model with the number of samples. Terada et al. [14] derived the fast
generalization error bound of deep learning under the framework developed in [15]. In the
derivation process, they only focused on the minimization of empirical risk and eliminated
the scale invariance assumption of activation function. The common feature of the above
references is that they are based on risk minimization, and accelerate the convergence speed
of the network, while ignoring the influence of the properties of different networks on the
generalization error. For example, RBFNN is essentially a local learning method. Each
hidden neuron captures the local information of a specific region in the input space by the
center and width of its Gaussian activation function [16]. However, the training samples far
away from the center of hidden neurons have no effect on the learning of hidden neurons.
Therefore, for this local learning method, finding the optimal compromise between model
accuracy and generalization error is an effective way to improve the generalization ability
of the network.

Different from the estimation error caused by the insufficient samples mentioned
above, the approximation error of the network is greatly affected by the network struc-
ture. Thus, how to obtain a suitable network structure has always been a hot topic. For
instance, Zhou et al. [17] proposed a self-organizing fuzzy neural network with hierarchical
pruning scheme (SOFNN-HPS). In SOFNN-HPS, the adaptive ability and robustness of
the prediction model were improved through the effective combination of a hierarchi-
cal pruning strategy and adaptive allocation strategy. Finally, the accurate prediction of
ammonia nitrogen, the key variable in the wastewater treatment process, is realized. To
predict the outlet ferrous ion concentration on-line, Xie et al. [18] developed a self-adjusting
structure radial basis function neural network (SAS-RBFNN). This algorithm uses the super-
vised clustering algorithm to initialize the RBFNN, and combines or segments the hidden
neurons according to the clustering distance to realize the structural self-organization of
RBFNN. In addition, Huang et al. [19] proposed a growing and pruning RBF (GAP-RBF)
method based on the significance of a neuron. For the GAP-RBF, the number of neurons
can be self-designed to realize a compact RBFNN by linking the significance of neurons
and a desired accuracy. On this basis, an improved GAP-RBF algorithm (IGAP-RBF) for
any arbitrary distribution of input training data was proposed in reference [20]. This
algorithm only adjusts the parameters of the nearest neuron to reduce the computational
complexity while ensuring the learning performance. A common feature of GAP-RBF
and IGAP-RBF is that the self-organizing strategy is based on the contribution of hidden
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neurons, and the training samples need to be known in advance. In reference [21], an
adaptive gradient multi-objective particle swarm optimization algorithm was proposed to
predict the biochemical oxygen demand, a key water quality parameter in the wastewater
treatment process. This method adopts a multi-objective gradient method and adaptive
flight parameter mechanism, which not only greatly reduces computational complexity,
but also improves generalization performance; other structure self-organization methods
are outlined in [22–25]. The advantage of the above algorithms is that they can adjust the
network parameters while adjusting the network structure, and the disadvantage is that
different parameter adjustment methods make the learning speed of the network different,
which may affect the accuracy of the network.

Most of the existing methods focus on using self-organizing strategies to obtain ap-
propriate structures, or using effective learning algorithms to obtain a higher accuracy.
However, good training accuracy is not equal to good generalization performance. There-
fore, designing an effective learning model to improve the generalization performance
of RBFNN is still an urgent problem that needs to be solved. Based on the above anal-
ysis, a self-organizing RBFNN based on network sensitivity is proposed to improve the
generalization performance. The main contributions of this method are as follows.

The generalization ability is quantified by network sensitivity. Then, an RBFNN-GP
algorithm is constructed to improve the generalization performance:

1. The convergence of the RBFNN-GP is verified in theory, which ensures its successful
application;

2. The effectiveness and feasibility of the RBFNN-GP are verified by predicting the key
water quality parameters in wastewater treatment process.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
basic RBFNN and the local generalization error bound of the network. Then, the details of
RBFNN-GP are given in Section 3. The convergence of RBFNN-GP is discussed in Section 4.
Section 5 presents the experimental results of RBFNN-GP to demonstrate its advantages.
The application field and future work direction of the proposed method are shown in
Section 6. Finally, the conclusions are given in Section 7.

2. Materials and Methods

2.1. Radial Basis Function Neural Network (RBFNN)

In general, RBFNN consists of three layers: the input layer, the hidden layer and the
output layer. A typical multiple-input, single-output RBFNN (MISO-RBFNN) is shown in
Figure 1. The MISO-RBFNN is a k-m-1 network, and each neuron in the RBFNN hidden
layer is constructed in the form of Gaussian function. The mathematical description of
RBFNN output is as follows:

Figure 1. The structure of MISO-RBFNN.
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ŷ(t) =
m

∑
j=1

wj(t)θj(t), (1)

where m is the number of hidden neurons, wj(t) is the weight between the jth hidden
layer and the output layer at time t, and θj(t) is the output of the jth hidden layer neuron,
described as:

θj(t) = e
−‖x(t)−cj(t)‖2

2σ2
j (t) , (2)

cj(t) =
[
c1,j(t), c2,j(t), · · · , cn,j(t)

]T , (3)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the input vector, cj(t) is the center vector of the jth
hidden neuron at time t, and n is the dimension of the input vector; ||x(t)−cj(t)|| is the
Euclidean distance between x(t) and cj(t), and σj(t) is the width of the jth hidden neuron at
time t.

2.2. Local Generalization Error Bound

The generalization error of the whole input space is defined as [11]:

Egen(t) =
∫
D

[ f (x(t))− F(x(t))]2 p(x(t))dx(t), (4)

where x(t) is the input vector in the input space and p(x(t)) is the unknown probability
density function of x(t). Given a training data set D = (xa(t), Fa(t)), a = 1, 2, · · · , N, N is
the number of pairs of input and output, namely the number of samples of training set.
The empirical error of network can be defined as:

Eemp(t) =
1
N

N

∑
a=1

[
f̂ (xa(t))− F(xa(t))

]2
, (5)

where f̂ (xa(t)) and F(xa(t))represent the approximate and real mapping functions between
the ath input and output in the input space, respectively. The ultimate goal of improving
the generalization ability is minimize the approximation error, and the network can directly
predict the unseen data.

Since RBFNN is a local method, for each sample xa(t) ∈ D, we can find a sample set:

XS,xa(t) = {x(t)|x(t) = xa(t) + Δx(t)}, (6)

where XS,xa(t)defines an S -neighborhood of the training sample xa(t), Δx(t)= [Δx1(t), · · · , Δxn(t)]
is regarded as perturbations, n denotes the number of input features, and S is a given number. The
samples in XS,xa(t) (except xa(t)) are regarded as unseen samples. For 0 ≤ S1 ≤ · · · ≤ Sk ≤
∞, the relationship holdsD ⊆ XS1(t) ⊆ · · · ⊆ XSk (t) ⊆ I, where I is the entire input space.
By Hoeffding’s inequality, we can derive the definition of local generalization error bound
as follows [11,26]:

Egen,S(t) =
√

Eemp(t) +
√

EXS ,Δy2(t), (7)

with:
Δy(t) = f̂ (xa(t))− F(xa(t))

EXs ,Δy2(t) = 1
N

N
∑

a=1

∫
Xs(xa(t))

(
Δy2(t)

) 1
(2S)a dx(t),

(8)

where Δy(t) is the difference between the network output and the real value; the term
EXS ,Δy2(t) is introduced in Section 3.1.
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Remark 1. Different from previous methods, to the best of our knowledge, this work is a new
attempt to obtain looser generalization error bounds by eliminating high-order terms and reducing
partial accuracy in exchange for better generalization ability.

3. RBFNN with High Generation Performance (RBFNN-GP)

The proposed RBFNN-GP, which can improve the network generalization ability, is
introduced in this section. It contains the following two parts: (1) sensitivity measurement
(SM) method and (2) structural self-organization optimization (SSO) strategy.

3.1. Sensitivity Measurement (SM) Method

Sensitivity analysis provides an effective method to evaluate the impact of different
inputs on output results, and it can accurately express the causal response between input
changes and corresponding outputs [27,28]. Different from existing studies that focus
on improving modeling accuracy or looking for indicator variables, in this study, SM is
introduced to quantify the impact of network input changes on output changes, and to
intuitively represent the sensitivity of network output to input changes. Thus, the network
structure can be adjusted accordingly. Suppose that the inputs are independent and not
identically distributed; then, from this, each input feature has its own expectation μxi and
variance, δ2

xi
:

φj(t) = w2
j (t)e

δdj
(t)/2σ4

j (t)−μdj
(t)/σ2

j (t), (9)

with:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dj(t) =

∥∥x(t)− cj(t)
∥∥2

δdj(t) = ∑n
i=1 μ

[
(xi(t)− μxi (t))

4
]
−
(

δ2
xi
(t)
)2

+ 4δ2
xi
(t)
(
μxi (t)− cji(t)

)2
+

4μ
[
(xi(t)− μxi (t))

3
](

μxi (t)− cji(t)
) (10)

and: ⎧⎨⎩ μdj(t) = ∑n
i=1

[
δ2

xi
(t) +

(
μxi (t)− cji(t)

)2
]

σj(t) = φj(t)∑n
i=1

(
δ2

xi
(t) +

(
μxi (t)− cji(t)

)2/σ4
j (t)

) . (11)

In theory, as long as the input variation is finite, we do not strictly limit its data
distribution. In this instance, we assume that the unseen samples S -neighborhood of the
training samples obey the uniform distribution, and thus we obtain δ2

Δxi
(t) = S2/3. By the

law of large numbers, the sensitivity of RBFNN is:

EXS ,Δy2(t)

= 1
N

{
∑N

a=1
∫

XS,xa
[ f (xa(t) + Δx(t))− f (xa(t))]

2 p(Δx(t))dΔx(t)
}

≈ ∑m
j=1 φj(t)

{
∑n

i=1

[
δ2

Δxi
(t)
(

δ2
xi
(t) +

(
μxi (t)− cji(t)

)2
+ 0.2δ2

Δxi
(t)
)]

/σ4
j (t)

} (12)

with:
φj(t) = σ4

j (t)ξ j(t). (13)

therefore, we can obtain:

EXS ,Δy2(t) ≈ 1
45

S4n
m

∑
j=1

ξ j(t) +
1
3

S2
m

∑
j=1

σj(t). (14)

Remark 2. Limiting cases of Egen,S(t). Clearly, when S → ∞, XS(t) → I, that is S → 0, XS(t) → D .
If 0 ≤ S1 ≤ · · · ≤ Sk ≤ S∞, the relationship D ⊆ XS1(t) ⊆ · · · ⊆ XSk (t) ⊆ I holds. Therefore,
in the case of S → ∞ , Egen(t) < Egen,S(t).
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Remark 3. Statistical performance. Compared with the regression error bound, which only uses the
effective parameters and the number of training samples, the proposed RBFNN-GP algorithm has
clear advantages, because it considers statistical characteristics, such as the mean and variance of
the training data set.

3.2. Structural Self-Organization Optimization (SSO) Strategy

In order to construct a RBFNN with a high generalization performance, an SSO
strategy is designed based on the sensitivity measurement. This SSO strategy can adjust
the structure and parameters (including center, width and weight) of RBFNN at the same
time. The self-organization strategies are shown as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c(t + 1) = c(t)− ηΔc(t)
σ(t + 1) = σ(t)− ηΔσ(t)
w(t + 1) = w(t)− ηΔw(t)

m(t + 1) =

⎧⎨⎩
m(t) + 1, σj < λ1
m(t), λ1 < σj < λ2
m(t)− 1, σj > λ2

, (15)

where σj ≥ 1, c(t + 1) = [c1(t + 1), c2(t + 1), . . . , cm(t + 1)] and σ(t + 1) = [σ1(t + 1),σ2(t + 1)
, . . . ,σm(t + 1)] are the center and width vectors of the hidden neuron at time t + 1, w(t + 1)
is the weight of output layer at time t + 1, m(t) represents the number of hidden layer
neurons at time t, and m(t) ≥ 1, η is the learning rate, λ1 ≤ −2/3S2nξm, ξm is the ratio of
statistical output and width of the mth neuron (λ1 is a dynamic threshold and the statistical
residual is negative), and λ2 ≥ 0 are used to ensure the convergence performance of the
network (here the value is twice that of the input dimension). It should be noted that,
only when λ1 and λ2 acquire the equals sign at the same time, will the number of neurons
remain unchanged, that is, the structure of the neural network holds. The variables of Δc(t),
Δσ(t), Δw(t) present the changes of the centers, widths and weights at time t, respectively.
We obtain: ⎧⎨⎩

Δc(t) = [Δc1(t), Δc2(t), · · · , Δcm(t)]
Δσ(t) = [Δσ1(t), Δσ2(t), · · · , Δσm(t)]
Δw(t) = [Δw1(t), Δw2(t), · · · , Δwm(t)]

, (16)

where Δcm(t) = [Δcm,1(t), · · · , Δcmn(t)] is the change of the center of the mth neuron at
time t, and Δσm(t) and Δwm(t) are the changes of width and weight of the mth neuron at
time t, respectively. Moreover, the updates details of the parameters are:⎧⎪⎪⎨⎪⎪⎩

Δcj(t) = ∂Eemp(t)/∂cj(t) =
(

x(t)− cj(t)/σ2
j

)
wjθj

(
1 − θj

)
e(t)

Δσj(t) = ∂Eemp(t)/∂σj(t) =
[(

x(t)− cj(t)
)2/σ3

j

]
wjθj

(
1 − θj

)
e(t)

Δwj(t) = ∂Eemp(t)/∂wj(t) = θje(t)

. (17)

Based on the above analysis, the detailed steps of neuron growth and pruning are
given below.

3.2.1. Growth Stage

If σj < λ1, new neurons are added to the neural network to reduce the approximation
error and improve the generalization performance. At this time, the number of neurons
becomes, and the parameter of new neurons is:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cnew = x(t)

σnew = 1
m

m
∑

j=1
σi(t)

wnew = (y(t)− ŷ(t))e

n
∑

i=1

(xi(t)−ci,new(t))2

2σ2
i,new(t)

, (18)
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where cnew, σnew and wnew represent the center, width and weight of the new neuron,xi(t)represents
the ith element in the input vector at time t, ci,new(t) and σi,new(t) are the ith elements of
the center and width of the new neuron at time t, respectively. After structural adjustment,
the parameters are updated as:⎧⎨⎩

c(t + 1) = [c(t); cnew]
σ(t + 1) = [σ(t); σnew]
w(t + 1) = [w(t); wnew]

, (19)

where c(t + 1), σ(t + 1) and w(t + 1) are the center, width and weight of RBFNN at time
t + 1, respectively.

3.2.2. Prune Stage

If σj > λ2, the jth neuron with the least information in the hidden layer is deleted. In
this way, the network complexity is reduced under the premise of ensuring generalization
ability. At this time, the number of neurons becomes m(t − 1), and the parameters of the
new neurons are: ⎧⎨⎩

cj(t + 1) = 0
σj(t + 1) = 0
wj(t + 1) = 0

, (20)

where cj(t + 1), σj(t + 1) and wj(t + 1) represent the center, width and weight of the jth
neuron at time t + 1, respectively. After structural adjustment, the parameters of the ith
neuron were as follows: ⎧⎪⎨⎪⎩

ci(t + 1) = ci(t)
σi(t + 1) = σi(t)

wi(t + 1) = wi(t) +
wjθj(t)

θi(t)

. (21)

Among them, the ith neuron is the neuron closest to the Euclidean distance from the
jth neuron, ci(t + 1), σi(t + 1) and wi(t + 1) are the center, width and weight of the ith
neuron at time t + 1.

Remark 4. Because there is only one hidden layer in the model, the network structure is simple,
which greatly reduces the error accumulation in the process of back propagation. Furthermore, no
extra parameters are added during network training, which reduces the amount of computation.
Therefore, the stability of the network is well guaranteed.

4. Convergence Analysis

Another important problem of neural network structure is convergence analysis,
which not only affects the application in practical engineering, but also reflects the gener-
alization ability of neural network. If the neural network cannot guarantee convergence
or meet convergence conditions, it is difficult to realize the successful application of the
neural network. In addition, for RBFNN-GP, its convergence is not only related to the
parameter optimization algorithm, but also related to structural changes. Therefore, this
paper analyzes the convergence from three aspects: convergence in the stable stage, growth
stage and deletion stage.

Hypothesis 1 (H1). The center c of the hidden layer, the width σ of the hidden layer and the
input–output weight w satisfy the boundedness, that is ‖c‖ ≤ μc, ‖σ‖ ≤ μσ, ‖w‖ ≤ μw, where
μc,μσ,μw are positive real numbers.

Hypothesis 2 (H2). There is a set of “optimal” network parameters, c∗, σ∗ and w∗, that is, the
optimal center, width and weight.
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4.1. Convergence Analysis of RBFNN with Fixed Structure

For the convenience of discussing its convergence, the differential equation of e is
expressed as follows [29].

.
e(t) = −e(t) + w∗T(t)θ∗(t)− wT(t)θ(t), (22)

where Δθ = θ∗ − θ, Δw = w∗ − w, Δθ is the change in the hidden layer neuron output,
Δw is the change of weight. Equation (22) is reformulated as:

.
e(t) = −e(t) + w∗T(t)Δθ(t) + ΔwT(t)θ(t). (23)

In order to transform the nonlinear output of the network into a partially linear form,
the Taylor expansion of Δθ is:

Δθ = ϕT
c
(c∗ − c) + ϕT

σ
(σ∗ −σ) + Ω, (24)

where Ω is the higher order infinitesimal of Taylor expansion.

Theorem 1. Suppose the number of hidden-layer neurons of RBFNN is fixed, and the network
parameters are updated according to Equtions (14)–(16); when t → ∞, e(t) → 0 , the convergence
of the network is guaranteed.

Proof of Theorem 1. The Lyapunov function is defined as:

V(e, c,σ,w) =
1
2

(
e2 + ΔcTΔc + ΔσTΔσ+ ΔwTΔw + ΔvTΔv

)
(25)

with: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δc = c∗ − c

Δσ = σ∗ −σ

Δw = w∗ − w
.
v = e
Δv = v∗ − v = w∗T(ϕT

c
c∗ + ϕT

σσ
∗ + Ω

)− wT(ϕT
c

c∗ + ϕT
σσ

∗)
(26)

where v is the compensator and v∗ is the optimal compensator. The partial derivative of
the Lyapunov function is:

V′(e, c,σ,w) = ee′ + Δc
′ T

Δc + Δσ
′ T

Δσ+ Δw
′ T

Δw + Δv
′ T

Δv. (27)

According to Equations (22)–(26), we can obtain:

V′(e, c,σ,w)
= ee′ + (c∗ − c)′TΔc + (σ∗ −σ)′TΔσ+ (w∗ − w)′TΔw + (v∗ − v)′TΔv

= −e2 + e
{

w∗T[ϕT
c
(c∗ − c) + ϕT

σ
(σ∗ −σ) + Ω

]
+ ΔwTθ−

wT[ϕT
c
(c∗ − c) + ϕT

σ
(σ∗ −σ)

]− ϕT
wΔw

}
− e(v∗ − v)

= −e2 + e
[
v∗ − v + ΔwT(−ϕT

c
c − ϕT

σ
σ+ θ

)− ϕT
wΔw

]− e(v∗ − v)
= −e2

(28)

and:
V′(e, c,σ,w) ≤ 0. (29)

Thus,V′ is the seminegative definite in the above space. In light of the Lyapunov
theorem, we can obtain:

lim
t→∞

e(t) = 0. (30)

So far, the convergence of a fixed-structure RBFNN is proved. �
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4.2. Convergence Analysis of RBFNN with Changeable Structure

Theorem 2. If the network structure is self-organizing in the learning process, then the parameters
are adjusted according to Equations (14)–(21). When t → ∞, e(t) → 0 , the convergence of RBFNN
based on sensitivity can be guaranteed.

Proof Theorem 2. The structure self-organization process of RBFNN is divided into two
parts: structure growth and structure pruning stages. �

4.2.1. Growth Stage

At time t, there are m neurons in the hidden layer of self-organizing RBFNN based
on sensitivity, and the network error is em(t). When the growth condition is satisfied, the
number of hidden layer neurons is increased by 1. Then, the number of hidden layer
neurons is m + 1, and the output error of the RBFNN is:

em+1(t) =
1
2
(ŷ(t)− ŷm+1(t))

2, (31)

where em+1(t) is the network error of m + 1 hidden neurons, ŷm(t) and ŷm+1(t) represent
the network output before and after the addition of hidden layer neurons, respectively.
According to Equations (17)–(19), we can obtain:

em+1(t) =
1
2

[
ŷ(t)−

(
m

∑
j=1

wj(t)θj(t) + wm+1(t)θm+1(t)

)]2

= 0. (32)

so:
em+1(t) = 0. (33)

It can be seen that when a new neuron is added to the hidden layer, the conver-
gence speed of the network is accelerated based on the parameter setting of the newly
added neurons.

4.2.2. Prune Stage

When the pruning condition is satisfied, the jth neuron in the hidden layer is deleted,
and the error of the network is em−1(t). Thus, the error of the network can be rewritten as:

em−1(t) = ŷm(t)−
(

m

∑
l=1

wlθl(t)− wjθj(t)

)
, (34)

where ŷm(t)represents the network output when the number of hidden layer neurons is m:

em−1(t) = ŷm(t)−
(

m
∑

l=1,l �=i
wlθl(t)− wjθj(t) +

(
wi + wj

θj(t)
θi(t)

)
θi(t)

)

= ŷm(t)−
(

m
∑

l=1,l �=i
wlθl(t) + wiθi(t)

)
= 0

(35)

In summary, the error of the neural network remains unchanged before and after
the jth neuron is deleted, that is, the process of deleting neurons does not destroy the
convergence of the original neural network.

5. Experimental Studies

This section describes the experiments conducted to assess the effectiveness of the
generalization performance of the RBFNN-GP algorithm. The experiment includes one
benchmark and two practical problems, namely, the approximation of the Mexican straw
hat function and the prediction of key water quality parameters, ammonia nitrogen and
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membrane permeability in the wastewater treatment process. In addition, the good gener-
alization performance of the proposed RBFNN-GP is further illustrated by comparisons
with the existing six algorithms.

5.1. Benchmark Example A

In this case, the RBFNN-GP algorithm is applied to approximate the Mexican straw
hat function, which is a benchmark problem used in [30,31] to checkout many prevalent
algorithms. The Mexican straw hat function is:

y = sin(
√

x2
1 + x2

2)/
√

x2
1 + x2

2. (36)

In the training phase, the training samples are x = {x1, x2; y}N , where x1, x2 are
stochastic and generated within the scope of (−2π, 2π), N = 2100 is the number of training
samples; the testing samples are {x1, x2, y}M, where M = 700 is the number of testing
samples, and the learning rate is set to η = 0.003.

The experimental results are shown in Figure 2, where Figure 2a shows the number
of hidden neurons in the training process. It can be seen that the proposed RBFNN-GP
can adjust the network structure by pruning or increasing the number of neurons in the
learning process. Figure 2b shows the change trajectory of the root-mean-square error
(RMSE) in the learning process. Meanwhile, the prediction error results and output error
surface are depicted in Figure 2c,d. It is clear that the proposed RBFNN-GP can approx-
imate the Mexican straw hat function with small predicting errors. In order to further
prove the excellent generalization ability of the proposed method, the prediction results of
the RBFNN-GP are compared with those of the other dynamic neural networks based on
structural adjustment, such as SASOA-FNN [12], SOFNN-HPS [17], SAS-RBFNN [18], AG-
MOPSO [21], ASOL-SORBFNN [23] and the RBFNN with a fixed structure (fixed-RBFNN).
In order to make the comparison more meaningful, all algorithms in this experiment use
the same data set, including training samples and test samples, and ensure that the initial
number of neurons is the same. In addition, all of the algorithms run 10 times, and then
take the average value to make the results more convincing. The results are shown in
Table 1, where Max. is the maximum and Dev. is the deviation.

As can be seen from Table 1, the proposed RBFNN-GP requires fewer hidden nodes
and output errors and has a better generalization ability than the self-organizing network
based on information minimization and structural risk minimization. This mainly depends
on the fact that the method considers not only the number of effective parameters in the
network, but also the mean and variance of input data.

Table 1. Comparison results with other self-organizing methods.

Methods
No. of
NNs

CPU Time(s) Testing RMSE Training RMSE
Mean Dev. Mean Dev. Max. Mean

Fixed-RBFNN 8 100.10 0.096 0.031 0.0037 0.040 0.042
SASOA-FNN [12] 8 108.29 0.031 0.029 0.0043 0.033 0.041
SOFNN-HPS [17] 12 131.02 0.076 0.047 0.0053 0.063 0.057
SAS-RBFNN [18] 9 119.35 0.024 0.039 0.0051 0.059 0.052
AGMOPSO [21] 8 106.29 0.028 0.024 0.0037 0.039 0.041

ASOL-SORBFNN [23] 8 135.46 0.031 0.035 0.0046 0.041 0.040
RBFNN-GP 7 100.36 0.012 0.027 0.0033 0.029 0.039
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Figure 2. Approximation results of the RBFNN-GP in example A. (a) Number of neurons; (b) The
training RMSE value in example A; (c) Test examples output error in example A; (d) Test examples
output error surface.

5.2. Benchmark Example B

In this example, the effectiveness of the RBFNN-GP is applied for the Mackey–Glass
chaotic time series prediction problem, which is a famous benchmark [32,33]. The discrete
expression of the time series is given by:

x(t + 1) = (1 − a1)x(t) + a2x(t − τ)/
[
1 + x10(t − τ)

]
x(t + 1) = f [x(t), x(t − 6), x(t − 12), x(t − 18)]

(37)

where a1, a2, τ are constants, x(0) represents the initial value, and a1 = 0.1, a2 = 0.2, τ = 17,
x(0) = 1.2. In the training phase, 1000 data samples are extracted from t = 21 to 1021.
Additionally, 500 samples are used as training samples and 500 samples as test samples.
The preset training error is 0.001, the initial learning rate η = 0.02, and the number of
neurons is 5. It should be noted that the other parameters in all comparison methods are
the same, and the running results of the experiment are shown in Figure 3.

From Figure 3a, it can be seen that there are several increasing and decreasing stages in
the learning process of RBFNN-GP. In the early period of training, the number of neurons
changes frequently, and the network structure is unstable. Figure 3b shows the comparison
between the predicted output of RBFNN-GP and the real value. Figures 3c,d show the
prediction error value of the network and the RSME value in the training stage, respectively.
It is worth mentioning that the reason why the RSME curve is so smooth is closely related
to the sensitivity of the network. Since the mean and variance of the training samples are
fully considered, the stability of the network is improved.
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Similarly, Table 2 shows the comparative experimental results with the other four
methods: SASOA-FNN [12], SOFNN-HPS [17], SAS-RBFNN [18], AGMOPSO [21], ASOL-
SORBFNN [23] and fixed-RBFNN. As shown in Table 2, the optimal number of hidden
nodes obtained by using the RBFNN-GP is only six, and the mean and deviation of the
test error are minimal in the comparison method. Since the parameters are updated
at the same time in the process of structural adjustment to avoid repeated calculations,
the computational complexity is greatly reduced compared with the dynamic structural
adjustment method based on information strength. Nevertheless, compared with other
self-organizing networks based on structural risk, the proposed RBFNN-GP takes a little
longer time to calculate the mean and variance information of input samples. However,
we still have reason to believe that RBFNN-GP demonstrates a good compromise between
generalization ability and training accuracy.

Figure 3. Prediction results of the RBFNN-GP in example B: (a) Number of neurons; (b) Fitting
results of the RBFNN-GP in example B; (c) Test output error value; (d) The training RMSE value in
example B.
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Table 2. Comparison results with other self-organizing methods.

Methods
No. of
NNs

CPU Time(s) Testing RMSE Training RMSE
Mean Dev. Mean Dev. Max. Mean

Fixed-RBFNN 8 104.10 0.069 0.036 0.0039 0.035 0.312
SASOA-FNN [12] 7 126.29 0.030 0.029 0.0041 0.028 0.124
SOFNN-HPS [17] 11 116.3 0.076 0.054 0.0066 0.068 0.261
SAS-RBFNN [18] 10 123.97 0.026 0.034 0.0045 0.031 0.219
AGMOPSO [21] 8 119.89 0.029 0.027 0.0039 0.031 0.217

ASOL-SORBFNN [23] 8 133.91 0.065 0.043 0.0044 0.040 0.251
RBFNN-GP 6 105.36 0.022 0.026 0.0032 0.019 0.215

5.3. Permeability Prediction of Membrane Bio-Reactor

Membrane bio-reactor (MBR) is a new wastewater treatment technology combining
membrane separation technology and biotechnology, which is widely used in wastewater
treatment process (WWTP). However, in the process of MBR wastewater treatment, mem-
brane pollution will shorten the service life of the membrane and cause an unnecessary
loss of process energy consumption. It is of great practical significance to correctly predict
the permeability of the membrane and increase its working efficiency [34–36]. Therefore,
the proposed RBFNN-GP is applied to predict the permeability of MBR in WWTP. The real
data of the experiment come from a wastewater treatment plant in Beijing, China. After
disposing of the abnormal data, 500 samples were obtained and normalized.

In this experiment, 50 training samples and 50 test samples are selected to test the
performance of RBFNN-GP. In order to remove the correlation between variables, partial
least squares method was used to select nine variables from twenty-two variables as the
input of RBFNN-GP. Due to the wide range of membrane bioreactor permeability, the
number of iterations is T = 200, the learning rate is η = 0.003, and the time length is h = 10.
The intuitive prediction results are shown in Figure 4. Figure 4a shows the comparison
results between the actual and predicted values of membrane bioreactor permeability, and
the prediction error is shown in Figure 4b. It can be seen from Figure 4 that the proposed
RBFNN-GP has a good prediction performance for the permeability of the MBR, and the
prediction error within the range [−4, 3].

Figure 4. The permeability prediction results for MBR in WWTP: (a) Fitting results of RBFNN-GP for
MBR; (b) Test output error for MBR.

Moreover, Table 3 shows the comparison results of SASOA-FNN [12], SOFNN-HPS [17],
SAS-RBFNN [18], AGMOPSO [21], ASOL-SORBFNN [23] and Fixed-RBFNN in predicting
the permeability of MBR. It can be seen from Table 3 that, under the same iteration times,
the learning time of SASOA-FNN [12] and RBFNN-GP is almost the same. However, the
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accuracy of the latter is better than that of the former. Thus, we have sufficient reasons
to believe that the RBFNN-GP method shows a great improvement in training accuracy,
calculation speed and generalization ability compared with the above methods.

Table 3. Comparison results with other self-organizing methods.

Methods
No. of
NNs

CPU Time(s) Testing RMSE Training RMSE
Mean Dev. Mean Dev. Max. Mean

Fixed-RBFNN 8 105.65 0.037 0.033 0.0034 0.037 0.031
SASOA-FNN [12] 8 109.21 0.035 0.028 0.0033 0.021 0.024
SOFNN-HPS [17] 11 126.34 0.032 0.042 0.0049 0.025 0.032
SAS-RBFNN [18] 9 121.62 0.042 0.025 0.0038 0.029 0.035
AGMOPSO [21] 8 114.25 0.031 0.030 0.0042 0.031 0.114

ASOL-SORBFNN [23] 11 125.31 0.040 0.028 0.0041 0.040 0.127
RBFNN-GP 6 108.24 0.032 0.025 0.0040 0.022 0.022

6. Discussion

6.1. Computational Complexity

Computational complexity is an important indicator for evaluating the model. For the
proposed RBFNN-GP, the calculation involved is closely related to the training process of
and N. Suppose [x(t), y(t); t = 1, · · · , N] is a set of training samples. When the structure of
RBFNN-GP is k-m-l (k represents the input variable, m represents the number of hidden
layer neurons, and l represents the output variable), the computational complexity of
RBFNN-GP is O[m(t)]. It can be seen that the computational burden of RBFNN-GP is
not heavy.

