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Article

Generalizing the Alpha-Divergences and the Oriented
Kullback–Leibler Divergences with Quasi-Arithmetic Means

Frank Nielsen

Sony Computer Science Laboratories, Tokyo 141-0022, Japan; frank.nielsen.x@gmail.com

Abstract: The family of α-divergences including the oriented forward and reverse Kullback–Leibler
divergences is often used in signal processing, pattern recognition, and machine learning, among
others. Choosing a suitable α-divergence can either be done beforehand according to some prior
knowledge of the application domains or directly learned from data sets. In this work, we generalize
the α-divergences using a pair of strictly comparable weighted means. Our generalization allows us
to obtain in the limit case α → 1 the 1-divergence, which provides a generalization of the forward
Kullback–Leibler divergence, and in the limit case α → 0, the 0-divergence, which corresponds to a
generalization of the reverse Kullback–Leibler divergence. We then analyze the condition for a pair of
weighted quasi-arithmetic means to be strictly comparable and describe the family of quasi-arithmetic
α-divergences including its subfamily of power homogeneous α-divergences. In particular, we study
the generalized quasi-arithmetic 1-divergences and 0-divergences and show that these counterpart
generalizations of the oriented Kullback–Leibler divergences can be rewritten as equivalent conformal
Bregman divergences using strictly monotone embeddings. Finally, we discuss the applications of
these novel divergences to k-means clustering by studying the robustness property of the centroids.

Keywords: Kullback–Leibler divergence; α-divergences; comparable weighted means; weighted
quasi-arithmetic means; information geometry; conformal divergences; k-means clustering

1. Introduction

1.1. Statistical Divergences and α-Divergences

Consider a measurable space [1] (X ,F ) where F denotes a finite σ-algebra and X
the sample space, and let μ denotes a positive measure on (X ,F ), usually chosen as the
Lebesgue measure or the counting measure. The notion of statistical dissimilarities [2–4]
D(P : Q) between two distributions P and Q is at the core of many algorithms in signal
processing, pattern recognition, information fusion, data analysis, and machine learning,
among others. A dissimilarity may be oriented, i.e., asymmetric: D(P : Q) �= D(Q : P),
where the colon mark “:” between the arguments of the dissimilarities represents the
asymmetric property of the division operation. When the arbitrary probability measures
P and Q are dominated by a measure μ (e.g., one can always choose μ = P+Q

2 ), we
consider their Radon–Nikodym (RN) densities pμ = dP

dμ and qμ = dQ
dμ with respect to μ,

and define D(P : Q) as Dμ(pμ : qμ). A good dissimilarity measure shall be invariant of
the chosen dominating measure so that we can write D(P : Q) = Dμ(pμ : qμ) [5]. When
those statistical dissimilarities are smooth, they are called divergences [6] in information
geometry, as they induce a dualistic geometric structure [7].

The most renowned statistical divergence rooted in information theory [8] is the
Kullback–Leibler divergence (KLD, also called relative entropy):

KLμ(pμ : qμ) :=
∫
X

pμ(x) log
pμ(x)
qμ(x)

dμ(x). (1)

Algorithms 2022, 15, 435. https://doi.org/10.3390/a15110435 https://www.mdpi.com/journal/algorithms1
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Since the KLD is independent of the reference measure μ, i.e., KLμ(pμ : qμ) = KLν(pν :
qν) for pμ = dP

dμ and qμ = dQ
dμ , and pν = dP

dν and qν = dQ
dν are the RN derivatives with

respect to another positive measure ν, we write concisely in the remainder:

KL(p : q) =
∫

p log
p
q

dμ, (2)

instead of KLμ(pμ : qμ).
The KLD belongs to a parametric family of α-divergences [9] Iα(p : q) for α ∈ R:

Iα(p : q) :=

⎧⎪⎨⎪⎩
1

α(1−α)

(
1 − ∫

pαq1−αdμ
)
, α ∈ R\{0, 1}

I1(p : q) = KL(p : q), α = 1
I0(p : q) = KL(q : p), α = 0

(3)

The α-divergences extended to positive densities [10] (not necessarily normalized
densities) play a central role in information geometry [6]:

I+α (p : q) :=

⎧⎪⎨⎪⎩
1

α(1−α)

∫ (
αp + (1 − α)q − pαq1−α

)
dμ, α ∈ R\{0, 1}

I+1 (p : q) = KL+(p : q), α = 1
I+0 (p : q) = KL+(q : p), α = 0

, (4)

where KL+ denotes the Kullback–Leibler divergence extended to positive measures:

KL+(p : q) :=
∫ (

p log
p
q
+ q − p

)
dμ. (5)

The α-divergences are asymmetric for α �= 1
2 (i.e., Iα(p : q) �= Iα(q : p) for α �= 1

2 ) but
exhibit the following reference duality [11]:

Iα(q : p) = I1−α(p : q) =: I∗α (p : q), (6)

where we denoted by D∗(p : q) := D(q : p), the reverse divergence for an arbitrary
divergence D(p : q) (e.g., I∗α (p : q) := Iα(q : p) = I1−α(p : q)). The α-divergences have been
extensively used in many applications [12], and the parameter α may not be necessarily
fixed beforehand but can also be learned from data sets in applications [13,14]. When α = 1

2 ,
the α-divergence is symmetric and called the squared Hellinger divergence [15]:

I 1
2
(p : q) := 4

(
1 −

∫ √
pqdμ

)
= 2

∫
(
√

p −√
q)2dμ. (7)

The α-divergences belong to the family of Ali–Silvey–Csizár’s f -divergences [16,17]
which are defined for a convex function f (u) satisfying f (1) = 0 and strictly convex at 1:

I f (p : q) :=
∫

p f
(

q
p

)
dμ. (8)

We have
Iα(p : q) = I fα

(p : q), (9)

with the following class of f -generators:

fα(u) :=

⎧⎪⎨⎪⎩
1

α(1−α)
(α + (1 − α)u − u1−α), α ∈ α ∈ R\{0, 1}

u − 1 − log u, α = 1
1 − u + u log u, α = 0

(10)

In information geometry, α-divergences and more generally f -divergences are called
invariant divergences [6], since they are provably the only statistical divergences which

2
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are invariant under invertible smooth transformations of the sample space. That is, let
Y = m(X) be a smooth invertible transformation and let Y = m(X ) denote the transformed
sample space. Denote by pY(y) and pY′(y) the densities with respect to y corresponding to
pX(x) and pX′(x), respectively. Then, we have I f (pX : pX′) = I f (pY : pY′) [18]. The dual-
istic information-geometric structures induced by these invariant f -divergences between
densities of a same parametric family {pθ(x) : θ ∈ Θ} of statistical models yield the Fisher
information metric and the dual ±α-connections for α = 3 + 2 f ′′′(1)

f ′′(1) , see [6] for details. It is
customary to rewrite the α-divergences in information geometry using rescaled parameter
αA = 1 − 2α (i.e., α = 1−αA

2 ). Thus, the extended αA-divergence in information geometry is
defined as follows:

Î+αA
(p : q) =

⎧⎪⎪⎨⎪⎪⎩
4

1−α2
A

∫ ( 1−αA
2 p + 1+αA

2 q − p
1−αA

2 q
1+αA

2

)
dμ, αA ∈ R\{−1, 1}

Î1(p : q) = KL+(p : q), αA = 1
Î−1(p : q) = KL+(q : p), αA = −1

, (11)

and the reference duality is expressed by Î+αA
(q : p) = Î+−αA

(p : q).
A statistical divergence D(· : ·) when evaluated on densities belonging to a given

parametric family P = {pθ : θ ∈ Θ} of densities is equivalent to a corresponding contrast
function DP [7]:

DP (θ1 : θ2) := D(pθ1 : pθ2). (12)

Remark 1. Although quite confusing, those contrast functions [7] have also been called divergences
in the literature [6]. Any smooth parameter divergence D(θ1 : θ2) (contrast function [7]) induces a
dualistic structure in information geometry [6]. For example, the KLD on the family Δ of probability
mass functions defined on a finite alphabet X is equivalent to a Bregman divergence, and thus
induces a dually flat space [6]. More generally, the αA-divergences on the probability simplex Δ
induce the αA-geometry in information geometry [6].

We refer the reader to [3] for a richly annotated bibliography of many common statis-
tical divergences investigated in signal processing and statistics. Building and studying
novel statistical/parameter divergences from first principles is an active research area. For
example, Li [19,20] recently introduced some new divergence functionals based on the
framework of transport information geometry [21], which considers information entropy
functionals in Wasserstein spaces. Li defined (i) the transport information Hessian dis-
tances [20] between univariate densities supported on a compact, which are symmetric
distances satisfying the triangle inequality, and obtained the counterpart of the Hellinger
distance on the L2-Wasserstein space by choosing the Shannon information entropy, and
(ii) asymmetric transport Bregman divergences (including the transport Kullback–Leibler
divergence) between densities defined on a multivariate compact smooth support in [19].

The α-divergences are widely used in information sciences, see [22–27] just to cite a
few applications. The singly parametric α-divergences have also been generalized to bipara-
metric families of divergences such as the (α, β)-divergences [6] or the αβ-divergences [28].

In this work, based on the observation that the term αp + (1 − α)q − pαq1−α in the
extended I+α (p : q) divergence for α ∈ (0, 1) of Equation (4) is a difference between a
weighted arithmetic mean A1−α(p, q) := αp + (1 − α)q and a weighted geometric mean
G1−α(p, q) := pαq1−α, we investigate a generalization of α-divergences with respect to a
generic pair of strictly comparable weighted means [29]. In particular, we consider the class
of quasi-arithmetic weighted means [30], analyze the condition for two quasi-arithmetic
means to be strictly comparable, and report their induced α-divergences with limit KL type
divergences when α → 1 and α → 0.

1.2. Divergences and Decomposable Divergences

A statistical divergence D(p : q) shall satisfy the following two basic axioms:

3



Algorithms 2022, 15, 435

D1 (Non-negativity). D(p : q) ≥ 0 for all densities p and q,

D2 (Identity of indiscernibles). D(p : q) = 0 if and only if p = q μ-almost everywhere.

These axioms are a subset of the metric axioms, since we do not consider the symmetry
axiom nor the triangle inequality axiom of metric distances. See [31,32] for some common
examples of probability metrics (e.g., total variation distance or Wasserstein metrics).

A divergence D(p : q) is said decomposable [6] when it can be written as a definite
integral of a scalar divergence d(·, ·):

D(p : q) =
∫

d(p(x) : q(x))dμ(x), (13)

or D(p : q) =
∫

d(p : q)dμ for short, where d(a, b) is a scalar divergence between a > 0 and
b > 0 (hence one-dimensional parameter divergence).

The α-divergences are decomposable divergences since we have

I+α (p : q) =
∫

iα(p(x) : q(x))dμ (14)

with the following scalar α-divergence:

iα(a : b) :=

⎧⎪⎨⎪⎩
1

α(1−α)

(
αa + (1 − α)b − aαb1−α

)
, α ∈ R\{0, 1}

i1(a : b) = a log a
b + b − a α = 1

i0(a : b) = i1(b : a), α = 0
(15)

1.3. Contributions and Paper Outline

The outline of the paper and its main contributions are summarized as follows:
We first define for two families of strictly comparable means (Definition 1) their generic

induced α-divergences in Section 2 (Definition 2). Then, Section 2.2 reports a closed-form
formula (Theorem 3) for the quasi-arithmetic α-divergences induced by two strictly com-
parable quasi-arithmetic means with monotonically increasing generators f and g such
that f ◦ g−1 is strictly convex and differentiable (Theorem 1). In Section 2.3, we study the
divergences I+0 and I+1 obtained in the limit cases when α → 0 and α → 1, respectively,
(Theorem 2). We obtain generalized counterparts of the Kullback–Leibler divergence when
α → 1 and generalized counterparts of the reverse Kullback–Leibler divergence when
α → 0. Moreover, these generalized KLDs can be rewritten as generalized cross-entropies
minus entropies. In Section 2.4, we show how to express these generalized I1-divergences
and I0-divergences as conformal Bregman representational divergences, and briefly explain
their induced conformally flat statistical manifolds (Theorem 4). Section 3 introduces
the subfamily of bipower homogeneous α-divergences (Definition 2) which belong to the
family of Ali–Silvey–Csiszár f -divergences [16,17]. In Section 4, we consider k-means clus-
tering [33] and k-means++ seeding [34] for the generic class of extended α-divergences: we
first study the robustness of quasi-arithmetic means in Section 4.1 and then the robustness
of the newly class of generalized Kullback–Leibler centroids in Section 4.2. Finally, Section 5
summarizes the results obtained in this work and discusses perspectives for future research.

2. The α-Divergences Induced by a Pair of Strictly Comparable Weighted Means

2.1. The (M, N) α-Divergences

The point of departure for generalizing the α-divergences is to rewrite Equation (4) for
α ∈ R\{0, 1} as

I+α (p : q) =
1

α(1 − α)

∫
(A1−α(p, q)− G1−α(p, q))dμ, (16)

4
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where Aλ and Gλ for λ ∈ (0, 1) stands for the weighted arithmetic mean and the weighted
geometric mean, respectively:

Aλ(x, y) = (1 − λ)x + λy,

Gλ(x, y) = x1−λyλ.

For a weighted mean Mλ(a, b), we choose the (geometric) convention M0(x, y) = x
and M1(x, y) = 1 so that {Mλ(x, y)}λ∈[0,1] smoothly interpolates between x (λ = 0) and y
(λ = 1). For the converse convention, we simply define M′

λ(a, b) = M1−λ(a, b) and get the
conventional definition of I+α (p : q) = 1

α(1−α)

∫
(A′

α(p, q)− G′
α(p, q))dμ.

In general, a mean M(x, y) aggregates two values x and y of an interval I ⊂ R to
produce an intermediate quantity which satisfies the innerness property [35,36]:

min{x, y} ≤ M(x, y) ≤ max{x, y}, ∀x, y ∈ I. (17)

This in-between property of means (Equation (17)) was postulated by Cauchy [37] in
1821. A mean is said strict if the inequalities of Equation (17) are strict whenever x �= y. A
mean M is said reflexive iff M(x, x) = x for all x ∈ I. The reflexive property of means was
postulated by Chisini [38] in 1929.

In the remainder, we consider I = (0, ∞). By using the unique dyadic representation
of any real λ ∈ (0, 1) (i.e., λ = ∑∞

i=1
di
2i with di ∈ {0, 1} the binary digit expansion of λ) , one

can build a weighted mean Mλ from any given mean M; see [29] for such a construction.
In the remainder, we drop the “+” notation to emphasize that the divergences are

defined between positive measures. By analogy to the α-divergences, let us define the
(decomposable) (M, N) α-divergences between two positive densities p and q for a pair of
weighted means M1−α and N1−α for α ∈ (0, 1) as

IM,N
α (p : q) :=

1
α(1 − α)

∫
(M1−α(p, q)− N1−α(p, q))dμ. (18)

The ordinary α-divergences for α ∈ (0, 1) are recovered as the (A, G) α-divergences:

IA,G
α (p : q) =

1
α(1 − α)

∫
(A1−α(p, q)− G1−α(p, q))dμ, (19)

= I1−α(p : q) = Iα(q : p) = I∗α (p : q). (20)

In order to define generalized α-divergences satisfying axioms D1 and D2 of proper
divergences, we need to characterize the class of acceptable means. We give a definition
strengthening the notion of comparable means in [29]:

Definition 1 (Strictly comparable weighted means). A pair (M, N) of means are said strictly
comparable whenever Mλ(x, y) ≥ Nλ(x, y) for all x, y ∈ (0, ∞) with equality if and only if x = y,
and for all λ ∈ (0, 1).

Example 1. For example, the inequality of the arithmetic and geometric means states that A(x, y) ≥
G(x, y) implies means A and G are comparable, denoted by A ≥ G. Furthermore, the arith-
metic and geometric weighted means are distinct whenever x �= y. Indeed, consider the equation
(1 − α)x + αy = x1−αyα for x, y > 0 and x �= y. By taking the logarithm on both sides, we get

log((1 − α)x + αy) = (1 − α) log x + α log y. (21)

Since the logarithm is a strictly convex function, the only solution is x = y. Thus, (A, G) is a
pair of strictly comparable weighted means.

For a weighted mean M, define M′
λ(x, y) := M1−λ(x, y). We are ready to state the

definition of generalized α-divergences:

5
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Definition 2 ((M, N) α-divergences). The (M, N) α-divergences IM,N
α (p : q) between two

positive densities p and q for α ∈ (0, 1) is defined for a pair of strictly comparable weighted means
Mα and Nα with Mα ≥ Nα by:

IM,N
α (p : q) :=

1
α(1 − α)

∫
(M1−α(p, q)− N1−α(p, q))dμ, α ∈ (0, 1) (22)

=
1

α(1 − α)

∫ (
M′

α(p, q)− N′
α(p, q)

)
dμ, α ∈ (0, 1). (23)

Using α = 1−αA
2 , we can rewrite this α-divergence as

ÎM,N
αA

(p : q) :=
4

1 − α2
A

∫ (
M 1+αA

2
(p, q)− N1+αA

2
(p, q)

)
dμ, αA ∈ (−1, 1) (24)

=
4

1 − α2
A

∫ (
M′

1−αA
2

(p, q)− N′
1−αA

2
(p, q)

)
dμ, αA ∈ (−1, 1). (25)

It is important to check the conditions on the weighted means Mα and Nα which
ensures the law of the indiscernibles of a divergence D(p : q), namely, D(p : q) = 0 iff
p = q almost μ-everywhere. This condition rewrites as

∫
Mα(p, q)dμ =

∫
Nα(p, q)dμ if

and only if p(x) = q(x) μ-almost everywhere. A sufficient condition is to ensure that
Mα(x, y) �= Nα(x, y) for x �= y. In particular, this condition holds if the weighted means
Mα and Nα are strictly comparable weighted means.

Instead of taking the difference M1−α(x : y)− N1−α(x : y) between two weighted
means, we may also measure the gap logarithmically, and thus define the family of log M

N
α-divergences as follows:

Definition 3 (log M
N α-divergence). The log M

N α-divergences LM,N
α (p : q) between two positive

densities p and q for α ∈ (0, 1) is defined for a pair of strictly comparable weighted means Mα and
Nα with Mα ≥ Nα by:

LM,N
α (p : q) :=

∫ (
log

M1−α(p, q)
N1−α(p, q)

)
dμ, (26)

= −
∫ (

log
N1−α(p, q)
M1−α(p, q)

)
dμ. (27)

Note that this definition is different from the skewed Bhattacharyya type distance [39,40],
which rather measures

BM,N
α (p : q) := log

∫
M1−α(p, q)dμ∫
N1−α(p, q)dμ

, (28)

= − log

∫
N1−α(p, q)dμ∫
M1−α(p, q)dμ

. (29)

The ordinary α-skewed Bhattacharyya distance [39] is recovered when Nα = Gα

(weighted geometric mean) and Mα = Aα the arithmetic mean since
∫

A1−α(p, q)dμ = 1.
The Bhattacharyya type divergences BM,N

α were introduced in [41] in order to upper bound
the probability of error in Bayesian hypothesis testing.

A weighted mean Mα is said symmetric if and only if Mα(x, y) = M1−α(y, x). When
both the weighted means M and N are symmetric, we have the following reference dual-
ity [11]:

IM,N
α (p : q) = IM,N

1−α (q : p). (30)

We consider symmetric weighted means in the remainder.

6
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In the limit cases of α → 0 or α → 1, we define the 0-divergence IM,N
0 (p : q) and the

1-divergence IM,N
1 (p : q), respectively, by

IM,N
0 (p : q) = lim

α→0
IM,N
α (p : q), (31)

IM,N
1 (p : q) = lim

α→1
IM,N
α (p : q) = IM,N

0 (q : p), (32)

provided that those limits exist.
Notice that the ordinary α-divergences are defined for any α ∈ R but our generic quasi-

arithmetic α-divergences are defined in general on (0, 1). However, when the weighted
means Mα and Nα admit weighted extrapolations (e.g., the arithmetic mean Aα or the
geometric mean Gα) the quasi-arithmetic α-divergences can be extended to R\{0, 1}. Fur-
thermore, when the limits of quasi-arithmetic α-divergences exist for α ∈ {0, 1}, the quasi-
arithmetic α-divergences may be defined on the full range of α ∈ R. To demonstrate the
restricted range (0, 1), consider the weighted harmonic mean for x, y > 0 with x �= y:

Hλ(x, y) =
1

(1 − λ) 1
x + λ 1

y
=

xy
λx + (1 − λ)y

=
xy

y + λ(x − y)
. (33)

Clearly, the denominator may become zero when λ = y
y−x and even possibly negative.

Thus, to avoid this issue, we restrict the range of α to (0, 1) for defining quasi-arithmetic
α-divergences.

2.2. The Quasi-Arithmetic α-Divergences

A quasi-arithmetic mean (QAM) is defined for a continuous and strictly monotonic
function f : I ⊂ R+ → J ⊂ R+ as:

M f (x, y) := f−1
(

f (x) + f (y)
2

)
. (34)

Function f is called the generator of the quasi-arithmetic mean. These strict and reflex-
ive quasi-arithmetic means are also called Kolmogorov means [30], Nagumo means [42] de
Finetti means [43], or quasi-linear means [44] in the literature. These means are called quasi-
arithmetic means because they can be interpreted as arithmetic means on the arguments
f (x) and f (y):

f (M f (x, y)) =
f (x) + f (y)

2
= A( f (x), f (y)). (35)

QAMs are strict, reflexive, and symmetric means.
Without loss of generality, we may assume strictly increasing functions f instead

of monotonic functions since M− f = M f . Indeed, M− f (x, y) = (− f )−1(− f (M f (x, y)))
and ((− f )−1 ◦ (− f ))(u) = u, the identity function. Notice that the composition f1 ◦ f2 of
two strictly monotonic increasing functions f1 and f2 is a strictly monotonic increasing
function. Furthermore, we consider I = J = (0, ∞) in the remainder since we apply these
means on positive densities. Two quasi-arithmetic means M f and Mg coincide if and only
if f (u) = ag(u) + b for some a > 0 and b ∈ R, see [44]. The quasi-arithmetic means were
considered in the axiomatization of the entropies by Rényi to define the α-entropies (see
Equation (2).11 of [45]).

By choosing fA(u) = u, fG(u) = log u, or fH(u) = 1
u , we obtain the Pythagorean’s

arithmetic A, geometric G, and harmonic H means, respectively:

• the arithmetic mean (A): A(x, y) = x+y
2 = M fA(x, y),

• the geometric mean (G): G(x, y) =
√

xy = M fG (x, y), and
• the harmonic mean (H): H(x, y) = 2

1
x +

1
y
= 2xy

x+y = M fH (x, y).

7
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More generally, choosing fPr (u) = ur, we obtain the parametric family of power means
also called Hölder means [46] or binary means [47]:

Pr(x, y) =
(

xr + yr

2

) 1
r
= M fPr (x, y), r ∈ R\{0}. (36)

In order to get a smooth family of power means, we define the geometric mean as the
limit case of r → 0:

P0(x, y) = lim
r→0

Pr(x, y) = G(x, y) =
√

xy. (37)

A mean M is positively homogeneous if and only if M(ta, tb) = t M(a, b) for any t > 0.
It is known that the only positively homogeneous quasi-arithmetic means coincide exactly
with the family of power means [44]. The weighted QAMs are given by

M f
α(p, q) = f−1((1 − α) f (p) + α f (q))), (38)

= f−1( f (p) + α( f (q)− f (p))) = M f
1−α(q, p). (39)

Let us remark that QAMs were generalized to complex-valued generators in [48] and
to probability measures defined on a compact support in [49].

Notice that there exist other positively homogeneous means which are not quasi-
arithmetic means. For example, the logarithmic mean [50,51] L(x, y) for x > 0 and y > 0:

L(x, y) =
y − x

log y − log x
(40)

is an example of a homogeneous mean (i.e., L(tx, ty) = t L(x, y) for any t > 0) that is not
a QAM. Besides the family of QAMs, there exist many other families of means [35]. For
example, let us mention the Lagrangian means [52], which intersect with the QAMs only for
the arithmetic mean, or a generalization of the QAMs called the Bajraktarević means [53].

Let us now strengthen a recent theorem (Theorem 1 of [54], 2010):

Theorem 1 (Strictly comparable weighted QAMs). The pair (M f , Mg) of quasi-arithmetic
means obtained for two strictly increasing generators f and g is strictly comparable provided that
function f ◦ g−1 is strictly convex, where ◦ denotes the function composition.

Proof. Since f ◦ g−1 is strictly convex, it is convex, and therefore it follows from Theorem 1
of [54] that M f

α ≥ Mg
α for all α ∈ [0, 1]. Thus, the very nice property of QAMs is that

M f ≥ Mg implies that M f
α ≥ Mg

α for any α ∈ [0, 1]. Now, let us consider the equation
M f

α(p, q) = Mg
α(p, q) for p �= q:

f−1((1 − α) f (p) + α f (q)) = g−1((1 − α)g(p) + αg(q)). (41)

Since f ◦ g−1 is assumed strictly convex, and g is strictly increasing, we have g(p) �= g(q)
for p �= q, and we reach the following contradiction:

(1 − α) f (p) + α f (q) = ( f ◦ g−1)((1 − α)g(p) + αg(q)), (42)

< (1 − α)( f ◦ g−1)(g(p)) + α( f ◦ g−1)(g(q)), (43)

< (1 − α) f (p) + α f (q). (44)

Thus, M f
α(p, q) �= Mg

α(p, q) for p �= q, and M f
α(p, q) = Mg

α(p, q) for p = q.

Thus, we can define the quasi-arithmetic α-divergences as follows:

8
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Definition 4 (Quasi-arithmetic α-divergences). The ( f , g) α-divergences I f ,g
α (p : q) := IM f ,Mg

α

(p : q) between two positive densities p and q for α ∈ (0, 1) are defined for two strictly increasing
and differentiable functions f and g such that f ◦ g−1 is strictly convex by:

I f ,g
α (p : q) :=

1
α(1 − α)

∫ (
M f

1−α(p, q)− Mg
1−α(p, q)

)
dμ, (45)

where M f
λ and Mg

λ are the weighted quasi-arithmetic means induced by f and g, respectively.

We have the following corollary:

Corollary 1 (Proper quasi-arithmetic α-divergences). Let (M f , Mg) be a pair of quasi-arithmetic
means with f ◦ g−1 strictly convex, then the (M f , Mg) α-divergences are proper divergences for
α ∈ (0, 1).

Proof. Consider p and q with p(x) �= q(x) μ-almost everywhere. Since f ◦ g−1 is strictly
convex, we have M f (x, y) − Mg(x, y) ≥ 0 with strict inequality when x �= y. Thus,∫

M f (p, q)dμ − ∫
Mg(p, q)dμ > 0 and I f ,g

α (p : q) > 0. Therefore the quasi-arithmetic

α-divergences I f ,g
α satisfy the law of the indiscernibles for α ∈ (0, 1).

Note that the (A, G) α-divergences (i.e., the ordinary α-divergences) are proper diver-
gences satisfying both the properties D1 and D2 because fA(u) = u and fG(u) = log u,
and hence ( fA ◦ f−1

G )(u) = exp(u) is strictly convex on (0, ∞).

Let us denote by I f ,g
α (p : q) := IM f ,Mg

α (p : q) the quasi-arithmetic α-divergences. Since
the QAMs are symmetric means, we have I f ,g

α (p : q) = I f ,g
1−α(q : p).

Remark 2. Let us notice that Zhang [55] in their study of divergences under monotone embeddings
also defined the following family of related divergences (Equation (71) of [55]):

Î f ,g
αA (p : q) =

4
1 − αA

2

∫ (
M f

1+αA
2

(p, q)− Mg
1+αA

2

(p, q)
)

dμ. (46)

However, Zhang did not study the limit case divergences Î f ,g
αA (p : q) when αA → ±1.

2.3. Limit Cases of 1-Divergences and 0-Divergences

We seek a closed-form formula of the limit divergence limα→0 I f ,g
α (p : q) when α → 0.

Lemma 1. A first-order Taylor approximation of the quasi-arithmetic mean [56] M f
α for a C1

strictly increasing generator f when α  0 yields

M f
α(p, q) = p +

α( f (q)− f (p))
f ′(p)

+ o(α( f (q)− f (p))). (47)

Proof. By taking the first-order Taylor expansion of f−1(x) at x0 (i.e., Taylor polynomial of
order 1), we get:

f−1(x) = f−1(x0) + (x − x0)( f−1)′(x0) + o(x − x0). (48)

Using the property of the derivative of an inverse function

( f−1)′(x) =
1

( f ′( f−1)(x))
, (49)

9
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it follows that the first-order Taylor expansion of f−1(x) is:

f−1(x) = f−1(x0) + (x − x0)
1

( f ′( f−1)(x0))
+ o(x − x0). (50)

Plugging x0 = f (p) and x = f (p)+ α( f (q)− f (p)), we get a first-order approximation
of the weighted quasi-arithmetic mean M f

α when α → 0:

M f
α(p, q) = p +

α( f (q)− f (p))
f ′(p)

+ o(α( f (q)− f (p))). (51)

Let us introduce the following bivariate function:

Ef (p, q) :=
f (q)− f (p)

f ′(p)
. (52)

Remark 3. Notice that Ef (p, q) = E− f (p, q) matches the fact that M f
α(p, q) = M− f

α (p, q). That
is, we may either consider a strictly increasing differentiable generator f , or equivalently a strictly
decreasing differentiable generator − f .

Thus, we obtain closed-form formulas for the I1-divergence and I0-divergence:

Theorem 2 (Quasi-arithmetic I1-divergence and reverse I0-divergence). The quasi-arithmetic
I1-divergence induced by two strictly increasing and differentiable functions f and g such that
f ◦ g−1 is strictly convex is

I f ,g
1 (p : q) := lim

α→1
I f ,g
α (p : q) =

∫ (
Ef (p, q)− Eg(p, q)

)
dμ ≥ 0, (53)

=
∫ (

f (q)− f (p)
f ′(p)

− g(q)− g(p)
g′(p)

)
dμ. (54)

Furthermore, we have I f ,g
0 (p : q) = I f ,g

1 (q : p) = (I f ,g
1 )∗(p : q), the reverse divergence.

Proof. Let us prove that I f ,g
1 is a proper divergence satisfying axioms D1 and D2. Note that

a sufficient condition for I f ,g
1 (p : q) ≥ 0 is to check that

Ef (p, q) ≥ Eg(p, q), (55)

f (q)− f (p)
f ′(p)

≥ g(q)− g(p)
g′(p)

. (56)

If p = q μ-almost everywhere then clearly I f ,g
1 (p : q) = 0. Consider p �= q (i.e., at some

observation x: p(x) �= q(x)).
We use the following property of a strictly convex and differentiable function h for

x < y (sometimes called the chordal slope lemma, see [29]):

h′(x) ≤ h(y)− h(x)
y − x

≤ h′(y). (57)

We consider h(x) = ( f ◦ g−1)(x) so that h′(x) = f ′(g−1(x))
g′(g−1(x)) . There are two cases

to consider:

10
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• p < q and therefore g(p) < g(q). Let y = g(q) and x = g(p) in Equation (57). We have

h′(x) = f ′(p)
g′(p) and h′(y) = f ′(q)

g′(q) , and the double inequality of Equation (57) becomes

f ′(p)
g′(p)

≤ f (q)− f (p)
g(q)− g(p)

≤ f ′(q)
g′(q) .

Since g(q)− g(p) > 0, g′(p) > 0, and f ′(p) > 0, we get

g(q)− g(p)
g′(p)

≤ f (q)− f (p)
f ′(p)

.

• q < p and therefore g(p) > g(q). Then, the double inequality of Equation (57) becomes

f ′(q)
g′(q) ≤ f (q)− f (p)

g(q)− g(p)
≤ f ′(p)

g′(p)

That is,
f (q)− f (p)

f ′(p)
≥ g(q)− g(p)

g′(p)
,

since g(q)− g(p) < 0.

Thus, in both cases, we checked that Ef (p(x), q(x)) ≥ Eg(p(x), q(x)). Therefore,

I f ,g
1 (p : q) ≥ 0, and since the QAMs are distinct, I f ,g

1 (p : q) = 0 iff p(x) = q(x) μ-a.e.

We can interpret the I1 divergences as generalized KL divergences and define general-
ized notions of cross-entropies and entropies. Since the KL divergence can be written as
the cross-entropy minus the entropy, we can also decompose the I1 divergences as follows:

I f ,g
1 (p : q) =

∫ (
f (q)
f ′(p)

− g(q)
g′(p)

)
dμ −

∫ (
f (p)
f ′(p)

− g(p)
g′(p)

)
dμ, (58)

= h f ,g
× (p : q)− h f ,g(p), (59)

where h f ,g
× (p : q) denotes the ( f , g)-cross-entropy (for a constant c ∈ R):

h f ,g
× (p : q) =

∫ (
f (q)
f ′(p)

− g(q)
g′(p)

)
dμ + c, (60)

and h f ,g(p) stands for the ( f , g)-entropy (self cross-entropy):

h f ,g(p) = h f ,g
× (p : p) =

∫ (
f (p)
f ′(p)

− g(p)
g′(p)

)
dμ + c. (61)

Notice that we recover the Shannon entropy for f (x) = x and g(x) = log(x) with
f ◦ g−1)(x) = exp(x) (strictly convex) and c = −1 to annihilate the

∫
pdμ = 1 term:

hid,log(p) =
∫
(p − p log p)dμ − 1 = −

∫
p log pdμ. (62)

We define the generalized ( f , g)-Kullback–Leibler divergence or generalized ( f , g)-
relative entropies:

KL f ,g(p : q) := h f ,g
× (p : q)− h f ,g(p). (63)

11
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When f = fA and g = fG, we resolve the constant to c = 0, and recover the ordinary
Shannon cross-entropy and entropy:

h fA , fG× (p : q) =
∫
(q − p log q)dμ = h×(p : q), (64)

h fA , fG (p : q) = h fA , fG× (p : p) =
∫
(p − p log p)dμ = h(p), (65)

and we have the ( fA, fG)-Kullback–Leibler divergence that is the extended Kullback–Leibler
divergence:

KL fA , fG (p : q) = KL+(p : q) = h×(p : q)− h(p) =
∫
(p log

p
q
+ q − p)dμ. (66)

Thus, we have the ( f , g)-cross-entropy and ( f , g)-entropy expressed as

h f ,g
× (p : q) =

∫ (
f (q)
f ′(p)

− g(q)
g′(p)

)
dμ, (67)

h f ,g(p) =
∫ (

f (p)
f ′(p)

− g(p)
g′(p)

)
dμ. (68)

In general, we can define the ( f , g)-Jeffreys divergence as:

J f ,g(p : q) = KL f ,g(p : q) + KL f ,g(q : p). (69)

Thus, we define the quasi-arithmetic mean α-divergences as follows:

Theorem 3 (Quasi-arithmetic α-divergences). Let f and g be two strictly continuously in-
creasing and differentiable functions on (0, ∞) such that f ◦ g−1 is strictly convex. Then, the
quasi-arithmetic α-divergences induced by ( f , g) for α ∈ [0, 1] is

I f ,g
α (p : q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

α(1−α)

∫ (
M f

1−α(p, q)− Mg
1−α(p, q)

)
dμ, α ∈ R\{0, 1}.

I f ,g
1 (p : q) =

∫ ( f (q)− f (p)
f ′(p) − g(q)−g(p)

g′(p)

)
dμ α = 1,

I f ,g
0 (p : q) =

∫ ( f (p)− f (q)
f ′(q) − g(p)−g(q)

g′(q)

)
dμ, α = 0.

(70)

When f (u) = fA(u) = u (M f = A) and g(u) = fG(u) = log u (Mg = G), we get

IA,G
1 (p : q) =

∫ (
q − p − p log

q
p

)
dμ = KL+(p : q) = I1(p : q), (71)

the Kullback–Leibler divergence (KLD) extended to positive densities, and I0 = KL+∗ the
reverse extended KLD.

Let M denote the class of strictly increasing and differentiable real-valued univariate
functions. An interesting question is to study the class of pairs of functions ( f , g) ∈ M×M
such that I f ,g

1 (p : q) = KL(p : q). This involves solving integral-based functional
equations [57].

We can rewrite the α-divergence I f ,g
α (p : q) for α ∈ (0, 1) as

I f ,g
α (p : q) =

1
α(1 − α)

(
S f

1−α(p, q)− Sg
1−α(p, q)

)
, (72)

where
Sh

λ(p, q) :=
∫

Mh
λ(p, q)dμ. (73)

12
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Zhang [11] (pp. 188–189) considered the (A, Mρ) αA-divergences:

Dρ
α(p : q) :=

4
1 − α2

∫ (
1 − α

2
p +

1 + α

2
q − ρ−1

(
1 − α

2
ρ(p) +

1 + α

2
ρ(q)

))
dμ. (74)

Zhang obtained for Dρ
±1(p : q) the following formula:

Dρ
1(p : q) =

∫ (
p − q −

(
ρ−1

)′
(ρ(q))(ρ(p)− ρ(q))

)
dμ = Dρ

−1(q : p), (75)

which is in accordance with our generic formula of Equation (53) since (ρ−1(x))′ =
1

ρ′(ρ−1(x)) . Notice that Aα ≥ Pr
α for r ≤ 1; the arithmetic weighted mean dominates the

weighted power means Pr when r ≤ 1.
Furthermore, by imposing the homogeneity condition IA,Mρ

α (tp : tq) = t IA,Mρ

α (p : q)
for t > 0, Zhang [11] obtained the class of (αA, βA)-divergences for (αA, βA) ∈ [−1, 1]2:

DαA ,βA(p : q) :=
4

1 − α2
A

2
1 + βA

∫ (
1 − αA

2
p +

1 + αA
2

q

−
(

1 − αA
2

p
1−βA

2 +
1 + αA

2
q

1−βA
2

) 2
1−βA

)
dμ. (76)

2.4. Generalized KL Divergences as Conformal Bregman Divergences on Monotone Embeddings

Let us rewrite the generalized KLDs I f ,g
1 as a conformal Bregman representational

divergence [58–60] as follows:

Theorem 4. The generalized KLDs I f ,g
1 divergences are conformal Bregman representational

divergences

I f ,g
1 (p : q) =

∫ 1
f ′(p)

BF(g(q) : g(p))dμ, (77)

with F = f ◦ g−1 a strictly convex and differentiable Bregman convex generator defining the scalar
Bregman divergence [61] BF:

BF(a : b) = F(a)− F(b)− (a − b)F′(b).

Proof. For the Bregman strictly convex and differentiable generator F = f ◦ g−1, we expand
the following conformal divergence

1
f ′(p)

BF(g(q) : g(p)) =
1

f ′(p)
(

F(g(q))− F(g(p))− (g(q)− g(p))F′(g(p))
)
, (78)

=
1

f ′(p)

(
( f (q)− f (p))− (g(q)− g(p))

f ′(p)
g′(p)

)
, (79)

since (g−1 ◦ g)(x) = x and F′(g(x)) = f ′(x)
g′(x) . It follows that

1
f ′(p)

BF(g(q) : g(p)) =
f (q)− f (p)

f ′(p)
− g(q)− g(p)

g′(p)
, (80)

= Ef (p, q)− Eg(p, q) = I f ,g
1 (p : q). (81)

Hence, we easily check that I f ,g
1 (p : q) =

∫ 1
f ′(p) BF(g(q) : g(p))dμ ≥ 0 since f ′(p) > 0

and BF ≥ 0.

13
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In general, for a functional generator f and a strictly monotonic representational
function r (also called monotone embedding [62] in information geometry), we can define
the representational Bregman divergence [63] Bf ◦r−1(r(p) : r(q)) provided that F = f ◦ r−1

is a Bregman generator (i.e., strictly convex and differentiable).
The Itakura–Saito divergence [64] (IS) between two densities p and q is defined by:

DIS(p : q) =
∫ (

p
q
− log

p
q
− 1

)
dμ, (82)

=
∫

DIS(p(x) : q(x))dμ(x), (83)

where DIS(x : y) = x
y − log x

y − 1 is the scalar IS divergence. This divergence was originally
designed in sound processing for measuring the discrepancy between two speech power
spectra. Observe that the IS divergence is invariant by rescaling: DIS(tp : tq) = DIS(p : q)
for any t > 0. The IS divergence is a Bregman divergence [61] obtained for the Burg
information generator (i.e., negative Burg entropy): FBurg(u) = − log u with F′

Burg(u) = − 1
u .

It follows that we have
I f
1 (p : q) =

∫
pBf (q : p)dμ, (84)

The Itakura–Saito divergence may further be extended to a family of α-Itakura–Saito
divergences (see [6], Equation (10).45 of Theorem 10.1):

DIS,α(p : q) =

{ ∫ 1
α2

((
p
q

)α − α log p
q − 1

)
dμ α �= 0

1
2

∫
(log q − log p)2dμ α = 0.

(85)

In [56], a generalization of the Bregman divergences was obtained using the com-
parative convexity induced by two abstract means M and N to define (M, N)-Bregman
divergences as limit of scaled (M, N)-Jensen divergences. The skew (M, N)-Jensen diver-
gences are defined for α ∈ (0, 1) by:

JM,N
F,α (p : q) =

1
α(1 − α)

(Nα(F(p), F(q)))− F(Mα(p, q))), (86)

where Mα and Nα are weighted means that should be regular [56] (i.e., homogeneous,
symmetric, continuous, and increasing in each variable). Then, we can define the (M, N)-
Bregman divergence as

BM,N
F (p : q) = lim

α→1−
JM,N
F,α (p : q), (87)

= lim
α→1−

1
α(1 − α)

(Nα(F(p), F(q)))− F(Mα(p, q))). (88)

The formula obtained in [56] for the quasi-arithmetic means M f and Mg and a func-
tional generator F that is (M f , Mg)-convex is:

B f ,g
F (p : q) =

g(F(p))− g(F(q))
g′(F(q))

− f (p)− f (q)
f ′(q) F′(q), (89)

=
1

f ′(F(q))
Bg◦F◦ f−1( f (p) : f (q)) ≥ 0. (90)

This is a conformal divergence [58] that can be written using the Ef terms as:

B f ,g
F (p : q) = Eg(F(q), F(p))− Ef (q, p)F′(q). (91)

A function F is (M f , Mg)-convex iff g ◦ F ◦ f−1 is (ordinary) convex [56].
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The information geometry induced by a Bregman divergence (or equivalently by its
convex generator) is a dually flat space [6]. The dualistic structure induced by a conformal
Bregman representational divergence is related to conformal flattening [59,60]. The notion
of conformal structures was first introduced in information geometry by Okamoto et al. [65].

Following the work of Ohara [59,60,66], the Kurose geometric divergence ρ(p, r) [67] (a
contrast function in affine differential geometry) induced by a pair (L, M) of strictly mono-
tone smooth functions between two distributions p and r of the d-dimensional probability
simplex Δd is defined by (Equation (28) in [59]):

ρ(p : r) =
1

Λ(r)

d+1

∑
i=1

L(pi)− L(ri)

L′(ri)
=

1
Λ(r)

d+1

∑
i=1

EL(ri, pi), (92)

where Λ(r) = ∑d+1
i=1

1
L′(pi)

pi. Affine immersions [67] can be interpreted as special embeddings.
Let ρ be a divergence (contrast function) and (ρg, ρ∇, ρ∇∗) be the induced statistical

manifold structure with

ρgij(p) := −(∂i)p(∂j)p ρ(p, q)|q=p, (93)

Γij,k(p) := −(∂i)p(∂j)p(∂k)q ρ(p, q)|q=p, (94)

Γ∗
ij,k(p) := −(∂i)p(∂j)q(∂k)q ρ(p, q)|q=p, (95)

where (∂i)s denotes the tangent vector at s of a vector field ∂i.
Consider a conformal divergence ρκ(p : q) = κ(q) ρ(p : q) for a positive func-

tion κ(q) > 0, called the conformal factor. Then, the induced statistical manifold [6,7]
(ρκ g, ρκ∇, ρκ∇∗) is 1-conformally equivalent to (ρg, ρ∇, ρ∇∗) and we have

ρκ g = κ ρg, (96)
ρg(ρκ∇XY, Z) = ρg(ρ∇XY, Z)− d(log κ)(Z)ρg(X, Y). (97)

The dual affine connections ρκ∇∗ and ρ∇∗ are projectively equivalent [67] (and ρ∇∗ is said
−1-conformally flat).

Conformal flattening [59,60] consists of choosing the conformal factor κ such that
(ρκ g, ρκ∇, ρκ∇) becomes a dually flat space [6] equipped with a canonical Bregman divergence.

Therefore, it follows that the statistical manifolds induced by the 1-divergence I f ,g
1

is a representational 1-conformally flat statistical manifold. Figure 1 gives an overview
of the interplay of divergences with information-geometric structures. The logarithmic
divergence [68] LG,α is defined for α > 0 and an α-exponentially concave generator G by:

LG,α(θ1 : θ2) =
1
α

log
(

1 + α∇G(θ2)
�(θ1 − θ2)

)
+ G(θ2)− G(θ1). (98)

When α → 0, we have LG,α(θ1 : θ2) → B−G(θ1 : θ2), where BF is the Bregman
divergence [61] induced by a strictly convex and smooth function F:

BF(θ1 : θ2) = F(θ1)− F(θ2)− (θ1 − θ2)
�∇F(θ2).
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Divergence-based information geometry

(M,Dg,D∇,D∇∗ = D∗∇)

Fisher α-geometry

(M, F g,∇α,∇−α = (∇α)∗)

f -divergence

α = 3 + 2 f ′′′(1)
f ′′(1)

Dually flat space

(M, F g, F∇, F∇∗ = F∗∇)

Bregman divergence

affine immersion Kurose’s geometric divergence

1-conformally flat dual connections

Pal-Wong logarithmic divergence

(M, LG,αg, LG,α∇, LG,α∇∗)
constant sectional negative curvature space

conformal flattening

conformal divergence

ρ(p : q)

κ(p) ρ(p : q)

affine immersion

α = 0

monotone transformation

(M, t(D)g = t′(0)Dg,
t(D)∇ = D∇, t(D)∇∗ = D∇∗)

t(D), t(0) = 0
α-divergence

conformal flattening

Affine
differential
geometry

Potential convex function F

ex
tr
a
p
o
la
ti
o
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t(D)R = DR

BF (θ1 : θ2)

α-exponentially concave generator G

α = 0

F = −G

conformal Bregman divergence

κ(θ1)BF (θ1 : θ2)

same curvature tensor

Figure 1. Interplay of divergences and their information-geometric structures: Bregman divergences
are canonical divergences of dually flat structures, and the α-logarithmic divergences are canonical
divergences of 1-conformally flat statistical manifolds. When α → 0, the logarithmic divergence LF,α

tends to the Bregman divergence BF.

3. The Subfamily of Homogeneous (r, s)-Power α-Divergences for r > s

In particular, we can define the (r, s)-power α-divergences from two power means
Pr = Mpowr and Ps = Mpows with r > s (and Pr ≥ Ps) with the family of generators
powl(u) = ul . Indeed, we check that frs(u) := powr ◦ pow−1

s (u) = u
r
s is strictly convex

on (0, ∞) since f ′′rs(u) =
r
s
( r

s − 1
)
u

r
s −2 > 0 for r > s. Thus, Pr and Ps are two QAMs which

are both comparable and distinct. Table 1 lists the expressions of Er(p, q) := Epowr
(p, q)

obtained from the power mean generators powr(u) = ur.

Table 1. Expressions of the terms Er for the family of power means Pr, r ∈ R.

Power Mean Er(p, q)

Pr(r ∈ R\{0}) qr−pr

rpr−1

Q(r = 2) q2−p2

2p
A(r = 1) q − p
G(r = 0) p log q

p

H(r = −1) −p2
(

1
q − 1

p

)
= p − p2

q

We conclude with the definition of the (r, s)-power α-divergences:

Corollary 2 (power α-divergences). Given r > s, the α-power divergences are defined for r > s
and r, s �= 0 by

Ir,s
α (p : q) =

⎧⎪⎪⎨⎪⎪⎩
1

α(1−α)

∫ (
(αpr + (1 − α)qr)

1
r − (αps + (1 − α)qs)

1
s

)
dμ, α ∈ R\{0, 1}.

Ir,s
1 (p : q) =

∫ ( qr−pr

rpr−1 − qs−ps

sps−1

)
dμ α = 1,

Ir,s
0 (p : q) = Ir,s

1 (q : p) α = 0.

(99)
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When r = 0, we get the following power α-divergences for s < 0:

I0,s
α (p : q) =

⎧⎪⎪⎨⎪⎪⎩
1

α(1−α)

∫ (
pαq1−α − (αps + (1 − α)qs)

1
s

)
dμ, α ∈ R\{0, 1}.

I0,s
1 (p : q) =

∫ (
p log q

p − qs−ps

sps−1

)
dμ α = 1,

I0,s
0 (p : q) = Ir,s

1 (q : p) α = 0.

