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Sensor Data Fusion Analysis for Broad Applications

Natividad Duro

Department of Computer Sciences and Automatic Control, Universidad Nacional de Educación a
Distancia (UNED), C/Juan del Rosal, 16, 28040 Madrid, Spain; nduro@dia.uned.es

1. Introduction

Sensor data fusion analysis plays a pivotal role in a variety of fields by integrating data
from multiple sensors to produce more accurate, reliable, and comprehensive information
than that achieved by individual sensors alone. Advances in technology have allowed us
to obtain relevant information from this analysis and many applications take advantage
of this fact from different points of view. Not only can greater accuracy and reliability be
achieved by combining data from multiple sources, but equally, better decision-making
is executed, supported by informed decisions and predictive analytics from data fusion,
which can be crucial for the operation of many industrial applications.

Therefore, efficiently integrating and analyzing data from multiple sources directly
impacts the attainment of higher productivity and more efficient operations in industry.
In this sense, resource optimization can be achieved by mitigating the need for additional
sensors and reducing redundancy by leveraging data from existing sensors more effectively.

Different emerging areas gain relevant benefits from sensor data fusion analysis. These
include industrial applications, medical or biomedical applications, robotics, monitoring
systems, transportation systems, information systems, or control processes.

Applications in all of these areas require advanced algorithms and techniques to
analyze and interpret the data from various sensors. To this end, it is still necessary to
investigate several challenges such as reducing the complexity and computational load,
especially in real-time applications, ensuring privacy and security, and maximizing data
interoperability, among others.

2. Overview of Published Papers

All submissions were judged on technical merit and relevance, and sixteen high-quality
papers were ultimately accepted to appear in this Special Issue.

Below, a list of accepted contributions is provided, each accompanied by a brief
description. We believe that such papers offer updates and key insights into the research
areas that this Special Issue focuses on and may therefore inspire future work in this area.

In the first contribution, the authors use RGB thermal fusion data as a robust neural
network-based neonatal face detection method. They show that it is possible to achieve
accurate sensor fusion for short distances using a ToF camera as an additional sensor. Its
solution offers good precision, increasing data efficiency and economizing the process.

In the second paper, the authors present a novel methodology that provides an early fu-
sion module capable of introducing the required reliability in a next-generation lightweight
object detector in the event of sensor failure as well as extreme weather conditions. The
article demonstrates that together, the early melt detector and the multimodal marker work
robustly and transparently. Additionally, integrating a GPU enables the system to perform
exceptionally well in real time.

The third study presents a new odometry system implemented in an autonomous
wheelchair. It uses LSTM neural networks to estimate the speed of the robot using an
encoder sensor. Real-time retraining allows the system to self-calibrate and adapt to changes
in the defined model and also reduces the influence of some unsystematic errors. The paper
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shows that the proposed wheelchair localization is a robust solution for state estimation in
challenging environments.

The fourth article addresses the great interest that the academic and scientific commu-
nity has in the development of technologies related to geospatial and terrestrial phenomena.
It reflects a strong trend of using the SVM method to evaluate large volumes of textual and
geospatial data, as well as the use of Weka software. The results present the implementation
of an innovative, practical, and systematic approach for information extraction and the
recommendation of relevant knowledge. The method uses calibration parameters for each
object and achieves results with high precision.

The fifth study implements a real-time PPC for MLS subject to dynamic uncertainty
and external disturbances. A modified GFTSMM function has been developed based
on the errors of the proposed PPC, so the tracking error variables quickly converge to
the equilibrium point. Thanks to the designed observer, the approximate value of all
uncertainty is known, which reduces vibration and improves control performance. The
combination of GFTSMC, PPC, and MTOSMO is a novel strategy that guarantees a stable
position of the controlled ball and the possibility of orbital tracking with good performance
in real time.

The sixth article presents a solution in the field of health, safety, and fire to obtain
temporally synchronous data from high-resolution sensors. The authors develop an energy-
conserving multi-sensor fusion framework that powers low-power model-driven micro-
controllers using machine learning. Likewise, they apply optimization techniques using
anomaly detection modes to provide real-time information on demand that saves lives.
The paper presents the application and results in a real-life healthcare scenario.

The seventh paper mainly focuses on designing a highly accurate trainable EKF-based
localization framework using inertial measurement units for an autonomous ground vehicle
with dead reckoning. The goal is to fuse it with a laser image for simultaneous detection and
localization and for mapping estimation based on range sensors that improve performance.
Convolution neural networks, backpropagation algorithms, and gradient descent methods
are implemented in the system to optimize the parameters. Additionally, a unique cost
function is used to train the models and improve the accuracy. The research is generic and
applicable to various robot localization models assisted by inertial measurement units.

Paper eight proposes an Echo State Network architecture that exploits sensor data fu-
sion to detect failures in a scaled replica of an industrial plant. Thanks to their sparse weight
structure, Echo State Networks function as recurrent neural network models, exhibiting
low complexity and memory consumption, making them suitable for deployment on an
Edge device. By analyzing vibration and current signals, the proposed model can correctly
detect most of the faults that occur in the plant. The experimental results demonstrate
the feasibility of the proposed approach and present a comparison with other approaches,
where it is shown that the presented methodology is the best trade-off in terms of precision,
recall, F1-score, and inference time.

The ninth study presents new data fusion approaches for the characterization of
musts and wines based on biogenic amine and elemental composition. The paper applies
inductively coupled plasma techniques to determine a wide range of elements. The authors
obtain good descriptive models to describe the different compositions of the wines and
musts using data fusion.

The tenth paper shows a multiblock approach to fuse processes and near-infrared
sensors for online prediction of polymer properties. The main goal of the study is to
explore the feasibility of multiblock regression methods to build real-time monitoring
models that predict two quality properties of acrylonitrile butadiene styrene by fusing data
from near-infrared and process sensors. Several prediction models taking advantage of
sensor measurements have been created, which have provided good prediction results
and allowed for the identification of the most relevant block data for the prediction of
quality parameters.
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Paper eleven proposes an optimization framework for the large-scale field placement
of optical sensors to improve border protection. Compared to the frequently used maximum
area coverage approach, this method minimizes undetected passages in the monitored
area. The paper takes into consideration both natural and built environmental coatings.
The optimization is performed using a bacterial evolutionary algorithm. Therefore, the
developed simulation framework based on ray tracing provides an excellent opportunity
to optimize large areas.

In the twelfth study, different types of artificial neural networks are investigated
to estimate the arrival time in acoustic emission signals. Convolutional neural network
models and a novel capsule neural network are proposed. The models have been tested
with experimental data acquired in the framework of a localization problem to identify
targets with known coordinates on a square aluminum plate. The models have been shown
to have excessive precision at significant noise levels.

Paper thirteen evaluates the performances of five clustering algorithms: k-means,
fuzzy C-means (FCM), hierarchical, mean shift, and density-based spatial clustering of
applications with density-based noise. The paper analyzes the impacts of input data format
and feature selection on the quality of management zone delineation. It uses key soil fertility
attributes collected with an online visible and near-infrared spectrometer, demonstrating
that k-means is the optimal clustering method for management zone delineation.

Paper fourteen proposes the use of the Delicar system, a self-driving product delivery
vehicle that can drive the vehicle on the road and report the current geographical location
to the authority in real time through a map. A camera captures the road image and transfers
it to the computer using socket server programming. The system’s infrastructure is also
low-cost and easy to install.

The fifteenth paper proposes a recent iterative learning algorithm for sensor data
fusion to detect pitch actuator failures in wind turbines. The development of this proposed
approach is based on iterative learning control and Lyapunov’s theories. Numerical
experiments have been carried out to support the study. These experiments use a well-
known model of a wind turbine hydraulic pitch actuator with some common faults, such
as high oil content in the air, hydraulic leaks, and pump wear.

The last paper presents a detailed review of state-of-the-art data fusion solutions
for data storage and indexing from various types of sensors, feature engineering, and
multimodal data integration. The review aims to serve as a guide for the early stages of
an analytic pipeline of manufacturing prognosis. The reviewed literature showed that
in fusion and preprocessing, the methods chosen to be applied in this sector are beyond
the state of the art. Existing weaknesses and gaps that will lead to future research were
also identified.

3. Conclusions

In summary, the sixteen papers collected in this Special Issue represent a good example
of the uses of data sensor fusion in industrial applications. The papers show a wide interest
in the research area.

Future research on sensor data fusion analysis will be focused on the miniaturization
of sensors and components, as well as an increased use of multi-sensor systems and wireless
and autonomous radio sensors. Developing smaller and smaller sensors will allow us to
understand the world as we know it more easily and accurately. On the other hand, one
of the main challenges in sensor fusion using mobile devices will be the quality of the
data collected. Mobile sensors are easily affected by noise, interference, calibration errors,
and outliers.

Conflicts of Interest: The authors declare no conflicts of interest.
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Sensor Fusion for the Robust Detection of Facial Regions of
Neonates Using Neural Networks
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Abstract: The monitoring of vital signs and increasing patient comfort are cornerstones of modern
neonatal intensive care. Commonly used monitoring methods are based on skin contact which
can cause irritations and discomfort in preterm neonates. Therefore, non-contact approaches are
the subject of current research aiming to resolve this dichotomy. Robust neonatal face detection
is essential for the reliable detection of heart rate, respiratory rate and body temperature. While
solutions for adult face detection are established, the unique neonatal proportions require a tailored
approach. Additionally, sufficient open-source data of neonates on the NICU is lacking. We set out to
train neural networks with the thermal-RGB-fusion data of neonates. We propose a novel indirect
fusion approach including the sensor fusion of a thermal and RGB camera based on a 3D time-of-flight
(ToF) camera. Unlike other approaches, this method is tailored for close distances encountered in
neonatal incubators. Two neural networks were used with the fusion data and compared to RGB and
thermal networks. For the class “head” we reached average precision values of 0.9958 (RetinaNet) and
0.9455 (YOLOv3) for the fusion data. Compared with the literature, similar precision was achieved,
but we are the first to train a neural network with fusion data of neonates. The advantage of this
approach is in calculating the detection area directly from the fusion image for the RGB and thermal
modality. This increases data efficiency by 66%. Our results will facilitate the future development of
non-contact monitoring to further improve the standard of care for preterm neonates.

Keywords: non-contact monitoring; neonates; sensor fusion; neural network; face detection

1. Introduction

Neonates on the Neonatal Intensive Care Unit (NICU), especially those born preterm,
require continuous monitoring (e.g., via electrocardiogram (ECG), pulse oximeter or tem-
perature probes) of their vital signs (heart rate, respiratory rate and body temperature).
Most of these techniques, however, rely on direct skin contact which might pose a clinical
problem particularly for immature neonates with commonly increased skin sensitivity.
Clinically, this can lead to pressure marks, eczema, skin irritations and even epidermal
abrasion [1]. Hence, current research aims to develop non-contact monitoring approaches
to improve neonatal comfort. Technically, monitoring of vital signs requires a reliable
detection of the head and facial regions such as the nose. Unfortunately, the most common
face detection methods are only utilized on adults and cannot be readily applied to the body
proportions of neonates [2]. Moreover, sufficient open-source data of neonates on the NICU
is lacking. In the clinical setting, non-contact monitoring is challenged by incubator-related
issues such as the varying quality of lighting and the positioning of detectors in close
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proximity to the area of interest. Therefore, our aim is to collect thermal and Red Green
Blue (RGB) camera data of incubator-nursed (preterm) neonates on the NICU. Thermal
cameras measure temperature gradients and display it within a false color image and are
light independent. RGB cameras collect visible light and display it how a human would
perceive it. RGB camera images hold more features than thermal camera images. The
idea is to fuse the different image modalities to allow a robust face detection under all
conditions. A neural network shall be trained with the fused data.

1.1. State of the Art

In this chapter, we describe the State of the Art for thermal-RGB-fusion approaches as
well as neural networks for face detection.

1.1.1. Thermal-RGB-Fusion

Direct and indirect approaches for the fusion of an RGB with a thermal camera will be
presented in the following section.

Direct Extrinsic Calibration

St. Laurent et al. use the angles and the ratio of the field of view (FoV) of the thermal
and the RGB camera [3]. The calibration is facilitated using parallel or convergent optical
axes of the cameras. Shivakumar et al. use a projection of the RGB coordinates into the 3D
space using a depth image which is determined by stereo depth calculations [4]. Their RGB
camera is a Stereolabs Zed Mini (Stereolabs, San Francisco, CA, USA). The 3D coordinate
is then projected into the thermal camera image. For the intrinsic calibration, a checkered
pattern is used. Yang et al. first detect the centers of the circles of the calibration target
within the RGB and the thermal camera image [5]. The root mean square error (RMSE)
of the coordinates of the detected circle centers is calculated. Finally, normalized cross
correlation (NCC) is used as an image registration procedure.

Indirect Extrinsic Calibration

Since it is difficult to achieve a high precision using a direct extrinsic calibration,
approaches for an improved extrinsic calibration using a third sensor will be discussed.
Krishnan and Saripalli apply a cross calibration of an RGB camera with a thermal camera
with a light detection and ranging (LIDAR) sensor [6]. First, the RGB camera is calibrated
with the LIDAR. The transformations between the edges of the checkered calibration target
within the camera image and the 3D point cloud are determined. The extrinsic calibration
between the thermal camera and the LIDAR is determined in the same manner using a
different calibration target which is visible within the thermal camera image. Gleichauf et al.
employed a thermal-RGB-laser fusion for a project with the German railway [7]. In this
case, no direct fusion between the RGB and thermal camera takes place, but the single
systems are fused with the 3D laser scanner by themselves. The points of the laser scanner
are projected into the two image modalities.

Thermal-ToF-Fusion

Tisha et al. fuse a thermal camera with a Kinect2. First, the intrinsic calibration takes
place and in the next step the homography of both cameras is calculated (intrinsic times
extrinsic). The multiplication of the homographies with a pixel point of the camera delivers
the pixel point within the other camera [8]. Van Baar et al.’s extrinsic calibration approach
is based on the publication by Yang et al. [9]. They fuse an RGB image with a depth
image. For the thermal camera a checkered pattern with heated resistors is used [10].
Cao et al. fuse a thermal with a Red, Green, Blue -Depth (RGB-D) camera (Kinect2) using
the thermal-guided iterative closest point (T-ICP) algorithm [11]. A thermal-3D-pointcloud
registration is applied. The resulting error is defined by a nonlinear least-squares objective
and minimized by the Gauss–Newton method. Pfitzner fuses a thermal camera with a
Kinect via the infrared sensor frames of the Kinect to the thermal camera and the Kinect2.
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For the fusion the RGB images of the Kinect camera systems are used [12]. The method by
Rocco Spremolla is very similar, where first the intrinsic calibrations of the thermal and the
Kinect2 cameras are determined and then the relative poses of thermal/RGB (Kinect) to the
infrared (IR)/Depth of the Kinect. The transformations can then be calculated [13].

RGB-ToF-Fusion

Similarly fusion approaches between ToF and RGB cameras exist. Salinas et al. rec-
ommend using a depth dependent homography lookup table instead of calculating the
extrinsic parameters of the ToF and RGB camera. In both modalities, point correspondences
need to be found [14]. Kim et al. use five RGB and three ToF cameras which are set up in
a semicircle. The intrinsic and extrinsic calibration can be calculated using the intensity
image of the ToF camera but inaccurate registrations of the depth images can occur [15].
The aim is to achieve a precise 3D reconstruction of surfaces.

Fusion Using Neural Networks

There are several approaches using neural networks for generating fusion images. In
each case, the images are taken from a long distance [16]. The network used by Alexander
et al. is used for civil infrastructure applications and states that the robustness increases
for fusion images [17]. Jung et al. use a neural network for the creation of fusion images
out of near infrared (NIR) and noisy RGB images [18]. Wang et al. apply a multi-channel
convolutional neural network (CNN) for infrared and visible image fusion using images of
the same scene and position [19]. Another approach uses salience detection and a CNN
for fusion image generation [20]. Using neural networks for the sensor fusion requires a
lot of data to train the networks. As we demonstrated in this article, all of these fusion
approaches are only applicable for long distance environments.

1.1.2. Face Detection Using Neural Networks and Image Processing

For adults, there are a lot of scientific contributions which address the detection of body
regions. The field of application can differ and is not restricted to the monitoring of vital
signs. The detection of the head and face became more popular after the publication of the
WiderFace dataset [21]. Face detection developed rapidly and mainly focused on extreme
and real variation problems including scaling, pose, occlusion, lighting conditions, blur,
etc. Neural networks are mainly used for the common object detection and trained for the
special case of face detection with the WiderFace dataset and adjusted. Known methods are
YOLO5Face [22], RetinaFace [23], MTCNN [24], Mask R-CNN [25] and an implementation
of the Faster R-CNN [26]. These are all adaptions of the original architecture (trained on
RGB data of the WiderFace dataset) especially designed to overcome the problems of the
face detection. Some were extended such that the pose or the orientation of the face can
be detected. The dataset also holds images of babies but they are neither newborns nor
recorded within the clinical field. Most of the dataset consists of images of adults. Therefore,
nets which were trained on the WiderFace dataset are not suitable for detecting the face
region of neonates within the incubator. There are many other models which were trained
with the WiderFace dataset. An overview can be found on the WiderFace website [21].

There is little research on the head detection within thermal images. Cheong et al. [27]
use the Otsu threshold method to convert thermal into binary images. Using the horizontal
projection of the images the global minimum can be determined which helps to identify
the height and width of the head region.

Kopaczka et al. [28] use a so-called Histogram of oriented gradients detector for the
evaluation of thermal images. They also compare other machine learning methods and
classic approaches within image processing. They conclude that machine learning methods
deliver better results than traditional approaches.

Silva et al. [29] use deep learning methods such as the neural network YOLOv3 by
Redmon et al. [30]. They apply transfer learning in order to implement a network trained
on RGB data to detect heads within thermal images.
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A similar approach can be found with Vuković et al. [31]. They use a R-CNN which
delivers very good results but has no real-time capability.

Mucha et al. [32] implement the SCRFD DL architecture by Guo et al. [33] which
returned satisfactory precision values for the WiderFace Challenge. SCRFD DL was adapted
such that faces can be detected within thermal images.

1.1.3. Face Detection for Neonates

As the proportions of adult faces differ from the faces of neonates the previously
presented methods cannot be used for neonates without further adaptions [2]. Chaichulee
et al. use a self designed multi-task CNN which segments the visible skin of the neonate
(clinical field) within the RGB image [34]. In most cases the torso and the head are made
visible. These regions are used to determine the respiratory and heart rate.

Green et al. [35] extended the network such that the head, the torso and the nappy
area can be detected. It is based on the Faster R-CNN [36]. The whole network is made up
of a core network based on VGG16 [37], three branches for the patient detection and skin
segmentation with movement control and a branch for the detection of the body regions.
The average precision achieved for the “head” class is 98.2. The data set holds 2269 images
of 15 subjects of different ethnic backgrounds and sex. The recordings were taken within
an incubator during the stay on the NICU.

Kyrollos et al. use the RetinaNet [38], to detect the thorax and face region of neonates
in an RGB video stream [39]. A model was trained with a transfer learning approach by
applying weights which were pre-trained on the ImageNet dataset [40]. Three different core
nets were tested: ResNet50, ResNet101 and ResNet152. There were only small differences
between the three models so it was decided to use the fastest model, ResNet50. A mean
average precision of 56.9 was achieved. The results of the detection are used for the
calculation of the respiratory rate. The RGB images (200 images per subject with 5 subjects)
were not taken within an incubator.

A CNN with pyramidal hierarchic features is presented by Lu et al. [41]. First, an
adaption of VGG16 [37] is used to extract the implicit features of the normalized image.
Multi-scale feature maps are selected to predict and detect different sizes of facial features
of neonates. The third part of the system contains two parallel branches: a classification
branch of facial and non-facial regions and a regression branch for the position of the face.
The dataset holds 3600 images with different perspectives, gestures, facial expressions and
backgrounds. If the images were taken on a NICU is unknown. An average precision of
92.7 for the facial region was achieved.

An often-used model for the detection of neonates is YOLOv3 [30] and YOLOv5[42].
In Nagy et al.’s work, YOLOv3 is the basis for the detection of head, torso and hands
of a nurse or parents [43]. In combination with a LSTM (Long Short-Term Memory) the
static objects within the RGB video can be detected. The pulse and respiratory rate are
determined from the results of the classification block (YOLOv3 plus LSTM). The author’s
dataset holds 96 h of labeled RGB video data recorded on a NICU. The achieved precision
of the object detection is not stated in the publication. The results of the classification block
made up of YOLOv3 and LSTM show a sensitivity of 97.9, specificity of 97.5 and an F1
score of 98.1. Therefore, the object detection should also deliver high levels of precision.

Khanam et al. [44] use Redmon’s YOLOv3 for the face detection of preterm neonates
in the incubator. The head needs to be detected during normal lighting conditions as well
as during phototherapy with ultraviolet (UV) light. The dataset holds 473 images from the
internet. A transfer learning approach was chosen. The starting point were the weights of a
YOLOv3 net trained on the MS COCO dataset. The authors do not state the precision of the
face detection.

By training YOLOv5 on a proprietary RGB dataset with labeled faces of newborns in
the clinical field Hausmann et al. almost reach real-time face detection [2]. The results show
a precision of 68.7. For the dataset, the University of South Florida Multimodal Neonatal
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Pain Assessment Dataset (USF-MNPAD-I) [45] was used. In comparison, a net was also
trained with the WiderFace dataset, which led to a precision of 7.37.

Dosso et al. [46] also use YOLOv5. They compare different face detection models such
as RetinaFace [23] and YOLO5Face [22] which were trained with the WiderFace dataset. By
using transfer learning approaches with their own dataset they reach a precision of 81.45.
The best results were achieved by the fine-tuned YOLO5Face which they called NICUFace.
The dataset contained 33 subjects which were filmed over 153 h. They also use a thermal
camera but its data were not used for their work.

Antink et al. [47] follow another approach by extending an encoder decoder method
through a modified version of the ResNet50 encoder. Their aim is to segment different
regions of the body of preterm neonates. They use a freely available dataset holding
segmentation data of adults. A second dataset containing NIR and RGB images of preterms
on the NICU was used for transfer learning. The head is well segmented within the RGB
images (Intersection over Union (IoU) of 82.0). For the torso, an IoU of 41.0 is reached.
Within the NIR images the detection delivered less accurate results. By applying methods
of data augmentation and generating artificial NIR images an IoU of 62.0 for the head
detection and of 14.0 for the torso was achieved. Voss et al. extended this research by using
a U-Net architecture for training with RGB, NIR and fusion images [48]. Their fusion does
not take place on the images itself, but on the feature level. They reach a mean IoU of 85.0
with their fusion model. The results for the RGB model is similar with 85.0. Within the
NIR images the accuracy drops significantly to a mean IoU of 75.0. In all modalities, the
segmentation of the torso performed worst.

Beppu et al. research the detection of different body regions within thermal images [49].
They trained YOLOv5 [42] to detect six body regions such as the head, torso, arms and
legs. For the dataset, 4820 thermal images of 26 different subjects extracted out of 1872 h
of video material were used. The images were taken within an incubator on a NICU. The
head detection reached a precision of 94.8, whereas the torso an average precision (AP) of
95.8. They use the detected regions to determine the body temperature of preterms.

Besides the deep learning methods there are other approaches for the face detection.
Awais et al. [50] solves the problem of the face detection using the CIE L*a*b intensity
based detection by Neophytou et al. [51] and Fairchild [52] within their framework NFAR
(Neonatal Face Attributes Recognition) for RGB images. NFAR reaches a precision of up
to 94.9.

No literature regarding the face detection of neonates with fused images currently exists.

1.1.4. Face Detection Using Fused Images

Two sensor fusion approaches for the face detection based on thermal and visual
image data are introduced by Bebis et al. [53]. The first approach is pixel based which is
applied within the wavelet plane, the other one is feature based in the Eigenspace. For the
wavelet method, differences within the resolution are detected, for the Eigenspace global
image features are fused. The Eigenspace method is based on a Principal Component
Analysis (PCA). The aim is to calculate a fused image out of the infrared and the RGB data
and to use the most significant features in both spectra. The heat energy which is emitted
by the face can be measured by the thermal camera. The reflection of light from the facial
surface is detected by the visual camera. A simple pixel to pixel fusion has the disadvantage
that spacial information is lost. If the fusion takes place for different resolution planes,
features with different spacial dimensions can be used, especially the most significant ones.
Both approaches were tested by Bebis et al. with the Equinox dataset [54] with long wave
infrared (LWIR) and RGB camera images. The dataset only holds head-on images of adults
faces. In our case, it has to be trained with facial data of neonates. In comparison, the fusion
within the wavelet space delivers better results, but the computational expense is higher.
In the future, the authors want to use a hair-wavelet-transformation [53]. Both of these
methods have only been tested on adults and do not necessarily use the fused images for
the face detection or the vital sign detection.
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Chen et al. propose a neural network for creating fusion images for face recognition [55].
They state that the recognition improves when fusing data. The network is only trained
on adults.

1.1.5. Neural Networks Using Fused Image Data

There are a few approaches using neural networks with fused image data as input. The
applications lie within the perception for automated driving [56] and pedestrian detection
(Faster R-CNN) [57]. In both cases, the fusion images are also created by a neural network.
Shopovska et al. propose that the fusion generates more informative images [57].

There are so-called RGB-T trackers which track objects in the foreground using neural
networks within RGB thermal images. Thus, in contrast to image fusion, the fusion
precision is less important [58,59].

There are no neural networks using fused image data for the face detection for neonates.
We will now present a method addressing this gap.

2. Materials and Methods

We now describe all parts which are required for our sensor fusion as well as the
training of the neural networks for neonatal face detection. First, the theoretical approach
is presented, and then the hardware and software are described in more detail. The
measurement series we recorded will be presented in the last step.

2.1. Concept and Theoretical Approach

In this section, the concept of our fusion approach, the architecture of our neural
networks and the theory behind the sensors used is presented.

2.1.1. Sensors

First, the theory behind the thermal, RGB and the 3D-ToF camera are described. A
detailed description of the hardware used will be presented in the following section.

Thermal cameras are 2D infrared thermometers which detect the emitted heat of
objects. Within the thermal camera image temperature gradients are displayed as false
color images. RGB cameras collect visible light and display the image how a human being
would perceive it [60].

Within time-of-flight cameras two principles can apply: the phase difference method
and the impulse time-of-flight method. In our ToF camera the phase difference method is
used [61]. This is based on the phase shift caused by the reflected modulated signal. Using
the phase shift φ and the wavelength λ of the modulated signal the distance to the object
can be calculated:

d =
φ

2 · π
· λ

2
(1)

2.1.2. Intrinsic Calibration

Fusion between the different sensors requires prior intrinsic calibration of the thermal
and RGB camera. During the rectification the tangential and radial distortion coefficients are
calculated and removed. It relates to the projection of the chip plane onto the image plane of
the camera sensor such that the transformation between the sensor’s pixel coordinates and
the world coordinate frame is given. Both cameras can be modelled as a pinhole camera
model represented by this formula:

⎛
⎝u

v
1

⎞
⎠ =

⎛
⎝ fx 0 u0

0 fy v0
0 0 1

⎞
⎠
⎛
⎝X/Z

Y/Z
1

⎞
⎠ (2)

with fx and fy as focal length, u0 and v0 as center of the camera sensors. u and v are the x-
and y-coordinate within the image. Z is a scaling factor.
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Images of the calibration target have to be processed from different positions with
different distances and skew so that the distortion coefficients can be calculated as precisely
as possible. The rectification can be calculated using the following formula:

(
u · (1 + k1r2 + k2r4 + k3r6) + 2p1v + p2 · (r2 + 2u2)
v · (1 + k1r2 + k2r4 + k3r6) + 2p1 · (r2 + 2v2) + p2u

)
(3)

with k1, k2 and k3 as radial distortion coefficients and p1 and p2 as tangential distortion
coefficients. r is the distance between u and v.

2.1.3. Sensor Fusion

In the following, the concept of our sensor fusion approach will be described. The
precision of direct fusion between the thermal and RGB camera is limited to its specific
calibration distance [3]. This is not ideal due to the varying sizes of the neonates the distance
to the cameras can differ. Therefore, it is our aim to develop an indirect fusion approach
using the Time of Flight camera of our sensor setup from [62] as the third sensor. The
advantage of the 3D ToF camera is that it can take the depth into account. The following
steps are necessary for the indirect thermal-RGB-fusion:

• Detect circles of the calibration target within the ToF mono image and calculate the
corresponding depth points.

• Detect circles within RGB and thermal image.
• Calculate transformation between RGB and ToF camera using the circle centers.
• Calculate transformation between thermal and ToF camera using the circle centers.
• Project RGB points into the thermal image (at the position of the ToF points).

2.1.4. Neural Networks RetinaNet and YOLOv3

Now the architecture of the neural networks RetinaNet and YOLOv3 will be presented.

RetinaNet

RetinaNet is a CNN developed by Facebook AI Research (FAIR) and published by Lin
et al. in [38]. It is known as one of the best one-stage object detection models that is proven
to work well with dense and small scale objects.

RetinaNet is composed of several networks, as displayed in Figure 1. On top of a
Residual Network (ResNet) (a) [63] backbone a Feature Pyramid Network (FPN) (b) [64]
is used. ResNet utilizes skip connections to extract deep features [63]. An FPN is used on
top of ResNet for constructing a rich multiscale feature pyramid from one single resolution
input image [64]. Lateral connections allow RetinaNet to merge feature maps with the same
resolution. The feature pyramid is included to improve the accuracy of detection for objects
of a different scale. In the original paper [38], five different scales are used. On top of the
FPN, two subnets are added: first, a classification subnet (c) which predicts the probability
of the presence of an object at each position for each anchor and object class. The second
subnet is the bounding box regression subnet (d) with the purpose of regressing the offset
of an anchor box to a nearby ground truth object.

Figure 1. Structure of RetinaNet from the original paper [38]. Reprinted with permission from [38].
2018, Lin et al.
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It has been shown that there is an extreme imbalance between the foreground and
background classes in a single-stage detector [38]. To overcome this problem, RetinaNet
uses a special loss function, called Focal Loss. It is used on the output of the classification
subnet. By using Focal Loss, less loss is produced by “easy” negative samples (such as the
background), so that the loss is focused on “hard” samples (real objects we want to detect),
which improves prediction accuracy. Focal Loss reduces the cost of simple detections and
increases the cost of correcting misclassified objects.

RetinaNet achieves state-of-the-art performance and outperforms most one-stage
and two-stage detectors, such as Fast Region-Based Convolutional Neural Networks
(R-CNN) [65] or Faster R-CNN [36].

YOLOv3

“You only look once”, or YOLO, is one of the faster object detection algorithms found
in the literature. YOLOv3 is the third revised version of YOLO published by Redmon et al.
in 2018 [30].

The structure of YOLOv3 relies on similar elements as RetinaNet. The backbone is
Darknet-53, a fully convolutional network with 53 layers. Like ResNet, it uses so-called
skip connections to bypass individual layers during training in order to enable a deeper
architecture. Darknet is used for feature extraction. Compared with that of ResNet, the
network structure used by Darknet-53 better utilizes the graphical processing unit (GPU),
making it more efficient to evaluate and thus faster. For the task of detection, 53 additional
layers are added on top of Darknet, so that YOLOv3 is based on a fully convolutional
architecture with 106 layers. The overall structure is shown in Figure 2.

A major innovation of YOLOv3 in contrast to its predecessors [66] is that predictions
are performed at three different scales. The 82nd layer performs the first detection. During
the passage of the previous 81 layers, the input image is down-sampled by a factor of 32.

After a few convolutional layers, the 79th layer is deeply concatenated with the 61st
layer sampled upward by two. The resulting layer is then subjected to further convolutional
layers until another detection is performed in layer 94. The prediction is thus performed on
a feature map that is smaller than the initial image by a factor of 16.

The last detection is then performed in layer 106, which corresponds to a down-
sampling factor of 8. Similarly to the previous prediction head, a deep convolution is
applied. The 91st layer is up-sampled by a factor of two and then used to convolute
layer 36.

Figure 2. YOLOv3 structure from Ayoosh Kathurias blog post in Towards Data Science [67]. Reprinted
with permission from [67]. 2018, Ayoosh Kathuria.
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In their paper, Redmon et al. tried to use Focal Loss as a loss function. However, this
did not bring any further improvements. YOLOv3, on the other hand, relies on logistic
regression to determine the object confidence and class predictions [30].

YOLOv3 is currently considered to be one of the fastest object detection algorithms
and is a good choice if real-time detection is needed, with negligible loss of accuracy.

2.1.5. Data Augmentation

In general, data augmentation methods can be divided into two categories: traditional
and advanced methods. While advanced methods such as Generative Adversial Networks
(GANs) are computationally intensive, traditional methods have a low complexity time [68].
In this paper, we focus on the use of different traditional data augmentation techniques
due to their ease of use. All data sets are subjected to data augmentation. The parameters
were empirically adjusted to the specific properties of the image types.

Mirroring

The mirroring is performed by swapping the individual pixel values on the basis of
the symmetry axes. Either a single mirroring on x- or y-axis or a double mirroring on both
is accomplished. In addition to the single images, the bounding box is also transformed to
prevent relabeling. Obtained images are shown in Figures 3b and 4b.

Rotation

The rotation operation uses degree increments of 90° between 0° and 360°. Other an-
gles were neglected here, as it would have entailed relabeling. To maintain the proportions
of the image content, the rotated images are then resized back to their original size. For the
thermal and fused images, this corresponds to a size of 640 × 480, for the RGB images the
total size is 1146 × 716. This can be seen in Figures 3c and 4c.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3. Augmented thermal images: (a) original; (b) vertical mirroring; (c) rotation; (d) random
crop; (e) erasing; (f) zooming; (g) salt/pepper; (h) histogram equalization; (i) contrast; (j) saturation;
(k) blurring; (l) sharpening [69].

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4. Augmented RGB images: (a) original; (b) horizontal mirroring; (c) rotation; (d) random
crop; (e) erasing; (f) zooming; (g) histogram equalization; (h) Gaussian; (i) contrast; (j) saturation; (k)
blurring; (l) sharpening [69].
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Zooming

This transformation is dedicated to zooming in or out to the center of an image. It
returns an enlarged or shrunk view of the image without changing the image dimensions.
The zoom factor is set at random between the values 0.5 and 1.5. This corresponds to a
reduction or enlargement of 50%. Zooming is also applied on the bounding boxes to avoid
relabeling. Images transformed with zooming can be seen in Figures 3f and 4f.

Random Crop

Random crop is similar to zooming. The difference is that instead of zooming in or
out of the center of the image, a randomly generated section of the image is selected. This
is then used as the new image. The bounding box is either recalculated or discarded if less
than 75% of the area is in the image section. The image dimensions are retained. The image
section is moved to the upper left corner of the new image. The rest of the image is filled in
with black (see Figures 3d and 4d).

Erasing

This transformation randomly erases rectangular areas of different sizes within an
image. If bounding boxes with an overlap of more than 50% are deleted, they are discarded.
Up to three of these rectangles are applied per image. Sample images can be viewed in
Figures 3e and 4e.

Noise

Several genres of noise can be utilized for data augmentation. In this case, either
salt-and-pepper (Figure 3g) or Gaussian noise (Figure 4h) is added to the original image.
Salt-and-pepper noise is known as impulse noise. It presents itself as sparsely occurring
white and black pixels. The transformation is irrelevant for the bounding boxes, so they do
not need to be changed.

Contrast and Saturation Changing

The contrast of individual images is changed by multiplying all pixel values by a
random constant between 0.5 and 0.75 (see Figures 3i and 4i). By adding a random constant
between 0.1 and 0.5, the saturation and brightness of the images are modified. Before this,
the images are converted from RGB to HSV color space. The resulting images are shown in
Figures 3j and 4j.

Blurring and Sharpening

For blurring, a Gaussian filter is applied to the image with a standard deviation
between 2 and 4. Sharpening is performed by using a 3 × 3 filter kernel with randomly
generated weights.

Histogram Equalization

When using the histogram equalization (see Figures 3j and 4j) the intensity distribution
of the image is transformed to an equal distribution. It is applied to improve the contrast
of an image. The aim is to stretch the intensity values for the display of the image. This
improves the visibility of details within the image which otherwise would be hard to be
seen. In this paper, the histogram equalization implementation of openCV is used. Before
applying it the image has to be converted to the YCbCr color space.

2.2. Hardware Setup

In this section, the hardware setup for recording the data, performing the sensor fusion
and training the neural networks is presented.
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2.2.1. Thermal Camera

We used the thermal camera Optris PI 640 (by the company Optris, Berlin, Germany)
with a field of view of 90° × 64°. The camera has an optical resolution of 640 × 480 pixels.
It works within the wavelength spectrum between 7.5 μm and 13 μm. We use the mea-
surement range of −20 °C to 100 °C. The thermal sensitivity is 75 mK. The ROS package
optris_drivers is used as driver [70].

2.2.2. RGB Camera

The RGB camera used is the JAI GO-2400C-USB Camera with a Fish-Eye lens FUJINON
FE185C086HA-1 by Sony (Tokyo, Japan). It has 7.5 μm square pixels and a field of view of
185° × 185°. The driver used was ros_cvb_camera_driver [71]. The resulting image has a size
of 1146 × 716 pixels.

2.2.3. 3D-Time-of-Flight Camera

We use a 3D time-of-flight camera called CamBoard pico flexx by the company pmd
(Siegen, Germany). The camera has a field of view of 62° × 45° and a resolution of
224 × 171 (38k) pixels. The measurement range is 0.1–4 m. A frame rate of up to 45 frames
per second (fps) (3D frames) is delivered. We set a frame rate of 35 fps in our case. The
camera can be connected via USB to an Ubuntu 18.04 computer with Robot Operating
System (ROS) Melodic installed. The Royale SDK provided by the manufacturer as well as
the ROS package pico_flexx_driver are the drivers used [72].

2.2.4. Computer with GPU

An OMEN HP computer with Ubuntu 18.04.6 bionic operating system and a GeForce
RTX 1080 Ti GPU from NVIDIA (NVIDIA, Santa Clara, CA, USA) (11 GB Memory) is used.
We used the NVIDIA drivers 465.19.01, CUDA 11.3, cuDNN. We had the Melodic ROS
version installed for recording the camera data.

2.3. Software Algorithms

All software algorithms for the sensor fusion as well as the face detection of our
approach will be described in the following.

2.3.1. Calibration

For the intrinsic calibration the ROS-package camera_calibration was used [73]. There is
a special calibration program for the fish eye optics of the RGB camera [74].

Thermal Camera

The calibration target we used was made up of a 2 mm thick aluminum plate and
a 1 mm thick high density fibreboard from which 6 × 20 circles with a diameter of 1 cm
were cut out with a laser cutter. The distance between the circle centers is 13.96 mm. The
calibration target was placed in the image with a horizontal orientation such that the long
edge lies horizontally and the short edge vertically within the image. In total, 144 images
were read. For the calibration the ROS package camera_calibration was used.

Concomitantly, rqt_reconfigure needs to be started so that the temperature threshold
can be set. In this case, the temperatures are coded in black and white. Depending on
the temperature of the calibration target the suitable threshold varies in order to make all
circles of the calibration target visible.

This resulted in a very good rectification of the image (see Figure 5). The cushion
effects at the edges of the image are completely removed and the calibration target is
visualized as rectangle within the thermal camera image. This was tested at different
areas within the image. Using a baby doll, the occurrence of proximity-related distortions
was excluded.
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Figure 5. Intrinsic calibration of the thermal camera with 144 images. Rectified image (right) and
non-rectified image (left). The cushion effect is sufficiently removed.

RGB Camera

First the RGB image was cropped to a size of 1146 × 716 pixels. The calibration was
then performed with a 5 × 9 chess board with squares of size 14 mm. The result can be
seen in Figure 6.

In the last step, the values of the calibration were manually adapted such that the
cushion effect decreases. It was empirically determined how the image changes when
changing the projection as well as the distortion matrix. The step by step adaption can be
seen in Figure 7.

Figure 6. Intrinsic calibration with the cropped RGB camera image using 196 images (left). The
calibration target is a 5 × 9 chess board with squares of size 14 mm. Non-rectified image (right).

Figure 7. Cont.
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Figure 7. Empirical adaption of the intrinsic calibration of the RGB camera. (a) original image;
(b) change the first value of the projection matrix from 337.7501220703125 to 400; (c) change the
first value of the projection matrix from 337.7501220703125 to 410; (d) change the second value of
the projection matrix from 567.37183155695675 to 500; (e) change the third value of the projection
matrix from 456.1886901855469 to 470; (f) projection matrix with first value 560, second value 500
and third value 470; (g) change distortion matrix to [−0.2282522216659725, 0.03337792115699235,
0.0010099526756546235, −0.0010636239771667497, 0] and previous projection matrix.

2.3.2. Thermal-RGB-Fusion
Circle Detection

For the detection of the circle centers, blob detection was used. Blob detection delivers
so called keypoints which hold the center coordinates of the blob [75,76]. The results can be
seen in Figure 8.

Figure 8. Blob detection within the thermal (left), ToF (middle) and RGB camera image (right). For
the RGB image the contrast had to be increased by placing a blue paper sheet underneath.

RGB-ToF and Thermal-ToF Fusion

The pixel indices of the ToF camera image and the point cloud correspond to each
other due to the underlying internal fusion. By ordering the point cloud the corresponding
3D point of each pixel can be determined. In order to calculate the transformation, the 3D
ToF points and the 2D thermal and RGB points are inserted into the function SolvePnP. The
function calculates the orientation and position of the object from the given object points
(3D ToF points) and image projections (2D thermal and RGB points), as well as the camera
matrix and the distortion coefficients [77]. Internally, the Direct Linear Transform (DLT)
algorithm is applied which calculates the matrix projecting the 3D ToF points into the 2D
image plane.

In order to receive the rotation matrix from rvec the openCV function Rodrigues can
be used [78]. It calculates the corresponding matrix from the vector. For applying the
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calculated transformation on the ToF data and to project the points into each image the
function projectPoints is applied [79].

In the following, the point correspondences which were used to calculate the RGB-ToF
fusion (26 correspondences, see Figure 9) and the thermal-ToF fusion (15 correspondences,
see Figure 10) are marked and the projected points into the images are shown. The most
suitable combination of point correspondences was found empirically.

In order to achieve a very high fusion precision significant points from the video of
the neonate can be included as point correspondences. In our case, individual adaptions
had to be made for each subject.

Once the extrinsic transformations are known, the thermal-RGB-fusion can be calcu-
lated. For each ToF point within the point cloud the corresponding RGB and thermal pixels
are determined (see Figure 11). Then, the color information of the RGB pixel is inserted at
the corresponding point within the thermal image, delivering the final fusion image. The
size of the fusion image is the same as the thermal camera image.

Figure 9. Extrinsic calibration of the RGB with the ToF camera; 26 point correspondences were used
(right). The turquoise points are the projected ToF points (left).

Figure 10. Extrinsic calibration of the thermal with the ToF camera; 15 point correspondences were
used (right). The turquoise points are the projected ToF points (left).

Figure 11. Thermal-ToF-fusion (left), RGB-ToF fusion (middle) and thermal-RGB-fusion camera
image (right).
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2.3.3. Neural Networks RetinaNet and YOLOv3
RetinaNet

In this paper, the RetinaNet implementation of the Git repository of fizyr is used [80],
supporting keras and tensorflow (v2.4. were employed). For functional GPU support, some
software packages needed to be installed. This includes NVIDIA drivers (driver 465.19.01),
CUDA 11.3, cuDNN and OpenCV 4.5.254.

YOLOv3

In this paper, the Git repository of AlexeyAB is used [81]. For a smooth use of YOLOv3,
several software requirements need to be met (details see above).

2.4. Measurement Series

The datasets holding thermal, RGB and ToF data were recorded at the Department
of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Germany. The
study was conducted in accordance with the Declaration of Helsinki, and approved by
the Ethics Committee of the Friedrich-Alexander Universität Erlangen-Nürnberg (protocol
code: 197_20B and date of approval: 28 April 2021, amendment protocol code: 20-197_1-B,
approved on 22 December 2022).

2.4.1. Subjects

The subjects included in this study (see Tabel 1) were neonates of a minimum ges-
tational age of 34 + 0 (late pre-term) that were clinically stable from a cardio-respiratory
perspective. All subjects required phototherapy due to jaundice. The recordings took place
in parallel to phototherapy.

Table 1. List of subjects. Term neonates were > 37 + 0 weeks of gestation.

Subject Gestational Age Age during Study Sex Weight

01 34 + 0 2 days male 1745 g
02 term 5 days female 3650 g
03 term 4 days female 2330 g
04 term 13 days male 3300 g
05 term 2 days female 2750 g

2.4.2. Training, Validation and Test Datasets

Our training datasets contain 1400 labeled images plus 1400 augmented images per
each modality from subject 01 to 04. Our validation dataset contains 300 images from each
modality of subject 01 to 04 which were not included in the training dataset. Table 2 shows
the number of instances per class per modality.

Table 2. Number of instances per class per modality within the validation dataset.

Modality Head Nose Torso Intervention

RGB 1193 575 1129 160
Thermal 1199 305 1183 123
Fusion 1190 8 1055 80

The validation dataset was used to calculate the levels of average precision during
the training process. With the test dataset we evaluate the performance of our trained
networks. As test dataset 65 random images of each image modality of subject 05 were
used which have not been seen by the networks yet. It is important that the distribution of
the test dataset is similar to the training dataset.
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3. Results

In this section, the training results for each modality and network are presented. Each
network was trained for 64 epochs and the epoch with the best precision was determined.
First, we show the quantitative results, where we compare the average precision per class.
In the second step we present the test results with our test dataset.

3.1. RGB Dataset

In this section, we describe the results for the RGB dataset.

3.1.1. RetinaNet

Figure 12 shows the average precision vs. epochs for the different classes within
the RGB images. The best results are achieved in epoch 25. In this epoch, we obtain an
average precision of 1.0 for the head, 0.9937 for the nose, 0.99 for the torso and 0.94 for
the intervention.

We used the weights of epoch 25 to evaluate our test dataset. We picked two repre-
sentative images to visualize the detections (see Figure 13). The corresponding confidence
scores are shown within the image. We achieved APs of 0.9255, 0.0, 0.7841 and 0.5884 for
the classes head, nose, torso and intervention, respectively, over the whole test dataset.

3.1.2. YOLOv3

Figure 14 shows the average precision vs. epochs for the different classes within the
RGB images for YOLOv3. The best precision is reached in epoch 64. In this epoch we receive
APs of 1.0, 0.9885, 0.9991 and 0.9821 for head, nose, torso and intervention, respectively.

Figure 12. The training results for the RGB images achieved by RetinaNet can be seen in this figure.
The average precision (AP) vs. epochs for the different classes are displayed. The trend shows a steep
rise at the beginning which results in a stable plateau in epoch 25.

Figure 13. Visual evaluation of two example RGB images with RetinaNet. Good case (left) with
confidence scores 0.992 for head and 0.975 for torso. Bad case (right) where the head is also detected
as intervention with confidence scores 0.697 for head, 0.868 for torso and 0.735 for intervention. The
false detection probably occurs due to the shorter distance between the face and the camera. This
case is not sufficiently represented within the training dataset.
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Figure 14. The training results for the RGB images reached by YOLOv3 can be seen in this figure. The
average precision (AP) vs. epochs for the different classes are displayed. The trend shows a steep rise
at the beginning and an oscillating behavior for class “nose” and “intervention”. The best precision
values for all classes were achieved in epoch 64.

The weights of epoch 64 for evaluating our test dataset were used. Figure 15 shows
two representative images to visualize the detections. The corresponding confidence scores
can be found within the image description. We reach APs of 0.8563, 0.0, 0.8301 and 0.536 for
the classes head, nose, torso and intervention, respectively, over the complete test dataset.

Figure 15. Visual evaluation of two example RGB images with YOLOv3. Good case (left) with
confindence scores of 0.95 for the head, 0.99 for torso and 0.58 for the intervention. Bad case (right)
where the head is not detected caused by the occlusion by the arm. Another factor is the twisted pose
of the neonate’s body. This leads to a confidence score of 0.30 for the torso.

3.2. Thermal Dataset

In this section, the results for the thermal dataset are presented.

3.2.1. RetinaNet

In Figure 16 the average precision vs. epochs for the different classes within the thermal
images can be seen. Epoch 28 delivers the best results. We achieve an average precision of
0.9969, 0.9864, 0.9862 and 0.8695 for head, nose, torso and intervention, respectively.
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Figure 16. The resulting average precision values for the thermal images trained with RetinaNet are
shown within the figure. First, a steep incline can be seen with the exception of the class “intervention”
which shows a slower rise. In epoch 16, a collapse can be noted. By epoch 28 the precision values
result in stable plateaus.

To evaluate our test dataset the weights of epoch 28 were used. Figure 17 shows two
representative images to visualize the detections. The corresponding confidence scores
can be found within the image. For the evaluation of our whole dataset we receive APs of
0.9227, 0.0, 0.7816 and 0.4856 for the classes head, nose, torso and intervention, respectively.

Figure 17. Visual evaluation of thermal images with RetinaNet. Good case (left) with confidence
scores 1.0 for head and 0.994 for the torso. Bad case (right) where the head is also detected as
intervention. The false detection occurs as the cloth surrounding the neonate’s face has a similar
temperature as an adult’s, and is therefore detected as intervention. This leads to confidence scores of
0.657 for the head, 0.998 for the torso and 0.688 for the intervention.

3.2.2. YOLOv3

Figure 18 displays the average precision vs. epochs for the different classes within the
thermal images for YOLOv3. The best results occur in epoch 61. There APs of 0.9983 for the
head, 0.9993 for the nose, 0.9963 for the torso and 0.9225 for the intervention are achieved.
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Figure 18. This figure shows the results for the training of YOLOv3 with thermal images. A steep
increase can be seen at the beginnig for all classes other than “intervention”. “Intervention” shows an
oscillating behavior.

We used the weights of epoch 61 to evaluate our test dataset. Figure 19 displays two
representative images to visualize the detections. The corresponding confidence scores are
shown within the image description. We receive APs of 0.8924, 0.0, 0.8611 and 0.5706 for
the classes head, nose, torso and intervention, respectively, over the complete test dataset.

3.3. Fusion Dataset

In this section, we describe the results for the fusion dataset.

3.3.1. RetinaNet

Figure 20 shows the average precision vs. epochs for the different classes within the
fusion images. In this case, the best epoch is number 38. We receive average precision values
of 0.9949 for the head, 0.0 for the nose, 0.9934 for the torso and 0.7683 for the intervention.

Figure 19. Visual evaluation of thermal images with YOLOv3. Good case (left) with confidence scores
of 1.0 for the head and 0.95 for the torso. Bad case (right) where the head is detected as intervention
with confidence scores of 0.99 for the torso and 0.25 for the intervention. The reasons are the same as
mentioned for RetinaNet.

Figure 21 displays two representative images to visualize the detections. For the
evaluation of our test dataset the weights of epoch 38 were used. The corresponding
confidence scores can be seen within the image. We reached APs of 0.9958, 0.0, 0.6863
and 0.6574 for the classes head, nose, torso and intervention, respectively, over the whole
test dataset.
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Figure 20. This figure displays the training results of RetinaNet with fusion images. The trend of
“head” and “torso” has a steep incline at the beginning, resulting in a stable plateau in epoch 7.
Nonetheless, there is a strong decline in epoch 5 for “torso”. “Intervention” shows a slower rise,
resulting in a plateau in epoch 38. Due to the insufficient amount of instances of “nose”, the results
cannot be taken into account. A further discussion of this issue can be found in Section 4.

3.3.2. YOLOv3

In Figure 22, the average precision vs. epochs for the different classes within the fusion
images for YOLOv3 can be seen. Epoch 56 delivers the most precise findings. In this epoch,
we obtain average precision values of 0.9949 for the head, 0.3274 for the nose, 0.9948 for the
torso and 0.8390 for the intervention.

Figure 23 shows two representative images to visualize the detections. Our test dataset
was evaluated using the weights of epoch 56. The corresponding confidence scores can be
found within the image description. We reach APs of 0.9455, 0.0, 0.7864 and 0.5199 for the
classes head, nose, torso and intervention, respectively, over the complete test dataset.

Figure 21. Visual evaluation of two fusion images with RetinaNet. Good case (left) with confidence
scores of 0.995 for the head and 0.973 for the torso. Bad case (right) where the torso is not detected
with a confidence score of 1.0 for the head. This is most likely caused by the small overlap of the torso
and the ToF pointcloud due to a twisted pose of the neonate. Those images were not represented in
our training dataset.
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Figure 22. The results of YOLOv3 trained with fusion images can be seen in this figure. At the
beginning a steep rise can be seen for “head” and “torso”, resulting in a stable plateau in epoch 24.
“Nose” and “intervention” both show an oscillating behavior. “Intervention” has overall higher
precision values than “nose” and its oscillation has a smaller amplitude. The precision values for
“nose” cannot be taken into account due to an insufficient amount of class instances.

Figure 23. Visual evaluation of two sample fusion images with YOLOv3. Good case (left) with
confidence scores of 0.95 for the head and 0.94 for the intervention. Bad case (right) where the head
is not detected. The confidence score for the torso is 0.40.

4. Discussion

In this section, we discuss the results of the sensor fusion as well as the training results.
Finally, we compare our results to the state of the art.

4.1. Comparison of Theoretical Approach for the Sensor Fusion

When we performed our sensor fusion approach we expected that the procedure
only has to be undertaken once and that the extrinsic transformation can be applied to all
subjects. This was not the case, most probably as small changes of the neonatal head and
body position have a great impact due to the proximity of the cameras to the subject.

4.2. Discussion of Training Results

When discussing our training results we refer to the average precision values in Table 3.
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Table 3. Average precision values for different classes using different modalities and networks
(validation dataset).

Modality Epoch
Average Precision

Head Nose Torso Intervention

RetinaNet

RGB 25 1.0 0.9937 0.99 0.94

Thermal 28 0.9969 0.9864 0.9862 0.8695

Fusion 38 0.9949 0.0 * 0.9934 0.7683

YOLOv3

RGB 64 1.0 0.9885 0.9991 0.9821

Thermal 61 0.9983 0.9993 0.9963 0.9225

Fusion 56 0.9949 0.3274 * 0.9948 0.8390
* The precision values for “nose” cannot be taken into account due to an insufficient number of class instances
within the fusion dataset.

4.2.1. RetinaNet

When comparing the average precision with its trend of class “head” for all modalities
almost identical results can be seen (smaller than 1%, see Table 4). The trend of the class
“torso” within the RGB image is very similiar to the class “head” curve as can be seen in
Figure 12. The same holds true for the fusion with the exception of one epoch where the
precision drops significantly (see Figure 20). As this is only the case for one epoch this
might be due to a wrong adaption of the weights at the beginning of the training. The
thermal data shows an oscillating behavior until it reaches a stable value. This is due to the
adjustment of the learning rate during the training process. The optimizer used adapts the
step length such that it decreases the closer the optimum. A similar collapse can be seen for
“intervention” within the thermal images (see Figure 16).

Table 4. Difference between fusion and RGB/thermal in average precision values per class for
RetinaNet (validation dataset).

Modality Epoch
Average Precision

Head Nose Torso Intervention

RetinaNet
Fusion—RGB 13 −0.0051 −0.9937 * 0.0034 −0.1717

Fusion—Thermal 10 −0.002 −0.9864 * 0.0072 −0.1012
* The precision values for “nose” cannot be taken into account due to an insufficient number of class instances
within the fusion dataset.

When looking at the trend of the “intervention” over all modalities we can see major
differences in the precision compared to the “head” and “torso” (see Table 4). Furthermore
we observed a relationship between the number of instances per class within the validation
dataset and the reached precision i.e., 160 instances within RGB images leads to an AP of
0.94, 123 instances within thermal images gives an AP of 0.8695 and 80 instances within
fusion images results in an AP of 0.7683. Therefore, we expect that an increase of instances
of “intervention” within the thermal and fusion images will lead to higher precision. The
same behavior can be seen for the “nose” within the fusion images where only right
instances of the nose were included. Therefore, the precision values for the “nose” should
not be taken into account. For the thermal and RGB images 300 “nose” instances within the
dataset are enough to reach a similar precision as for the “head” and the “torso”.

As the fusion images hold more information than the RGB and thermal images by them-
selves the training takes more time (around 10 more epochs) to achieve the same precision.

The results generated by the test dataset show an overall decrease in the average
precision. The reason for this lies in the complexity of some of the test images which were
not present in the training dataset. This can especially be seen for the torso where often
only the back or the side was visible due to the neonate lying in a twisted pose. This
case was not covered by the training dataset. The training dataset also did not contain
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new forms of intervention such as the appearance of a nursing bottle. Additionally, the
number of instances of the class “intervention” in the training dataset is low, leading to
an overall worse performance. As before, the number of instances of the class “nose” is
too low, resulting in an AP of 0.0 for all modalities. Clinically the most significant class
is the head as the temperature and heart rate detection will depend on it. There were
only small differences in the average precision values (improvement of 0.9% for the fusion,
decrease of 4.42% for the thermal images and 7.45% for the RGB images). This shows that
the fusion performs best. Due to the small number of test subjects included in the study
a slight overfitting tendency was observed. We expect the average precision values to
reach values comparable with the validation dataset once more subjects are included in the
training process.

4.2.2. YOLOv3

For YOLOv3 the classes “head” and “torso” deliver identical precision values for all
modalities (difference less than 1%, see Table 5). As with the RetinaNet analysis, a direct
relationship was observed in the validation images between the number of instances for the
“intervention” class and the achieved average precision values. This means 160 instances
within RGB images leads to an AP of 0.9821, 123 instances within thermal images gives an
AP of 0.9225 and 80 instances within fusion images results in an AP of 0.8390. As before
there are not enough instances of class “nose” within the fusion dataset to achieve precise
detection. Therefore, these precision values should not be taken into account. The trends for
“intervention” and “nose” show a fluctuating behavior. This can be explained by the usage
of the Stochastic Gradient Descent (SGD) optimizer and its learning rate. (The optimizer
used adapts the step length such that it decreases the closer the optimum).

Table 5. Difference between fusion and RGB/thermal in average precision levels per class for YOLOv3
(validation dataset).

Modality Epoch
Average Precision

Head Nose Torso Intervention

YOLOv3
Fusion—RGB −8 −0.0051 −0.6611 * −0.0043 −0.1431

Fusion—Thermal −5 −0.0034 −0.6719 * −0.0015 −0.0835
* The precision values for “nose” cannot be taken into account due to an insufficient number of class instances.

Similar to RetinaNet an overall decrease in the average precision with the test dataset
can be observed for YOLOv3. As the same test dataset was used the same issues occur
as described before. These arise due to the complexity of the test images and new forms
of intervention which were not taken into account before (e.g., nursing bottle). Another
problem is the low number of instances of the classes “nose” and “intervention”. For the
class “head” a decrease of 14.4% for the RGB, a decrease of 10.6% for the thermal images
and 4.94% for the fusion images in the average precision values were observed. The data
exhibit an overfitting trend due to the small number of test subjects. As mentioned before,
we expect our average precision values to reach values similar to those of the validation
dataset when using more test subjects for training.

4.2.3. Comparison between RetinaNet and YOLOv3

When comparing results from RetinaNet and YOLOv3 for the validation fusion data,
almost identical average precision values are reached for the classes “head” (difference of
0%) and “torso” (difference of 0.14%). For class “intervention” YOLOv3 has an increase
in precision of around 7% compared to RetinaNet (see Table 6). Even though YOLOv3
reaches an average precision of 0.3274 for the “nose”, this result should be discounted,
as it is caused by the small number of instances within the class. RetinaNet needs fewer
epochs to achieve the highest precision values than YOLOv3. When taking into account
the oscillating behavior of YOLOv3, as well as distinguishing between the different classes,
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we see that a similar number of epochs lead to stable precision values for RetinaNet when
compared with YOLOv3

Table 6. Comparison of average precision values between classes and modalities RetinaNet—YOLOv3
(validation dataset).

Modality Epoch
Average Precision

Head Nose Torso Intervention

RetinaNet—YOLOv3

RGB −39 0.0 0.0052 −0.0091 −0.0421

Thermal −33 −0.0014 −0.0066 −0.0101 −0.053

Fusion −18 0.0 −0.3274 * −0.0014 −0.0707
* The precision values for “nose” cannot be taken into account due to an insufficient number of class instances.

As previously stated, both networks exhibit less favourable performances when used
on the test dataset compared with the validation dataset due to the aforementioned reasons.
Depending on the class one of the two networks performs slightly better (see Section 3).

Redmond et al. [30] and Hennemann [69] mention that the computing time per
image is around three times greater for RetinaNet than YOLOv3. A similar difference was
observed in our study. We reached approx. 58 ms and approx. 14 ms for RetinaNet and
YOLOv3 on our hardware setup.

4.2.4. Summary

In summary, the fusion network is able to deliver the same precision values as the
RGB and thermal networks. This is the case if there is an equal number of images and
instances per class for each modality and class. If the extrinsic transformation between the
thermal and RGB camera is given, the position of the detected region can automatically
be calculated for the RGB and the thermal image. A necessary condition is that the region
of interest (ROI) lies within the ToF pointcloud. This results in the great advantage that
only one network needs to be trained and, therefore, no labeling of the RGB and thermal
data is needed. This simplifies the generation of datasets with respect to time and cost (we
save 66%).

As shown by Hennemann, better results over all classes can be achieved by training
with a greater number of test subjects [69].

When comparing the average computing time of the two networks, YOLOv3 performs
slightly better in our setup. When taking the average precision values into account, we
observed only marginal differences in average precision values between classes. We
therefore believe that both networks are adequate for neonatal face detection.

4.3. Comparison with State of the Art

First we compare our sensor fusion approach to the methods mentioned in Section1.1.
We describe how our results using a neural networks training approach compare with other
neonatal face detection networks.

4.3.1. Sensor Fusion

To our knowledge, our sensor fusion approach is the first which is explicitly designed
for the short distances commonly encountered in the setting of incubator nursing of prema-
ture neonates on the NICU. At the time of completion of this work, no literature regarding
the use of ToF camera as third sensor for indirect fusion was found.

4.3.2. Neural Network for Face Detection

In this section, we compare our results with the best performing findings in the
literature for each class mentioned in Section 1.1. Green et al. reach an average precision
of 0.982 for the detection of the head [35]. Our fusion approach achieves a precision of
0.9949 (RetinaNet) and 0.9949 (YOLOv3). For the test dataset we reach 0.9958 and 0.9455 for
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RetinaNet and YOLOv3, respectively. This shows that we achieve similarly high precision
values for instances of the “head” class within data the neural network has not seen before.
For “nose” and “intervention” there are no precision values available within the literature.
Beppu et al. receive an AP of 0.985 for the torso [49]. We observe precision values of
0.9934 (RetinaNet) and 0.9948 (YOLOv3) with the fusion network. When considering our
test dataset we achieve APs of 0.6863 (RetinaNet) and 0.7864 (YOLOv3). As mentioned
before, we expect these values to increase to similar precision values when training with
more test subjects. As we can directly calculate the detections for the RGB and thermal
images, we will also receive such high precision. So far, we are the first to report the use of
thermal-RGB-fused images of neonates to train a neural network.

We hope our results will facilitate the development of non-contact neonatal monitoring
techniques to improve the standard of care for this vulnerable group of patients.

5. Conclusions

In this contribution, we investigated the use of thermal-RGB-fusion data for a robust
neonatal face detection method based on neural networks. We showed that it is possible to
achieve a precise sensor fusion for short distances using a ToF camera as third sensor. We
trained two different neural networks (RetinaNet and YOLOv3) with thermal, RGB and
fusion images and evaluated the precision values achieved. Our fusion networks deliver
the same level of precision as the RGB and thermal networks as long as an equal number of
instances per class and modality are available (at least 300) within the dataset. Compared to
the state of the art we achieve comparable average precision values for the head. Based on
the known extrinsic calibration between our cameras we can easily calculate the detection
within the thermal and RGB images from the fusion network. Therefore, this increases data
efficiency (training of a single network, reduction of data labelling by 66%) and economizes
the process. Both RetinaNet and YOLOv3 could be used for detection of the facial region in
fused images of neonates in the clinical setting. For the improvement of the generalization
of the neural network we intend to train with more subjects in the future.
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AP average precision
BPM breaths per minute
CNN Convolutional Neural Network
DLT Direct Linear Transform
ECG Electrocardiogram
FFT Fast Fourier Transform
FoV field of view
FPN Feature Pyramid Network
fps frames per second
GAN Generative Adversial Network
GPU graphical processing unit
IoU Intersection over Union
IR infrared
LIDAR light detection and ranging
LSTM Long Short-Term Memory
LWIR long wave infrared
NCC normalized cross correlation
NICU Neonatal Intensive Care Unit
NIR near infrared
PCA Principal Component Analysis
PCL Point Cloud Library
R-CNN Region-Based Convolutional Neural Networks
ResNet Residual Network
RGB Red Green Blue
RGB-D Red, Green, Blue -Depth
RMSE root mean square error
ROI region of interest
ROS Robot Operating System
SGD Stochastic Gradient Descent
SNR Signal-to-noise ratio
T-ICP thermal-guided iterative closest point
ToF time-of-flight
UV ultraviolet
YOLO you only look once
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Abstract: A perception module is a vital component of a modern robotic system. Vision, radar,
thermal, and LiDAR are the most common choices of sensors for environmental awareness. Relying
on singular sources of information is prone to be affected by specific environmental conditions (e.g.,
visual cameras are affected by glary or dark environments). Thus, relying on different sensors is an
essential step to introduce robustness against various environmental conditions. Hence, a perception
system with sensor fusion capabilities produces the desired redundant and reliable awareness critical
for real-world systems. This paper proposes a novel early fusion module that is reliable against
individual cases of sensor failure when detecting an offshore maritime platform for UAV landing.
The model explores the early fusion of a still unexplored combination of visual, infrared, and LiDAR
modalities. The contribution is described by suggesting a simple methodology that intends to
facilitate the training and inference of a lightweight state-of-the-art object detector. The early fusion
based detector achieves solid detection recalls up to 99% for all cases of sensor failure and extreme
weather conditions such as glary, dark, and foggy scenarios in fair real-time inference duration
below 6 ms.

Keywords: object detection; sensor fusion; early-fusion; computer vision; RGB camera; thermal
camera; 3D LiDAR

1. Introduction

Object detection is a perception task that provides the autonomous systems the neces-
sary awareness of the surrounding environment. By extracting features from raw sensory
information, it produces meaningful high-level knowledge about surrounding objects
(e.g., other vehicles, pedestrians, goal marks, road lanes). In the end, object detection pro-
vides semantic representations about the surrounding environment [1]. For detection, the
most common on-board sensors used by autonomous systems are two-dimensional/three-
dimensional LiDAR, visual cameras, radar, and thermographic cameras. Each sensor has
its own advantages and disadvantages that are directly affected by the environmental
conditions. Visual cameras alone are the traditional sources of information, however, in
recent years, there is a concern for diversifying the set of sensors to increase the robustness
of the system for the case of sensor failure against different environmental conditions [2–4].
For example, thermal cameras discriminate really well different objects emitting different
temperature intensities. However, on extreme heated environments (e.g., sunny days, hot
rooms), the background and foreground becomes indistinguishable and homogeneous.
Visual cameras provide colour and texture information, but for foggy, glary, or dark environ-
ments, the signal becomes corrupted and noisy. LiDAR sensors extract depth information
by analyzing light energy reflected from objects in the surroundings. Nevertheless, in
rainy and foggy environments, the reflected information becomes worthless. Hence, for
an autonomous system to be reliable, it is a requirement to endow it with a diverse and
distinct set of sensor equipment.

Sensors 2023, 23, 2434. https://doi.org/10.3390/s23052434 https://www.mdpi.com/journal/sensors34
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Adopting sensor fusion is one of the building blocks to build reliable perception
systems. A system of this kind is still able to meaningfully perceive the environment, not
only when there are individual failure, but also when environmental conditions corrupt any
sensory information making it not reliable. At greater length, sensor fusion is described by
combining the information produced by various sensors representing different modalities
(e.g., visual, thermographic, RADAR, LiDAR) into a joint representation to produce a
less uncertain input. Sensor fusion can happen in three different stages of the detection
pipeline [5]: (i) early fusion refers to the combination of multiple input sources into a unique
feature vector before feature extraction; (ii) intermediate fusion refers to the process of
extracting correlation between features from the joint combination of sensory information
inside the perception module and before classification or regression; and (iii) late fusion
happens after the classification/regression procedure.

Extracting and combining relevant features from multiple modalities is a challenging
process that requires a lot of domain knowledge and it strongly depends on the require-
ments of the task to solve. Effectively, deep learning technology is already capable of tack-
ling this process [6–8] autonomously. Apart from this deep approaches, when significant
correlation across modalities is smoothly inferred, early fusion should be considered [4].
If it is applied, early fusion produces early joint representations directly from raw data
and anticipates correlation and redundancy. Several studies have been conducted to find
several pair combinations between point cloud, visual, and thermographic into single
concatenated representations [9–12]. However, there is a lack of research on combining
the three.

In this paper, we contribute by presenting a novel multimodal early-fusion-based
perception system that combines visual, thermal, and three-dimensional LiDAR data infor-
mation to produce reliable detection capabilities against demanding operating conditions
such as extreme weather or modality failure. According to the authors’ knowledge, there
is no equivalent early-fusion method combining point clouds, thermographic, and visual
information. This combination of sensors is implemented by a multimodal fiducial ArUco
marker called ArTuga (Patent pending (Portuguese Patent Request (PPP) nr. 118328, and
European Patent Request (EP) nr. 22212945.4)) proposed by Claro et al. [13]. It enables
multimodal detection against several weather conditions for robotic solutions endowing
heterogeneous perception systems comprised by visual, thermographic, and LiDAR-based
devices. Therefore, it is not possible to replace the marker with an ordinary object given
the constructive characteristics of the ArTuga that provide a spatial alignment of certain
elements that facilitate the precise and robust detection of the marker. The contributions of
this article include:

• Real-time multimodal marker detection that is deployable onboard a UAV;
• Resilient and high-accuracy detection based on early-fusion approaches against sensor

failure integrated in the YOLOv7 framework;
• Robustness against demanding weather and operating conditions for extensive exper-

iments using real UAVs landing on a floating platform;
• A new multimodal dataset collected in real offshore and onshore environments during

a UAV landing operation, comprised of diverse joint representations of visual, infrared
and point-cloud images.

The paper is organized as follows: In Section 2, there is a review of the literature
about object detection and sensor fusion. In Section 3, a novel early-fusion methodology
is proposed. Section 4 describes the experimental setup. Section 5 exposes the achieved
results. Lastly, Section 6 provides the conclusions.

2. Related Work

Object detection (OD) is a computer vision task described by recognizing, identifying,
and locating objects of interest within a picture with a certain degree of confidence. OD
has gained popularity since it started to fuse with the strong capabilities of neural network
technology. OD is mainly subdivided between single-stage and two-stage detection. These
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two categories compete by finding the optimal trade-off between detection speed and
accuracy [14]. Real-time systems require fast and accurate predictions, therefore building
real-time object detectors demands solving the former mentioned trade-off.

Two-stage detectors, such as the RCNN [15], fast-RCNN [16], and faster-RCNN [17],
follow region proposal principles that focus on the localization of regions of interest in the
image (e.g., where objects of interest are located) before performing detection. Firstly, these
regions are estimated. Lastly, from these regions, detection is performed. Depending on the
detected objects, correspondent confidence probabilities are extracted. These methods focus
on achieving high detection accuracy, however, at the cost of being slow. Hence, two-stage
detection is not viable for real-time demands. On the other hand, single-stage detectors,
such as the you only look once (YOLO) [18] and the single-shot multibox detector (SSD) [19]
perform detection and classification in a singular common step. Single-stage detection
prioritizes inference speed over accuracy. Naturally, it is suitable to address real-time
constraints. Despite inference speed prioritization, these methods achieve at least similar
accuracy to two-staged detectors [14]. Within the available single-stage detectors, YOLO is
a suitable choice: (i) it is more popular, accessible, and has a stronger documentation than
any other method in the literature; (ii) it achieves highly fair detection speeds (up to 45 FPS),
and thus it has at least similar accuracy when compared with other two-stage detectors.

Further, multimodal fusion [20] aims to find the combination of apparently disparate
multi-domain data (e.g., visible light, infra-red light, sound, laser) sources to produce
a more robust and more rich fused signal. One of the hot topics of the current sensor
fusion literature is choosing the level in which the fusion takes place in the detection
pipeline [5,21,22]. Sensor fusion happens in three levels, such as: (i) early fusion as the
pixel-level fusion; (ii) intermediate fusion as the feature-level fusion; (iii) late fusion as the
decision-level fusion. Several studies have been conducted by fusing sensory data in
different levels of the perception pipeline. Farahnakian and Heikkonen (2020) [10] achieved
state-of-the-art performance to detect marine vessels by applying intermediate fusion
techniques using thermal and RGB cameras. However, reasonable real-time inference
durations (mostly in the order of seconds) were not achieved. Additionally, the authors
even suggested the possibility of adding a LiDAR source to the fused input to explore
possible improvements. Liu et al. (2022) [12] proposed an intermediate fusion approach
using LiDAR and visual camera data for car detection. Choi and Kim (2021) [11] followed
an early fusion approach by combining an infrared camera with a three-dimensional LiDAR
sensor, achieving reliable performance in impractical environmental conditions for vision-
based sensors. Azam et al. (2019) [23] suggested another early fusion approach that fuses
three-dimensional LiDAR with thermal images, ensuring reliable performance for both day
and night light conditions. Bhanushali et al. (2020) [24] achieved reliable real-time object
detection by training an end-to-end SSD detector on the KITTI dataset [25], merging early
and late fusion principles. The former study also suggested the addition of other sensors,
such as radar, to increase the robustness of the proposed model.

3. Multimodal Early Fusion Approach for Fiducial Marker Detection

Offshore robotic applications operate in challenging weather conditions where corrupt
sensor information or even sensor failure situations are expected. Therefore, robotic solu-
tions need to be resilient and endow redundant and heterogeneous perception systems [13].
Thus, based on the available multimodal sources, this research proposes a simple method-
ology that produces an expressive and redundant joint representation over a multimodal
feature space. The proposed system comprises an (i) early-fusion module that applies a
novel early-fusion technique and a (ii) lightweight YOLO-based detector that is fed with an
early fused input. A system high-level perspective is depicted by the Figure 1.
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Figure 1. The early-fusion detection system high-level view.

3.1. Early Fuser

Based on spatiotemporal alignment of data streams, the early fuser produces a con-
catenated 3-channel RGB input containing a joint representation of visual, infrared, and
LiDAR modalities. The aim is to anticipate redundancy across input streams and facili-
tate the detector’s feature extraction process. The early fuser procedure is described by:
(i) a calibration step where modalities are aligned into a common coordinate system, (ii)
a pre-processing step where relevant features for each modality are extracted, and (iii)
a final concatenation step where processed modalities are aggregated into a redundant
RGB representation.

3.1.1. Calibration

To aggregate sensory information into a common three-channel image, spatial relation-
ships between sensors must be obtained. The visual camera is chosen to be the main frame
of reference. Hence, the remaining infrared and LiDAR information are projected into the
visual camera image coordinate system. Before projecting the three-dimensional LiDAR
point-cloud into the visual image coordinate system, the point-cloud is transformed into
the visual camera coordinate system. The three-dimensional spatial relationship between
each sensor is described by an extrinsic matrix. Using Zhang’s method [26], an extrinsic cal-
ibration operation is performed to obtain the extrinsic transformation matrix El,v =

[
R T

]
.

El,v is a rigid body transformation described by a rotation

R =

⎡
⎣r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤
⎦

and a translation T =
[
tx ty tz

]T between the visual camera coordinate system v and

the LiDAR coordinate system l, where LiDAR points Pl =
[
xl yl zl

]T are converted into

visual camera points Pv =
[
xv yv zv

]T as follows:

Pv = El,vPv⎡
⎣xv

yv
zv

⎤
⎦ =

⎡
⎣r11 r12 r13 tx

r21 r22 r23 ty
r31 r32 r33 tz

⎤
⎦
⎡
⎣xl

yl
zl

⎤
⎦.

(1)

Following, to transform Pv into pixel points Uv =
[
uv vv 1

]T ∈ �2, an intrinsic calibra-
tion for the visual camera is performed using the Zhang’s method to obtain the intrinsic
matrix defined by:

Kv =

⎡
⎣ fx γ cx

0 fy cy
0 0 1

⎤
⎦,

where ( fx, fy) are the focal lengths, (cx, cy) is the image center and γ is the skew between x
and y directions. Therefore, a perspective projection is applied to obtain Uv as follows:

α

⎡
⎣uv

vv
1

⎤
⎦ = Kv

⎡
⎣xv

yv
zv

⎤
⎦,
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Finally, similar to a stereoscopic camera, an homografy matrix was extracted to map
corresponding points between the thermal image and the visual image as carried out
by [13].

3.1.2. Pre-Processing

Specific pre-processing techniques are applied for each data stream. The visual stream
is undistorted using OpenCV library, to remove natural lens distortion described by Kv.
There is no need for rectification because it is a monocular camera. To be represented
in a single-channel shape, the visual source, acquired in a RGB representation, is finally
converted into a grayscale (single-channel) form. The infrared stream is already acquired
in a grayscale representation. Similarly to the visual images, the infrared images undergo
undistortion operations by resorting to the OpenCV library using lens distortion described
by its intrinsic matrix.

The infrared sensor is properly pre-configured to capture distinct temperature contrast
between the ArTuga and the background information. The temperature contrast results in
a colour contrast. Availing this natural contrast, a binary threshold filter is applied as an
enhancement operation and a filter operation to filter surrounding background noise. The
binary operation is a pixel-wise non-linear threshold operation described by:

pbinarized
ij =

{
255 porig

ij > thresh

0 otherwise
, (2)

where 255 is the maximum color value, thresh = 128 is the threshold applied, porig
i,j is any

original pixel and pbinarized
i,j is any transformed pixel. The binary threshold operation is

depicted in the Figure 2.

Figure 2. The binary threshold operation applied to the infrared images.

As it can be observed, the binarization results in a more recognizable object by en-
hancing colour contrast and cleaning the background while preserving edge and corner
properties.

The LiDAR stream is acquired in a three-dimensional point-cloud representation.
Before intrinsic/extrinsic transformations, this stream is pre-processed to filter and enhance
specific inherent information. Excessive and needless point-cloud information is filtered
using a voxel downsampling operation. Voxel downsampling is a spatial operation that
iteratively buckets points into three-dimensional voxels. Each voxel is compressed and
generates a unique three-dimensional point by averaging every inner point. This operation
reduces the size of the cloud and throws out excessive information while retaining the
overall geometric structure. The used voxels have a leaf size of 5 cm. In addition, more
points are removed according to their intensity. The ArTuga has a retro-reflective tape in its
borders and white-bit coding area in its interior resulting in disparate values of intensity
in comparison to the rest of the point cloud. Points with intensity below a maximum
intensity of I are suppressed. Hence, the resulting points mostly belong to the aruco object.
A two-dimensional grayscale image is generated by assigning a colour to each resultant
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pixel, depending on the laser depth, according to a 8-bit scaling operation. The colour c for
each pixel is computed as follows:

c = 255
(

1 − d
md

)
,

where d is the laser distance measurement and md is the maximum depth reached during
the UAV flight. A final dilation operation is applied to compensate the sparsity of the
image, by applying a 30 × 30 squared kernel as depicted by the Figure 3.