6.2. Future Trends

In this paper, which aims to realize the online prediction of key water quality parameter
membrane pollution in wastewater treatment process, a prediction model based on self-
organizing RBFNN is established that meets the needs of accurate prediction of key water
quality parameters in wastewater treatment process. At the same time, the self-organizing
network modeling method is developed. Due to its good generalization performance and
theoretical support, the proposed method can also be extended to other types of networks,
such as multi-input, single-output fuzzy neural networks and multi-input, multiple-output
RBF neural network.

7. Conclusions

In this paper, an RBFNN-GP algorithm is proposed to improve the model general-
ization ability. Firstly, the upper bound of the local generalization error is found, and the
network structure and parameters are adjusted within the allowable error range. Then,
a generalization error formula based on network sensitivity and approximate error is in-
troduced to improve the generalization performance, while ensuring its accuracy. Finally,
experimental validation is carried out on two different benchmark data sets and a real ap-
plication of wastewater treatment process. The results show that the RBFNN-GP algorithm
can learn robust networks with good generalization performance and compact scale. In
summary, RBFNN-GP has the following advantages:

1. With the help of sensitivity measurements and locally generalized error bounds,
the network has a statistical performance and can reasonably achieve structure self-
organization without a high dependence on sample numbers.

2. The convergence of RBFNN-GP for fixed and variable structures is guaranteed by the
thresholds λ1 and λ2. Therefore, the proposed RBFNN-GP can not only reduce the
number of additional parameters, but also decreases the computational burden.

3. Compared with existing algorithms, the proposed RBFNN-GP shows a good gen-
eralization ability in the prediction of key water quality parameters in wastewater
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treatment processes. Furthermore, this approach can be extended to other types of
networks and industrial domains.
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Abstract: In this paper, focusing on the inconvenience of variable value PID based on manual
parameter adjustment for the hydraulic drive unit (HDU) of a legged robot, a method employing
double-layer back propagation (BP) neural networks for learning the law of PID control parameters
is proposed. The first layer is used to learn the relationship between different control parameters and
the control performance of the system under various working conditions. The second layer is used to
study the relationship between the parameters of the working conditions and the optimizing control
parameters under various working conditions. The effectiveness of the proposed control method was
verified by simulation and experiment. The results showed that the proposed method can provide a
theoretical and experimental basis for the selection of control parameters, and can be extended to
similar controllers, therefore possessing engineering application value.

Keywords: legged robot; hydraulic drive unit (HDU); BP neural network; PID control

1. Introduction

Robots can walk in a variety of ways. At present, the movement forms can be roughly
divided into wheeled [1], tracked [2], wheel-foot compound [3], snake-like [4], bionic
legged [5], and so on. Compared with other types of robots, bionic-legged robots have
the characteristic of discontinuous support because they have a similar leg structure to
tetrapods. Especially when combined with hydraulic drive, which has a high power-to-
weight ratio, it not only has good adaptability to unknown and unstructured environments
but can also pass through the barrier. Therefore, this type of robot is particularly suitable
for use in complex environments in the wild.

The leg controller serves as the bottom-level controller of this kind of robot, and
each leg of the robot has several degrees of freedom controlled by highly integrated valve
cylinders, also known as the hydraulic drive unit (HDU) [6,7]. While the HDU serves as
the bottom-level controller of each leg, its control performance directly affects the control
strategy and performance of the robot. Commonly, HDU bottom-level control methods can
be divided into position control and force control. Based on bottom-level control, control
methods of the leg can be extended to compliance control, contact force control, and so
on. The above methods are not only applied in electrically driven robots such as Scara [8]
and Stewart [9], but they can also be applied to robots such as Bigdog [10], Hydraulic
quadrupedal (HyQ) [11], Light Weight Robot (LWR) [12], and Atlas [13].

This paper mainly researched the performance of the HDU in position control. The
position control system in the HDU is a kind of high-order nonlinear system. Designing a
superior control method requires a very detailed understanding of the characteristics of
the controlled system. The establishment of a mathematical model involves analysis of
the controlled system, and an accurate mathematical model can truly reflect the dynamic
characteristics of the system, fully simulate the actual system in simulation research, and
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shorten the design cycle of the control method. High-performance intelligent control
methods suitable for low-order nonlinear systems can also be used in it. However, in
order to ensure the control stability and reliability of the whole machine, such a control
method is not often used in engineering practice. The traditional control method is simple
to implement and the effect is obvious. Furthermore, the change in the control parameters
can truly reflect the system characteristics, which can be used to conduct a preliminary
analysis of the system performance. Thus, the HDU position control system is still based
on traditional PID control.

A neural network is a computational model that comprehensively simulates the hu-
man brain neural network in terms of structure, mechanism, and function [14–16]. By virtue
of its complex nonlinear network structure and efficient iterative learning performance,
it has obvious advantages compared with other nonlinear optimization methods. Some
research works have shown that neural networks can fit arbitrary nonlinear functions. Swic
presented an original machine learning-based automated approach for controlling the pro-
cess of machining of low-rigidity shafts using artificial intelligence methods. Three models
of hybrid controllers based on different types of neural networks and genetic algorithms
were developed [17]. Rego deals with the problem of finding the control Lyapunov func-
tion that keeps the system stable. To find the Lyapunov function, this paper proposes the
use of reinforcement learning with two neural networks based on the Lyapunov stability
theory [18]. Nobahari focuses on developing a nonlinear controller based on the convo-
lutional neural networks to control different plants. It is assumed that prior knowledge
of the plants is very limited and there are only sensory input–output data history of the
plants [19]. Wang studied the hysteresis nonlinear characteristics of piezoelectric actuators,
a novel hybrid modeling method based on long short-term memory (LSTM) and nonlinear
autoregressive with external input (NARX) neural networks is proposed [20].

The neural network is used to learn the relationship between parameters and control
performance under different working conditions, and to find out the optimal control param-
eters under the current working conditions, which can improve the control accuracy of the
system under various working conditions and eliminate the work of manual adjustment of
parameters. Compared with variable value PID based on manual parameter adjustment,
the method based on neural networks can output parameters with continuous variation
according to different working conditions, thereby improving the accuracy of control. In
addition, the latter method is not restricted by a specific number of conditions in the expert
table. Thus, the applicable scope of the improved expert table holds great significance for
the application of engineering.

The structure and the contribution of this paper is organized as follows: in Section 2,
a mathematical model is established for the HDU position control system. In the model,
many factors are carefully considered, such as servo valve nonlinearity, flow-pressure
nonlinearity, and load characteristics. In Section 3, aiming at the inconvenience of variable
value PID based on manual parameter adjustment in engineering practice, a method of
employing double-layer back propagation (BP) neural networks for learning the law of
PID control parameters is proposed, and the simulation results are shown, this is the main
contribution of our paper. In Section 4, experimental research is carried out on the HDU
performance test platform.

2. Introduction to the Sampling System

The HDU is a highly integrated system that includes a servo valve-controlled cylinder,
which is the legged robot joint actuator. Figure 1 shows the quadruped robot prototype,
the single leg hydraulic drive system, and the HDU.
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Figure 1. Photos of the quadruped robot prototype, the single leg, and the HDU.

Figure 2 shows a block diagram of the closed-loop position control system for the
HDU in Figure 1c. The block diagram takes into account such factors as the flow-pressure
nonlinearity of the servo valve, the asymmetry of the servo cylinder, the complex variability
of the load, and so on. The detailed derivation process is shown in Appendix A.1.

Figure 2. Block diagram of the HDU position closed-loop control system.

The parameters definition and simulation values of the above system are shown in
Table 1. The purpose of this paper is to present a new PID controller based on neural
networks instead of the PID control parameter in Figure 2.
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Table 1. Parameters definition and simulation values of HDU position control system.

Parameter/Input Value Unit Parameter/Input Value Unit

Servo valve gain Kaxv 4.5 × 10−4 m/V Density of hydraulic oil ρ 0.867 × 103 kg/m3

Natural frequency of servo valve ωsv 628 rad/s Position sensor gain KX 200 V/m

Damping ratio of servo valve ζsv 0.82 - Internal leakage coefficient
of servo cylinder Cip

2.38 × 10−13 m3/(s·Pa)

Area of the cavity without rod A1 5.98 × 10−4 m2 Conversion mass mt 1.1315 kg
Area of the cavity with rod A2 3.97 × 10−4 m2 Effective bulk modulus βe 8 × 108 Pa

Volume of inlet oil cavity pipe Vg1 1.1 × 10−6 m3 Load stiffness K 0 N/m
Volume of return oil cavity pipe Vg2 2.0 × 10−7 m3 Load damping Bp 2000 N·s/m

Total stroke of the servo cylinder
piston L 0.07 m Conversion coefficient Kd 1.248 × 10−4 m2/s

Initial position of the servo cylinder
piston L0

0.035 m Input position Xr - m

System supply oil pressure ps 5 × 106 Pa Output position Xp - m
System return oil pressure p0 0.5 × 106 Pa Control deviation e - m

External leakage coefficient of servo
cylinder Cep

0 m3/(s·Pa) Load Force FL 0 N

3. Adaptive PID Parameter Control Method Based on a Double-Layer BP
Neural Network

3.1. Learning Strategy Design

Neurons are the basic unit of neural networks and their main function is to simulate
the functional characteristics of biological neurons [21–23]. Considering that the input of
the neural network in this paper comes from the sensor data of the control system, a Tanh
activation function in the Sigmoid activation functions (the latter is generally referred to as
a Sigmoid activation function) was selected as the activation function of neurons.

In order to make the system automatically output the optimal control parameters
according to the working conditions, it is necessary to design the appropriate neural
network structure first. If the neural network is too simple, the fitting accuracy will be
reduced; if the neural network is too complex, the convergence will be slow, and even
the generalization ability of the neural network will be reduced. Therefore, it is very
important to design a neural network with an appropriate structure. Then, designing
learning strategies to enable the neural network to learn effectively are needed, including
the learning objects of the neural network, the selection of samples, the initial processing
of samples, and iterative learning methods. In this section, a parameters learner based
on a double-layer BP neural network is designed, which can realize automatic parameter
learning. The overall learning strategy is shown in Figure 3, and the details are explained
in the following sections.

3.2. Generation of Learning Samples

The sample is a very important part of neural network learning problems and is the
source of learning for effective information. The sample data in this paper were driven
by position control system simulation or experimental collection in the HDU. The data
contained random interference generated by the system itself, and the range of each
variable data was also different, so it was necessary to process the data before it was used
for learning. The sample data used in this section had to meet the following conditions:

(1) The samples should cover a wider range of working conditions and control parameters
as much as possible, and the performance indexes under the corresponding working
conditions should be obtained through experiment or simulation, so that the neural
network can learn the characteristics of the control system and improve the adaptive
ability of the control method.

(2) The sample should be universal. The hydraulic system is a highly nonlinear time-
varying system, and the dynamic characteristics of the system change with the differ-
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ent external conditions. Collection of data should be carried out after the hydraulic
system has been started up and run stably under good heat dissipation conditions.

(3) The data interval of each variable in the sample should be as consistent as pos-
sible, which is beneficial for improving the convergence speed and stability of
neural networks.

Figure 3. Learning steps of the adaptive parameters in the neural network.

According to the above conditions and principles, a plan of learning data for the PID
position control system of the HDU was designed in this section. By generating the input
signals and change signals of the control parameters, then importing them into the control
model, automatic data acquisition was realized.

In order to prove the effectiveness of the proposed learning strategy, part of the overall
working conditions of the HUD were selected for verification to reduce unnecessary work,
and then the control parameter range was simplified based on the simulation results of the
PID control system shown in Section 2. The working conditions and control parameters
finally determined in this section are shown in Table 2.

Table 2. Collection range of simulation learning samples.

Parameters Range of Value

Working conditions Sinusoidal frequency 0.5~4 Hz, with a step of 0.5 Hz
Sinusoidal amplitude 1~10 mm, with a step of 1 mm

Control parameters
P gain 7~14, with a step of 0.5
I gain 2
D gain 0
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The final working conditions are generated by the permutation and combination of
sinusoidal frequency, sinusoidal amplitude, and P gain in Table 2, and there are eight
groups of sinusoidal frequency, 15 groups of P gain, 10 groups of sinusoidal amplitude,
and 1200 working conditions in total. In order to avoid the mutual influence between
two adjacent working conditions, each working condition runs for two cycles, with an
overall sampling time of approximately 1632 s. Moreover, the mean of the control deviation
absolute value at each moment of the last cycle is taken as the basis for evaluating the
control performance.

The desired input signals in the simulation are shown in Figure 4. Due to the long
sampling time, sinusoidal curves at different frequencies are relatively dense, as shown in
the Figure 4 below.

The working conditions parameters include sinusoidal frequency and amplitude
of input signal, the control parameters are P gain of the PID control method, and the
performance index in the system is the mean of control deviation absolute value. It can
be seen that in Table 2, there is an order of magnitude difference in the size of these three
variables, which is not beneficial to the learning of the neural network. Therefore, the
above three variables should be appropriately transformed to make their interval roughly
between 0 and 1. So, the concept “data after processing” in the following section is the data
after normalization.

Figure 4. Desired position signals of input in the simulation.

The P gain of controller in the simulation is shown in Figure 5.

Figure 5. P gain of controller in the simulation.
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3.3. Performance Fitting of Control System

In Section 3.2, the mean of control deviation e under different working conditions and
control parameters are obtained through simulation. In this section, neural network 1 is
used to fit the relationship among the working condition parameters, control parameters,
and the mean of control deviation e. Then, neural network 1 can be used to calculate
the mean of control deviation e with different control parameters under each working
condition. The parameters with the minimum of mean of control deviation e under each
working condition are selected, so as to complete the optimization process of the control
parameters.

(1) Input and output of the neural network

Neural network 1 was designed. The input of the neural network is a three-dimensional
vector, which represents the sinusoidal frequency and amplitude of the input signal and P
gain, respectively, and the output is the mean of control deviation e of the corresponding
set of parameters.

u1 =

[
iam

5
;

f req
2

;
pgain − 5

15

]
(1)

(2) Selection of the loss function

The loss function is the index used to evaluate the model fitting effect, and the goal of
neural network learning is to make the loss function as small as possible. The input and
output variables of the neural network are continuous values, and the mean square error
function is adopted. Its expression is as follows:

J(θ) =
m

∑
i=1

(hθ(xi)− yi)
2

(2)

(3) Determination of the neural network structural parameters

The total number of neural network layers is three, including the input layer, the
output layer, and a hidden layer. The number of neurons in the hidden layer is 13, and
the activation function is Sigmoid, the overall structure of neural network 1 is shown
in Figure 6. The sinusoidal input signals and control parameters are shown in Table 2,
the output of the neural network (mean of control deviation e) indicates the mean of the
control deviation e between the input signals and output signals of the HDU position
control system.

Figure 6. The overall structure of neural network 1.

(4) Training of neural network 1

The input of neural network 1 after data processing is shown in Figure 7.
The output of neural network after data processing is shown in Figure 8.
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The processed data are fed into the neural network for learning until the gradient is
less than 10−6 or the mean square deviation is less than 10−4.

3.4. Optimization of the Control Parameters

The sinusoidal frequency and amplitude of the input signals can be determined for
a specific working condition. Taking the control parameters as independent variables,
mapping the relationship established through neural network 1 as a function and the
mean of control deviation e as the dependent variable, the relationship between the control
performance and control parameters can be obtained under this working condition. There
is an obvious rule between the control performance and the control parameters, so the
control parameters with better control performance can be obtained through the curves.
The optimal control parameters under the working conditions are selected according to
certain rules and neural network 2 is used to learn the relationship between the working
condition parameters and the selected control parameters. After learning, the neural
network is used to adaptively change the control parameters according to the working
conditions, so as to realize the adaptive control. The specific learning model was designed
as follows:

(1) Selection of the neural network input and output

The purpose of neural network 2 is to calculate the control parameters that meet the
rules under different working conditions. Therefore, the input of the neural network are
the sinusoidal frequency and amplitude of the input signals, which are generated through
permutation and combination with a sinusoidal frequency of 0.4~2 Hz and a sinusoidal
amplitude of 1~5 mm, forming at the intervals of 0.01 Hz and 0.05 mm, respectively. The
neural network output are the selected control parameters which could control the model in
Figure 2 instead of the PID. The overall structure of neural network 2 is shown in Figure 9.

(2) Rules of parameter selection

The control parameters with the minimum of control deviation e are selected to form
the output sample of the neural network.

(3) Training of neural network 2

Neural network 2 consists of three layers, including a hidden layer and 10 neurons
in this hidden layer. The activation function is Sigmoid, and the loss function is the mean
square error.

3.5. Simulation

Neural network 2, after training, was applied to the HDU position control system.
Then, the updated schematic diagram of the HDU position control system is shown
in Figure 10.

While the working conditions parameters changed, the neural network 2 automatically
adjusted the control parameters according to the working condition to realize the adaptive
control. Based on the MATLAB/Simulink model of the system established in Section 2,
this section introduces a MATLAB function module for the neural network 2 calculation,
and the results were output to the PID control model.

In the simulation, the initial position of the hydraulic cylinder piston was 25 mm, the
P gain was the output of neural network 2, the I gain was 2, and the D gain was 0. The
simulation working conditions are shown in Table 3.

The ideal control deviation (reference signal) was 0 which means that there is no
control deviation between the input and the output. The comparison curves with constant
and variable value PID are shown in Figure 11 (adaptive PID control based on a neural
network is neural network PID for short, control deviation e is deviation e for short).

The control deviation of the adaptive PID control system based on the neural network
(the blue curves in Figure 11) is shown in Table 4 (maximal relative deviation is equal to
the ratio of the maximum deviation to the sinusoidal amplitude).
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Figure 7. Input of neural network 1 after data processing.
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Figure 8. Output of the neural network after data processing.

Figure 9. Overall structure of neural network 2.

Figure 10. Updated schematic diagram of the HDU position control system.

Table 3. Working conditions in simulation.

Amplitude

Frequency
0.5 Hz 1 Hz 2 Hz

2 mm Working condition 1 - -
4 mm - Working condition 2 -
6 mm - - Working condition 3
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Figure 11. Comparative deviation curves of different PID control methods.

Table 4. Control deviation of the adaptive PID control system based on a neural network.

Working Conditions Working Condition 1 Working Condition 2 Working Condition 3

Maximal
deviation/mm 0.026 0.096 0.28

Maximal relative
deviation 1.3% 2.4% 4.67%

According to the simulation results, under the three working conditions, the maximum
relative deviation of the adaptive PID method based on a neural network decreased by an
average of 31.3% compared with the maximum relative deviation of the constant value PID
and increased by 7.87% compared with the maximum relative deviation of the variable
value PID. The deviation of the adaptive PID method based on a neural network was
greatly reduced compared with the constant value PID, which approached the effect of the
manually adjusted PID control parameters and maintained a good control performance
under multiple working conditions. Due to space limitations, additional simulation results
are not included in this paper.

4. Experiments

4.1. Introduction to the Experimental System

The experiment of this study was carried out on the performance test platform of
the HDU. The platform is mainly composed of two HDUs, which are installed in the top.
The HDU on the left adopts the position of closed-loop control, while the HDU on the
right adopts the force closed-loop control position. In the experiment, the HDU on the left
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carried out the performance test of the relevant control algorithm, and the HDU on the
right carried out the zero-force servo control. In each experiment, the working conditions
of the left and right HDUs were the same. The photo of the experimental platform is shown
in Figure 12a.

Figure 12. Photos of the experimental platform.

The controller used in the experiments is a semi-physical simulation experiment
platform dSPACE-MicroLabBox shown in Figure 12b. MicroLabBox is supported by a
comprehensive dSPACE software package, real-time interface (RTI) for Simulink (Math-
Works, Natick, America) for model-based I/O integration and the experiment software
ControlDesk, which provides access to the real-time application during run time by means
of graphical instruments.

After the control algorithm in MATLAB/simulink, we used the code to automatically
generate the target C code that could then be identified by the controller. Compared with
manual C coding, combining MATLAB/simulink with the encoder can quickly design
and test the control algorithms, avoid the complexity of the underlying C code writing,
and improve the speed of the controller implementation stage. In the experiment, the data
sampling frequency was 1 KHz. Figure 13 is the schematic diagram of the experimental
signal input and data acquisition.

4.2. Collection of Learning Samples

As a joint actuator of robots, the HDU is the key to determining the motion perfor-
mance of robots. According to the movement of the robot during trotting, pacing, and other
gaits, the proposed sampling range of experimental learning samples is shown in Table 5.

The final working conditions were obtained by permutation and combination in
the table, with a total of 324 groups of working conditions, and each group of working
conditions ran for three cycles. In order to avoid mutual influence between adjacent
conditions, the mean of control deviation for the last two working conditions was taken as
the evaluation of the performance index. The generated system input signal sequence is
shown in Figures 14 and 15, and the signal acquisition interface is shown in Figure 16.
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Figure 13. Schematic diagram of the experimental signal input and data acquisition.

Table 5. Collection range of the learning samples.

Parameters Range of Value

Working conditions Sinusoidal frequency 0.5~2 Hz, with a step of 0.3 Hz
Sinusoidal amplitude 2~5 mm, with a step of 1 mm

Control parameters
P gain 10~50, with a step of 5
I gain 2
D gain 0

Figure 14. Input position signals of the input in the experiment.
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Figure 15. Control parameter signals in the experiment.

Figure 16. Signal acquisition interface.

4.3. Optimization of the Control Parameters

The samples obtained in Section 4.2 were used to learn the relationship among the
working conditions parameters, the control parameters, and the control performance, and
the neural network structure and data processing methods used were the same as those in
Section 3.3. The training performance of the neural network is shown in Figure 17.

Figure 17. Training performance of the neural network.

204



Processes 2021, 9, 1475

It can be seen that after the completion of neural network learning, the value of
the mean square error reached the magnitude 10−4, which well estimated the control
performance and laid a foundation for the next calculation of control parameters.

The control performance index of the HDU was set as follows: the maximum of control
deviation e should not exceed 5% of the sinusoidal amplitude. Based on the obtained neural
network, the corresponding system performance under different working conditions and
the control parameters were calculated, and the control parameters required to meet the
control performance requirements were selected. The working condition parameters were
taken as the input of neural network 2, and the selected control parameters were taken
as the desired output of neural network 2. The sinusoidal frequency of the input signal
was 0.5–2 Hz and the amplitude was 5–15 mm, and the input signals were generated by
permutation and combination at intervals of 0.01 Hz and 0.05 mm, respectively.

The neural network structure and data processing methods used were the same as
those used in Section 3.4. The learning performance of neural network 2 is shown in Figure 18.

Figure 18. Training performance of the neural network.

It can be seen that the neural network converged rapidly, and the value of the mean
square error reached an order of magnitude 10−1 after learning, which meets the require-
ments of controlling parameter adjustment accuracy.

4.4. Experiment of Adaptive PID Control Based on a Neural Network

In order to verify the performance of the adaptive PID control based on a neural
network, an experiment was carried out on the performance test platform of the HDU
under the working conditions shown in Table 3, and the control performance of the system
under different working conditions was tested.

The initial position of the piston of the HDU was 25 mm, and the oil source pressure
of the system was 5 MPa. The working conditions were input into the adaptive PID control
system based on the neural network, and a deviation curve was obtained, which was
compared with the deviation curve of the PID control with constant and variable values, as
shown in Figure 19.
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Figure 19. Comparative deviation curves of the different PID control methods.

The control deviation of the adaptive PID method based on the neural network (the
blue curves in Figure 19) is shown in Table 5.

As shown in Figure 19 and Table 6, due to the setting of the parameter selection rules,
the control deviation was slightly larger than that of the constant value PID under working
condition 1. It greatly improved over that of the constant value PID method under the other
two working conditions. The maximum relative deviation of the three working conditions
reduced by 22.13% on average compared with that of the constant value PID method,
which is close to the deviation level of the variable value PID method. On the whole, the
control accuracy of the adaptive PID method based on a neural network was between the
constant value PID method and the variable value PID method, which is slightly worse
than the variable value PID method. However, its control accuracy was better than that
of the constant value PID method, which has good adaptability and can maintain better
control accuracy under various working conditions.

Table 6. Control deviation of the adaptive PID control system based on a neural network.

Working Conditions Working Condition 1 Working Condition 2 Working Condition 3

Maximal
deviation/mm 0.1 0.21 0.3

Maximal relative
deviation 5% 5.25% 5%
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According to the proposed method in this paper, more parameter information corre-
sponding to working conditions can be learned, and the same research idea can be extended
to other control systems with similar structures. Moreover, based on this double-layer
BP neural network, other “machine learning” methods such as deep deterministic policy
gradient (DDPG) could be researched.

5. Conclusions

In this paper, an adaptive PID control method using a double-layer BP was designed.
Neural network 1 is used to fit the relationship among the working parameters, the control
parameters, and the control performance. Neural network 2 is used to fit the relationship
between the working condition parameters and the selected control parameters, and to
realize the adaptive adjustment of the PID control parameters according to the working
condition parameters. The results showed that the designed method can automatically
adjust the control parameters in the learning range and the working conditions near
it, and it has a certain adaptability. It basically achieved the desired control precision.
Compared with the constant value PID method, the deviation was reduced by 31.3%, and
the performance was close to that of the variable value PID. Avoiding the disadvantage of
the variable value PID requiring repeated manual adjustment of parameters, it provides
practical value in engineering.
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Appendix A.

Appendix A.1. Mathamatical Model of HDU Position Closed-Loop Control System

Whether the electro-hydraulic servo valve can output the corresponding flow and
pressure under the control of the electrical analog signals is the core of the electro-hydraulic
servo control system, and whether the model is accurate or not has a great influence on the
overall modeling accuracy. The general modeling method for the electro-hydraulic servo
valve is linearization at a specific working point (usually at zero position of the servo valve).
However, this method cannot accurately reconstruct the characteristics of the servo valve
in all working areas. In order to improve the accuracy of the model, the nonlinear factors
of pressure and flow for the electro-hydraulic servo valve are considered in this paper, and
the flow equations of the electro-hydraulic servo valve were obtained as follows:

The inlet oil flow of the servo valve is:

q1 =

{
Kdxv

√
ps − p1 xv ≥ 0

Kdxv
√

p1 − p0 xv < 0
(A1)

The return oil flow of the servo valve is:

q2 =

{
Kdxv

√
p2 − p0 xv ≥ 0

Kdxv
√

ps − p2 xv < 0
(A2)
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The equivalent flow coefficient Kd is expressed as:

Kd = CdW

√
2
ρ

(A3)

For the convenience of expression and research, let:

K1 =

{
Kd

√
ps − p1 xv ≥ 0

Kd
√

p1 − p0 xv < 0
(A4)

K2 =

{
Kd

√
p2 − p0 xv ≥ 0

Kd
√

ps − p2 xv < 0
(A5)

According to Equations (A1), (A2), (A4), and (A5), the flow equations of the servo
valve can be written.

The inlet oil flow of the servo valve is:

q1 = K1 · xv (A6)

The return oil flow of the servo valve is:

q2 = K2 · xv (A7)

The response of the servo valve is often much higher than that of the hydraulic power
components. In order to simplify the analysis and design of the dynamic characteristics
in the system, the transfer function of the electro-hydraulic servo valve is equivalent to a
second-order oscillation link, and the transfer function of the spool position and the input
voltage of servo valve is obtained in Equation (A8).

Xv

Ug
=

KaKxv
s2

ω2 +
2ζ
ω s + 1

(A8)

The hydraulic cylinder is a component of the hydraulic actuator, the final carrier of
the output power of the hydraulic system, and the control object of the electro-hydraulic
servo valve. Its dynamic characteristics largely determine the performance of the system.
Assuming that the connecting pipe diameter between the servo valve and the hydraulic
cylinder is large enough, the pressure loss, fluid quality influence, and pipeline dynamic
characteristics are all ignored; the hydraulic cylinder pressure in the working cavity is
equal, the oil bulk modulus and the oil temperature are constant, and the internal and
external leakage of the hydraulic cylinder are laminar flow, then the flow equations of the
two working cavities for the asymmetric hydraulic cylinder can be obtained.

The rodless cavity flow of the asymmetric hydraulic cylinder and the volume of the
servo valve to the rodless cavity are:{

q1 = A1
dxp
dt + Cip(p1 − p2) +

V1
βe

dp1
dt

V1 = V01 + A1xp
(A9)

The rod cavity flow of the asymmetric hydraulic cylinder and the volume of the servo
valve to the rod cavity are:{

q2 = A2
dxp
dt + Cip(p1 − p2)− Cep p2 − V2

βe

dp2
dt

V2 = V02 − A2xp
(A10)
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The inlet or return oil cavities of the HDU are all set inside the servo cylinder body.
Considering the difference of the initial position for the piston in the servo cylinder, the
initial volume of the rodless and rod cavities can be obtained as:{

V01 = Vg1 + A1L0
V02 = Vg2 + A2(L − L0)

(A11)

Considering the coulomb friction force of the hydraulic cylinder is very small relative
to the load force, the coulomb friction force is included in the load force and not considered
separately. According to Newton’s second law, the dynamic equilibrium equation on the
piston is:

A1 p1 − A2 p2 = mt
dx2

p

dt
+ Bp

dxp

dt
+ Kxp + FL (A12)

The transfer function between the feedback voltage of the position sensor and the
position of the piston rod in the servo cylinder is:

Up

xp
= KX (A13)

A block diagram of the position closed-loop control system of the HDU can be obtained
by combining Equations (A1)–(A13), which is shown in Figure 2 in Section 2.

Appendix A.2. Neuron Model

Let the input of neurons be an n-dimensional vector, u1, u2, · · ·, un, and let the vector
u = [u1; u2; · · ·un] represent the input of neurons. Neurons assign different weights to each
input element, and the final input is obtained after summing, which is called the net input:

z =
n

∑
i=1

wiui + b = wTu+b (A14)

where w = [w1; w2; · · ·wn] is the n-dimensional weight vector and b is the offset value.
In the human brain, different input signals cause the neurons to produce different

electrical signals. Artificial neurons use a nonlinear function to simulate this function and
finally obtain the output value of the neuron x:

x = f (z) (A15)

where f (·) is referred to as an activation function.
The introduction of the activation function improves the ability of expression and

learning in neural networks. Derivable activation functions can use numerical optimization
methods to update the network parameters, and self-defined activation functions can limit
the scope of input and output in neural networks, keeping the overall calculation domain
within a reasonable range, then improving the stability of the learning.

Sigmoid activation functions are S-shaped on the whole, closing to linear near 0 and
tending to saturate at both ends [24,25]. The commonly used Sigmoid activation functions
can be divided into logistic activation functions and Tanh activation functions.

Logistic activation functions are expressed as:

σ(x) =
1

1 + e−x (A16)

It can be seen that the standard logistic activation functions can map the data from the
real interval to the scope of 0 and 1. After a certain transformation, the input can cover the
whole range of data for the sensors in the control system, and the output can be limited to
a certain effective interval, which can be continuously derivable.
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Tanh activation functions are expressed as:

Tanh(x) =
ex − e−x

ex + e−x (A17)

The standard Tanh activation functions can map data from the real interval to the
scope of −1 and 1, which can be used to control the output control value in the system.
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Abstract: The current research concerns the group acceptance sampling plan in the case where (i) the
lifetime of the items follows the Marshall–Olkin Kumaraswamy exponential distribution (MOKw-E)
and (ii) a large number of items, considered as a group, can be tested at the same time. When the
consumer’s risk and the test terminsation period are defined, the key design parameters are extracted.
The values of the operating characteristic function are determined for different quality levels. At the
specified producer’s risk, the minimum ratios of the true average life to the specified average life
are also calculated. The results of the present study will set the platform for future research on
various nano quality level topics when the items follow different probability distributions under the
Marshall–Olkin Kumaraswamy scheme. Real-world data are used to explain the technique.