(100)

When s = 0, we get the following power α-divergences for r > 0:

Ir,0
α (p : q) =

⎧⎪⎪⎨⎪⎪⎩
1

α(1−α)

∫ (
(αpr + (1 − α)qr)

1
r − pαq1−α

)
dμ, α ∈ R\{0, 1}.

Ir,0
1 (p : q) =

∫ ( qr−pr

rpr−1 − p log q
p

)
dμ α = 1,

Ir,0
0 (p : q) = Ir,s

1 (q : p) α = 0.

(101)

In particular, we get the following family of (A, H) α-divergences

IA,H
α (p : q) = I1,−1

α (p : q) =

⎧⎪⎪⎨⎪⎪⎩
1

α(1−α)

∫ (
αp + (1 − α)q − pq

αq+(1−α)p

)
dμ, α ∈ R\{0, 1}.

I1,−1
1 (p : q) =

∫ (
q − 2p + p2

q

)
dμ α = 1,

I1,−1
0 (p : q) = I1,−1

1 (q : p) α = 0.

, (102)

and the family of (G, H) α-divergences:

IG,H
α (p : q) = I0,−1

α (p : q) =

⎧⎪⎪⎨⎪⎪⎩
1

α(1−α)

∫ (
pαq1−α − pq

αq+(1−α)p

)
dμ, α ∈ R\{0, 1}.

I0,−1
1 (p : q) =

∫ (
p log q

p − p + p2

q

)
dμ α = 1,

I0,−1
0 (p : q) = I0,−1

1 (q : p) α = 0.

(103)

The (r, s)-power α-divergences for r, s �= 0 yield homogeneous divergences: Ir,s
α (tp :

tq) = t Ir,s
α (p : q) for any t > 0 because the power means are homogeneous: Pr

α(tx, ty) =
tPr

α(x, y) = txPr
α

(
1, y

x
)
. Thus, the Ir,s

α -divergences are Csiszár f -divergences [17]

Ir,s
α (p : q) =

∫
p(x) fr,s

(
q(x)
p(x)

)
dμ (104)

for the generator

fr,s(u) =
1

α(1 − α)
(Pr

α(1, u)− Ps(1, u)). (105)

Thus, the family of (r, s)-power α-divergences are homogeneous divergences:

Ir,s
α (tp : tq) = t Ir,s

α (p : q), ∀t > 0. (106)

4. Applications to Center-Based Clustering

Clustering is a class of unsupervised learning algorithms which partitions a given
d-dimensional point set P = {p1, . . . , pn} into clusters such that data points falling into
a same cluster tend to be more similar to data points belonging to different clusters. The
celebrated k-means clustering [69] is a center-based method for clustering P into k clusters
C1, . . . , Ck (with P = ∪k

i=1Ci), by minimizing the following k-means objective function

L(P , C) = 1
n

n

∑
i=1

min
j∈{1,...,k}

‖pi − cj‖2, (107)
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where the cj’s denote the cluster representatives. Let C = {c1, . . . , ck} denote the set of
cluster centers. The cluster Cj is defined as the points of P closer to cluster representative cj
than any other ci for i �= j:

Cj = {p ∈ P : ‖p − cj‖2 ≤ ‖p − cl‖2, ∀l ∈ {1, . . . , k}}.

When k = 1, it can be shown that the centroid of the point set P is the unique best
cluster representative:

arg min
c1

L(P , {c1}) ⇒ c1 =
1
n

n

∑
i=1

pi.

When d > 1 and k > 1, finding a best partition P = ∪k
j=1Cj which minimizes the

objective function of Equation (107) is NP-hard [70]. When d = 1, k-means clustering can
be solved efficiently using dynamic programming [71] in subcubic O(n3) time.

The k-means objective function can be generalized to any arbitrary (potentially asym-
metric) divergence D(· : ·) by considering the following objective function:

LD(P , C) :=
1
n

n

∑
i=1

min
j∈{1,...,k}

D(pi : cj). (108)

Thus, when D(p : q) = ‖p − q‖2, one recovers the ordinary k-means clustering [69].
When D(p : q) = BF(p : q) is chosen as a Bregman divergence, one gets the right-sided
Bregman k-means clustering [72] as the minimization of the cluster centers are defined on
the right-sided arguments of D in Equation (108). When F(x) = ‖x‖2

2, Bregman k-means
clustering (i.e., D(p : q) = BF(p : q) in Equation (108)) amounts to the ordinary k-means
clustering. The right-sided Bregman centroid for k = 1 coincides with the center of mass
and is independent of the Bregman generator F:

arg min
c1

LBF (P , {c1}) ⇒ c1 =
1
n

n

∑
i=1

pi.

The left-sided Bregman k-means clustering is obtained by considering the right-sided
Bregman centroid for the reverse Bregman divergence (BF)

∗(p : q) = BF(q : p), and the
left-sided Bregman centroid [73] can be expressed as a multivariate generalization of the
quasi-arithmetic mean:

c1 = (∇F)−1

(
1
n

n

∑
i=1

∇F(pi)

)
.

In order to study the robustness of k-means clustering with respect to our novel
family of divergences I f ,g

α , we first study the robustness of the left-sided Bregman centroids
to outliers.

4.1. Robustness of the Left-Sided Bregman Centroids

Consider two d-dimensional points p = (p1, . . . , pd) and p′ = (p′1, . . . , p′d) of a domain
Θ ⊂ R

d. The centroid of p and p′ with respect to any arbitrary divergence D(· : ·) is by
definition the minimizer of

LD(c) =
1
2

D(p : c) +
1
2

D(p′ : c),

provided that the minimizer minc∈Θ LD(c) is unique. Assume a separable Bregman diver-
gence induced by the generator F(p) = ∑d

i=1 F(pi). The left-sided Bregman centroid [73] of
p and p′ is given by the following separable quasi-arithmetic centroid:

c = (c1, . . . , cd),
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with

ci = M f (pi, p′i) = f−1
(

f (pi) + f (p′i)
2

)
,

where f (x) = F′(x) denotes the derivative of the Bregman generator F(x).
Now, fix p (say, p = (1, . . . , 1) ∈ Θ), and let the coordinates p′i of p′ all tend to infinity:

That is, point p′ plays the role of an outlier data point. We use the general framework of
influence functions [74] in statistics to study the robustness of divergence-based centroids.
Consider the r-power mean, a quasi-arithmetic mean induced by powr(x) = xr for r �= 0
and by extension pow0(x) = log x when r = 0 (geometric mean).

When r < 0, we check that

lim
p′i→+∞

Mpowr (pi, p′i) = lim
p′i→+∞

(
1 + pr

i
2

) 1
r
, (109)

=

(
1
2

) 1
r
< ∞. (110)

That is, the r-power mean is robust to an outlier data point when r < 0 (see Figure 2).
Note that if instead of considering the centroid, we consider the barycenter with w denoting
the weight of point p and 1 − w denoting the weight of the outlier p′ for w ∈ (0, 1), then
the power r-mean falls in a square box of side w

1
r when r < 0.

p = (1, 1)

p′ = (t, t)

(
1
2

) 1
r

Mpowr (p, p′)

Figure 2. Illustration of the robustness property of the r-power mean Mpowr (p, p′) when r < 0 for
two points: a prescribed point p = (1, 1) and an outlier point p′ = (t, t). When t → +∞, the r-power
mean of p and p′ for r < 0 (e.g., coordinatewise harmonic mean when r = −1) is contained inside the

box anchored at p of size length
(

1
2

) 1
r . The r-power mean can be interpreted as a left-sided Bregman

centroid for F′(x) = −xr, i.e., F(x) = − 1
r xr+1 when r < −1 and F(x) = − log x when r = −1.

On the contrary, when r > 0 or r = 0, we have limp′i→+∞ Mpowr (pi, p′i) = ∞, and the
r-power mean diverges to infinity.

Thus, when r < 0, the quasi-arithmetic centroid of p = (1, . . . , 1) and p′ is contained

in a bounding box of length
(

1
2

) 1
r with left corner (1, . . . , 1), and the left-sided Bregman

power centroid minimizing
1
2

BF(c : p) +
1
2

BF(c : p′)

is robust to outlier p′.
To contrast with this result, notice that the right-sided Bregman centroid [72] is always

the center of mass (arithmetic mean), and therefore not robust to outliers as a single outlier
data point may potentially drag the centroid to infinity.
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Example 2. Since M f = M− f for any strictly smooth increasing function f , we deduce that the
quasi-arithmetic left-sided Bregman centroid induced by F(x) = − log x with f (x) = F′(x) =
−x−1 = − 1

x for x > 0 is the harmonic mean which is robust to outliers. The corresponding
Bregman divergence is the Itakura–Saito divergence [72].

Notice that it is enough to consider without loss of generality two points p and p′:
Indeed, the case of the quasi-arithmetic mean of P = {p1, . . . , pn} and p′ can be rewritten as
an equivalent weighted quasi-arithmetic mean of two points p̄ = M f (p1, . . . , pn) with weight
w = n

n+1 and p′ of weight 1
n+1 using the replacement property of quasi-arithmetic means:

M f (p1, . . . , pk, pk+1, . . . , pn) = M f ( p̄, . . . , p̄, pk+1, pn)

where p̄ = M f (p1, . . . , pk).

4.2. Robustness of Generalized Kullback–Leibler Centroids

The fact that the generalized KLDs are conformal representational Bregman diver-
gences can be used to design efficient algorithms in computational geometry [60]. For
example, let us consider the centroid (or barycenter) of a finite set of weighted probability
measures P1, . . . , Pn � μ (with RN derivatives p1, . . . , pn) defined as the minimizer of

min
n

∑
i=1

wi I f ,g
1 (pi : c),

where the wi’s are positive weights summing up to one (∑n
i=1 wi = 1). The divergences

I f ,g
1 (pi : c) are separable. Thus, consider without loss of generality, the scalar-generalized

KLDs so that we have
I f ,g
1 (p : q) =

1
f ′(p)

BF(g(q) : g(p)),

where p and q are scalars.
Since the Bregman centroid is unique and always coincide with the center of mass [72]

c∗ = arg min wi

n

∑
i=1

BF(pi : c) =
n

∑
i=1

wi pi,

for positive weights wi’s summing up to one, we deduce that the right-sided generalized
KLD centroid

arg min
c

1
n

n

∑
i=1

I f ,g
1 (pi : c) = arg min

c

1
n

n

∑
i=1

1
f ′(pi)

BF(g(c) : g(pi))

amounts to a left-sided Bregman centroid with un-normalized positive weights Wi =
1

f ′(pi)

for the scalar Bregman generator F(x) = f (g−1(x)) with F′(x) = f ′(g−1(x))
g′(g−1(x)) . Therefore, the

right-sided generalized KLD centroid c∗ is calculated for normalized weights wi =
Wi

∑n
j=1 Wj

as:

c∗ = (F′)−1

(
n

∑
i=1

wiF′(g(pi))

)
, (111)

= (F′)−1

⎛⎝ n

∑
i=1

1
f ′(pi)∑n

j=1
1

f ′(pj)

f ′(pi)

g′(pi)

⎞⎠, (112)

= (F′)−1

⎛⎝ n

∑
i=1

1
g′(pi) ∑n

j=1
1

f ′(pj)

⎞⎠. (113)
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Thus, we obtain a closed-form formula when (F′)−1 is computationally tractable. For
example, consider the (r, s)-power KLD (with r > s). We have f ′(x) = rxr−1, g′(x) = sxs−1,
F(x) = x

r
s , F′(x) = r

s x
r−s

s and therefore, we get F′−1(x) =
( s

r x
) s

r−s . Thus, we get
a closed-form formula for the right-sided (r, s)-power Kullback–Leibler centroid using
Equation (113).

Overall, we can design a k-means-type algorithm with respect to our generalized KLDs
following [72]. Moreover, we can initialize probabilistically k-means with a fast k-means++
seeding [34] described in Algorithm 1. The performance of the k-means++ seeding (i.e.,
the ratio LD(P ,C)

minC LD(P ,C) ) is O(log k) when D(p : q) = ‖p − q‖2, and the analysis has been
extended to arbitrary divergences in [75]. The merit of using the k-means++ seeding
is that we do not need to iteratively update the cluster representatives using Lloyd’s
heuristic [69] and we can thus bypass the calculations of centroids and merely choose the
cluster representatives from the source data points P as described in Algorithm 1.

Algorithm 1 Generic seeding of k-means with divergence-based k-means++.
input : A finite set P = {p1, . . . , pn} of n points, the number of cluster

representatives k ≥ 1, and an arbitrary divergence D(· : ·)
Output: Set of initial cluster centers C = {c1, . . . , ck}
Choose c1 ← pi with uniform probability and C = {c1};
for i ← 2 to k do

Pick at random ci = pj ∈ P with probability

π(pj) =
D(pj : C)

∑p∈P D(p : C)

where D(p : C) := minc∈C D(p : c);
C ← C ∪ {ci};

end

return C;

The advantage of using a conformal Bregman divergence such as a total Bregman
divergence [33] or I f ,g

1 is to potentially ensure robustness to outliers (e.g., see Theorem III.2

of [33]). Robustness property of these novel I f ,g
1 divergences can also be studied for

statistical inference tasks based on minimum divergence methods [4,76].

5. Conclusions and Discussion

For two comparable strict means [35] M(p, q) ≥ N(p, q) (with equality holding if and
only if p = q), one can define their (M, N)-divergence as

IM,N(p : q) := 4
∫
(M(p, q)− N(p, q))dμ. (114)

When the property of strict comparable means extend to their induced weighted
means Mα(p, q) and Nα(p, q) (i.e., Mα(p, q) ≥ Nα(p, q)), one can further define the family
of (M, N) α-divergences for α ∈ (0, 1):

IM,N
α (p : q) :=

1
α(1 − α)

∫
(M1−α(p, q)− N1−α(p, q))dμ, (115)

so that IM,N(p : q) = IM,N
1
2

(p : q). When the weighted means are symmetric, the reference

duality holds (i.e., IM,N
α (q : p) = IM,N

1−α (p : q)), and we can define the (M, N)-equivalent of
the Kullback–Leibler divergence, i.e., the (M, N) 1-divergence, as the limit case (when it
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exists): IM,N
1 (p : q) = limα→1 IM,N

α (p : q). Similarly, the (M, N)-equivalent of the reverse
Kullback–Leibler divergence is obtained as IM,N

0 (p : q) = limα→0 IM,N
α (p : q).

We proved that the quasi-arithmetic weighted means [30] M f
α and Mg

α were strictly
comparable whenever f ◦ g−1 was strictly convex. In the limit cases of α → 0 and α → 1,
we reported a closed-form formula for the equivalent of the forward and the reverse
Kullback–Leibler divergences. We reported closed-form formulas for the quasi-arithmetic

α-divergences I f ,g
α (p : q) := IM f ,Mg

α (p : q) for α ∈ [0, 1] (Theorem 3) and for the subfamily
of homogeneous (r, s)-power α-divergences Ir,s

α (p : q) := IMpowr ,Mpows
α (p : q) induced

by power means (Corollary 2). The ordinary (A, G) α-divergences [12], the (A, H) α-
divergences, and the (G, H) α-divergences are examples of (r, s)-power α-divergences
obtained for (r, s) = (1, 0), (r, s) = (1,−1) and (r, s) = (0,−1), respectively.

Generalized α-divergences may prove useful in reporting a closed-form formula
between densities of a parametric family {pθ}. For example, consider the ordinary α-
divergences between two scale Cauchy densities p1(x) = 1

π
s1

x2+s2
1

and p2(x) = 1
π

s2
x2+s2

2
;

there is no obvious closed-form for the ordinary α-divergences,but we can report a closed-
form for the (A, H) α-divergences following the calculus reported in [41]:

IA,H
α (p1 : p2) =

1
α(1 − α)

(
1 −

∫
H1−α(p1(x), p2(x))dμ(x)

)
, (116)

=
1

α(1 − α)

(
1 − s1s2

(αs1 + (1 − α)s2)s1−α

)
, (117)

with sα =

√
αs1s2

2+(1−α)s2s2
1

αs1+(1−α)s2
. For probability distributions pθ1 and pθ2 belonging to the same

exponential family [77] with cumulant function F, the ordinary α-divergences admit the
following closed-form solution:

Iα(pθ1 : pθ2) =⎧⎪⎨⎪⎩
1

α(1−α) (1 − exp(F(αθ1 + (1 − α)θ2)− (αF(θ1) + (1 − α)F(θ2))), α ∈ (0, 1)
I1(pθ1 : pθ2) = KL(pθ1 : pθ2) = BF(θ2 : θ1), α = 1
I0(pθ1 : pθ2) = KL(pθ2 : pθ1) = BF(θ1 : θ2) α = 0

(118)

where BF is the Bregman divergence: BF(θ2 : θ1) = F(θ2)− F(θ1)− (θ2 − θ1)
�∇F(θ1).

Instead of considering ordinary α-divergences in applications, one may consider the
(r, s)-power α-divergences, and tune the three scalar parameters (r, s, α) according to the
various tasks (say, by cross-validation in supervised machine learning tasks, see [13]). For
the limit cases of α → 0 or of α → 1, we further proved that the limit KL type divergences
amounted to conformal Bregman divergences on strictly monotone embeddings and ex-
plained the connection of conformal divergences with conformal flattening [60], which
allows one to build fast algorithms for centroid-based k-means clustering [72], Voronoi
diagrams, and proximity data-structures [60,63]. Some ideas left for future directions is to
study the properties of these new (M, N) α-divergences for statistical inference [2,4,76].
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Abstract: Accurate sizing systems of a population permit the minimization of the production costs
of the textile apparel industry and allow firms to satisfy their customers. Hence, information about
human body shapes needs to be extracted in order to examine, compare and classify human mor-
phologies. In this paper, we use topological data analysis to study human body shapes. Persistence
theory applied to anthropometric point clouds together with clustering algorithms show that relevant
information about shapes is extracted by persistent homology. In particular, the homologies of human
body points have interesting interpretations in terms of human anatomy. In the first place, anoma-
lies of scans are detected using complete-linkage hierarchical clusterings. Then, a discrimination
index shows which type of clustering separates gender accurately and if it is worth restricting to
body trunks or not. Finally, Ward-linkage hierarchical clusterings with Davies–Bouldin, Dunn and
Silhouette indices are used to define eight male morphotypes and seven female morphotypes, which
are different in terms of weight classes and ratios between bust, waist and hip circumferences. The
techniques used in this work permit us to classify human bodies and detect scan anomalies directly
on the full human body point clouds rather than the usual methods involving the extraction of body
measurements from individuals or their scans.

Keywords: topological data analysis; machine learning; persistent homology; clustering; anomaly
detection; morphotype

1. Introduction

The separation of human bodies into groups of morphologies is a common issue for
garment industries. Rather than targeting a single standard body shape, the discrimination
of morphologies helps to improve sizing systems and can reduce production costs for
apparel manufacturing. Among the classifications already established, there is one from [1]
particularly used by industries, where the authors obtained nine types of female body
shapes such as triangle, inverted triangle, hourglass, oval, etc. This is the first work
where mathematical criteria, together with the help of experts, have been used to define
these groups.

In terms of data science, we can approach this problem by clustering algorithms.
To this end, different types of data can be extracted from a body such as measurements
or anthropometric point clouds. Body measurements can be directly represented in a
Euclidean space to use methods from data analysis. In [2], principal component and K-
means cluster analyses are performed on measurements and key body locations, and three
female lower body shape groups are obtained. This representation in a vector space to
perform the clustering is straightforward but has disadvantages. For example, it is not
clear that it is appropriate to compare with Euclidean metric measurements of different
types such as body lengths, circumferences or individual weight. On the other hand,
this requires the choice of the set of measurements extracted from the body, and key
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morphological characteristics may be omitted. The use of 3D representations of the bodies
is suitable for these issues but becomes difficult to implement since we need a way to extract
information from anthropometric point clouds and compare them. For example, in [3], the
authors use control points and correlation strength principal component analysis of trunks.
Reinterpreting these components by averaged shape figures and combining factor loading
maps, five female trunk shape groups are defined by a Ward-linkage hierarchical clustering.
Different methods from data science have been used to classify human body shapes; see
for example [4–7].

Topological data analysis [8,9] is a powerful tool to study and understand the shape of
data, and thus it naturally applies in this context. In particular, persistent homology [10,11]
can be used to extract relevant topological information from data and point clouds. These
extracted features are encoded by diagrams and have stability properties relative to specific
distances [12,13]. Several applications of this theory have been established in different
contexts such as time-series data analysis [14], object recognition [15], complex network
analysis [16], molecular biology data exploration [17], biomedicine [18], geographical infor-
mation science [19] and environmental science [20]. Feature extraction for classification is
an active research topic in pattern recognition and machine learning; see for example [21,22]
or [23].

In this work, we use persistent theory applied on human point clouds in order to
perform the following:

• Extract information from human bodies with interpretation in terms of human anatomy;
• Detect scans anomalies;
• Identify and separate human point clouds by gender;
• Classify male and female morphotypes.

More precisely, we compute the persistence diagrams, Wasserstein distance and as-
sociated silhouettes on the human point clouds of the CAESAR database [24]. Using
graph theory, among other things, approaches by homological degree allow us to interpret
persistent homologies and identify them to body areas and limbs. To define morphotypes in-
dependently of individuals’ height, we normalize the point clouds using three-dimensional
homotheties. Then, we show that anomalies of scans are naturally isolated clusters when
performing complete-linkage hierarchical clustering on the persistence diagrams of the
point clouds using the Wasserstein distance. Then, a gender discrimination index is defined
to study which hierarchical clustering linkage is interesting to separate males and females
accurately. We compare the performance of these clustering algorithms on persistence
diagrams, on silhouettes, and whether point clouds are restricted to trunks or not. Finally,
Ward-linkage hierarchical clusterings on the silhouettes of the persistence diagrams of the
point clouds, together with a mix of different clustering criteria such as Davies–Bouldin,
Dunn and Silhouette indices are used to obtain eight male morphotypes and seven female
morphotypes. Then, we study the properties of these clusters, and their medoids are
computed and considered as representatives of the groups.

The paper is organized as follows. In Section 2, we introduce the tools of persistence
theory that we use. In Section 3, we detect scan anomalies. In Section 4, we study which
type of clustering accurately separates males and females. Finally, we classify morphotypes
in Section 5.

2. Methodology

2.1. Dataset

The CAESAR (Civilian American and European Surface Anthropometry Resource)
3D Anthropometric Database is composed of 3D body scans of thousands of men and
women aged from 18 to 65 and originated from various NATO countries: the United States
of America, Canada, the Netherlands and Italy.

In this paper, we are using the dataset of [24], which is derived from the CAESAR
dataset and is composed of 1517 male and 1531 female meshes, registered as OBJ files.
Each mesh has 12,500 vertices (Figure 1a) and 25,000 faces (Figure 1b), and we extract
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and consider only the underlying point clouds of all the meshes. In the figures, the
meshes and point clouds are presented headless for confidentiality. The individuals are
numbered discontinuously from Spring0001 to Spring4800, and for convenience we refer
to SpringXXXX by SXXXX.

(a) The vertices (b) The faces

Figure 1. The mesh of the individual S0013.

2.2. Persistence Diagrams, Landscapes, Silhouettes and Distances

Persistent homology is a tool used to efficiently compute and encode the multidimen-
sional homological features of topological spaces associated to a dataset. To compute these
homological invariants, we have to build topological structures on the data such as filtered
simplicial complexes.

A simplex is a notion generalizing points, line segments, triangles and tetrahedrons
to any dimension and composed of faces that are also simplices of lower dimension. A
simplicial complex K is a collection of simplices satisfying two properties: each face of
a simplex of K is in K and the non-empty intersection of two simplices of K is a face of
both of them. Given a body point cloud X in R

3, several types of simplicial complexes
can be constructed on X, such as the Vietoris–Rips and the Čech complexes. We center
three-dimensional balls of radius ε on each data point, and we vary ε from 0 to +∞. The
data points are considered as 0-simplices, and when n + 1 balls intersect, we add an n-
dimensional face between them. The result is called a Čech complex. For each fixed ε, we
count the homological features of the associated topological space. Since the underlying
vector space is of dimension 3, we have three types of homological classes to consider:

• H0: The connected components;
• H1: The non-homotopic loops;
• H2: The two-dimensional voids.

Thus, we represent each homological feature by a point in R
2, where its abscissa is the

birth time of the feature and its ordinate is the death time. The set of points obtained in this
way is the persistence diagram of X. The persistence barcode represents each homology
class with a bar defined by its birth time, when the topological feature appears, and a death
time, when the topological feature disappears. In order not to have too many points due to
the creation and death of small homological features, a minimal persistence is fixed.

For example, in Figure 2, the persistence barcode and diagram of the individual S0013
(Figure 1) are given.
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(a) Persistence diagram (b) Persistence barcode

Figure 2. The persistence diagram and barcode of S0013.

It is possible to compare persistence diagrams using the Wasserstein distance. Let
D and D′ be persistence diagrams. A perfect matching between D and D′ is a subset
φ ⊆ D × D′ such that every point of D and D′ is exactly one time in φ, completing with
the diagonal if necessary in order to ignore cardinality mismatches. The (p, q)-Wasserstein
distance between D and D′ is defined by

Wp,q(D, D′) = in f
φ∈Φ

( ∑
x∈D

||x − φ(x)||pq )1/p, (1)

where ||x||q is the q-norm of x defined by

||x||q =
(
∑ |xi|q

)1/q. (2)

We exclusively use the (2, 2)-Wasserstein distance. For precise definitions and de-
tails, see [8,9].

Persistence landscapes are an encoding of persistence diagrams by series of piecewise
continuous linear functions [25,26]; see Figure 3. This allows us to perform statistics on
them, the absence of which was a disadvantage of persistence diagrams. In particular, it is
possible to calculate unique averages of landscapes. While a persistence landscape has a
corresponding persistence diagram, an average of persistence landscapes does not.

Figure 3. Visual explanation of persistence landscapes. The persistence diagram (left) is tilted so that
the diagonal becomes the new horizontal axis (top right). The λi are the piecewise linear functions
(bottom right).

A persistence silhouette is computed by taking a weighted average of the collection
of 1D-piecewise-linear functions given by the persistence landscapes and then by evenly
sampling this average on a given range. Finally, the corresponding vector of samples
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is returned; see Figure 4. For the implementation of clustering, we choose to make a
vector consisting of 25 points of the silhouette of H0 homologies, 250 points equidistant
from the silhouette of H1 homologies and 250 points equidistant from the silhouette of
H2 homologies for each persistence diagram. The points are the values of the silhouette
equally spaced. Hence, each individual is represented by a vector in a real vector space of
dimension 525 together with the Euclidean distance.

Figure 4. Representation of a vector obtained by persistence silhouette.

2.3. Interpretation of Persistent Homology

The persistence diagram of a body point cloud is composed of three types of homolo-
gies (see Figure 2). Since the points are distant from each other at an equivalent distance,
all the balls are rapidly connected, thus giving a single connected component. Several H1
and H2 homologies representing the internal body cavities appear and disappear when the
radius ε of the balls varies to +∞. We now explain our approach to interpret and identify
these homological features in terms of human anatomy. Since displaying the homologies in
their entirety is too costly, we thought of other approaches for each degree.

For each homology, we know the radii of the balls at their birth and death. A simplex
tree represents abstract simplicial complexes of any dimension. All faces of the simplicial
complex are explicitly stored in a tree whose nodes are in bijection with the faces of the
complex. This data structure allows us to efficiently implement a large range of basic
operations on simplicial complexes. Using the simplex tree of a set of points, we know the
values of the radii when pairs of points, triangles and tetrahedra are covered. The approach
is slightly different depending on the dimension:

• Dimension 0: All H0 homologies are born when the radius of the balls is zero. For
each homology H0, we choose to display the second point of the pair covered at the
birth of the homology as its representative.

• Dimension 1: First, we make an undirected graph containing all the points of a set,
where each time a pair of points is covered, as the radius of the balls increases, we
connect these points by an edge with a weight equal to the radius of the balls. At the
birth of a homology H1, before adding the edge to our graph, we compute the shortest
path connecting these two points, which we display by closing it with the segment
connecting these points. The lace displayed is a likely representative of this homology.
At the death of this homology, we recover the information of the triangle covered
by the balls, and we add it to the display to give a general idea of the evolution of
our homology.

• Dimension 2: For each homology H2, we simply display the triangle covered at its
birth and the tetrahedron covered at its death.

For example, in the persistence diagram of the individual S0013 given in Figure 2,
there are 13 different homologies numbered in the persistence barcode from 0 to 12. With
this approach, we display each homology in Figure 5 and we can interpret them as follows:
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• n°0: H2 corresponding to the left part of the torso,
• n°1: H2 corresponding to the right part of the torso,
• n°2: H1 corresponding to a loop between legs at foot level,
• n°3: H1 corresponding to a loop between legs from ankles to calves,
• n°4: H1 corresponding to a loop between legs from knees to calves,
• n°5: H2 corresponding to the head,
• n°6: H2 corresponding to the right calf,
• n°7: H2 corresponding to the left calf,
• n°8: H2 corresponding to the right foot,
• n°9: H2 corresponding to the whole body,
• n°10: H1 corresponding to a loop around the right foot,
• n°11: H1 corresponding to a loop around the left foot,
• n°12: H0 of all the connected balls.

We remark that the arms and the left foot do not appear on the diagram. This is caused
by the minimal persistence and the facts that the arms are too thin and that the scan of the
left foot is more flat and deformed compared to the right one. Homology n°9 is particularly
distinguished, and we call it the principal H2-homology. It corresponds to the aggregation
of the parts and limbs of the body, thus forming the inner cavity of the body point cloud.

(a) n°0 (b) n°1 (c) n°2 (d) n°3

(e) n°4 (f) n°5 (g) n°6 (h) n°7

(i) n°8 (j) n°9 (k) n°10 (l) n°11

Figure 5. All non H0 homologies of the persistence diagram of S0013.

2.4. Normalization of Point Clouds by Homothety

We want morphotypes to be independent of the size of the individuals in order to
propose a sizing system associated to each morphotype. For this purpose, we apply a
homothety on each point cloud so that each individual is the same height: 1 m 70 cm. This
affects the distances between them and individuals with similar morphology, but different
heights become closer (Figure 6).

31



Algorithms 2023, 16, 161

(a) S0105 (b) S0071 (c) S0207

Figure 6. Individuals (a–c) are 1.89 m, 1.93 m and 1.65 m tall, respectively. Among them, the couple
(a,b) is the closest before normalization, and the couple (b,c) is the closest after normalization.

3. Anomaly Detection

Among the data, there are anomalies of scans. We have found five anomalies for men
and four for women. It turns out that they are encoded and detected by the persistence
diagrams, Wasserstein distance and clustering algorithms. More precisely, we perform
complete-linkage hierarchical clusterings on the persistence diagrams of the point clouds
together with the Wasserstein distance (with p = q = 2), separately for men and women.
Analyzing corresponding truncated dendrograms, we remark that anomalies are very often
isolated individuals agglomerating late. To find the best truncation of the dendrogram, we
use as criteria the mean between the percentage of isolated individuals that are anomalies
and the percentage of anomalies isolated in this way.

For men, the best truncation range is [21, 46], where the criteria show that 90%: 100% of
isolated individuals are anomalies and 80% of anomalies are detected. Figure 7 shows the
dendrogram for male point clouds truncated at 21 clusters, where the 4 isolated individuals
are anomalies as shown in Figure 8.

Figure 7. Dendrogram associated to a complete-linkage hierarchical clustering of the persistence
diagrams of male point clouds with the Wasserstein distance. Clusters composed of one individual
are presented without parentheses.
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(a) S2277 (b) S2962 (c) S4624 (d) S2882

Figure 8. Anomalies of men scans detected by complete-linkage hierarchical clustering of persis-
tence diagrams.

To illustrate that anomalies are detected by persistence, we analyze the persistence
diagram of Figure 9, which corresponds to the individual S2962.

Its three H2 homologies n◦3, 5, 6 are particularly distinguished and can be seen at
birth and death in Figure 10. Homologies H2 numbers 3 and 5 correspond to the right
and left leg, respectively, while the number 6 corresponds to the torso and is the principal
H2-homology.

For normal scans, the principal H2-homology also aggregates legs. Because of the
misplaced points and the holes on the point cloud, leg homologies are separated from the
principal H2-homology which starts later than in the usual case.

(a) Persistence diagram (b) Persistence barcode

Figure 9. Persistence diagram and barcode of the anomaly of scan S2962. Three particular homologies
reflecting the anomaly are highlighted.

(a) H2 n°3 (b) H2 n°5 (c) H2 n°6

Figure 10. Three abnormal homologies at birth and death of the defective scan S2962.
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For women, the best truncation range is [23, 37], where the criteria show that 87.5%:100%
of isolated individuals are anomalies and 75% of anomalies are detected. Figure 11 shows
the dendrogram for female point clouds truncated at 23 clusters, where the 3 isolated
individuals are anomalies as shown in Figure 12.

Figure 11. Dendrogram associated to a complete-linkage hierarchical clustering of the persistence
diagrams of female point clouds with the Wasserstein distance.

(a) S2825 (b) S1212 (c) S2997

Figure 12. Anomalies of female scans detected by complete-linkage hierarchical clustering of persis-
tence diagrams.

4. Gender Discrimination Index

In this section, we analyze if clustering algorithms on persistence diagrams and
silhouettes give groups separating men from women scans by changing the number of
clusters. To this end, we use persistence diagrams or silhouettes, restricted to trunks of
point clouds or not.

Let Pm(C) and Pf (C) be respectively the proportions of men and women in a cluster
C. We have

Pm(C) =
nm(C)
s(C)

, Pf (C) =
n f (C)
s(C)

(3)

where nm(C) is the number of men in C, n f (C) is the number of women in C and s(C) is
the size of C. To measure the quality of a clustering C of a set of mixed male and female
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diagrams or silhouettes DMF, we introduce a gender discrimination index (GDI) defined by

GDI(C) = 2
s(DMF)

K

∑
k=1

s(Ck)

∣∣∣∣Pm(Ck)− 1
2

∣∣∣∣ (4)

where K is the number of clusters of C, Ck are the clusters of C and s(DMF) is the number
of elements in DMF. Thus, the better the clustering C separates men from women, the
closer GDI(C) is to 1, and the worse it is, the closer GDI(C) is to 0. We can consider that a
clustering is satisfactory to separate men from women if its GDI is greater or equal to 1

2 .

4.1. Evolution of the GDI Score as a Function of the Number of Clusters

In this section, we observe the ability of different clustering methods to separate male
from female persistence diagrams or silhouettes.

We use a matrix of Wasserstein distances between diagrams to perform hierarchical
clustering with complete and Ward’s linkage methods [27] as well as K-Medoids clustering
with the PAM (Partitioning Around Medoids) algorithm [28]. The notion of a barycenter
between persistence diagrams is delicate [29,30], but we can use the Ward-linkage method
with the Lance–Williams algorithm [31].

As shown in Figure 13, hierarchical clustering with the complete-linkage method
does not differentiate correctly between female and male scans. However, the K-Medoids
clustering has a correct GDI score for more than 10 clusters and becomes good on some
occasions for more than 13 clusters. The Ward-linkage hierarchical clustering has a correct
GDI score for more than 12 clusters and becomes good for more than 19 clusters.

Figure 13. GDI score evolution of various clustering algorithms on the persistence diagrams with
Wasserstein distance.

We now use vectors obtained from the silhouettes associated to the persistence dia-
grams of scans on which we perform a Ward-linkage hierarchical clustering as well as a
K-Means clustering and a K-Medoids clustering with the PAM algorithm. This time, these
three clustering algorithms give very good GDI scores; see Figure 14.
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Figure 14. GDI score evolution of various clustering algorithms on the persistence silhouettes.

4.2. Restriction to Trunks

When constructing the silhouettes, we used a weighting that tended to favor the
H2 homologies corresponding to the trunks of the subjects, so the question then arises
as to whether we would obtain better results by using only the points corresponding to
the trunk of the body. To this end, we have developed an algorithm to isolate the points
corresponding to the trunk of an individual which we now describe.

Let X be a normalized body point cloud at 1.70 m. We rotate and translate the scan
such that the individual is standing along the height axis z and is at the minimal height of 0.
Then, we isolate points located in the range [66.5, 146.5] cm to exclude points corresponding
to the legs and head. We compute the director and intercept coefficients of two linear
equations delimiting the trunk, taking into account the mean width of the individual. More
precisely, we compute the lines x = a1z + b1 and x = a2z + b2, which intersect at the height
107.5 cm. Projecting the points on the plane (x, z), we obtain a set of points X1 located
between the first line, its symmetric with respect to the axis x = 0 and below 107.5 cm
and a set of points X2 located between the second line, its symmetric with respect to the
axis x = 0 and above 107.5 cm. The union X′ of X1 and X2 is composed of points of the
individual’s trunk. In Figure 15, a body point cloud and the trunk point cloud isolated by
this process are represented.

We now compare the clustering results using a Wasserstein distance matrix applied to
the whole body and applied to the trunk.

From the curves in Figure 16 and the average GDI scores of Table 1, it appears that for
clustering algorithms based on Wasserstein distances between persistence diagrams, it is
not worth restricting these to trunk points.
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(a) Full body (b) Trunk

Figure 15. An individual and its isolated trunk.

Table 1. Average GDI scores on the persistence diagrams of the whole body and the trunk with the
Wasserstein distance.

Complete Ward K-Medoids

Body 0.2 0.54 0.526

Trunk 0.21 0.553 0.582

Figure 16. Comparison of GDI score on the persistence diagrams of the whole body and the trunk
with the Wasserstein distance.

We now compare the results of clustering algorithms using the vectors obtained from
the persistence silhouettes applied to the whole body and applied to the trunk.

From the curves of Figure 17 and the average GDI scores of Table 2, it appears that
for clustering based on silhouette persistence vectors, it is worth restricting these to trunk
points, particularly for K-Medoids clustering.
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Table 2. Average GDI scores on the persistence silhouettes of the whole body and the trunk.

Ward K-Means K-Medoids

Body 0.738 0.73 0.737

Trunk 0.765 0.767 0.827

Figure 17. Comparison of GDI score on the persistence silhouettes of the whole body and the trunk.

5. Human Body Shapes Classification

5.1. Male Morphotypes

To define morphotypes of men’s body shapes, we perform a Ward-linkage hierarchical
clustering on silhouettes of the persistence diagrams of the men’s point clouds together
with the euclidean distance. The associated dendrogram is given in Figure 18.

Figure 18. Dendrogram associated to a Ward-linkage hierarchical clustering of the silhouettes of the
persistence diagrams of male point clouds.

To find a correct truncation of the dendrogram, we use the following clustering
quality indices:

• The Elbow method;
• The Davies–Bouldin index [32];
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• The Silhouette index [33];
• The Dunn index [34].

Since there is a continuity between human body shapes, there is no distinguished
point common to all these indices. However, the Davies–Bouldin and Dunn indices both
suggest to truncate at eight clusters. Information about size, mean distance of all pairs,
diameter, mean distance to the mean and distance between the mean and the medoid of
each cluster is given in Table 3.

Table 3. Clustering of male body shapes.

Cluster C1 C2 C3 C4 C5 C6 C7 C8

Size 2 4 50 311 125 273 415 332

Proportion
(in percent) 0.1 0.3 3 21 8 18 27 22

Mean
distance 79.6 39.4 28.6 17.4 20.3 16.3 18.9 19.4

Diameter 79.6 53.9 62 49.6 59.2 54.6 67.1 69.4

Distance
to the mean 39.8 24.4 19.6 12.1 14.2 11.5 13.1 13.6

Distance
mean–medoid 39.8 20.1 9 3.4 5.9 6.9 5.1 6.1

The first cluster is only composed of two individuals who are extremely overweight,
and their meshes are shown in Figure 19. The four men in the second cluster are also
extremely overweight.

The medoid is the element minimizing the distance with other elements of the cluster.
It can be considered as a representative, and we show in Figure 20 the medoids associated
to every cluster, except for the first cluster.

(a) S0517 (b) S0553

Figure 19. The two individuals of cluster C1.

Since we do not have measurements associated with the individuals of the CAESAR
database, in each group, we have to look at all the individuals in order to identify the
predominant morphological features. It turns out that the clusters C3 and C7 are composed
of overweight individuals of different categories, while the thinnest men are located
in cluster C6. It turns out that individuals of clusters C4, C5 and C8 have a standard
morphotype but that men of C8 have a shorter torso than in C4 and C8 and that men of C4
are more corpulent that in the two others.
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5.2. Female Morphotypes

Similarly, to define morphotypes of women’s body shapes, we perform a Ward-linkage
hierarchical clustering on silhouettes of the persistence diagrams of the women’s point clouds
together with the euclidean distance. The associated dendrogram is given in Figure 21.

(a) (C2) S2864 (b) (C3) S1502 (c) (C4) S2055 (d) (C5) S2640

(e) (C6) S4286 (f) (C7) S2982 (g) (C8) S4505

Figure 20. Medoids of clusters C2 to C8 of the Ward-linkage hierarchical clustering.

Figure 21. Dendrogram associated to a Ward-linkage hierarchical clustering of the silhouettes of the
persistence diagrams of female point clouds.

This time, the Silhouette and Dunn indices suggest truncating at seven clusters. In-
formation about size, mean distance of all pairs, diameter, mean distance to the mean and
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distance between the mean and the medoid of each cluster is given in Table 4. Remark that
clusters of women are more compact than clusters of men since the mean distance of pairs
and diameter are much smaller.

Table 4. Clustering of female body shapes.

Clusters C1 C2 C3 C4 C5 C6 C7

Size 306 263 403 107 122 112 214

Proportion
(in percent) 20 17 27 7 8 7 14

Mean
distance 14.2 12.7 14.1 14.3 14 19 21.3

Diameter 36.6 32 32.1 31.9 38.2 59.3 62.4

Distance
to the mean 10.1 9 10.1 10.1 9.9 13.3 14.8

Distance
mean–medoid 3.4 3.4 4.5 3.3 3.6 5.9 5.2

We show in Figure 22 the medoids associated to the seven clusters.

(a) (C1) S0522 (b) (C2) S2018 (c) (C3) S1604 (d) (C4) S0174

(e) (C5) S1076 (f) (C6) S4507 (g) (C7) S1174

Figure 22. Medoids of the seven clusters of the Ward-linkage hierarchical clustering.
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The first two clusters are composed of thin women, but in the first one, they have a
shorter torso with a waist circumference that is more pronounced. The clusters C6 and
C7 are composed of overweight individuals of different categories. The women of the
clusters C3 have a straight body without much difference between waist, hip and chest
circumferences. Individuals of C4 and C5 have a larger hip circumference compared to the
waist circumference, but women of C4 have a stronger lower body while women of C5 have
a shorter torso.

6. Discussion

The research conducted in this paper demonstrates that the tools of topological data
analysis and persistence theory permit us to extract pertinent information about the shape
of anthropometric point clouds. The homologies of the persistence diagram of human body
points have interesting interpretations in terms of human anatomy. Hence, most of the scan
anomalies are correctly detected by clustering algorithms. The gender discrimination index
shows that it is worth restricting our search to trunk body points to separate men from
women and that the Ward-linkage hierarchical clustering and the K-Medoids clustering
give better results than the complete-linkage hierarchical clustering. Finally, we obtain
eight morphotypes of men and seven morphotypes of women’s body shapes with Ward-
linkage hierarchical clusterings. The clusters are composed of individuals of similar weight
classes, and the groups can be distinguished by their ratios between bust, waist and hip
circumferences or by their torso sizes or their lower body shapes. It is worth noting that
the female clusters have better proportions and smaller diameters than the male clusters.

The proposed approach is promising for anomaly detection and classification and
should be applied to other types of point clouds in different contexts. The method can also
be extended to other problems related to human bodies, such as measurement extraction
with supervised machine learning algorithms.
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Abstract: This paper studies various deep learning models for word-level lip-reading technology,
one of the tasks in the supervised learning of video classification. Several public datasets have been
published in the lip-reading research field. However, few studies have investigated lip-reading
techniques using multiple datasets. This paper evaluates deep learning models using four publicly
available datasets, namely Lip Reading in the Wild (LRW), OuluVS, CUAVE, and Speech Scene by
Smart Device (SSSD), which are representative datasets in this field. LRW is one of the large-scale
public datasets and targets 500 English words released in 2016. Initially, the recognition accuracy of
LRW was 66.1%, but many research groups have been working on it. The current the state of the art
(SOTA) has achieved 94.1% by 3D-Conv + ResNet18 + {DC-TCN, MS-TCN, BGRU} + knowledge
distillation + word boundary. Regarding the SOTA model, in this paper, we combine existing models
such as ResNet, WideResNet, WideResNet, EfficientNet, MS-TCN, Transformer, ViT, and ViViT, and
investigate the effective models for word lip-reading tasks using six deep learning models with
modified feature extractors and classifiers. Through recognition experiments, we show that similar
model structures of 3D-Conv + ResNet18 for feature extraction and MS-TCN model for inference are
valid for four datasets with different scales.

Keywords: lip-reading; word recognition; deep neural network; LRW; OuluVS; CUAVE; SSSD;
3D convolutional layer; ResNet; WideResNet; EfficientNet; transformer; ViT; ViViT; MS-TCN

1. Introduction

This paper focuses on word lip-reading technology that estimates the utterance content
from visual information only without audio information. This paper uses “words,” but
more precisely, it includes both words and short phrases. This technology is expected to
be used in the following cases where it is difficult to use audio-based speech recognition:
it is used in noisy environments where it is difficult to obtain speech, in public places
where it is difficult to speak, and used by people with disabilities who cannot speak due
to laryngectomy. Since various problems can be solved using lip-reading technology, it is
expected to be one of the next-generation communication tools.

As an academic framework, lip-reading technology is classified as supervised learning
for video data. There are several topics for research on lip-reading; shooting directions
such as frontal and side [1], recognition targets such as single sound [2,3], word [4–9], and
sentence [10–12]. Word recognition is an active research topic, and various algorithms have
been proposed.

Word lip-reading has been studied since the early days of lip-reading technology.
However, research has become active with the release of datasets such as OuluVS [13],
CUAVE [14], SSSD [15], LRW [4], CAS-VSR-W1k (LRW-1000) [16], and RUSAVIC [17], and
the introduction of deep learning. In particular, research groups using LRW, one of the
large-scale datasets, have been competing for several percent accuracies in recent years
(https://paperswithcode.com/sota/lipreading-on-lip-reading-in-the-wild, accessed on
26 April 2023).
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This paper explores various deep learning models and their effectiveness in word
lip-reading. While many papers use one or two datasets, this paper conducts experiments
on four publicly available datasets; LRW, OuluVS, CUAVE, and SSSD.

This paper is organized as follows. Section 2 describes the related research. Section 3
summarizes the basic model of the deep learning model considered in this paper. Section 4
introduces the deep learning model investigated in this paper. Section 5 shows recognition
experiments on four datasets, and Section 6 concludes this paper.

2. Related Research

There are many studies on word lip-reading techniques. Here, this paper focuses on
research targeting LRW.

LRW is a dataset published by Chung et al. in 2016 [4] (https://www.robots.ox.ac.
uk/~vgg/data/lip_reading/lrw1.html, accessed on 26 April 2023) and is a large-scale
lip-reading research dataset containing 500 English words. LRW is used as a benchmark
in the lip-reading field. LRW contains utterance scenes clipped from news and discussion
programs broadcast from 2010 to 2016 by the British Broadcasting Corporation (BBC),
which collectively manages radio and television in the United Kingdom. While most
datasets are utterance scenes in which the speaker was recording in a roughly specified
posture, LRW has the feature of recording utterance scenes in a natural posture even
though it is a TV program. The number of speakers is more than 1000. LRW consists of
three types of data: training data, validation data, and test data, and provides video data
containing 488,766 scenes, 25,000 scenes, and 25,000 scenes, respectively. The train data
contain 800–1000 scenes per word, and the validation and test data contain 50 scenes per
word. All scenes are extracted face images with 256 × 256 pixels, the frame rate is 25 fps,
the scene length is 1.16 s, and the number of frames is 29. The total recording time of the
three types is about 173 h.

CAS-VSR-W1k [16], which contains 1000 Chinese words, is a large-scale open dataset
containing word utterance scenes. The state-of-the-art (SOTA) recognition accuracies of
LRW and CAS-VSR-W1k are 94.1% [18] and 55.7% [19], respectively. Academically, it is
desirable to target CAS-VSR-W1k, which has a high degree of task difficulty. Since we
could not obtain CAS-VSR-W1k, we target LRW.

Chung et al., who published LRW, proposed four convolutional neural network
(CNN) models based on VGG-M [4]. Among the four models, the multiple towers model
obtained the highest recognition rate of 66.1%. This model has a structure in which
the convolutional layers for all frames are provided in the first layer. The outputs of all
subsequent convolutional layers are connected to one and input to the second convolutional
layer. The following year, Chung et al. proposed a new network with a watch, listen, attend,
and spell (WLAS) structure, obtaining 76.2% [10]. In WLAS, the encoder consists of a CNN
model that is an improved version of VGG-M, which extracts features from each input
frame image, and a long short-term memory (LSTM) that summarizes the output of the
features from the CNN model. The decoder consists of LSTM, attention, and softmax.