Figure 3. Dilation over the sparsed 2D points.

3.1.3. Concatenation

As a final step, the pre-processed single-channel streams are concatenated into a three-
channel RGB image, where the red, green, and blue channels correspond to the LiDAR,
infrared, and visual streams, respectively. The channels are presented in the Figure 4.

(a) (b) (c)

(d)

Figure 4. The individual channels and the aggregated RGB image. (a) The LiDAR channel. (b) The
thermal channel. (c) The visual channel. (d) The aggregated image.
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The concatenation finalizes the early fusion pipeline resulting in an input that is more
understandable and correlated across modalities to feed the YOLO detector. The pipeline is
depicted in the Figure 5.

Figure 5. The early fuser pipeline.

3.2. Detector

Nowadays YOLO-based detectors are a solid and popular choice for fast but still
accurate detection. Impressively, it is used to tackle real-world tasks (e.g., autonomous
cars and UAVs) [27–29], addressing challenging weather conditions [30,31] and real-time
speed constraints [32,33]. Nowadays, the most recent versions of YOLO, the YOLOv5 [34],
YOLOv6 [35], and the YOLOv7 [36] are the state-of-the-art detectors for fast and accurate
detection. This work uses a detector based on the YOLOv7 architecture. Considering
real-time demands, the feasibility of the smallest version of the YOLOv7 is explored: the
tiny version. The aim is to scrutinize the feasibility of these lightweight, faster, and simpler
detectors considering the weaker accuracies when compared to the bigger versions. Hence,
the proposed early fusion method aims to counteract lightweight limitations by facilitating
the input information.

More particularly, YOLO addresses the detection task as a regression problem because
it outputs bounding box coordinates (location of objects in the image) and the probability
of detection (the confidence in the prediction) for each detected object. YOLO takes a full
image as an input, diving it into a into a n × n grid. For each cell in the grid, it estimates N
possible bounding boxes correspondent to N objects. Each detected object is classified by a
label l (e.g., l ∈ {pedestrian, truck, traffic light}). Each bounding box b is defined as a vector
as follows:

b =
[
xmin ymin xmax ymax c l

]
,

where (xmin, ymin) and (xmax, ymax) are the minimum and maximum pixel coordinates,
respectively, with respect to the top-left corner of the image, c is the confidence of the
prediction containing an object and l is the object class label. Ultimately, YOLO outputs a
N × 6 dimensional tensor, where only the most trusted predicted bounding boxes remain,
by applying a technique called Non-Maximum-Suppression.

4. Experimental Setup

A UAV named CROW (copter robot for offshore wind-farms), based on a quadcopter
frame (with a wingspan of 0.7 m, and a maximum payload of 2 Kg), was remotely operated
to execute a few minutes duration flight around a maritime platform that contains the
ArTuga marker in its center. The CROW endows a perception system comprised of a
(i) three-dimensional LiDAR, a (ii) visual camera, and an (iii) infrared camera. The detection
performance is highly dependent on the sensor characteristics. Thus, the sensor choice must
provide high resolution capabilities. The set of sensors have the following specifications:

• Visual Camera—The Imaging Source DFM 37UX273-ML—Frame Rate: 15 Hz, Resolu-
tion: 1440 × 1080 pixels, Field of View: 45º horizontal;
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• Thermal Camera—FLIR Boson 640 Radiometry—Frame Rate: 15 Hz, Resolution: 640 ×
512 pixels, Field of View: 50º horizontal, Temperature Measurement Accuracy: ±5 ºC;

• 3D LiDAR—Ouster OS1-64—Frame Rate: 10 Hz, Resolution: 64 × 1024 channels,
Range: 120 m, Accuracy: ±0.05 m, Field of View: 360º horizontal and 45º vertical.

During the flight, the sensor data is recorded to be further processed to generate the
datasets for model training. There was a concern to produce a heterogeneous dataset,
therefore the flight operation was conducted considering different spatial perspectives
of the platform. Despite the aim of this application being offshore, onshore samples
were also acquired to promote heterogeneity. The high variability of an heterogeneous
dataset ensures that a model is robust against unexpected and different image perspectives.
Naturally, robustness is a major priority to avoid overfitting while training. The CROW
UAV executing a landing operation is depicted by the Figure 6.

Figure 6. The conducted real experiment of a landing procedure using the CROW UAV.

4.1. Datasets

The performance of the early fusion detector is going to be compared with three
unimodal detectors correspondent to each sensor stream. The unimodal detectors function
as fine-tuned baseline detectors for each modality. Hence, the aim is to use them as a
performance reference for the multimodal early fusion detector. Accordingly four datasets
are generated: a visual, a thermal, a LiDAR and a fusion datasets. The datasets are available
in a Google Drive public repository [37].

4.1.1. Visual Dataset

The visual dataset comprises 1449 images representing onshore and offshore visual
samples from different spatial points of view of the ArTuga with different backgrounds
(e.g., landing platform, water, ground). Besides the inherent variability of the data, some
data augmentation techniques are applied for this dataset to prevent overfitness. Brightness
variation is a clear augmentation technique to train the model against brighter and dark
scenarios. The motivation for this technique is to prepare the detector for sunny and night
settings. In more depth, for every image, by increasing up to 25% or decreasing up to 90%
the brightness, a darker image is a pixel-wise operation, such as pdark

i,j = porig
i,j (1 − δ), ∀i ∈

[0, h − 1] ⊂ N, j ∈ [0, w − 1] ⊂ N and a brighter image such as pbright
i,j = porig

i,j (1 + β), ∀i ∈
[0, h − 1] ⊂ N, j ∈ [0, w − 1] ⊂ N, where δ ∈]0, 0.9], β ∈]0, 0.25], w, h are the image width
and height, respectively, pi,j ∈ [0, 255] ⊂ N is a pixel in the ith row and jth column of
the image, and 0 and 255 are the minimum and maximum colour values. In addition,
flipping and rotation augmentation techniques are applied. The images are resized from
the acquisition size 1440 × 1080 to a final size of 640 × 480 pixels. The Figure 7 depicts
some samples from the visual dataset.
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Figure 7. Samples from the visual dataset.

4.1.2. Thermal Dataset

The thermal dataset comprises 441 pre-processed binarized infrared images as already
described in the Section 3.1.2. The data augmentation techniques applied for this dataset
are flipping and rotation. The images are resized from the acquisition size 1440 × 1080 to a
final size of 640 × 480 pixels. The Figure 8 depicts some samples from the thermal dataset.

Figure 8. Samples from the thermal dataset.

4.1.3. LiDAR Dataset

The LiDAR dataset comprises 316 pre-processed two-dimensional point cloud projec-
tions already described in the Section 3.1.2. The data augmentation techniques applied for
this dataset are flipping and rotation. The images are resized from 1440 × 1080 to a final
size of 640 × 480 pixels. Figure 9 depicts some samples from the LiDAR dataset.

Figure 9. Samples from the LiDAR dataset.

4.1.4. Fusion Dataset

The fusion dataset is constituted by 2158 pre-processed and concatenated RGB images
produced by the early fuser described in the Section 3.1. This dataset implements a bright-
ness augmentation technique for the visual channel and flipping and rotation techniques
for all channels. The images are resized from 1440 × 1080 to a final size of 640 × 480 pixels.
The Figure 10 depicts some samples from the the fusion dataset. As it can be observed, the
dataset contains both multimodal samples representing cases when all modalities are avail-
able; and unimodal samples representing sensory failure cases when specific modalities are
deactivated. Training with unimodal samples intends to promote resilience against sensory
failure.
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Figure 10. Samples from the Early Fusion dataset.

4.1.5. Annotation

For each sample in the dataset, there is a correspondent annotation. Manual annota-
tions in the form of a bounding box are performed using roboflow framework [38]. For the
unimodal datasets, the bounding box fully encloses the unique object present as shown in
the Figure 11a–c. In this way, it is noted that there is a care for pixel tightness to drive the
model to the best accuracy. As for the case of the fused sample, the annotation considers the
stream with the best resolution (shape and colour), as shown in Figure 11d. Additionally,
negative samples are present in the dataset to teach the model when an object is not present
as shown in the Figure 11e or partially present as depicted by the Figure 11f. For these
negative cases, the annotation is not performed, instead it is marked as null.

(a) (b) (c) (d)

(e) (f)

Figure 11. Non-null annotations on the top and null annotations on the bottom. (a) A visual sample
annotation. (b) A thermal sample annotation. (c) A LiDAR sample annotation. (d) A fused sample
annotation. (e) A null example (no object present). (f) A null example (partially present object).

5. Results

This section exposes (i) the training settings and results, (ii) an ablation test to evaluate
the model’s resilience during landing for all cases of sensor failure, and (iii) a resilience test
against challenging weather conditions for fog, dark, and glary scenarios.
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5.1. Training
5.1.1. Training Settings

The training hyperparameters were tuned according to useful guidelines towards
reliable training performance provided by the official documentation of the YOLO frame-
work (https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data—Accessed on
19 February 2023) . The training procedure is executed for 400 epochs. The selected
batch size is 32. The software training platform resorts to Google Colab’s servers (https:
//colab.research.google.com/—Accessed on 19 February 2023), having access to its free of
charge NVIDIA Tesla T4 GPUs. An IoU threshold of 0.2 is chosen. A learning rate cosine
scheduling [39] is applied with an initial learning rate of 0.01. An Adam optimizer is used
because over SGD and RMS Prop it had the best mAP@0.5:0.95 performance. To prevent
overfitting, data augmentation techniques inherently exist in the dataset, and a weight
decay of 5 × 10−4 is applied. The training hyperparameters are presented in Table 1.

Table 1. The main training hyperparameters.

Parameter Quantity

Epochs 400

Batch size 32

IoU threshold 0.2

Momentum 0.937

Learning rate 1 × 10−2

Weight decay 5 × 10−4

5.1.2. Training Results

The training results for all the detectors are presented in the Figure 12. Commonly,
a clear training convergence is observed for all models because the train regression loss
(train/box_loss) and the objectness loss (train/obj_loss) monotonically decrease. The
box loss describes the decrease in the regression error between the predicted and ground-
truth bounding boxes (x, y, w, h) values. The obj loss describes the error between the
confidence the model has on the object presence and the true presence. A cls loss has a
particular behaviour because this is a single-class problem: when there is a class, it always
the class 0. Therefore the problem reduces to predicting the presence of an object and
the better enclosing bounding box. In addition, the model does not overfit because the
validation losses monotonically decrease and eventually settle into a final value.

Regarding accuracy, all models achieved high levels of accuracy (above 95%) both
on the The mAP@0.5 and The mAP@0.5:0.95 metrics (above 70%). The mAP@0.5:0.95
is significantly lower because it is more demanding. The early fusion model has the
lower accuracy on the mAP@0.5:0.95 metric because of the redundancy of the predictions.
Due to being a multimodal detector there is always some uncertainty about the true
location of the object because the modalities are not perfectly aligned. This misalignment
between modalities is caused by the temporal asynchronism between sensors. Hence,
on average, the accuracy is always lower when compared to the accuracy achieved by
unambiguous unimodal detection. The precision and recall metrics also demonstrate the
accuracy convergence across all models. The precision describes the validity of true positive
prediction on the universe of the selected true positive labels. For this metric, there is a
general convergence towards 1, despite the thermal detector. On the thermal samples, due
to the non-linearity of the binarization operation, some detail is occasionally lost which
negatively influences the prediction.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 12. Training results. (a) The precision. (b) The recall. (c) The train regression box loss. (d) The
validation regression box loss. (e) The train regression object loss. (f) The validation regression object
loss. (g) The train regression class loss. (h) The validation regression class loss. (i) The Mean Average
Precision 0.5 accuracy. (j) The Mean Average Precision 0.5:0.95 accuracy.
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Similarly, for the recall metric, it is clear to observe a convergence towards 1, demon-
strating that ultimately the predictions are complete: on the universe of all the images
in an epoch containing a marker, the model accurately recognized a marker. The early
fusion model slightly loses on the recall. This could be caused by the misalignment of
some samples. When this misalignment is pronounced, the redundancy is lost and the
model produces false negative predictions. This limitation could be avoided by including
more unimodal samples on the early fusion dataset, such that the model trains more on
unimodal situations (when the redundancy is not present).

Finally, to evaluate the performance of the detectors outside the training domain we
compare the mAP score obtained by inferring the correspondent test datasets. Table 2
exposes the mean average precision for each detector.

Table 2. The performance of each detector on its own test set.

Detector Modality mAP@.5 mAP@.5:.95 Precision Recall

Visual Unimodal 0.999 0.999 1 1

Thermal Unimodal 1 1 1 1

LiDAR Unimodal 0.999 0.999 1 1

Early Fusion Multimodal 0.989 0.989 1 0.985

All detectors achieve outstanding generalizable behaviour. Comparatively, the thermal
detector stands out slightly. The thermal information, specifically, discriminates the object
better which facilitates detection. Apart from that, thermographic information alone could
suffer from particular extreme heat weather conditions (e.g., hot and sunny days). Thus,
visual and point cloud information can complement this limitation. Decently, the early
fusion detector nearly matches the fine-tuned detectors.

Lastly, the generalization capability of the detector is evaluated by inferring an external
dataset called TNO Image Fusion [40] comprised by fused multispectral images as depicted
by the Figure 13. Since this dataset does not contain the ArTuga marker, the aim is to
examine the resilience of the detector against false positive predictions. Table 3 exposes the
number of false positive predictions for five different levels of confidence thresholds across
127 images.

Table 3. False positive evaluation on an external dataset.

Confidence Threshold (%) False Positives

60 19

70 9

75 4

80 1

90 0

From Table 3, it is clear that below 75% the model starts to become sensitive. However,
in a real application if the threshold is set above 80%, the model can be considered reliable.
In conclusion, the results from this evaluation are substantial since they demonstrate the
resilience of the detector against novel and noisy information.
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Figure 13. Some images from the TNO dataset [40].

5.2. Testing

The testing phase is comprised by an ablation and a weather tests to evaluate the
model’s resilience against sensor failure and challenging weather conditions, respectively.
Glary, dark, and foggy weather conditions are addressed. Particularly, it is not feasible to
operate current UAV technology in rainy conditions, hence rain settings are not addressed.
Additionally, it is inopportune to apply LiDAR technology for rainy conditions [41]. The
hardware setup for testing comprises an Intel® Core™ i7-10700F CPU @ 2.90GHz × 16
processor and a NVIDIA GeForce RTX 3060 GPU.

5.2.1. Ablation Test

To evaluate the resilience of the proposed early-fusion detector, we perform an ablation
study where sensor failure is simulated by intentionally deactivating several combinations
of specific modalities during a UAV landing (from an high to a low altitude). Several cases
of unable (deactivated) modalities are simulated as follows: only LiDAR, only thermal,
only visual, LiDAR and thermal, LiDAR and visual, thermal and visual. As a reference all
cases are compared to the baseline (None) where all streams are activated. For each case,
18 images, acquired during landing, are inferred to the model. Recall and inference time
results are exposed in the Table 4. True positive predictions are considered for confidences
above 80%. For evaluating the accuracy only the recall metric is considered since all the
images have a marker present. Moreover, Figure 14 depicts the cases and the predictions.

Table 4. Performance over 18 images during a landing operation for different unable signals.

Unable Signals True Positives (Conf > 0.8) Recall Inference Time (ms)

None 100% 1 5.6

Visual and Thermal 100% 1 5.5

Visual and LiDAR 100% 1 4.2

Thermal and LiDAR 100% 1 4.7

LiDAR 100% 1 4.2

Visual 100% 1 4.1

Thermal 100% 1 4.8

The so needed redundancy against sensor failure is clearly concluded from the results
exposed. Solid performance is demonstrated by the Recall results equaling 1 across all un-
able signal cases. This robustness is expected considering the presence of several unimodal
samples in the dataset. Training with unimodal samples prepares the model against unable
signals. Summing up, it can be concluded the reliability of the early fusion approach while
operating under a sensor failure situation.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 14. Examples of ablation test predictions for all sensor failure cases. (a) Early-fusion (baseline). All
sources are activated. (b) Relying on LiDAR source only. (c) Relying on thermal source only. (d) Relying
on visual source only. (e) LiDAR source failure. (f) Visual source failure. (g) Thermal source failure.
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5.2.2. Weather test

To motivate the use of an early-fusion based detector for challenging weather con-
ditions a stress test for extreme simulated weather conditions is conducted. Glary and
dark environments are simulated for increasing and decreasing, respectively, variations in
brightness of 10%, 50% and 90% of the original image. Fog environments are simulated
by applying stochastic fog augmentation using the Image Augmentation library (https:
//imgaug.readthedocs.io/en/latest/source/api_augmenters_weather.html—Accessed on
19 February 2023).

Furthermore, every prediction above a 0.5 confidence threshold is considered a true
positive. Otherwise, it is considered a false negative. An amount of 100 images are inferred
for testing. For every image, there is a marker present, thus, at best, the model should
produce 100 true positive predictions. For evaluating the accuracy only the recall metric is
considered since all the images have a marker present. The results achieved are presented
in the Table 5. Examples of the extreme scenarios are depicted by the Figure 15.

(a) (b) (c)

Figure 15. Examples of predictions under extreme weather conditions. (a) A 90% glary (sunny)
scenario example. (b) A 90% dark (night) scenario example. (c) A fog scenario example.

Table 5. Performance over 100 images described by challenging weather conditions.

Weather Condition True Positives (Conf > 0.6) False Negatives Recall Inference Time (ms)

Bright (10%) 99 1 0.99 2.2

Bright (50%) 98 2 0.98 2.1

Bright (90%) 87 13 0.87 2.0

Dark (10%) 99 1 0.99 2.6

Dark (50%) 100 0 1 2.1

Dark (90%) 96 4 0.96 2.0

Fog (stochastic) 96 4 0.96 2.0

It can be concluded that the model is more sensitive under extreme bright conditions.
Conversely, it is resilient against dark and fog conditions. Considering the rare occurrence
of extreme brightness situations on the dataset, the model naturally performs poorly against
it. Resilience is expected against dark conditions because the dataset includes unimodal
samples that mimic sensor failure. Concretely, the model is trained against unable visual
signals or, in other words, extreme dark environments. The worthy performance (96%
recall) against the stochasticity of fog conditions is the most surprisingly result, which
demonstrates the robustness against a more noisy and random signal. Hence, it can be said
that the model is presumably robust against real noisy environments.

6. Conclusions

This research introduced a novel methodology that proposes an early-fusion module
capable of introducing the required reliability to a lightweight state-of-the-art object detector
under sensor failure and extreme weather conditions.
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The proposed early fusion approach provided an expressive input that clearly facil-
itated the detection of a multimodal fiducial marker during a UAV offshore operation.
Together, the early fusion detector and the multimodal marker operate in a robust and
transparent fashion against challenging weather and sensor failure conditions. In addition,
if there is a GPU onboard a robotic solution, it should be emphasized the assurance of a fast
system for real-time operating conditions, as demonstrated by the inference time results of
less than 6 ms. Consequently, it can be said that assuring robust performance empowered
by an early fusion and end-to-end approach for a lightweight detector is one of the major
contributions of this work.
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Abstract: This paper presents a localization system for an autonomous wheelchair that includes
several sensors, such as odometers, LIDARs, and an IMU. It focuses on improving the odometric
localization accuracy using an LSTM neural network. Improved odometry will improve the result of
the localization algorithm, obtaining a more accurate pose. The localization system is composed by a
neural network designed to estimate the current pose using the odometric encoder information as
input. The training is carried out by analyzing multiple random paths and defining the velodyne
sensor data as training ground truth. During wheelchair navigation, the localization system retrains
the network in real time to adjust any change or systematic error that occurs with respect to the
initial conditions. Furthermore, another network manages to avoid certain random errors by using
the relationship between the power consumed by the motors and the actual wheel speeds. The
experimental results show several examples that demonstrate the ability to self-correct against
variations over time, and to detect non-systematic errors in different situations using this relation.
The final robot localization is improved with the designed odometric model compared to the classic
robot localization based on sensor fusion using a static covariance.

Keywords: mobile robot; self-localization; odometry; sensor fusion; long short-term memory

1. Introduction

Auto-localization is an essential component of autonomous robots. It enables the robot
to navigate safely and accurately by providing real-time information about its pose and
surroundings. To achieve this, auto-localization systems typically use fusion algorithms
to combine data from multiple sensors, such as cameras, LIDARs, and GPS, providing
a robust and accurate localization module even in dynamic environments. The fact of
receiving several data based on different operating principles, allows the system to become
resilient to sensor failure, ensuring that the robot can continue to navigate effectively.

There are many fusion techniques used in auto-localization, including the Kalman
filter. This last one requires each sensor to provide a noise covariance, which describes its
measurement accuracy and determines its influence on the final localization. For non-linear
systems, there are variants of the Kalman filter, such as the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter (UKF). The EKF linearizes the system using the Taylor
series, but it can be less effective in highly non-linear systems [1]. The UKF, on the other
hand, uses the unscented transform to fit the probability density distribution of non-linear
equations, which allows it to avoid the loss of higher-order terms that can occur with
linearization [2]. This makes the UKF a simple, fast, and precise option for non-linear
systems [3–5].

In order to achieve accurate state estimation for auto-localization systems, it is not
enough to simply use the right fusion techniques. The reliability of the sensor data is also
crucial. Sensors can be easily affected by noise, and overcoming this uncertainty is essential
for improving the efficiency of the auto-localization.

One of the key sensors used in wheeled mobile robots is the odometric sensor, which
is a precise, cheap, and easy-to-process sensor. However, the pose calculated by this sensor
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is incremental, which can lead to the accumulation of small deviations over time. This
can result in significant errors in the pose estimation. Additionally, the odometric sensor
is sensitive to random errors, such as drifting, which can make it difficult to track and
potentially cause inaccurate poses.

Considering these limitations and how artificial intelligence is one of the fastest-
growing technologies in mobile robotics, this paper presents the application of neural
networks to odometry, improving the data accuracy and also reducing the sensor errors.
In this way, the encoder data are processed by a neural network to include effects that a
static model does not represent.

This method is implemented in an autonomous wheelchair that has been designed
to transport people with severe disabilities [6]. The wheelchair is controlled by the user
indicating the destination, while the navigation module will automatically execute the
optimal path, using the sensors for the reconstruction of the environment and the obstacles
detection [7]. In this way, to achieve safe autonomous navigation, the localization is an
essential part of the chair movement, since its failure would affect all other subsystems.

The wheelchair has the following set of sensors:

• Odometry: it estimates the wheel robot movement by optical encoders coupled to the
motor. In the prototype, the resolution of the encoder is 8800 pulses per revolution
with a resolution of 0.04 degrees. The pose is calculated by the wheel movement
knowing the radii and distance between them.

• Light Detection and Ranging (LIDAR): they are two Sick TiM 551 sensors, with a
maximum distance of 10 m, an angular resolution of 1 degree and a viewing angle
of 270 degrees. The relative movement of the robot can be calculated using two
consecutive laser scans. The measurement accuracy is estimated by the ICP (Iterative
Closest Point) algorithm [8,9]. It will return a low covariance value if two consecutive
sweeps have many singular points that ensure their precise matching. However, if
they have few singular points, the covariance will be high.

• Inertial Measurement Unit (IMU): an MPU9250 sensor which consists of an accelerom-
eter, a magnetometer and a gyroscope. Our tests indicate that the magnetometer an the
accelerometer are too imprecise to consider its measurements so only the gyroscope
will be used. Likewise, the sensor covariance is estimated by setting a static value.

The robot state x̃k(V, W) is estimated by a UKF. In this case, the algorithm estimates the
state at the next instant (k) by using the uniform rectilinear motion model and considering
the sensor data zk(V, W) and their covariances (COVv/w

k )z as measurements. The output of
the filter not only includes the estimated robot state but also its covariance (COVv/w

k ) f ilter,
which measures the precision of the filter at that moment. Moreover, the pose (X, Y, θ) is
calculated by integrating the output state of the filter. Figure 1 shows the wheelchair and a
schema of the implemented localization where our technique is applied.

Figure 1. The localization system proposed for the wheelchair.
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Accordingly, our paper focuses on the following key points: the robot self-localization
problem applied to autonomous wheelchair and the LSTM (long short-term memory)
neural network technique to improve the odometric sensor. The paper is structured as
follows. Section 2 includes a review of the studies that have been completed prior to this
work. Section 3 describes the wheelchair kinematics model. Likewise, Section 4 explains the
methodology carried out to improve the accuracy of the odometric sensor. The experiments
using the designed model are shown in Section 5, and the conclusions are summarized in
Section 6.

2. Previous Work

The study of assistive robots is gaining attention for the possible social, economic, and
scientific applications. There are investigations that collect the design of different types of
autonomous wheelchair. Ref. [10] designs an autonomous wheelchair capable of segment-
ing passable areas and anomalies on the roads through deep learning. Refs. [11,12] show
the characteristics of two wheelchairs for the transport of people in predefined hospital. Ref.
[13] describes an adaptive neural control system for governing the movements of a robotic
wheelchair. Likewise, [14,15] use an ROS (Robotic Operative System) in the wheelchair for
the architecture of their modules.

Regarding novel techniques in the current literature on self-localization, there have
been significant advances in the application of artificial intelligence (AI) to mobile robotics.
This has led to the development of more intelligent and autonomous robots that can navi-
gate complex environments and complete tasks more efficiently and accurately. Ref. [16]
describes a survey of the different matching learning techniques for motion planing and
control for mobile robots. In [17,18], a track fusion algorithm based on the LSTM method
are proposed achieving better results in the fusion effect. Likewise, Refs. [19,20] present a
deep reinforcement learning approach for the motion planning of autonomous robots in
dynamic surroundings.

Machine learning is also applied in the odometry pose estimation to improve the
results of using the traditional method by geometric equations. In [21], a feedforward
neural network model is used in order to learn the odometric model from data. However,
these sensors contain errors that need to be corrected in order to obtain a reliable pose.
Real-time calibration of the structure’s parameters is important to adapt to any changes in
the model over time. There are various techniques in the literature that attempt to adjust
these parameters. Refs. [22,23] solves the car odometric systematic errors by using the final
pose difference in a predefined path. Other works try to correct them in real time by the
design of an AKF (Augmented Kalman Filter) [24] or by estimating the deviation of the
radius nominal value by using a marginalized particle filter (MPF) [25].

With respect to non-systematic errors, such as slip, there are some methods that
attempt to reduce them. Ref. [7] uses a Doppler speed sensor in order to measurement the
odometric noise depending on the data quality and obtain a dynamic odometric covariance.
Likewise, Refs. [26,27] try to correct them by reducing their influence in the output filter.
They design a real-time outlier detection in the observations, applying a saturation function
to the residual. Moreover, Refs. [28,29] try to avoid them by using the dynamic structure
model. This last one proposes an slip ratio estimator based on the motion equations,
the input torque and encoders data.

Taking into account the AI advances in the field of self-localization and the previously
mentioned limitations of the odometric sensor, this paper presents a new approach based
on LSTM networks for predicting odometry poses. The proposed system is able to self-
calibrate in real-time through network retraining and another LSTM network is used to
learn and compensate for non-systematic errors in the final localization.

3. Robot with Differential Kinematics

The wheelchair has differential kinematics. It consist of two drive wheels on a common
axis. The robot can move and turn thanks to the independent wheel driving forwards
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or backwards. Figure 2 shows the scheme of a differential mobile robot with radii Rr/l
and a distance D between them. The robot movement between two time instants would
correspond to a circle trajectory with radius ρ around the point ICC (Instantaneous Centre
of Curvature). From the wheel speeds Vr/l , it is possible to estimate the linear (V) and
angular (W) robot velocities, as well as its pose (X, Y) and its orientation (θ).

Figure 2. Differential kinematics schema for a mobile robot.

Figure 2 shows the robot wheel dynamics, where T corresponds to the motor torque
that generates a linear (Vr/l) and angular (Wr/l) velocities. A friction force (Fr) opposes to
the movement, it can have a significant impact on the behavior and movement of the robot.
These forces depend on the environment in which the robot operates, and small variations
in their values can affect the robot’s movement. For example, certain types of robots, such
as wheeled mobile robots, are very sensitive to small changes in the speed of each wheel.
Even minor errors in the relative speeds between the wheels can affect the robot’s path.
These robots are also sensitive to small variations in the ground plane, and they may need
additional wheels (swivel casters) for support.

3.1. Wheel-Encoder-Based Traditional Odometry

The wheelchair’s pose at each instant can be obtained from the wheel speeds following
the scheme of the Figure 2 by using odometric equations. In this case, we can estimate the
respective wheel speeds by using the counts provided from the encoder sensor as follow,

Vl
ok =

2πRl�ctl
k

encRes�T ; Vr
ok =

2πRrcountr
k

encRes�T (1)

where Vl/r
ok corresponds to the left and right wheel velocities. �ctl/r

k are the number of each
encoder ticks that the electronics receive in time period (�T), and encRes is the encoder
resolution in one turn. The wheels parameters are the corresponding radii Rr and Rl and
the distance between the wheels D.

Considering the circle trajectory with radius ρ around the ICC point, we can estimate
the linear (Vk) and angular (Wk) robot velocities (Equation (2)). This calculation is obtained
by geometric equations knowing that the linear velocity of a circumference multiplied by
the radius is equal to the angular velocity.

Vr
ok
r = Wk; Vl

ok
ρ+D = Wk; Vk

ρ+D/2 = Wk

Wk =
(Vl

ok−Vr
ok)

D ; Vk =
(Vl

ok+Vr
ok)

2

(2)
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Once the current robot velocities (V, W)k has been estimated, it is necessary to inte-
grate, considering the time interval �T, to obtain the estimated robot pose (X, Y, θ)k+1 at
each moment,

θk+1 = θk + Wk�T
Xk+1 = Xk + Vkcos(θk)�T
Yk+1 = Yk + Vksin(θk)�T

(3)

3.2. Wheel-Motion Pattern Effect

The behavior of wheeled mobile robots depends on the environment characteristics.
The contact type between the wheel and the ground and its friction force value significantly
influence the robot’s movement.

In ideal conditions, regardless of the terrain type, the robot speed depends on the
motor torque and its power. An increase in the motor power will lead to an increase in
angular wheel speed that will be translated into linear velocity. The opposite case is given
to reduce the robot speed. However, there are situations where, depending on the current
robot speed and the adhesion degree with the terrain, the robot can slip or skid, producing
two situations. The first is due to the motor’s dead zone that does not produce enough
torque to move the wheel, causing the wheel to stall instead of turning with the robot
in motion. The second occurs when the wheel rotates freely, slipping and without any
robot movement.

From this assumption, we anticipate that there is a logical correlation between the
angular wheel speed and the motor power consumed. This relation disappears when
non-systematic errors occur due to the type contact with the ground.

Figure 3 shows graphically an example of the relationship between the motor power
and its angular velocity, given by the encoder sensor counts. In Figure 3a, there is no
significant slip, following wheel speed and motor power, a similar pattern, increasing
and decreasing in a correlated way. However, in Figure 3b there is a slip, highlighted by
the green lines, where, although the power increases, the real angular velocity decreases,
contrarily to the expected effect. Using this property, the motor power can be used to detect
non-systematic errors in the odometric system. There is not a clear mathematical relation
between motor power and speed in order to detect non systematic errors, so a Neural
Network is used to learn this relation from data.

Figure 3. Motor power vs. encoder counts for both wheels.(a) Without slipping and (b) with slipping.
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4. Odometry System Proposed

In this localization system, the data accuracy provided by the odometric sensor is
improved using neural networks that learn from the robot behavior. It avoids using
manually estimated parameters, improving and correcting some errors, which in the
mathematical model are not appreciable and, therefore, difficult to adjust.

The proposed model consists of two neural networks that have, as input, the incre-
mental encoder counts (�ctr/l

k ) of the right and left wheels, and provides, as output, the
robot state, that are the linear (Vk) and angular (Wk) speeds for the respective network.
We decided to use two neural networks for each output instead of a single one in order
to allow each network to specialize in predicting a specific output and converge more
quickly and easily. This is because in the following sections we will have to retrain them
online and we need the network to quickly adapt and converge to any changes that may
occur in the model. Using a single network with two outputs makes retraining much
more difficult and it does not adequately adjust to our desired requirements. This has also
been tested experimentally, and we found that the architecture proposed resulted in more
precise execution.

The training has been carried out offline by creating a dataset from the information of
multiples paths with different characteristics. During the training, the speed data provided
by a velodyne HDL 32 sensor at each moment have been collected as the desired output of
the robot state. It has been installed in the upper part of the chair and consists of 32 LIDARs
with a precision of 2 cm that enables the calculation of the state with high reliability using
the LOAM slam algorithm [30,31].

We decided to use recurrent networks, specifically, the LSTM-type [32] was chosen
over other models, such as MLP, because of its ability to learn and remember patterns over
time. This is particularly useful as it can take into account long-term patterns in the encoder
data sequence. Moreover, during the neural network design, we compared the use of other
models using the wheelchair dataset and it demonstrates a better effectiveness during
training and validation. For the LSTM network, it has been considered a time window
of 20 samples that are provided by the sensor at a frequency of 10 Hz. Figure 4 shows
the structure carried out to obtain the linear (Vk) and angular (Wk) velocity at each time
k. In order to train the designed model, pre-processing data are necessary. First, the raw
data were resized into a tensor whose dimension was (samples, time step, features), which
in our case was (10,115,20,3). The inputs at one moment correspond to the encoder count
increments and the speed at the previous time (�ctr,�ctl , V/W)k−1. The outputs are the
lineal Vk and angular Wk speeds of the robot. Moreover, the input must be normalized to
the same scale by eliminating the mean and scaling to a standard deviation equal to 1. So,
the samples of an input type are pre-processed using:

z = s−μ
σ with μ = 1

N

N

∑
i=1

si σ =

√√√√ 1
N

N

∑
i=1

(si − μ)2 (4)

where z is the new normalized value and s is the raw sample. μ is the mean and σ is the
standard deviation of the input, and N correspond to the samples dimension.
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Figure 4. Schema of the odometric model proposed using LSTM networks.

Regarding the implemented LSTM layer, it analyzes an input data stream and produces
a prediction. In this structure, data are introduced sequentially in an LSTM unit (cell) that
can be divided into different parts. In each cell, xt corresponds to the input at the current
time, ht−1 is the previous cell output and Ct−1 is the cell state. First, the forget gate controls
how much information about Ct−1 is relevant from the inputs ht−1 and xt, by using a
sigmoid layer (σ),

ft = σ(ω f [ht−1, xt] + b f ) (5)

where ω f represents the weight matrix and b f the bias. ft value in each dimension is in the
range (0, 1). The information will be forgotten when ft is close to 0, and the information
will be retained when is close to 1.

Subsequently, the gateway is responsible for processing the current input and updating
the relevant information. It has two parts, the first (it) controls how much of the input is
stored using a sigmoid layer and the second (C̃t) generates a new current state candidate
by using the tanh function,

it = σ(ωi[ht−1, xt] + bi) C̃t = tanh(ωc[ht−1, xt] + bc) (6)

where ωi and ωc represent weight matrix and bi and bc represent the bias. From this
information, the cell state can be updated from the previous one (Ct−1) and from the new
generated candidate (C̃t),

C̃t = ft ∗ Ct−1 + it ∗ C̃t (7)

Finally, the output gate generates the cell output (ht) from the selection of the relevant
information in the current cell state,

ht = σ(ωo[ht−1, xt] + bo) ∗ tanh(Ct) (8)

where ωo is the weight matrix and bo its bias.
Therefore, considering the Figure 4, the data are processed and normalized, then

divided into a 70% of training and a 30% as test data. In this case, the LSTM is 1 layer with
5 neurons in each cell, chosen ad hoc, providing the best training and validation results
for different tests. This state is passed to a full connected output layer with 1 neuron for a
single output and linear activation. Regarding the training, the ADAM optimizer algorithm
and the MAE (mean absolute error) metric has been used with a learning rate of 0.001,
a batch size of 10, 150, and 200 epochs depending on the model. Figure 5 shows the loss in
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both training and validation, using the MAE errors obtained with respect to the epochs for
each model, V and W.

Figure 5. Loss function per epochs using the MAE for the angular and linear velocities.

4.1. Odometry Error Covariance Modeling

The odometric system can be improved using an LSTM network to detect non-
systematic errors that occur in unpredictable environments. For example, local bumps,
holes, rocks, and non-level terrain can cause non-systematic errors. Using gyro sensors to de-
tect these errors has shown good performance, as demonstrated in previous research [33,34].
However, there are other cases that are more difficult to detect, such as wheel slippage on
level terrain. In these cases, a non-systematic detection method is necessary.

As explained in the first section, the fusion algorithm estimates the robot localiza-
tion from different sensors, where each measurement is defined with a covariance that
characterizes its confidence. In the case of odometry, it takes the speed covariances
(COVV

k , COVW
k )odom. Then, the filter prioritizes the measurements with a small covari-

ance and avoids those with greater values. So, it is important to dynamically adjust
the covariance of the odometric sensor to assign a high number in the presence of non-
systematic errors and, thus, reduce its influence on the final localization result, compared to
other sources. This variable covariance is designed based on the assumptions in Section 3.2,
where we demonstrate how the wheel speeds depend on the motor torque and its power,
and how the adhesion degree with the terrain causes the wheel to slip, affecting this
dependence. Therefore, we need a system that is able to learn the relationship between
the power of each wheel and its corresponding angular velocity in order to detect when
this relationship is not fulfilled and is in an error state. In this case, the system will act
accordingly by assigning a very large static value to all elements in the covariance matrix,
considering that they are stochastically independent random variables.

Figure 6 shows the method implemented on the wheelchair for this purpose. It con-
sists of an LSTM neural network that takes as input the powers of each wheel (Pr, Pl),
the encoder increment counts (�ctr,�ctl), and the sensor covariance in the previous mea-
surements (COVV

k−n), (COVW
k−n). As output, it is able to estimate the next step covariance

(COVV
k ), (COVW

k ). The data have been preprocessed using the same method discussed
earlier, organized into time windows with memory of 20 samples, and normalized to have
a standard deviation of one and a mean equal to zero. In our case, several samples have
been collected with different slip types and whose input dimension is (12442,20,5), which
have been divided into 70% for training and 30% for validation. The training has been
carried out offline by using the velodyne sensor data. The network structure is a LSTM
layer consisting of 10 neurons and a full connected output layer with 1 neuron for a single
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output and ReLU activation. We considered the ADAM optimizer algorithm and the MAE
metric with a learning rate of 0.001, 120 epochs, and a batch size of 10. A de-normalization
process is required in the final phase to obtain the estimated covariance data.

Figure 6 also shows the variance of the angular odometry velocity estimated by our
designed network with respect to time, where a slippage happens (non-systematic error) in
the period 400–405 s. As we can see, the covariance remains at a low value when the sensor
operates correctly and increases considerably when it is in an error state. This information
allows the UKF filter to weight the input data in real time. If the LSTM Network detects
a failure condition, the covariance will increase, so the data coming from odometry will
be considered by the filter with a small weight. The odometry data together with this
variable covariance will be used in a subsequent filter to be fused with other sensors and
its influence on the final localization result will depend on that estimated covariance.

Figure 6. Scheme implemented to avoid non-systematic odometry errors, and the evolution of the
angular velocity variance when a slippage happens in an example path.

4.2. Real Time Auto-Calibration

Real-time calibration of the model is crucial when designing an odometry system. It
must be able to detect and correct any systematic error that may arise in relation to the
offline-trained model. For example, a sudden change in the model may occur due to a shift
in the weight of passenger, which can significantly impact the model accuracy. Over time,
other situations, such as a change in tire pressure, can also affect the model performance,
causing errors in the estimated localization. In order to ensure high accuracy, the system
should be able to adapt to these changes in real-time by fine-tuning its model.

The scheme used for this calibration is shown in Figure 7. In this case, the neural
network models for both angular and linear velocity estimation are retrained in real-
time using input data from encoders (�ctr,�ctl) and the output from the UKF filter
speeds (V, W)k. It is an iterative process where the data are stored in real-time, and when
300 samples are collected, the network weights are adjusted accordingly. These samples are
only stored whenever the covariance of the filter (COVFilter) and the variable covariance
of the odometry (COVOdom) are small, which ensures that the data used for re-training
are reliable and accurate. In this way, the model is changed only when the robot is well
localized, avoiding introducing errors in the retraining process.

Figure 7 also shows the error in angular velocity over time with respect to the ground
truth (velodyne) when there is a change in the model, causing the error to increase. These
graphs compare the behavior of the odometric system with and without re-training. With-
out considering the calibration, the model does not detect any change and the error grows
and remains constant. In case of the real-time calibration, the system is able to detect these
changes and adjust the model by retraining, reducing the relative error with respect to the
velodyne sensor.
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Figure 7. Retraining scheme for odometric model calibration. The error using the model with
real-time retraining is smaller than using the model without it.

5. Results

The validation of the implemented wheelchair localization system was demonstrated
through the study and analysis of several paths with different characteristics. These exper-
iments were carried out in the corridor of the robotics laboratory at the University of La
Laguna. In addition, to evaluate the proposed odometric model, different parameters and
speeds were used on the paths to demonstrate the functionality of its variable covariance
and the online calibration, as well as to ensure that a wide range of circumstances were
covered. The effectiveness of the calibration was tested by varying the passengers and
altering the diameters of the wheels through inflation. Furthermore, in the experiments to
detect errors from the environment, the wheelchair speed has been increased in various
sections and we have used other wheels with greater wear to generate slipping. We have
also created these situations by applying pressure on one side, preventing the rotation of a
wheel while allowing the other to turn freely.

On the one hand, Figure 8a,b shows two different example paths where the estimated
pose of the odometry using LSTM networks (green line) and the pose obtained using
traditional odometry (blue line) have been compared with the reference data from the
velodyne (black line). As can be observed, the use of our model significantly improves the
estimated pose accuracy, providing results that are closer to the ground truth.
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(a)

(b)

Figure 8. Paths to validate the odometry model proposed. Odometry with LSTM networks (green),
traditional odometry (blue), and ground truth (black).

This fact is also demonstrated numerically in Table 1. In this case, multitude of
trajectories have been executed and the odometry error with respect to the velodyne has
been collected for both cases, using our LSTM network and using traditional model. We
have analyzed the errors at each time in the velocities (V, W) and in the robot pose (X, Y, θ).
The table shows the mean squared error (RMSE), the mean absolute error (MAE), and the
R squared, which are defined by the following formulae:

RMSE =
√

1
n ∑n

i=1 (ŷi − yi)2 MAE = 1
n ∑n

i=1 |ŷi − yi| R2 = 1 − ∑n
i=1(ŷi−yi)

2

∑n
i=1(yi−ȳ)2 (9)

where ŷi is the predicted value, yi is the true value, n is the number of samples, and ȳ is
the mean value of the true values. Based on the obtained values, the errors of our system
are smaller than the traditional model. Therefore, despite the small difference between
the errors, it demonstrates the effectiveness of our model in improving the odometry
localization of the wheelchair.
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Table 1. Error values obtained by comparing the LSTM odometry model and the traditional odometry
with respect to the velodyne data.

V (m/s) W (rad/s)
Pose

X,Y (m) θ (rad)

LSTM odometry
MAE 0.04646 0.08103 1.56692 0.07131
RMSE 0.10282 0.1791 2.076499 0.0864
Rscore 0.799122 0.84129 0.9569 -

Accuracy % 79.91% 84.13% 95.69% -
Global Model Accuracy (%) 86.57%

Traditional odometry
MAE 0.062744 0.102723 1.83725 0.1720
RMSE 0.1237 0.200329 2.48464 0.2151
Rscore 0.6734 0.7953 0.9389 -

Accuracy % 67.43% 79.53% 93.89% -
Global Model Accuracy (%) 80.2%

On the other hand, the proposed real-time calibration model has been studied in
several paths and with different changes in the system that have occurred both initially and
during it. Figure 9 shows two examples where the characteristics of one wheel have been
intentionally modified from the initial model to represent the odometry behavior when a
systematic error arises. It causes the pose to deviate, generating an error in the velocities
that, when integrated, accumulates over time in the pose. We compared the behavior
of three different odometry models: the neural network-based odometry with real-time
retraining (green line), odometry with neural networks but without retraining (yellow line),
and traditional odometry (blue line). As reference, we consider the velodyne(black line).

(a)

(b)

Figure 9. Example paths to validate the calibration model by retraining in real-time. (a) Shows the
position “X, Y” and (b) shows the orientation “θ”.

This figure shows how, thanks to retraining, the model is adjusted to new changes and
corrects the pose increments of the trajectory, approaching the velodyne. Table 2 collects
the errors obtained from several experiments comparing the proposed odometry model
with and without retraining. Based on these results, the neural network-based odometric
model and traditional odometry are unable to perceive these changes, increasing the error
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indefinitely. If we consider the calibration, the error in the velocities is reduced. However, it
does not directly correct the error pose, but rather gradually improves the pose increments
at each time interval. Moreover, we are interested in correcting the velocities, which will be
the input measurement data for the filter in estimating the final pose of the robot.

Table 2. Error values obtained by comparing the LSTM-odometry model with and without retraining
considering the velodyne data as reference.

V (m/s) W (rad/s)
Pose

X,Y (m) θ (rad)

LSTM Retraining
MAE 0.0384577 0.06484 4.27604 0.56772
RMSE 0.069028 0.115653 8.34219 0.629522
Rscore 0.848956 0.71317 0.25404 -

Accuracy % 84.9% 71.32% 25.4% -
Global Model Accuracy (% ) 60.54%

LSTM No retraining
MAE 0.05496 0.07919 5.156277 1.5677
RMSE 0.081812 0.22197 8.90407 1.7094
Rscore 0.67216 0.57198 0.03743 -

Accuracy % 67.22% 57.2% 3.74% -
Global Model Accuracy (%) 42.7%

Regarding the process implemented to reduce the influence of non-systematic errors,
the output of the UKF filter has been studied in various experiments with different slip
types. Figure 10 shows a path example where a considerable non-systematic error occurs.
The green line represents the pose estimated by the odometry, the blue one the LIDAR,
the red is the UKF localization, and the black line defines the ground truth. This error
type causes the odometry pose to deviate significantly, and since it is a random error, it is
impossible to correct its pose. The proposed solution is to modify the odometry covariance.
During the corridor, the LIDAR sensor has a high covariance due to the low number of
possible matching points and its estimated pose could be erroneous, however the odometry
provides accurate results. In turn, due to the slip, the error in the odometric sensor grows
and the LIDAR is more accurate.

Figure 10a shows the UKF-filter output when the traditional odometry is used with
a static covariance manually adjusted. The result is worse since it either relies too much
on odometry, underestimating the LIDAR or vice versa. Figure 10b shows the localization
result of the UKF filter with the proposed LSTM neural network with non-systematic error
detection and dynamic covariance estimation. During the slip, the power of the motors and
wheel speed is not correlated, the error classifier detects a non-systematic error during the
turn, and increases the covariance, reducing the odometry influence on the final localization
during that error state. The final pose of the filter is close to ground truth, and clearly better
than without the detector.
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(a)

(b)

Figure 10. Localization system for a path where the red line is the filter output, the green is the
odometry, the blue the LIDAR, and the black line for the ground truth. (a) Shows the position “X,
Y” and (b) shows the orientation “θ”. (1) Odometry with static covariance and (2) odometry with
variable covariance.

In addition to the graphical study, the errors of the UKF filter, with respect to the
velodyne, have been collected in different experiments for both cases, using traditional
odometry with static covariance and the proposed odometry with variable covariance.
Table 3 shows the metric values used for its comparison that are MAE, RMSE, R squared,
and we have also considered the normalized estimation error squared (NEES) using the
filter results and the estimated odometry poses against the ground truth. This metric takes
into account the state covariance and is defined as:

NEES = 1
n ∑n

i=1(xi − x̂i)
T P−1

i (xi − x̂i) (10)

where n is the number of samples, xi is the true state, x̂i is the estimated state, and Pi is the
covariance matrix for the ith sample.

Therefore, the proposed odometry model with a variable covariance has been shown
to improve the accuracy of the UKF filter in the presence of non-systematic errors. This has
been demonstrated through graphical analysis and by comparing the errors of the UKF
filter using the proposed odometry model and the traditional odometry model with static
covariance. The NEES metric has also been used to evaluate the accuracy of the filter, with a
lower NEES value indicating better performance.
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Table 3. Error values obtained by comparing the UKF filter output with respect to the velodyne data
in two cases. Using the odometry model with variable covariance and with static covariance.

V (m/s) W (rad/s)
Pose

X,Y (m) θ (rad)

LSTM odometry
MAE 0.04125 0.03149 1.4021 0.0547
RMSE 0.03804 0.05464 2.8699 0.07037
Rscore 0.83329 0.80617 0.9279 -

NEESOdom 1087 1982 - -
NEESFilter 1614 2963 - -

Accuracy % 83.33% 80.62% 92.8% -
Global Model Accuracy (%) 85.58%

Traditional odometry
MAE 0.05333 0.0452 2.0592 0.38356
RMSE 0.0661 0.071619 5.3323 0.4759
Rscore 0.7697 0.67634 0.678483 -

NEESOdom 6439 7650 - -
NEESFilter 5986 4779 - -

Accuracy % 76.97% 67.63% 67.85% -
Global Model Accuracy (% ) 70.82%

6. Conclusions

This work presents a new odometry system implemented in an autonomous wheelchair.
It consists of LSTM neural networks that are able to estimate the robot speed using the data
from the encoder sensor. The real-time retraining allows the system to self-calibrate and
adapt to changes in the defined model, further improving its performance. Likewise, it is
able to reduce the influence of some non-systematic errors by training LSTM networks that
learn the relationship between the power of the wheels and their angular velocity to design
a variable covariance.

In conclusion, this system significantly improves the accuracy of the wheelchair
estimated pose by the UKF filter, compared to the use of classic odometry methods. This is
demonstrated through graphical analysis and numerical comparisons of the errors between
the different methods. The results show how our system errors are smaller and closer to the
velodyne data, providing more accurate final robot localization, particularly in presence
of systematic and non-systematic errors. Overall, the proposed wheelchair localization
provides a more robust solution for state estimation in challenging environments.
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Abstract: Due to the increasing urban development, it has become important for municipalities to
permanently understand land use and ecological processes, and make cities smart and sustainable
by implementing technological tools for land monitoring. An important problem is the absence
of technologies that certify the quality of information for the creation of strategies. In this context,
expressive volumes of data are used, requiring great effort to understand their structures, and
then access information with the desired quality. This study are designed to provide an initial
response to the need for mapping zones in the city of Itajaí (SC), Brazil. The solution proposes to
aid object recognition employing object-based classifiers OneR, NaiveBayes, J48, IBk, and Hoeffding
Tree algorithms used together with GeoDMA, and a first approach in the use of Region-based
Convolutional Neural Network (R-CNN) and the YOLO algorithm. All this is to characterize
vegetation zones, exposed soil zones, asphalt, and buildings within an urban and rural area. Through
the implemented model for active identification of geospatial objects with similarity levels, it was
possible to apply the data crossover after detecting the best classifier with accuracy (85%) and
the kappa agreement coefficient (76%). The case study presents the dynamics of urban and rural
expansion, where expressive volumes of data are obtained and submitted to different methods
of cataloging and preparation to subsidize rapid control actions. Finally, the research describes a
practical and systematic approach, evaluating the extraction of information to the recommendation of
knowledge with greater scientific relevance. Allowing the methods presented to apply the calibration
of values for each object, to achieve results with greater accuracy, which is proposed to help improve
conservation and management decisions related to the zones within the city, leaving as a legacy the
construction of a minimum technological infrastructure to support the decision.

Keywords: machine learning; information extraction; object spatial; smart cities; gis detection

1. Introduction

Constant changes occur due to technological evolution in various areas of knowledge,
generating new evolutionary cycles, bringing demands, and presenting a large number
of still fragmented solutions. For example, the laws of fiscal responsibility, access to
information, the civil mark of the internet, and the general law of data protection, guarantee
the right to be well informed about what is produced in the public sector. They regulate
the implementation of general concepts on data protection, rules for active transparency,
and operational procedures. However, the provision of public data in an open format
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aims to ensure the transparency of stored information that is not under secrecy or access
restriction to strengthen the quality of the services offered.

There has been less previous evidence in some studies from the context, focused on
analyzing the evolution of data quality [1], basic probability [2], information quality evalu-
ation method [3], text mining techniques [4], research on data and information quality [5],
evaluation methods for information quality criteria [6], and mainly higher accuracy for
data quality [7]. Innovative and important aspects are highlighted for the main models
applied in object learning, and are still being adopted in conjunction with numerous solu-
tions and methodologies. However, different forms and implementation strategies were
observed, and among these strategies that enable the monitoring of urban and rural areas,
it is essentially necessary to collect and update large volumes of data, consequently of
the improvement in the quality of information for the delineation of territorial and social
expansion policies.

Until a few years ago, the processes of cartographic revision and, particularly, those
aimed at calculating the fiscal area have always been carried out manually. Specifically,
these processes required large investments in airplanes or helicopters, making the pro-
cesses more expensive. Because of this, municipalities are unable to perform mapping
surveys frequently. Currently, one of the most current fields of research is to investigate
technological capabilities for local authorities to perform detailed surveys of the territory
of municipalities at a reasonable cost.

Remote sensing studies based on very high-resolution images have increased in the
last few years (e.g., [8–12]), partly because of the availability of satellite images worldwide
and the popularization of unmanned aerial vehicles (UAV). The images acquired in all
these processes differ in scale, resolution, sensor type, orientation, quality, and ambient
illumination conditions. In addition to these difficulties, buildings, cities, neighborhoods,
rivers and vegetation may have complicated structures and could be hidden by each other.
Both structural and deterministic clues must be taken into account when constructing the
solution. Up-to-date and accurate data are essential for municipalities, applied at the Smart
Cities concept, that use disruptive technology to solve some specifics problems, in this
case, to solve this problem, the solution is the use of satellite and UAV imagery [13] in
combination with machine learning techniques [14,15].

However, it is necessary to treat large volumes of data with caution [16], adopting
computational and technological resources in conjunction with appropriate use of machine
learning methods and techniques. This reflection is based on the proposed [17], in which it
had identified that machine learning in several cases had lost connection with problems
for other issues due to its complexity. From this perspective, limitations are noted in many
existing datasets, metrics employed for evaluation, and the degree to which results express
the domain of a problem. As [18–20] state, changes are needed in the way research is
conducted to increase the impact of ML, and six impact challenges are highlighted to focus
explicitly on problems. Aiming to inspire further discussions and focus on the implementa-
tion of ML is the main contribution of this paper, highlighting: (1) regulatory framework
for use and implementation, (2) cost reduction with rules for informed decision mak-
ing, (3) avoiding conflicts of interest between nations, (4) extending cyber security through
defenses, (5) saving human lives with diagnostics or recommendations, and (6) improving
the Human Development Index (HDI) with at least 10% fair taxation in the country. In the
following, this study describes evaluation of the main recognition and extraction methods
for active identification of geospatial objects, their characteristics, processes, relationships,
and integration for rule generation.

The contributions of this paper are summarized as follows: (a) acquisition of spatial
data and satellite images; (b) image processing and machine learning; (c) use of GeoDMA
(Geographic Data Mining Analyst) and TerraView technologies for remote sensing; (d) use
of Weka software applied to the spatial and geographic context; and (e) use deep learning
techniques for object detection in GIS images and GIS detection.
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To be able to make all the contributions, a methodology of standardization of the
steps is applied with the DSR (Design Science Research) proposed by [21], to add new
practices and build a literature review in parallel to the technological steps that help in
the implementation of the proposal. To this end, the processes of (a) classification in the
context of remote sensing (RS) are also reviewed; (b) text mining techniques with the
software Weka (workbench for machine learning) performing text analysis, quantifying
the words and extracting statistics with the TF-IDF method (Frequency-Inverse Document
Frequency). Through a case study carried out in the municipality of Itajaí in the state of
Santa Catarina, Brazil. The results collected for the urban and regional planning evaluation
period are presented, considering the crossing of environmental and social data, referring
to territorial occupation.

For a better understanding of the research and results of this work, the paper is orga-
nized as follows: Section 2 presents the development; Section 3 describes the methodology,
in Section 4 the materials and methods used to apply the case study are detailed; in Section 5
we present the discussion of the results, and finally, in Section 6 are the final conclusions
and future work.

2. Development

To develop the project, actions were initially planned for the acquisition of spatial data
and satellite images. In the second stage, cataloging and standardization processes are
carried out for data interoperability. The third stage presents the technological solutions
adopted from GeoDMA and TerraView for remote sensing (RS). In the fourth step occurs
the Weka implementation applied to the spatial context. To orchestrate the processes,
the main methodology of the work aims from the experiments to define the best practices
for the classification process focused on the SR, enabling the integration of all processes
towards the active learning of objects. At the end, the case study is presented with specific
results and discussions.

2.1. Spatial Data Acquisition and Satellite Imagery

In particular for matrix data, [22] defines spatial data acquisition from images from
a few approaches, those being: input data definition, segmentation, detection cycles, cell
space (matrix) creation, and preliminary extraction features. From the proposals [23–25]
implemented through the GeoDMA framework (GEOBIA), in synthesis provides the re-
alization of the steps of segmentation of satellite images, extraction of attributes, creation
of classification rules, hierarchical classification and visualization of results. Additionally,
the works [19,26–29] describe in detail the precautions to be taken in image acquisition
and processing. In particular, according to [27,30], the monitoring of the interactions with
the terrestrial surfaces is very important, where each intensity of the solar radiation must
be observed. That is, the intensity of solar radiation received by the surface depends on
the solar zenith angle that is calculated, considering [27,31] the incident solar radiation,
the solar radiation intensity and the solar zenith angle. After acquiring the digital data from
the sources provided according to [32], new processes for cataloging emerge. However,
the extraction characteristics, initially present the need for specific module of resources
extraction and storage in a database. From this, it is possible to extract several features,
depending on the size of the scanning process and the amount of objects this task can be
very time consuming to complete. Therefore, cataloging guarantees that the features will
be extracted without losing original characteristics. Experiments conducted using the im-
ages collected by the CBERS-4 (China-Brazil Earth Resources Satellite) and the CBERS-4A
satellite, located in http://www.dgi.inpe.br/documentacao/dgi/documentacao/satelites/
cbers/capa-cbers (accessed on 1 June 2021), considering different periods.

2.2. Machine Learning and Processing

The availability of images from satellites and aerial platforms over the Earth’s surface
in the most diverse resolutions has been enabling an unprecedented approach between

72



Sensors 2023, 23, 138

technology and society, as [28] the processing of large volumes of data and geolocation
for the use of mobile devices in most different devices makes the insertion of various
technologies flexible. However, large volumes of data are generated, and for analysis, new
challenges arise involving interoperability, from those related to data collection and storage,
through ethics and privacy [33–35], to the development of efficient and robust algorithms
to extract the most unimaginable information.

However, processing large volumes of data requires technical expertise in remote sens-
ing, raw data processing, information extraction, a transformation of orthogonal models
and spectral mixing, calculation of physical indices, arithmetic operations, frequencies,
and statistical classification of data. However, all of these resources seek to assist in classify-
ing image pixels associated with the presence of observed spatial object characteristics. To
enable this, only with the use of consolidated technologies as [36,37], various classification
algorithms have been developed, as there is a growth in the data obtained by images.

Each classifier has its strengths and weaknesses. Hybridizing classifiers with each other
have the potential to combine the strengths and overcome the weaknesses by analyzing
level by level as per Figure 1.

Figure 1. Architecture of the ecosystem adopted for active detection, extraction, and learning of
geospatial objects.

It is necessary to advance with new studies on the behavior of different algorithms for
hybrid classification as KNN (K-Nearest Neighbors) and SVM (Support Vector Machine)
addressed by [38], with genetic programming, decision trees with an artificial neural
network, Naive Bayes with decision trees and decision trees with K-means. Additionally,
in hybrid image processing, specifically for the segmentation process, basic procedures are
established according to the works of [22,39], and there are still procedures to be evaluated.

For the processing of images according to [29], together with the extraction of attributes
from the regions and their spectral characteristics, they must be previously identified, vali-
dated, and calculated. The attributes can be determinant in interpretations and classification
processes that involve many classes and some with little separability.

From this, the challenge arises to increase the amount of coherent information to facili-
tate the discrimination of spectrally similar classes. To this end, determining procedures
that help increase identification with greater accuracy provides a set of rules that can be
instrumental in identifying distributed objects.

For image processing according to [29], besides the extraction of attributes from the
regions and their spectral characteristics, they must be previously identified, validated and
calculated. The attributes can be determinant in interpretations and classification processes
that involve many classes and some with little separability. From this, the challenge arises
to increase the amount of coherent information to facilitate the discrimination of spectrally
similar classes.

To this end, determining procedures that help increase identification with greater
accuracy provides a set of rules that can be instrumental in identifying distributed objects.
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However, new attributes can be associated with the spectral attributes from new dimensions
attached to the original image. The spectral attributes refer to the color of the pixels and are
calculated separately for each band of the input image based on the pixels belonging to
the segment.

As per categorical data analysis [40], three standards of texture verification are still
evaluated: structural, statistical, and spectral approaches. A statistical approach is the
most widely used and considers the texture of an image as a quantitative measure of
the arrangement of intensities in a given region. In this context, the concurrency matrix
contemplates the numerical characteristics of the texture using similar shades of gray
between a pixel and its adjacencies determined by the N × N pixel quadrant. The main
formulations adopted to quantify the texture in digital images, in this case, obtained by (the
CBERS-4 satellite), are mean, variance and entropy. The mean, according to (1), corresponds
to the value of the arithmetic mean of the gray levels of a region in each band of the image.
Where, R(i) equals each element (i) segment R and N the total number of pixels.

Average =

(
N

∑
i=1

.Ri

)
N (1)

Variance =

(
N
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.i − M2

)
(2)

Entropy =

(
N

∑
i=1

.Pi.InPI

)
(3)

The variance (2) is a measure of the dispersion of the gray level values of the pixels in
the region around the mean, and M is the mean of the gray levels of the segment. Entropy (3)
is calculated based on the distribution of pixel values in the region and is a measure
equivalent to the “distortion” of the values in the region. Where P(i) contains a normalized
histogram of the segment elements. The geometric attributes [29] are calculated based
on the polygon that defines the segment boundary, being: area, perimeter, compactness,
convexity, and elongation. In other words, the geometric metrics of a segment are defined in
advance for the behavior of the processing algorithm. The main considerations about image
segmentation refer to the selection of the optimal parameters for each application. However,
new active and adaptive processes have presented important results with machine learning,
such as GeoDMA.

2.3. GeoDMA and TerraVIEW for Remote Sensing

To analyze altered patterns [22,23], in large remote sensing datasets, GeoDMA was
created. Implemented in TerraView software, a tool to integrate the most essential image
analysis algorithms, ecology metrics, a scheme for multitemporal analysis [41] and data
mining techniques to automate the analysis of large databases. Addressing only imple-
mentation aspects of active extraction features, it seeks to provide new perspectives for
generating automaton functions for data collection, management, analysis, and representa-
tion, both for basic functionalities, and the integration extraction, and transformation of
geospatial objects [19].

2.4. Weka Applied to the Spatial and Geographic Context

Through the work environment for machine learning Weka, it is possible to perform
various analyses on a specific data set, or on several sets, provided that these sets have
the format in which it can perform the analyses. In this regard, several discussions about
GDPM (Geographic Data Preprocessing Module) [23,42,43] arise, extending the Weka Data
Mining Toolkit to support geographic data. Additionally, [22] presents discussions of
geographic data integration techniques, for example, the ID3, C4.5, and C5.0 algorithms for
rule generation. Improvements with Weka-3.9.3 (2019), operating through MOA (Massive
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Online Analysis) different types of datasets available at http://moa.cms.waikato.ac.nz/
downloads (accessed on 20 January 2022).

That is, types such as JSON, XML, SHP, DAT, TXT, CSV, PostgreSQL/PostGIS tables,
MySQL/MyGIS, ARFF and XRRF, among others, must necessarily be evaluated and format-
ted for machine learning processes. The discretization process of Weka is another interesting
way to enhance the processes and information extraction, considering the geospatial repre-
sentation. However, it is necessary to improve experiments for the automation of many of
the data transformation tasks for the generation of information with higher quality [44,45].

2.5. Deep Learning and Object Detection

The main problem that arises in the processes of acquiring knowledge from images
is that of relating the images collected by satellites or drones to object detection systems
and the corresponding verification of the same within the databases of local systems. One
approach may be to follow the advances in the machine learning algorithm literature,
with a focus on using Deep Learning (DL), which is a class of Machine Learning algorithms.
This type of algorithm uses multiple layers to progressively extract features from the input
images [46].

DL-based approaches are efficient when large datasets are available. The word deep
specifies more layers and deep neural networks. DL uses nonlinear functions. Thanks
to deep learning, Intelligent Document Processing (IDP) is able to combine various AI
technologies not only to automatically classify photographs, but also to describe the differ-
ent elements of images. Deep learning models, with their multi-level structures, are very
useful for extracting complicated information from input images. Convolutional Neural
Networks (CNN) are also able to dramatically reduce computational time by leveraging
the GPU for computation, something that many networks do not utilize. In the field of
object identification in images, two methods stand out: regional proposal algorithms and
regression object detection algorithms.

The first method is to discover in advance the possible target locations to be detected
in the picture. This can ensure that the highest retrieval rate is maintained when fewer
windows are selected. Suppose an image is input and, after a series of convolutions and
backbone clustering, a feature map of size M × N is obtained, which corresponds to the
division of the original image into areas M × N. The center of each area of the original
image is represented by the coordinates of a pixel in this feature map.

Region Proposition Algorithms are used to determine whether the k anchor boxes
corresponding to each pixel contain a target. The network must learn to classify the anchor
boxes as background or foreground. From this, it must calculate regression coefficients
to modify the position, width and height of the foreground anchor box. Within these
classifiers, we find algorithms such as R-CNN [47], Fast R-CNN [48], Faster R-CNN [49]
and MASK-CNN [50]. Of the algorithms mentioned above, Mask R-CNN stands out. This
algorithm is an extension of Faster R-CNN and works by adding a branch to predict an
object mask in parallel with the existing branch for bounding box recognition. The key
element of R-CNN Mask is pixel-to-pixel alignment, which is the main missing piece in
Fast/Faster R-CNN. The R-CNN mask adopts the same two-phase procedure with an
identical first phase (which is RPN). In the second phase, in parallel with class prediction
and box clearing, Mask R-CNN also produces a binary mask for each RoI. This is in contrast
to more recent systems, where classification depends on mask predictions. Furthermore,
Mask R-CNN is simple to implement and train thanks to the faster R-CNN framework,
which facilitates a wide range of flexible architecture designs. Furthermore, the mask
branch only adds a small computational overhead, allowing for a fast system and rapid
experimentation. Figure 2 shows a visual example of the segmentation performed by
the algorithm.
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Figure 2. Mask R-CNN framework.

The above algorithms use detection as a classification problem, i.e., object proposals
are first generated and then these proposals are sent to the classification/regression regions.
However, some methods approach detection as a regression problem based on a similar
operation. Within this field, the YOLO (You Only Look Once) and SSD (Single Shot
Detector) algorithms stand out. The SSD algorithm [51] strikes a good balance between
speed and accuracy. SSD runs a convolutional network on the input image only once and
computes a feature map. It then runs a small 3 × 3 convolutional kernel on this feature
map to predict bounding boxes and classification probability. SSD also uses anchor boxes
in various aspect ratios, similar to Faster-RCNN, and learns the offset instead of learning
the box. To handle scale, SSD predicts bounding boxes after multiple convolutional layers.
Since each convolutional layer operates at a different scale, it is able to detect objects of
various scales. An example of how the SSD algorithm works can be seen in Figure 3.

Figure 3. SSD framework.

For YOLO [52], detection is a simple regression problem that takes an input image
and learns the class probabilities along with the coordinates of the bounding box. YOLO
divides each image into an S × S grid, and each grid predicts N bounding boxes along with
their confidence. The confidence reflects the accuracy of the bounding box and whether
the bounding box actually contains an object, regardless of the class. YOLO also predicts
the classification score of each bounding box for each class in the training. It can combine
both classes to calculate the probability that each class is present in a predicted box. Thus,
a total of SxSxN bounding boxes are predicted. However, most of these boxes have low
confidence scores, so if we set a threshold, for example of 30% confidence, we can eliminate
most of them, as shown in Figure 4.
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Figure 4. Yolo framework example.

YOLO is a faster algorithm than all other detection algorithms, allowing it to be run
in real time. Another key difference is that YOLO sees the entire image at once, rather
than looking only at the proposals of a region generated in previous methods. Thus, this
contextual information helps to avoid false positives. However, one of the limitations of
YOLO is that it only predicts one type of class in a grid, so it has difficulties with very
small objects. There are several versions of YOLO such as YOLOv2 [53], YOLOv3 [54],
YOLOv4 [55], YOLOv4-tiny [56,57], YOLO-Fine [58] and recently YOLOv7 [59]. There
are also available versions of YOLO applied to Satellite Imagery, such as YOLT [60] and
MRFF-YOLO [61].

3. Methodology

From the concepts of DSR (Design Science Research) proposed by [21], whose study
considers it essential to also deepen the area of management. In this context, according
to [62], hierarchies are applied for knowledge-intensive tasks on each identified problem.
Added to the discussions of [24,63–66] allied to the classification methods being divided
according to the processing, into visual or digital, known as supervised, unsupervised and
hybrid as per [36].

Additionally, observing the metrics, in parametric or non-parametric and according
to the approach by pixel or by regions (objects), the methodology proposed in the work
aims, from the survey of satellite images and/or images obtained by RPAS and also by
crossing previously shared textual data, to identify through active learning the recognition
of geospatial objects with the generation of elementary rules. For this, an architecture
for systematic detection and extraction supported by machine learning is proposed, see
Figure 5.

In stage 1 meetings, interviews, surveys for questionnaires implementation, documen-
tation for support, and a survey of the prerequisites of the required project are planned.
The installation, testing, and homologation processes are also planned. This is where
different work platforms are made available for individual or collaborative use (groupware)
for integration and standardization. In stage 2, the requirements engineering processes
are carried out with the construction of artifacts using UML (Unified Modeling Language).
The important delimitation of the coverage area also takes place with the objective of project
execution. Data acquisition processes, images, and related documents. The cataloging
of data with centralized and shared storage. The processes of treatment, qualification,
and homologation of the collected data with due certification. In step 3, acquisitions are
made, such as contracting satellite image collection services with specific parameters. Scene
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processing for example (CBERS) and (LANDSAT-8). Definition of scenes imaged by the
satellites through date parameters, bands, and other relevant details, and also the survey
and integration of demands with the definition of the goals.

1
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Figure 5. Architecture of the ecosystem adopted for active detection, extraction and learning of
geospatial objects.

Step 4 is homologation and image processing, with the choice of the contrast method
chosen for the visualization of the objects to be evaluated. Optionally, the methods can
vary; for example, the linear method, histogram equalization, square contrast, square root
contrast, log contrast, mean and standard deviation, decorrelation enhancement, cumula-
tive 2% enhancement, composition and decomposition method, arithmetic operations of
image bands with NDBI (Normalized Difference Built-in Index), fusion method, and image
segmentation method.

In step 5, the homologation of each processing generated by the choice and application
of the methods is subsequently performed, the indexes are prepared, and the methods for
detecting and extracting spatial or textual objects are made specifically available. The data
structures generated in the previous step are necessarily reused, according to cataloging by
date, time, function, data sources, and coverage regions, enabling the import and centralized
integration for sharing, through specific infrastructure for networks and sensors.

In step 6, specifically different algorithms for adaptive rule generation are evaluated.
Adaptive rules are statistical patterns detected for representing the analyzed dataset. This
made it possible to combine them with the intersection of new attributes already stored
in the repository. In step 7, the optimization of the data structures for the repository and
subsequent reverse engineering is a priority. From known rules, it is possible to actively
generate learning about the experiences with the availability of large volumes of data
to support the other decision-support processes. To synchronize each step and process,
an infrastructure [67–69] computer network for remote communication between various
devices, data collectors, cameras, and sensors is implemented.

Furthermore, through the fruit of several research discussions comes the development
of the model for active knowledge extraction, presented by [45], intensifying the interoper-
ability of the data and the advancement of the implementation of the concepts in this work.
It also aims at improving the functions through the prototype as presented in Figure 6.
From the application architecture idealized by [22], the same also provides the opportunity
for the derivation of new experiments for machine learning, since the collection of data,
cataloging, discretization of data and application of algorithms is of great importance for
the detailing of each process and recording of operations for possible control.
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Figure 6. Adapted architecture for systematization and generation of recommendation cases.

This defines a process for detecting geographic patterns, urban and rural devices
through segmentation and other records for automatic observation and evaluation of
territorial expansion from the extraction of shared knowledge.

One of the main reasons is the difficulty of constantly processing a large volume of data,
due to satellite images collected periodically and which can present files with expressive
sizes (megabytes or gigabytes), fundamentally important for pattern recognition.

3.1. Remote Sensing Classification

In applications that require image classification, the availability of labeled samples
(training data) is closely associated with the choice the analyst will make for extracting in-
formation from the images. Two families of techniques are distinguished, called supervised
and unsupervised, according to the presence or absence of labeled samples, respectively.

In the context of SR, classification is the process that seeks to assign a label to certain
data described by a set of attributes. In digital terrestrial remote sensing imagery, this
process is equivalent to determining, for each pixel, which category is present on the
surface, such as water, soil, and forest, which is usually done by spectral attributes, such as
the gray level in each band.

They are commonly used over the radiometric indices as [70], arithmetic contrast
operations with NDBI, NDVI (Normalized Difference Vegetation Index), and NDWI (Nor-
malized Difference Water Index). Considering the processes of unsupervised classification
in (SR) and supervised classification, from data collected by (satellites) or unmanned air-
craft, these images can be analyzed in different scenarios, whether knowledgeable or not
about the observed area. The discussions of [29] describe in detail the implementation of
each process that can be adapted to different experiments.

3.2. Active Training and Machine Learning

We also consider using parametric classifiers that model the decision boundaries
between training classes with a fixed number of parameters, regardless of the number of
samples [71,72].

It is the simplest classifier in existence and therefore ends up having a more didactic
than operational role. The decision boundaries are positioned on lines equidistant between
midpoints of the various classes present.

The classification process by Euclidean minimum distance is performed by Figure 7A
the distribution of the sample elements of each class in two bands of a generic image and
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Figure 7B the averages calculated for each sample and respective distances to a pixel to be
classified.

Figure 7. Representation of Euclidean distances.

Especially with the evolution of text mining techniques according to [36], the develop-
ment of the StringToWordVector function can optionally assist in scanning large amounts
of text using TF-IDF concepts in Weka treated IDFTransform and TFTransform.

Additionally, when searching with textual data, a statistical measure is adopted that
is intended to indicate the importance of a word in a document relative to a collection of
documents or in a linguistic corpus. According to [73], it is possible to distinguish the
importance between different word features, and it is necessary to calculate the weights of
the prominent words. For this, the TF-IDF method is implemented and used to calculate
the weight according to (4).

TF − IDF = t f xid =
( a

t

)
Xlog

(
b

c + 1

)
(4)

In the formula, a is the frequency of the resource in the document set, this is the total
number of times of all resources in the document set, b is the document number in the
document set, and t is the number of documents that contain the resource. Then, with the
use of the TF-IDF method, it is possible to select n resources with the maximum value of
TF-IDF as per the candidate resource set. Using IDFTransform and TFTransform, scans and
learning are performed on the datasets prepared for the textual data matching, as detailed
in the case study of Figure 8.

This enabled the cataloging of each geographic object properly identified from the
satellite image with the items found with IDF-TFTranform. In parallel, from the discussions
of [74], another viable strategy to relate and spatially represent different information can be
through a geographical matrix of spatial queries, being a two-dimensional representation of
intrinsic relationships between locations. To exemplify, implement the forest code and limits
of permanent preservation areas in each municipality. Many impasses arise, and although
this is not a complex task, it requires great human effort and skilled labor for permanent
monitoring. In this sense, the municipalities that make up the basin of the Itajaí-Açú
River were mapped to generate the geographical matrix. Through the implementation,
the integration of data was carried out, resulting in a large volume of distinct information,
providing important relationships for the evolution of monitoring through the recognition
of spatial objects as explored in the case study.
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Figure 8. Integration in QGIS with CBERS4 satellite images and CTM data (Itajaí-SC) for monitoring
the expansion on riverbanks.

4. Materials and Methods

4.1. Study Area

The study sites were located in the south of Brazil, in the Itajaí Municipality along the
Itajaí-Açu basin river, in Santa Catarina (SC) state, Brazil (Figure 9).

Figure 9. Location of study sites: (a) in South America, Brazil, Santa Catarina state. (b) State of
Santa Catarina with the CBERS4A Panchromatic 2 m Image, including the Itajaí-Açu River layer.
(c) Satellite image from the CBERS4A of the mouth of the Itajaí-Açu River (d) Airborne from the
Itajaí—SC Municipality.
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4.2. Materials

New challenges arise with updating a municipality’s land registry. According to [73],
a good cadastre contributes to the equitable distribution of tax resources, promotes property
security and creates bases for urban and regional planning. For this, bases for urban and
regional planning are created, using the Multifinality Technical Cadastre (Cadastro Técnico
Multifinalitário—CTM), available at https://geoitajai.github.io/geo/plantacadastral.html
(accessed on 20 October 2022). And from the collection of images through the CBERS-4
and CBERS-4A satellite with spatial resolution of 5 and 2 m, respectively http://www.dgi.
inpe.br/catalogo (accessed on 20 October 2022). Additionally, the aerial photogramme-
try are obtained from the portal https://arcgis.itajai.sc.gov.br/geoitajai/plantacadastral/
plantacadastral.html (accessed on 20 October 2022), they are used to identify spatial ob-
jects in the municipality of Itajaí, state of Santa Catarina—Brazil. The map layouts were
generated using QGIS software [75].

4.3. Methods

With the advancement of technologies and the emergence of large volumes of data, it
is possible to cross data through automated processes and solutions with greater reliability
and precision. The policies are evaluated with the crossing of environmental and social
data, referring to territorial occupation, and considering traditional economic, physical,
and legal aspects, among others.

However, one of the limiting factors for updating base registers is still the high cost
of developing the entire cartographic framework. However, with the advancement of
collaborative technologies, more affordable alternatives should be considered, especially
for small and medium-sized cities. In this sense, we highlight the possibility of using pho-
togrammetric techniques, since the logistics involved in the operation of these systems are
more flexible and economical when compared to cartography by topographic or geodetic
techniques, or even conventional photogrammetry with UAV [76].

In the case study, image acquisition processes were carried out, and subsequently the
prior selection of the delimited perimeter for application of the present study. Figure 10
presents the result of this process and the application of the linear contrast method. Dur-
ing the investigation, the pixel transformation functions were evaluated from the image
contrast, and in the application of active object learning, the contrast presented a more
suitable visual result. From the transformation function (T) for a single pixel (r = original
pixel value), the resulting pixel value (S) is generated through different techniques to obtain
better processing and visualization of objects. Where, (s) = T(r). Table 1 shows the results
with the contrast method.