Keywords: Marshall–Olkin Kumaraswamy; consumer’s risk; group acceptance plan

1. Introduction

It is now an established fact that nanotechnology affects our daily lives like never
before. Advancement in nanotechnology might never have been possible without the
use of appropriate statistical methods. Ref. [1] presented a detailed review of the use of
statistical methods in nanoscale applications. Wherever we rely on destructive tests for
testing the quality of products, sampling is the only way out. For selecting a representative
sample, traditional sampling techniques (simple random sampling, systematic sampling,
etc.), and their hybrids are used. For the nano process, however, new sampling techniques
have been created [1]. With a smaller sample size and good use of the sampling plan,
we can obtain a more precise inference and save money on sampling. In the manufacturing
area, sampling plans are employed to decide on the acceptance or rejection of the incoming
or outgoing batches based on some pre-specified quality, which is commonly known
as lot sentencing. The size of the sample and the duration of the experiment are the
two most critical factors for design engineers to consider, and both must be optimized.
Acceptance sampling plans can help to achieve this optimization. Simple acceptance plans
give us the minimum sample size to be used for testing. In this case, it is presumed
that a single item is evaluated in a tester at a time, in order to maximize both cost and
time. Ref. [2] posited the use of group to cut back on the amount of time and money
invested on research. When more than one item is checked in a tester, the set of items
is considered a group, justifying the name Group Acceptance Sampling Plan (GASP).
As GASP is combined with truncated life testing, the result is known as a GASP based on
truncated life test, which assumes that a product’s lifespan matches a certain probability
distribution. The attributes group acceptance sampling plan was originally established
by [3] for the truncated life test, assuming that the lifetime of each item followed the Weibull
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distribution. For the given values of producer and consumer risks, the number of groups
and acceptance numbers are obtained simultaneously in such a sampling plan.

When the product followed various forms of probability distributions, some authors
worked on a GASP based on a truncated life test. For instance, ref. [3] considered the inverse
Rayleigh and log-logistic distributions, ref. [4] the extended Lomax distribution, ref. [5] the
Marshall–Olkin (MO) extended Weibull distribution, ref. [6] the generalized exponential
distribution and finally, and [7] the odd generalized exponential log-logistic distribution.

Since 1997, there has been a surge of interest in designing new distributions based
on baseline distributions and composite approaches, with the prospect of incorporating
new parameters. Indeed, the inclusion of parameters has proven to be helpful in terms
of exploring skewness and tail properties, as well as enhancing the goodness-of-fit of
the created family. For an exhaustive list of references on extended family of probability
distributions, see [7]. Additionally, ref. [8] offered a detailed explanation of how new
families of univariate continuous distributions are formed by using additional parameters.
The most relevant source for the present study’s theoretical foundation is [9], where the
authors developed the Kumaraswamy MO (KwMO) family of distributions, by using the
MO [10] and the cumulative distribution function (cdf) as a baseline distribution in the
Kumaraswamy-G family by [11], and studied its many properties. The second most relevant
study is [12], which developed the MO Kumaraswamy-G (MOKw-G) family of distributions.
It was based on the Kumaraswamy-G family cdf as the baseline distribution in the MO
extended family, and studied its various properties at length. The primary goal of this
paper is to further improve the GASPs for the MO Kumaraswamy exponential distribution
(MOKw-E). As sketched in [12], the basic interests of considering the MOKw-E in this
context are as follows: (i) the MOKw-E extends the modeling capabilities of the exponential
distribution, and some of its powerful exponentiated versions, via a simple ratio scheme
with several strategically well placed tuning parameters, (ii) the MOKw-E has a strong
physical interpretation in terms of order statistics; it corresponds to the distribution of the
time to the first failure of a component in a series system with N independent components,
where N can be modeled by a random variable following a geometric distribution and the
lifetime of a component that can be modeled by a random variable with the Kumaraswamy
exponential distribution (Kw-E), (iii) thanks to the MO scheme, the MOKw-E directly
benefits from strong stochastic ordering properties, and (iv) diverse sub-distributions of
the MOKw-E have been proved to be particularly efficient to analyze lifetime data of
various kinds (see [13,14]). As a result, we suggest that the MOKwE is an ideal candidate
distribution for GASP.

For the current study, the median is taken as the quality parameter. We can refer
to [15], which states that the median is a better-quality parameter for a skewed distribution
than the mean. Since the MOKw-E is a skewed distribution, percentile point shall be
employed as the quality parameter. Hence, the main purpose of the present study is to
offer a GASP based on truncated life test assuming that the lifetimes of a product follow
the MOKw-E developed by [12] with known shape parameters. Scrolling through the
literature, the authors were not able to find GASP in the context of the MOKw-E. The GASP
for the MOKw-E is constructed, satisfying specific consumer’s and producer’s risks at some
specific quality level. Furthermore, the minimum number of groups and approval number
needed for a given customer risk and test termination time are calculated for a given group
size. The results of the present study will set a platform for future research based on the
proposed sampling plan for studying nano quality level (NQL) when products follow
different probability distributions under the MO Kumaraswamy family scheme.

Format of the Paper

The remainder of this paper is structured as follows. In Section 2, we establish the
theoretical background of MOKw-G and how the probability distribution function (pdf), cdf,
and quantile function of MOKw-E are worked out. Section 3 addresses the design of GASP
for the lifetime percentiles under a truncated life test. Section 4 provides a summary of the
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proposed approach as well as real-world data examples. Finally, Section 5 summarizes the
observations and addresses several possible future consequences.

2. Marshall–Olkin Kumaraswamy Exponential (MOkw-E) Distribution

First, let us recall the pdf, cdf, and quantile function of MOKw-G from which the pdf,
cdf, and quantile function of MOKw-E are derived. For in-depth mathematical derivations,
see [12]. The pdf MOKw-G is listed by:

f MOKwG(t) =
αabg(t)G(t)a−1[1 − G(t)a]b−1[

1 − α
[
1 − G(t)a]b

]2 (1)

where a and b constitute shape parameters with a, b > 0, α is the tilt parameter for the
extended family of distributions with “α > 0”, α = 1 − α, and G(t) is the cdf of a baseline
distribution with pdf g(t). Then, the cdf of MOKw-G is given by:

FMOKwG(t) =
1 − [1 − G(t)a]b

1 − α
[
1 − G(t)a]b (2)

and the pth quantile function tp of MOKw-G is taken form [12] as:

tp = G−1

[
1 −

{
1 − αp

1 − αp

} 1
b
] 1

a

(3)

Using the exponential distribution as a baseline, the pdf, cdf, and the quantile function
for MOKw-E can be worked out by substituting the pdf, cdf, and the quantile function
of the exponential distribution in Equations (1)–(3). That is, we consider g(t) = λe−λt,
and G(t) = 1 − e−λt, λ > 0, t > 0. Thus, the pdf of MOKw-E is given by:

f MOKwE(t) =
αabλe−λt[1 − e−λt]a−1

[
1 − (1 − e−λt)a

]b−1

[
1 − α

[
1 − (1 − e−λt

)a
]b
]2 (4)

and the cdf of MOKw-E is given by:

FMOKwE(t) =
1 −

[
1 − (1 − e−λt)a

]b

1 − α
[
1 − (1 − e−λt

)a
]b (5)

Since the pth quantile of the exponential distribution is obtained as tp = − 1
λ log[1 − p],

the pth quantile function tp of MOKw-E using Equation (3) is:

tp = − 1
λ

log

⎡⎢⎣1 −
{

1 −
(

1 − αp
1 − αp

) 1
b
} 1

a

⎤⎥⎦. (6)

3. Description of the Gasp

The design parameters of a GASP are now obtained in the context of MOKw-E.
The steps for implementing the group acceptance plan and obtaining the design parameters
were followed from [3,16], and consist of:

• Selecting ‘g’ number of groups, and allocating predefining r items to each group. Thus,
the sample size for a lot is obtained as ‘n’ = g × r.
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• Selecting ‘c’ with reference to the acceptance number for a group with experiment
time t0.

• Simultaneously performing the experiment for ‘g’ groups and recording the number
of failures for each group.

• Accepting the lot if no more than ‘c’ failures occur in all groups.
• Truncating the experiment and refusing the lot if more than ‘c’ failures occur in

any group.

Thus, the proposed GASP is defined by two design parameters (g, c) for a given r.
From Equation (5), it can be seen that the cdf of MOKw-E depends on α, t, a, and b and
the median life of MOKw−E is given by Equation (6). It would be appropriate to calculate
the termination time t0 as t0 = a1m0, where a1 denotes a certain constant and m0 refers to
the specified life. For instance, if a1 = 0.5, the experiment time is half that of the specified
life, or, if a1= 3, the experiment time is three times that of the specified life. In this setting,
the probability of accepting a lot is:

Pa(p) =

[
c

∑
i=0

(
r
i

)
pi(1 − p)r−i

]g

, (7)

where ‘p’ refers to the probability that an item in a group fails before t0, and this probability
of failure is derived by inserting Equation (6) in Equation (5).

Based on Equation (6), we set

m = − 1
λ log

⎡⎣1 −
{

1 −
(

1 − αp
1−αp

) 1
b
} 1

a

⎤⎦.

Let η = log

⎡⎣1 −
{

1 −
(

1 − αp
1−αp

) 1
b
} 1

a

⎤⎦
Now, substituting λ = − η

m and t = a1m0 in Equation (5), the probability of failure is
given by:

p =
1 −

[
1 − (1 − e−λt)a

]b

1 − α
[
1 − (1 − e−λt

)a
]b

which can be expressed as:

p =
1 −

[
1 −

{
1 − eηa1(m/mo)

−1
}a]b

1 − α
[
1 −

{
1 − eηa1(m/mo)

−1
}a]b

For chosen a and b, p can be determined when a1 and r2 =
m
m0

are specified. The ratio
of a product’s mean lifetime to the specified lifetime m

m0
can be used to express the product’s

quality level.
All that is required now is to minimize ASN = n = g × r, subject to the following

constraints:

Pa(p1| m
m0

=r1)
=

[
c

∑
i=0

(
r
i

)
pi

1(1 − p1)
r−i

]g

≤ β (8)

and

Pa(p 2| m
m0

=r2)
=

[
c

∑
i=0

(
r
i

)
pi

2(1 − p2)
r−i

]g

≥ 1 − α1 (9)

215



Processes 2021, 9, 1066

where r1 and r2 denote the means ratio at the consumer’s risk and at the producer’s
risk, respectively. Here, α1 and α should not be confused; as stated earlier, α is the tilt
parameter for the extended family of distributions. The probabilities of failure to be used
in Equations (8) and (9) are as follows:

p1 =
1 − [1 − {1 − eηa1}a]b

1 − α
[
1 − {1 − eηa1}a]b (10)

and

p2 =
1 −

[
1 −

{
1 − eηa1(m/mo)

−1
}a]b

1 − α
[
1 −

{
1 − eηa1(m/mo)

−1
}a]b (11)

Both Equations (10) and (11) above are extracted from Equation (9).

4. Discussion and Example

4.1. Discussion

The design parameters under GASP for different values of the α (1.25 and 1.50) are
presented in Tables 1 and 2. The code in R is provided in Appendix A. The values of
r = 5 and 10 are considered. Then, it is noticed that a reduction in consumer’s risk, β,
leads to a rise in the number of groups. Furthermore, as r2 increases, the number of groups
rapidly decreases. However, after a certain point, even though the number of groups and
acceptance numbers remain constant, the probability of accepting a lot begins to rise. The ta-
ble also shows the impact of a1. As an example, observe that, with β = 0.25, a1 = 0.5, r2 = 6,
α = 1.25, and, for r = 5, a total of eight groups, i.e., 8 × 5 = 40 number of units, are necessary
on the life test. Additionally, when r = 10, then only two groups, i.e., 2 × 5 = 10 number of
units, are necessary for the life test. As a result, in this case, 10 groups would be preferable.
Table 2 reports α = 1.50. According to the reported values, increasing the shape parameter
value results in a smaller group size for the associated plan. For the considered GASP, un-
der the MOKw-E and using median lifetime as the quality parameter, the number of groups
decreases and the OC values (P(a)) increase when the true median life increases. This is pre-
sented in Table 1 for various values of the parameters (α = 1.25, β = 0.01, r = 10, and a1 = 1.0)

m/m0 = r2 4 6 8
G 11 6 3
C 5 4 3

P(a) 0.9653 0.9758 0.9793

To cross check the results shown in Tables 1 and 2, an example from [17] is considered.
Suppose that the lifetime of ball bearings placed on a test follow MOKw-E, with the shape
parameter α = 1.25, and the mean specified life of the ball bearings is 2000 cycles. When the
true mean life is 2000 cycles, the consumer faces a 25% risk, while the producer faces a 5%
risk when the true mean life is 4000 cycles. Now, an experimenter wants to run a 1000-cycle
experiment with 10 units in each group to see if the ball bearings’ mean life is longer
than the specified life. In this context, we have α = 1.50, m0 = 2000 cycles, a1 = 0.5, r = 10,
β = 0.25, r1 = 1, producer’s risk = 0.05, and r2 = 4. In addition, from Table 2, we have g = 39
and c = 3. This implies that 195 units (n = g × r) must be drawn, with five units assigned
to each of the 39 groups. If no more than three units fail in each of these groups before
1000 cycles, the mean life of the ball bearings will be statistically assured to be greater
than the specified life. If a quality control engineer wants to test the hypothesis that ball
bearings have a life span of 4000 cycles but a true average life of four times that, he or she
can test 39 groups of five units each; if fewer than three units fail in 1000 cycles; as a1 = 0.5
and the mean life length is in thousands of cycles, the engineer will infer that the life is
more than 4000 cycles with 95 percent confidence. Therefore, the lot under investigation
should be accepted.
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Table 1. GASP for a = 1, b = 1, and α = 1.25, showing minimum g and c.

β r2

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

g c P(a) g c P(a) g c P(a) g c P(a)

0.25

2 - - - - - - - - - - - -
4 41 3 0.9852 8 3 0.9678 3 3 0.9693 2 4 0.9620
6 8 2 0.9809 3 2 0.9552 2 2 0.9552 1 3 0.9743
8 8 2 0.9914 3 2 0.9786 2 2 0.9972 1 3 0.9897

0.10

2 - - - - - - - - - - - -
4 67 3 0.9760 83 4 0.9863 13 4 0.9840 6 5 0.9809
6 13 2 0.9691 13 3 0.9869 5 3 0.9870 3 4 0.9878
8 13 2 0.9861 4 2 0.9715 3 2 0.9681 2 3 0.9794

0.05

2 - - - - - - - - - - - -
4 88 3 0.9686 107 4 0.9823 17 4 0.9792 8 5 0.9746
6 16 2 0.9621 16 3 0.9839 7 3 0.9818 4 4 0.9838
8 16 2 0.9829 5 2 0.9645 3 2 0.9681 2 3 0.9794

0.01

2 - - - - - - - - - - - -
4 134 3 0.9526 165 4 0.9729 26 4 0.9683 11 5 0.9653
6 134 3 0.9892 25 3 0.9749 10 3 0.9741 6 4 0.9758
8 25 2 0.9734 25 3 0.9910 10 3 0.9907 3 3 0.9793

Remark: The cells with hyphens (-) indicate that a very large sample size is needed.

Table 2. GASP for a = 1, b = 1, and α = 1.50, showing minimum g and c.

β r2

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

g c P(a) g c P(a) g c P(a) g c P(a)

0.25

2 - - - - - - - - - - - -
4 39 3 0.9803 9 3 0.9553 3 3 0.9853 5 5 0.9786
6 8 2 0.9747 9 3 0.9877 3 3 0.9888 1 3 0.9668
8 8 2 0.9886 9 3 0.9726 2 2 0.9716 1 3 0.9860

0.10

2 - - - - - - - - - - - -
4 65 3 0.9674 109 4 0.9762 13 4 0.9763 7 5 0.9701
6 12 2 0.9623 15 3 0.9797 5 3 0.9814 4 4 0.9773
8 12 2 0.9826 5 3 0.9547 3 2 0.9576 2 3 0.9721

0.05

2 - - - - - - - - - - - -
4 85 3 0.9575 142 4 0.9691 17 4 0.9691 9 5 0.9617
6 16 2 0.9501 20 3 0.9730 7 3 0.9741 5 4 0.9717
8 16 2 0.9768 20 3 0.9898 3 2 0.9576 3 3 0.9585

0.01

2 - - - - - - - - - - - -
4 132 3 0.9876 218 4 0.9530 25 4 0.9549 10 5 0.9607
6 125 3 0.9846 30 3 0.9597 10 3 0.9632 7 4 0.9606
8 24 2 0.9654 30 3 0.9848 10 3 0.9862 5 3 0.9872

4.2. Example

We consider now a data set which consists of a sample of 50 observed values of break-
ing stress of carbon fibers given by [18]. The unit is Gba. The data set can be expanded as
follows: {1.12,0.17,0.64,4.32,1.22,0.37,1.16,1.42,0.09,1.67,0.13,0.25,0.08,0.04,2.35,0.20,0.78,0.34,
1.02,0.17,1.76,2.39,0.50,1.35,3.36,0.45,0.90,2.92,6.53,1.62,7.46,3.19,2.49,1.40,7.49,0.57,0.14,0.63,
5.23,0.71,0.68,0.12,0.09,3.47,5.93,1.82,4.20,7.29,3.13,3.41}.

The maximum likelihood estimates with standard errors (in parentheses) of the four
parameters of MOKw−E for the data are λ̂ = 0.2978 (0.5117), â = 0.9356 (0.2371), b̂ = 1.2805
(0.6596), and α̂ = 0.6361 (0.5377). The ‘maximum distance’ between the data and the fitted
MOKw−E is 0.0681 with a p-value of 0.9743, according to the Kolmogorov–Smirnov (K–S)
test. Figure 1 depicts the histogram of the data with the estimated pdf, the empirical cdf
with the estimated cdf, the probability–probability (P–P) plot, and the quantile–quantile
(Q–Q) plot. Figure 2 completes Figure 1 by considering the total time on test (TTT) plot
to have some information regarding the underlying hazard rate function (hrf) and the
estimated hazard rate function.
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Figure 1. Examples of fits of MOKw-E for the carbon fibers dataset: (a) histogram fitted by the estimated pdf, (b) empirical
cdf fitted by the estimated cdf, (c) P–P plot, and (d) Q–Q plot.

Figure 2. Plot of (a) TTT, and (b) the estimated hrf (ehrf) for the carbon fibers data set.

Figure 1 shows that MOKw-E has a good fit for the carbon fibers data set, whereas
Figure 2 displays the total time on test (TTT) plot and the estimated hrf that the given
data set has a decreasing hazard rate. Thus, MOKw-E provides a reasonable fit of the data.
The plan parameters for the 50th percentile are also calculated using fitted parametric
values and are shown in Table 3. The behavior of the plan parameters in Table 3 matches
the values of the plan parameters in Tables 1 and 2.
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Table 3. GASP for MLE â =0.94, b̂ = 1.14, and α̂ = 0.63, showing minimum g and c.

β r2

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

g c P(a) g c P(a) g c P(a) g c P(a)

0.25

2 - - - - - - - - - 17 5 9575
4 33 2 0.9785 6 2 0.9715 6 2 0.9650 3 3 0.9813
6 7 1 0.9576 6 2 0.9917 6 2 0.9896 2 2 0.9728
8 7 1 0.9764 2 1 0.9717 2 1 0.9714 2 2 0.9882

0.10

2 - - - - - - - - - - - -
4 63 2 0.9646 10 2 0.9530 31 3 0.9873 4 3 0.9752
6 63 2 0.9900 10 2 0.9861 9 2 0.9845 2 2 0.9728
8 11 1 0.9632 3 1 0.9578 9 2 0.9935 2 2 0.9882

0.05

2 - - - - - - - - - - - -
4 81 2 0.9547 62 3 0.9872 41 5 0.9832 5 3 0.9691
6 81 2 0.9872 13 2 0.9820 12 2 0.9793 3 2 0.9595
8 14 1 0.9534 13 2 0.9926 12 2 0.9914 3 2 0.9824

0.01

2 - - - - - - - - - - - -
4 138 2 0.9635 94 3 0.9806 62 5 0.9747 8 3 0.9510
6 125 2 0.9803 19 2 0.9738 18 2 0.9692 8 3 0.9896
8 125 2 0.9920 19 2 0.9892 18 2 0.9871 4 2 0.9765

5. Conclusions

This study emphasizes a GASP assuming that the lifetime of the product follows
MOKw-E. All the attention is focused on certain key plan parametric quantities. The number
of categories, ‘g’, and the acceptance number, ‘c’, are calculated by balancing the risks of
the manufacturer and the customer. For all the parametric combinations considered in this
paper, it is observed in the proposed plan that as the percentile ratio increases, g decreases,
and as the number of items in each group increases, the number of groups decreases, which
is consistent with the results given in [7].
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Appendix A

R code for the considered sampling plan.

g=sEquation(1,1000,1);c=c(0,1,2,3,4,5);lp2=double(length(g));
lp1=double(length(g));lp21=double(length(c)); lp22=double(length(c));
lp23=double(length(c));lp24=double(length(c));G1=double(length(c));
G2=double(length(c));G3=double(length(c));G4=double(length(c));
p=function(alp,p,ratio,a,b ){

nu=log(1-(((1-(1-((alp*p)/(1-(1-alp)*p)))ˆ(1/b)))ˆ(1/a)))
d=(1-((1-exp(nu*((ratio)ˆ-1)*a1))ˆa))
y=(((1-d)ˆb)/(1-((1-alp)*(1-d)ˆb)));return(y)

}
p2=round(p(2,0.5,c(2,4,6,8,10),1,1,0.5),4);
p2; p1=round(p(2,0.5,1,1,1,0.5),4);p1
for(i in 1:length(c)){

for(j in 1:length(g)){
lp2[j]=(pbinom(c[i],10,p2[2]))ˆj
lp1[j]=(pbinom(c[i],10,p1))ˆj

}
G1[i]=min(which(lp2>=0.95 & lp1<0.25));lp21[i]=round(lp2[G1[i]],4);
G2[i]=min(which(lp2>=0.95 & lp1<0.10));lp22[i]=round(lp2[G2[i]],4);
G3[i]=min(which(lp2>=0.95 & lp1<0.05));lp23[i]=round(lp2[G3[i]],4);
G4[i]=min(which(lp2>=0.95 & lp1<0.01));lp24[i]=round(lp2[G4[i]],4);

}
cbind(c,G1,lp21,G2,lp22,G3,lp23,G4,lp24).

References

1. Lu, J.C.; Jeng, S.L.; Wang, K. A review of statistical methods for quality improvement and control in nanotechnology. J. Qual.
Technol. 2009, 41, 148–164. [CrossRef]

2. Jun, C.H.; Balamurali, S.; Lee, S.H. Variables sampling plans for Weibull distributed lifetimes under sudden death testing. IEEE
Trans. Reliab. 2006, 55, 53–58. [CrossRef]

3. Aslam, M.; Jun, C.H. A Group Acceptance Sampling Plans for Truncated Life Tests based on The Inverse Rayleigh And
Log-Logistic Distributions. Pak. J. Stat. 2009, 25, 107–119.

4. Rao, G.S. A group acceptance sampling plans based on truncated life tests for Marshall-Olkin extended Lomax distribution.
Electron. J. Appl. Stat. Anal. 2009, 3, 18–27.

5. Rao, G.S. A group acceptance sampling plans for lifetimes following a Marshall–Olkin extended Weibull distribution. Stat. Appl.
2010, 8, 135–144.

6. Aslam, M.; Kundu, D.; Jun, C.H.; Ahmad, M. Time truncated group acceptance sampling plans for generalized exponential
distribution. J. Test. Eval. 2011, 39, 671–677.

7. Sivakumar, D.C.U.; Kanaparthi, R.; Rao, G.S.; Kalyani, K. The Odd generalized exponential log-logistic distribution group
acceptance sampling plan. Stat. Transit. New Ser. 2019, 20, 103–116. [CrossRef]

8. Tahir, M.H.; Nadarajah, S. Parameter induction in continuous univariate distributions: Well-established G families. An. Acad.
Bras. Ciências 2015, 87, 539–568. [CrossRef] [PubMed]

9. Alizadeh, M.; Tahir, M.H.; Cordeiro, G.M.; Zubair, M.; Hamedani, G.G. The Kumaraswamy Marshal-Olkin family of distributions.
J. Egypt. Math. Soc. 2015, 23, 546–557. [CrossRef]

10. Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential
and Weibull families. Biometrika 1997, 84, 641–652. [CrossRef]

11. Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2011, 81, 883–898. [CrossRef]
12. Handique, L.; Chakraborty, S. The Marshall-Olkin-Kumaraswamy-G family of distributions. arXiv 2015, arXiv:1509.08108.

[CrossRef]
13. Ghitany, M.E.; Al-Hussaini, E.K.; Al-Jarallah, R.A. Marshall–Olkin extended Weibull distribution and its application to censored

data. J. Appl. Stat. 2005, 32, 1025–1034. [CrossRef]
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Abstract: In this manuscript, a two-input two-output (TITO) control strategy for an exothermic
continuous chemical reactor is presented. The control tasks of the continuous chemical reactor are
related to temperature regulation by a standard proportional-integral (PI) controller. The selected set
point increases reactor productivity due to the temperature effect and prevents potential thermal
runaway, and the temperature increases until it reaches isothermal operating conditions. Then, an
optimal controller is activated to increase the mass reactor productivity. The optimal control strategy
is based on a Euler-Lagrange framework, in which the corresponding Lagrangian is based on the
model equations of the reactor, and the optimal controller is coupled with an uncertainty estimator
to infer the unknown terms required by the proposed controller. As a benchmark, a continuous
stirred tank reactor (CSTR) with a Van de Vusse chemical reaction is considered as an application
case study. Notably, the proposed methodology is generally applicable to any continuous stirred tank
reactor. The results of numerical experiments verify the satisfactory performance of the proposed
control strategy.

Keywords: exothermic chemical reactors; temperature stabilization; optimal control; optimal reac-
tor productivity

1. Introduction

The chemical reactor is widely regarded as the most important equipment in the
transformation industry since it houses chemical reactions that produce highly valuable
compounds or, conversely, degrade toxic pollutants. Given its significance, the design,
optimization, and control of chemical reactors have been an important focus for process
engineers. However, highly nonlinear behavior related to steady-state multiplicity, input
multiplicity, instabilities, and sustained oscillation, among other factors, presents diffi-
culties in the operation of these instruments [1–3]. Therefore, research on these topics
remains challenging for scientists and engineers. In particular, the control of continuous
chemical reactors has been studied for several years. One of the main control strategies
for these devices is related to temperature regulation; this is an important issue because
an appropriate temperature control strategy leads to the adequate yield of chemical prod-
ucts. Furthermore, the operation of an isotherm reactor is generally conditionally stable,
and temperature regulation is essential for process security to prevent hot points during
reactor operations [4]. Conventional proportional–integral–derivative (PID) controllers
are widely used because of their simple structures and tuning methods. Although these
devices are simple, they fail to perform well for nonlinear processes. The fundamental
requirement for these controllers is the use of a tuning algorithm to maintain the desired
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levels of outputs. In general, PID controllers are locally robust to parametric uncertainty
since their design is independent of the phenomenological model of the system, but they
are strongly dependent on tuning [5,6].

A feedback linearization controller for an exothermic reactor with a single reaction
is introduced in [7,8], but the corresponding design is based on the state-space model
of the reactors, which can be a significant drawback. However, this can be avoided by
employing observer-based uncertainty estimators, and stabilization by state feedback
has been proven effective for a well-defined domain [9,10]. Another control technique
applied to temperature regulation is input–output linearizing control, which aims to reduce
the original nonlinear control problem to a linear control problem under a differential
geometry framework, but technical difficulties may arise in constructing the required
diffeomorphisms [11,12]. Various solutions have been proposed to overcome the robustness
problem. In particular, an integral action has been added to the controller obtained from
input–output linearization to develop generic control. However, the main drawback of
this approach is the over-parameterization of the controller [13,14]. Thus, several control
strategies have been presented in the open literature, including linear and nonlinear back-
stepping control, mass concentration regulation controllers, etc. [15–18].

The necessity of high process performance has led to efforts to improve the operation of
reactors by optimizing operational trajectories, which include operation security, maximum
productivity, and optimal cost, among others, leading to the tracking trajectory control
problem, where optimal control designs have been successful. Model-based Hamiltonian
techniques have been applied to nonlinear systems as optimal control approaches. In such
cases, Hamiltonian equations must be developed, and then an adequate functional related
to the objective function and corresponding restrictions must be applied to obtain an
optimal controller for the required task. In this case, Pontryagin’s principle is applied to
determine the best possible control strategy under constraints for the state or input controls.
Although Lagrangian-based optimal control approaches have been studied as well, they
are mostly oriented to the control of mechanical systems [19].

Chemical processes frequently involve structured uncertainties and output distur-
bances. Some examples are variations in feed quality, uncertain initial and ambient condi-
tions, and uncertainty in model parameters [20,21]. Failing to account for uncertainties in
the optimal design may lead to a nonoptimal and potentially high-risk solution. Therefore,
methodologies that compensate for uncertainty in chemical processes are essential for
realizing a robust process [22–26].

To compensate for uncertainty, a probabilistic approach based on the polynomial
chaos expansion (PCE) was proposed by [27]. PCE is used to calculate an approximation of
the expected values and variances, such as the first two statistical moments of the objective
function and nonlinear inequality constraints. A similar approach is presented in [28],
which also used PCE to optimize biological networks under model parameter uncertainty.
Additionally, in [29], a multi-model approach was applied to manage uncertainties for
the optimization of semi-batch processes; in this method, multiple worst-case parameter
scenarios are selected based on a heuristic approach, but the corresponding real-time
implementation is complex due to the large algorithms and the control effort. Another
approach that is increasing in popularity is the application of the unscented transformation
(UT) for optimization under uncertainty. The UT is a method for the approximation
of the statistical moments of nonlinearly transformed probability distributions in the
context of nonlinear filtering [30]. For implementation purposes, the UT shares similarities
with certain numerical integration techniques, such as cubature rules, which are well
known in the numerical integration literature. Cubature rules are used to approximate
multi-dimensional integrals and have been applied for optimization under uncertainty
(see [31,32]).

However, the above procedures can lead to complex control structures, often with
high computing requirements. Heuristic optimization is another control approach, which
does not usually involve assumptions about the problem to be optimized. The heuristic
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approach can search large spaces of candidate solutions to identify optimal or near-optimal
solutions at a reasonable computational cost, but it is unable to guarantee either feasibility
or optimization, and, in many cases, it does not indicate how close a certain feasible solution
is to the optimum [33–35]. A wide range of direct search methods have been developed
from heuristic optimization, such as genetic algorithms, evolutionary programming, differ-
ential evolution, genetic programming, evolutionary strategy, particle swarm optimization,
and artificial bee colonies [36,37]; however, a theoretical analysis of convergence is not
available, which is a major shortcoming [16,38]. A variety of approaches considering
uncertainties in the optimization of chemical processes have been reported in the open
literature [39,40].

Therefore, this work proposes a method to increase reactor productivity by employ-
ing standard temperature regulation with an appropriate set point via a PI controller.
The proposed method increases reactor productivity via thermal effects until reaching
an isothermal operating condition. After that, an optimal control law is applied in the
Euler–Lagrange framework, in which the corresponding Lagrangian is based on the state
equations of the reactor. This allows the construction of a controller for optimal reactor
productivity as an objective function. However, this controller is based on the kinetic reac-
tion rate, which is unavailable. To overcome this drawback, a reduced-order uncertainty
estimator is coupled with the proposed optimal controller. The proposed method results
in the satisfactory operating performance of the reactor and increases the corresponding
productivity of the desired chemical product.

2. Mathematical Model of a Continuous Stirred Tank Reactor(CSTR)

In general, let us consider an exothermic CSTR model. According to mass and energy
conservation principles, the reactor model represents the following system:

ẋ1 = ER(x1, x2) + (x1,in − x1)uc (1)

ẋ2 = θ(x2,in − x2) + ΔHT R(x1, x2) + γ(uT − x2) (2)

where x1 ∈ Rn denotes the concentration vector of the chemical species; x2 ∈ R is
the reactor temperature; E ∈ Rn×m denotes the stoichiometric matrix; R(x1, x2) :=
R1(x1)R2(x2) ∈ Rn represents the vector of reaction rates, with R1(x1) := diag(R1,i(x1) ∈
Rm×m) and R2(x2) ∈ Rm; ΔH ∈ Rm defines the vector of reaction enthalpies; the positive
defined real scalar uc := F/V denotes the quotient between the inlet flow F and reactor
volume V; γ represents the heat transfer coefficient; and uT is the coolant temperature (the
manipulable control variable). The system (1)–(2) is a standard model that satisfies general
conditions for the design of controllers for chemical reactors (see, for instance, the classical
contribution by [41]).