According to the paper with the code site (https://paperswithcode.com/sota/lipreading-
on-lip-reading-in-the-wild, accessed on 26 April 2023), SOTA in LRW is currently the result
of Ma et al. [18]. The model architecture consists of 3D-Conv + ResNet18 in the front stage
and a Temporal model in the backstage with a mouth region of interest (ROI) as input. The
temporal model is an ensemble of three different models; densely connected temporal con-
volutional networks (DC-TCNs), multi-scale temporal convolutional networks (MS-TCNs),
and bidirectional gated recurrent units (BGRUs). In addition to the model architecture, they
applied data augmentation, self-distillation, and word boundary indicators to improve the
recognition accuracy. Many other papers have recently discussed the model training strategy,
but the model architecture is often 3D-Conv + ResNet18 + MS-TCN [6,8,20]. The second highest
accuracy in LRW is 3D Conv + EfficientNetV2 + Transformer + TCN structure, which obtained
a recognition rate of 89.5%, proposed by Koumparoulis et al. [21]. The structure with the third
highest accuracy 88.7% is Vosk + MediaPipe + LS + MixUp + SA + 3DResNet-18 + BiLSTM +

45



Algorithms 2023, 16, 269

CosineWR [22], where Vosk is a voice activity detection model, which can detect speech regions
even in heavy acoustically noisy conditions. MediaPipe is a machine-learning library provided
by Google (https://developers.google.com/mediapipe, accessed on 26 April 2023). LS means
label smoothing [23], SA means a squeeze-and-attention (SA) module, and CosineWR means
cosine annealing warm restarts. This study uses two datasets, LRW and RUSAVIC [17], for
evaluation. The Russian Audio-Visual Speech in Cars (RUSAVIC) is a multi-speaker and
multi-modal corpus. The number of speakers is 20, and the number of phrases is 68.

3. Basic Model

In this section, we explain preprocessing and summarize the basic models of deep
learning, data augmentation, distance learning, and fine-tuning discussed in this paper.

3.1. Preprocessing

To begin the process, we follow the same preprocessing steps as the existing method by
our previous research [15]. The datasets we are working with, namely OuluVS and CUAVE,
contain not only the speaker’s face but also their upper body and the background. Hence,
we first extract the face rectangle from the input image using face detection processing. Sev-
eral face detectors have been proposed, including non-deep learning approaches that use
Haar-like features and histograms of oriented gradients (HOG) [24,25] and deep learning
approaches such as RetinaFace [26]. This paper uses the face detector implemented in the
dlib library (http://dlib.net/, accessed on 26 April 2023).

Facial landmark detection helps determine the location of facial parts such as eyes,
eyebrows, nose, and lips. This is an important process for stable ROI extraction. In this
paper, we utilize the method proposed by Kazami and Sullivan [27], which is a typical facial
landmark detection method implemented in the dlib library. A total of 68 facial landmarks
are detected.

The size and rotation normalization process is applied based on the detected facial
landmarks. At first, two variables of deye, the distance between two eyes, and θ, the angle
between two eyes, are calculated. Then, an affine transformation is applied using deye and
θ. Specifically, the scale is changed so that deye becomes 200 pixels, and the image is rotated
so that θ becomes 0 degrees.

Then, the following equation extracts the upper left coordinate (L, T), lower right
coordinate (R, B), and the size of S × S pixels of the lipROI.

L = (xllip + xrlip)/2 − S/2,

T = (yllip + yrlip)/2 − S/3,

R = L + S,

B = T + S.

Here, the two points (xllip, yllip) and (xrlip, yrlip) are the landmark coordinates of the
left and right corners of the mouth, respectively. The extracted lipROI is fed to the deep
learning model.

3.2. Three-Dimensional Convolution

Many deep learning models investigated in this paper will be described later in
Section 4, which extract features using ResNet. The input data are time-series image data
(lipROIs). For this reason, we first apply a 3D convolution. Specifically, the structure shown
in Figure 1 is used.
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Figure 1. Structure of a 3D convolutional layer.

3.3. Resnet

Residual network (ResNet) [28] is a well-known model that introduces a residual block
and a shortcut connection into an existing CNN model. The convolutional layer of CNN
extracts features by combining them with the pooling layer, and it is thought that advanced
and complex features can be extracted by stacking layers. However, when deep structures
are used, there is a problem that training does not progress due to the gradient vanishing
or exploding gradients. Therefore, ResNet solves the problem by training the residual
function referenced from the layer’s input instead of training the optimal output found in a
layer. The residual block combines a convolutional layer and a skip connection, summing
the outputs of the two passes. One of the residual blocks combines convolutional layers,
and the other is the identity function. If this structure does not require transformations in
additional layers, it can be handled by setting the weight to zero.

3.4. WideResNet

WideResNet [29] is an improved model of ResNet. The purpose of ResNet is to deepen
the layers, but there is a problem stemming from the fact that deeper layers implies a lower
computational efficiency in terms of performance. This is believed because many layer
weights become meaningless, which is called the reduced feature reuse problem. WideRes-
Net was proposed as a solution to this problem. WideResNet improves the computational
efficiency and performance by increasing the number of channels for convolution in the
residual block and introducing the dropout.

3.5. EfficientNet

In order to improve the accuracy of the image classification model, various measures,
such as increasing the number of layers, widening the width (channel) of the model,
and increasing the resolution of the input image, were implemented independently. On
the other hand, EfficientNet [30] is a model that introduces a compound coefficient that
simultaneously performs three changes in a well-balanced manner. EfficientNet proposed
eight models, namely EfficientNet-B0–EfficientNet-B7, which are automatically designed
using neural architecture search (NAS) [31]. NAS is a method that automatically optimizes
a dedicated network structure to scale the composite coefficients in a balanced manner.

3.6. Transformer

Transformer is a model that uses only attention without recurrent neural network
(RNN) or CNN [32]. Transformer is based on the encoder–decoder model and incorporates
self-attention and a position-wise feed-forward network.

Self-attention calculates the similarity and importance among its own data. The input
of the transformer is divided into Query Q, Key K, and Value V. Here, Q is the input data
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and represents what to search in the input data. K is used to measure how similar the object
to be searched and the Q are. V is an element that outputs an appropriate V based on K.
These features are transformed in the fully connected layer, and the inner product of K and
V is taken. The inner product is then normalized by softmax so that the sum of the weights
for a single Q is 1.0. Finally, the output is obtained by multiplying the obtained weight
by V. A position-wise feed-forward network is an independent neural network for each
data position that consists of two fully connected layers. Located after the attention layer, it
linearly transforms the output of the attention layer.

3.7. ViT

Vision transformer (ViT) [33] is a model that divides an image into patches and
treats each patch image as a word. Specifically, the image is divided into N patches
xN and passes through the transformer E to obtain one-dimensional Exi . Let xcls be the
classification token and Ep ∈ R(N+1)×D be the location information, z0, which is the input
of the transformer, which is prepared from N Exi , where i is i = 1, . . . , and N and D is the
number of dimensions of the latent vector. This feeds the input z into the transformer. The
transformer consists of multi-head self-attention (MSA), layer normalization (LN), and
multilayer perceptron (MLP).

3.8. ViViT

Since the video vision transformer (ViViT) [34] constructs the input token z from a
video that does not handle 3D data, the method of obtaining the patch x is different from
ViT. In ViT, an image is divided into patches and input tokens are obtained, whereas in
ViViT, tablets are obtained by collecting patches on the spatio-temporal axis.

In addition, there are encoders with two different roles as a device to capture the
time-series information. One is an encoder for capturing the spatial information. It extracts
the tokens from the same time frames, interacts, and creates an average classified token xcls
through a transformer. The concatenated xcls representing each time is input to the second
time-series encoder. Classification is realized using xcls output from the second encoder as
a classifier.

3.9. MS-TCN

TCN [35] is a network that uses CNN for series data. It achieves higher accuracy than
RNN, such as LSTM, in tasks for time-series data such as natural language and music.
TCN consists of a combination of 1D fully convolutional networks and casual convolutions.
Furthermore, Martinez et al. proposed a model using MS-TCN [6]. MS-TCN incorporates
multiple timescales into the network to mix short-term and long-term information during
feature coding.

3.10. Data Augmentation

In the research field of image recognition, data augmentation (DA) is widely used to in-
crease the number of image data by applying operations such as slightly rotating the image
or flipping it horizontally. This paper applies RandAugment (RA) [36], which randomly
selects the DA method. Various transformations include identity, autocontrast adjustment,
histogram equalization, rotation, solarization, color adjustment, posterization, contrast,
brightness, sharpness, horizontal shearing, vertical shearing, horizontal translation, vertical
translation, and generate NRA images. This paper applies the MixUp [37] with a weight of
0.4. MixUp is a data augmentation technique that generates a weighted combination of
random image pairs from the training data.

3.11. Distance Learning

Distance learning is a method of learning a function that maps data to a feature space
so that similar data are brought closer to each other and dissimilar data are separated from
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each other. This paper applies ArcFace [38], which proposes distance learning using angles,
one of the methods with high accuracy in face recognition.

In ArcFace, class classification can solve distance learning by replacing the softmax
loss of class classification with angular margin Loss. Softmax Loss has the property of
increasing the similarity between samples of the same class but not forcing the similarity
of other classes to be low. In ArcFace, the input weights W and feature values xi are
normalized, and the bias b is set to 0. This gives WT

j xi = ‖Wj‖‖xi‖ cos θj,i = cos θj,i. θj,i
is the angular distance between the feature xj,i and the center position Wj of the j class.
Therefore, cos θj,i represents the cosine similarity between the feature xi and the j class. In
addition, the convergence of learning is stabilized by setting the scaling parameter s as a
hyperparameter. Furthermore, a linear separation space is secured by directly adding the
margin to the angle space.

3.12. Fine-Tuning

Fine-tuning (FT) is used to re-train the weights of the entire model using the weights
of the trained network as the initial values to construct a highly accurate model. This paper
uses four public datasets: LRW, OuluVS, CUAVE, and SSSD. Among them, LRW is larger
than the other datasets. Therefore, FT using the model learned by LRW is applied to the
three datasets excluding LRW.

4. Target Models

Referring to the SOTA model [18], this paper investigates six deep learning models
shown in Figure 2. The numerical values in the figure indicate the layers that make up the
model as one block and indicate the output size of each block. NF is the number of input
sequential image frames, and NC is the number of classes, which is the number of units in
the output layer.

4.1. 3D-Conv + ResNet18 + MS-TCN

An overview of the model diagram is shown in Figure 2a. Extract 512-dimensional
features from input images using 3D-Conv + ResNet18. After that, it trains the temporal
changes of the features obtained by MS-TCN. MS-TCN has three convolutional layers with
kernel sizes of 3, 5, and 7, and obtains short-term and long-term information.

4.2. 3D-Conv + ResNet18 + ViT

As shown in Figure 2b, this model extracts 512-dimensional features from input images
using 3D-Conv + ResNet18 and then trains temporal changes using ViT. Normally, the
input of ViT is an image, but in this paper, the extracted features are regarded as image
patches and input to ViT for training.

4.3. 3D-Conv + WiderResNet18 + MS-TCN

As shown in Figure 3a, this paper uses a model with permuted layers of ResNet. The
activation function is changed from ReLU to swish (SiLU). Training is performed in the
same way as ResNet18 + MS-TCN. In WideResNet, it is desirable to expand the number of
dimensions of features to be extracted. However, this paper uses the same dimensions as
ResNet18 due to resource constraints, as shown in Figure 3b.
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Figure 2. Target models.
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Figure 3. Structures of ResNet and WideResNet.

4.4. 3D-Conv + WiderResNet18 + Transformer

3D-Conv + WideResNet18 extracts 768-dimensional features from input images and
then trains temporal changes using transformer. The transformer is originally multi-head
self-attention, but single attention is used in this experiment.

4.5. 3D-Conv + EfficientNet-b0 + MS-TCN

3D-Conv + EfficientNet-b0 extracts 512-dimensional features from input images and
MS-TCN trains temporal changes.

4.6. ViT + MS-TCN

It is possible to recognize by ViT alone, but in this paper, ViT is used as a feature
extractor, as shown in Figure 2f. ViT extracts 100-dimensional features from each frame
image, and MS-TCN trains temporal changes. In ViT, a feature vector called a class token
inserted at the beginning of each frame image is extracted as a feature value of each
frame image.

5. Evaluation Experiment

Several datasets have been published in the lip-reading field. Four public datasets
shown in Table 1 are used in this experiment.

Table 1. Overview of the four datasets used in our experiments.

Name Year Language # of Speakers Content

LRW [4] 2016 English 1000+ 500 words
OuluVS [13] 2009 English 20 10 greeting phrases
CUAVE [14] 2002 English 36 10 digits
SSSD [15] 2018 Japanese 72 25 words

We applied the preprocessing described in Section 3.1 to extract the grayscale lipROIs.
The image size S × S of the lipROIs of LRW, OuluVS, CUAVE, and SSSD are 96 × 96 pixels,
64 × 64 pixels, 64 × 64 pixels, and 64 × 64 pixels, respectively. Figure 4 shows the lipROIs
of OuluVS, CUAVE, and SSSD. Inputs to 3D-Conv, ViT, and ViViT are image data randomly
extracted from 88 × 88 pixels, 90 × 90 pixels, and 87 × 87 pixels, respectively.
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Figure 4. Extracted lipROIs (left: OuluVS, center: CUAVE, right: SSSD).

We used PyTorch to implement each model. To train our network, we utilized Adam
with the decoupled weight decay (AdamW) [39] along with certain parameters such as
β1 = 0.9, β2 = 0.999, ε = 10−8, and a weight decay of 0.01. The training was conducted for
80 epochs, using an initial learning rate of 0.0003 and a mini-batch size 32 for models using
ResNet18 and WideResNet18 and 16 for other models. As for the transformer, single-head
attention was used due to insufficient resources. We employed a cosine annealing schedule
to decay the learning rate without warm-up steps. We gave NRA = 2 as a parameter in RA.

5.1. LRW

Table 2 shows the top-1 accuracy and the number of parameters for each model
described in Section 4. In the table, the upper row is the accuracy of other representative
papers, and the lower row is the accuracy of this paper. “—” means that the reference does
not show the number of parameters in this model. Although the recognition accuracy of
this research did not reach the recognition accuracy of SOTA, the following things were
clarified by examining various models.

Table 2. Recognition results (LRW).

Model
Top-1 Params

Acc. (%) ×106

Multi-Tower 3D-CNN [4] 61.1 —
WLAS [10] 76.2 —
3D-Conv + ResNet34 + Bi-LSTM [40] 83.0 —
3D-Conv + ResNet34 + Bi-GRU [41] 83.39 —
3D-Conv + ResNet18 + MS-TCN [6] 85.3 —
3D-Conv + ResNet18 + MS-TCN + MVM [20] 88.5 —
3D-Conv + ResNet18 + MS-TCN + KD [8] 88.5 36.4
Alternating ALSOS + ResNet18 + MS-TCN [42] 87.0 41.2
Vosk + MediaPipe + LS + MixUp + SA
+ 3D-Conv + ResNet-18 + BiLSTM + Cosine WR [22] 88.7 —
3D-Conv + EfficientNetV2 + Transformer + TCN [21] 89.5 —
3D-Conv + ResNet18 + {DC-TCN, MS-TCN, BGRU} (ensemble)
+ KD + Word Boundary [18] 94.1 —

3D-Conv + ResNet18 + MS-TCN (ours) 87.4 36.0
3D-Conv + ResNet18 + MS-TCN + RA (ours) 85.3 36.0
3D-Conv + ResNet18 + MS-TCN + ArcFace (ours) 86.7 36.0
3D-Conv + ResNet18 + ViT (ours) 83.8 30.1
3D-Conv + WideResNet18 + MS-TCN (ours) 86.8 36.0
3D-Conv + WideResNet18 + Transformer (ours) 79.2 11.2
3D-Conv + EfficientNet-b0 + MS-TCN (ours) 80.6 32.3
ViT + MS-TCN (ours) 79.9 24.0
ViViT (ours) 72.4 3.9
ViViT + RA (ours) 75.6 3.9

As a feature extractor, it can be confirmed that ResNet18 is superior to other models.
The analysis of mouth movements, which is the target of our experiment, has a smaller
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difference in movements than in other video classification tasks, such as human action
recognition. In addition, other feature extractors did not obtain the expected accuracy
because the image’s resolution was small. The model used in this experiment is a model
that achieves high accuracy in image recognition, but these are usually input with high-
resolution images such as 224 × 224 pixels. This research is video recognition, and it is
necessary to put many images in the memory at once, so the experiment was performed at
a low resolution due to memory constraints. Therefore, effective feature values could not
be obtained in deep layers.

It was found that MS-TCN tends to obtain recognition accuracy in the inference part
of the latter stage. As for MS-TCN, we conducted experiments using RA and ArcFace,
but the recognition accuracy decreased. We suspect that this is because the application
of the RA-generated image data is unsuitable for the task or the model’s generalization
performance deteriorated due to the excessive application to the training data.

We consider the details of the recognition results for 3D-Conv + ResNet18 + MS-TCN,
which had the highest accuracy among the models investigated in this paper. Among
500 words, 15 words with low recognition rates are listed in Table 3. In the table, the
4th column shows words with many mistakes, and the numbers in parentheses are the
misrecognition rate. From the table, it can be confirmed that words with a low recognition
rate are misrecognized as similar words. Among the 500 words, 252 had a recognition rate
of 90.0% or higher.

Table 3. Fifteen words with low recognition rate (LRW).

Order Word Top-1 Acc. (%) Most Misrecognized Word

486 ABOUT 64 AMONG (10)
BECAUSE 64 ABUSE (10)

488 ACTUALLY 62 ACTION (6)
COULD 62 EUROPEAN, SHOULD (4)
MATTER 62 AMONG (6)
NEEDS 62 YEARS (8)
THINGS 62 YEARS (6)

493 THEIR 60 THERE (20)
UNDER 60 DURING, LONDON (4)
UNTIL 60 STILL (8)

496 SPEND 58 SPENT (18)
THESE 58 THINGS (8)

498 THING 56 BEING, NOTHING, THESE (4)
499 THINK 50 THING (16)
500 THERE 44 THEIR (12)

5.2. OuluVS

OuluVS [13] contains ten sentences spoken by 20 speakers, comprising 17 males and
3 females. The contents of the 10 sentences are (1) “excuse me”, (2) “good bye”, (3) “have a
good time”, (4) “hello”, (5) “how are you”, (6) “I am sorry”, (7) “nice to meet you”, (8) “see
you”, (9) “thank you”, and (10) “you are welcome”. For each speaker, five utterance scenes
are recorded for each sentence. The image size is 720 × 576 pixels, the frame rate is 25 fps,
and the speaker speaks in front of a white background.

The leave-one-person-out cross-validation method was applied to 20 speakers in
the evaluation experiment, and the average recognition rate was obtained. Here, the
training and test data per speaker are 19 speakers × 10 sentences × 5 scenes = 950 scenes
and 1 speaker × 10 sentences × 5 scenes = 50 scenes, respectively. Table 4 shows the
recognition rate of the four training conditions and other methods. Here, NRA = 3 was set
for RA, and the training data were padded. AE, MF, and AU in [5,7,43] stand for feature
names based on the auto-encoder, motion feature, and action unit, respectively. FOMM
in [7] means a first-order motion model and generates utterance scenes. From the table,
3D-Conv + ResNet18 + MS-TCN + RA + FT obtained the highest recognition accuracy
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of 97.2%. It can be confirmed that the recognition accuracy is improved by fine-tuning
with LRW.

Table 4. Recognition results (OuluVS).

Model Top-1 Acc. (%)

Multi-Tower 3D-CNN [4] 91.4
AE + GRU [43] 81.2
FOMM → AE + GRU [7] 86.5
{MF + AE + AU} + GRU [5] 86.6

3D-Conv + ResNet18 + MS-TCN (ours) 90.1
3D-Conv + ResNet18 + MS-TCN + RA (ours) 93.1
3D-Conv + ResNet18 + MS-TCN + FT (ours) 95.1
3D-Conv + ResNet18 + MS-TCN + RA + FT (ours) 97.2

5.3. CUAVE

In CUAVE [14], utterance scenes are taken from 36 speakers, comprising 19 males
and 17 females. The utterance contents are “zero”, “one”, “two”, “three”, “four”, “five”,
“six”, “seven”, “eight”, and “nine”. A feature of CUAVE is that it includes frontal-face
speech scenes and side-face speech scenes. Furthermore, not only utterances in which the
speaker is standing still but scenes in which the speaker speaks while moving are recorded.
It also includes scenes in which two speakers speak at the same time. The image size is
720 × 480 pixels, the frame rate is 29.97 fps, and the speaker speaks in front of a green
background. In this experiment, we use a scene where the speaker stands still and speaks
five samples per word.

The same leave-one-person-out cross-validation method as OuluVS was applied in
the experiment, and the average recognition rate was obtained. The training and test
data per speaker are 35 speakers × 10 sentences × 5 scenes = 1750 scenes and 1 speaker ×
10 sentences × 5 scenes = 50 scenes, respectively. Table 5 shows the recognition rate of
experimental conditions and other methods. However, NRA = 3. From the table, 3D-
Conv + ResNet18 + MS-TCN + RA + FT obtained the highest recognition accuracy as well
as OuluVS.

Table 5. Recognition results (CUAVE).

Model Top-1 Acc. (%)

AE + GRU [43] 72.8
FOMM → AE + GRU [7] 79.8
{MF + AE + AU} + GRU [5] 83.4
3D-CNN (ours) 84.4

3D-Conv + ResNet18 + MS-TCN (ours) 87.6
3D-Conv + ResNet18 + MS-TCN + RA (ours) 90.0
3D-Conv + ResNet18 + MS-TCN + FT (ours) 93.7
3D-Conv + ResNet18 + MS-TCN + RA + FT (ours) 94.1

5.4. SSSD

SSSD [15] consists of 25 utterances, comprising 10 Japanese numeric words and
15 greetings (https://www.saitoh-lab.com/SSSD/index_en.html, accessed on 26 April
2023). The 25 words are (1) /ze-ro/ (zero), (2) /i-chi/ (one), (3) /ni/ (two), (4) /sa-N/
(three), (5) /yo-N/ (four), (6) /go/ (five), (7) /ro-ku/ (six), (8) /na-na/ (seven), (9) /ha-chi/
(eight), (10) /kyu/ (nine), (11) /a-ri-ga-to-u/ (thank you), (12) /i-i-e/ (no), (13) /o-ha-yo-u/
(good morning), (14) /o-me-de-to-u/ (congratulation), (15) /o-ya-su-mi/ (good night),
(16) /go-me-N-na-sa-i/ (I am sorry), (17) /ko-N-ni-chi-wa/ (good afternoon), (18) /ko-N-
ba-N-wa/ (good evening), (19) /sa-yo-u-na-ra/ (goodbye), (20) /su-mi-ma-se-N/ (excuse
me), (21) /do-u-i-ta-shi-ma-shi-te/ (you are welcome), (22) /ha-i/ (yes), (23) /ha-ji-me-ma-
shi-te/ (nice to meet you), (24) /ma-ta-ne/ (see you), and (25) /mo-shi-mo-shi/ (hello).
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Unlike OuluVS, CUAVE, and LRW, SSSD is filmed using a smart device. An image of the
lower half of a face of 300 × 300 pixels extracted after normalization processing is applied
for scale, and rotation is provided. The frame rate is 30 fps. The number of provided
scenes is 72 speakers × 25 words × 10 samples = 18,000 scenes. As a competition using
SSSD, the second machine lip-reading challenge was held in 2019, and 5000 scenes of test
data were released.

For the accuracy evaluation, we used 18,000 scenes as training data and an extra 5000
scenes as test data, using the same task as the second machine lip-reading challenge to
obtain recognition accuracy. The results are shown in Table 6. NRA gave 3 like OuluVS
and CUAVE. From the table, 3D-Conv + ResNet18 + MS-TCN + FT obtained the highest
recognition accuracy of 95.14%. While OuluVS and CUAVE obtained high recognition
accuracy when RA was applied, SSSD obtained the highest recognition rate when RA was
not applied. We presume that SSSD has more training data than OuluVS and CUAVE and
can train sufficiently without applying RA.

Table 6. Recognition results (SSSD).

Model Top-1 Acc. (%)

LipNet 90.66

3D-Conv + ResNet18 + MS-TCN (ours) 93.08
3D-Conv + ResNet18 + MS-TCN + RA (ours) 93.68
3D-Conv + ResNet18 + MS-TCN + FT (ours) 95.14
3D-Conv + ResNet18 + MS-TCN + RA + FT (ours) 94.86

6. Conclusions

We conducted a study on word lip-reading using deep-learning models. Our goal was
to find an effective model for this task. We explored different combinations of models such
as ResNet, WideResNet, EfficientNet, Transformer, and ViT, referring to the SOTA model.
While many papers use one or two datasets, recognition experiments were conducted using
four public datasets, namely LRW, OuluVS, CUAVE, and SSSD, with different sizes and
languages. As a result, we found that 3D-Conv + ResNet18 is a good model for feature
extraction, and MS-TCN is a good model for inference. Although we did not propose a
model that surpasses SOTA, our study confirmed the effectiveness of these models.

This paper investigates an effective word lip-reading model on four public datasets.
There are other lip-reading datasets not used in this paper. In the future, we will work on
experiments including other datasets. Since it has been clarified that the model structure is
effective for lip-reading, we will also verify the training method of the model in the future.
The recognition target of this paper is words, but sentence lip-reading has also been actively
researched in recent years. Sentence lip-reading is also a target task for the future.

Author Contributions: Conceptualization, T.A. and T.S.; methodology, T.A. and T.S.; software,
T.A.; validation, T.A.; formal analysis, T.A. and T.S.; investigation, T.A. and T.S.; resources, T.S.;
data curation, T.A.; writing—original draft preparation, T.S.; writing—review and editing, T.S.;
visualization, T.S.; supervision, T.S.; project administration, T.S.; funding acquisition, T.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the JSPS KAKENHI Grant No. 19KT0029.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this article come from [4,13–15].

Conflicts of Interest: The authors declare no conflict of interest.

55



Algorithms 2023, 16, 269

Abbreviations

The following abbreviations are used in this manuscript:

AE Auto-Encoder
AU Action Unit
BBC British Broadcasting Corporation
BGRU Bidirectional Gated Recurrent Unit
CNN Convolutional Neural Network
DA Data Augmentation
DC-TCN Densely Connected Temporal Convolutional Network
FOMM First-Order Motion Model
FT Fine-Tuning
HOG Histograms of Oriented Gradient
LN Layer Normalization
LRW Lip Reading in the Wild
LS Label Smoothing
LSTM Long Short-Term Memory
MF Motion Feature
MLP Multilayer Perceptron
MSA Multi-head Self-Attention
MS-TCN Multi-Scale Temporal Convolutional Network
NAS Neural Architecture Search
RA RandAugment
ResNet Residual Network
RNN Recurrent Neural Network
ROI Region of Interest
RUSAVIC Russian Audio-Visual Speech in Cars
SA Squeeze-and-Attention
SiLU Swish
SSSD Speech Scene by Smart Device
SOTA State of the Art
ViT Vision Transformer
ViViT Video Vision Transformer
WLAS Watch, Listen, Attend, and Spell
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Abstract: The automatic identification system (AIS) facilitates the monitoring of ship movements and
provides essential input parameters for traffic safety. Previous studies have employed AIS data to
detect behavioral anomalies and classify vessel types using supervised and unsupervised algorithms,
including deep learning techniques. The approach proposed in this work focuses on the recognition
of vessel types through the “Take One Class at a Time” (TOCAT) classification strategy. This approach
pivots on a collection of adaptive models rather than a single intricate algorithm. Using radar
data, these models are trained by taking into account aspects such as identifiers, position, velocity,
and heading. However, it purposefully excludes positional data to counteract the inconsistencies
stemming from route variations and irregular sampling frequencies. Using the given data, we
achieved a mean accuracy of 83% on a 6-class classification task.

Keywords: AIS; vessel classification; TOCAT

1. Introduction

The automatic identification system (AIS) serves as a vital monitoring apparatus for
maritime vessel surveillance. It supplies essential input parameters that feed into naval
traffic simulation models. These models are instrumental in conducting maritime risk
analysis and devising strategies for incident prevention. The AIS enables the monitoring
of maritime movements via the electronic exchange of navigational data between various
entities. This system interlinks vessels, onboard transmitters, ground stations, and satellites,
fostering a comprehensive network for efficient tracking. These data include information
that is relevant to traffic safety. Although the exchange of AIS data is legally mandatory
only for larger vessels, the usage is on the rise, enabling the deduction of various levels of
contextual information, from the characterization of ports and offshore platforms to the
spatial and temporal distribution of routes.

Numerous studies have harnessed AIS data to examine anomalies in ship behaviors,
intending to pinpoint potential navigational threats. Unsupervised anomaly detection
algorithms have been employed, using Ornstein–Uhlenbeck stochastic processes based on
the analysis of historical routes [1], or identifying outliers derived from the clustering of
behaviors and trajectories [2]. Other studies have concurrently used infrared images to
discriminate noise, irrelevant objects, and suspicious vessels [3]. Recently, deep learning
techniques have been applied, with models aimed at classifying suspicious trajectories
using convolutional neural networks (CNNs) and generative-discriminative learning algo-
rithms [4].
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Within the specific context of vessel classification aimed at tracking fishing activities,
and more broadly, in the pursuit of augmenting maritime situational awareness (MSA),
supervised multiclass methodologies have been implemented. These methodologies em-
ployed several algorithms, frequently including random forest models [5–7] and light
gradient-boosting machine (Light GBM) [8], to distinguish between different types of
vessels. In the latter case, a classification model was effectively implemented using 60-
dimensional feature vectors as input, although its application was confined to just three
distinct categories of vessels. These feature vectors encapsulated various metrics derived
from AIS trajectory data, such as the mean, first quartile, median, third quartile, standard
deviation, and coefficient of dispersion associated with changes in speed, course, longitude,
latitude, and displacement.

From the studies examined so far, it emerges that current approaches mainly rely on the
creation of a single, albeit complex, neural network to which the entire task of recognition
is delegated. From an innovative perspective, this paper proposes an alternative strategy
rooted in the idea of building an ecosystem of neural networks, diverse in both topological
and mathematical terms, and not based exclusively on gradient descent or decision trees.
In this regard, each network is purposefully designed to focus on a particular statistical
subset of ship trajectories, resulting in an enhancement in performance.

More specifically, this study has focused on the need to provide the Italian Navy with
an accurate and efficient solution for monitoring and classifying ship trajectories, employing
AIS signals in the context of the Mediterranean Sea. A significant problem arises when ships
refuse to respond to AIS signals or provide potentially misleading responses, making it
difficult for the Navy to correctly identify the type of ship and its intention. In this context,
a solution was needed that allowed the Navy to filter and prioritize its interventions,
enabling it to focus resources on cases that presented higher levels of risk or suspicion. This
involved the development of a system capable of distinguishing, for example, between a
fishing boat and a cruise ship based solely on trajectories, thereby improving the efficiency
and effectiveness of the Navy’s monitoring and response operations.

The approach presented here aims to recognize the type of vessel among N possible
classes using adaptive algorithms specifically trained for this purpose. The data considered
for the feature vector include the identifier, position, instantaneous velocity, and heading of
each vessel. The adaptive algorithms have been trained using data acquired from radars on
multiple vessels (after excluding the identifiers). Positional data are not included as vessels
may follow new routes that are not present in the database, making the algorithm less
reliable. Additionally, changes in vessel positions have been eliminated due to variations
in sampling frequency, which could result in unreliable acceleration and deceleration data.

2. Materials and Methods

The experiments that were conducted during the search are summarized in three steps:
(A) data preparation; (B) experimentation; (C) results analysis. The first step, data preparation,
is structured in additional three phases: (A.I) data cleaning; (A.II) data pre-processing; (A.III)
model definition;

2.1. A.I—Data Cleaning

To ensure a reliable dataset for the experiments, the following data-cleaning procedure
was implemented (Figure 1):

Following this process, the analysis sample comprises 3669 vessels, each with a min-
imum of 100 consecutive radar detection points. Furthermore, in accordance with the
Navy’s approval, six distinct vessel classes have been identified (N = 6), serving as the
targets for intelligent recognition by the adaptive models (Table 1). Note that it was not
possible to measure the acceleration of naval vessels as their positions were detected at
non-uniform time intervals.
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Figure 1. Flowchart of the data-cleaning procedure. (1) Identifying and eliminating any data-
formatting errors; (2) removing records with missing data; (3) discarding records with incorrect data
(such as velocity exceeding 100 knots, positional data on land, etc.); (4) excluding all vessels for
which the number of sequential detections is below a certain threshold (100 points); (5) excluding any
vessels that appear in two different and distant parts of the world within a short time span.

Table 1. Number of vessels belonging to each of the six classes, before and after data cleaning.
The maximum, minimum, and average readings of each class and the standard deviation from the
averages are also shown.

Data PAX-TMP TM TMC TMO TU TUG TOT

No. Vessels 871 1074 576 2857 849 303 6522
No. Vessels (no. pts ≥ 100) 502 634 323 1717 304 194 3669
Min Route Distance 103 101 101 101 100 100 100
Max Route Distance 4774 5315 3550 4813 3610 4985 4985
No. Routes-avg 1240.08 1143.85 873.88 950.60 570.01 1280.52 ~
No. Routes-std dev 956.32 971.77 602.44 650.53 495.49 937.40 ~

2.2. A.II—Data Pre-Processing

The strategic objective of this experiment is to represent each vessel through the
statistical profile of its route. In the dataset provided by the Navy, there are only two
variables that characterize the route of a vessel: the velocity and direction of the bow at the
time of radar detection. This is regardless of the stretch of sea crossed.

For example, by dividing the variable “velocity” into regular intervals (bins), you can
measure how often the velocity of each vessel falls within each of them, during its journey.
With an appropriate transformation, one can define the general probability with which a
vessel can be found in each of these intervals. By establishing a defined number of intervals
(bins) for each variable that characterizes the vessel’s navigation, the statistical profile of
each vessel’s route can be established through the use of the probability density function.

Utilizing these intervals, we decided to characterize the only two variables available
in the database for each vessel: Punctual velocity and direction at every radar detection
point along the route. However, it is important to note that these measurements are taken
in an unsystematic manner, rather than following a strict sampling plan.

A new variable is introduced to the statistical profile of the route of each vessel: delta
velocity. Table 2 illustrates the variables that define the statistical profile of the route of each
vessel, according to the pre-processing strategy adopted in experimentation no. 3.
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Table 2. A total of 67 variables that will be used to rewrite the database of 3669 vessels.

ID Variable Name Code Calculation
No.

Intervals

1 Punctual velocity v(t) Available 22
2 Delta direction bow r(t, t − 1) |r(t)− r(t − 1)| 19
3 Delta velocity dv(t, t − 1) v(t)− v(t − 1) 23

4 Global average velocity 1 value
5 Global velocity variance 1 value
6 Global velocity variance with 1 value

Total variables 67

For illustrative purposes, we provide the statistical profile of the velocity, v(t), of
the change of route, r(t, t − 1), and of the dynamic delta of the velocity, dv(t, t − 1), of a
vessel randomly selected for each class. This is to give an idea of the type of input that the
adaptive algorithms must manage to define an analysis model that allows the automatic
classification of unknown vessels. See Figures 2–4.

Although Figures 2–4 represent examples of vessels randomly chosen in the database,
it is evident that these new variables should provide a reliable portrait of the navigation
style of each of the six types of vessels. In the following paragraphs, we will measure the
accuracy and precision of this third pre-processing strategy.

Figure 2. Statistical profile of the punctual velocity of 6 vessels randomly selected, each belonging to
one of the 6 classes, with the goal of automatic classification.

Figure 3. Statistical profile of the change of direction of route of 6 vessels randomly chosen, each
belonging to 6 target classes used for automatic classification.
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Figure 4. Statistical profile of the dynamic delta of the punctual velocity of 6 vessels randomly chosen,
each belonging to the 6 target classes used for the automatic classification.

2.3. A.III—Model Definition

To address the complexities in this classification problem, we propose a new approach,
denoted as ’Take One Class at a Time’ (TOCAT). This classification strategy operates on
two fundamental principles during the training/testing stage:

(a) Breakdown of a multinomial classification (1 of N) into N independent binary
classifications (1 of 2). Each class is treated separately: all records of the focus class are
assigned target 1 while all records belonging to other classes are assigned target 0. The
advantage of this system is that even when faced with a high number of classes N, these are
reduced to N binary classification processes. Therefore, instead of having a single process
that must decide the class membership of a record to N possible classes, there will be N
processes, each specialized in a single class, which must decide whether the record is of
that class or not;

(b) Free identification of the best algorithm for each class. As each class is treated
separately, each will be reviewed by multiple Machine Learning methods to select the type
of algorithm and structure that obtains the best predictive result in testing. This procedure,
which allows for the selection of a different algorithm for each class, can improve the overall
performance of the system.

TOCAT, therefore, is not tied to a specific algorithm, but draws on a variety of algo-
rithms to tackle individual bimodal classifications. At the end of the training/testing stage,
each class will be associated with the algorithm that achieved the best result, as assessed by
the values of Sensitivity and Specificity on the confusion matrix. Only the algorithm with
the best performance will be used for the recall stage on new records.

The output of the recall stage of the TOCAT system, in which unclassified new input
records are assigned a target by the N networks, is complex. Each network specialized in
a single target is called to respond; thus, there may be conflicts in the assignments. This
feature is an advantage when it is important to identify ambiguous records that need to be
reported by the system. Therefore, using the TOCAT strategy, it is possible for each new
pattern to be attributed a fuzzy membership (from 0 to 1) with each of the N Classes.

For the training phase, many adaptive algorithms are used (machine learning and
artificial neural networks). The results of these algorithms were finally filtered by a neural
meta-network [9,10], which significantly exceeded the results of the best basic algorithm.
The different algorithms were implemented through two types of Software, accredited for
scientific research: (a) Supervised ANNs (version 27.5, Semeion, 1999–2017); (b) Meta Net Multi
Train (version 3.5, Semeion, 2010–2015).

For the experimental phase, a set of algorithms was utilized to explore and ana-
lyze the data. Some of the algorithms are commonly used in the literature (kNN [11,12],
naive Bayes [13–17], majority vote [9,10,18]), while the remaining algorithms have been
specifically developed by Semeion for pattern recognition. The objective was to compare
the effectiveness and efficiency of the algorithms and determine which ones would yield

63



Algorithms 2023, 16, 414

the most accurate and reliable results: (a) backpropagation (Bp) [19–21]; (b) deep learning
(Deep) [22–24]; (c) adaptive vector quantization (AVQ) [25–28]; (d) kNN [11,12]; (e) meta Bayes
(Mb) [29]; (f) Conic Net [30]; (g) Sine Net (Sn) [31]; (h) bimodal (Bm) [32]; (i) majority vote
(Mv) [9]; (j) naive Bayes [13–17]; (k) supervised contractive map (SVCm) [32]. The valida-
tion protocol used for all the algorithms is the training–testing protocol [33–35] (Figure 5:
Validation protocol—5 × 2 CV (training–testing)).

Figure 5. Validation protocol—5 × 2 CV (training–testing)).

In this experiment, three classification lines are used: (a) Classification 1 of 5: The
attempt is to automatically classify each vessel in one of the five possible classes. In this
specific case, class 2 (TM9) is excluded, as the results appear to be difficult to interpret
and potentially confusing. This complexity arises from the indiscriminate inclusion of
vastly different types of vessels within this class. (b) Classification 1 of 6: The attempt is
to automatically classify each vessel in one of the six classes provided; (c) Classification
“Take One Class at a Time” (TOCAT): Adaptive algorithms are trained to recognize when
each vessel belongs or not to a specification of the six possible classes, and the operation is
repeated by placing one class at a time in relation to all the others. This procedure generates
six different datasets, each of which is subjected to two-class validation (focused class
versus other classes).

3. Results

3.1. Exploratory Analysis

At this juncture, an unsupervised neural network is deployed once more to discern
the extent to which our pre-processing step can spontaneously segregate the database into
the six distinct vessel classes. A self-organizing map (SOM) [28] is used for this purpose
with a square grid of 15 × 15, capable of generating 225 codebooks, where each codebook
represents a similar group of vessels; Figure 6 shows the results of the SOM software.

Figure 6 illustrates a more defined spontaneous separation of vessels into the six
targeted classes for classification, compared to the outputs produced by previous pre-
processing strategies. Class 2 (TM) remains the most difficult to characterize and therefore
to be separated from the others. In all cases, even with this pre-processing strategy, the defi-
nition of the classification model is very complex due to the notable non-linear separability
of some classes.

Figure 7 shows the projection grid of the SOM with the overlap percentage of vessels
of different classes in each of the 225 codebook cells.

The results of the analysis using SOMs highlight the potential of the selected set of
variables. Each class is distributed in specific areas of the map, even though the resulting
overlaps between classes make it difficult to obtain an accurate classification system that
can be used in operational mode.
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Figure 6. PAX-TMP = Som1; TM = Som2; TMC = Som3; TMO = Som4; TU = Som5; TUG = Som6.

Figure 7. A 15x15 grid of the SOM with the overlap percentage in each cell of vessels belonging to
different classes (PAX-TMP = 1; TM = 2; TMC = 3; TMO = 4; TU = 5; TUG = 6).

3.2. Results Analysis
3.2.1. Classification with Five Classes

Table 3 shows the results of classifications one of five.

3.2.2. Classification with Six Classes

Table 4 shows the results obtained by repeating the experiment with all six classes. In
this case, the use of the meta-network is ineffective.

The outcomes of this experiment hold merit academically, but their practical applica-
bility remains limited.

65



Algorithms 2023, 16, 414

3.2.3. Class Classification of TOCAT

In this experiment, we present results from the six one-of-two classifications (class vs.
other classes) to determine the sensitivity and specificity for each classification, as detailed
in (Tables 5–10).

Table 3. Results of the classifications on 5 classes. Class 2 (TM) is excluded.

Adaptive Algorithms PAX-TMP TMC TMO TU TUG A.Mean W.Mean Error SW

Mb 0.7602 0.6757 0.9468 0.8593 0.6591 0.7802 0.8622 193 Sem. no. 55
Mv 0.6878 0.6622 0.885 0.837 0.7614 0.7667 0.818 255 Sem. no. 55
DeepSn 0.6742 0.6554 0.8702 0.8148 0.7727 0.7575 0.8051 273 Sem. no. 12
kNN_N1 0.6471 0.7365 0.9345 0.8667 0.5682 0.7506 0.8387 226 Sem. no. 12
DeepBp 0.6109 0.6959 0.8307 0.7852 0.8295 0.7504 0.7773 312 Sem. no. 12
DeepBm 0.7376 0.6351 0.8863 0.8222 0.6591 0.7481 0.8158 258 Sem. no. 12
K-CM 0.6471 0.723 0.9333 0.8593 0.5682 0.7461 0.8358 230 Sem. no. 12
DeepConic 0.6968 0.6216 0.8764 0.837 0.6818 0.7427 0.8051 273 Sem. no. 12
Bm 0.6968 0.6892 0.8591 0.8222 0.6364 0.7407 0.798 283 Sem. no. 12
Sn 0.6516 0.7095 0.8739 0.8667 0.5909 0.7385 0.803 276 Sem. no. 12
Conic 0.6561 0.6081 0.8826 0.8519 0.6932 0.7384 0.803 276 Sem. no. 12
Bp 0.7104 0.7162 0.8467 0.8148 0.5909 0.7358 0.7923 291 Sem. no. 12

Table 4. Results of the classification on 6 classes.

Adaptive Algorithms PAX-TMP TM TMC TMO TU TUG A.Mean W.Mean Error SW

kNN_1 63.89% 50.95% 75.51% 86.79% 80.95% 42.16% 66.71% 73.45% 481 Sem. no. 12
Bm 71.43% 21.84% 67.35% 84.91% 78.91% 55.88% 63.39% 68.49% 571 Sem. no. 12
Conic 68.65% 38.61% 67.35% 81.72% 71.43% 45.10% 62.14% 68.32% 574 Sem. no. 12
DeepBp 71.83% 37.97% 61.90% 76.53% 79.59% 34.31% 60.36% 65.84% 619 Sem. no. 12
SVCm 71.83% 27.53% 63.95% 83.96% 72.79% 41.18% 60.21% 67.49% 589 Sem. no. 12
DeepConic 59.52% 37.34% 63.95% 77.48% 71.43% 42.16% 58.65% 64.40% 645 Sem. no. 12
AVQ 50.00% 33.86% 71.43% 81.72% 74.83% 30.39% 57.04% 64.68% 640 Sem. no. 12
Naive Bayes 11.11% 0.32% 41.50% 75.83% 0.68% 97.06% 37.75% 45.97% 979 Sem. no. 12

Table 5. Classification of Class 1: PAX-TMP.

ANN Class1 Others A.Mean W.Mean Errors

Conic(C1) 81.12% 91.03% 86.08% 89.65% 185
DeepConic(C1) 80.32% 91.61% 85.97% 90.04% 178
DeepBm(C1) 80.32% 91.61% 85.97% 90.04% 178
FFBp(C1) 79.92% 90.57% 85.25% 89.09% 195
DeepBp(C1) 78.71% 93.50% 86.11% 91.44% 153
DeepSn(C1) 76.31% 92.65% 84.48% 90.37% 172
kNN(C1) 74.30% 95.77% 85.04% 92.78% 129

Table 6. Classification of Class 2: PAX-TM.

ANN Class1 Others A.Mean W.Mean Errors

Conic(C2) 72.03% 70.01% 71.02% 70.35% 539
DeepConic(C2) 68.81% 70.74% 69.77% 70.41% 538
DeepBp(C2) 64.95% 75.71% 70.33% 73.87% 475
FFBm(C2) 62.70% 76.05% 69.37% 73.76% 477
DeepBm(C2) 62.06% 77.24% 69.65% 74.64% 461
kNN(C2) 58.52% 93.56% 76.04% 87.57% 226
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Table 7. Classification of Class 3: TMC.

ANN Class1 Others A.Mean W.Mean Errors

Deep_Conic(C3) 76.36% 88.70% 82.53% 87.57% 223
FFBm(C3) 75.76% 90.67% 83.21% 89.30% 192
Conic(C3) 73.94% 93.43% 83.69% 91.64% 150
Conic(C3) 72.73% 93.25% 82.99% 91.36% 155
DeepBp(C3) 71.52% 92.69% 82.11% 90.75% 166
kNN(C3) 70.30% 98.16% 84.23% 95.60% 79

Table 8. Classification of Class 4: TMO.

ANN Class1 Others A.Mean W.Mean Errors

kNN(C4) 88.71% 87.34% 88.03% 87.99% 218
FFBp(C4) 84.52% 82.74% 83.63% 83.58% 298
DeepBm(C4) 85.10% 81.17% 83.14% 83.03% 308
DeepBp(C4) 84.52% 80.65% 82.58% 82.48% 318

Table 9. Classification of Class 5: TU.

ANN Class1 Others A.Mean W.Mean Errors

DeepBm(C5) 88.00% 88.11% 88.06% 88.10% 207
DeepBp(C5) 81.33% 93.90% 87.62% 92.82% 125
Conic(C5) 80.67% 96.42% 88.54% 95.06% 86
kNN(C5) 80.00% 98.93% 89.47% 97.30% 47
FFBp(C5) 80.00% 97.67% 88.84% 96.15% 67
DeepConic(C5) 79.33% 96.92% 88.13% 95.40% 80

Table 10. Classification of Class 6: TUG.

ANN Class1 Others A.Mean W.Mean Errors

Conic(C6) 88.24% 80.51% 84.37% 80.95% 346
DeepBm(C6) 84.31% 76.14% 80.23% 76.60% 425
DeepConic(C6) 63.73% 91.66% 77.69% 90.09% 180
DeepBp(C6) 65.69% 89.26% 77.48% 87.94% 219
FFBp(C6) 65.69% 88.62% 77.15% 87.33% 230
kNN(C6) 53.92% 98.72% 76.32% 96.20% 69

Table 11 summarizes, in an overview, the results of the best algorithms in each of the
6 classifications

Table 11. The best algorithms of the 6 classifications with the TOCAT procedure.

Classes Algorithm Sensibility Specificity A.Mean W.Mean Errors

Class 1 PAX-TMP Conic 81.12% 91.03% 86.08% 89.65% 185
Class 2 TM Conic 72.03% 70.01% 71.02% 70.35% 539
Class 3 TMC DeepConic 76.36% 88.70% 82.53% 87.57% 223
Class 4 TMO kNN_1 88.71% 87.34% 88.03% 87.99% 218
Class 5 TU DeepBm 88.00% 88.11% 88.06% 88.10% 207
Class 6 TUG Conic 88.24% 80.51% 84.37% 80.95% 346

Average × Class 82.41% 84.28% 83.35% 84.10% 286.33

4. Discussion

Significant findings have emerged. Firstly, the study highlighted the potential of
an approach that involves transforming a sparse and incomplete dataset of vessel paths
into a consistent set of features that could be universally applicable across all types of
vessels, despite variations in the number of observations. While the individual techniques

67



Algorithms 2023, 16, 414

employed to convert vessel trajectories into fixed features were not new, the innovation
lay in their combined application, resulting in the transformation of temporal flows into
spatial features, derived from highly heterogeneous data.