Figure 10. Image of the municipality of Itajaí SC—Brazil, after the contrast method in the area chosen
for object detection and active learning.
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Table 1. Preparation for active learning experiments.

Satellite Segmentation Generated
Records

CBERS
Sensor

Banda a

Contrast

Method b

CPU Time
i7 6.5 GB

GNU/Linux
Similarity Object

Detection

PAN5M—Band
Espec = 1 Linear

327 s 70 0.050 1,066,788

390 s 46 0.045 1,345,492

435 s 84 0.040 1,639,031

464 s 94 0.035 2,158,357

516 s 02 0.030 2,770,752

572 s 11 0.025 3,760,484
a Image acquisition criteria, e.g., (date, location, quality and others). b Software used for image processing, such as
TerraLib/TerraView (INPE) and Qgis.

The lower the degree of similarity threshold, the higher the generation of objects for
analysis processing and active learning. In other words, higher demand and availability of
hardware resources to support higher processing volumes are essential.

Additionally, the availability of a relational database management system, such as
PostgreSQL/PostGIS, is another important implementation due to the need of storage
for manipulation. The case study was designed to integrate public data with the main
objective of evaluating the existence of relationships, direct or indirect crossover. Different
data sources were considered for experiments of the algorithms.

After two comparative implementations, over the data set (49,325 occurrences) ob-
tained from the CTM. Where, initially in the first implementation was prioritized applica-
tion of the classification method to elaborate the decision tree with ID3 algorithm, using
the Weka tool (version 2). It generated 78.83% (38,885) correctly classified instances and
21.15% (10,436) incorrectly classified instances.

In the second implementation on the same dataset, a new tree structure was generated
with J48 algorithm using Weka tool (version 3.9.3). After visualizing the tree, it was possible
to detect the levels and the class (Conservation), with more information gain. For correctly
classified instances, it was obtained 85.2002% (42025) of success and 14.79% (7300) not
classified. The final kappa statistic of 76.11% also determined the classifier that obtained
the best learning. After the implementations with the software Weka, for the same area
investigated, another study was performed using the software TerraView/GeoDMA, where
the methods of segmentation, image vectorization and later extraction of the set of attributes
were applied, see Figure 10.

Subsequently, with GeoDMA for object classification, 212 attributes were generated.
From the identification of the characteristics of each pixel was performed the conference
of the generation of each polygon and definition of relations for characterization of basic
rules of each object. For a better understanding of the objects detected in the study, it was
important to evaluate the different types of scales.

5. Discussion

From the expected results are presented some reflections and discussions about the
development of the work, initially idealized and later obtained. That is, the results achieved
by the research and their implementation are presented.

Reflection 1: Through the studies presented, was it possible to detect the applicability
of knowledge extraction in CTM in conjunction with other areas? Clearly, and as is proven
through the case study presented in Figures 5 and 6, along with a comparison of the Weka
software in version 3.2 (2001) and version 3.9.3 (2019), both versions allowed for obtaining
models, enabling machine learning, and expansion of analysis with new processes of data
integration and information extraction.
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Reflection 2: Specifically in this paper, new performance tests were presented with
the Weka classifiers: OneR, IBk, NaiveBayes, and J48. All classifiers use the same CTM data
and under the same conditions. That is, at this point it is worth mentioning the inclusion of
analysis with the Weka “Hoeffding Tree” classifier, allowing the generation of a tree with
less criticality.

Reflection 3: Was it possible to use new satellite images and run GeoDMA for auto-
matic learning of new objects? Yes, in this regard, it is worth highlighting the specifications
adopted according to Table 1, enabling the correct acquisition of images through standards
for the next stage of segmentation, then the vectorization of objects. In particular, several
prodecures are performed for image segmentation, which not part of the scope of this work,
but will be detailed with new experiments.

Reflection 4: Did the development and discussion of the experiments occur with
other CTM databases integrated for the recommendation? Partially, some experiments use
static datasets successfully, but have not been evaluated by mining continuous stream data
using Weka-MOA.

Reflection 5: Were performance evaluations of the Weka software performed? Yes,
exhaustive performance experiments were conducted, as shown in Table 2 and made
available for online access. In all classifiers, the CTM dataset was analyzed with the
same parametrizations and specifications, such as the 10-fold cross-validation over the
“property conservation” class. The Weka classifiers performed well on a dataset containing
18 attributes and 49,325 instances. The OneR, NaiveBayes, J48, IBk, and Hoeffding Tree
classifiers showed satisfactory results. The results of the classifiers are explained one by
one below:

For Weka → OneR: OneR processing took 0.09 s to build and run the model. Addi-
tionally, with the application of OneR, a correct classification of the instances of (38,404)
records was obtained totaling an accuracy of 77.8591% by the algorithm. It also presented
satisfactory learning with 63.75% evaluated by the kappa statistic.

For Weka → NaiveBayes: Initially, the processing took 0.13 s to build and run the
model. Additionally, with the application of NaiveBayes, a correct classification of the in-
stances of (37,445) records was obtained, totaling an accuracy of 75.9149% by the algorithm.
It also presented satisfactory learning with 62.48% evaluated by the kappa statistic.

For Weka → J48: The processing took 2.45 s to build and run the model. Additionally,
with an application of J48, a correct classification of the instances of (42,025) records was
obtained, totaling an accuracy of 85.2002% by the algorithm. It also showed satisfactory
learning with 76.11% evaluated by the kappa statistic.

For Weka → IBk: Processing took 3 min 34 s to build and run the model. Additionally,
with an application of IBk, a correct classification of the instances of (40,042) records was
obtained, totaling an accuracy of 81.1799% by the algorithm. It also showed satisfactory
learning with 69.97% evaluated by the kappa statistic.

For Weka → Hoeffding Tree: Processing took 0.69 s to build and run the model.
Additionally, with an application of the Hoeffding Tree, a correct classification of the
instances of (39,203) records was obtained, totaling an accuracy of 79.48% by the algorithm.
It also presented satisfactory learning with 66.54% evaluated by the kappa statistic.

Experiments with Weka → IBk from the vector with 25 attributes and containing
(1,000,000) instances, generated after image segmentation Weka with the IBk classifier
built the classification model quickly, but presented a very large slowness (9 h) to measure
the distances of all instances. However, the alternative found to speed up the processing
was to retain in memory only a “window” of instances, instead of the complete dataset.
In Weka, the default parameter “window size = 0” allows you to set the maximum number
of instances allowed in the training pool, and adding additional instances simply removes
the old ones, freeing up memory to improve performance.

In addition, for a better understanding, analysis was performed on the datasets below,
being separated into three different sets to initially compare the training with 100 (objects),
1000 (objects), and 15,000 respective training results, it was possible to decide which
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algorithm to use first to be prioritized and adopted for further processing, as shown in
Table 2, containing the results obtained from training the different datasets and compared
with the performance of processing the entire set of objects. The final test was evaluated
with a total of 49,325 instances, and these instances are isolated from the training dataset.

Table 2. Training datasets (objects).

Algorithm
Training

(100 Objects)
%

Training
(1000 Objects)

%

Training
(15,000 Objects)

%

Performance
Evaluation (Final)

%

J48 52 77.9 80.4067 85.2002

IBk 78 78.2 80.4467 81.1799

Hoeffding Tree 76 77.1 80.3733 79.4800

OneR 75 77.9 80.3600 77.8591

NaiveBayes 76 77.1 79.4133 75.9149
Training datasets and evaluation/tests are available in: http://sadpreaigeo.org/ufsc-egc/mtec2022/
(accessed on 15 December 2022).

With Weka → Hoeffding Tree, a Hoeffding tree (VFDT—Very Fast Decision Trees) is a
very fast decision tree algorithm for incremental decision tree induction at any time, capable
of learning from massive data streams, assuming the distribution generation instances
do not change over time. Hoeffding trees exploit the fact that a small sample can be
sufficient to choose an optimal splitting attribute. This idea is supported mathematically
by the Hoeffding limit, which quantifies the number of observations (examples) needed
to estimate some statistics within a prescribed precision (according to the goodness of
an attribute). A theoretically attractive feature of Hoeffding Trees not shared by other
additional decision tree learners is that it has good performance guarantees. Using the
Hoeffding boundary, one can show that its output is asymptotically nearly identical to
that of a non-incremental study using infinite examples proposed by [41]. This classifier is
a successful reference in dealing with large spatial representation datasets, for example,
the evaluated dataset (Weka→ ConvtypNom), regarding spatial coverage of forests with
quadrants defined in 30 ×30 m, 581,012 instances, and 54 attributes, elaborated the model
in 41 s and completed the evaluation processing with cross-validation 10 times in 6 min
and 49 s. All the results of Weka 3.9.3 performance are presented in Table 3.

Table 3. Performance comparison of Weka 3.9.3.

Nr
Weka 3.9.3
Classifiers Time

Correct
Instances % Hits % Kappa

1◦ J48 0.30 s 42.0250 85.2002% 76.11%

2◦ IBk 3 m 34 s 40.0420 81.1799% 69.97%

3◦
Hoeffding

Tree 0.69 s 39.2030 79.4800% 66.54%

4◦ OneR 0.03 s 38.4040 77.8591% 63.75%

5◦ NaiveBayes 0.04 s 37.4450 75.9149% 62.48%
Results available in: http://sadpreaigeo.org/ufsc-egc/mtec2019/ (accessed on 20 January 2022).

In all classifiers, the CTM dataset was analyzed with equal parameterizations and with
the same specifications, such as the “k = 10 cross-validation” on the “property conservation”
class. For property conservation in the “good condition” category, from the confusion
matrix generated by the first classifier established, the true positives (TP) with 22,279 units,
and the true negatives (VN) with 19,746, totaling 42,025 units to be certified, were first
identified. Afterward, the false positives (FP) with 4002 units enabled the separation for
re-evaluation of each occurrence. However, unlike the IBk classifier, the other evalu-
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ated classifiers had good performance regarding processing time using 18 attributes and
49,325 instances, over the same computational infrastructure provided.

With the satisfactory results obtained with OneR, NaiveBayes, J48, IBk, and Hoeffding
Tree, allows the use of GeoDMA for automatic learning of new objects to be positively
proven by Figure 10. Additionally, the fusion between textual classifiers and geospatial
classifiers made possible through this work, the verification of an innovative form of
knowledge extraction engineering.

From the use of GeoGMA [22], to perform the extraction of attributes, after exhaustive
performance tests on the hardware used Table 1, adjustments were applied opting for the
selection of all statistical methods, except “Percent of each class by area”, because this
method increases the consumption of processing and memory. Still in the process of
extraction of attributes, it was possible from this procedure to obtain a better response time
with a duration of up to 15 min of processing load.

Specifically, in Figure 11, it is shown how this made it possible to start the elaboration
of queries through the filter on the attribute “B0Mean” > 0.4, especially to obtain the
selection of objects with the highest “vegetation index” in the image.

In the second query, it was possible through the filter on the attribute “B7Mean” > 300.0,
to obtain the selection of objects with the “shadow” characterization on the image. In this
particular case, the query changed the return color for the objects. However, it was not
rendered after processing, changing the color parameter set as “Yellow” to “Green”, but re-
maining the best identification of the color “yellow” for the recognition of the object
“shadow” in the image.

Figure 11. Results after calibration of values and recognition of objects.

Still, for the definition and characterization of the objects, some queries were per-
formed, allowing, through the filter on the attribute “Band 5-Mean” using the GeoDMA [22],
us to obtain different values for the selection of objects and characterization, such as “ce-
ramic roofs”, as shown in Figure 12. Thus, for the tested objects, the following values were
obtained and are available in Table 4.
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Table 4. Obtained values.

ID Min Max Mean

2128 386.000000 511.000000 426.769231

2135 241.000000 724.000000 425.036585

2240 235.000000 631.000000 532.342541

2302 326.000000 692.000000 531.554622

2398 27.000000 556.000000 355.121339

2999 310.000000 664.000000 551.215962

3056 385.000000 645.000000 553.728000

3075 460.000000 650.000000 596.877160

3116 260.000000 526.000000 426.401042

3144 372.000000 529.000000 436.227848

3732 218.000000 638.000000 425.622951

3767 270.000000 521.000000 391.483974

3768 416.000000 584.000000 529.207207

3867 229.000000 555.000000 398.095023

Figure 12. Results after calibration of values and recognition of objects with the results in the
historigram.

The choice of samples was made randomly within the dataset images used for training,
aiming initially to understand how the learning was performed, especially with the use of
GeoDMA, as in Figures 13 and 14. This provided an important experience in the choice of
classes. Specifically, the classes of investigation were: (a) asphalt, (b) roofs—light, dark or
ceramic, (c) swimming pools, (d) shadows, (e) exposed soil, and (f) vegetation. Figure 13
describes the calibration process to obtain the final result, detailed in Figure 14.
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Figure 13. Calibration for segmentation process.

Figure 14. Segmentation results of the recognized objects.

From this study, it was possible to carry out new experiments to acquire a larger
number of samples and improve the rule generation. For example, with respect to the
class “asphalt”, the rule was very broad, in which a greater number of representations were
obtained, as illustrated in Figure 14. On the other hand, for “dark ceramic roofs”, the rule
was generated with better results. However, for future work, new implementations will be
developed, aiming to train new classes.

Certainly, much still has to evolve computationally, especially with regard to constant
active machine learning. In particular, urban object recognition and monitoring is noted.
All documents related to the Weka training, datasets and other complementary documents
are available at http://sadpreaigeo.org/ufsc-egc/mtec2019 and http://sadpreaigeo.org/
ufsc-egc/mtec2022 (accessed on 15 December 2022).

6. Conclusions

Finally, according to the initial objectives of this work, through extensive research, it
was possible to prove the applicability of the extraction of knowledge with the integra-
tion of data collected from the Cadastro Técnico Multifinalitário (CTM). Additionally, as
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prioritized, the research contemplated through investigation of the publications made in
the last 5 years. During the study, it was noted that there is a great involvement of the
academic and scientific community in the development of technologies that understand
the geospatial and earth phenomena.

Growth and strong trends were observed in the use of the SVM (Support Vector
Machine) method for evaluating large volumes of textual and geospatial data, as was the
use of data discretization to enhance the execution (performance) of classifiers (algorithms).
In this sense, the possibility of implementation and integration of the software Weka with
TerraView/GeoDMA was proven, and they were compatible and operationalized because
both complement each other from the collection to the structuring of textual and geospatial
data for the evaluation of datasets, as presented in the Section 5.

An important characteristic to highlight with the Weka software was experimention
with vectors that presented only numeric values, in which linear regression (Weka 3.9.3)
proved to be faster to deal with large volumes of data. Regarding linear regression, the J48
decision tree showed the best results with the best classifier with accuracy (85%) and the
kappa agreement coefficient (76%) in an average time of 0.30 s.

For future work, further studies to advance experiments from evolving data streams—
those generated by mechanisms that change or fluctuate over time, by implementing the
Weka/MOA package, designed specifically for data stream mining including new adapta-
tions with Deep Learning algorithms. Furthermore, we intend to advance the development
of a module for a pre-processing face as proposed [77], prioritizing data collection, transfor-
mation, and preparation of datasets and images. This is essential for the crossing of data
and construction of rules to ensure the quality of the information to the user and decision
maker. Another need concerns the improvement of models, being more or less robust and
that can be reusable through vectors for TF-IDF x TerraViewGeoDMA application.

Although great demands of work are generated, one must prioritize care for the
quality of data and information both for technical and operational issues, as well as for
strategic issues that require constant validations, allowing certifications to occur for each
step performed during all the extraction processes, generating a reliability indicator for
the quality of information. The continuity of actions to intensify the implementation
of processes for information quality, in this work, is indispensable so that all stages of
knowledge extraction are guaranteed and certified.

Importantly, our results provide evidence for an implementation of an innovative
practical, and systematic approach. The extraction of information and recommendation of
knowledge shows a greater scientific relevance. Allowing the methods presented to apply
calibration parameters for each object and achieve results with greater accuracy.
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Abstract: For magnetic levitation systems subject to dynamical uncertainty and exterior perturbations,
we implement a real-time Prescribed Performance Control (PPC). A modified function of Global Fast
Terminal Sliding Mode Manifold (GFTSMM) based on the transformed error of the novel PPC is
introduced; hence, the error variable quickly converges to the equilibrium point with the prescribed
performance, which means that maximum overshoot and steady-state of the controlled errors will
be in a knowledge-defined boundary. To enhance the performance of Global Fast Terminal Sliding
Mode Control (GFTSMC) and to reduce chattering in the control input, a modified third-order sliding
mode observer (MTOSMO) is proposed to estimate the whole uncertainty and external disturbance.
The combination of the GFTSMC, PPC, and MTOSMO generates a novel solution ensuring a finite-
time stable position of the controlled ball and the possibility of performing different orbit tracking
missions with an impressive performance in terms of tracking accuracy, fast convergence, stabilization,
and chattering reduction. It also possesses a simple design that is suitable for real-time applications.
By using the Lyapunov-based method, the stable evidence of the developed method is fully verified.
We implement a simulation and an experiment on the laboratory magnetic levitation model to
demonstrate the improved performance of the developed control system.

Keywords: prescribed performance tracking control; terminal sliding mode control; disturbance
observer; magnetic levitation systems

1. Introduction

The potential applications of magnetic levitation systems are huge. They have become
quite popular as a testing system in control engineering labs and advanced nonlinear
control programs. A major reason for the popularity of this nonlinear system is the fact
that it is relatively easy to construct and manage. Their many applications can be found in
real systems such as contactless melting, rocket-guiding projects, gyroscopes, high-speed
trains, frictionless bearings, vibration isolation systems, etc. The characteristics of Magnetic
Levitation Systems (MLSs) tend towards nonlinearity and instability described by nonlin-
ear differential formulas. The proportional-integral-differential (PID) and proportional-
derivative (PD) controllers are typically proposed for the effective regulation of systems
under the assumption of well-known gain parameters [1]. The tracking control performance
of those controllers can rapidly deteriorate as deviations from their nominal operating
point increase. There is no doubt that the nonlinearity and inherent instabilities of the
system prevent classical PD or PID controllers from being applied to these more complex
problems. A trajectory tracking task typically involves the gain of the system no longer
being constant, and it is determined by changes in distance from the magnet. In order to
maintain operating time with a high steady-state as long as possible, advanced control
methods, such as nonlinear controllers [2–6], should be applied to MLSs. Ref. [7] developed
a nonlinear controller based on fast online algebraic identification of the input gain for
an MLS. Unfortunately, this controller was not considered the effects of external distur-
bances, and it only guarantees an asymptotically exponentially stable. In addition, variation
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factors, such as system parameters, resistance, inductance, and suspending mass, should
be taken into account. The implemented algorithms in real-time systems about the issue
of tracking output trajectory tasks for the suspended metal ball did not use trajectories of
certain difficulty to produce controlled motions such as sinusoidal or rest-to-rest reference
trajectory positions. Thus, the verification is not general. Most of the methods introduced
for MLS achieve only asymptotic stability, and a few achieve finite-time stability. However,
achieving prescribed performance has hardly been introduced for MLSs in the literature.
Therefore, there is still much interest in improving the performance of MLSs.

In order to handle the influences of uncertainties and exterior disturbances, sliding
mode control (SMC) with powerful and immutable properties can be employed effec-
tively. In recent years, SMC has been successfully applied for a wide range of practical
applications such as unmanned aerial vehicles (UAVs) [8–10], autonomous underwater
vehicles (AUVs) [11–15], robotic manipulators [16–20], and so on. In the approach stage,
SMC cannot maintain uniform characteristics due to the existence of unidentified uncer-
tain elements. Moreover, the SMC’s control performance depends on the linear sliding
mode surface and a discontinuous control law to drive the state variables to that sliding
surface. Consequently, this method only has an asymptotically exponentially stable along
with a non-smooth control signal that is known as chattering. Whenever higher accuracy
and faster convergence are needed under the SMC method, a very large control force is
required, which is not possible because the capability of the hardware devices is limited,
and chattering behavior also becomes much more serious.

Terminal SMC (TSMC) [21], Fast TSMC [22], GFTSMC [16,23], Non-singular TSMC [24],
or Non-singular Fast TSMC (NFTSMC) [25] were proposed to inherit the invariant proper-
ties of the SMC and at the same time overcome the SMC’s disadvantages. Several attractive
properties of these methods include robustness against uncertain terms, finite-time conver-
gence, and high accuracy. Thus far, these methods have also been successfully applied to
real-time nonlinear systems in general and MLSs in particular. However, each method also
has its disadvantages. For example, slow convergence speed, singularity, and chattering are
the main weaknesses of TSMC, while singularity and chattering are the main weaknesses
of Fast TSMC. The main weakness of the two remaining control methods is chattering.
The issue of chattering attenuation has therefore become a popular one. Moreover, accord-
ing to the knowledge of the authors, there are currently no studies related to the prescribed
performance control based on the aforementioned methods proposed for MLSs. This is also
one of the main motivations of this article.

The use of quasi-sliding mode control, neural-network-based SMC methods [6], distur-
bance observers [26,27], super-twisting SMC methods [28,29], second-order SM observers
(SOSMOs) [30], third-order SM observers (TOSMOs) [17,31], and so on have been proposed
for resolving the chattering. It is noted that the active control methods have been proven
to provide better tracking performance if the uncertain components are approximated
correctly when compared to the passive control methods. For example, the technique of
applying an observer to reduce chattering behavior can be understood as a disturbance
observer will approximate the uncertain components to obtain a precise dynamic model.
As a consequence, the approximate error from the observer can only be compensated by
using a reasonable sliding gain. Among the observers discussed, TOSMO is superior to
the rest when convergence is achieved in finite time and only needs information from the
position sensor. However, its convergence speed also needs to be further improved to avoid
causing delays in the control system.

In our paper, an MLS suspends a metal ball in the air by electromagnetic force. The ball
and MLS do not interact mechanically. It is inherently unstable and highly nonlinear.
Adjusting and tracking the reference trajectory of the levitated ball is a highly challenging
process. Therefore, the control target is to develop a new real-time prescribed performance
tracking controller for MLSs under the effects of uncertainty and exterior disturbance.
The important contributions of the proposed methods can be listed below:
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• A modified TOSMO is applied to quickly estimate the approximate value of the
uncertainty and exterior disturbance;

• The novel Prescribed Performance Function (PPF) does not contain a singularity
problem and can flexibly adjust lower and upper bounds. Furthermore, it can extend
the operation domain at a steady state compared to that of the conventional PPF. With
the proposed PPF, the steady-state error boundaries will be symmetric to zero, so,
when the transformed error converges to zero, the tracking error also converges to
zero;

• A modified function of GFTSMM based on the transformed errors of the PPC is
introduced; hence, the error variables quickly converge to the equilibrium point with
the prescribed performance;

• The maximum overshoot, convergence index, and steady-state error can be managed
within a predefined domain under the proposed controller;

• A novel solution ensures a finite-time stable position of the controlled ball and the
possibility of performing different orbit tracking missions with an impressive perfor-
mance in the terms of tracking accuracy, fast convergence, stabilization, and chattering
reduction;

• The effectiveness of the designed control solution was confirmed by simulation and
experiment;

• This controller is presented in a way that can be applied to real-time applications. In
addition, it can apply not only to MLSs but also to a class of second-order nonlinear
systems.

Our manuscript is structured as follows: The formulation of the problem takes place
in Section 2. The control method design is discussed in Section 3. Section 4 is the simulation
and experimental results. Section 5 is conclusions.

2. Problem Statements

The structure of the MLS is depicted in Figure 1. In addition, an explanation of this
MLS is provided in the article [4].
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Figure 1. Magnetic levitation system graph.
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The dynamic model of the MLS is described as:

mÿ = mg − λ

(
I
y

)2
(1)

I = KU (2)

where m is the mass of the levitated ball, g denotes the acceleration due to gravity, U is the
control input voltage, I is the winding current, y is the position of the levitated ball, K is the
constant related to the input voltage and the current through the coil, and λ is a constant
related to the mutual inductance of the ball and coupling coefficients.

Substituting Equation (2) into Equation (1) yields:

ÿ = g − μU2

y2 (3)

where μ = λK2

m .
The exact value of μ cannot be known, it can be identified by using an identifica-

tion method such as [7]. In addition, considering the effects of uncertainty and exterior
disturbance, Equation (3) can be described as:

ÿ = g − μ̂U2

y2 + Δ(y, δ, t), (4)

where μ̂ represents the estimated value of μ, and Δ(y, δ, t) = μ−μ̂
y2 U2 + δ(t) is a function of

exterior disturbance and interior uncertainty, δ(t) is exterior disturbance. Let y1 = y, and
y2 = ẏ; then, Equation (4) is rewritten as:

{
ẏ1 = y2

ẏ2 = g − μ̂U2

y2
1
+ Δ(y, δ, t) (5)

Assumption 1. It is assumed that uncertain terms are bound by the following:

|Δ(y, δ, t)| ≤ Δ̄, (6)

where Δ̄ is a positive constant.

MLS suspends a metal ball in the air by electromagnetic force. The ball and MLS
do not interact mechanically. It is inherently unstable and highly nonlinear. Adjusting
and tracking the reference trajectory of the levitated ball is a highly challenging process.
Therefore, the objective of our paper is to develop a new real-time prescribed performance
tracking controller for MLSs under the effects of uncertainty and exterior disturbance
ensuring a finite-time stable position of the controlled ball and the possibility of performing
different orbit tracking missions with an impressive performance in the terms of tracking
accuracy, fast convergence, stabilization, and chattering reduction.

3. Design of the Proposed Control Method

3.1. Design of the Sliding Mode Surface

The position error and velocity error are respectively defined as ỹ = y1 − yr and
˙̃y = ẏ1 − ẏr, where yr and ẏr represent the reference trajectory and its derivative.

For system (5), the sliding mode surface is constructed by using the position error and
velocity error, as follows:

s = ˙̃y + λ∗sig(ỹ)α + ω∗sig(ỹ)β (7)

96



Sensors 2022, 22, 9132

where λ∗ = 2λ
1+e−η(|ỹ|−γ) , ω∗ = 2ω

1+eϑ(|ỹ|−γ) , λ > 0, η > 0, ω > 0, ϑ > 0, α > 1, 0 < β < 1,

γ = (ω/λ)1/(α−β), and the sig()k function is defined as sig(x)k = |x|ksign(x) with k > 0.
The finite-time stable evidence of the selected sliding manifold is given in [23]. The con-

vergence time Ts of the sliding mode motion is stated in Equation (27) of [23].

3.2. Design of Global Fast Terminal Sliding Mode Control

Using the selected sliding mode surface, we can calculate its time derivative as follows:

ṡ = ¨̃y + 2λα
1+e−η(|ỹ|−γ) |ỹ|α−1 ˙̃y + 2ληe−η(|ỹ|−γ)

(1+e−η(|ỹ|−γ))
2 |ỹ|α ˙̃y

+ 2ωβ

1+eϑ(|ỹ|−γ) |ỹ|β−1 ˙̃y − 2ωϑeϑ(|ỹ|−γ)

(1+eϑ(|ỹ|−γ))
2 |ỹ|β ˙̃y

(8)

Equation (8) is rewritten as:

ṡ = ¨̃y + Mỹ = ẏ2 − ÿr + Mỹ (9)

where Mỹ = 2λα
1+e−η(|ỹ|−γ) |ỹ|α−1 ˙̃y+ 2ληe−η(|ỹ|−γ)

(1+e−η(|ỹ|−γ))
2 |ỹ|α ˙̃y+ 2ωβ

1+eϑ(|ỹ|−γ) |ỹ|β−1 ˙̃y− 2ωϑeϑ(|ỹ|−γ)

(1+eϑ(|ỹ|−γ))
2 |ỹ|β ˙̃y.

Substituting system (5) into Equation (9) yields:

ṡ = g − μ̂

y2
1

U2 + Δ(y, δ, t)− ÿr + Mỹ (10)

From Equation (10), GFTSMC is designed as:

U =

√
y2

1
μ̂

(
ueq + ur

)
(11)

in which the terms of ueq and ur are designed as:

{
ueq = g + Mỹ − ÿr
ur = σ1s + (Δ̄ + κ1) sign(s)

where κ1 and σ1 are positive constants.
The following evidence will be given to prove the GFTSMC’s correctness and stability.
Evidence: Applying the control signal system (11) to Equation (10), we have:

ṡ = Δ(y, δ, t)− (Δ̄ + κ1) sign(s)− σ1s (12)

Considering the Lyapunov function V1 = 0.5s2, then we see that:

V̇1 = sṡ (13)

By substituting Equation (12) into Equation (13), we obtain:

V̇1 = Δ(y, δ, t)s − Δ̄|s| − κ1|s| − σ1s2

≤ −κ1|s| − σ1s2 ≤ 0
(14)

Obviously, V̇1 ≤ 0 and V1 � 0. It means that the sliding variables s, ṡ can reach the
sliding manifold (s → 0 and ṡ → 0), and ỹ, ˙̃y can reach the equilibrium point.

Generally, it is hard to provide an exact function to the nominal controller by offering a
mathematical model of dynamical uncertainties and disturbances. In addition, the designed
controller (11) does not provide a prescribed controlled performance. This means that the
maximum overshoot, convergence index, and steady-state error are not managed within a
predefined domain. To overcome the mentioned challenges, a modified observer is applied
to quickly estimate the approximate value of the uncertainty and exterior disturbance
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while the proposed controller is designed based on PPC to achieve the desired-prescribed
control performance.

3.3. Design of a Disturbance Observer for Magnetic Levitation Systems

In this section, a modified TOSMO is designed to estimate the whole interior uncer-
tainty and exterior disturbance. This observer is designed based on the modification of
TOSMO [32] to improve the convergence speed of TOSMO as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̂y1 = π1[ȳ1]
2
3
+ ρȳ1 + ŷ2

˙̂y2 = g − μ̂

y2
1
U2 + π2[ȳ1]

1
3

+ρ( ˙̂y1 − ŷ2) + Δ̂
˙̂Δ = π3sign(ȳ1)

(15)

where ŷ1, ŷ2, and Δ̂ are the estimated value of y1, y2, and Δ(y, δ, t), respectively. πi(i = 1, 2, 3)
represents observer gain which is selected as [33], and ρ is a design positive constant. By se-
lecting the suitable design parameter ρ, the convergence rate of the modified TOSMO (15)
can be improved immensely.

We can obtain the estimation error by subtracting Equation (15) from Equation (5)
as follows: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̄y1 = −π1[ȳ1]
2
3 − ρȳ1 + ȳ2

˙̄y2 = −π2[ȳ1]
1
3 − ρπ1[ȳ1]

2
3 − ρ2ȳ1

+Δ(y, δ, t)− Δ̂
˙̂Δ = π3sign(ȳ1)

(16)

where ȳ1 = y1 − ŷ1, ȳ2 = y2 − ŷ2. Define X = ȳ2 − ρȳ1 and use Equation (16), therefore,

Ẋ = ˙̄y2 − ρ ˙̄y1

= −π2[ȳ1]
1
3 − ρπ1[ȳ1]

2
3 − ρ2ȳ1

+Δ(y, δ, t)− Δ̂ − ρ(−π1[ȳ1]
2
3 − ρȳ1 + ȳ2)

= −π2[ȳ1]
1
3 + Δ(y, δ, t)− Δ̂ − ρȳ2

(17)

Using Equation (17), Equation (16) can be rewritten in form of the TOSMO as follows:
⎧⎪⎨
⎪⎩

˙̄y1 = −π1[ȳ1]
2
3 + X

Ẋ = −π2[ȳ1]
1
3 + Z

Ż = −π3sign(ȳ1) + Σ̇

(18)

where Σ = Δ(y, δ, t)− ρȳ2 and Z = Σ − Δ̂. Suppose that
∣∣∣ dΣ

dt

∣∣∣ ≤ Σ̄.
Selecting the positive Lyapunov function and performing the proof process like [33],

we concluded that the TOSMO (18) is stable and the differentiators including ȳ1, X, and Z
reach zero in finite time. Consequently, the proposed observer (15) is finite-time stable, and
the estimate errors reach zero in finite time.

3.4. Prescribed Performance Control

Remark 1. Most of the existing studies of PPC [34–39] use only one prescribed performance
function (PPF) to generate specified performance boundaries, for example [34], p(t) is a PPF, the
upper boundary can be p(t), and the lower boundary can be −Lp(t) (0 < L < 1). We can clearly
see that generating boundaries from a PPF will have disadvantages, such as the lower boundary
will be L times smaller than the upper boundary at steady-state, which makes the operating area
of specified performance be scaled down over a specified static error value (e.g., p∞ is the specified
error value of tracking error at steady-state, the upper boundary value specified as p∞ and the lower
boundary value specified as −Lp∞ at steady-state). As a result, the upper and lower boundaries
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will not be symmetrical about zero at the steady state, and this leads to the fact that, although the
transformed error equals zero, the tracking error deviates from zero. Using a ratio of a PPF to create
the lower boundary makes it more difficult to choose the error transformation function (ETF) (due to
the unsymmetrical about zero of the boundaries at steady-state). In addition, some ETFs [34,40–42]
have a singularity problem, which seriously affects the operation of the real system.

In our paper, we propose two separate PPFs to assign each of the upper and lower bounds
of the prespecified performance for tracking error, in which one PPF limits the convergence
rate and steady-state error, and the other PPF limits the overshoot and steady-state error on
the other side. Setting the same allowable range of tracking error at the steady state of two
PPFs makes the specified performance space at the steady-state larger than in the traditional
way. Moreover, the steady-state error boundaries will be symmetric to zero, so when the
transformed error is zero, the tracking error is also zero. ETFs can be designed more easily
using the above design. In addition, we design an ETF that does not suffer from singularity
problems. Consequently, the stated drawbacks in Remark 1 have been overcome.

From the objective of the proposed controller, the prescribed performance indicates
that the tracking error ỹ is confined within a preset region as follows:

− pL(t) < ỹ sign(ỹ0) < pU(t) (19)

with {
pU(t) = (p0 − p∞)exp(−rt) + p∞
pL(t) = (p1 − p∞)exp(−rt) + p∞

,

where ỹ0 is the initial tracking error, pU(t) and pL(t) are the PPFs. The pU(t) and pL(t)
are defined as [34]: pU(t) and pL(t) : R+ → R+ are smoothly, positive, and decreasing
functions, respectively satisfying lim

t→∞
pU(t) = p∞ > 0, lim

t→∞
pL(t) = p∞ > 0, and R+ is a

set of positive real numbers. p0 > |ỹ0| > 0, p0 � p1 � p∞, r are positive constants used to
tune the specified performance region. Figure 2 illustrates the prescribed tracking error
behavior definition.

Remark 2. It is noted that, when the sign of the initial error changes, the position of the lower and
upper bounds will be reversed through the signum function. The PPFs pU(t) and pL(t) are assigned
to the upper and lower bounds of the specified performance domain. pU(t) limits the convergence
rate and the maximum allowable size of the tracking error ỹ at the steady state of the upper boundary.
pL(t) limits the maximum allowable boundary of the overshoot and the maximum allowable size
of the tracking error ỹ at the steady state of the lower boundary. The constant p∞ represents the
maximum allowable size of the tracking error ỹ at the steady-state, the maximum overshoot of ỹ is
prescribed as less than p1, and the constraint on the convergence rate of ỹ depends on the decreasing
rate of pU(t) which is adjusted by r. Hence, the appropriate selection of the PPFs (pU(t), pL(t)),
which imposes the output trajectory of the system.

In order to assure that the prescribed performance is maintained, an ETF is used to
convert the constrained error dynamics into the equivalent unconstrained dynamics. More
specifically, we define:

ỹ = p(t)T(z̃) (20)

where z̃ is a transformed error, and

p(t) =

{
pU(t) if sign(ỹ.ỹ(0)) > 0

pL(t) if sign(ỹ.ỹ(0)) < 0
,

and T(z̃) is an ETF that possesses the following properties:

• T(z̃) is a smooth and strictly increasing function;

99



Sensors 2022, 22, 9132

• −1 < T(z̃) < 1;
• T(z̃) = 0 if z̃ = 0;

•

⎧⎨
⎩

lim
z̃→−∞

T(z̃) = −1

lim
z̃→+∞

T(z̃) = 1
.

Figure 2. The prescribed tracking error behavior definition.

Owing to the definition of the PPF, when ỹ(0) > 0 and ỹ > 0, we have 0 < T(z̃) < 1
and pU(t) > 0. Hence,

0 < pU(t)T(z̃) < pU(t) (21)

When ỹ(0) > 0 and ỹ < 0, we have −1 < T(z̃) < 0 and pL(t) > 0. Hence,

− pL(t) < pL(t)T(z̃) < 0 (22)

From Equations (20)–(22) whenever ỹ(0) > 0, we can obtain

− pL(t) < ỹ < pU(t) (23)

Otherwise, when ỹ(0) < 0 and ỹ < 0, we have

− pU(t) < pU(t)T(z̃) < 0 (24)

and, if ỹ(0) < 0 and ỹ > 0, when we have

0 < pL(t)T(z̃) < pL(t) (25)
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From Equations (20), (24) and (25) whenever ỹ(0) < 0, we can obtain

− pU(t) < ỹ < pL(t) (26)

From Equations (23) and (26), we completely can achieve Equation (19), which rep-
resents a mathematical interpretation of the control objective to achieve the prescribed
tracking error behavior over transient and steady-state scenarios.

The ETF is designed as

T(z̃) =
2
π

arctan(z̃) (27)

Based on Equations (20) and (27), the transformed error z̃ can be calculated as follows:

z̃ = tan
(

πỹ
2p(t)

)
(28)

Taking time derivative of arctan(z̃), we have

(arctan(z̃))′ =
˙̃z

1 + z̃2
(29)

where ˙̃z is the time derivative of z̃.
Taking the time derivative of Equation (20) and using Equations (27) and (29), we have

˙̃y = ṗ(t)T(z̃) + p(t)Ṫ(z̃)

= ṗ(t)
2
π

arctan(z̃) + p(t)
2
π

˙̃z
1 + z̃2

(30)

where ṗ(t) =

{
ṗU(t) if sign(ỹ.ỹ(0)) > 0

ṗL(t) if sign(ỹ.ỹ(0)) < 0
.

From Equation (30), the time derivative of transformed error z̃ is obtained:

˙̃z =
π
(
1 + z̃2)
2p(t)

(
˙̃y − 2ṗ(t)

π
arctan(z̃)

)
(31)

Taking the second-order time derivative of arctan(z̃), we have

(arctan(z̃))′′ =
¨̃z
(
1 + z̃2)− 2z̃ ˙̃z2

(1 + z̃2)
2 (32)

where ¨̃z is the second-order time derivative of z̃.
Taking the second-order time derivative of Equation (20) and using Equations (27),

(29) and (32), we have

¨̃y =
(

ṗ(t)T(z̃) + p(t)Ṫ(z̃)
)′

= p̈(t)T(z̃) + 2ṗ(t)Ṫ(z̃) + p(t)T̈(z̃)

=
2
π

(
p̈(t) arctan(z̃) +

2ṗ(t) ˙̃z
1 + z̃2 − 2p(t)z̃ ˙̃z2

(1 + z̃2)
2

)

+
2p(t)

π

¨̃z
(1 + z̃2)

(33)

where p̈(t) =

{
p̈U(t) i f sign(ỹ.ỹ(0)) > 0

p̈L(t) i f sign(ỹ.ỹ(0)) < 0
.

101



Sensors 2022, 22, 9132

From Equation (33), we can derive the second-order time derivative of transformed
error as follows:

¨̃z = A( ¨̃y − N) (34)

where A =
π(1+z̃2)

2p(t) > 0, N = 2
π

(
p̈(t) arctan(z̃) + 2ṗ(t) ˙̃z

1+z̃2 − 2p(t)z̃ ˙̃z2

(1+z̃2)
2

)
.

3.5. Proposed Controller Design

For system (5), the sliding manifold is constructed by using the transformed position
error and the transformed velocity error as follows:

s = ˙̃z + λ∗sig(z̃)α + ω∗sig(z̃)β (35)

where λ∗ = 2λ
1+e−η(|z̃|−γ) , ω∗ = 2ω

1+eϑ(|z̃|−γ) , λ > 0, η > 0, ω > 0, σ > 0, α > 1, 0 < β < 1,

γ = (ω/λ)1/(α−β).
The time derivative of the selected sliding mode surface is:

.
s = ¨̃z + 2λiα

1+e−η(|z̃|−γ) |z̃|α−1 ˙̃z+ 2ληe−η(|z̃|−γ)

(1+e−η(|z̃|−γ))
2 |z̃|α ˙̃z

+ 2ωβ

1+eϑ(|z̃|−γ) |z̃|β−1 ˙̃z− 2ωϑeϑ(|z̃|−γ)

(1+eϑ(|z̃|−γ))
2 |z̃|β ˙̃z,

(36)

Equation (36) is rewritten as:
ṡ = ¨̃z + Mz̃ (37)

where Mz̃ =
2λiα

1+e−η(|z̃|−γ) |z̃|α−1 ˙̃z + 2ληe−η(|z̃|−γ)

(1+e−η(|z̃|−γ))
2 |z̃|α ˙̃z + 2ωβ

1+eϑ(|z̃|−γ) |z̃|β−1 ˙̃z − 2ωϑeϑ(|z̃|−γ)

(1+eϑ(|z̃|−γ))
2 |z̃|β ˙̃z.

Substituting Equations (5) and (34) into Equation (37) yields:

ṡ = A

(
g − μ̂

y2
1

U2 + Δ(y, δ, t)− ÿr − N

)
+ Mz̃ (38)

The proposed controller is designed to obtain the control object as follows:

U =

√
y2

1
μ̂

(
ueq + uob + ur

)
. (39)

where the elements of U are designed as:

⎧⎨
⎩

ueq = g − ÿr − N + A−1Mz̃
uob = Δ̂
ur = σ2s + (δ̄ + κ2) sign(s).

where δ̄ > 0 is the bounded value of the estimation error of the disturbance observer(
δ̄ �
∣∣Δ(y, δ, t)− Δ̂

∣∣), and κ2 and σ2 are positive constants.
The block diagram of the proposed control system is shown in Figure 3.
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Lavitation
System
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and
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Error
Transformation 

Sliding Mode
Surface in
Equation

(35)

Equivalent
control law 

Reaching
control law

Proposed control
law in Equation

(39)

Prescribed
Control

Performance

Figure 3. The block diagram of the proposed control system.

The following theorem summarizes the control design procedure.

Theorem 1. For the magnetic levitation system presented in Equation (5), if the control input signal
is designed as (39), then the system (5) is finite-time stable. Furthermore, the maximum overshoot
and steady state of position tracking error are guaranteed in prescribed control performance.

Proof of Theorem 1. Applying the control signal system (39) to (38) gains:

ṡ = A(Δ(y, δ, t)− Δ̂ − (δ̄ + κ2) sign(s)− σ2s) (40)

Considering the following Lyapunov function V2 = p0
π s2, then we see that:

V̇2 =
2p0

π
sṡ (41)

By substituting Equation (40) into Equation (41), we obtain:

V̇2 =
2p0

π
sA

(
Δ(y, δ, t)− Δ̂

−(δ̄ + κ2) sign(s)− σ2s

)

� 2p0

π
sA
(
δ̄ − (δ̄ + κ2) sign(s)− σ2s

)
� −2p0

π
sAmin(κ2 sign(s) + σ2s)

� −κ2|s| − σ2s2

� −κ2

√
π

p0
|V2|1/2 − πσ2

p0
V2 � 0

(42)

From Equations (41) and (42), we can conclude that system (5) is finite-time stable
according to [43]. Thus, the sliding variables s, ṡ can reach the sliding manifold in finite-
time (s → 0 and ṡ → 0) that means z̃, ˙̃z converge to its equilibrium point in finite time.
Consequently, the position tracking error ỹ is converged to the equilibrium point in finite
time and guaranteed in prescribed control performance. The proof is completed.

4. Simulation and Experimental Results

In this section, two examples include a simulation and an experiment on the laboratory
magnetic levitation model to demonstrate the improved performance of the developed
control system.
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4.1. Simulation Results

The MLS is established according to [4]. The considered system parameters are stated
in Table 1. The maximum control voltage is Umax < 5V, and the sampling time is 1.10−3 s.

Table 1. System parameters.

System Parameters Value Unit

g 9.81 m/s2

m 0.02 kg
λ 2.48315625 × 10−5 Nm2/A2

K 1.05 A/V
μ̂ 0.00136487 (N.m2/kg.V2)

A magnetic ball started in a certain position and followed a prescribed trajectory at
the start of the simulation. The desired trajectory as sinusoidal is planned below:

yr = 15 + 3 sin(0.2πt) (mm) (43)

With the assumed disturbance δ(t) = 2 sin(t), the upper bound of uncertain terms is
defined by:

|Δ(y, δ, t)| ≤ |μ − μ̂|
y2

min
U2

max + δmax(t) = 2.7 (44)

where yr min = 12(mm), and the initial value of y0 = 26(mm).
In addition, to check the influence of sensor measurement noise, an external noise in

the form of Gaussian random noise with the variance of 0.0001 is added to the velocity
sensor. Thus, the simulation case will be similar to the real system where there is always
noise from the measuring device.

The root-mean-square tracking error (RMSTE) is calculated as follows:

RMSTE =

√√√√ 1
N

N

∑
i=1

(yri − yi)
2 (45)

in which N is the number of samples to be taken into account in this calculation. yri and yi
are respectively the desired trajectory and the real trajectory at the time index ith.

To facilitate the evaluation of the accuracy of the controllers, the RMSTE is calculated
according to Equation (45), in the time interval after convergence (3rd to 30th second).

In the simulation example, the control parameters of the four controllers were selected
as in Table 2.

Table 2. The control parameters.

Controller Symbol Value

PID Kp, Ki, Kd 300, 100, 10
SMC c, σ, Δ̄ + κ 20, 50, 3.8

GFTSMC λ, ω, η, ϑ, α, β 10, 10, 1.1, 2.2, 1.1, 0.8
σ1, Δ̄ + κ1 20, 50, 3.8

Proposed Method p0, p1, p∞, r 0.023, 0.006, 0.0015, 3
λ, ω, η, ϑ, α, β 10, 10, 1.1, 2.2, 1.1, 0.8

σ2, δ̄ + κ2 0.13, 0.1
π1, π2, π3, ρ 5.45, 3.67, 6.6, 100

We compared the simulated control performance of the four controllers, PID, SMC,
GFTSMC (11), and the proposed controller, to determine which is the most effective.
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The PID controller has control voltage as follows:

U = Kpỹ + Ki

∫
ỹ + Kd ˙̃y (46)

where Kp, Ki, Kd are control gains.
The SMC controller has control voltage as follows:

U =

√
y2

1
μ̂

(
g + Mỹ − ÿr + σs + (Δ̄ + κ)sign(s)

)
(47)

where s = ˙̃y + cỹ is a linear sliding surface, c > 0. κ and σ are positive constants.
The simulation process and the result evaluation are carried out in four steps:

• Step 1: simulates and evaluates the approximation ability of the proposed observer
through a comparison between its approximation ability and the conventional TOSMO;

• Step 2: investigates the management of the terms of the proposed PPC including
maximum overshoot and steady-state of the controlled errors;

• Step 3: compares the tracking accuracy, maximum overshoot and steady-state of
the controlled errors among the four control methods through figures plotted from
MATLAB and RMS methods;

• Step 4: considers the chattering behavior that appeared in the control signal of the
four methods.

To compare the estimation performance of the TOSMO and MTOSMO, we use the
SMC (47) to control the MLS, while the two observers are run in parallel with SMC to
compare their outputs as shown in Figure 4. The TOSMO is designed as [17]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂y1 = π1[ȳ1]
2
3
+ ŷ2

˙̂y2 = g − μ̂

y2
1
U2 + π2[ȳ1]

1
3
+ Δ̂

˙̂Δ = π3sign(ȳ1)

(48)

where ŷ1, ŷ2, and Δ̂ are the estimated value of y1, y2, Δ(y, δ, t), respectively. πi(i = 1, 2, 3)
represents observer gains. The parameters of SMC and MTOSMO are selected in Table 2,
and the parameters of TOSMO are set the same as MTOSMO.

From Figure 5, the uncertain components can be approximated accurately by both
observers. However, the proposed TOSMO has a faster convergence speed than the
traditional TOSMO. This is absolutely necessary to avoid causing a delay to the control
system. Therefore, it plays a role in improving control performance.

SMCDesired
Trajectory

Magnetic
Lavitation
System

Disturbances
and

uncertainties

TOSMO

MTOSMO

Figure 4. The setting for comparing two observers.
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Looking at Figures 6 and 7, it is clear that the proposed controller has the smallest
maximum overshoot and the smallest controlled errors at a steady state. Both of these
metrics can be predefined by adjusting the design parameters of the PPFs in Equation (19).
In contrast, we cannot manage the maximum overshoot as well as the tracking error at
the steady state of the controlled magnetic ball through the remaining three controllers.
Specifically, the PID controller can not satisfy both stated terms. In addition, compar-
ing the boundary values of the proposed PPF with the boundary values of the existing
PPFs [36,38–40], we found that the boundary values of conventional PPFs are designed
largely up to 10−2. It is noted that the existing controllers can almost obtain this accuracy
level. Therefore, it does not see clearly the management of the prescribed performance of
the PPCs, while the boundary values of the proposed PPF are designed smaller than that of
conventional PPFs, and its value is 10−3.

0 5 10 15 20 25 30
Time [s]

-2

-1

0

1

2

Va
lu

e
[m

/s
2 ]

Assumed value
TODO
MTODO

0 5 10 15 20 25 30
Time [s]

-0.5

0

0.5

1

Er
ro

r [
m

/s
2 ]

TODO
MTODO

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Figure 5. Time evolution of observer output.

The simulation tracking performance of the controlled ball from four different control
methods is illustrated in Figures 6 and 7. It can be seen clearly in Figure 6 that the trajectory
deviation of the magnetic ball controlled by the PID versus the desired trajectory is the
largest, and the GFTSMC provides a smaller trajectory deviation of the ball than that
of the PID and the SMC, while the proposed controller provides the smallest trajectory
deviation of the ball among the four methods. We investigate in detail the tracking accuracy
illustrated in Figures 7 and Table 3 and recognize that the proposed controller controls
the ball with the smallest steady-state errors, RMSTE = 4.2119 × 10−5, and the smallest
maximum overshoot that satisfied the predefined prescribed performance; the SMC and
the GFTSMC control the ball with seemingly equivalent performance, the control errors of
these two methods are RMSTE = 3.1097 × 10−4 and RMSTE = 1.979 × 10−4, respectively;
the PID controls the ball with the largest control error, RMSTE = 1.0034 × 10−3 and the
largest maximum overshoot that do not satisfy the predefined operation domain.
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Table 3. RMSTE using the four separate controllers.

Controller RMSTE

PID 1.0034 × 10−3

SMC 3.1097 × 10−4

GFTSMC 1.979 × 10−4

Proposed Method 4.2119 × 10−5
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Figure 6. The controlled ball trajectory under four controllers: planned trajectory and actual trajectory.
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Figure 7. Time evolution of the trajectory errors of the controlled ball using four control methods.

Regarding the problem of oscillations in the control voltage, all four control methods
appear oscillation phenomena. Due to the influence of sensor measurement noise, even a
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linear controller like a PID also has oscillations. The fluctuation amplitude of the control
voltage of the SMC and the GFTSMC is almost equivalent because both methods apply
the same sliding value, which is chosen to be greater than or equal to the upper bound
of the uncertain components, Δ̄ + κ = 3.8, to compensate for the effects of the uncertain
elements. As shown in Figure 8, the suggested TOSMO can estimate accurately and quickly
the assumed uncertain terms.
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Figure 8. Time evolution of observer output versus assumed disturbance.

Thanks to the TOSMO’s accurate information, the developed controller applied a
smaller sliding value than that of the SMC and the GFTSMC. Therefore, the fluctuation
amplitude of its control voltage is smaller than that of the two remaining methods as shown
in Figure 9.
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Figure 9. Time evolution of control voltage from four control methods.
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Simulation results show that the developed controller has the best control performance
among the compared control algorithms.

4.2. Experimental Results

In order to test the effectiveness of the proposed control algorithm in the practical
control system, an experiment on MLS was implemented.

The experimental MLS was produced by Feedback Instrument, as configured in
Figure 10. The experimental system includes a mechanical unit (model Feedback 33-210)
and an analog control interface (Feedback model 33-301). A PCI1711 I/O card was inserted
into a PCI computer slot, and then it was connected to the feedback SCSI adapter box by
the SCSI cable. The control programming was implemented by using MATLAB/Simulink,
Real-Time Workshop (RTW), Microsoft Visual C++ Professional, Control Toolbox, and
Real-Time Windows Target.

For more information on installing this experimental system, readers can refer to it in [4].
The maximum control voltage is Umax < 5 V, and the sampling time is 1.10−3 s.
The magnetic ball started in a specific position and followed a prescribed trajec-

tory when the experiment began. There were two desired trajectories: a sinusoidal as
Equation (43) and a rest-to-rest line with an upper value of 17 mm and lower value 12 mm.
There was an assumption that the disturbance δ(t) = 2 sin(t) would affect the system.

The control parameters of the four separate controllers selected in Table 2 are also used
for the experimental example.

Figure 10. Configuration of experimental system.
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The experimental performance provided by four control methods for a magnetic ball
by tracking a sinusoidal and a rest-to-rest line is exhibited in Figures 11–13. The experiment
process and results evaluation are carried out in three steps from step 2 to step 4 as in the
simulation example.
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Figure 11. Comparison of the controlled ball trajectory with the desired trajectory using four separate
controllers; (a) in case of sinusoidal orbit; (b) in case of a rest-to-rest line.
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Figures 11 and 12 show that the proposed controller has the smallest maximum
overshoot and the smallest controlled errors at a steady state, similar to the simulation
results. Neither of these conditions can be satisfied by PID, hence the ball controlled by
the PID can not track the reference trajectory well. The SMC and the GFTSMC cannot
also obtain the controlled errors with small oscillations. It is seen that, at the 14th second,
both SMC and GFTSMC do not satisfy a prescribed performance. Consequently, the ball
controlled by the SMC and the GFTSMC will be vibrated around its operation point.
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Figure 12. The trajectory errors of the controlled ball under four controllers; (a) in case of sinusoidal
orbit; (b) in case of a rest-to-rest line.
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As shown in Figure 11, the proposed controller provides the smallest trajectory dispar-
ity of the magnetic ball among the four methods, the GFTSMC provides a smaller trajectory
disparity of the ball than the PID or the SMC, and the PID provides the largest trajectory
disparity of the ball. From Figure 12 and Table 4, the proposed controller also achieves the
smallest steady-state errors with two different types of orbits. Apparently, it provided a
control efficiency that was within a pre-specified boundary. The SMC and the GFTSMC
achieve control efficiency with equivalent accuracy. With two different types of orbits, the
maximum overshoot of the PID does not satisfy the predefined operation domain. The PID
achieves the worst accuracy with both trajectories.

The noise in sensor measurement appears to be influencing all four control methods,
which cause oscillations in control voltage. With two different types of orbits, the fluctuation
amplitude of the control voltage of each controller is similar to the simulation results, as
shown in Figure 13. Figure 14 shows the time evolution of the proposed TOSMO’s output.
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Figure 13. Control voltage of four controllers; (a) in case of sinusoidal orbit; (b) in case of a rest-to-rest line.
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Table 4. RMSTE of four controllers.

Controller
RMSTE in Case of
Sinusoidal Orbit

RMSTE in Case of a
Rest-to-Rest Line

PID 1.0411 × 10−3 1.1342 × 10−3

SMC 3.6039 × 10−4 3.7681 × 10−4

GFTSMC 3.3052 × 10−4 3.4805 × 10−4

Proposed Method 1.2203 × 10−4 1.9601 × 10−4
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Figure 14. Time evolution of the MTOSMO’s output; (a) in case of sinusoidal orbit; (b) in case of a
rest-to-rest line.

In a comparison of the experimental performance, the developed controller also stands
out as the best controller.
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Remark 3. From the simulation and experimental results, we can see that the tracking performance
of the proposed controller is guaranteed within a prescribed performance in both cases. In the
experiment, the tracking accuracy of the proposed controller has slightly reduced compared to the
simulation case; however, it is still at a high tracking accuracy. The chattering behavior in the control
signal of the proposed controller in the experimental case is not significantly increased compared to
the simulation case. It is concluded that the proposed control method is effective to control MLSs.

5. Some Remarkable Conclusions

We implemented a real-time PPC for MLSs subject to dynamical uncertainty and
exterior perturbations. A modified function of GFTSMM based on the transformed errors
of the proposed PPC was developed; hence, the tracking error variables quickly converge
to the equilibrium point with the prescribed performance. Maximum overshoot and steady-
state of the controlled errors have been prescribed in a predefined boundary. By using the
designed observer, it is possible to know the approximate value of the entire uncertainty,
which contributes to reducing chattering and improving control performance. The combina-
tion of the GFTSMC, the PPC, and the MTOSMO generated a novel PPC strategy ensuring
a finite-time stable position of the controlled ball and the possibility of performing different
orbit tracking missions with an impressive performance in the terms of tracking accuracy,
fast convergence, stabilization, and chattering reduction in real time. With a simple design,
the proposed strategy is suitable for real-time applications of MLSs. Mathematical proof us-
ing Lyapunov theory, a simulation, and an experimental example on a laboratory magnetic
levitation model have both been used to demonstrate the proposed controller’s stability
and effectiveness.
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Abstract: The proliferation of sensors to capture parametric measures or event data over a myriad of
networking topologies is growing exponentially to improve our daily lives. Large amounts of data
must be shared on constrained network infrastructure, increasing delays and loss of valuable real-
time information. Our research presents a solution for the health, security, safety, and fire domains
to obtain temporally synchronous, credible and high-resolution data from sensors to maintain
the temporal hierarchy of reported events. We developed a multisensor fusion framework with
energy conservation via domain-specific “wake up” triggers that turn on low-power model-driven
microcontrollers using machine learning (TinyML) models. We investigated optimisation techniques
using anomaly detection modes to deliver real-time insights in demanding life-saving situations.
Using energy-efficient methods to analyse sensor data at the point of creation, we facilitated a pathway
to provide sensor customisation at the “edge”, where and when it is most needed. We present the
application and generalised results in a real-life health care scenario and explain its application and
benefits in other named researched domains.

Keywords: TinyML; machine learning; edge analytics; energy harvesting; health care; security; safety;
fire safety

1. Introduction

The prediction for sensor usage indicates that [1] several billion devices will be in-
stalled by 2025, leading to an exponential growth in sensor data [2]. Individual systems in
the wild compete to transfer sensor data to centralised repositories, such as cloud infras-
tructure, for analysis. Communication networks such as LPWAN, 5G, NB/10T or even the
WiFi 2.4G or 5Gig (Free To Air) options will find it challenging to maintain the synchronous
nature of time-sensitive data with sufficient temporal accuracy that life-saving domains
require. The volume of disparate data trying to share network resources progressively
reduces the bandwidth available to each user. Analysts also have to manage massive
amounts of error-prone sensor data reaching them, making processing and analysis a
resource-hungry task that must be conducted efficiently and effectively [3].

Real-time domain sensors are always active [4], monitoring parameters continuously
to expose problems [5]. The high detection throughput needs advanced techniques to
conserve energy and optimise real-time operational reliability over long, sustained periods.
Evaluating the contribution of each sensor type is necessary to determine the right mix
of data required in each operating domain. A tabular listing of domain features, Table 1,
presents the commonality of needs in the health, safety, security and fire safety domains.
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Table 1. The features and performance of a sensor fusion operational environment.

SNo Operational Requirements Desired Performance (Output)

1.
Embedded device for sensor fusion,

real-time multiple sensor data analysis
and results in storage

TinyML edge analytics ML model
optimised for sensor data fusion and

edge analytics. Only temporally
synchronous application data will be

stored so “prediction” and “detection”
are achieved reliably by analysis.

2. Power supply optimised for extended
operational periods

“Wake” triggers conserve power.
Renewable energy source, reliability
monitoring and energy harvesting at

the edge.

3. Operating firmware reliability Error checked for OTA (over the air)
model updates.

4. Reliable results transfer (upload)
Error checked, the optimised payload

for transmission of analysed and
computed results.

1.1. Key Issues to Be Considered

Reports suggest that only snapshots of the generated real-time data are sent success-
fully due to network constraints and reduced sampling rates. This truncated data, Figure 1,
affects the accuracy of research and analysis in real-time operational domains [5]. The raw
source data are not sent over networks to reduce privacy risk, communication bottlenecks,
costs, processing time, the expense of handling, storing and maintaining infrastructure and
data manipulation required by large, stored data sets before analysis.

 

Figure 1. “When time is of the essence” [6] waveform sampling study of truncated data.

1.2. Research Considerations

We identified, measured, corrected and compensated for issues that maintain data
integrity and operational consistency [7]. Attention to the selection of sensors, the authen-
ticity of real-time data [8], and the fusion of sensor data close to where the data are created
is a crucial process adopted. For a pre-defined “wake up” period, constrained low-power
computing devices are needed to analyse all the data in real-time to deliver the results
to a localised repository. This technique ensures that all essential data are captured and
analysed in real time. Machine learning models were created by training them to meet
domain operational needs. The post-fusion analysis models developed in the cloud were
distilled down to versions using TinyML (a compressed version of the larger version) to
fit onto constrained microcontroller platforms, as presented in later sections. Results are
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sent as an optimised “payload” to a “first responder” [9] or a central control facility [10],
effectively reducing the requirement for temporally synchronous computing resources [11]
at the management end.

Conserving power is essential in field-deployed devices, so domain-specific anomaly
detection “wake up” triggers turn on power-hungry analytic modes to optimise the power
consumption of the microcontroller devices.

In health care, data from sensors have an essential role in maintaining operational
care compliance and improving the response to those that need urgent care [12,13]. These
deliverables are stipulated in legislation; hence, measuring and sustaining performance in
real-time is a serious requirement.

In the security, safety and fire safety domains, the need is to generate an alert based on
a multifactor assessment of complex sensor data, to keep “unwanted event” triggers to a
minimum. Industry statistics for false or “unwanted” alarms are close to 90% [14], resulting
in a waste of resources, time to attend these events and severe economic loss in some
cases. In all these situations, constant changes occur, and sensor management systems that
send ineffective post-event advice continue to disrupt normal processes [15]. Our method
improves detection quality and ensures event predictability to improve outcomes [16].
Flow charts, tables and a framework based on machine learning techniques at the “edge”
explain the model’s detection, prediction processes and performance outcomes.

Highlights and original ideas over existing state of the art, presented in several sec-
tions of the paper, are summarised for clarity. The basic idea of using machine learning
is not new, but the creation of a model to overcome specific “real-time” industry domain
application issues is one of the key highlights. Our development overcomes issues with the
management of real-time operational process flows and optimises situational awareness by
delivering event information directly to the “first responder”. Several examples demon-
strated in different sections show how “event detection” is more than just the result of a
single sensor trigger but the result of a “cluster” of sensors of different types delivering
“intelligence” using “collaborative, corroborative and reinforcement” techniques. This, we
believe, is our unique contribution using machine learning in health, safety, security and
fire safety where time is of the essence and critical to life-saving processes.

2. Materials and Methods

Sensor data from monitored parameters at the site [17] are part of the organisation’s
established risk management strategy. Identifying and managing data loss, data “cleaning”
and data storage in the repository from where the analytic engine ingests, corrects and
analyses data to comply with the requirement of the data-driven environment is a core
responsibility [7]. The two key issues that reduce the efficacy of many data-harvesting
operations are the quality of data arriving and data analysis in temporal sync. The first
issue tackled is the quality of data. Multiple sensors deliver multiple data streams, so data
fusion techniques reduce a sensor cluster’s results payload. The results are sent directly to
the “first responder” dashboards to improve real-time situational awareness (see simplified
explanation in Appendix A).

2.1. Related Work—A Two-Year Quest to Meet Real-Time Smart City Objectives

A prior two-year design and implementation of a smart city research system funded
by local government and a university research endowment provided adequate experience
in data management. The knowledge and understanding of how vital temporal sync is to
support health and well-being concerns are documented in system configuration drawings
(graphs in Figure 2) [7], data management records, published papers and reports. The
research explained how seventy-one in-house developed multisensor IoT nodes connected
to two city-wide gateways delivered vital data over public LoRaWAN infrastructure. Over
two years, the experience demonstrated that reliability, data throughput and temporal sync
were vital to the usability, effectiveness and efficiency of city-wide services. Other instances
also reinforce this conclusion [18].
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NEXUS of data thresholds, i.e., when two or more parameters of concern cross the safety threshold and 

form this dangerous mix above safety levels specified. Temporal sync of data is critical! 

Figure 2. Related prior work building a city-wide IoT infrastructure for health and safety.

2.2. “Intelligence”—Training Machine Learning Resources to Produce Efficient and
Effective Outcomes

“Intelligence” describes the outcome of a fusion process used to securely package the
results of the data analysis at the “edge”. This process no longer requires expensive data
handling to produce accurate results or to maintain the integrity of the data at the point of
collection where the data generation and analysis will occur. Results from analytics at the
“edge” are fed directly to a live operational dashboard [19].

The process uses techniques that include the use of “situational knowledge” or “fea-
tures” (Table 1) essential to train the machine learning system to improve decision-making
and prediction capability. Machine learning (ML) [20] requires a training data set to ex-
tract associations and insights from disparate data. Hardware-constrained microcontroller
“edge” devices use (TinyML) [11] models created in the cloud to function at the “edge” [21].
These models enable sensor fusion analysis to improve “classification” and detect anoma-
lies, leading to an improved detection performance and prediction capability.

2.3. “Feature” Logic Designs for Targeted Real-Time Domains

The sensor grouping enables the mapping of multiple sensor outputs to “collaborate,
corroborate and reinforce” to confirm an event. The concept developed in this research is
explained diagrammatically in Figure 3. The human algorithm builder can only do so much
based on the associations seen in the data. Machines can do this many times faster and
build many more unbiased associations. The core learning is that allowing ML to extract
relationships, associations and relevance produces better insights but requires plenty of
relevant data to be used in training, as per the logic flow example described in Figure 3.

2.4. “Event Reinforcement” Techniques Using “Collateral” Sensor Data Example

The process workflow of a “reinforced” data point is explained in the flow chart
Figure 4 and Table 1. The accompanying “pressure wave” is detected if a properly shut
door is opened. This “collateral” sense confirms the door has been opened from a shut
position rather than from an open (ajar) state.
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Figure 3. Reinforcing and collateral data workflows demonstrate how data from different sensors
“collaborate, corroborate and confirm” outcomes. (Sensors S1 to Sn, Probability & accuracy in yellow,
decision points in mauve diamond and outcome from “fusion” in yellow).

Figure 4. How one sensor data point and another sensor data point “collaborate” and “corroborate”
to confirm an event.

A similar phenomenon is used to “corroborate” activity such as using “gesture”
recognition. Just the motion sensor triggering might not help define the event, but a
side-to-side motion (directional detection) would generate a unique motion signature as
temporally synchronised “collateral” data from the motion sensor on board. This event
could be assigned to a different response or output—such as a “nurse call” to care staff.

2.5. Visual Colour Sense “Camera”-Like “Features” (No Privacy Broken—Single-Pixel Resolution)

The “reinforcement” techniques Figure 5 are essential because the ability of the sensor
to detect colour, albeit just a few pixels, “reinforces” sensor data that point towards a
specific characteristic such as the colour yellow in fire or red on a caregiver uniform.

Figure 5. Using colour information to “reinforce” the arrival of a “nurse” in red clothing just after a
“nurse-call” trigger is initiated. (sensor data in green detected but not accurate enough at decision
point in mauve diamond. However at a fusion decision point in mauve diamond they reinforce and
confirm the event in yellow).

Humans build unique algorithms with the capability to build associations using a
few sensors. Machine learning can build associations using many or all sensor inputs of
different types and in temporal sync. This widens the opportunity to find similarities,
correlations, dependencies, links, etc., to enrich the data and detection quality, accuracy,
depth, reach, etc., and perform it in seconds to ensure that nothing is missed.

In the case shown in Figure 5, a single pixel colour detection sensor is already on
board. Therefore, associating this colour detection with the colour of the nurse uniform

121



Sensors 2022, 22, 8143

will reinforce the association of detecting caregiver movement near patients. In addition, in
the case of a fire, the yellow colour reinforces the existence of a flame.

The few associations developed by humans are helpful but not as useful as the thou-
sands that are possible across the entire operation, which machines (MCU and ML) can
perform very fast in human time.

2.6. The Feature Set and Performance Specification

Key system operational “features” and performance requirements are shown in Table 1.

2.7. Machine Learning Training Requirements and Operational Examples

The targeted domain-sensitive training outcomes are shown in Table 2. The domains
considered are a whole class of environments that require real-time event detection and
immediate response. The physical environment is not so critical, for example, indoor,
outdoor, small room, large hall, bedroom, lift, etc. The key issue is “what is to be detected?”
(i.e., the objective). Enough examples of the type of event are required in the training of
the ML model. ML will build associations based on triggers from various sensors in the
systems that are in temporal sync.

Table 2. A tabular listing of typical “wake” trigger options in each activity domain (truncated to fit).

Standard Multi-Domain
“Wake” Trigger

Options
Typical Risk Factor—Health Security Typical Risk Factor—Safety

Typical Risk
Factor—Fire

Detecting a human or
humans entering and leaving

the sensor area in daylight

Several “sterile” areas could
be “compromised” if people
without PPE are allowed to

roam unchallenged.

Designated “no go” (sterile)
security areas are typical risk

triggers set up to keep
“intruders” away.

Building areas with cranes,
etc., must be isolated so no

one gets hurt. Thus, a man or
machine “wake

triggers” applied.

Often a “roll call” is taken on
a fire alert to see who is on

the premises. Any human or
animal presence triggers

“wake triggers”.

Detecting a human or
humans entering and leaving
the sensor area in “darkness”

(no light)

Dark areas have severe risk
implications. Special sensors
with IR illumination or high

gain deliver similar
situational awareness as in

the day.

Dark areas have severe risk
implications, but illumination

triggered by human
movement helps.

Dark areas have severe risk
implications, and

illumination is essential for
safety. Lights could be

automatically turned on.

Dark areas have severe
risk/rescue implications.

Smoke and carbon monoxide
are the most significant

threats—smoke/CO sensors
are used to trigger the siren

and lights.

Establishing the time of day
All incoming and outgoing
personnel must be timed in

and out.

All incoming and outgoing
personnel must be timed in

and out,

All incoming and outgoing
personnel must be timed in

and out.

All incoming and outgoing
personnel must be timed in

and out.

Establishing the route Movement history Movement history Movement history Movement history

Establishing the count
for 24 h

Counts of people through to
waiting rooms could be used

to control congestion.

Counts determine traffic flow
into service areas.

Counts are used to restrict
people’s traffic to
stop overloading.

Counts are used during the
evacuation of people to safety.

Data generation failure Fused sensor detectors
deliver continuity.

Fused sensor detectors
offer continuity.

Fused sensor detectors offer
continuity.

Fused sensor detectors
provide continuity.

Establishing “door
open/closed/ajar

Essential to establish the
status of the door to stop the

spread of infections.

Door status is vital to
isolating the threat.

Door status is essential to
isolating threats by sealing

the area.

Fire door status is very
critical to establishing or

maintaining safety.

Establishing bed movement
and positioning

Specific to “aged care”.
Location of crucial
caregiving assets.

Unusual activity of assets in
working space related

to security.

Assets left unattended block
vital thoroughfare.

Legislated fire safety
requirements super-
vised autonomously.

Establishing staff attendance
Specific to “aged care”.

Colour of staff clothing (see
image Figure 6, blue).

Use of HiVisibility vests or
uniforms (see image

Figure 6, yellow).

Use of high-visibility and
safety gear (see image

Figure 6, yellow).

All fire kits are a specific
colour (yellow/red), and

hence can be
easily recognised.
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Figure 6. Staff in uniform.

2.8. Examples to Explain How ML Would Build Associations, Collate, Collaborate, Corroborate,
Reinforce Better Than Humans by Using Multiple Sensors on Board the MCU

A motion is detected along with a “blue uniform” colour recognition trigger; it does
not matter where the incident occurs. The association of two key known criteria, person
movement and the colour of the uniform worn by the responder, would flag a caregiving
episode. Similarly, a vehicle travelling outdoors and a group of people detected in the path
could be an accident waiting to happen. In a room, if a door was opened and the pressure
sensor was also triggered, then the association of the opening door and pressure wave
indicates the opening of a closed door, not a door left ajar. Some other sensors will indicate
human movement, which could mean intrusion, the arrival of help, etc. ML thrives on
building associations of such value that detection of incidents (with recognition of event
type) or “anomalies” (unusual activity) is no longer conducted by a single sensor but by
a group of sensor types because of the speed and capability to create associations by a
trained ML model. This heightened situational awareness is due to the creation of many
associations made by the ML model during training. This becomes an efficient and effective
tool to support a human operator’s “inference” capability. These benefits are explained
in the decision tree tables and workflow diagrams provided later in the description of
the trials.

2.9. Implementation of an Experimental Environment to Test the Hypothesis

At the “edge”, each domain will have a “wake” trigger to activate the “intelligent
edge analysis” on the data generated by a sensor or a group of sensors (fusion) [22]. We
put together the target “behaviour” outcomes for our training set, as listed in the domain
segmentation Table 2.

A small system combines location- or task-specific sensors [7]. A cluster of small
systems in a larger configuration (i.e., multiple small systems tied together) require a
federated learning approach to using “intelligence” at the “edge”. We propose scalability
using a fusion sensor approach and BLE (Bluetooth Low Energy) communications.

2.10. Applied Traditional and Machine Learning Workflows

We use value engineering [23] to design the model to ensure it is scalable. To this
end, all logic (including design, programming and simulation) goes into delivering these
benefits Figure 7.

Figure 7. TinyML Process Workflow.
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Live simulations, from the existing system, with as many examples of match and
non-match as possible, were used to meet machine learning (ML) ingestion workflow
standards (Figure 8). The accuracy of the model generated by the machine learning build
process depends very much on the variations fed during training. After this training, the
model serves as the “selector”, looking through all the new data to explore all associa-
tions, relationships and relevance to produce the best match determination that improves
situational awareness.

Figure 8. Machine Learning Training Workflow.

2.11. Embedded Systems Evolution and Deployment in This Research

Embedded systems with I/O and processing power deployed at “the edge” is en-
hanced using BLE (low-energy mesh communications). Typical system configuration [24]
is shown in Figure 9. Tiny Machine Learning (TinyML) reduces the size of the generated
models to fit into resource-constrained hardware with BLE capability enabling an ecosys-
tem to emerge from this work. Each “cluster” of sensors on board an MCU device forms
an intelligent node. As we expand connectivity between “clusters” over BLE, the network
grows in capability to share information [25], and “intelligence at the edge” is created.

Figure 9. Typical machine learning BLE mesh architecture delivering “intelligence at the edge”.

2.12. Architecture Deployed and Lessons Learned

Multisensor microcontroller (MCU) boards currently have physical, chemical, envi-
ronmental, video, audio and optical sensors built on the single embedded board. These
multidimensional data sensor architectures provide machine learning systems access to rich
data to unearth observations that contribute to a greater understanding of each dimension’s
inputs to the system’s overall operational performance.

As demonstrated earlier in logic diagrams, ML-based event detection is no longer a
single sensor endeavour. ML uses thousands of associations to collaborate, corroborate and
reinforce new scenario settings and unique event detection episodes.

The MCU used is the Arduino Nano BLE Sense with eleven (11) independent sensory
capabilities in five (5) sensor groups. These MEMS-based sensors are very reliable, capable
devices on the MCU as a cluster of sensors of different types—ideal for machine learning
to generate complex associations (Figure 10).
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5 sensor groups, 11 parameters, MEMS devices on board 

Reliability, performance, low power and high accuracy  

Using MCUs with individual sensors is “messy”, 

large form factor, manual with high energy demand 

Figure 10. MCU features and choices.

Our research uses off-the-shelf MCUs. The choice, capability and sensor density
vary; hence, as a first step, sensors relevant to the domains were identified. In the
health, safety, security and fire safety domains, person detection, parameter detection
(such as temperature, humidity, air quality, airflow, hygrometric levels wetness), vibration,
movement, colour, pressure and sound thresholds (unique sounds and keywords) were
prime requirements.

Applications in health care are explained with bed-mounted and wall-mounted config-
urations shown later in graphed results. Each MCU with sensors on board act as a “sensor
cluster”. They have an ML model uploaded to it and perform as per the training provided
during the model creation. Layouts and images of actual test training procedures and set
ups are explained with relevant test frame grabs.

There is no single sensor per area because each MCU is a sensor cluster connected to
other clusters via BLE. Each cluster could have eleven or more parametric sensory outputs
to an ML model, which would then proceed to extract events, anomalies, etc., based on
the model uploaded to it. By using associations, it generates from multiple sensors as
explained in the collaborations, corroboration and reinforcement framework workflows;
ML conducts them many times faster to present a range of associations and result options
to a live dashboard.

TinyML models are uploaded to different form factor MCU configurations. Tiny
compute hardware, with constrained resources and different onboard sensors, as shown
in Figure 11, provide a rich source of functional performance measurements required in
health, safety, security and fire safety environments. Thermal sensor add-ons for predictive
fire safety also follow the same principles but use an extended spectral dimension to predict
the onset of fire risk.

 

 
 

Sensor1: Temperature 

Sensor1: Humidity 

Sensor2: 9axis IMU (AGM) 

Sensor3: Proximity (LCG) 

Sensor4: Pressure 

Sensor5: Sound 

11 individual sensors 

(5 groups) add rich 

data for ML training. 

Data from different sensors cannot be visualised by hu-

mans easily. Machine learning finds new relationships 

and relevance to produce richer insights at MCU speed.  

Strapped device fitted to bed al-

lows smoothed out movements. 

Detection of bed movements, 

staff uniform colour analysed, 

etc.  

Figure 11. Example of an installed multisensor microcontroller device.

A systems approach establishes steady-state operating parameters. This process is
shown in graphs produced by device simulations in fixed and flexible configurations. It
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measures quiescent operating conditions and real-time sensing variations for different
sensor inputs, which provides an understanding of how the device (and ML model) would
function in a fixed or tailored configuration. Most of these simulations use cloud services
connected live to the “cluster” or use data uploaded to it, which is usually the process
followed to “fine tune” the system.

2.13. Machine Learning (TinyML) Sensor Fusion Process

The fusion of all relevant detection input data is performed by uploading all relevant
data to the service provider cloud repository. Once all data types are uploaded to the cloud
after all preliminary sensor tests are finalised, the cloud service creates the model in the
cloud using the software learning block apps provided. Subsequently, the model is reduced
to run on a standard low-cost microcontroller (MCU) [22] device installed, for example,
on a wall (Figure 11), with the TinyML model on it. The MCU and model run at less than
1 mW in “listening mode” (awaiting the “wake word”). When triggered, they take up to a
maximum of 10 mW to process an event and then drop back into “listen” mode (Figure 12).

Figure 12. Industry-issued figure of a device ecosystem.

One of the many industry-developed cloud-based tools was used to understand the
process and work on the key steps in producing an “intelligent edge device”. Current device
technology uses “digitised” (MEMS [26]) sensor technology, so a combination of sensors
are built on board (Figure 12), allowing the “edge intelligence”application (Figure 13) that
performs all existing functions to be implemented.