As an application case study, let us consider the following chemical pathway from the
Van de Vusse reaction [42]:

A
k1→ B

k2→ C (3)

2A
k3→ D (4)

This chemical reaction pathway contains series and parallel reactions. The above
chemical reactions are considered elemental chemical reactions, that is, those that occur in a
single stage, where the order of the reaction coincides with the corresponding stoichiometric
coefficient of the chemical reaction, as is assumed for the Van de Vusse kinetic model [43].

From the above, a continuous stirred tank reactor mathematical model can be con-
structed via the mass conservation principle under the following assumptions: the reacting
mixture is perfectly mixed to avoid temperature and concentration gradients; the reacting
mixture volume remains constant; the inlet mass flow is equal to the outlet mass flow;
and physical properties such as mixture density, heat capacity, transport coefficients, inlet
concentration, and inlet temperature to the reactor are constant. In addition, the cooling
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jacket temperature is assumed to be the same as the temperature control input, and the
mass input flow to the reactor is considered to be the same as the other control input.

Therefore, the mass and energy balance equations are as follows:

• Mass balance equations:
dCA
dt

=
uc

V
(CAin − CA)− k1CA − k3C2

A (5)

dCB
dt

= −uc

V
CB + k1CA − k2CB (6)

dCC
dt

= −uc

V
CC + k2CB (7)

dCD
dt

= −uc

V
CD +

1
2

k3C2
A (8)

• Energy balance equation:

dT
dt

=
uc

V
(Tin − T) +

ΔHT
ρCp

+
UA

VρCp
(uT − T) (9)

In (5)–(9), ki and ΔHT are defined as

ki(T) = ki0exp
(
− Ei

RT

)
, for i = 1, 2, 3 (10)

ΔHT = Δh1k1CA + Δh2k2CB + Δh3k3C2
A (11)

The corresponding nomenclature and parameter values are included in Table 1 [44].

Table 1. Reactor parameters.

Description Parameter Value Units

Heat transfer area A 0.215 m2

Temperature initial condition T0 387.05 K
Heat transfer coefficient U 67.2 kJ·min−1m−2K−1

Heat capacity Cp 3.01 kJ·kg−1 K−1

Nominal cooling jacket tem-
perature uT 125 ◦C

Reacting mixture density ρ 934.2 kg·m3

Reactor volume V 0.01 m−1

Concentration initial condi-
tions

CA0
CB0
CC0
CD0

2.1
0
0
0

kmol · m−3

kmol · m−3

kmol · m−3

kmol · m−3

Pre-exponential kinetic fac-
tors

k10
k20
k30

2.145 × 1010

2.145 × 1010

1.5072 × 108

min−1

min−1

min−1

Activation energies
E1/R
E2/R
E3/R

9758.3
9758.3
8560

K
K
K

Reaction heat
Δh1
Δh2
Δh3

−4200
11000
41850

kJ · kmol−1

kJ · kmol−1

kJ · kmol−1

3. Control Strategy Design

3.1. PI Temperature Control

Most temperature controllers in industrial chemistry are classical PI controllers [41].
There are many reasons for this, including their proven operating performance and the
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fact that their operation is well understood by technicians, industrial operators, and main-
tenance personnel. Furthermore, the fact that a properly designed and well-tuned PID
controller achieves control objectives makes it attractive for many applications. The general
structure of PI controllers is defined by the following well-known equation:

u = kp
(
x(t)− xsp

)
+ ki

∫ t

0

(
x(σ)− xsp

)
dσ (12)

Studies on the design and analysis of PI controllers for the stabilization and regulation
of CSTR reactors are abundant in the literature, which includes numerous successful
applications [41,45,46].

3.2. Optimal Control Design

The general framework of optimal control designs relies on the calculus of vari-
ations, which is involved in the trajectory optimization problem, where a functional
F (�(·)) : Rq → R is a scalar, namely, the cost index, cost function, or performance
index, which is minimizing or maximizing. The corresponding objective can be attained by
solving the well-known Euler–Lagrange equation [47]:

∂�

∂x1
− d

dx2

(
∂�

∂ẋ1

)
= 0 (13)

The term � denotes the Lagrangian of the system under study.
In general, the cost functional F (�(·)) can be represented as follows:

F (�(·)) = Ω
(

x f , t f

)
+
∫ t f

t0

�(t, x, u)dt (14)

where Ω
(

x f , t f

)
is an algebraic term to be minimized (or maximized) in final conditions,

subject to the following constraints:

• The state equation:

ẋ :=
dx
dt

= f (x) + g(x) u (15)

• The terminal constraints:

Ω
(

x f , t f

)
= 0 (16)

• The initial conditions:
x(t0) = x0 (17)

In Equation (15), x ∈ Rn is the state vector; f (x) : Rn → Rn is a nonlinear function,
where f (x) ⊂ Σ ∈ C∞ and Σ is a compact set; g(x) is a smooth and invertible bounded
function; and u ∈ Rm, with m ≤ n, is the exogenous control input.

Next, consider the following functional form:

P(x, ẋ, u) =
∫ T

0
�(x, ẋ, u)dt (18)

The problem is to minimize the functional (18); therefore,

δP(x, ẋ, u) =
∫ T

0
δ�(x, ẋ, u)dt (19)

Here, the differential of the Lagrangian � is

δ�(x, ẋ, u) =
∂�

∂x
δx +

∂�

∂ẋ
δẋ +

∂�

∂u
δu (20)
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Equation (20) is substituted into Equation (19):

δP(x, ẋ, u) =
∫ T

0

(
∂�

∂x
δx +

∂�

∂ẋ
δẋ +

∂�

∂u
δu
)

dt (21)

The first term in Equation (20) is represented by

∂�

∂x
δx =

∂�

∂x
δx

δu
δu

=
∂�

∂x
δu
u′ (22)

where u′ is defined as
δu
δx

:= u′ (23)

The second term in Equation (20) is integrated by parts:

∫ T

0

∂�

∂ẋ
δẋdt =

∂�

∂ẋ
δx
∣∣∣∣T
0
−
∫ T

0

d
dt

(
∂�

∂ẋ

)
δx dt (24)

Next, let us consider the following nonlinear control affine dynamic system represen-
tation of Equation (15):

ẋ :=
dx
dt

= f (x) + a1u + p(ẋ, x, u) (25)

From Equation (25),
p(ẋ, x, u) = ẋ − f (x)− a1u (26)

Therefore, the corresponding functional and the Lagrangian for the system (18) are
defined as

P(x, ẋ, u) ≡ p(x, ẋ, u) (27)

and
�(x, ẋ, u) ≡ ẋ − f (x)− a1u (28)

Note that a useful characteristic of the Lagrangian in Equation (28) is the dependence
on the state Equation (25).

Therefore, from Equation (28),

∂�

∂x
= −d f (x)

dx
= − f ′(x) (29)

∂�

∂ẋ
= 1 (30)

∂�

∂u
= −a1 (31)

Then, ∫ T

0

d
dt

(
∂�

∂ẋ

)
δẋdt = 0 (32)

δP(x, ẋ, u)
δu

=
∫ T

0

(
− f ′

u′ − a1

)
dt (33)

The optimum productivity P(x, ẋ, u) is then determined by the following restriction:

δP(x, ẋ, u)
δu

= 0 (34)

From Equations (33) and (34), the following equality must hold:

− f ′

u′ − a1 = 0 (35)
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or equivalently,
a1u′ + f ′ = 0 (36)

By solving Equation (36),

u = −a−1
1

∫ x

x0

f ′(z)dz + u0 (37)

= −a−1
1 f (x)− u0 (38)

In (37), f (x0) = 0.
According to the above, the control law (38) is realizable only if the nonlinear term

f (x) is available. However, as is well known, nonlinear terms are challenging to model
accurately and serve as a significant source of parametric and/or structured uncertain-
ties [16,36–38].

Therefore, an alternative form of the controller (38) must be considered to avoid
this drawback.

If there are non-ideal conditions and uncertain terms, then the control approach in
Equation (38) cannot be realized. Thus, a strategy must be proposed to compensate for the
uncertain terms and obtain a realizable control design. For this purpose, an uncertainty
observer-based controller is considered.

3.3. Uncertainty Estimator Design

Let us consider the system (25) where the nonlinear term f (x) is unknown, which
is now viewed as a new unknown state variable. The extended dynamical system is
defined as

ẋ = f (x) + a1u + p(x, u) (39)

ḟ = g(x) (40)

coupled with a measured linear output, y = Cx.
In Equations (39) and (40), f (x) and g(x) are bounded unknown nonlinear terms.
Let us assume that the state variable can be measured online, i.e., y = x. This is a

typical assumption in chemical systems, where the mass concentrations can be regarded as
the output measurements. Therefore, the following reduced-order observer is applied to
estimate the unknown term f (x) [48,49].

˙̂f = −λ
(

f̂ − f
)

(41)

In (41), f̂ is the estimated value of f , and λ is the observer gain.
The corresponding output injection for this reduced-order observer is f , which is the

unknown term to be estimated. To circumvent this issue, the nonlinear term f is obtained
from Equation (39) as follows:

f (x) = ẋ − a1uc − p(x, uc) (42)

By substituting (42) into Equation (41) and considering the above assumption of y = x,
the following is obtained:

˙̂f = −λ
(

f̂ − ẏ − a1uc − p(y, uc)
)

(43)

With a change in the variable,

η = f̂ − λy (44)
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In consequence,
η̇ = ˙̂f − λẏ (45)

Finally, the reduced-order observer (41) can be expressed as

η̇ = −λ(η − a1uc − p(y, uc)) (46)

Note that the uncertainty estimator (46) contains only known variables and parameters,
where k is the observer gain.

From Equation (44), the uncertain term can be estimated by

f̂ = η + λy (47)

Finally, the designed optimal controller is

uc = −a−1
1 f̂ − u0 (48)

An important characteristic of the Lagrangian in (28) is that its inclusion in the corre-
sponding functional (Equation (27)) results in an analytic and explicit form of the corre-
sponding controller, which avoids the high computational effort required to numerically
calculate the controller system, which is a common issue in other optimization strategies.

Finally, the following closed-loop stability analysis is considered.
The closed-loop stability of the reactor is evaluated via zero-dynamic analysis. Let us

consider the following representation of Equation (39):

ẋ = f (x) + g(x)u →
{

ẋC = fC(x) + g(x)u
ẋD = fD(x) + g(x)u

}
(49)

where xC denotes controller state variables, and xD represents uncontrolled state vari-
ables. The dynamical system (49) is closed-loop stable for t > 0 if and only if (50)–(52) are
fully satisfied.

xC = xsp
C (50)

ẋsp
C = 0 (51)

ẋD = fD(x) + gD(x)usp ≤ 0 (52)

where
usp = −g−1

C (x) fC(x) (53)

This analysis is based on a Lyapunov framework, and the proof of this proposition is
in [50].

4. Numerical Results and Discussion

The process in the application case study is described by the exothermic CSTR modeled
by Equations (5)–(9), which were solved by employing the ordinary differential equation
(ODE) 23s library from Matlab, v2020a, on a PC with an Intel i7 processor. The open-loop
behavior of the reactor is based on the conditions in Table 1.

The proposed control strategy is as follows. The reactor operation is initiated together
with the implementation of the temperature regulation via a standard PI controller. A tem-
perature set point is selected to increase the chemical conversion of the corresponding
compounds. The abovementioned process increases the reactor temperature, and the
thermal effects increase the chemical conversion of reactant A. Because the reaction rate is
related to temperature via the Arrhenius model, reactant A can react to generate chemical
products B and D, in accordance with the kinetic pathway shown above. In fact, this
presents an interesting selectivity problem that must be solved if an intermediate chemical
product is desired. Once the temperature is stabilized, the reactor operates under isother-
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mal conditions, at which point, the optimal controller is activated, and the selected control
input is the mass input flow. This controller acts to optimize the mass productivity of
chemical compound B.

Upon initiation of the proposed closed-loop operation, the temperature of the reactor
is regulated via the temperature of the cooling jacket, which is considered the manipulated
variable uT , under a standard PI control structure. The controller gains are kp = 80
min−1 and ki = 35 min−1, which are calculated by an identification process via a step
disturbance in the temperature control input and the application of internal model control
(IMC) tuning rules [51]. Figure 1 shows a generalized scheme of the closed-loop operation
of an exothermic CSTR.

Figure 1. Exothermic CSTR.

As can be observed in Figure 2, the temperature response of the closed-loop reactor
is increasingly close to the required set point (Tsp = 185 °C), maintaining a small offset of
2.3 °C. Furthermore, when the reactor temperature is in the steady state (isothermal opera-
tion), at t = 0.1 min, the optimal controller is activated. This is a significant disturbance in
the thermal behavior of the reactor, but the temperature PI controller is able to resist it with
an acceptable margin and maintains a temperature of 187 °C, again with a small offset of
2.5 °C from the required set point. Thus, the PI controller is able to maintain the isothermal
operation of the reactor, as illustrated in Figure 3, which shows that the temperature control
input has a brief temperature decrease to 50 °C but, almost immediately, it behaves as
a first order-type response and reaches a steady state of 97 °C. The temperature of the
reactor is maintained within a small range around the required set point. When the optimal
controller has been activated, an increase in the mass input flow is required to increase
the concentration of chemical reactant A. Then, the temperature controller increases the
temperature of the cooling jacket to 116 °C, initiating the chemical pathway that forms
product B, which is the desired product. This reaction pathway has a high activation energy
(see Table 1), so sufficient energy must be maintained to continue generating product B.
In this sense, the temperature controller facilitates the supply of the necessary energy to
generate product B.
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Figure 2. Closed-loop dynamic behavior of the reactor temperature.

Figure 3. Control effort for temperature regulation.

As previously mentioned, the objective is to optimize the productivity of the genera-
tion of chemical product B, which is an intermediate compound in the reaction network.
Compound B is simultaneously a product and a reactant, so the optimal control must
solve this chemical selectivity problem. As observed in Figure 4, after the operation is
initiated, the concentration of the main reactant A is consumed from the initial condition
via temperature effects (recall that compound A reacts in a parallel reaction). Then, the con-
centration of compound B increases due to temperature effects and reaches a steady-state
value of CB = 0.4 mol/L, and when the optimal controller is activated, this concentration
increases to CB = 0.48 mol/L. However, as can be seen below, the optimal controller
increases the outlet mass flow and significantly increases the productivity. Furthermore,
the dynamic behavior of the uncontrolled concentration is stable. Therefore, the results of
numerical experiments show that the zero or inner dynamic of the reactor is stable and, as
a consequence, the reactor is stabilizable.

Figure 4. Closed-loop dynamic behavior of concentrations.
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Figure 5 shows the control effort of the optimal controller. The corresponding mass control
input is adjusted to a nominal value (uc = 72.5 mol/L) when the process is operating under
the temperature regulation regimen. When the optimal controller is activated at t = 0.1 min,
the corresponding input flow drastically and rapidly increases to uc = 84 mol/L. This is
an important characteristic of the behavior of the control input. Because of this substantial
flow increase, the productivity of the reactor increases, as shown below (recall that the reactor
productivity P is defined as P = ucCB).

Figure 5. Control effort of the optimal controller.

As mentioned previously, the optimal controller requires online information about
the reaction rate term of chemical compound B. To provide this information, an observer-
based uncertainty estimator (see Equation (41)) is coupled with the control algorithm.
Figure 6 shows the performance of the proposed observer, where the observer gain is
λ = 500. The results of numerical experiments show that the controller has adequate per-
formance, despite the significant disturbances related to the activation of the temperature
and productivity controllers.

Figure 6. Dynamic performance of the uncertainty estimator.

Finally, as one of the main results, Figure 7 shows the productivity performance of
compound B in the reactor. When the reactor operates in the open-loop regimen, the steady-
state productivity is reached at P = 20 mol/L min, and when the proposed control
strategy is applied, the productivity is increased to P = 27 mol/L min in the first step of
control temperature operation. When the optimal controller is activated, the corresponding
productivity of compound B is successfully increased to P = 38 mol/L min.
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Figure 7. Open-loop and closed-loop dynamic behaviors of reactor productivity for compound B.

Figure 8 depicts the behavior of the relative stability values, i.e., the time derivatives
of the uncontrolled concentrations, from the analysis of closed-loop stability in accordance
with inequality (52). After the startup of the reactor under the temperature closed-loop
regimen, compounds B and C are unstable because their relative values are positive,
but their corresponding relative stability values asymptotically approach zero, becoming
stable state variables. Compounds A and D show dynamic trajectories that are close to
zero, indicating that they are acting as stable state variables. When the optimal controller
is activated, the reactor dynamics undergo a considerable disturbance, and all relative
stability values become positive, with the exception of compound D, whose relative value
is always close to zero. As observed in the figure, all the zero dynamics of the reactor
asymptotically reach a stable operating condition. These results agree with the dynamic
behavior of the uncontrolled concentrations shown in Figure 4.

Figure 8. Relative stability values for uncontrolled concentrations (red—compound A;
blue—compound B; green—compound C; black—compound D).

5. Conclusions

This work presents a two-input two-output (TITO) control strategy in which the
control pairs are the reactor temperature/jacket temperature and productivity/input mass
flow. At the first stage, the proposed closed-loop strategy aims to regulate the reactor tem-
perature via a standard PI control law to increase the concentration of chemical compound
B via a temperature increase until the reactor operation reaches isothermal conditions.
Furthermore, an optimal controller designed by using the Euler–Lagrange approach is pro-
posed. An important characteristic is that the Lagrangian is based on the model equation of
the reactor, and when it is included in the corresponding functional, an analytic and explicit
form of the corresponding controller can be obtained. This avoids the high computational
effort required to numerically calculate the controller system, which is a common issue in
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other optimization strategies. The reactor productivity, which is the objective function, is
optimized for compound B. The optimal controller design depends on online measurement
of the reaction rate, which is unavailable. However, a reduced-order uncertainty observer
is coupled with the controller to provide the required feedback term. The numerical re-
sults show the efficiency of the proposed TITO control methodology, and the temperature
regulation regimen is confirmed to increase the productivity of the reactor by 40% in
comparison with the open-loop operation. The increase in productivity after temperature
regulation achieves optimal control is 32.15%, and the global productivity increase with
the optimal control operation is 85.4% compared with the open-loop operation. To build
on the theoretical results for the optimal controller design and the initial positive results
of numerical experiments, future work will be oriented to real-time implementation to
validate the performance of the proposed control strategy.
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Abstract: Finite control set model predictive torque control (FCS-MPTC) strategy has been widely
used in induction motor (IM) control due to its fast response characteristic. Although the dynamics
of the FCS-MPTC method are highly commended, its steady-state performance—ripple deserves
attention in the meantime. To improve the steady-state performance of the IM drives, this paper
proposes an improved FCS-MPTC strategy, based on a novel fuzzy adaptive speed controller and
an adaptive weighting factor, tuning strategy to reduce the speed, torque and flux ripples caused
by different factors. Firstly, a discrete predicting plant model (PPM) with a new flux observer is
established, laying the ground for achieving an FCS-MPTC algorithm accurately. Secondly, after ana-
lyzing the essential factors in establishing a fuzzy adaptive PI controller, with high ripple suppression
capacity, an improved three-dimensional controller is designed. Simultaneously, the implementation
procedures of the fuzzy adaptive PI controller-based FCS-MPTC are presented. Considering that a
weighting factor must be employed in the cost function of an FCS-MPTC method, system ripples
increase if the value of the weighting factor is inappropriate. Then, on that basis, a novel fuzzy
adaptive theory-based weighting factor tuning strategy is proposed, with the real-time torque and
flux performance balanced. Finally, both simulation and hardware-in-loop (HIL) test are conducted
on a 1.1 kW IM drive to verify the proposed ripple reduction algorithms.

Keywords: induction motor; finite control set; model predictive torque control; ripple attenuation;
fuzzy adaptive theory

1. Introduction

Induction motors (IM) that are endowed with the advantages of simple and robust
structure, low cost, stable operations and a wide speed regulation range have been broadly
adopted in industrial applications, such as electric vehicles, mining and textile, etc. [1–4].
To ensure or improve the machine control performance, many advanced control strategies
have been developed so far, the most famous being field-oriented control (FOC), which
is based on the coordinate transformation principle [5–7]. Generally, the traditional FOC
strategy is achieved by using three proportional integrate (PI) controllers in the cascaded
control loops to regulate the speed, flux and torque. Although the PI control techniques are
now mature, several defects still exist [8,9]. For example, it is tedious to tune the internal
parameters (at least six) of those PI controllers. Specifically, the complicated parameter-
tuning schemes, not only increase the time cost in practical applications, as well as burden
the optimization process for obtaining better control performance.

Due to the merits of the optimal control mechanism, easy parameter tuning process
and quick response, model predictive control (MPC) has been broadly adopted in the area
of IM control [10]. MPC controllers can be used to achieve different functions, such as model
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predictive torque control (MPTC) [11,12], model predictive speed control (MPSC) [13] and
model predictive current control (MPCC) [14,15]. By considering the modulation modes
of the MPC controllers, they can be further categorized into two groups, one of which
requires a modulator to generate control signals. As the control voltage set is infinite for this
method, it is commonly used for a continuous control set (CCS) MPC (CCS-MPC) [11,15].
The other strategy completely abandons the modulator. Instead, the cost function directly
determines the optimal switching states to be applied next. As for this method, there
are only finite control voltages, so it is known as a finite control set model predictive
control (FCS-MPC) [12–14,16]. Comparatively speaking, the FCS-MPC strategy can reduce
computational complexity significantly, benefiting from an offline lookup table. In addition,
given that the FCS-MPC algorithm is simple to implement and the users do not need to
grasp much in-depth professional knowledge, it is well-suited for industrial applications.

One of the main aims of this paper is to develop an FCS-MPTC controller to replace
the torque and flux PI regulators in the traditional FOC scheme for the IM drives. However,
when an FCS-MPTC strategy is achieved, in addition to its dynamics, the steady-state per-
formance is one of the top concerns as well. In particular, the system ripples should be low.
Whereas, there are many reasons that can cause high speed, torque or flux ripples in the
practical applications, and these can be grouped into internal and external factors [17–25].
The internal factors mainly include; (1) the values of the parameters (e.g., stator induc-
tance and resistance, etc.) used for predictions are not consistent with the real ones [17];
(2) weighting factor is not appropriate [18–20]; (3) control period is long in some applica-
tions [21]; (4) calculation delay reduces prediction accuracy [22]; and (5) the number of
voltage candidates in the control set is not enough. Some of the external factors are summa-
rized as follows. First, external disturbances, such as the electromagnetic interference bring
about high-frequency noises [23]. Secondly, the speed and current sensors used for signal
measurement are not accurate [24], or worse, they can malfunction. Third, the hardware
system, which generally includes a power supply, filters and other circuits is not stable [25].
Usually, if the system inertia (including machine rotor inertia and load inertia) is large, the
ripples that arise as a result of these factors remain minor. However, for the low-inertia
systems, the ripples are large. There are so many factors that are prone to aggravating
the system ripples in the stable states for the low-inertia system. Therefore, scholars have
paid significant attention to these factors and have developed various ripple minimization
methods to improve the high steady-state performance [26–28]. The previous studies show
that the solutions to any of the aforementioned factors are capable of reducing the system
ripples effectively, but few of them focus on several factors simultaneously. For example,
the authors in [26] propose an improved dual voltage vector-based FCS-MPTC method
to reduce the torque ripple of the system, which takes into account only the fifth-order
harmonics. Reference [27] develops a weighting factor optimization strategy based on
non-dominated sorting genetic algorithm II (NSGA-II) to minimize the ripples caused by
the inappropriate weighting factor, and the authors in [28] propose an FCS-MPTC strategy
without using weighting factors. In [29], a perturbation observer is designed to resolve the
external disturbance problem separately.

This paper proposes novel ripple attenuation methods based on a fuzzy adaptive
theory-based speed (PI) controller and fuzzy adaptive weighting factor tuning strategy.
This is in order to simultaneously reduce the ripples caused by the inaccurate external
sensors and inappropriate weighting factor for the IM FCS-MPTC working over the high-
speed range. The fuzzy control theories are employed in this paper as the fuzzy logic has
the advantage of providing a solution to the machine control problem that can be cast
in terms that human operators can understand [30–35], making it easier to mechanize
tasks that are already successfully performed by humans. It deserves to be mentioned
the adaptive weighting factor tuning method is able to solve the second internal problem
above when it is executed alone. While when the adaptive PI controller and the adaptive
weighting factor are implemented together, the second external problem is expected to be
tackled. In terms of the fuzzy adaptive weighting factor tuning strategy, the importance
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degree of the torque and flux are balanced according to their real-time values, ensuring that
the flux and torque ripples do not exceed the upper limit. The reason why it contributes in
reducing the system ripples caused by the external sensors is that if the weighting factor is
not proper, the ripples become larger when the sensors are not accurate, and hence, the
adaptive weighting factor can prevent the ripples from growing further in this case. The
rationale behind the fuzzy adaptive speed controller is that when the speed ripples grow,
a set of PI parameters that can narrow the bandwidth of the system would be employed.
Then, the high-frequency disturbances arising from the inaccurate sensors are excluded,
thereby ensuring that the magnitude of the ripples is limited. Compared to the existing
ripple optimization methods in [17–29], the proposed ripple attenuation strategies are
totally different, and the novelties are reflected in the following aspects:

(1) The novel idea that using a fuzzy adaptive PI controller to reduce the system ripples
(mainly caused by the external sensors) of the FCS-MPTC method is studied. Tradi-
tionally, the fuzzy adaptive speed controller is adopted to improve the dynamics of
the system, and there are few studies using it to improve the steady-state performance.
On this basis, this study is comparatively pretty novel.

(2) Unlike the traditional two-dimensional fuzzy adaptive PI controller, the proposed
one aim to improve the steady-state performance of the system. To achieve this goal,
firstly, the input scaling factor of the fuzzy controller is optimized, relying on the
pre-setting speed, enlarging the variation range of input and output. Secondly, the
structure of the fuzzy controller is rebuilt. In detail, both the current and previous
speed errors and the error between the current and the previous speed errors (CPSE-E)
are treated as the inputs to build a three-dimensional fuzzy controller. This assists
in evaluating the effectiveness of the proportional and integral factors designed in
the previous period and ultimately provide guidelines for generating new control
parameters. What needs to be mentioned is that although the fuzzy control strategies
that are achieved by using the previous states or errors were studied previously
in [33–35]. The proposed fuzzy controller is still pretty novel considering its structure
and role in suppressing the steady-state ripples of an IM. This contributes to enriching
the fuzzy control theories and prompting the relevant applications.

(3) Few studies incorporate the fuzzy adaptive theory into the weighting factor tuning
process for an FCS-MPTC strategy. However, this paper proposes a new fuzzy
adaptive weighting factor tuning strategy, whereby the inputs are torque and flux
errors. By balancing the importance degree of the two variables, the torque and flux
ripples are inclined to decrease.

The structure of the rest paper is as follows. Section 2 introduces a system model that
is suitable for designing an FCS-MPTC algorithm. For the sake of high flux observation
estimation accuracy, a new numerical-solution-based flux observer is introduced. In
Section 3, the proposed fuzzy adaptive PI controller-based FCS-MPTC method is developed.
Section 4 presents the new adaptive weighting factor tuning strategy. Section 5 discusses
the simulation and hardware-in-loop (HIL) testing results of the proposed FCS-MPTC
algorithms, and Section 6 outlines the conclusion.

2. Modelling for IM FCS-MPTC

A discrete predicting plant model (PPM) is the prerequisite for achieving an IM FCS-
MPTC algorithm. In this section, the mathematical model of an IM is established. To obtain
the rotor flux used for feedback regulation, a novel numerical solution-based current-type
flux observer is presented.

The commonly-used IM models concerning electrical properties include flux model
and current model [36]. Considering that the currents, rather than the flux, can usually
be measured to construct different control strategies in real applications, this paper uses
the state-space current model to describe the general behaviors of the system. In addition,
in comparison with the stator field orientation-based model (dq-axis reference frame),
because the IM model based on rotor field orientation (MT-axis reference frame) is totally
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decoupled, it is employed for analysis. The differential equations in MT-axis frame are as
follows, where the iron saturation and eddy current are assumed to be negligible,

disM
dt

= −Rs

Ls
isM + ωeisT − Lm

Ls

dirM
dt

+
Lm

Ls
ωeirT +

usM
Ls

(1)

disT
dt

= −ωeisM − Rs

Ls
isT − Lm

Ls
ωeirM − Lm

Ls

dirT
dt

+
usT
Ls

(2)

dirM
dt

= − Lm

Lr

disM
dt

+
Lm

Lr
ΔωisT − Rr

Lr
irM + ΔωirT (3)

dirT
dt

= −ΔωLm

Lr
isM − Lm

Lr

disT
dt

− ΔωirM − Rr

Lr
irT (4)

where isM and isT are stator currents. usM and usT are stator voltage. While, ωe and Δω
are the synchronous speed, and slip speed, respectively; irM and irT are the rotor currents;
Rs and Ls represent the stator resistance, and inductance, respectively; Rr and Lr are the
rotor resistance, and inductance, respectively; and Lm is the mutual inductance between
the stator and rotor windings.

In terms of FCS-MPTC, torque and flux (rotor flux in this paper) are the TCOs, but they
cannot be detected directly using sensors. In this case, observers are the available solutions
to the problem. To observe the torque of an IM, the electromagnetic torque calculation
strategy can be used:

Te = pLm(isTirM − isMirT) = p
Lm

Lr
ψrisT (5)

where Te is the electromagnetic torque. ψr is the rotor flux, and p is the number of pole pairs.
It can be seen that once the rotor flux is obtained, the torque can be calculated subsequently.
Now, there exist two main flux observation methods, that is, the current-type observer [37]
and the voltage-type observer [38]. Comparatively, the accuracy of the latter approach
is relatively lower due to the internal integrators. Therefore, a current-type observer is
adopted in this paper. As in [39], according to (1)–(5) and the flux descriptions, the rotor
flux can be derived as,

ψr =
LmisM
Trs + 1

(6)

where Tr is the electrical time constant of the rotor windings, and it equals Lr
Rr

. s is a differ-
ential operator. Obviously, Equation (6) represents a typical delay element. Traditionally,
the delay effect would be ignored because Tr is usually small, and a proportional element
can be obtained:

ψr = LmisM. (7)

Although the flux estimation process by using (7) becomes simple, the accuracy is less
accurate. This is prone to degrade the control performance. In this paper, for the purpose
of calculating ψr precisely, a method based on numerical calculation is adopted. In detail,
by transforming (6) to the differential equation, it can be obtained that:

Tr
dψr

dt
+ ψr − LmisM = 0. (8)

Then, to solve (8) and the rotor flux can be derived as,

ψr(t) =LmisM(1 − e−
t

Tr ) (9)

where t is time.
So far, the IM model in the time domain has been established completely. Substitute

(3) and (4) into (1) and (2), respectively and then, the Euler forward algorithm can be used
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to discretize them in a time step of T (sampling time) to calculate the future states at tk+1
as follows:

ik+1
sM

= (1 − C1LrRs)ik
sM

+ C1[(LsLrωk
e − Lm

2Δωk)ik
sT + (ωk

e − Δωk)LrLmik
rT + LmRrik

rM
+ Lruk

sM] (10)

ik+1
sT

= (1 − C1LrRs)ik
sT
+ C1[(Lm

2Δωk − LsLrωk
e )i

k
sM

− (ωk
e − Δωk)LrLmik

rM
+ LmRrik

rT
+ Lruk

sT
] (11)

where the superscripts k+1 and k represent the future and current states, respectively.
C1 is a constant, and it satisfies that C1 = T

Ls Lr−Lm2 . As for the rotor flux, in the control

period between tk and tk+1, where 0 ≤ t ≤ T, the detected current value ik
sM at tk and T

should be adopted to predict the flux at tk+1, that is:

ψk+1
r = Lmik

sM
(1 − e−

T
Tr ). (12)

Then, the future torque can be calculated by:

Tk+1
e = p

Lm

Lr
ψk+1

r ik+1
sT . (13)

From (12) and (13), it can be seen that only ik
sM and ik+1

sT are needed for calculating flux
and torque information, so it is not necessary to predict the M-axis current ik+1

sM , which is
another advantage of the new flux calculation method. Overall, the discrete PPM used for
achieving an IM FCS-MPTC algorithm is (11)–(13).