The second significant result was the development of the TOCAT (take one class
at a time) research design. While the TOCAT strategy itself is not entirely new, as it is
already used in support vector machine algorithms [36,37] for multinomial classifications,
our innovative application of this processing strategy was significant. Existing methods
typically rely on the development of a singular, albeit sophisticated, convolutional or
recurrent neural network, which shoulders the full responsibility of recognition. The
TOCAT strategy, however, hinges on the concept of creating a diversified ecosystem of
neural networks, varying both topologically and mathematically, which is not strictly
reliant on gradient descent or decision trees. Each of these networks is adept at specializing
in a statistical niche within the vessels’ trajectories.

By utilizing different artificial neural networks (ANNs) and machine learning tech-
niques for distinct “one of two” classification tasks, we achieved diverse mathematical
and topological representations for each ANN used. This diversity enhanced classification
accuracy, as each “one of two” classification tasks could leverage a specific ANN suitable
for recognizing a particular class of vessels. The efficacy of this mathematical “biodiversity”
in improving the final results represents an important milestone in this work. In summary,
the collective integration of small, distinct artificial systems outperformed a single large
ANN attempting to comprehend the entire scope independently.

5. Conclusions

This paper proposes a novel approach to vessel classification, using the normalization
of sparse and incomplete vessel trajectory data into a universal set of features, which is
applicable despite varying observation numbers. Our model utilizes the TOCAT (take one
class at a time) design, a strategy typically used in support vector machine algorithms,
but uniquely applied in this study to individual ’one versus rest’ classification tasks using
a variety of diverse artificial neural networks (ANNs). We derived distinct mathemati-
cal and topological representations from vessel trajectory data for each ’one versus rest’
classification task, leveraging the proven capabilities of specific ANNs for recognizing
certain vessel classes. The findings, which show a mean accuracy of 83% in a six-class
classification task, suggest that the collaborative employment of these specialized ANNs
could potentially outperform a single, larger ANN assigned to the entire classification task.
During the experiments, we also pinpointed several critical aspects tied to data processing:
primarily, the need for statistical sampling of the AIS signals from each vessel’s trajectories.
This method enables a robust estimation of vital parameters such as the vessel’s speed,
deceleration, and acceleration. Furthermore, as anticipated, the analysis highlights the im-
portance of avoiding the use of overly complex algorithms, especially when the number of
input variables is limited and the samples have not been collected through robust sampling
procedures. Future research endeavors may explore the scalability and generalizability of
the proposed approaches and extend their applications to other domains beyond vessel
recognition and comparisons with the most recent techniques existing in the field.
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Abstract: Optical Coherence Tomography (OCT) is a light-based imaging modality that is used
widely in the diagnosis and management of eye disease, and it is starting to become used to evaluate
for ear disease. However, manual image analysis to interpret the anatomical and pathological
findings in the images it provides is complicated and time-consuming. To streamline data analysis
and image processing, we applied a machine learning algorithm to identify and segment the key
anatomical structure of interest for medical diagnostics, the tympanic membrane. Using 3D volumes
of the human tympanic membrane, we used thresholding and contour finding to locate a series of
objects. We then applied TensorFlow deep learning algorithms to identify the tympanic membrane
within the objects using a convolutional neural network. Finally, we reconstructed the 3D volume to
selectively display the tympanic membrane. The algorithm was able to correctly identify the tympanic
membrane properly with an accuracy of ~98% while removing most of the artifacts within the images,
caused by reflections and signal saturations. Thus, the algorithm significantly improved visualization
of the tympanic membrane, which was our primary objective. Machine learning approaches, such
as this one, will be critical to allowing OCT medical imaging to become a convenient and viable
diagnostic tool within the field of otolaryngology.

Keywords: deep learning algorithm; tympanic membrane; Tensorflow; optical coherence tomography;
convolutional neural network

1. Introduction

The tympanic membrane (TM), also known as the eardrum, is vital to hearing because
it converts sound pressure waves in air into mechanical vibrations. These vibrations are
then passed through the ossicular chain (the three middle ear bones) into the cochlea,
where the vibrations are transduced into neural signals which our brain interprets as
sound [1,2]. The structure of the TM is important for normal hearing. Many diseases
cause hearing loss by altering the TM, such as perforations [3–7], retraction pockets [8–11],
and cholesteatoma [11–13]. Other ear diseases cause hearing loss by affecting the middle
ear space, which lies directly behind the TM, such as ear infections, middle ear fluid, or
tumors of the middle ear. Thus, proper evaluation of the ear is critical for the diagnosis
and treatment of these conditions [14]. Current medical management involves using an
otoscope [15], which uses a small light with a magnifying glass to visualize the TM deep
within the ear canal. However, this method of examining the ear is limited in the informa-
tion it provides. It does allow the physician to see the surface of the TM. It can sometimes
permit a limited ability to view the middle ear space and its underlying structures through
the translucent nature of the TM. Sometimes, the illumination can be inadequate, making
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otoscopy challenging. Furthermore, accurate otoscopic evaluations require extensive train-
ing and familiarity with the appearance of normal anatomy and pathology on examination,
with conclusions often depending based on physician experience. Thus, making the clinical
diagnosis of an ear infection is surprisingly fraught with difficulty, and it is common for
this to be missed by routine clinical exam [16,17].

A potential adjunct to otoscopes that could provide additional anatomical and func-
tional information on the TM and middle ear space to improve the diagnosis and manage-
ment of ear disease is the use of Optical Coherence Tomography (OCT) [18]. OCT is an
interferometry-based non-invasive imaging modality in which laser light is focused into a
biological tissue of interest. The back-reflected light is analyzed to provide a depth profile
of the tissue (Z-direction), which is comparable to how ultrasound works. By scanning the
laser beam in the X and Y directions, 3D morphological images of the sample are obtained.
OCT is already in wide clinical use in ophthalmology to help in the diagnosis and treatment
of various eye pathologies [19,20]. It is now being explored for applications within the field
of otolaryngology, commonly known as Ear, Nose, and Throat [21]. Our research group
has been using it to study the ear [22–24]. The theoretical benefit of OCT for imaging the
human ear is that it provides a 3D image of the TM, as opposed to only the 2D surface view
that one gets from looking through an otoscope. Thus, it should improve the diagnostic
sensitivity for ear disease and ultimately permit machine learning approaches to automate
the diagnostic process.

We developed a handheld OCT device that provides 3D volumes of the ear [25] that
allows one to view beyond the surface level of the TM and image deeper structures often
affected by middle ear pathologies (Figure 1) [26]. However, the large, high-resolution
image volume stacks are difficult to interpret. It is challenging to distinguish between the
various anatomic structures within the ear (e.g., the TM, the ossicles, the cochlea), artifacts
that stem from strong tissue reflections that saturate the detector, and fixed pattern artifacts
that come from reflections within the optical device itself. Furthermore, the orientation of
the image will vary depending on the way the physician holds the device relative to the
patient and the patient’s individual anatomy. Therefore, while it seems like it should be
simple to collect a volume scan of a patient’s ear and look at the results immediately, all
these factors make it difficult to expeditiously interpret the imaging and make a clinical
decision at the point of care. Here, we showed how an artificial intelligence approach based
on a deep learning algorithm can be used to address this limitation. We developed an
algorithm to quickly locate and segment normal TM anatomy. The main contribution of
this algorithm is that it removes artifacts from the OCT images, leaving behind the key
structure of interest, which is the TM. Deep learning algorithms for segmentation and
diagnostics are starting to be used within the medical field [27–31]. This algorithm, thus,
represents an early stage in AI-automated diagnosis of ear disease.
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Figure 1. OCT images of the human ear. (A) Illustration of the ear. The tympanic membrane (TM)
is visible by looking down the ear canal (red arrow). (B) A video image of the TM, looking through
an otoscope. The malleus (the first of the three middle ear bones) is visible along its attachment to
the TM. The green line helps the users know where the line scan is being performed. (C) A summed
voxel projection created from an OCT image stack of a human TM. It has been pseudocolored so that
yellow indicates higher reflectivity and dark blue indicates lower reflectivity. The malleus is visible.
Also, the incus (the second middle ear bone) is visible because it can be detected by OCT. The red
lines illustrate the X-Z slices shown in D and E. (D,E) X-Z slices from the image stack collected in
the locations indicated by the two red lines in C. Note the thin curved appearance of the TM. The
malleus and incus can also be seen under the TM.

2. Methods

2.1. Patient Dataset

This study was approved by the institutional review board at the University of South-
ern California (protocol HS-17-01014). We collected data from sixteen participants with no
known history of ear pathology from the senior author’s clinic. All participants had normal
ear exams on the day of OCT imaging. Participants ages ranged from 26 to 45 years of age.

OCT volume scans of the posterior half of the tympanic membrane were collected us-
ing the same techniques as described in our previous studies [25,32]. Briefly, the participant
was seated in an exam chair, and the speculum of the hand-held OCT device was inserted
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into the ear canal. The TM was brought into focus and the volume scan was collected. This
took about 20 s per ear. We used a mixture of both right and left ears for this study.

Each OCT volume scan consisted of 417 X-Z slices (B-scans) that were 417 pixels wide
by 669 pixels deep, with a total imaging range of 8 mm (X) by 8 mm (Y) by 12.83 mm (Z).
The optical resolution of our OCT device was 35 μm in the X, Y, and Z dimensions, and
so, the data were oversampled. Scans were anonymized and then used for this research.
We used eight of the volume scans for training the models and the other eight volume
scans for validating the finished algorithm (i.e., 8 volume scans * 417 B-scans per volume
scan = 3336 images for training and another 3336 images for validating).

2.2. Overview of Our AI methodology

Creating and training our AI methodology involved multiple sequential steps (Figure 2).
First, large objects within each X-Z slice of the volume stack were detected using the large
object detection algorithm. We then manually looked at each object and manually classified
it as either TM or non-TM. Next, these large objects were used to train the large image
recognition algorithm using machine learning. Then, all large objects classified as TM were
then re-evaluated using the small object detection algorithm, which detected smaller objects
that were near the TM. Each new object was then manually classified as either TM or
non-TM. Finally, these new smaller objects were used to train the small image recognition
algorithm using machine learning.

 

Figure 2. The sequence of steps in our deep-learning-based AI algorithm.
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Once trained, using our two-stage AI methodology (first detecting large objects then
detecting small objects) was completely automatic and did not require any user involve-
ment. A 3D image stack was sent to the function and a 3D image stack containing only the
segmented TM was returned. The entire algorithm was implemented on a PC-compatible
desktop computer with an AMD Ryzen 5 3600X 6-Core Processor CPU running Python
code. All code and datasets are available for download on our GitHub site [33]. Each step
in our AI methodology is explained in detail below.

2.3. Large Object Detection Algorithm

The goal of the large object detection algorithm is to distinguish large structures within
the collected images. Each 3D volume image collected by our OCT device was a tiff stack
of 417 image slices (B-scans). Each slice represented a 2D cross-section of the volume with
the X dimension on the horizontal axis and the Z dimension on the vertical axis. The Y
coordinate of each image represents its order in the stack. Each image slice was analyzed
sequentially.

First, the image was thresholded to convert each pixel to either black or white, to
highlight structures. A higher threshold value resulted in fewer potential objects. This
made the process faster, but also lowered accuracy and increased the chances of cropping
out portions of the TM that were less intense. Then, the image was blurred to reduce the
chance of one object being split up into multiple smaller objects. However, increasing the
blur value too much increased the risk of artifacts or middle ear structures appearing to be
part of the TM. Next, each large aggregation of white pixels was identified and contour
detection was performed. Finally, the size of each aggregation was calculated. If it was
higher than the minimum size we defined, the aggregation of white pixels was termed an
“object” and the coordinates were saved. A higher minimum size requirement sped up the
algorithm but could miss some of the TM objects. Thus, there were three parameters we
considered when detecting objects: the threshold value, the blur value, and the minimum
size. We iteratively varied these parameters until we achieved a decent balance between
accuracy and speed.

From the images collected from the eight participants used for training, this algorithm
identified roughly 45,000 large objects. We then went through these manually one-by-one
and found that ~43,000 objects were non-TM and ~2000 objects were TM. The reason that
there were fewer TM objects was that about half of the slices within each volume stack
contained the TM and this would be identified as only one object. In contrast, each slice
had multiple distinct artifacts, each identified as separate objects.

2.4. Small Object Detection Algorithm

Within the 2000 TM objects, we found that there were many artifacts that blurred
together with the TM. To overcome this, we implemented a second small object detection
algorithm, with the goal being to sort through only the TM objects and remove artifacts
within them. The benefit of having this two-stage approach was that the more time-
intensive process of separating TM from nearby non-TM objects could be focused on fewer
and smaller images (i.e., just the 2000 TM objects).

First, the TM objects were selected from the original image data. These were rectangular-
sized images with a corner position, length, and width that came from the TM objects
detected with the large object detection algorithm. The same sequence of steps was then
used, threshold, blurring, and aggregation size, to detect all objects within the image.
However, the parameters were different than what was used for the large object detection
algorithm, so as to detect most white pixels within the image. Thus, many more objects
were found within this single TM object. We found that a good tradeoff in accuracy versus
speed was to set the threshold value lower, the blur value lower, and the minimum size just
slightly higher. This is due to the fact that more small objects will be detected. By increasing
the maximum size threshold, the program will remove more objects before identifying
them and complete its process more quickly.
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Again, we went through each newly detected object and manually classified each one
as either TM or non-TM. Thus, the 2000 TM objects could be broken down and re-evaluated
into ~1000 TM objects and ~9000 non-TM objects.

2.5. Image Recognition Algorithms

We used TensorFlow to create two neural network-based image recognition algo-
rithms [13]. Both algorithms used the same convolutional neural network approach
(Figure 3). The only difference was that the large image recognition algorithm was trained
on objects from the large object detection algorithm. Similarly, the small image recognition
algorithm was trained on objects from the small object detection algorithm.

Figure 3. The structure of the convolutional neural network.

Data augmentation was performed by rotating each TM object in varying amounts,
thus generating additional TM objects for training both neural networks. Data augmenta-
tion allowed the model to better identify the TM more accurately; however, it does carry
the risk of overfitting the model to the training data [34–36].

2.6. 3D Reconstruction Algorithm

Once all the slices have TM and non-TM objects classified using the two-stage ap-
proach, the 3D TM object needs to be reconstructed. To carry this out, the TM object
locations were used as a mask in order to remove all other objects from each slice. The
algorithm then reconstructed the volume so that it could be viewed as a 3D object.

3. Results

3.1. Model Results

After training the two-stage algorithm on the data from the eight human participant,
we tested it on eight additional volume sets collected from different human participant.
This demonstrated that the TM was correctly identified in 95% of the objects. This was
determined by going through each individual object identified from within each slice
afterward by hand and assessing the accuracy of the detection algorithm. The algorithm
only required the 3D volume, with no human intervention necessary. Using our PC-
compatible desktop computer, analyzing all eight image stacks took about 66 min total,
meaning that the average time to segment the TM from one image stack was 8.25 min.

The representative examples of single slices after segmentation revealed isolated TMs,
with most artifacts removed (Figure 4). After every slice was parsed for the TM, the
algorithm reconstructed the volume so that it could be viewed as a 3D object (Figure 5).
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Figure 4. Representative example demonstrating how the algorithm segments out the TM and

removes artifacts. (A) One slice from the original image. Artifacts are indicated (red asterisks).
(B) After automatically segmenting the TM, the artifacts have been removed.

Figure 5. Representative example of 3D reconstructions of one OCT volume of the tympanic

membrane. (A) Before and (B) after running the algorithm to segment out the tympanic mem-
brane (TM). Artifacts (red asterisks) were either completely removed or greatly reduced in size after
segmentation.

The two most common instances of artifacts across hundreds of images were a set of
white lines at the top of the image (due to background fixed pattern noise) and vertical lines
(due to strong tissue reflections). Our algorithm provided a reasonably good approach to
removing both artifacts (Figures 5 and 6).
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Figure 6. Examples of artifacts that could and could not be removed from the TM. (A) One slice
from an original volume stack. Artifacts are identified (red asterisks). (B) The TM object from the same
slice. Note that while the cochlea and most of the artifact was segmented out, some residual artifact
remained at the bottom of the TM. (C) The original 3D volume projection contained many artifacts.
(D) The segmented 3D volume projection of the TM was much cleaner. However, there was still some
artifact within the TM that could not be segmented out.

3.2. Model Details and Rationale for Overfitting

As described earlier, the accuracy of the model on new data (i.e., the image stacks
from the eight subjects used for validation) was 95%. To achieve these results, we evaluated
the training accuracy and loss for both the large and small image recognition algorithms
(Figure 7). Training accuracy and loss were computed by TensorFlow automatically during
the training process, and so, only image stacks from the eight training participant were
used to generate these plots. The training accuracy corresponded to the percent identified
correctly within the subset of the volume stacks used to train the algorithm. The validation
accuracy represents the percentage of images that the program correctly identified within
the remaining volume stacks. Thus, training accuracy will always be higher than validation
accuracy. The training loss represents the penalty involved in failing to identify an image
correctly and goes up with overfitting the models.

The x-axis on each graph was measured in samples. Each sample represents one
set of training data, and we used 45 samples per trained model. Each sample contained
182 images, and so, the program plotted its training accuracy and loss every 150 images.
This was because 20% of the total data was saved randomly to be tested through the model
every time the set of 150 images was processed. This means that every time a set of training
images (150) was used, the program tested the validation data of all 45 image sets, leading
each image set to validate using the same 1440 images for all of them. Thus, the orange line
representing validation accuracy and validation loss used 1440 of the same images every
time and corresponded to more training data being input over time.

For the large image recognition algorithm, the training loss of our models declined to
near 0%, whereas the validation loss ended up at around 17% (Figure 7A). The output of
this algorithm was then fed into the small image recognition algorithm. The training loss
was 0% and the validation loss ended up at about 16% (Figure 7B). Both algorithms had
accuracies of 100% on the training data and ~98% on the validation data.

These data mean that the final output of the two-stage algorithm, as shown in Figure 7B,
was quite good. However, the validation loss indicated overfitting. We kept this because, on
a practical basis, it was not so overfitted as to adversely affect the functional output of the
algorithm. In fact, we purposefully kept the algorithms slightly overfit, as we recognized
that the additional training cycles led to improved TM detection by eye, even though this
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was not represented in these plots. To demonstrate this, we re-created the small image
recognition algorithm using only 25% of the data (Figure 7C). After completing all of the
training, the accuracy and training loss were similar to what was found using the full
training set (i.e., Figure 7B), but the validation loss was only ~10%. We then visually
inspected the images that were output using new data and found that the overfitted model
had slightly better artifact removal (Figure 8).

Figure 7. Accuracy and loss during training and validation. (A) The large image recognition model.
(B) The small image recognition model. (C) The small image recognition model trained with only
25% of the data.

 

Figure 8. A representative 3D image of the TM before and after segmentation. (A) The original
image. Note artifacts in the upper left. (B) The image after segmentation of the TM using the overfit
algorithm from Figure 7B. (C) The image after segmentation of the TM using the algorithm from
Figure 7C. The images in (B,C) are quite similar, but there is a little more artifact in (C) (red circle).
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4. Discussion

OCT provides a unique non-invasive way to assess human tissues. It offers the
benefits of ease of use within a routine clinical setting and there are no known safety
concerns. However, because swept-source laser light is used for imaging, artifacts caused
by saturation of the photodetectors by reflected light or electrical noise within the high-
speed analog-to-digital sampling system can obscure the image. Furthermore, because the
high resolution of OCT provides near-cellular resolution, only a section of the tissue being
studied can be imaged at once. Finally, OCT identifies multiple structural layers, including
surface and sub-surface structures. These three issues (the presence of artifacts, the small
field of view, and the long depth of view) can make it difficult for physicians to clinically
interpret an OCT image. Here, we presented a technique to automatically segment out
the TM from OCT images of the human ear. It removes artifacts and subsurface structures
that are not the TM and then labels the TM specifically. Thus, the physician is presented
with a clear and obvious OCT view of just the TM, which will allow the identification of
pathology that is not detectable by routine otoscopy.

While neural-network-based automated segmentation of CT images of the human ear
has been carried out before [37–40], a similar approach for segmentation of OCT images of
the human ear is novel. Automatic segmentation is particularly important for OCT since
provides a small field of view compared to CT or MRI, which can image the entire body.
To provide OCT coverage of an entire structure, multiple 3D images from multiple angles
might be needed. Once the structure of interest has been segmented out from each image,
the 3D images could then be stitched together to provide a comprehensive analysis of the
area of interest. For example, each of our microscopic OCT images can image about 2/3rds
of the TM. Now that the TM can be segmented, we could envision a future where the
user slowly moves the imaging probe around in a circle, collecting many overlapping 3D
volumes, and then the algorithm automatically cleans them and stitches them together. In
this way, we expect to collect large, high-resolution 3D images of the ear in clinic.

4.1. Deep Learning and Model Limitations

We chose to use deep learning for our algorithm because of its potential to revolu-
tionize medical imaging for disease diagnosis [35,41,42]. Furthermore, we needed our
algorithm to be rigorous and dynamic, so that, regardless of the section of the TM that was
being imaged, the TM could be automatically segmented. We used TensorFlow to create
most of the neural network, but the key to obtaining accurate results was the use of two
sequential classification steps, each with distinct object detection algorithms.

As shown, our algorithm does a good job of removing most artifacts within the image.
However, sometimes, the artifacts overlap or are very close to the TM, creating a conjunction
of pixels that appears as one single object. Thus, most but not all artifact is removed. In the
future, we may consider adding a third neural network with a separate image recognition
algorithm specifically to identify and remove these types of artifacts, which tend to be
vertical lines that originate from strong tissue reflections. While this may improve the
image somewhat, it would also increase the processing time. Furthermore, it is unlikely to
improve the image substantially enough to add further value to the clinician.

Most of the time creating this algorithm was spent manually classifying the objects.
The object-detection algorithms created thousands of images from each 3D image. However,
the first step was to optimize the large-object-detection algorithm so that it best recognized
the TM as one single object but did not include nearby artifacts. This tradeoff required
lowering the threshold value of the object detection algorithm so that the entire TM was
recognized as one object instead of being broken up into several smaller objects. However,
doing this led to more artifacts within the TM image. As described in the methods section,
we handled this by adding the second stage to the algorithm, using more accurate sorting
methods for the smaller object area of the TM. Hardware improvements to reduce the
number and intensity of the artifacts within the original image would improve the accuracy
of this algorithm and speed training of future iterations of this algorithm.
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4.2. The Future: Automated Diagnosis of Ear Pathology

This algorithm to segment out the normal TM is the first step in the automatic detection
of pathologic TMs. We anticipate that training the algorithm on images collected from
patients with diseases, such as a tympanic membrane perforation, a retraction pocket, a
cholesteatoma, or a tumor, will permit artificial intelligence to enhance, and perhaps even
automate, the diagnosis of ear disease. Ultimately, we also plan to expand this algorithm
to not only segment the TM but also other structures visible within the volume stack,
including the ossicles and the cochlea. This will expand the number of diseases that AI-
enhanced OCT could detect. Our goal is for an inexperienced clinician to be able to image
their patient’s ear and for the software to automatically provide a tentative diagnosis with
high accuracy.

5. Conclusions

Automatic segmentation is a core component needed to use AI to analyze 3D medical
images. This algorithm demonstrates that deep learning can segment out the TM from
within an artifact-filled OCT volume stack of images. This will be critical to the successful
clinical implementation of OCT technology to detect ear disease. It allows a physician to
have their computer create a 3D model of the TM quickly and ultimately, which will permit
disease detection. Furthermore, it allows for immediate dialogue with the patient about the
status of their ear; thus, it provides a point-of-care diagnostic. This provides an additional
example of how deep learning is a powerful tool for medical imaging.
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Abstract: Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in
the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple
phenomena that manifest themselves not only in the visible range but also in the UV. We present two
simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data
with high accuracy in terms of a binary classification problem. We expect that similar architectures
can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature
of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of
future orbital or balloon experiments.

Keywords: machine learning; neural network; pattern recognition; meteor; fluorescence telescope;
orbital experiment; UV illumination; atmosphere
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1. Introduction

The JEM-EUSO (Joint Exploratory Missions for Extreme Universe Space Observatory)
collaboration is developing a program of studying ultra-high energy cosmic rays (UHECRs)
with a wide angle telescope from a low Earth orbit [1–3]. The idea is based on the possibility
to register fluorescence and Cherenkov radiation in the ultraviolet (UV) range that is
emitted during development of extensive air showers generated by primary particles
hitting the atmosphere [4]. There are several benefits of this technique in comparison with
ground-based experiments: (i) it can provide a huge exposure necessary for collecting
sufficient statistics of these extremely rare events; (ii) the celestial sphere can be observed
almost uniformly, which is important for anisotropy studies; and (iii) the whole sky can be
observed with one instrument.

It became clear at early stages of the development of the JEM-EUSO program that
an orbital telescope aimed at studying UHECRs can serve as a tool for exploring other
phenomena that manifest themselves in the UV range in the nocturnal atmosphere of
Earth [5]. It was demonstrated by TUS, the world’s first orbital fluorescence telescope aimed
for testing the technique of studying UHECRs from space, that such an instrument can
provide data on transient luminous events, thunderstorm activity, meteors, anthropogenic
illumination of different kinds, and other types of signals [6,7]. In particular, observations of
meteors are considered as an important branch of studies in the JEM-EUSO program [8,9].

The JEM-EUSO program is being implemented in a number of steps aimed at devel-
opment and testing of different aspects of a full-blown orbital experiment. In particular,
laser shots were successfully registered by a fluorescence telescope looking down on the
atmosphere within the EUSO-Balloon mission [10]. A wide program of studies is being
performed with the EUSO-TA experiment [11]. In 2018–2019, the Mini-EUSO (Multiwave-
length Imaging New Instrument for the EUSO) telescope was built by the JEM-EUSO
collaboration. It was brought to the International Space Station (ISS) on 22 August 2019, by
the Soyuz MS-14 vehicle and has been operated since then as a part of an agreement between
the Italian Space Agency (Agenzia Spaziale Italiana; ASI) and Roscosmos (Russia) [12–15].
The EUSO-SPB2 stratospheric balloon equipped with a fluorescence and Cherenkov tele-
scopes made a short flight from Wanaka, New Zealand, in May 2023 [16–18]. All these
instruments are aimed to be pathfinders and test beds for full-size orbital experiments like
K-EUSO [19] and POEMMA [20].

Similar to the other projects of the JEM-EUSO collaboration, the Mini-EUSO telescope
is registering multiple types of UV emission taking place in the nocturnal atmosphere of
Earth, among them signals of meteors. A series of studies is dedicated to their search and
analysis [21,22]. In the present paper, we continue our earlier research aimed at developing
a method of recognizing meteor tracks in the Mini-EUSO data with neural networks [23].
A motivation for the study is the following. A conventional approach to finding signals of
meteors in the Mini-EUSO data is time consuming and prone to numerous false positives.
Thus, it is interesting to figure out if an approach based on machine learning (ML) and
artificial neural networks (ANNs) can demonstrate higher efficacy than the conventional
one so that both approaches complement each other. If so, it is interesting to test if results
can be achieved with simple neural networks that can be implemented in the forthcoming
orbital experiments, which are unlikely to have powerful onboard processors. These results
can also be useful for recognizing tracks of extensive air showers in the future experiments
since such signals resemble shapes and kinematics similar to those produced be meteors,
though at completely different time scales. Finally, in case of the successful development
of an ANN-based pipeline for recognizing meteor signals in the Mini-EUSO data, it can
be applied for a search of track-like signals of different nature, including those that mimic
extensive air showers. In what follows, we present a pipeline consisting of two basic
neural networks that demonstrate high performance and can be trained on an ordinary
PC. The work continues a series of studies fulfilled within the JEM-EUSO collaboration on
application of machine learning and neural networks to analysis of data of fluorescence
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telescopes [24–27]. We do not present any results of applying the suggested method to data
analysis since this will be covered in detail in a dedicated paper.

2. Mini-EUSO Experiment

The main components of the Mini-EUSO telescope include two Fresnel lenses and
a focal surface (FS). The lenses have a diameter of 25 cm with the focal distance of the
optical system equal to 300 mm. The FS has a square shape with 2304 pixels. It is built of
36 multi-anode photomultiplier tubes (MAPMTs) Hamamatsu R11265-M64 each consisting
of 8 × 8 pixels. All MAPMTs are grouped into nine so-called elementary cell (EC) units.
Every EC unit has its own high-voltage system, which operates independently of the others
providing necessary control of sensitivity of the respective MAPMTs. A 2-mm thick UV
filter manufactured of the BG3 glass is located in front of each MAPMT. The size of one
pixel equals 2.88 mm × 2.88 mm. The point spread function (PSF) has a size of ∼1.2 pixels.
Mini-EUSO has a wide field of view (FoV) of 44◦ × 44◦ with spatial resolution (FoV of one
pixel) equal to 6.3 km × 6.3 km. From the orbit of the ISS, an area observed by the telescope
exceeds 300 km × 300 km. A detailed description of the instrument can be found in [12].

Mini-EUSO collects data in three modes. The D1 mode has a time resolution of
2.5 μs. This is called a D1 gate time unit (GTU). The D2 mode records data integrated
over 128 D1 GTUs. Finally, the D3 mode operates with data integrated over 128 × 128 D1
GTUs resulting in time resolution of 40.96 ms. To the contrary to the D1 and D2 modes,
the D3 mode does not have a trigger, and its data can be considered as a series of videos
with “seasons” corresponding to sessions of observations and “episodes” corresponding
to night segments of the ISS orbit during a session. Each session takes around 12 h. With
the orbital period of the ISS equal to 92.9 min, a typical session includes eight subsets
of data taken during nocturnal segments of an orbit, with each of them taking slightly
longer than 1/3 of the period. Every “video” has a resolution of 48 × 48 pixels and consists
of T/40.96 μs frames, where T is the duration of one nocturnal segment. Observations
are performed approximately twice per month through the UV-transparent window at
the Zvezda module with the schedule coordinated with other experiments. Due to this,
background illumination varies strongly from one session to another depending on the
phase of the Moon and the season. The D3 mode allows for registering meteors and other
slow phenomena taking place in the night atmosphere of Earth. In what follows, we
use only data recorded during sessions 5–8 and 11–14 taken from 19 November 2019 to
1 April 2020. All artificial neural networks discussed below were trained using data of
seven sessions and tested on the remaining session. This way, we checked all possible
combinations of the eight sessions.

3. Meteor and Background Signals

Signals of meteors registered with Mini-EUSO have some features important for the
presented analysis:

• A signal produced by a meteor in a pixel has a shape resembling the bell-like curve
similar to the probability density function of the normal distribution.

• Meteor signals produce quasi-linear tracks in the focal surface.
• The number of hit (“active”) pixels in more than 75% of meteor tracks is ≤5, so that

their footprints on the focal surface are small.
• Peaks of a meteor signal shift from one pixel to another (except for arrival directions

close to nadir).
• There are multiple signals in the data with the shape similar to that of meteors but

simultaneously illuminating large areas of the FS.
• Meteors are often registered on strong and quickly varying background illumination.
• The amplitude of a meteor signal is typically lower than amplitudes of some other

signals in the FoV of Mini-EUSO registered simultaneously with the meteor.
• In some cases, it is impossible to judge unequivocally if a signal originated from a

meteor or another source.
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Let us discuss the most important of these features taking as an example signals
demonstrated in Figures 1 and 2.

Figure 1. An example of a clearly pronounced meteor signal registered by Mini-EUSO on 20 October
2019. (Top left): signals in pixels that constitute the meteor signal. Signals in different pixels are
shown in different colors. (Top right): location of meteor pixels in the focal surface. Colors denote
time shift of the peaks with respect to the first one (in units of D3 GTUs). (Bottom left): all signals
registered by Mini-EUSO simultaneously with the meteor. The black curves show the meteor signal.
(Bottom right): a snapshot of the focal surface made at the moment of maximum of the brightest
meteor pixel (GTU 2874).

Figure 1 provides an example of a bright and clearly pronounced meteor signal with
numerous active pixels. The top row shows only the meteor signal, with the background
illumination omitted. It can be seen that signals in every pixel have a typical shape
resembling the bell curve (see the left panel). The peaks are shifted in time with respect to
each other due to the meteor moving in the FoV of the instrument, resulting in a quasi-linear
track on the focal surface (see the right panel). The task of recognizing meteor signals
might look trivial after looking at these “pure” signals. However, the FoV of Mini-EUSO
covers a huge area resulting in numerous different signals being registered simultaneously,
with many of them being much brighter than those of meteors. This is demonstrated in
the second row of Figure 1. The left panel shows shapes of all other signals recorded
simultaneously with the meteor with the meteor signal shown in black. The right panel
presents a snapshot of the FS made at the moment of the maximum of the meteor signal. The
brightest pixel of the meteor has coordinates (row, column) = (13, 27) and can be seen as a
small spot below a much brighter and extended area that appeared due to anthropogenic
illumination (sine-like curves in the left panel). It is important to remark that the bottom
rows of Figures 1 and 2 demonstrate signals that were flat-fielded during an offline analysis
for the sake of clarity.
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However, all results presented below were obtained using raw data as they are
recorded by the instrument. This was performed in order to understand how effectively is
our method if implemented in onboard electronics.

An example of a typical meteor is shown in Figure 2. It has only four active pixels,
and it is so dim in comparison with other illumination registered simultaneously that it is
hardly possible to find it by eye in the bottom right panel presenting a snapshot of the focal
surface at the moment of the maximum brightness of the meteor.

Figure 2. A typical meteor signal registered by Mini-EUSO. (Top left): signals in pixels that constitute
the meteor signal. (Top right): location of meteor pixels in the focal surface. Colors denote a time
shift of the peaks with respect to the first one (in units of D3 GTUs). (Bottom left): all signals
registered by Mini-EUSO simultaneously with the meteor. The black curves show the meteor signal.
(Bottom right): a snapshot of the focal surface made at the moment of the brightest meteor signal
(GTU 184).

A conventional way to find meteor signals in the Mini-EUSO or TUS data would be
to look for signals that can be fitted with the probability density function of a Gaussian
distribution or its sum with a polynomial in case of non-stationary background illumina-
tion [21,22,28]. The known range of possible speeds of meteors (11–72 km s−1) together
with information on the orbital speed of the ISS (∼7.7 km s−1), the FoV of one pixel, and the
PSF size allows one to estimate the variance of a Gaussian fit. This also allows for verifying
the kinematics of a signal moving across the FS. The latter step is of crucial importance
since there are multiple signals in the Mini-EUSO data that can be fitted with a Gaussian
distribution but take place simultaneously in big pixel groups without forming a track on
the focal surface.

The task of recognizing meteor patterns in the Mini-EUSO dataset with machine
learning methods can be considered as a binary classification problem since one basically
needs to separate meteor signals from all the rest. Seemingly the most obvious way to
tackle the task with artificial neural networks is to employ supervised learning. Within
this approach, one can train an ANN using a labeled dataset. The dataset can be either
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prepared by simulations or extracted from real experimental data. It is tempting to choose
the first way since meteor signals mostly have a bell curve shape similar to the density of
the normal distribution. However, realistic simulations are not trivial since the background
illumination is diverse, and sensitivity of different pixels on the FS is not known. This
made us adopt the second approach.

We took two meteor datasets obtained by the JEM-EUSO collaboration and comple-
mented them by our own analysis to prepare a dataset suitable for training and testing
an ANN. It is necessary to stress once again that the source of a considerable number of
bell curve-like signals registered with Mini-EUSO cannot be identified with confidence.
Signals like those shown in Figures 1 and 2 do not pose a problem in this respect. How-
ever, the shape and kinematics of tracks produced by meteors consisting of ≤4 pixels
are often confusing. Another difficulty arises from dim signals on a strong and varying
background. As a result, it is impossible to obtain ground-truth labels basing exclusively
on the existing data set. After several tests, we confined the labeled dataset to signals the
nature of which causes little doubt. In particular, we excluded almost all signals occupying
two pixels. The resulting dataset used for training and testing ANNs discussed below
consisted of 1068 meteor signals. Every record in the dataset included a timestamp of a
meteor, coordinates of active pixels on the focal surface, and positions of the respective
signal peaks.

Since data obtained in the D3 mode do not have a trigger but are similar to a series of
videos each consisting of thousands of “frames” representing “snapshots” of the FS, there
is a question how to extract samples containing meteor and non-meteor signals for training
and testing datasets. For example, one can create data chunks of size 48 × 48 × T, where T
is the number of time frames (D3 GTUs) large enough to fit all meteors in the dataset and
either center them on meteor peaks or put them in a fixed position with respect to the
beginning of a meteor signal. This will allow one to obtain a “unified” representation of
meteor signals to an ANN thus simplifying the task of their recognition. This way, non-
meteor samples can be extracted from the rest of the data in a random fashion. However,
this is not the way the data flow can be analyzed onboard. Besides this, the above approach
will leave us with mere 1068 meteor samples, which is not sufficient to effectively train an
ANN. This made us use a sliding window producing chunks that overlap by dt GTUs. In
what follows, we present results obtained for dt = 8 GTUs that allowed us to avoid losing
short meteor tracks and provided reasonable accuracy of their recognition. The procedure
of labeling data chunks extracted this way will be explained in detail in Section 4.1.

We split the task of meteor signal recognition into two steps. First, we trained an ANN
to recognize three-dimensional data chunks that contained meteor signals. After this, we
employed another ANN to select pixels containing respective signals. Each ANN thus
solved a task of binary classification. This allowed us to obtain lists of meteors registered
with Mini-EUSO together with their active pixels thus providing information necessary for
their subsequent analysis (reconstruction of brightness, arrival directions etc.).

4. Results

An important question to discuss before presenting ANNs is how to evaluate their
performance. It is usually advised to use balanced datasets whenever possible, both for
training and testing. In this case, the Receiver Operating Characteristic Area Under the
Curve (ROC AUC) is one of the popular performance metrics [29]. Recall that the ROC
curve is a plot of the true positive rate against the false positive rate at various threshold
settings. Given one randomly selected positive instance and one randomly selected negative
instance, AUC is the probability that the classifier will be able to tell which one is which.
Due to its definition, ROC AUC does not depend on the sample size.

However, the number of meteor signals in the Mini-EUSO data is negligibly small in
comparison with the number of non-meteor signals, so that using balanced datasets for
testing would provide unrealistic results, while using them for training would not represent
the full diversity of non-meteor signals thus resulting in lower performance and numerous
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false positives during tests. Thus, we unavoidably arrive at the necessity to use strongly
imbalanced datasets both for training and testing. It is argued in the literature that ROC
AUC does not act as a fully adequate performance metric in this case, and other metrics
should be used instead, see, e.g., [30–32]. In what follows, we provide results obtained in
terms of three more metrics besides ROC AUC. These are the Precision–Recall (PR) AUC,
the Matthews correlation coefficient (MCC), and the F1 score. One more metric will be
introduced below.

Recall that the PR AUC equals an area under the plot of precision vs. recall with

Precision =
TP

TP + FP
, Recall = TPR =

TP
TP + FN

,

where TP, FP, and FN are the number of true positives, false positives, and false negatives as
classified by the model, respectively. The Matthews correlation coefficient can be calculated
from the confusion matrix as

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TN is the number of true negatives. Finally, the F1 score is the harmonic mean of the
precision and recall. It can be presented as

F1 =
2TP

2TP + FP + FN
.

Notice that these metrics will be applied to three-dimensional data chunks that par-
tially overlap due to the employment of a sliding window for preparing input datasets.
This can lead to a situation when a part of chunks containing a meteor signal are classified
as non-meteor ones while others are classified properly, so that the value of a performance
metric might be misleading. Since we are interested in maximizing the number of rec-
ognized meteors but not meteor chunks, it can be beneficial to also introduce a metric
expressed in terms of the original 1068 meteors. Probably the most straightforward way
is to use 1 − FNR (met), where FNR (met) is the false negative rate of meteor signals
represented as the number of meteors lost by the classifier divided by the total number of
meteors in a session used for testing.

All these metrics are equal to 1 for a perfect model. The MCC equals −1 for the worst
possible model; other metrics give 0 in this case.

4.1. Recognition of Meteor Data Samples

One of the crucial questions to be solved before training an ANN is how to prepare
and organize input data. In our case, the question is twofold. We need to decide how to
label three-dimensional chunks into those that contain a signal of a meteor and those that
do not. Besides this, we need to choose the size of data chunks P × P × T, where P × P
defines the size of a square on the focal surface (measured in pixels), and T is the number
of time frames (“snapshots” of the FS).

A data chunk was labeled as containing a meteor signal in case there were at least
two meteor pixels inside a P × P area with peaks of the signals located within T GTUs. The
reason is that we do not have a straightforward way to decide if a signal originates from
a meteor with just a single active pixel. On the other hand, putting a more strict cut on
the number of active pixels inside a chunk (≥3) results in a loss of short meteor tracks that
have only two active pixels.

As for the number of time frames in data chunks, we tested T = 8, 16, 32, 48, 64, and
128, which covers the range of duration of meteor signals in the dataset. Values T = 32, 48,
and 64 demonstrated the best results in our tests in terms of all metrics mentioned above
with different combinations of training and testing sessions regardless of the value of P,
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with T = 48 showing in average marginally better performance than the other two values.
This value is used in all figures and tables presented below.

In [33], a simple convolutional neural network (CNN) was employed to perform binary
classification of two types of signals registered with the TUS telescope. The instrument
had a focal surface of 16 × 16 pixels, and data arranged in 16 × 16 × T chunks worked well.
Thus, we first tried training a CNN for Mini-EUSO with data chunks of the size 48× 48× T.
The input data was standardized according to the formula (Xi − 〈Xi〉)/σ(Xi), where Xi is
the signal in pixel i, 〈Xi〉 and σ(Xi) are estimations of the mean and the standard deviation
during T time frames. However, as it was briefly reported in [23], this approach did not
allow us to obtain acceptable results. We tested numerous configurations of CNNs and long
short-term memory networks but failed to obtain ROC AUC > 0.75 on testing datasets.
A simple solution was found by splitting the FS into smaller squares. We tested splitting
with P = 24, 16, 12, 8, and 6. In order to avoid losing signals around the boundaries of
these small areas, we used overlapping by P/2 pixels in both directions. Figure 3 shows
the behavior of mean values of different performance metrics for varying P with models
trained on all possible combinations of seven sessions and tested on the remaining one.
In this case, the same architecture of a CNN was used for all tests. It can be seen that
performance expressed in terms of any metric increases quickly for P < 24. The PR AUC,
the MCC, and the F1 score change in a very similar fashion while the values of the ROC
AUC are close to those of 1− FNR (met) for small P. The best performance is reached for
P = 8 with the MCC and F1 metrics slightly decreasing for P = 6. Thus, data chunks of the
size 8 × 8 × 48 are used in what follows.

Figure 3. Mean values of different performance metrics as a function of the data chunk size P for
models trained on all possible combinations of seven sessions of observations and tested on the
remaining session. See the text for details.

A CNN that we adopted for classifying meteor chunks consists of a convolutional layer
with 24 filters and a kernel of size 3. It utilizes ReLU as an activation function and the L2
kernel regularizer with factor 0.1. The convolutional layer was followed by a maxpooling
and dropout layers and two fully connected layers with 256 and then 64 neurons. Adam
was used as an optimization algorithm. Sigmoid was employed as an activation function
in the output layer. The architecture is shown in Figure 4.
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Figure 4. Architecture of the CNN used for binary classification in meteor and non-meteor data
chunks. The total number of trainable parameters equals 125,465.

The way we employed to prepare input data allowed us to obtain ≈18,000–24,000 thou-
sand meteor chunks of the size 8× 8× 48 depending on the set of sessions used for training,
see details in Table 1. These chunks were augmented then by the standard procedure of
image rotation thus providing four times more samples. Non-meteor data chunks were
selected in a random fashion, with their number being six times larger than the total number
of meteor chunks (after augmentation). Twenty percent of the training dataset were used
for validation during training. PR AUC was utilized as a performance metric during the
training process. The loss function was defined as binary crossentropy. Validation loss was
employed to adjust the learning rate and to avoid overfitting. Testing datasets included
100,000 non-meteor samples and all meteor data chunks available for the particular session
varying from 474 chunks for session 7 up to 6446 chunks for session 6, see Table 1.
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Table 1. The top row: sessions of observations used for testing CNNs trained on data of all other
sessions. The second row: the total number of 8 × 8 × 48 chunks (after augmentation) with signals of
meteors used for training the respective CNNs. The number of original chunks is four times less. The
last two rows: the number of chunks with meteor signals and the real number of meteors, respectively,
in test sessions.

Test Session 5 6 7 8 11 12 13 14

Training meteor chunks 91,060 72,124 95,924 81,188 80,724 88,456 89,228 86,820

Testing meteor chunks 1712 6446 474 4180 4274 2341 2148 2772
Testing meteors 65 280 18 186 193 106 90 130

Table 2 contains values of five performance metrics described above for different
combinations of testing and training datasets in the task of classification of 8 × 8 × 48
chunks into meteor and non-meteor groups. For example, the column labeled as “5”
presents results obtained with sessions 6–14 employed for training, and session 5 used
for testing the CNN. It can be seen that zero out of 1068 meteors were lost in all sessions.
Notice however that values of the PR AUC, the MCC, and the F1 score vary considerably
from one session to another.

Table 2. Performance of the CNN on different sessions of observations. See the text for details.

Test Session 5 6 7 8 11 12 13 14

ROC AUC 0.992 0.994 0.999 0.993 0.994 0.998 0.993 0.996
PR AUC 0.937 0.955 0.876 0.933 0.946 0.973 0.931 0.956
MCC 0.872 0.894 0.732 0.857 0.888 0.921 0.782 0.901
F1 0.873 0.901 0.718 0.863 0.892 0.922 0.776 0.904

FNR (met) 0 0 0 0 0 0 0 0

4.2. Active Pixel Selection

At the second step, we want to separate pixels of 3-dimensional meteor chunks selected
by the CNN into two groups: those containing the signal of a meteor (active pixels) and all
the rest. Since meteor signals have a typical shape resembling the bell curve, as shown in
the top left panels of Figures 1 and 2, it is straightforward to train a multilayer perceptron
(MLP) to solve the task. The input dataset consists of vectors of length T = 48 now.

We followed the same way of training and testing the neural network as was used
at the first stage. Namely, we trained an MLP on data extracted from seven sessions and
tested it on the remaining one with all possible combinations of sessions. In order to avoid
duplicate entries in the training dataset, we extracted data vectors from chunks of the size
48 × 48 × 48. Due to a comparatively small shift dt = 8 GTUs, we obtained samples with
meteor signal peaks located at almost all possible positions along the time axis. The number
of vectors (pixels) containing meteor signals in training data sets was up to 30 thousand,
with non-meteor samples ten times greater. The input data was standardized similar to
the CNN case. Twenty percent of training samples were utilized for validation. Binary
crossentropy was used as the loss function and validation loss was employed to adjust the
learning rate and to avoid overfitting. Testing was performed on all vectors extracted from
meteor chunks of the size 8 × 8 × 48 selected by the CNN. The number of chunks used for
testing of each particular session data can be found in Table 1.

We compared a number of possible configurations of simple MLPs with one, two, and
three hidden layers and different number of neurons. An optimizer, activation functions
and a performance metric used for training were the same as for the CNN described above.
Table 3 presents results obtained with a two-layer MLP with 96 and 64 neurons in the two
layers, respectively.
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Table 3. Performance of the MLP on different sessions of observations. See the text for details.

Test Session 5 6 7 8 11 12 13 14

ROC AUC 0.992 0.995 0.993 0.994 0.996 0.993 0.995 0.995
PR AUC 0.899 0.932 0.877 0.916 0.932 0.887 0.936 0.928
MCC 0.790 0.841 0.744 0.826 0.847 0.812 0.809 0.835
F1 0.794 0.845 0.737 0.832 0.852 0.814 0.810 0.840
Mean IoU 0.808 0.853 0.773 0.843 0.861 0.829 0.825 0.850

FNR (pxl) 2/422 2/1428 0/80 7/928 5/958 0/492 0/457 2/630

Similar to Table 2, Table 3 presents results illustrating performance of the MLP trained
and tested on different sessions of data collection. Values of one more performance metric
are shown here, namely, the mean values of the intersection-over-union (IoU) score. This
function and its versions are often used in tasks of labeling pixels of images. It can be
written as

IoU =
TP

TP + FP + FN
.

It can be seen that values of the mean IoU metric are slightly above those of the F1
score. The last line of the table shows the false negative rate calculated for pixels containing
meteor signals. Two things can be easily noticed. First, the MLP did not properly recognize
18 out of 5395 active pixels, i.e., FNR (pxl) ≈ 0.33%. In this sense the accuracy can be
estimated as 99.67% in average. On the other hand, the worst result was obtained for
the test run on data from session 8 with FNR (pxl) ≈ 0.75% so that the accuracy for this
particular session equals 99.25%.