 

  The nurse call button is away from the bed and sometimes between two beds, 

making it difficult to reach. Individual sensing and analysis will provide the clarity required to 

optimise time and effort to meet the response required. The “wall fixed” configuration does not 

deliver “bed movement” data, which are useful to understand restfulness, movement patterns, 

length of time between moves and other issues such as bed moved out of place. The facility is large 

and operationally staff require all the help they can get to “know” what is happening, when it 

happens, so “decisive” and timely responses can be provided to meet legislated performance re-

quirements. 

“Nurse call” button site 

Microcontroller fusion sensor Figure 
13, “edge intelligence”, does every-
thing the rest does (even voice wake) 

Figure 13. Typical bedside “resident” support assets.

Site layout for BLE mesh communications.
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2.14. Deploying a Machine Learning Process

The “tooling” is a term used to describe the set of instructions, methods, support
software and infrastructure provided by some providers of cloud-based ecosystems to
build TinyML models. Support infrastructure allows uploading sensor data and external
sources to the cloud for analysis and preparation [27,28], before the model is created.

Figure 14 describes the workflow followed when developing the solution from live
data [5], which are collected based on training requirements to ensure the trained model
delivers effective outcomes. Sometimes the results are below expectations, so retraining is
needed, or the results are very encouraging and can be installed confidently.

Figure 14. Typical workflow to deploy TinyML.

2.15. Training the ML Model (Figure 14)

The key steps to follow in planning the application in the selected domains are:

1. Choosing the right MCU “appliance” (sometimes referred to as the microcontroller
or “silicon”).

2. Collecting the data (achieved using the device itself connected to the cloud service
provider). This data can also be collected locally and uploaded to the cloud service
storage for analysis.

The service provider also provides the testing and training tools that help create a
working model in the cloud, which one can test, verify and test again on unseen data. After
the successful first passes based on the domain requirements, the next step is to “squeeze”
the model down to the device requirements and upload it to the firmware. At this point, a
fully functioning “intelligent edge device” emerges with a model loaded to its firmware
customised to suit our application. The Actual Working Steps (soft considerations in the
application such as the “Help Me!” call) are expanded below. The steps to successfully
create a model in the cloud and upload it to a microcontroller device vary from provider to
provider. Details on how we achieved this follow.

2.16. The Application Objective

Choosing the ecosystem described earlier, we needed an “intelligent edge” device
to meet the detection requirements of four distinct domains with very similar detection
demands (see Tables 1 and 2).

127



Sensors 2022, 22, 8143

2.17. Data Collection—Designing What and How

The microcontroller device with multiple sensors on board is connected to the service
provider server via a custom CLI or a WEBLink. Figure 15 demonstrates the process of
collecting data for the “wake word” “Help Me!”.

 

Figure 15. Collecting data for “Help Me!” “wake word”.

The system designer makes a distinct choice on what the “wake word“ will be. “Help
Me!” is a common but distinct two-syllable phrase. The training outcomes in Figure 16
show that 95.4% accuracy was achieved.

 

 

Over three epochs from 83.3%, model filters were adjusted until 95.4% accuracy was achieved. 

Note: three streams were used; the first was to get a pure unadulterated call in many pronuncia-

tions and pitches. The second stream was noise, “radio crackle”, and the third stream was lots of 

general talking. From these inputs the cloud-based service provider developed a model that could 

be loaded onto the microcontroller to act as the wake word. (Step-1) The next steps were to upload 

the rest of the access control, “nurse call” and noise data (non-data to teach the ML system what 

not to select). 

Figure 16. “Wake word” planning, configuration, tests and results.
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2.18. Collecting and Obtaining the Right Data

A comprehensive data set was collected from multiple sensors to help the ML process
find many more associations between sensor triggers. The “wake word” will trigger the
analytic system to respond to a higher-level risk analysis triggered by the microphone
sensor, thereby conserving energy to process the other “feature detection” requirements
designed into the ML application. We found this to be a powerful framework that allows
the ML analysis tool to optimise the associations using the “collaborative, corroborative
and reinforcement” techniques designed into the framework. The ML process will find
many more associations in temporal sync, depending on the level of training data used,
which is just impossible using human observation alone, as shown in Figure 17 below.

 

Figure 17. Multiple sensors produce rich data for the ML algorithm to learn and build unique
associations within the synchronous time frame (i.e., in temporal sync).

Process flows presented earlier show “collateral”, “collaborative” and “reinforcement”
data analysis techniques confirmed the occurrence of “events”, reducing the “FALSE
ALARM” rate that beleaguers the industry. Machine learning analysis produces many more
associations when using the framework’s “collaborative, corroborative and reinforcement”
techniques. Learning to develop the model in the cloud with adequate computing resources
is a very effective method to develop the “wake word” mechanism from scratch.

2.19. Summary of Materials and Methods

Our research exposed several areas of interest in the quest to build a universal sensor
for the chosen domains. We focused on health care and its immediate needs, i.e., to respond
to issues of care.

To call for help assistance/support, one “wake up” call, “Help Me!”, was developed.
Once this “wake word” is invoked the system begins to analyse issues based on the training
objectives of the TinyML model.

The bed vibrations with sensor fixed to the wall Figure 18 and bed vibrations with
strapped sensor Figure 19 directly triggers a call for help (as just another “wake up” trigger)
with better precision than a human who might pick up only one aspect of the problem.
Most occurrences can be “taught” to the ML system using pre-recorded event history.
Sensor data play an essential part during collection to provide input on the temporally
synchronous activity that can precisely identify the problem.

 
Figure 18. Bed vibration with fixed sensor.
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Figure 19. Bed vibrations with strapping suspended sensor.

Audio is used as a “wake word” to provide the best opportunity for the patient to be
heard. Training ML on how to ignore irrelevant sounds was conducted as explained in the
following graphs. The strapping proved to help “listening” because all sympathetic noise
generation is smoothed out with the strapping (Figures 20 and 21).

 
Figure 20. Audio sensor is strapped—waveform smoother.

 
Figure 21. Response from audio when sensor fixed to a hard surface.

The analysis of the “anomaly” triggers from multiple sensors determines much more
than bed shaking. The multidimensional data from, for example, the magnetometer, can
provide information on the bed itself being moved, misaligned, etc., leading caregivers to
investigate why (Figure 22). In all domains the scope of this technology is very encouraging.

 

Figure 22. The accelerometer and magnetometer provide positional information instantaneously
when disturbed.
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Failure cost is a serious consideration because operational performance depends on
reliable sensors with long battery life. We considered low energy management strategies
such as the “wake word” and BLE (Bluetooth Low Energy) connectivity and are investi-
gating energy harvesting options such as infrared wireless power to extend the system’s
operational life.

2.20. Application Overview

Health, security, safety and fire safety are the four domains targeted in this research
(Table 2). The configurations were developed to use a multidimensional approach using
MCUs with multiple “digital” sensors on board to maximise the sensor fusion outcomes.
Fusion techniques enabled ML to optimise the benefits of having many data points to
collaborate, corroborate and reinforce outcomes.

The BLE [29] device uses several modes to communicate with other devices or the
outside world (even via the internet). These mechanisms follow the Generic Access Profile
(GAP) guidelines. GAP defines how BLE-enabled devices can make themselves available
and how two devices can communicate directly (Figure 23). The technology is flexible,
reliable and has a maximum range of up to 1 Km with a suitable antenna.

 

GAP: General Access Profile 

GATT:Generic Attribute Profile 

SMP:Security Manager Protocol 

ATT:Attribute Protocol 

L2CAP:Logical Link Control&Adaptation Layer 

Protocol 

Link Layer:Radio state definition 

LE PHY:”physical layer” lowest in protocol stack. 

 

Figure 23. BLE protocol stack that allows meshed and long-range links.

2.21. Data Used in Training the Machine Learning Model

Data were generated from two sources:

(a) Simulations (because site access was not possible for some tests).
(b) Anonymised data provided from actual live sites.
(c) The simulated data collection described in later sections.

The anonymised data were generously provided by a trusted external source and
contain the following event information:

1. Access control data describing entry and egress events in temporal sync.
2. “Nurse call” data describe health care residents’ activity in calling for help using the

push button on the bed.

2.22. Using Data Provided along with Simulated Data to Train Model

The process of using different data structures is quite complex but made easy using
tools provided by the TinyML service provider (Figure 24).
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Figure 24. Data upload options provided by the service provider.

The data samples are shown in Figures 25 and 26.

 

Sample data access control 

Figure 25. Access control data sample.

 

Sample data “nurse call” 

Figure 26. “Nurse call” data sample.

This data had to be converted into a format that is time stamped and follows the
prescribed format: timestamp, Data-1, Data-1, Data-3, . . . .

The data (Figures 25 and 26) were uploaded using the interface provided (Figure 24).
The ML model creation was initiated in the cloud service. Advanced “learning blocks”
(sophisticated processing steps Figure 27) such as Transfer Learning and Regression filters,
NN, etc., were provided to improve model performance.
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Figure 27. Additional “learning blocks” (TL, KERAS, NN) provided to improve outcomes.

The TinyML ecosphere is still developing, allowing many opportunities to discover
new techniques to improve the performance of models. The key outcome in this re-
search is understanding the stepped approach to developing models that make it possible
to have “intelligence at the edge” embedded into constrained computing devices such
as microcontrollers.

3. Results

3.1. “Feature”/Function Table

The results table explains how different aspects of the project objectives were met with
system flexibility and performance in focus.

“Feature”/Function
“Edge Intelligence” Using Sensor “Clusters” and

Low-Energy Techniques

Quality of sensors and functionality Many unique MEMS low-power reliable sensors on computing device
board (five parametric sensing groups, eleven sensor types).

Sensor fusion in real-time
Sensors are in close proximity, close to where the data are captured, so

optimised, temporally. Synchronised data fusion analysis is
successfully performed.

Data collection Relevant data in many forms can be added to the fusion step.

Power optimisation New techniques such as “wake words” conserve power for those times
that require computing resources.

Advanced feature sets

Data are analysed in real-time—only results stored or sent to storage or
dashboards. The result “payload” is in Kilobytes. Machine learning

extracts associations from the data to improve situational awareness. It
can achieve this many times faster than humans can after appropriate

model training.

“Intelligence”
The power of associations generated by ML enabled “collaboration,

corroboration and reinforcement” avoiding “unwanted” “event
detection” based on just a single sensor trigger.

3.2. The “Wake Word” for Energy Harvesting

Activating and testing the “wake word” simulation returned a 95.4% accuracy rate
(Figure 28). Tests were conducted on the cloud service of EdgeImpule.com (personal
demo account).
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The wake word “Help Me!” trigger is set up as a two-
syllable sound to avoid false detection. 
A “wake” trigger is also chosen from the event detec-
tion list.  
High risk maneuvers are tracked by multiple sensors.  
“Collaborative, corroborative and reinforcement” 
techniques, as presented in workflow drawings, are 
used to confirm the event. 
Machine learning models unearth many more associ-
ations quicker and depending on tools used (such as 
CNN filters), producing “actionable intelligence”. 
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learn-
ing-blocks 

Figure 28. The wake word “Help Me!” turns on event recognition computing resources.

3.3. The Confusion Matrix

A table of the results using the confusion matrix for event detection using machine
learning is recorded in Excel. The number of tests and trials required automatically cal-
culating the results of the “model testing” in an automated spreadsheet, made it easier to
record the consistency and to test different scenarios providing the flexibility to try out
many different operational modes: voice, time sync data, fusion techniques, etc.

The trials (Figure 29) were carried out to experience the machine learning process and
to experience its benefits, applicability and how it relates to existing processes. We also
felt that the real power of TinyML is its ability to deliver a model which can be improved
at will with training and is uploaded to a microcontroller device to perform application
tailored analysis.

 

Figure 29. Test results—”event detection” trials.

Automation to Test Multiple Scenarios

A spreadsheet (Figure 30) was developed to automatically take in data and produce
confusion matrix results so many tests and trials could be conducted for comparison over
multiple tests.
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Spreadsheet: 
For auto calculating the 
confusion matrix re-
sults based on a multi 
epoch run to establish 
consistency, not abso-
lute performance. 

Figure 30. Spreadsheet to perform multiple trials to test for consistency using the confusion matrix.

4. Discussion

The most effective application of model-based sensor fusion would be in a smart city
project. We juxtapose two scenarios and represent them in drawings and graphs.

Scenario-1 is a smart city project with 71 sensor nodes sending data over a LoRaWAN
network to a central repository. In the design requirements there were no real-time expecta-
tions. Therefore, the system performed as per the resources provided to it. Independent
sensors were used, which shared a LoRaWAN communication channel and produced
Max1 to 100 Kbits/sec of data to a repository. The data were analysed for insights, then
transitioned via an analysis package to a dashboard several minutes later depending on
network traffic delays and retries or loss and “cleaning” functions to replace lost data. The
time to collect, clean and have data ready for analysis for a real-time threat response was in
the order of ten to twenty minutes (Figure 31).

 

 

 
Live 24h dashboard to respond to “health and safety” issues would be 
pointless if the dashboard received data 15 min after the incident. 

Figure 31. Schematic drawing shows the path of sensor data through infrastructure which could
result in loss of temporal sync.

The second test scenario was created using the Arduino Nano BLE Sense with many
more sensors on board. After ML training, presented earlier, the system detected and
performed instantly over a sub-giga-hertz BLE (Bluetooth Low Energy) channel providing
“actionable intelligence”, i.e., human deliverable responses.

From the two studies, the following scenarios are described:

(a) Individual sensor data are sent over severely under-resourced networks to a central
repository for processing, where issues such as network availability, speed and relia-
bility are not guaranteed. Background analysis and “cleaning” (i.e., replacing missing
data) at the receiving end is required before the results are sent to a dashboard as
events for operators to respond to (Figure 31).
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(b) Another scenario where “intelligence at the edge” generates analysed results using
a customised machine learning model where the data are fused and analysed at the
point where the data are collected, and “actionable intelligence” is sent out to the first
responders (Figure 32).

 

 
Multiple sensors, fused at the edge—delivering instant results to the dashboard for operations 
to respond to. No collection, storing, cleaning results sent directly to the first responder in the 
control room or in the field. On the left is the multiple sensor board managing sensor inputs 
as defined by the MLModel—uploaded to it, including the audio “Help Me!” call. This pro-
gressed to a dashboard (live 24 h event display spider web graph dashboard) which trans-
lated into an operational process model as “actionable intelligence”. 

Figure 32. The fusion dashboard operational mode.

These two scenarios present two different ways of delivering “actionable intelligence”,
which needs to be “on time” or it is of no benefit to the end user.

Limitations

The “need for speed” to deliver solutions that work forces humans to take short cuts,
which does not sit well with machine learning because it expects us to know what kind
of an output we want. “Garbage in–Garbage out” is so very true of the machine learning
process that works incredibly fast and accurately. The process workflow was explained in
depth, but if it is “compromised” by poor input or “reasoning” it is likely to magnify the
lack of rigour in the assumptions made and outcomes delivered.

5. Conclusions

Our research explored, experienced, documented and presented several levels of
discipline required to obtain reliable results when configuring machine learning systems.
We researched and reported preliminary results from the domains where our TinyML
model’s customised detection capability was trialled, documenting the “features” and
model functionality outcomes required, as shown in Tables 1 and 2.

An energy-efficient single-board microcontroller system with MEMS sensors on board
(Figure 10) and BLE communications was set up in a test scenario. As the MCUs (embed-
ded microprocessor control units) develop in sensor density and computing power, the
opportunity to use low-power, high-throughput “meshed” (BLE inter-device communica-
tion) devices can only grow to improve “edge intelligence”. This area is highlighted for
future work.

Our research explored and deployed these sophisticated customised sensor models
using data fusion and techniques that continue to be researched in the industry. The
process of training, identifying features and functions that need to be used in training, is
an expertise that must be practised. We tested and delivered customisable TinyML model
designs to meet real-time operational domain requirements using “edge intelligence”.
These developed models can be used with many different MCUs with similar sensors and
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in other domains with similar detection requirements. This solves a significant issue for
industries with severely restricted resources. We explored all avenues to ensure reliable
data analysis at the “edge” delivers credible reliable results in temporal sync. Therefore, the
results are received by “first responder” hand-held or control room dashboards so that they
can be responded to immediately reducing “unwanted” or false alarms that are a drain
on resources.

This research also explored and presented the possible sophisticated framework that
uses data points to collaborate, corroborate and reinforce results in a data-driven opera-
tional environment using multiple sensor inputs, using four real domain requirements
as examples.

Failure cost is a serious consideration because sensors contribute to operational per-
formance and must be highly reliable. Poor reliability will require a human to physically
attend to a system failure to find out the problem. Nevertheless, poor-quality products tend
to add costs exponentially to the operational cost of a data-driven ecosystem. It is essential,
therefore, to use value-engineered design principles to test and deploy with reliability
in mind.

Further research into this area of “edge intelligence” is necessary along with key topics
covered in this research paper, such as energy harvesting and wireless power, to extend
reliability and satisfy value engineering criteria. TinyML is a formidable development
and a useful tool for using sophisticated machine learning training methods to improve
the performance of the customised models in real-time health, safety, security and fire
safety situations.
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Appendix A Non-Technical Explanation of the Objectives of the Research

The paper highlights key issues because of our reliance on data to function:

1. Data might not be in real time and often become corrupted by constrained infrastruc-
ture, before they are analysed. The paper raises these issues and proposes a solution
to solve it. The solution uses machine learning to fuse data from different sensors,
analyse it and deliver it live to where it is required most. The results are instant and
sent directly to the “first responder”, saving lives.

2. The solution also solves problems for overloaded infrastructure by reducing payload
and ensuring only analysed results are sent.

3. Humans are intelligent and have risen up the evolution tree because they constantly
invent tools that help humans do things better and more quickly. What has been
developed is an intelligent tool that helps humans sieve through a lot of data to build
a solution customised for the chosen real-time domains.

4. If someone is ill, would it be appropriate to obtain a “diagnosis” based on single
parameter, or would you consider all factors causing the problem before treatment?
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5. The TinyML model is developed from human logic, because we train the model by
providing it with many examples of what is required and not required. It ingests
our logic and then works incredibly fast to build associations and relevance (edge
intelligence) by collating, collaborating, corroborating and reinforcing different data
points to deliver a customised solution we designed.

6. We demonstrate how “intelligence at the edge” (close to where the data are collected)
is used effectively to improve the reliability of service outcomes.
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Abstract: Extended Kalman filter (EKF) is one of the most widely used Bayesian estimation methods
in the optimal control area. Recent works on mobile robot control and transportation systems have
applied various EKF methods, especially for localization. However, it is difficult to obtain adequate
and reliable process-noise and measurement-noise models due to the complex and dynamic sur-
rounding environments and sensor uncertainty. Generally, the default noise values of the sensors are
provided by the manufacturer, but the values may frequently change depending on the environment.
Thus, this paper mainly focuses on designing a highly accurate trainable EKF-based localization
framework using inertial measurement units (IMUs) for the autonomous ground vehicle (AGV) with
dead reckoning, with the goal of fusing it with a laser imaging, detection, and ranging (LiDAR) sensor-
based simultaneous localization and mapping (SLAM) estimation for enhancing the performance.
Convolution neural networks (CNNs), backward propagation algorithms, and gradient descent
methods are implemented in the system to optimize the parameters in our framework. Furthermore,
we develop a unique cost function for training the models to improve EKF accuracy. The proposed
work is general and applicable to diverse IMU-aided robot localization models.

Keywords: localization; inertial navigation system; extended Kalman filter; mobile robot; autonomous
ground vehicle

1. Introduction

Over the past years, localization has become one of the challenging issues for au-
tonomous ground vehicles (AGVs). In particular, the most difficult issue in navigation
is estimating the accurate and stable position and orientation of the robot through data
obtained from sensors and other navigation systems [1]. Recently, various technologies
have been designed to solve robot localization problems, such as visual-odometry-aided
camera localization [2] and Global Positioning System (GPS)-based localization using
reinforcement learning [3].

However, the simultaneous localization and mapping (SLAM) methods may fail to
function correctly in certain complicated situations due to the physical characteristics of
sensors. The laser imaging, detection, and ranging (LiDAR) sensor, for example, is a sensor
system that measures distance by transmitting light into spaces and receiving reflected
signals from a target [4]. However, LiDAR can lose its signal in situations such as foggy
and rainy conditions. In addition to that, the strength of the signal can be affected by the
reflectivity of the objects. This could lead a mobile robot or an AGV into a target-blind zone,
endangering safety and maneuverability. Therefore, a reliable contingency plan needs
to be considered that can compensate for the performance degradation caused by these
limitations of the sensors.
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The inertial measurement unit (IMU), a combination of a gyroscope, accelerometers,
and sometimes magnetometers, could provide an efficient approach to solve this problem.
Specifically, the IMU is one of the solutions that can independently measure the state of
the body without any external feedback. The accelerometer and gyroscope components
measure linear acceleration and angular velocity, which represent the movement of the
body to which the sensor is attached. Additionally, the magnetometer component measures
orientation based on the Earth’s magnetic field, which is available almost everywhere [5].

Nevertheless, there is one drawback that could degrade the performance of an IMU-
based localization, which is the accumulated drift. To reliably utilize the IMU, it is imper-
ative to eliminate the accumulated drift [1]. In the field of probabilistic robotics, various
methods for correcting errors, such as Bayes filters, Gaussian filters (e.g., information fil-
ters), and nonparametric filters (e.g., particle filters) [6], have been proposed. Among them,
the extended Kalman filter (EKF) [7] is one of the most widely used methods to reduce the
accumulated drift. The EKF is a nonlinear Kalman filter (KF) that linearizes a current mean
and covariance estimate. Since EKF can solve nonlinear problems, it has been applied to
IMU-aided localization systems [8–10]. The process-noise covariance matrix, Q, and the
measurement-noise covariance matrix, R, are constructed with a priori constant values
determined by the characteristics of sensors and environments in traditional KF systems,
which assume that they remain constant throughout the whole navigation operation. EKF
can achieve optimal results if the process noise is well defined. However, depending on
external factors, such as complex environments or sensor limitations (e.g., occlusions),
sensor noise values can change, and it is difficult to recognize the exact error and in situ
information of when and how the change occurs [11].

The following is a list of the major contributions of this study:

1. In this work, we propose a novel approach to improve the accuracy of EKF-based IMU
localization with a convolutional neural network (CNN) architecture. Specifically, we
design a stable training method that can find the optimal parameters of the system and
the observation-noise covariance in real time by reducing the error in each iteration.
Furthermore, the system is designed and tested for online training, unlike many
other approaches, such as [12], where the algorithm is trained offline using batch
and multiple epochs. The intention behind this is that the algorithm is to be trained
continuously while SLAM is functioning online, in which case a sequence of IMU
data points is observed and acquired.

2. Our proposed CNN module consists of multi-head attention (MHA) layers to model
the cross-modal fusion of different sources of modalities (e.g., multiple IMUs, li-
dars, etc.). The MHA was initially proposed to address the problems of natural
language processing (NLP) [13], and it was later discovered to be effective in mod-
eling cross-modal interactions between different modalities [14]. These previous
works inspired us to model cross-modal interactions that combine different sensor
information sources via the attention mechanism.

3. We conducted extensive experiments using an actual robotic platform to assess the
effectiveness of our proposed method in the real world (a factory environment in
our case). We designed real-world scenarios for the online training, where the SLAM
might fail in some cases and only the IMU(s) can provide sensory information for the
EKF-based localization module. The algorithm is also trained continuously while the
robot is online and navigating.

2. Related Work

Studies have been conducted recently on Kalman filter (KF)-based localization tech-
nology with adaptive noise-covariance estimation. One previous study proposed by
Akhlaghi et al. [15] introduced innovation-based and residual-based methods to adaptively
adjust the covariance matrices Q and R at each step of the EKF process to improve the state
estimation accuracy. In addition, Hu et al. [16] proposed an adaptive unscented Kalman
filter (UKF), another variant of KF for the nonlinear system, with process-noise covariance
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estimation to improve the UKF performance. However, these approaches might not be able
to fully characterize the nonlinear stochastic noises that arise in real-world situations.

It is known that the artificial neural network has the capability to approximate non-
linear functions [17]. Haarnoja et al. [18] demonstrated that a backpropagation-based
Kalman filter, consisting of a KF and a CNN, was capable of predicting the measurement-
noise covariance matrix, where the CNN was trained via minimizing position errors.
Brossard et al. [12] proposed an approach for dead-reckoning for wheeled vehicles with
the IMU only. Deep neural networks were used to update the parameters of an invariant
EKF dynamically. A recent study also explored the use of long short-term memory (LSTM),
a type of recurrent neural network (RNN), to model the nonlinear noises for KF [19] to
address target tracking problems. Another approach that uses reinforcement learning to
adaptively estimate the process-noise covariance matrix was proposed by Gao et al. [20],
in which their algorithm used the deep deterministic policy gradient (DDPG) to extract
the optimal process-noise covariance matrix estimation from the continuous action space,
using an integrated navigation system as the environment and the reverse of the current
positioning error as the reward. Wu et al. [21] also proposed a deep learning framework
combining a denoising autoencoder and a multitask temporal CNN. Multitask learning
was used to optimize the loss for both the process-noise covariance and measurement-noise
covariance matrices from KF simultaneously.

3. Quaternion-Based Extended Kalman Filter

3.1. IMU Inclination Calculation

The rotation matrix Rb
n, mapping the navigation frame n to the body frame b, can be

represented by φ (rotation angle along the x-axis), θ (rotation angle along the y-axis), and ψ
(rotation angle along the z-axis), as follows (trigonometric functions sin and cos are denoted
as s and c, respectively):

Rb
n =

⎡
⎣ cθcψ cθsψ −sθ

cψsθsφ − cφsψ cφcψ + sθsφsψ cθsφ
cφcψsθ + sφsψ cφsθsψ − cψsψ cθcφ

⎤
⎦. (1)

When the IMU is stationary or moving at a constant speed, the acceleration in the
navigation frame should be equal to the gravity constant g, so the inclination angles θ and
φ can be calculated by Equation (2) as in [22]:

⎡
⎣ab

x
ab

y
ab

z

⎤
⎦ = Rb

n

⎡
⎣0

0
g

⎤
⎦ ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ = arcsin(− ab
x

g
)

φ = arctan(
ab

y

ab
z
)

. (2)

The IMU coordinate frame is assumed as shown in Figure 1, where the z-axis is
upward, so gravity has a positive value.

Figure 1. The IMU coordinate frame.
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3.2. IMU Integration Model

The continuous-time relationships among position pn, velocity vn, and acceleration an

are defined as follows:
∂pn

t
∂t

= vn
t ,

∂vn
t

∂t
= an

t , (3)

where an
t represents the acceleration in the navigation frame at time t, which can be

calculated using ab
t , which is the acceleration obtained from the IMU sensor as follows:

an
t = R(qn

b )a
b
t − gn, (4)

where R(qn
b ) is the rotation matrix represented by quaternion qn

b . The orientation qn
b and

the angular velocity ωb are related as

∂qn
b

∂t
= qn

b 
1
2

ωb. (5)

From the continuous-time model, the dynamics of position, velocity, and orientation
in discrete time are given by Equations (6)–(8), as explained in [23], as follows:

pn
t = pn

t−1 + vn
t−1 · δt +

1
2
(an

t−1 + ea,t) · δt2 (6)

vn
t = vn

t−1 + (an
t−1 + ea,t) · δt (7)

qn
b,t = qn

b,t−1  expq(
1
2
(ωb

t−1 − eω,t) · δt), (8)

where ea,t, eω,t are the noise terms of the dynamics model which are assumed to follow the
normal distribution, and the distribution axes are independent of each other, as follows:

ea,t ∼ N (0, σaI3) (9)

eω,t ∼ N (0, σωI3). (10)

The state variable xt is a 10 × 1 vector consisting of the current position pn
t , velocity vn

t ,
and orientation qn

b,t which represents the mapping of the body frame onto the navigation
frame, as follows:

xt =
[
pn

t , vn
t , qn

b,t,
]T

10×1
(11)

so the state transition function can be written as

x̂t|t−1 = f (x̂t−1|t−1, ut, et), (12)

where ut = [ab
t , ωb

t ]
T is the control input modeled by the accelerometer and gyroscope

measurements, and the noise term et = [ea,t, eω,t]T .
We linearize Equation (12) at the current estimate and propagate the covariance

forward to predict the system covariance

Pt|t−1 = FtPt−1|t−1FT
t + GtQGT

t , (13)

where Ft, Gt are Jacobian matrices of the transition function (12) with respect to xt and ut,
as shown below:

Ft =
∂ f (xt, ut, et)

∂xt

∣∣∣∣et=0
xt=x̂t−1|t−1

(14)

Gt =
∂ f (xt, ut, et)

∂ut

∣∣∣∣et=0
xt=x̂t−1|t−1

, (15)
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and the process covariance Q = diag(Σa, Σa, Σω), where Σa and Σω represent the covari-
ances of acceleration and angular velocity, respectively.

3.3. EKF Correction with Measurements

Since the accelerometer measures the local gravity vector when an AGV is moving
at a constant speed or is stationary, it can provide information about the inclination of the
sensor [23]. Then, the robot control center can provide the velocity information vb along
the x-axis and y-axis at current times. In addition, we consider the vertical velocity, which
is roughly null in the robot frame, as a pseudo-velocity measurement vb

pseudo, so the total
measurement vector can be written as

zt =
[
ab

t , vb
cmd,t, vb

pseudo,t = 0
]T

6×1
. (16)

Thus, we can obtain the measurement function mapping the state space to the mea-
surement space as follows:

h(x̂t|t−1) =

[
R(q̂n

b,t|t−1)
Tgn

R(q̂n
b,t|t−1)

Tv̂n
t|t−1

]
, (17)

Then, we obtain the measurement matrix Ht by linearizing the measurement function:

Ht =
∂h(xt)

∂xt

∣∣∣∣
xt=x̂t|t−1

. (18)

Therefore, the measurement residual yt and the Kalman gain Kt are calculated by
Equations (19) and (20), as detailed in [24]:

yt = zt − h(x̂t|t−1) (19)

Kt = Pt|t−1HT
t (HtPt|t−1HT

t + R)−1, (20)

where the measurement covariance matrix R can be defined as diag(Σa, Σv, Σvpseudo ). Finally,
the predicted state and covariance are updated as follows:

x̂t|t = x̂t|t−1 + Ktyt, (21)

Pt|t = (I − KtHt)Pt|t−1. (22)

4. Covariance Optimization

4.1. Adjustable Covariance

It is well known that the EKF is a model-based optimal filter, which requires exact
knowledge of process and measurement models as well as process- and measurement-noise
statistics. However, it is difficult to model the dynamic noise changes over time [25]. Thus,
we redesign the covariance Σ of the covariance matrices Q and R as follows:

Σa = σ2
a · 10μ tanh(sa) (23)

Σω = σ2
ω · 10μ tanh(sω) (24)

Σvcmd = σ2
vcmd

· 10μ tanh(svcmd ) (25)

Σvpseudo = σ2
vpseudo

· 10
μ tanh(svpseudo ), (26)

where σa, σω, σvcmd , and σvpseudo correspond to our initial estimate of the noise parameters
and μ > 0. Thus, the covariance can be limited between a factor 10−μ and a factor 10μ with
respect to its original value because of the function tanh(·), which makes the covariance

144



Sensors 2022, 22, 7701

optimized within a reasonable interval set heuristically. By adjusting the value of the
parameter s, the covariance matrices could be changed indirectly.

Parameters sa and sω are adjusted during training by backpropagation based on the
loss function described by Equation (30). Once the training stops, the parameters are
considered fixed for the algorithm.

Although the noise components of the velocity v and pseudo-velocity vpseudo are
unknown, the deviation can be assumed to be dynamic rather than stationary in the real
world. In other words, the measurement covariance from velocity can be treated as loose
strict null instead of strict null, which means that the uncertainty can be encoded in the
covariance [12]. A CNN layer is applied to dynamically compute the parameters sv and
svpseudo , taking as input a window size of N IMU data points.

[
sv

svpseudo

]
=

⎡
⎣
[

svx

svy

]
svpseudo

⎤
⎦ = CNN([ut−N , ...ut]). (27)

Figure 2 shows the CNN architecture used to predict parameters sv and svpseudo . A win-
dow size of 20 IMU data points was used for the input. Each IMU data point consists of
acceleration and angular velocity data for the three axes (x,y,z). Using a single channel,
where the overall input dimension becomes 1 × 6 × 20, the input is initially split into its
individual acceleration and angular velocity matrices, which are processed separately by
their respective 3 × 3 convolution layers followed by a leaky ReLU activation (ConvLR
block). Then, a multi-head attention (MHA) layer is introduced to model the feature-fusion
data. The output of the individual paths is then concatenated and processed by two more
ConvLR blocks and a global average pooling layer. The final result is the three parameters
svx , svy , and svpseudo .

Figure 2. The proposed CNN architecture for predicting the parameters svx , svy , and svpseudo , which are
used to calculate the covariances as per Equations (25) and (26). The input consists of a window size
of 20 IMU data points, each containing the acceleration and angular velocity data for all three axes.

The MHA mechanism was initially proposed in the field of natural language process-
ing (NLP) [13]. Later, Tsai et al. [14] explored leveraging MHA mechanism to reinforce
a target modality with features from another data modality via learning the cross-modal
attention. The following is the formulation of the attention output:

Attention(QA, KB, VB) = softmax(
QAK

�
B√

dk
)VB. (28)
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Following the definition of [14], QA ∈ R
d×dA denotes the queries from the modality

A, KB ∈ R
d×dB denotes the set of keys, and VB ∈ R

d×dB denotes the set of values from the
modality B. Then, the information from modality B is passed to modality A by calculating
the attention function in Equation (28). In this study, we leverage the MHA to model feature
fusion via introducing one from another modality. As shown in Figure 2, taking acceleration
data as an example, we reinforce its features via modeling the cross attention with angular
velocity data by calculating attention output Attention(Qacc, Kang, Vang). A skip connection
is also implemented, to sum up the output from the first 3 × 3 convolution layers and
attention output.

4.2. Online Training Method

SLAM works well unless a sensor fails [26], which is a well-known problem statement.
Therefore, our training system initially considers the SLAM outputs under ideal (reliable)
conditions as ground truths to calculate the loss function between the output states of
SLAM and EKF.

Furthermore, the iterative EKF estimation process in consecutive time steps is a kind
of Markov decision process, which means that the current state is only related to the
previous one, so our method focuses on optimizing each EKF estimation process. When the
estimation performance of each EKF iteration is high, it will show high estimation accuracy
in the entire iterative process. In order to evaluate the performance of each EKF estimation,
the loss function is designed as follows:

loss = MSE ( x̂t+1|t+1 , xslam
t+1 ), (29)

where MSE is the mean squared error (MSE) function that expresses the bias of the estimated
state by EKF compared to the state of SLAM at timestamp t + 1. However, the performance
of AGV localization depends on the two-dimensional (2D) position errors (px, py) and the
heading angle (ψ) errors, so the loss function only needs to compute the mean squared
error of px, py, and ψ calculated from the orientation state q. Thus, the loss function can be
rewritten as

loss = MSE ( [ p̂x, p̂y, ψ̂ ]Tt+1 , [ pslam
x , pslam

y , ψslam ]Tt+1 ). (30)

The initial state of each EKF iteration should be the same as the state of SLAM at the
previous timestamp, so that the loss function can effectively express the error generated
by each EKF iteration. Therefore, the input of trainable EKF that estimates the state at the
next timestamp should be the state from SLAM at the current timestamp during training
as follows:

x̂t+1|t+1 = EKF(xslam
t , ut , vcmd

t+1 , Pslam
t ), (31)

which also considers the initial covariance Pt of EKF as the current estimation covariance
from SLAM.

However, the frequency of SLAM is different from the frequency of IMU in real-time, so
we cannot guarantee that the estimated state of each EKF iteration corresponds to the output
state of each SLAM at the same time, which means that it is unable to regard the ground
truth of EKF as SLAM at that time. Additionally, the frequency of IMU is usually higher
than the frequency of SLAM, so to synchronize the output of EKF and SLAM, multiple EKF
iterations can be trained by performing backpropagation [27] at once when the output state
of SLAM is provided. The training structure is shown in Figure 3. The structure allows
the system to optimize the covariance in real-time continuously. The training process
begins with the MSE loss function (30), and then calculates the gradient of the loss function
corresponding to each Q and R based on the derivative chain rule.
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Figure 3. Structure and training flow of our network. The initial state of the EKF iterations is based on
the previous SLAM state update at timestamp t − 1. N number of EKF iterations will be performed
until the next update of the SLAM state at t + n. The loss is calculated between the SLAM state update
and the final predicted output state of the N EKF updates. Then, backpropagation is performed on
the basis of the calculated loss.

4.3. Implementation Details

This section introduces the settings and the implementation details of our algorithm.
The whole self-adjusting method is implemented in Python with the PyTorch library [28]
for training and inference, and the Robot Operating System (ROS) [29] was utilized for
collecting sensor data.

The initial parameters of the EKF were set as follows prior to training. The initial
system error covariance P0 = I10, which is the identity matrix 10× 10. We set σa = 0.01 m/s2

in (23), σω = 0.01 rad/s2 in (24), σv = 0.25 m/s in (25), and σvpseudo = 0.0225 m/s in (26).
The adjustable parameters s are defined as sa = sω = svcmd = svpseudo = 0.01 in order to make
initial covariance Σa ≈ σ2

a , Σω ≈ σ2
ω , Σvcmd ≈ σ2

vcmd
, and Σvpseudo ≈ σ2

vpseudo
. We defined μ = 3

from (23) to (26), which allows for each covariance element to be 103 times higher or smaller
than its original values [12].

The Adam optimizer [30] was applied to update parameters with learning rate 10−3

and iterated once for each tandem EKF.

5. Experiments and Results

In this section, we present the robotic platform that was used for collecting data
and testing a real-time SLAM failure scenario. Three evaluation metrics were used for
evaluating the performance. The performance of our proposed localization architecture,
the trainable quaternion-based EKF, was evaluated by comparing it with the EKF model
without training. Additionally, various deep learning model architectures were compared
to determine the most effective model.

5.1. Dataset

The data collected to evaluate the proposed algorithm are based on the usage of a
proprietary omniwheel robot platform of dimensions of 2.481 × 1.595 meters. The robotic
system provides the current velocity of the robot, which is used as an input to the EK.
The robot contains four 2D LiDARs (two in the front and two in the rear), two stereo
cameras (one in the front and one in the rear), and an IMU. Figure 4 shows the robot setup.
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Figure 4. Robot setup used for data collection of the experiment.

Experiments were conducted across four different trajectories with total lengths of
66.46, 145.39, 103.42, and 78.62 meters, respectively. The trajectory path collected as a
result of SLAM was used as the ground truth. For this work, the visual–LiDAR–inertial
SLAM algorithm in [31] was used, as it provides a very accurate position and orientation.
The dataset collected contained the SLAM output (ground truth position and orienta-
tion), the acceleration and angular velocity information, and IMU data for the EKF state
estimation calculations.

Since the EKF state estimation was calculated at the origin of the IMU, all data points
(SLAM and velocity) were transformed to the IMU’s origin. Furthermore, all data had to be
transformed to the body frame coordinates of the omniwheel robot, where the x-axis runs
along the length of the robot in the forward direction, the y-axis is 90 degrees anticlockwise,
and the z-axis runs upward.

5.2. Experimental Setup

To evaluate the improvement of the proposed algorithm, the localization output of a
traditional EKF was used as the experimental control data.

Our proposed system architecture was designed with the intention that the algorithm
would be trained continuously while the robot is online; therefore, the data are collected
in real time, and each data point is unique and independent. Taking this into account,
we trained the algorithm on three sequence runs and performed the inference test on the
fourth unseen sequence, with the data of each sequence only seen once during training
and inference. This process was performed four times to run the inference test on all
available sequences.

The EKF state estimation was then fused with the SLAM state during the inference
mode while the system considered the SLAM positional data reliable, which is determined
by the covariance values provided by the SLAM module. The time range when the SLAM
positional data were unreliable was considered the SLAM failure period, at which point
the SLAM state was no longer fused with the EKF estimation, and the output was purely
relying on EKF.

To simulate a real-time SLAM failure scenario, 100 s time intervals within each individ-
ual trajectory were selected as the SLAM failure period. Both approaches, the traditional
EKF and the proposed trainable EKF, had the same start and end times for the SLAM failure.

In Figures 5 and 6, the period from when SLAM failed (“Start Point”) to when SLAM
recovered (“End Point”) were regarded as the SLAM failure period. The green and orange
paths represent the estimated position from the untrained EKF and EKF CNN with MHA,
respectively, while the blue path (ground truth) is from the SLAM outputs.

To evaluate the performance of our proposed algorithms, we considered the following
three evaluation metrics for our experiments:
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1. Position Error (Pe) :
The ratio of the position error to the total path length when SLAM fails.

Pe = (Last Position Error/Total Distance) ∗ 100 (32)

2. Rotation Error (Ae) :
Azimuth angle error relative to the total path length when SLAM fails.

Ae = Last Azimuth Angle Error/Total Distance (33)

3. Average Mean Squared Error (MSEavg):
The overall average of the squares of the errors between ground truths (SLAM) and
object to be assessed (estimated position and orientation) when SLAM fails.

MSEavg = Mean( MSE ( [ p̂x, p̂y, ψ̂ ]Tt+1 , [ pslam
x , pslam

y , ψslam ]Tt+1 ) ) (34)

5.3. Result and Analysis

We present the comparison results of our proposed algorithm with those of the tra-
ditional method (i.e., EKF). From the trajectory comparisons in Figures 5 and 6, we can
see that the proposed EKF CNN with MHA (orange path) was more in line overall with
less noise than the traditional EKF (green path). Furthermore, from Figures 7 and 8, which
provide the mean squared errors (MSE) during the failure period, we can see that the
proposed method (green line) could achieve a lower MSE than the traditional EKF (blue
line). From Figures 7 and 8, the maximum MSE for the proposed method was 0.0297 and
0.0323, respectively, while the traditional EKF method reached 0.0690 and 0.1108 for the
same trajectories.

Figure 5. Estimated path comparison results for trajectory 1. Green, orange, and blue lines represent
EKF, EKF+CNN with MHA, and ground truths, respectively.

Table 1 shows the full test results we collected and analyzed. As mentioned for each
trajectory, an arbitrary interval of 100 s was chosen as the failure period, which could result
in different failure lengths. Based on the provided results, it is clear that our proposed
method overall outperformed the traditional EKF. In all cases, the position error Pe and
the rotation error Ae were lower with the proposed method. In fact, the proposed method
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achieved 1.24765% for overall Pe and 0.02785 deg/m for Ae. Similarly, the proposed method
performed much better on the MSE metric.

Figure 6. Estimated path comparison results for trajectory 4. Green, orange, and blue lines represent
EKF, EKF+CNN with MHA, and ground truths, respectively.

Table 1. Results for the four trajectory paths followed by evaluation metrics. Failure length: moving
track length of robot during SLAM failure period; Pe: position error; Ae: rotation error; MSEavg:
average mean squared error.

Trajectory
Failure
Length
(m)

EKF Proposed

Pe
(%)

Ae
(deg/m)

MSEavg
Pe
(%)

Ae
(deg/m)

MSEavg

1 18.19 1.64180 0.01320 0.02055 0.97901 0.00639 0.01580

2 23.92 3.56478 0.10087 0.11934 2.79777 0.04045 0.07454

3 22.94 1.00380 0.22513 0.04406 0.84346 0.01948 0.01294

4 24.81 0.38022 0.02335 0.00504 0.37035 0.04509 0.00523

Overall 1.64765 0.09064 0.04725 1.24765 0.02785 0.02713

Our trainable EKF CNN with MHA showed improved results over the traditional EKF
estimation due to optimization of process and measurement errors through a combination
of CNN inference, backpropagation, and gradient descent.

In Table 2, we also compared the performance of using different model architectures.
For the implementation of EKF+CNN_1, we removed the MHA layer with skip connection
and kept all the other components, and the EKF+CNN_2 was implemented by removing the
last convolution layer of EKF+CNN_1. EKF+LSTM was also introduced to attempt to learn
the temporal features from the data. As can be seen, eliminating the final convolution layer
reduced Pe and Ae performance overall while somewhat lowering MSE, which EKF+LSTM
also achieved. Nevertheless, the proposed architecture combining CNN and MHA showed
considerable improvements in MSE and lowered Pe a bit. The Ae was still higher than that
of EKF+CNN_1, but in the acceptable range.
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Table 2. Results for the four trajectory paths followed by evaluation metrics. Failure length: moving
track length of robot during SLAM failure period; Pe: position error; Ae: rotation error; MSEo: overall
mean squared error. CNN_1 is the proposed model architecture without the multi-head attention
layer. CNN_2 is the same as CNN_1 but removes the last convolution layer. LSTM is implemented
with a number of 2 layers and a hidden size of 256.

Model
Pe
(%)

Ae
(deg/m)

MSEo

EKF 1.64765 0.09064 0.04725

EKF+CNN_1 1.25114 0.02111 0.04084

EKF+CNN_2 1.46609 0.03109 0.03696

EKF+LSTM 1.35288 0.03138 0.03573

Proposed 1.24765 0.02785 0.02713

Figure 7. The Mean Squared Error (MSE) comparison between EKF and EKF+CNN with MHA for
trajectory 1. Blue and green lines represent EKF and proposed method, respectively

Figure 8. The Mean Squared Error (MSE) comparison between EKF and EKF+CNN with MHA for
trajectory 3. Blue and green lines represent EKF and proposed method, respectively.
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5.4. Discussion

We demonstrated the advantages of our proposed trainable quaternion-based EKF
with CNN and MHA based on the conducted experiments and analysis. Our proposed
method could achieve 1.24765% in Pe, 0.02785 in Ae, and it significantly outperforms other
model architectures in terms of MSE with 0.02713. The results also suggest that a trainable
EKF, which can dynamically adjust process and measurement noise covariance matrices,
can improve localization performance. Moreover, our proposed model architecture pro-
vides scope for fusing the inputs via reinforcing one modality by introducing features from
another modality for the inputs of estimating covariance matrices’ parameters for EKF.

However, the online training cost of the proposed method can limit the overall per-
formance. Furthermore, the time lag introduced by the online model training can be
accumulated and cause deviations at the endpoints because of the limitations of the em-
bedded computing system. Nonetheless, this issue can be solved by transmitting data
to a more powerful server for online training. Furthermore, the future development of
the AI-embedded platform will provide more power to achieve better online training
performance. In conclusion, our results demonstrate that the deep learning model can be
trained and provide predictions in an online training manner in a local integrated system.

6. Conclusions

In this paper, we designed a trainable and adjustable quaternion-based EKF algorithm
with CNN and MHA for the sensor fusion of IMU-based localization and visual–LiDAR–
inertial SLAM. Specifically, we developed an approach where the EKF-based localization
system can provide a more accurate position estimation when SLAM failure occurs during a
short time period. This was performed by tuning the process- and measurement-covariance
matrices trained by CNN through backpropagation and further adjusting the velocity
measurement covariances according to real-time IMU data through network inference.
The approach leveraged the SLAM data as ground truths to compute the mean squared
error of position and orientation estimated by the EKF while training.

For training and estimation, we designed a tandem EKF structure to adapt to the
situation where real-time data from different sources were fused at different frequencies.
Our proposed trainable EKF will be effective in dead-reckoning as a complementary process
of SLAM when SLAM fails, which will enhance accuracy and stability in localization in
complex and dynamic environments. Our future steps will focus on enhancing the structure
of our proposed EKF CNN with MHA by performing multi-IMU fusion with multiple EKF
modules, where each EKF leverages a unique IMU source.
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Abstract: The pervasive use of sensors and actuators in the Industry 4.0 paradigm has changed the
way we interact with industrial systems. In such a context, modern frameworks are not only limited to
the system telemetry but also include the detection of potentially harmful conditions. However, when
the number of signals generated by a system is large, it becomes challenging to properly correlate
the information for an effective diagnosis. The combination of Artificial Intelligence and sensor
data fusion techniques is a valid solution to address this problem, implementing models capable
of extracting information from a set of heterogeneous sources. On the other hand, the constrained
resources of Edge devices, where these algorithms are usually executed, pose strict limitations in
terms of memory occupation and models complexity. To overcome this problem, in this paper we
propose an Echo State Network architecture which exploits sensor data fusion to detect the faults
on a scale replica industrial plant. Thanks to its sparse weights structure, Echo State Networks are
Recurrent Neural Networks models, which exhibit a low complexity and memory footprint, which
makes them suitable to be deployed on an Edge device. Through the analysis of vibration and
current signals, the proposed model is able to correctly detect the majority of the faults occurring
in the industrial plant. Experimental results demonstrate the feasibility of the proposed approach
and present a comparison with other approaches, where we show that our methodology is the best
trade-off in terms of precision, recall, F1-score and inference time.

Keywords: ESN; recurrent neural networks; sensor data fusion; edge computing; industry 4.0; fault
detection; deep learning

1. Introduction

The emergence of the Industry 4.0 paradigm has made modern plants involve several
set of sensors to enable monitoring under many different aspects. The pervasive presence
of sensors and actuators in industrial systems totally changed the interactions with these
systems and paved the way for the realization of more precise control and telemetry
frameworks [1]. On the other hand, when the number of sensors is large, it becomes
difficult to correlate and analyze the information coming from several heterogeneous
data sources and produce an accurate diagnosis of the system’s “health”. In particular,
dealing with signals that can be very different (e.g., in terms of sampling rate, data format,
protocols, etc.) represents one of the major challenges during the selection process of the
more informative signals [2].

In such a context, the use of Artificial Intelligence (AI) techniques based on sensor data
fusion can be considered a viable solution to address this problem. Through machine and
deep learning approaches, we realize intelligent algorithms capable of separately extracting
features from a set of heterogeneous signals and then fuse this information to improve the
predictive performance [3].

Cloud computing paradigm has played a key role in smart factories, acting as a central
entity providing the storage and computing power necessary for the execution of complex
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algorithms [4]. However, when working with industrial applications aiming to predict
the state of a system, time becomes a crucial component. Indeed, being able to perform a
timely detection of a fault condition can avoid more severe consequences while having a
strong impact in terms of time and money.

Today, Edge computing became a common solution to address this problem by shifting
the computation closer to the data, thus improving the security, response times, and con-
nection stability [5]. As a side effect, the use of this paradigm poses significant restrictions
on the type of algorithms that can be performed. In this sense, an Edge device is typically
equipped with a constrained hardware with limited resources, which makes it unsuitable
for the execution of advanced algorithms (e.g., Deep Neural Networks) in an effective
way [6].

Reservoir Computing (RC) [7] is a promising framework deriving from the Recurrent
Neural Networks (RNNs) characterized by a container (called reservoir) that remains fixed
during the training procedure and whose task is to learn complex input dynamics [8,9].
Among the models belonging to the RC, Echo State Networks (ESNs) are a family of neural
networks particularly suitable for the analysis of time series, which embody the power
of RNNs into models with a low number of trainable parameters [10], thus exhibiting a
reduced memory footprint and complexity that can meet the strict requirements of an Edge
device. In the context of fault detection and diagnosis, ESNs have demonstrated their
effectiveness. Most of the approaches available in the literature involve the use of RNNs
models for the analysis of time series. However, some RNNs suffer from unstable gradient
problems that can affect the training process; ESNs address this issue by keeping the fixed
weights contained in the reservoir and training only the output ones [11].

In this paper, we propose an ESN model which exploits sensor data fusion to extract
the dynamics from a set of heterogeneous sensors and to perform a fault detection of a
real-scale replica industrial plant. Through the implementation of a Cloud dashboard, we
are able to collect and label the data generated by the plant and orchestrate the Edge devices
attached to it to perform a real-time prediction. The experimental results demonstrate that
the proposed approach benefits from the merging of separate source of information to
improve its predicting capabilities while keeping the number of parameters low thanks to
the use of an RC model. We also show the effectiveness of our solution when compared
with other approaches.

The paper contributions are manifold. (i) We propose a fault detection model which
exploits sensor data fusion running on a real industrial testbed. (ii) We adopt ESNs such
that the proposed algorithm is suitable to be deployed on the constrained hardware of
an Edge device. (iii) We realize a Cloud/Edge continuum architecture that allows the
management of the data produced by the industrial system and the orchestration of the
Edge devices executing the fault detection. (iv) We produce a comparison with other
machine/deep learning methods in terms of predictive performance, model complexity
and inference time.

The rest of the paper in organized as follows. Section 2 reviews the literature. Section 3
provides a description about the concepts at the base of ESNs. Section 4 presents the pro-
posed proposed approach we implemented to assess the health condition of the industrial
plant. Section 5 describes the experimental results we obtained from testing our technique.
Section 6 concludes the paper and provides some insights for the future works.

2. Related Works

Sensor data fusion is becoming an important resource for the realization of smart
systems. Today, we are living in an era where data of various types coming from a set of
multiple sources are becoming more and more frequent, making the realization of data
fusion approaches a priority. In a context characterized by a multitude of information,
the swarm intelligence paradigm is another important player for extracting important
features from a given dataset [12] or to solve high-dimensional optimization problems [13].
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In this section, we review the works found literature, and we highlight the main differences
with our solution.

The authors in [14] present a review about sensor data fusion methods for real-time
analysis, putting in evidence the main concepts, the core steps and the research challenges.

In [15], the benefits that derive from the use of sensor data fusion as an effective
technique to produce more accurate and reliable results through the combination of data
coming from multiple sources are described. In this work the authors also present diverse
data fusion schemes, highlighting the differences among them.

In [16], a Deep Enhanced Fusion Network (DEFN) is proposed for the fault diagnosis
of wind turbine gearboxes using three-axial vibration signals. In this work, the authors
adopt Sparse Autoencoders (SAEs) to perform the feature extraction process, and such
features are then passed to an ESN to perform the actual fault detection. Although the
obtained results are good, the technique is not meant to be run on the Edge due to the
model’s complexity. In this sense, our model has been designed to run on constrained
devices thanks to its low number of trainable parameters.

The authors in [17] describe a multisensor approach for chattering detection in milling
processes. Starting from sound and vibration signals, they are passed to several feature
extraction processes such as Wavelet Package Decomposition (WPD), WPD parameters
optimization, and the extraction of time/frequency features. Then, these features are passed
as input to an ensemble method made of five algorithms, namely, Random Forest (RF),
Extreme Gradient Boost (XGBoost), Support Vector Machines (SVMs), K-Nearest Neighbor
(KNN) and Artificial Neural Network (ANN), to perform the chatter identification. The
experimental results demonstrated the effectiveness of the authors approach; however,
the large number of processing steps together with the use of an ensemble method produce
a bottleneck during the inference time. When working in fault detection applications,
the response time is a key factor. Our approach benefits from the use of ESNs, which exhibit
a fast inference time suitable for industrial applications.

In [18], the authors propose a vibro-acoustic data fusion approach based a one-
dimensional Convolutional Neural Network (1D-CNN) for bearing fault detection. The
model presented in this work adopts CNNs to separately extract the features from vibration
and acoustic signals. Then, these features are combined together and passed to a series of
fully connected layers that perform the feature fusion. The approach obtained very good
results; however, compared to ESNs, CNNs require a larger number of trainable parameters,
which could not fit the memory requirements. Moreover, if not properly parametrized
CNNs are more prone to overfitting. A similar approach is described in [19], where the
authors adopt a 2D-CNN to fuse data coming from multiple current sensors and to perform
an automatic feature extraction process. Although the results obtained are good, these
method suffers from the same problem highlighted in [18].

The work presented in [20] makes use of a sensor data fusion approach to predict
the Remaining Useful Life (RUL) of electromagnetic pumps. Given the pressure and
vibration signals collected from the pump, the prognostic algorithm adopts a multi-objective
genetic algorithm based on Long Short-Term Memories (MOGA-LSTM). The authors have
successfully demonstrated the effectiveness of their technique, but exactly as in the previous
cases, this algorithm is not designed to be executed of an Edge device. In our application
context, this aspect is of fundamental relevance in terms of quick response times, privacy
and security.

In [21], a sensor data fusion algorithm based on NARX neural networks is proposed
to predict the mass flow in sugarcane harvesters. In this case, the input data are passed to a
single hidden neuron for the feature extraction process; if, on the one hand, this reduces
the model complexity, on the other, it does not exploit the full potential of sensor data
fusion that allows it to analyze each input separately to achieve a tailored feature extraction.
Of course, when the number of inputs is large, this could lead to models with a lot of layers
and parameters. To mitigate this effect in our solution, we adopted ESNs, which keep fixed
the majority of their weights.
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The authors in [22] discuss the misalignment fault classification and describe a solution
based on SVMs and vibro-acoustic sensor data fusion. Such data are used to analyze the
system under different load conditions and operative settings and reached a 100% accuracy
in detecting the faults. If, on the one hand, the authors obtained impressive results, on the
other, the use of SVMs does not allow for catching time dynamics that only an RNN is able
to catch.

In [23], a work for gear fault classification in rotating machines is presented. Starting
from a set of vibration sensors, the models adopts Coherent Composite Spectrum (CCS) for
a first feature extraction. Then, Principal Component Analysis (PCA) and ANN are used
to perform the dimensionality reduction and a further feature extraction. These are then
merged and passed to a fault classification block for the actual prediction. The authors
demonstrated the effectiveness of their approach and the benefits derived from the use of
PCA that allowed them to reach a 100% accuracy.

3. Echo State Networks

ESNs are a family of neural networks which belong to the RC models class particularly
suitable for the analysis of time series data [24,25]. From an architectural point of view,
an ESN is equivalent to an RNN, except for the presence of a sparse and randomly connected
recurrent structure called a reservoir performing the feature extraction process. A peculiar
aspect of this layer is the fact that the reservoir weights are fixed and do not change during
the training process. Figure 1 depicts an ESN architecture, where the green and the black
arrows are the trainable and the not-trainable weights, respectively, while the red lines
indicate possible, but not required, connections.

input (K) reservoir (N) output (L)

Figure 1. ESN architecture.

Given an ESN with K input units, N reservoir units and L output units, we can define
the equations which govern the ESN as follows:

x(t + 1) = f (Win · u(t + 1) + Wr · x(t) + Wb · y(t)), (1)

y(t + 1) = g(Wout · [u(t + 1), x(t + 1), y(t)]), (2)

where x(t + 1) is the new computed reservoir state and is a function of the new input
u(t + 1), the state x(t) and the output y(t). As far as Win, Wr and Wb, they are matrices
of N × K, N × N and N × L elements, which store the weights between the input and
reservoir layers, the reservoir weights and the backwards connections between the output
and reservoir layers, respectively. Finally, f (·) is the activation function wrapping the
equation (typically the sigmoid or the tanh).

With respect to the output equation, it is obtained as the concatenation of the new
state x(t + 1), the input u(t + 1) and the previous output y(t); in this sense, the output
is “affected” by the past history of the model. The Wout is an L × (K + N + L) matrix
containing the only trainable weights of the network (i.e., those connecting the reservoir
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layer to the output). Also in this case, an activation function g(·) (typically a sigmoid or the
identity) wraps the equation to generate the actual output of the network.

Compared to other RNN models such as Gated Recurrent Units (GRUs) and LSTMs,
ESNs can exploit the sparse recurrent structure of reservoir layer to achieve comparable
results using much less parameters. In this sense, a model with a reduced number of
parameters is less prone to overfitting, a well-known problem when working with complex
Deep Neural Networks (DNNs), where a huge number of parameters produces large mod-
els. Evidently, this involves a reduction in the model memory footprint, a key aspect that
should not be underestimated especially in this period where the majority of applications is
migrating towards the constrained hardware of Edge devices. Another advantage of ESNs
is represented by their faster training/inference time thanks to the fact that the majority of
the weights are kept fixed. Considering our industrial scenario where the system response
time is a crucial requirement, together with a small model footprint such that it can fit the
hardware of an Edge device, the above-mentioned features motivated the choice of ESNs
as a preferable approach over other solutions.

However, if, on the one hand, the sparse and fixed reservoir weights allow reducing
the ESN model complexity and speed-up the training process due to the reduced number of
parameters, on the other, the impossibility of optimizing these weights can lead to unstable
results due to the random initialization [26]. Such an effect can be mitigated by using
large reservoir structures to incentivize the creation of subnetworks that can catch a large
number of input dynamics [8,24], but this still remains one of the main limitations of these
networks.

When working with ESNs, it is also very important to satisfy the separation and echo
state properties to make them properly work. With respect to the first one, it ensures the
generation of separate states given different inputs. Such a condition is fundamental to
avoid the extraction of the same patterns for several inputs that would inevitably cause the
collapse of the ESN. In this sense, the adoption of large and sparse reservoirs is necessary
to meet this property by “encouraging” the formation of mixed connections with the input
layer that stimulate the production of different states and features. The echo state property
(from here, the name of these networks) states that the effects of the inputs and the previous
states in Equation (1) should gradually vanish over time. Indeed, this is a very important
feature for an ESN since it allows balancing the present and past history of the model,
so that the output is equally affected. Unlike the previous case, the satisfaction of this
property comes from empirical tests, where it has been demonstrated that a Wr weight
matrix with a spectral radius (i.e., the largest eigenvalue in absolute value) lower than one
is a necessary (but not sufficient) requisite. The use of weight scaling techniques produce
suitable matrices which meet this condition; however, it is worth to mention that for specific
types of inputs, this could be neither necessary nor sufficient. For this reason, the echo state
property is still the object of study.

4. Proposed Data Fusion Approach

In this subsection, we introduce the scale replica plant used as an industrial testbed,
and we present the proposed approach which merges sensor data fusion and ESNs to assess
its working conditions.

4.1. Industrial Testbed

The industrial testbed we used is a scale replica of an assembly plant for the trans-
portation of car pieces adopted in automobile factories. It is powered with two gear motors,
a set of six belts, and a mobile cart that can move back and forth. We instrumented the
plant with vibration and current sensors to enable a mechanical and electrical monitoring,
and we equipped it with a set of Edge devices for the real-time execution of our fault-
detection algorithm. In particular, we used a VTV-122 sensor by IFM electronics to measure
anomalous vibrations due to the brake system or cart proximity switch malfunctioning.
The sensor operates with a power supply between 9 and 32 V and outputs a 4–20 mA signal.
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For the electrical part, we used an inverter of the S100 series by LS Industrial Systems that
we directly attached to one of the gear motors. The inverter uses a power supply between
200 and 240 V and generates an analog current output in the range 0 to 20 mA. On the
Cloud side, we realized a platform, accessible via a web dashboard, through which we can
collect and label the data produced by the sensors and orchestrate the Edge side deploying
new deep learning models, thus creating a Cloud/Edge continuum architecture.

In such a context, the possibility to manually inject faults in our scale replica testbed
(e.g., the introduction of external vibrations along the plant structure, the failure of the
brake system, the increment in gears friction, the change of belts tension, etc.) has been
fundamental to enable the data labeling of anomalous patterns, and gave us the opportunity
to study the testbed also when subject to a faulty condition.

Figure 2 depicts the Cloud dashboard we realized to orchestrate the Edge devices
connected to the industrial plant. It is divided into four sections. The first one allows the
labeling of the data collected through industrial plant and their storage under different
operating conditions of the system. The second one defines the starting and ending dates
and time that the system will use for making a query to the internal Cloud database and to
retrieve the training data. At this step, the user can also define the windows size to split the
input signals into smaller time sequences to be analyzed. The third section is used to start
the inference at the Edge in order to assess the working conditions of the industrial plant.
Here the window size performs the same task as in the training process. Finally, the fourth
section returns a report of the trained model by showing its performance and informing
the user which model is going to be injected at the Edge.

04 mar 2022

07 mar 202207 mar 2022

Window size

Window size

ESN fusion model

Figure 2. Dashboard running on the Cloud to orchestrate the Edge devices.

4.2. Fault Detection

Catalyzed by the advent of the Industry 4.0, modern systems faced a complete transfor-
mation that revolutionized the way to interact with them. Today, we can observe industrial
plants that are equipped with a large number of sensors and actuators, becoming a “smart
entity” with a self-awareness that can help the human operator during the execution of sev-
eral tasks. In such a context, one of the most important aspects is the diagnosis of industrial
systems conditions, which became a central research topic. Preventive maintenance is no
longer an option that can considered: The huge amount of components in industrial plants
makes the use of this approach unsustainable, and for this reason, modern solutions are
moving towards the realization of predictive frameworks capable of detecting abnormal
behaviors before the occurrence of the fault.

However, when working with complex systems, the generation of an accurate diag-
nosis can be very challenging due to strong nonlinearity, data heterogeneity and the large
number of process variables to take into account. Deep learning can address this problem
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through the definition of advanced predictive models that can manage a large number
of inputs and learn hidden relationships among them. Fault detection represents a key
element to recognize harmful patterns that usually anticipate a failure, thus reducing the
maintenance costs of a system [27].

Along with fault detection, it is worth mentioning the crucial role played by Edge
computing; the wide spread of this technology (which rapidly became the core element
of smart factory frameworks) is a perfect example that proves the effectiveness of this
paradigm. In a context where a large part of the tasks operated by an industrial system
is executed in real time emerges the necessity to perform specific analyses very close to
where the data are generated. Also in terms of security, Edge computing can be very
useful to better preserve data privacy by performing the inference process on data stored
locally. With particular reference to the industrial scenario, where the data can be sensitive,
the capabilities of this technique allow the realization of more secure applications. How-
ever, moving the computation towards these devices poses significant limitations on the
realization of algorithms that should meet their strict hardware resources to run effectively.

4.3. Sensor Data Fusion Model

The fault detection problem has been faced as a supervised binary classification prob-
lem where we considered two possible working states for the plant, namely, a normal
condition and an anomalous one. Figure 3 shows a block diagram with the main steps
performed in our framework. The data collection methodology we adopted is the following.
In order to have a monitoring from both the electrical and mechanical point of view, we
instrumented the plant with a vibration sensor directly attached on its structure and a
inverter that we connected to one of the engines to measure the absorbed current. With re-
spect to the sampling rates, we set the vibration signal to 30 Hz, which, from the empirical
tests, was demonstrated to be a good trade-off in terms of computational complexity and
signal reconstruction. Regarding the inverter, we set its internal sampling rate to 120 Hz
in order to meet the Nyquist frequency; however, we noticed that the absorbed current
remained stable for the majority of the time, exhibiting a change only when a fault was
occurring. Considering that these signals are also analyzed in real time by an Edge device
with limited computing capabilities, working with such a high rate would be unfeasible.
For these reasons, we created a script to interrogate the inverter with a 5 Hz rate. The data
collection phase lasted about 46 h; we started collecting the data under a normal operating
setting for about 29 h, in which the plant was properly working and the cart was able to
move back and forth. After this step, in the remaining 17 h, we started the injection of the
anomalies (for about 8.5 h each and one at a time) inside the system, first increasing the
friction of the gears and then changing the belts’ tension. At the end of this process, we
collected ∼5 M of vibration samples (i.e., ∼3 M normal, and ∼2 M anomalous) and ∼800 K
current samples (i.e., ∼5 K normal, and ∼3 K anomalous).

Sensor Data 
Fusion ESN 

model

Fault 
Detection

Data 
Collection

Resampling 
Process

Sequences 
Generation

Figure 3. Block diagram showing the steps performed in our framework.

Figure 4 depicts the current and vibration signals collected from the industrial plant in
correspondence of the two above-mentioned conditions. The first problem we faced work-
ing with these signals has been to make them have the same sampling rate. Specifically, we
adopted the SciPy Python library, which exposes some utility APIs for signals resampling;
in this sense, since the vibration exhibited a much higher number of samples than the
current, we performed an upsampling process on the last one. When working with time
series, having a homogeneous sampling rate is fundamental to avoid a time uncorrelation
between signals that would inevitably affect the overall prediction performance.
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Figure 4. Current (left) and vibration (right) raw signals collected from the industrial plant in
correspondence of the normal and anomalous conditions.

Then, we performed a second data preprocessing to split the raw signals into multiple
time sequences by applying an overlapping sliding window. As an effect of this step,
we were able to reduce the inputs complexity by focusing on smaller parts, in addition,
the analysis of several sequences instead of the whole signal allows a better feature extrac-
tion. The choice of the window size strongly depends on the signals characteristics (e.g.,
sampling rate, variability, frequency, etc.); in our empirical experiments, we tested several
windows values using as evaluation indices the resulting model prediction performance
and model complexity. At the end of this step, we selected a window size of 50 samples for
the input sequences that resulted to be the best trade-off. At the end of these preprocessing
steps, data were ready to be passed to the sensor data fusion model.

Figure 5 shows the proposed sensor data fusion ESN model. It is structured into two
parts: a feature extraction and a predictive one. Unlike a “traditional” model, where input
data are typically treated as a single monolithic block, in this case, we can notice that each
signal is separately managed and passed to an ESN. Such a separation has two effects:
(i) It improves the model input scalability, since the addition of new signals requires a
change only in the feature extraction part and not of the entire topology; (ii) it allows a
tailored feature extraction according for each input. In such a context, where inputs are
time series signals, the use of RNN structures represent a valid solution to find hidden
time dynamics that a normal machine learning model would not be able to catch. However,
when working with recurrent models such as LSTMs or GRUs, they are prone to generating
a lot of parameters and require a careful parametrization. In this sense, the choice of ESNs
resulted in being a good option since they work very well as time features extractors [28]
and use a low number of trainable parameters which make them lightweight, fast to train
and suitable to fit the hardware of an Edge device. At this step, each ESN analyzes only one
signal separately from the other one; by means of their reservoir, they are able to extract
from the input sequences a hidden vector containing the temporal features. The main idea
behind this model is that the reservoir represents a latent space. In fact, thanks to its large
dimensionality, this non-linear part of the system can extract relevant features (at a higher
abstraction layer) deriving from the input series.

The predictive part of the model starts with the Fusion layer which acts as a connecting
bridge between the input branches. At this level, the features extracted in the previous
layers are concatenated together performing the actual sensor data fusion. Finally, the ESN
layers connected in cascade have the task to perform a further feature extraction process
necessary for the prediction whose results are stored in the output layer. According to the
prediction task, the output layer can have various shapes and adopt different activation
functions. For example, in the case of a multiclass classification problem, the output layer
will have as many neurons as the number of classes to be predicted and will adopt a softmax
activation function to produce the probabilities for a given input to belong to each of them.
On the other hand, if the task to be addressed is a binary classification, then in this case is
sufficient to use as output a single neuron with a sigmoid activation to evaluate the class to
which the input belongs to.
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Figure 5. Proposed Sensor data fusion ESN model.

Let us define the mathematical model of our sensor data fusion ESN. If we consider
a model with m separate inputs, then we can write the state and output equations of the
generic ith ESN as follows:{

x(t + 1)i = f (Wi
in · u(t + 1)i + Wi

r · x(t)i)

h(t + 1)i = f (Wi
h · x(t + 1)i),

(3)

where the equations reported in Equation (3) are a variation of the ones shown in Section 3
and obtained by removing the not required connections (i.e., the red arrows of Figure 1).
In such a context, the output of each ESN is a hidden vector h(t + 1)i storing the temporal
features extracted from the reservoir layer. Unlike Equation (2), in this case, the Wh matrix
does not contain trainable weights as the output of the ESN is in turn a hidden vector:

⎧⎪⎨
⎪⎩

F(t) = [h(t + 1)1, h(t + 1)2, ..., h(t + 1)m]

X(t + 1) = f (WF · F(t + 1) + WR · X(t))
y(t + 1) = φ(Wout · X(t + 1)).

(4)

In Equation (4), we report the equations modeling the predictive part, where F(t) is
the output of the fusion layer obtained as the concatenation of the features extracted in
previous part. Since we adopted ESNs also in this part of the model, the equations are
equivalent to the ones used in Equation (3), with the main difference being that, in this case,
the input is no longer represented by the input signals (e.g., current and vibration) but by
the features extracted from them. This is evident from the second equation, where the new
computed state X(t + 1) depends on F(t + 1) (i.e., the features extracted and fused together
at the t + 1 timestep) and on the state X(t). WF and WR matrices play the same role of Win
and Wr of Equation (1), and for this reason, their weights are kept fixed. Finally, y(t + 1)
represents the actual output of the sensor fusion model, storing the prediction value; it
is equivalent to the output of an ESN since it only depends on the new computed state
X(t+ 1) and the Wout matrix containing the only trainable weights of the entire architecture.
As usual, the entire expression is wrapped by an activation function φ, which can be either
the softmax or sigmoid based on the classification problem being addressed.

5. Experimental Results

In this section, we present the results obtained from testing the proposed sensor data
fusion ESN model. The dataset extracted from the industrial plant is provided with binary
labels such that normal and anomalous samples are labeled as 0 and 1, respectively. The
splitting of the dataset has been performed using the Scikit-learn framework [29] by means
of the train_test_split function, which takes as input the data and the test size percentage
and returns the dataset split into train and test sets. In our experiments, we adopted a test
size of 20%, leaving the rest (i.e., the 80%) for the training process. For the hyperparameters’
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tuning and validation, we extracted 15% from the training data so that the test set contains
samples used exclusively for the model’s evaluation. Moreover, it is worth mentioning that
the following results have been averaged over a set of experiments in order to obtain a
more precise evaluation.

For a better understanding, in Table 1 we report the proposed model configuration
adopted in our experimentation. Such parameters derive from a grid search approach
implemented using Keras Tuner (https://www.tensorflow.org/tutorials/keras/keras_
tuner, accessed on 14 March 2022), during which we evaluated the network predictive
performance in terms of accuracy when varying the number of ESN neurons in each layer.
With respect to the feature extraction part, we used 2 ESNs (one for each input) with
20 neurons and the tanh as the activation function (representing the standard for these type
of networks). Regarding the prediction part, it is composed by 2 ESNs connected in cascade
with 16 and 4 neurons, respectively, with the tanh as activation. In both cases, we adopted
a spectral radius of 0.9 and a connectivity of the 10% in order to meet the separation and
echo state properties (see Section 3). For the trainable weights’ optimization, we used the
Adam optimizer with a learning rate of 0.001, and we set the limit of the training epochs to
2000. Moreover, to avoid model overfitting, we used an early stopping approach to halt
the training process if the model is not able to reduce the loss for a consecutive number of
epochs defined by the patience term that we set to 10. Such a technique avoids a network
“overtraining” that would inevitably cause the memorization (instead of the learning) of
the input–output relationship and a consequent reduction in the model’s generalization
capabilities. Finally, the output layer is defined by a single neuron associated with a sigmoid
activation function to perform the binary classification.

Table 1. Proposed model configuration.

Training Parameters

ESN neurons feature extraction part 20

ESN neurons predictive part 16, 4

ESN spectral radius 0.9

ESN connectivity 0.1

Output neurons 1

Activation functions tanh, sigmoid

Learning rate 0.001

Training epochs limit 2000

Optimizer Adam

Patience term 10

Figure 6 depicts the validation curves derived from the training procedure of the
proposed sensor data fusion ESN model.

The proposed approach performed very well on the test set producing results com-
parable to the ones obtained during the training. With a precision of 1.0, a recall of 0.993
and a F1-score of 0.996, our solution is able to correctly predict the conditions of the testbed
with a very low number of false positives and false negatives, a very important aspect for
an algorithm running in an industrial plant. The use of ESNs for both the feature extraction
and prediction parts result in an effective choice that allowed us to maintain a low amount
of trainable parameters (i.e., 201) while achieving a good level of predictive performance.
This, of course, has an impact not only in terms of memory footprint but also in terms
of training performance that could be affordable even for an Edge device. In this sense,
being able to perform an on-device training directly at the Edge could pave the way to
industrial application scenarios where the plant would learn in real time the occurrence of
new fault patterns.
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Figure 6. Validation curves extracted from the proposed model after the training process. In (a), we
can observe that both the train and validation losses follow a decreasing trend as the number of
training epochs increases. Both the curves converge at a very low value of the loss around zero, thus
demonstrating that the model correctly learned the relationship between the input and the output
with a very good level of generalization. Such a condition is also proven by (b), where, in this case,
the training and validation accuracy increase with the training epochs, reaching very high values
around one.

To demonstrate the effectiveness of the proposed approach, we performed a series of
comparisons with other models and techniques. Specifically, we considered six different
approaches, namely: a model involving both ESN and fully connected layers (ESN + FC)
which does not adopt sensor data fusion, a One Class Support Vector Machine (OCSVM)
approach, an Isolation Forest (IF) model, a fully connected DNN (FC-DNN), a 1D-CNN
approach like the one presented in [18] and an LSTM network. All the models have been
implemented using TensorFlow and Scikit-learn frameworks [29,30].

For a better vision, we report in Table 2 the results for each of the above-mentioned
models in terms of precision, recall, F1-score and the model complexity according to the
number of trainable parameters.

Table 2. Models’ comparison.

Model Precision Recall F1-Score #Trainable Params.

ESN+FC 1.0 0.976 0.987 925

OCSVM 0.753 0.753 0.753 -

IF 0.843 0.294 0.435 -

FC-DNN 0.992 0.973 0.982 2,873

LSTM 1.0 0.993 0.996 7,705

1D-CNN [18] 1.0 0.994 0.996 1,077

Proposed Sensor data fusion ESN 1.0 0.993 0.996 201

With respect to the ESN+FC model, we implemented it using an architecture similar
to the one shown in Figure 5. In particular, we used a single ESN of 40 neurons and the
tanh as activation. Since this model does not adopt sensor data fusion, both the current
and vibration signals are treated as a single block and passed to the ESN to perform the
feature extraction process. For the prediction part, we used 3 fully connected layers of 16
and 4 neurons with Rectified Linear Unit (ReLU) as activation and a single neuron (i.e.,
the output) with sigmoid as activation. The model achieved very good results in terms
of precision, recall and F1-score (i.e., 1.0, 0.976 and 0.987, respectively), comparable to the
ones reached by our model, but using 925 trainable parameters.

For the OCSVM, Scikit-learn exposes several parameters that can be set. In our
experiments, we set a penalization term (i.e., an L2 penalty) C of 0.8, and we left the gamma
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coefficient to “auto”, a special value of the library that automatically sets this coefficient
to 1/(# f eatures). The most important parameter is the kernel, which specifies the type
of transformation to be used by the algorithm when fitting the training data. Scikit-learn
proposes different alternatives such as linear, polynomial, radial-basis (RBF) and sigmoid.
From our tests, the RBF returned the best results with a precision, recall and F1-score of
0.753, which, however, are sensibly lower than the other approaches. In terms of trainable
weights, neither the algorithm nor the library provide this information, and for this reason,
we did not report it in Table 2.

The IF required a lower number of parameters to be set. To select the best number of
estimators to be used in the ensemble, we performed multiple experiments when varying
this parameter in the range 5–100 with a step of 5. What we noticed is that the performance
remained (on average) very similar with few oscillations starting from 50 estimators, and for
this reason, we adopted this value. The model reached a good level of precision equal to
0.843 but resulted in the worst recall and F1-score among all the approaches with 0.294 and
0.435, respectively. Like the OCSVM, the algorithms do not make use trainable weights
to execute.