3. Proposed Fuzzy Adaptive PI Controller-Based FCS-MPTC

This section introduces the traditional fuzzy adaptive PI controller that focuses on
the system dynamic performance firstly, explaining the reasons why it contributes less to
the ripple reduction in the stable state. Then, the improved fuzzy adaptive controller that
aims to enhance the steady-state performance is developed. Finally, the implementation
procedures of the fuzzy adaptive PI controller-based FCS-MPTC strategy are detailed.

3.1. Traditional Fuzzy Adaptive PI Controller

In order to improve the dynamic performance of the IM control system, a traditional
fuzzy adaptive PI controller, which is shown in Figure 1 is usually used for speed regulation,
where ωr and ωref are the real and reference rotor speed. Δωr is the speed error, Kω and
Kdω are the input scaling factors. In1, In2 and Outp, Outi are the inputs and outputs of the
fuzzy inference engine, respectively. De_kp and De_ki are the outputs of the defuzzification
part. Kp* and Ki* are the output scaling factors. Δkp and Δki are the compensation values
for the PI controller.

K

Kd

r

In
In

Outp

r
t

Outp

Outi

Kp

Ki

kp

ki

De_kp

De_ki

ref
r

Figure 1. Block diagram of traditional fuzzy adaptive speed PI controller used for IM control.

As for the traditional controller, there are several features that need to be mentioned.
First, the fuzzy controller contains five parts, namely, fuzzification, membership function,
fuzzy control rules, defuzzification and adjustment. All of them are the fundamental
components of a fuzzy controller. Secondly, in terms of the input scaling factors Kω and
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Kdω, they are of fixed magnitude. Usually, to ensure In1 and In2 to stay between −1 and
1 [40], Kω is set as the reciprocal of the maximum speed value ωr_max, that is,

Kω =
1

ωr_max
(14)

and Kdω is the reciprocal of the maximum acceleration which can be calculated by using
the rated torque Trated and overload ratio k,

Kdω =
J

k · Trated
(15)

where J is the rotor inertia. It can be noticed that Kdω is determined by the largest torque
that can be generated by the machine, which is inclined to occur in the starting stage.
Thirdly, the derivative of the speed errors (DSE) is selected as one input of the fuzzy
inference engine because it represents the change rate of speed (dynamics). The reason
why the speed errors and the DSE are able to improve the dynamics can be summarized
as follows; (1) when the DSE and speed errors are large, the machine starts to speed up
or down. The fuzzy controller will generate large compensation values to ensure that the
proportional and integral factors stand at a relatively large position so as to ensure a fast
response. (2) When DSE is large but the speed errors are small, load variations occur when
the speed nearly levels off. In this case, a large proportional gain is needed to quicken the
process of returning to the normal state. It deserves to be mentioned that the traditional
fuzzy adaptive controller has an obvious significance in improving the system dynamics
regardless of parameter mismatch.

However, as for the increasing ripples caused by the parameter mismatch issue, the
traditional fuzzy adaptive controller cannot suppress them effectively, and below are the
reasons; (1) in the stable state, both the DSE and the speed errors are small. Namely,
the values of Δωr and dΔωr/dt comply with the trend. After they pass through the
fuzzification part, because Kω and Kdω are fixed and large, In1 and In2 are very close to zero,
leading to the fact that the final compensation values generated by the fuzzy controller are
too small to influence the initial parameters of the PI controller. Consequently, the ripples
will maintain at a large level continuously. (2) dΔωr/dt only reflects the speed change
rate but it cannot be used to evaluate the control effect (especially the shifting trend of the
ripples) of the current PI parameters. For the sake of ripple reduction, these two aspects
can be optimized.

3.2. Proposed Fuzzy Adaptive PI Controller Used for Ripple Reduction

To solve the above two issues, in order to make the fuzzy adaptive PI controller
suitable for ripple reduction, an improved controller is proposed as in Figure 2, where Δωr’
and Δωcp are the previous speed error and the CPSE-E, respectively. Kω

’ and Kcp are the
input scaling factors. In3 is the input of the fuzzy inference engine and σ represents the
maximum allowable speed ripple range. Compared to the traditional fuzzy controller in
Figure 1, the novelties of the proposed controller include that firstly, the structure is rebuilt.
Specifically, both the current and previous speed errors and the CPSE-E are selected as
the inputs of the fuzzy controller. In addition, differing from the two-dimensional fuzzy
controller in Figure 1, the improved fuzzy controller is three-dimensional. Secondly, the
input scaling factors are modified. Without using fixed parameters, the input scaling
factors Kω , Kω

’ and Kcp are mutable and determined by the rated speed and the maximum
allowable ripple range. This can widen the range of In1, In2 and In3 so the range of the
output compensation values is expanded as well. Thirdly, considering that the structure
and the range of the input values get changed, the fuzzy control rules and membership
functions require to be modified correspondingly. In addition to these differences, the
fundamental components of the improved fuzzy adaptive PI controller are the same to
those in Figure 1. In this part, the design procedures of each component are discussed,
which will reflect the novelties at length.
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Figure 2. Block diagram of improved fuzzy adaptive speed PI controller used for IM control.

3.2.1. Explanations of Three-Dimensional Fuzzy Controller Concerning Novel Structure

In reference to the traditional fuzzy controller using the DSE, which reflects the system
dynamics as one of the inputs, the variables that can reflect the steady-state performance
should be selected as the inputs for the new controller considering that this paper focuses
on ripple reduction. First of all, when the machine rotates stably, the magnitude of the
speed errors directly represents the severity of the ripples. When it is large, the speed
tracking capacity of the system is poor, and the bandwidth of the whole system is wide. In
this case, a smaller proportional gain or larger integral gain of the PI controller is needed
to narrow the system bandwidth so as to improve the steady-state performance. On the
contrary, when the speed errors are small, a general conclusion that the current in-service
PI controller parameters are suitable can be reached as long as the speed errors are able
to level off. Secondly, as the CPSE-E is able to embody the changing trend of the speed
ripples, with the support of the speed errors, it can be adopted to evaluate the steady-state
performance. In detail, firstly, when the previous and current speed errors are positive, the
real speed exceeds the reference value. At the moment, if the CPSE-E is positive, the speed
ripples is inclined to increase. This demonstrates that the parameters of the PI controller in
the last control period are not proper. It needs to be mentioned that only when the CPSE-E
is negative can we reach a conclusion that the control parameters are decent. Secondly,
when the previous speed error is positive or negative while the current one is negative or
positive, the CPSE-E is undoubtedly negative or positive. In this case, the magnitude of the
CPSE-E determines whether the controller parameters are excessively sensitive. Thirdly,
when the previous and current speed errors are both negative, the real speed is lower than
the pre-setting speed. Then, if the CPSE-E is positive, the speed ripples are decreasing, but
if the CPSE-E is negative, the ripples grow continuously. Simultaneously, the magnitude of
the CPSE-E determines the response sensitivity of the PI controller parameters.

According to be the above analysis, the previous speed errors, current speed errors
and CPSE-E are closely related to the steady-state performance of the system. Hence, they
can be employed as the inputs of the fuzzy controller, reducing the IM speed ripples during
control. On this ground the proposed three-dimensional fuzzy controller is developed,
which is brand-new indeed.

3.2.2. Design of Each Fuzzy controller Component

(a) Fuzzification

With the use of the fuzzification part, the actual input values can be converted to the
fuzzy domain. Referring to the standardization control theory, the fuzzy domain is set as
[−1, 1]. Therefore, the inputs of the proposed fuzzy controller can be described as:

In 1 = Kω · Δωr (16)

In 2 = Kω
′ · Δωr

′ (17)

In 3 = Kcp · Δωcp. (18)
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Now, a new issue is understanding how to design the input scaling factors. In order
to enlarge the range of In1, In2 and In3, which can improve the sensitivity of the fuzzy
controller in the stable states, Kω, Kω

′ and Kcp are designed as,

Kω = Kω
′ = 1

ωrated · σ%
, Kcp =

1
2ωrated · σ%

(19)

where σ represents the maximum allowable speed ripple range (in percentage) in the high-
speed situations. The rationale behind the scaling factor design method can be summarized
as that, firstly, because the speed ripples need to meet the performance requirement that
includes σ in engineering, effective measures must be taken to achieve this goal. In some
particular scenarios (e.g., parameter mismatch conditions). while the ripples are inclined to
exceed the allowable range, they can be suppressed by a marked parameter adjustment
operation before the ripples reach the upper limit point (the goal of this paper), which
depends on the fuzzy control rules and membership function. Hence, in real applications,
as long as the membership function and fuzzy control rules are well-designed, In1 and In2
will range from −1 and 1 when Kω and Kω

′ satisfy (19). Secondly, when the speed ripples
are controlled within the limited range, the magnitude of the maximum CPSE-E equals
2ωref·σ%, so Kcp should be designed as the value in (19).

(b) Fuzzy control rules

The fuzzy control rules are the core of the fuzzy inference engine, which are used to
build bridges between the inputs and the outputs. To formulate the control rules, linguistic
expressions need to be defined to describe the fuzzy variables. In this paper, the linguist
expressions include positive large (PL), positive medium (PM), positive small (PS), zero
(ZO), negative small (NS), negative medium (NM) and negative large (NL). For the outputs,
more accurate compensation values could be obtained by using the following subset: {PL,
PM, PS, ZO, NS, NM, NL}. However, for the sake of inference burden reduction, only five
linguist descriptions are employed for the inputs of the three-dimensional fuzzy controller,
that is, {PL, PM, ZO, NM, NL}. Then, as for the proportional gain kp and integral gain ki of
the PI controller, 85 rules that are extracted from the existing knowledge (the larger kp/ki is,
the wider the system bandwidth is) and practical experiences can be designed as in series
of Tables 1 and 2, respectively. ‘*’ represents that the corresponding situations will never
appear. The fuzzy control rules can be generally summarized as follows:

1. When the signs of In1 and In2 are the same, if In3 indicates that the speed ripples are
increasing, a negative value of Δkp and a positive value of Δki should be applied to
reduce the bandwidth of the system. In this case, the system response speed drops, so
that the speed ripples can be suppressed before it reaches the upper limit.

2. When the signs of In1 and In2 are the same, if In3 indicates that the speed ripples are
decreasing, the in-service PI controller parameters are suitable. Both the values of Δkp
and Δki should be only adjusted slightly.

3. When the signs of In1 and In2 are opposite, if the absolute value of In3 is large, a
negative value of Δkp and a positive value of Δki are adopted to restrain the response
speed of the system.

4. When the signs of In1 and In2 are opposite, if the absolute value of In3 is small, the
relatively smaller compensation values are generated to adjust the parameters of
the PI controller. In these cases, it is not necessary to markedly adjust the controller
parameters because the in-service parameter values calculated in the previous period
are appropriate.
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Table 1. Fuzzy control rules for the proportional gain.

 
 

In1  
PL PM ZO NM NL 

In2 

PL NL NL NL NL NL 

PL 

 
PM * NM NM NM NM  
ZO * * NS ZO NS In3 
NM * * * PM PS  
NL * * * * PM  

 
 

In1  
PL PM ZO NM NL 

In2 

PL NL NL NL NL NL 

PM 

 
PM * NM NM NM NM  
ZO * * NS ZO NS In3 
NM * * * PM PS  
NL * * * * PM  

 
 

In1  
PL PM ZO NM NL 

In2 

PL ZO NS NM NL NL   
PM PS ZO NM NS NL   
ZO PM NS ZO NS NM ZO In3 
NM NS NM NM PS PS   
NL NM NM NM NM PM   

 
 

In1  
PL PM ZO NM NL 

In2 

PL PM * * * *   
PM PS PM * * *   
ZO NS ZO NS * * NM In3 
NM NM NM NM NM *   
NL NL NL NL NL NL   

 
 

In1  
PL PM ZO NM NL 

In2 

PL PM * * * *   
PM PS PM * * *   
ZO NS ZO NS * * NL In3 
NM NM NM NM NM *   
NL NL NL NL NL NL   

Table 2. Fuzzy control rules for the integral gain.

 
 

In1  
PL PM ZO NM NL 

In2 

PL PL PL PL PL PL   
PM * PM PM PM PM   
ZO * * PS ZO PS PL In3 
NM  * * * NM NS   
NL * * * * NM   

 
 

In1  
PL PM ZO NM NL 

In2 

PL PL PL PL PL PL   
PM * PM PM PM PM   
ZO * * PS ZO PS PM In3 
NM * * * NM NS   
NL * * * * NM   

 
 

In1  
PL PM ZO NM NL 

In2 

PL PL PM PM PL PL   
PM PM PM PS PS PL   
ZO ZO PS ZO PS PM ZO In3 
NM PM PM PS NS NS   
NL PM PM PM PM NM   

 
 

In1  
PL PM ZO NM NL 

In2 

PL NM * * * *   
PM NS NM * * *   
ZO PS ZO PS * * NM In3 
NM PM PM PM PM *   
NL PL PL PL PL PL   

 
 

In1  
PL PM ZO NM NL 

In2 

PL NM * * * *   
PM NS NM * * *   
ZO PS ZO PS * * NL In3 
NM PM PM PM PM *   
NL PL PL PL PL PL   
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By using Tables 1 and 2, the fuzzy control rules are defined in the form of “if-then”:

If In1 is A, In2 is B and In3 is C, Then Out is D.

where A, B and C represent the fuzzy description subsets corresponding to the inputs, and
D is the fuzzy description subsets corresponding to the outputs.

(c) Membership functions

With respect to the inputs, the membership functions play a role in mapping the
normalized variables to the membership degree between 0 and 1. However, for the outputs,
the membership functions convert the membership degree to the normalized values. When
designing a membership function, the following aspects need to be considered. (1) The
membership functions have to fully cover the fuzzy domain. Otherwise, the blank area
occurs, causing ineffective control. (2) Adjacent membership functions should intersect
with each other, but it is not allowed that three membership functions have a common
area of intersection. (3) When the degree of intersection between two adjacent membership
functions penetrates, the fuzzy controller is more adaptable to parameter change of the
system and has stronger robustness, while if it is small, the control sensitivity is higher.
(4) In addition to the intersection degree (ID), the slope of each member function is re-
lated to the control sensitivity. Usually, the larger the slope, the more sensitive the fuzzy
controller becomes.

In light of the above analysis and the fuzzy control rules, the membership functions
for the inputs (In1, In2 and In3) and outputs (Outp and Outi) are designed as in Figure 3. It
can be seen that when the speed errors are large, the slope of the membership functions for
In1 and In2 is designed to be large as well, and simultaneously, the ID between membership
functions gets low. These indicate that when the speed errors approach the upper limit, the
fuzzy controller becomes more sensitive, resulting in remarkable variations with respect
to the PI controller parameters. The PI controller is endowed with lower bandwidth, as
well as superior ripple reduction capacity. As far as In3 is concerned, when the CPSE-E is
large or small, the corresponding membership functions are with large slopes (sensitive
controller), while when the CPSE-E is medium, the controller is less sensitive because the
membership function slopes are small. The rationale behind the design method of the
membership functions shown in Figure 3c is as follows. (1) Small CPSE-E contributes less
to ripple reduction, but large CPSE-E is prone to increase the ripples. (2) Only when the
CPSE-E is medium can it be concluded that the PI controller parameters are appropriate.
Before leaving Figure 3, the relationship between the inputs and outputs in the form of
surface view is partially given to explain the fuzzy controller more explicitly.

(d) Defuzzification

The outputs of the fuzzy inference engine are still fuzzy sets. They cannot be directly
used for adjusting the PI controller parameters, so they need to be converted to crisp values
by the use of the defuzzification part. In engineering, the most common strategy is the
centroid defuzzification which contains most of the inference results [41]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

De_kp =

m
∑

i=1
xi ·v(xi)

m
∑

i=1
v(xi)

De_ki =

m
∑

i=1
yi ·u(yi)

m
∑

i=1
u(yi)

(20)

where v(xi) and u(yi) are the membership degree, xi and yi mean the values corresponding
to its degree of membership, m represents the number of membership functions. It needs
to be mentioned that De_kp and De_ki range from −1 to 1.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. Fuzzy membership functions. (a) Membership functions for In1; (b) Membership functions for In2; (c) Membership
functions for In3; (d) Membership functions for the outputs. (e) Relationship between In1, In2 and Out1 in the form of
surface view; (f) Relationship between In1, In2 and Out2 in the form of surface view.

(e) Adjustment

Because the outputs of the defuzzification part are between −1 and 1, it is necessary
to employ output scaling factors to alter them to the appropriate levels. On this ground the
compensation values can be obtained by using the following equations:{

Δkp = Kp
∗ · De_kp

Δki = Ki
∗ · De_ki

. (21)

Finally, the real-time proportional gain kp and integral gain ki of the adaptive PI
controller can be derived as, {

kp = kp0 + Δkp
ki = ki0 + Δki

(22)

where kp0 and ki0 are the initial proportional and integral gains, respectively, and together
with Kp* and Ki*, they can be designed by using the numerical method in [42].

3.3. Implementation of Proposed Fuzzy Adaptive PI Controller-Based FCS-MPTC

The previous chapters introduce the IM model and the improved fuzzy adaptive PI
controller used for FCS-MPTC control and system ripple reduction, laying the ground
for achieving a fuzzy adaptive PI controller-based FCS-MPTC. The implementation of
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the proposed FCS-MPTC strategy is shown in Figure 4. At the kth period, the proposed
FCS-MPTC implementation procedures are:

(a) Measurement: The phase currents ik
a, ik

c and rotor speed ωk
r are measured by using

current and speed sensors (common methods in engineering).
(b) abc/MT transformation: The measured phase currents are transformed to the MT-axis

currents ik
sM, ik

sT according to the estimated rotor flux position θk+1 in the last period.
(c) Observation: Use the currents ik

sM, ik
sT to calculate the slip speed Δωk, synchronous

speed ωk
e and position θk.

(d) Calculation of compensation values: The speed error Δωk
r is obtained by subtracting

ωk
r from the reference speed ωk

re f , and then, the fuzzy controller is used to calculate

the compensation values Δkk
p and Δkk

i .
(e) Reference torque and flux generation: Use the PI controller of which parameters

comply with the results in (22) to calculate the reference torque Te*, while the reference
flux ψr* is given manually.

(f) Prediction: Use the speed and current information to estimate the future current states
ik+1
sT , ψk+1

r and Tk+1
e for the candidate voltage vectors. As for a two-level inverter, a

total of seven phase voltage vectors that are denoted as u000, u100, u110, u010, u011,
u001, and u101 are among the alternatives,

usasbsc =

⎡⎣ ua
ub
uc

⎤⎦ =
Udc

3

⎡⎣ 2 − 1 − 1
−1 2 − 1
−1 − 1 2

⎤⎦⎡⎣ sa
sb
sc

⎤⎦ (23)

where [sa, sb, sc]T includes [0, 0, 0]T, [1, 0, 0]T, [1, 1, 0]T, [0, 1, 0]T, [0, 1, 1]T, [0, 0, 1]T, and
[1, 0, 1]T, and they are the switching states. Udc is the DC source voltage. [ua, ub, uc]T are
the terminal phase voltages. By the use of abc/MT transformation, the control voltage sets
used for prediction can be expressed as:[

usM(k)
usT(k)

]
=

√
2
3

[
cos θk

√
3 sin θk −cos θk

2
−√

3 sin θk −cos θk

2

− sin θk sin θk +
√

3 cos θk

2
sin θk −√

3 cos θk

2

]
· usasbsc . (24)

(g) Evaluation: Substitute the seven the predicted values into a traditional one-step
cost function (25) and determine the optimal voltage vector and the corresponding
switching states [43].

J =
∣∣∣ψr

∗ − ψk+1
r

∣∣∣+λ
∣∣∣Te

∗ − Tk+1
e

∣∣∣ (25)

where λ is weighting factor, and in this paper, it is tuned by using the proposed method in
the next chapter. Te* and Ψr* are the reference torque, and flux, respectively.

(h) Actuation: Apply the optimum switching states to the drive system.
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Figure 4. Block diagram of proposed fuzzy adaptive PI controller-based FCS-MPTC.
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4. Novel Adaptive Weighting Factor Tuning Strategy

Usually, the weighting factor λ is set as the quotient of the rated flux and rated torque.
By doing this, the magnitudes of the torque and flux terms in (25) can be deemed to stand
at the same level, representing that the torque performance and the flux performance are
of equal importance when using the cost function for evaluation. However, just as we
illustrated in [44], this method might not be optimal in some working conditions so as to
cause either large flux or torque ripples. To solve this problem, this part introduces a novel
fuzzy adaptive weighting factor tuning method, which is shown in Figure 5, where ψk

r and
Tk

e are the observed flux, and torque at tk, respectively. ΔTe and ΔΨr are the torque and flux
errors, respectively. KT and KΨ are the output scaling factors. Out is the output of the fuzzy
inference engine. De_λ is the output of the defuzzification part. Kw* is the output scaling
factor. Δλ and λ0 are the compensation value, and the initial weighting factor, respectively.

KT

K

Te
In
In

Outp

Out
Kw

De_

r

Te

Te 
k

r
k

r

Figure 5. Block diagram of proposed fuzzy adaptive weighting factor tuning method.

It can be seen that, firstly, the input variables of the fuzzy controller are the torque
and flux errors. The rationale behind this design method is that when ΔTe is large, the
torque performance needs to be focused on, thereby increasing the value of the weighting
factor [44]. On the contrary, if ΔΨr is large, the importance degree of flux should outweigh
that of torque. In this case, λ requires to be decreased. Secondly, the fuzzy controller
still contains five parts. Referring to the design procedures and the relevant theories in
Chapter 3, each component of the fuzzy controller can be designed as follows.

(a) Fuzzification

To make In1 and In2 of the fuzzy controller range from −1 and 1, KT and KΨ are
designed as,

KT =
1

Trated · σ1%
, Kψ =

1
ψrated · σ2%

(26)

where σ1 and σ2 represent the maximum allowable torque and flux ripple range (in percent-
age) in the high-torque/flux cases. The rationale behind the scaling factor design method
is similar to that in Section 3.2.2.

(b) Fuzzy control rules

For the inputs and outputs, they can be either positive or negative, so the fuzzy subset
is selected as {PL, PM, PS, ZO, NS, NM, NL}, and 49 fuzzy control rules are shown in
Table 3. The fuzzy control rules can be summarized as follows:

Table 3. Fuzzy control rules for weighting factor.

In1

PL PM PS ZO NS NM NL

In2

PL PL PM NL NL NL PM PL
PM PL PM NM NM NM PM PL
PS PL PM NS NS NS PM PL
ZO PM PS ZO ZO ZO PS PM
NS PL PM NS NS NS PM PL
NM PL PM NM NM NM PM PL
NL PL PM NL NL NL PM PL
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(1) When In1 is large or medium (large torque error), a large or medium positive value
of Δλ is generated regardless of the magnitude of In2. In this case, the priority is to
suppress the torque ripples because the torque performance is the direct output of
the machine.

(2) When In1 is small, the output of the fuzzy controller is determined by In2. If In2 is
large, a large negative compensation value is generated to stress the importance of flux,
while if In2 is small, the weighting factor does not need to be adjusted significantly.

(c) Membership functions

The membership functions for the inputs (In1 and In2) and output are depicted in
Figure 6. Interestingly, the IDs of NL and NM, PM and PL domains in Figure 6a are
weak. This draws clear lines between the large and medium-range for the flux and
torque deviations. In this paper, by adopting these kinds of membership functions, when
|In1| > 0.9, the torque and flux deviation will be directly identified as the large level. This
contributes to ensuring the torque and flux ripples are prevented from exceeding the upper
limit as much as possible. In addition, the slopes of the input and output member functions
are large when the corresponding values are small or zero, demonstrating that the fuzzy
controller is pretty sensitive even if the system ripples are not large.

  
(a) (b) 

  
(c) 

Figure 6. Fuzzy membership functions. (a) Membership functions for inputs; (b) membership functions for output; (c)
relationship between inputs and output in the form of surface view.

(d) Defuzzification

By using the centroid defuzzification method, the output of the defuzzification part is,

De_λ =

m
∑

i=1
zi · w(zi)

m
∑

i=1
w(zi)

(27)

where w(zi) is the membership degree, zi is the value corresponding to its degree of membership.
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(e) Adjustment

The compensation value is calculated as follows:

Δλ = Kw
∗ · De_λ (28)

Then, as is illustrated in Figure 5, the real-time weighting factor used for the cost
function is,

λ = λ0 + Δλ (29)

where λ0 equals the quotient of the rated flux Ψr_rated and rated torque Trated, that is:

λ0 =
ψr_rated
Trated

. (30)

5. Simulation and Hardwar-In-Loop Testing Results

In this part, simulation and HIL tests were conducted on a three-phase IM drive whose
parameters are given in Table 4 to verify the ripple suppression effect of the proposed FCS-
MPTC strategy in the stable states. The simulation was carried out in MATLAB/Simulink
2018b (see Figure 7a), and the HIL testing results were obtained from an RT Lab–based
control board (see Figure 7b). It deserves to be mentioned again that the requirements
concerning the allowable speed, torque and flux ripple ranges are only applicable to the
high-speed/torque/flux situations because in the low-speed cases, the magnitudes of them
(rather than percentage ripples) are usually specified. Hence, in this chapter, the no-load
and low-speed situations are not considered.

(a) (b) 

Figure 7. Setups for simulation and HIL test. (a) Simulation setup for the proposed FCS-MPTC method. (b) HIL testing
setup for verifying the proposed FCS-MPTC method.
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Table 4. Parameters of IM drive system.

Variable Description Value Unit

Udc DC-link voltage 540 V
Ls stator inductance 120 mH
Rs stator resistance 0.065 Ω
Lr mutual inductance 95 mH
Rr rotor resistance 0.05
T sampling time 0.1 ms
p number of pole pairs 2 -

ωrated rated speed 110 rad/s
Trated rated torque 10 Nm

Ψr_rated rated flux 0.085 Wb
σ1% allowable speed ripple 1% -
σ2% allowable torque ripple 25%
σ3% allowable flux ripple 20%

kp0/ki0 initial parameters 0.5/0.75 -
Kp*/Ki*/Kw* scaling factors 0.35/0.5/0.0064 -

5.1. Simulation Results

On the one hand, in order to verify that the proposed adaptive weighting factor
tuning strategy was able to suppress the system ripples caused by the internal factors, a
comparative study was carried out. In detail, the performance of the traditional FCS-MPTC
with fixed PI parameters and fixed weighting factor (λ0) were firstly given, and then it was
compared with the performance of the FCS-MPTC with fixed PI parameters but adaptive
weighting factor. The simulation process for the two algorithms was conducted as follows:
Between 0 and 5.0 s, the IM motor operated at the rated speed stably under the rated
load torque. Then, at 5.0 s, a sudden load of 5 Nm was removed, and then the machine
works at 110 rad/s under 5 Nm until 10.0 s. Figure 8 shows the system performance of
the traditional FCS-MPTC method. It can be seen that when the weighting factor equals
λ0, the speed ripples reached 0.4% of the rated speed (nearly 0.4 rad/s or 4 rpm) under
the rated load situation and they are 0.3% of the rated speed under 5 Nm. As for the
current, the ripples of isT over the high-load range are ±2 A and they are ±1.6 A in the
medium-load case. In terms of the torque, when 10 Nm imposed on the rotor, the ripples
are ±2.5 Nm (25%), satisfying the requirement in Table 4. However, when the load is was
5 Nm, although the magnitude of the ripples decreases to 2.2 Nm, the ripples in percentage
are 44% because the torque base becomes smaller. This proves that σ2 is only applicable to
the high-torque situations. Whereas, it cannot be concluded that the FCS-MPTC algorithm
is not suitable for IM control in the medium- and low-torque cases because other kinds
of requirements (such as ripple magnitude) are usually specified for these situations in
engineering. As far as the flux is concerned, it is interesting that the ripples were too small
to be visible. According to (6), this occurs because of the machine rotor parameters (Lr/Rr
is large). However, another phenomenon that needs to be mentioned is that when using
an FCS-MPTC algorithm to control the motor, steady-state errors existed in the flux. In
Figure 8, the steady-state errors are about 0.012 Wb and 0.005 Wb for the high-load, and
medium-load situations, respectively. Before leaving Figure 8, it can be seen that the ripples
of the control effort of the PI controller reach ±1.2 in the high-speed and high-load cases.
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Figure 8. Performance of traditional FCS-MPTC with fixed PI parameters and fixed weighting factor.

Figure 9 illustrates the system performance of the proposed FCS-MPTC method with
fixed PI parameters but adaptive weighting factor. In comparison with Figure 8, the speed,
current and torque ripples are smaller regardless of load conditions. In detail, in the high-
speed and high-load situations, they are ±0.3 rad/s (0.3%), ±1.8 A, and ±1.75 Nm (17.5%),
respectively. It can be seen that the torque ripples decrease so significantly that the pro-
posed weighting factor tuning strategy is able to make the system satisfy the requirement.
Although the speed ripples just drop slightly, it still proves that the proposed strategy has
higher speed reduction capacity compared to the traditional FCS-MPTC. Besides, in the
medium-load conditions, the torque ripples the speed, current and torque ripples are just
±0.2 rad/s (0.2%), ±1.3 A, and ±1.6 Nm, respectively, which are also smaller than those in
Figure 8. When it comes to the flux, the steady-state error was reduced by 0.002 Wb in the
high-load situation, but it stays at the previous level when the load is 5 Nm. Compared to
Figure 8, the ripples of the control effort of the PI controller in Figure 9 are much smaller
(±0.9), which is one important reason why the proposed algorithm is able to suppress
torque ripples.

r

isT
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r

Te

 

Figure 9. Performance of proposed FCS-MPTC with fixed PI parameters but adaptive weighting factor.
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On the other hand, for the purpose of verifying that the proposed FCS-MPTC (with
adaptive PI controller parameters and adaptive weighting factor) is able to attenuate the
system ripples caused by the external factors, assuming that the speed sensor has random
errors, the control performance of the traditional and the proposed FCS-MPTC strategies
are compared. In the simulation, random errors were added to the measured speed to form
the feedback speed, and the simulation process was conducted in the same way as before.
Figures 10 and 11 demonstrate the control performance of the traditional FCS-MPTC, and
the proposed FCS-MPTC, respectively. First of all, compared to the results in Figure 8,
the speed, current and torque ripples in Figure 10 witness a significant increase when
the external disturbances are applied to the system. In detail, in the high-load situations,
the speed, current and torque ripples are ±0.8 rad/s (0.8%), ±3 A, and ±4.8 Nm (48%),
respectively, and in the medium-load condition, they are ±0.9 rad/s (0.9%), ±3.5 A,
and ±5 Nm (50%), respectively. Obviously, the system performance, especially the torque
ripples, cannot meet the requirements in Table 4, and the speed ripples are very close to the
upper limit. Secondly, it can be noticed that after using the proposed FCS-MPTC method
with adaptive PI controller parameters and adaptive weighting factor, the steady-state
performance of the system has been improved greatly. Specifically, the speed ripples in
the high-torque and medium-torque conditions are ±0.5 rad/s (0.5%) and ±0.55 rad/s
(0.55%), respectively. As for the current ripples, the magnitude of them decreases by 1.1 A
under 10 Nm. Most importantly, the torque ripples are only 2 Nm (20%) at the rated
working point, satisfying the requirement, though the ripples in percentage for medium-
load condition are still high (44%) due to the lower torque base value. These prove that
the proposed FCS-MPTC has great capacity in suppressing the system ripples. Finally,
being similar to Figures 8 and 9, the flux ripples in Figure 11 are small, but there still exist
steady-state errors.
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Figure 10. Performance of traditional FCS-MPTC with fixed PI parameters and fixed weighting factor.
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Figure 11. Performance of proposed FCS-MPTC with adaptive PI parameters and adaptive weighting factor.