We have tried to address the same task with a few other machine learning methods,
among them logistic regression, K nearest neighbors, the random forest, and XGBoost. We
have failed to outperform results demonstrated with the MLP with any of them.

5. Discussion

We have demonstrated that a pipeline made of two simple neural networks, a CNN
and an MLP, can be used to effectively recognize meteor tracks in the data of the Mini-EUSO
fluorescence telescope that is observing the nocturnal atmosphere of Earth in the UV band
from the International Space Station. The CNN used to select three-dimensional data
chunks containing meteor signals managed to recognize properly all 1068 meteors in the
dataset. The MLP employed to recognize pixels with meteor signals in data chunks picked
up by the CNN, reached an accuracy beyond 99%. Neither of the ANNs puts high demands
on computer resources necessary for their training. Besides this, they perform surprisingly
fast during the classification stage with a major part of time being spent on reading data
from a data storage, thus strongly outperforming the conventional algorithm.

We have seen in [33] that an ANN trained on data with clearly pronounced signals
is able to identify patterns with low signal-to-noise ratio. Such events are classified as
false positives during tests but their closer analysis reveals that their considerable part
contains “positive” signals that were not found by the conventional algorithm used to
prepare training and testing datasets. A preliminary analysis of signals marked as false
positives in our tests has demonstrated that the same situation takes place with meteor
tracks, so that the list of meteors can be extended with these newly found signals. The same
applies to the list of active pixels. This is an important advantage of ML-based methods
over conventional approaches.

One can anticipate that new experimental data might present new patterns of non-
meteor signals since observational conditions vary strongly from one session to another.
In this case, it might be necessary to extend the training dataset and retrain the ANNs.
However, we do not expect that the architecture of the CNN and the MLP will need to
be modified considerably. On the other hand, it is clear that the presented ANNs are
not the only way of recognizing meteor tracks in the Mini-EUSO data using methods
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of machine learning. Still, it might be not easy to exceed the accuracy of the suggested
pipeline with simple models. We plan to analyze other possible approaches, especially for
the segmentation part. We are also going to address the task of solving the same problem
in one step, without splitting it into two parts.

Finally, it is worth mentioning that the presented method is not confined to recognizing
meteor tracks. Preliminary results of applying the same approach and even the same
trained models for recognizing signals that mimic illumination expected from extensive air
showers born by ultra-high energy cosmic rays, are quite promising and will be reported
elsewhere. We also expect that this pipeline or a similar one can be implemented in onboard
electronics of future orbital missions to act as a trigger for track-like signals of different
nature manifesting themselves at various time scales.
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Abstract: Deep learning models are often trained with a large amount of labeled data to improve
the accuracy for moving object detection in new fields. However, the model may not be robust
enough due to insufficient training data in the new field, resulting in some moving objects not being
successfully detected. Training with data that is not successfully detected by the pre-trained deep
learning model can effectively improve the accuracy for the new field, but it is costly to retrieve
the image data containing the moving objects from millions of images per day to train the model.
Therefore, we propose FenceTalk, a moving object detection system, which compares the difference
between the current frame and the background image based on the structural similarity index
measure (SSIM). FenceTalk automatically selects suspicious images with moving objects that are not
successfully detected by the Yolo model, so that the training data can be selected at a lower labor
cost. FenceTalk can effectively define and update the background image in the field, reducing the
misjudgment caused by changes in light and shadow, and selecting images containing moving objects
with an optimal threshold. Our study has demonstrated its performance and generality using real
data from different fields. For example, compared with the pre-trained Yolo model using the MS
COCO dataset, the overall recall of FenceTalk increased from 72.36% to 98.39% for the model trained
with the data picked out by SSIM. The recall of FenceTalk, combined with Yolo and SSIM, can reach
more than 99%.

Keywords: deep learning; image object detection; internet of things; structural similarity index
measure (SSIM)

1. Introduction

In the past, traditional techniques often employed simple cameras for security surveil-
lance in specific areas. Applications included home security, farm monitoring, factory
security, and more, aiming to prevent personal property or crops from being damaged.
However, security personnel had to monitor the images at all times, incurring high costs.
With the rise of internet of things (IoT) technology, security monitoring can be carried out
using physical sensors such as infrared sensors, vibration sensors, or microwave motion
sensors [1]. Nevertheless, these methods have varying accuracy due to different physical
technologies or installation methods, and sensors can struggle to differentiate whether an
object is a target, leading to false alarms.

Object detection is a task within the realm of computer vision, encompassing the
identification and precise localization of objects of interest within an image. Its primary
objective is not merely recognizing the objects present but also delineating their exact posi-
tions through the creation of bounding boxes. In the modern landscape of object detection,
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deep learning models such as convolutional neural networks (CNNs) [2,3] and pioneering
architectures like Yolo (you only look once) [4] have come to the forefront. These technolo-
gies have significantly advanced the accuracy and efficiency of object detection tasks. Yolo,
in particular, has played a pivotal role by enabling both efficient and accurate real-time
object detection, cementing its status as a foundational tool across diverse computer vision
applications.

What sets Yolo apart is its groundbreaking concept of single-shot detection, signifying
its ability to detect and classify objects in an image during a single pass through a neural
network. This innovative approach culminates in the prediction of bounding boxes, ex-
emplified by the pink square box in Figure 1, which encompasses the identified objects.
Similar objectives can be identified using the structural similarity index measure (SSIM) [5]
and vision transformer (ViT) [6], both of which are efficient object detection algorithms.

 

Figure 1. FenceTalk user GUI. (Red polygon: fenced region; Pink square: the moving object).

Hence, object detection using Yolo finds wide-ranging practical applications, including
security surveillance, where it excels at identifying and tracking individuals or moving
objects within security camera footage. This paper presents FenceTalk, a user-friendly
moving object detection system. FenceTalk adopts a no-code approach, allowing non-AI
expert users to effortlessly track the objects they define. In Section 5, we will carry out a
performance comparison between FenceTalk and the previously proposed approaches.

Figure 1 illustrates the window-based FenceTalk graphical user interface (GUI), where
a red polygon can be easily created by dragging an area of interest. This area is designated as
a fenced region within a fixed location. Through deep learning models, image recognition
is performed to detect the presence of moving objects (depicted by the pink square in
Figure 1) within the fenced area.

Combining with IoTtalk, an IoT application development platform [7], FenceTalk
sends real-time alert messages to pre-bound devices through IoTtalk when a moving
object is detected within the fenced area. This allows users to swiftly take appropriate
measures to ensure the security of the area. A reliable image recognition model is crucial
for FenceTalk. However, even after capturing images with targets in the desired new
area for labeling and using this annotated data for training the deep learning model, the
model often fails to recognize certain moving objects. Identifying these images where
recognition was unsuccessful and using them as training data for the model can further
enhance its accuracy.

Extracting image frames containing moving objects from a vast amount of image data
as training data for the model incurs significant labor and time costs. For instance, at
the common camera recording rate of 30 frames per second (FPS), a camera can generate
2,592,000 image frames in a single day. Given that the moving objects to be recognized in
a fixed area exhibit movement characteristics, FenceTalk designs an algorithm to define
a background image, and compares the current image frame with the background image
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using SSIM to analyze differences in the images. Subsequently, based on the brightness
of the current image, FenceTalk employs an optimal threshold to separate background
noise from the moving objects of interest. This process determines whether the current
image frame contains a suspicious image with moving objects. By filtering these selected
suspicious images, FenceTalk enables users to choose the model’s training data with
reduced human resource costs. To minimize hardware costs, we deployed FenceTalk on an
embedded device, the Nvidia Jetson Nano, equipped with a graphics processing unit. The
Jetson Nano GPU features 128 CUDA cores and 4 GB LPDDR4 memory, making it suitable
for running CNN models that require extensive matrix operations.

This paper is organized as follows: Section 2 reviews the previous work; Section 3
describes the FenceTalk architecture; Section 4 describes how SSIM is used in FenceTalk;
Section 5 evaluates the object detection performance of FenceTalk and the time and space
complexities of Nvidia Jetson Nano.

2. Related Works

Deep learning models for moving object detection based on CNNs [8–11] can utilize
camera images from specific areas as training data to learn the features of moving objects.
This enables accurate identification of moving objects within the frame. In a previous
work [4], the authors chose the Yolo model for recognizing humans and vehicles, applying
it to a real-time recognition system in an advanced driver assistance system (ADAS).
Compared to two-stage recognition models like Faster-RCNN, the one-stage Yolo model
strikes a balance between accuracy and speed. Yolo and Yolo-tiny were employed for
pedestrian detection, achieving a recall rate of more than 80%. Yolo-tiny, in particular,
is well-suited to scenarios requiring real-time detection—aligning with the application
context of FenceTalk in our study.

We evaluated different versions of YOLO [12,13]. Despite YOLOv6 [14] having 33%
fewer parameters than YOLOv7-tiny and YOLOv4-tiny at the same scale, its inference
speed improved by less than 10%. However, this reduction in parameters led to an accuracy
drop of nearly 10% compared to YOLOv7-tiny. YOLOv7-tiny’s optimization primarily
emphasizes training efficiency and inference speed. On our hardware, YOLOv7-tiny
demonstrated object detection approximately 10% faster than that of YOLOv4-tiny. Nev-
ertheless, YOLOv7-tiny only achieved an accuracy of 90.86% on our dataset, falling short
of YOLOv4-tiny’s performance. As a result, we ultimately opted for YOLOv4-tiny as
our choice.

Now we review the past methods for evaluating image similarity and the applications
related to SSIM. Mean square error (MSE) is a common and straightforward approach to
measure the similarity between two images. It calculates the mean squared error value
of image pixels as an indicator of image similarity. A higher MSE value indicates greater
disparity between the two images. The calculation method of MSE considers only the
corresponding pixel values of the two images, making its results less reliable. In a study [15],
using Einstein’s image as an example, JPEG image compression and blurring were applied,
resulting in significant differences between the two images. However, their MSE results
were similar to the original image. MSE can also exhibit substantial variations in values
due to minor pixel rearrangements. The authors of the study slightly shifted and scaled the
Einstein image, maintaining a similar appearance to the original. Nevertheless, the MSE
values for these modified images were significantly high, reaching 871 and 873, respectively,
compared to the original image.

Peak signal-to-noise ratio (PSNR) [16] is defined based on MSE and is also widely
used for measuring image similarity [17]. PSNR resolves this issue by incorporating
peak intensity considerations. In particular, the logarithmic transformation enables us to
express scores more concisely. Consequently, the advantages of PSNR over MSE can be
summarized as follows: (1) facilitating the comparison of results obtained from images
encoded with varying bit depths and (2) providing a more concise representation. However,
it is important to note that, by definition, PSNR remains essentially a normalized variant
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of MSE. PSNR finds widespread utility in tasks related to image and video compression,
restoration, and enhancement, effectively quantifying the extent of information loss during
compression or processing. A higher PSNR value indicates greater similarity between the
two images. Nevertheless, when it comes to background detection, it does not exhibit the
same effectiveness as mixture of Gaussians (MOG) [18] and absolute difference (AD) [19].

MOG [18] is purpose-built for modeling the background within images by employing
a mixture of Gaussian distributions. MOG demonstrates adaptability to changing lighting
conditions and exhibits robust performance across various scenarios, making it suitable
for real-time applications. AD [19] represents another background subtraction technique.
While specific implementation details may vary, the core concept is to calculate the absolute
pixel-wise difference between corresponding pixels in two input images. The result is a
new image, known as the absolute difference image. Specifically, MOG garners favor for its
robustness in accommodating evolving environments, whereas the efficacy of AD hinges
on pixel-wise absolute difference.

In [20], it is argued that natural images possess highly structured characteristics with
closely related neighboring pixels. As a result, the structural similarity index measure
(SSIM) was introduced. SSIM is designed based on the human visual system (HVS) and
evaluates image similarity by considering brightness, contrast, and structural factors.
Unlike traditional methods like MSE or PSNR, which use a sum of errors, SSIM does not
drastically change its results due to minor changes in image brightness or noise, better
aligning with the human perception of image quality. The calculation method of SSIM will
be further introduced in Section 4.

In [21], the authors advocate using SSIM to measure the distance between tracked
objects and candidate bounding boxes in object tracking. Unlike the traditional method of
object tracking based on object color classification, this paper demonstrates that even in
challenging conditions such as temporary occlusion or changes in image brightness, using
SSIM still yields stable and reliable object tracking results.

In [22], the authors compare detection methods for moving objects using a single Gaus-
sian model, an adaptive Gaussian mixture model 2 (MOG2), and SSIM-based approaches.
The traditional single Gaussian model tends to capture a significant amount of image noise,
while MOG2 struggles to detect targets with similar colors to the background. However,
the SSIM-based detection method can accurately detect moving objects. The study only
utilized the first frame of the video as the SSIM background image and did not consider
subsequent changes in the background. In contrast, FenceTalk incorporates an algorithm to
update the SSIM background image and validates its stability using a large dataset.

In [23], a method for detecting geometric defects in digital printing images is proposed
based on SSIM. The study inspects defects such as stains, scratches, and ink in simulated
and real images. Compared to the AD-based inspection method, the SSIM-based approach
effectively detects subtle defects and reduces misjudgments caused by environmental
lighting factors.

ViT [6] is the state-of-the-art model for image classification, which is a revolutionary
deep learning architecture that has gained significant attention and popularity in the field
of computer vision. ViT has powerful image recognition capabilities, and when used for
image classification, it can achieve excellent results. Based on practical experience, ViT’s
performance significantly surpasses that of earlier algorithms MSE, PSNR, MOG2, and
AD. While running ViT does consume a significant amount of computational resources, its
performance can serve as an upper-bound reference point for accuracy comparison.

In a home security automatic recording system described in [24], SSIM is used to
compare the current and the next image frames to decide whether to trigger the recording
process. This system achieves a high-accuracy and stable event detection, saving storage
space and simplifying subsequent image analysis time. While the study used an average
similarity index and standard deviation of 100 consecutive pairs of frames as the threshold
for motion detection, FenceTalk differentiates images based on brightness to find the
optimal threshold. It then separates background noise and moving objects using this
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threshold, automatically selecting images that Yolo failed to recognize. This reduces the
time cost of manual labeling. The study reported a motion detection accuracy ranging from
0.985 to 0.995 in most experiments, while FenceTalk achieves a slightly better performance
of 0.9994. In [25], SSIM-NET is introduced for defect detection in printed circuit boards
(PCBs). SSIM-NET employs a two-stage approach where SSIM identifies regions of interest
in the image, followed by classification using MobileNet-V3. Compared to Faster-RCNN,
SSIM-NET offers more than 12 times faster recognition speed, 0.62% higher accuracy, and
faster training time. However, unlike FenceTalk, PCB defect detection does not need to
consider the impact of abrupt lighting changes on SSIM, and the paper does not mention
how SSIM background images are updated.

3. FenceTalk Architecture

FenceTalk utilizes a network camera to transmit real-time images for image recogni-
tion. Figure 2 illustrates the FenceTalk architecture, comprising six key components. At its
core is the FenceTalk server, which includes the FenceTalk engine (Figure 2 (1)), derived
from IoTtalk [6], and a developer GUI (Figure 2 (2)). Following the IoTtalk philosophy,
the FenceTalk server operates as an IoT server and employs an image database known as
FenceTalk DataBase (FTDB) to store images extracted from the video streams (Figure 2 (3)).
Additionally, the remaining four components within FenceTalk serve as IoT devices, en-
compassing the camera software module (Figure 2 (4)), the Yolo module (Figure 2 (5)), the
SSIM module (Figure 2 (6)), and the user GUI module (Figure 2 (7)).

 

Figure 2. The FenceTalk architecture.

Each of these software modules consists of two parts: device application (DA) and
sensor and actuator application (SA). The DA is responsible for communication with the
FenceTalk server using HTTP communication ((5)↔(1), (6)↔(1), (7)↔(1) in Figure 2), which
can be achieved through wired means (e.g., Ethernet) or wireless options (e.g., 5G or Wi-Fi)
for communication. The SA part implements functionalities related to IoT devices, such as
Yolo SA for object detection based on the Yolo model and SSIM SA for detecting moving
objects based on SSIM.
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The network camera (Figure 2 (4)) uses the real-time streaming protocol (RTSP) to
stream the image frames. If the user draws a red polygon to define a fenced area within
the desired field, FenceTalk will exclusively perform object detection within this specified
area. The Yolo SA (Figure 2 (5)) continuously receives the latest streaming image frames
and conducts object detection within the designated region using the Yolov4-tiny model.
The results of the detection process, including object names, positions, and image paths,
are stored in FTDB (Figure 2 (3)).

The ongoing Yolo recognition result is transmitted to the FenceTalk Engine (Figure 2 (1))
through the DA interface Yolo-I. The engine receives this data and has the capability
to preprocess it using custom functions before transmitting it to connected IoT devices.
Specifically, the engine forwards the Yolo recognition results to SSIM (Figure 2 (6)) through
the DA interface SSIM-O for further evaluation. The outcomes of this evaluation, which
include information about the presence of moving objects and corresponding image paths,
are then stored in FTDB. Simultaneously, the SSIM assessment result is sent to the FenceTalk
server via the DA interface SSIM-I, which is sent back to the Yolo module for further
processing (See Section 4). The results of object recognition are subsequently displayed on
user-defined devices (Figure 2 (7)).

In FenceTalk, IoT devices can be effortlessly connected and configured using the
developer GUI (Figure 2 (2)) accessible through a web browser. Figure 3 depicts this GUI,
wherein the involved IoT devices can be chosen from the model pulldown list (Figure 3 (1)).
When we opt for the Yolo IoT device (i.e., the Yolo module), two icons are displayed within
the GUI window. The icon on the left side of the window indicates the DA interfaces Yolo-I
and Msg-I (Figure 3 (2)). The icon on the right side represents the DA interface Yolo-O
(Figure 3 (3)). Similarly, we can choose the SSIM and the display devices. To establish
connections between the IoT devices, all that is required is dragging the “join links.” For
instance, Join 1 connects Yolo-I to SSIM-O. This link creates an automatic communication
pathway between the Yolo module and the SSIM module. Consequently, the configuration
shown in Figure 3 yields the FenceTalk architecture displayed in Figure 2.

 
Figure 3. The FenceTalk developer GUI.

4. The SSIM Module

When the Yolo module processes an image and detects the moving objects, it places the
image in the moving object database (Figure 4 (1)). If no moving objects are detected, the
image is placed in the non-moving object database (Figure 4 (2)). Both databases are parts
of FTDB (Figure 2 (3)). The detection accuracy of the Yolo module can be improved through
re-training using false positive images from the moving object database and false negative
images from the non-moving object database. The identification of false positive/negative
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images is typically performed manually. Unfortunately, our experience indicates that the
size of the non-moving object database is usually substantial, making the identification
of false positive images a highly tedious task. To resolve this issue, we developed the
SSIM module.

 

Figure 4. The operation of the Yolo module.

The structural similarity index (SSIM) is a metric used to measure the similarity
between two images. It assesses the images based on their brightness, contrast, and
structural similarity. It is commonly employed to determine the degree of similarity or
distortion between two images. Given a background image x and a test photo y, both of
size m × n, SSIM is defined as:

SSIM(x, y) = [Ψ(x, y)]α[c(x, y)]β[s(x, y)]γ (1)

where

Ψ(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1
(2)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(3)

s(x, y) =
σxy + C3

σxσx + C3
(4)

In Ψ(x, y), grayscale values of the images are used to compare the similarity in average
luminance between the two images. In the function c(x, y), contrast similarity between the
images is assessed by calculating the standard deviation of image pixels. The function s(x, y)
measures the similarity in structural content between the two photographs. In Equation (2),
μx and μy represent the average values of the pixel intensities of the two images, while σx
and σy in Equations (3) and (4) denote the covariance of the two images. Constants C1, C2,
and C3 are used to stabilize the function, where C1 = K1L2, C2 = K2L2, and C3 = C2

2 . The
values of K1 and K2 are set as 0.01 and 0.03, respectively, and L is the number of possible
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intensity levels in the image. For an 8-bit grayscale image, L would be 255. In [20], the
values of α, β, and γ are set to 1, leading to a simplified SSIM formula of Equation (1):

SSIM(x, y) =

(
2μxμy + C1

)(
2σxy + C2

)(
μx2 + μy2 + C1

)(
σx2 + σy2 + C2

) (5)

The structural similarity index (SSIM) yields larger values for more similar images
and possesses three key properties. The symmetry property is

SSIM(x, y) = SSIM(y, x)

The bound property is
SSIM(x, y) ≤ 1

The uniqueness property states that when two images are identical, i.e., μx = μy and
σx = σy, we have

SSIM(x, y) = 1

FenceTalk utilizes a predefined background image (Figure 5 (1)) and an image frame
(Figure 5 (2)) to determine the presence of moving objects. Since SSIM requires two single-
channel image frames as input, we convert the input images from RGB with three channels
to single-channel grayscale images. Then, we use an N × N sliding window with a moving
stride of 1. For each window, the SSIM is calculated. The output range of SSIM is [0, 1],
while the pixel values of an 8-bit image are in the range of [0, 255]. To represent the SSIM
values obtained from each sliding window in the full range of grayscale values, we linearly
scale the SSIM values to the range of [0, 255]. This produces a complete single-channel
grayscale (binarized) SSIM image (Figure 5 (3)).

Figure 5. The operation of the SSIM module.

In the SSIM image, different degrees of differences are represented by varying shades
of color. When the difference between the two images within a sliding window is larger, the
SSIM value is lower, and the corresponding area on the SSIM output image is represented
by darker shades. Conversely, when the difference between the two images within a sliding
window is smaller, the SSIM value is higher, and the corresponding area on the SSIM
output image is represented by lighter shades.

To determine the presence of moving objects in the SSIM image, a threshold value
needs to be set to separate the background noise from the moving objects. Using Figure 5 (3)
as an example, a threshold value of 125 is applied to this SSIM image to obtain the image
in Figure 5 (4). This process involves image binarization and edge detection, filtering out
small noise components, and determining whether the area within the fence boundary
contains moving objects. The corresponding detection positions are then highlighted on
the RGB image (Figure 5 (5)). The selection of an appropriate threshold to effectively distin-
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guish background noise from moving objects will be further discussed and experimentally
demonstrated in the next section.

The flowchart of the Yolo and the SSIM modules is illustrated in Figure 6. FenceTalk
determines the presence of moving objects by comparing the current frame with a back-
ground image. Before processing the image frame detection, FenceTalk selects frames
with varying brightness from the video as candidate background images, denoted as BG[l]
(0 ≤ l ≤ L = 255). If the moving objects to be recognized are within the 80 classes of the MS
COCO dataset [26], these candidate backgrounds are initially processed by a pre-trained
Yolo model trained on the MS COCO dataset to identify images that do not contain the
moving object (e.g., people). However, due to limitations in the pre-trained Yolo model’s
recognition capabilities or when the moving object is not in the MS COCO dataset, users
need to examine and remove background images that FenceTalk incorrectly identified as
not containing any moving objects. In FenceTalk, moving objects are defined as objects that
change their position relative to the background image over time, i.e., they are not fixed in
the background.

f

R

f

R f BG l

Bg f Bg=NIL

R f BgR

f  

f 

Figure 6. Operation of the Yolo and the SSIM modules.

FenceTalk reads a predefined background image BG[l] at the brightness level l, and
from the video, it reads the next frame f to be processed. Frame f first undergoes the Yolo
module for object recognition (Figure 6 (1)), where the Yolo model can be a pre-trained
model on the MS COCO dataset or a user-trained model. If the Yolo module detects any
objects (Figure 6 (2)), the images containing the moving objects are stored in the moving
object database (Figure 6 (3)), and those without the moving object are stored in the non-
moving object database (Figure 6 (4)). The process then moves on to the next frame. If the
Yolo module does not detect any objects, FenceTalk enters the SSIM module to detect the
false negatives images in the non-moving object database. The non-moving object database
serves as a buffer due to the differing processing speeds of the Yolo module, which utilizes
GPU, and the SSIM module, which operate on CPU. Consequently, the non-moving object
database guarantees that all images from the Yolo module can be processed by the SSIM
module without any loss of images.

FenceTalk calculates the brightness of frame f as l and selects the background image
BG[l] with the same or closest brightness to f. The SSIM module then detects missing
moving objects by comparing f and BG[l] (Figure 6 (5)). If the detection result (Figure 6 (6))
does not contain moving objects, the process continues to the next frame.

To reduce false positives caused by changes in background lighting or the addition
of new objects to the background, if FenceTalk determines that f contains moving objects
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(Figure 6 (6)), it performs a second check using a secondary background image, Bg. Initially,
FenceTalk checks if background image Bg exists (Figure 6 (7)). If Bg does not exist (Initially,
Bg = NIL), f is set as Bg (Figure 6 (8)) and stored (Figure 6 (9)) for subsequent model
training. If Bg exists, SSIM is again applied to detect moving objects by comparing f and
Bg (Figure 6 (10)). If the detection result (Figure 6 (11)) does not contain moving objects,
the process continues to the next frame. If moving objects are detected, Bg is replace by f
(Figure 6 (8)), and f is stored in the missing object database (Figure 6 (9)). The purpose of
Bg is to prevent the repetitive detection and storage of the same moving object across a
sequence of consecutive images. The utilization of SSIM(f, Bg) (Figure 6 (10)) ensures that
each moving object is saved in the missing object database only once. After processing
all desired image frames, users can retrieve all identified moving objects (Figure 6 (3))
and missing objects (Figure 6 (9)) from the database. These false negative images can be
automatically annotated and used to retrain the Yolo model (Figure 6 (12)) to improve its
accuracy. The retrained Yolo model can then be used to repeat the recognition process
(Figure 6 (1)) for improved recognition accuracy.

Figure 7 illustrates the process of automatic background update. The SSIM image
(Figure 7 (3)) is generated by comparing the background image (Figure 7 (1)) with the
current image frame ft at time t (Figure 7 (2)). Noticeable changes in shadows can lead to
misjudgment of moving objects by FenceTalk (Figure 7 (4)). Upon detecting moving objects,
FenceTalk updates the background image (Figure 7 (5)). The SSIM image (Figure 7 (7))
is generated by comparing the updated background image with the subsequent image
frame ft+1 at time t + 1 (Figure 7 (6)). The result is a correct judgment that the image frame
ft+1 does not contain any moving objects (Figure 7 (8)).

Figure 7. Background update.

5. FenceTalk Experiments

This section describes the datasets we collected and explains how we utilized these
data to experimentally demonstrate the universality of the optimal threshold for SSIM. We
will also discuss the accuracy of SSIM and Yolo in different subsets of the dataset. Finally,
we will showcase the processing speed and resource usage of FenceTalk on the embedded
device Jetson Nano.

We collected continuous camera footage from two outdoor locations, National Yang
Ming Chiao Tung University and China Medical University, for a duration of six days each,
using a recording frame rate of 30 FPS. Compared to indoor stable lighting conditions, the
use of outdoor camera footage from these two locations provided a more robust evaluation
of FenceTalk’s performance in complex lighting environments. Dataset 1 was obtained
from the entrance of the Electronic Information Building at No. 1001 University Road,
National Yang Ming Chiao Tung University, Hsinchu City (as shown in Figure 8a). The
data collection period was from 17 June 2022 to 23 June 2022, covering the entire day’s
camera footage. Dataset 2 was gathered from the Innovation and Research Building at
No. 100, Section 1, Jingmao Road, Beitun District, China Medical University, Taichung
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City (as shown in Figure 8b). The data collection period spanned from 10 December 2021
to 15 December 2022, capturing the full day’s camera footage. In Dataset 1, images were
collected at a rate of 10 FPS, resulting in a total of 4,832,579 images. Among these, there were
226,518 images containing moving objects (people). Dataset 2 comprised images collected
at a rate of 15 FPS, with a total of 6,910,580 images. Within this dataset, 144,761 images
were of moving objects. All images had a resolution of 1920 × 1080 pixels. These datasets
were chosen to encompass a diverse range of lighting conditions and scenarios, enabling
us to validate FenceTalk’s performance robustness and reliability in real-world outdoor
environments. It is noteworthy that due to this high collection frequency, the contents of
any two consecutive images exhibited striking similarity. When it came to utilizing these
images in training our model, a straightforward approach proved to be counterproductive,
as it substantially consumed computational resources without yielding significant benefits
to the model’s performance. Therefore, we resampled the images at a rate of 5 FPS, which
captured one image every 0.2 s. This adjustment allowed us to maintain a sufficiently fast
capture rate to effectively track moving objects (people), and train a highly effective model
while conserving computational power. Table 1 shows the total number of images utilized
in Datasets 1 and 2 after the resampling process.

  
(a) Dataset 1 (b) Dataset 2 

Figure 8. The locations for data collection.

Table 1. The images for training, validation, and testing.

Dataset 1 No. of Images No. of Images with People

Training 862,258 23,098
Validation 808,153 35,358

Testing 786,443 40,700

Dataset 2

Training 496,936 22,805
Validation 479,452 20,025

Testing 402,265 19,003

We utilized standard output measures for AI predictions, distinguishing them for the
Yolo module, the SSIM module, and FenceTalk (Yolo + SSIM). All images processed by the
Yolo module were classified into the following categories: TP (true positives), TN (true
negatives), FN (false negatives), and FP (false positives). Therefore, we have

Yolo : Precision =
TP

TP + FP
and Recall =

TP
TP + FN

(6)

In the SSIM module, the images in the non-moving object database were classified
into TP∗ true positives, TN∗ true negatives, FN∗ false negatives, and FP∗ false positives.
Therefore, we have
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SSIM : Precision =
TP∗

TP∗ + FP∗ andRecall =
TP∗

TP∗ + FP∗ (7)

and finally, the output measures for FenceTalk (Yolo + SSIM) are

FenceTalk : Precision =
TP + TP∗

TP + FP + TP∗ + FP∗ (8)

and

FenceTalk : Recall =
TP + TP∗

TP + FN
(9)

Specifically, the total count of all moving objects within a dataset is derived by TP + FN.
The count of correctly predicted cases by Yolo is represented by TP. TP* represents the
count of accurately predicted cases by SSIM among the FN cases. Consequently, the total
count of correctly predicted cases by FenceTalk (Yolo + SSIM) is TP + TP*. Therefore, the
recall is calculated as TP + TP*/TP + FN. The F1 score is expressed as

F1score = 2
(

Precision × Recall
Precision + Recall

)
(10)

In Equation (10), the F1 score takes into account both precision and recall.
In FenceTalk, to find and verify the universality of the optimal SSIM threshold in each

dataset, we divided each dataset into three subsets: the training dataset, the validation
dataset, and the testing dataset. In the FenceTalk experiments, we calculated the precision
and recall for both Yolo and SSIM (Equations (6) and (7)).

To find the optimal SSIM threshold, we calculated the average grayscale value of
each image and used it as an image brightness category. We used an interval of 25 for
the SSIM threshold and recorded the TP, TN, FN, and FP counts for different thresholds
under various brightness levels. This helped us calculate the precision and recall of SSIM
at different thresholds (elaborated in Figures 9 and 10). Since we aimed to collect images
that Yolo failed to recognize using SSIM for model training, we selected the threshold
with the highest recall value as the optimal SSIM threshold for each brightness level in the
experiment. If there were multiple highest recall values for a particular brightness level,
we chose the threshold with the best precision among them. If duplicates remained, we
selected the median as the optimal threshold.

Figure 9. FenceTalk precision performance under various luminance (brightness) levels.
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Figure 10. FenceTalk recall performance under various luminance (brightness) levels.

We employed the modified Yolo model trained on the training dataset to test the
validation dataset and find the optimal SSIM threshold for different brightness levels in
this dataset. Using the optimal SSIM threshold from the validation dataset, we identified
images containing moving objects and images detected by the Yolo model. After manual
labeling, these images were combined with all images containing humans from the training
dataset, serving as training data for the Yolo model, which was then applied to the testing
dataset for inferencing.

Table 2 presents the precision and recall of Yolo and SSIM using the optimal thresholds
in Dataset 1. In the training phase, the recall for Yolo was relatively low at 77.16%. However,
through the FenceTalk mechanism, the FenceTalk precision (Yolo + SSIM) was 97.71%
and the recall (Yolo + SSIM) was 98.68%. The validation phase showed that FenceTalk’s
precision exceeded 97% and FenceTalk’s recall (Yolo + SSIM) was above 99%. We re-trained
the Yolo model after the validation phase. Therefore, the validation phase was a second
training phase. Then, in the testing phase, FenceTalk’s precision was 97.65% and its recall
was 99.75%.

Table 2. The output measures for Dataset 1 (red font signifies the best performance).

Dataset 1

Yolo SSIM Yolo + SSIM

Precision Recall
F1

Score
Precision Recall

F1
Score

Precision Recall
F1

Score

Training dataset
(optimal SSIM

thresholds from
training dataset)

97.71% 77.16% 86.21% 97.99% 94.09% 96.00% 97.71% 98.68% 98.19%

Validation dataset
(optimal SSIM

thresholds from
training dataset)

97.72% 92.42% 93.63%

96.74% 90.71% 93.63% 97.66% 99.30% 98.47%

Validation dataset
(optimal SSIM

thresholds from
validation dataset)

97.59% 95.19% 96.37% 97.72% 99.64% 98.67%

Test dataset
(optimal SSIM

thresholds from
training dataset)

97.67% 93.53% 95.59%

96.15% 92.93% 94.51% 97.64% 99.54% 98.58%

Test dataset
(optimal SSIM

thresholds from
validation dataset)

96.29% 93.81% 95.03% 97.65% 99.75% 98.69%

110



Algorithms 2023, 16, 481

Yolo’s core technology enables efficient and accurate real-time object detection, making
it a fundamental tool in various computer vision applications. Yolo revolutionized object
detection by introducing the concept of single-shot detection, meaning it can detect and
classify objects in an image in a single forward pass of a neural network. Yolo places a
strong emphasis on maintaining good precision, which in turn results in a lower recall.
Yolo provides a confidence threshold to adjust the level of recall. A lower confidence
threshold can achieve higher recall but may lead to lower precision. In Tables 2 and 3, we
show fine-tuning of the confidence threshold of Yolo to achieve a similar precision level as
that of FenceTalk. Subsequently, we compared the differences in recall between Yolo and
FenceTalk (Yolo + SSIM).

Table 3. The output measures for Dataset 2 (red font signifies the best performance).

Dataset 2

Yolo SSIM Yolo + SSIM

Precision Recall
F1

Score
Precision Recall

F1
Score

Precision Recall
F1

Score

Training dataset
(optimal SSIM

thresholds from
training dataset)

98.81% 72.63% 83.72% 95.87% 94.12% 94.99% 98.81% 98.39% 98.2%

Validation dataset
(optimal SSIM

thresholds from
training dataset)

97.89% 92.83% 95.65%

87.97% 89.62% 88.79% 97.89% 99.26% 98.57%

Validation dataset
(Optimal SSIM
thresholds from

validation dataset)

88.66% 92.00% 90.29% 97.89% 99.43% 98.67%

Test dataset
(optimal SSIM

thresholds from
training dataset)

98.55% 94.41% 96.59%

92.54% 91.06% 91.80% 98.54% 99.50% 99.02%

Test dataset
(optimal SSIM

thresholds from
validation dataset)

93.03% 90.40% 91.70% 98.57% 99.67% 99.11%

Table 3 presents the precision and recall of Yolo and SSIM using the optimal thresholds
for Dataset 2. In the testing phase, FenceTalk’s precision was 98.57% and its recall was
99.67%. Both cases (Tables 2 and 3) indicated that integrating SSIM into FenceTalk led
to a further improvement in the overall F1 score compared to using only the Yolo model
for recognition.

Figure 9 presents the precision accuracy of Yolo and SSIM under different sub-datasets
and brightness levels. For Dataset 1, in the training phase, the lowest precision was
88.24% at brightness level 93. In the validation phase, the lowest precision was 87.34% at
brightness level 84. In the testing phase, the lowest precision was 93.56% at brightness level
83. For Dataset 2, in the training phase, the lowest precision was 89.89% at brightness level
82. In the validation phase, the lowest precision was 90.21% at brightness level 86. In the
testing phase, the lowest precision was 91.46% at brightness level 86.

Figure 10 depicts the recall accuracy of Yolo and SSIM under different sub-datasets
and brightness levels. For Dataset 1, in the training dataset, the lowest recall was 95.24% at
brightness level 89. In the validation phase, the lowest recall was 97.37% at brightness level
94. In the testing dataset, the lowest recall was 99.22% at brightness level 84. For Dataset 2,
in the training phase, the lowest recall was 95.31% at brightness level 101. In the validation
phase, the lowest recall was 98.77% at brightness level 89. In the testing phase, the lowest
recall was 98.45% at brightness level 98. Figures 9 and 10 display the lowest precision and
recall values across various sub-datasets and brightness levels. These lowest precision and
recall metrics represent the baseline performance of FenceTalk. In the majority of cases,
FenceTalk’s performance exceeded these lower bound values.

We also conducted a comparison of how ViT and SSIM performed in detection of
moving objects. We applied ViT and SSIM in greenhouse equipment operation status
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detection. For instance, when a user turned on the exhaust fan (Figure 11), we checked
whether the fan started correctly to determine the equipment’s normal operation.

(a) Fan is OFF. (b) Fan is ON. 

Figure 11. Greenhouse exhaust fan.

Table 4 displays the performance of ViT in recognizing equipment operation status.
ViT achieved a recall of 1 and an F1 score of 0.999. Table 5 presents the results of SSIM,
which were slightly lower than those of ViT. Specifically, SSIM achieved a recall of 0.98 and
an F1 score of 0.989. These results indicate that SSIM can provide satisfactory performance
when applied to moving object detection. However, when compared to ViT, SSIM requires
significantly fewer computational resources.

Table 4. Performance of ViT.

ViT Accuracy Precision Recall F1-Score

Training (94,848 images) 0.999962 0.999860 1.0 0.999930
Validation (11,856 images) 0.999938 0.999716 1.0 0.999858

Testing (11,858 images) 0.999936 0.999642 1.0 0.999820

Table 5. Performance of SSIM.

SSIM Accuracy Precision Recall F1-Score

Testing (23,712 images) 0.993158 0.989927 0.989314 0.989620

Figure 12 illustrates the processing speed and GPU utilization of the embedded
device Jetson Nano when executing FenceTalk. Each instance of FenceTalk was capable of
performing image recognition for an RTSP streaming camera. Yolo (FPS) and Yolo (GPU)
represent the execution speed and memory usage of Jetson Nano during object recognition.
Yolo + r/w (FPS) and Yolo + r/w (GPU represent the execution speed and memory usage
when Jetson Nano performs object recognition and reads/writes images. Yolo + r/w + SSIM
(FPS) and Yolo + r/w + SSIM (GPU) represent the execution speed and memory usage
when Jetson Nano performs object recognition, reads/writes images, and employs SSIM
for motion detection.

Our study indicates that Jetson Nano can simultaneously run up to three instances of
FenceTalk (i.e., the sources of video streaming came from three cameras). When the number
of FenceTalk instances was 1, Jetson Nano achieved a processing speed of 14.5 FPS during
object recognition, utilizing 0.79 GB of memory. However, with 3 FenceTalk instances, the
processing speed dropped to 10.7 FPS during object recognition, and the memory usage
increased to 2.56 GB. As the number of FenceTalk instances increased, Jetson Nano’s
processing speed decreased linearly rather than exponentially, while GPU utilization
exhibited a linear increase.
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Figure 12. FenceTalk’s processing speed and GPU usage on Jetson Nano.

6. Conclusions

A reliable image recognition model is crucial for security surveillance. Using image
data containing moving objects from the specific area as training data can significantly
enhance the model’s accuracy in recognizing the area. To simplify the process of selecting
target data from a large amount of image data, FenceTalk categorizes data based on
brightness and utilizes SSIM and optimal thresholds to compare differences between
current images and background images. It automatically selected suspicious images with
moving objects that the Yolo model failed to recognize. This approach enables the model to
learn the features of moving objects in the area using more training data. In the experimental
results of FenceTalk, the recall values (Yolo + SSIM) surpassed 99%, demonstrating the
universality of SSIM optimal thresholds. This also confirmed that FenceTalk effectively
captures moving objects with motion characteristics.

FenceTalk can be deployed on the embedded device Jetson Nano, ensuring smooth
system operation while reducing hardware costs. In the future, we will continue researching
methods to minimize misjudgments of moving objects due to shadow and lighting changes.
FenceTalk has a detection box to visualize recognized individuals; in the future, we will
add the visualization feature (YOLOv7-gradCAM) [27] to FenceTalk. Additionally, GUI
packages related to FenceTalk will be developed, making the system more user friendly
and reducing deployment complexity.

Until August 2023, we have technically transferred FenceTalk to the Department of
Education of Keelung City Government, Accton Technology Inc., Quanta Computer Inc.,
China Medical University, Asia University, and National Cheng Kung University.
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Abstract: Parkinson’s disease (PD) classification through speech has been an advancing field of
research because of its ease of acquisition and processing. The minimal infrastructure requirements of
the system have also made it suitable for telemonitoring applications. Researchers have studied the
effects of PD on speech from various perspectives using different speech tasks. Typical speech deficits
due to PD include voice monotony (e.g., monopitch), breathy or rough quality, and articulatory
errors. In connected speech, these symptoms are more emphatic, which is also the basis for speech
assessment in popular rating scales used for PD, like the Unified Parkinson’s Disease Rating Scale
(UPDRS) and Hoehn and Yahr (HY). The current study introduces an innovative framework that
integrates pitch-synchronous segmentation and an optimized set of features to investigate and
analyze continuous speech from both PD patients and healthy controls (HC). Comparison of the
proposed framework against existing methods has shown its superiority in classification performance
and mitigation of overfitting in machine learning models. A set of optimal classifiers with unbiased
decision-making was identified after comparing several machine learning models. The outcomes
yielded by the classifiers demonstrate that the framework effectively learns the intrinsic characteristics
of PD from connected speech, which can potentially offer valuable assistance in clinical diagnosis.

Keywords: Parkinson’s disease; speech processing; pitch synchronous segmentation; MFCC

1. Introduction

Approximately 7.5 million people all over the world are diagnosed with Parkinson’s
disease (PD). Since its first description put forth by James Parkinson in 1817, PD has been a
neurodegenerative disease that affects motor functioning [1]. With a prevalence of 572 per
100,000 individuals in North America, is the second most common neurodegenerative disor-
der caused by the degeneration and dysfunction of dopaminergic neurons in the substantia
nigra [2]. A 2022 Parkinson’s Foundation-backed study revealed that nearly 90,000 people
are diagnosed with PD in the U.S. each year [3]. Projections show that the number of
people with PD (45 years) will rise to approximately 1,238,000 by 2030 [4]. PD is primarily
characterized by motor symptoms like muscle weakness, rigidity, tremor, bradykinesia
(slow movement) that includes hypomimia, movement variability, and freezing of gait,
and nonmotor symptoms like olfactory dysfunction, anxiety, depression, cognitive deficits,
dementia, sleep disorders, and even melanoma [5]. The onset age ranges anywhere between
35 years and 60 years, and over 90% of people with PD are known to develop nonmotor
manifestations [6]. However, the disease course and symptom manifestations are known to
vary considerably from individual to individual. Such heterogeneity is also observed in
response to levodopa medication. Many people with PD experience a drastic decrease in
quality of life due to the substantial degeneration of dopaminergic neurons [7,8].

For over twenty-five years, clinical diagnosis of this highly heterogeneous disease
has seen little improvement in terms of accuracy. Before the late 1980s, formal diagnostic
criteria for this illness were nonexistent. Today, clinicians rely heavily on the Movement
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Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) and the Hoehn and Yahr (HY) rating scales to evaluate various aspects and primary
motor symptoms in patients’ daily lives. However, these subjective ratings can result in
incorrect diagnoses due to atypical Parkinsonian conditions, essential tremors, and other
dementias [9], which is why research in Parkinson’s primarily focuses on disease detection,
symptom research, and sustaining people’s quality of life.

Reports indicate that the onset of prodromal Parkinson’s disease is a slow and gradual
process, lasting from three to fifteen years [10]. Consequently, the motor effects of the
condition are often too subtle to be evident, making it difficult to diagnose. One of the most
frequent and early manifestations of PD is speech impairment, which is experienced by
approximately 90% of people living with the disorder [10–13]. Speech in people with PD is
subject to several vocal impairments, such as tremors, lowered loudness, pitch alteration,
hoarseness, imprecise articulation, delayed onset time, and decreased intelligibility [14–16].
These factors have provided researchers with an array of opportunities to conduct in-depth
studies on the subject using signal processing and machine learning. As a method of
day-to-day patient assessment, speech recording is an effective and non-invasive tool since
it is fast, affordable, and generates objective data.

Over the past decade, speech research for PD has garnered increasing interest within
the research community. Numerous studies have analyzed speech samples from individuals
with PD and healthy controls (HC) to conduct classification and monitoring investigations.
These studies can be broadly categorized into those based on ratings provided by trained
listeners according to their perception [17–22], acoustic analysis [23–27], and/or compu-
tational methods involving mathematical modeling with signal processing and machine
learning techniques [28–34]. Computational methods employ distinct sets of acoustic fea-
tures extracted from various speech samples or tasks. The choice of speech stimuli and
the specific features extracted from them depend on the research question and the type of
speech impairment (phonatory or articulatory) targeted for classification.

Three types of speech tasks are commonly employed to elicit the effects of PD. These
tasks include sustained vowel phonations, diadochokinetic (DDK; repetition of syllables),
and connected speech (word/sentence/paragraph readings, monologues, etc.) tasks. Stud-
ies using sustained vowel phonations [32,35–37] focus on regularities or irregularities in
phonation to train efficient classification models. Sustained phonations are relatively easy
to analyze and do not suffer from language or accent barriers other than connected speech.
However, researchers have reported the higher suitability of connected speech over sus-
tained phonations to study pathological speech [38,39] due to their closeness to everyday
speech. Although the DDK task is speech-like, it is less natural, and research consensus
is mixed on the effectiveness of DDK in PD classification. Some studies have shown no
significant differences between PD and HC groups [40], and other more recent studies have
shown that people with PD have lower DDK rates than healthy speakers [41].

The individual diversities in cognitive processing behind speech production reflect
misread texts, variations in pause durations, and other such manifestations. These mani-
festations make connected speech more complicated for analysis because it often requires
manual corrections to maintain consistency in the data, which is essential for unbiased
classification experiments. Hence, fewer research studies like [28] aim to automate PD
classification/monitoring using connected speech. Rusz et al. showed significant progress
in utilizing connected speech for automatic PD classification [42,43]. They used multiple
types of speech tasks and observed that features extracted from monologue (connected
speech) were sensitive enough and tasks like sustained phonations and DDK were not
optimal to capture impairments due to prodromal PD. Studies like [44–46] used passage
reading tasks to evaluate continuous speech and observe the variability between PD and
HC using temporal and spectral features. Skodda et al. focused on specific vowel sounds
and observed reductions in vowel space in PD speech [47]. In another study [48], various
speech features, including NHR, fundamental frequency, relative shimmer, and jitters, were
evaluated and compared. Lower values for these features are considered desirable for good
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speech signal quality. Additionally, the study explored the variants of vowel space area
(triangular VSA—tVSA and quadrilateral VSA—qVSA), and FCR (Formant Centralization
Ratio), which are indicators of potential dysarthria-related conditions that could lead to
compression in VSA.

Furthermore, some recent studies [49] have discussed the application of different
automatic speech recognition (ASR) services (such as Amazon, Google, and IBM) to dif-
ferentiate between healthy controls and PD patients. Nonlinear mixed effects models
(nLMEM) accounted for the unequal variance between healthy controls and individuals
with speech disorders.

In recent years, there has been a notable shift towards utilizing deep learning models
for speech processing in PD classification. Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) [50–53] have gained prominence in detecting and clas-
sifying PD based on speech signals. These models have the capability to automatically
extract features from speech signals [54,55] and learn to classify them based on underlying
patterns within the data. However, it is essential to acknowledge that the use of deep
learning techniques often has limitations that include data dependency, computationally
intensive, lack of interpretability, and high training time. The positive aspect is that these
opportunities provide us with a range of future prospects.

In our previous study [56], a novel classification protocol that deviates from the
conventional process primarily in terms of signal segmentation was introduced. Syllabic-
level feature variances were used instead of features themselves for training classifiers. The
data used in that study consisted of three different word utterances repeated multiple times
at various places in the paragraphs read by 40 different speakers.