With regards to the FC-DNN, in this case, our goal was to test the performance of a
model not having recurrent connections and therefore unable to detect time relationships.
For the realization of this topology, we used 5 hidden layers of 64, 32, 16, 4 and 1 neurons
connected in cascade using the ReLU as the activation function, except for the output
neuron, which adopts as usual the sigmoid. The obtained results are comparable with the
ones reached by the first ESN model with a precision of 0.992, a recall value of 0.973 and a
F1-score of 0.982. On the other hand, it resulted in being the model with the second largest
number of trainable parameters (i.e., 2873) due to the only presence of fully connected
layers which contain a lot of parameters to be trained, thus making it unsuitable for the
hardware resources of an Edge device.

We also realized a model exploiting sensor data fusion LSTM, which represent the
state-of-the-art in terms of RNNs. To make a fair comparison, in the feature extraction part,
we used 2 LSTMs (i.e., 1 for the current signal and 1 for the vibration) with 20 neurons and
tanh activation function. With respect to the predictive part, we used 2 LSTMs connected in
cascade with 16 and 4 neurons with tanh activation and terminated by a layer with 1 neuron
using the sigmoid. Although the LSTM reached the same results achieved by the proposed
method, it resulted in being the largest model with 7705 trainable parameters. Such a result
proves the power of this type of RNN, which, however, requires the optimization of a huge
number of variables.

In the 1D-CNN model, each input is passed to an one-dimensional convolutional
layer with 20 filters, a kernel size of 3, a stride of 1 and ReLU as the activation function.
The features extracted at this stage are then passed to 2 fully connected layers connected
in cascade with 16 and 4 neurons and with ReLU as activation function. Also in this
case, the output layer consists of one neuron using the sigmoid to perform the binary
classification. The overall performance reached by the model was good, with a precision of
1.0, a recall of 0.994 and a F1-score of 0.996; on the other hand, it resulted in being the third
largest model after the FC-DNN and LSTM models with 1077 trainable parameters.

As already mentioned, time is a crucial component, especially in fault detection
applications, where a prompt response can save a system from a total breakdown. To this
aim, we conducted a comparison of the models average inference time, focusing our
attention only on the neural network models which returned the best performance when
compared with IF and OCSVM approaches.

Figure 7 shows the average inference time of the five neural network models we
considered in our experimentation. With respect to the ESN + FC model, it reached an
inference time of 0.37 s; in such a context, we can observe that the use of the ESNs in the
feature extraction part is beneficial, making this approach one of the fastest. The FC-DNN is
one of the slowest models due to its large number of trainable parameters, with an average
inference time of 0.57 s. Regarding the 1D-CNN, we observed a slight improvement with
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respect to the DNN with an inference time of 0.45 s. From an architectural point of view,
this model is very similar to the ESN+FC one: They share, in fact, the same number of fully
connected layers, the same neurons and the same activation functions. The only difference
is represented by the feature extraction process, which is performed through an ESN and
a convolutional layer. Such a result, further demonstrates the effectiveness of ESNs in
reducing the inference time thanks to their sparse structure and low number of parameters.
As we would expect, the LSTM model resulted in being the slowest model, with an average
inference time of 1.03 s. Finally, the proposed sensor data fusion ESN, which in the previous
analysis exhibited the lowest amount of parameters, in this case, resulted in being the
fastest among the other models with an average inference time of 0.16 s.

ESN+FC FC-DNN 1D-CNN LSTM Prop. Sensor data fusion ESN
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Figure 7. Models’ average inference time.

The results derived from these comparisons demonstrate the effectiveness of the
proposed approach, which reached a good level of performance comparable with the ones
achieved by other neural network models while using a very low number of trainable
parameters and exhibiting the fastest inference time. The combination of these results
makes our model sufficiently small to be deployed on an Edge device with a response time
suitable for the detection of faults in an industrial application context. However, we should
point out that even if nowadays most of the industrial plants are provided with historical
databases, it can happen that the data labeling process it not available or possible. In this
sense, the supervised nature of the proposed approach poses a limitation to those contexts
where it is possible to gather labeled data.

6. Conclusions

In this paper, we proposed a sensor data fusion model that exploits ESNs to perform
the fault detection at the Edge of a real-scale replica industrial plant. Although the su-
pervised nature of our method limits its applicability, the experiments demonstrated the
feasibility of the proposed approach. Thanks to the use of ESNs we were able to obtain a
model which achieved a very good level of performance with a precision of 1.0, a recall
of 0.993 and a F1-score of 0.996, while keeping a limited number of trainable parameters.
Such a result makes our approach suitable to be deployed on the constrained hardware of
an Edge device; moreover, the fast inference time exhibited by our solution allows us to
perform a real-time detection of faults in industrial systems.

Future works will be devoted to the improvement of the proposed technique through
the realization of an unsupervised scheme capable of extracting useful features from the
inputs and perform a fault detection on unlabeled data, to the use of a larger number of
signals for a better plant monitoring and to the implementation of an on-device training
procedure in order to enable a continuous learning application where the industrial plant
can autonomously learn the emergence of new fault patters.
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Abstract: Samples from various winemaking stages of the production of sparkling wines using
different grape varieties were characterized based on the profile of biogenic amines (BAs) and the
elemental composition. Liquid chromatography with fluorescence detection (HPLC-FLD) combined
with precolumn derivatization with dansyl chloride was used to quantify BAs, while inductively
coupled plasma (ICP) techniques were applied to determine a wide range of elements. Musts, base
wines, and sparkling wines were analyzed accordingly, and the resulting data were subjected to
further chemometric studies to try to extract information on oenological practices, product quality,
and varieties. Although good descriptive models were obtained when considering each type of
data separately, the performance of data fusion approaches was assessed as well. In this regard,
low-level and mid-level approaches were evaluated, and from the results, it was concluded that more
comprehensive models can be obtained when joining data of different natures.

Keywords: sparkling wine; biogenic amines; elemental composition; wine quality; winemaking
practices; principal component analysis; data fusion approach

1. Introduction

Data fusion approaches have been considered an excellent way to enrich datasets,
particularly for improving the descriptive performance of the method and the overall
quality of the information [1,2]. The original datasets obtained with different analytical
methods can be simply joined in a global matrix according to so-called low-level data
augmentation to be further analyzed with the arsenal of chemometric methods available
for characterization, classification, and quantification purposes. In addition, raw data
from various sources can be pretreated specifically using chemometric methods, and the
resulting individual post-processed matrices can be combined by using mid- or high-level
data fusion. Hence, data augmentation approaches are especially fruitful in food analysis
for dealing with characterization, classification, and authentication issues [3–5].

More specifically, in the case of wines and related alcoholic beverages, several studies
have been conducted based on data fusion. Ranaweera and coworkers published an
overview of wine authentication based on spectroscopic data and further chemometric
analysis [6]. In a broader sense, Arslan and coworkers reviewed the characterization
and authentication of alcoholic beverages by nondestructive instrumental techniques and
chemometrics [7], and da Costa et al. focused on beers [8]. Among the analytical techniques
used to generate data of high quality, near- and mid-infrared spectroscopies have been
widely used for the authentication of grappa and other spirits [9,10], wine vinegar [11],
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Mexican tequila [12], and beers [13,14]. In addition to vibrational data, other spectroscopies,
such as UV–vis, excitation–emission fluorescence, and nuclear magnetic resonance, have
also been suggested for different classification and characterization purposes [10–16]. For
fast, selective, and sensitive analyses, high-resolution mass spectrometry combined with
flow injection analysis has offered new opportunities for red wine discrimination and
classification [17]. Electronic devices, including e-noses and e-tongues, have also been
introduced for wine characterization, and the data gained from these techniques have
often been combined to obtain more comprehensive descriptions [18–21]. For instance,
colorimetric sensor arrays based on dyes exhibiting different cross-selectivities towards
the analytes were used for the discrimination of alcoholic beverages, including beers and
spirits [22–24]. These devices, when operated in the gas phase, resulted in optoelectronic
noses in which sample recognition relied on volatile species such as aldehydes and ketones.
An interesting review of optoelectronic noses can be found elsewhere [25]. Another widely
used approach to generate instrumental data to assess wine features relies on separation
techniques, including capillary electrophoresis, gas chromatography, and especially liquid
chromatography. Several studies using chromatographic data have been reported in the
scientific literature for the classification of Lambrusco wines [26], grappa spirits [10], and
rums [27]. Multi-sensor data integrating information from a wide variety of analytical
techniques have also been introduced for wine analysis. For instance, Izquierdo-Llopart
et al. studied the classification of sparkling wines as a function of grape variety and coupage
using concentrations of organic acids, phenolic compounds, antioxidant capacity, pH, total
acidity, ethanol, or reducing sugars [28]. In another recent publication, Cavdaroglu and
Ozed developed a strategy for the prediction of vinegar processing parameters based on
UV–visible and mid-infrared spectra, pH, Brix, total acidity, total flavonoid content, total
and individual phenolic contents, organic acid, sugar, and ethanol concentrations [29].

In this publication, we explore the combination of biogenic amine (BA) and elemental
compositions in an attempt to find markers of winemaking practices and product quality.
BAs are low-molecular-weight nitrogenous compounds arising from the decarboxylation
of amino acids, which are especially abundant in wine, cheese, meat, fish, and spoiled
products [30]. BAs provide valuable information on wine quality and oenological fac-
tors [31,32]. In wine and cava, concentrations of BAs can provide valuable information on
product quality, as they are also a good indicator of food safety. BA contents depend on
the agricultural practices involved in the production of grapes, the grape variety used, and
the processes of vinification and aging, especially if the wine is exposed to the activity of
microorganisms or free amino acids are present. Indeed, alcoholic and especially malolactic
fermentations are principal processes involved in BA generation due to the presence of
yeasts and bacteria. Some microorganisms can decarboxylate amino acids with specific
enzymes to form biogenic amines, thus significantly increasing their content. Once the
BAs are formed, they are relatively stable in the wine samples. Putrescine, ethanolamine,
tyramine, and histamine are abundant in the final products to be commercialized. Some
representative recent examples dealing with the relevance of BAs as biomarkers of wine
quality are summarized in Table 1.

Table 1. Recent examples illustrating the potential role of BAs as quality markers.

Analytes Sample Type Method Remarks Ref.

Putrescine, ethanolamine,
histamine, tyramine,

cadaverine,
phenylethylamine,

agmatine, tryptamine,
spermine, and spermidine

Musts, base wines, and
sparkling wine; Xarel·lo
and Pinot Noir varieties

HPLC-FLD with
precolumn derivatization

using dansyl-Cl

Putrescine, ethanolamine,
tyramine, and histamine
are the most important in

wine quality

[33]
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Table 1. Cont.

Analytes Sample Type Method Remarks Ref.

Isopenthylamine,
ethanolamine,

methylamine, ethylamine,
spermidine, spermine,
putrescine, tyramine,

histamine, cadaverine, and
tryptamine

Red and white Croatian
wines from Hrvatsko
zagorje and Dalmatia

regions

HPLC-UV with
precolumn derivatization

using dansyl-Cl

BAs are a discriminating
factor for a grape variety
and geographical origin

for red wines

[34]

Putrescine, histamine,
tyramine, cadaverine,

phenylethylamine,
tryptamine, spermine, and

spermidine

Red and white wines from
Chinese markets

HPLC-FLD with
precolumn derivatization

using dansyl-Cl;
liquid–liquid extraction

of derivatives

Predominant BAs were
putrescine, tyramine, and

2-phenylethylamine
[35]

Putrescine, ethanolamine,
histamine, tyramine,

cadaverine,
phenylethylamine,

tryptamine, and agmatine

Red Spanish wines;
monovarietal ‘Tempranillo’

wines (young, oak, and
aged)

UHPLC-FLD with
precolumn derivatization

using OPA

Storage time,
temperature, and bottle

closing influence BA
levels. Cork stopper and
refrigeration are the best
conditions to prevent the
increase in histamine and

tyramine

[36]

Volatile compounds, amino
acids, and amines;

agmatine, histamine,
spermidine, tyrosine,

phenylethylamine,
isoamylamine, putrescine,
tyramine, and tryptamine

Spanish Sparkling wines
from Verdejo, Viura,

Malvasia, Albarin, Godello,
Prieto Picudo, and

Garnacha; “Champenoise”
method

HPLC-UV with
precolumn derivatization

using diethyl
ethoxymethylene-

malonate

Albarin and Prieto
Picudo wines showed the

highest BA content
[37]

Methylamine, ethylamine,
putrescine, cadaverine,
histamine, spermidine,

spermine,
phenylethylamine,

tyramine, and tryptamine

Alcoholic beverages
including red and white

wine

Ion-pair chromatography
with butane-sulfonic acid;

HPLC-potentiometric
detection; multi-walled

carbon nanotube sensing
membrane

Tyramine and tryptamine
are the most abundant in

red wine; spermidine,
spermine, and

tryptamine are the most
abundant in white wine

[38]

Histamine, putrescine,
cadaverine, and tyramine

“Refosk” wine from
Slovenian-Italian Karst

region

HPLC-UV with
precolumn derivatization

using dansyl-Cl

Some strains of
Lactobacillus have the

ability to produce BAs
[39]

Cadaverine, hexylamine,
histamine,

phenylethylamine,
putrescine, and tyramine

Chinese wines

Direct separation and
detection by

UHPLC-QqQ-MS/MS;
QuEChERS for sample

treatment

Histidine is correlated
with alcoholic degree and

grape variety;
phenylethylamine is

correlated with pH and
storage time

[40]

The elemental composition has also been exploited to characterize and authenticate
wines as a function of geographical, varietal, and oenological factors [41–43]. For instance,
elements such as Al, B, Ca, Cu, Fe, K, Mg, and Mn are relevant markers of some wine
features. Despite the apparent disparity between the two types of analytes, they are
used to characterize the quality of food products, particularly wines, thus providing
complementary information from inorganic and organic species. In addition to the simple
combination of BA and elemental profiles in a sample-wise augmented data matrix, other
data fusion approaches are explored.
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2. Materials and Methods

2.1. Chemicals and Solutions

Unless otherwise specified, all reagents used were of analytical grade. General reagents
for biogenic amine profiling and elemental analysis were as follows: nitric acid (65%
(w/w), PanReac ApplyChem, Castellar del Vallès, Spain), sodium tetraborate (Merck KGaA,
Darmstadt, Germany), dansyl chloride (98%, Thermo Fisher Scientific, Waltham, MA, USA),
formic acid (>96%, Merck), acetonitrile (UHPLC PAI-ACS SuperGradient, PanReac), and
chloroform (≥99.8%, Fluka, Buchs, Switzerland). Purified water was generated with an
Elix3 system (Millipore, Bedford, MA, USA). Solutions for BA derivatization were dansyl-
Cl reagent, prepared at a concentration of 10 mg mL−1 in acetone, and 0.1 mol L−1 sodium
tetraborate as the buffer solution (pH 9.2). For ICP-OES and ICP-MS, samples were diluted
with 1% (v/v) HNO3.

Biogenic amine standards were as follows: 1,5-diaminopentane (cadaverine, 98%),
1,4-diaminobutane dihydrochloride (putrescine, 99%), spermidine trihydrochloride (99%),
and spermine tetrahydrochloride (99%) from Alfa Aesar (Kandel, Germany); histamine
hydrochloride (≥99%), 2-phenylethylamine hydrochloride (≥99%), tryptamine hydrochlo-
ride (≥98%), tyramine hydrochloride (≥97%), octopamine hydrochloride (≥99%), and
agmatine sulfate (≥99%) from Fluka (Buchs, Switzerland); ethanolamine hydrochloride
(≥98%) and hexylamine (≥98%) from TCI (Tokyo, Japan), the latter of which was used
as the internal standard. Each amine was prepared as a 1000 mg L−1 stock solution in
the laboratory by dissolution in Milli-Q water. Calibration standards were prepared by
appropriately diluting stock solutions in a range from 0.1 to 50 mg L−1. Stock and working
solutions were stored at 4 ◦C until use.

Certified ICP grade single-element standards of 1000 mg L−1 in 1% (v/v) HNO3 were
purchased from Inorganic Ventures (Christiansburg, VA, USA). Calibration standards for
ICP-MS and ICP-OES measurements were prepared by carrying out the required dilutions
with 1% (v/v) HNO3.

2.2. Samples

Musts, wines, and sparkling wines were kindly provided by Codorníu SA (Sant
Sadurní d’Anoia, Spain). Table 2 describes the set of 20 monovarietal products from
Xarel·lo grapes and 20 monovarietal products from Pinot Noir grapes, produced in Penedès
and Costers del Segre regions (Catalonia, Spain). Each grape variety had five oenological
classes, comprising musts, base wines, stabilized wines, 3-month-aged sparkling wines,
and 7-month-aged sparkling wines, and four quality levels were defined for each class: A,
B, C, and D, where A is the top quality and D is the lowest one. A more detailed description
of the quality features is given elsewhere [33]. Sample coding is detailed in Table 2.

Table 2. List of samples under study. Sample codes are as follows: M, must; BW, base wine; SW,
stabilized wine; C3, 3 months in rhyme cava wine (sparkling wine); C7, 7 months in rhyme cava
wine (sparkling wine); P, Pinot Noir; X, Xarel·lo; A, quality A; B, quality B; C, quality C; D, quality D
(reproduced from Ref. [33]).

Grape Variety Quality Must Base Wine
Stabilized

Wine
3-Month Sparkling

Wine
7-Month Sparkling

Wine

Pinot Noir

A MPA BWPA SWPA C3PA C7PA
B MPB BWPB SWPB C3PB C7PB
C MPC BWPC SWPC C3PC C7PC
D MPD BWPD SWPD C3PD C7PD

Xarel·lo
A MXA BWXA SWXA C3XA C7XA
B MXB BWXB SWXB C3XB C7XB
C MXC BWXC SWXC C3XC C7XC
D MXD BWXD SWXD C3XD C7XD
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A quality control (QC) sample was prepared to assess the reproducibility of the
analytical methods and the significance of the PCA models by mixing 1 mL of each
must/wine/cava sample.

2.3. Instruments

The chromatographic system consisted of an Agilent 1100 Series HPLC instrument
from Agilent Technologies (Waldbronn, Germany), with degasser (G1379A), binary pump
(G1312A), automatic injector (G1392A), diode-array UV–vis detector (G1315B), and fluores-
cence detector (FLD, G1321A). Instruments for elemental analysis were Optima 3200RL
ICP-OES and Nexlon 350D ICP-MS spectrometers (both from Perkin Elmer, Waltham, MA,
USA) equipped with Ar plasma. Rh was used as the internal standard in ICP-MS.

2.4. Analytical Procedures
2.4.1. Biogenic Amine Determination

The method for the determination of BAs based on offline derivatization and liquid
chromatography with fluorescence detection was established and validated elsewhere [33].
Briefly, BAs were derivatized offline by mixing 250 μL of sample (or biogenic amine stan-
dard), 250 μL of dansyl-Cl reagent solution, and 250 μL of buffer solution (pH 9.2). The
reaction was developed at 40 ◦C in a thermostatic water bath (Tectron 473-100, J.P. Selecta,
Barcelona, Spain) for 60 min. Derivatives were further extracted by adding 750 μL of chlo-
roform and applying mechanical shaking for 10 min (Vortex 3 IKA, Staufen, Germany). The
organic fraction was evaporated to dryness and redissolved in 600 μL of acetonitrile/water
(50:50, v/v).

Derivatized samples were analyzed by HPLC-UV-FLD using a core–shell column
(Kinetex C18, 150 mm × 4.6 mm I.D., 2.6 μm particle size) from Phenomenex (Torrance,
CA, USA). A 0.1% (v/v) formic acid aqueous solution and acetonitrile (ACN) were used as
the mobile phase components under an elution gradient program based on increasing the
percentage of ACN (see Reference [33]). The flow rate was 0.7 mL min−1, and the injection
volume was 10 μL. UV detection was at 254 nm, and FLD was at 320 nm for excitation and
523 nm for emission.

Samples were processed in triplicate and analyzed randomly, injecting the QC sample
every 10 samples.

2.4.2. Elemental Composition Determination

Samples diluted at a 1/10 ratio with 1% HNO3 were directly analyzed by ICP-OES
and ICP-MS, as explained elsewhere [43]. A blank solution (1% HNO3) and the quality
control (QC) sample were analyzed every 15 samples to check for cross-contamination and
assess the repeatability of the results. All samples were analyzed in triplicate.

2.5. Data Analysis

ANOVA was performed with Microsoft Excel (Microsoft, Redmon WA, USA), and
multivariate data analysis was conducted with SOLO software (Eigenvector Research, Inc.
Manson, WA, USA).

Principal component analysis was applied for an exploratory characterization of musts,
wines, and sparkling wines to try to identify patterns of oenological steps, product quality,
and varieties using compositional data as the source of analytical information. Further
details on PCA and other chemometric methods can be found elsewhere [44,45].

For each instrumental technique, data matrices (X-matrices) were generated, in which
each row corresponded to a sample replicate and each column corresponded to a given
analyte. X-matrix dimensions were 120 × 11 for BAs and 120 × 38 for the elemental
composition. Hence, the low-level data fusion matrix was 120 × 49. The individual
matrices of BA and elemental composition were pretreated by PCA to extract nine PCs,
which were further combined in the mid-level approach, thus resulting in an augmented
matrix of 120 × 18.
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3. Results and Discussion

The performance of BA profiles and elemental composition as a source of potential
descriptors of must, base wine, stabilized wine, and sparkling wine was previously assessed
by Mir-Cerdà et al. and Granell et al., respectively [33,43]. In those studies, the two datasets
were studied separately, so independent conclusions were drawn. In this work, however,
we wanted to combine information from the two compositional profiles in order to try to
improve the quality of the description and provide more comprehensive knowledge of
sample features and the influence of the oenological practice, grape variety, and product
quality. Hence, data matrices generated in the previous studies were fused using low- and
mid-level approaches for further chemometric analysis.

First, we present the most important results extracted from the previous studies to high-
light the outcomes of their independent chemometric characterizations of must, wine, and
sparkling wine samples. As indicated in Section 2 (Materials and Methods), ethanolamine,
putrescine, tyramine, histamine, cadaverine, spermine, spermidine, tryptamine, octopamine,
lysine, and phenylethylamine were quantified by the HPLC-FLD method, and up to 36 ele-
ments were determined by ICP-OES or ICP-MS (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu,
Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Rb, S, Sb, Sc, Si, Sn, Sr, Ti, U, V, W, Y,
Zn, and Zr). Table 3 shows the concentrations of some of the most significant components,
which were selected because of their relevance as potential descriptors of sample type or
sample quality features. As can be seen, potassium is overexpressed in musts, putrescine
and histamine levels are increased in samples of C or D quality, sulfur is remarkably higher
in base and stabilized wines, and ethanolamine and sodium concentration are, in general,
slightly higher in sparkling wines. Similar patterns can be observed for other compounds.

Quantification errors were estimated according to Mir-Cerdà and Granell (see Ref-
erences [33,43]) from the analysis of the QC sample with the respective methods. The
quantification errors of putrescine and ethanolamine (the most abundant amines) were
3.4% and 3.2%, respectively. For the other compounds, errors were below 10% (e.g., 5.5 for
agmatine, 8.4 for tryptamine, 9.0 for phenylethylamine, 7.8 for cadaverine, 9.7 for histamine,
and 6.6 for tyramine), except for spermidine and spermine (ca. 25%, caused by higher
derivatization and stability issues). For the elemental composition, the errors in ICP-OES
values of metals occurring at concentrations of the order of magnitude of 1 mg L−1 were
lower than 2% (e.g., 0.9 for Mg, 1.2 for Ca, 1.5 for P, and 1.7 for Na), except for K (3.5%). For
other important descriptors determined by ICP-MS, errors were ca. 5% (e.g., 4.3 for Fe, 2.7
for B, 6.3 for Cs, 7.3 for S, 6.4 for Sr, 5.6 for Ba, 5.0 for Mn, 4.5 for Cu, and 5.7 for Al). Trace
elements occurring at concentrations between 1 and 100 μg L−1 showed errors ranging
from 7 to 20% (e.g., Li, Mo, Ni, Zn, and V). The descriptive performance of these elements
was more limited, thus mainly contributing to the noise.

In the case of BAs, PCA models showed well-defined clusters for each sample type,
and the loading plot highlighted putrescine and ethanolamine as the best descriptors of the
winemaking process. It was found that concentrations in must samples were, in general,
low (except for ethanolamine). A remarkable rise in BAs was observed at the base wine
stage, i.e., after the first alcoholic fermentation. This increase was even more dramatic
for wines subjected to malolactic fermentation since this process has been identified as a
major factor in the generation of BAs. After this stage, BA levels remained constant or
slightly decreased with stabilization, second fermentation, and aging. This pattern was
also observed for other amines, such as tyramine, histamine, and cadaverine. Regarding
product quality, differences among high- and low-quality products were noticeable.

Regarding elemental composition, interesting patterns in the evolution of the compo-
sition of elements such as K, Cu, Ca, S, and Mg during the vinification process were found.
Furthermore, some elements were recognized as potential markers of product quality. For
instance, the top-quality (A) samples displayed lower contents of some elements, such as K
and Ca. Other elements such as Mg, Mn, Na, Ni, Sr, and Zn also appeared in higher levels in
C and D products since they were introduced from additives used in different technological
processes. PCA showed two separated clusters corresponding to musts and fermented sam-
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ples, thus confirming the noticeable differences due to the addition of several substances
during fermentation, clarification, and stabilization processes. Subsequently, during the
aging process, they tended to precipitate together with the lees, so their concentrations
typically decreased in aged products.

Given the remarkable conclusions preliminarily extracted from the analysis of BA and
elemental composition datasets, in the following analysis, we aimed to assess the perfor-
mance of the combination of the two types of descriptors to obtain a more comprehensive
characterization of the samples.

Table 3. Determination of various relevant compounds in the different samples. Concentrations are
expressed in mg L−1. Bold numbers denote samples with higher values.

Sample Ethanolamine Putrescine Histamine S K Na

MPA 2.99 2.52 0.16 2.68 93.3 1.22
MPB 2.70 1.42 0.14 5.86 151.0 2.77
MPC 3.85 4.84 0.17 8.04 124.1 2.05
MPD 3.49 2.14 0.13 3.83 151.3 2.59
MXA 2.72 1.29 0.11 3.48 72.9 1.87
MXB 4.01 0.43 0.10 2.91 87.6 2.16
MXC 5.30 3.29 0.11 3.46 120.8 1.78
MXD 4.09 2.81 0.12 3.31 95.2 1.40

BWPA 3.14 4.01 0.19 32.5 47.4 0.59
BWPB 5.21 3.42 0.18 33.9 79.0 0.50
BWPC 5.35 24.10 4.00 32.7 96.6 2.02
BWPD 6.13 21.43 3.68 22.5 77.5 3.38
BWXA 3.86 1.81 0.11 17.7 38.8 0.50
BWXB 5.14 3.05 0.11 43.0 78.9 1.37
BWXC 5.75 10.79 1.76 57.9 63.7 3.27
BWXD 6.51 13.07 1.94 40.9 75.7 2.44
SWPA 3.43 3.77 0.20 37.5 34.6 1.12
SWPB 5.49 2.80 0.31 25.9 37.6 2.23
SWPC 4.75 10.81 1.20 24.3 46.0 2.82
SWPD 6.57 15.87 1.78 16.4 30.4 5.18
SWXA 3.22 0.95 0.11 16.9 34.0 0.70
SWXB 6.29 2.43 0.21 22.7 27.2 2.00
SWXC 5.94 14.37 2.32 21.6 28.8 3.98
SWXD 7.13 10.26 1.77 21.5 35.7 4.63
C3PA 2.89 2.11 0.18 14.2 26.2 2.48
C3PB 6.05 2.69 0.30 25.9 37.1 2.28
C3PC 4.94 12.00 1.40 20.8 44.7 3.43
C3PD 6.42 15.90 2.32 16.8 25.4 4.69
C3XA 3.41 1.11 0.13 11.7 30.7 2.05
C3XB 7.14 3.14 0.26 24.4 14.2 2.40
C3XC 7.25 17.83 2.64 21.2 25.9 5.23
C3XD 6.08 9.47 1.69 19.9 39.3 5.16
C7PA 2.73 1.39 0.14 14.5 30.6 2.42
C7PB 5.50 2.28 0.26 25.3 40.7 2.20
C7PC 5.04 11.47 1.38 21.5 45.5 3.46
C7PD 6.74 18.47 2.90 19.1 21.8 5.70
C7XA 3.44 0.94 0.12 12.2 32.4 1.99
C7XB 5.55 3.11 0.26 23.4 30.4 3.42
C7XC 5.88 10.84 1.87 20.8 39.7 5.41
C7XD 6.06 18.50 2.79 21.2 41.0 5.04

3.1. Low-Level Data Fusion

In this analysis, BA and elemental composition datasets were joined by row-wise
matrix augmentation, in which each row corresponded to a replicate of a given sample (it
should be noted that samples were analyzed in triplicate), and each column was associated
with a compositional variable (i.e., BA or element). The contents of BAs and target elements
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differed in both the magnitude and amplitude of concentrations, so data autoscaling was
applied to equalize their influence in the models.

PCA showed a clear structure of samples according to the winemaking stage or process,
regardless of other features such as quality or variety (see Figure 1). As a result, the scatter
plot of PC1 vs. PC2 scores, which retained more than 43% of data variance, demonstrated
clusters according to the sample type, with musts located on the left side, base wines in the
upper-left area, stabilized wines predominating in the upper-right quadrant, and sparkling
wines mainly in the lower-right part. Sparkling wines were also distinguished based on
the aging period, with 3-month-aged wines above 7-month-aged ones. It is important to
highlight that this noticeable class separation was not observed when BA and elemental
datasets were analyzed separately (see References [33,43]). PC3 retained ca. 15% of the
variance, thus providing some additional discrimination patterns (not shown here since
the information from 3D plots was more difficult to visualize).

 

 

 

 

 

(a) (b) 

Figure 1. Plots of scores (a) and loadings (b) from the low-level data fusion. (a) Scatter plot of PC1 vs.
PC2 scores; (b) scatter plot of PC1 vs. PC2 loadings. Sample assignment: M = must (blue); BW = base
wine (light purple); SW = stabilized wine (light blue); 3M = sparkling wine with 3 months aging (red);
7M = sparkling wine with 7 months aging (green).

The study of leading descriptors revealed the occurrence of combined or hybrid
markers. Elements such as K, Cu, Rb, and Ba were higher in musts compared with the
other classes. Some of them (e.g., K and Cu) are the result of agricultural practices such
as soil fertilization or mildew treatment. Various BAs—including putrescine, tyramine,
spermidine, cadaverine, and histamine—were the dominant features of base and stabilized
wines, as the contents of these BAs dramatically increased in the fermentations, especially
when malolactic fermentation was applied to reduce the strong malic acidity of wines. A
wide range of elements were characteristic of all fermented samples, as their concentrations
increased because of oenological treatments with technological additives such as yeasts,
tirage liquors, bentonite, and other agents. Among them, Zn, Al, Mn, Fe, Ni, and V can be
cited. The BA composition of sparkling wines was different from that of stabilized wines. In
this regard, ethanolamine was identified as a marker of sparkling wines since their higher
alcoholic degree, achieved through the second fermentation, induced the generation of
this compound. As another pattern, BA levels (e.g., cadaverine, histamine, and tyramine)
slightly decreased with aging.

As a general conclusion, the BA and elemental compositions of grapes, which were
assumed to be similar to the composition of musts, underwent remarkable changes after
their transformation in wines. At this step, variations were statistically significant (p < 0.05)
in all cases. In particular, levels of BAs significantly increased from musts to wines, and then
they remained almost constant throughout winemaking processes and barely decayed with
aging (except for ethanolamine, which slightly increased with the second fermentation).
Similarly, changes in the elemental composition during vinification were dramatic as well
due to the set of additives introduced to trigger fermentation and clarification processes.
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Thus, an improvement in the characterization and discrimination performance was
obtained after applying the data fusion approach.

3.2. Mid-Level Data Fusion

As mentioned in the experimental section, the individual matrices of BA and elemental
profiles were pretreated by PCA filtering. The scores of three PCs were extracted, as they
were a rich source of concentrated information, while irrelevant or ambiguous contributions
were excluded from the model.

The row-wise augmented data matrix was evaluated by PCA, and the results obtained
are summarized in Figure 2. The scatter plot of PC1 vs. PC2 scores shows a group of musts
in the upper-left quadrant, meaning that this class is discriminated from the others. Wines
and sparkling wines are scattered throughout the other sectors, without a clear separation
among classes but with a certain predominance in some areas. For instance, sparkling
wines tend to be across a diagonal (from the bottom left to top right), while base wine
samples are located below this area. The other classes are mainly located in intermediate
positions. Despite these patterns, the overall performance of this approach was lower than
that obtained using the low-level model. On the other hand, the clustering of samples
according to quality or variety was not detected either.

 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 2. Plots of scores (a) and loadings (b) from mid-level data fusion. Sample assignment:
M = must (blue); BW = base wine (light purple); SW = stabilized wine (light blue); 3M = sparkling
wine with 3 months of aging (red); 7M = sparkling wine with 7 months of aging (green). Variable
assignment: 1–9 = 1–9 PC of biogenic amines PCA; 10–18 = 1–9 PC of elemental composition PCA.

3.3. Sample Classification

Supervised studies of sample classification focused on low-level data fusion as, in this
particular case, this approach has demonstrated excellent performance in describing the
behavior of the samples. Given the natural dependence of sample features with respect
to the vinification process, this section investigates the application of the PLS-DA to the
classification of samples into the following classes: must, base wine, stabilized wine,
3-month-aged sparkling wine, and 7-month-aged sparkling wine.

The first model was established using all of the samples, in which the optimal number
of latent variables (LVs) was 3. The plot of scores of LV1 versus LV2 (see Figure 3) shows
a remarkable concentration of samples of each class in some specific areas. For example,
musts are separated from the others and located in the bottom-right part. The base wines
occupy the upper-right part of the graph, also separated from the other classes. Stabilized
wines are located in the upper-left quadrant, while sparkling wines are in the lower-left
part, showing two groups for 3- and 7-month-aged samples.
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(a) (b) 

Figure 3. Plots of scores (a) and loadings (b) from low-level data fusion. (a) Scatter plot of LV1 vs.
LV2 scores; (b) scatter plot of LV1 vs. LV2 loadings. Sample assignment: M = must (blue); BW = base
wine (light purple); SW = stabilized wine (light blue); 3M = sparkling wine with 3 months of aging
(red); 7M = sparkling wine with 7 months of aging (green).

For the external validation of the sample classification performance, a set of 120 sam-
ples (40 different combinations of class, quality, and variety analyzed in triplicate) was
divided into two subsets for training and prediction, with 60 and 40% of the samples
randomly selected, respectively. Table 4 summarizes the results using the PLS-DA model
using three LVs for the multiclass classification of samples (i.e., classification of each given
sample to one of the five classes). The calibration results showed that samples in the must
and base wine classes were perfectly classified. For stabilized wine, two samples were in-
correctly predicted to be base wine. For sparkling wines, a certain degree of confusion was
found between 3- and 7-month-aged samples (two and three samples were misclassified,
respectively). For the validation step, no unassigned samples were obtained. Additionally,
musts, stabilized wines, and sparkling wines were correctly classified, while a certain
amount of confusion was found for base wines (two base wines were classified as stabi-
lized ones). Despite this confusion, which was attributed to the compositional similarities
between these two classes, this method opens up promising possibilities for the study of
the evolution of oenological samples throughout the vinification process. Furthermore, the
performance of classification models based on the integration of BA and elemental profiles
was definitively superior to that obtained from the use of each type of data separately.

Table 4. Summary of classification results with the percentages of correctly classified samples in both
calibration and validation steps using PLS-DA.

Classification Rate
Step Must Base Wine Stabilized Wine 3-Month Sparkling Wine 7-Month Sparkling Wine

Calibration 100% 100% 90% 1 87% 2 75% 3

Validation 100% 70% 4 100% 100% 100%

Misclassifications are as follows: 1 predicted as base wine; 2 predicted as 7-month-aged sparkling wine; 3 predicted
as 3-month-aged sparkling wine; 4 predicted as stabilized wine.

4. Conclusions

In previous papers, it was found that the study and interpretation of descriptive
models using biogenic amine or elemental profiles separately provided an incomplete
depiction of the evolution of oenological samples throughout the production process of
sparkling wines. In this study, this issue was fully solved by combining both sources
of information via data fusion. The descriptive performance of a low-level approach
using concentrations of BAs and metals was, in this case, superior to that of the mid-level
counterpart using PCA scores as the fused data. The oenological process was found to
be the principal factor affecting the composition of the studied analytes, while, in this
set of samples, quality and variety issues had a lower influence on the description. In
particular, excellent discrimination of musts, base wines, stabilized wines, and sparkling

179



Sensors 2022, 22, 2132

wines was realized, thus suggesting that this data combination can be used for successful
sample characterization. Some increases in markers of the different classes were identified
as well. For instance, high levels of lysine, K, and Cu were detected in musts, while BAs
such as putrescine, tyramine, and histamine and elements such as Zn, Al, Mn, and Fe were
predominant in base and stabilized wines, and ethanolamine was identified as a biomarker
of sparkling wines. Furthermore, PLS-DA successfully classified samples as musts, base
wines, stabilized wines, and sparkling wines, meaning that this method can be applied
to accurately follow the evolution of oenological samples throughout the winemaking
process.

Author Contributions: Conceptualization, A.I.-L. and J.S.; methodology, A.M.-C., B.G. and A.I.-L.;
investigation, A.M.-C., B.G., and A.I.-L.; resources, J.S.; data curation, A.M.-C., B.G., and J.S.; writing—
original draft preparation, A.M.-C., S.S., and J.S.; writing—review and editing, À.S., J.F.L.-S., J.S.,
and S.S.; supervision, À.S., J.F.L.-S., J.S., and S.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research has been funded by the “Agencia Estatal de Investigación” of the Spanish
Ministry of Science and Innovation, grant number PID2020-114401RB-C22.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors thank Codorníu SA for providing the samples.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borras, E.; Ferre, J.; Boque, R.; Mestres, M.; Acena, L.; Busto, O. Data fusion methodologies for food and beverage authentication
and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [CrossRef] [PubMed]

2. Bevilacqua, M.; Bro, R.; Marini, F.; Rinnan, A.; Rasmussen, M.A.; Skov, T. Recent chemometrics advances for foodomics. Trends
Anal. Chem. 2017, 96, 42–51. [CrossRef]

3. Callao, M.P.; Ruisanchez, I. An overview of multivariate qualitative methods for food fraud detection. Food Control 2018, 86,
283–293. [CrossRef]

4. Biancolillo, A.; Marini, F.; Ruckebusch, C.; Vitale, R. Chemometric strategies for spectroscopy-based food authentication. App. Sci.
2020, 10, 6544. [CrossRef]

5. Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source
food authentication and quality assessment—A review. J. Food Eng. 2017, 210, 62–75. [CrossRef]

6. Ranaweera, R.K.R.; Capone, D.L.; Bastian, S.E.P.; Cozzolino, D.; Jeffery, D.W. A review of wine authentication using spectroscopic
approaches in combination with chemometrics. Molecules 2021, 26, 4334. [CrossRef]

7. Arslan, M.; Tahir, H.E.; Zareed, M.; Shi, J.Y.; Rakha, A.; Bilal, M.; Huang, X.W.; Li, Z.H.; Zou, X.B. Recent trends in quality control,
discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques—A review. Trends Food
Sci. Technol. 2021, 107, 80–113. [CrossRef]

8. Da Costa, N.L.; da Costa, M.S.; Barbosa, R. A Review on the application of chemometrics and machine learning algorithms to
evaluate beer authentication. Food Anal. Methods 2021, 14, 136–155. [CrossRef]

9. Schiavone, S.; Marchionni, B.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of Grappa (Italian grape marc spirit) by Mid and
Near Infrared spectroscopies coupled with chemometrics. Vib. Spectrosc. 2020, 107, 103040. [CrossRef]

10. Giannetti, V.; Mariani, M.B.; Marini, F.; Torrelli, P.; Biancolillo, A. Grappa and Italian spirits: Multi-platform investigation based
on GC-MS, MIR and NIR spectroscopies for the authentication of the Geographical Indication. Microchem. J. 2020, 157, 104896.
[CrossRef]

11. Rios-Reina, R.; Callejon, R.M.; Savorani, F.; Amigo, J.M.; Cocchi, M. Data fusion approaches in spectroscopic characterization and
classification of PDO wine vinegars. Talanta 2019, 98, 560–572. [CrossRef] [PubMed]

12. Perez-Beltran, C.H.; Zuniga-Arroyo, V.M.; Andrade, J.M.; Cuadros-Rodriguez, L.; Perez-Caballero, G.; Jimenez-Carvelo, A.M. A
sensor-based methodology to differentiate pure and mixed white tequilas based on fused infrared spectra and multivariate data
treatment. Chemosensors 2021, 9, 47. [CrossRef]

13. Biancolillo, A.; Bucci, R.; Magri, A.L.; Magri, A.D.; Marini, F. Data-fusion for multiplatform characterization of an Italian craft
beer aimed at its authentication. Anal. Chim. Acta 2014, 820, 23–31. [CrossRef] [PubMed]

14. Cavallini, N.; Savorani, F.; Bro, R.; Cocchi, M. Fused adjacency matrices to enhance information extraction: The beer benchmark.
Anal. Chim. Acta 2019, 1061, 70–83. [CrossRef] [PubMed]

180



Sensors 2022, 22, 2132

15. Rios-Reina, R.; Azcarate, S.M.; Camina, J.M.; Goicoechea, H.C. Multi-level data fusion strategies for modeling three-way
electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines. Anal Chim.
Acta 2020, 1126, 52–62. [CrossRef]

16. Tan, J.; Li, R.; Jiang, Z.T.; Zhang, Y.; Hou, Y.M.; Wang, Y.R.; Wu, X.; Gong, L. Geographical classification of Chinese Cabernet
Sauvignon wines by data fusion of ultraviolet-visible and synchronous fluorescence spectroscopies: The combined use of multiple
wavelength differences. Aust. J. Grape Wine Res. 2016, 22, 358–365. [CrossRef]

17. Campmajo, G.; Saurina, J.; Nunez, O. FIA-HRMS fingerprinting subjected to chemometrics as a valuable tool to address food
classification and authentication: Application to red wine, paprika, and vegetable oil samples. Food Chem. 2022, 373, 131491.
[CrossRef]

18. Ceto, X.; Capdevila, J.; Puig-Pujol, A.; del Valle, M. Cava wine authentication employing a voltammetric electronic tongue.
Electroanalysis 2014, 26, 1504–1512. [CrossRef]

19. Garcia-Hernandez, C.; Salvo-Comino, C.; Martin-Pedrosa, F.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L. Analysis of red wines
using an electronic tongue and infrared spectroscopy, Correlations with phenolic content and color parameters. LWT-Food Sci.
Technol. 2020, 118, 108785. [CrossRef]

20. Zhang, H.H.; Shao, W.Q.; Qiu, S.S.; Wang, J.; Wei, Z.B. Collaborative analysis on the marked ages of rice wines by electronic
tongue and nose based on different feature data sets. Sensor 2020, 20, 1065. [CrossRef]

21. Gutierrez, M.; Domingo, C.; Vila-Planas, J.; Ipatov, A.; Capdevila, F.; Demming, S.; Buttgenbach, S.; Llobera, A.; Jimenez-Jorquera,
C. Hybrid electronic tongue for the characterization and quantification of grape variety in red wines. Sens. Actuators B Chem.
2011, 156, 695–702. [CrossRef]

22. Zhang, C.; Bailey, D.P.; Suslick, K.S. Colorimetric sensor arrays for the analysis of beers: A feasibility study. J. Agric. Food Chem.
2006, 54, 4925–4931. [CrossRef] [PubMed]

23. Li, Z.; Fang, M.; LaGasse, M.K.; Askim, J.R.; Suslick, K.S. Colorimetric recognition of aldehydes and ketones. Angew. Chem. Int.
Ed. 2017, 56, 9860–9863. [CrossRef] [PubMed]

24. Li, Z.; Suslick, K.S. A hand-held optoelectronic nose for the identification of liquors. ACS Sens. 2018, 3, 121–127. [CrossRef]
[PubMed]

25. Li, Z.; Suslick, K.S. The optoelectronic nose. Acc. Chem. Res. 2021, 54, 950–960. [CrossRef]
26. Silvestri, M.; Elia, A.; Bertelli, D.; Salvatore, E.; Durante, C.; Vigni, M.L.; Marchetti, A.; Cocchi, M. A mid level data fusion strategy

for the Varietal Classification of Lambrusco PDO wines. Chemom. Intell. Lab. Sys. 2014, 137, 181–189. [CrossRef]
27. Belmonte-Sanchez, J.R.; Romero-Gonzalez, R.; Vidal, J.L.M.; Arrebola, F.J.; Garrido Frenich, A. H-1 NMR and multi-technique

data fusion as metabolomic tool for the classification of golden rums by multivariate statistical analysis. Food Chem. 2020, 317,
126363. [CrossRef]

28. Izquierdo-Llopart, A.; Saurina, J. Multi-sensor characterization of sparkling wines based on data fusion. Chemosensors 2021, 9, 200.
[CrossRef]

29. Cavdaroglu, C.; Ozen, B. Prediction of vinegar processing parameters with chemometric modelling of spectroscopic data.
Microchem. J. 2021, 171, 106886. [CrossRef]

30. Simon Sarkadi, L. Amino acids and biogenic amines as food quality factors. Pure Appl. Chem. 2019, 91, 289–300. [CrossRef]
31. Saurina, J. Characterization of wines using compositional profiles and chemometrics. TrAC Trends Anal. Chem. 2010, 29, 234–245.

[CrossRef]
32. Sentellas, S.; Núñez, O.; Saurina, J. Recent advances in the determination of biogenic amines in food samples by (U)HPLC. J.

Agric. Food Chem. 2016, 64, 7667–7678. [CrossRef] [PubMed]
33. Mir-Cerda, A.; Izquierdo-Llopart, A.; Saurina, J.; Sentellas, S. Oenological processes and product qualities in the elaboration of

sparkling wines determine the biogenic amine content. Fermentation 2021, 7, 144. [CrossRef]
34. Mitar, I.; Ljubenkov, I.; Rohtek, N.; Prkic, A.; Andelic, I.; Vuletic, N. The content of biogenic amines in Croatian wines of different

geographical origins. Molecules 2018, 23, 2570. [CrossRef]
35. Liu, Y.; Han, F.L.; Liu, Y.J.; Wang, W.N. Determination of biogenic amines in wine using modified liquid-liquid extraction with

high performance liquid chromatography-fluorescence detector. Food Anal. Methods 2020, 13, 911–922. [CrossRef]
36. Palomino-Vasco, M.; Rodriguez-Caceres, M.I.; Mora-Diez, N.; Pardo-Botello, R.; Acedo-Valenzuela, M.I. Biogenic amines profile

in red wines regarding aging and storage conditions. J. Food Compos. Anal. 2019, 83, 103295. [CrossRef]
37. Perez-Magarino, S.; Ortega-Heras, M.; Martinez-Lapuente, L.; Guadalupe, Z.; Ayestara, B. Multivariate analysis for the differenti-

ation of sparkling wines elaborated from autochthonous Spanish grape varieties: Volatile compounds, amino acids and biogenic
amines. Eur. Food Res. Technol. 2013, 236, 827–841. [CrossRef]

38. Gil, R.L.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araujo, A.N. HPLC-potentiometric method for determination of biogenic
amines in alcoholic beverages: A reliable approach for food quality control. Food Chem. 2022, 372, 131288. [CrossRef]

39. Bozic, J.T.; Butinar, L.; Marusic, M.B.; Korte, D.; Vodopivec, B.M. Determination of biogenic amines formation by autochthonous
lactic acid bacteria from ’Refosk’ grapes using different analytical methods. LWT Food Sci. Technol. 2022, 156, 112908. [CrossRef]

40. Han, S.Y.; Hao, L.L.; Shi, X.; Niu, J.M.; Zhang, B. Development and application of a new QuEChERS method in UHPLC-QqQ-
MS/MS to detect seven biogenic amines in Chinese wines. Foods 2019, 8, 552. [CrossRef]

41. Gonzalvez, A.; Llorens, A.; Cervera, M.L.; Armenta, S.; de la Guardia, M. Elemental fingerprint of wines from the protected
designation of origin Valencia. Food Chem. 2009, 112, 26–34. [CrossRef]

181



Sensors 2022, 22, 2132

42. Katerinopoulou, K.; Kontogeorgos, A.; Salmas, C.E.; Patakas, A.; Ladavos, A. Geographical origin authentication of agri-food
products: A review. Foods 2020, 9, 489. [CrossRef] [PubMed]

43. Granell, B.; Izquierdo-Llopart, A.; Sahuquillo, A.; López-Sánchez, J.F.; Saurina, J. Characterization of musts, wines, and sparkling
wines based on their elemental composition determined by ICP-OES and ICP-MS. Beverages 2022, 8, 3. [CrossRef]

44. Kozak, M.; Scaman, C.H. Unsupervised classification methods in food sciences: Discussion and outlook. J. Sci. Food Agric. 2008,
88, 1115–1127. [CrossRef]

45. Granato, D.; Putnik, P.; Kovacevic, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Da Cruz, A.G.; Jarvis, B.; Rodionova, O.Y.;
Pomerantsev, A. Trends in chemometrics: Food authentication, microbiology, and effects of processing. Compr. Rev. Food Sci. Food
Saf. 2018, 17, 663–677. [CrossRef] [PubMed]

182



Citation: Strani, L.; Vitale, R.; Tanzilli,

D.; Bonacini, F.; Perolo, A.;

Mantovani, E.; Ferrando, A.; Cocchi,

M. A Multiblock Approach to Fuse

Process and Near-Infrared Sensors

for On-Line Prediction of Polymer

Properties. Sensors 2022, 22, 1436.

https://doi.org/10.3390/s22041436

Academic Editor: Natividad

Duro Carralero

Received: 11 January 2022

Accepted: 7 February 2022

Published: 13 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Multiblock Approach to Fuse Process and Near-Infrared
Sensors for On-Line Prediction of Polymer Properties

Lorenzo Strani 1, Raffaele Vitale 2, Daniele Tanzilli 1, Francesco Bonacini 3, Andrea Perolo 3, Erik Mantovani 3,

Angelo Ferrando 3 and Marina Cocchi 1,*

1 Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via 4 Campi 103,
41125 Modena, Italy; lostrani@unimore.it (L.S.); daniele.tanzilli@unimore.it (D.T.)

2 Centre National de la Recherche Scientifique (CNRS), Laboratoire de Spectroscopie pour les Interactions,
la Réactivitè et l’Environnement (LASIRE), Cité Scientifique, University Lille, F-59000 Lille, France;
raffaele.vitale@univ-lille.fr

3 Research Center, Versalis (ENI) S.p.A., Via Taliercio 14, 46100 Mantova, Italy;
francesco.bonacini@versalis.eni.com (F.B.); andrea.perolo@versalis.eni.com (A.P.);
erik.mantovani@versalis.eni.com (E.M.); angelo.ferrando@versalis.eni.com (A.F.)

* Correspondence: marina.cocchi@unimore.it; Tel.: +39-059-205-8554

Abstract: Petrochemical companies aim at assessing final product quality in real time, in order
to rapidly deal with possible plant faults and to reduce chemical wastes and staff effort resulting
from the many laboratory analyses performed every day. In order to answer these needs, the main
purpose of the current work is to explore the feasibility of multiblock regression methods to build
real-time monitoring models for the prediction of two quality properties of Acrylonitrile-Butadiene-
Styrene (ABS) by fusing near-infrared (NIR) and process sensors data. Data come from a production
plant, which operates continuously, and where four NIR probes are installed on-line, in addition to
standard process sensors. Multiblock-PLS (MB-PLS) and Response-Oriented Sequential Alternation
(ROSA) methods were here utilized to assess which of such sensors and plant areas were the most
relevant for the quality parameters prediction. Several prediction models were constructed exploiting
measurements provided by sensors active at different ABS production process stages. Both methods
provided good prediction performances and permitted identification of the most relevant data blocks
for the quality parameters’ prediction. Moreover, models built without considering recordings from
the final stage of the process yielded prediction errors comparable to those involving all available
data blocks. Thus, in principle, allowing final ABS quality to be estimated in real-time before the end
of the process itself.

Keywords: Acrylonitrile-Butadiene-Styrene; low-level data fusion; multiblock-partial least squares
(MB-PLS); multivariate statistical process control; polymer production; quality prediction; real-time
monitoring; response-oriented sequential alternation (ROSA)

1. Introduction

Nowadays, in several different domains like precision agriculture as well as pharma-
ceutical, food and chemical manufacturing, it is very common to utilize many analytical
sensors to comprehensively characterize complex systems under study and to monitor
processes while they evolve over time [1]. Analyzing the data yielded by such sensors by
means of appropriate statistical tools is challenging but crucial in order to obtain meaning-
ful physico-chemical information and design efficient production monitoring and control
schemes. In particular, in industrial applications, a relevant issue is how to integrate or
fuse the data resulting from sensors of different nature, potentially installed at different
locations in the plant and in real time.

Multivariate Statistical Process Control (MSPC) is a well-established tool to accomplish
real time monitoring and control of industrial production, in particular Latent Variables-
Based MSPC (LV-MSPC) [2–7]. Most LV-MSPC relies on so-called engineering process
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variables [8], i.e., measured by on-line sensors controlling machinery settings (such as
flow-meters, temperature and pressure probes, etc.) to build reference multivariate models
for normal operating conditions (NOC), which are afterwards used to derive multivariate
control charts and/or predicting quality attributes of finite product. More recently, thanks
to technological developments, spectroscopic probes, especially near-infrared (NIR) ones,
are extensively exploited [6,7,9–13] to monitor process evolution, or, in other words, to
determine intermediate and final product quality parameters. Many studies in literature
report on these aspects. Their results mainly refer to pilot scale plants [9,11,12,14] as well
as to batch types of processes and seldom are engineering process variables and NIR
measurements combined for constructing LV-MSPC models [6,10,14,15].

Fusing spectra with engineering variables is not a trivial task. However, process
monitoring and control can greatly benefit from fusing these diverse data types, since, in
this way, chemical composition-related information and physical and mechanical behav-
ior/properties can be integrated.

This work focuses on a continuous styrenic polymer production process [16], moni-
tored by means of NIR probes installed on-line in a production plant, as well as by standard
process sensors. The main aim is to build real-time monitoring models to predict two
of the main quality attributes of the final polymeric product by fusing NIR and process
sensors’ data. A preliminary feasibility study was recently conducted by the authors at the
pilot-plant level [14].

Two aspects are particularly relevant for industry: (i) the possibility of estimating in
real time the quality of a finite product, thus reducing the operational time and the amount
of chemicals commonly required for laboratory off-line assessments by reference methods;
and (ii) to reach the anticipated assessment of departure from desired quality before the end
of production itself, in order to plan possible early modifications of the operating settings.

To this end, we investigated the application of multiblock chemometric methods [17–25]
which are suitable to accomplish data fusion at low-level [26,27] and might bring inter-
esting advantages with respect to alternative mid-level and high-level data integration
strategies [26] especially in terms of model training, maintenance and interpretability. In
fact, original variables are directly used without any compression steps, and it is possible to
assess the salience of each block/type of sensors in the model, i.e., inspecting their degree
of uniqueness or redundancy.

In particular, we compared a well-established multiblock MSPC approach, such as
MultiBlock Partial Least Squares (MB-PLS) regression [21], with Response-Oriented Se-
quential Alternation (ROSA) [22]. The distinctive features of ROSA, which is also based on
PLS regression [28,29], are: (i) to be invariant to block scaling and not to be affected by the
spurious bias resulting from the combination of data blocks of different size (similarly to se-
quential orthogonal PLS (SO-PLS) [20]); and (ii) to be computationally efficient and capable
of dealing with any number of blocks, also a very high number (differently from SO-PLS).

We tested models constructed on measurements yielded by sensors that were active at
all different process stages (up to the process production end), as well as models where
measurements from the last stage were excluded. This was in order to evaluate if polymer
quality could be forecasted prior to the end of production. The results achieved, by both
MB-PLS and ROSA, show satisfactory predictive performance for the determination of
the two quality parameters investigated. At the same time, the most relevant data blocks
were assessed.

2. Materials and Methods

2.1. Process Description

Data presented in the current work were collected on-line in an Acrylonitrile-Styrene-
Butadiene (ABS) industrial production plant (full scale) operating in continuous process,
owned by Versalis (ENI group). For the sake of simplicity, the plant can be regarded as
divided into five different areas: (i) pre-poly/mixer, where the three precursor monomers
(acrylonitrile, styrene and butadiene) are mixed together; (ii) reaction point A; (iii) reaction
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point B; (iv) reaction point C; and (v) devolatilizer/cut zone, where the finite product is
cut. Throughout all these areas seventy process sensors (PS), which measure temperatures,
pressures, flow rates and motor speed, and four NIR probes are installed. The NIR probes
are placed in four specific and crucial areas of the production plant: one where dissolution
of butadiene in styrene occurs, before the addition of acrylonitrile; one in the pipe for the
recovery of condensed reagents; one between the first and the second reaction points; and
one at the very end of the process, just before the cut zone. Overall, both PS and NIR probes
record data/spectra with a frequency of about one minute. In this study, data registered
from January 2020 to May 2021 were analyzed, even if not all the data recorded during this
period were considered in model building, due to production pauses and deviations from
the operative conditions relevant for the current study.

2.2. Reference Analysis

Two different parameters have been considered for the evaluation of ABS quality.
Nonetheless, because of confidential agreement restrictions with the company, their actual
names will not be disclosed, but they will be referred to as Property 1 and Property 2.
Properties 1 and 2 are assessed off-line by collecting ABS samples, i.e., final product, two
(Property 1) and three (Property 2) times per day. Property 1 is related to ABS composition,
i.e., the percentage of a certain chemical compound in the final product. On the other hand,
Property 2 gives information about physical features of the product and the values of the
related reference analysis are expressed in grams. In the period covered by this study 597
and 904 laboratory tests (homogeneously distributed all over the time period) were carried
out to determine Property 1 and Property 2, respectively. Property 1 values ranged from 20
to 21.8%; Property 2 values ranged from 3.9 to 6.1 g.

2.3. NIR Spectroscopy

A Matrix FT-NIR spectrometer (Bruker Optics, Milan, Italy) was used to acquire
spectra in the four different acquisition sites. The instrument was equipped with optical
fibers (length: 100 m, diameter: 600 μm), whose probes (HT immersion probe, Drawing-no.
661.2350_1, Hellma GmbH and Co. KG, Müllheim, Germany) were directly connected to
the four different acquisition sites located on the process pipe. Spectra were collected in
transmission mode over the 12,500–4000 cm−1 spectral range, with a nominal resolution of
4 cm−1 (64 scans per sample).

2.4. Data Analysis
2.4.1. Data Block and Multiblock Arrangement

The ensemble of collected data was arranged into nine distinct data blocks, according
to the data type and the acquisition area along the process: on the one hand, PS measure-
ments were gathered in five blocks, one per every area of the plant (see also Section 2.1);
on the other hand, NIR spectra were arranged into four blocks, each corresponding to an
individual optical probe. In Table 1, the names and abbreviations (which will be hereafter
used) of all the blocks are shown, together with their size and the location along the plant.
This is also an indication of how they are ranked in time, being a continuous process.

For both multiblock approaches, the data blocks were assembled considering the
chronological progression of the ABS production process and, therefore, based on the
location of the different sensors along the production line. In other words, each data point
present in the datasets refers to information collected at different times, but it is correctly
matched to the same processed material (i.e., data are synchronized).

Figure 1 displays a schematic representation of the low-level data fusion strategy adopted.
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Table 1. Data block description.

Block Full Name
Block Abbreviated

Name
Data Type No. of Variables 1 Order

NIR dissolution NIR-diss NIR Spectra 390 1
Prepoli/Mixer Prep/mix PS 7 2

NIR condensation NIR-cond NIR Spectra 390 3
Reaction Point A RP-A PS 15 4

NIR Reaction Point A NIR-RP-A NIR Spectra 390 5
Reaction Point B RP-B PS 10 6
Reaction Point C RP-C PS 8 7

Devolatilizer/cut zone Devo/cut PS 30 8
NIR cut zone NIR-cut NIR Spectra 390 9

1 For NIR data blocks, the number of variables is equal to the spectra wave numbers, whereas for PS data blocks it
is equal to the number of PS present in the respective plant area. The column “Order” highlights how the process
evolves chronologically.

 

Figure 1. Schematic representation of the low-level data fusion approach resorted to in this study.
Values in brackets indicate the chronological order of the data blocks.

2.4.2. Preprocessing

Individual block preprocessing
Prior to the multiblock modeling phase, each data set was preprocessed individually.

In particular, variables in each PS data block were scaled to unit variance (different in
nature and scales) whereas spectra, in each NIR data block, were baseline-corrected by
using automatic weighted least squares [30]. Moreover, only the spectral range from 6500 to
5000 cm−1 (the sole one exhibiting spectral bands ascribable to either reactants or products)
was taken into account for subsequent model training. Figure 2 shows the effect of the
baseline correction executed on the NIR spectra of the NIR-RP-A data block.
Multiblock preprocessing

After the individual preprocessing of the single blocks, each data set was scaled to unit
block variance (including column mean-centering) prior to MB-PLS [21]. In fact, MB-PLS
operates directly on row-wise concatenated data blocks and a fair block contribution has to
be assured.

Concerning ROSA, the individual pre-processed blocks were just mean-centered since
such a method treats one block at a time, as it will be detailed in the following sections.
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Figure 2. Spectra collected at NIR-RP-A, data block before (a) and after (b) baseline correction using
automatic weighted least square method.

2.4.3. MB-PLS

We exploited here the MB-PLS implementation originally proposed by Westerhuis and
Coenegracht [31] which can be looked at as standard PLS with appropriate block scaling
steps as described in [21]. Thus, MB-PLS is an extension of the classical PLS regression [28]
for applications involving different data blocks that share the same number of rows (ob-
servations), relating to the data matrix X, resulting from the row-wise concatenation of N
different data blocks (Equation (1)):

X = [X1, X2, . . . , XN] (1)

to the response(s) of interest.
This method provides global (also called super-) scores, weights, loadings and regres-

sion coefficients, as well as local (also called block-) scores and weights for each data block,
as it is shown in Equations (2)–(5):

wb = XT
b ∗ u/uTu (2)

tb = (Xb ∗ wb)/
√

nb (3)

w = TT ∗ u/uTu (4)

t = T ∗ w/wTw (5)

where nb is the number of variables in a given block, tb and wb are the local scores and
weights, respectively, whereas t and w are the global (super) scores and weights. T is yielded
by the concatenation of all tb.

This way, it is possible to assess the contribution of each data block (analyzing wb for
the prediction of the response variable/s y/Y, improving the process understanding).

2.4.4. ROSA

Response-Oriented Sequential Alternation (ROSA) is a multiblock regression method
proposed by Liland et al. [22] that is also based on PLS regression. Different from MB-PLS,
in that ROSA is a sequential algorithm, similar to, e.g., SO-PLS [20], which renders the
method invariant with respect to block-scaling (blocks are just mean centered), as well as to
block ordering, differently from SO-PLS. These features allow dealing with a large number
of blocks of different dimensions.

Moreover, ROSA exhibits a high computational efficiency, as it does not require the
iterative convergence of an optimization criterion, and because only the response is deflated,
not all the blocks. In fact, each PLS component is selected from a single block, picking
among the various covariance-maximizing candidate components, estimated from each
data block, the one returning the smallest prediction residuals. Successive components
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are constrained to be orthogonal to the subspace spanned by the previously winning
components. Thus, scores’ and loadings’ orthogonality is ensured.

The ROSA algorithm for a single response variable, y, is summarized in the follow-
ing equations:

wb = Xb
T ∗ y (6)

tb = Xb ∗ wb (7)

rb = y − tb tb
Ty (8)

where Xb is a single data block, while wb, tb and rb are block weights, scores and residuals,
respectively. The first component is selected as the one computed from the bth-block yielding
the smallest residuals (rb), and t1 are taken to be equal to tb of the winning block. The
corresponding weights and scores are normalized (and also orthogonalized with respect
to the preceding components from the second component on). The y-loadings are finally
estimated as:

qa = yT ta (9)

where ta are the scores previously selected for the ath LV.
X-loadings (P) and PLS regression coefficients (b) (and possibly a constant term b0)

can be estimated according to the Equations (10)–(12), after selecting the number of optimal
LVs and collecting the corresponding scores, weights, y-loadings in matrix array T, W

and Q.
P = XT T (10)

b = W(PTW)−1Q (11)

b0 = ym − xm ∗ b (12)

where ym is the mean of y and xm is a vector with the mean for each variable of X.
Thus, each selected LV in ROSA encodes information proceeding only from the win-

ning bth-block (the one achieving smallest residuals according to Equation (8)), and all
LVs are orthogonal. It is important to notice that all blocks are always candidates at each
algorithmic step. Therefore, consecutive LVs can depict information from the same block
previously selected, or from a different one.

2.4.5. Multiblock Models Building

With the aim of developing predictive models for the two parameters taken into
account in this study and assessing which are the most important data blocks for their
estimation, both MB-PLS and ROSA were investigated.

All the available data were split into calibration and validation sets for both Property 1
and Property 2. In order to assess models’ performance in a scenario mimicking a real-time
application, the calibration sets comprised data collected during the year 2020 (~70% of
total data), whereas the validation sets comprised data collected in 2021. Clearly, only
samples, i.e., time points, for which the offline reference measurement were available were
taken into account.

The two optimized best-performing models were finally utilized for assessing the
values of Property 1 and 2 at time points where no reference data were acquired, in order
to check whether the resulting estimations spanned a similar properties values range with
respect to close time points.

In order to establish the complexity, i.e., number of PLS components, of each model,
venetian blinds cross-validation with ten cancellation groups for Property 1 and four
cancellation groups for Property 2 was resorted to. Model reliability was determined in
terms of both root mean square error in cross-validation (RMSECV) and root mean square
error in prediction (RMSEP).

Data blocks were preprocessed as described in Section 2.4.2.
For both MB-PLS and ROSA, the contribution of each block and block variables in the

final predictive model was assessed by investigating the PLS regression coefficients and
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Variable Importance in Prediction (VIP) [32,33]. PLS block-weights were also inspected but,
for the sake of brevity, the related figures are not reported, as the provided information was
similar to that obtained by regression coefficients.

2.5. Software

All the chemometric analyses were performed using routines and toolboxes imple-
mented in the MATLAB environment (the Mathworks Inc., Natick, MA, USA).

MB-PLS has been calculated through the PLS-Toolbox version 8.9 (Eigenvector Re-
search Inc., Wenatchee, WA, United States).

ROSA (with options for venetian blind cross-validation, VIP calculation and validation
sample response prediction) was implemented by the authors based on the MATLAB code
provided in ref. [22].

3. Results

3.1. Property 1 Prediction

When all the available data blocks (PS and NIR measurements for all plant areas)
were simultaneously modelled ROSA resulted to be the most performant method for the
prediction of Property 1, yielding a RMSEP of 0.14%. On the other hand, MB-PLS returned a
RMSEP value of 0.2%. This difference, however, is not substantial. The results are shown in
Table 2 and Figure 3. ROSA selected only three of the nine blocks under study, two of which,
Devo/cut and NIR-cut, relate to the last stage of the process, where the polymerization
is over and the product is ready to be cut. Furthermore, among the 13 latent variables
selected through the cross-validation procedure (aimed at minimizing RMSECV), eight
were calculated from the NIR-cut block, which highlights a crucial relevance of the final
NIR sensor, in this case, for the quality prediction. Figure 3a shows how the predictions
for the objects of the validation set are homogeneously distributed within the expected
range of the quality parameter concerned. In Figure 3b–d the PLS regression coefficients
associated to the three blocks selected by ROSA are represented (the red stars denote
variables/spectral regions whose VIP scores were higher than one). In the RP-A data block
(selected only one time out of 13) only three temperature sensors were found relevant
for Property 1 prediction, whereas in Devo/cut and NIR-cut data blocks all the sensors
and nearly all the spectral regions sampled were somewhat important. In Figure 3d it is
evident that the largest (in absolute value) regression coefficients are those corresponding
to bands centered at 5900 cm−1 and 5250 cm−1 that can be ascribed to the investigated
ABS compound.

Table 2. Results yielded by MB-PLS and ROSA for the prediction of Property 1.

Model ID
Blocks Entering

the Model
LVs

RMSEC
(%)

RMSECV
(%)

RMSEP
(%)

MB PLS all All 11 0.12 0.16 0.20
MB PLS no cut zone 1 to 7 11 0.13 0.17 0.23

MB PLS only PS 2–4–6–7–8 11 0.24 0.26 0.38
MB PLS only NIR 1–3–5–9 10 0.13 0.15 0.22

MB PLS only NIR no cut zone 1–3–5 8 0.14 0.15 0.22
ROSA all 1 4(1)–8(4)–9(8) 13 0.11 0.14 0.13

ROSA no cut zone 3(6)–4(1)–5(3)–6(2) 12 0.15 0.18 0.2
ROSA only PS 2(1)–4(6)–7(3) 10 0.23 0.25 0.31

ROSA only NIR 9(8) 8 0.12 0.13 0.14
ROSA only NIR no cut zone 3(12)–5(2) 14 0.16 0.18 0.19

1 the values in brackets indicate the number of times a certain block was selected by the ROSA algorithm.
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Figure 3. ROSA results for Property 1 prediction (all data blocks were modelled simultaneously).
Predicted vs. measured value plot (a); regression coefficients for the RP-A (b); Devo/cut (c); and NIR
cut (d) data blocks. Red stars indicate variables having VIP scores higher than one.

Although such results might already be considered relatively satisfactory from a
predictive point of view, two additional aspects would be worth investigating: (i) whether
reasonably good quality prediction of Property 1 values could be obtained before the
product is cut (i.e., without relying on sensors installed within the cut area); and (ii) whether
the exclusive use of spectral sensors or process sensors could be sufficient for a reliable
estimation of this quality index. To this end, in addition to the dataset containing all
the blocks, MB-PLS and ROSA models were calculated using fused datasets comprising
only the blocks before the cut zone, only PS data and only NIR data (both including and
excluding the spectra contained in the NIR-cut block), respectively.

Table 2 reports the results of all the computed multiblock prediction models related
to Property 1. It is possible to observe that prediction errors resulting from ROSA are
systematically lower than the one obtained by means of MB-PLS. It is also clear how NIR
data are far more important for the prediction of Property 1 than PS data. In fact, when
ROSA is run on both block types, components from NIR data sets are more often selected
than those computed from PS data sets. Moreover, in MB-PLS models, variables related
to NIR blocks are always relevant for Property 1 prediction. In addition, the RMSEP of
models that are calculated using only NIR data is comparable to that of models using both
PS and NIR data, while using only PS data blocks results in a significant increase of the
prediction error in calibration, cross-validation and external validation. This is somehow
expected, as Property 1 is linked to ABS chemical composition and, therefore, an analytical
technique like NIR spectroscopy is definitely more suitable for its determination than
more standard engineering PS probes, which only indirectly reflect how fluctuations in the
process operating conditions may affect the polymer characteristics.

Since ROSA models always selected components estimated from the blocks located on
the plant cut area, i.e., blocks eight and nine, we also decided to calibrate ROSA models
(using both PS and NIR data and only NIR data) excluding completely such blocks from
the computational procedure (see ‘ROSA no cut zone’ and ‘ROSA only NIR no cut zone’ in
Table 2, respectively). In both cases, RMSEP values for models not including the cut area,
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were found higher, yet acceptable by process operators. This clearly makes it possible to
retrieve reasonable Property 1 value estimate before the completion of the ABS production
process. Moreover, similar prediction errors were obtained by using only NIR blocks or
when combining NIR and PS blocks. Hence, two possible pathways can be envisioned
for the real-time prediction and control of Property 1: (i) resorting to both data types and
getting a clearer idea of the important process areas/sensors all along the production plant;
or (ii) just exploiting NIR spectra for more efficient data management and to deal with less
noisy data.

In order to evaluate the role of all types of sensors, Figure 4 displays the results yielded
by the ‘ROSA no cut zone’ model. It is worth mentioning that half of the blocks selected
by the ROSA algorithm relate to the reaction points A and B, whereas the other half to the
NIR-cond data block, whose respective probe is right before these reaction points. Looking
at the order (not reported for the sake of brevity) in which blocks were selected by ROSA, it
can be observed how the winning blocks for the first five latent variables were RP-B (picked
only one time) and NIR-RP-A (picked four times). For the remaining model dimensions,
NIR-cond was selected six times in a row, while RP-A and RP-B one each. Details about the
selection order are useful to assess which blocks, i.e., areas of the plant, encode the most
important information for the prediction of the investigated quality parameter.

 

Figure 4. ROSA results for Property 1 prediction (‘ROSA no cut zone’ model). Predicted vs. measured
value plot (a); regression coefficient for NIR cond (b); RP A (c); NIR RP A (d); and RP B (e) data
blocks. Red stars indicate variables having VIP scores higher than one.
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Figure 4b,d show the regression coefficients for the two aforementioned NIR blocks,
with NIR-RP-A exhibiting a larger number of spectral variables characterized by VIP scores
higher than one, especially in the region between 5400 cm−1 and 5250 cm−1, that are
ascribable to the stretching of a functional group of one of the three precursor compounds
on which Property 1 directly depends. Conversely, in Figure 4c,e the regression coefficients
for the PS data blocks are graphed: the most significant variables, according to their
respective VIP values, are almost all related to temperature and motor speed sensors
installed in different subzones of the reaction points A and B.

3.2. Property 2 Prediction

The same model building strategy described before was finally followed for the
prediction of Property 2. Table 3 reports the results obtained by means of both MB-PLS
and ROSA. ROSA, when all the available data blocks were simultaneously modelled, did
not select any cut area block, therefore the ‘ROSA no cut zone’ model was not trained in
this case.

Table 3. Results yielded by MB-PLS and ROSA for the prediction of Property 2.

Model ID
Blocks Entering

the Model
LVs

RMSEC
(g)

RMSECV
(g)

RMSEP
(g)

MB PLS all All 10 0.25 0.27 0.34
MB PLS no cut zone 1 to 7 8 0.27 0.29 0.37

MB PLS only PS 2–4–6–7–8 9 0.27 0.29 0.35
MB PLS only NIR 1–3–5–9 7 0.34 0.34 0.48

MB PLS only NIR no cut zone 1–3–5 6 0.36 0.37 0.5
ROSA all 1 2(1)–4(1)–5(1)–6(1) 4 0.32 0.33 0.46

ROSA only PS 2(1)–4(1)–6(1) 3 0.32 0.33 0.45
ROSA only NIR 5(6)–9(3) 9 0.33 0.34 0.52

ROSA only NIR no cut zone 5(8) 8 0.33 0.34 0.52
1 The values in brackets indicate the number of times a certain block was selected by the ROSA algorithm.

MB-PLS models calibrated by using (i) all the data blocks or (ii) only PS data returned
the most satisfactory results, contrary to the results obtained for Property 1. In fact, the
influence NIR spectra have on the estimation of Property 2 prediction is not predominant,
except for the NIR-RP-A block, which was selected many times by the ROSA algorithm
and whose variables always showed VIP scores higher than one in MB-PLS. These results
can be interpreted in the light of the fact that Property 2 is not linked to the chemical
composition of ABS but evaluates the performance of the finite product as determined by
mechanical/physical tests. Subsequently, it is undoubtedly more affected by variability
occurring in the processing steps, and can change significantly even if the aforementioned
chemical composition does not change. RMSEP increased up to 0.52 g when no PS block
was considered. However, for models built without PS data, MB-PLS achieved a slightly
better performance than ROSA (0.48–0.5 g vs. 0.52 g). These results suggested how the
exclusive use of NIR sensors is not sufficient for a reliable estimation of Property 2.

Overall, MB-PLS showed a better prediction performance for Property 2. The best
results were obtained by the ‘MB PLS all’ model (RMSEP = 0.34 g), even though ‘MB PLS
no cut zone’ and ‘MB PLS only PS’ provided similar results.

In Figure 5 is where the predicted vs. measured value plot resulting from the ‘MB-
PLS all’ model is shown. By inspecting the corresponding residuals plot (not shown for
the sake of brevity) it can be observed that, on average, the 2021 production campaign
(validation set), yielded lower values of Property 2 than that conducted in 2020 (calibration
set). This deviation explains the relatively high difference between RMSEP and RMSEC
and RMSECV. However, the presence of a reasonable amount of validation samples in the
whole calibration range was guaranteed and the company deemed the prediction error
acceptable for routine monitoring.
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Figure 5. Predicted vs. measured value plot resulting from the ‘MB-PLS all’ model.

In Figure 6 the ‘MB-PLS all’ model regression coefficients are reported. All PS were
found to be important for the prediction of Property 2 based on their VIP scores values.
For what concerns the NIR blocks regression coefficients, the NIR-RP-A is confirmed to be
the block with the largest number of highly predictive spectral regions, which are mainly
related to the three precursors monomers of ABS. For the other NIR blocks, relevant regions
of interest were found in correspondence of the absorption bands centered at 5900 cm−1

and 6100 cm−1, respectively.

Figure 6. Regression coefficients resulting from the ‘MB-PLS all’ model for each data block the letters
(a–i) refer to the different block whose name is reported on top. Red stars indicate variables exhibiting
VIP scores higher than one.

3.3. Real-Time Predictions

Finally, Figure 7 illustrates the predicted values of Property 1 obtained through the
ROSA model constructed on all data blocks (Table 2, row 1) for the time points for which
reference response measurements were not acquired.
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Figure 7. Real time predictions of Property 1 (i.e., time evolution of the measured and predicted values).
The predictions were obtained by means of the ‘ROSA all’ model. Legend: black circles—calibration set
measured values; green circles—calibration set predicted values; blue squares—validation set measured
values; red squares—validation set predicted values; magenta dots—predicted values related to time
points for which no reference response measurements were available. For ease of visualization only
every 2 h predictions during the considered time period are shown.

These predicted values span a range very similar to that covered within both the
calibration and the validation set. A few slight deviations were observed, interestingly
right after specific shut-down time periods: such deviations may, in fact, arise from the
fact that many industrial processes (including polymerization processes) take a certain
time to readapt to NOC conditions after particular external interventions (e.g., cleaning,
maintenance, etc.).

Similar results were obtained for real-time predictions with the model ‘MB-PLS no cut
zone’ for Property 2, as shown in Figure 8.

Figure 8. Real time predictions of Property 2 (i.e., time evolution of the measured and predicted
values). The predictions were obtained by means of the ‘MB PLS no cut zone’ model. Legend:
black circles—calibration set measured values; green circles—calibration set predicted values; blue
squares—validation set measured values; red squares—validation set predicted values; magenta
dots—predicted values related to time points for which no reference response measurements were
available. For ease of visualization only every 2 h predictions during the considered time period
are shown.
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4. Conclusions

This work demonstrated how multiblock approaches could be used for the construc-
tion of reliable and robust real-time monitoring models for the on-line prediction of in-
dustrial quality parameters of ABS. In fact, the data partition in different blocks and the
low-level data fusion strategy adopted here permitted to improve ABS production process
understanding, enabling the assessment of the most crucial plant areas and the relevant
sensors for the prediction of such specific parameters. Moreover, the application of these
approaches is essential when two or more different analytical platforms of different nature,
like the NIR spectrometer and more standard engineering process sensors, are simultane-
ously used to control any generic production process.