5.2. HIL Testing Results

The HIL testing verification procedures are consistent with those in simulation.
Figure 12 compares the system performance of the traditional FCS-MPTC and the proposed
strategy with fixed PI parameters but adaptive weighting factor. As with the simulation re-
sults, intuitively, Figure 12b shows slightly better performance than Figure 12a. Figure 13b
illustrates that the proposed FCS-MPTC with adaptive PI parameters and adaptive weight-
ing factor has much greater capacity in suppressing the speed, current and torque ripples
when the external disturbances exist. Overall, the steady-state control performance of the
system can be improved by using the proposed FCS-MPTC strategy, and hence, it can be of
great significance in industrial applications.
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Figure 12. HIL testing results with different weighting factors. (a) Performance of traditional FCS-MPTC with fixed PI
parameters and fixed weighting factor. (b) Performance of proposed FCS-MPTC with fixed PI parameters but adaptive
weighting factor.
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Figure 13. HIL testing results when external disturbances occur. (a) Performance of traditional FCS-MPTC with fixed PI
parameters and fixed weighting factor. (b) Performance of proposed FCS-MPTC with adaptive PI parameters and adaptive
weighting factor.

6. Conclusions

This paper proposes FCS-MPTC ripple attenuation techniques for IM drives (mainly
working at the high-speed conditions) by using novel fuzzy adaptive PI controller and
fuzzy adaptive weighting factor tuning strategy. The main contributions and novelties are
as follows:

1. The PPM of the IM drives is established for achieving the FCS-MPTC algorithm. It
needs to be mentioned that, in this paper, in order to calculate the rotor flux more
accurately, a novel flux observer based on the numerical solution of flux differential
equation is derived.

2. The reasons why the traditional fuzzy adaptive speed controller contributes less in
suppressing the system ripples are analyzed theoretically. On this basis, an improved
three-dimensional fuzzy adaptive PI controller was developed, with a new structure
and modified input scaling factors. The proposed fuzzy adaptive PI controller is suit-
able for ripple reduction because the bandwidth of the system becomes narrow when
the speed ripples are large, eliminating the impact of the high-frequency disturbances.

3. A novel weighting factor tuning strategy based on fuzzy adaptive theory was de-
veloped. It is achieved by balancing the ripples of flux and torque. The proposed
weighting factor strategy is adjusted in real-time, avoiding the ripples caused by the
inappropriate internal parameters.
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Abstract: Hypertoxic materials make it critical to ensure the safety of the fluorochemical engineering
processes. This mainly depends on the over maintenance or the manual operations due to the
lack of precise models and mechanism knowledge. To quantify the deviations of the operating
variables and the product quality from their target values at the same time and to overcome the
measurement delay of the product quality, a novel quality integrated fuzzy inference system (QFIS)
was proposed to estimate the reliability of the operation status as well as the product quality to
enhance the performance of the safety monitoring system. To this end, a novel quality-weighted
multivariate inverted normal loss function was proposed to quantify the deviation of the product
quality from the target value to overcome the measurement delay. Vital safety process variables were
identified according to the expert knowledge. Afterward, the quality loss and the vital variables were
inputs to an elaborate fuzzy inference system to estimate the process reliability of the fluorochemical
engineering processes. By integrating the abundant expert knowledge and a data-driven quality
prediction model to design the fuzzy rules of QFIS, not only the operation reliability but also the
product quality can be monitored on-line. Its superiority in estimating system reliability has been
strongly proved by the application of a real fluorochemical engineering process located in East
China. Moreover, the application of the Tennessee Eastman process also confirmed its generalization
performance for other complicated black-box chemical processes.

Keywords: process reliability estimating; fluorochemical engineering process; fuzzy inference system;
quality prediction; prognostics and health management

1. Introduction

With the diversification of products and the continuous development of application
fields, the fluorochemical industry has become more and more important. However,
hypertoxic materials widely exist in the fluorochemical engineering process. Even a tiny
leak of these hypertoxic materials in the environment would cause huge damage to people,
equipment and even public safety. Additionally, nowadays, the operation condition of
chemical industrial processes is typically monitored by a large number of different types
of sensors, capturing temperature, pressure, flow, vibration, solution concentration and
other process variables. This not only results in very heterogeneous data at different time
scales but also introduces the signals affected by measurement and transmission noise. In
many cases, consequently, the sensors are partly redundant or highly related variables.
Failures in such redundant sensors would not cause the same influence on the operation
reliability as what a vital process variable would cause. Therefore, the requirement of the
monitoring system goes far beyond fault detection and diagnosis, whose major tasks are
limited to react after there are failures or faults happen. In order to avoid any possible
failures or faults, and to reduce maintenance costs and equipment uptime at the highest
level, proactive maintenance measures should be taken. This means that the maintenance

Processes 2021, 9, 292. https://doi.org/10.3390/pr9020292 https://www.mdpi.com/journal/processes258
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strategy should swift from fault detection and diagnosis (FDD) to Prognostics and Health
Management (PHM).

The goal of PHM is to provide methods and tools to design optimal maintenance
policies for a specific process under its distinct operating and degradation conditions,
achieving a high availability at minimal costs [1,2]. It is not limited to the predictions of
failure times or the remaining useful life (RUL) and supports optimal maintenance and
logistics decisions by considering the process operation status, the operating context and
the economic consequences of different faults. System reliability estimating (SRE) plays an
important role in PHM. It focuses on assessing the operational reliability based on outputs
from process operation status, available resources and operational demand.

SRE is developing rapidly and there are many methods currently available [3]. Fault
tree analysis (FTA), reliability graph, Monte Carlo Simulation and Bayesian Networks (BN)
are commonly used methods for it [4]. FTA is a systematic way to obtain the reliability
of complex systems both qualitatively and quantitatively by using exact values of root
causes’ occurrence probability. Fuzzy methods are often applied in FTA to make up for the
shortcomings of insufficient probability values [5,6]. Monte Carlo Simulation-based tools
are useful for reliability assessment of large and complex power systems [7], but they may
lead to a combinatorial explosion of the number of states to model a system [8]. They are
more suitable for estimating the reliability of a component or system of low complexity
rather than of highly complex systems [9].

Due to the complicated mechanism, copyright protection, hypertoxicity and so on,
the lack of mathematical models is one of the major reasons hindering the applications
of advanced control and monitoring methods in fluorochemical engineering processes.
On the other hand, plenty of background and expert knowledge has accumulated along
with the continuous operation of such processes. When there are differences in expert
knowledge, expert consistency prioritization can be conducted for expertise differences
instead of assuming experts identical or assigning some predefined weights [10]. Currently,
because of the aforementioned reasons, over maintenance strategies and manual operations
are the most commonly used strategies in the safety management of the fluorochemical
engineering processes [11]. It is obvious that these methods lead to big economic losses
and security risks [12]. Therefore, it is very urgent to propose an appropriate SRE method
for further application of the PHM system in these processes.

Unlike principal component analysis (PCA) and other multivariate statistical process
monitoring (MSPM) methods [13,14], a fuzzy inference system (FIS) can integrate data-
driven modelling and the priceless expert knowledge by the designation of membership
functions and fuzzy rules [15]. Successful applications of it are also attributable to its
superiority to manage uncertainty and computation for noisy and imprecise data. It also
takes advantage of operational experience and provides suggestions on chemical processes
without hard intervention [16,17]. The success of FIS is evident from its applicability and
relevance in extensive research areas: control systems, engineering, medicine, chemistry,
finance and business, computer networks, computational biology, fault detection and
diagnosis and pattern recognition [18,19]. It holds high promise in the realization of SRE
for complicated and black-box processes like the fluorochemical engineering processes.

Additionally, an important aspect of any industrial operation is conformance to
standards. This relates to how closely the operational performance, process safety, as well
as quality of the final products, match the design specifications. Whether the product
quality matches the expected value is an important standard to estimate how healthy the
process operation status is. However, quality control has not been taken into consideration
when the SRE or PHM system was designed. It is very important for decision-makers
to know the overall status both reflects the safety assessment and the product quality of
the chemical process to make the best response. Unfortunately, for chemical engineering
industries, there is always an intolerably long time-delay in the measurement of product
quality. This paper, therefore, is aimed to propose a quality integrated SRE method to fill in
the gap between the PHM system and quality control.
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Therefore, a quality integrated FIS model (QFIS) based system reliability estimating
method was proposed and applied to a process in a fluorochemical factory located in
East China. A novel quality loss function was proposed to estimate the quality deviation
based on a product quality regression model trained with the Partial Least Squares (PLS)
algorithm to overcome the time-delay in quality measurement. Meanwhile, vital safety
variables of the fluorochemical process operation were selected under the guidance of
expert knowledge. Then, these vital safety variables and the quality loss value were used
as inputs to the FIS model. By making good use of the expert knowledge and the operation
experience, the membership functions and fuzzy rules were well-constructed to obtain
the system reliability of the fluorochemical engineering process. To test the generalization
ability of our proposed QFIS method, it was also used in the Tennessee Eastman process, a
widely applied benchmark for advanced control and monitoring system.

The rest of the paper is organized as follows: Section 2, brief introduction of R22
refrigerant producing process and existing algorithms used in this paper; Section 3, details
of the proposed quality integrated fuzzy inference system; Section 4, applications in the R22
refrigerant producing process and the Tennessee Eastman process; Section 5, conclusion.

2. Background and Methods

2.1. Brief Introduction of R22 Refrigerant Producing Process

R22, also known as HCFC-22, is one of the most widely used fluorides. It is mainly
used as a kind of common propellant and refrigerant. The global use of R22 continues to
increase because it is a versatile intermediate in the organic fluorine chemical industry, e.g.,
as a precursor to tetrafluoroethylene.

The producing process of R22 is presented in Figure 1. The main operating units
include a Feeder, a Reactor, a Water Scrubber, a Separator and two Rectifying columns. R22
is prepared from the chloroform as: HCCl3 + 2 HF → HCF2Cl + 2 HCl.

Figure 1. The producing process of R22.

All materials and byproducts like AHF, HCL and HF become intensely corrosive when
meeting water in the air. Therefore, it is very vital to public safety and environmental
protection to secure the safety of the R22 producing process and to improve the performance
of the PHM system of it. As mentioned above, however, the complicated characteristics,
the confidential agreement, and the time-varying mechanisms of it adversely hinder the
performance of the traditional FDD methods. Over maintenance and manual operations
are still the most commonly used strategies in the safety management of it.
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The most important thing is that even a tiny amount of material or byproduct leakage
into the environment can cause terrible damage to equipment and workers. PHM or at
least SRE should play a bigger role than the traditional FDD, which can only react after
a disaster happens, in predicting the operation stability to react and prevent a disaster
from happening.

On the other hand, the sampling interval of the product quality is 180 min while
the DCS process variables are 1 min. Such a long delay in product quality measurement
is completely intolerable for quality control and safety management practice. It is not
practical to use product quality as an input to estimate its deviation neither.

Therefore, we proposed a quality integrated fuzzy inference system to integrate the
quality control and the system stability estimating at the same time for further applications
of PHM in such a complicated and hypertoxic process. It also can overcome the time delay
in quality measurement to evaluate the process operation through the quality control point
of view.

2.2. Brief Introduction of Existing Algorithms
2.2.1. Partial Least Squares (PLS)

Partial Least Squares (PLS) is a widely used linear regression method. It aims at
modeling linear relationships between the input variables X ∈ Rm×n (n is the number of
process variables and m is the number of observations) and output variables Y ∈ Rm×p (p
is the number of output variables) [20]. Regularly, X and Y are supposed to be normalized.
The PLS model structure can be described as [21]:

Y = XB + V (1)

where B ∈ Rn×p is the regression coefficient matrix and V ∈ Rm×p is the residual matrix.
It iteratively extracts the Latent Variables (LVs) ti ∈ Rm, ui ∈ Rm and the weight vectors

wi ∈ Rn, ci ∈ Rp from X and Y matrices in decreasing order of their corresponding singular
values, where i = 1, . . . , v, and v is the number of LVs, which is usually determined by
cross-validation. In other words, the PLS algorithm decomposes X and Y matrices as
follows [22]:

XT =
v

∑
i=1

tipT
i + E = TPT + E (2)

YT =
v

∑
i=1

uiqT
i + F = UQT + F (3)

where E and F are the residual matrix of X and Y, respectively. Therefore, by extracting
LVs, the n-dimensional original input space X is compressed into the v-dimensional LV-
space. In common cases, v << n. By doing this, PLS can effectively remove the noise and
multi-collinearity of the original data, which is especially true for the chemical process
data [23].

Then the estimated regression coefficient matrix can be obtained by the following
Equation:

B̂ = XTU
(

TTXXTU
)−1

TTY (4)

The absolute value of the coefficient represents the contribution of the corresponding
variable to the linear model, therefore, it can be used to quantify the importance of the
corresponding variable.

Root mean square error (RMSE) is usually used as a metric on the determination of
the value of v in the PLS model. The definition of RMSE is:

RMSE =
√

∑(ŷi − yi)
2/n (5)
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where yi is the observed value of the output variable and ŷi is the corresponding predicted
value. PLS model performed better when the RMSE of the training data and testing data
were smaller.

2.2.2. Fuzzy Inference System (FIS)

A fuzzy inference system (FIS) is a tool for modeling a complex system without a
thorough mathematical explanation [24]. It is capable of modeling uncertainties commonly
represented in linguistic form and extending the functionality of the engineering system.
The term “fuzzy” refers to the fact that the involved logic can deal with concepts that
cannot be expressed as “true” or “false” but rather as “partially true” or “partially false”.
The design of fuzzy rules is a delicate task, and it can be generally carried out by an expert,
who, on the basis of some heuristics that s/he has developed about the system. This makes
it easier to mechanize tasks that are already successfully performed by humans.

The application procedure of a FIS system consists of three steps: an input stage, a
processing stage, and an output stage [15,25]:

(1) The input stage maps inputs to the appropriate membership functions and true values.
The most common shape of membership functions is triangular, although trapezoidal
and bell curves are also used. The shape is generally less important than the number
of curves and their placements.

(2) The processing stage invokes each appropriate rule and generates a result, then
combines the results of all rules. It is based on a collection of logic rules in the form of
IF-THEN statements, where the IF part is called the “antecedent” and the THEN part
is called the “consequent”. Typical a fuzzy control system has dozens of rules.

(3) The output stage converts the combined result into a specific control output value.

3. The Quality Integrated FIS Based System

PHM aims to provide an integrated framework for degradation prediction and system
maintenance [2,26]. Since PHM can be considered as a holistic approach to an effective and
efficient system health management, the quality of the produced products of a concerned
process should be taken into serious consideration. However, most proposed methods
and tools mainly focus on operation stability and maintenance cost. On the other hand,
as aforementioned, for fluorochemical engineering and other chemical industries, there
is always a long time-delay in the measurement of product quality. For example, in the
R22 refrigerant producing process, the sampling interval of the product quality is 180 min
while the DCS process variable is 1 min. It is not practical, in other words, to use product
quality as an input to estimate its drift. Therefore, a novel quality integrated FIS (QFIS)
based system reliability estimating method was proposed to evaluate the stability of the
operation status and the quality of the product simultaneously.

3.1. A Novel Quality Weighted Multivariate Inverted Normal Loss Function (QMINLF)

Inverted normal loss function (INLF), Modified inverted normal loss function (MINLF),
Inverted Beta loss function (IBLF) and Inverted Gamma loss function (IGLF) are different
loss functions considering a random deviation from target values and are widely used in
industrial applications [27].

For a multivariate process, to consider the deviation of a variable from its expected
value as well as the importance of it to the final product, a novel quality weighted multi-
variate inverted normal loss function (QMINLF) was proposed as:

L(Q) =
1

1 − e−ρ2

n

∑
i=1

(
1 − e−

1
2 βi(xi−ai)

2)
(6)

where L(Q) is the estimated quality loss, ρ is a shape parameter, n is the number of process
variables, xi (i = 1, 2, . . . , n) is the observed value of the ith process variable, ai is its

262



Processes 2021, 9, 292

expected value and βi is the corresponding importance index. βi =
|bi |

∑n
i=1|bi | and |bi| is the

absolute value of the ith element value of B̂ in Equation (4).
From the definition of L(Q), we can see that L(Q) is decided by the deviation values

(xi − ai)
2 of all quality-related process variables. The bigger the deviation, the bigger the

L(Q) value. Additionally, for the same deviation value, because of being weighted by βi, the
more important the process variable xi to the final quality, the bigger the L(Q) value, which
means the bigger the quality loss. Therefore, QMINLF is more sensitive to the deviations
of the comparatively higher quality-related process variables.

Note: ρ should be optimized according to the operation knowledge or the performance
to make sure 0 ≤ L(Q) ≤ 1. It also can be optimized by a genetic algorithm or other
optimization methods.

3.2. The Procedure of the Proposed QFIS Method

To make good use of operation knowledge and to consider the quality loss at the same
time, a quality integrated fuzzy inference system was proposed to estimate the system’s
reliability. The procedure of it consists of four major steps:

(1) Identifying the vital safety variables to process stability based on operation experience
and background knowledge;

(2) Quantifying the importance of variables to product quality using PLS algorithm;
(3) Estimating the quality loss according to Equation (6);
(4) Designing the membership functions and fuzzy rules for operational reliability using

quality loss and vital safety variables as inputs.

The designing of the membership functions is the most time-consuming step for
the QFIS method, and it is also the most important step to make sure the performance
of the QFIS method. It is supposed to integrate the operation experience, background
knowledge and mechanism analysis in this step. Therefore, the membership functions
should be designed specifically. Strict membership functions are more preferred when the
system is designed to provide warning of system reliability, so triangular and trapezoid
are suggested as the membership curves. The details of membership functions and fuzzy
rules construction will be given with the specific cases in Section 4.

The structure of the proposed method is presented in Figure 2 and the details are
listed in Table 1.

Figure 2. The structure of the quality integrated FIS.
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Table 1. The procedure of the quality integrated fuzzy inference system (FIS).

The Procedure of the Quality Integrated FIS

Vital safety variables identification
Step 1: Determining important operating unit and their process variables;
Step 2: Selecting vital safety variables under the guidance of expert knowledge;

Quality loss estimation (after collecting a certain number of normal observations)
Step 1: Quantifying the importance of quality-related process variables to product quality

using PLS;
Step 2: Estimating quality loss using loss function in Equation (6);

Fuzzy inference system
Step 1: Normalizing the quality loss and vital safety variables as the inputs;
Step 2: Constructing fuzzy rules and membership functions;
Step 3: Obtaining the system reliability of the chemical process;

4. Application Results and Discussion

4.1. Application in R22 Refrigerant Producing Process

To test the performance of the proposed QFIS method, the observations of a part of an
R22 producing process in a large-scale fluorochemical industry company located in East
China were applied. The flowchart of the R22 producing process is shown in Figure 1.
There are 69 process variables in total. The sampling period was from May to November
2019 (Sampling interval was one minute), which included dozens of procurement cycles of
raw materials and experienced through the summer, autumn and winter of the location.

According to the operation experience, as shown in Figure 3, data in the green box
were observations in normal operation status which were used as training data. Data in red
boxes were observations corresponding to three types of abnormal status. Ten thousand
observations for each of them were used to test the performance of the proposed method.

Figure 3. The selection of training and testing data for R22.

The purity of one of the major intermediate materials was used as the quality variable.
Because it is sampled and measured offline per hour while the DCS process variables are
1 min, therefore, it is not practical to use product quality as an input to estimate its drift.
To match with the measured product quality, only the process variables sampled at the
same time were used to train the QFIS model. In this way, 849 observations of normal
operation status were available. Of the observations, 699 were used as training data while
the other 150 observations were used as testing data of the PLS-based quality prediction
model. Three-fold cross-validation was performed in the training step to optimize the
quality prediction model so that the importance index of each process variable can be
evaluated comprehensively.
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Besides the reactor, which is always the major unit of a process, rectifying column
1 is another major one suffering from corrosion according to the operation records and
the expert knowledge. Consequently, the reactor level, reactor temperature, rectifying
column 1 pressure and rectifying column 1 level were selected as vital safety variables.
Then these four vital safety variables and quality loss value calculated by Equation (6) were
normalized and input to the QFIS model to estimate the operation reliability.

As we mentioned above, membership functions or fuzzy rules are very important.
The membership functions were determined strictly according to the characteristics of
each input, and was basically divided into three levels: high, medium and low reliability.
According to the expert knowledge and experimental experience, triangle and trapezoid
curves were used. The membership functions for each input and output is presented in
Figure 4a. For the reactor temperature, higher than the up limitation would cause much
worse damage than lower than the low limit. Then the level of reactor temperature was
defined as Not-high and High. For the reactor level, Rectifying column 1 pressure and
Rectifying column 1 level, low pressure or level has the potential risk of leakage and high
pressure or level would bring damage to the equipment. Then the levels of them were
defined as Low, Medium and High. For the quality loss, obviously, normally, it is supposed
to be as low as possible. Medium or high-quality loss will bring huge economic loss which
is unacceptable. So the level of quality loss was defined as Low and Not-low.

Figure 4. The examples of the application of the proposed method in R22 producing process.

The shape and position of membership function curves were determined according
to the range of the corresponding variables and the operation experience which plays
an important role due to the particularity of the R22 producing process. For example,
according to equipment condition and operating status in the field. The reactor would
experience a strong decrease in reliability when the reactor temperature is over 0.7. Then the
starting point of the high reactor temperature curve is set as 0.7. The vertex of the medium
reactor level curve (0.63) was the average value of reactor level in normal observations.

The fuzzy rules were determined according to the level of each input. Table 2 lists the
level of each input and whether it is allowed. They were formulated as follows:

(1) If there was no input in state “No”, then the system reliability was in “safe” status;
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(2) If one or two inputs were in state “No”, then the system reliability was in “warning”
status;

(3) If three or four inputs were in state “No”, then the system reliability was in “alarm”
status;

(4) If there were five inputs in state “No”, then the system reliability was in “danger”
status.

Table 2. Constraints of inputs of R22 refrigerant producing process.

Index Low Medium High

Reactor temperature Yes No
Reactor level No Yes No

Rectifying column 1 pressure No Yes No
Rectifying column 1 level No Yes No

Quality loss Yes No

For example, if Reactor temperature was not high, Reactor level was medium, Rectify-
ing column 1 pressure was high, Rectifying column 1 level was low and Quality loss was
low, then the system reliability was in “warning” status.

A total of 108 fuzzy rules were constructed. Parts of them are presented in Figure 4b.
Then, the estimated system reliability of three abnormal cases is shown in Figure 5

with the corresponding value of an important inlet flow (IIF), which partly indicated the
operation status of the process.

Figure 5. The important inlet flow and system reliability of three abnormal cases in R22; (a–c) are
three abmormal cases’ important inlet flow and system reliability.

In fact, the valve of the important inlet had to be shut down for a while to protect the
process. Correspondingly, there was a very big deviation in the IIF value of Case 1 from its
target value (1.8). As a result, there was a big fluctuation in the system reliability curve
with a delay of only 40 min (see the period between the first two blue lines in Figure 5).
The system reliability was continuously lower than 50% triggered a “Danger” notice.
During the recovering period of the process, the overall trend of the system reliability was
upward volatility because the spread of this shutdown influenced other vital variables. The
system reliability was recovered to “Alarm”, then “Warning”. Unfortunately, another big
disturbance happened at the end of the period of Case 1, and the reliability went back to
“Alarm” status again. The system reliability was always under the control line of warning
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which represented that the system was not reliable and the “shut down” of the important
inlet was necessary.

Case 2 was during the recovering period of the process after an overhaul. The system
reliability was going upward at the beginning. The ups and downs of the reliability had the
same trend as the IIF value, and both of them were because of the operation fluctuations
caused by the DCS (distributed control system). It was obvious that the system reliability
was around the control line of warning and was improved in the recovering period.

Case 3, the operation was almost recovered back to normal with only small fluctua-
tions. The system reliability was going upward toward 90% with fluctuations too. Most of
the observations were above the control line of warning. It showed that the system was
reliable.

With the lowest average reliability of Case 1 and the better system reliability in Case 2
and Case 3, the same trends between the system reliability and the IIF value strongly proved
the performance of our method. It can predict the system reliability with a reasonable delay
using only normal observations to train the model. The proposed method comprehensively
considered both safety and economic factors, and the result fully reflected the status of
the system, so as to provide appropriate suggestions to the decision-makers of the R22
refrigerant producing process operation.

Due to the confidential agreement, it is not allowed to show the quality variables of
the R22 producing process. The contribution of quality loss to the final estimated system
reliability would be discussed in the application in the Tennessee Eastman process in
Section 4.2.

4.2. Application in the Tennessee Eastman Process

To further test the proposed method, it was applied to predict the system reliability
of the Tennessee Eastman chemical process (TEP). TEP is a chemical simulation process
that was promoted by J. J. DOWNS and E. F. VOGEL in 1992. It consists of five major
operating units namely, a reactor, a product-condenser, a vapor-liquid separator, a recycle
compressor and a product stripper. Its process flow diagram is shown in Figure 6. G and H
are products of the TEP. Twenty-two process variables and twelve manipulated variables
are measured online. Among them, two manipulated variables are constant. Additionally,
nineteen variables are measured by offline equipment. There are 28 process fault types
(IDV1-IDV28) in the revised version for researchers to test their monitoring methods [28,29].
Details of them are available in Refs. [28,29].

According to the literature research, the reactor pressure, reactor level, product sepa-
rator level and stripper base level were selected as the vital safety variables. Normally, the
reactor temperature should be considered as a vital variable, but it will not be affected by
any available IDVs provided by TEP. Therefore, it was not selected as a vital variable.

The 22 process variables and 10 non-constant processes manipulated variables were
used as the input of the PLS-based quality prediction model. The ratio of the product G and
H was used as the output of this quality model. A total of 960 observations, which were
sampled per 3 min, were used as training data and 240 observations were used as testing
data. The longest time delay in the G/H ratio was 30 min, which was ten times of the
process variables. Five-fold cross-validation was taken to optimize this model. The result
showed when v = 2, both the RMSEs of training data and testing data had the smallest
values. It meant the quality model had the best regression performance when v = 2. So the
corresponding regression coefficient vector β was used to obtain the quality loss defined in
Equation (6).
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Figure 6. The producing process of Tennessee Eastman process.

The principles of designing membership functions and fuzzy rules were similar to
those of the R22 refrigerant producing process. The constraints of the five inputs of QFIS are
presented in Table 3. A total of 72 fuzzy rules were designed. The membership functions of
input and output are presented in Figure 7a and part of the fuzzy rules viewer is presented
in Figure 7b. Details of the codes for TEP is provided in the supplementary material at the
end of the paper.

Table 3. Constraints of inputs of Tennessee Eastman process.

Index Low Medium High

Reactor pressure Yes No
Reactor level No Yes No

Product separator level Yes No
Stripper base level No Yes No

Quality loss Yes No

These 28 IDVs occur in a different part of the TEP with different characteristics and
amplitudes, they cause different influences on the process operation. According to the
system reliabilities calculated with our method, these 28 IDVs can be divided into three
categories: (1) Low danger: The system reliabilities were minor impacted by some IDVs
and they were always around 90%; (2) Medium danger: Some IDVs had a middle impact
on the safe operation of TEP and the corresponding system reliabilities were between 60%
and 90%; (3) High danger: A few IDVs impacted the operation severely and the system
reliabilities were under 50%. The IDV descriptions of TEP and their danger levels were
given in Table 4. We selected three typical IDVs as examples to demonstrate our QFIS
method. The system reliabilities and corresponding ratio of G/H and quality loss are
shown in Figure 8.
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Figure 7. The example of the application of the proposed method in the Tennessee Eastman chemical process (TEP).

Figure 8. The ratio of G/H, quality loss and system reliability of three cases in TEP.
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Table 4. The fault description of Tennessee Eastman Process.

No. Description Type Danger Level

1 A/C feed ratio, B composition constant (stream 4) Step Medium
2 B composition. A/C ratio constant (stream 4) Step Low
3 D feed temperature (stream 2) Step Low
4 Reactor cooling water inlet temperature Step Low
5 Condenser cooling water inlet temperature Step Low
6 A feed loss (steam 1) Step High
7 C header pressure loss-reduced availability (steam 4) Step Low
8 A, B, C feed composition (stream 4) Random Medium
9 D feed temperature (stream 2) Random Low

10 C feed temperature (stream 4) Random Low
11 Reactor cooling water inlet temperature Random Low
12 Condenser cooling water inlet temperature Random Medium
13 Reaction kinetics Slow drift Medium
14 Reactor cooling water valve Sticking Low
15 Condenser cooling water valve Sticking Low
16 Unknown Unknown Low
17 Unknown Unknown Low
18 Unknown Unknown Medium
19 Unknown Unknown Medium
20 Unknown Unknown Low
21 A feed temperature (stream 1) Random Low
22 E feed temperature (stream 3) Random Low
23 A feed pressure (stream 1) Random Low
24 D feed pressure (stream 2) Random Medium
25 E feed pressure (stream 3) Random Low
26 A and C feed pressure (stream 4) Random Low
27 Pressure fluctuation in the cooling water re-circulating unit of the reactor Random Low
28 Pressure fluctuation in the cooling water re-circulating unit of the condenser Random Low

Case 1 was the IDV6 (A feed loss) in TEP. The loss of the main raw material of the
reactor caused a severely bad influence on the product quality and the process operation.
After IDV6 was introduced, the system reliability dropped very quickly to a lower 40%,
which indicated that the process was in a very dangerous status. The quality loss increased
quickly and the ratio of G/H deviated from its target value severely at the end of the
simulation. Actually, the simulation would shut down in 6.2 h after IDV6 was introduced.
This strongly proved how serious the damage was caused by IDV6. It also proved how
good the performance of our system reliability estimating method.

Case 2 was the IDV12 (A random fluctuation in the condenser cooling water inlet
temperature) in TEP. The condenser was not the major part of the TEP. Moreover, according
to the mechanism and the flowchart of TEP, a random fluctuation in the condenser cooling
water inlet temperature could not cause severe damage because of the time delay and the
operation of the automatic DCS system. The product quality was only slightly affected and
the simulation could still keep running. The ratio of G/H was in a reasonable fluctuation
too. Consequently, the system reliability did not drop seriously. Except for several points
that were lower than 70% (the control line of warning), it was around 90% most of the time.

Case 3 was IDV9 (A random fluctuation in the D feed temperature) in TEP. D was a
reaction raw material in TEP. The automatic DCS system tuned the process parameters
to overcome the influence caused by it. Therefore, it only caused mild fluctuations in the
process operation. The quality loss was extremely small and the ratio of G/H was around
the target value. The system reliability was around the control line of safety which meant
the status was safe and reliable.