Research on connected speech and sustained phonations has shown different strengths
individually in capturing the effects of PD. In this study, a novel framework that draws
on and combines these strengths of connected speech was developed and evaluated. The
development and evaluation of this framework is a step toward establishing an efficient
process that can be used to aid in diagnosis and telemonitoring applications. The proposed
methodology closely follows the procedure adopted in our earlier study [56], with sig-
nificant modifications. Here, different options for methodological steps representing the
conventional and proposed frameworks were identified. The optimal choice for each step
was identified through a comprehensive analysis. Features were extracted only from all
the voiced segments in paragraph recordings collected from people with PD and HCs. A
variety of classifiers were trained on the features themselves using hold-out validation.
Through this approach, pitch-synchronous (PS) segmentation was proven to capture vocalic
dynamics more efficiently, resulting in better and more reliable PD classification. To test
the efficiency of the proposed framework, two separate datasets consisting of paragraph
recordings in different languages were used, with each dataset being utilized in the training
and testing phases individually. The features from our earlier study [56] were divided into
two groups: mel-frequency cepstral coefficients (MFCCs) and pitch-synchronous features
(PSFs), and they were compared. MFCCs have been widely used for speech recognition and
speaker identification tasks. They have also been part of many studies aimed at PD classifi-
cation and stood out as some of the best features yielding good performance [32,34,35,37,57].
The methodology adopted to evaluate the MFCCs for PD classification here has been de-
signed to replicate these research works, where the results show a classification accuracy
close to 90%. Most of these studies employ linear SVM kernels for classification, and we
included the same in our classifier set. PSFs, designed to work with PS segmentation of
voiced speech, had superior performance among the two feature groups.

In summary, the benefits of this study are as follows:

1. Efforts to establish an analytical framework that can be automated to classify between
PD and HC using vocalic dynamics.

2. Providing evidence as to the robustness of the framework for the language being spoken.
3. Evaluation of PSFs for PD classification.
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4. Providing evidence for the shortcomings of using MFCCs for PD classification due to
their inherent nature of embedding patient identifiable information.

2. Dataset Description

This research utilized data from two different databases. The use of multiple databases
helps verify the reproducibility of results and comprehend the effect of dataset size on
classification performance. In this study, connected speech is evaluated using passages
in Italian (Database 1) and English (Database 2) languages read by people with PD and
healthy controls. The database descriptions are as follows:

2.1. Database 1

The first database was accessed from the IEEE DataPort [58], which is an Italian
Parkinson’s voice and speech collected by Dimauro and Girardi for the assessment of
speech intelligibility in PD using a speech-to-text system. It contains two phonetically
balanced Italian passages read by 50 subjects: 28 PD (19 male and 9 female) and 22 HC
(10 male and 12 female). The recordings were created at a sampling rate of 44.1 kHz with
16 bits/sample. The duration of each passage recording varied between 1 and 4 min, with
a mean of 1.3 min. The recordings were performed in an echo-free room, with the distance
between the speaker and microphone varying between 15 and 25 cm. According to the
authors of [59], none of the patients reported speech or language disorders unrelated to
their PD symptoms prior to their study and were receiving antiparkinsonian treatment.
The HY scale ratings were <4 for all the patients except for two patients with stage 4 and
1 patient with stage 5. Only the passage reading speech task from this database was used
for this study.

2.2. Database 2

Database 2 was selected from a larger database collected at the Movement Disorders
Center, University of Florida [60]. It comprises speech tasks such as passage reading (“The
Rainbow Passage”, Fairbanks, 1940) and sustained vowel phonations, though only the
former was used in this study. This dataset is more balanced compared to Database 1 with
10 age and gender-matched data in both PD and HC groups. Recordings were taken with a
Marantz portable recorder (Marantz America, LLC, Mahwah, NJ, USA) and stored digitally
with a sampling rate of either 44.1 kHz or 22.05 kHz and 16 bits/sample. The duration of
recordings from this database varied between 25 and 90 s, with a mean of 41 s. Despite
the existence of two different sampling rates in Database 2, the procedure was not affected
since the segmentation and feature extraction were designed to be robust and independent
of the sampling frequency. Additionally, the sampling rates are not class-specific, i.e., both
HC and PD classes consist of data that have both sampling frequencies. The institutional
review board approved all test procedures at the University of Florida, and testing was
completed following an informed consent process.

3. Materials and Methods

3.1. Methodology Block Description

The experimental methodology was conducted to assess the different alternatives
identified for each block depicted in Figure 1. The final framework remains unchanged
from the methodology block diagram, considering only the optimal choices identified from
the results for each block.
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Figure 1. Methodology Block Diagram.

The methodology blocks, along with the different choices, are explained as follows:

3.1.1. Preprocessing: Block Processing and Pitch Synchronous Segmentation

After categorizing voiced and unvoiced portions from the speech signals, super-
segments were recognized as the voiced components surrounded by unvoiced/silent
portions on both sides. These super-segments are subsequently segmented into blocks
or pitch-synchronous segments. Typical speech analysis follows a block processing ap-
proach where the block size can vary between 20 and 50 ms, depending on the application.
These blocks are known to retain the necessary statistical stationarity in the data. In pitch-
synchronous (PS) segmentation, the pitch cycles in voiced portions of speech are segmented
out and processed.

Figure 2 shows a speech sample segmented using block processing (top) with a 25 ms
window size and 50% overlap. The red vertical lines show the window edges for the first,
third, and fifth windows, and the black lines show the same for the second, fourth, and
sixth windows. The 50% overlap can be seen between red windows and black windows. In
PS segmentation (bottom), the length of each segment is correlated with the fundamental
frequency of the speaker and intonational variations and thus can vary from cycle to
cycle. The PS segmentation was executed through an automated algorithm that detects
voiced sections and subsequently segments them in accordance with the pitch-synchronous
method outlined in [61].

In Database 1, a total of 378,000 pitch-synchronous cycles were identified, whereas in
Database 2, approximately 87,000 pitch-synchronous segments were extracted. In Database
1, a total of 12,600 super segments were picked out. From each paragraph reading an
average of 134 ± 24 super-segments have been identified. Each super segment contained
an average of 30 cycles, with a standard deviation of 27 cycles. In Database 2, a total
of 1357 super-segments were extracted, with an average of 68 ± 20 super segments per
paragraph. Each super segment contained an average of 64 ± 58 cycles.
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Figure 2. Segmentations: Block processing (top) with vertical (red/black) lines showing block limits
with block indices (green) and pitch synchronous (bottom). Y–axis shows the normalized signal
amplitude.

3.1.2. Feature Extraction: MFCCs and PSFs

MFCCs and custom-designed PSFs are used in this study. MFCCs are widely uti-
lized features in speaker recognition applications due to their effectiveness. In this study,
15 MFCCs were extracted from each speech segment and used for classification. A set of
15 PSFs was extracted from each PS segment in voiced portions of the recordings. These
features were explained in our previous work [56]. Table 1 provides the feature names
along with the corresponding number of elements obtained from each feature. Since the
speech samples underwent two distinct segmentation methods, MFCCs were separately
extracted for each segmentation type. However, PSFs were exclusively extracted using the
PS segmentation protocol. These features target cycle-to-cycle perturbations, which cannot
be adequately captured by traditional measures like jitter and shimmer.

Table 1. Pitch Synchronous Features.

Feature Name Size

Pitch Period 1
LOC—Length of Curve 1

Quarter Segment Energy 4
Total Energy 1

Correlation Canceller Efficiency 1
Correlation Canceller MSE 1

Peak Frequency (Hz) 1
Quarter Band Magnitude 4

Spectral Factor 1

Moreover, PSFs emphasize a wide range of attributes in both the time and frequency
domains, enabling them to capture perturbations in both the vocal cords and the vocal tract.
This comprehensive approach contributes to their effectiveness in the classification process.

3.1.3. Feature Preparation

In segmental analysis, the features extracted from each speech segment (block process-
ing or PS) were treated as individual data points while training the classifiers. The available
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samples (feature vectors) were randomized and divided into training and testing sets. For
PSFs, each feature vector except Quarter Segment Energy and Quarter Band Magnitude
is transformed using min-max normalization at a super segment level to maintain consis-
tency in their scales. As those two features contain four values, they are normalized as a
group, i.e., All four vectors were grouped together and then the min and max values across
the group of four vectors were used as the min and max for the group for normalization.
This normalization allows the maintenance of variability within the features while matching
the scales across the super segments for each feature.

3.1.4. Validation Split: Hold-Out

It is common practice to randomize data and extract 80% of it for training and test the
model performance on the remaining 20% in machine learning problems with each data
point treated as unique and independent.

In this study, due to data imbalance, after creating the training and testing datasets,
they were further reduced following a specific protocol that mitigates the class imbalances
while preserving generalization. After performing the 80–20% split, ‘N’ random samples
from each class (PD/HC) in the original training set were pooled to have a total of 2N
samples in the training set. N was chosen to be equivalent to 50% of the minority class
size in the initial train set. This protocol ensures that the train and test sets have no shared
samples and that the class distributions remain similar. The selection of the 50% factor also
ensured sufficient training samples.

3.1.5. Classifier Training

A total of 17 classifiers available in MATLAB were employed for conducting classifi-
cation experiments in this study. It included variants of Trees, Support Vector Machines
(SVMs), k-nearest Neighbors (KNNs), Ensemble learners, and logistic regression. All the
classifiers were trained with 5-fold cross-validation. Using a collection of classifiers, the
suitability of different classifiers for this application was evaluated with unbiased decision-
making. The arrangement of all the classifiers into their respective groups can be observed
in Figure 3. Notably, all the classifiers were utilized with their default hyperparameter
settings, as provided by MATLAB’s Classification Learner Application.

 

Classifiers 

 

Trees: 
Medium Tree 
Coarse Tree 

Fine Tree 
RUS Boosted Trees 

 

SVMs: 
Linear SVM 

Coarse Gaussian SVM 
Medium Gaussian SVM 

Fine Gaussian SVM 

 

KNNs: 
Medium KNN 
Coarse KNN 
Cosine KNN 

Fine KNN 
Weighted KNN 

 

Ensembles: 
Ensemble Boosted Trees 
Ensemble Bagged Trees 
Ensemble Subspace KNN 

Logistic Regression 

Figure 3. Organization of classifiers used in this study.

3.2. Experimental Design

Classification experiments were targeted to systematically identify the optimal choice
for each methodology block in Figure 1. This experimental process included various steps,
focused on the identification of optimal choices for segmentation methods, feature sets,
and analysis techniques, subsequently, evaluating the appropriateness of each classifier for
each application.

Finally, the performance was assessed when the optimal classifier set was trained
and tested using data from different databases while employing the optimal segmentation
method and feature set.

Individual step descriptions and their goals are described below in detail.
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3.2.1. Importance of Block Size in Conventional Block Processing

Identification of the right block size becomes imperative when PS segmentation must
be compared against block processing. In this step, performances for the block sizes ranging
from 20 to 50 ms with 5 ms increments and 50% overlap were tested using MFCCs under
the Hold-Out validation protocol for both genders individually. Results from this step were
used to pick an optimal candidate for block size. In subsequent steps, whenever block
processing was compared against PS segmentation, results from using the optimal block
size choice identified in this step were used.

3.2.2. Identification of Optimal Choice for Segmentation Method

A novel comparison technique was adopted in this step to identify the optimal choice
for segmentation and analysis methods. This technique was designed to measure the
efficiency of classifiers in learning the effects of PD rather than their ability to remember
the speakers in each class. The process is twofold: first, classification performance was
determined under regular circumstances, and then speakers were randomly assigned
PD/HC labels, and classification experiments were repeated without making any other
changes to the protocol. As the speakers were randomly labeled, a drop in classification
performance was anticipated across all cases. Since the segmentation and analysis technique
combined with the ability to remember speakers in each category, comparable results were
expected regardless of the original and random PD/HC labels. Therefore, the magnitude
of the performance reduction was likely to be lower for such combinations.

Relative Reduction =
OA − RA

OA
× 100 (1)

where OA & RA are accuracies with original random labels.
The relative reduction in accuracy defined by the drop in performance was calculated

as per the equation. The experiments involved utilizing MFCCs from Database1 separately
for each gender, employing all available classifiers. In the case of experimental parameters
favoring speaker identification over recognition of PD effects, comparable results were
expected regardless of the original and random PD/HC labels. Therefore, the magnitude
of the performance reduction was likely to be lower for such combinations.

3.2.3. Identification of Optimal Choice for Feature Types

During this step, the selection between features MFCCs and PSFs, was made using
the same protocol as in the previous step. The evaluation of feature combinations for each
gender was carried out independently by assessing the relative reduction in classification
accuracy resulting from random label assignment.

3.2.4. Evaluation of Classifiers

The 17 classifiers used for the experiments as listed in Figure 3, were evaluated for
over-fitting by comparing the overfit factor and test accuracies. The overfit factor, calculated
according to the given Equation (2), quantifies the relative difference between the training
and testing accuracies. A higher overfit factor value indicates that the classifier performs
well on the data seen during training but may be overfitting to that specific training data.

Overfit factor =
Train Acc − Test Acc

Train Acc
(2)

The test accuracy with random label assignment serves as an indicator of the classifier’s
tendency to memorize speakers more effectively than learning the patterns associated with
PD. These two metrics, obtained from the results of experiments using the optimal choices
determined in the previous steps, were utilized to identify, and eliminate classifiers that
exhibited a significant inclination to overfitting.
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3.2.5. Testing Using Different Databases

The optimal feature choice and a reduced list of classifiers were selected for the final
framework development. The efficacy of this framework was tested by training the classi-
fiers on a larger dataset and testing them on a different dataset. The latter dataset, except
for the speech task, differed in terms of speakers, language, and acquisition environment,
ensuring a more comprehensive assessment of the classifiers’ performance and robustness.
Furthermore, the influence of gender over the framework was examined by conducting
replications of the experiment without any gender-based filters to the data. This allowed
for a broader analysis of how the classifiers performed across both genders without any
gender-specific constraints.

Owing to the variations in data acquisition conditions, such as differences in equip-
ment and variations in speaker-to-microphone distances, the features extracted from differ-
ent databases exhibited discrepancies in their numerical ranges. Normalization has been
used to address these differences and maintain uniformity between the features from both
databases before initiating the experimentation where training and testing were performed
using different databases. z-scores with zero mean and unit standard deviation were
extracted from feature data using Equation (3) and used for training and testing.

zij =
xij − μi

σi
(3)

where, x-Feature value, i-Feature index, j-segment index, μ-Mean, and σ-Standard deviation.
In addition to the normalization, a syllabic analysis approach is designed to emphasize

more of the perturbations. The features extracted were transformed into covariances at
a super segment level to do this. In the speech data, super segments were identified as
the voiced components bordered by unvoiced/silent portions on both ends as explained
earlier. Features extracted from all segments within a super segment were grouped and
covariances of these feature groups were used for training classifiers. Figure 4 shows the
method adopted to extract these covariances. C1 to Cn represent the feature covariances
and subsequently used feature vectors from each super segment.

Figure 4. Syllabic learning approach showing the original recording (blue) overlaid with voiced
sections (red) in the figure at the top. One of the voiced sections, segmented pitch synchronously, is
zoomed into and shown at the center.
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4. Results and Discussion

In this section, results for each one of the five steps mentioned in the previous section
were presented. As results contain classification accuracies from multiple classifiers, box
plots were used to show their distribution.

MFCCs with block segmentation with various block sizes ranging from 10 ms to 40 ms
were extracted and utilized for PD/HC classification. The result did not demonstrate
any significant impact due to block sizes and for brevity, only results from a block size
of 25 ms were used whenever block processing results were discussed to be investigated
from hereon.

The results from PS and block processing (25 ms block size, 50% overlap) with original
labels and randomly assigned labels along with their relative differences were used. The
outcomes from MFCCs using block and PS segmentations for both genders in Database 1
using holdout validation are provided in Figure 5. It was observed that both segmentation
methods performed similarly across all genders.

 

Figure 5. Classification results with different segmentations using original labels (MFCCs from
Database 1).

These results indicated that except for females with block processing, the PS segmenta-
tion led to comparable or even greater degradation in all other cases. Notably, some of the
classifiers exhibited negative values for percentage decrease, indicating better classifications
with randomized labels. Upon closer examination, it was revealed that classifiers with fine
kernels were primarily responsible for such effects. These classifiers were also found to be
prone to overfitting issues, as discussed in detail later in this paper.

Overall, block segmentation yielded superior accuracies compared to PS segmentation
when MFCCs are used.

When classifiers were trained using data with random labels, performance decreased
in all cases as expected. The relative accuracy reduction due to random label assignment is
shown in Figure 6.

The relative reduction in accuracy was also more pronounced in the case of block
segmentation for females. In males, both segmentation methods were comparable when
data was labeled randomly. In conclusion, it was observed that when trained with random
labels, the degradation in accuracy was more pronounced, highlighting a lack of robustness
in the classifiers while using block segmentation.
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Figure 6. Percentage reduction in classification performance with original and random labels (MFCCs
from Database 1).

The comparison between feature types was made using classification accuracies with
original labels and the relative decline in performance due to random label assignment. The
performance comparison between MFCCs from PS segmentation and PSFs using Database
1 for both genders is shown in Figure 7. We observe that in female, PSFs has better median
accuracies than MFCCs. The significantly higher relative reduction in performance for
PSFs along with higher classification accuracies for MFCC as depicted in Figure 6, indicates
that MFCCs contain more speaker-identifiable information while PSFs exhibit a higher
capability to capture the impact of PD on vocalic dynamics. Conversely, PSFs exhibited a
higher capability to capture the impact of PD on vocalic dynamics compared to MFCCs.

 

Figure 7. Classification performance comparison between MFCCs and PSFs (Database 1).

The percentage reduction in classification performance with original labels and ran-
domly assigned labels was consistently higher for PSFs than MFCCs in all cases, as demon-
strated in Figure 8. In conclusion, these findings suggest that PSFs are more effective
than MFCCs in containing the effects of PD, while MFCCs are better suited for speaker
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identification and verification applications. As PSFs are extracted using PS segmentation,
between block processing and PS segmentation, the latter becomes the optimal choice.

 

Figure 8. Percentage reduction in classification performances with original and random labels—
classification between MFCCs and PSF (Database1).

Next, to recognize the optimal set of classifiers, each one of the 17 classifiers was
evaluated using two different metrics:

1. Overfit factors are displayed in Table 2;
2. Test accuracy using random label assignment is shown in Table 3.

Table 2. Overfit Factor with Original Label.

Classifier No. Classifier Name

Overfit Factor with Original Label

Male Female

MFCC PSF MFCC PSF

1 Medium KNN −0.003 0.021 0.023 0.022
2 Coarse KNN −0.012 0.017 0.014 0.003
3 Cosine KNN 0.005 0.015 0.016 0.021
4 Linear SVM −0.001 −0.005 0.009 0
5 Coarse Tree 0.012 0.037 0.017 −0.001
6 Coarse Gaussian SVM −0.002 0.006 0.013 0.001
7 Medium Tree 0.016 0.031 0.015 0.003
8 Ensemble Boosted Tree 0.018 0.026 0.025 0.004
9 RUS Boosted Tree 0.016 0.031 0,015 0.003

10 Logistic Regression 0 −0.012 0.007 −0.001
11 Fine Tree 0.039 0.03 0.061 0.008
12 Medium Gaussian SVM 0.003 0.006 0.02 0.001
13 Fine KNN 0.035 0.057 0.109 0.111
14 Weighted KNN 0.026 0.055 0.099 0.1
15 Ensemble Bagged Trees 0.046 0.051 0.1 0.051
16 Ensemble Subspace KNN 0.026 0.139 0.089 0.13
17 Fine Gaussian SVM 0.173 0.017 0.137 0.008
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Table 3. Median Test Accuracies with Random Labels in Both Genders for Both Features.

Classifier No. Classifier Name

Median Test Accuracy

Male Female

MFCC PSF MFCC PSF

1 Medium KNN 90.18 75.77 93.73 78.725
2 Coarse KNN 85.33 72.17 89.11 74.855
3 Cosine KNN 89.46 75.965 93.14 79.31
4 Linear SVM 67.69 58.8 80.44 53.65
5 Coarse Tree 66.52 59.52 77.01 69.605
6 Coarse Gaussian SVM 75.12 61.715 83.92 64.525
7 Medium Tree 68.83 63.09 76.81 72.405
8 Ensemble Boosted Tree 74.04 67.96 82.76 75.415
9 RUS Boosted Tree 68.83 63.09 76.81 72.35
10 Logistic Regression 67.62 59.335 79.92 59.38
11 Fine Tree 72.18 66.965 80.62 75.93
12 Medium Gaussian SVM 86.63 70.21 90.78 75.865
13 Fine KNN 91.27 75.32 93.91 76.43
14 Weighted KNN 91.97 77.4 94.29 78.66
15 Ensemble Bagged Trees 88.67 80.98 92.39 85.26
16 Ensemble Subspace KNN 90.62 66.125 94.08 73.915
17 Fine Gaussian SVM 92.14 78.415 95.86 80.62

In both Tables 2 and 3, the classifiers were arranged in ascending order of the overfit
factor observed in males using MFCC for training. Index numbers were assigned to each
classifier in the leftmost column of both tables for easy identification during discussions.
To ensure robustness and bias-free analysis, all classifier experiments, including training,
testing, and result acquisition, were repeated 10 times and the median values of overfit
factors and test accuracies were then presented in Tables 2 and 3, respectively.

In Table 2, for both MFCCs and PSFs in both genders, classifiers 1 to 10 exhibited
significantly lower overfit factors compared to the rest. Conversely, from classifier 11
to classifier 17, the overfit factors increased, indicating a greater tendency to overfit the
training data. Table 3 displays the median test accuracies for each classifier under pitch-
synchronous segmentation when labels were randomized. Among the classifiers with lower
overfit values identified in Table 2 (classifiers 1 to 10), the first three classifiers exhibited
significantly higher accuracy values even with random labels. This finding indicates
that kNNs are more suitable for speaker verification applications than PD classification.
They tend to rely on the proximity of samples in the feature space and learn minimal
information related to the effects of PD. Comparably, the results in Table 3 revealed that
MFCCs achieved much higher accuracy values than PSFs, suggesting that MFCCs are
better suited for speaker identification tasks compared to PD classification. Based on these
observations, only classifiers 4–10 were identified as optimal classifiers.

For the final step, training and testing were carried out using different databases.
Database 1 and Database 2 consist of speakers with varying characteristics, including
nationality, spoken language, paragraph length, and sampling frequency (16 kHz for
Database 1 and 44.1 kHz for Database 2).

Figure 9 presents the results obtained when the optimal set of classifiers is trained
and tested over different databases after applying normalization and using the z-scores
before training the classifiers. The normalization process ensured that the classifiers were
trained and tested on data with consistent scales, facilitating fair and reliable performance
comparisons across the two databases. Figure 10 shows the results for the same grouping
as Figure 9, where the syllabic level covariances are used for classification instead of the
z-scores. Comparison between both figures shows the MFCCs cannot contain the effects
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of PD as well as PSFs. Covariances computed over PSFs at the super-segment level are
more reliable than MFCCs. While it can clearly be improved further, these results provide
evidence for the need to develop features that capture the vocalic dynamics more than the
features that are reliable in identifying the speakers.

 

Figure 9. Classification accuracies with Database 1 used for training and Database 2 used for testing
using z-scores for MFCCs and PSF.

 

Figure 10. Classification accuracies with Database 1 used for training and Database 2 used for testing
using covariances from syllabic analysis z-scores for MFCCs and PSF.

Besides accuracy, additional metrics were used to evaluate the performance. The
descriptions are as follows:

True Positives (TP): Number of PD samples predicted as PD.
True Negatives (TN): Number of HC samples predicted as HC.
False Positives (FP): Number of HC samples predicted as PD.
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False Negatives (FN): Number of PD samples predicted as HC.
Accuracy: Proportion of test samples correctly predicted.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(4)

Precision (P): Proportion of PD predictions that were correct.

Precision =
TP

(TP + FP)
(5)

Recall (R): Proportion of all PD samples correctly predicted.

Recall =
TP

(TP + FN)
(6)

F1-Score: Harmonic mean of precision and recall.

F1 − Score =
2 × P × R
(P + R)

(7)

Matthews Correlation Coefficient (MCC): An improvement over F1-Score as it includes the
TN in its computation.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(8)

ROC-AUC: Area under Receiver Operating Characteristic (ROC) curve.

All the metrics except MCC have values between 0 and 1, with 1 being the best possible
value. MCC can have values between −1 and 1, with 1 being the best possible value.

Under gender-independent grouping (black) for MFCCs, Coarse Gaussian SVM and
Logistic Regression demonstrated relatively higher performance across all metrics, as
illustrated in Figure 11a For PSFs, Medium Trees also exhibited comparable performance to
Coarse Gaussian SVM and Logistic Regression, as depicted in Figure 11b Therefore, Coarse
Gaussian SVM and Logistic Regression emerge as superior classifiers for PD classification,
whether using MFCCs or PSFs. with PSFs, Coarse Gaussian SVM, and Ensemble Boosted
Trees achieved classification accuracies close to 75% without any indication of bias in F1-
scores and MCC. Upon a more detailed analysis of the results in Figure 5, it was observed
that under the same conditions, these two classifiers achieved an average accuracy of 85%
when exclusively using Database 1 for training and testing.

In this paper, all the results presented so far were obtained by treating each segment as
an individual sample. Using logistic regression with PSFs, the percentage of correctly pre-
dicted segments from each participant was determined. The results from coarse Gaussian
SVM closely followed the outcomes from logistic regression.

Remarkably, the proposed framework demonstrated a high recall and good precision
for detecting PD; this was supported by the result that more than 80% of PD speaker
segments and over 50% of HC speaker segments were correctly predicted with their
corresponding labels. The proposed methodology is being further developed to improve the
precision by decreasing false positives. It involves capturing the cycle-to-cycle perturbations
much better and evaluating each syllable holistically. In our latest studies, a syllabic
analysis protocol is being developed and preliminary results show signs of PSFs consistently
outperforming MFCCs. These insights will be incorporated into our upcoming report.
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(a) (b) 

Figure 11. Performance Metrics with Database 1 for training and Database 2 for testing with
(a) MFCCs in three groups; and (b) PSFs in three groups. The three groups are namely group 1
(blue line), group 2 (red line), and group 3 (black line).

5. Conclusions

In this study, a novel protocol for PD classification using connected speech has been
proposed and thoroughly tested under various experimental conditions. Different choices
representing proposed and existing frameworks for some of the methodological blocks
were identified and systematically evaluated. In the analysis of block processing with
varying block sizes using MFCCs, it was revealed that the block size had no significant
impact on the classification performance. On comparing the two segmentation protocols,
PS segmentation exhibited superior performance, which could be attributed to its ability
to maintain consistent resolution across speakers with different and varying fundamental
frequencies. Furthermore, when considering results with randomized labels, MFCCs
demonstrated their strength in providing speaker-identifiable information to classifiers,
rendering them more suitable for speaker-identification applications.

Between MFCCs and PSFs for PS segmental analysis, PSF provides reliability due
to its ability to capture the patterns in speech affected by Parkinson’s disease. The study
demonstrated the positive impact of reducing identifying information on classifier reliability.
A total of 17 classifiers were utilized for testing, with each one being individually assessed
for reliability and overfitting capability. Among the 17 classifiers, 10 displayed tendencies
towards overfitting. The remaining seven classifiers were employed to test the proposed
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gender framework independently using different databases. The performance results
showed that coarse Gaussian SVMs, ensemble boosted trees, and logistic regression are all
well-suited for this application. These results are promising, considering the magnitude of
the differences in both data sets.

Future work is aimed at identifying the effects of various factors, like variants of
features used, and improving the analysis methods presented here by employing advanced
techniques like autoencoders to further improve the ability to capture the effects of PD
on speech production. We plan to compare performances utilizing sustained phonations
with varying vowels and diverse linear and nonlinear features. Our objective is to create a
comprehensive automated classification procedure capable of overcoming challenges such
as data availability, ease of implementation, and enhanced generalizability. Such a protocol
can very well be used beyond PD for other ailments that affect speech production.
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Abstract: Most of the dimensionality reduction algorithms assume that data are independent and
identically distributed (i.i.d.). In real-world applications, however, sometimes there exist relationships
between data. Some relational learning methods have been proposed, but those with discriminative
relationship analysis are lacking yet, as important supervisory information is usually ignored. In this
paper, we propose a novel and general framework, called relational Fisher analysis (RFA), which
successfully integrates relational information into the dimensionality reduction model. For nonlinear
data representation learning, we adopt the kernel trick to RFA and propose the kernelized RFA
(KRFA). In addition, the convergence of the RFA optimization algorithm is proved theoretically. By
leveraging suitable strategies to construct the relational matrix, we conduct extensive experiments to
demonstrate the superiority of our RFA and KRFA methods over related approaches.

Keywords: relational learning; dimensionality reduction; graph embedding; trace ratio; document
understanding and recognition; face recognition

1. Introduction

In some applications, such as pattern recognition and data mining, dimensionality
reduction methods are often used since they can reduce space-time complexity, denoise,
and make the model more robust. Principal component analysis (PCA) [1–3] and linear
discriminant analysis (LDA) [2,4–7] are two typical linear algorithms. Following them,
researchers have proposed many variants, such as kernel PCA [8], generalized discriminant
analysis (GDA) [9], and linear discriminant analysis for robust dimensionality reduction
(RLDA) [10].

For nonlinear dimensionality reduction problems, manifold learning provides an
effective solution. By supposing that data are located on a low-dimensional manifold, data
samples observed in high-dimensional space can be represented in a low-dimensional
space. Some representative manifold learning algorithms are ISOMAP [11], locally linear
embedding (LLE) [12] and Laplacian Eigenmaps (LE) [13].

From the algorithmic perspective, algorithms mentioned above can be categorized
as global methods or local methods. Global methods learn the low-dimensional repre-
sentations by using global information of data. PCA and LDA are all global methods.
The global methods are often effective and efficient, such that they are widely used in
many real world applications. However, when dealing with non-linear data, using the
global method cannot capture the genuine distribution of data very well. Local methods
using the manifold learning idea, such as LLE and LE, pay special attention to the intrinsic
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structure of data. Nevertheless, most of these manifold learning methods disregard label
information when recovering the low-dimensional manifold structure, in that they are
inherently unsupervised.

Although the above-mentioned methods are defined from different perspectives of di-
mensionality reduction, graph embedding provide a unified framework for understanding
and comparing them [14]. Furthermore, by integrating label information in the computa-
tion of intrinsic and penalty graphs within the graph embedding framework, a supervised
dimensionality reduction method called marginal Fisher analysis (MFA) is proposed [14].

In traditional dimensionality reduction algorithms as described above, a data distribu-
tion assumption is generally applied that data are independent and identically distributed
(i.i.d.). However, in real-world applications, there are often certain relativity or links
between certain data, for instance, geometrical or semantic similarity, links among web
pages, citation relations between scientific papers. Relationships usually indicate that these
related samples are likely to have similarities or belonging to the same class. Neverthe-
less, although some dimensionality reduction methods consider to preserve the locality of
data [15–18], the useful relationships are often simply ignored during the learning process
of most existing dimensionality reduction methods.

Recently, relational learning has often been used in practical applications, for instance,
web mining [19] and social network analysis [20]. In addition, relational information is also
considered in social network discovery, document classification, sequential data analysis
and semi-supervised graph embedding [21–23].

In the domain of dimensionality reduction, some algorithms have already been pro-
posed in which the relational information is integrated into the representation learning
process. In [24], Duin et al. propose the relational discriminant analysis (RDA). In RDA,
relationships among data are measured by the Euclidean distance between objects and
prototypes or support objects of each class. However, RDA uses mean squared error as
the objective function, and cannot perform well on multi-class learning problems. In [25],
Li et al. propose the probabilistic relational PCA (PRPCA) to build a probabilistic model as-
sociated with PCA and relational learning. RDA and PRPCA effectively integrate relational
learning into the dimensionality reduction algorithms. Nevertheless, how to better inject
relationships into traditional dimensionality reduction models is still worth exploring.

Recently, a few deep relational learning algorithms have been proposed. Specifically,
Gao et al. design a deep learning model based on relational network for hyperspectral
image few-shot classification [26], Chen et al. apply local relation learning for face forgery
detection [27], and Cho et al. develop a weakly supervised anomaly detection method via
context-motion relational learning [28]. In addition, some relational learning methods are
used in the one-shot [29] or zero-shot [30] learning scenarios. However, many real-world
applications have only very few data. Hence, shallow relational learning algorithms are
still needed to be proposed and utilized.

In this paper, we propose a novel and general framework for dimensionality reduction,
called relational Fisher analysis (RFA) [31]. Besides the intrinsic and penalty graph in the
graph embedding framework, we further construct a relational graph which captures the
relational information encoded within data. Through this graph, the proposed RFA takes
into account the impact of the relational information in the presentation learning process.
An effective iterative trace ratio algorithm is proposed to optimize RFA. Futhermore, we
use the kernel trick to extend RFA to its kernelized version—KRFA. Additiionally, we
theoretically prove that the optimization algorithm of RFA converges. To evaluate the effec-
tiveness of RFA, we conduct extensive experiments in many real-world applications. The
results demonstrate that the proposed RFA outperforms most of the classic dimensionality
reduction algorithms on the datasets we use. The effectiveness of KRFA is also tested.

This paper is based on one of our previous conference papers [31], with significant
improvements. For concreteness, we propse the KRFA algorithm and add more exclusive
experiments with comparison to the related approaches. The rest of this paper is organized
as follows: In Section 2, we introduce several related ideas, including graph embedding,
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trace ratio problem and relational learning, which are highly relevant to our work. In
Section 3, we focus on our proposed method RFA, including the notation, the formulation
and the iterative optimization method of RFA. Section 4 includes the proof of the conver-
gence of RFA and we present how to extend RFA to a kernel version—KRFA. In Section 5,
we compare our methods RFA and KRFA to other commonly used dimensionality reduction
methods with extensive experiments, which demonstrate the effectiveness of our proposed
methods. Finally, we summarize this paper in Section 6.

2. Related Work

In this section, we first briefly introduce some traditional dimensionality reduction
methods, and then offer a detailed description about relevant ideas including graph em-
bedding, trace ratio problem and relational learning, respectively. Finally, we specify how
those ideas are used in this work.

2.1. Traditional Dimensionality Reduction Methods

Some basic ideas of traditional dimensionality reduction methods are presented in this
subsection, such as PCA, LDA as well as several locality based manifold learning methods
including LLE and LE. Advantages and drawbacks of these methods are also presented in
this part.

2.1.1. PCA

The main idea of PCA [1] is to seek projection directions with maximal variances of the
low-dimensional embeddings. It effectively extract and retain the principle components of
the original data. However, as PCA is an unsupervised dimensionality reduction method,
low-dimensional embeddings obtained from this method cannot perfectly maintain the
discrimination between data of different classes.

2.1.2. LDA

LDA [7], well known as a supervised dimensionality reduction method, aims to seek
projection directions to minimize the intraclass scattering and maximize the interclass
scattering for the low-dimensional embeddings. However, for LDA, if the dimensionality
of data is far greater than the data size, the intraclass scattering matrix may suffer from the
singularity problem and thus it influences the solution of this dimensionality reduction
algorithm. Furthermore, since the rank of the interclass scattering matrix is at most C − 1,
the number of available projection directions of LDA is at most C − 1, where C is the
number of classes.

2.1.3. Manifold Learning Methods

PCA and LDA are all global methods which use global information to project the
original data into a subspace and obtain the low-dimensional data representations. How-
ever, for highly nonlinear data structure, these linear methods cannot learn the nonlin-
ear relationships between data and thus the results are not ideal. By assuming that the
high-dimensional data have a low-dimensional manifold structure, manifold learning
algorithms can nonlinearly map the high-dimensional data onto their low-dimensional
manifold. Among manifold learning methods, local geometric information-based methods,
such as LLE, LE and local preserving projection (LPP) [32] are widely used. The ideas
behind them are as follows.

LLE [12] preserves the linear reconstruction characteristics in a local neighborhood
of each datum. Hence, the low-dimensional embeddings obtained by LLE presents the
local geometrical structure of the data manifold. LE [13] preserves the similarities of
the neighboring data points based on an adjacency matrix and a graph Laplacian matrix.
However, for LLE and LE, as the nonlinear mapping function between the high-dimensional
and low-dimensional spaces is not learned, we cannot easily obtain the low-dimensional
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representations of new data. To the end, LPP [32] performs a linear approximation of LE,
and successfully overcomes its drawback as mentioned above.

2.2. Graph Embedding
In [14], Yan et al. show that some commonly used dimensionality reduction algorithms

could be transformed into a unified framework despite their different motivations, and the
unified framework is called graph embedding. This framework derives a low-dimensional
feature space, which preserves the adjacency relationship between sample pairs. The
general objective function of this framework is presented in Equation (1), where W denotes
the similarity matrix of the undirected weighted graph G = {X, W} and B is the constraint
matrix defined to avoid a trivial solution of the objective function,

V∗ = argmin
VT SBV=I

VTSW V = argmin
V

VTSW V

VTSBV
, (1)

where SW and SB are matrices constructed with respect to X, W and B, respectively.
We note that this unified framework graph embedding also provides a new idea for

researchers to propose new dimensionality reduction algorithms. In particular, Yan et al.
propose a novel dimensionality reduction method by defining an intrinsic graph which
characterizes the intraclass compactness and a penalty graph which characterizes the
interclass separability in the graph embedding framework, and call it marginal Fisher
analysis (MFA).

2.3. Trace Ratio Problems
As presented in the above subsection, within the context of graph embedding, the di-

mensionality reduction methods can be viewed as trying to obtain the transformation
matrix W that makes Tr(WTSpW) maximum and Tr(WTSlW) minimum. This is often for-
mulated as a trace ratio optimization problem, that is maxW Tr(WTSpW)/Tr(WTSlW) [33].
Generally, there are two kinds of solutions for this problem: (1) Simplifying the problem
into a ratio trace problem: maxW Tr[(WTSlW)−1(WTSpW)], then using generalized eigen-
value decomposition (GED) to obtain the transformation matrix W; (2) Directly optimizing
the objective function through an iterative procedure, with each step presented as a trace
difference problem: Tr[(WT(Sp − λnSl)W)]. However, for the first solution, the optimiza-
tion of ratio trace formulation may deviate from the original objective, which results in a
closed-form but inexact solution and may subsequently lead to uncertainty in subsequent
classification or clustering problems. For the second solution, Wang et al. [33] propose an
efficient iterative procedure by solving the trace difference problem in each iterative step,
named iterative procedure (ITR). It is proven that ITR could converge to the optimal solu-
tion and solve the trace ratio problem. With the orthogonal assumption on the projection
matrix, objective function of the ITR optimization can be defined as

W = argmax
WT W=I

tr(WTSpW)

tr(WTStW)
. (2)

In [34], Nie et al. address the graph-based feature selection framework using the
iterative process of the trace ratio problem. In [35], Zhong et al. analyze the iterative
procedures for the trace ratio problem and prove necessary and sufficient conditions of
the existence of the optimal solution of trace ratio problems, which are that there is a
sequence {λ∗

1, λ∗
2, . . . , λ∗

n} that converges to λ∗ as n → +∞, where λ∗ is the optimal value
of Equation (2). Based on these previous works, we also formulate RFA as a trace ratio
problem and theoretically prove the convergence of its optimization algorithm.

2.4. Relational Learning

In many real-world applications, data generally share some kinds of relations, such
as geometrical or semantic similarity, links or citations. This relation information encoded
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inside data provides valuable evidence for some issues, such as classification and retrieval.
To the end, relational learning is generally integrated into the representation learning models.

In [36], Duin et al. prove that it is possible to use only proximity measure (distances or
similarities) to represent the samples rather than mapping the feature vectors to the low-
dimensional space. In addition, they propose a proximity description-based dimensionality
reduction method called relational discriminant analysis (RDA) in [24]. Instead of data,
RDA uses similarities to a subset of objects in the training data as features. In this case,
dimensionality reduction can be conducted either by selection methods (such as random
selection [37], systematic selection [38]), or by feature extraction methods (such as multi-
dimensional scaling [39], Sammon mapping [40] and Niemann mapping [41]).

In [25], Li et al. model the covariance of data with the relationships between instances
and propose a Gaussian latent variable model which successfully integrates relational
information into the dimensionality reduction process, called probabilistic relational PCA
(PRPCA). In PRPCA, relational information is defined by the relevance between data
samples. We take the scientific paper citation as an example. If there is a quoting between
the papers, it means that these papers most likely have similar topics. To take the inter-
influence between cited papers into account, Li et al. further construct a matrix Φ = Δ−1,
which satisfy the condition that similar instances often have a lower probability density
at the latent space. To the end, PRPCA, based on the relational covariance Φ, successfully
applies the relational information to the dimensionality reduction algorithms.

Relational learning is also commonly used for data mining, information retrieval
and other machine learning-related applications. Paccanaro et al. [42] propose a method,
called linear relational embedding, for the distributed representations of data, where
data consist of the relationship of concepts. Wang et al. [43] utilize the characteristic
that existing relations between items are often useful in recommendation systems and
propose a model called relational collaborative topic regression (RCTR), which expand the
traditional CTR model by integrating feedback information, item content information and
relational information. Xuan et al. [44] propose a nonparametric relational topic model
using stochastic processes instead of fixed-dimensional probability distributions.

Based on the classical works mentioned above, we propose a general and effective
dimensionality reduction framework named relational Fisher analysis (RFA). This frame-
work uses graph embedding [14] as theoretical foundation and integrates the relational
information [24,25] encoded inside data into the dimensionality reduction process. Be-
sides the intrinsic graph and the penalty graph as defined using graph embedding, we
further construct a relational graph based on the existing relationships between data, which
enables the desired low-dimensional space to preserve the intrinsic information, reduce the
penalty information and further learn and preserve the relational information among the
data samples. In addition, through the derivation and equivalent transformation opera-
tions, the objective function of our proposed method can be transformed into the trace ratio
form for optimization. Based on a systematic analysis of two optimization method for trace
ratio problems [33], we propose a novel iterative algorithm which uses the value of the
trace ratio as criterion for the algorithmic convergence. In addition, by further introducing
the ITR-Score defined in [34] into the iterative process, optimal projection directions are
learned, which improves the effectiveness of the proposed RFA model.

3. Methodology

In this section, we first present some notations used in our work. The iterative steps,
the optimization method and the proof of global convergence of RFA are then introduced
in detail.

3.1. Notation

Matrices are represented in uppercase bold letters, for instance, A, while vectors are
represented in boldface lowercase letters, for instance, a, and ai is the ith element of a. Ai∗
and A∗j denote the ith row and jth column of a matrix A; therefore, the element of the

139



Algorithms 2023, 16, 522

ith row and jth column of the matrix is represented by Aij. The trace of A is defined by
tr(A) and the transpose of A is defined by AT . In addition, |Aij| is the absolute value of
Aij, ‖A‖F is the Frobenius norm of A. If A is positive definite, we have A � 0, while it is
positive semi-definite (psd), we have A � 0.

In a learning task that contains multiple classes of data, we usually have dataset
{{X∗i, yi} ∈ �D × �1, i = 1, 2, . . . , N}, where each X∗i represents a sample and yi ∈
{1, 2, . . . , C} is the class of that sample, C � 2 is the total number of classes and N is
the total number of samples. For a linear dimensionality reduction task, we hope to
find a projection matrix W and obtain the d-dimensional representation Z∗i of X∗i by
Z∗i = W ∗ X∗i, where Z∗i ∈ �d, i = 1, 2, . . . , N, d < D is the dimensionality of the output.

3.2. Formulation of RFA

As discussed in Section 2, graph embedding has already been proven to be a general
framework for dimensionality reduction. However, there are two shortages of graph
embedding. First, graph embedding does not obtain and preserve the relational information
between data. Second, the graph embedding framework needs to be solved by generalized
eigenvalue decomposition, which is only an approximate approach. Inspired by graph
embedding, we propose a new dimensionality reduction framework called RFA, which
integrates relationships among data into the dimensionality reduction model and can
alleviate the two problems mentioned above. Formulation of the proposed RFA is described
as follows.

We use R ∈ �N×N to denote the relational matrix. The dimensionality reduction
framework RFA is modeled as

L = min
W

tr(WTXLIXTW)

tr(WTXLPXTW)
+ λtr(WTXRXTW), (3)

where LI and LP define the intrinsic and penalty graphs, respectively, and λ � 0 is a
hyperparameter. Specifically, we only consider undirected graph and assume that LI ,
LP and R are symmetric and psd. Based on this formulation and these assumptions,
the generality of RFA can be explained from the following two points:

(1) If λ = 0, our algorithm can be simplified to a basic graph embedding model, so
that some commonly used dimensionality reduction algorithms can be regarded as special
cases of RFA;

(2) Otherwise, if L only contains relational information, RFA can be considered to use
relational learning to reduce the dimensionality of data. For instance, the MDS algorithm is
a special RFA algorithm under this condition.

3.3. Optimization of RFA
We reformulate Problem (3) as

L = min
W

tr(WTSIW)

tr(WTSPW)
+ λtr(WTSRW), (4)

where SI = XLIX
T , SP = XLPXT and SR = XRXT .

As R is psd, SR is as well. We suppose SR = UΛUT . We have

L = min
V

tr(VT S̃IV)

tr(VT S̃PV)
+ λtr(VTV), (5)

where W = UΛ−1/2V, S̃I = Λ−1/2UTSIUΛ−1/2 and S̃P = Λ−1/2UTSPUΛ−1/2.
Furthermore,

∂L
∂V

=
2tr(VT S̃PV)S̃IV − 2tr(VT S̃IV)S̃PV

tr(VT S̃PV)2
+ 2λV. (6)
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We let ∂L
∂V = 0. We have

tr(VT S̃PV)S̃IV − tr(VT S̃IV)S̃PV

tr(VT S̃PV)2
= −λV. (7)

Equation (7) can be rewritten as

(S̃I − tr(VT S̃IV)

tr(VT S̃PV)
S̃P)V = −λtr(VT S̃PV)V. (8)

We let η = tr(VT S̃I V)

tr(VT S̃PV)
and λ̃ = −λtr(VTS̃PV). We obtain

(S̃I − ηS̃P)V = λ̃V. (9)

It can be seen from Equation (9) that the columns of matrix V are the eigenvectors of
S̃I − ηS̃P, where η is a parameter related to V.

Without loss of generality, we assume VTV = Id, where Id is an identity matrix. Hence,
we have the following constrained trace ratio problem [33,45]:

L̃ = min
VT V=Id

tr(VT S̃IV)

tr(VT S̃PV)
. (10)

Problem (10) can be solved with the iterative method similar to that in [33,45]. The spe-
cific steps are as follows:

(1) Removing the null space of St = S̃I + S̃P [46]. We assume that St = ŨΛ̃ŨT ,
where Λ̃ is a diagonal matrix and Ũ contains the eigenvectors of St corresponding to
nonzero eigenvalues. Therefore, Formula (10) can be transformed to

L̃ = min
W̃T W̃=Id

tr(W̃T ŜIW̃)

tr(W̃T ŜPW̃)
, (11)

where V = ŨW̃, W̃ ∈ �r×d, ŜI = ŨTS̃IŨ and ŜP = ŨTS̃PŨ. We can further rewrite the
problem (11) as

L̃ = min
W̃T W̃=Id

tr(W̃T ŜIW̃)

tr(W̃T ŜTW̃)
, (12)

where ŜT = ŨT(S̃I + S̃P)Ũ = ŜI + ŜP. Since ŜT is positive definite, for any orthonormal
matrix W̃, Problem (12) satisfies that the denominator is positive.

(2) Efficient iterative optimization. The original trace ratio problem (12) can be
rewritten as a trace difference problem:

W̃∗ = argmin
W̃T W̃=Id

tr(W̃T(ŜI − η̃ŜT)W̃), (13)

where η̃ is a parameter which can be calculated in the iterative process. In the iterative
process, we first randomly initialize the target matrix W̃ to be an arbitrary orthogonal

matrix as W̃0 ∈ �r×d, and then calculate η̃0 =
tr(W̃T

0 ŜI W̃0)

tr(W̃T
0 ŜTW̃0)

. By using the calculated η̃0, we

can obtain W̃1 by solving Problem (13). In the end, through several iterations, we obtain
W̃T , where T is the number of iterations and it’s satisfied |η̃T − η̃T−1| < ε (ε = 10−5 is used
in our experiments). Then, W̃T is the optimal solution of Problem (12). In next section, we
prove that RFA owns the global convergence. In order to improve the effectiveness of our
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method, we select some superior projection directions for each W̃t, as performed in [47].
Our selection criterion is

W̃t = argmin
W̃∈Φ

tr(W̃T ŜIW̃)

tr(W̃T ŜTW̃)
, (14)

where Φ is a set of r × d matrices with columns formed by eigenvectors of ŜI − η̃t−1ŜT . We
use the eigenvectors corresponding to d smallest ITR-score [48] to initialize the selection.

Algorithm 1 specifically describes the iterative procedure of Problem (12).

Algorithm 1 Optimization of Problem (12)

1: Initialization: Initialize W̃ as an orthonormal matrix W̃0 ∈ �r×d and Let η̃0 = 0.
2: Iterations:
3: for t = 0 to MaxIt do
4: (1) Compute η̃t as

η̃t =
tr(W̃T

t−1ŜIW̃t−1)

tr(W̃T
t−1ŜTW̃t−1)

.