More specifically, in this article, both MB-PLS and ROSA allowed performant predic-
tive models to be constructed for the two properties under study (i.e., Property 1 and 2). In
particular, for the prediction of Property 1, ROSA resulted in a lower RMSEP compared to
MB-PLS, highlighting the importance of NIR data over process sensor data when a chemical
composition-related quality index is to be estimated. On the other hand, Property 2 was
more efficiently predicted by a MB-PLS method, which pointed out a higher relevance of
process sensors compared to NIR data when, instead, physical features need to be assessed.

Furthermore, models computed without taking into account measurements related to
the final area of the plant (cut zone) provided comparable prediction errors with respect
to the best models built on all the ensemble of available data. This is of great industrial
interest, since, in principle, ABS quality could be determined before its production is
completed, which might allow possible modifications of the plant settings and/or changes
in the operating conditions to be planned in advance and with reduced costs.

In conclusion, these approaches could help in: (i) accelerating decision making and
troubleshooting; (ii) reducing the amount of chemical waste generated in full-scale plants;
(iii) decreasing the number of off-line laboratory tests required for quality control; and
(iv) facilitating any type of operation along the production line as well as possible fault
detection and diagnosis.
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Abstract: This paper proposes an optimization framework for terrain large scale optical sensor
placement to improve border protection. Compared to the often used, maximal coverage of an area
approach, this method minimizes the undetected passages in the monitored area. Border protection
is one of the most critical areas for sensor placement. Unlike traditional border protection solutions,
we do not optimize for 2D but for 3D to prevent transit. Additionally, we consider both natural and
built environmental coverings. The applied environmental model creates a highly inhomogeneous
sensing area for sensors instead of the previously used homogeneous one. The detection of each
sensor was provided by a line-of-sight model supplemented with inhomogeneous probabilities. The
optimization was performed using a bacterial evolutionary algorithm. In addition to maximizing
detection, minimizing the number of the applied sensors played a crucial role in design. These two
cost components are built on each other hierarchically. The developed simulation framework based
on ray tracing provided an excellent opportunity to optimize large areas. The presented simulation
results prove the efficiency of this method. The results were evaluated by testing on a large number of
intruders. Using sensors with different quantities and layouts in the tested 1 × 1 × 1 km environment,
we reduced the probability of undetected intrusion to below 0.1% and increased the probability of
acceptable classification to 99%.

Keywords: sensor placement; route detection; evolutionary computing

1. Introduction

This study aims at an optimization framework for terrain large scale optical sensor
placement. Appropriate sensors are crucial for the operation of any automated system.
The right number and position of sensors are essential for a sensor system’s efficient and
reliable operation. The camera is one of the essential sensors in terms of surveillance. It was
chosen for this study since it is reasonably priced and provides an information-rich and
easy-to-understand signal. It is also crucial to consider the environment in which sensors
are placed. The uniqueness of this article is not to cover the entire area but to detect any
intruders. It is not necessary to cover all points of the area for detection, but it is enough to
find the targets at one point in their route.

The real-life importance of this topic is protecting critical areas such as power plants,
military facilities, and country borders. To be more efficient, it is high time to reconsider
the previously used 2D models. Hence, these models focused on people, objects located
on the ground, and land vehicles. In the case of flying targets, the 3D environment study
is inevitable. Due to their relatively easy availability, flying targets such as drones or
kites are more common as potential intruders. They can both be used for smuggling
goods and gathering confidential information [1–3]. Equipped with a camera, they can be
sent as an outpost to avoid the border patrols and find the proper timeframe for crosses
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without being caught. In addition to drone threat, summary studies were conducted on
the applied sensors for drone monitoring and countermeasures against drones [3]. In line
with the European Horizon projects [4], border protection is a priority for future years.
One possible way to protect borders is through aerial reconnaissance. Long-term aerial
reconnaissance can be achieved using airships and solar panels. Wind loading and easy
visibility are the main disadvantages of airships, but their operation in a multimodal system
can provide significant advantages. Sensor placement plays an important role in several
other areas. Well-equipped sensor nodes with different sensors to monitor the environment
and structure can be effectively used for social distancing and emergency management in
a sensor network. Such a system has been tested in a park to manage visitors and create
a favorable route for them to avoid crowding and plan an escape route in the event of an
emergency [5].

This article has developed a new simulation-based approach to border management.
The simulation uses ray tracing for effective application in highly inhomogeneous en-
vironments. Optimization was performed in 3D to prevent undetected ground and air
crossings.

In Section 2, topic-related literature is reviewed. In Section 3, the simulation model is
detailed. Section 4 describes the optimization method. Experimental results are presented
in Section 5. Lastly, the conclusions and further works are summarized.

2. Related Literature

There are several sub-areas of border management, the two largest being physical
border protection and psychological border management. The second’s purpose is the
study of people’s behavior and psychological profiling [6]. The first is for the detection, lo-
calization, and prevention of illegal border crossings. In addition to high-altitude air traffic
and ground crossings, the threat posed by low-altitude drones has increased over the last
decade. The literature review can be divided into four main parts. The first part presents the
sensors applicable to the boundary and area protection task and the related drone detection
literature. The second topic is dynamic border protection methods. The third topic is static
sensor placement. The last part contains sensor placement methods for more specialized
tasks. Several studies have addressed the surveillance of drones [7]. The applied sensors
for drone surveillance: camera (mono, RGB [8–14], multi-, hyperspectral, short-/longwave
infrared [14]), radar [15], radio direction finder [16–18], acoustic (single [14,19,20], array,
matrix) and laser detection and ranging. Various fusion techniques [14,21,22] have also ap-
peared, mainly with visual, infrared, and acoustic sensors. In the case of ground transit, the
use of geophones is also common [23,24]. There are static, dynamic solutions for boundary
surveillance. Dynamic solutions include different patrol mechanisms [25,26]. Generally,
short—a few hours—flight times are typical for drones [27], but developments aiming at
flight times of several hours [28] also exist.

The border surveillance is often concentrated only on ground intruders, so 1D line
arrangements are common in theoretical sensor placement methods. In most cases, sensors
had uniform disk-shaped sensibility decreasing towards the edges [29–33]. Radars are
well suited for area protection due to their large field of view [31]. Two dimensional (2D)
coverage studies are more common in the literature than articles on border protection.
Akbarzadeh et al. investigated an optimal sensor coverage in 3D elevation terrain and
the built environment. The optimal 2D coordinates and horizontal and vertical angular
positions of each sensor were optimized by simulated annealing, the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm, and the Covariance matrix adaptation
evolution strategy [34]. Unlike in the natural homogenous non-flat environments in the
built-in environment, the sensor placing goal was to cover inhomogeneous flat surfaces.
Altahir et al. developed a weighted coverage model for installing camera surveillance
systems. The placement was based on a 2D risk map in 3D space. Inversely, the sensors
were placed based on 2D weighted coverage demand [35]. As a continuation of their
work, they used dynamic programming as a discrete optimization for 2D generated urban
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layout [36]. Various aspects, such as power supply, energy efficiency, sensor lifetime,
reliability, greedy coverage and the placement of the controllers in the sensor network, can
be considered for the sensors’ placement [32,37,38]. An obvious solution for a wireless
sensor network is to use renewable energy with a rechargeable battery [32]. The energy
efficiency can also be maintained by the timing of the sensors [39]. The goal is to ensure
adequate coverage even in the event of outages. In the case of a fail, relocating nodes can
provide an excellent solution to hold the uniformity of 2D coverage [40]. Energy supply
is also an important aspect of border surveillance. Dong et al. implemented a boundary
monitoring procedure with solar-powered sensors. In addition to the surface coverage,
time optimization was also applied due to the limited energy of the sensor’s battery [29,30].
The method was later expanded to include adaptive sensing range adjustment for energy-
efficient, time-aligned alignment of sensors [41]. Another aspect of sensor placement is
localization, which requires signal strength, time, or direction data from different sensors.
Xu et al. investigated ideal sensor placement for single target localization based on circular
time of arrival. The optimality criterion is to minimize the trace of the inverse Fisher
information matrix [42]. Xu’s hybrid localization procedure study is for single static target
localization using the hybrid received-signal-strength, angle-of-arrival, and time-of-arrival
measurements on the 2D plane [43]. Akbarzadeh et al. examined a new optimization
approach for temporal coverage. The essence of temporal coverage is to cover the area
around the most probable position of the target point with the available sensors. It was
concluded that individual control of each sensor in series works better all at once [44].
After detection, target tracking and localization is the next important task [45–47]. Another
exciting research area is the replacement of a temporarily failed sensor for localization.
Pedrollo et al. trained a neural network to be a virtual sensor, replace unavailable sensors,
and generate synthetic but still realistic data [48]. Another similar task is to observe 3D
objects. De Rainville et al. created a framework for mobile robotic sensor placement with
covariance matrix adaptation evolution strategy optimization. The mobile robots were
equipped with optical sensors. The optimization goal was maximization of the pixel density
on the area [49]. Herguedas et al. examined the optimal sensor placement for deformable
bodies [50]. The procedure was later improved using RGB-D cameras [51]. An important
area of the Optimal Sensor Placement Problem is the vibration measurements in various
structures such as bridges [52]. The problem examines small dimensionally discrete sensor
placement. Zhang et al. examined the coverage-based optimization of different bodies with
different evolutionary algorithms [53]. Spielberg et al. performed a sensor placement task
during the soft robotics simulation to monitor the inside of the soft robot [54].

3. Modeling

Simulation-based optimizations are becoming more common. Creating a suitable
simulation environment has a competitive speed compared to a complex analytical solution.
The studies in the simulation are very flexible and illustrative. In the field of sensor
placement, simulation-based solutions are less common and are not applied for border
protection. Nevertheless, the simulation-based approach has many advantages compared
to the traditional analytical methods. Simulation is much more flexible, making it easy to
examine even dynamic environments, and is easier to expand and apply for new tasks.

During the simulation, the signal’s path between the object and the sensor was em-
phasized. Reflections were not considered during ray tracing because, in the studied
natural environment and the use of optical sensors, this is not significant. Absorption and
transparency were calculated for signal propagation. Algorithm 1 contains the process of
applied signal propagation.
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Algorithm 1 Ray Tracing.
function RAY TRACING(Sensors, Intruders, Environment)

for Intruders′Route do
function FIELD OF VIEW CHECK(Sensors, Intruders)

return true/false, Ray strengths, Distance and Angular differences
if Intruders in the sensors’ field of view then

function GROUND CROSSING AND BACKGROUND(Positions, Ground)
return true/false, Closest ground backgrounds for sensors and intruders

if Signal not cross the ground then
function BUILT CROSSING AND BACKGROUND(Positions,Built elements)

return true/false, Closest Built element backgrounds for sensors and intruders
if Signal not cross built elements then

function VEGETATION CROSSING AND BACKGROUND(Positions, Vegetation, Ray strength)
return Ray strengths, Closest Vegetation backgrounds for sensors and intruders

if Signal greater then the cut value then
function CLOUD CROSSING AND BACKGROUND(Positions, Clouds, Ray strength)

return Ray strengths, Closest Cloud backgrounds for sensors and intruders
function SELECT CLOSES BACKGROUND(backgrounds)

return Closest background
return Ray strengths, Backgrounds, Distance and Angular differences

The disadvantages of simulation are that it approximates reality. Simulation neglec-
tions tend to produce better results than reality, so neglections must be considered in
evaluating the results. The main difficulties in object detection are the visibility of the object,
the background, the weather conditions, and the influence of the sun. In this article, the
visibility and background attenuation of the object has been taken into account. Weather
can significantly degrade detection for some sensors [55,56]. Three different effects can
occur: reduction of visibility, particles appearing in the image, and, in the case of optical
sensors, particles on the detector can obscure or blur regions. The first is the inevitable
decrease in most optical sensors’ detection, which can be considered as distance decreas-
ing [55]. Particles can be filtered [57]. It is difficult to consider particles’ blur and covering
effect. One possibility for optimization is to punish the high angular position of the sensors.
Another solution is simulating weather conditions [58]. The sun degrades the detection
to different degrees depending on the quality of the optics. The sun’s position can be
calculated according to its geographic location [59]. In most cases, only the distance from
the sensor is used for goodness calculation. In the prepared simulation, the ray passaged
through the medium in the environment weakens the signal further. In addition to the
strength of the signal, the signal-to-noise ratio from a detection perspective is more impor-
tant. No model has been developed for optical sensors to test the signal-to-noise ratio for
detection. This area is the best developed in the case of radar [60]. Signal-to-noise ratio
based detection can be divided into four main parts: transmitter noise, receiver noise, the
signal of the object to be observed, and background noise. For optical sensors in the field,
the transmitter noise can be considered as the slow variation of sunlight. The receiver
noise is mostly considered as the optical signal-to-noise ratio, containing dark current
noise and spatial frequency transmission of optics. The signal is the visibility of the object.
Background noise can be taken into account by the background environment. In this paper,
the detection model has been compiled with the background in addition to object visibility,
and the transmitter and receiver noise is not discussed. The receiver noise is sensor-specific
and can be added to the discrete properties of the sensors. Based on the implemented ray
tracing, the transmitter noise can be estimated by adding sun and other light sources. Based
on the type of background, the estimated detection probability decreased. Table 1 shows
the effect of background on the signal strength.
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Table 1. Background impacts on the signal.

Environmental Element Sign Decrease [%]

Clear sky 0
Clouds 20 · cloud’s density
Ground [0. . . 50] predefined

Walls [0. . . 50] predefined
Vegetation 50 · vegetation’s density

3.1. Environment Model

Terrain, clouds, vegetation and artificial built elements formed the modeled environ-
ment. Accurate elevation data were loaded during the design of the environment. The
vegetation was loaded from a random vegetation map. The clouds and buildings were
randomized. Automated loading of the entire environment is not yet implemented. The
elements of the environment have different properties that are required for the placement
of optical sensors. Clouds were shaped as orbs with position, size, absorption, and trans-
mission properties. The vegetation was modeled with orbs shapes with position, size,
absorption, and transparency. The constructed elements were considered rectangles with
the property of position, orientation, and size. The simple shapes allow a quick parallel
calculation, and more complex elements can be built. Figure 1 shows how the examined
elements can construct the environment. A random vegetation map was added to the
real elevation map. Clouds were generated at random locations and transparency in each
iteration. Changing environmental elements increase robustness and are more realistic.

Figure 1. Model of the environment used for the studies, with elevation map, vegetation, clouds.

3.2. Sensor Model

Pinhole camera models were used with focus distance. The field of view and distance
were calculated based on the focal length and sensor-specific typical detector size and
resolutions. The object’s size and its minimal pixels representation have an essential
role in calculating visibility distance. Maximal signal strength is considered half of the
visibility distance, and then it decreases linearly. The value calculated from the distance
gave the initial value of the signal propagation. A crop value can be set for the detectable
signal minima. The sensors have a position, orientation, and focal length properties for
optimization. The detection range of a sensor plotted black is shown in Figure 2 illustrating
the optimization result when only one sensor is used. A red line indicates a possible
intruder route. The maximum visibility distance was determined during the optimization
up to two-pixel imaging of a one-meter target. The real visibility is much smaller visibility
due to the environment and background. The four-pixel projections are plotted in figures,
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which is better related to the visibility. A larger pixel representation is recommended for a
basic classification.

Figure 2. The detection field of a sensor is plotted black. The red line exemplifies a possible route of
an object.

3.3. Target Model

Flying objects were defined in the simulation, so it was necessary to examine the 3D
space instead of the usual 2D. These objects move from one edge of the simulation space
(x = 0) to the other (x = xmax). Any point above the surface of the starting plane of the
space (x = 0) was a possible starting point. During the route planning, the area was divided
evenly along the transit direction. For the other coordinates, the maximum deflection from
the previous position was calculated based on the object’s top speed. The object moved
randomly above the surface, between the maximum deflection and the straight direction.
Objects have a size, minimal pixel representation, initial position, maximum speed, and
a random path between the two edges of the study range properties. Based on the initial
properties, a random path was calculated and added to the properties. Straight diagonal
and mixed routes were generated in each iteration, a sample is plotted in Figures 3–5.
The maximum observability is sought on each route’s evaluation. The different paths
(red lines) of the objects quasi evenly filled the study area. Due to the gaps, previous
observations were also weighted, giving momentum to the optimization and smoothing
the cost function. Some of the routes were complex despite the simple generation. Lateral,
curved movements have also appeared, in addition to straight and near-straight passing
attempts. Using multiple intruders in simulations with random patches results in some
complex patches. The cost function considers the undetected paths with greater weight,
so optimization better secures “quasi” intelligent routes. An excellent way to reduce the
number of simulations is to use smarter intruders. Pinball and flood-fill algorithms can be
a good solution for intelligent intruders [61].
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Figure 3. New routes (red lines) were generated at each iteration step.

Figure 4. The different paths (red lines) of the objects quasi evenly filled the study area.

Figure 5. Some of the routes were complex despite the simple generation.
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4. Optimization

4.1. Objective

The goal is to prevent unnoticed passage with minimal sensor use. It is necessary to
estimate the total detection probability for the entire sensor system to recognize the hidden
paths. The resulting detection is difficult to determine in sensor systems. The strongest
single detection was considered the detection probability of the system. For different
targets and environments, different correlation tensors can be applied. This tensor can be
determined from measurements. A simple and obvious solution is to use the maximum
single detection probability when combining detections of multiple sensors. This case is
close to the worst case, which increases the system’s reliability, but there may be negative
values in the correlation tensor so that it can be better than the actual worst case. The
objective can be written as the minimum observations taken from each route’s maximum
observation in Equation (1), where pd is a single detection probability.

Omin = 1 − min|object(max|route(max|sensor(pd))). (1)

Applying the objective as a cost function resulted in highly variable costs and frequent
population exchange during optimization. The cost function has been modified to improve
the quality of the optimization. The number of intruders was increased, and as a standard
solution in the low batch sample proportion teachings, the principle of momentum was
applied. In Equation (2), the average detection of the objects was calculated. The minimum
detection (Equation (1)) and the mean detection (Equation (2)) were weighted (wo) in
Equation (3). The previously computed values have also been considered in the resulting
cost (C) in Equation (4). Thus, the momentum principle was realized with the weight factor
(wc). In Equation (4) n denotes the number of simulations. Compared to fixed-structure
optimization tasks, it is not practical to consider historical values with greater or uniform
weighting. By changing the structure, some sensors can be replaced or combined for a
more optimal result despite their excellent performance.

Omean = 1 − mean|object(max|route(max|sensor(pd))) (2)

Oext = wo · Omin(pd) + (1 − wo) · (Omean(pd)) (3)

C(n) = wc · C(n − 1) + (1 − wc) · Oext(n). (4)

A secondary goal of the hierarchical task is to minimize the number of sensors used.
Based on the hierarchy, two levels of cost function were applied. The first level of the cost
function is to secure the hidden passage, and the second level minimizes the number of
sensors. The two-level design was implemented using two cost levels. Any arrangement
that can permanently minimize passage will be one step lower in cost, and its goals will be
expanded by reducing the number of sensors applied.

4.2. Individuals

Individuals consisted of varying amounts of sensors. Each sensor had fixed and
variable parameters. Fixed parameters were detector size, resolution, and the range of the
variable parameters. Variable parameters are position, vertical and horizontal orientation,
and focal length. During optimization, the specified parameters could only take discrete
values, and the variable parameters were continuous. The structure of the individuals is
shown in Figure 6.
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Figure 6. Structure of an individual.

4.3. Optimization Method

The Bacterial Evolutionary Algorithm (BEA) was used for optimization [62]. The BEA
consists of bacterial mutation and gene transfer, shown in Algorithm 2. BEA has been
applied to a wide range of problems, for instance, optimizing the fuzzy rule bases [62,63],
feature selection [64], data clustering [65], and combinatorial optimization problems [66].

Algorithm 2 Bacterial Evolutionary Algorithm.
function PARAMETER INITIALIZATION(params)

Npop ← Number of individuals
criteria ← Stop criteria
optpi ← Options of population initialization
optbm ← Options of bacterial mutation
optgt ← Options of gene transfer

function POPULATION INITIALIZATION(optpi , Npop)
parallel(Npop) create and evaluate population

while criteria do
function BACTERIAL MUTATION (optbm, Population)
function GENE TRANSFER (optgt, Population)

return Best individual

During bacterial mutation, random sensors or sensors with the lowest added value
were chosen. Sensors may have left the individual, new sensors may have joined the
individual, or sensors may have been replaced. During gene transfer, one or more sensor
from the better-performing individual was transferred to a lower-performing individual or
replaced with a sensor from the better individual. The replaced sensors were with the most
negligible additive value or selected randomly. The algorithm and the operators used are
shown in Figure 7. The optimization process is shown in Figure 8.

A sensor’s additive value is calculated as the sum difference between the maximum
detection of each intruder in the whole sensor system and the detection without that sensor.
The total additive value of a sensor cannot be calculated due to the infinite possible path
and the change of the sensor placement. Still, it can be estimated and summed with the
previous values in each simulation.
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Figure 7. Bacterial Evolutionary Algorithm used for sensor placement.

Figure 8. Optimization flow chart.

5. Experimental Results

During the experiments, a 1 × 1 × 1 km area was simulated. In each iteration, the
cloud map has been updated, and new paths have been initialized. 20%–80% division of
random sensors or the ones with the estimated lowest added values were modified. The
spontaneous mutation has weighed less due to the lack of local search. First, the sensors
were selected for clone creation, and then the listed mutations occurred on them, in 30%–
30%–40% of cases, a new sensor was added, removed, or replaced. The sensor’s numbers
were ranged and considered in selecting the mutation operation. During gene transfer,
the chance of sensor transfer and sensor replacement was 50%–50%. A sensors’ additive
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value was calculated based on a 50%–50% weighting of the previously accumulated and
current additive values. Thus, the current value got more significant weight. In general,
high-resolution sensors came to the fore during optimization. Several acceptable solutions
have emerged for different amounts of sensors. Low-resolution sensors can be helpful
in some cases. Due to the mutation operator used, sensors with minimal added value
were included temporarily and for more iteration in the case of a larger number of sensors.
This error can be fixed by using a local search method. The Bacterial Memetic Algorithm
(BMA) [67] complements BEA with local search. This algorithm has several variants
with different local search techniques such as the Levenberg–Marquardt algorithm [67],
Simulated Annealing [68], Hill climbing, and discrete local search [69,70]. In depicting the
results, the sensors’ detection distance was plotted based on the 4-pixel projection of a
one-meter target. In general, the sensors had difficulty detecting objects at high altitudes.

Figures 9–11 show the solution for three sensors. Two sensors facing crossed, the fields
of views meet this to cover most of the space. The third sensor is located independently
and covers a path at the edge. The layout is able to cover high altitudes with low detection
probability. It is not always possible to detect intruders flying low near the ground. Each
sensor looks slightly upwards, but not so much that it is greatly affected by the weather.
The effects of the sun can degrade detection based on the orientation of the map and the
travel direction of the intruder.

Figure 9. The solution in the case of the three sensors front-wise.
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Figure 10. The solution in the case of the three sensors from the side view.

Figure 11. The solution in the case of the three sensors from above.

Figures 12–14 show the solution for four sensors. Three sensors were facing up and
one forward. The sensors in the valley facing upwards are optimal as the sky background
provides better detection. Upward-facing sensors can cover a large area, and the back-
ground gives them better detection. Their disadvantage is greater exposure to the weather.
The forward-facing sensor is on the edge of the test area, but it covers the edge of the site
and as far as possible at the edge of the forest/vegetation to see objects at low altitudes.
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Figure 12. The solution in the case of the four sensors front-wise.

Figure 13. The solution in the case of the four sensors from the side view.
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Figure 14. The solution in the case of the four sensors from above.

Figure 13 shows the sensors looking up and located in the valley are more optimal as
the objects are more recognizable in the sky background. The shape of the detection space
shows the task’s difficulty, as, from a distance, a sensor can detect less. On the contrary,
it sees a smaller area closer. Three sensors look forward and two up. A lower resolution
sensor is also included in the middle. Overall, the sensors are better distributed. There are
some gaps, but it covers well overall.

Figures 15–17 show solution for five sensors. They present that we can approach the
optimal solution with forward and upward facing sensors.

Figure 15. The solution in the case of the five sensors front-wise.
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Figure 16. The solution in the case of the five sensors from the side view.

Figure 17. The solution in the case of the five sensors from above.

An arrangement using thirteen sensors is shown in the following Figures 18–20, which
managed to prevent unnoticed passage. The sensors are located in almost one group, so
there is no gap between them. Three upward-sensing sensors are more exposed to the
effects of the weather. The visibility ranges of the upward-facing sensors touch each other
and cover high-altitude routes well. Lower resolution sensors also appear mainly in valleys.

Figure 21 shows the change in cost during optimization for a different number of
sensors. Each individual received an initial value of 0.5. The re-initialization of the intruder
route has caused a constant fluctuation in costs. Figure 21 shows that the threshold cost
is consistently reached in time with different numbers of sensors. Different threshold
cost levels have been set for each case. Keeping the threshold cost in two iterations will
result in a one-step lower cost per individual and an additional cost per number of sensors.
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Some individuals in the population also inherit the cost of the original individual through
bacterial mutation and gene transfer, and the optimization can run in parallel at the two
cost levels. The inheritance of the cost gene is smaller due to the variable number of sensors,
and the result of the current simulation is given more weight.

Figure 18. The solution in the case of the thirteen sensors front-wise.

Figure 19. The solution in the case of the thirteen sensors from the side view.
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Figure 20. The solution in the case of the thirteen sensors from above.

Figure 21. The two-level cost function for different numbers of sensors.
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Sensor placements were tested with 10,000 random paths. Figure 22 shows an object
detection probability distribution for different sensor numbers and layouts. Most detec-
tions fall into the high-reliability range of 90. . .100%. By using intelligent intruders [61],
simulations can be made more efficient. There were both superior and inferior solutions for
smaller and larger numbers of sensors. At the trend level, it can be seen that more sensors
means higher reliability.

Figure 22. The detection probability distribution for different arrangements and sensor numbers.

6. Conclusions and Further Work

We have developed a method based on three-dimensional simulation compared to
the currently available quasi-two-dimensional methods to prevent detection-free passage.
Instead of the homogeneous or near-homogeneous detection models, we optimized a highly
inhomogeneous detection model in a dynamic environment. We have developed a method
based on 3D simulation compared to the currently available quasi-two-dimensional meth-
ods to prevent detection-free passage. Instead of the homogeneous/near-homogeneous
detection models, we optimized a highly inhomogeneous detection model in a dynamic
environment. We tested a stepped cost function for hierarchical multi-purpose optimization.
The applied bacterial evolutionary algorithm was able to optimize the sensor placement.
The sensors were positioned correctly in a complex environment even without local op-
erators. For random routes, the majority of intruders (>80%) were detected with a high
probability (>90% detection). Due to the simple path generation of intruders, it is more
important to investigate ’quasi’ intelligent intruders in the low detection categories. With
the presented optimization, we succeeded in preventing undetected intrusions for 10,000
trials in the studied environment. Above the use of five sensors, undetected intrusions
(<10% detection) and uncertain detections (<50% detection) can be reduced to less than 1%
for intruders at low (>0.5 m) and high (<700 m) altitudes. In addition to flying intruders,
the case of standing humans is also included in the parameter range. By using ten sensors,
undetected intrusions and uncertain detections can be reduced to <0.1%. In addition to
detection, classification is another crucial aspect. Classification is only possible with a
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high detection probability (>70%). The results show that a high percentage (>80%) of the
intruders has a high probability of detection (>90%) could be classified with reasonable
confidence. A high percentage (99%) of the intruders are expected to classify using more
than twenty sensors with an acceptable probability.

Further research aims to extract environmental data based on image segmentation
automatically. Other goals are to improve the environment model with the effects of
weather and sun, apply intelligent intruders, and implement appropriate local search. The
implemented simulation is suitable for extracting gradient approximation. Due to discrete
simulations, a local search procedure using momentum would be the most efficient [71].
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Abstract: In this work, different types of artificial neural networks are investigated for the estimation
of the time of arrival (ToA) in acoustic emission (AE) signals. In particular, convolutional neural
network (CNN) models and a novel capsule neural network are proposed in place of standard
statistical strategies which cannot handle, with enough robustness, very noisy scenarios and, thus,
cannot be sufficiently reliable when the signal statistics are perturbed by local drifts or outliers.
This concept was validated with two experiments: the pure ToA identification capability was firstly
assessed on synthetic signals for which a ground truth is available, showing a 10× gain in accuracy
when compared to the classical Akaike information criterion (AIC). Then, the same models were
tested via experimental data acquired in the framework of a localization problem to identify targets
with known coordinates on a square aluminum plate, demonstrating an overreaching precision under
significant noise levels.

Keywords: acoustic emissions; capsule neural network; convolutional neural network; source
localization; time of arrival

1. Introduction

Among the non-destructive testing methods for structural health monitoring (SHM),
the one based on acoustic emission (AE) is particularly effective for the assessment of civil
infrastructure and industrial plants, allowing the detection of active damages in structures
such as buildings and bridges, pipelines, storage tanks, etc. AE testing is built on the
analysis of the acoustic activity of the target structure [1], primarily due to the growth of
cracking phenomena. One of the main advantages of AE relies on the possibility to localize
such sources by passively capturing the acoustic response of the structure. It is, therefore,
from the extraction of a batch of representative acoustic features, typically defined on a time
basis, and their evolution over time, that potential dangerous defects can be detected at an
early stage of degradation, and preventive alarms can be issued [2]. One of the important
parameters to be extracted from a detected acoustic signal consists of the time of arrival
(ToA), also known as onset time, namely the time taken by the induced wave to travel
from its origin to the AE transducer. ToA, when assessed from multiple sensing positions,
provides a means to localize the AE signal source. The literature about these localization
methods is quite vast and comprehends, among others, approaches based on geometrical
or angular relationships, such as the ones built on the angle of arrival or the difference
time of arrival (DToA) [3]. Alternative strategies are based on the estimation of the signal
energy [4], but this parameter is typically very sensitive to environmental and operational
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factors (e.g., imperfect coupling between the AE transducers and the structure), which
hamper their exploitation for long-term and continuous integrity evaluation.

AE testing is typically implemented with long inspection intervals by purposely
increasing the mechanical load applied to the structure [5] (https://eur-lex.europa.eu/
legal-content/IT/TXT/?uri=celex:32014L0068 (accessed on Tuesday, 28 December 2021),
https://ec.europa.eu/docsroom/documents/41641 (accessed on Tuesday, 28 December
2021)). However, more recently, a new approach has emerged, in which AE monitoring is
performed in real time, via the permanent placement of AE equipment on the monitored
structure and detecting the emissions generated during the normal load cycles. Despite the
advantages in terms of responsiveness and preventive detection, the adoption of the latter
approach is challenged by the difficulty in accurately identifying weak AE events in noisy
environments, particularly in the early stages of defect growth [6]. Indeed, permanently
installed AE systems must counteract the corruption of noise generated by operational
processes, for example, vibrations of rotating machinery (e.g., a pump unit or an engine),
responsible for disturbances in the surrounding environment [7] and of unpredictable
noise sources, such as electromagnetic interference and ambient noise in the vicinity of the
monitoring system [8,9].

The less favorable signal-to-noise ratios (SNRs), which characterize real-time monitor-
ing acquisitions, may prevent the accurate tracking of AE features, and in particular, of the
ToA. Statistical algorithms for onset time determination have proven their effectiveness
at high SNRs, but the noise factors mentioned above might significantly affect the repro-
ducibility and accuracy of ToA estimation results. Consequently, the implementation of
reliable methods for signal detection, robust against operational noisy environments, is still
an open research field.

The objective of the novel methods proposed in this article is (i) to build accurate
and alternative models capable of handling heavily corrupted AE signals and (ii) to test
them in operative SHM frameworks, such as acoustic source localization purposes. In
particular, we considered the case of AE propagating in waveguides, so that the onset
detection difficulty is further exacerbated by dispersion and multi-modality, as discussed
in the following subsection.

1.1. Acoustic Emissions in Waveguides

When an acoustic emission event occurs as a consequence of crack, corrosion or
delamination processes in a waveguide, ultrasonic guided waves (GWs) are generated and
can travel long distances [10,11].

Lamb waves are the particular form of GWs which propagate in plates. Albeit showing
long-range propagation and sensitivity with respect to distinct classes of damage, Lamb
waves can exhibit complex behavior during propagation due to their multi-modal and
dispersive nature. Multi-modal means that multiple Lamb waves, or guided modes, co-exist
in the same frequency interval (see Figure 1). These modes are denoted as symmetric (S) (red
curves) or anti-symmetric (A) (red curves) depending on the nature of the wavefield with
respect to the mid plane of the plate. Dispersive means that Lamb waves are characterized
by a frequency-dependent wave speed.

The number and type of the generated modes vary with the frequency and shape
of the actuation. In general, it is possible to design the actuation in time and space to
limit the effect of multi-modality and dispersion in order to reduce the complexity of the
generated/received signals. In more detail, Figure 1 shows the dispersion curves [12] in
terms of phase cp (left panel) and group cg (right panel) velocity of the Lamb waves existing
in an aluminum plate of infinite extension and 1 mm thickness.
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Figure 1. Dispersion curves for an aluminum square plate with 1 mm thickness and infinite extension:
phase velocity on the left and group velocity on the right.

In practical cases, where it is necessary to deal with a finite plate, other complexities
arise, such as the physical interaction of GWs with the mechanical boundaries, which is
responsible for reflections and reverberations, a phenomenon also known as multi-path
interference, the mutual interference in the case of multiple active transducers, and also the
effects of environmental changes, such as temperature fluctuations, that can alter the wave
propagation behavior.

1.2. ToA Estimation: From Statistical Methods to Machine Learning

By computing the similarity between two signals, cross correlation (X-Corr) can be
used as a powerful tool for the estimation of the time shift of two time series [13]. In practical
AE scenarios, where the monitoring network consists of a passive mesh of transducers and
the true excitation source is unknown, X-Corr offers a means for DToA quantification among
pairs of receivers, rather than a measure of the actual ToA. It has proved its effectiveness
for the characterization of AE signals in multiple environments [14]. Combining X-Corr
and frequency warping is an effective means to tackle dispersion and multi-modality in
guided propagation [15]. However, X-Corr is highly susceptible to minor perturbations in
the statistical properties of the input signals (e.g., residual noise sources superposed on the
actual information content).

To cope with these issues, the Akaike information criterion (AIC) approaches the task
of ToA identification as a pure statistical problem based on the second order statistics of the
measured acoustic data. In essence, AIC leverages the concept of signal entropy to detect
abrupt changes in the statistical distribution of the observed signal y [16,17]. For a discrete
signal with N samples, this is achieved by computing, for each sample k, the quantity

AIC[k] = k log σ2
y[1:k] + (N − k − 1) log σ2

y[k+1:N] (1)

which is a logarithmic measure of the cumulative variance (σ2
y ) of the preceding (y[1 : k])

and successive (y[k + 1 : N]) signal window with respect to the current sample index k.
In other words, AIC splits the full waveform into a k dimensional and an N − k dimensional
smaller vector, respectively spanned by the first N and the last N − k samples, and describes
the level of similarity between them. The rationale is that, in correspondence of a sharp
change in the signal profile, such as the one associated with the arrival of the incoming
wave-front generated by the acoustic source, the divergence between the two variances
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increases to a large extent, generating a minimum in the overall AIC function. The time
instant aligned with this minimum is the sought ToA [17].

Notably, this method can provide reliable outcomes when the processed signal presents
two clearly distinct regions, e.g., a high-entropy portion where uncorrelated noise domi-
nates, and a low-entropy segment where the acoustic signal is present [18]. Nevertheless,
as discussed in [17], this might not be the case for AE monitoring scenarios, in which
the mere attenuation due to signal propagation, which is responsible for low-amplitude
received waveforms, is further hindered by additive operative noise, demanding for more
advanced data processing solutions.

Led by the constantly increasing success of artificial intelligence (AI) in learning com-
plex patterns hidden within signals, interesting AI solutions to tackle ToA estimation have
been proposed, with particular emphasis on the seismology field. For example, a template-
based artificial neural network (NN) for earthquake phase detection was proposed in [19],
while [20] proposed an unsupervised fuzzy clustering logic for ToA recognition in micro-
seismic waves. Another example worthy of attention was examined in the work by Zachary
E. Ross [21], where the ToA of pressure waves in seismograms was considered a pattern
recognition problem on top of which machine learning (ML)/deep learning (DL) models
were trained. Considered among the most powerful architectures for deep and ultra-deep
learning, PhaseNet and U-Net [22] were also investigated for seismic arrival time pick-
ing, reporting outstanding results. A comprehensive list of the most recent trends in this
direction can be found in [23].

A close analogy exists between the seismic application domain and AEs detection.
By virtue of this similarity, we drew inspiration from the solutions tested in seismology to
develop the new DL solutions for AE signal processing, which are described and validated
in the following sections of this manuscript.

2. Deep Learning Models for ToA Estimation

Two different neural network models were implemented for the purpose of ToA
estimation, which are presented hereinafter.

2.1. Convolutional Neural Network

The convolutional neural network (CNN) [24] is a class of artificial neural networks
that can extract relevant information from raw data and retain it in the form of weights
and biases of the corresponding layers: the learned parameters are then used to make
classifications and/or predictions as soon as new signal instances are available. A general
CNN architecture consists of two main stages, i.e., feature extraction and classification, which
are completely described by the following architectural blocks:

• Convolutional layers: it is in charge of feature extraction from input data, which are
passed in a tensor form of dimensions Nin. A convolutional layer runs dot products
between the input data and a specific set of weights (or mask), which are stored as
taps of a corresponding filter, also known as kernel, of dimension Nks. This filter is
recursively applied to subsequent portions, or patches, of the input data by means of
a sliding filter mask, which is shifted by a constant quantity called stride (Nstride).
To increase the learning capability of the network, more than one filter is employed
in a single convolutional layer: if Nf ilter is the number of total different kernels per
layer, Nf ilter different maps of the the same input data are provided in the output via
a proper activation function. A convolutional layer is, thus, completely determined by
the tuple of values: (Nin, Nf ilter, Nks, Nstride).
Multiple convolutional layers are usually stacked one after the other, whose typology
is dictated, in turn, by the dimensions of the manipulated data. In the case of ToA
estimation, where the problem is intrinsically mono-dimensional and thought to be
performed on a sensor-wise basis, 1D convolutional (Conv1D) layers are necessary.

• Pooling layers: this layer provides a distilled version of each feature map to shrink the
computational complexity and the spatial size of the convolved features. Indeed, since
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the number of points in each feature map returned at the end of a single convolutional
block might be extremely large, and also since many of them only capture minor
details, they can be neglected. Different pooling strategies have been proposed: max
pooling (MaxPool), which only preserves the maximum value in a specific patch of
the feature map; and average pooling (AvgPool), which extracts a single scalar as the
average of the points falling in the same feature patch.

• Dense layers: once manifold representations are obtained, the sought pattern hidden
within them is learned via dense fully connected (FC) layers, i.e., feed-forward layers
with neurons that have full connections to all activations delivered by the previous
layer. Firstly, a flattening operation is performed to unroll the feature maps provided
by the last pooling layer in a uni-dimensional vector of appropriate dimension; then,
these values are used as input of a standard artificial neural network, which acts either
as a classifier or a regressor, depending on the desired task.

2.1.1. Large CNN Model

The first CNN architecture considered in this work is schematically represented in
Figure 2 and is devised for ToA retrieval from 5000-long time series. As can be seen, five
(5000/22l ,Nf ilter,10,2) Conv1D layers (l ∈ {0, . . . , 4} being the layer index), with Nf ilter ∈
{50, 100, 150, 200, 250} and ReLU activation function, are stacked in cascade and followed
by a MaxPool layer with a compression factor equal to 2. A global average pooling
layer (Global AvgPool) is also included at the end of the convolutional block to force the
regressor behavior of the network: Global AvgPool yields one single feature map out of
the 250 different representations at the end of the last AvgPool layer. This single map is
then passed to a first FC layer having 1024 neurons activated by ReLU; ToA can finally
be retrieved from the output layer consisting of a 1 × 1 FC layer with one neuron and
linear activation. It is worth saying that the so-far designed CNN model is characterized
by 1,259,299 parameters, requiring a minimum memory space of at least 1.5 MB even in
quantized form: the Adam optimizer [25] with learning rate of 0.001 and loss weight equal
to 1 was used for training such parameters, and the model was trained for 15 epochs.
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Figure 2. Proposed CNN for ToA estimation in 5000-long time series. The quantities reported in the
blue and pink boxes indicate the dimensions of the output features of the corresponding layer.

2.1.2. Small CNN Model

It must be emphasized the fact that, in order to be applicable in permanent AE equip-
ment installations with custom sensors and electronics compatible with long-term and
real-time functionalities, the devised AI solutions must run on low-cost and resource-
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constrained devices. However, fitting the previously described CNN model to the limited
capabilities of edge sensors is not practicable due to the excessive amount of memory
(and, in turn, computational power) it requires. To this end, it is paramount to empha-
size that the typical static and volatile memory of medium-to-high embedded devices
hardly exceeds 1 MB (usually amounting to hundreds of kB) to harvest space and dy-
namic power consumption (https://www.st.com/en/microcontrollers-microprocessors/
stm32-ultra-low-power-mcus.html (accessed on Wednesday, 29 December 2021), https:
//www.espressif.com/en/products/modules/esp32 (accessed on accessed on Wednesday,
29 December 2021)).

For this reason, a distilled version of the preceding model is derived as displayed
in Figure 3, in which the five convolutional layers are substituted with four smaller size
Cov1D+MaxPool layers with 16, 32, 64 and 64 filters while leaving unaltered all the
remaining parameters. The dimensions of the GlobalAvg layer were changed accordingly.
In this lighter version, only 134,481 parameters need to be learned, for a total memory
occupancy of nearly 150 kB after conversion to embedded programming format, which
leads not only to a complexity reduction of more than 10×, but makes the model absolutely
compatible with the above-mentioned memory constraints of edge devices. Hereinafter,
to differentiate the two models, this smaller one is called “small CNN”.
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Figure 3. Proposed small CNN for ToA estimation. The quantities reported in the blue and pink
boxes indicate the dimensions of the output features of the corresponding layer.

Notably, the model reduction of both the number of convolutional layers and filters
per layer is preferred over other pruning strategy, given its proven advantages in terms
of algorithmic complexity and memory footprint, as well as for its robustness against
model over-parametrization [26] and better generalization to out-of-distribution data,
as demonstrated in Section 3.3.

2.2. Capsule Neural Network

Despite their outstanding performance in multiple fields, CNNs might be ineffective
under the following circumstances [27]: (i) the observed data pattern presents shifts/rotations,
since CNNs are phase and shift invariant; (ii) the spatial relationship between the feature
maps is an important indicator of the data distribution, since CNNs do not exploit spatial
dependencies; (iii) the loss of information introduced by the pooling layers is unacceptable,
especially for very deep model where pooling is mandatory.
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Very recently released in the field of AI [28], CapsNet represents a powerful competitor
to convolutional architectures for classification tasks. Three main reasons can be mentioned.
Firstly, CapsNet transforms basic feature maps in correlated feature maps via the novel
concept of capsule unit: this correlation-based approach implies the preservation of spatial
dependencies between data. Secondly, albeit disregarding the pooling layer, it is capable of
correct prediction, even when trained on fewer data. Thirdly, its vector-based output allows
for robust classification performance by making use of simpler network architectures,
favorable for implementation on edge sensors. This latter aspect is owed to the fact that
CapsNet actually offers a first means for knowledge distillation, which is performed directly
at an architectural level via novel machine learning operators, rather than being executed
at a coding/firmware level, where most of the effort is usually spent.

Successful application of CapsNet for micro-seismic phase picking was accounted
in [27], showing great performance for earthquake signal characterization. Inspired by this
first attempt, an AE-oriented variant of CapsNet is proposed in this manuscript to cope
with ToA prediction.

In its general form, the block diagram of a CapsNet architecture nests a capsule
representation in cascade to standard convolutional layers, without pooling in between
them, to learn novel representations in a lossless way. More formally, it consists of the
following two elements:

• Primary capsule: this layer performs convolution aggregation via the so-called capsule
unit ui (i ∈ {1, . . . , NPC} being the capsule index), corresponding to multiple combi-
nations of the feature maps retrieved at the end of the convolution process. In their
working principles, primary capsules provide an alternative form of convolutional
layers: the main difference is that, in this case, a vector-based output is computed
rather than working with unitary depth. As such, convolution-based processing is
performed by each capsule, which is driven by an appropriate set of kernels and
relative stride.

• Digit capsule: at this point, the agreement among different capsules has to be estimated
so that it is possible to preserve the spatial dependency between those block represen-
tations with highest relevance. This concept is mathematically encoded via the weight
opinion matrix Wij, with j ∈ {1, . . . , Nclass} being the number of classes, each with
vector-based output of dimension NDC. Hence, every capsule is judged by means of
Nclass opinions uj|i, also called local digit capsules, to be computed as

uj|i = Wijui (2)

From these local representations, a further level of feature combination is added in
a spatially dependent manner, by following the routing-by-agreement protocol [29].
This procedure, also called dynamic routing, introduces the concept of agreement,
i.e., how much the individual digit capsules agree with the combined one. The level of
agreement is numerically quantified by the weight routing matrix Rij via the coupling
coefficient

cij =
eRij

∑Nclass
c=1 eRic

(3)

As such, the final digit capsule sj is given by sj = ∑i cijuj|i. As in traditional convo-
lutional layers, activation is required to ensure that digit capsules with low opinions
shrunk to zero, since they do not convey meaningful information. However, the vector-
based output of the capsules requires ad hoc functions to fulfill this task: the squashing
function

vj =
||sj||2

1 + ||sj||2
sj

||sj||2 (4)
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was purposely proposed in [28] to address it, where sj and vj are the input and output
of the j-th convolutionally operated capsule. The quantity uj|i · vj finally yields the
actual measure of agreement, i.e., the higher this product, the more preference is
awarded to the corresponding primary capsule ui. At this point, an iterative algorithm
can be called to update the routing matrix, until the desired level of agreement is
reached and the sought Nclass × NDC digit capsule block can be derived, which serves
as the output layer for the entire neural network. Finally, it is sufficient to calculate
the �2 norm of each of the Nclass rows to obtain a corresponding value of the output
probability associated to each single class.

For AE-related problems, just two classes can be considered, i.e., noise and AE signals:
in this case, a high value of the output probability pAE for class “AE signal” indicates that
the input instance is most likely to contain a true AE event, whereas low values can be seen
as indicators of noisy input.

An overview of the proposed CapsNet architecture for AE signal processing is graphi-
cally summarized in the left-hand side of Figure 4. The initial convolutional block consists
of two Conv1D layers without pooling, activated by ReLU and with dimensions (500,64,9,2)
and (250,128,9,2), respectively. At the output of the convolutional layer, 128 feature maps
of 125 samples each are computed: these feature maps are passed to the primary capsule
layer. Here, 78 primary capsules of 8 feature maps each are created, and then processed
via capsule operations via kernels of size 9 and stride equal to 3. Dynamic routing is then
performed, yielding to Nclass different digit capsules with a vector size equal to 8. A last
stage in which the �2 norm is applied to each row of the digit capsule block returns the two
desired class probabilities (noise and AE).

In terms of model complexity, the proposed CapsNet architecture requires 301,952 pa-
rameters and allocates a memory space of 375 kB, a quantity which is 4.2× lower and 2.25×
bigger than the ones required by the original and small CNN, respectively. Once again,
the Adam optimizer (with a learning rate of 0.001) was used for training the model for a
total of 15 epochs.

Figure 4. Proposed CapsNetToA architecture for ToA estimation.

ToA Retrieval from CapsNet: The CapsNetToA Architecture

Determining ToA with CapsNet is a two-step process. Indeed, in its definition, Cap-
sNet acts a classifier for the input batch of data, meaning that it can only predict whether
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the current instance is most likely to contain low-entropy signal content (high probability)
or rather noisy data (low probability). Therefore, a dedicated logic is implemented to
extract one single time value out of the class probability distribution pAE. Hereinafter,
the entire processing flow, encompassing both CapsNet and the time retrieval logic, is
named CapsNetToA.

To this end, an approach similar to the one suggested in [27] is adopted. The idea is to
split the entire waveform of 5000 samples into smaller and overlapped windows, each of
them identified by a unique time stamp taken as the central value of the corresponding
time span. For every segment, a probability value is returned; the cumulative trend in the
probability distribution can be easily obtained by concatenating, in time, the predictions
related to subsequent windows.

The rationale is that the probability curve is expected to assume a low value until the
signal statistics do not change. Then, when the first window containing the wave arrival
is processed, the curve increases progressively, reaching its maximum (in the ideal case,
unitary probability) for the exact window centered on the actual ToA.

On a first attempt, one may resort to statistical tools, such as pick-peaking or thresh-
olding functions, to retrieve ToA as the first peak probability value. However, such a
simple approach might suffer from several drawbacks, which can be listed as follows:
it presents poor generalization capabilities, in the sense that the selection of a threshold
or benchmark value is strictly application and environment dependent; as such, it badly
conjugates with the critical variability of AE scenarios. The second reason relates to the
impossibility of accurately retrieving very early onset times, i.e., the ones below or almost
equal to the window length, for which the true peak probability value is unavoidably
missed. In this case, in fact, all the initial windows will output a nearly unitary value and,
thus, a criterion based on the leading peak selection unavoidably will estimate ToA from
secondary signal arrivals.

Conversely, ML solutions can inherently handle all these sources of complexities in
a very efficient and user-transparent way. For this reason, a second NN block is stacked
in cascade to CapsNet to retrieve ToA from the output probability history yielded at the
end of the capsule processing. It is worth observing that, in ToA terms, the problem is
exactly analogous to the one faced to estimate ToA via CNN while working directly with
time series data. The main difference is that, for this second scenario driven by CapsNet,
probability functions are available as inputs. Coherently, in the approach presented in this
work and which is novel with respect to the one in [27], it is suggested to employ the same
small CNN as “ToA logical retrieval” block (see Figure 4) in a completely agnostic and
general purpose manner.

The parameters of CapsNetToA were configured as follows. Assuming an operative
sampling frequency of 2 MHz, the selection of a window size of 500 samples with stride
equal to 10 imposed a lower bound of 5 μs to the ToA resolution. This value is compliant
with the time resolution admitted for the prospective applications, where ToA usually
settles around hundreds of microseconds.

3. Experimental Validation: A Numerical Framework

The effectiveness of the designed models was tested within the framework of a metallic
aluminum plate, which is frequently exploited as a benchmark scenario for ToA estimation.
Firstly, a preliminary phase of dataset generation was performed to train the models,
whose accuracy in prediction was then assessed by comparison with ground truth labels.
Noteworthy, this initial validation is of critical importance to validate the robustness of
the AI solutions with respect to reference statistical methods, especially to observe how
performances can scale in the presence of noise levels.

3.1. Dataset Generation

As is widely recognized, DL models require a large amount of data to be trained on
to avoid erroneous predictions. Moreover, since we are dealing with prediction problems,
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the same data also need to be labeled. However, labeling a massive amount of experimental
data is, unfortunately, practically unfeasible. Alternatively, analytical simulations could be
adopted to rapidly generate the labeled dataset. In this case, as anticipated in Section 1.1, it
is possible to exploit the fact that acoustic emissions travel along the mechanical medium
in the form of GWs, for which the propagation pattern through the mechanical medium is
well known, and a numerical simulator can be implemented.

In our scenario, a square aluminum plate with nominal thickness of 3 mm and length of
1000 mm was taken as reference, while a Gaussian modulated pulse with central frequency
of 250 kHz was assumed to simulate the effect of acoustic sources: in this frequency range,
only the A0 and S0 modes characterize the propagation behavior, a condition which
is desired to minimize the detrimental effect of multi-modality. Multi-path effects due
to reflections and reverberations were considered as well with a ray-tracing approach,
purposely written in MATLAB©. Each time series consisted of 5000 samples acquired at a
theoretical sampling frequency of 2 MHz: these quantities were chosen to be compatible
with commercial off-the-shelf sensors for AE monitoring.

More in detail, the signal generation procedure followed the subsequent steps:

1. Traveling distance selection: theoretically, the number of possible propagation dis-
tances to be explored between the AE location and the receiving point is infinite.
However, by exploiting the symmetry of the structure ensured by its isotropic nature,
the number of useful configurations can be reduced by a large extent. A square area
of 5 × 5 positions circumscribed to the top east corner of the plate was allocated to
AE receivers, while a total amount of 10 × 5 AE actuation points were uniformly
distributed in the left half of the plate.

2. Noise level variation: since the primary objective of the proposed NN alternatives
is to surpass the poor estimation capabilities of reference statistical methods in the
presence of noise, Gaussian noise of increasing magnitude was progressively added
to the acoustic wave by sweeping the SNR from 30 dB down to 1 dB, in steps of almost
1 dB. Despite the fact that the nature of the background noise of real AE signals
can indeed differ [30], additive white stationary noise (such as the one generated by
electronic components) can be assumed to be the main source of SNR degradation
and, consequently, was used to simulate noisy AE scenarios in this study.

3. Pre-trigger window variation: in real AE equipment, the starting time for data log-
ging is triggered by the incoming wave, e.g., once it exceeds a predefined energetic
threshold. However, being capable of acquiring also the moments leading up to
the acoustic event is of vital importance for appropriate AE signal characterization.
As such, sensors are programmed to preserve memory of the pre-trigger signal history,
known as the pre-trigger window. This quantity might change widely, from hun-
dreds to thousands of samples, depending on both the application scenario and the
employed electronics.
Although representing a deterministic parameter that does not strictly depend on the
physical phenomenon at the basis of acoustic wave propagation, the pre-trigger time
actually plays a crucial role during the learning stage. This observation means that,
theoretically, a one-to-one correspondence should exist between one model and one
pre-trigger window. This aspect not only requires time and extra computing effort,
due to the fact that a new training phase must be entailed whenever a change in the
network configuration occurs, but it is also not viable in practical scenarios. There-
fore, a data augmentation procedure was encompassed to favor the generalization
capability of the neural network models.
To this end, acoustic signals were initially generated with a fixed pre–trigger window
of 500 samples, that represents a reasonable choice for typical scenarios. Then, one
time-lagged version of each signal was derived by adding randomly from 500 to
2000 samples to the initial pre-trigger window. Since the total number of samples
in the time history is limited to 5000, these forward shifts required additional Npre
samples to be concatenated with the initial portion of the signal, while disregarding
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the final N − Npre: to avoid both discontinuities and alterations in the statistical
properties, the extra portion of the signal to be added was generated in form of a
white noise term drawn from a Gaussian distribution, whose variance was taken to be
coincident with the one estimated for the first 400 samples in the original pre-trigger
window.
Another batch of data was also generated, comprising signals with an increased pre-
trigger time beyond 2500 samples, and was entirely used during the testing phase
in order to probe how the neural networks could behave with respect to unforeseen
delays in the signal.

4. Label generation: when Lamb waves are to be characterized, it is difficult to give an
unambiguous definition of their time of arrival due to dispersion and multi-modality.
For this reason, rather than adopting a labeling approach based on the propagation
theory, a different strategy was undertaken in this work. In particular, we exploited
the fact that AIC inherently provides very accurate ToA estimations when the SNR
is high. As such, the label attached to each time series was taken from the output
yielded by AIC when applied to noise-free signals.

A total amount of Ninst = 60,000 signals was generated via exhaustive combination of
all the possible configurations between the propagation distance, noise level and pre-trigger
window: 80% of them were used for training, 10% for validation, and the remaining 10%
for testing. Each time series was then normalized and mean removed. Some exemplary
signals collected at the end of the dataset generation phase are plotted in Figure 5.
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Figure 5. Example of synthetic signals generated with the ray–tracing algorithm.

3.2. Performance Metrics

Since “true” labels are available, the simplest methodology to assess the accuracy of
the models is to quantify the error between predicted and actual ToAs. This strategy is
efficient since it allows also to probe the accuracy of AIC in noisy scenarios: indeed, once
applied to noise-corrupted variants of the same data, AIC predictions might deteriorate
proportionally to the level of added perturbations.

The canonical expression of the root mean square error (RMSE),

RMSE =

√
∑Ntest

i=1 (ToAi − ˆToAi)2

Ntest
(5)

was resorted to as an accuracy indicator: ToAi is the true value, ˆToAi is the current predic-
tion, and Ntest is the number of instances used during testing.

3.3. Results

The ToA estimation results for test data with a pre-trigger window below 2500 (i.e.,
the one used for training) are displayed in the left panel of Figure 6: they are given in
terms of RMSE (log scale) for increasing SNR. From this figure, two different trends in
the reported errors are evident. Firstly, the error profile of AIC is inversely proportional
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to the hidden noise level affecting the signal; moreover, it is characterized by a slowly
decaying trend with a smoother profile. The performance results of the four approaches
are in the same order of magnitude only for SNR equal to 30 dB, i.e., when, as discussed
before, the signal statistics are well defined and easy to be identified, even via conventional
processing tools.

Secondly, in the comparison between the AI approaches, the largest CNN shows an
almost stable error around 4.5 μs, irrespective from the specific SNR apart from a negligible
increment for very unfavorable noise levels. It is worth noting that the distillation operation
(small CNN) is less performative for SNR below 5 dB but very effective for all the remaining
SNRs. Finally, the curve error of CapsNetToA is similar to the one discussed for small CNN
with slightly higher errors at high SNRs.

A graphical depiction of the output collected from the different approaches is dis-
played in Figure 7, which shows a zoom in the 0.1–0.4 ms window with drawn star markers
indicating the predictions obtained from AIC (blue), CNN (orange), CapsNetToA (red)
and small CNN (green), superimposed to the true label (yellow diamond). As can be
observed, the estimates are considerably accurate in the left panel (SNR = 30 dB) for all
the methods, while AIC completely fails in the case of important noise levels (same signal,
but SNR = 10 dB) depicted in the right-hand side.
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Figure 6. RMSE error for ToA estimation on synthetic test dataset for varying SNRs: Pre–trigger
window used for training (i.e., window lower than 2500 samples) on the left and increased pre–
trigger window on the right.

The performance achieved by varying the pre-trigger windows is reported in the
right-hand side of Figure 6. As can be seen, no change is observable for AIC, owing to its
time invariance. Conversely, an abrupt loss of accuracy affects the biggest CNN model,
whose RMSE error maintains the same profile at the expense of a 20× increase in the
magnitude. Such behavior can be attributed to over-parametrization problems as well as
to poor generalization capabilities of the CNN due to the huge amount of parameters to
be learned with respect to the actual amount of instances used in the training phase and
the complexity of the problem at hand. In further detail, this is due to the fact that the
number of learnable parameters largely exceeds the total amount of training instances.
A second reason for such difference in CNN performances consists in potential overfitting,
i.e., over-adaptation to the training dataset leading to a lack of capability to generalize
during testing. Consequently, the biggest CNN model may not adequately capture the
hidden ToA information in AE signals.
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Figure 7. ToA predictions for AIC (blue), CNN (orange), CapsNetToA (red) and small CNN (green)
with synthetic dataset: (left column) SNR = 30 dB and (right column) SNR = 10 dB, with second row
depicting a magnified region of the time interval where ToA is located.

Conversely, as shown in Figure 6, the smallest CNN model is not prone to overfitting
or over-parametrization, thanks to its more appropriate balancing between the number
of trainable parameters and available data. Therefore, the distilled model is capable of
generalizing from the trend hidden within training data, which is actually the expected goal
of the neural network, rather than memorizing the training data themselves as happens
with the largest CNN. Proof is in the fact that the small CNN model is still capable of
providing coherent results, once again showing the best results among all the considered
methods. For these reasons, only the small CNN model and CapsNetToA are taken into
consideration in the following analyses, due to their better performance in terms of memory
footprint, accuracy and generalization with respect to the length of the pre-trigger window.

Finally, the computational complexity of the designed NN models was also evaluated
in terms on execution time in order to assess their actual portability on edge devices. To
this end, when tested on a 1.8 GHz dual core Intel® core i-5 processor, the average inference
time for a single signal was measured to be equal to 8.63 ms, 4.79 ms and 39.61 ms for
CNN, small CNN and CapsNetToA (comprehensive, in this case, of both CapsNet and
the time retrieval logic), respectively. As can be observed, the computational time nearly
halves while moving from the biggest to the smallest CNN, while CapsNetToA shows
the longest execution time. This is due to the fact that this architecture requires the ToA
output probability curve to be reconstructed from several overlapped windows of the input
signal, an operation which imposes CapsNet to be executed multiple times. For the specific
CapsNet design configuration considered in this work, 1200 sliding windows need to be

232



Sensors 2022, 22, 1091

processed, each of them asking for nearly 30 μs. Note that such an amount of time can
be reduced either by reducing the number of windows or by changing the length of the
window itself. In line with these results, it is worth saying that, even if the performance
might scale when the same algorithms are deployed on embedded devices depending
on the frequency clock of the featured processor, the above reported execution times are
compatible with the near-sensor implementation of the investigated models.

4. Experimental Validation: ToA for Acoustic Source Localization

In this section, experimental data for a laboratory aluminum plate, companion to
the simulated one used for the sake of preliminary validation, are exploited to assess the
suitability of the trained models to cope with acoustic source localization problems driven
by in-field data.

4.1. Materials: The AE Equipment

The acoustic waves are actuated in form of guided elastic waves via a tone burst of two
cycles, central frequency of 250 kHz and nominal amplitude of 0.6 Vpp, by means of an ar-
bitrary waveform generator Agilent 33220A: its output was passed through a gated power
amplifier RITEC GA-2500A (100× signal magnification) and then connected to an actuator,
a Murata piezoelectric ceramic disk. Signals were acquired by a miniaturized acquisition
system, the so-called piezoelectric ‘sensor node (SN)’ able to acquire, pre-process and
characterize AE signals for real-time continuous monitoring. The core of the SN is the STMi-
croelecronics STM32F3, a low voltage 32-bit mixed signal microcontroller (MCU), which
integrates both digital signal processing and floating-point unit instructions. The MCU
features 40 kB SRAM and 256 kB FLASH memory, enough for the storage of data acquired
by three AE sensors. The MCU embeds high precision analog components, such as four
analog-to-digital converters (ADCs) with a resolution up to 12 bit via successive approxi-
mation and embedded voltage reference, four rail-to-rail input/output, low offset voltage
programmable gain amplifiers (PGAs) and two 12 bit digital-to-analog converter (DAC)
channels, which allow to obtain the maximum output swing. The frequency response of the
device provides stable behavior from 10 kHz and 600 kHz, with a maximum attenuation
of 3 dB. A complete description of the electronics is detailed in [31,32]. Each device of
the network features up to three piezoelectric acquisition channels S1, S2, and S3, which
passively acquire signals. Three piezoelectric sensors G150 whose frequency range lies
between 60 kHz and 400 kHz were deployed at three corners of the plate, as schematically
drawn in Figure 8, and a picture of the setup is presented in Figure 9.

Figure 8. Sensor deployment diagram on the metallic laboratory plate used for the sake of source
localization.
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Figure 9. A photo of the experimental setup.

4.2. Methods
4.2.1. Objectives and Testing Procedures

Two main objectives were pursued with these experiments: (i) assess the time pick-
ing performance against operative disturbances responsible for important noise levels,
and (ii) evaluate the suitability of the devised neural network architectures to deal with
source localization. Nine different points (star markers in Figure 8) were selected for actua-
tion, which are uniformly spaced in a square area with length equal to 0.3 m. For each point,
experiments were repeated three times with a constant sample window of 5000 samples,
pre-trigger window of 1500 samples and sample rate equal to 2 MHz. To evaluate the effect
of noise, and following the testing procedure described in Section 3.1, white Gaussian noise
was added to the gathered time series by sweeping the SNR in the interval of 2–20 dB at
integer steps of 4 dB.

4.2.2. Localization Algorithm

To achieve successful object localization in 2D environments, a minimum network
density of three sensing elements with known position has to be deployed on the monitored
structure. Among the various strategies, the triangulation method proposed in [33] was
leveraged in this work for its geometrical simplicity and well-proven functioning for
isotropic/homogeneous structures, such as the one offered by the considered test-bed.

A graphical rendering of the triangulation problem is pinpointed in Figure 10, where
a generic plate is instrumented with a network of three sensors, namely S1, S2 and S3. If S2
serves as a reference sensor for the network, θ1 and θ3 represent the relative orientation
of sensors S1 and S3 with respect to a horizontal axis crossing S2 and aligned along the
longitudinal dimension of the plate; similarly, D12 and D32 indicate the spatial distance
between the two pairs of sensors, S1–S2 and S3–S2.

Now, if an acoustic event (red thunderbolt with label AE) occurs at a generic point
of the structure, the triangulation algorithm aims at retrieving the set of polar coordinates
(d, θ) uniquely identifying the acoustic source in the space. d = d2 corresponds to the
sought S2–AE distance, while θ2 = θ indicates where, among all the possible directions,
the acoustic signal comes from. Once generated, the acoustic wave propagates over the
structure and strikes the three sensors in three different instants of time due to the different
AE-to-sensor distance: by application of the ToA estimation strategies investigated before,
a guess of these onset times can be formulated. Let us denote them as ToA1, ToA2 and
ToA3 for S1, S2 and S3, respectively. Unfortunately, these quantities do not coincide with
the physical time ti = di/cg taken by the wave to travel the corresponding distances di
at a wave speed cg = 5205 m/s (related to the fastest propagating mode, the S0 one, at a
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frequency of 250 kHz); they rather represent a cumulative sum between ti and the event
actuation time T0, which is common to all the sensors but not known to the system.

1S2

S3

S1

1232

23

AE

Figure 10. Geometrical representation of the adopted localization model via a three sensor array: the
objective is to estimate the AE-to-sensor distance d and its relative direction θ.

Thus, even if geometrically well-posed, the estimation of d from the mere knowledge
of ToA2 is not practicable. However, by computing the DToA δi2 out of the absolute ToA be-
tween the reference sensor S2 and the two remaining nodes, the T0–independent quantities

δt32 = ToA3 − ToA2 = (t3 + T0)− (t2 + T0) = t3 − t2

δt12 = ToA1 − ToA2 = (t1 + T0)− (t2 + T0) = t1 − t2

can be obtained for sensor pairs S2–S3 and S2–S1, respectively, which coincide with the
physical differences between the true wave propagation times. Analogously, the spatial
difference between the traveled distances can be formulated as

δd32 = d3 − d = cgδt32

δd12 = d1 − d = cgδt12

The mathematical problem can thus be solved by means of the linear system:{
d3 = d + cgδt32

d1 = d + cgδt12
(6)

which, in this form, is not solvable since three unknowns but only two equations are
available. To overcome this issue, it is sufficient to apply simple trigonometric relationships
to the geometrical scheme in Figure 10: in particular, the Carnot’s theorem states that

d2
3 = d2 + D2

32 − 2dd32 cos(θ3 − θ) (7a)

d2
1 = d2 + D2

12 − 2dd12 cos(θ − θ1) (7b)

Hence, by taking the square power of both sides in Equation (6) and plugging
Equation (7a,b) in its first and second rows, respectively, the system can be rewritten
only in terms of d and θ, which are the sought outputs of the localization process:

⎧⎨
⎩

d = 1
2

D2
32−c2δt2

32
cgδt32+D32 cos(θ3−θ)

d = 1
2

D2
12−c2δt2

12
cgδt12+D12 cos(θ−θ1)

(8)
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Algebraic manipulation of the system in Equation (8) yields the auxiliary solving
equation for θ to coincide with:

r sin(θ + θa) = K (9)

with

G =
D2

32 − c2
gδt2

32

D2
12 − c2

gδt2
12

g1 = GD12 cos θ1 − D32 cos θ3

g2 = GD12 sin θ1 − D32 sin θ3

K = −cg(Gδt12 − δt32)

r =
√

g2
1 + g2

2

θa = tan−1
(

g1

g2

)

Finally, d can be computed back from the system in Equation (8). By knowing θ and d,
the estimated AE source position P̂(x̂P; ŷp) can be easily derived as

{
x̂P = xS2 + d · cos θ

ŷP = yS2 + d · sin θ
(10)

where xS2 and yS2 represents the 2D coordinates of the reference sensor S2.

4.2.3. Performance Evaluation Procedure

All the quantities appearing in Equation (9), apart from δt12 and δt32, are deterministic
once the sensor network configuration is defined. As such, achieving good localization
capability is, inversely, a synonym of accurate onset time estimation and offers, in these
terms, a powerful means to assess the quality of the time picking activity of the devised NN
models. Note that, in this operative setting where no synchronization is present between
the actuation and the reception components of the monitoring network, no possibility exists
to define a true ground truth due to the uncertainties implied by the experimental setting.

During testing, three ToA estimators were considered for the purpose: besides the
small CNN model and CapsNetToA trained on the synthetic data, AIC was also applied
from the pool of conventional statistical approaches. The Euclidean distance dp = |P − P̂|
between the true P(xP; yp) and estimated P̂(x̂P; ŷp) AE position returned by Equation (10)
were computed to assess the accuracy for source localization task. Moreover, the collected
signals were corrupted with white Gaussian noise of increasing entity, i.e., by gradually
reducing the SNR from 20 dB to 2 dB. In this way, it was possible to investigate how the
same model could perform in remarkably harsher propagating environments, as they could
appear in real AE scenarios subjected to varying but not predictable noisy conditions.

4.3. Results

Outcomes from localization experiments are drawn in Figure 11: for each excitation
point, three markers are included, corresponding to as many tests in this configuration.
Additionally, it is worth specifying that points indicating a constant error of dP = 1 m are
included to identify all those cases in which the estimated coordinates are not compatible
with the physical solutions for the structure at hand (i.e., negative or larger than 1.41 m
distances, which is the maximum propagation length for this plate). Figure 12 provides
an example of time domain signals for excitation point 5 in two different noisy conditions:
20 dB on the left column and 8 dB on the right, with magnified ToA values in the second row.

First of all, one remark is worthy of attention, which is related to the difference in
the experimental signals with respect to the synthetic ones employed for training (see
comparison between Figures 5 and 11). In fact, in the real setting, the effects of the sensor
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transfer function as well as the detrimental ones due to attenuation, multiple reflections
and propagation in the physical medium might lead the envelope of the acquired signals
to vary in a significant way. As such, being capable of obtaining an accurate prediction on
real signals starting from a simulated dataset can be seen as a more severe test to be passed.

Going deeper into the results, the NN methods provide more consistent estimates,
irrespective of the single excitation point and just showing a minor increment starting from
SNR = 4 dB, where the errors increase up to 30 cm for 2 dB, which represents a challenging
working condition for AE equipment. Conversely, dP reduces to a large extent in all the
remaining noisy configurations, the CapsNetToA model being the most accurate estimator
with an average error of 5 cm, followed by small CNN, whose average error is less than 8 cm.

Moreover, it is possible to observe that the quite similar localization pattern shown
by small CNN, which tends to worsen the lower the SNR, is a consequence of the noise
generation procedure exposed in Section 3.1, according to which the same signal, but with
different additive noise, is processed. For the same reason, even if less pronounced,
an analogous trend characterizes also AIC and CapsNetToA.
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Figure 11. Absolute errors for acoustic signal localization on a laboratory metallic plate under various
noise levels.

The slightly better performance of CapsNetToA with respect to the small CNN can
be attributed to the superior generalization capability of the first solution, which better
handles the discrepancy between the actuated pulse and the synthetic one used in the
training. This generalization capability is a very desirable property in practical scenarios,
where the actuated pulse is unknown.

Moreover, the same plots show that, despite AIC being highly performative in low
noise conditions, as proven by a maximum deviation of 7 cm for the 20 dB configuration,
the introduction of high noise levels leads AIC to completely fail (dP = 1 m) in multiple
positions (e.g., P1, P2, and P3).

The above considerations confirm the trends already reported in Figure 6, showing
that AIC remains a robust and competitive strategy for AE signal characterization for
relatively low noise values affecting data, whose drawbacks in dealing with poor SNRs can
be overcome via AI approaches, and which can still achieve a satisfactory level of precision
in the identification of the acoustic source.

237



Sensors 2022, 22, 1091

0 0.5 1 1.5 2 2.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
it

ud
e

[a
.u

.]

20 dB

0 0.5 1 1.5 2 2.5

8 dB

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [ms]

A
m

pl
it

ud
e

[a
.u

.]

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Time [ms]

AIC CapsNetToA small CNN

Figure 12. ToA predictions for AIC (blue), CapsNetToA (red) and small CNN (green) for excitation
point 5: (left column) SNR = 20 dB and (right column) SNR = 8 dB, with second row depicting a
magnified region of the time interval where ToA is located.

5. Conclusions

In this work, innovative methods taken from the AI processing field are presented for
ToA estimation in AE-generated signals. The proposed solutions, based on a multi-layer
CNN and on a capsule architecture with dedicated time retrieval logic, have the peculiar
advantage of providing consistent results, even in the presence of significantly low SNRs.
When tested on both a synthetic dataset generated for the characterization of a square
aluminum plate and for source localization in laboratory conditions, they attained 10×
more accurate results than the AIC algorithm, which can be considered a standard in the
field. In particular, among the proposed NN methods, the novel CapsNetToA scored the
highest results thanks to its correlation-based approach, achieved via the unique concept
of the capsule unit, which allows spatial dependencies between data to be preserved. Sec-
ondly, by replacing pooling layers, which are the primary source for loss of information in
conventional CNN architectures, with peculiar vector-based output layers, it can implicitly
generalize better to out-of-distribution data and gain higher immunity to noisy outliers.
Future work will be devoted to embedding of the same algorithms on edge devices, for the
sensor-near retrieval of the ToA as required in practical scenarios. Furthermore, additional
models and related experimental results will be investigated, in which the frequency con-
tent of the excited signals will be changed according to the different spectral bands used in
AE testing.
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Abstract: In precision agriculture (PA) practices, the accurate delineation of management zones (MZs),
with each zone having similar characteristics, is essential for map-based variable rate application of
farming inputs. However, there is no consensus on an optimal clustering algorithm and the input
data format. In this paper, we evaluated the performances of five clustering algorithms including
k-means, fuzzy C-means (FCM), hierarchical, mean shift, and density-based spatial clustering of
applications with noise (DBSCAN) in different scenarios and assessed the impacts of input data
format and feature selection on MZ delineation quality. We used key soil fertility attributes (moisture
content (MC), organic carbon (OC), calcium (Ca), cation exchange capacity (CEC), exchangeable
potassium (K), magnesium (Mg), sodium (Na), exchangeable phosphorous (P), and pH) collected
with an online visible and near-infrared (vis-NIR) spectrometer along with Sentinel2 and yield data
of five commercial fields in Belgium. We demonstrated that k-means is the optimal clustering method
for MZ delineation, and the input data should be normalized (range normalization). Feature selection
was also shown to be positively effective. Furthermore, we proposed an algorithm based on DBSCAN
for smoothing the MZs maps to allow smooth actuating during variable rate application by agricul-
tural machinery. Finally, the whole process of MZ delineation was integrated in a clustering and
smoothing pipeline (CaSP), which automatically performs the following steps sequentially: (1) range
normalization, (2) feature selection based on cross-correlation analysis, (3) k-means clustering, and
(4) smoothing. It is recommended to adopt the developed platform for automatic MZ delineation for
variable rate applications of farming inputs.

Keywords: clustering; feature selection; management zone delineation; precision agriculture

1. Introduction

Traditional agricultural practices consider fields as homogeneous management units,
under which farm operations assume no within-field variability in the soil or crop. How-
ever, agricultural soils are often extremely variable in space and time, and understanding
its variability is essential to successfully manage farming inputs site-specifically and dy-
namically at a field scale [1]. To address within-field variability, variable management
solutions are adopted using precision agriculture (PA) technologies, which aim at the site-
specific application of farm inputs (e.g., seeds, fertilizers, manure, pesticides, and water)
according to the soil and crop requirements [2]. Variable rate applications—also referred to
as site-specific applications—are implemented in practice as map-based, sensor-based, or a
combination of both approaches [3]. For both map-based and map-sensor-based solutions,
the within-field variability should be classified into a few zones with similar characteristics.
In fact, the most widely used approach to manage the variability of fields concerns the use
of management zones (MZs) [4]. MZs are sub-areas of a field that have a relatively homoge-
neous combination of yield-limiting factors with respect to soil–landscape attributes [5], for

Sensors 2022, 22, 645. https://doi.org/10.3390/s22020645 https://www.mdpi.com/journal/sensors241



Sensors 2022, 22, 645

which a single rate of a specific crop input is appropriate to maximize outputs such as yield
and yield quality [6]. The accurate delineation of MZ maps is the key requirement for the
successful implementation of map-based and map-sensor-based variable rate applications.

Several approaches are introduced in [2] to delineate MZs by the data fusion of several
layers of information including farmer’s knowledge, terrain attributes, weather conditions,
soil type, yield data from several seasons, crop growth characteristics, and soil properties.
Indeed, MZ delineation considers the variables that are correlated to the yield, since the goal
is to maximize the yield [7]. Guerrero et al. in [8] have shown that involving more layers of
information in MZ delineation provides more robust results in terms of improving yield.
De Benedetto et al. [9] delineated homogeneous areas by data fusion of electromagnetic
induction sensor, a ground penetration radar, and remote sensing satellite hyperspectral
images. Fleming et al. [10] combined the data of soil organic matter, clay, nitrate, potassium,
zinc, electrical conductivity, and corn yield for variable-rate fertilization purposes. Pantazi
et al. [4] proposed to delineate MZ maps by means of self-organizing clustering using
soil data collected by an on-line soil sensing platform [11], crop normalized differential
vegetation index (NDVI) of satellite imagery, and historical yield data.

Data fusion potentially reduces the prediction variance and hence improves the pre-
diction precision [12]. However, when fusing different kinds of data, double counting
the same information given by those data may degrade the overall performance [13–15].
Furthermore, as pointed out by Schenatto et al. [16], different kinds of data with different
values’ ranges can impact the MZ delineation and result in favor of just a few of the involv-
ing data. Accordingly, we analyzed the impacts of feature selection and data normalization
as solutions to correlation and inconsistent data ranges, respectively, in this paper.

To characterize the within-field variability, different sampling methods can be used.
The most common method of soil sampling in a field is grid sampling mostly adopted to
determine the chemical and physical properties [17]. Another sampling method is the use of
proximal soil-sensing technologies to collect high-density data of 1000–2000 reading per ha,
which introduces complexity and sources of errors, particularly when the resolution in one
direction is much different than the resolution in the other direction. Examples include the
online data collected by the visible and nearinfrared (vis-NIR) spectroscopy [18,19], where
a resolution of 1 m by 10 m is very common, introducing complexity during interpolation
and clustering.

MZ delineation can be considered as a data-mining problem, as it contemplates
either classifying or clustering the field into a number of contiguous areas [20]. For MZ
delineation, numerous clustering algorithms—such as k-mean, mean shift, fuzzy C-means
(FCM), hierarchical clustering, density-based spatial clustering of applications with noise
(DBSCAN), and particle swarm algorithm (PSO) [21–23]—have been already adopted.
Recently, a deep-learning-based algorithm has also been examined by Javadi et al. [24].
However, all the examined algorithms have their own peculiarities in terms of features and
efficiency (Karkra1 et al., 2020), since clustering is a complex task owing to the large number
of interrelated parameters, resulting in a nonlinear problem. One source of nonlinearity
stems from the inconsistent sampling resolution, which is common with online proximal
soil sensing.