Therefore, the following conclusion can be summarized from the results: (1) The
proposed method is sensitive to the change both in product quality and in the safety of
TEP. (2) The degree of the abnormal status of TEP can be accurately estimated by our
proposed method.
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5. Conclusions

The proposed methodology considers both the effect of quality control and safety as-
sessment on the reliability of the chemical process system. To estimate the quality deviation
and to overcome the time delay in quality measurement, which is very common for engi-
neering practice, a novel quality loss function was proposed by weighting the contributions
of the process variables to the final product. Meanwhile, the vital safety variables of the
fluorochemical process operation were selected under the guidance of expert knowledge.
Finally, the system reliability was estimated with an elaborate fuzzy inference system
using the quality loss and vital process variables as inputs. The membership functions
and fuzzy rules were constructed by making good use of the expert knowledge and the
operation experience. Applications on a practical fluorochemical engineering process in
East China and on the Tennessee Eastman process strongly confirmed the superiority of
QFIS in system reliability estimating of the proposed system for complicated black-box
chemical processes. The most important contribution of the proposed methodology is
to provide an overall system reliability assessment method on both quality control and
operation status which can offer a comprehensive proposal on further PHM. However, the
estimated system reliability which should serve as a reference for decision-makers can not
control or regulate the chemical process directly. The result shows the overall status of the
chemical process and more research needs to be carried out on identifying specific reasons
leading to the decline in system reliability.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-971
7/9/2/292/s1, MATLAB codes for TEP.
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Abstract: In general, the performance of a direction of arrival (DOA) estimator may decay under a
non-uniform noise and low signal-to-noise ratio (SNR) environment. In this paper, a memetic particle
swarm optimization (MPSO) algorithm combined with a noise variance estimator is proposed, in order
to address this issue. The MPSO incorporates re-estimation of the noise variance and iterated local
search algorithms into the particle swarm optimization (PSO) algorithm, resulting in higher efficiency
and a reduction in non-uniform noise effects under a low SNR. The MPSO procedure is as follows: PSO
is initially utilized to evaluate the signal DOA using a subspace maximum-likelihood (SML) method.
Next, the best position of the swarm to estimate the noise variance is determined and the iterated
local search algorithm to reduce the non-uniform noise effect is built. The proposed method uses the
SML criterion to rebuild the noise variance for the iterated local search algorithm, in order to reduce
non-uniform noise effects. Simulation experiments confirm that the DOA estimation methods are valid
in a high SNR environment, but in a low SNR and non-uniform noise environment, the performance
becomes poor because of the confusion between noise and signal sources. The proposed method
incorporates the re-estimation of noise variance and an iterated local search algorithm in the PSO.
This method is effectively improved by the ability to reduce estimation deviation in low SNR and
non-uniform environments.

Keywords: non-uniform noise; memetic algorithms; particle swarm optimization; direction of arrival
estimation; subspace maximum-likelihood

1. Introduction

Obtaining original signal-related information from signal sources containing interference is a very
important issue [1,2]. The main sources of interference in the development of mobile communication
technologies are low signal-to-noise ratio (SNR) and non-uniform noise. Array signal processing
technologies have been applied to estimate the direction of arrival (DOA), using sensing elements
arranged in different geometries to sample the wave field and collect spatial-related information
to calculate the signal source DOA [3–6]. In wireless communications, low SNR and non-uniform
noise are types of propagation phenomena, which can lead to misrecognition of the signal source and
significant degradation of DOA estimation performance [7–12].

Among DOA estimation techniques, the maximum-likelihood (ML) [4,5,13] and multiple signal
classification (MUSIC) [14] methods are the most representative. The ML algorithm assumes that the
noise has a white Gaussian distribution and that the energy is uniform. The MUSIC method uses the
autocorrelation matrix of the received signal to perform feature decomposition and decomposes its
feature vector into signal and noise subspaces, utilizing the characteristics of orthogonality between
the signal and noise to establish the DOA search criteria of the signal source. The performance of
the ML and MUSIC methods is adversely affected by low SNR, however [12]. Therefore, Ji et al. [15]
proposed the spatial MUSIC algorithm, while Zhang et al. [16] used the colony algorithm to solve
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computationally complex problems; however, these methods cannot deal with the DOA inaccuracy
caused by excessive noise. Madurasinghe [10] suggested the power domain ML method to formulate
a new objective function to solve the problem of low-energy non-uniform noise through estimation
of the actual noise; however, the objective function did not propose a solution for the general low
SNR and high non-uniform noise method. Wen [11] proposed the smooth space method to deal with
coherent signals and non-uniform noise. This method is similar to the signal subspace projection
technique under a low SNR and suffers performance loss under high non-uniform noise environments.
Pesavento et al. [5] proposed a non-uniform noise and combined iterative quadratic algorithm (PIQML)
to improve the estimation performance and obtain better results; however, their method shows poor
performance if the non-uniform noise is too large. The judgment error will be invalid, due to early
iteration. Sha et al. [17] proposed the use of projection into a subspace to establish a high-resolution
estimate of the associated signal direction angle. This method can reduce the computational complexity
and can handle higher resolution DOA problems, but is not suitable under low SNR conditions.
This paper proposes the subspace ML (SML) method using iterated local searching by the memetic
particle swarm optimization (MPSO) [8,18,19] algorithm to search the neighborhood of the signal
direction, in order to build the beam-space [20]. The received data are bypassed through beamforming,
which can decrease the non-uniform noise phenomenon [11,12].

The particle swarm optimization (PSO) algorithm was inspired by the social behavior of animals,
such as bird flocking, swarming, and the schooling of fish. It is a branch of evolutionary algorithms,
first suggested by Kennedy et al. [21]. PSO has been shown to be outstanding for the solution of DOA
problems and is simple to implement [22–24]. PSO is a population-based random search optimization
procedure, in which the population is called a swarm. Each swarm consists of many particles and is
updated based on the influence of individual experiences, the best past experience of each individual,
and the overall best experience. The swarm characteristics of parallel multi-directional search are
different from the general heuristic method. The advantage of PSO is that it is simple to solve and
that it has the characteristics of parallel multi-directional search, which can quickly find the optimal
method but is more likely to converge to a local optimum result and does not guarantee convergence
to the global optimum, especially when the objective function has a high dimension or is a complex
non-linear function [25,26].

To reduce the premature convergence of PSO and to obtain an adequate solution for DOA
estimation under low SNR and non-uniform noise environments, this paper proposes the combination
of the iterated local search algorithm and the PSO to construct a MPSO for solving the DOA under low
SNR and non-uniform noise conditions. The proposed MPSO algorithm is simple and practicable,
as it adopts a first-order Taylor series expansion of the target function using the SML criterion [9,27],
in order to reduce the non-uniform noise effect, therefore increasing the capacity of PSO to find the
best solution. The first-order Taylor series approximates the spatial search vector and cuts it down to
a direct one-dimensional optimization [20]. Simulation results show that the proposed method has
a considerably improved ability to decrease the estimation bias under non-uniform noise and a low
SNR environment.

The remainder of the paper is structured as follows: Section 2 describes the SML DOA estimator.
Section 3 presents the SML DOA estimator using MPSO. Section 4 presents numerical simulation
results, illustrating the effect of the proposed method. The final section outlines our conclusions,
referring to the proposed estimator.

2. SML DOA Estimator

Assume a P narrowband signal impinges on M (P <M) sensors in a uniform linear array (ULA)
system. The tth measured snapshot of the received signal is written as [1]:

x(t) =
P∑

p=1

a(θp)sp(t) + n(t) = A(θ)s(t) + n(t), t = 1, 2, · · · , N, (1)
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where θ =
[
θ1 θ2 · · · θP

]T
is the unknown DOA, the superscript T indicates transposition,

N is the number of snapshots, n(t) =
[

n1(t) n2(t) · · · nM(t)
]T

is the sensor noise,

x(t) =
[

x1(t) x2(t) · · · xM(t)
]T

, xi(t) is the ith sensor receiving signals, s(t) =[
s1(t) s2(t) · · · sP(t)

]T
is the P× 1 vector of signal amplitudes, and A(θ) is the M× P composite

steering matrix, expressed as

A(θ) =
[

a(θ1) a(θ2) · · · a(θP)
]T

,

a(θi) =
[

1 exp(− j2πd sinθi/χ) · · · exp(− j2πd(M− 1) sinθi/χ)
]T

,
(2)

where a(θi) is the steering vector, χ is the wavelength, and d is the sensor spacing between two
neighboring sensors. In this paper, the sensor noise, n(t), is considered to be non-uniform and to be a
zero mean Gaussian process, such that

E[n(t)] = 0
Rn = E

[
n(t)n(t)H

]
= diag

{
σ2

1, σ2
2, · · · , σ2

M

}
,

(3)

where E[·] is the expectation, the superscript H denotes the complex conjugate transpose, diag {.} is
a diagonal matrix composed of the bracketed elements, and σ2

i is the ith sensor’s noise variance.
In general, the sensor noise n(t) is uncorrelated with all signals. The array covariance corresponding
to Equation (1) can be expressed as

R = E{x(t)xH(t)} = A(θ)RsA
H(θ) + Rn, (4)

where Rs = E[s(t)sH(t)] is the covariance matrix of the signal amplitudes. The array covariance matrix
can be estimated by the sample average, R̂:

R̂ =
1
N

N∑
t=1

x(t)xH(t). (5)

The ML estimator for non-uniform noise can be found using the weighted least-squares
approach [10], using the normalized composite steering matrix and noise component. The maximum
likelihood problem becomes a least-squares solution [10]:

L(θ,σ2) = min
θ,σ2

N∑
t=1

∣∣∣x(t) −A(θ)s(t)
∣∣∣2, (6)

where σ2 is the M× 1 vector of noise variance, |.|2 denotes the l2 norm, x(t) is the normalized receiving
signal, x(t) = R−1/2

n x(t), and A(θ) is the normalized steering matrix, A(θ) = R−1/2
n A(θ). The A(θ)s(t)

of Equation (6) is separable and, for fixed A(θ), s(t) can be obtained by using the pseudo-inverse [9]:

s(t) =
[
A

H
(θ)A(θ)

]−1
A

H
(θ)x(t). (7)

Given Equation (7), substituting the ML estimator into Equation (6) results in

L(θ,σ2) = min
θ,σ2

tr{P
A

R̂}, (8)

where P
A
= I −A(θ)

[
A

H
(θ)A(θ)

]−1
A

H
(θ), I is the unit diagonal matrix, and tr{.} is the trace of the

matrix. Equation (8) is a multi-objective minimization problem. In general, L(θ,σ2) is a very highly
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non-linear function of θ and σ2, and the cost function is highly non-linear; it is impossible to represent
the target function with any closed-form expression [16]. However, the ML estimator still has inferior
performance when the noise is non-uniform and in a low SNR environment. It is well-known that the
signal subspace projection method can weaken the noise effect of the received noisy data vector [9].

Applying eigende composition, the sample covariance matrix Equation (5) can be expressed as

R̂ =
M∑

m=1

λmemeH
m m = 1, . . . , M, (9)

where λ1 ≥ λ2 ≥ · · · ≥ λM are the eigenvalues of R̂ and em denotes the eigenvector associated with λm

for m = 1, 2, · · · , M. The column spans of Es = [e1, . . . , eP] and En = [eP+1, . . . , eM] are defined as the
signal and noise subspaces, respectively. The covariance matrix can be expressed as the summation of
two orthogonal components, EsE

H
s and EnEH

n . Hence, this paper adopts the signal subspace projection
EsE

H
s x(t), the projection of x(t) onto the columns of Es. Properly constructing the signal subspace

projection-based approach to filter the non-uniform noise can effectively enhance the performance.
The SML estimator using the ML estimator of Equation (8) can be expressed as:

L(θ,σ2) = min
θ,σ2

tr{P
A

EsE
H
s R̂}. (10)

Selection of a signal subspace under a low SNR or non-uniform noise is very difficult when using
eigendecomposition. As the received signal has low SNR or non-uniform noise, Es may contain a
noise subspace and En may contain a signal subspace. This paper adopts the reiterated procedure of a
method to reduce such confusion. First, it is assumed that the noise variance is constant for all sensors
(λM) and that the SML estimator in Equation (10) can be expressed as

L(θ) = min
θ

tr{P
A

EsE
H
s R̂}. (11)

Next, using Equation (11) to obtain the DOA, the noise variance R̂n can be estimated by

R̂n = 1
N

N∑
t=1

∣∣∣x(t) −A(θ̂)s(t)
∣∣∣2,

s(t) =
[
AH(θ̂)A(θ̂)

]−1
AH(θ̂)x(t),

(12)

where θ̂ is the estimated DOA. This procedure implies that, for a fixed R̂n, the solution θ minimizes
L(θ) in Equation (11), and vice versa. Once θ is obtained, a refined result for R̂n can be achieved using
Equation (12). Hence, θ̂ and R̂n can be estimated in an iterative manner.

The steering matrix can be determined using a first-order Taylor series approximation expansion
at the estimation DOA θ̂, expressed as [1]:

A(θ) = A(θ̂+ ηθ) � A(θ̂) + ηθA
′
(θ̂), (13)

where ηθ is a small value and A′(θ̂) = d
dθ A(θ)

∣∣∣
θ=θ̂

. Substituting Equation (13) into Equation (11),
the following expression can be obtained:

L(θ) = min
ηθ

tr{P
A(θ̂)+ηθA

′
(θ̂)

EsE
H
s R̂}, (14)

which is a direct one-dimensional optimization problem. Then, it can easily be shown that the optimum

ηθ is given by
d{tr{P

A(θ̂)+ηθA
′
(θ̂)

EsEH
s R̂}}

d(ηθ)
= 0. The value of |ηθ| has two characteristics [8]: first, if the

value of |ηθ| is small, it can achieve a convergence result that may be local or global. However, if the
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value of |ηθ| is large, the results may remain far from convergence. Using these characteristics of |ηθ|,
θ̂ is updated by:

θ̂ =

{
θ̂+ ηθ, i f |ηθ| > ε

θ̂, i f |ηθ| ≤ ε , (15)

where ε is the search precision value. In this paper, Equation (15) is repeated until |ηθ| < ε. The proposed
procedure is as follows:

1. Given the received signal x(t), compute R̂ in Equation (5) and the eigendecomposition in Equation (9).
2. Assume that the noise variance, which is constant for all sensors, is λM.
3. Estimate the DOA θ using the SML estimator in Equation (11).
4. Update the estimate of θ in Equation (15) using the ηθ property until |ηθ| ≤ ε.
5. Update the estimated non-uniform noise R̂n in Equation (12).
6. Reiterate Steps 3 to 5 until θ̂ and R̂n converge.

From the above, we propose a new method, which is a hybrid algorithm that combines PSO and
the estimated DOA θ with an iterated local search algorithm for |ηθ|.
3. The Proposed Method

This paper proposed a hybrid algorithm that incorporates PSO with an iterated local search
algorithm. The DOA with SML estimator criterion cannot be directly carried out under a non-uniform
noise and low SNR environment, in which the closed form of the contained criteria are

{
θ,σ2

}
at the

same time. Therefore, MPSO is introduced to solve the issue.
The MPSO includes the following two components: First, the PSO-based SML estimation method

searches the entire space. Second, the local search using the property achieves a more accurate search
around potential solutions of the first component. The design process of the MPSO is expressed below.

3.1. The PSO-Based SML Estimation

The PSO algorithm is an optimized search method based on a group that is easy to use, as the
algorithm requires few parameters. The swarm of the PSO algorithm consists of many particles.
Each individual particle represents a solution; it has its own position and velocity, the initial values
of which are set randomly. Then, each particle obtains a value measure from a target function; the
changing of the particle position is regulated by the value of the objective function. Our objective is to
minimize the value of the fitness function. We use the fitness function L(θ) presented in Equation
(11). There are three kinds of influences on the movement of particles. First, movement in the
previous direction; second, movement towards the position of the individual particle’s optimization
situation; and, finally, movement towards the position of the global optimization situation of the
overall swarm [21].

Let S denote the swarm size, vi(t) = [ vi,1(t) vi,2(t) · · · vi,P(t)]T be the current velocity,

and θi(t) =
[
θi,1(t) θi,2(t) · · · θi,P(t)

]T
be the current position. During each iteration, the update

to the velocity vi, j(t + 1) and position θi(t + 1) of each particle is as follows:

vi, j(t + 1) = κ · vi, j(t) + c1 ×ϕ1,i(t) × (pi, j − θi, j(t)) + c2 ×ϕ2,i(t) × (gj − θi, j(t)),
f or all i = 1, 2, · · · , S, j = 1, 2, · · · , P

(16)

θi(t + 1) = θi(t) + vi(t + 1), (17)

where vi, j(t) is the velocity of the jth dimension of the ith particle, κ is the inertia weight (this value is
typically set as 0 ≤ κ < 1), c1 and c2 are set near 2.0 [27], ϕ1,i(t) and ϕ2,i(t) are uniformly distributed
random numbers in the range [0,1] pi, j is the individual best position of the jth dimension of the ith

277



Processes 2020, 8, 1429

particle, and gj is the global best position of the jth dimension. The individual best position of each
particle is updated using

pi =

{
pi, if L(θi(t + 1)) ≥ L(θi(t))

θi(t + 1), if L(θi(t + 1)) < L(θi(t))
, (18)

where pi =
[

pi,1 pi,2 · · · pi,P
]T

. The overall best position can be found as follows:

g = min L(pi), f or i = 1, 2, · · · , S, (19)

where g =
[

g1 g2 · · · gP
]T

. The value of the velocity vi, j(t) can be limited to the range
[−vmax, vmax], in order to reduce the number of particles escaping the search space with an
uncontrollable trajectory [22]. In this paper, we use vmax = 0.1× θmax = 18◦ for the ULA system [8].

3.2. The MPSO Estimator

The MPSO proposed in this paper combines the application of a local search method into the PSO
algorithm, in order to solve the problem that the SML estimator criterion cannot obtain a closed form
solution. Using the PSO to estimate θ̂ in Equation (12), the characters of |ηθ| in the local search method
and the re-estimated R̂n are combined. A small |ηθ| value will generate convergent results, while a
large |ηθ| value requires a greater time to converge and may cause a value that changes the estimated
deviation towards a more correct value. The pseudocode of the Algorithm 1 MPSO is as follows:

Algorithms 1. MPSO

Input: received signal x(k) and set of initial values for S, c1, c2, ε,θmin,θmax in MPSO.
Output: DOA θ ∈

[
θmin θmax

]
Step 1: Set t = 0.
Step 2: Evaluate R̂ by Equation (5), λM by Equation (9), and randomly uniformly generate θi(t) and vi(t) for
i = 1, 2, · · · , S.
Step 3: Evaluate fitness value L(θi(t)) in Equation (11).
Step 4: Set pi ← θi(t) and g = min{pi}.
Step 5: Update the velocities vi, j(t + 1) using Equation (16) and positions θi(t + 1) using Equation (17).
Step 6: Evaluate the fitness value L(θi(t + 1)) in Equation (11).
Step 7: IF L(θi(t + 1)) < L(θi(t)), then pi ← θi(t + 1) .
Step 8: g← min{pi} and θ̂← g

Step 9: While |ηθ| > ε, Do

Update θ̂← θ̂+ ηθ

Evaluate |ηθ|
End While.

Step 10: Evaluate R̂n in Equation (12)
Step 11: Set g← θ̂ .
Step 12: Set t = t + 1.
Step 13: Go to Step 5 until the stopping criterion is satisfied.

Based on the above analysis, Figure 1 presents a flowchart of the proposed algorithm.
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Figure 1. The flowchart of the proposed method.

4. Simulation Result

Two examples were considered in order to illustrate the practicability of using the proposed
algorithm for DOA estimation in a non-uniform noise and low SNR environment. Simulation results
were used to compare the performance of the proposed algorithm with the MUSIC [14], minimum
variance distortionless response (MVDR) [1], and power domain ML (Power-Domain) methods [10].
The non-uniform noise (using the worst noise power ratio; WNPR) and SNR were defined using:

WNPR =
σ2

max
σ2

min
,

SNR =
s2
p

M

M∑
i=1

1
σ2

i
, f or p = 1, 2, · · · , P,

(20)
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where σ2
max and σ2

min are the maximum and minimum non-uniform noise variances, respectively.
The simulated results were obtained by averaging 500 independent Monte Carlo (MC) runs. In the
literature, a variety of statistical methods have been applied to compare performance. These include
the mean absolute error (MAE) and the root-mean-squared error (RMSE), which are defined as

MAE = 1
500×P

500∑
j=1

P∑
p=1

∣∣∣θ̂ j,p − θp
∣∣∣,

RMSE =

√
1

500×P

500∑
j=1

P∑
p=1

(θ̂ j,p − θp)
2
,

(21)

where θ̂ j,p is the jth MC run for the θp estimate value. The search grid capacity for the spectrum scan of
MUSIC [14] was set as 0.001◦. The initial set of parameters of the proposed estimators were defined as

c1 = c2 = 2.05,χ = 0.99, S = 200, T = 50, ε = 0.001, (22)

where c1, c2 are acceleration coefficients, χ is the inertial weight, S is the size of the swarm, T is the
number of iterations, and ε is the search precision value.

The first example considered a four-element ULA with half-wavelength inter-element spacing,

where the noise power was given as σ2 =
[

5 10 0.1 6
]t

, WNPR = 50, and the source had the
DOA θ1 = 5◦. Figure 2 illustrates the RMSE values of the estimated DOA versus the number of
snapshots under SNR = −15 dB. The proposed method achieved a faster convergence approach with
75 snapshots, while the other methods converged at about 150 snapshots. Figure 3 shows that the
RMSE of the various estimators versus different SNRs under snapshots was 100. In Figure 3, we can
see that all estimator RMSEs were near zero under high SNR, but the performance of other estimators
decayed under low SNR conditions. Table 1 shows the RMSE and MAE under various SNRs. The bold
text is the best estimated value under the same SNR. The proposed algorithm had RMSE and MAE
values smaller than those of the other estimators, especially under low SNR environments.

Figure 2. Root-mean-squared error (RMSE) versus the snapshot for the different estimators (MUSIC,
MVDR, Power-Domain, and the proposed estimator) for Example 1.
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Figure 3. RMSE versus the signal-to-noise ratio (SNR) for the different estimators (MUSIC, MVDR,
Power-Domain, and the proposed estimator) in Example 1.

Table 1. Direction of arrival (DOA) evaluation for the different estimators (multiple signal classification
(MUSIC), minimum variance distortionless response (MVDR), power domain maximum likelihood
(Power-Domain), and the proposed estimator) in Example 1.

MVDR MUSIC Power-Domain Proposed Method
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SNR

−20 dB 19.5392 35.9564 31.3039 5.3792

−15 dB 4.6780 28.2148 17.6577 3.1546

−10 dB 1.4788 10.6452 3.2314 1.7144

−5 dB 0.8232 1.2765 1.0158 0.7440

0 dB 0.4282 1.2765 0.5046 0.4368

5 dB 0.2368 0.2728 0.2545 0.2392

The second example considered an eight-element ULA and two sources with DOAs θ =[
−3

◦
6
◦ ]t

. The additive background noise variance was σ2 =
[

6 2 0.5 2.5 3 1 1.5 10
]t

and WNPR = 20. The other parameters were the same as in Example 1. Figure 4 indicates the RMSE of
the various estimators versus different snapshots under SNR = 0 dB. Again, this figure indicates that
the proposed estimator not only carried out faster convergence (at 50 snapshots) but also offered an
improvement in DOA evaluation accuracy. Figure 5 indicates that the RMSE of the various estimators
versus different SNRs under snapshots was 100. In Figure 5, we can see that the other estimators
were not sensitive to various low SNRs (SNR < −5 dB), when comparing their performance with
the proposed method. As hoped, the results indicate again that the DOA evaluation accuracy was
improved by the proposed estimator. Table 2 gives the DOA estimates (RMSE, MAE) of the MUSIC,
MVDR, and Power-Domain methods, along with those of the proposed estimator. The evaluation
accuracy of the MUSIC, MVDR, and Power-Domain estimators worsened under a low SNR. Moreover,
the accuracy of the proposed estimator was better than those of the other estimators under low
SNR conditions.
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Figure 4. RMSE versus snapshot for the different estimators (MUSIC, MVDR, Power-Domain, and the
proposed estimator) in Example 2.

Figure 5. RMSE versus SNR for the different estimators (MUSIC, MVDR, Power-Domain, and the
proposed estimator) in Example 2.
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Table 2. DOA evaluation for the different estimators (MUSIC, MVDR, Power-Domain, and the proposed
estimator) in Example 2.

MVDR MUSIC Power-Domain Proposed Method
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SNR

−15 dB 28.5391 22.2818 30.3017 25.5400 38.2552 30.3440 8.1092 7.3989

−10 dB 28.8271 22.4764 30.8397 24.0450 37.9480 29.2230 4.8597 4.4936

−5 dB 30.4322 23.3296 18.7202 15.3910 11.6566 9.4562 1.5421 1.4312

0 dB 31.3296 24.2212 5.2164 4.4160 3.2706 2.9772 1.1865 1.1242

5 dB 1.2848 1.2488 0.3967 0.3590 3.0139 2.9830 0.4313 0.3950

5. Conclusions

DOA estimation cannot be directly carried out under a non-uniform noise and low SNR
environment, in which the closed form of the contained criteria is

{
θ,σ2

}
. Generally, it is necessary

to process the DOA (θ) and the noise variance (σ2). In this paper, a new re-iterated process was
introduced, in which the noise variance is fixed to estimate the DOA and, vice versa, the DOA is
fixed to estimate the noise variance. After several iterations, the procedure converges to the nearest
correct estimates of the DOA and the noise variance. The proposed solution combines the MPSO
scheme, which uses the fixed noise variance to estimate the DOA through the PSO algorithm, using
the best particle to estimate the noise variance. An MPSO that incorporates the re-estimation of noise
variance and an iterated local search algorithm is applied in the PSO, resulting in an efficient reduction
of the non-uniform noise effect under a low SNR. The iterated local search of the MPSO method
exploits the characteristics of the first-order Taylor expansion |ηθ|. A small |ηθ| value can guarantee
convergent results that may be local or global while, with a large |ηθ| value, convergence will take a
longer time and may provide a value that updates the estimated deviation toward the correct value.
Empirical evidence shows that the DOA estimation methods are valid in a high SNR environment,
but in a low SNR and non-uniform noise environment, the performance becomes poor because the
noise is confused by the source of the signal. The proposed method incorporates the re-estimation
of noise variance and an iterated local search algorithm in the PSO. This method is effectively able
to reduce estimation deviation and to achieve high accuracy and fast convergence in low SNR and
non-uniform environments. Generally, a low SNR and non-uniform environment is caused by foul
weather. This problem occurs in mountaineering, so this method provides valid DOA estimation in
this environment, and can be used for positioning system issues.
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Abstract: Neural networks (NNs), which have excellent ability of self-learning and parameter adjusting,
has been widely applied to solve highly nonlinear control problems in industrial processes. This paper
presents a reference-model-based neural network control method for multi-input multi-output (MIMO)
temperature system. In order to improve the learning efficiency of the NN control, a reference model
is introduced to provide the teaching signal for the NN controller. The control inputs for the MIMO
system are given by the sum of the output of the conventional integral-proportional-derivative (I-PD)
controller and the outputs of the neural network controller.The proposed NN control method can
not only improve the transient response of the system, but can also realize temperature uniformity
in MIMO temperature systems. To verify the proposed method, simulations are carried out in
MATLAB/SIMULINK environment and experiments are carried out on the DSP (Digital Signal
Processor)-based experimental platform, respectively. Both results are quantitatively compared to
those obtained from the conventional I-PD control systems. The effectiveness of the proposed method
has been successfully verified.

Keywords: neural network control; multi-input multi-output temperature system; transient response;
temperature uniformity

1. Introduction

To realize the precise temperature of the industrial process, temperature controllers are widely
applied to manage manufacturing processes and operations. The common uses include food processing,
packaging machines, and plastic extrusion etc. Their performances can seriously affect product quality,
energy consumption, and production cost. In practical application, the proportional-integral-derivative
(PID) controller has been widely used for its simple structure and wide applicability, especially in
linear systems or first and second order systems [1]. Common methods for determining PID controller
parameters are Ziegler–Nichols (ZN) and Cohen–Coon tuning rules, which are widely used in the
industry due to their simplicity and ease of implementation, but may easily result in overshoot and
weak response damping [2]. Meanwhile, most industrial processes are multi-variable nonlinear systems
with big time constants, strong coupling effects, and large time delays. For such controlled objects,
only using the conventional PID controller may not satisfy the requirements of the system performance.

In order to ensure the robustness and stability of the controller, many methods have been proposed
to improve the performance of the PID controller, such as gain and phase margin [3], pole placement [4],
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and internal model control (IMC) [5]. For canceling the coupling interactions between each channels in
multi-input multi-output (MIMO) systems, a verity of decoupling control strategies have been applied,
such as inverse Nyquist array(INA) [6], feedforward decoupling control [7], and inverse based
decoupling control [8].These decoupling control methods are to design the decoupler so that the MIMO
control system can be divided into multiple single-input single-output (SISO) loops, which allows
one to adopt well developed single loop control methods. However, the modeling error may decrease
system performance as decoupling is guaranteed under the condition that the precise mathematical
model is obtained. The quality of the obtained model depends on many on-site factors, such as
the excitation condition and selected identification algorithm [9–11]. In addition, the decoupling
control is not enough to reach uniform temperature control in transient state without adjusting the
PID parameters in different channels [12].

Considering the complex control rules and controller computation grow exponentially with a
number of variables in nonlinear MIMO systems, intelligent control strategies are developed and
widely used. Fuzzy logic control, genetic algorithms, and neural networks (NN) are the most promising
methods among them [13–15]. NN is known for its great computing power and learning ability to
emulate various systems dynamics with a highly parallel structure. Over the past few decades,
NN has been successfully applied in many fields such as system modeling, pattern recognition,
and signal processing [16–19]. In thermal systems, the NN has been used for heat transfer data
analysis, performance prediction, and dynamic modeling etc. [20–23]. It is shown that NN is well
suitable to deal with complex nonlinear relationships in control systems. NN helps solve the problem
in typical heating system control methods that once the parameters of the control system are designed,
they cannot be adjusted while the system is in operation. For a thermal process system with strong
nonlinearly, large lag, and strong coupling, an adaptive system can improve control performance in
terms of the transient response and overshoot [24–26].

Our previous research has proposed the NN control method applied to the temperature
control system, the proposal has successfully improved the transient response of the single-input
single-output (SISO) temperature control system [27,28]. However, many controlled objects are
MIMO systems in practical applications, the dynamic uniform temperature of the MIMO system
is widely required. In the MIMO temperature control system, the coupling effects and delay
time differences make the system much more complex than the SISO temperature control system
and courses the temperature difference between each channels. Thus, different from the SISO
system control, the control performance of the MIMO system should not only focus on improving
transient response and overshoot, more importantly, focus on reducing temperature differences to
realize temperature uniformity of different channels. In this paper, we extend the previous NN
control method from SISO to MIMO systems, clearly defining the parameters selection method of the
reference model for the complex multi-point control system. Moreover, the coupling effects on the
system performance can been effectively suppressed by the NN learning controller without specially
designing decoupling compensators.

Based on our previous research, this proposal focuses on the multi-inputs multi-outputs (MIMO)
temperature control system to improve the transient response of each channel in the MIMO system and
reduce the temperature difference between each channel, realizing the temperature uniformity of the
MIMO temperature system. A reference-model-based neural network control method combined with
the integral-proportional-derivative (I-PD) controller is proposed. The system is driven by the error
signal between the reference model output and real system outputs. The error signal of each channel is
used as the teaching signal for the corresponding NN controller. The output of NN controller is added
to the I-PD controller output, appropriately adjusting the control input of each channel. The MIMO
temperature system is expected to achieve uniform temperature and steady state quickly. The rest of
this paper is organized as follows: Section 2 describes the structure of the proposed MIMO control
system. The simulation results and experimental results are presented in Sections 3 and 4, respectively.
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Meanwhile, the results are quantitatively compared with those of the I-PD control system. A simple
conclusion is given in Section 5.

2. Configuration of the MIMO Temperature Control System

This section describes the configuration of the proposed reference-model-based NN control
method in the MIMO control system. In this paper, the MIMO system is simplified as a two-input
two-output (2I2O) model. The block diagram of the proposed temperature control system is shown in
Figure 1.

Figure 1. Block diagram of the multi-input multi-output (MIMO) temperature control system.

As shown in Figure 1, the temperature controller consists of two feedback controllers C1 and C2,
a reference model Rm, and two neural network controllers CNN1 and CNN2. Here, r is the reference
of the system, and y1 and y2 indicate the actual outputs of two channels. v1 and v2 are the outputs
of two feedback controllers C1 and C2, respectively. uN1 and uN2 indicate the outputs of CNN1

and CNN2, respectively. Thus, the control inputs of the two channels can be respectively indicated by
u1 and u2 which can be expressed as the sum of the outputs of the NN controllers and I-PD controllers.
y1 and y2 represent the inputs and outputs of the 2I2O controlled object, respectively. Due to the control
object of each channel being a plant with a time delay, the reference model Rm can be appropriately
designed to provide the ideal temperature output with the same time delay which is the maximum
time delay of two channels in the MIMO system. er1 and er2 are the errors between the outputs of the
system and output of the reference model, respectively, which are the teaching signal for NN. The NN
controller adjusts control inputs to compensate for the difference between the reference model output
and each channel output. The explanation of the control system is divided into four main parts.