5: (2) Solve the eigenvalue decomposition problem:

(ŜI − η̃ŜT)Ŵ∗i = λ̃iŴ∗i.

6: (3) Compute

si =
tr(ŴT

∗iŜIŴ∗i)

tr(ŴT
∗iŜTŴ∗i)

, i = 1, . . . , r.

7: (4) Use {Ŵ∗i}r
i=1 to initialize W̃t and solve the following problem:

W̃∗
t = argmin

W̃∈Φ

tr(W̃T ŜIW̃)

tr(W̃T ŜTW̃)
,

where Φ is a set of matrices with columns formed by {Ŵ∗i}r
i=1.

8: if |η̃t − η̃t−1| < ε (ε = 10−5 is used in our experiments) then
9: Break.

10: end if
11: end for
12: Output: W̃t.

4. Global Convergence of RFA and Extensions

In this section, we first prove that RFA can converge to the global optimal solution,
and then, we apply the kernel trick to RFA for nonlinear relational dimensionality reduction.

4.1. Global Convergence of RFA

Theorem 1 states the convergence of RFA.

Theorem 1. The RFA algorithm converges to a global optimal solution of Problem (3).

Proof. Considering that all the formulas, from Problem (3) to Problem (12) in the previous
section, are all transformed equivalently, we only prove the convergence of Problem (12)
here. Specifically, we show that L̃ of Problem (12) has a lower bound, which gradually
decreases with the iterative process.

We can easily see that for any W̃, it satisfies that 0 ≤ tr(W̃T ŜI W̃)

tr(W̃T ŜTW̃)
≤ 1, so that the lower

bound of L̃ is 0.
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Next, we prove that the objective value of Problem (12) gradually decreases with the
iterative process of RFA. Defining

η̃t =
tr(W̃T

t−1ŜIW̃t−1)

tr(W̃T
t−1ŜTW̃t−1)

, (15)

we then have

tr(W̃T
t−1(ŜI − η̃tŜT)W̃t−1) = 0. (16)

However,

W̃t = argmin
W̃T W̃=Id

tr(W̃T(ŜI − η̃tŜT)W̃). (17)

Therefore,

tr(W̃T
t (ŜI − η̃tŜT)W̃t) ≤ 0, (18)

and

η̃t+1 =
tr(W̃T

t ŜIW̃t)

tr(W̃T
t ŜTW̃t)

≤ η̃t. (19)

Thus, we prove that η̃t gradually decreases with the iterative process, and Theorem 1
holds.

According to Theorem 1, we can see that RFA can converge to the global optimal
solution. In addition, for given intrinsic and penalty graphs and the relational matrix,
the computational complexity of the RFA algorithm is only Θ(N), where N is the total
number of data. That also illustrates the efficiency of our algorithm.

4.2. Kernel Extension

In this subsection, we apply kernel trick to our RFA method and present the kernel
RFA (KRFA) method, which can be used to nonlinear dimensionality reduction problems.

The KRFA optimization problem is basically the same as Problem (3), except that the
data point X∗i needs to be mapped to a reproducing kernel Hilbert space and obtain φ(X∗i),
where φ(·) denotes the mapping function. In addition, the corresponding intrinsic and
penalty graphs and the relational matrix should also be mapped to the reproducing kernel
Hilbert space. The kernel function K(X∗i, X∗j) = φ(X∗i)

Tφ(X∗j).
We suppose the projection matrix W = ΦΓ. We have WTΦ = ΓTK.
Normalizing and centering the data in the high-dimensional feature space, we substi-

tute K with
K̂ = K − 1NK − K1N + 1NK1N . (20)

In this way, the learning task of RFA is able to be described as

LK̂ = min
Γ

tr(ΓTK̂L̃IK̂TΓ)

tr(ΓTK̂L̃PK̂TΓ)
+ λtr(ΓTK̂R̃K̂TΓ), (21)

where L̃I , L̃P and R̃ are the intrinsic graph, the penalty graph and the relational matrix,
respectively. The distance of the samples in the reproducing kernel Hilbert space can be
calculated by

D(xi, xj) =
√

K(xi, xi) + K(xi, xj)− 2K(xi, xj). (22)
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With reference to the derivation and transformation procedure of RFA, KRFA can be
eventually transformed into

L̃K = min
VT

KVK=Id

tr(VT
KS̃K

I VK)

tr(VT
KS̃K

P VK)
. (23)

As KRFA’s optimization process is similar to RFA, we still use iterative methods to
solve it.

5. Experiments

In this section, extensive experiments are conducted to validate the effectiveness of
our RFA and KRFA methods. For the linear case, we conduct experiments on document
analysis, handwritten digits recognition, face recognition and webpage classification prob-
lems. For KRFA, we test its performance on several benchmark datasets. The results of
comparative experiments are presented below.

5.1. Performance of RFA

To evaluate the performance of RFA, we selected several related dimensionality reduc-
tion methods for comparison with RFA. These methods were LDA, MFA, RDA, and PRPCA,
respectively. Among them, LDA, MFA and RDA are supervised methods, while PRPCA is
unsupervised. We note that, due to the flexibility in the design of the relational matrix, RFA
could be either global or local. We describe this detail in the following part.

We followed MFA to construct the intrinsic and penalty graphs [14]. The numbers of
nearest neighbors for constructing the intrinsic graph (ki) and the penalty graph (kp) were
set to 5 and 20, respectively, for all the datasets.

We applied RFA to document understanding, face recognition and several other
recognition tasks. In order to test the performance of RFA on document recognition
tasks, we used the Ibn Sina ancient Arabic document dataset [49], USPS handwritten
digits dataset (http://www.cs.nyu.edu/~roweis/data.html, accessed on 19 October 2023),
two handwritten digits datasets (Optdigits and Pendigits) and one English letter dataset
(Letter) from the UCI machine learning repository [50]. For face recognition tasks, we used
two face datasets [51–54], the CMU PIE (http://www.face-rec.org/databases/, accessed
on 19 October 2023) and the YaleB (http://www.cad.zju.edu.cn/home/dengcai/Data/
FaceData.html, accessed on 19 October 2023) datasets. At the same time, we used some
UCI datasets, including Shuttle, Thyroid, Vowel and Waveform21, to evaluate RFA.

In our experiments, we used the classical graph Laplacian matrix, L = D − M, to de-
fine the relational matrix, whose weight matrix M is shown as below:

Mij =

{
1, if xi ∈ Nk(xj) or xj ∈ Nk(xi),

0, otherwise,
(24)

where Nk(xi) is the set consisting of the k nearest neighborForof xi. For each dataset,
the value of k was selected based on 5-fold cross-validation. Moreover, D is the diagonal
degree matrix with Dii = ∑j Mij.

We note that the Laplacian weight matrix formed by the above formula contains
the relationship information between the sample and a certain number of its neighbors,
which allows the iintegration of the local relationships between data into the supervised
representation learning algorithm. At the same time, as a general model, the relationship
matrix R in RFA can be of various forms. For example, R can be the centralization matrix
H = IN − 1

N 11T , where N denotes the data size and 1 is a column vector of length N with
all ones.

For the PRPCA algorithm, we performed this experiment using the codes provided by
the authors. For the RDA algorithm, we randomly selected the prototypes [24]. For algo-
rithms other than RDA, we used the 1-nearest neighbor classifier to evaluate the classifica-
tion performance of them.
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5.1.1. Comparison on Hand-Writing Datasets

We first tested the performance of RFA on the hand-writing datasets. For clarity,
the details of the used datasets are shown in Table 1.

Table 1. Statistics of the used datasets.

Dataset Classes Samples Dimensions

Ibn Sina 174 20,688 200
USPS 10 9298 256

Pendigits 10 5620 16
Optdigits 10 10,992 64

Letter 26 20,000 16

Ibn Sina dataset: This dataset [55] is an ancient manuscript dataset, one image of
which is shown in Figure 1, and we tried to identify the Arabic subwords on this dataset. In
the experiment, we used a 50-page manuscript as the training set and 10 pages as the test
set. We extracted the square-root velocity (SRV) representation [56] of the Arabic subwords.
Then, we removed the outlier classes, including the classes that had less than 10 samples.
Finally, we obtained a 174-class Arabic subword dataset with 17,543 samples for training
and 3125 samples for test.

Figure 1. One image of the Ibn Sina dataset.

In this experiment, we set the number of the nearest neighbors – k of the RFA to 8 and
compared RFA with the LDA and MFA dimensionality reduction algorithms. The classi-
fication accuracies after using these three dimensionality reduction methods to map the
data to different dimensionalities are shown in Figure 2. We can see that RFA is far better
than the LDA algorithm and slightly better than the MFA algorithm. At the same time,
when the dimensionality is from 50 to C − 1 (C is the number of classes), the correct rate of
the MFA algorithm has a certain fluctuation and tends to decline, while the classification
performance of our RFA algorithm is relatively stable, which means that our algorithm is
more robust than MFA.
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Figure 2. Classification accuracy obtained by LDA, MFA and RFA on the Ibn Sina dataset.

USPS dataset: The USPS is an U.S. post handwritten digits dataset that contains
7291 training data and 2007 test data from 10 classes and the dimensionality of the data
features is 256. Some handwritten digits in the USPS dataset are shown in Figure 3.

In this experiment, we set the number of the nearest neighbors – k of RFA to 24.
The classification accuracies obtained by RFA and the compared algorithms are shown
in Figure 4. Because the LDA subspace has a maximum of C − 1 dimension (C is the
number of classes), LDA is only presented with a black star in the figure. We can see
that when the dimension is 9, RFA obtains a comparative results with LDA and MFA.
When the dimension increases, the results of RFA are always optimal. At the same time,
the classification accuracy obtained by RDA is low.

Figure 5 presents 3D visualization of the learned data representations by RFA, which
shows the effect of RFA to obtain better classification boundaries between the classes.
In Figure 6, we show the 2D projections of data learned by both RFA and MFA, to further
show the effectiveness of RFA. It is easy to see that the samples processed by RFA are less
likely to overlap at the boundary, indicating that compared to MFA, RFA preserves more
properties that help distinguish the samples.

In addition, the robustness of RFA is tested with respect to ki and kp (used to construct
the intrinsic and penalty graphs). From Figure 4, it can be seen that RFA obtained the best
result when the subspace dimension was 35, with parameter settings ki = 5, kp = 20 and
k = 24. We fixed k and one of ki and kp to obtain the results when another parameter took
different values. Figures 7 and 8 show that RFA is very robust.

Figure 3. Sample images from the USPS dataset.
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Figure 4. Classification results obtained by RFA and the compared methods on the USPS dataset.

Figure 5. 3D visualization of the mapped data obtained by RFA. Samples of different classes are
marked with different colors.

We also selected three document recognition-related datasets from the UCI machine
learning repository to further test the effectiveness of RFA. They are Optdigits, Pendigits
and Letter. Optdigits was preprocessed by NIST [57] programs to obtain 5620 instances
in 8 × 8 dimensions. The Pendigits dataset contains a large number of preprocessed 16-
dimensional samples written by 44 different authors, including 7494 training examples
and 3498 test samples. Letter consists of 20,000 handwritten characters written by 20 fonts
from 26 capital letters in the English alphabet. We used the 5-fold cross-validation for these
experiments. Tables 2–4 show the classification accuracy and standard deviation obtained
on these three datasets and the boldface results are the best ones. We can see that RFA
performs consistently better than other compared methods.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6. 2D visualization for data pairs. (a–d) are the results obtained by RFA, and (e–h) are the
results obtained by MFA.

Figure 7. Classification results obtained by RFA and MFA with different values of ki on the
USPS dataset.
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Figure 8. Classification results obtained by RFA and MFA with different values of kp on the
USPS dataset.

Table 2. Classification results obtained on the Optdigits dataset. The best results are highlighted
in boldface.

Dimension LDA MFA PRPCA RDA RFA

9 0.9219 ± 0.0117 0.9657 ± 0.0020 0.9687 ± 0.0053 0.7407 ± 0.0048 0.9662 ± 0.0017
15 - 0.9845 ± 0.0039 0.9690 ± 0.0087 0.7407 ± 0.0017 0.9875 ± 0.0031
20 - 0.9836 ± 0.0041 0.9696 ± 0.0075 0.7399 ± 0.0054 0.9891 ± 0.0025
25 - 0.9849 ± 0.0030 0.9696 ± 0.0071 0.7425 ± 0.0042 0.9891 ± 0.0035
30 - 0.9819 ± 0.0062 0.9698 ± 0.0071 0.7415 ± 0.0053 0.9875 ± 0.0048
35 - 0.9795 ± 0.0051 0.9703 ± 0.0067 0.7404 ± 0.0066 0.9879 ± 0.0036
40 - 0.9783 ± 0.0058 0.9710 ± 0.0079 0.7402 ± 0.0056 0.9875 ± 0.0032
50 - 0.9781 ± 0.0026 0.9701 ± 0.0071 0.7407 ± 0.0043 0.9877 ± 0.0023

Table 3. Classification results obtained on the Pendigits dataset.

Dimension LDA MFA PRPCA RDA RFA

9 0.9843 ± 0.0020 0.9929 ± 0.0013 0.9797 ± 0.0027 0.9203 ± 0.0046 0.9939 ± 0.0006
13 - 0.9940 ± 0.0026 0.9604 ± 0.0028 0.8856 ± 0.0052 0.9950 ± 0.0018
15 - 0.9945 ± 0.0018 0.9887 ± 0.0008 0.9212 ± 0.0050 0.9962 ± 0.0013

Table 4. Classification results obtained on the Letter dataset.

Dimension LDA MFA PRPCA RDA RFA

9 0.9108 ± 0.0070 0.9570 ± 0.0014 0.9230 ± 0.0018 0.3699 ± 0.0064 0.9580 ± 0.0018
13 0.9108 ± 0.0070 0.9725 ± 0.0022 0.9604 ± 0.0028 0.3727 ± 0.0065 0.9753 ± 0.0022
15 0.9575 ± 0.0023 0.9596 ± 0.0018 0.9567 ± 0.0022 0.3715 ± 0.0087 0.9695 ± 0.0011

5.1.2. Comparison on Face Datasets

Here, we tested RFA on the face recognition problems. The PIE and YaleB datasets
were used. The details of these two datasets are shown in Table 5. For the corresponding
experimental settings, we set the number of the nearest neighbors – k on the PIE dataset to
8 and k on the YaleB dataset to 18.
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Considering that RDA cannot perform well on multi-class classification problems, we
used LPP instead as a compared method in these experiments. We used the 5-fold cross-
validation to decide the value of parameter k for graph construction in LPP. We performed
the experiments in different low-dimensional spaces on the PIE and YaleB datasets, and the
experimental results are shown in Tables 6 and 7.

Table 5. Statistics of the face recognition datasets.

Dataset Classes Samples Feature Dimension

PIE 68 11,554 1024
YaleB 38 2414 1024

Table 6. Classification results obtained on the PIE dataset.

Dimension LDA MFA PRPCA LPP RFA

9 0.9021 ± 0.0070 0.9173 ± 0.0045 0.7736 ± 0.0113 0.8156 ± 0.0089 0.9198 ± 0.0026
15 0.9430 ± 0.0038 0.9526 ± 0.0040 0.8810 ± 0.0063 0.8930 ± 0.0054 0.9540 ± 0.0021
20 0.9528 ± 0.0031 0.9592 ± 0.0027 0.9089 ± 0.0062 0.9122 ± 0.0044 0.9603 ± 0.0030
25 0.9597 ± 0.0040 0.9617 ± 0.0028 0.9224 ± 0.0056 0.9262 ± 0.0042 0.9621 ± 0.0040
30 0.9613 ± 0.0037 0.9639 ± 0.0042 0.9299 ± 0.0041 0.9320 ± 0.0031 0.9644 ± 0.0027
35 0.9623 ± 0.0025 0.9643 ± 0.0024 0.9342 ± 0.0037 0.9352 ± 0.0040 0.9660 ± 0.0024
40 0.9633 ± 0.0019 0.9638 ± 0.0021 0.9370 ± 0.0049 0.9383 ± 0.0036 0.9655 ± 0.0021
50 0.9639 ± 0.0012 0.9643 ± 0.0029 0.9394 ± 0.0052 0.9411 ± 0.0034 0.9656 ± 0.0024

C-1(67) 0.9641 ± 0.0048 0.9640 ± 0.0034 0.9356 ± 0.0045 0.9437 ± 0.0035 0.9654 ± 0.0037

Table 7. Classification results obtained on the YaleB dataset.

Dimension LDA MFA PRPCA LPP RFA

9 0.7788 ± 0.0199 0.8355 ± 0.0190 0.3675 ± 0.0378 0.4859 ± 0.0437 0.8347 ± 0.0212
15 0.8774 ± 0.0092 0.9031 ± 0.0071 0.4793 ± 0.0572 0.5911 ± 0.0367 0.9039 ± 0.0096
20 0.9209 ± 0.0136 0.9273 ± 0.0104 0.5460 ± 0.0426 0.6276 ± 0.0171 0.9279 ± 0.0067
25 0.9395 ± 0.0189 0.9370 ± 0.0126 0.5427 ± 0.0377 0.6392 ± 0.0345 0.9387 ± 0.0109
30 0.9507 ± 0.0157 0.9490 ± 0.0081 0.5518 ± 0.0399 0.6736 ± 0.0219 0.9495 ± 0.0079
35 0.9582 ± 0.0132 0.9503 ± 0.0093 0.5481 ± 0.0385 0.6740 ± 0.0109 0.9503 ± 0.0116
40 - 0.9511 ± 0.0102 0.2084 ± 0.3698 0.6997 ± 0.0059 0.9569 ± 0.0146
50 - 0.9482 ± 0.0101 0.3698 ± 0.1481 0.7142 ± 0.0123 0.9532 ± 0.0089

C-1(37) 0.9594 ± 0.0094 0.9511 ± 0.0122 0.5306 ± 0.2147 0.6864 ± 0.0102 0.9548 ± 0.0107

We can see from the experimental results that RFA performs very well. Although LPP
is an effective dimensionality reduction method for face recognition, RFA is significantly
better than LPP. Moreover, RFA obtains comparable results with LDA and MFA. These
results demonstrate the effectiveness of RFA in the face recognition applications.

Additionally, convergence of RFA is verified on these two datasets. As illustrated in
Figures 9 and 10, the value of η (trace ratio) decreases through the iterative procedures until
it reaches the global optimal value η∗ on both of the two datasets, which clearly shows the
convergence of RFA.
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Figure 9. Changing cave of η over the iteration number on the PIE dataset.

Figure 10. Changing cave of η over the iteration number on the YaleB dataset.

5.1.3. Comparison on Other UCI Datasets

To evaluate the generalization ability of RFA, we conducted experiments on UCI
datasets of other fields. The details of the used datasets are shown in Table 8. For the
corresponding experimental settings of these four dataset, we set the number of the nearest
neighbors – k to 15. For the fairness of comparison, the subspace dimension of each method
was set to C − 1.

Table 8. Statistics of the UCI datasets.

Dataset Classes Samples Dimensions

Shuttle 7 14,516 9
Thyroid 3 215 5
Vowel 11 990 10
Waveform21 3 5000 21
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The results shown in Table 9 demonstrate the advantage of RFA over the related
approaches. It is very effective in a wide range of applications.

Table 9. Classification results obtained on several UCI datasets.

Dimension LDA MFA PRPCA RDA RFA

Shuttle 0.9975 ± 0.0009 0.9979 ± 0.0012 0.9959 ± 0.0037 0.9162 ± 0.0132 0.9981 ± 0.0003
Thyroid 0.9395 ± 0.0265 0.9488 ± 0.0303 0.9488 ± 0.0195 0.9209 ± 0.0265 0.9581 ± 0.0255
Vowel 0.9859 ± 0.0109 0.9869 ± 0.0085 0.9859 ± 0.0090 0.3505 ± 0.0349 0.9879 ± 0.0077

Waveform21 0.8184 ± 0.0119 0.8258 ± 0.0197 0.8150 ± 0.0118 0.5972 ± 0.0279 0.8278 ± 0.0175

5.1.4. Comparison on Document Classification and Webpage Classification Problems

As a general dimensionality reduction framework, the relational matrix can be con-
structed with different strategies. In the previous sections, we considered the relationship
between samples based on their class labels or similarity. However, in some complicated
problems, relationships may presented in other forms. For example, as indicated in [25],
if there is a reference relationship between two papers, they are likely to have the same
topic. However, due to the sparse nature of the bag-of-words representation, the similarity
between these two papers may be very low. Thus, to further testify RFA, we designed
a relational matrix based on the citation relevance between data samples to model RFA,
and tested its effectiveness on document classification and webpage classification problems.

For this experiment, we used two datasets, citeseer and WebKB (https://linqs-data.
soe.ucsc.edu/public/lbc/, accessed on 19 October 2023). We note that the WebKB dataset
contains four subsets: Cornell, Texas, Washington and Wisconsin, and we show the ex-
perimental results of these four subsets separately. Each dataset contains bag-of-words
representation of documents or webpages and citation links between the instances. Citeseer
contains 3312 scientific documents from 6 different classes, and there are 4732 citation
relation between the documents. WebKB consists of 877 webpages from 5 different classes,
and there are 1608 page links within this dataset. We adopted the same strategy as in
PRPCA to construct the relational matrix:

(1) Constructing the adjacent graph A according to the relevance between data samples.
If there was a citation or link between sample i and j, then Aij = 1; else, Aij = 0.

(2) Letting D̃ii = ∑j Aij = (AA)ij, then B = AA − D̃,

Bij =

{
(AA)ij = ∑N

k=1 AijAkj, if i �= j,
0, otherwise.

(25)

(3) Defining G = 2A + B as the relational matrix in RFA.
We took PRPCA as the baseline method in this part. Experimental results are illustrated

in Figure 11; we can see that RFA achieves comparable results with PRPCA in all these five
datasets and is even better than PRPCA on some of the datasets.
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Figure 11. Classification accuracy and standard deviation obtained by RFA and PRPCA on the
document and webpage classification problems.

5.2. Performance of KRFA

To evaluate the efficiency of KRFA, we tested its performance on several benchmark
datasets from the UCI machine learning repository. The details of these datasets are shown
in Table 10. For the corresponding experimental settings, we set the number of the nearest
neighbors – k of these five dataset to 15. To avoid the singular value issue, we adopted
KPCA to retain 98% of the variance before formally performing KMFA and KRFA. We used
Gaussian kernel in the experiment and for the fairness of the comparison, the subspace
dimension of each method was set to C − 1. Table 11 shows the comparison results obtained
by KRFA, KMFA and RFA.

Table 10. Statistics of the UCI datasets.

Dataset Classes Samples Dimensions

Ecoli 8 336 8
Satimage 7 6435 36
Vehicle 4 846 18
Waveform40 3 5000 40
Wine 3 178 13

Table 11. Classification accuracy and standard deviation obtained on several UCI datasets.

Dimension KMFA RFA KRFA

Ecoli 0.4200 ± 0.0431 0.4230 ± 0.0423 0.4511 ± 0.0648
Satimage 0.7749 ± 0.0345 0.3915 ± 0.0834 0.8182 ± 0.0343
Vehicle 0.7694 ± 0.0152 0.6808 ± 0.0489 0.7824 ± 0.0187

Waveform40 0.7996 ± 0.0136 0.8216 ± 0.0097 0.8256 ± 0.0062
Wine 0.9716 ± 0.0350 0.9716 ± 0.0286 0.9773 ± 0.0239

As shown in Table 11, the proposed KRFA obtained a comparable and even better
result than KMFA. Furthermore, experimental results of KRFA were all better than RFA
on the used datasets. That superiority can be especially reflected on the Satimage dataset.
The performance of RFA on Satimage was unsatisfactory. However, KRFA conducted
effective nonlinear dimensionality reduction and thus obtained good result on the following
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classification problem. These two points clearly demonstrate the nonlinear dimensionality
reduction ability of KRFA.

6. Conclusions

In this paper, we propose a novel and general framework named relational Fisher
analysis (RFA) which integrates relational information into the dimensionality reduction
models. RFA can be effectively optimized with an iterative method based on trace ratio.
For nonlinear dimensionality reduction, we adopt kernel trick to RFA and design its
kernel version named KRFA. Extensive experiments demonstrate that RFA and KRFA
outperform other related dimensionality reduction algorithms in most cases. In future
work, we plan to extend this research in the following aspects: (1) Exploiting efficient
relationship metric for different relational data to further test the effectiveness of the
proposed RFA model; (2) Further extending the formulation of RFA for semi-supervised
learning; and (3) Extending RFA for tensor representation learning and applying it to tensor
analysis problems.
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Abstract: Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) is used to identify
protein presence, absence, or overexpression and usually, their interpretation is visual. Some pub-
lished methods can localize the position of proteins using image analysis on images of SDS-PAGE
gels. However, they cannot automatically determine a particular protein band’s concentration or
molecular weight. In this article, a new methodology to identify the number of samples present in
an SDS-PAGE gel and the molecular weight of the recombinant protein is developed. SDS-PAGE
images of different concentrations of pure GPN protein were created to produce homogeneous gels.
Then, these images were analyzed using the developed methodology called Image Profile Based on
Binarized Image Segmentation (IPBBIS). It is based on detecting the maximum intensity values of
the analyzed bands and produces the segmentation of images filtered by a binary mask. The IPBBIS
was developed to identify the number of samples in an SDS-PAGE gel and the molecular weight of
the recombinant protein of interest, with a margin of error of 3.35%. An accuracy of 0.9850521 was
achieved for homogeneous gels and 0.91736 for heterogeneous gels of low quality.

Keywords: sodium dodecyl sulfate–polyacrylamide gel electrophoresis; image analysis; protein band;
molecular weight; image segmentation; binary mask

1. Introduction

Among the techniques used to identify the presence, absence, or overexpression of
proteins of biological interest, sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE) is present. This technique separates proteins by applying an electric field to
the gel. The proteins move through the gel and are retained in different positions according
to molecular weight. The gel is stained using Coomassie blue. Each of the samples
analyzed is represented in columns (lanes), and the horizontal bands correspond to the
proteins detected in each piece. Thicker bands indicate higher protein concentration [1]
(see Figure 1).

The gels obtained are used to visually find proteins and gene fragments in DNA
gels [2–4] or as a method for disease diagnosis [3–6]. Unlike DNA gels, protein gels can
contain many bands per sample, making them difficult for the human eye to interpret (see
lane 4 in Figure 1). As a result, misinterpretations of protein gels can occur due to errors
generated by optical illusions, visual sensitivity, or fatigue [3,5–7].

Algorithms 2024, 17, 149. https://doi.org/10.3390/a17040149 https://www.mdpi.com/journal/algorithms157
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Figure 1. Image of a polyacrylamide protein gel. The vertical columns or lanes represent different
experiments placed within the gel (numbered 1 to 15). The horizontal lines or bands represent the
proteins identified per column.

Image analysis has been used to interpret the DNA and protein bands in the images of
SDS-PAGE gels. These analyses include background noise removal, lane detection, and
segmentation of the lanes to analyze the protein or gene sought [8,9].

Many techniques have been used to remove background noise, such as contourlet and
wavelet transforms, top-hat transforms, Gaussian low-pass filters, normalization, intensity
shifts, median filters, adaptive thresholding, non-linear Gaussians, Fourier analysis, fuzzy-
c-means, and some convolution matrix and image slices to search for regions of interest.
These methods have been used individually or in combination to obtain improved and
noise-free image profiles to extract gel features [1,3–5,7,8,10–20].

Several tools have been employed to detect lanes and segmentation of the
bands [1,3–5,7,8,10–16,18–22]. These techniques involve various methods to improve seg-
mentation by selecting necessary pixels related to background contrast. They include edge
detection using Bayesian approximations, thresholding, or Otsu segmentation. Users can
choose a region of interest to reduce size, minimize noise, calculate standard deviation,
and manually set a threshold to generate the gel profile. Division of the area between
user-specified lanes can be achieved using Gaussian functions or templates. Sobel filters
can be applied to identify lanes and bands in the gel.

Additionally, Gaussian processes or templates can split the region between user-
specified lanes. Sobel filters can also detect peaks and troughs in the intensity profiles,
aiding in identifying the gaps between lanes. Brightness changes can be measured, and the
number of pixels in the lanes can be counted to determine their distances using variations
in grey levels. Spectral density can be calculated to average the width of lanes, allowing
for the selection of specific regions within the image. An analysis is also performed on the
profile of the peaks through their areas to group them using techniques such as K-means,
and the bands are delimited with ellipses to avoid their intersection and to determine the
separation of the lanes. Among all the proposed methods, the ones that have shown the
best results include the user’s choice of regions of interest to reduce noise and generate
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more accurate profiles, which facilitates the identification of the minima related to the
separation of lanes in the gel.

Currently, programs such as Scanalytics, GelcomparII, GelJ, Gel-Pro Analyzer, ImageJ,
PyElph, TotalLab, PDQuest, Proteomweaver, Dcyder 2D, imageMaster, Melanie, BioNumer-
ics, Redfin, Gel IQ, Z3, and Delta2D Flicker are used to analyze images of DNA or protein
gels [1,10,23–29]. These programs employ semi-automatic filters to remove noise, meaning
the operator must manually select the column or band of interest. The user also adjusts the
intensity changes and decides the threshold that reduces the background noise. However,
due to the dependence on analysts with little knowledge of intensities and thresholding,
this often results in poor gel analysis.

In this article, the methodology described in reference [30] is used to obtain different
concentrations of pure GPN protein added to a bacterial cell extract to create SDS-PAGE
gels. The incorrect or excessive expression of some proteins may be associated with
an imbalance in health. So, this research produces gels representing patient samples
with different amounts of protein expression, including absence and different levels of
overexpression, to emulate various stages of Invasive Ductal Carcinoma (IDC) and Invasive
Lobular Carcinoma (ILC) Her2+ breast cancer. Therefore, identifying specific proteins can
be helpful in disease diagnosis. Examples of such proteins are GTPases, such as Rho, Rab27,
and GPN, which have been linked to the development of breast cancer [31]. Reference [30],
an article by the same authors as the present article, describes a new methodology for
obtaining pure GPN protein in high levels in homogeneous form. In the current research,
an algorithm was proposed for a new method to identify the lanes and bands of samples
present in an SDS-PAGE gel and the molecular weight, to identify the overexpressed
protein related to breast cancer. For that, the obtained images were analyzed using the
newly developed image analysis methodology to identify different levels of expression
of the GPN protein expressed per sample. This methodology is based on detecting the
pixel values of the white color of the histogram segmentation of images filtered by a
binary mask.

1.1. Novelty

Current investigations to search proteins in SDS-PAGE gels require manually selecting
the area corresponding to the protein of interest to locate the separation between proteins by
processing. The methodology proposed in this article automatically identifies the protein of
interest and automatically determines its overexpression levels, and has not been presented
in other works.

1.2. Limitations and Challenges

Although the algorithm performs best in finding the protein of interest automatically,
the gel image must be of a minimum good quality, otherwise, the algorithm will fail. A
database of polyacrylamide gel does not exist to apply and train a neural network to find
the overexpressed protein. It is difficult to obtain samples of various stages of IDC and ILC
Her2+ breast cancer.

This article is segmented as follows: Section 1 shows the advances in SDS-PAGE
gel image analysis to identify proteins and their overexpression. Section 2 describes
the procedure IPBBIS for obtaining overexpression gels. The IPBBIS method includes
preprocessing techniques, diagrams, and pseudocodes that determine the number of
samples present in a gel, the protein bands, and their overexpression. Section 3 details the
results obtained and their discussion. At the end for Section 4 of the article, conclusions
and future work are described.

2. Materials and Methods

2.1. Creation of Samples with Different GPN Concentrations

SDS-PAGE images corresponding to samples of different concentrations were obtained
to replicate or emulate the GPN protein overexpression in vivo during the involvement
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of IDC and ILC Her2+ breast cancer [31]. For this activity, the purification methodology
shown in [30] was followed. Images of the gels are shown in Figure 2A,B.

A B C 
1    2   3   4    5   6   7    8    9 1   2     3 1  2  3 

   

Figure 2. (A) Purification of recombinant GPN protein from Escherichia coli bacteria. Lane 1: Molecular
weight control. Lane 2: Positive control of GPN protein expression. Lane 3: Negative expression
control. Lane 4: Total protein extract. Lanes 5–9: purified GPN protein. (B) Different concentrations
of purified GPN protein. (C) Different concentrations of BSA protein.

In addition, to obtain SDS-PAGE images from controlled concentrations, a dilution
of bovine serum albumin (BSA) protein obtained from the Bio-Rad Protein Assay kit was
prepared to get three samples with the following concentrations: 2 mg/mL, 1 mg/mL, and
0.5 mg/mL (lanes 1, 2, and 3, respectively, in Figure 2C). This experiment demonstrated
that the methodology proposed here also achieves the set goal for other protein classes.

Samples numbering 2230 were used, including endogenous Escherichia coli proteins
with random addition of GPN at different concentrations. Two minibatches were used from
this dataset. The first one, 1561 samples, was called heterogeneous because the samples
presented different degrees of staining, smiley face effects. or curved lines, and even
SDS-PAGE breaks. The second minibatch comprised 669 homogeneous samples because
the gel characteristics did not vary. For each minibatch, 70% was used for training and the
rest for testing.

2.2. Image Acquisition

SDS-PAE images were obtained with a Gel Doc XR+ photo documenter system based
on CCD high resolution, using image Lab Software to capture pictures following the
specifications of the supplier Bio-Rad. The resolution of the images was 4 megapixels, and
the pixel density was 4096 ppi [32].

2.3. Preprocessing and Feature Extraction

Preprocessing and feature extraction were carried out through the identification of
the number of white pixels by an image segmentation histogram using a binary mask
(profile-based image segmentation, algorithm showed in Figure 3) as follows:

Size adjustment: The SDS-PAGE images obtained from the Gel Doc XR+ photo docu-
menter system, were resized to images of 600 by 400 pixels size. Image equalization was
performed if the samples in the gels had a high protein concentration. Subsequently, all
images were binarized and dilated, as shown in Figure 3. The images were inverted after
an erosion operation was applied.

Analysis of lanes and bands: A binary mask with a dimension of 1 pixel wide (MAXWIDE
variable) and 400 pixels high (MAXHIGH variable) was used for the lanes. For the study of
the bands present per sample, the value of 1 pixel wide for the MAXWIDE variable was
used, assigning 50 pixels for the MAXHIGH variable of the binary mask. The mask was
displaced pixel by pixel across the entire image width, that is, 600 data (one for each pixel
for lanes) or 400 data (one for each pixel for bands).
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Figure 3. Preprocessing and feature extraction to analyze the complete gel image.

Application of the binary mask: The histogram of the image region delimited by the binary
mask was calculated. Since the bands in this process are white, the value corresponding
to the number of white pixels in the histogram of the binarized image (position 255 of the
histogram) was used and stored in an array. The array data were plotted and called the
“new image profile”.

Interpretation of the “new image profile”: For the analysis of the full SDS-PAGE image,
the multiple minimum values present in the new image profile are related to the separation
between every lane of the gel image. In this region, the number of white pixel values in the
array obtained decreases, which helps find the number of lanes in the image. On the other
hand, when the analysis was performed for each lane, the multiple maximum values of the
new profile of the image were related to the position of the proteins, as they are represented
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in white. Places of maximum intensity represent the presence of proteins, and places of
lower intensity represent the absence of proteins (between two protein separations, the
average was calculated to obtain a single maximum), as shown in Figure 3.

This procedure uses several parameters. Nonetheless, more of them are set in the
program and worked well for most of the experiments carried out in this research. The
value of the structuring element for erosion and dilation was 25 for lanes and 3 for bands,
which allowed the detection of the total number of samples and bands per protein per
sample present in an SDS-PAGE gel. The threshold values for the segmentation operation
were calculated using the OTSU method. The program was developed in Python with the
Pytorch framework, OpenCV to evaluate the images and histograms, and numpy with
matplotlib to calculate the graphs.

Figure 3 presents an overall summary of the preprocessing and feature extraction. The
pseudocode is shown in Algorithm 1.

Algorithm 1. Pseudocode to find the number of lanes and bands in the polyacrylamide gel image.

Algorithm for band and lane detection
1: Resize the image to 600 × 400 px for light processing
2: if Excess_of_protein:
3: Histogram equalization
4: end if

5: Obtain a binarized Image
6: Image dilation
7: Image invert
8: Image erosion
9: Column = 1

10: If Lane detection:
11: MAXWIDE = 400 px
12: else: # band detection
13: MAXWIDE = 50 px
14: end else

15: end if

16: Apply Binary Mask on the resized image
17: Initialize Array to zero
18: while Column ‹= MAXWIDE:
19: Get the Histogram_of_image
20: Otsu_Segmentation_Applied_to_Binary_Mask_Size_zone

21:
Get the number of white pixels in the Histogram of the segmented region,

Histogram[white_position]
# get the quantity of white color in the histogram binarized

22: Array [Column] = Number_White_Pixels_Histogram [255]
23: Column++
24: end while

25: Plott Array
26: if Lane_Analysis:
27: Multiple_Minimum_correlate_Lane_Separation(Array)
28: Multiple_Maximus_related_Band_Separation(Array)
29: else#band_analysis
30: Average_Multiples_Maximums_between_separations_To_Get_One_Maximum
31: end else

32: end if

3. Results and Discussion

3.1. Traditional Analysis of GPN Protein Gels at Different Concentrations

Lanes 5 to 9 of Figure 2A reveal an image of polyacrylamide gel untreated with pure
recombinant GPN protein. These lanes show the protein concentration at different values
(see Figure 2B). An image of polyacrylamide gel untreated with GPN protein in various
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concentrations is presented in Figure 4A. The thicker bands (highlighted in red) correspond
to the GPN protein with higher concentration.

A B 

 
 

C D 

  

Figure 4. (A) SDS-PAGE gel containing GPN protein expressed at different concentrations. Lane 1,
molecular weight control; lanes 2–11, GPN at the following concentrations: 2.0, 0.0, 14.5, 9.5, 27, 18,
30, 18.5, 26, and 14 μg/mL, respectively. (B) The intensity profile of lane 1 of (A) (weight control).
(C) The intensity profile of lane 4 for (A). (D) The intensity profile of the bands for the recombinant
GPN protein region, highlighted in red from the gel in (A).

Images of the SDS-PAGE gels, revealed with Coomassie blue, were analyzed using the
intensity profile as shown in Figure 4. The gel image in Figure 4A includes samples of GPN
protein at different concentrations (lanes 2 to 11 enclosed in a red box). Preliminary analyses
were performed on the image to verify whether the intensity profile plots can detect the
presence of the protein and its overexpression. Figure 4B shows the intensity profile of
the molecular weight control or ladder (lane 1, Figure 4A). The minimum values of the
graph coincide with the position of the protein bands of lane one or the control sample,
which is used to determine the molecular weight of the samples analyzed in the rest of
the gel. Figure 4C shows the intensity profile of lane 4, where the minimum enclosed in a
red box indicates the presence of the protein with the highest expression or concentration
within the lane. Finally, Figure 4D shows the intensity profile of the region containing the
GPN protein at different concentrations (graph corresponding to the proteins enclosed in
the red box in Figure 4A, lanes 2 to 11). The background noise generated by the proteins
in the total extract and the different concentrations of GPN in the samples can be seen.
The multiple maxima in the graph cannot be related to each different expression of the
GPN protein.

3.2. Preprocessing and Feature Extraction Using the Proposed Algorithm

Before analyzing SDS-PAGE images with the new methodology: “Image Profile Based
on Binarized Image Segmentation” (IPBBIS), the images were adjusted to the size defined
by the variables MAXWIDE = 600 (width in pixels), MAXHIGH = 400 (height in pixels).

The SDS-PAGE protein gel image was converted to greyscale and then binarized. In
addition, an erosion operation was performed to increase the spacing between samples and
bands (see Figure 5). Next, the IPBBIS method was applied to perform feature extraction.
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Figure 5. Preprocessing of SDS-PAGE gel images. (A) Grayscale image. (B) Binarized image.
(C) Eroded image.

The image from the preprocessing (Figures 5C and 6) was filtered with a binary mask
consisting of a matrix of 1 × 400 pixels (Figure 6B). The IPBBIS method was applied, and
different binarization techniques such as Niblack, Sauvola, and Otsu were used. There
were no significant variations in the obtained results.

 

C 

A B 

Figure 6. IPBBIS. (A) Binarized and eroded image. (B) Representation of the binary mask with a size
of 1 × 400 pixels placed at pixel 7. (C) A simple histogram of the region contained in the binary mask,
(D) Histogram of the region after applying Otsu segmentation to (C).

By calculating the histogram in the lane region covered by the binary mask
(MAXWIDE = 1×MAXHIGH = 400, for complete gel analysis or MAXWIDE = 1 × MAXHIGH = 50,
for band analysis), the pattern in Figure 6C was obtained, which shows the distribution of the
pixels. On the other hand, by performing the binary segmentation of the same region (inside the
mask), the histogram shown in the graph in Figure 6D was generated. As the image is binarized,
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this pattern only shows the maximum intensity values for black (pixel 0) and white (pixel 255).
The number of white pixels is stored in an array with all gel values selected by the binary mask.

The array obtained by applying the binary mask in Figure 6A generated the new image
intensity profile. Figure 7 shows the maxima representing the center of each analyzed band
and the multiple minima separating them.

 

Figure 7. A new image intensity profile was obtained by plotting the array’s values containing only
the white pixels generated by the IPBBIS method.

3.3. Detection of Protein Overexpression in Gels Using the IPBBIS Algorithm
3.3.1. Application of the New Intensity Profile on the Complete Gel Image

The IPBBIS method was used to identify GPN protein overexpression in the gel shown
in Figure 8A. In this Figure, lane 1 contains the ladder or molecular weight control. Lane 2
is the negative control, lane 3 is the positive control for GPN protein expression, lane 4 is the
concentrated cell extract control, and lanes 5 to 15 represent extracts with the same amount
of endogenous proteins to which different concentrations of recombinant protein have
been added. The thickness of the spots indicates a higher concentration of GPN in lanes
5, 6, 11, 12, and 14, while lanes 9 and 10 show a lower concentration of the protein. These
values were identified in the plot of the new image intensity profile (Figure 8B,C), where
maximum peaks are observed in lanes 5, 6, 11, 12, and 14, and lower peaks correspond
to the bands with lower concentrations of recombinant protein, i.e., lower overexpression
(lanes 9 and 10). Image analysis was performed by equalizing the image (Figure 8B) and
not equalizing it (Figure 8C).

The data of the average values resulting from the multiple maxima of the graph
corresponding to the different samples in Figure 8C are shown in Table 1. It can be
corroborated that the maximum intensity value was obtained in lane 5, indicating the
highest overexpression of GPN protein in that sample. The lowest expressions were
recorded in lanes 9 and 10, with maximum values of 23 and 29, respectively. The maxima
assigned to lanes 1 to 4 were not shown as they correspond to the ladder, controls for GPN,
and GPN with total protein extract expression.
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B A C 

Figure 8. (A) A complete gel is shown. (B) A plot was generated using the image profile based on
binarized image segmentation after image equalization. (C) The IPBBIS plot was obtained from the
non-equalized Figure 6A.

Table 1. Peak maximum values obtained from the graph in Figure 8C.

Lane 5 6 7 8 9 10 11 12 13 14 15

Value 79 71 58 40 23 29 45 61 41 45 41

3.3.2. Application of the IPBBIS Method on a Sample with Controlled Concentrations

A controlled protein concentration was expressed to evaluate the method’s effective-
ness. Figure 9A shows the gel obtained, where bandwidth (or stain) increases as the protein
is concentrated. Subsequently, the image was pre-treated (binarization, dilation, color in-
version, and erosion; Figure 9B) for image analysis using IPBBIS. This procedure originated
the new image profile graph shown in Figure 9C, where the maximum peak corresponds
to the highest concentration of BSA protein (2 mg/mL). The lowest peak is related to the
lowest BSA concentration (0.5 mg/mL).

A B C 

  
Figure 9. (A) SDS-PAGE gel of BSA protein with the concentrations 2 mg/mL (lane 1), 1 mg/mL
(lane 2), and 0.5 mg/mL (lane 3). (B) Image of binary, dilated, segmented, and eroded (A). (C) Plot of
the new intensity profile of the (A) gel using IPBBIS.

3.3.3. Effectiveness of the IPBBIS Method Using Known Concentrations

An experiment was carried out to evaluate the effectiveness of the method. GPN
protein concentrations with known values (Table 2) were prepared by adding diverse
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cell extracts to include different proteins and increase the background noise, obtaining
the samples presented in the gel image of Figure 10A by placing other concentrations in
randomly chosen positions.

Table 2. GPN protein concentrations with known values.

Lane 2 3 4 5 6 7 8 9 10 11

Concentration
mg/mL 2.0 0.0 14.5 9.5 27 18 30 18.5 26 14

Gel

A B 

  

Figure 10. (A) Initial image of the gel with GPN samples at different concentrations before prepro-
cessing. (B) A plot was generated using the IPBBIS method applied to (A).

Samples with different concentrations of recombinant GPN protein are distributed on
the polyacrylamide gel in Figure 10A.

The results of applying the IPBBIS method to the image in Figure 10A (GPN protein at
different concentrations) indicated that samples with a higher protein concentration had
peaks with higher intensity values (Figure 10B). However, when comparing lane 3 (which
has no GPN protein concentration, Figure 10A), the graph showed that it has a higher peak
or maximum compared to peaks 5, 7, 9, and 11 (which correspond to different GPN protein
concentrations), indicating a higher overexpression of the protein. This fact does not agree
with the prepared concentrations, with lane 3 having a concentration of 0.0 mg/mL, lane 5
of 9.5 mg/mL, lane 7 of 18 mg/mL, lane 9 of 18.5 mg/mL, and lane 11 of 14 mg/mL (see
Table 2).

This inconsistency in the results is because lane 3 had more proteins in the total extract
than in samples 5, 7, 9, and 11. This behavior corroborated that the IPBBSI method can
only calculate the overexpression of the proteins of interest when the background noise
decreases, i.e., only when there is the same amount of proteins in the total extract can
the level of overexpression of the protein of interest be detected. Proteins that are not of
interest, those on the top and bottom of the recombinant protein (GPN), can be considered
contaminants and should, therefore, be removed.

3.3.4. Elimination of Impurities through the Determination of the Molecular Weight of the
Target Protein

A procedure is proposed to eliminate contaminants. To this end, it is necessary to
find the molecular weight of the protein of interest (GPN) and separate it from the rest
of the proteins present in the same sample to apply the IPBBIS method and find its level
of overexpression.

Considering that the molecular weight control does not present background noise,
the ladder or control in Figure 10A (lane 1) was selected, separated from the rest of the
gel, changed to a horizontal orientation (see Figure 11A), and the IPBBIS method was
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applied, which provided the graph shown in Figure 11B. The multiple maxima represent
each protein position in the ladder (Figure 11C).

A B C 

 

 

 

Figure 11. (A) Molecular weight control was obtained from lane one or the ladder in Figure 10A.
(B) The IPBBSI plot applied to (A). (C) Bands automatically detected by IPBBIS marked with
blue lines.

A relationship was established between the molecular weights of the ladder or control
(provided by the manufacturer, Bio-Rad S.A. Mexico D.F.) and the multiple maxima ob-
tained by the IPBBIS method. Due to the absence of background noise, the positions of the
control proteins were automatically detected and marked with blue lines for identification,
as shown in the gel image of Figure 11C. At the same time, the data were stored in an
array. The stored data represent the positions of the control proteins and the values of
their molecular weights. They were processed by applying numerical methods of linear
interpolation, nearest interpolation, and cubic interpolation to obtain an equation. This
equation was used to know and predict the molecular weight of proteins present in any
position of the remaining samples of the gel image to be analyzed (see Figure 12 and
Table 3). Figure 12 shows the interpolation methods used to predict the molecular weight
of the detected proteins. The X-axis corresponds to the pixel positions of the bands, while
the Y-axis represents the molecular weights.

 

Figure 12. Results of the interpolation methods for the molecular weight of the detected proteins.
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Table 3. The table shows the error obtained by applying three numerical interpolation methods to
the polyacrylamide gel ladder in Figure 11A.

Interpolation Method Calculated Weight (kDa) Total Error %

Linear 33.4 3.35648148
Nearest 37.0 7.060185185
Cubic 31.38 9.194960019

The results obtained in Table 3 indicate that the linear interpolation method showed
the lowest error, with a value of 3.35%, when correlating the actual weight of the GPN
protein (34.56 kilodaltons, kDa) with that predicted by the interpolation method used.

Therefore, the formula used to identify the molecular weight of the proteins detected
in the rest of the samples corresponds to the linear interpolation method and is defined by
Equation (1):

y(x) = yi +
(yi+1 − yi)(x − xi)

(xi+1 − xi)
(1)

where 0 ≤ xi ≤ 400 corresponds to the interval containing the number of pixels correspond-
ing to the image height of each sample, and 0 ≤ yi ≤ 250 corresponds to the molecular
weight of the proteins.