Clustering techniques are mostly unsupervised and attempt to explore the inherent
structure of the data, often in terms of Euclidean distance. Different normalization methods
were evaluated [16] for MZ delineation, without any clear discussion on why the data
should be normalized. On the other hand, an apple orchard was delineated into MZs
in [25] using a geostatistics method, in which the spatial correlation of data is taken
into account. The spatial correlation has been also suggested to be considered in [26],
where multicollocated cokriging was used for variable-rate fertigation. Indeed, soil and
crop properties in agricultural fields generally present spatial dependence; hence, it is
important to use geostatistical methods (kriging interpolation after semivariogram analysis)
where soil or crop properties are considered as random regionalized variables, and the
gradual geographical variation is described by a spatial covariance function [25,26]. Most
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of the papers concerning MZ delineation have not explicitly discussed the inclusion of
the geographical coordinates of the data. However, the coordinates data were explicitly
used in [9,25,27–30]. However, so far, there is no consensus not only on the clustering
method but also the format of input data and inclusion or exclusion of spatial correlation
and locations. This is particularly true when at least one layer of data involved in the
clustering is collected at inconsistent sampling resolution over space, such as the example
of the online vis-NIR sensor.

In this paper, we evaluated five clustering methods, namely, k-means, FCM, shift
mean, hierarchical, and DBSCAN, in MZ delineation of five fields with different sizes in
different regions of Belgium. The goal was to determine the optimal clustering method and
data inputs for the delineation of MZs, using online collected soil data with inconsistent
spatial resolution in addition to yield and crop data obtained from processing the data
of satellite Sentinel2. Furthermore, we proposed a clustering and smoothing pipeline
(CaSP) for MZ delineation, which gives a smoothed scheme of MZs and is applicable in
practice by the variable rate agricultural machinery. We examined the performance of the
proposed CaSP in the delineation of MZs maps in all the five studied fields using spatial
statistical indicators.

2. Materials and Methods

The flowchart of the steps performed in this study for the different MZ delineation
schemes is depicted in Figure 1. Each step is elaborated in what follows.

Figure 1. The flowchart of the evaluation steps different management zone (MZ) delineation schemes
based on on-line collected soil fertility attributes, normalized difference vegetation index (NDVI), and
yield. Different MZ delineation schemes were evaluated in terms of variance reduction index (VRI),
Davies–Boulding index (DBI), and Silhouette index (Sil.). The soil fertility attributes were predicted
based on visible-near-infrared (vis-NIR) readings.

2.1. Experimental Sites

The soil fertility attributes, normalized differential vegetation index (NDVI), and yield
data of five commercial fields in the Flanders region in Belgium were used in this study
(Figure 2). The soil fertility attributes included moisture content (MC), organic carbon (OC),
calcium (Ca), cation-exchangeable content (CEC), exchangeable potassium (K), magnesium
(Mg), sodium (Na), pH, and exchangeable phosphorus (P). The study fields consisted of
a 21 ha field in Landen called Grootland (N 50◦47′22.5′′, E 5◦6′48.8′′), an 12 ha field in
Huldenberg named Kouter (N 50◦48′38.9′′, E 4◦34′50.0′′), and three fields in Veurne: a 12 ha
field called Beers (N 51◦1′1.4′′, E 2◦34′42.8′′), a 8 ha field named Fabrieke (N 51◦1′53.9′′,
E 2◦34′16.9′′), and a 12 ha field designated as Krokey (N 50◦59′58.3′′, E 2◦32′52.1′′). The
results of a soil texture analysis determined by means of the Robinson–Kohn pipette method
(ISO 11277) indicated that soil in Grootland, Krokey, and Kouter was a silty loam, in Beers
was a sandy loam, and in Fabrieke was a loam according to the United State Department
of Agriculture (USDA) classification (Table 1). This region registers an annual average
temperature of 10.6 ◦C and a monthly average precipitation of 39.68 mm. The fields have
an annual crop rotation of wheat, barley, oilseed rape, sugar beet, and potatoes with a short
duration autumn cover crop.
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Figure 2. Locations of the five experimental sites in Flanders, Belgium, along with the online
scanning lines and the locations of the random soil sampling points in Fabrieke, Beers, Krokey,
Kouter, and Grootland.

Table 1. Information of the spectral library used for the development of visible and near-infrared
(vis-NIR) calibration models for three farms for the prediction of key soil properties using the online
spectra collected with the online multi-sensor platform. Reprinted with permission from Ref. [11].
Copyright 2021 Elsevier.

Model Field Name % Clay % Sand % Silt Soil Texture (USDA) No. Samples Total Samples

Huldenberg

Kouter (Target field) 12.6 11.6 75.8 Silt Loam 40

155Duidelbergen 10.2 10.3 79.4 Silt Loam 24
Voor de Heeves 12.0 9.5 78.5 Silt Loam 43
Lange Weid 10.3 10.3 79.4 Silt Loam 48

Landen

Grootland (Target field) 13.3 6.3 80.4 Silt Loam 60

179

Gimgelomse 13.2 32.7 54.2 Silt Loam 38
Kattestraat – – – – 20
Dal – – – – 23
Bottelare 1 – – – – 25
Thierry 1 – – – – 13

Veurne

Beers (Target field) 16.5 54.0 29.5 Sandy Loam 39

122

Fabrieke (Target field) 16.2 37.8 46.0 Loam 25
Krokey (Target field) 2 54
Watermachine 14.5 51.6 33.9 Loam 20
Bottelare 1 – – – – 25
Thierry 1 – – – – 13

1 These fields are located in Bottelare and Mouscron, respectively, but their data were used to improve the accuracy
of models developed for the Landen and Veurne farm. 2 Krokey field was not included in de development of the
Veurne model.
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2.2. Data Acquisition

Soil data were obtained by scanning the fields with an online multi-sensor platform,
as shown in Figure 3, which was designed and developed by Mouazen [11] as discussed
in [8,31]. The platform included a vis-NIR spectroscopy sensor (Tec5 Ag, Germany) with a
measurement range of 305–1700 nm. The platform is attached to a tractor by means of the
three-point hitch and pulled along parallel lines at a distance of 12 m between neighboring
lines and at an average speed of 3 km/h. By creating a trench with a subsoiler, the platform
is capable of collecting the vis-NIR soil spectra at 15–25 cm depth every second. It includes
a differential global positioning system (DGPS) with RTK correction and a position accuracy
of ±0.2 m (version CFX-750, Trimble, Sunnyvale, CA, USA) and a datalogger (Compact
Rio 9082, National Instruments, USA) to acquire and store the collected soil spectra and
DGPS readings at 1 Hz, using a custom-built Labview software (National Instruments,
USA). Kouter, Beers, and Grootland were scanned in 2018, and Fabrieke and Krokey were
scanned in 2019 after harvest of the previous crops (Figure 2).

Figure 3. The multiple-sensor platform used for collecting soil data. DGPS: differential global
positioning system.

In addition to the vis-NIR data, the NDVI data were obtained from the processed
data of the Sentinel2 satellite imagery for Beers, Fabrieke, Krokey, and Grootland. Some
soil attributes can be estimated using satellite data [32,33]; however, this was not the case
in this study, since the accuracy of satellite data can degrade the high accuracy of soil
attribute estimation models derived from vis-NIR spectra [13,34,35]. For the Kouter field,
high-resolution NDVI data were collected using six Green Seeker sensors installed on a
liquid fertilizer sprayer. To use NDVI data obtained from the satellite imagery and the
Green Seeker sensor, extra data processing was performed. First, a kriging interpolation
using the NDVI values along each field was performed; then, a common grid of 5 × 5 m
was created, and finally, NDVI values were extracted for each pair of coordinates in the
common grid. The yields data of cereal crops in the previous season in each field were
collected using combine harvesters equipped with yield sensors providing high-resolution
yield data (in Kouter field: John Deere W550, in Grootland field: Claas Lexion 740 with
yield monitoring with Quantimeter, and in Fabrieke and Beers fields: Class Lexion 760
with yield monitoring with Quantimeter).

2.3. Modeling of Visible and Near-Infrared Spectra

In addition to the online measurements, random soil samples were collected manually
from each field (Table 1) with the aim to build prediction models for soil attributes (pH, Ca,
Mg, MC, OC, P, CEC, K, and Na), similar to what was explained in [3] (pp. 1–38) and [13,34].
A total of 155, 179, and 121 soil samples were collected from different fields in three farms,
and these were used to develop three groups of models for Huldenberg, Landen, and
Veurne farms, respectively. Cross-validation by using the leave-one-out technique was
possible for the Kouter field (in Huldenberg farm), since limited data were available from
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this field to support independent validation (40 samples). In the other fields, the entire
dataset was divided into calibration (70%) and validation (30%) sets. Afterwards, pre-
treatment algorithms were applied to enhance the accuracy of the prediction models. These
algorithms included removal of the spectral shift at 1045 nm [36], cutting noisy parts at
the edges of the spectra, moving average to reduce spectral noise, standard normal variate
transformation [37] or normalization, a Savitzky–Golay first derivative and a Savitzky–
Golay smoothing. Finally, after performing a principal component analysis (PCA) to
investigate the similarities or dissimilarities in the spectra, we developed partial least
squares regression (PLSR) models for the prediction of the soil attributes in RStudio version
1.1.463 (RStudio Inc., Boston, MA, USA) with open-source libraries [38].

2.4. Mapping of Online Measured Soil Properties

The developed PLSR calibration models were used for estimating the soil attributes
using the online collected spectra in the five fields. Then, since the attributes of soil in a
field are spatial correlated [39], high-resolution maps of the soil attributes were obtained
using ordinary kriging [40]. In ordinary kriging, an estimation of any attribute in any point
is given by a linear combination of the available measurements while the weights of the
linear combination are obtained from semivariograms [41]. After the kriging interpolation,
all attributes were resampled to a common grid of 5 × 5 m and a pair of geographical
coordinates was calculated for each of the grid points.

It is worth mentioning that ordinary kriging was adopted in this study since, de-
spite simple kriging, it does not assume prior knowledge of the mean and covariance
of the attributes in a land, and hence, it is the most common kriging approach in the
literature of management zone delineation [2,16]. Other types of kriging, such as block
kriging, universal kriging, and indicator-based kriging, also exist, in which attempts to
improve the interpolation performance result in the cost of more computational power
demand. However, since the focus of this study was not on kriging, we resorted to the
most common approach.

2.5. Overview of Clustering Algorithms

In this study, the performance of five clustering algorithms was evaluated in different
scenarios. The clustering algorithms used were unsupervised since the data, i.e., the geo-
referenced soil attributes, were not labeled. The algorithms have briefly been discussed
in the following subsections. In discussing the clustering algorithms, xi denotes the ith
d-dimensional input data, i ∈ {1, . . . , n}, ci denotes the cluster to which xi belongs, and μj
is the centroid of cluster j ∈ {1, . . . , k} with k being the number of the clusters.

2.5.1. k-Means

k-means divides the n-dimensional data into k categories with the objective to mini-
mize the sum of the within-cluster variances. While simple, it is considered as an efficient
clustering algorithms in many data analysis applications. It needs k to be defined and
works as follows:

1. Randomly initialize k cluster centroids μ1, . . . , μk ∈ R
d.

2. For i ∈ {1, . . . , n}, update:

ci = arg min
j

∥∥xi − μj
∥∥2 .

3. For j ∈ {1, . . . , k}, update μj = centroid of the data of cluster j.
4. Repeat steps 2 and 3 for a specified number of iterations (or until convergence).

2.5.2. Fuzzy C-Means (FCM)

FCM works similarly to k-means. The only difference is that it aims at minimizing the
weighted sum of the within-cluster variances. The weights define the clustering fuzziness.
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Indeed, FCM does not strictly assign each point to a specific cluster. Instead, the cluster
membership is fuzzy. The algorithm works as discussed below.

Parameters: k, m (fuzziness coefficient—a real number greater than 1)
FCM algorithm:

1. Randomly initialize k cluster centroids μ1, . . . , μk ∈ R
d.

2. For i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, update:

uij =
1

∑k
l=1

(‖xi−μj‖
‖xi−μl‖

) 2
m−1

.

3. For j ∈ {1, . . . , k}, update:

μj =
∑n

i=1 um
ij xi

∑n
i=1 um

ij
.

4. Repeat steps 2 and 3 for a specified number of iteration (or until convergence).
5. After the algorithm stops, each point i joins the cluster with the highest uij value.

2.5.3. Mean Shift

Mean shift is a density-based mode-seeking algorithm. It tries to first estimate the
density of the data by using a kernel and then looks for the modes of the distribution. In
order to find the modes, it iteratively moves each point to its denser neighborhood. Mean
shift is a non-parametric clustering algorithm, meaning that it does not need the number
of clusters to be specified in advance. Instead, it tries to find the number of clustering
according to the density of the data. The algorithm steps are as follows.

Parameters: h (the kernel bandwidth—note that a kernel should be chosen in advance.
The mostly used kernel is the Gaussian kernel).

Mean shift algorithm:

1. Initialize seeds set S for calculating the density

f (x) = ∑
xi∈S

K(x − xi) ,

where K(.) is a kernel function.
2. For each seed s ∈ S , calculate the mean shift:

m(s) =
∑xi∈∫ K(xi − s)xi

∑xi∈N (∫ )K(xi−s)
,

where N(s) denotes the neighborhood of s.
3. For each seed s ∈ S , update s = m(s).
4. Repeat steps 2 and 3 for a specified number of iterations (or until convergence).
5. After the algorithm stops, the modes are considered as the centroids of the clusters,

and each point joins to the closest mode.

2.5.4. Hierarchical Clustering

The hierarchical clustering algorithm seeks to build a hierarchy of clusters based
on either of two approaches: agglomerative or divisive. Agglomerative is a bottom–up
approach based on which pairs of clusters are merged together in order to build up the
hierarchy. On the other hand, the divisive approach is a top–down method that starts
from one cluster including all data and then splits the cluster recursively. In this paper, the
agglomerative hierarchical clustering was adopted. The algorithm receives k as the input
parameter and works as follows:
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1. Assign all points an individual cluster number.
2. Merge points with the smallest distance. In other words, points with smallest distance

join the same cluster.
3. Repeat step 2 until k clusters are obtained.

2.5.5. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN, similar to mean shift, is a non-parametric clustering algorithm. In other
words, the number of clusters, k, does not need to be specified for it. Instead, it reaches a
number of clusters based on the density of data and two parameters discussed below.

Parameters: ε (the neighborhood distance), mp (minimum number of data points to
define a cluster)

DBSCAN algorithm:

1. Select a random data point.
2. If the number of the neighbors is less than mp, the point is marked as an outlier with

label −1.
3. If the number of the neighbors is more than or equal to mp, the point and its neighbors

establish a cluster.
4. Repeat step 3 for all points within the established cluster. In other words, for all joined

points, check their neighbor points and join their neighbors to the established cluster.
5. From the remaining points that have not yet been met, select a random data point.

Repeat steps 2 to 5 until all data points are met.

2.6. Feature Selection (Data Decrease)

Among the soil attributes used for MZ delineation, OC and MC have direct signatures
in the spectral characteristics in the vis-NIR range, while other attributes are estimated
indirectly based on their correlation with MC and OC [19]. Applying correlated features to
clustering models imposes computational burden and might degrade the clustering quality.
Accordingly, we studied the effect of feature selection by cross-correlation analysis. To this
end, the cross-correlation of the data was computed using Pearson correlation in order to
remove highly correlated layers. The removal of highly correlated data before clustering in
MZ delineation applications has also been recommended by [16,42].

2.7. Clustering Scenarios

We evaluated the above-mentioned clustering algorithms in different scenarios listed
in Table 2. In all scenarios, except in kmeans-nn-nc, data are normalized. For normalization,
the data ranges were scaled into an interval between 0 and 1. In other words, range
normalization was applied to the data, since it has been shown to be the most effective
normalization method in MZ delineation applications [16].

2.8. Evaluation of Clustering Algorithms

Since the clustering algorithms used in this study were unsupervised, it was not
possible to evaluate their performances by comparing the clustering results against true
labels. Instead, there exist heuristic metrics to assess the quality of unsupervised clustering;
however, these metrics do not measure the validity of the model’s predictions. In order
to choose the most appropriate clustering scheme for MZ delineation, we adopted three
metrics, namely, Davies–Bouldin index (DBI) [43], Silhouette index [44], and variation
reduction index (VRI) [16,45].

Considering k clusters, DBI is computed by [43]:

DBI =
1
k

k

∑
i=1

max
si + sj

dij
, (1)

where si is the average distance of the data of cluster i from its center and dij denotes the
distance between the centers of cluster i and cluster j. In fact, the intuition of DBI is that the
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clustering schemes with denser clusters that are further from each other are better. DBI is
always positive, and its fewer values indicate better clustering quality and vice versa.

Table 2. The clustering scenarios evaluated in this study.

Clustering Scenario Clustering Method and the Conditions of Its Input Data

kmeans-nn-nc 1 k-means, no data normalization, xy coordinate data not considered
kmeans-wn-nc k-means, with data normalization, xy coordinate data not considered
kmeans-wn-wc k-means, with data normalization, with xy coordinate data
kmeans-nc-dec k-means, xy coordinate data not considered, data decreased
kmeans-wc-dec k-means, with xy coordinate data, data decreased
FCM-wn-nc FCM, with data normalization, xy coordinate data not considered
FCM-wn-wc FCM, with data normalization, with xy coordinate data
FCM-nc-dec FCM, xy coordinate data not considered, data decreased
FCM-wc-dec FCM, with xy coordinate data, data decreased
MS-wn-nc Mean shift, with data normalization, xy coordinate data not considered
MS-wn-wc Mean shift, with data normalization, with xy coordinate data
MS-wc-dec Mean shift, with xy coordinate data, data decreased
MS-nc-dec Mean shift, xy coordinate data not considered, data decreased
hier-wn-nc Hierarchical, with data normalization, xy coordinate data not considered
hierarchical-wn-wc Hierarchical, with data normalization, with xy coordinate data
hierarchical-nc-dec Hierarchical, xy coordinate data not considered, data decreased
hierarchical-wc-dec Hierarchical, with xy coordinate data, data decreased
DBSCAN-wn-nc DBSCAN, with data normalization, xy coordinate data not considered
DBSCAN-wn-wc DBSCAN, with data normalization, with xy coordinate data
DBSCAN-wc-dec DBSCAN, with xy coordinate data, data decreased
DBSCAN-nc-dec DBSCAN, xy coordinate data not considered, data decreased

1 nn: no normalization; wn: with normalization; nc: no coordinate; wc: with coordinate; dec: decreased data; xy
coordinate: cartesian coordinate.

The Silhouette index quantifies the clustering quality by defining how well each data
point has been assigned to its own cluster. Considering k clusters, the Silhouette index for
data i is given by [44]:

s(i) =
b(i)− a(i)

max{a(i), b(i)} , (2)

where a(i) = 1
|Ci |−1 ∑j∈Ci ,j �=i d(i, j) and b(i) = min

l �=i
1

|Cl | ∑j∈Cl
d(i, j), respectively, indicate

the similarity of data i to its own cluster and its dissimilarity to other clusters with |Cl |
and d(i, j) being the size of cluster l and the distance between data i and j, respectively.
The overall Silhouette index is computed by averaging the indices of all data. Silhouette
values range between −1 and 1 with more values indicating better clustering quality and
vice versa.

DBI and Silhouette indices have emerged from the machine learning (ML) context
and are applicable on any application, including those in precision agriculture. We also
adopted VRI introduced by [45] specifically for evaluating the quality of MZ delineation.
The VRI rational is that the variance of the soil attributes within the MZs should be less
than their overall variance. The more the within-cluster variances decrease, the better the
clustering quality. The VRI for soil attribute θ is given by [45]:

VRIθ =

(
1 − ∑k

i=1 Aivθ
Ci

vθ

)
× 100% ,

in which Ai is the proportion of the area covered by cluster i, vθ is the overall variance
of the soil attribute θ, and vθ

Ci
denotes its variance within cluster i. More values of VRI

implicate better MZ delineation quality and vice versa. In this paper, the overall VRI is
obtained by averaging the VRI of all studied soil attributes.
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2.9. Clustering and Smoothing Pipeline (CaSP) for Management Zone Delineation

After evaluation of different clustering methods in different scenarios, the most ap-
propriate method was specified. Nevertheless, the clustering results usually include small
parts of a cluster located apart within another cluster. Let us refer to these small parts as
islands, since this is what they really look like. On the other hand, the clustering results are
used in form of a recommendation map for variable-rate application of farming inputs such
as fertilizers [8], manure [46], and seeds [47], for which the actuators of the agricultural
machines cannot respond to the small modification needed in the applied rate due to
these small islands. Therefore, it was necessary to introduce an additional smoothing step
to the MZ maps in order to make them appropriate for variable-rate implementation in
practice, as shown in Figure 4. To this end, we used the DBSCAN algorithm and applied
it to just the geographic coordinates of the data points in each cluster, since DBSCAN is
in nature capable of discovering the islands and single apart data points (as outliers) [48],
as discussed in Section 2.5. The pseudocode of the smoothing algorithm has been shown
in Algorithm 1. This algorithm takes as input the geographic locations of the data in a
Cartesian system (i.e., xy coordinate) together with their corresponding labels and the
island size. The xy coordinates of the data of each cluster are clustered by DBSCAN. Then,
the outliers will join to the cluster of their closest data point. If more than one cluster is
obtained, it means that the cluster includes two or more separate parts. Then, the algorithm
joins the parts smaller than island size to another cluster according to the majority rule.
More specifically, the algorithm first finds the edge points of the island area. Then, the
label of the island data is changed to the majority of the labels of the neighbors of the edge
points. The overall clustering and smoothing pipeline (CaSP) for MZ delineation is shown
in Figure 4.

Figure 4. The clustering and smoothing pipeline (CaSP) for the management zone delineation
approach of the current work.

Algorithm 1: Smoothing algorithm
Data: xy, label, island_size
Result: Smoothed clustering scheme
for cluster Ci , i ∈ {1, ..., k} do

intra_label = DBSCAN(xy ∈ Ci);
for xy with intra_label = −1 (i.e., for outliers) do

Join to the cluster to which the closest data point belongs
end

if max(intral_label) > 0 (i.e., if more than one cluster has obtained) then

for each obtained cluster do

if the cluster size < island_size then

Find the edge points of the island;
L ← the labels of the neighbors of the edge points;
label_majority ←majority of L;
Change the label of island points to label_majority;

end

end

end

end
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3. Results and Discussion

3.1. Evaluation of Clustering Algorithms

Mean shift and DBSCAN are non-parametric methods, meaning that the number of
MZs is not needed to be specified. However, we evaluated the performance of k-means,
FCM, and hierarchical methods for dividing the fields into four MZs (i.e., k = 4). For FCM,
in addition to k, the fuzziness coefficient m needed to be specified. We used m = 2, since
this value has been suggested in most applications [49]. Mean shift needed just the kernel
bandwidth h to be set, for which we used the related function in the Sklearn package of
Python (version 1.0.2) [50]. This function gave a value around h = 0.41. For DBSCAN, we
considered mp = 3 and set ε as the mean of the spatial scanning resolution.

The evaluation results of the clustering algorithms in the studied scenarios have
been listed in Table 3. Recall that higher values of the Silhouette index and VRI and
smaller DBI values indicate better clustering performance. According to their definitions in
Equations (1) and (2), DBI and the Silhouette index are not defined for cases with just one
cluster, for which VRI is zero. In the studied scenarios, mean shift and DBSCAN gave just
one cluster in some cases, whose indices have been specified by n.v. (no value) in Table 3.

Table 3. Evaluation of clustering methods including k-means, fuzzy C-means (FCM), mean shift (MS),
hierarchical, and density-based spatial clustering of applications with noise (DBSCAN) in terms of
Davies–Doublin index (DBI), Silhouette index (Sil.), and variance reduction index (VRI).

Field Name Krokey Kouter Grooteland Beers Fabrieke

Score DBI Sil. VRI DBI Sil. VRI DBI Sil. VRI DBI Sil. VRI DBI Sil. VRI

km. 1-nn-nc 0.51 0.56 35.65 0.55 0.53 12.25 0.67 0.45 33.81 0.56 0.52 28.27 0.75 0.31 3.56
km.-wn-nc 1.65 0.19 44.37 1.55 0.25 33.42 1.40 0.21 47.82 1.33 0.25 45.35 1.43 0.20 23.56
km.-wn-wc 1.53 0.23 44.59 1.53 0.21 27.47 1.40 0.24 43.24 1.32 0.26 46.92 1.57 0.24 30.32
km.-nc-dec 1.51 0.21 40.33 1.33 0.27 33.31 1.45 0.20 45.86 1.36 0.24 45.19 1.21 0.31 48.50
km.-wc-dec 1.52 0.23 40.98 1.61 0.21 26.55 1.38 0.24 41.57 1.29 0.27 47.37 1.59 0.22 28.40

FCM-wn-nc 1.72 0.15 40.68 2.27 0.16 24.79 2.01 0.15 42.93 1.47 0.22 44.13 1.55 0.19 55.89
FCM-wn-wc 1.75 0.17 42.78 1.54 0.20 26.87 1.46 0.24 42.73 1.37 0.24 45.58 1.40 0.23 57.98
FCM-nc-dec 1.94 0.13 36.40 2.28 0.17 21.46 1.77 0.16 42.32 1.40 0.23 45.00 1.99 0.19 19.97
FCM-wc-dec 1.78 0.19 38.30 1.63 0.19 25.29 1.42 0.23 41.18 1.31 0.26 46.80 1.67 0.17 10.56

MS-wn-nc 1.44 0.28 21.40 1.63 0.20 25.29 1.42 0.23 41.18 1.31 0.25 46.80 1.40 0.23 58.28
MS-wn-wc 1.62 0.25 19.79 3.45 0.07 24.89 1.43 0.26 30.28 1.41 0.23 39.73 1.00 0.32 38.30
MS-wc-dec 1.37 0.29 21.72 1.47 0.02 20.75 1.69 0.22 21.45 1.32 0.28 37.78 1.43 0.10 24.67
MS-nc-dec n.v. n.v. 0 1.05 0.15 9.56 1.43 0.23 27.16 1.67 0.23 21.92 0.93 0.16 34.23

hier. 2-wn-nc 1.86 0.15 39.18 2.42 0.24 16.88 2.06 0.16 36.90 1.70 0.22 37.86 1.25 0.25 55.18
hier.-wn-wc 1.65 0.22 41.84 2.17 0.18 18.18 1.65 0.23 36.65 1.51 0.22 40.16 1.30 0.27 55.58
hier.-nc-dec 1.78 0.18 35.17 1.37 0.25 31.02 1.67 0.17 41.65 1.44 0.21 41.58 1.43 0.23 29.04
hier.-wc-dec 1.53 0.22 38.20 1.52 0.23 29.67 1.38 0.22 38.91 1.38 0.25 45.43 1.49 0.21 28.58

DBS. 3-wn-nc 1.34 -0.23 0.93 2.34 0.13 10.30 n.v. n.v. 0 n.v. n.v. 0 2.76 0.16 5.77
DBS.-wn-wc 1.45 -0.27 0.92 2.76 0.01 7.54 4.27 0.08 1.84 3.05 0.07 7.90 2.70 0.12 5.59
DBS.-wc-dec 2.64 0.17 0.07 1.99 0.20 10.88 1.28 0.20 0.47 0.85 0.06 1.10 2.21 0.18 14.29
DBS.-nc-dec 2.13 0.25 0.08 1.82 0.26 11.84 1.72 0.00 1.94 2.42 -0.1 4.43 2.03 0.23 14.11

1 kmeans. 2 hierarchical. 3 DBSCAN.

The data were normalized in all scenarios except in kmeans-nn-nc. Although DBI and
the Silhouette index suggest this scenario as the best, its VRI values are poor. As will be
elaborated later, normalization is essential in clustering, since ignoring it will weigh more
on the data with large values and neglect data with small values (e.g., weighs more on Ca
and neglects OC and pH). Accordingly, the first scenario (e.g., no normalization) is not
recommended. Among other scenarios, VRI has always suggested to use k-means. The
Silhouette index agrees with VRI in Kouter, Beers, and Fabrieke, while it suggests mean
shift for Krokey and Grooteland. On the other hand, DBI has the best values for either
mean shifting or DBSCAN.
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A close examination is needed into the MZs obtained by different scenarios in order to
conclude on the format of the input data, i.e., normalizing or not, inclusion or exclusion of
the coordinates, and whether or not to apply feature selection. For the sake of brevity, we
describe the MZs results and the yield map for just field Krokey—as shown in Figure 5—
since this field has more variability compared to other fields. As seen, DBSCAN gave just
one cluster with several points as outliers. Indeed, DBSCAN performs clustering based on
density and considers a cluster as unique as long as it is dense. Density-based clustering
algorithms are helpful in object detection in machine vision applications. Since the focus in
PA applications is on within-field variability, DBSCAN does not perform desirably and has
to be excluded. This argument applies to mean shift as well and also has to be excluded
for variable rate applications (Figure 5). Compared to DBSCAN, mean shift has two more
disadvantages: (1) it demands a high computational power and (2) it is very sensitive to its
parameter h.

It is worth noting that as in case of Krokey, DBSCAN and mean shift are shown to be
not suitable for the other three fields of this study due to the same conclusion drawn above.
FCM works similar to k-means but needs an additional hyperparameter as the fuzziness
coefficient to be specified while there is no clue on how to set this parameter for variable
rate applications. This makes k-means as the best method for clustering, whose results need
to be analyzed further. Among the k-means results, k-means with no coordinate data (i.e.,
just using the soil attributes) after feature selection (i.e., kmeans-nc-dec) visually shows
more correlation with the yield map, and this observation was also confirmed by the farmer.
Revisiting Table 3 indicates that the VRI and Silhouette indices of kmeans-nc-dec are, if not
maximum, among the highest values throughout all the five study fields. Its DBI has also
the small values compared to other scenarios. In the Fabrieke case, after excluding kmeans-
nn-nc, all the three indices suggest using kmeans-nc-dec. In Kouter, both DBI and the
Silhouette index suggest kmeans-nc-dec, for which VRI is also very close to its maximum
value among k-means scenarios with normalized inputs. The values of the indices for
the k-means scenarios are very close to each other in the other two fields, which allow
drawing the same conclusion as that of Krokey that Kmeans-nc-dec is the best performing
scenario. This is particularly true as this scenario has performed much better than all
the other k-means solutions in Fabrieke. However, the kmeans-wn-nc shows comparable
performance indicators to that of the kmeans-nc-dec, although its performance deteriorated
significantly for Fabrieke. This is the reason why it is concluded that MZ delineation using
Kmeans-nc-dec scenario would provide the most stable solution in general.

From the computational point of view, kmeans-nc-dec is also optimal, since excluding
coordinates decreases the data dimension, while the dimension is further reduced after
feature selection. It is worth noting that since some of the soil attributes are spatially
correlated (e.g., Ca and CEC), including spatial data in clustering is generally recommended,
as they were explicitly considered in similar applications [9,25,27–30]. Since we used the
raster data after spatial interpolation using kriging, the spatial correlation has been taken
into consideration once, so that reconsidering it one more time means overweighing the
spatial information.

Figure 6 demonstrates the scatter plot of yield vs. the soil attributes and crop NDVI in
selected clustering scenarios shown for field Krokey, as an example. Figure 6a highlights the
importance of normalizing the data. Since the clustering algorithms use (Euclidean) dis-
tance for establishing clusters, the data should be normalized in order for all soil attributes
to impact the distance equally; otherwise, only the data with large values will produce the
clustering outcome. As seen in Figure 6a, the clustering outcome was affected mainly by Ca
variability, because the Ca values were much larger than the other attributes (Figure 6a). Its
great overlap between the four clusters is depicted for the other soil attributes. The scatter
plots in the other scenarios depict that clustering has taken all the input variables equally
since they were normalized; however, each scenario gave different clustering outcomes,
which is attributed to applying different algorithms on the data. After normalization, the
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overlap between the four different clusters was greatly reduced, and a clear separation of
classes can be observed not only for Ca but also for the other soil attributes.

Figure 5. Comparison of different clustering schemes in delineation of management zones, shown
for field Krokey as an example. When not explicitly mentioned in the scheme title, normalization
is included. The clustering performances are evaluated in terms of Davies–Bouldin score (DB),
Silhouette score (Sil.), and variance reduction index (VRI).
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Figure 6. Cont.
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Figure 6. The impact of the clustering schemes on the scatter plot of yield vs. NDVI, and other
soil attributes.

3.2. Evaluation of MZ Delineation by CaSP

Feature selection by covariance analysis has been recommended by [16,42]. Figure 7
shows the cross-correlation matrix of the soil attributes for field Krokey as an example. It
can be observed that there were high correlations (>0.7) among the soil Ca, CEC, Na, and
pH, except between pH and Na, where a correlation of 0.48 was observed. Therefore, Ca,
Na, and pH were removed from the analysis, since CEC was given a higher priority from a
soil fertility perspective [51,52].

Figure 7. The cross-correlation (Pearson correlation) matrix of the soil attributes in field Krokey.
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The clustering results obtained by the proposed CaSP MZ delineation scheme has
been illustrated in Figure 8, where MZ maps delineated with and without smoothing were
compared. As can be seen, smoothing has appropriately filtered small apart areas (islands),
which cannot be accounted for in practice during variable rate applications. While varying
the rate of farming inputs using agricultural machinery equipped with PA control-enabling
technology, it is necessary that the size of the machinery active control unit is smaller or
equal to the smallest islands, i.e., they have to support high-resolution control, which is
costly. In case the islands are smaller than the agricultural machinery size, then the variable
rate will not be implementable in practice. The filter designed in this study is flexible and
allows the filtering of islands with different sizes (Figure 4). However, removing very
large-size islands can lead to ignoring important fertility zones in the field, for which
the agricultural machine can respond to correctly during field operations. This feature
allows for the implementation of different agricultural machinery during variable rate
applications, each of which would require smoothing islands of different sizes to match the
size of the machine to be used.

As seen in Figure 8, the MZ map given by k-means for Krokey shows an appropriate
but partial visual correlation with the yield map. Interestingly, the MZ map was able
to capture the fringe lane by the road (the lane in the right side of the MZ map). While
smoothing the map has kept the similarity with the yield map, it has removed the very
small island parts. The MZ maps of field Kouter with smaller measurement resolution also
show a very good similarity with the yield map, which is a similarity that was better than
that of Krokey field. In case of Grooteland, the MZ maps indicate high variability within
the field, while the yield seems to be almost uniformly distributed over the field area. This
is due to enforcing the algorithm to divide the field into four MZs, so that soil fertility
attributes have the major contribution on the MZ map. However, exploring the MZ maps
in more detail shows it still has some indicative correlations with the yield. Specifically,
the management zone indicated by the beige color has captured the low-fertility zones of
the field, and these are well correlated with areas with low values in the yield map. Here,
smoothing was effective in making the MZ map more suitable for practical application.
In the Beers and Fabrieke cases, there exists a good visual correlation between the MZ
maps and yield. Specially, there was a low-fertility zone in the central region of the Beers
field, which has been captured very well by CaSP. According to the above and when
high-sampling resolution data on soil and crop are considered, we recommend the CaSP
based on k-means clustering for automatic delineation of MZ maps for the deployment of
variable rate applications of farming inputs. The ideal solution should have the following
successive steps of data processing: (1) range normalization, (2) feature selection based on
cross-correlation analysis, (3) k-means clustering, and (4) smoothing by DBSCAN.
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Figure 8. The clustering results before and after smoothing and comparing them with the yield maps
in the study fields. The clustering schemes in the middle column are the outcome of management
zone delineation by clustering and smoothing pipeline (CaSP).

4. Conclusions

In this paper, five clustering algorithms were evaluated in different scenarios for MZ
delineation in five arable farming fields, with the intention to evaluate their suitability
for variable rate applications. The clustering algorithms included k-means, FCM, mean
shift, hierarchical, and DBSCAN. These algorithms were evaluated in scenarios with and
without range normalization, geographical coordinates, and feature selection. On-line
measured soil fertility attributes (pH, Ca, Mg, Na, P, CEC, MC, K, and OC) at high sampling
resolution, along with crop NDVI and the yield data, were used as input to the clustering
algorithms. Spatial interpolation using ordinary kriging was carried out in order to get
high-resolution data.
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The results suggested k-means as the optimal clustering algorithm after normalizing
and exclusion of the GPS coordinates. Nevertheless, it was noted that the coordinates
should be ignored, since the spatial correlations of the data had been previously considered
when the data were interpolated using ordinary kriging. In general, if the data are not
interpolated using any spatial interpolation algorithms, it is recommended to include the
coordinates in order to account for the spatial correlation among soil attributes. Further-
more, it was concluded that feature selection optimized after cross-correlation analysis
improves the MZ delineation quality while reducing computational burden.

Moreover, a smoothing algorithm was proposed based on DBSCAN for filtering out
small areas of a cluster within other clusters. Overall, an MZ delineation pipeline was
proposed including the following steps: (1) range normalization, (2) feature selection by
cross-correlation analysis, (3) k-means clustering, and (4) smoothing. The effectiveness
of this pipeline—to which we referred to as CaSP, standing for clustering and smoothing
pipeline—was demonstrated by the practical application of MZs concerning the machinery
size during variable rate applications. Future study directions may include analysis of the
effect of the accuracy of soil attributes predictions on clustering quality and also improving
the efficiency of the feature selection operator.
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Abbreviations

The following abbreviations are used in this manuscript:

Ca Calcium
CaSP Clustering and smoothing platform
CEC Cation exchange capacity
DBI Davies–Bouldin index
DBSCAN Density-based spatial clustering of applications with noise
DGPS Differential global positioning system
FCM Fuzzy C-means
K Exchangeable potassium
MC Moisture content
Mg Magnesium
MS Mean-shift
MZ Management zone
Na Sodium
NDVI Normalized difference vegetation index
OC Organic carbon
P Exchangeable phosphorous
PA Precision agriculture
Sil. Silhouette
vis-NIR Visible-near-infrared
VRI Variance reduction index
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Abstract: The rapid expansion of a country’s economy is highly dependent on timely product
distribution, which is hampered by terrible traffic congestion. Additional staff are also required to
follow the delivery vehicle while it transports documents or records to another destination. This
study proposes Delicar, a self-driving product delivery vehicle that can drive the vehicle on the
road and report the current geographical location to the authority in real-time through a map. The
equipped camera module captures the road image and transfers it to the computer via socket server
programming. The raspberry pi sends the camera image and waits for the steering angle value. The
image is fed to the pre-trained deep learning model that predicts the steering angle regarding that
situation. Then the steering angle value is passed to the raspberry pi that directs the L298 motor
driver which direction the wheel should follow. Based upon this direction, L298 decides either
forward or left or right or backwards movement. The 3-cell 12V LiPo battery handles the power
supply to the raspberry pi and L298 motor driver. A buck converter regulates a 5V 3A power supply
to the raspberry pi to be working. Nvidia CNN architecture has been followed, containing nine layers
including five convolution layers and three dense layers to develop the steering angle predictive
model. Geoip2 (a python library) retrieves the longitude and latitude from the equipped system’s IP
address to report the live geographical position to the authorities. After that, Folium is used to depict
the geographical location. Moreover, the system’s infrastructure is far too low-cost and easy to install.

Keywords: computer vision; self-driving car; smart product delivery; Internet of Things; convolution
neural network; Raspberry Pi 3

1. Introduction

Failure to deliver the product in time is a typical scenario of Bangladesh that affects
the economy significantly. Among different reasons, the root cause of this scenario is to
stay stuck in traffic congestion. According to a recent statistic, because of the congestion in
Dhaka, the capital of Bangladesh, the amount of loss is around BDT 200 billion annually [1].
Investigators have reported a loss of 3.2 million working hours a day of traffic jams [2]. The
Center for Economics and Business Research is projected that, by 2030, it will increase to
almost BDT 300 billion [2]. Furthermore, in our country, road accidents are deeply linked
with drivers’ behavior. Most of them are tempted to race on the lane, neglecting the risk
of an accident. Disobeying traffic regulations and signals also leads to critical accidents
and disasters. This ill-mindedness has caused so many disasters, taken too many souls
and caused mass destruction in the last decades across the world. At least 4138 people
were killed and 4411 wounded in 4147 crashes in 2019, while 2635 were killed and 1920
wounded in 2609 accidents in 2018, according to police [1]. In cases where it is impossible
for a person to avoid a car accident, self-driving cars will save millions of lives and subside
the on-time product delivery failure case without road accidents.
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Artificial Intelligence (AI) plays a significant role in almost every aspect of human life,
in every type of industry. For example, researchers [3,4] used a support vector regression
algorithm to predict the water parameters. Considering physical and operational factors,
another group of researchers [5] engaged AI to assess pipe break rate and [6] decoding
clinical biomarker space of COVID-19. Nowadays, AI is also broadly used in building the
smart city [7,8], smart meter [9,10], agriculture [11–13], education [14,15], healthcare [16–18]
and so on. Machine learning is a branch of artificial intelligence that allows machines to
learn without being explicitly taught from prior data or experiences. Nowadays, the
neural network is a popular type of machine learning algorithm that mimics the human
brain. CNN (Convolutional Neural Networks) and other groundbreaking systems have
provided tremendous results in computer vision. In the majority of cases, they improved
the preceding manual extraction features and created new cutting-edge solutions for
such tasks as image classification [19], captioning [20], object detection [21] or semantic
segmentation [22]. A machine’s reaction times and alerts are far better. In addition, these
vehicles were fitted with extraordinary capabilities by long-range cameras and ultrasonic
sensors. Since the last decade, extensive work has been carried out on autonomous robotics
and driving systems. Many research studies focus on the classification, identification
and development of decisions based on the vision to improve, evolving techniques and
algorithms. There are also some off-road studies. In our comprehensive study, we have felt
the need for some missing features or works in those studied works.

Our self-driving product delivery vehicle can move on a road autonomously through
the deployed deep learning pre-trained model. The car’s key input is real-time camera
footage mounted on the roof. The system outputs the respective steering angle and drives
the car accordingly. Because the camera is the only control system input, the purpose
of the project is to teach the vehicle how to handle the steer. The network is trained
on a different machine and then shifted to an onboard computer to regulate the vehicle.
Then the autonomous product delivery vehicle is entirely independent of other machines.
Furthermore, the position of the car is reported to the authority through a map to monitor.
Obstacle avoidance is a different problem that can also be overcome, but it goes outside
the scope of the study to combine it with the system. The current system configuration
is not that capable of dealing with both steering angle prediction and obstacle avoidance.
This self-driving vehicle work will significantly change traffic systems and public safety
in a developing country like ours. It can also support national defense forces to perform
ground monitoring or conduct rescue tasks. More particularly, the risk of an accident can
be reduced dramatically. Moreover, the development cost of this system requires about
BDT 30K–40K for hardware and 20K–30K for software and other experimental purposes.
As a result, product delivery car owners in developing nations like Bangladesh would find
the technology beneficial and economical.

The objectives of this research are to develop a self-driving car for overcoming the
product delivery failure without any road accidents, to design a low-cost infrastructure
with effective outcomes, to build an end-to-end deep learning model equipped in the self-
driving car prototype, and to broadcast the geographical location of the vehicle through a
map in real-time.

With the introduction, this paper is composed of five parts. Section 2 covers the
literature review, and Section 3 contains working procedure, functional units, dataset
collection, normalization, augmentation, pre-processing, deep learning model and driving
instruction forwarding strategies. Section 4 shows the experimental outcomes. Finally,
Section 5 addresses the analysis and future scope.

2. Related Works

Lots of significant works and research have been performed on the autonomous vehicle
aspect. The NHTSA (National Highway and Traffic Safety Administration) describes five
levels of autonomous vehicles [23] shown in Figure 1. In no automation (level 0), the human
driver does all the driving. Lane-keeping, cruise control or assisted breaking are a few
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examples of level 1(driver assistance). Tesla Autopilot [24] claims at their level 2 position.
The Waymo (Google) self-driving car [25] is an example of conditional automation (level 3).
Waymo announced in 2017 that they are testing level 4 driving [24]. Full automation
(level 5)—The driving system takes complete control over the entire driving task under
all circumstances. The human driver does not need to be inside the car. Recent attacks
targeting VANET (Vehicular ad hoc network) with autonomous Levels 1 to 4, which are not
entirely autonomous, have been documented. Denial of service attack [26], sybil attack [27],
timing attack [28], illusion attack [29], message tampering [30], and node impersonation [29]
are examples of these types of attacks.

Figure 1. Levels of autonomous driving by NHTSA.

The non-AI solution practices control theory to determine a steering angle to hold the
vehicle on the desired trajectory, typically identified by algorithms for computer vision.
PID (Proportional Integral Derivative) controller is one of the most popular methods in
control theory [31]. The controller functions in a loop that continually computes an error
value e(t) as a variance between the input from the vehicle and the next command signal. A
correction will be measured and applied afterwards. The correction value u(t) consists of
three parts (proportional, integral, derivative) and, as shown in Figure 2, can be determined
from the error e(t).

Figure 2. Calculation of correction value in a PID loop.

The whole mathematical formula is the following:

u(t) = kpe(t) + ki

∫ t

0
e(t)dt + kd

de(t)
dt

(1)
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The standard approach to solving the problem of self-contained driving has divided
the problem into several sub-problems, including lane marking, path planning and low-
level control, which make up a processing pipeline [32]. Researchers have recently explored
a new approach that simplifies the standard control pipeline dramatically through deep
neural networks to produce direct control outputs from sensor inputs [33]. The gaps
between the two methods are shown in Figure 3. Figure 3a visualizes the standard approach
in which the system predicts the motor torques based on the observation of the image
data. This approach split the problem into several sub-problems such as state estimation,
modeling and prediction, motion planning, low-level controller. In contrast, to solve the
same problem, Figure 3b demonstrates a deep neural network approach to predict the
motor torques directly from the image observation.

Figure 3. Standard robotics control vs DNN based end-to-end control [10]. (a) standard approach
(b) deep neural network approach.

In the late 1980s [34], a modern, completely linked neural network employed neural
networks to monitor automatic cars. In the late 2000’s it was later demonstrated [35]
using a six-stage, fully interconnected neural network (CNN) in the DARPA Autonomous
Vehicle (DAVE) project and most recently in the NVIDIA DAVE-2 project [32], with a
nine-layered CNN network. The training process of the NVIDIA project has been displayed
in Figure 4, where the steering angle is recorded for the center camera image and the
left and right camera image steering angle is shifted. Then fit into CNN architecture,
calculate the error and adjust the weight via backpropagation. The architecture of the
CNN model used by NVIDIA is nine-layer depth, including 5 convolution layers and three
dense layers. The first three convolution layers contain 24, 36, 48 kernels and the rest two
convolution layers consist of 64 kernels. This architecture includes 27 million connections
and 250 thousand parameters.

 
Figure 4. Training the neural network [13].

The testing procedure (Figure 5) is a sample where the weight and the CNN archi-
tecture are saved, and the camera image goes through that saved model, predicting the
steering angle and the car drive by the wired interface.
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Figure 5. Testing the neural network.

There are two different phases to the use of deep neural networks [36]. The first step
is training, in which the backpropagation techniques change the weights of the network.
The next phase is when unseen data are fed into the network to produce the predicted
output (e.g., the predicted image classification, for example) once it has been trained–i.e.,
network weights minimize errors in training example. The training phase is generally more
computational and requires high throughput, usually not available on embedded platforms.
On the other hand, the inferencing process is comparatively less computer-intensive and
latent, if not more so, is as critical as software output because many case stores have strict
real-time requirements. For example, with neural network and computer vision-based
learning methods, Masum et al. [37] attempted to introduce an autonomous automotive
program. The system predicts the steering angle learning from live images according to
which the vehicle moves autonomously.

David Stavens et al. [38] have attempted to describe the ruggedness of autonomous
off-road vehicles for the terrain project. They proposed a supervised machine learning
approach to estimate the roughness of the terrain from laser range data. They used data
from the 2005 DARPA Grand Challenge to compare nearby surface points acquired with
a laser. Bajracharya et al. [6] did the same kind of work in their research. They used
self-supervised training from sensors to know the near-field terrain traversability. The near-
field classification was then used to direct the far-field training of terrain traversability. As
part of the DARPA Learning Applied to Ground Robots (LAGR) project, the methodology
developed was incorporated into a fully autonomous off-road navigation system. Problems
in mobile off-road vehicles and mobile robotics caused by poor stereo vision are increasing
and remain vulnerable for as long as possible. Junsoo Kim et al. [39] introduced a model
focused on long-distance stereo vision to solve this problem. Training data generation
on every image frame in a self-supervised way gives robust, consistent stereo module
label input, ensuring success. From an input image, meaningful features are acquired, and
information is learned. These features train real-time classifiers that can identify complex
terrain to distance from the horizon. They claim that it exceeds the max stereo range of
12 m and can see paths and obstacles at a distance of 5 to more than 100 m [39].

The extensive usage of self-driving technology is exemplified by trains [40]. Some of
such self-driving trains include the Docklands Light Railway (DLR) in London, UK [41],
Yurikamome in Tokyo, Japan [40], London Heathrow airport’s ultra-pods [41] and SkyTrain
in Vancouver, Canada [42]. The successor of Robot Operating System (ROS) ROS2 based
self-driving vehicle architecture can activate safe and reliable real-time behavior [43].
Bakioglu et al. [44] proposed VIKOR and TOPSIS algorithms to prioritize risks in self-
driving cars, while another group of researchers [45] proposed a self-driving delivery
robot in last-mile logistics. Navigation routes, one-way streets, speech recognition, and
no-entry status are all things that self-driving vehicles require [46]. Based on an adaptive
large neighborhood algorithm (ALNS), Guo et al. [47] proposed a multimodal transport
distribution model for self-driving vehicles. Dommès et al. [48] investigated aged and
young pedestrians’ behavior in front of the conventional and self-driving car wherein
mixed traffic conditions. They undertook the simulated two-way street-crossing task.
When delivering commands to a self-driving vehicle Deruyttere et al. [49] developed a
model that can determine uncertainty, detect the causing objects of uncertainty and generate
a question for the passenger that describes the objects.

Tinghui Zhou et al. [50] used monocular video sequence networks of a single view
depth and multi-view pose. They approached it as unsupervised through similar ap-
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proaches were made by others as supervised. Using the images, they were tempted to
train the network with a targeted view (single view) and computed losses from some
multi-views (closer and distant views from the target view). Yanlei Gu et al. [51] proposed
a prototype mimicking the human driving system from the actual traffic environments
dataset. Again, different algorithms for different functions of the autonomous vehicle have
been suggested. Such as Voronoi Diagram (complete but limited to the static environment),
Occupancy Grid (low computational power but has problems vehicle dynamics), Driving
Corridors (continuous collision-free space findings but costs of computation with motion
constraints), etc., algorithms are used for planning for searching the best space available
in the path. Driving Corridors and Non-Linear Constrained Optimization method for
intersection and Multiple Criteria Decision Making for non-intersection segments planning,
Mixed-Observability MDP for pedestrian crossing, etc., these implemented obstacle de-
tection and decision making. Trajectory Planning is being worked out by Tiji Algorithm,
4th Order Polynomials, Cubic Bezier curves, etc., and many other algorithms are used [52].
Here the authors provided elaborated criticism and evaluation of such algorithms based on
different factors.

In manufacturing plants, a line following robot is often used for the pick-and-place
features. The robot receives the products from a position and deposits them on an intended
location via a pre-specified path. This route is often specified on a black surface as a white
line or on a white surface as a black line. Mostafa et al. [53] propose an amphibian line
following robot, which can move in both lands and at certain water levels. A line that follows
a robot reaches its target by following the predefined path as a white line over a black surface.
The line IR sensor is often used to determine which emission led will emit an infrared ray,
and the detector led will receive the infrared ray. By a fixed threshold, the robot will sense
the rows. L293D motor driver regulates the wheel position and torque of the vehicle. For
vehicle rotation, the DC motor is placed onto the wheel. The system can sense the water road
and, like a speed boat, activate a propeller mechanism with an integrated water sensor. Since
it is an autonomous device, the planned robot is free of any direct human intervention. The
idea of the line after the robot is used for different sectors such as rescue, recreation, libraries,
searches, and the army. Colak et al. [54] have developed a clever robot line to keep children
entertained in shopping malls. This system uses a black line of 4.8 cm to load up to 400 kg.
The control functions are remote and manual. Islam et al. [55] have also proposed a low-cost
system that can travel around 500 gm without falling off the ground. To strengthen the health
care system, Punetha et al. [56] used a robot concept row. If the patient requires drugs, the
medicine will automatically be transported along the road, reducing human effort.

A group of researchers [53] proposes an amphibian line following robot for product
delivery in Bangladesh perspective, which can move in both lands and at certain water
levels. A line that follows a robot reaches its target by following the predefined path as
a white line over a black surface. However, ensuring a predefined path as a white line
over a black surface for a long distance is a great challenge for this system. In contrast, our
proposed approach can decide the driving direction based on the existing road lane, cap-
turing real-time road images in adverse weather such as rainy, cloudy, etc. In Bangladesh,
such a kind of system will be a great addition in ensuring on-time product delivery. Many
research studies focus on classification, identification and development of decisions based
on the vision to improve, evolving techniques and algorithms. There are also some off-road
studies. In our comprehensive analysis, we have felt the need for some missing features or
works in those studied works. In traffic situations, weather plays an important role. It also
influences vision-based independence.

An Extended Kalman Filter (EKF) localization technique considers adverse weather
conditions while estimating the car’s posture by registering 3D point clouds against gaus-
sian mixture multiresolution maps [57]. In another study, Ahmad et al. [58] consider
weather and lighting conditions in the context of road marking. They consider various
messages as distinct categories, while most systems [59,60] use OCR-based algorithms to
detect letters first and then write. Unlike stormy, rainy days, dark conditions are created
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and lighting on the bright sunny day. Such changes affect the camera or other sensors
for visual input. These environmental effects are considered in various contexts such as
estimating the car’s posture, road markings, etc. However, it was not investigated so
thoroughly in a dark, rainy environment while the sensor captured image is not clear as it
is supposed to be. Land and off-road research primarily illustrated the roughness of the
route, visibility and road roughness styles. Very few have examined fragile or damaged
road sections (such as deep holes, damaged/broken road pieces, etc.). From a country
viewpoint, damaged and broken highways are causing severe traffic and transportation
havoc. Studies showing the identification of these broken sections of the road were not
possible as well as other cases. Furthermore, the cost of lots of studies is not optimized.
Some used Bluetooth modules to communicate and transfer data between vehicle and
computer which is expensive and not required. Moreover, using a Bluetooth device reduces
the power of a self-driving car’s ability for a long drive as the coverage of a Bluetooth
module is very limited. Furthermore, there is no feature to monitor in real-time and observe
the geographical location of the vehicle.

3. Methodology and Implementation

A good design of a system has a significant impact on the successful implementation of
a project. The overall architecture of the system is demonstrated in Figure 6. By supplying
the power into the Raspberry pi, the heart force of the system, the system starts to initiate. A
buck converter converts the 12V lipo battery power supply into 5V and 3A and continuously
feeds into raspberry pi enough for raspberry pi to be operating. To program and utilize the
raspberry pi despite an extra monitor, we have used a VNC viewer from a local pc. VNC
viewer provides instant remote access to the target computer. As the RAM of raspberry
pi is too slow to run a pre-trained deep learning predictive model, we need to choose a
technique where the predictive model runs into another high-configured computer and the
data transfers to the raspberry pi. The high configured local computer acts as a host, the
raspberry pi as a client, and the server uses a Transmission Control Protocol (TCP). After
establishing the communication between the local pc and raspberry pi, the camera module
becomes active and transfers the image to the pc.

Figure 6. The overall design of the system.

Because of the low processing power of the raspberry pi, per second, only ten images
have been sent to the local pc. After receiving the image, the image goes through the
pre-processing steps that include removing the upper part of the image, blurring the image,
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transforming the image from RGB to YUV and resizing the image. Then the pre-processed
image is sent to the pretrained deep learning model based upon the extended version of
the Nvidia CNN model for the self-driving car. The pretrained model can predict what the
steering angle for that image in that situation is. The steering angle data is transferred to
the raspberry pi through the previously established communication. Based on this steering
angle, the raspberry pi decides which direction it should advance, either forward, left, right,
or reverse. This instruction is transferred to the self-driving product delivery car. Based on
the instruction, the vehicle follows the direction. From the IP address, one can find out the
geographical position of the vehicle and track it. Furthermore, the system visualizes the
geographical position, i.e., longitude and latitude, through a well-organized map. Each
step is discussed in upcoming sections.

This section may be divided into subheadings. It should provide a concise and
precise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

3.1. Functional Hardware Units of the System

To develop the system, we require hardware tools as well as software tools. In our
project, we have used different components for controlling speed, direction, transmitting
and receiving data, and showing the vehicle’s speed on display. The hardware components
used in our project are enlisted below:

1. Raspberry Pi 3 Model B+
2. NoIR Camera with Night Vision
3. Motor Driver IC (L298)
4. Plastic Gear motor
5. 3 cell Lipo Battery (12V)
6. Buck Converter
7. Acrylic Chassis Board
8. Connecting wires
9. Switch

3.2. Functional Software Tools of the System

To develop the system, we require software tools along with hardware tools. To drive
the hardware, the software performs a leading role. Following software, programming
language, library, package, etc., are used in our work:

1. Python programming language: Python is a high-level, general-purpose program-
ming language.

2. Google Colab: Colaboratory (also known as Colab) is a free Jupyter notebook environ-
ment running in the cloud and storing on Google Drive notebooks.

3. Numpy: NumPy is a library that supports multi-dimensional arrays and matrices.
4. Pandas: Pandas is used for data manipulation and analysis.
5. Matplotlib: Matplotlib is the Python programming language plotting library.
6. Keras: Keras is an open-source neural-network library written in Python. It can run

top of TensorFlow, R, Theano or PlaidML, to allow quick experimentation with deep
neural networks [61].

7. Tensorflow: TensorFlow is an open and free software library for data flow used for
machine learning applications like neural networks.

8. Imgaug: A library for image augmentation in machine learning experiments, particu-
larly CNN (Convolutional Neural Networks).

9. OpenCV: OpenCV-Python is OpenCV’s Python API. It integrates OpenCV C++ API’s
best qualities with Python language.

10. Scikit-learn: It is a free machine learning library for the Python programming language.
11. VNC viewer: VNC Viewer transforms a mobile into a virtual desktop, giving one imme-

diate access from anywhere in the world to one’s Mac, Windows and Linux computers.
12. Sublime Text 3: Sublime Text is an advanced script, markup and prose text editor.

268



Sensors 2022, 22, 126

13. Geoip2
14. Folium

3.3. Power Supply Strategy

The power supply strategy is displayed in Figure 7. A 3cell 1500 mah 12V Lipo battery
is used as the primary power source that supplies the power to the raspberry pi and L298
motor driver. The raspberry pi requires 5V and 3A to come into the working state.

Figure 7. Power flow strategy.

A direct connection with the battery may cause the death of raspberry pi because
of the overpowering supply. So, to regulate the power supply, we have placed a buck
converter in between lipo battery and raspberry pi that continuously provides 5V and 3A.
The raspberry pi connects with the buck converter through a micro USB cable.

3.4. Deep Learning Predictive Model

Figure 8 is a step-by-step developing process of the predictive model to forecast the
steering angle based upon the given road image.

3.5. Dataset Collection

We need a dataset containing a massive collection of road images and steering angles
against that image for a deep learning predictive model. Different nations’ legislators
(e.g., the USA, China, Australia, Singapore, and South Korea) [62–68] have established
or are adopting different regulating measures to enhance the security and privacy of
data utilized and sent by autonomous cars. The gathering of data on public roadways
is essential for self-driving car autonomy [69]. There exist several datasets developed
by individuals or organizations such as Sullychen [70], Nvidia [32], Udacity, commaai,
Apollo [71], etc. However, the dataset is too large and beyond our processing capability
because of our limited computational resources. For example, the opensource dataset by
commaai is 45 GB in compressed and 80 GB in uncompressed [72]. In Ref. [73], the authors
provide 27 publicly available vehicle datasets, assess them based on various parameters,
and recommend selecting the most suited dataset for specific goals. Furthermore, Udacity
published a huge open-source dataset in a sunny and overcast environment ranging from
23 GB to 183 GB in size [74]. So, for experimental purposes and considering the limited
hardware resources we have developed our own dataset using an open-source Udacity
simulator [75]. This simulator was designed for a Nanodegree program of Udacity in a
unity environment with two moods. One is training mood and another one autonomous
mode. One can drive a car in two tracks, and at the time of driving the steering angle,
throttle, speed, etc., is recorded against each image. At the training mood of the Udacity
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simulator, one needs to set the path directory where the image will be saved and the
steering angle is saved as a log file against each image.

We have collected the data on track two and saved the data into a folder shown in
Table 1. There have three cameras in the Udacity simulator that track center, left, right
images accordingly. Besides steering angle, it also saves the throttle, reverses the speed at
that time. The images are saved in jpg format into a different folder, while a log file into
CSV format tracks the image path. In this way, we have collected more than 8.4K images
based on developing our predictive model.

 
Figure 8. Flowchart of the steering angle prediction model.
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Table 1. Recorded data at training mode.

Center Left Right Steering Throttle Reverse Speed

E:\android\curly_final\
IMG\center_2019_04_
12_01_52_50_770.jpg

E:\android\curly_final\
IMG\left_2019_04

_12_01_52_50_770.jpg

E:\android\curly_final\
IMG\right_2019_04

_12_01_52_50_770.jpg
0 0 0 0.00014

E:\android\curly_final\
IMG\center_2019_04

_
12_01_52_50_846.jpg

E:\android\curly_final\
IMG\left_2019_04_

12_01_52_50_846.jpg

E:\android\curly_final\
IMG\right_2019_04_
12_01_52_50_846.jpg

0 0 0 0.000199

E:\android\curly_final\
IMG\center_2019_04_
12_01_52_50_917.jpg

E:\android\curly_final\
IMG\left_2019_04_

12_01_52_50_917.jpg

E:\android\curly_final\
IMG\right_2019_04_
12_01_52_50_917.jpg

0 0 0 0.00026

3.6. Normalization

To understand the data distribution against the steering angle, we need to visualize
the dataset. Through histogram, in Figure 9, we have visualized the data across 25 bins
where the zero steering angle is too high, about more than 4K. So, we need to remove zero
biased data so that the model generalizes the steering angle.

Figure 9. Visualization of the dataset.

We have considered a maximum of 600 hundred images per bin (Figure 10). So, the more
than 600 images bin keeps a maximum of 600 images and removes the rest of the images.
After this type of normalization, our dataset is down from 8.4K to 4K, which is too low.

Figure 10. Normalized form of the dataset.
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To increase the dataset, we have also considered the left and right images. The steering
angle in the dataset is actually based upon the center image. So, the steering angle will be
slightly sifted from the center for the left and right images. We have considered 0.15 positive
sifted for the left image and 0.15 negative shifted for the right image. Furthermore, the left
and right images help us more to generalize the dataset like this type of road image may
come into a real scenario. After this technique, the size of the dataset became more than
12.8K.

3.7. Augmentation

Our dataset does not resemble real-world road data, such as gloomy environments,
zoomed views, and so on, as we employed a simulator. However, even now, the size of the
photograph is insufficient. Augmentation is a procedure that artificially increases a training
dataset’s size by modifying the images in the dataset. ImageDataGenerator, a Keras deep
learning module, is mostly used in image data augmentation techniques. Among various
augmentation techniques, we experimented with four approaches: zooming, panning,
brightness, and random flipping that best fit our data.

In the zooming technique, the image is zoomed randomly by interpolating pixel values
or adding new pixel values around the image. If a float is specified, [1−value, 1+value] will
be the zoom range. So we do not zoom across the x-axis, but across the y-axis, we zoom at
1.3 scales. Figure 11 is a sample of the zoomed image.

 
Figure 11. Zoomed image.

To pan an image, we have selected the following parameters for x and y and a sample
image is displayed in Figure 12.

translate_percent = {“x”: (−0.1, 0.1), “y”: (−0.1, 0.1)}

Figure 12. Panned image.
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The brightness of the image can be changed either by randomly darkening images,
brightening images or both. Values underneath 1.0 obfuscate the image, e.g., [0.5, 1.0],
whereas values greater than 1.0 illuminate the object, e.g., [1.0, 1.5] where 1.0 does not affect
illumination. We used a scale from 0.2 to 1.2, a sample shown in Figure 13.

Figure 13. Brightness altered image.

Flipping into left or right is another technique used in image augmentation. For
example, the right-oriented images turned left and left-oriented into right. In previous
approaches, we do not need to change the steering angle across the changing of the images.
However, in the case of flipping, the road image is the opposite. So, we need to flip the
steering angle across the image. A sample flipped image has been displayed in Figure 14
with the flipped steering angle.

Figure 14. Flipped image.

3.8. Pre-Processing of the Dataset

Pre-processing is another crucial technique to smooth the image before feeding it into
training steps. We have considered five pre-processing methods. First, an original image
and after the pre-processing step, the pre-processed image is shown in Figure 15. From the
original image, we have seen that the top part contains natural scenery that do not have
any value in steering angle prediction. Besides, removing this part also minimize the size
of the image.
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Figure 15. Pre-processed image.

The YUV color model is closer to human color perception than the standard RGB
model. So, we convert the RGB image into YUV format. Then, blurring the image remove
the noise and clean the image. We have used gaussian blur with 3 × 3 kernel size. Then we
resize the image into 200 × 64. Finally, to normalize the pixel value, we divide each value
via 255 as the value range is 0 to 255 in the original image.

3.9. Splitting of the Dataset

After pre-processing, the images need to be split into training and validation sets. The
model learns the steering angle through the training set, and via the validation set, it will
examine how accurately it learns. We preserve 20% of data for validation purposes so
that after training, we can test the performance of the trained model how much it learns.
Figure 16 clearly states that the distribution of the training and validation set is quite similar
and so fit for the pass into training step.

Figure 16. Splitting the images into training and validation set.

3.10. Convolution Neural Network Architecture

A deep learning Convolution Neural Network (CNN or ConvNet) is a subset of deep
neural networks, most commonly used in visual image processing. To train and test deep
learning CNN models, each image will go through a sequence of convolution layers with
kernels, pooling layer, fully connected layers and apply activation function (softmax, tanh,
ReLu etc.) to classify an object with probabilistic values. Figure 17 is a full CNN flow to
analyze an image as input and identify the objects according to values.
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Figure 17. A CNN network with many convolutional layers.

The first layer to extract features from an input image is convolution. Convolution is a
dot product of an input image with a kernel to understand the feature. To understand the
feature for an image, there have to be various types of convolution kernels. Despite defining
the kernel, in CNN, we represent the number of kernels with the dimension. We have
followed the Nvidia CNN model to design our deep learning CNN architecture (Figure 18).
Nvidia experiments with this CNN architecture in their self-driving project with more than
72-h of video data. They tuned various parameters and found better outcomes for this
network. We also found promising results from this architecture. This architecture has nine
layers combining five convolution layers, three densely connected layers and one output
layer. The first three convolution layers are glued with 2 × 2 subsamples where the first
layer, the second layer, third layer have 24, 36, 48 kernels, respectively, with 5 × 5 kernel
size. The following two convolution layers include 64 kernels with 3 × 3 size features. Then
we flatten the matrix and connect the flatten layer with a dense layer having 256 neurons.
The successive two dense layers have 100, 10 neurons accordingly. The final one is the
output layer with one neuron. In each layer, we have used ‘elu’ activation function but
the output layer. To optimize the model, we have chosen the Adam optimizer. For each
deep learning model, the Adam optimization algorithm, an extension to stochastic gradient
descent, was used as the optimization algorithm. Recently it has seen broader adoption of
computer vision and natural language processing for deep learning applications.

Because adjusting the parameter learning rates looking at the average initial moments
(the mean) as in RMSProp, Adam uses the sum of the gradient’s second moments (the
uncentric variance). The algorithm explicitly determines an exponential growth rate of
the gradient and the square gradient. The beta1 and beta2 parameters regulate the decay
rates of such moving averages. The learning rate used in our model is 0.0001, and the
mean squad error is a loss function. Despite fitting all the images into RAM, we have fit the
dataset through a batch generator. We run the model with 20 epochs. Then after training,
we visualize the loss rate and accuracy rate. If the model loss and accuracy rate are not
good, we go back to the pre-processing steps and follow the same flow and again train and
visualization. After several times experiment, we have found an optimized model. Then
we have saved the model into hdf5 file format, where the network architecture and the
weight are stored.

After preparing the trained model, we have tested the model into a Udacity simulator
in an autonomous model where the model is fitted with the simulator. The input image fits
the model after pre-processing steps and predicts the steering angle following which the car
moves forward. We have developed a prototype to experiment with how the self-driving
car model works in real life from the perspective of Bangladesh. We assemble the hardware
parts, including 4-wheel chassis board, 4 motors, L298 motor driver, Lipo battery, buck
converter, raspberry pi, camera, power switch, etc.
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Figure 18. Experimented with Nvidia CNN architecture.

3.11. Driving Instruction through L298 Motor Driver

Four motors are connected with four wheels, and the L298 motor driver controls the
direction and rotation of the motor. Battery power is distributed to the L298 motor driver
and raspberry pi with a buck converter and a USB cable. A Noir Camera is placed in front
of the camera and directly attached to the raspberry pi. The camera module captures the
road video and passes the image to the raspberry pi at a 10 fps rate. The raspberry pi
passes the image to the pc through server communication on TCP protocol. The pretrained
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model takes the image as input, predicts the steering angle, and transfers it back to the
raspberry pi. Based on the steering angle, the raspberry pi commands the L298 motor
driver to move accordingly.

The working procedure of the L298 motor driver is shown in Figure 19. The out pin 1,
2 is connected with the right motor and pin 3, 4 with the left motor. Enable pin 1 for the
right motor that is connected with GPIO pin 4 of the raspberry pi. Similarly, enable pin
2 for the left motor with GPIO pin 27. Input pin 1, 2 of the L298 driver is connected with
GPIO 17, 22 for the right motor and GPIO 23, 24 with input pin 3, 4 for the left motor.

 

Figure 19. L298 Motor driver working process.

4. Experimental Result

We have developed a prototype to experiment with how the self-driving car model
works in real life from the perspective of Bangladesh (Figure 20). First, we assemble the
hardware parts, including 4-wheel chassis board, 4 motors, L298 motor driver, Lipo battery,
buck converter, raspberry pi, camera, power switch etc. Then, four motors are connected
with four wheels, and the L298 motor driver controls the direction and rotation of the motor.
Finally, battery power is distributed to the L298 motor driver and raspberry pi with a buck
converter and a USB cable.

Figure 20. Hardware assembly of self-driving car.
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The performance of the car is tested on the actual road track. The vehicle is tested in
both lightening and cloudy atmospheres to understand its behavior on the change of the
environment. Figure 21a represents the lightening environment, and Figure 21b a little bit
of a cloudy environment. In both environments, the car performs very well to maintain its
track on the actual road.

The Noir camera module is placed in front of the camera and directly attached to the
raspberry pi. The camera module captures the road video and passes the image to the
raspberry pi at a 10 fps rate. The raspberry pi passes the image to the pc through server
communication on TCP protocol. The pretrained model takes the image as input, predicts
the steering angle, and transfers it to the raspberry pi. The car moves towards its direction
based upon the steering angle. The loss rate of the deep learning CNN model is shown in
Figure 22. From this scenery, we have seen that the loss rate is decreasing for both training
and validation datasets regarding increasing the number of epochs. Validation loss and
training loss difference is very well. Therefore, the model is neither overfitted nor underfit.

The accuracy of the model is measured in various environments or turning. Table 2 lists
all the accuracy where on lightening conditions the model outperforms then cloudy climate.
Similarly, right turning accuracy is 89.3% higher compared to straight and left turning.

In terms of accuracy, we compared our model to the previous literature in Table 3 as
well. The temporal fusion process employed in the TCNN setup is temporal convolution.
A fixed-length window of three (TCNN3) and nine (TCNN9) seconds was used. The
performance of TCNN models continues to increase, and the larger the time horizon, the
better. That’s why TCNN9 accuracy is 84.6% better than TCNN3 83.3%. However, it needs
a fixed size history window and is more memory intensive than the LSTM-based method.
It performs similarly 84.5% to TCNN9 when using the CNN-LSTM method. While the
Nvidia CNN architecture studied in our research shows an overall 89.2% that is notable
than other configurations.

  
(a) (b) 

Figure 21. The performance of the car in the various environment (a) in lightening atmosphere (b) in
a cloudy atmosphere.
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Figure 22. The loss rate of experimented CNN architecture.

Table 2. Performance of the model on various environment/turn.

Environment/Turning Accuracy

Cloudy 88.9%

Lightening 89.6%

Left 87.1%

Right 89.3%

Straight 89.0%

Table 3. Accuracy comparison with previous literature proposed architecture.

Configuration Accuracy

TCNN3 83.3%

TCNN9 84.6%

CNN-LSTM 84.5%

Nvidia CNN 89.2%

The performance of the whole autonomous product delivery car network is recorded
on a per-frame basis. The camera sensor on the car passes 10 frames per second to the
remotely connected high configuration pc via raspberry pi that requires 0.07 sec per frame.
The image processing and to be predicted the steering angle requires 0.02 sec per frame. The
steering angle info then sent back to the raspberry pi to drive the car accordingly requires
another 0.03 sec. The network requires 0.12 sec per frame from image capture to prediction.
The performance of the trained model is experimented with using the Udacity simulator in
autonomous mode. A few snapshots from the various angle in autonomous mode have
been demonstrated in Figure 23. Through socket programming, the Udacity simulator
passes the road image to the model and predicts the steering angle. This steering angle
back to the car, and the vehicle moves according to that angle. The predicted steering angle
is shown in the top-left position of the Udacity simulator. Figure 23a is a sample for a left
turn where we have found that the model predicts angle as −12.16◦ and Figure 23b another
rightly turned position and model predict 8.50◦ steering angle. More curved situations are
also displayed in Figure 23c, complex right turn, and 23d, hill tracked right turn, where the
model predicts 17.25◦ and 17.09◦, respectively. Furthermore, the predicted steering angle is
shown in the command prompt at the left position of the images.
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Figure 23. Performance of the model into autonomous mode (a) left turn prediction angle (b) right turn
prediction angle (c) complex right turn prediction angle (d) hill tracked right turn prediction angle.

The visualization of the geographical position of the vehicle is one of the great features
to track the car immediately. At the time of product delivery, the vehicle owner can track
his vehicle at any time. Geoip2 library is used to track the car from its IP address.

After being given the IP address, geoip2 returns the geographical data of that vehicle.
Those geographical data, i.e., longitude and latitude, are visualized through the Folium
library of Python programming language. A demonstration of the current position of the
self-driving product delivery vehicle is shown in Figure 24.

 

Figure 24. Map visualization of the geographical position of the car.

From the perspective of Bangladesh Road, the model is tested in several environments
such as darkness, brightness distortion, gloomy atmosphere, etc., and performs at a satis-
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factory level. A source to destination position is shown in Figure 25. Because of the diverse
environment augmentation to the original dataset, the vehicle is fit for the actual road of
Bangladesh. We have experimented with the car at the Chittagong—Cox’s Bazar highway
at the Rahattarpul area. During the self-driving vehicle movement, we have stored several
pre-processed images that are sent from the Raspberry pi attached camera module shown
in Figure 26.

 

Figure 25. Map visualization of the source and destination place of the car.

Figure 26. Sent Pre-processed image at testing time of the vehicle.

5. Discussion and Conclusions

There is a lot of trouble with on-time product delivery from Bangladesh’s perspective,
and human decision-making errors cause severe road accidents. Many drivers obey their
feelings even though they are not correct in the moment. Thus, driving system automation
will solve those problems. Therefore, autonomous vehicles can ensure on-time product
delivery and reduce accident rates because of human error. We have developed Delicar,
such a low-cost self-driving product delivery vehicle where the camera placed on the roof
of the vehicle capture the image and raspberry pi sends the image to the pre-trained model
for steering angle with respect to that image.

Moreover, it is low in cost and easy to implement. However, there does not exist any
authentication system to receive the product. Anyone from the destination can receive the

281



Sensors 2022, 22, 126

product that is a shortcoming of the study. Extensive chances of development in this work
are kept open. Lots of essential features can be added to it in the future. To detect damages
and holes in preceding the vehicles in the road using cameras and sensors and produce
warning system is the future scope of our research along with double step authentication
to receive the product such as password, fingerprint, etc. The future direction of the study
also includes the most effective path programming and obstacle avoidance to reach the
destination safely and quickly. The interplay of smart people, smart technology, and smart
processes, which may be shown as the Smart Golden Triangle, eventually determines the
success of smart cities. Such an intelligent product delivery car will drive the smart city to
the next level. However, in Bangladesh, the traffic congestion costs 3.2 million working
hours daily, BDT 200 billion annually. To ensure the traffic rules are followed and strictly
avoid overtaking, the self-driving car is a great alternative. As an impact of such a solution,
self-driving product delivery cars will contribute to the economy via utilizing very few
human resources. This autonomous product delivery car will advance the e-commerce
industry to the next level by ensuring on-time delivery. In supply chain management,
self-driving product delivery cars may not only have a significant influence on logistics by
lowering costs and delays, but they could also have a significant impact on distribution and
manufacturing centers. Therefore, the Government should instantly install this proposed
system to deliver the product in time to save Bangladesh’s economic deterioration.
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Abstract: In this article, we propose a recent iterative learning algorithm for sensor data fusion to
detect pitch actuator failures in wind turbines. The development of this proposed approach is based
on iterative learning control and Lyapunov’s theories. Numerical experiments were carried out
to support our main contribution. These experiments consist of using a well-known wind turbine
hydraulic pitch actuator model with some common faults, such as high oil content in the air, hydraulic
leaks, and pump wear.

Keywords: data fusion; iterative learning; fault detection; pitch system; wind turbines

1. Introduction

Data fusion is a mathematical discipline that deals with the acquisition, processing,
and combination of synergies of information gathered from sensors [1]. Data fusion can
be defined as the combination of data and information from different sources, to obtain
improved information [2]. This data fusion is usually done to analyze and understand
a phenomenon [3–5], for instance a system malfunction. Data fusion techniques are present
in a wide range of applications, such as smart city applications [6], allowing to manage
multiple data sources; food analysis context [7]; guidance and control of autonomous
vehicles [8]; medical studies [9], and so on. In addition, there are different analysis methods
that combine data from different sources, where the most common options are algorithms
based on optimization [10], multiblock (or multitable) methods [11], and statistical data
fusion [12]. In our article, we used an original statistical parametric identification to
perform data fusion, where covariance of sensory information is not required, which is
generally not available.

Moreover, the data sensor has been useful to detect possible failures in the pitch
actuator systems of wind turbines [13–16]. Furthermore, it turns out that a parameterized
plant modeling can be a key factor for efficient fault diagnosis based on the fusion of sensor
data. If in addition, only a single sensor is used for the data fusion process, an option to
generate data to be merged is through an iterative process. On the other hand, it is well
known that the iterative learning process can improve your performance on repetitive
tasks in a finite period of time [17–19]. Therefore, the main objective of this article is to
develop a fusion of a sensor data based on adaptive iterative learning. This process will
provide data in each periodic cycle task that will be further analyzed for fault diagnosis
in the wind turbine pitch actuators.