2.1. MIMO Controlled Objects with Strong Coupling Effects

The control system is designed based on the MIMO temperature system with a strong coupling
influence, the schematic block diagram of the coupled system is shown in Figure 2, where u1 and u2

are defined as the inputs of channel ch1 and channel ch2, respectively. In addition, y1 and y2 indicate
the output of ch1 and ch2, respectively. The coupling terms between the two channels are obtained as
P21 and P12, respectively. In this proposal, the controlled objects can be defined as a first-order plus
time delay (FOPTD) system expressed as Equation (1) [29]. The step response characteristics of the
controlled object is shown in Figure 3, where τ is time delay, K is the steady-state gain, and T is the
time constant.

P(s) =
K

Ts + 1
e−τs (1)
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Figure 2. Block diagram of the two-input two-output (2I2O) controlled object.

Figure 3. Step response of FOPTD plant.

2.2. Conventional I-PD Controller

Considering that the NN controller needs time to train its parameters for getting expected outputs,
it will mainly act after training. Thus, the conventional I-PD controllers as the feedback controllers
are designed for each channel to eliminate the proportional and derivative kick appeared during
the set-point change and reduce the undesirable overshoot of the controlled variable [30]. The block
diagram of the conventional I-PD controller is shown in Figure 4. For each I-PD controller parameters
of the system, Kpn is the proportional gain and Tin is the integral time constant. Tdn represents the
derivative time constant, where n = 1, 2. They are related to the plant parameters (K, T, and τ) as
described above. In addition, μ represents the low-pass filter gain of the derivative term for reducing
the high-frequency gain and noise. The feed-forward gain K f is added to decide the system response
speed (K f = 0: slow; K f = 1: fast).

Figure 4. Block diagram of the integral-proportional-derivative (I-PD) controller.
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For the industrial PID controller tuning, Ziegler–Nichols tuning rules are recognized and widely
applied in actual control systems. The robustness and stability of the controllers are ensured.
The parameters of two I-PD controllers C1 and C2 are calculated based on this tuning rule as
Equations (2)–(4).

Ti1 = 2τ11; Ti2 = 2τ22 (2)

Td1 = 0.5τ11; Td2 = 0.5τ22 (3)

Kp1 =
1.2T11

K11 ∗ τ11
; Kp2 =

1.2T22

K22 ∗ τ22
. (4)

2.3. Multi-Layer NN Controller

In order to realize the uniform temperature of different channels, a multi-layer NN controller is
introduced into each channel of the control system for the reference model output tracking. In the
proposed system, each NN controller has one input layer with two neurons, one hidden layer with 10
neurons, and one output layer with one neuron. Thus, the structure of each multi-layer NN controller
can be described as 2-10-1. Figure 5 illustrates the multi-layer neural network controllers.

Figure 5. Structure of the multi-layer neural network controllers.

In this system, the reference value of the system r and y1 (the output of ch1) are set as the
input signals of the NN controller1, r and y2 (the output of ch2) are set as the input signals of the
NN controller2. For each controller, two inputs are transmitted in the forward direction through
the network. The composition of the learning process of the network is by forward propagation and
back propagation [31]. Neural network calculates and store intermediate variables from the input
signals to the output signals, which is expressed as Equation (5):

NNout = f (Wout ∗ f (Win ∗ NNin + b1) + b2). (5)

For each NN controller, NNin is the input vector and NNout is the output vector. Win and Wout are
connection weights of neurons. b1 is the bias of the hidden layer neurons, b2 is the bias of the output
layer neurons, and f (∗) is the activation function.

For training the network, the back propagation algorithm is used to update the weights and biases.
Through this process, each NN controller constantly adjust its outputs uN1 and uN2 for achieving
the minimum error between the reference model output and actual outputs of two channels in
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this system. Considering one of the NN controllers, a neuron in the output layer is called neuron j
(here j = 1). The error at the output of the neuron j for nth iteration is defined by Equation (6). In the
backward process, weights on the connections between all layers will be updated to minimize the
error between target and output until the optimum weights are found [32]. Therefore, the total error is
the sum of ej for all neurons in the output layer, as given in Equation (7):

ej(n) = yr(n)− yj(n) (6)

ε(n) =
1
2 ∑

j
e2

j (n) (7)

where the reference model output yr is the expected output for neuron j and yj(n) is the actual outputs
of two channels. The output for the neuron j can be expressed as Equation(8), where k = 10 is the
number of inputs from the hidden layer. Here, Wj0 equals the bias bj applied to the neuron j:

yj(n) = f (
k

∑
i=0

Wji(n)yi(n)). (8)

The connection weights of the neuron j are updated by the chain rule, and can be expressed in
Equation (9), where δj(n) represents the local gradient of neuron j, given in Equation (10):

∂ε(n)
∂Wji(n)

= δj(n)yi(n) (9)

δj(n) = −ej(n) f ′(
k

∑
i=0

Wji(n)yi(n)). (10)

Therefore, the weight wij is updated by adopting the gradient descent, expressed as Equation (11).
The correction ΔWij ensures wij changes in a way that always decreases the error, given in Equation (12),
where α represents the learning rate of the back propagation:

Wji(n + 1) = Wji(n) + ΔWij(n) (11)

ΔWij(n) = −α
∂ε(n)

∂Wji(n)
. (12)

The neuron bias connection for the neuron j is adjusted by δj(n) during training, as given in
Equation (13), where β is the training gain of the bias:

bj(n + 1) = bj(n) + βδj(n). (13)

In order to accelerate the training speed and solve the vanishing problem in the NN controller,
the rectified linear unit (ReLU): f (x) = max(0, x) is used as the activation function [33]. The derivative
of the function is given in Equation (14):

f
′
(x) =

{
1, x ≥ 0

0, x < 0
(14)

2.4. Reference Model

In the reference-model-based NN control structure, the teaching signal of each NN controller is
provided by errors between the reference model output and real plant output. It also helps to prevent
over learning of the NN controller.
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For the controller design, time delays in the dynamic systems can be approximated by rational
transfer functions. The exponential function can be defined as follows [34]:

ex ≈ lim
n→∞

1
( x

n + 1)n . (15)

In order to save memory and consider trade-off between accuracy and calculation burden, the time
delay e−τs which is written as 1/eτs can be described as the second-order rational approximation in
Equation (16):

e−τs ≈ 1
( τs

2 + 1)2 . (16)

Then the reference model with time delay can be expressed as Equation (17). Here, τ and T are
delay time and the time constant of the reference model, which are set based on the real system model.
It is designed to provide the ideal temperature output with the same time delay τ which is the
maximum time delay of channels in the MIMO system. In addition, the time constant T of the reference
model is the smaller time constant in the identified system model. The gain PRM value of 0.01 is added
to the plant time constant T for improving the transient response speed of the system:

Rm(s) =
1

T · PRM · s + 1
∗ 1
( τs

2 + 1)2 . (17)

3. Simulation Results

To verify the efficiency of the proposed control method, the control object is based on a real
temperature control system. Figure 6 shows the experimental setup for the multi-input multi-output
temperature system with strong coupling effects and large time delays.

(a) Front view. (b) Rear view.

Figure 6. Experimental setup.

3.1. Experimental Setup and System Identification

This system has four coupled aluminum blocks, the size being 60 × 60 × 50 (mm). As shown in
Figure 6b, they are arranged in line with the same separation distance by nuts, forming a two-input
two-output system with strong coupling and large time delays. The left two blocks as a whole are
channel ch1 and the right two blocks as a whole are channel ch2. Channel ch1 and channel ch2 have
two heaters of 150 W (Cartridge Heater, type G2A56, WATLOW, Chiyoda, Japan) and the temperature
sensor (K type thermocouple, RKC, Tokyo, Japan), respectively. The temperature sensor transforms
the temperature (0–400 ◦C) into the output voltage (0–10 VDC). They are placed inside of holes with
a depth of 30 [mm] (close to the inner center of aluminum blocks). The heaters are controlled by
the solid-state relay (SSR, type G3PE-245BL, Omorn, Tokyo, Japan), which is driven by the pulse
width modulation (PWM). The temperature is controlled by changing the duty ratio of the PWM
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signals. A digital signal processor (DSP, DS1104 R&D Controller Board, dSPACE Japan, Tokyo, Japan)
is implemented as the temperature controller. The sampling time is set as 0.1 [s]. Although the SSR is
a nonlinear element for the relay based on the PWM duty signal, it can be considered as the gain if
the switching frequency of the relay is sufficiently large in comparison to the control bandwidth of
the controlled object. In our system, the control bandwidth is 1

2π∗PRM∗T = 0.0064 [Hz] (PRM ∗ T is the
reference model time constant), while the PWM frequency is 10 [Hz]. Therefore, SSR can be handled as
a linear factor.

The step signal (20% PWM duty cycle) is added to ch1 and ch2, in order. The heaters of the ch1 and
heaters of ch2 are actuated, respectively. The ambient temperature during the performed identification
experiments was 28 ◦C. The controlled object of the temperature control system is identified from the
input-output(step response) measured data. The ARX (auto-regressive with eXogenous) model based
on the least-squares criterion is applied to estimate the system transfer functions in MATLAB. The
following Equation (18) shows the form of the ARX model, where u(k) is the system inputs, y(k) is the
system outputs, nk is the system delay, and e(k) is the system disturbance:

A(q)y(k) = B(q)u(k − nk) + e(k). (18)

In Equation (18), A(q) and B(q) are given as follows:

A(q) = 1 + a1q−1 + · · ·+ ana q−na (19)

B(q) = b1q−1−nk + · · ·+ bnb q−nb−nk (20)

where na and nb are the orders of polynomial A(q) and B(q), respectively. The parameters of A(q)
and B(q) are determined using the least squares method that minimizes the quadratic prediction
error criteria. In MATLAB, the identified discrete-time model is transformed into the continuous-time
model and model order is reduced by balanced realization, obtaining the identified system model
in the form of first-order plus time delay [35,36]. The performance parameter used for validating
the identified model is the percentage of fit as the following expression (21), where y(k) is the actual
output, ŷ(k) is the model output, and y(k) is the mean of the actual output:

Fit(%) = (1 −
√

∑N
k=1[ŷ(k)− y(k)]2√

∑N
k=1[y(k)− y(k)]2

)× 100%. (21)

The identification results of the coupling terms are shown in Figure 7 and the estimation fit in
results shows that the accuracy of the estimated model is above 95%.

Figure 7. System identification results.
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Thus, the identification results can be finalized as (22). The system controller parameter design,
system simulation, and experiments are all based on the identified plant transfer functions:

Gp(s) =

[
P11 P12

P21 P22

]
=

[ 2.7502
2482.4s+1 e−431s 1.4614

3085.1s+1 e−1042s

1.7352
3195.9s+1 e−973s 2.3937

2588.6s+1 e−464s

]
. (22)

3.2. Simulation Results

According to the identified system model, the gains of two I-PD controllers are determined by the
Ziegler–Nichols method, as described above. The gains of the I-PD controller (C1) are Kp1 = 2.5146,
Ti1 = 861.5, and Td1 = 215.375. The gains of the I-PD controller (C2) are Kp2 = 2.7968, Ti2 = 927.98, and
Td2 = 231.995. In addition, the reference model Rm(s) is given as (23). Here, PRM is set as 0.01:

Rm(s) ≈ 1
2482.4 ∗ 0.01 ∗ s + 1

∗ 1
( 464s

2 + 1)2
. (23)

The hyper-parameters of both NN controllers are initialized as follows: The learning rate
α = 1 × 10−10 and the bias training gain β = 1 × 10−5. They are determined via the try and error
method. The initial biases of each layer are initialized as zero. The weights of the NN controller are
initialized to small random values between −1 and 1.

The simulation is divided into two phases. In the first phase, setting the reference signal to 100 ◦C,
then the temperature of different channels increases from 0 ◦C to 100 ◦C. During this period, the neural
network controller completes learning. Then, in the second phase, a repetitive step signal with an
amplitude of 5 ◦C is added to the reference signals periodically. The offset of the reference signal
is 100 ◦C. In one cycle, the temperature is controlled from 100 ◦C to 105 ◦C, then return to 100 ◦C.
After multiple cycles, the first step response and last step response results in both directions can be
obtained. Here, the temperature from 100 ◦C to 105 ◦C is defined as the positive direction control and
the temperature from 105 ◦C to 100 ◦C is defined as the negative direction control.

Figure 8a shows the full time response of the control system and (b) shows the results of positive
direction control (from 100 ◦C to 105 ◦C) and negative direction control (from 105 ◦C to 100 ◦C)
of the NN control system. From the NN control system results, the first step response is almost
the same as the last response, meaning the learning of the NN control ends at the beginning of
the first step. Thus, the NN controllers realize the quick-learning. These results are quantitatively
compared with those obtained by the conventional I-PD control with different feed-forward gains
K f = 0 (slow response) and K f = 1 (fast response). The step-response characteristics of systems are
computed from the response data in MATLAB, the rise time of a response is defined as the change in
time required for the response to rise from 10% to 90% of the desired steady-state response yfinal (here,
105 ◦C and 100 ◦C, respectively). Furthermore,the settling time is defined as the time required for the
error between the time response y(t) and yfinal to fall below 5% of the yfinal. Percentage overshoot is
also relative to yfinal.

In the positive direction, two channels of the proposed NN control system follow the reference
model as much as possible. The rise time of ch1 and ch2 in the NN control system is 753.2 s
and 787.9 s, respectively. Compared with that of the I-PD (K f = 0) control system, which is 931.2 s and
990.1 s, ch1 and ch2 has an improvement of 23.6% and 25.7%, respectively. Compared with that of the
I-PD (K f = 1) system which is 459.2 s and 482.4 s, although the transient response of the I-PD (K f = 1)
system is faster, the overshoots of two channels are 2.43 ◦C and 2.37 ◦C, which are about 48.6% and
47.5% of the reference value, respectively. The overshoots of two channels in the I-PD (K f = 0) system
are 0.51 ◦C and 0.4 ◦C, which are about 10.1% and 8% of the reference value, respectively. By contrast,
both overshoots of the proposed NN system outputs are zero.

In addition, the settling time of ch1 and ch2 in the NN control system is 2225.1 s and 2178.4 s.
Compared with that of the I-PD (K f = 1) control system which is 3666.3 s and 3554.5 s, both channels
have an improvement of about 42%. Compared with that of the I-PD (K f = 0) control system which is
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3634.9 s and 3144.1 s, ch1 improved by 38% and ch2 improved by 31%, respectively. The NN control
system was the fastest to reach stable state without overshoots. Simulation results for the temperature
from 100 ◦C to 105 ◦C are presented in Table 1. The rise time and settling time reflect the transient
response and steady-state response speed of the control systems, respectively.

(a) Full time response of the control system. (b) Positive and negative direction control results.

Figure 8. Simulation results. (a) Full time response for the control system. (b) Results of positive
direction control for the temperature from 100 ◦C to 105 ◦C and negative direction control for the
temperature from 105 ◦C to 100 ◦C.

Table 1. Comparison of simulation results for time response characteristics (100 ◦C to 105 ◦C).

100 ◦C to 105 ◦C Ref ch1 (K f = 1) ch2 (K f = 1) ch1 (K f = 0) ch2 (K f = 0) ch1 (NN) ch2 (NN)

Rise Time (s) 780.7 459.2 482.4 931.2 990.1 753.2 787.9

Settling Time (s) 1378.2 3663.0 3554.5 3634.9 3144.1 2225.1 2178.4

Overshoot (%) 0 48.6 47.5 10.1 8.0 0 0

In the negative direction, the temperature signal varies from 105 ◦C to 100 ◦C. Response
characteristics of different control systems are compared and results are similar to the corresponding
results in the positive direction. The rise time of ch1 and ch2 in the NN control system is 726.7 s
and 772.2 s, respectively. Compared with that of the I-PD (K f = 0) control system, which is 931.2 s
and 990.1 s, ch1 and ch2 has an improvement of 21.9% and 22%, respectively. Compared with that
of the I-PD (K f = 1) system which is 459.2 s and 482.4 s, although the transient response of the I-PD
(K f = 1) system is faster, the overshoots of two channels are 2.43 ◦C and 2.37 ◦C, which are about 48.6%
and 47.5% of the reference value, respectively. The overshoots of the two channels in the I-PD (K f = 0)
system are 0.51 ◦C and 0.4 ◦C, which are about 10.1% and 8% of the reference value, respectively. By
contrast, both overshoots of the proposed NN system outputs are zero.

Additionally, the settling time of ch1 and ch2 in the I-PD (K f = 0) control system is 3689 s
and 3135.5 s. In the NN control system, it is 2241.3 s and 2164.5 s, which has an improvement of 39%
and 31%, respectively. Compared with that of the I-PD (K f = 1) control system which is 3669 s and
3553 s, the NN control system improved by 38.9% and 39%. From simulation results, different channels
in the NN control system can quickly reach the stable state with no overshoot in contrast to the large
overshoots of the I-PD control systems. Simulation results for temperature from 105 ◦C to 100 ◦C
are presented in Table 2. These results show that the proposed NN control system has improved the
temperature control efficiency in both directions.
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Figure 9a,b, respectively show the temperature differences between ch1 and ch2 in positive and
negative directions, using I-PD control with gains K f = 1, 0 and the proposed NN control.

Table 2. Comparison of simulation results for time response characteristics (105 ◦C to 100 ◦C).

105 ◦C to 100 ◦C Ref ch1 (K f = 1) ch2 (K f = 1) ch1 (K f = 0) ch2 (K f = 0) ch1 (NN) ch2 (NN)

Rise Time (s) 780.7 459.2 482.4 931.2 990.1 726.7 772.2

Settling Time (s) 1378.2 3669.0 3552.0 3689.0 3135.5 2241.3 2164.5

Overshoot (%) 0 48.6 47.5 10.1 7.9 0 0

In the positive direction, the maximum temperature difference of the I-PD control with gains
K f = 1 and K f = 0 are 0.35 ◦C and 0.31 ◦C, about 7% and 6.2% of the reference temperature,
respectively. The result of the proposed NN control system is 0.23 ◦C, about 4.6% of the reference
temperature. The maximum temperature difference of the NN control system is decreased by 2.4%
and 1.6%, compared to results of I-PD (K f = 0) and I-PD (K f = 1) control systems. Meanwhile, the
temperature difference of the NN control drops to 0 ◦C in about 2400 s. The time has been shortened
by 55% and 59% compared with the time for I-PD (K f = 1) and I-PD (K f = 0) control systems, which
is about 5300 s and 5800 s.

(a) Temperature difference (100 ◦C–105 ◦C). (b) Absolute temperature difference (105 ◦C–100 ◦C).

Figure 9. Simulation results. (a) Temperature differences between ch1 and ch2 from 100 ◦C to 105 ◦C.
(b) Absolute temperature differences between ch1 and ch2 from 105 ◦C to 100 ◦C.

In the negative direction, results are similar to those in the positive direction. The maximum
absolute temperature difference of the NN control system and the I-PD control system with gains
K f = 1 and K f = 0 are about 0.24 ◦C, 0.34 ◦C and 0.31 ◦C, corresponding to 4.8%, 6.8%, and 6.2% of
the reference value. The maximum temperature difference in the NN control system decreased by
1.4% and 1.6%, when compared to the results of I-PD (K f = 0) and I-PD (K f = 1) control systems.
Meanwhile, the temperature difference of the NN control drops to 0 in about 2300 s. The time is
shortened by 57% and 60% compared to that of I-PD (K f = 1) and I-PD (K f = 0) control systems,
which is about 5400 s and 5700 s. From these simulation results, although the maximum temperature
difference between ch1 and ch2 is not suppressed drastically, quick transient response and uniform
temperature in different channels can be achieved.

In order to analyze the influences of the coupling terms between different channels, the time
response results of the I-PD (K f = 1) control system with coupling and without coupling effects are
given in Figure 10, the reference signal is set to 100 ◦C. The overshoots of the system with coupling
terms become bigger, about 11.2% and 8.4% of the reference signal. The overshoots of the system
without coupling terms are about 9.4% and 7.8%, respectively. In addition, a slight oscillation is
enhanced in both outputs for the coupling effects. From absolute temperature differences of outputs
between the control system with coupling effects and without coupling effects, both output temperature
differences in the I-PD system are large, with maximum values of about 11.4 ◦C and 16.6 ◦C, respectively.
The maximum errors of the NN control system are about 4.2 ◦C and 5.1 ◦C in output temperatures.

295



Processes 2020, 8, 1365

The proposed NN control system can effectively weaken the coupling terms influences on the control
system outputs.

(a) Time response comparison. (b) Absolute temperature difference of outputs.

Figure 10. Analysis of coupling effects in the control system. (a) Compare time response results between
the control system with coupling effects and without coupling effects. (b) Absolute temperature
difference of outputs between the control system with coupling effects and without coupling effects.

4. Experimental Results

According to the identified system model introduced in the simulation, experiments with the
proposed NN control method are carried out in the real temperature control system. The experimental
setup is shown in Figure 6. Experimental conditions are as follows: The room temperature is set at
28 ◦C, sampling period is 0.1 s, controller sampling bit is 12 bits and the sensor resolution is 0.1 ◦C.
In experiments, the reference temperature is first set to 100 ◦C, the temperature of two channels is
controlled from the room temperature to 100 ◦C. Then a repetitive step signal with amplitude of 5 ◦C
is added to the reference periodically. The temperature is controlled from 100 ◦C to 105 ◦C, then return
to 100 ◦C. This process is repeated many times. The temperature increases from the room temperature
to 100 ◦C, defined as the learning period of the NN controller, and the temperature from 100 ◦C to
105 ◦C and from 105 ◦C to 100 ◦C are the control results of the NN control system. For NN learning in
the first step, we roughly estimated [uN1, y1, er1, uN2, y2, er2] × 100,000 steps (sampling time 0.1 s) =
6.0 × 105 data is required to complete the learning. For testing the learned NN, one sequence of the
step response is needed. Therefore, the same data number is required. Similarly, in the simulation,
to verify the control performance of the proposed method, results are compared with those of the I-PD
control with gains K f = 1 (slow) and K f = 0 (fast).

Figure 11a shows the results for full time response of the control system, and (b) shows the results
for the temperature changes in positive and negative directions. As shown in Figure 11b, the I-PD
control system with gain K f = 1 has the fastest transient response speed, but is the slowest to reach
the steady state in both directions. For the I-PD control system with gain K f = 0, both the transient
response and steady-state response are slower than the NN control system in both directions.

The time response characteristics of controlled systems are extracted from positive direction
and negative direction response data in MATLAB. The response data is loaded, which is an array of
response data y and corresponding time vector t. The 2nd-order butterworth digital low-pass filter
with a cutoff frequency of 0.05 Hz (sampling frequency is 10 Hz) is applied to eliminate as much of
the noise in the data as possible. The response characteristics were calculated from these data using
the command “S = stepinfo(y, t, yfinal)” in MATLAB. Considering the noise in the data, the last value
in y may not have the true steady-state response value. Therefore, the steady-state value (yfinal)
should be set as 105 and 100 in the positive and negative direction control, respectively. The response
characteristics of controlled systems such as rise time, settling time, and overshoot can be obtained.

In the positive direction, the rise time of ch1 and ch2 in the I-PD (K f = 0) control system is
947.2 s and 973.1 s, in the NN control system, it is 812.4 s and 820.6 s, which improved by 14.2%
and 15.7%. The settling time of ch1 and ch2 in the I-PD (K f = 0) control system is 3414.2 s and 3217.9 s,
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and the NN control system had an improvement of 35.1% and 31.5%, which is 2217.3 s and 2204.8 s,
respectively. In the I-PD (K f = 1) control system, the settling time of ch1 and ch2 is 3824.3 s and 3718.6 s.
By comparison, the NN control system improved by 42% and 40.7%. In addition, the overshoots of
ch1 and ch2 in the I-PD (K f = 1) control system are 2.01 ◦C and 1.92 ◦C, corresponding to 40.1% and
38.4% of the reference. The overshoots of ch1 and ch2 in the I-PD (K f = 0) control system are about
0.69 ◦C and 0.53 ◦C, corresponding to 13.9% and 10.5% of the reference. In the NN control system,
the overshoot of ch1 and ch2 are about 0.06 ◦C and 0.08 ◦C, corresponding to 1.3% and 1.7% of the
reference, much smaller than those in the I-PD control systems.

(a) Time response of the controlled system. (b) Positive and negative direction control results.

Figure 11. Experimental results. (a) Time response for the controlled system. (b) Results of positive
direction control for the temperature from 100 ◦C to 105 ◦C and negative direction control for the
temperature from 105 ◦C to 100 ◦C.

In the negative direction, similar results can be obtained. The rise time of ch1 and ch2 in the
I-PD (K f = 0) control system is 1027.3 s and 1093.4 s, in the NN control system is 877.3 s and 893.7 s,
which has been improved by 14.6% and 18.3%. The settling time of ch1 and ch2 in the I-PD (K f = 0)
control system is 3492.7 s and 3325.1 s, the NN control system has an improvement of 38.6% and 37%,
which is 2145.6 s and 2093.2 s, respectively. In the I-PD (K f = 1) control system, the settling time of
ch1 and ch2 is 3862.5 s and 3870.4 s. By comparison, the NN control system improved by 44.5% and
45.9%, respectively. In addition, the overshoots of ch1 and ch2 in the I-PD (K f = 1) control system
are about 2.14 ◦C and 2.07 ◦C, corresponding to 42.7% and 41.4% of the reference. The overshoots
in the I-PD (K f = 0) control system are 0.62 ◦C and 0.48 ◦C, corresponding to 12.3% and 9.7% of
the reference. In the NN control system, the overshoots of ch1 and ch2 are about 0.11 ◦C and 0.12
◦C, which are 2.1% and 2.5% of the reference. The overshoots in both directions are much smaller
than the results of the I-PD control systems. Two channels can track the reference model output,
realizing a quick and stable response to temperature signals. Comparing experimental results of the
system response in Figure 11 with the simulation results in Figure 8, the discrepancy between the real
system performance and simulation within 5% either settling time or overshoot, e.g., the errors of the
NN system for the positive direction are about 2.3% and 1.7% in settling time and 1.3% and 1.7% in
overshoot, respectively, the negative direction results are about 4.3% and 3.3% in settling time and
2.1% and 2.5% in overshoot. The corresponding errors of the I-PD control systems are slightly larger
than 5%, e.g., the errors of the I-PD (K f = 0) system for the negative direction are about 5.3% and
5.7% in settling time, respectively, the I-PD (K f = 1) system errors are about 5.1% and 8.2%. Although
the errors of rise time are about 10% in both directions, considering the difference between different

297



Processes 2020, 8, 1365

channels is almost negligible, results are acceptable. These results show a good agreement between
simulated and experimental results.

For comparison, the response characteristics of different control systems in positive and negative
directions are listed in Tables 3 and 4, respectively. The percentage differences between the experimental
results and simulation results are also given in both tables. From the above experimental results, it is
seen that the proposed NN control gives great improvement in the performance of the temperature
system.

Table 3. Comparison of experimental results for time response characteristics (100 ◦C to 105 ◦C).

Characteristics Ref CH1 (K f = 1) CH2 (K f = 1) CH1 (K f = 0) CH2 (K f = 0) CH1 (NN) CH2 (NN)

Rise Time (s) 780.7 534.9 (14.1%) 557.6 (13.4%) 947.2 (1.7%) 973.1 (1.7%) 812.4 (11.6%) 820.6(4.1%)

SettlingTime 5% (s) 1378.2 3824.3 (4.2%) 3718.6 (4.4%) 3414.2 (6.1%) 3217.9 (2.3%) 2217.3 (2.3%) 2204.8 (1.7%)

Overshoot (%) 0 40.1 (4.8%) 38.4 (3.4%) 13.9 (3.9%) 10.5 (2.5%) 1.3 (1.3%) 1.7 (1.7%)

Table 4. Comparison of experimental results for time response characteristics (105 ◦C to 100 ◦C).

Characteristics Ref CH1 (K f = 1) CH2 (K f = 1) CH1 (K f = 0) CH2 (K f = 0) CH1 (NN) CH2 (NN)

Rise Time (s) 780.7 519.1 (11.5%) 535.5 (9.8%) 1027.3 (9.3%) 1093.4 (9.4%) 877.3 (17.1%) 893.7 (13.6%)

SettlingTime 5% (s) 1378.2 3862.5 (5.1%) 3870.4 (8.2%) 3492.7 (5.3%) 3325.1 (5.7%) 2145.6 (4.3%) 2093.2 (3.3%)

Overshoot (%) 0 42.7 (5.9%) 41.4 (6.1%) 12.3 (2.2%) 9.7 (1.8%) 2.1 (2.1%) 2.5 (2.5%)

Figure 12a,b show the curves of temperature differences between the outputs of ch1 and ch2 in
positive and negative directions, respectively. In the positive direction, the maximum temperature
differences of the I-PD (K f = 1), I-PD (K f = 0), and NN control are 0.39 ◦C, 0.43 ◦C, and 0.15 ◦C,
which correspond to 6.4%, 9.4%, and 3.8% of the reference value, respectively. In addition, the time for
the temperature difference drops to 0 ◦C is about 3900 s, 3600 s, and 2300 s. The NN control system
has an improvement of 41% and 36% compared to the I-PD (K f = 1) and I-PD (K f = 0) control system,
respectively. As illustrated in Figure 12a, the temperature difference of the NN control system can be
suppressed by the proposed method.

Similarly, in the negative direction, the maximum absolute temperature differences of the I-PD
(K f = 1), I-PD (K f = 0), and NN control systems are 0.24 ◦C, 0.25 ◦C, and 0.14 ◦C, corresponding to
4.8%, 5%, and 2.8% of the reference value. Moreover, the time for the temperature difference drops
to 0 ◦C is about 4400 s, 4100 s, and 3300 s, respectively. The NN control system has an improvement
of 25% and 20% compared to the I-PD (K f = 1) and I-PD (K f = 0) control system, respectively.
From these results, it was observed that the rapid uniform temperature response could be achieved in
both transient state and steady state. The proposed control method improved the performance of the
multi-input multi-output temperature system.

(a) Temperature difference (100 ◦C–105 ◦C). (b) Temperature difference (105 ◦C–100 ◦C).

Figure 12. Experimental results. (a) Temperature differences between ch1 and ch2 from 100 ◦C to
105 ◦C. (b) Temperature differences between ch1 and ch2 from 105 ◦C to 100 ◦C.

298



Processes 2020, 8, 1365

5. Conclusions

In this paper, to improve transient response and realize the temperature uniformity in the
multi-input multi-output temperature system with strong coupling effects, a reference-model-based
neural network control method was proposed. In order to confirm the effectiveness of the
proposed method, the proposed NN method was applied to a real MIMO temperature control system.
Simulation and experiments were carried out, respectively. Both simulation results and experimental
results were quantitatively compared with those of the I-PD control systems. The improvement
of the transient response was achieved from the above experimental results, e.g., 42% and 40.7%
improvements of two channels in settling time shortening compared to those of the traditional I-PD
(K f = 1) control system. In addition, the overshoots of different channels decreased by about 40%
in both directions. The temperature uniformity of the MIMO system was achieved, e.g., in the
positive direction, the temperature differences between two channels were reduced in more than
half of those in the I-PD (K f = 1) and I-PD (K f = 0) control system. The temperature differences
quickly went down to zero, with about 41% and 36% improvements in time compared to the I-PD
control systems, respectively. These results show that the proposed NN control method improved the
transient response and overshoot of the multi-input multi-output temperature system and realized
the temperature uniformity of different channels in both transient state and steady state. The control
effectiveness of the proposed method was successfully verified. For the NN control learning in the
MIMO system, the selection of inputs and teaching signal is worth discussing in future study, e.g., the
temperature difference between channels or derivative of difference can be added to inputs of the NN
controller, thus it is possible to further improve the control performance.
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