3.3.5. Choice of Threshold for the Elimination of Multiple Maximums

IPBBIS automatically detected the number of samples present in a gel image. The
multiple minimum values between the various maxima indicated the number of samples
in the polyacrylamide gel. Sometimes, when matching these values, marked by blue dotted
vertical lines, it was impossible to detect the number of samples in the gel image (see
Figure 13A). The amount of contaminating proteins caused the excess background noise in
the samples. We chose a threshold containing the minimum values for this case to eliminate
the background noise. In this way, we allowed the elimination of the multiple maxima
detected in the graph obtained by the new image intensity profile. These multiple maxima
were removed with a low-pass filter (represented by the black line in Figure 13B) applied
to the latest image intensity profile, and a new graph was obtained in which the minima
corresponded perfectly to the existing separations with every sample present in the gel
image (Figure 13C). This method allowed us to automatically select the regions with the
tiniest white pixels and link them to the regions where the samples are separated. As
a result, the experiments present in the gel were automatically detected and identified
with blue dotted vertical lines that perfectly matched the sample separations in the image
(Figure 13D). They were identified with blue lines drawn on the gel image to verify their
correspondence with the different samples. The data were stored in an array to determine
the position of each of the samples in subsequent analyses.
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Figure 13. (A) Detected maxima (blue dash lines). (B) Threshold that allows obtaining a cut-off region
that includes only the minima that represent the separation of the samples. (C) Graph obtained from
the cut-off region. (D) Total of automatically detected samples (blue dash lines).
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3.3.6. Analysis of the Region of Interest Using the IPBBIS Methods, Manual Area
Calculation, Area Calculation by K-Means Segmentation, and Area Calculation by
Otsu Segmentation

A random sample was selected on the gel to repeat the molecular weight detection
process (lane 5, Figure 14A). The developed IPBBIS method was applied to detect the
bands present per sample, as indicated in Figure 14B; knowing the molecular weight of
the GPN protein, approximately 34 KDa, the interpolation method was applied to detect it
automatically within the gel, and it was identified as indicated in Figure 14C.
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Figure 14. (A) Random sample selection within the gel (red box in the image). (B) Automatic band
detection using image profiling based on binarized image segmentation. (C) Molecular weight
detection using IPBBIS for GPN protein. (D) Selection of GPN protein bands from different samples
for ROI. (E) The application of the image profile is carried out in the binarized image segmentation
of (D).

Once the positions separating the samples in the gel were detected (Figure 14B),
the molecular weight of the GPN protein and its place within the gel (Figure 14C) were
identified, then the region of interest (ROI) that included the expression of the recombinant
protein at different concentrations from all samples (red box in Figure 14A including lanes
2 to 11) was selected and isolated as shown in Figure 14D. Analysis was then performed
to compare protein overexpression and to identify whether image profiling based on
binarized image segmentation can detect proteins with higher or lower overexpression.
Before this, the image color in Figure 14D was changed from RGB to HSV. The result is
shown in Figure 14E, where the height of the peaks is related to the level of overexpression
of the protein analyzed. Every sample with protein contained in the region of interest
(ROI) in Figure 14D (lanes 2, 4, 5, 6, 6, 7, 8, 9, 10, and 11) was isolated to obtain a higher
precision in the analysis. IPBBIS was applied separately to obtain one graph per sample,
as shown in Figure 15. The average of the multiple maxima obtained was calculated to
produce a single maximum value per sample (Figure 15A–I), which was related to the
amount of protein concentrated in each of the different samples analyzed; these values
were aggregated in Table 4 for future reference (row ROI-GPN Table 4). Image profiling
based on binarized image segmentation was applied to each of the nine samples containing
GPN protein at different concentrations in the ROI region of interest gel in Figure 14D. As
shown in the Table 4, we obtained additional data by analyzing the different samples at
different concentrations of recombinant GPN protein distributed on the polyacrylamide
gel in Figure 14D.
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Figure 15. Image profiling of Figure 14D, based on binarized image segmentation in the region of
interest. (A) lane 2, (B) lane 4, (C) lane 5, (D) lane 6, (E) lane 7, (F) lane 8, (G) lane 9, (H) lane 10, and
(I) lane 11.

Table 4. Different samples Data of GPN concentrations.

Lane 2 3 4 5 6 7 8 9 10 11

Concentration
mg/mL 2.0 0.0 14.5 9.5 27 18 30 18.5 26 14

ROI-GPN 10.38 0.0 20.55 18.67 27.34 22.87 28.82 23.08 27.26 20.11
Area Manual 513.62 0.0 830.25 680.12 1373.80 830.00 1061.50 934.50 983.50 869.25

Area K-means
segmentation 495.50 0.0 969.62 933.00 1457.20 1132.20 1336.20 1134.90 1422.10 993.13

Area Otsu segmentation 535.75 0.0 1189.8 1023.4 1646.8 1318.2 1557.1 1269.1 1585.9 1174.6

The array data obtained (ROI-GPN row in Table 4) revealed that the lane 2 sample
(with a maximum value of 10.38 and a concentration of 2 mg/mL) shows the lowest
overexpression, followed in order of overexpression by lane 5 (18.67, 9.5 mg/mL), lane 11
(20.11, 14 mg/mL), lane 4 (20.55, 14.5 mg/mL), lane 7 (22.87, 18 mg/mL), lane 9 (23.08,
18.5 mg/mL), lane 10 (27.26, 26 mg/mL), lane 6 (27.34, 27 mg/mL), and lane 8 (28.82,
30 mg/mL). These results show that the array data obtained for the new image profile
calculated by the IPBBIS method for each sample are related to the concentration of each
protein and can be used to calculate the level of GPN overexpression by comparing every
sample present in the gel image.

3.3.7. IPBBIS Study on the Image Dataset Using the Confusion Matrix

After verifying that the IPBBIS method can automatically identify the level of overex-
pression in each sample, the polyacrylamide gel image dataset was divided into homoge-
neous and heterogeneous gels to test their efficiency.

The so-called homogeneous gels (dataset of 44 gels with a total of 669 samples) showed
similar characteristics, such as the same color and quality, and no imperfections, such as
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breaks or distortions due to incorrect preparation. In this research, a confusion matrix
defines true positives (TP) as cases where IPBBIS correctly detected the lane or protein band.
False negatives (FN) occurred when the lane existed but was not found, false positives (FP)
when the lane did not exist but was detected, and true negatives (TN) when the lane did
not exist and was also not detected. The confusion matrix obtained after analyzing the
669 samples is presented in Table 5. The precision obtained was 0.985052 (see Table 6, the
precision of homogeneous gels).

Table 5. Confusion matrix obtained by analyzing 669 samples expressing GPN protein at different
concentrations on homogeneous SDS-PAGE gels.

Predicted

Positive Negative

Real
Positive TP = 310 FN = 8

Negative FP = 2 TN = 349

Table 6. The Table shows the accuracy results obtained from the confusion matrices in Tables 5 and 7.

Accuracy of Homogeneous Gels Accuracy of Heterogeneous Gels

0.985052 0.91736

Table 7. Confusion matrix obtained by analyzing 1561 samples with GPN protein expressed at
different concentrations on heterogeneous SDS-PAGE gels.

Predicted

Positive Negative

Real
Positive TP = 671 FN = 105

Negative FP = 24 TN = 761

Then, the analysis was repeated using the IPBBIS method on the heterogeneous gels,
a total of 90 gels with different conditions, which included distorted (smiley face effect),
broken, or incorrectly stained gels. In total, 1561 samples were analyzed for GPN protein
overexpression. The accuracy of this analysis was measured using the same confusion
matrix with the TP, FN, TN, and FP values defined above for the homogeneous gels. The
confusion matrix is shown in Table 7, and the precision obtained was 0.91736 (see Table 6,
the precision of heterogeneous gels). This precision was lower than that obtained with
homogeneous gels since the SDS-PAGE gels analyzed present characteristics that make
them different, such as breaks, distortions due to incorrect preparation, or insufficient
Coomassie blue staining.

3.3.8. Functionality of the Methods Analyzed to Find GPN Protein Overexpression: IPBBIS,
Manual Area Calculation, Area Calculation by K-Means Segmentation, and Area
Calculation by Otsu Segmentation

To calculate protein overexpression, the areas of each of the GPN protein bands
expressed at different concentrations in Figure 14D were measured manually by outlining
the contour of the band and using the K-means segmentation and Otsu segmentation
techniques (see Figure 16) and then compared with the measurement performed by the
IPBBIS method.
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Figure 16. (A) Manual calculation of the band area by outlining the spot contour. (B) Area calculated
by K-means segmentation. (C) Area calculated by Otsu segmentation.

For the manual measurements, K-means segmentation and Otsu segmentation, it was
necessary to cut out each of the bands and separate them from the gel image as neither
of these methods can analyze the whole gel. The results of the measurements of each
of the bands at different concentrations are aggregated in Table 4, indicating the type of
methodology used in the row.

The data in Table 4 were normalized to verify the functionality of the methodologies
used to assess protein overexpression within the gel in the different samples (Figure 14D).
The data in Table 4, corresponding to the intensity values in Figure 14D, were sorted
according to the amount of expressed protein from lowest to highest overexpression and
placed in Table 8, normalized (see Table 9), and used to measure the correct level of GPN
protein overexpression for each of the methods used by the following operation:

Table 8. The data in Table 4 are ordered according to the amount of protein expressed from lowest to
highest overexpression.

Concentration mg/mL 0 2 9.5 14 14.5 18 18.5 26 27 30

Lane 3 2 5 11 4 7 9 10 6 8
ROI-GPN 0 10.38 18.67 20.11 20.55 22.87 23.08 27.26 27.34 28.82

Manual Area 0 513.6 680.1 869.25 830.25 830 934.5 983.5 1373.8 1061.5
K-means segmentation

Area 0 495.5 933 993.13 969.62 1132 1134.9 1422.1 1457.2 1336.2

Otsu segmentation Area 0 535.8 1023 1174.6 1189.8 1318 1269.1 1585.9 1646.8 1557.1

Table 9. Normalization of the data from Table 8.

Normalized Data

Concentration mg/mL 0.00 0.07 0.32 0.47 0.48 0.60 0.62 0.87 0.90 1.00

Lane 3 2 5 11 4 7 9 10 6 8
ROI-GPN 0.00 0.36 0.65 0.70 0.71 0.79 0.80 0.95 0.95 1.00

Manual Area 0.00 0.37 0.50 0.63 0.60 0.60 0.68 0.72 1.00 0.77
K-means segmentation

Area 0.00 0.34 0.64 0.68 0.67 0.78 0.78 0.98 1.00 0.92

Otsu segmentation Area 0.00 0.33 0.62 0.71 0.72 0.80 0.77 0.96 1.00 0.95

Let xn be the n-th value of the measured area, and xm be the value of the measured
area in the band with the highest protein concentration.

If xm > xn ⇒ xm − xn > 0. This expression indicates that the measurement of the
overexpression level is correct since positive values are expected if the concentration is
increasing. On the other hand, if xm < xn ⇒ xm − xn < 0, it indicates that the overexpression
level was miscalculated. The analyzed method presents errors in its measurement because
the protein concentration is increasing and not decreasing.

As seen in Table 10, the results of the above analysis, applied to each of the mea-
surements, indicate that the proposed image profiling method based on binarized image
segmentation (ROI-GPN) does not show any negative values. In contrast, the manual
method shows two negative values (lanes 4 and 8 in Table 10), the K-means segmentation
shows two negative values (lanes 4 and 8 in Table 10), and the Otsu segmentation shows
two negative values (lanes 8 and 9 in Table 10).
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Table 10. Data from Table 9 normalized and compared to the predecessor to identify if there are
negative variations corresponding to mismeasurement in protein overexpression.

Concentration mg/mL 0.00 0.07 0.32 0.47 0.48 0.60 0.62 0.87 0.90 1.00

Lane 3 2 5 11 4 7 9 10 6 8
ROI-GPN 0.00 0.36 0.29 0.05 0.02 0.08 0.01 0.15 0.00 0.05

Comparison of Manual
Area 0.00 0.37 0.12 0.14 −0.03 0.00 0.08 0.04 0.28 −0.23

Comparison of K-means
Segmentation Area 0.00 0.34 0.30 0.04 −0.02 0.11 0.00 0.20 0.02 −0.08

Comparison of Otsu
Segmentation Area 0.00 0.33 0.30 0.09 0.01 0.08 −0.03 0.19 0.04 −0.05

These results demonstrate that the developed IPBBIS profiling allows for discovering
overexpression and correctly identifying the level of overexpression related to GPN protein
concentration. On the other hand, the manual methods, K-means segmentation and Otsu
segmentation, presented errors in the measurements.

In addition, the IPBBIS method can analyze the ROI region without cutting out each of
the samples present in the gel. In contrast, manual techniques, like K-means segmentation
and Otsu segmentation, require the samples to be separated, as they cannot analyze the
whole gel.

The ROI-GPN has values of the array data with the number of white pixels analyzed
by binary mask. The other methods have values in pixel areas, and normalization was
performed to realize a comparison. The normalization was made by taking the maximum
value measured by each method when applying four methods to identify the overexpression
manually (since there is no automatic one) and dividing it by each of the values of its
respective method. Thus, the maximum value for all samples is unity. When sorted by the
designed concentration value (lowest to highest), the normalized values increase and do
not decrease, as did all the previous methods except for the IPBBIS method developed in
this work. The increase only occurs if the methods correctly calculate the size of the bands
(by area or by intensity).

These results indicate that traditional methods can identify the position of proteins.
However, they cannot identify a particular protein band nor determine the concentration
or molecular weight, and the rest of the new intensity profile plot cannot be related to any
of the proteins present in the same sample. The IPBBIS method identified the most minor
and most overexpressed GPN protein and even detected the order of overexpression.

These results indicate that the IPBBIS method can be used to identify GPN protein
overexpression related to IDC and ILC Her2+ breast cancer and can also be applied to
identify overexpression of other proteins of biological interest and to detect the progression
of cancer stages in different samples from the same patient.

In summary, the IPBBIS method applies a binary mask pixel by pixel, choosing the
white intensity value and storing it in an array. The array contains multiple maxima and
multiple minima. The intensity value of the minima is related to the separation of the
number of samples when analyzing a full gel. As the number of targets decreases, this
indicates the separation between proteins. When analyzing per sample for proteins in
SDS-PAGE gels, the new image profile values of the multiple minima quantify the level of
overexpression of proteins present per sample.

Current methods for searching for proteins in SDS-PAGE gels perform image profiling,
processing techniques, threshold, and brightness changes but require the analyst to select
the region of interest. The IPBBIS method automatically identifies the number of samples
in the gel and the amount of proteins in a sample. It also detects the level of overexpression
based on molecular weight.
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4. Conclusions

A new methodology called IPBBIS was developed to identify the number of samples
present in an SDS-PAGE gel and the molecular weight of the recombinant protein of
interest, with a margin of error of 3.35%. An accuracy of 0.985052 was obtained when the
gels analyzed were homogeneous, i.e., free of errors such as smiley face distortion, breaks,
or poor staining. For gels with such errors, the accuracy was 0.91736.

The IPBBIS method enables the identification of the target protein in the gel by its
molecular weight, allowing confirmation of overexpression levels. In contrast to manual
area calculation, K-means segmentation, and Otsu segmentation, the IPBBIS approach
demonstrated the capability to detect overexpression across the entire gel, eliminating the
need to isolate specific areas as other methods require.

Thus, image profiling based on binarized image segmentation can be an auxiliary tool
to detect protein overexpression at a lower cost than other molecular techniques, helping
to ascertain whether cancer treatment is working.

Future Work

It is hoped that the IPBBIS method will be applied to identify any overexpression of
proteins present in polyacrylamide gels.

In future work, we would like to apply this methodology to detect separations in close
objects, such as a cell cluster or tissue images, and identify cellular overexpression.

Since the IPBBIS method allows the calculation of the gaps between protein bands in a
polyacrylamide gel, its application is sought in imaging samples with cells corresponding
to different stages of cancer. Since the cells increase in number during each phase, the
spaces between them decrease.
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Abstract: Analyzing point clouds with neural networks is a current research hotspot. In order
to analyze the 3D geometric features of point clouds, most neural networks improve the network
performance by adding local geometric operators and trainable parameters. However, deep learning
usually requires a large amount of computational resources for training and inference, which poses
challenges to hardware devices and energy consumption. Therefore, some researches have started
to try to use a nonparametric approach to extract features. Point-NN combines nonparametric
modules to build a nonparametric network for 3D point cloud analysis, and the nonparametric
components include operations such as trigonometric embedding, farthest point sampling (FPS), k-
nearest neighbor (k-NN), and pooling. However, Point-NN has some blindness in feature embedding
using the trigonometric function during feature extraction. To eliminate this blindness as much as
possible, we utilize a nonparametric energy function-based attention mechanism (ResSimAM). The
embedded features are enhanced by calculating the energy of the features by the energy function, and
then the ResSimAM is used to enhance the weights of the embedded features by the energy to enhance
the features without adding any parameters to the original network; Point-NN needs to compute
the similarity between each feature at the naive feature similarity matching stage; however, the
magnitude difference of the features in vector space during the feature extraction stage may affect the
final matching result. We use the Squash operation to squeeze the features. This nonlinear operation
can make the features squeeze to a certain range without changing the original direction in the vector
space, thus eliminating the effect of feature magnitude, and we can ultimately better complete the
naive feature matching in the vector space. We inserted these modules into the network and build a
nonparametric network, Point-Sim, which performs well in 3D classification tasks. Based on this,
we extend the lightweight neural network Point-SimP by adding some trainable parameters for the
point cloud classification task, which requires only 0.8 M parameters for high performance analysis.
Experimental results demonstrate the effectiveness of our proposed algorithm in the point cloud
shape classification task. The corresponding results on ModelNet40 and ScanObjectNN are 83.9%
and 66.3% for 0 M parameters—without any training—and 93.3% and 86.6% for 0.8 M parameters.
The Point-SimP reaches a test speed of 962 samples per second on the ModelNet40 dataset. The
experimental results show that our proposed method effectively improves the performance on point
cloud classification networks.

Keywords: deep learning; point cloud; attention mechanism; pattern recognition

1. Introduction

In recent years, significant advancements have been witnessed in the field of 3D
computer vision, which has become a subject of extensive research. Various formats,
including meshes, volumetric meshes, depth images, and point clouds, can be utilized
to represent 3D data [1]. Point clouds offer an unorganized sparse depiction of a 3D
point set while preserving the original geometric information of an object in 3D space.
Their representation is characterized by its simplicity, flexibility, and retention of most
information without the need for discretization. The rapid development of 3D sensor
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technology, including various 3D scanners and LiDARs, has facilitated the acquisition of
point cloud data [2]. Owing to its abundant geometric, shape, and scale information, 3D
point clouds are crucial for scene understanding and find application in diverse fields such
as autonomous driving, robotics, 3D reconstruction, and remote sensing, such as through
RN4 and RN5.

However, the disorder and irregularity inherent in 3D point cloud data present chal-
lenges for deep learning-based point cloud feature extraction methods, which play a
vital role in various point cloud processing tasks. Numerous approaches have been pro-
posed to transform point clouds into regular structures, such as projecting into multiview
images [3,4] and voxelization [5,6]. Although these methods have shown superior results
in point cloud classification and segmentation tasks compared to traditional manual fea-
ture extraction techniques, they compromise the intrinsic geometric relationships of 3D
data during processing. Moreover, the computational complexity of voxelization, being
proportional to the cube of the volume, limits its application in more complex scenes.

To address these challenges, researchers have started considering the direct processing
of raw point cloud data to reduce computational complexity and to fully leverage the
characteristics of 3D point cloud data. PointNet [7] directly processes raw data by extracting
point cloud features through MLP (MultiLayer Perceptron) and max pooling, thereby
ensuring permutation invariance of the point cloud. Although the processing method is
simple, it yields significant results and has become an important theoretical and ideological
foundation in 3D point cloud processing. PointNet++ [8] extends PointNet by considering
both global and local features. It obtains key point sets through farthest point sampling
(FPS) and constructs a local graph using k-nearest neighbors (k-NN). Subsequently, MLP
and max pooling are employed to aggregate the local features.

Since PointNet++, the main trend in deep learning-based point cloud processing meth-
ods has been to add advanced local operators and extend the trainable parameters, and
while the performance gain rises by the amount of parameters added, so does the cost of
computing resources, and deep learning training is often time-consuming. Many previous
works have approached deep learning from a lightweight perspective in order to effi-
ciently address the training and inference time issues of deep learning. For example,
MobileNet [9] uses depthwise separable convolution to build a lightweight network,
which improves the overall network accuracy and speed; UL-DLA [10] proposes an ul-
tralightweight deep learning architecture. It forms a Hybrid Feature Space (HFS), which
is used for tumor detection using a Support Vector Machine (SVM), thereby culminating
in high prediction accuracy and optimum false negatives. Point-NN [11] proposes a new
approach to nonparametric point cloud analysis that employs simple trigonometric func-
tions to reveal local spatial patterns and a nonparametric encoder for networks to extract
the training set features, which are cached as a point feature repository. Finally, the point
cloud classification is accomplished using naive feature matching. However, its simple use
of trigonometric functions in the process of feature embedding is blind and may lead to
the neglect of key features. And because of its feature magnitude change in vector space
during feature extraction, this will affect the stability of the model and have an impact in
the final naive feature matching stage.

Inspired by the above work, we propose a nonparametric network model for point
cloud classification task, which is composed of nonparametric modules, and uses the
nonparametric attention block ResSimAM(Residual Simple Attention Module) to derive
the attention weights, as well as the features during the feature extraction process, in order
to enhance the weights of features with higher energy. In the feature extraction stage, a
nonlinear feature transformation is achieved by using the Squash operation to squeeze
the input features to a certain range without changing the direction in the vector space.
The Squash operation helps to preserve the directional information of the feature vectors
while eliminating the effect of magnitude, thereby allowing the network to better learn
the structure and patterns in the data and better preserving the relationships between the
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feature vectors, which helps reduce numerical instability due to vector length variations
for subsequent naive similarity matching.

The key contributions of our contributions can be summarized as follows:

1. Aiming at the problem that there is some blindness in Point-NN when using trigono-
metric functions to encode features for mapping features into high dimensional space,
we calculate the energy of each feature by utilizing an energy function and then add
weights for each feature according to its energy, which improves the model’s ability
to extract features without adding any trainable parameters to the original model.

2. In order to alleviate the influence of feature magnitude in the final naive feature
matching, we use the Squash operation in the stage of feature extraction so that the
features are squeezed to a certain range without changing the direction in the vector
space, thereby eliminating the instability brought by the feature magnitude. This
enables the network to better learn the structure and patterns in the data and improve
the model classification ability.

3. We extend a lightweight parametric model by adding a small number of MLP layers
to the nonparametric model feature extraction stage and applying the MLP to the
final global features to obtain the final classification results, and we validate the
performance of the model in the absence of other state-of-the-art operators.

The remainder of the paper is structured as follows. Section 2 gives related work.
Section 3 describes the nonparameter network Point-Sim and the lightweight network
Point-SimP methods in detail. We evaluate our methods in Section 4. Section 5 concludes
the paper.

2. Related Work

To effectively handle 3D data, scholars have conducted diverse and significant en-
deavors aimed at addressing the challenges posed by the inherent sparsity and irregularity
of point clouds. Such endeavors can be categorized into multiview-based, voxel-based,
and point-based methodologies. Initially, we review the learning methodologies grounded
in multiview representation and voxelization. Subsequently, we scrutinize point-based
learning methodologies, which encompass graph-based and attention-based strategies.

2.1. Multiview-Based Methods

The Multiview Convolutional Neural Network (MVCNN) [4] projects point clouds
or 3D shapes onto 2D images, thereby subsequently employing Convolutional Neural
Networks (CNNs) for processing the projected 2D images. This methodology integrates
feature information from multiple viewpoints into a compact 3D shape descriptor via
convolutional and pooling layers. These aggregated features are then fed into a fully con-
nected layer for classification. Zhou [12] proposed the Multiview PointNet (MVPointNet),
where the views are acquired through a Transformation Network (T-Net) [7] to generate
transformation matrices that determine multiple views captured at identical rotational
angles, thereby ensuring the network’s robustness against geometric transformations.

Despite the efficacy of projecting point clouds into multiple views for point cloud
segmentation and classification tasks compared to conventional manual feature extraction
methods, notable limitations persist. Firstly, predetermined viewpoints are required when
projecting 3D point clouds into multiple 2D views. View variations result in differential
contributions to the final shape descriptor; similar views yield akin contributions, whereas
significantly distinct views offer advantages for shape recognition. Secondly, 2D projections
are confined to modeling the surface attributes of objects, which are unable to capture the
3D internal structure adequately. This partial representation disrupts intrinsic geometric
relationships within 3D data, thus failing to exploit contextual information comprehensively
within 3D space and incurring information loss, which is particularly unsuitable for large-
scale scenes. Furthermore, feature extraction via multiview approaches often necessitates
pretraining and fine-tuning, thereby consequently escalating workload demands.
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2.2. Voxel-Based Methods

The VoxNet framework, as introduced by [5], initially employs an occupancy grid
algorithm to represent the original point cloud as multiple 3D grids. Each grid corresponds
to a voxel, and subsequent 3D convolutions are applied for feature extraction. Le proposed
a hybrid network named PointGrid in the work of [13], which integrates both point and
grid representations for efficient point cloud processing. This approach involves sampling
a constant number of points in each embedded volumetric grid cell, thus allowing the
network to utilize 3D convolutions to extract geometric details.

In contrast, voxel-based methods follow a two-step process. Firstly, the original
point cloud undergoes voxelization, thereby converting the unordered point cloud into
an ordered structure. Subsequently, 3D convolution is applied for further processing.
This approach is more direct and simpler, thus drawing inspiration directly from 2D
convolutional neural networks. However, it comes with a significant computational cost,
and due to the uniformity of each voxel postvoxelization, there is a loss of information
regarding fine structures.

2.3. Point-Based Methods
2.3.1. Graph-Based Methods

Point cloud data, which are characterized by an irregular and a disordered distribu-
tions of points, inherently lack explicit interconnections among individual points. Never-
theless, these non-Euclidean geometric relationships can be effectively modeled through
graph structures. PointNet [7] stands out as the pioneering network specifically designed
for the direct processing of point clouds. Despite the groundbreaking achievements of the
PointNet network in tasks such as point cloud classification or segmentation, it remains
afflicted by the limitation of its inadequate capture of local neighborhood information. To
address this limitation and extract more nuanced local features, Qi [8] extended PointNet
by introducing the PointNet++ network framework. The fundamental concept involves
the construction of a local hierarchical module within the network. Each layer within this
module comprises a sampling layer, a grouping layer, and a feature extraction layer. By
selecting the local neighborhood center of mass through the FPS layer—forming a local
neighborhood subset via the k-NN layer—and deriving local neighborhood feature vectors
through the PointNet layer, the framework adeptly captures local features across a multi-
level hierarchical structure. Nonetheless, PointNet++ faces challenges due to its isolation
of individual point sample features within the local neighborhood and the adoption of a
greedy max pooling strategy for feature aggregation, thereby risking information loss and
presenting certain constraints. In response to these issues, Wang [14] proposed Softpool-
net, which introduces the concept of soft pooling by substituting max pooling with a soft
pooling mode. Unlike the exclusive retention of maximal features in max operation, soft
pooling retains more features by preserving the first N maximal features during pooling.
Meanwhile, Zhao [15] introduced 3D point cloud capsule networks, and they created
an autoencoder tailored for processing sparse 3D point clouds while preserving spatial
alignment and consolidating the outcomes of multiple maximal pool feature mappings into
an informative latent representation through unsupervised dynamic routing.

Nevertheless, it fails to adequately handle neighborhood points information, thus
resulting in inadequate interactions between points. In order to enhance direct information
exchange and foster better communication, DGCNN [16] employs the k-NN algorithm to
construct local graphs, thus grouping points in semantic space and facilitating global feature
extraction through continuous feature updates of edges and points. Notably, this approach
enables the capture of geometric features of the local neighborhood while maintaining
permutation invariance. Furthermore, DeepGCN [17] leverages deep Convolutional Neural
Network (CNN) principles emphasizing deep residual connections, extended convolution,
and dense connections, thereby enabling reliable training in deep models. GACNet [18],
on the other hand, enhances segmentation results in edge areas by constructing a graph
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structure for each point based on its neighboring points and integrating an attention
mechanism to compute edge weights between the central point and its neighbors.

Wang [19] proposed a method for training deformed convolution kernels in local
feature extraction, wherein an anchor point is initially selected, followed by the selection
of neighboring points through k-NN. Subsequently, a set of displacement vectors is con-
structed to represent features in this region, thereby facilitating continuous updates of
these displacement vectors to extract local point cloud features. Finally, multiple sets of
learned displacement vectors are weighted and summed to construct the convolutional
kernel for feature extraction, which is then applied to perform feature extraction on the
image. Notably, Point-NN [11] introduced a nonparametric network for 3D point cloud
analysis comprising purely nonparametric components such as FPS, k-NN, trigonometric
functions, and pooling operations. Remarkably, it demonstrates exceptional performance
across various 3D tasks without any parameters or training, even outperforming existing
fully trained models.

2.3.2. Attention-Based Methods

SENet [20] introduces an efficient and lightweight gating mechanism that explicitly
constructs correlations between channels. This consideration stems from the acknowledg-
ment that pixels carry varying degrees of importance across different channels. These
importance weights are then leveraged to amplify useful features while suppressing less
relevant ones. CBAM [21] derives attention mappings separately along two dimensions,
channel and spatial, within the feature mapping. Subsequently, these attention mappings
are applied to the input for adaptive feature refinement of the feature map. With the
demonstrated success of self-attention and transformer mechanisms in natural language
understanding [22], there has been a proliferation of efforts in computer vision to substitute
convolutional layers with self-attention layers. However, despite its accomplishments,
self-attention incurs computational costs that scale quadratically with the size of the input
image. PAT [23] employs a self-attention-like mechanism to capture correlation information
between points and extract the most salient global features via Gumbel downsampling.
Transformer [24] devises a point transformer layer and builds a residual point transformer
block around it, thus enabling information exchange between local feature vectors and the
generation of new feature vectors for all points. PCT [25] encodes input coordinates into the
feature space to generate features and conducts feature learning through the offset attention
mechanism. PoinTr [26] processes the point cloud into a series of point proxies, which
represent features of local areas within the point cloud. These proxy points encapsulate
neighborhood information, which is then inputted into a transformer for further processing.
Subsequently, an encoder–decoder architecture is employed to accomplish the point cloud
completion task.

3. Methods

In this section, we will present the details of the nonparametric network Point-Sim
and the lightweight neural network Point-SimP. We will show the overall structure of the
proposed method, which consists of multiple reference-free components and incorporates
the operations of the nonparametric attention mechanism and the feature Squash in the
process of feature extraction.

3.1. Overall Structure

The nonparametric modeling of point cloud classification method known as Point-Sim
is shown in Figure 1. In the classification model, nonparametric feature embedding is first
performed using trigonometric functions(the Trigo block). Subsequently, in the hierarchical
feature extraction stage, the centroids are selected using FPS, and from these centroids, the
point clouds are grouped using k-NN. We apply trigonometric functions to map the local
geometric coordinate. In order to better match the feature naive similarity, the geometric
and local features are added and fed into the Squash block, the features are squeezed to
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make them smoother, and then the smoothed features are fed into the ResSimAM block so
that the model can pay better attention to the features with higher energy; this improves
the classification ability of the encoder, and then finally the global features are obtained by
using the pooling operation.

The nonparametric point cloud classification model has been extended by integrating
neural network layers at various stages within Point-Sim. The constructed Point-SimP
network, outlined in Figure 2, introduces a lightweight framework. To enhance the model,
the raw embedding layer within the nonparametric network was substituted with an MLP.
Furthermore, MLP layers were incorporated post the Feature Expansion and Geometry
Extraction phases during feature extraction and applied to the ultimate global feature to
obtain the classification outcomes.

Figure 1. Overall structure of Point-Sim. Different colors represent different module types in
the network.

Figure 2. Overall structure of Point-SimP. Different colors represent different module types in
the network.

3.2. Basic Components

Our approach begins from the local structure, thereby extracting features layer by
layer. We select a certain number of key points within the point clouds, utilizing k-NN to
select the nearest neighboring points to generate local regions, and update the features of
this local region. By repeating multiple stages, we gradually expand the sensory field and
obtain the global geometric information of the point clouds. In each stage, we represent
the input point clouds of the previous stage as {pi, fi}M

i=1, where pi ∈ R
1×3 represents the

coordinates of point i, and fi ∈ R
1×C represents the features of point i. To begin, the point

set is downsampled using FPS to choose a subset of points from the original set. In this
case, we select M

2 local centroids from the M points, where M is an even number.

{pc, fc}
M
2

c=1 = FPS({pi, fi}M
i=1) (1)

Afterward, by employing the k-NN algorithm, groups of localized 3D regions are
established by selecting the k-nearest neighbors from the original M points for each centroid
c (Figure 3).

Nc = k − NN(pc, {pi}M
i=1) (2)

where Nc ∈ R
k×1 represents the k-nearest neighbors.
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Figure 3. K-nearest neighbors of point Xi. Where Xi represents the center point of the local region,
Xi1, Xi2, ..., Xi5 represent the nearest neighbors of Xi, and the rest of the points are not included in
the local region.

After obtaining the local information, we perform feature expansion (Figure 4) to
obtain the features fl ∈ R

C×K of the local points. These are obtained by repeating the
centroid point k times and concatenating it with the local features.

fl = Concat
(

Repeat( fc), { fn}k
n=1

)
(3)

where fc ∈ R
C×1 represents the features of the center point, fn ∈ R

C×1 denotes the features
of the remaining local points, and C = 2 × D.

Figure 4. Feature expansion for a local group.

Furthermore, the operator Φ(·) is utilized to extract the geometry features NC of each
local neighborhood, which comprises trigonometric functions, Squash, and ResSimAM.

Φ(·) = ResSimam(Sqush(Trigonometric(·) + fl)) (4)

Local features fl are processed using Φ(·), thus resulting in the enhanced local features
f j ∈ R

C×K.

f j = Φ( fl) (5)

MaxPooling and MeanPooling are performed to aggregate the data, thus producing
fg ∈ R

C×1, which signifies the global features of the chosen key points.

fg = MaxP
({

f j
}

j∈Nc

)
+ MeanP

({
f j
}

j∈Nc

)
(6)
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Following this, after the above feature extraction stage, max pool aggregation is used
to obtain the final high-dimensional global feature fout ∈ R

1×CG :

fout = MaxP( fg) (7)

Finally, the resulting feature fout is cached in the memory bank Fmem, and we construct
a corresponding label memory bank Tmem as follows:

Fmem = Concat({ fout}N
n=1) (8)

Tmem = Concat({tablei}N
n=1) (9)

where tablei is the ground truth as one-hot encoding, and n represents the serial number of
each point cloud object in training set n from 1 to N.

3.3. Trigonometric Functions Embedding

Referring to positional encoding in the transformer [22], for a point in the input point
cloud, we use trigonometric functions to embed it into a C-dimensional vector:

Trigonometric(pi) = Concat( f x
i , f y

i , f z
i ) ∈ R

1×Ci (10)

where f x
i , f y

i , f z
i ∈ R

1× Ci
3 denote the embeddings of three axes, and Ci represents the

initialized feature dimension. Taking f x
i as an example, for channel index m ∈ [0, Ci

6 ], we
have the following:

f x
i [2m] = sin

(
αxi/β

6m
Ci

)
,

f x
i [2m + 1] = cos

(
αxi/β

6m
Ci

) (11)

where α and β respectively control the magnitude and wavelength. Due to the inherent
properties of trigonometric functions, the transformed vectors can effectively encode the
relative positional information between different points and capture fine-grained structural
changes in the three-dimensional shape.

3.4. Nonparametric Attention Module (Squash and ResSimAM)

SimAM [27] devises an energy function to discern the importance of neurons based
on neuroscience principles, with most operations selected according to this energy function
to avoid excessive structural adjustments. SimAM has been verified to have good perfor-
mance in 2D parametric models. Due to its nonparametric character, we are considering
incorporating this attention mechanism into our 3D point cloud network.

To successfully implement attention, we need to estimate the importance of individual
features. In visual neuroscience, neurons that exhibit unique firing patterns from surround-
ing neurons are often considered to have the highest information content. Additionally, an
active neuron may also inhibit the activity of surrounding neurons, which is a phenomenon
known as spatial suppression [28]. In other words, neurons that exhibit significant spatial
suppression effects during visual processing should be assigned higher priority. As with
SimAM, we use the following equation to obtain the minimum energy for each position:

e∗t =
4(σ̂2 + λ)

(t − μ̂)2 + 2σ̂2 + 2λ
(12)

where μ̂ = 1
M ∑M

i=1 xi, σ̂2 = 1
M ∑M

i=1(xi − μ̂)2, and M denote the feature dimensions.
The above equation indicates that the lower the energy e∗t , the greater the difference

between the neuron and its surrounding neurons, which is also more important in visual
processing. The importance of neurons is represented by 1/e∗t . To enhance the features, we
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construct a residual network. Firstly, we apply the Squash operation to smooth the features,
and then we add the ResSimAM attention operation to the squashed features:

X = Squash( fi + fc)

X̃ = sigmoid
(

1
E

)
� X + X

(13)

where E groups all e∗t across all dimensions, and a sigmoid is added to restrict too large values
in E.

Algorithm 1 denotes the pseudocode for the implementation of ResSimAM using

PyTorch, where X = Squash( f ) as X = ‖ f ‖2

1+‖ f ‖2
f

‖ f ‖ , and ‖ f ‖ denotes the module of f .

Algorithm 1: A PyTorch-like implementation of our ResSimAM
Input: fi, fc, λ
Output: X

1 def forward ( fi, fc, λ):
2 X = Squash(fi + fc);
3 n = X.shape[2]− 1;
4 d = (X − X.mean(dim = [2])).pow(2);
5 v = d.sum(dim = [2])/n;
6 E_inv = d /(4 ∗ (v + lambda)) + 0.5;
7 return X* sigmoid(E_inv) + X;

The Squash operation enables a nonlinear feature transformation by squeezing the
input features to a certain range without changing the direction in the vector space. This
squeezing helps to preserve the directional information of the feature vectors while elimi-
nating the effect of magnitude, thereby allowing the network to better learn the structure
and patterns in the data and be able to better preserve the relationships between the feature
vectors. The feature squeezing operation makes each feature vector have a unit length,
which helps with better similarity computation between the vectors, and by normalizing
the vectors to a unit length, the magnitude difference between the vectors can be reduced,
which helps in reducing the numerical instability due to the change in the length of the vec-
tors for the subsequent similarity matching of the features and improves the generalization
ability of the network.

It is worth mentioning that Algorithm 1 does not introduce any additional parameter
and can therefore work well in a nonparametric network. The energy function involved
in the algorithm only requires computing the mean and variance of features, which are
then brought into the energy function for calculation. This allows for the computation of
weights to be completed in linear time.

3.5. Naive Feature Similarity Matching

In the naive feature similarity matching stage (Figure 5), for a test point cloud, we
similarly utilize a nonparametric encoder to extract its global feature f t

out ∈ R
1×CG .

Firstly, we calculate the cosine similarity between the test feature f t
out and Fmem:

Scos =
f t
outFmem

‖ f t
out‖‖Fmem‖ ∈ R

1×N (14)

The above equation represents the semantic relevance between the test point cloud
and N training samples. By weighting with Scos, we integrate the one-hot labels from the
label memory Tmem as:

logits = ϕ(ScosTmem) ∈ R
1×K (15)

where ϕ(x) = exp(−γ(1 − x)) serves as an activation function from Tip-adapter [29].
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In Scos, the higher the score of a similar feature memory pair, the greater its con-
tribution to the final classification logits and vice versa. Through this similarity-based
label integration, the point memory bank can adaptively differentiate different point cloud
instances without any training.

Figure 5. Naive feature similarity matching.

4. Experiments

To validate the effectiveness, we evaluated the efficacy and versatility of the pro-
posed methods for the shape classification task on the ModelNet40 dataset and ScanOb-
jectNN dataset.

4.1. Shape Classification Task on ModelNet40 Dataset

Dataset: We evaluated our method on the ModelNet40 dataset for the classification
task. This dataset comprises a total of 12,311 CAD mesh models, with 9843 models assigned
for training and 2468 models for testing. The dataset covers 40 different classes.

In order to optimize memory usage and improve computational speed, we followed
the experimental configuration of PointNet [7]. We uniformly selected 1024 points from the
mesh surface using only the 3D coordinates as input data. We used the overall accuracy
(OA) and the number of parameters for evaluation.

For the parametric network, we applied data augmentation; the data were augmented
by adding jitter, point random dropout, and random scale scaling to each coordinate point
of the object, where the mean value of jitter is 0, and its standard deviation is 0.1. The
random scale scaling was between 0.66 and 1.5, and the probability of each point dropping
out ranged from 0 to 0.875. The data were augmented with a weight decay of 0.0001 using
an initial learning rate of 0.003 for the Adam optimizer with an initial learning rate of
0.001, and a weight decay of 0.0001 was used. In addition, training was performed using
crossentropy loss. The batch size set for training was 32, and the maximum epoch was set
to 300.

Experimental Results: The classification results on ModelNet40 are shown in Table 1.
We compared our results with some recent methods on a RTX 3090 GPU. This comparison
signifies that our proposed model generally outperformed several other models. We
compared our results with respect to overall accuracy (OA), the number of parameters
(Params), training time, and test speed (samples/second) with some recent methods. The
proposed nonparametric method achieved an OA of 83.9% with 0 M parameters and
without any training time, and the proposed parametric method achieved an OA of 93.3%
with 0.8 M parameters, while our light parametric model test speed reached 926 samples
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per second. And because of the Squash module, our model was able to converge in a
relatively short time of 3.1 h. Based on these comparisons with our method and related
works, we have reached the conclusion that the network has advantages in terms of training
speed and accuracy, as well as device requirements.

Table 1. Classification results on ModelNet40.

Method Overall Accuracy (%) Parameters Train Time Test Speed

PointNet 89.2 3.5 M - -
PointNet++ 90.7 1.7 M 3.4 h 521

GBNet 93.8 8.4 M - 189
DGCNN 92.9 1.8 M 2.4 h 617

PointMLP 94.1 12.6 M 14.4 h 189
Point-NN 81.80 0 M 0 275

Point-Sim 83.9 0 M 0 231
Point-SimP 93.3 0.8 M 3.1 h 962

Our results are visualized on the ModelNet40 dataset, and the results are shown
in Figure 6. For the nonparameterized model Point-Sim, the model OA was improved
compared to Point-NN with similar inference speed. For the parameterized model Point-
SimP, it was able to greatly improve the inference speed while maintaining the accuracy
and had an advantage in the network training time.

Figure 6. Visualization results on the Modenet40 dataset.

We generated a 40 × 40 confusion matrix for our classification results, and the results
are shown in Figure 7, in which there are 40 categories, with the horizontal axis representing
the predicted labels and the vertical axis representing the ground truth labels (including
airplane, bathtub, bed, bench, etc.). By visualizing the confusion matrix, we can see that
most of the categories were classified well; for example, all the classifications on label 1
(airplane) and label 19 (keyboard) are correct, but the accuracies on label 16 (flower pot)
and label 32 (stairs) still need to be improved. Figure 8 shows some representative results
on ModelNet40.
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Figure 7. Confusion matrix on Point-Sim result. The class containing the most test objects in the test
dataset has 100 objects.

Figure 8. Some representative classification results. P represents predicted label, and T represents the
ground truth.

4.2. Shape Classification Task on ScanObjectNN Dataset

Dataset: Although ModelNet40 is a widely adopted benchmark for point cloud analy-
sis, its synthetic nature and the fast-paced advancements in this field may not fully address
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the requirements of current research. Thus, we have also undertaken experiments utilizing
the ScanObjectNN [30] benchmark.

The ScanObjectNN dataset consists of 15,000 objects, with 2902 unique instances found
in the real world. These objects belong to 15 different classes. However, analyzing this
dataset using point cloud analysis methods can be challenging due to factors such as
background interference, noise, and occlusion. Our loss function, optimizer, learning rate
evolution scheduler, and data augmentation scheme maintained the same settings as the
ModelNet40 classification task. We used the overall accuracy (OA) and the number of
parameters for evaluation.

Experimental Results: The classification results obtained from ScanObjectNN are
shown in Table 2. We assessed the accuracy of all methods by reporting the performance on
the official split of PB-T50-RS. The model achieved an OA of 66.3% with 0 M parameters and
86.6% with 0.8 M parameters, thereby demonstrating the versatility of our proposed method
and the robustness of our model under background interference, noise, and occlusion.

Table 2. Classification results on ModelNet40.

Method Overall Accuracy (%) Parameters

PointNet 68.2 3.5 M
PointNet++ 77.9 1.7 M

GBNet 80.5 8.4 M
DGCNN 78.1 1.8 M

PointMLP 85.2 12.6 M
Point-NN 64.9 0 M

Point-Sim 66.3 0 M
Point-SimP 86.6 0.8 M

4.3. Ablation Study

To showcase the efficacy of our approach, we conducted an ablation study on the clas-
sification task in ModelNet40. Furthermore, we performed separate ablation experiments
on the ResSimAM and the Squash to assess the impact of removing each component.

In our settings (Table 3), W/O R means no ResSimAM interaction, and W/O S means
no Squash. The corresponding results are shown in Table 4.

Table 3. Settings of ResSimAM and Squash. where �means that the module is included, and - means
that the module is not included.

Method Res-SimAM Squash

W/O R&S - -
W/O S � -
W/O R - �

Point-Sim � �

Table 4. ResSimAM and Squash ablation results.

Method Overall Accuracy (%)

W/O R&S 81.8
W/O S 82.4
W/O R 83.2

Point-Sim 83.9

We utilized ResSimAM, which resulted in an improvement of the overall accuracy by
0.6%. We employed Squash to squeeze the features, thus leading to a 1.4% improvement in
the overall accuracy. And we employed both operations—leading to a 2.1% improvement—
and obtained a state-of-the-art result of 83.9% in no-parametric point cloud classification. It

189



Algorithms 2024, 17, 158

has been proven that using ResSimAM can better focus on higher energy features during
the feature extraction stage, which can enhance features useful for subsequent processing,
while the Squash module enables the input features to be squeezed to a certain range
without changing the direction in the vector space, which realizes a nonlinear feature
transformation and reduces the numerical instability due to the change of vector length.
With ResSimAM, we can indeed better capture features with higher energy for feature
enhancement, but it is possible that features with higher energy are not the most appropriate
choice in the subsequent processing, so this approach brings some enhancement to the
model’s classification ability but with some limitations. For the Squash operation, although
squeezing the features facilitates the network to capture the relationship between the
features and better perform the naive similarity matching, squeezing the features also
brings some loss of feature information. These aspects still need to be improved.

5. Conclusions

This study introduces an innovative approach aimed at improving the efficiency of
existing point cloud classification methods. The methods for deep learning-based point
cloud processing have become increasingly intricate and often requiring long training
times and high costs. We propose a new network model: a nonparametic point cloud
classification network. We utilized trigonometric functions for embedding and apply
Squash to smooth the features for subsequent processing. Then, we enhanced the features
using the nonparametic attention mechanism ResSimAM, thereby leading to significant
improvements in the purely nonparametric network for 3D point cloud analysis. Based
on this, we also extended a lightweight parametric network, which allows for efficient
inference with a small number of parameters. For the nonparametric model, our model
achieved 83.9% accuracy on the ModelNet40 dataset without any training, which greatly
saves time in training the model for the point cloud classification task. For the lightweight
parametric model, we achieved 93.3% accuracy using only 0.8 M parameters, the training
time was only 3.1 h, and the inference speed reached 962 samples per second, which will
greatly reduce the pressure on hardware devices and keep the inference speed relatively
high. Various tasks like autonomous vehicles, virtual reality, and aerospace fields demand
real-time data handling, and our lightweight models could work efficiently in these tasks.

Although our method has achieved promising results, there is still room for improve-
ment. For nonparametric network models, the feature extraction ability of our network
on diverse datasets still needs to be tested and improved. For the lightweight paramet-
ric model, although the Squash operation was used to accelerate the convergence of the
network, it brings some impact on the feature extraction ability of the network. In future
research, we will focus on enhancing the generality and robustness of the proposed net-
work. Future work needs to consider the computational efficiency of the network and the
feature extraction capability of the model, as well as propose more effective and concise
lightweight methods. This can be achieved by designing new nonparametric modules
and combining them with a small number of neural networks, as well as adopting more
efficient computational methods. In future work, we will explore nonparametric models
with a wider range of application scenarios.
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Symbol

The list of abbreviations and symbols is shown below.

Symbols Definition
FPS() farthest point sampling
k − NN() k-nearest neighbor
Concat() concatnate the feature
MaxP() max pooling
MeanP() mean pooling
sigmoid() sigmoid activation
Fmem feature memory
Tmem label memory
Acronyms Full Form
FPS farthest point sampling
k-NN k-nearest neighbor
MLP multilayer perceptron
CNN convolutional neural networks
OA overall accuracy
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