The pitch system of a wind turbine adjusts the pitch angle of the blade by turning
it. In the case of a three-bladed wind turbine, there are generally three identical pitch
actuators [15,20]. This part of a wind turbine is responsible for capturing the wind to
convert it into mechanical energy and then into electrical one. Therefore, if the pitch
actuator system has a fault, the energy efficiency conversion will be affected, among others
mechanical and structural wear. Some common faults are high oil content in the air,
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hydraulic leaks, and pump wear. Our data fusion approach is capable of detecting these
types of failures.

The iterative learning theory used for adaptive learning of a process is a key factor
in many iterative learning control frameworks [17–19]. Therefore, an appropriate mathe-
matical model of the pitch system will be important, and as simple as possible to perform
a simple adaptive iterative learning method to our main objective. Furthermore, an it-
erative learning control has been used to improve control performance of proportional
controllers and derivative ones [21]. Simulation results are given in [21] to support this
affirmation. In [22], an iterative learning control theory is employed in a first-order hyper-
bolic system that helps improve controller robustness on desired time-varying trajectories.
This is also supported by performing numerical examples of given hyperbolic systems.
In addition, [23] shows the realization of the synchronization of non-identical neural net-
work systems that have a variable delay in time coupled by means of an iterative learning
control. According to the simulation results shown in [23], the synchronization objective is
satisfied. Finally, in [24], iterative learning control is applied to a novel computational fluid
dynamics model to show the performance of the controller in improving the aerodynamic
load of wind turbines. In the same way, we will use numerical results to support our main
contribution.

The rest of the structure of this article is as follows. Section 2 presents our data
fusion approach by using a simple mathematical model of the pitch system, and the use of
an adaptive iterative learning framework based on Lyapunov’s theory. Section 3 shows
the results of numerical simulations and followed by Section 4, where the advantages of
the proposed method are discussed. Finally, a summary is presented in Section 5.

2. Wind Turbine Mathematical Modeling

We use the following mathematical model of a tone actuator system [25]:

β̇(t) = − 1
τ

β(t) +
1
τ

up(t), (1)

where up(t), β(t), and τ are the pitch angle command, the pitch angle, and the system time
constant, respectively. This mathematical model is a simple one of the following more exact
model (see [14] and references there in):

β̈(t) = −2ζωn β̇(t)− ω2
n(β(t)− up(t)) (2)

where, once again, β(t) is the pitch angle and up(t) is the pitch angle command; ωn and ζ
are the natural frequency and damping, respectively. Table 1 shows the healthy and faulty
scenarios for a wind turbine. Therefore, our data fusion approach, for design, will use
the simple model (1) and, in testing, the second model (2) under the different scenarios
presented in Table 1.

Table 1. Common faulty scenarios [26].

Scenario Abbreviation

No fault H
High air oil content F1
Hydraulic leakage F2

Pump wear F3

3. Results

In this section, the statements of the iterative learning algorithm, applied to sensor
data fusion, to detect pitch actuator failures, are stated.

287



Sensors 2021, 21, 8437

3.1. Adaptive Iterative Learning Approach

The adaptive iterative learning control scheme is based on performing repetitive tasks
to obtain a parameter estimation. In our case, we repeat a trajectory tracking of a wind
turbine, where the unknown parameter comes from the system time constant. To do so,
we rewrite system (1) as follows:

β̇(t) = −θ(β(t)− up(t)), (3)

where θ = 1/τ is considered an unknown parameter. Then, adaptive iterative learning
deals with finding a periodic learning dynamic to observe the parameter θ that governs
the pitch dynamics.

First, we have to consider the following assumptions about wind turbine pitch actuator
systems:

(A1) The angle pitch dynamic is limited. That is, there exists a positive constant βM ∈ R,
such that 0 < β(t) < βM for all t ≥ 0.

(A2) The systems (1) and (2) are bounded–input–bounded–output (BIBO)-stable dynamics.
Hence, θ in (3) should be a positive constant parameter and assumed unknown.

(A3) The pitch angle command is bounded. That is, there exists a positive constant uM ∈ R,
such that | up(t) |≤ uM for all t ≥ 0.

We define now the next adaptive iterative learning algorithm defined over the time
interval t ∈ [0, T]:

(1 − γ)θ̂k(t) = γθ̂k−1(t) + γ|β(t)− up(t)| ,

θ̂k(0) = θ̂k−1(T) ,

θ̂0(t) = θini ,

(4)

where k denotes the k-th learning cycle, or iteration number. The rest of values are: θini is
a constant parameter; 0 < γ < 1 is the parameter set by the user; and T is the time-interval
of the iterative process. The above adaptive iterative dynamic is a special case to the one
proposed, for instance, in [18]. Hence, this dynamic is a kind of parameter observer to θ in (3).

3.2. Data Fusion Design

Now, we present how to perform the data fusion of the experimental data, raw (4),
obtaining for each iteration a significant information able to characterize the data. To do
this, the boundedness of θ̂k(t) (4) must be established first, and then the data fusion can
be accomplished.

To begin with the main result, let use define the following L∞e norm [18]:

‖ x(t) ‖∞e= sup
0≤t≤T

‖ x(t) ‖, (5)

where ‖ · ‖ denotes any vector norm. If the above norm exists, then x(t) ∈ L∞e[0, T].
Next, we have the following result that ensures the boundedness of the iteration

method (4); that is, θ̂k(t) remains in a bounded region for t ∈ [0, T] and for each iteration k.

Theorem 1. The iterative learning process proposed in (4) linked to (3), and under the assumptions
(A1)–(A3), produces θ̂(t) ∈ L∞e[0, T] for each iteration process k = 1, 2, . . . .

The proof of Theorem 1 consists on consider an energy function related to each
iteration, and show that its sequence is bounded. Then, we can ensure that the sequence of
parameter θ̂k(t) is also bounded in [0, T]; that is, θ̂k(t) ∈ L∞e[0, T] for k = 1, 2, . . . .
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Proof. To prove the theorem, it is sufficient to see that the dynamic of (4) remains bounded.
Let us define the following positive definite functional Vk(T) as a Lyapunov-like func-
tion [18]:

Vk(T) = α1

∫ T

0
θ̂2

k (t)dt (6)

The difference of the Vk(t) is given by

ΔVk(T) = Vk(T)− Vk−1(T)

=
∫ T

0 (θ̂2
k (t)− θ̂2

k−1(t))dt
(7)

Let us first simplify the integral term θ̂2
k (t) in (7). Hence, using (4), we get:

θ̂2
k (t) =

(
γ

1−γ

)2(
θ̂k−1(t)+ | β(t)− up(t) |

)2
=
(

γ
1−γ

)2(
θ̂2

k−1(t)+ | β(t)− up(t) |2 +2 | β(t)− up(t) | θ̂k−1(t)
) (8)

Then, using (8), the difference ΔVk (7) becomes:

ΔVk(T) =
∫ T

0 θ̂2
k (t)− θ̂2

k−1(t) dt

=
∫ T

0

(
γ2

(1−γ)2 − 1
)

θ̂2
k−1(t) +

γ2

(1−γ)2 | β(t)− up(t) |2 +

2 γ2

(1−γ)2 | −β(t) + up(t) | θ̂k−1(t) dt

(9)

Now, we define γ such that γ2

(1−γ)2 − 1 ≤ 0. Then, we get:

ΔVk(T) ≤ ∫ T
0

γ2

(1−γ)2 | β(t)− up(t) |2 +

2 γ2

(1−γ)2 | β(t)− up(t) | θ̂k−1(t) dt
(10)

The boundedness of Vk(T) (6) is concluded because β(t) and up(t) are bounded
signals. From assumptions (A1) and (A3), (10) satisfies:

ΔVk(T) ≤ γ2

(1 − γ)2

(
(βM + uM)2T + 2(βM + uM)

∫ T

0
θ̂k−1(t)dt

)
. (11)

Finally, taking into account that θ̂k(t) is a continuous function in [0, T], for each k-th
iteration, we conclude that the integral term in (11) is achievable. Hence, ΔVk(t) < ∞,
and θ̃k(t) ∈ L∞e for all k, and then θ̂k(t) ∈ L∞e. So, θ̂(t) ∈ C[0, T] for each iteration.

Once we ensure the boundedness of the parameter estimation, we can present the data
fusion scheme. The data fusion process employs experimental raw data to extract its
arithmetic mean that describes it. Then, a new data raw ψ(t) is obtained with improved
information. The data fusion block performs the following mathematical operation:

ψ(t) =
1

nT

�nT�
∑
k=0

θ̂k(t), t ∈ [0, T], (12)

where �nT� is the nearest integer of nT, and it corresponds to the n iterative cycles, where
each cycle is ran for t ∈ [0, T]. Therefore nT is the entire simulation time. Notice that all
the sensor data obtained from the iterative process θ̂k(t) (4) are merged into a single data raw
ψ(t). Then, this new data ψ(t) is obtained under each scenario presented in Tables 1 and 2,
and must be compared to the healthy model to establish a detection fault algorithm.
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Table 2. Parameters for hydraulic pitch system under common faulty scenarios [26].

Scenario Parameter ωn (rad/s) Parameter ζ

H 11.11 0.6
F1 5.73 0.45
F2 3.42 0.9
F3 7.27 0.74

3.3. Fault Detection Algorithm

We now propose a diagnosis of pitch actuator failures based on the fusion data
theory. Based on Theorem 1, Figure 1 shows the health monitoring system proposed for
the diagnosis of failures in actuator devices in wind turbines. The data employed here
are presented in Table 2 [26]. The diagnosis is based on the following steps. Under each
scenario in Table 1, a data fusion raw ψ(t) (12) is obtained. Then, a decision parameter
m is defined in each case. First, a healthy value of m for the nominal plant H (healthy
scenario in Table 1) is derived, referred to as mH in Figure 1. Secondly, under each faulty
case, parameter m is evaluated and compared to mH to decide if a failure occurs.

First, let us define parameter m: it corresponds to the regression of data fusion raw.
That is, a linear relation is used to fit our data (t, ψ(t)) in (12) to a polynomial function of
degree one, and by using minimum squares method. Therefore, the linear regression stage
does this regression on the merged data and only m, the slope of the linear regression, is
implemented.

Figure 1. Residual signal r(t) for fault diagnosis based on an interactive learning process. The iterative
learning process is as stated in Theorem 1. The linear regression block is a post-processing unit that
is enabled after the end of the elapsed time for the test. Subscript H refers to the nominal scenario H
in Table 1.

Then, to detect a pitch actuator failure, the factor r = m
mH

is evaluated. If r >> 1,
a malfunction of the system has occurred, as showed in the next section.

4. Numerical Simulations

Table 2 shows the stages analyzed. Therefore, the healthy model in Figure 1 refers to
the H scenario in Table 1. The experimental parameter considered in pitch actuator exact
model (2), simpler model (3) and the iterative learning algorithm (4) are defined in Tables 1–3.
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Table 3. Experimental parameters.

Name Value

γ 0.5
T 1

30 sec
θini 0
n 1000

For reference, the following color labeling is used: (H) blue, (F1) red, (F2) orange,
and (F3) green. By using the pitch command signal given in Figures 2–4 show the results of
the simulation of the proposed scheme . Then, in all simulations, additive noise is attached
to the pitch command signal for the robustness analysis of the proposed method. Table 4
shows the obtained regression parameters, where in the three faulty scenarios parameter
r is greater than 1 and the detection algorithm works. Moreover, Figure 4 pictures data
fusion variable ψ(t) (4), and again the fault detection is illustrated.

Table 4. First numerical experiment results of regression parameter m.

Case m r = m/mH

H 810.14 (mH) 1
F1 1732.83 2.13
F2 2921.09 3.60
F3 1238.93 1.52

Figure 2. First simulation: pitch command signal for testing, where additive noise signal can
be observed.
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Figure 3. First simulation: pitch actuator responses for each case in Table 1: H (blue), F1 (red), F2

(orange), and F3 (green). The command signal is the one in Figure 2.

Figure 4. First simulation: data fusion raw ψ(t) in (4) for each case in Table 1: H (blue), F1 (red), F2

(orange), and F3 (green). Notice that the fault detection is reached.

Second experiment outcomes are shown in Figures 5–7. Once again, Table 5 gives
the reading regression parameters. From Tables 1–5, a threshold to the residual signal r(t)
can be easily set to locate each failure. That is, despite the noise added to the data, our
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method is able to discern among the three different failure scenarios. As Table 5 shows,
the parameter r for each case is located in a range of different values.

Figure 5. Second experiment: pitch command signal, where the additive noise is included to show
the robustness of the proposed method.

Figure 6. Pitch actuator responses to command in Figure 5: H (blue), F1 (red), F2 (orange), and F3

(green).
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Figure 7. Data fusion for each case in Table 1: H (blue), F1 (red), F2 (orange), and F3 (green), under the
second experiment. This figure is related to Table 4: both indicates a pitch actuator fault detection.

Table 5. Second numerical experiment results.

Case Regression Parameter r = m/mH

H (mH) 848.30 1
F1 (m) 1800.57 2.12
F2 (m) 3053.26 3.59
F3 (m) 1295.67 1.52

5. Discussion

Based on the simplest model used for the pitch actuator system (3), and because
the iterative process identifies a parameter related to the system time-constant, the best
option for the iterative process is to use a stepped pitch reference command, as shown
in the previous simulations. However, to see the performance of our approach, we use
a sine pitch command signal as shown in Figure 8. Numerical experiment results are shown
in Figures 9 and 10. Furthermore, Table 6 gives the related results of the iterative process
results. Even in this case, the system reacts differently to different failure cases. Although
the sinusoidal signal is not commonly used as a reference in estimating the time constant
of a system, our approach still allows us to detect variability of this parameter. Compared
to Table 5, the classification is not as robust, as expected when dealing with a sinusoidal
input.Therefore, future work will be to design a residual signal, as for the sinusoidal pitch
command, which will do the same job.
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Figure 8. Sinusoidal pitch command signal.

Figure 9. Actuator responses: H (blue), F1 (red), F2 (orange), and F3 (green).
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Figure 10. Data fusion profile: H (blue), F1 (red), F2 (orange), and F3 (green). In this case, the fault
detection is clear for F2 faulty scenario.

Table 6. Third numerical experiment results.

Case Regression Parameter r = m/mH

H (mH) 162.42 1
F1 (m) 273.60 1.68
F2 (m) 739.94 4.55
F3 (m) 287.80 1.77

6. Conclusions

In this article, we developed an iterative learning algorithm capable of isolating pitch
actuator faults based on a square pitch command signal. The option to employ the iterative
learning approach is the ability to learn from the past to arrive at a present conclusion.
This is an important process in system learning based on data results. Hence, our approach
can be a recent contribution of this theory, to pitch actuator analyses in wind turbines.
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Abstract: Manufacturing companies increasingly become “smarter” as a result of the Industry
4.0 revolution. Multiple sensors are used for industrial monitoring of machines and workers in
order to detect events and consequently improve the manufacturing processes, lower the respective
costs, and increase safety. Multisensor systems produce big amounts of heterogeneous data. Data
fusion techniques address the issue of multimodality by combining data from different sources
and improving the results of monitoring systems. The current paper presents a detailed review of
state-of-the-art data fusion solutions, on data storage and indexing from various types of sensors,
feature engineering, and multimodal data integration. The review aims to serve as a guide for the
early stages of an analytic pipeline of manufacturing prognosis. The reviewed literature showed
that in fusion and in preprocessing, the methods chosen to be applied in this sector are beyond the
state-of-the-art. Existing weaknesses and gaps that lead to future research goals were also identified.

Keywords: smart manufacturing; data fusion; feature extraction; industrial prognosis

1. Introduction

The advances in Information Communication Technologies (ICTs), along with the
era of Industry 4.0 have brought industries closer to the adoption of automation in their
processes. Industry 4.0 is formed [1] by the integration of manufacturing operation systems
and ICTs. Business models are reframed by adopting the digitisation and Internet of Things
(IoT) concepts. The IoT refers to the devices and sensors that are smart, are addressed using
communication protocols, are autonomous, and also adapt to the operating conditions [2].
The availability and variability of sensors assist in this transition to automation, by moni-
toring the function of machinery and tools, as well as measuring the product quality. This
intends to improve the failure ratio of machines and products, maximizing the productivity
of a company and a good machine function. Along with the increasing usage of sensors in
manufacturing procedures comes the need to exploit the large amounts of heterogeneous
data they produce and, subsequently, the application of fusion techniques that combine
these data with different methods and improve the knowledge extracted from them.

Fusion can be described as the method of combining data from different sources. In
the field of machine learning, there are two broad categories of fusion: early and late
fusion. Early fusion is implemented in the first stages of an application and refers to the
combination of the raw data (data fusion) or the extracted features (feature fusion). Late
fusion refers to the combination of the results of different algorithms and is implemented
as the last step of the analysis’ pipeline. Late fusion can be accomplished with techniques
that combine the predicted class probabilities of each algorithm or the predicted classes of
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each algorithm. More advanced techniques such as stacking and boosting use the output of
other classifiers as the input to a new ensemble algorithm.

This paper provides a review of data fusion solutions implemented in the manufactur-
ing sector, with a special emphasis on the sensors employed in the industry, as well as the
preprocessing stages of data preparation and feature extraction. Furthermore, the types of
data storage and techniques for data extraction used for industrial prognosis are explored.
The aim of this literature review is to provide the reader with an introductory guide for
the processing of industrial data, with a special focus on the types of fusion employed in
industrial prognosis in recent years.

The methodology followed in order to collect the papers included searching in some
popular databases such as Scopus, ISO, and Google Scholar. Using keywords, which are
mentioned below, combined with the term “manufacturing” or more specific terms relevant
to manufacturing applications, e.g., chatter detection, some papers were collected and
screened for relatedness to the scope of the current literature review. Papers published
in recent years, describing the architecture or the analytical framework of manufacturing
problems, were selected. The majority of papers reviewed were published after 2015, with
some exceptions that were published in early 2000. Following is the list of keywords used
for some of the main sections of the paper:

• “Vibration analysis, current signature, acoustic analysis, thermography, infrared radia-
tion, thermocouple, acoustic emission, NDT, defect inspection, ultrasound, induced
current, radiography, penetrating liquids, lubricant analysis, ferrography, spectromet-
ric, chromatography, vibration processing, motor current signature analysis, feature
extraction, feature selection, dimensionality reduction, PCA, mRMR, acoustic camera,
3d camera, artificial vision” combined with the term “manufacturing”, for the section
of data preprocessing;

• Data fusion solutions/applications in manufacturing, ensemble learning in manufac-
turing applications, fusion for chatter detection, fusion for tool wear detection, and
data fusion in industrial prognosis, were some of the keywords used for the section of
data fusion solutions in manufacturing.

The analysis of data collected from different sensors of a typical manufacturing process
comprises certain steps, similar to the steps of any analytic task that involves prediction
(Figure 1). In the beginning, raw data need to be collected from sensors and stored. In
order for the data to be analysed, some cleaning and filtering functions are usually applied.
Following is the important step of filtering, which removes signal noise, and afterwards,
features are usually extracted. Feature engineering is crucial in signal processing, and the
transformation methods adopted, as well as the features extracted vary according to the
type of sensor and the goal of the analysis. The large amount of features produced is then
reduced by applying feature selection methods, which select smaller sets of variables for
input in a classification or regression algorithm. Fusion can be applied in different stages of
the aforementioned pipeline, whether in the beginning combining the raw data, or after
the step of feature extraction to combine the features, or even in the final stage for the
combination of the prediction algorithm’s results. In the current work, more attention was
given to the initial layers of the analytic pipeline, reviewing the types of preprocessing used
in industrial prognosis problems and the common useful features produced. Furthermore,
the fusion techniques adopted in manufacturing prognosis were reviewed. Thus, the scope
of the paper is depicted in Figure 1), responding to the sections included in the dotted lines,
while the figure overall describes an analytic pipeline.

Similar literature reviews regarding fusion in the era of Industry 4.0 have been pub-
lished in recent years. A multisensor data fusion review was presented in [3], with a
special focus on multisensor monitoring technology and the architecture of multisensor
monitoring systems. An analytical survey on machine learning and fusion applications
for industrial prognosis was presented in [4]. The authors provided a categorisation of
methods according to the cause of the failure to be predicted. This review referred to the
general industry section, while our current literature review paper presents the fusion
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trends in manufacturing applications. In [5], a review of the techniques used for data fusion
for material data was presented. The paper reviewed the methods and underlying theory
for material data fusion, explaining the different levels of fusion and how these can be
adapted in the combination of heterogeneous material data. The authors also gave insight
into the differences of the terms “data integration” and “data fusion”, which are often met
in manufacturing applications.

Figure 1. Flowchart that presents the typical analytic pipeline followed in manufacturing applications.

The rest of the paper is organised as follows: Section 2 describes the methods for
data storage and extraction, along with the communication protocols enabling the fusion
systems. Section 3 refers to the type of sensors employed in manufacturing, data prepro-
cessing techniques, and feature extraction, as well as feature selection methods. Section 4
reviews the fusion methods adopted in different systems and in the manufacturing sector
specifically. Finally, the paper is concluded with the Discussion Section.

2. Data Acquisition and Storage

The evolution of technology and especially the Internet of Things (IoT) has led to a
new kind of manufacturing known as Smart Manufacturing. Smart Manufacturing is an
application of the IoT that focuses on using inexpensive, small-sized, and smart devices
that are all interconnected so that they can increase productivity and improve the health of
the machines. Big Data in Smart Manufacturing systems are continuously generated data
in high volumes produced by said smart devices [6] and are available in various forms, e.g.,
log files, signal streams, or sensor data. A Big Data analysis system should be able to use
these data in real time, as well as save them for historical analysis and long-term pattern
detection. This section of the paper deals with the ways data are acquired and stored from
such smart devices.

2.1. Data Acquisition Methods and Technologies

In [7], a comprehensive review of Big Data analytics throughout the product lifecycle
was made. Most notably, regarding the data acquisition phase of the lifecycle, it was
acknowledged that manual-based data acquisition methods are still used in various stages
of the lifecycle process, thus making the acquired data from these approaches inaccurate
and untimely, and as a consequence, the decisions based on them are usually ineffective.
The authors [8] suggested some challenges of data acquisition that need further research to
be resolved and used smart mobile devices to provide an example on how IoT technologies
can be embedded into the physical world and be able to gather data throughout the whole
product lifecycle. A detailed hierarchical architecture of a smart factory was described
by [9], emphasizing the need for Wireless Sensor Networks (WSNs) in a smart factory for
data monitoring, acquisition, and logging. ZigBee and Bluetooth were also mentioned,
on top of Radio-Frequency Identification (RFID), for real-time data acquisition and were
described as good choices when it comes down to the cost of the industrial automation of
wireless technologies. Furthermore, the devices responsible for data acquisition should be
easy to set up and connect with interfaces capable of scaling up.
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One methodology employed by [10] was a monitoring tool organised in a WSN. Part
of the monitoring tool is a Data Acquisition Device (DAQ) that uses split-core current
transformers, closed-loop Hall effect sensors, and a camera to create an easy and not
intrusive way to collect data by monitoring the status of the machines. The researchers of
the paper used multiple DAQs on the shop floor and used a central gateway to collect and
organise the data into packets before they were transmitted. The WSN that was used for
data extraction utilised the DIGI XBee ZigBee Radio-Frequency (RF) module. As the paper
described, an OPC Unified Architecture (OPC-UA) was used. The OPC-UA provided an
extensible data model, which provided the data schema. A NoSQL database was used, as it
proved to be more flexible than a Structured Query Language database (SQL) because of the
heterogeneity and the different data that were being generated. The authors of [11] create a
Cyber–Physical System (CPS) that uses a semantic sensor network. Focus was given on the
way data are gathered from the physical sensors. To manage the large volume and velocity
of the data, the authors proposed an architecture in which the data are collected through an
OPC-UA, an industrial M2M communication protocol. There exists a considerable body of
literature on data flow models, but most notably, Reference [12] suggested frameworks that
allow users to model their application via visual editors. These programs enable the users
to receive data from external sources such as IoT devices and smart sensors.

In [13], the authors suggested an architecture design for a smart manufacturing system.
Furthermore, they provided detailed considerations of the way a smart Manufacturing
Execution System (MES) should be designed. For real-time data acquisition from the shop
floor, the OPC-UA technology was proposed. The authors of [14] expanded on the topic
of data transmission with the introduction of WiFi direct, 4G LTE, and Z-Wave. There
was also the mention of the protocols being used with these wireless technologies, which
include IPv6, MQTT, SOAP, and REST, among others. The authors also mentioned a series
of compatible with Supervisory Control And Data Acquisition (SCADA) communication
networks such as OPC, Open Database Connectivity (ODBC), RS232, and Dynamic Data
Exchange (DDE), as well as some wireless communication standards such as the Highway
Addressable Remote Transducer (HART) and ISA100.11a. The most prominent of these
protocols are the MQTT and REST API. The MQTT protocol is used to acquire and transmit
data from large industrial environments to the cloud where the processes producing the
data can be monitored and controlled. The REST Application Programming Interface
(API) provides a way to securely collect data from the IoT devices, where the data are
collected in formal message arrays and the receivers split those individual messages so
the producing device can be identified. SCADA systems provide a fully connected system
that a manufacturer can use not only to acquire the data, but also to handle, manage, and
archive them long term. Some known SCADA systems are SIMATIC SCADA Systems
from Siemens, AVEVA™ Plant from Schneider Electric, Proficy HMI/SCADA from General
Electric, and HMI/SCADA from ABB.

A demonstration of real-time data acquisition using the MQTT protocol was described
in [15]. The authors implemented a system using temperature and humidity sensors so
they could generate data to work with the protocol. For the test, they generated data for
60 s and compared the ability between the Hypertext Transfer Protocol (HTTP) and the
MQTT protocol to transfer from the hardware (i.e., sensors) to the server and store them
in a MySQL database. To minimise the error and loss of data, each transmission had a
sequential ID so the completeness of data could be checked. A conclusion was made that
the use of the MQTT protocol proved to be up to six-times faster than HTTP at sending data.
On the more technical side, it was reported in [16] that depending on the application and
the network coverage required to send data different, protocols may need to be used. Low-
Energy (LE) Bluetooth, Near-Field Communications (NFC), and RFID, among others, are
technologies used for short-range communication. As a result, industrial applications that
require a broader field to be deployed need solutions that can be both energy saving while
maintaining a significant coverage area. Such a technology is the Low-Power Wide-Area
Network (LPWAN), which includes Sigfox, LoRa, and the Narrowband IoT (NB-IoT) [17].
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A Big Data pipeline for data streaming in Industry 4.0 was described in [14,18]. More-
over, data collection and data storing tools were compared and presented. Such tools are
Apache Kafka, RabbitMQ, and Amazon Kinesis, which are considered for pushing a high
volume of messages that are produced from data producers (i.e., sensors) and even Apache
Storm to process and discard “useless data”, which were tagged as less important or out
of context.

In [19], a system that is capable of data monitoring and acquisition of a Computerised
Numerical Control (CNC) machine tool in intelligent manufacturing was proposed and
developed. Most notably, the authors compared the different data acquisition methods
from a CNC machine, not only on the different data types that can be collected, but also
the technical difficulty and implementation costs. For data acquisition, the MTConnect
protocol was selected, while for the database, a system that uses the ODBC method was the
choice. The machine tool networking was based on an industrial Ethernet and Transmission
Control Protocol/Internet Protocol (TCP/IP) technology. Working also with CNC machines,
Reference [20] provided a thorough explanation of the way a CNC machine generates data
and how these data are acquired, transmitted, and stored. CNC data can be split into two
main sources: controller data and external sensor data. As is usual for the sensors, the
collected data contain noise from external interference, and for that reason, a necessary step
is to clean and preprocess the data. For machines such as a CNC system, a high amount
real-time data in the controller is required. Some of the most-used technologies in the
field are Ethernet, Profinet, and EtherCAT, but in order for them to work seamlessly in the
system, the sensors need to be equipped with acquisition cards.

Previous research showed that data acquisition in real time is based on the configu-
ration of the smart environment [21–23]. Specifically, it was described that the first part
of the data acquisition is the data collection, during which raw data are gathered using
various technologies depending on the application. Moreover was proposed that Ultra-
High-Frequency (UHF) RFID readers can be used to track and collect data in real time
from the manufacturing process. Regarding the transmission of the collected data, it was
mentioned that for real-time data such as temperature, vibration, and pressure, the Internet,
wireless, and 4G methods were used. As far as non-real-time data (e.g., maintenance
history) transmission are concerned, tools such Sqoop are preferred. A more in-depth
look at the way RFID technology is used to collect data from the shop floor was provided
by [24,25], where the authors explained step by step the system architecture they created.
Data flow starts from RFID tags, which are attached to the input and output of their manu-
facturing section. This allows for real-time monitoring of the manufacturing process and
can update individual data from each part. The authors concluded that such an architecture
(RFID-based IoT solution) with the ability to closely monitor the manufacturing sections
leads to improvements in the traceability, quality, and tool wear prediction.

Some authors [26,27] have also suggested Industrial Internet of Things (IIoT) archi-
tectures, where the data collection method was thoroughly described. Specifically, all
kinds of manufacturing data (e.g., equipment status data, product data, or measurements)
can be gathered using wired or wireless methods. The wireless methods include, mostly,
as previously mentioned, RFID readers that obtain the raw data. Hive and HBase have
been introduced as a distributed data storage system. One way that is considered for data
transmission is the Flume interface, which forwards the data to a selected storage system.

2.2. Data Storage Software Solutions

Concerning data storage, a distributed approach is usually the choice where a Dis-
tributed Database System (DDBS) is used to store structured data and the Hadoop Dis-
tributed File System (HDFS) or NoSQL databases for unstructured data. Other alternatives
are the C Open Source Managed Operating System (COSMOS) and Haystack. Especially
for distributed file systems, the Google File System (GFS) was one of the first systems
developed to handle data-intensive applications.

MongoDB, a NoSQL database, is one of the most popular databases at the moment,
and the authors of [10] used it to store the sensor data that were gathered by the DAQs.
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As was mentioned by [13], relational databases such as MySQL are not an option due to
the complicated nature of the manufacturing data. Subsequently, the authors considered a
distributed database as an appropriate option because of its high performance, efficiency,
and scalability.

Regarding data storage solutions being proposed, the authors in [18] listed, described,
and compared commonly used technologies such as Hadoop Hive and MongoDB. A
distinction was made between the data models that were used: firstly, the file system data
model, for data stored in a schema-less manner and read in a structured manner with a
processing time based on the processing needs of the application; secondly, document-based
data model; lastly, a column-based schema. A reference was made regarding the recent data
storage technologies and their capabilities to process data for critical real-time applications.

Prior research [28] suggested that shop floor data on a manufacturing site can be
gathered using what is called a SCADA system. SCADA provides a singular interface,
where all the gathered data collected from different smart devices can be transmitted.
Among SCADA, Reference [29] mentioned the Protocol Data Unit (PDU) as an alternative
data acquisition tool. It was also suggested that the combination of IoT and cloud services
gives the ability for different equipment to be connected and collect huge amounts of
data. To organise data in a methodical and effectual way, Database Management Systems
(DBMSs) have been created. According to [22], these tools can be split into two categories,
relational DBMS and non-relational DBMS. The first category includes SQL databases,
meaning databases that usually store data in tables of records. Commercial solutions for
SQL databases are Microsoft SQL, PostgreSQL, Oracle, and MySQL. Regarding NoSQL
databases, it is possible to use various types of data such as text, binary, and records. One of
the benefits of NoSQL over SQL is that it is scalable and can support huge volumes of data,
making it perfect for managing data coming from sensors and smart devices. In [30,31], a
straightforward software solution explaining the pros and cons of each one was provided.
The most commonly used solution is Apache Hadoop, but the authors [30] also proposed
other options such as: Redis, SimpleDB, CouchDB, and MongoDB, just to name a few. More
research [32] described the criteria of the data model and used them to identify different
models where each of the previously mentioned software solutions apply the best.

Authors such as [33] provided a more technical side to the way data being acquired
and stored. Even though it was mentioned that the data were collected manually, there
was an in-depth review of the storage methods. As has been previously reported by the
literature [34], the most adequate NoSQL databases for real-time data storage are HBase
and Cassandra. However, it was demonstrated by [35] that Online Transaction Processing
(OLTP)-oriented NoSQL databases can lack the support for fast sequential access over a
significant amount of data, which sometimes can prove to be a hurdle when it comes to
data analytics. Hadoop BDW is proposed as the opposing solution that can handle fast
sequential access.

A data storage framework was presented in [36] that can deal with various types of
data collected from different devices, for instance RFID readers, monitors, or thermometers.
Due to the heterogeneity and volume of data, there is no perfect method for efficiently
storing and accessing them. The proposed architecture by the authors included several
modules. In more detail, HDFS was used for unstructured file storage, while a database
module using NoSQL and relational databases was used to manage the structured data.
The authors also investigated a data storage framework capable of being a feasible solution
to challenges such as a large volume of data, different data types, rapid generation of
data, and the complicated requirements of data management. In detail, for structured
data, a database management model was created that combined and extended multiple
databases. For unstructured data, a common solution was followed. The authors ex-
plained in great detail how the framework extended HDFS for multitenant data isolation.
Concluding, it was mentioned that for remote and cross-platform data access, a RESTful-
service-generating mechanism was integrated, to provide a platform-independent HTTP
interface. Furthermore, the authors of [37] reported that in large-scale manufacturing
systems, tens of thousands of data streams flow into the storage at various rates. For that
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reason, there is a need for improving the bottlenecks that cause the data to arrive irregularly.
The authors mentioned Blueflood as a solution that attempts to achieve high scalability.
Blueflood is a combination of Cassandra, which handles data storage, and Elasticsearch,
which handles indexing. A similar alternative to Blueflood is OpenTSDB, which uses
HBase for storage instead of Cassandra. A summary of the software tools used for data
management can be found in Table 1.

The authors of [38] separated the requirement and solution components that are
assigned to the data storage processes. In [39], it was suggested that due to comprehensive
process transparency, structured, semi-structured, and unstructured data should be stored
and made available for application-specific processing. Furthermore, in [38], operational
data storage and a long data storage system were proposed. The first one requires an edge
device unit, which must be able to store and manage real-time data. For operational data
storage, the edge devices need to store data efficiently and reliably. For that reason, SQL
was recommended. The preferred Relational Database Management Systems (RDBMSs)
are MySQL and PostgreSQL. Concerning long-term data storage, a Big Database system
is required. Consequently, NoSQL databases provide the best storage solutions as they
are able to efficiently store large volumes of unstructured datasets, compared to relational
databases [30,40].

A focus on data storage issues and recommendations for a new solution to organise
and manage data was given by [41]. In particular, the cloud storage system they presented
uses a Document-Oriented Storage System (DO-SS) for the storage of all the information
derived from the monitoring systems. The integration between the data collection and
storage subsystem occurs with the help of a software module (parser), so that the data can
be converted before being stored in MongoDB. The authors also implemented an Object-
Oriented Storage System (OO-SS), a widely used object storage system. The main benefit
over other solutions, is that the data are protected by being stored as multiple copies, so in
case a node fails, there is another one active where the data are stored. This design makes
the OO-SS ideal when there is a need for performance and scalability.

In [42], a hybrid framework was conceptualised for an industrial platform that ensures
efficient and accurate communication, concerning data transfer among software applica-
tions and devices. The framework was characterised as hybrid, because it contains two
different technologies for data storage and exploits the best features from each of them.
In the proposed framework, structured data are stored in relational database systems,
while sensorial data, which most of the time tend to be unstructured, are stored in NoSQL
databases. The real-time sensor data are published to an MQTT broker that is suitable to be
used to connect with remote locations, and the Raw Data Handler subscribes to MQTT and
acquires the generated data. Later, the data are carried to the sensorial repository where
they are indexed and can easily be filtered and accessed by timestamps. In general, the
authors proposed a hybrid framework that is capable of shop floor data collection and
application in industrial environments.

A scalable data storage framework for smart manufacturing was introduced by [43].
In more detail, it is a Software-Defined Hybrid Cloud (SDHC) for saving the equipment-
generated data. The main challenge the authors faced was the different data types and
formats. With the use of software-defined technology, control data and manufacturing
data were separated. The manufacturing data derived from the sensors and controllers
can be saved in a key-value database only if the data save request is allowed. Lastly, two
improvements were proposed, the first one to deal with the data saving efficiency, which
will improve the response time, and the second one with the data-save permission, which
will improve the system’s robustness. A software architecture was designed by [44]. The
framework is highly scalable, so a fleet of IoT boards and sensors can be easily configurable.
For data collection, an Arancino board was used that was provided with an AI module
that can manage on-board fault prediction. InfluxDB was the database that was selected
as it is non-relational and is suitable for industrial scenarios where sensors send data at
different rates.
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Table 1. Applications of software tools for data management.

Software Tool Application Reference

Apache Hadoop

Hadoop is a framework that allows for the distributed
processing of large datasets across clusters of computers
using simple programming models. It has been used for
different kinds of applications such as frameworks that
can optimise and organise the way bit data can be
searched and accessed. There are also applications
regarding storing data derived from sensors that
monitor the environmental air pollution. Lastly, tuning
systems have been designed to improve the
performance of Hadoop and MapReduce.

[45–47]

Apache Storm

One of the most capable software solutions for Big Data
is Apache Storm. Several applications exist that employ
it. Some of them use it as a data streaming and real-time
processing platform, while others create frameworks for
dynamically scaling for the analysis of streaming data.
Finally, there are multisensor data fusion frameworks
that employ Apache Storm due to its high reliability and
good processing mode.

[48–50]

Apache Flume

Flume is a distributed, reliable, and available system for
efficiently collecting, aggregating, and moving large
amounts of event data. It has been used for various
kinds of applications such as healthcare and
manufacturing. Frameworks have been designed so that
the computational scalability of sensor network data can
be achieved.

[51–53]

Apache Spark

The aim of Spark is to make data analytics programs run
faster by offering a general execution model that
optimises arbitrary operator graphs and supports
in-memory computing. Most applications use it for
sensor analytics. It has been deployed on both industrial
and non-industrial applications and can be integrated
into pre-existing frameworks.

[54–56]

Apache Kafka

Kafka is well suited for the situations where users need
to process real-time data and analyse them. There are
papers that focused on learning how to reliably transfer
data and studied its application in collaboration with
other software solutions.

[57–59]

2.3. Communication Protocols

The smart manufacturing sector benefits from data fusion systems. Next, the required
underlying communication technologies enabling the fusion systems are presented. These
are related to the IoT and the corresponding protocols. Specifically, networking concepts
that are based on software are incorporated into the lower communication layers. Fur-
thermore, adaptivity offers advanced performance since the nature of modern networking
systems is dynamic.

Software-Defined Networking (SDN) is the main conceptual networking model [60]
under modern IoT fusion environments. It brings the programmable networking logic
into the lower architectural layers. This process allows better control and management
of networking data flows in a transparent way from the higher-layer networking applica-
tions. It is a centralised architecture that defines a stable ground to be used for building
networking applications. An open implementation of the SDN networking concept is the
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OpenFlow protocol [61], which is widely adopted. A networking foundation is currently
maintaining the specification. The whole concept relies on central computing logic, repre-
sented by the SDN controller, controlling data flows between core networking components
such as switches (i.e., the Southbound API). Fusion techniques over IoT environments are
facilitated with the exploitation of the SDN concept.

Achieving high-speed transmissions in IoT environments requires efficient and dy-
namic channel assignment. Conventional fixed assignment techniques are not adequate
for modern environments, in which, due to their dynamic nature, requirements must
constantly adapt to the runtime conditions. The IoT over SDN, when combined with deep
learning techniques, improves transmission quality. Therefore, a traffic load prediction
algorithm that is based on deep learning [62] has been proposed, forecasting network traffic
and congestion. Next, a deep-learning-based algorithm that assigns channels has been
introduced. Its main role relates to link channel allocation using intelligence in the SDN-IoT
network environment.

Since communication between smart devices in the IoT manufacturing sector can be
peculiar, event-based data fusion for communication is needed [63]. This is a message
exchange system between participating devices that initiates when events occur. Fusion
is required since different devices generate heterogeneous notifications, along with data
source trust issues that may arise. The contribution of this work consisted of an event-based
protocol covering the communication issues of resource-limited sensors and heterogeneous
data sources, and it considered the trust degree of the fused data.

There is a vast spectrum of IoT applications that require security and privacy for
realistic deployment in the modern era. Trust and data integrity are prerequisites in the
IoT ecosystem, otherwise applications will lose high demand and also their potential. In
the current case of cellular and sensor networks, special security challenges emerge and
correlate with authentication issues, privacy, management, and information storage [64].
Programmable Logic Controllers (PLCs) are an integral part of the industrial control sys-
tems [65]. Communication issues between PLCs and the engineering stations or field
devices concerning security must be confronted. Modern database systems use communica-
tion systems to deploy as cloud-based solutions [66]. Different DBs support various security
technologies, though most non-relational solutions overlook modern Big Data applications.

Communication requires a credible authentication model, which guarantees data
integrity and secrecy. For that purpose, an IoT node-roaming authentication protocol was
introduced [67]. A heterogeneous fusion mechanism comprises the protocol’s functionality.
Every roaming device communicates with a server, which provides authentication func-
tionality. This process renders attacking attempts from external malicious nodes difficult.

In a smart manufacturing environment, multiple protocols are required for transmit-
ting data efficiently. SDN forms the basis for a heterogeneous network architecture [68]
for forwarding multisource manufacturing data and, at the same time, utilising network
resources optimally. The core algorithm of the proposed protocol is based on cross-network
fusion and scheduling. It was shown that the efficiency was improved for the fusion
processes, especially for intelligent manufacturing equipment.

3. Data Preprocessing and Feature Extraction

3.1. Types of Sensors and Variables Measured

In the context of Industry 4.0, the use of sensors has been widely extended, as the
capacity to store and use the acquired data has been enhanced [69]. The heterogeneity of the
machinery in the manufacturing plants and the specific needs of each sector generate the
need to use different kinds of measurements to monitor the machines, the manufacturing
processes, and the parts that are produced. For that purpose, a large number of sensors are
available on the market. Many of them are already integrated in the machines, even if it
is usual to include other sensing equipment in order to complete the measurement chain
available for further analysis.

In [70], some general guidelines were given for the condition monitoring and diag-
nostics of machines. The parameters that can be measured were identified and classified
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according to the type of machine that was considered. The main parameters that are useful
for all kinds of machines are: temperature, noise, vibration, acoustic emissions, ultrasonics,
oil pressure, and thermography. Some others will be specific for some particular types of
machines. In the next paragraphs, this is explained in more detail.

Vibration analysis is a commonly used technique [44,71,72] as the vibration signature
of a component may change as a fault develops. Machines vibrate in their normal operation,
some of the vibratory phenomena related being to events that occur periodically (such as
the rotation of shafts, the mesh of gear teeth, or the generation of rotating electric fields).
Thus, the frequency of that vibration often gives an indication of the source. That is why
it is important to establish a baseline for the standard vibration response of a machine
and detect any anomaly from that baseline when a fault occurs [73]. For that purpose,
different kinds of vibration transducers can be used: proximity probes (measuring the
relative distance between the probe and another surface), velocity transducers (providing
a signal proportional to the absolute velocity of the element on which the transducer is
mounted), accelerometers (giving a signal proportional to the absolute acceleration), dual
vibration probes (allowing the measurement of absolute motion), and laser vibrometers
(transducers based on the Doppler principle that do not load the measurement object) [73],
accelerometers being the most commonly used. In the range of the audible spectrum,
acoustic analysis via microphones [74] allows the localisation of an internal material trans-
formation or a noise source, but it is hard to reach to determine the magnitude of a failure,
given that manufacturing plants can be noisy environments.

Electrical current is usually measured in electrical machines such as motors or gen-
erators [44,75]. This kind of signal has a low implementation cost, as the equipment is
simple and economical. Other variables to be measured in such rotational equipment are
the torque, the speed, and the temperature. As the temperature changes or reaches a limit,
the temperature can be a signal of failure, and the analysis of the temperature is another
approach [76]. One of the most-used techniques is thermography, which consists of the
determination of the surface temperature by means of measuring the infrared radiation [77].
This technique can be used, for example, to monitor the wear of cutting tools [78]. Moreover,
thermocouples are commonly installed in machinery thanks to their low cost, providing
the value of the temperature in a single point.

The measurement of Acoustic Emission (AE) [79,80] allows capturing the propagating
waves generated by the rapid release of energy from localised sources, as a result of crack
propagation, impact, or leakage, among other phenomena [81]. In the manufacturing
context, this technique can be useful to monitor the state of the structure of large machinery
subjected to cyclic loads or to test the quality of a product. Similarly, ultrasound analysis
can be used to detect, identify, and evaluate the size of surface and sub-surface failure
or to measure material thickness. Thus, it is mainly used in material or product control
stages [82]. Induced currents are useful to test electrically conductive materials [83]. They
are a means to evaluate surface and sub-surface failure, as well as to measure material
thickness generated in processes such as thermal treatments and coatings.

Radiographies are used to detect internal cracks and the lack of homogeneity of
materials [84] (e.g., in pieces manufactured by melting or in welded joints); however, access
to the analysed object from all possible perspectives is needed, and this is an expensive
technique. Penetrating liquids are also used to detect surface discontinuities.

Lubricant analysis is used to determine the chemical composition of lubricants, as well
as to find particles in them. Some of these techniques are ferrography, spectrometric identifi-
cation, and chromatography. Ferrography looks for iron particles in oils in order to identify
the component that is wearing out and to determine the wear level [85]. Spectrometric
identification looks for iron, metallic, or non-metallic particles by means of the atomic
emission spectrometer, which is useful to identify early-stage failure [86]. Chromatography
measures changes in the properties of the lubricants (viscosity, pH, water content, etc.) [73].

The aforementioned sensors and variables measured refer mainly to one-dimensional
data. However, higher-dimensional data are also relevant in the context of smart manu-
facturing. Vision techniques can be used to inspect manufactured products [87]. Three-
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dimensional vision techniques are also useful in inspection environments, such as the
analysis of the quality of an assembly process [88]. Vision techniques can be combined
with sound measurements using acoustic cameras, imaging devices with an included mi-
crophone array. They process sound signals to form a representation of the originating
location. They are used for the identification of noise sources in machinery such as conveyor
belts [89].

Even if the aforementioned variables are general-purpose, there are many others that
can be used in industrial equipment, which depend on the kind of machinery. For example,
those equipment related to pneumatic or hydraulic subsystems (valves, cylinders, and so
on) may take advantage of the measurement of pressure, flow, position, etc. Moreover,
other equipment suffering from cyclic or transient loads may have installed load cells or
strain gauges to measure the force or the displacement, which can be useful to calculate the
mechanical stress suffered by a component.

3.2. Data Preprocessing

Data preprocessing is required in order to treat the data and obtain clean data that can
be useful for feature extraction. Even if in some scenarios, features are extracted directly
from the raw signals, the high complexity of the industrial systems and the nonlinear
processes involved ask for the application of signal processing strategies [90]. These
strategies may include the removal of the effects of the operating conditions from the
acquired signals, the removal of noise in noisy signals, the identification and removal of
outliers that may lead to non-significant features, and the transformation of the signals to
other domains from which key features can be extracted, among others. There are many
common techniques for some of the variables that can be measured and were introduced
in Section 3.1. However, some of them are dependent on the nature of the signal. In this
subsection, the focus is put on two of the main data sources: vibration signals and current
signatures. This selection was made based on the widely extended use in manufacturing
machinery in the case of vibration signals, the ease of data acquisition, the fact of being a
usual data source in the manufacturing industry, and its usefulness for the detection of
faults and inefficiencies in machines in the case of current signatures.

Vibration data preprocessing is one of the most-studied areas in signal preprocessing.
ISO 13373-2:2016 [91] summarises some procedures for general purpose applications. Thus,
different effects and techniques are described, such as time domain averaging, Fourier trans-
form, spectrograms, order tracking, octave and fractional octave analysis, and cepstrum
analysis. According to the standard, there are other techniques for the in-depth analysis of
vibration signals. This is the case of the semi-automated bearing diagnostic procedure [73],
which consists of five steps for the processing of vibration signals corresponding to rolling
element bearings, with different objectives: (i) removal of speed fluctuation, based on order
tracking [92]; (ii) removal of discrete frequencies by means of discrete random separation,
self-adaptive noise cancellation, or linear prediction [93,94]; (iii) removal of the smearing
effect of the signal transfer path using minimum entropy deconvolution [95]; (iv) deter-
mination of the optimum band for filtering and demodulation via spectral kurtosis [96];
(v) transformation of the domain by means of envelope analysis [97]. VDI 3832 [98] also
provides some guidelines on the analysis of rolling element bearings in driving and driven
machines and power transmission elements. Other advanced techniques comprise em-
pirical mode decomposition [99], Hilbert–Huang transform [100], adaptive local iterative
filtering [101], or fast iterative filtering decomposition [102], among others.

Regarding the analysis of current signals, Motor Current Signature Analysis (MCSA)
is a common practice to diagnose different rotating machinery, as is the case of induction
machines [103], permanent magnet synchronous motors [104], or rolling element bear-
ings [105]. This strategy is also complemented with other signal processing techniques
such as adaptive filters such as the Wiener filter [106] or time-synchronous averaging [107].
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3.3. Feature Extraction

Feature extraction is a key step as this process creates representations of data that
increase the effectiveness of the posterior analysis. Thus, the extraction of relevant features
for the specific machine or process and the fact of generating features with reduced missing
data are important for the accuracy of the models that can be trained afterwards [108].
It should be highlighted that some advanced artificial intelligence models do not need
this feature extraction step to be performed previously, as they operate directly with the
acquired time series, but these techniques usually require very large data volumes [69]. The
feature extraction techniques can be categorised depending on the domain in which the
features are extracted [109]. Thus, the features that can be extracted in different domains
are presented next.

Time domain features are extracted from the signal itself. Some of them are based on
simple statistic indicators, such as the mean, standard deviation, skewness, kurtosis, peak,
and root mean square, among others. Time series models can also be used, such as AR,
MA, or the combination of both in an ARMA representation. Dynamic features are also
employed depending on the characteristics of the signal, for example: overshoot, settling
time, or rise time.

Frequency domain features are obtained from the frequency representation of the
signal, most commonly after its Fourier transformation. The same statistic indicators as
before can be obtained from the signal in this domain, as well as signal energy or some
specific frequency peaks’ amplitudes. Their main limitation is that the signal considered
needs to be stationary. To overcome this limitation, time–frequency features can be obtained,
which can be obtained through a short-time Fourier transformation, where the analysis
of the frequency domain is performed at several time windows [110] or other types of
transformations, such us the Wigner–Ville transformation [111] or wavelets [71].

Two-dimensional data such as images require specific feature extraction. These fea-
tures can be focused on the colour, the texture, the intensity, or the shape, among oth-
ers [112]. They can also be related to text recognition, as they are useful for traceability
purposes in manufacturing.

A summary of the features can be found in Table 2.

Table 2. Summarised features according to the domain.

Domain Features Reference

Time domain Mean, maximum, minimum, amplitude, variance,
standard deviation, skewness, kurtosis, root mean
square, peak-to-peak, autoregressive coefficients,
overshoot, settling time, rise time

[73,98,109]

Frequency domain Spectral statistic moments, highest peak amplitude,
sum of peak amplitudes

[73,98,105]

Time-frequency
domain

Wavelet energy, Wigner–Ville [71,110,
111]

Two-dimensional
domain

RGB, LUV, HSV, HMMD, homogeneity, entropy, con-
trast, correlation, body shape, length, width, height

[112]

3.4. Dimensionality Reduction and Feature Selection

The feature selection step is crucial as the dimensionality of the data acquired in
manufacturing plants and the amount of features extracted from them are usually high.
Ideally, the users of the features would prefer a reduced number of significant features for
conducting predictions, which are at the same time interpretable. However, the trade-off
between the predictive performance and interpretability is infrequent [108]. Thus, the
common solution is to apply some feature selection techniques to reach a compromise. This
will also help avoid overfitting [113], which is a general problem found in machine learning
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applications, related to a model that performs very well in the training set, but is not easily
generalised to a different set.

In that sense, techniques can be categorised as supervised or unsupervised, depending
on the usage of the labels of the target variables [69]. In supervised techniques, the
performance of adding or removing a variable is assessed for predicting the target variable,
whereas unsupervised techniques use statistical tests to determine if the new features are
similar (redundant) or bring new important information. If no labels are available, the
second group should be used, whereas if labels are available, its use would be beneficial
not to remove features that may not contain useful information in a particular condition,
but may be critical for fault detection.

A very common example inside the unsupervised techniques is Principal Component
Analysis (PCA) [114], which was used in [115,116]. PCA can be considered both in the
feature extraction and in the feature selection groups, as it involves feature transformation
(extraction), but when used, it usually intends to also reduce the dimensionality of the
features involved, keeping only the transformed features explaining the most variance.
Some nonlinear variants of PCA also exist and have also been used, the most common one
being kernel PCA [117]; another one can be found in [118].

Another technique is the minimal Redundancy–Maximal Relevancy (mRMR), de-
veloped by [119]. The goal of this method is to find those indicators that minimise the
redundancy of the data, as the removal of one feature from highly mutually dependent
sets will not lead to a change in the information given by them; at the same time, the
method must maximise the relevance to the target classes. There is an unsupervised version
of this algorithm (UmRMR) that has been used for predictive maintenance in rotating
machinery [120] and in structural health monitoring [121].

4. Data Fusion Solutions

4.1. Fusion Solutions for Various IoT Environments

The smart manufacturing sector requires underlying enabling technologies in various
environments (Table 3). Furthermore, fusion techniques being deployed in these envi-
ronments comprise the higher computing layer. Next, these environments are described
in detail and can be either distributed, heterogeneous, nonlinear, or object-tracking, dis-
tributed in terms of the lack of central control, heterogeneous in terms of variety in the
device types that should communicate under the same common protocols, non-linear in
terms of the existence of time-varying sensing processes, and finally, object-tracking in
terms of correct object localisation and identification.

Data sensing technologies are associated with challenges related to distributed en-
vironments [122] as in WSNs, which comprise an integral part of the IoT. Since there is
heterogeneity in the nature of IoT environments, nonlinear and tracking issues emerge
such as Multi-Target Tracking (MTT), cost effectiveness, errors requiring mitigation, and
other asynchronous and track-to-track (T2T) problems. Data fusion methods confront all
these issues and challenges.

Fusion in distributed environments is a concept that has been confronted in the last
two decades. Concerning IoT environments, practical deployment is still an on-going
process. Sensors and microprocessors provide source data for the sub-branches of parallel
algorithms in such distributed environments. These are the main components used for
tracking environmental changes in remote areas. At the same time, microprocessors provide
fusion capabilities to them.

Next, classification of fusion algorithms in WSN environments (subset of the IoT)
follows. The Kalman Filter (KF) [123] is an estimation algorithm (prediction corrector)
and is utilised due to its scalability. It is useful during state propagation and the update
of primitive input data. The KF is a Bayesian fusion algorithm and is practically utilised
in weather and environmental monitoring, surveillance areas, as well as in intelligent
triage systems for tracking sensitive patient data. Since WSNs are dynamic in nature,
during operation, power failure issues may arise, connectivity may be unstable due to
environmental factors, and sensors can undergo geographical mobility, altering the way
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of the network’s logical topology. On the other hand, most fusion algorithms exhibit
static behaviour.

Table 3. Fusion environments.

Environment Subfield Reference

Distributed Data sensing [122]
Kalman filtering [123]
Energy/cost efficiency [124–127]

Heterogeneous Data correlation [128]
Distributed filtering [129]
Heterogeneous data [130]
Fussy logic/Kalman filter [131]
Canonical correlation analysis [132,133]
Multimodal fusion [134]

Non-linear Multisensor data fusion [122]
Sensor-dense IoT networks [135]
Fusion based on fuzzy logic [136]

Object-tracking Assembly line [137]
Transportation network [138,139]
Online multi-object tracking [140]
Energy efficiency for target tracking [141]

For WSNs to be cost efficient, they must also be energy efficient. Having a large
number of sensors operating together, power instability can cause functional instability at
the algorithmic level. A Cuckoo-Based Particle Approach (CBPA) [124] can provide optimi-
sation capabilities in a distributed WSN. This approach is utilised for node deployment
in a static cluster. Furthermore, data are aggregated and forwarded to the base station
when the cluster heads are selected. This is a generalised swarm algorithm. Next, the
Generalised Particle Model Algorithm (GPMA) [125] assists in confronting the energy
consumption problem. Specifically, it reduces the complexity by optimising the process of
cluster formation with the goal of allocating optimal paths (concerning the reduction of
energy consumption) to the base station.

A typical method for reducing energy consumption in many different network archi-
tectures (including WSNs) is putting a number of non-passive components into sleep mode
when their provision of computing resources is not required. Specifically, sleep mode [126]
is used for multimedia sensors in order to save energy. These are only activated by some
scalar sensors, which always remain active. The system recognises objects using image
analysing techniques, and the results are fused for increasing the recognition performance
of sensors.

A cluster formation scheme for energy cost reduction of the data fusion process has
been proposed [127]. Due to the limited resources of multisensor schemes, scheduling
is a key point for energy efficiency, so a novel hybrid technique has been presented for
performing clustering and selection simultaneously. The next step after the selection is
the partitioning and processing of data. Blind broadcast messages, along with signal
overhead, are reduced during the formation. Next, routing is applied according to the
layered architecture with the goal of path elongation minimisation.

Multi-hop routing is an energy-efficient scheme since it utilises traffic grooming
techniques for efficient allocation of resources such as bandwidth. Non-passive components
are reduced this way along the routing paths. Another technique is to use progressive
data fusion, which hops through sensors. This results in low energy consumption. Finally,
network planning (predetermination of energy using integer linear programming formulae)
also results in reduction. Channel state information and prior knowledge of the routing
tree is required during planning.
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The basic trait of most fusion IoT systems is the presence of heterogeneity. Various
types of devices or sensors interoperate under common communication protocols to assist
in fulfilling a specific functionality. An important issue these systems face is the presence
of different feature spaces of datasets. Several different spaces comprise the datasets. A
challenging task becomes the analysis of the correlations of different data, even when
semantic dependencies exist among them.

A framework was proposed [128], aiming at unifying multiple entity views with the
purpose of learning embeddings for entity alignments. The views of entity names and
their relations and attributes assist in embedding entities, under different combination
strategies. The alignment of two different Knowledge Graphs (KGs) is performed by cross-
KG inference methods. KG construction and fusion are facilitated by entity matching or
resolution. Therefore, entities in different KGs with the same identity are found.

Distributed filtering for the state space models in networking has also been stud-
ied [129]. A Bayesian model has been formulated, which handles outliers and heavy-tailed
noises, with the purpose of improving the robustness of the filter. A centralised algorithm
has been proposed that is based on variational Bayesian methods, providing robust filter-
ing. Next, it has been extended to include the Alternating Direction Method of Multipliers
(ADMM). The purpose is to estimate the states and noise covariances.

Schemes have been proposed for managing heterogeneous bio-medical data [130].
A real-time health monitoring system collecting data from the body using sensors has
been proposed. A predictive model that is trained on clinical data is applied for detecting
malfunctions and generating warnings accordingly. Heterogeneous sensor systems benefit
from hybrid fuzzy logic-based algorithms with the Kalman filter. Underground risk has
been assessed by a proposed hierarchical fuzzy logic model [131]. For that purpose, two
new rule designing and determination methods were presented and evaluated, i.e., the
Average Rules Based (ARB) and Max Rules Based (MRB).

Canonical Correlation Analysis (CCA) assists in the analysis of two heterogeneous
sets of variables for extracting features that are correlated. In this method [132], there is
performance improvement and reduction in computational cost, by optimally predicting
the dimension of multimodal information. Next, it was verified that the different types of
canonical correlation analyses are special cases of the proposed method, leading to a unified
framework. The performance of CCA concerning the fusion output is affected negatively
by noisy datasets. When there is dependency between two sets of variables, the Partial
Least-Squares (PLS) regression method can be applied. Furthermore, it is applied when
the first set contains variables explaining the ones in the other set. In [133], PLS was used
to overcome multicollinearity by performing feature extraction. Since PLS is a supervised
learning task, it finds orthogonal directions using response values.

In the work of [134], the multimodal fusion of visual and textual similarities was
explored from the perspective of an unsupervised framework. These similarities are based
on visual features and concepts, as well as textual metadata with the purpose of integrating
nonlinear graph-based fusion and PLS regression. A multimodal contextual similarity
matrix was constructed, along with the nonlinear combination of relevance scores using
query-based similarity vectors.

Multisensor data fusion is affected by nonlinear time-varying sensing processes, pro-
ducing less-accurate predictions. Mitigating such conditions, optimised algorithms are
required for each separate fusion channel. The Extended Kalman Filter (EKF) is extensively
used in nonlinear environments. Accuracy improves by using the unscented Kalman
filter [122], which is enabled by utilising approximation statistics. The main disadvantages
the EKF relate to the linearisation, which is responsible for producing filter instability, and
it also requires the existence of the Jacobean matrix. Finally, due to the difficulty of deriving
Jacobean matrices, linearisation is a process that is not easily implementable.

The main traits that contribute to the popularity of KF methods relate to simplicity and
easy implementation. Outliers inhibit the performance of these filters when sensor-dense
IoT networks are operating, resulting in KF breakdowns. Accuracy is not always feasible
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when AI methods are utilised due to the heuristic nature of the functionality they provide,
especially if a large number of sensors is present.

An important research issue is confronting the problem from a Bayesian probabilistic
perspective. Using the measurement data, statistically tracking the mean and covariance
leads to the estimation of unknown state variables [135]. In such nonlinear networking
environments, fusion methods based on fuzzy logic are useful due to the ability to fuse raw
data coming from sensors according to predefined rules. These systems can function with
high bandwidth and accuracy with sensitive applications. There is also complexity for the
update functionality in nonlinear systems [136].

The estimation of a process with an uncertain state with the measurement of noise
covariances in nonlinear systems was the research goal of the authors in [142]. For that
purpose, an adaptive fusion algorithm with Bayesian cubature was proposed, which jointly
estimates system states and covariances with cubature sampling. The goal was to derive
the variational Bayesian cubature KF.

The assembly line was assisted by computer vision systems based on object recognition
techniques in [137]. These techniques ease the process of identifying complex components
and dictate to the operating entity the right task to initiate next.

Data fusion techniques are widely used for the purpose of object tracking. Typical re-
lated applications are in robotics and in military equipment and transportation. Specifically,
correct target localisation in the military field is facilitated by object tracking techniques.
Furthermore, this process involves the detection of threats, the detection of moving objects
in restricted areas, as well as timely decision-making.

Object tracking challenges consist of MTT, Track-to-Track issues (T2T), error mitigation,
and cost effectiveness. MTT methods rely on data associations that are scene-adaptive.
Features of specific targets are accurately determined by exploiting adaptive traits. Data
associations take place in hierarchical spaces with different layers.

An example of multi-targeting tracking for an end-to-end transportation network was
exhibited in [138]. In this work, an optimal set of trajectories was modelled by generating
a graph when exploring deep features. Statistical similarity metrics were utilised for
finding the transition cost between nodes. MILP approaches aid in solving the optimisation
problem. Another work [139] by the previous authors was related to a hierarchical feature
model in the same research field. The proposed algorithm relies on deep features for
modelling the appearance of the targets. Next, the tracking problem is confronted by
utilizing the unsupervised dimensionality reduction of sparse representation of the feature
vectors. Finally, the target is associated by discrete combinatorial optimisation using a
Bayesian filter.

The Gaussian mixture probability hypothesis density filter was used for designing an
online multi-object tracking method in [140]. In this work, two modules formed the basis
for the hierarchical data association, i.e., detection-to-track and track-to-track. These can
recover lost tracks and switched IDs. Occlusion problems were also addressed.

Energy efficiency for target tracking in sensor networks is an evolving research field.
The authors of [141] presented an algorithm for prediction-based opportunistic sensing
in this network type. Sensor nodes self-adapt to target trajectories. They used prediction
methods to detect the arrival of targets in close range, so as to put the devices in high
consumption mode. When the target was undetected, low-power mode was enabled.

The generic enabling technologies were reviewed for performing fusion in IoT envi-
ronments. Distributed environments are required when centralised control is not feasible
due to the lack of computing and communicating resources. Heterogeneity cannot be
discarded since the CapEx and OpEx should remain low. Furthermore, nonlinear and
object tracking environments should be confronted as well. In the next section, data fusion
for manufacturing environments is described in detail. Some of the techniques used in the
general IoT domain can be also found in manufacturing applications.

313



Sensors 2022, 22, 1734

4.2. Data Fusion Solutions in the Manufacturing Sector

In this section, a review of the fusion methods used to combine the heterogeneous
sensors employed in industrial prognosis is presented. As mentioned earlier, in machine
learning applications, fusion refers to ensemble learning; it is used to optimise the results
of a prediction algorithm, and it is categorised according to the stage of the pipeline that
it is implemented. Data fusion combines data at an early level; feature fusion is used to
describe the combination of extracted features; late fusion describes the combination of the
results of different models.

A thorough overview of data fusion systems in the industrial sector can be found in [4].
The authors categorised the industrial scenarios according to the target of the analysis,
which affects the features extracted and the type of fusion adopted. The workflow of
“data-driven industrial prognosis”, also referred to as the Cross-Industry Standard Process
for Data Mining (CRISP), mentioned data fusion and preparation as a middle step in the
analysis’ pipeline, before proceeding with the modelling and evaluation. Data fusion
exploits additional sources of information other than those that already existing in an
industry unit, such as environmental factors, which can provide important added value.

In [71], information fusion theory was adopted to combine features in order to deal
with the nonlinear problem of machine condition recognition. The sensors used were a
dynamometer for cutting force signals and an accelerometer for vibration signals. The ab-
normal conditions that needed to be recognised were tool wear and workpiece deformation.
Before applying feature fusion, signal processing took place. Fast Fourier transformation
and then discrete wavelet transformation were used to process the signals and extract fea-
tures. Approximation and detail components were extracted from the signals and used as
the input for the analysis. Cutting parameters and signal characteristics were fused in one
characteristic vector with concatenation, and then, Support Vector Machine (SVM) models
were applied to recognise the different machine conditions. In [143], the authors performed
tool wear prediction and fused multi-domain features with the use of deep neural networks.
Cutting force and vibration sensors were used to monitor the tool wear condition. Time,
frequency, and time–frequency domain features were extracted from these sensors. The
ground truth about the condition of the tools was obtained through a microscope in offline
mode. The authors normalised the values of the extracted features and the target values,
before applying the Deep Convolutional Neural Network (DCNN) model.

Surface quality control was performed in [72]. Four methods for signal processing were
used, and a multisensor data fusion framework was presented. The cutting forces, acoustic
emission, and vibration sensors were used to monitor the quality of the surface. Time
Direct Analysis (TDA), Power Spectral Density (PSD), Singular Spectrum Analysis (SSA),
and Wavelet Packet Transform (WPT) were the four feature extraction methods applied to
the sensor data to extract statistical and non-statistical parameters. The multisensor fusion
framework refers to the combination of parameters of all available sensors and of cutting
forces and vibration sensors only. The framework was examined separately for each feature
extraction method and for TDA and PSD together.

A more complex approach for data fusion in two stages was proposed in [144]. The
authors dealt with the problem of condition monitoring. The fusion approach was based on
Bayesian inference. In the first stage of the fusion framework, the data were combined at a
local level, which in the particular application translates into individual health components.
The obtained results of this level were used as the inputs in the second stage, which was
the global one, and the condition of the whole system was assessed. The authors extracted
a variety of time and frequency domain features from the time waveform of the signals.
A two-stage Bayesian method combined with PCA was used as a sensor fusion scheme
in [115]. The authors combined vibration, electric, and acoustic signals for mechanical and
electrical fault diagnosis in induction motors. PCA was used to remove correlated features
extracted from the three types of sensors. At the first stage of the Bayesian approach, the
principal components of the features were combined with a Gaussian Naive Bayes (GNB)
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classifier, and the fusion of the local stages’ results followed in the second (global) stage of
the approach.

In [79], the authors performed CNC machining monitoring with the use of three
sensors and also proposed a data fusion framework that improved the monitoring. Mi-
crophones were placed at three different locations in order to receive measurements for
cutting parameters. The fusion framework comprised the typical procedure of signal ex-
traction, filtering with the use of band-pass filters, and normalisation. Afterwards, using
the autocorrelation coefficient, preference weights were calculated, which added a bigger
weight to the preferred sensor. Finally, a signal estimate was formed by the sensor with
the highest weight and the maximum likelihood estimate. This proposed fusion scheme is
suitable for periodic transient signals.

In [44], Deep Neural Networks (DNNs) were used for sensor data fusion and analysis.
The data under analysis comprised heterogeneous sensors attached to a replica industrial
plant. The goal of the analysis was to assess the working conditions of the industrial
plan with a fault prediction algorithm. The sensors involved were a vibration, proximity
sensor, temperature, audio (measuring the noise produced by the machine replica), and
current sensor. Each of these sensors measures a different condition of the plant. The
authors faced the problem of monitoring all of these conditions as a multiclass classification
problem, where each of the classes refers to the state of a condition. The fusion of the four
sensors, excluding temperature, was performed with a DNN. The sensors had different
sampling frequencies. In the preprocessing stage, the outliers were removed. On the audio
signals, fast Fourier transformation was applied to extract frequency features. From the
current and vibration sensors, the maximum values were extracted using time windows
of different lengths for each sensor. No features were extracted from the proximity sensor.
All these features were combined using a concatenation layer in the DNN. Deep fusion
and feature level fusion were combined in [145] to perform fault severity diagnosis under
various operating conditions. Multiple sensors, such as torque sensors and accelerometers,
were installed on an experimental conditioning platform, to test the proposed framework.
The signals provided by the sensors were segmented, and the features were extracted by
each segment separately. The features of different segments were combined and formed
a single feature vector. Afterwards, with the use of the DNN, the features were deeply
fused in the layers of the network. After the deep fusion stage, the training and testing of
classifiers followed.

A DCNN was found in [146]. The authors proposed an adaptive fusion method based
on DCNNs that addressed the issues of multisensor feature extraction and the selection
of a suitable fusion method in terms of the stage in which it is performed. The capability
of DNNs to fuse data into different layers and stages was the reason the authors adopted
them in their approach. The adapted network fuses the input data at lower levels and then
extracts basic features, which are then, in the middle layer, fused into high-level features
and decisions, and finally, at the higher levels, the features and decisions are combined
again to obtain the final prediction.

A quite recent paper [74] dealing with the problem of milling chatter detection pro-
posed a multisensor data fusion scheme to combine accelerometer and microphone inputs.
After creating chatter features with Wavelet Package Decomposition (WPD), the authors
performed parameter optimisation, then identified the WPD coefficients that were corre-
lated to the resonant frequencies, and extracted time–frequency features. The fused features
of both sensors were selected with the application of the Recursive Feature Elimination
(RFE) method.

In [80], the authors applied a random-forest-based fusion to combine vibration and
acoustic signals for fault diagnosis. An accelerometer was used to provide the vibration
signals and an acoustic emission sensor for the acoustic signals. The sensors were operating
at the same time to monitor the condition of a gearbox. The authors applied wavelet packet
transform to extract the statistical parameters of the two sensors, which were later fed into
two deep Boltzmann machines, respectively, to extract the deep features. Then, the features
were fused using random forests.
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In an older paper [147], fault diagnosis was again performed with acoustic and vi-
bration signals, which were combined using Dempster–Shafer theory. This fusion was
performed at the decision level. The signals from the two sensors were preprocessed using
wavelet analysis, and the extracted data were used as the input in artificial neural networks
for classification. The results of the networks were then combined using Dempster–Shafer
rules, and the fusion improved the individual performance of the sensors per 10%. Late
fusion was also used in [148] to improve the diagnosis of bearing defects in induction
motors. The authors first combined the features extracted from the vibration sensors, after
removing the redundant ones. Afterwards, they tried four different classifiers, which were
later combined using ensemble methods, such as voting and stacking.

Feature fusion with the use of kernel techniques was presented in [149]. The authors
referred to the term “fusion” along with feature selection as a technique for dimension
reduction. The authors combined kernel theory with factor analysis and proposed a
Probabilistic Kernel Factor Analysis framework (PKFA), employed for feature selection
and fusion in tool condition monitoring. After the acquisition of data from vibration
and force sensors involved in the machine processes, feature extraction was applied to
extract statistical and frequency features, which measure the health condition of tools. The
proposed PKFA was then applied to select and fuse features. For the prediction of tool
wear condition, support vector regression was used.

The above mentioned methods are summarized in Table 4, categorized according to
the stage of the analysis they are performed.

Table 4. Summary of the fusion methods.

Fusion Level Fusion Method Reference

Feature Information theory [71]
Feature/late Bayesian-based fusion [115,144]
Feature D(C)NNs [44,143,145,146]
Feature Feature elimination/concatenation [72,74,79,149]
Late Dempster–Schafer theory [147,148]
Feature Random forest based [80]

5. Discussion

In this paper, an overview of recent trends in sensor data analysis and fusion applica-
tions in the manufacturing sector was provided. The reviewed literature was categorised
according to the stages of the analysis. First, data storage solutions were presented, in-
cluding acquisition methods and communication protocols. Afterwards, preprocessing
methods employed in the manufacturing sector were presented. The preprocessing steps
of sensor data analysis demand much effort. Considering that most of the acquired data in
industrial prognosis are sensor signals, filtering and feature extraction should be applied to
eliminate noise.

The current literature review presented first of all the data storage and extraction
solutions used in the sector. The vast variety of solutions that were presented are used in
order to create a pipeline capable of handling the data from acquiring to storing. Most
of them involve a wireless method for gathering data and a database solution capable of
storing the data efficiently. Due to the nature and volume of the data, distributed databases
are preferred.

Fusion methods are increasingly involved in sensor data analysis in manufacturing
applications. From the literature reviewed, it can be stated that data or feature level fusion
are more frequently applied in industrial prognosis. It can be also noted that the term
data fusion was found to be used broadly to describe the tasks of feature extraction and
feature selection, where the features of different sensors were combined using mainly
concatenation. Fewer were the applications of late fusion methods, although there is a
wider variety of them compared to early fusion ones. DNNs are a popular fusion method
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in the manufacturing sector, combining different sensors by addressing them in different
layers and also offering the advantage of skipping the step of feature extraction.

Regarding signal processing and feature extraction, the computational efforts required
by the algorithms imply some handicaps in the implementation of these strategies. In con-
trast, the use of extremely straightforward techniques can lead to low-quality information
for the purposes of the manufacturing industry. Therefore, a compromise is required be-
tween the duration of the running time of the processing and feature extraction algorithms
and the quality of the data being used for posterior analysis.

There is still room for experimenting with different fusion methods in the field of
manufacturing, considering the more narrow variety of fusion methods adopted, compared
to other fields. According to this review, as well as other reviews regarding sensor data
analysis in the manufacturing sector, the combination of heterogeneous sensor data is
mostly achieved through concatenation or DNNs. Real-time applications of prognosis,
such as chatter or tool wear detection, definitely affect the type of fusion adopted, while
off-line implementations allow for more experimentation. There are of course numerous
late fusion methods that are not time demanding and can be employed in a real-time
application. The implementation of more sophisticated fusion methods is one possible
research direction for further investigation. Researchers should take into account the issues
of large data volumes extracted from sensors and the time complexity of feature extraction
and of algorithm implementation.

In order to apply efficient fusion solutions in the manufacturing sector, the underlying
network technologies should be considered as well. Production environments rely on IoT
connectivity, among other technologies, for energy efficiency and performance. Spectrum
allocation is a process where machine learning tools emerge for improving adaptivity to
the runtime conditions, when embedded in the computational logic and communication
protocols. These tools are applied upon the enabling technologies of IoT networks. An
overview of the aforementioned enabling technologies was performed, as well as the
correlation with distributed, heterogeneous, nonlinear, or object-tracking environments.

It should be highlighted that the conception of all the technologies described in the
paper followed its own path and that their strengths were combined in order to generate
analysis workflows as the one described in the Introduction. Having said that, the adoption
of these technologies by the industry does not follow a homogeneous trend. The differences
between sectors (in terms of competitiveness, required quality standards, etc.) generate
different needs when it comes to digital transformation and, specifically, multisensor data
fusion. Moreover, some companies opt for the application of a subset of the aforementioned
workflow, by the use of portable equipment with sensing, signal processing, and feature
extraction capabilities for non-skilled workers that can be enough to monitor some of the
critical points of the manufacturing plants. Apart from that, the differences with respect
to investment capabilities and skills of the personnel of the companies in the specific
technologies generate also a heterogeneous adoption of these technologies.

Thus, the purpose of this literature review was to present the recent trends in data
fusion solutions for industrial prognosis, specifically for the manufacturing sector. This
paper aims to serve as a practical guide for those interested in learning about methodologies
and trends in analysing manufacturing sensor data, as well as the more advanced technique
of fusion.
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Abbreviations

The following abbreviations are used in this manuscript:

ICTs Information Communication Technologies
IoT Internet of Things
WSNs Wireless Sensor Networks
RFID Radio Frequency Identification
DAQ Data Acquisition Device
RF Radio Frequency
OPC-UA Open Platform Communications Unified Architecture
SQL Structured Query Language database
CPS Cyber–Physical System
MES Smart Manufacturing Execution System
IPv6 Internet Protocol Version 6
MQTT MQ Telemetry Transport
SOAP Simple Object Access Protocol
REST Representational State Transfer
SCADA Supervisory Control And Data Acquisition
ODBC Open Database Connectivity
DDE Dynamic Data Exchange
RS232 Recommended Standard 232
HART Highway Addressable Remote Transducer
API Application Programming Interface
HTTP Hypertext Transfer Protocol
LE Low Energy
NFC Near-Field Communications
LPWAN Low-Power Wide-Area Network
LoRa Low Range
NB-IoT Narrowband IoT
CNC Computerised Numerical Control
TCP/IP Transmission Control Protocol/Internet Protocol
UHF Ultra-High Frequency
IIoT Industrial Internet of Things
DDBS Distributed Database System
UHF Ultra-High Frequency
IIoT Industrial Internet of Things
DDBS Distributed Database System
HDFS Hadoop Distributed File System
COSMOS C Open Source Managed Operating System
GFS Google File System
PDU Protocol Data Unit
DBMS Database Management Systems
OLTP Online Transaction Processing
RDBMS Relational Database Management Systems
DO-SS Document-Oriented Storage System
OO-SS Object-Oriented Storage System
SDHC Software-Defined Hybrid Cloud
ISO International Organization for Standardization
VDI Verein Deutscher Ingenieure
AE Acoustic Emission
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MCSA Motor Current Signature Analysis
PCA Principal Component Analysis
mRMR minimal Redundancy–Maximum Relevance
CRISP Cross-Industry Standard Process for Data Mining
SVM Support Vector Machine
DCNN Deep Convolutional Neural Network
GNB Gaussian Naive Bayes
DNN Deep Neural Networks
WPD Wavelet Package Decomposition
RFE Recursive Feature Elimination
PKFA Probabilistic Kernel Factor Analysis
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